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ABSTRACT OF THE DISSERTATION

Advanced Guidance and Navigation of Small UAVs under
GPS-denied Environment with Experimental Validations

by Liyang Wang

Dissertation Director: Xiaoli Bai

Small vertical take-off and landing (VTOL) Unmanned Aerial Vehicles (UAVs) are playing

more and more important role in recent years for a wide range of applications including wire-

less communication, topographic mapping, disaster relief, and military action. The size of the

UAVs becomes smaller to enable challenging applications such as indoor exploration. With the

reduced size of the structure, battery, and on-board sensors, the payload is constrained. As a

result, the quality of the on-board sensors and the on-board computation ability of small UAVs

are limited. Under these conditions, to complete complicated tasks, research on small VTOL

UAVs are required in many aspects. This thesis mainly focuses on four aspects: 1) Object

recognition and tracking for vessel deck landings; 2) Simultaneous localization and mapping

(SLAM); 3) Wind disturbance estimation; and 4) UAV platform design.

Autonomous landing of a quadrotor UAV on a vessel deck is challenging due to the spe-

cial sea environment. In this thesis, an on-board monocular vision-based solution that pro-

vides a quadrotor with the capability to autonomously track and land on a vessel deck platform

with simulated high sea state conditions is presented. The whole landing process includes two

stages: approaching from a long range and landing after hovering above the landing platform.

Only on-board sensors are used in both stages, without external information input. This thesis

use Parrot AR.Drone as the experimental quadrotor platform, and a self-designed vessel deck
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emulator is constructed to evaluate the effectiveness of the proposed vessel deck landing solu-

tion. Experimental results demonstrate the accuracy and robustness of the developed landing

algorithms.

Second, this thesis presents a novel solution to on-board sensor only feature based monoc-

ular 3-D SLAM algorithm for Small UAVs. The proposed SLAM algorithm can navigate

autonomously in previously unknown environments without external positioning aid by only

using one camera and an IMU. Main contribution of this work is the proposed method can gen-

erate absolute scale map without map initialization and optimization methods. These advan-

tages make the presented SLAM algorithm more applicable to use than other existing methods

for small UAVs. Applying the proposed method to a low-cost quadrotor, experimental results

demonstrate that our system can generate map correctly with absolute scale. At the same time,

the position estimation accuracy of the camera is also improved compared to using inertial

navigation only.

Wind speed estimation for VTOL UAVs is challenging due to the low accuracy of airspeed

sensors, which can be severely affected by the rotor’s down wash effect. Different from the

traditional aerodynamic modeling solutions, in this thesis, a K Nearest Neighborhood learning

based method which does not require the details of the aerodynamic information is presented.

The proposed method includes two stages: an off-line training stage and an on-line wind esti-

mation stage. Only flight data is used for the on-line estimation stage, without direct airspeed

measurements. This thesis uses Parrot AR.Drone as the testing quadrotor, and a commercial

fan is used to generate wind disturbance. Experimental results demonstrate the accuracy and

robustness of the developed wind estimation algorithms under hovering conditions.

For VTOL UAVs hardware system design, this thesis provides a quadrotor solution which

can support most of the research of small VTOL UAVs. The quadrotor’s structure is made by

carbon fiber, which provides large freedom of weight for on-board computers and sensors. For

the on-board computer, a high-level processor and a low-level processor work together as a

two-level processor system. The low-level processor is responsible for sensor data acquiring,

synchronization, and motor speed controls. Furthermore, the low-level processor also monitors

the manual control signal during the flight and can switch the control source to manual control

under emergency, which makes the platform safe to operate. For the high-level processor,
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an Ubuntu operation system is equipped. At the same time, Robot Operating System (ROS) is

also embedded to access on-line available ROS packages easily. Researches can also make their

own packages which contain their own algorithms. Another function for high-level processor is

to communicate with users in real-time through wireless communication. The on-board sensor

system includes: 1) a downward looking camera, 2) an Inertial Measurement Unit (IMU) which

contains a 3-axis gyro and a 3-axis accelerometer, 3) a 3-axis compass, and 4) a downward

looking ultrasonic sensor. These sensors provide rich information. Combined with the powerful

two-level processor system, the whole system can help many important UAV research.
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Chapter 1

Introduction

1.1 Growing Applications of small VTOL UAVs

Small vertical take-off and landing (VTOL) Unmanned Aerial Vehicles (UAVs) are playing

more and more important role. In the past few years, small VTOL UAVs have been used for

applications such as wireless communication [1] [2], topographic mapping [3] [4], disaster

relief [5] [6], and military action [7] [8].

In [1], the authors provide an overview of UAV-aided wireless communications system.

They introduce the basic networking architecture and main channel characteristics, highlight

the key design considerations, and the new opportunities are exploited. In [2], the authors

studied a multi-UAV enabled wireless communication system. Multiple UAV-mounted aerial

base stations are employed to serve a group of users on the ground. To achieve fair performance

among users, the authors maximize the minimum throughput over all ground users in the down-

link communication by optimizing the multi-user communication scheduling and association

jointly with the UAV’s trajectory and power control.

In [3], using simulations of multi-image networks with near parallel viewing directions,

the authors show that enabling camera self calibration as part of the bundle adjustment process

inherently leads to erroneous radial distortion estimates and associated error. They provide

practical flight plan solutions for fixed wing or rotor based UAVs. They proves that in the

absence of control points, the method can reduce error by up to two orders of magnitude.

In [4], the authors provide some examples for the use of topographic mapping techniques in

structural geology and paleoseismology. In their work, Photogrammetric models serve to act

as an ideal electronic repository for critical outcrops and observations, similar to the electronic

lab book approach employed in the bio-sciences.
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In [5], the paper provides a review of recent utilization of UAVs for imagery collection for

disaster monitoring and management. In [6], the authors point out that optimal design of UAV

system can provide great potential for relief and emergency action. At the same time, a case of

civil UAV system for disaster relief to save lives is studied.

In [7], the authors provide guidance of multiple UAVs as sensor platforms in military heli-

copter missions. Their work is addressed by the development and integration of the Artificial

Cognitive Units (ACUs). The ACUs have been given knowledge of the Manned-Unmanned

Teaming (MUM-T) domain, which allows the guidance of UAVs based upon certain high-level

tasks. In [8], the authors states mainly 4 aspects for the effectiveness of a drone strategy can be

subdivided into four separate claims. First, drones are effective at killing terrorists with minimal

civilian casualties. Second, drones have been successful at killing so called ’high value targets’

(HVTs). Third, using drones puts such pressure on terrorist organizations that it degrades their

organizational capacity and ability to strike. Lastly, the cost-benefit analysis of their use rela-

tive to other options-such as the deployment of ground troops-provides a compelling argument

in their favor.

1.2 Current Small UAV Configurations and Relevant Technologies

Recently, the size of UAVs have become smaller to enable some challenging applications such

as some indoor applications. Many manufactures have released their quadrotor solutions for

research. For example. in 2017, DJI released Matrice serial UAVs for research [9]. In [10],

Vikram et al use the DJI Matrice 100 platform for agriculture monitoring and observation for

yielding better crop quality and preventing fields from any sort of damage. Another market

available research drone is provided by Parrot, called AR.Drone serial [11]. Many researches

use the AR.Drone as the drone platform, such as [12] [13] [14] [15] and [16].

In general, for current market available UAV platforms, the sensors system includes 1) a

downward looking or a forward looking camera, 2) an Inertial Measurement Unit (IMU) which

contains a 3-axis gyro and a 3-axis accelerometer, 3) a 3-axis compass, and 4) a downward

looking ultrasonic sensor. The camera of the UAV can provide image flows which is able to
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apply vision algorithms. The IMU sensor system can provide the angular velocity and acceler-

ation information of the vehicle. The compass sensors measures the magnetic field of the earth,

and that information can provide the heading angle of the vehicle which is able to inhibit the

gyro drift [17]. The ultrasonic sensor can send ultrasonic wave and measure the time that the

ultrasonic wave rebound. Since the speed of the ultrasonic wave is known as the sound speed,

the distance between the sensor and the object can be calculated [18]. Usually, this kind of

sensor is used to measure the altitude of the UAV.

For the processor on-board, it is usually low-cost ARM processor [19]. The function of the

processor on-board current mainly include sensor data acquiring, wireless communication with

ground station, and motor controls. The high level algorithms are usually programmed on the

ground station. For example, the Parrot AR.Drone uses this type of configuration [20]. While

some market available can run high level algorithms on-board, such as DJI Matrice serial [21].

However, the price is relevantly much higher.

Many techniques are involved for guidance and navigation of small UAVs. For applications

based on visual information, pattern recognition [22], visual odometry [23], and visual Si-

multaneous localization and mapping (SLAM) [24] technologies are usually adopted. Pattern

recognition is the automated recognition of patterns and regularities in data. Pattern recognition

is closely related to artificial intelligence and machine learning [22], together with applications

such as data mining and knowledge discovery in databases (KDD), and is often used inter-

changeably with these terms. In robotics and computer vision, visual odometry is the process

of determining the position and orientation of a robot by analyzing the associated camera im-

ages. It has been used in a wide variety of robotic applications, such as on the Mars Exploration

Rovers [25]. In navigation, robotic mapping and odometry for virtual reality or augmented

reality, simultaneous localization and mapping (SLAM) is the computational problem of con-

structing or updating a map of an unknown environment while simultaneously keeping track

of an agent’s location within it [26] [27] [28]. For using the data from IMU, compass, and

ultrasonic sensor, Strapdown inertial navigation [29] [30] is the typical technique to acquire at-

titude and speed of the vehicle. Strapdown inertial navigation is a navigation method that uses a

computer, accelerometers and gyroscopes to continuously calculate by dead reckoning [31] the
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position, the orientation, and the velocity of a moving object without the need for external ref-

erences. Often the inertial sensors are supplemented by a barometric altimeter and occasionally

by magnetic sensors or speed measuring devices.

1.3 Contributions and outline

The size of the structure, battery, and on-board sensors are reduced. So the payload of small

UAVs is limited. As a results, the quality of the on-board sensors and the on-board computation

ability are constrained. Under these conditions, to realize the complicated tasks, researches on

small VTOL UAVs are growing in many aspects. This thesis mainly focus on three aspects:

1) Known object recognition and tracking for vessel deck landing application; 2) Simultaneous

localization and mapping (SLAM) technique; 3) Wind disturbance estimation; and 4) UAV

platform design.

The contributions of the thesis include four aspects.

(i) Using only on-board IMU, ultrasonic and camera sensor, a robust landing procedure is

developed. The procedure include two stages: long range approaching and short range

landing. At the long range approaching stage, the drone first recognize the red LEDs

applied on the landing board from long range, then estimate the relevant distance and

directions and drive automatically approach the landing board. At the short range landing

stage, once the drone hover above the landing board, the bottom camera start to work and

recognize the designed ’H’ landing sign, adjust the position and land on the board. To

test the developed algorithms, a self-designed landing platform, which can emulate the

deck motion of a vessel 30 m wide under sea state 6 is used. Flight results demonstrate

the landing success rate of 100% with a 9 cm average distance error.

(ii) A novel solution to on-board sensor only feature based monocular 3-D SLAM algorithm

for Small UAVs is developed. The pin-hole camera model is derived in an alternative

prospective and the proposed algorithm combines the IMU measurements inherently.

The proposed SLAM algorithm can navigate autonomously in previously unknown en-

vironments without external positioning aid by just using one camera and an IMU. Since
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the pin-hole camera model is derived in an alternative prospective and the proposed al-

gorithm combines the IMU measurements inherently, the proposed method is able to

generate absolute scale map without map initialization and optimization methods. These

advantages make the presented SLAM algorithm more applicable to use than other ex-

isting methods for small UAVs. Applying the proposed method to a low-cost quadrotor,

experimental results demonstrate that our system is able to generate map correctly with

absolute scale. At the same time, the position estimation accuracy of the camera is also

improved compares to use inertial navigation only.

(iii) Different from the traditional aerodynamic modeling solutions, in this thesis, a K Nearest

Neighborhood learning based method which does not require the details of the aerody-

namic information is developed. The proposed method uses the features generated by

flight data as the learning model, and does not require the details of the aerodynamic

information. Also, this method only uses flight data to generate the designed features

for the training and wind estimation stages, and does not require direct wind speed mea-

surements. Experiment results show that the proposed method can estimate the wind

accurately, with a 0.074 m/s average estimation error, and a 3.3% average estimation

relative error, while the average estimation error generated by AR.Drone’s embedded

system is 1.673 m/s.

(iv) A quadrotor hardware solution which is able to support majority of research of small

VTOL UAVs is developed. The quadrotor research platform equipped two-level proces-

sor system which is able to process all algorithms on-board. With the sensor system

embedded, rich flight information is provided to the researcher that can enable endless

possibilities. Relied on the on-board wireless communication module, the flight state

and important parameters can be monitored by researchers in real-time, which makes

the platform humanized. Further more, the on-board processor also monitor the manual

control signal during the flight, and is able to switch the control source to manual control

under emergency situation, which makes the platform safe to operate.
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Chapter 2

Visual Tracking and Navigation for Landings on Moving Vessel
Decks

2.1 Introduction

Nowadays, unmanned aerial vehicles (UAVs) are playing critical roles in many areas [32].

Numerous applications exist that require autonomous maritime deployment and retrieval of

a UAV, such as iceberg monitoring, coastal surveillance, and wildlife monitoring [33]. The

vertical take-off and landing capability (VTOL) makes the quadrotor particularly suitable for

maritime applications, where the runway for takeoff and landing is often very short. How-

ever, autonomous landing of quadrotors on a ship deck is a challenging task owing to limited

payload for sensors [34], the unreliable GPS measurements [33], and especially ocean waves’

disturbance [35].

Without using GPS measurements, for the moving platform autonomous landing problem,

vision based solutions are widely used, and various approaches have been studied [36]. Com-

pared with the on-ground vision landing system, such as [37] and [38], on-board vision landing

system is typically adopted, especially for landing on a moving platform [39]. For onboard

vision solutions, some researchers are interested in stereo vision systems, since stereo vision

systems are convenient to acquire depth information [40]. Reuben et al. present a stereo based

method for the interception of a static or moving target [41]. Target detection and relative

position estimation are realized by using two fisheye cameras. Because stereo based method

needs two cameras, which leads to more weight on-board and increased cost, many researchers

propose monocular vision based approaches. For example, Xudong et al. describe a UAV im-

plemented with vision and laser based localization algorithm to track and land on a moving

platform [42]. In that work, a LiDAR scanning range finder is used to determine the alti-

tude. In [43], Benini et al. present a real-time GPU-based pose estimation system for UAV
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autonomously takeoff and landing. The monocular video stream is processed on-board, and

the test results show that the proposed system is able to provide precise pose estimation with

a frame rate of at least 30 fps and an image resolution of 640x480 pixels. About the camera

type selection, some researchers use ordinary cameras. In [44], Francesco et al. committed to

the ability of a vision algorithm to detect and track a given landing sign. Optimized adaptive

thresholding technique is developed to ensure the robustness of the system in different illumi-

nation situations. Benini et al. present an indoor mini-UAV localization system in [45]. With

on-board monocular vision and wireless sensor network, 10cm localization accuracy has been

achieved. Some researchers use infrared (IR) camera, which is able to work at dark environ-

ments [46]. For example, Karl et al. use infrared (IR) camera to track a pattern of IR lights in

conditions without direct sunlight [47].

Compared with other moving landing platforms, a vessel deck environment is even more

challenging. It may have significant pose disturbances due to the sea waves and the wind. Most

studies have not demonstrated their approaches can work when using vessel deck emulators,

which include both pose and heave motion. In [48], Botao et al. have presented a control

structure that achieves the fast and accurate landing of quadrotor onto a vertically sinusoidally

oscillating platform. Their control structure consists of three modules: a motion estimation

module, a trajectory generation module, and a tracking control module. However, the roll and

pitch movements of the platform are not included. In contrast to the flat landing platform,

John et al. present a Laser-based guidance of a quadrotor for precise landing on an inclined

surface [49]. However, the pose angle of the landing platform is fixed in the experiments.

PITM et al. present a landing algorithm that can land a quadrotor on a pose oscillating platform

in [50]. However, in their experiments, the quadrotor is suspended from a string to restrict it

from drifting away, which is not realistic in real landing. Furthermore, the movement of the

platform is achieved by two people using their hands. The dynamics of the landing platform

is not a good emulation of a vessel deck, and the quadrotor is too close to people and could

be very dangerous. The dynamics of the ship-deck is introduced and emulated in [35]. The

pose of the ship deck with respect to the vehicle is estimated by a vision system. However,

that work didn’t include UAV state estimation and motion control methods. A more complete

and realistic solution is presented in [51]. The authors provide a complete approach which
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lands a UAV on a kayak positioned 20 m from the shore. However, the indoor test did not take

the pose change of the landing platform into consideration, and for the landing on the kayak,

the water waves are ’mild’ according to their description. More significantly, according to

the experiment results, under the indoor test environment without any disturbance, the average

landing accuracy is ±12 cm from the center of the board, and the landing success rate is less

than 90%, which is far away being satisfied for critical landing missions.

This work presents a monocular vision based system consisting of an autonomous long

range approaching method and an accurate landing algorithm using only on-board cameras and

other sensors provided by AR.Drone. The main contributions of this work include two aspects.

First, simple but effective long range target detection and approach algorithms are developed.

Second, we propose a novel system architecture that addresses realistic vessel deck landing

using only low-cost on-board sensors. The designed landing process includes two stages: ap-

proaching from long range and landing after hovering above the landing platform. For the first

stage, a robust method is designed to drive the done to an area above the landing platform. In

this stage, the red color LEDs are used for landing platform tracking. The field of view (FOV)

orientation of the front camera of the AR.Drone is redesigned to help searching the landing

platform, and the state estimation is based on the new geometric relationship between the cam-

era and the landing platform. We use a PID controller to stabilize the heading angle towards the

landing platform. For the movingdeckond stage, the drone lands autonomously on the landing

platform accurately. We accomplish the landing sign recognition using computer vision solu-

tions, and ’H’ landing sign will be tracked once it appears in the FOV of the bottom camera.

The state estimations are performed using on-board low-cost IMU, ultrasonic altimeter, and

the image informations. Kalman filters are used to further improve the estimation accuracy.

Lastly, we use PID controllers to execute the flight controls. Additionally, a vessel deck emu-

lator, which can emulate movements of a vessel deck in high sea state conditions, is designed

and used to validate the reliability and robustness of the proposed architecture. This emulator

includes an ’H’ landing sign surrounded by 4 red LEDs, and it provides a realistic emulation of

the pose and heave motion of a vessel deck.

The organization of this Chapter is as follows. In Section 2, the background information

of the components of the system is presented, including AR.Drone, the self-designed landing
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platform, and a Vicon Motion Capture System. Coordinate conventions are also introduced.

Section 3 introduces how the landing platform is designed and how it works. The long range

landing platform detection and tracking are presented in Section 4, including camera config-

urations, methods to recognize the landing sign, state estimation algorithms, and approaching

procedure. Section 5 introduces the hovering and landing stage when the drone approaches to

the landing platform. Image processing methods, state estimation algorithms, motion control,

and the architecture of algorithms are presented. Indoor experiment results are presented in

Section 6.

2.2 Back Ground Information

Here we present the hardware and system architecture we developed for the testbed. Because

the on-board camera and sensors, the landing platform, and the motion capture system which

is used as ground truth are working in different coordinate frames, we will also define the

coordinate frames and introduce the transformation among them in this section.

2.2.1 Testbed Description

(i) Parrot AR.Drone

The micro UAV we used in this work is a Parrot AR.Drone. AR.Drone is a quadrotor

helicopter that has a 6 degree of freedom internal IMU, an ultrasonic altimeter, a forward-

looking (front) camera and a downward-looking (bottom) camera [52], with a 640×360

resolution for both cameras. For the front camera, we measured the horizontal FOV is

about 60◦, and the vertical FOV is about 30◦. For the bottom camera, we measured the

horizontal FOV is about 40◦, and the vertical FOV is about 25◦.

With the sensors equipped on-board, altitude z is determined by a ultrasonic altimeter,

roll angle φ and pitch angle θ are calculated by using data from an IMU. Estimations of

these states are directly available from the Parrot AR.Drone. Although yaw angle ψ is

also provided, we don’t use it due to its low accuracy – the yaw drift is about 12◦ per

minute when flying and about 4◦ per minute when in standby [20]. For yaw angle ψ and

relevant position estimation, our solution is using vision algorithms.
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According to [20], there are 4 control channels to control AR.Drone: (1) Roll angle, (2)

Pitch angle, (3) Angular velocity of yaw, and (4) velocity of the altitude direction. We

denote them as:

u1 = φ (2.1)

u2 = θ (2.2)

u3 = ψ̇ (2.3)

u4 = ż (2.4)

Because of the limited capability of the ARM processor equipped on AR.Drone [20], we

run the system code on a ground computer and stream commands to the UAV over a Wi-

Fi connection. The UAV streams IMU data and camera images to the ground computer

also over the Wi-Fi connection. From our experiments, the delay of the Wi-Fi connection

do not cause the failure of the state estimation as well as the control.

(ii) Vessel Deck Emulator

We emulate the movement of the ship deck in the sea, using our self-designed landing

platform. See Fig. 2.1. The motivation to design this landing platform is to emulate pose

change and heave motion of a vessel deck. The ship can be modelled as a rigid body

moving in the sea [32], [35], such that the movement of a ship deck can be simulated

by an attitude-programmable plate. The concept that 3 points define a plane is used in

the design of the landing platform. The same idea is adopted in designing the landing

platform in [53].

The landing platform includes 2 pieces: a square plate and a bottom base. The square

plate is powered by 3 independent servos deployed on the back, and they are located at

the 3 vertices of an equilateral triangle. Each servo is connected with a rigid arm at the

joint, which is used to change the height of that vertex. The servos are controlled by a

STM32 ARM processor, which sends PWM signals to change the angle of arms. On the

top side of the square plate, an ’H’ sign for landing is attached at the center. Besides that,

4 red LEDs are deployed at the 4 corners of the ’H’ sign. These LEDs are used to guide

the drone from long distances.
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(a) Top view of the plate. (b) Bottom view of the plate.

(c) Landing platform base. (d) Side view of the platform.

Figure 2.1: The landing platform.

The function of the base is to hold the plate. There are 3 sliding grooves. We set the arms

in those grooves and make sure the arms move in a limited area, so the plate will not

move away from the base. The details of the landing platform is introduced in section

2.3.

(iii) Vicon Motion Capture System for Ground Truth

We also use a Vicon Motion Capture System (including 8 Bonita cameras capture up to

250 fps with one megapixel of resolution) to provide state measurements for the quadro-

tor, which is assumed as the ground truth. We emphasize that, the measurements from

Vicon are only used for validation, and the drone only uses the information from on-board

sensors to realize its autonomous flight.
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2.2.2 Coordinate Frames and Transformations

Four coordinate frames are used in this work. The first 3 coordinate frames are 3D right-handed,

and the unit is meter. The inertial or east-north-up (ENU) frame, denoted as N, is the basis for

Vicon measurements and provides the inertia position. The origin is set to be the center of our

experimental site. East, north, and up will be referred to as the axis xN , yN , and zN , respectively.

The quadrotor body frame B, with the origin to be the bottom camera’s lens’ center, xB axis

between rotors 1 and 2, pointing to the optical axis of the front camera, yB between rotors 2 and

3 and zB pointing to the optical axis of the bottom camera, is used to define the vehicle motion.

Because the rigid connection between the body of quadrotor and the bottom camera, which we

use as the image source, the body frame B also works as the camera frame. Local reference

frame L works as the intermediate frame between the inertial frame and the body frame. The

origin of local reference frame is same as the body frame, while xL points to the north, yL points

to the east, and zL points downward. See Fig. 2.2 and Fig. 2.3.

Figure 2.2: Body frame. Figure 2.3: Inertial frame and local reference
frame.

The last frame is the image frame I, used for both the front camera and the bottom camera.

Frame I is a 2D frame, with the origin OI to be the top-left point of the image, U axis along

the length, and V axis along the width. The unit of image frame is pixel. See Fig. 2.4. The

coordinate of an arbitrary point P is (u,v) with respect to the image frame.

Fig. 2.5 shows the optical geometric relationship between the bottom camera and the

drone’s body. In the 3D chart of Fig. 2.5, OB is the center of the camera’s lens, and also is

the origin of frame B. Distance between OB and the center of the image plane is f , which is

the camera’s focal length. In the 2D chart of Fig. 2.5, OI is the origin of image frame, and

the coordinate of image center O0 is (u0,v0) with respect to the image frame and (0,0, f ) with
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Figure 2.4: Image frame.

respect to the body frame. The coordinate of point P0 is (u,v) with respect to the image frame

and (x0,y0, f ) with respect to the body frame.

Figure 2.5: Relationship between image frame (respect to the bottom camera) and body frame.

Now define rotation matrices for the 3D frames. Let −→pB be the vector respect to frame B,

where−→pB =
[
xb yb zb

]T
. And let CL

B be the rotation matrix which transfers the vector respect

to frame B to the vector respect to frame L. So −→pL = CL
B
−→pB. Also, by chain rule, CN

B = CL
BCN

L .
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From Fig. 2.3, we have the rotation matrix

CN
L =


0 1 0

1 0 0

0 0 −1

 (2.5)

Rotation matrix CL
B can be generated from sin and cos functions of Euler angles. We set φ

be the roll angle, θ be the pitch angle, and ψ be the yaw angle. We also denote sθ for sinθ and

cθ for cosθ . Then we have

CL
B =


cθcψ −cφsψ + sφsθcψ sφsψ + cφsθcψ

cθsψ cφcψ + sφsθsψ −sφcψ + cφsθsψ

−sθ sφcθ cφcθ

 (2.6)

From Fig. 2.5, we can derive the transformation from image frame I (respect to the bottom

camera) to body frame B. Suppose a light source, located at point P, sends light to point OB

through point P0, where P0 is located at the image plane. We have

u =
y0

k
+u0 (2.7)

v =−x0

k
+ v0 (2.8)

where k is the size of the pixel, which is a constant parameter of the bottom camera, and the

unit of k is meters. We also have
x0

xb
=

f
zb

(2.9)

y0

yb
=

f
zb

(2.10)

From equations (2.7) to (2.10), we have

xb =−
k
f

(
v− v0

)
zb (2.11)

yb =
k
f

(
u−u0

)
zb (2.12)

For convenience, we define λ = k
f , α = xb

zb
, and β = yb

zb
. Then we can write equations (2.11)

and (2.12) into matrix version, we have
α

β

1

=


0 −λ

λ 0

0 0


u

v

+


λv0

−λu0

1

 (2.13)
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Apparently, we also have 
xb

yb

zb

= zb


α

β

1

 (2.14)

The constant λ can be determined by experiments using the least square method [54]. We

choose known points, measure the corresponding α , β , u, and v, and then use equation 2.13 to

calculate λ . From our result, we have obtained λ = 0.00146 for AR.Drone’s bottom camera.

2.3 Vessel Deck Emulator

We have constructed a moving vessel deck emulator as the testing platform. The detailed design

and the programmed movement of the vessel deck emulator are introduced in this section.

2.3.1 Vessel Deck Design

Fig. 2.6 shows the distribution of servos on the square plate for landing. The length of each

side of the square is 60 cm. Servos are located at three vertices of an equilateral triangle, and

the length of each edge is 40 cm.

Figure 2.6: Servo distribution on the bottom of landing plate.

Since the three independent servos share the same configuration, Fig. 2.7 only shows one

of them for illustration. The height of this servo point is defined as h. Distance from the joint

to the bottom of the servo d is measured as 1 cm, and length of the rigid arm l is measured as 7
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Figure 2.7: Servo point configuration.

cm. The angle between the landing plate and the arm α is programmable, and h changes when

α changes. From the geometric relationship shown in Fig. 2.7, we have

h = l sinα−d (2.15)

Since h reaches the maximum value of 6 cm when α = π

2 , and it reaches the minimum value

of 0 cm when α = β , α is constrained as β ≤ α ≤ π

2 .

Under this configuration, from calculation, the landing platform has the capability of a

maximum 6 cm heave movement and a maximum 10◦ pose angle movement (pose angle is the

angle between the plate plane and the bottom base plane). Suppose that the vessel is 30 meters

wide, from the geometric relationship, if the slope of deck is 10◦, the minimum wave height is

5.2 m ( 5.2
30 ≈ sin(10◦)). According to [35], this condition is under sea state 6, which is the "very

rough" level.

2.3.2 Deck Control and Results

We program the landing platform to emulate the deck motion under unfavorable sea state condi-

tion. Sinusoidal function is commonly used for simulating the movement of a vessel deck [35].

For our landing platform, we program the height of each servo point with a sinusoidal function

independently. See Fig. 2.8.

Fig. 2.9 is the actual motion of the landing platform under the control commands, and the

data is an extracted 8 seconds’ segment of a test from Vicon. The top plot is the position of the
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Figure 2.8: Height control to each servo point.

center of ’H’ sign. The bottom plot is the attitude of the landing plane. From Fig. 2.9 we can

see that the maximum altitude of the ’H’ sign is 6cm, and the maximum absolute roll and pitch

angles of the landing plane are 10◦. According to the analysis in section 2.3.1, this movement

emulates the deck motion of a vessel which is 30 meters wide under sea state 6 (very rough).

Figure 2.9: The motion of the landing platform.

2.4 Long Range Landing Platform Detection and Tracking

For successful autonomous landing, the first task is to detect the landing platform. After detec-

tion, the drone should be able to track and approach to the platform autonomously. This section

presents the method we used to achieve this goal.

2.4.1 Front Camera Configuration

The front camera of AR.Drone is originally set to look forward, and as we discussed in section

2.2.1, it has an approximate 60◦ horizontal FOV, and an approximate 30◦ vertical FOV. How-

ever, if this configuration is used without any adjustment, even if the algorithm can drive the
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drone to approach the landing platform, there will be a blind zone since the landing platform

will not show in neither the view of front camera nor the view of the bottom camera. To elim-

inate the blind zone, we did some modification on the front camera. First, we changed the fix

angle of the camera. It points along the X axis of body frame B before. After the modification,

it points a little downward, and the central view respect to B is in X-Z plane, with about 75◦ of

angle to X axis. Second, we rotated the camera by 90◦. So it has an approximate 60◦ vertical

FOV, and an approximate 30◦ horizontal FOV. Fig. 2.10 shows the front camera configuration

after the modification.

(a) Top view of the front camera. (b) Bottom view of the front camera.

(c) Front view of the front camera. (d) Side view of the front camera.

Figure 2.10: Front camera configuration after the modification.

Fig. 2.11 illustrates the entire camera configuration after the modification. In Fig. 2.11, α is

the vertical FOV of the front camera, and β is the angle looking backward of the front camera.

The distance between the drone and the landing platform is notated as l. The coordinate of the

landing platform in the image frame is (u,v), and since it rotated by 90◦, in side view, only u is

shown there.

From this configuration, if the drone has enough altitude h, there will be an overlap FOV

area between the front camera and the bottom camera. And once the landing platform appears

in the overlap area, the system switches to bottom camera mode autonomously and it won’t
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Figure 2.11: Camera Configuration.

have a blind zone.

2.4.2 Landing Platform Recognition

Four red LEDs are fixed at the 4 corners of the landing ’H’ sign. As introduced in section 2.2.1,

these LEDs are used for the UAV to search the landing platform from a long range. See Fig.

2.12. We note this is a simplified model of the reality. For long range shipboard detection,

the ship can be seen as a single hot spot by the on-board IR camera [55]. Limited by the AR.

Drone’s cameras and indoor environment, we use red LEDs to simulate the hot spot and use

the front camera of the AR. Drone to recognize and track the red LEDs.

In this part, red dots recognition algorithm is designed and used. The algorithm first con-

verts the image into 3 matrices to store the RGB values. A simple but effectively algorithm

is used. The dot which has the R value greater than 150, G and B values are smaller than 80

is considered as the red dot. After the algorithm searches over the entire image, a matrix is

generated to store the coordinates in the image frame of the red dots. Then the average of the

coordinates is calculated, which is considered as the coordinates of the landing platform. Fig.

2.13 shows the recognition results. The recognized red dots are circled with green circles, and

the calculated average coordinate (landing platform coordinate (u,v)) is circled with a blue cir-

cle. We note the current algorithm can’t distinguish between lights belonging to the landing pad

and others, and we don’t have other red light sources in the experiment area. This limitation
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will be studied in future.

Figure 2.12: Red LEDs and ’H’ landing sign
configuration.

Figure 2.13: Red LEDs recognition and landing
platform calculation.

2.4.3 States Estimation

After we get the coordinates of the landing platform in the image frame, the next step is to

estimate the states of the drone. As introduced in section 2.2.1, the altitude z, roll angle φ and

pitch angle θ are directly available from AR.Drone. The goal here is to estimate the heading

angle and the horizontal distance between the drone and the landing platform.

(i) Heading Angel Estimation

The heading angle discussed here represents the angle between the line connecting the

center of the landing platform and the projection of the drone on ground, and the projec-

tion of the x axis of the body frame B (xB). Coordinate v of the landing platform in the

image frame is used to determine the heading angle ψ . Because the horizontal FOV we

measured is 30◦, and the pixel number is 360 in that direction, we assume that v = 359

and v = 0 represent ±15◦ heading angle, and v = 180 represents 0◦ heading angle. Fur-

thermore, the relation between coordinate v and heading angle ψ is assumed to be linear.

Then we get the heading angle estimation represented in Equation (2.16).

ψ =
v−180

12
× π

180
(2.16)
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(ii) Horizontal Distance Estimation

Coordinate u of the landing platform in the image frame is used to determine the hori-

zontal distance l (assuming the yaw angle ψ = 0). Refer to Fig. 2.11. The vertical FOV

is 60◦ (α), and there is a 15◦ backward view (β ). The pixel number in that direction is

640. Since we know altitude h and coordinate u, from geometric relationship, we can

calculate l. First, we define angle θ to be the angle between the optical line connecting

the lens’ center and the landing platform, and the main axis of the lens. We get

tanθ =
320−u

w
(2.17)

where w is equivalent pixel number of the distance between the center of the image plane

and the center of lens.

We also have

tan
π

6
=

320
w

(2.18)

Combining equations (2.17) and (2.18), we have

θ = arctan
(320−u)× tan π

6
320

(2.19)

If θ is greater than −15◦, the landing platform is in front of the drone, and

l = h× tan(θ +15× π

180
) (2.20)

If θ is smaller than −15◦, the landing platform is in back of the drone, and

l =−h× tan(θ +15× π

180
) (2.21)

2.4.4 Approach Procedure

In the stage of approaching from long range, the goal is to drive the drone to an area above

the landing platform. Once the approach process completes, the drone will switch to the bot-

tom camera autonomously, and the landing ’H’ sign will be located in the FOV of the bottom

camera. To achieve this goal, a robust approach procedure is designed and introduced in this

section. Since we already have the state estimation, the control algorithm is also introduced.
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(i) PID Control Law

A PID control method for discrete time systems is used in this work. In general, let s(k)

be the state measured in step k, sd(k) be the desired state of step k, then the error at step

k is

se(k) = sd(k)− s(k) (2.22)

The summation of historical errors at step k is

set(k) =
k

∑
i=0

se(i) (2.23)

The difference of error at step k is

sed(k) = se(k)− se(k−1) (2.24)

Then the control input u at step k is defined as

u(k) = Pse(k)+ Iset(k)+Dsed(k) (2.25)

Where P, I, D are the gains of the PID controller.

For the control of heading angle ψ and roll angle φ , the goal is to maintain them close

to 0◦. The measured angles are the control error inputs, since the goal is to drive them to

0◦. If the heading angle is equal to 0◦, it means that the head of the drone is pointing to

the landing platform. Under that condition, we can change the pitch angle θ to drive the

drone to approach the landing platform. For the control of altitude z and pitch angle θ ,

the desired value changes during approach. The approach process is presented next.

(ii) Approach Process

First, the drone takes off from an arbitrary position in the lab, hovering at 2 meters. Then

it turns around without position change to find the red dots. After the red dots appear in

the view of the front camera, the algorithm locks the red dots, and calculates the relative

heading angle. Heading angle PID controller adjusts the heading angle around 0◦. Under

this condition, the drone changes its pitch angle to approach the landing platform. Notice

that the drone approaches the landing platform only when the heading angle is small. If
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the angle is not small, the drone is programed to stop moving forward and hover at the

current position, while the heading angle PID controller will drive the heading angle to

0◦.

When approach, the red dots’ position in image is also changing. To make sure the drone

can always see the red dots, an altitude PID controller drives the drone to decrease its

altitude if the coordinate u of the landing platform is too close to the image boundary

during the approach process. Once the altitude reaches to 1 meter, the altitude PID

controller stabilize the height to be 1 meter without further descending. This is because

at 1 meter altitude, the view of the bottom camera is clear and wide enough for later

landing. During this process, the horizontal distance l is calculated by using equations

(2.20) and (2.21).

Finally, when l becomes negative, which means the landing ’H’ sign is in the overlap

FOV area between the front camera and the bottom camera, the algorithm switches to

the bottom camera mode autonomously, and the landing stage algorithms start to work.

Fig. 2.14 is the flow chart of the designed approach process.

2.5 Hovering and Landing

After the drone hovers above the landing area, the second stage starts and the goal is to land on

the ’H’ sign accurately. This section presents our methods to achieve this goal.

2.5.1 Image Processing

’H’ landing sign is chosen as the landing beacon due to its widely used. The goal for the

image processing is to find the ’H’ sign in the image and locate the center of the sign in the

image frame in real-time. Image moments technique is used for the ’H’ sign tracking. In image

processing, image moment usually contains some special characteristics of the contour, and

image moment is generally used to recognize certain objects or patterns [36].

Before the flight, the contour of a standard ’H’ is extracted from a reference image. During

the flight, ’H’ sign tracking algorithm keeps comparing the moment of each qualified contour

derived from each image frame with the standard moment of ’H’ contour. If the similarity of
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the most similar contour is within a selected threshold, the contour will be recognized as the

’H’ landing sign. In this part, OpenCV library functions are used for contour extraction and

comparison. Details are presented next.

(i) Standard ’H’ Contour Extraction - Before the Flight

Fig. 2.15 is the reference image we used for standard ’H’ contour extraction. We also

printed it out as the ’H’ landing sign on the landing plate. The reference image is a

binarized image. After we load it in OpenCV environment, function ’findContours’ is

called to extract all contours. We select and save the contour of ’H’, and use red line to

draw the ’H’ in Fig. 2.16.

(ii) Real-time ’H’ Sign Tracking - During the Flight

During the flight, the bottom camera will capture color images in 20Hz. For each image,

it will first be converted to a gray image. Furthermore, the gray image will be converted

to a binarized image by carefully selecting a threshold. We can do this because the

’H’ sign has high contrast with the background. The binarized image will be used to

extract contours. Before we extract the ’H’ sign’s contour, a de-noising process will be

conducted. After that, we extract all contours detected in the image, and eliminate the

contours which are too small to be the ’H’ contour by calculating the contour area. Then

the contours left will be compared with the standard ’H’ contour saved before. OpenCV

function ’matchShapes’ is used for the comparison. The function first calculates the

moment of contour, and then compares it with the standard ’H’ contour moment. The

result is given as ’comre’, which represents the similarity of them. The smaller the

’comre’ is, the higher similarity they have. A threshold for ’comre’ is set to be 0.5. In

each image frame, the contour which has the minimum ’comre’ with the standard ’H’

contour, which is also within the threshold, will be selected as the ’H’ landing sign. Fig.

2.17 is the state machine of the image processing.

Fig. 2.18 shows the operation results during the image processing. Fig. 2.18(a) is the

original color image taken from the bottom camera. Fig. 2.18(b) is the gray image

converted from Fig. 2.18(a). Fig. 2.18(c) is the binarized image after de-noising. Bi-

nalize makes it easier to find contours, and de-noising eliminates the small dots, which
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decreases the number of invalid contours and reduces the burden on comparing algo-

rithms. Fig. 2.18(d) shows a case that ’H’ landing sign is detected. Once the algorithm

finds the ’H’ landing sign, the contour of ’H’ will be drawn. Then, OpenCV function

’minAreaRect’ is used to bound the ’H’ with a minimum area of rectangular, and also to

provide the center coordinate in the image frame I. Because ’H’ is symmetric, this coor-

dinate is also the coordinate of the ’H’ landing sign. After getting the center coordinate,

we draw a small circle at the center.

Because the landing ’H’ sign will move with the deck emulator, it will not always be

parallel to the X-Y plane of the body frame. To further test the robustness of the proposed

’H’ sign detection algorithm, we take pictures of the ’H’ sign with different orientations

and distances, using different cameras under different lighting conditions to test if the

algorithm can still work. Fig. 2.19 shows some of the test results.

In Fig. 2.19, the ’Bright light condition’ is obtained by using a computer screen to show

the ’H’ landing sign, the ’Medium light condition’ is obtained in our lab with all lights

turned on, the ’Dark light condition’ is obtained in our lab with only half lights turned on.

The ’Smart-phone camera’ used has 1920×1080 resolution, while the AR.Drone bottom

camera has 640×360 resolution. The ’Medium distance’ in this test is 60cm, while the

’Short distance’ in this test is 30cm. In Fig. 2.18(d), the distance from the sign and the

camera is 1m.

From these experiments, we conclude that the ’H’ sign detection algorithm is robust.

It can work under different lighting conditions, different resolutions of camera, differ-

ent distances, different orientations and different tilt angles. Additionally, we tested the

maximum tilt angle of the ’H’ when this algorithm works using another experiment, and

found that the maximum tilt angle is 20◦. Since the maximum pose angle of the designed

deck emulator is 10◦, the proposed algorithm can track the ’H’ landing sign successfully

when the landing platform is moving.
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2.5.2 State Estimation

Only on board sensors are used for state estimation. Sensors provided by AR.Drone are a 6

degree of freedom internal IMU, an ultrasonic altimeter, and a forward-looking (front) camera,

and a downward-looking (bottom) camera.

Six states are required for autonomous landing, including 3 components of position vector

with respect to local reference frame
(
xl,yl,zl

)
, and 3 Euler angles

(
φ ,θ ,ψ

)
. This section

presents calculations of these states by using the sensors mentioned above. Notice that it only

use the bottom camera during the landing stage.

Two Kalman filters are designed to improve the estimation accuracy. States for the first

Kalman filter are zl , φ , and θ , which are always available. And states for the second Kalman

filter are xl , yl , and ψ , which are available only when ’H’ landing sign is detected.

From AR. Drone system, users can directly acquire altitude zl , roll angle φ , and pitch angle

θ , where zl is calculated using ultrasonic altimeter, and φ and θ are calculated using the IMU.

Although AR.Drone also provides users with the yaw angle ψ , the yaw angle drifts signifi-

cantly. Since we don’t use GPS or other external positioning systems, we can’t acquire position

information directly. Solutions for xl , yl , and ψ estimation are obtained by using images once

the ’H’landing sign is recognized.

After we bound the ’H’ sign with a minimum area of rectangular by calling the OpenCV

library function ’minAreaRect', which is the last step when the ’H’landing sign is recognized in

the image processing, the angle between this rectangular’s long side and the image’s long side

is also provided in the output of the function ’minAreaRect'. According to the 2D chart shown

in Fig. 2.5, this angle is between ’H’landing sign’s vertical axis and the xB axis of body frame.

We denote the angle as γ , therefore γ is the relative heading angle between the drone and the

landing platform. We denote the angle of ’H’landing sign’s vertical axis and north direction (xL

axis) as δ , so δ is the setting angle of the landing platform respect to the inertial frame. Then

we have

ψ = γ +δ (2.26)

In our experiments, we set δ = 0, and then the relative heading angle γ is equal to the

yaw angle ψ . We note that since the ’H’ shape used for the landing pad is symmetric, the
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heading estimation will have 180 degrees of uncertainty. In real applications, we shall use

other information to eliminate that uncertainty. For example, when approaching from the long

range, the heading direction of the ship could be determined, based on which a unique heading

angle γ can be determined.

For position vector −→pL(xl,yl,zl) estimation, we have

−→pL =CL
B
−→pB (2.27)

Once we obtain the values of φ , θ , and ψ , rotation matrix CL
B is determined. Combining

equation (2.27) with equations (2.11) and (2.12), we rewrite equation (2.27) as
xl

yl

zl

=


C00 C01 C02

C10 C11 C12

C20 C21 C22



− k

f (v− v0)

k
f (u−u0)

1

zb (2.28)

In equation (2.28), the unknown components are xl , yl , and zb. By expanding equation

(2.28), the third row becomes

zl =
{

sθ

[
k
f

(
v− v0

)]
+ sφcθ

[
k
f

(
u−u0

)]
+ cφcθ

}
zb (2.29)

Once we acquire zb from equation (2.29), −→pB and −→pL can be calculated.

2.5.3 Landing Controls

AR.Drone de-couples the controls of motors’ speed into 4 independent controls of roll and

pitch angles, yaw angle rate and altitude rate, while positions are controlled by controlling the

roll and pitch angles. The PID controller introduced in section 2.4.4 is used.

For hovering and landing on the ’H’ sign, the drone is required to stay at a position above

the sign. The errors of positions are calculated respect to the body frame, and the desired

position (xb
d ,yb

d) is (0,0). Thus the errors of positions are xb
e =−xb and yb

e =−yb.

We also require the forward direction of the drone parallel to the ’H’ sign when landing. So

the desired value of γ is 0 and the error is γ e =−γ .

The error of altitude is zl
e = zl

d− zl , where the desired altitude zl
d is designed a prior. An

altitude planner is designed to calculate zl
d . During the hovering phase, zl

d is set as a constant c
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(c is positive). During the landing phase, it’s set to be a function of time t, such as zl
d =−qt+c

(q is also positive, and used to control the descending rate).

Sensor data update rate of AR.Drone is 20 Hz. For each update, control commands are also

sent to AR.Drone. Fig.2.20 shows the framework of the autonomous flight algorithms during

the landing stage.

2.6 Experimental Results

2.6.1 Approaching From Long Range

To test the long range approach, we put the landing platform in the center of the flight area

(coordinate of the landing platform in the inertial frame is (0,0)), and initialize the drone 2m

from the landing platform with random initial heading directions. The length of our flight area

is 5m, and the width is 3m. For each experiment, we choose different initial positions of the

drone to take off to test the performance. Using the designed procedure presented in section

2.4.4, we did 20 independent experiments. The success rate of these experiments is 100%, and

the average approach time is 20s.

Here we use one experiment to illustrate the approach stage. In this experiment, the drone

takes off at the bottorm-right of the lab (Coordinate of the drone in the inertial frame is (0.9,−2)

when the drone starts to approach). The time t = 0 is the time when the red dots on the land-

ing platform start to appear in the view of the front camera. At time t = 16.5, the approach

completes, and the drone hovers above the landing platform.

(i) Heading Angle Estimation and Control

As discussed in section 2.4, the key factor for successful tracking and approaching to the

landing is accurate heading angle estimation and control. Based on Section 2.4.3, the

coordinate V in the image frame of the calculated landing sign is used to calculate the

heading angle. See Equation (2.16).

Fig. 2.21 is the heading angle estimation and control results. At t = 0, the red dots on the

landing platform start to appear in the view of the front camera. The estimated heading

angle is about 15◦, and the actual heading angle obtained by the Vicon system is 22.5◦.
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After that, the heading angle PID controller drives the heading angle to 0◦, and tries to

keep the heading around 0◦. We notice that at 4 seconds and 11 seconds, there are two

heading angle peaks. However, the heading angle drift will not cause approach failure.

As presented in section 2.4.4, the drone only change its pitch angle to approach when the

heading angle is small (within ±5◦). If the absolute heading angle is larger than 5◦, the

drone will first suspend approaching and correct the heading angle.

Fig. 2.22 shows the calculated coordinate V of the landing platform in the image frame

during the approach. We noticed that the trend in Fig. 2.22 is similar to the estimated

heading angle in Fig. 2.21, which is because the estimated heading angle is calculated

using equation (2.16).

We define the estimation error as the difference between the ground truth and the esti-

mated value during the approaching stage. In this experiment, the average estimation

error during this flight is 1.03◦, the standard deviation of the estimation error is 1.91◦,

and the maximum absolute error estimation is 8.35◦. We conclude that our heading an-

gle estimation algorithm is suitable. According to the ground truth, after the yaw angle

becomes stable at 3s to the end of the test, the average heading angle is −1.29◦, the stan-

dard deviation of the heading angle is 3.04◦, and the maximum absolute heading angle is

6.49◦. We conclude that our heading angle control algorithm is suitable.

(ii) Altitude Change During Approach

The altitude of the drone is designed to descend during the approach process. As pre-

sented in section 2.4.4, the initial hovering altitude is 2 meters, and for hovering above

the landing sign, the altitude is 1 meter. The advantage of altitude descending is to keep

the landing platform in the FOV of the front camera. Fig. 2.23 and Fig. 2.24 show the

experimental results of the altitude change during the approaching.

From Fig. 2.23, we see that the drone starts to descend at 11s, and stops descending

at 14s. After 14s the drone keeps its altitude at 1m, and the oscillation around 15s is

the overshoot of the altitude PID controller. From Fig. 2.24, we see that when the

drone finds the red dots sign, the initial calculated U coordinate of the sign in the image

frame is 120. During the approach process, the U coordinate increases, and reaches
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400 at 11s. If the altitude stays at 2 meters, and drone continues approaching, the U

coordinate will continue increasing. Thus, the landing platform will be out of the FOV

of the front camera before the drone hovers above it. Because at 11s, the altitude starts

to descend, the U coordinate starts to decrease. The altitude stops decreasing at 14s, and

the U coordinate also stops descending. After that, the U coordinate increases again, and

reaches 570. At this moment, the sign can be seen in the bottom camera of AR.Drone,

the algorithm switch to the bottom camera, the approaching stage ends, and the landing

stage begins.

(iii) Approaching Trajectory

Fig. 2.25 and Fig. 2.26 show the trajectory of the approaching. The position is captured

by Vicon system. In Fig. 2.25, we can see that the initial position of the AR.Drone is

(0.9,−2) in the inertial frame, and reaches (0,0) when the approach process ends. We

noticed that at t = 11s, the drone suspends to approach, which is because the heading

angle is more than 5◦. We can see that the coordinate keeps at (0.2,−0.6) from 11s to

12s. A 2D trajectory is plotted in Fig. 2.26.

2.6.2 Experiment of Autonomous Hovering

(i) Hover Above a Stationary Platform

In this experiment, the landing platform is stationary and AR.Drone is required to hover

above the ’H’landing sign autonomously. Fig. 2.27 shows the autonomous hovering

experiment results. The green dash is the ground truth (data from Vicon motion capture

system) and the red dot is the estimated results. Table 2.1 is the summarized statistical

results of the estimation errors during 60 seconds. Positions are given in cm, and Euler

angles are in degrees.

Table 2.1: Evaluation of estimation performance when landing platform is stationary.
xl(cm) yl(cm) zl(cm) φ(◦) θ(◦) ψ(◦)

Average error -0.05 -0.44 1.07 0.13 -0.02 -0.28
Error standard deviation 0.95 1.01 0.82 0.22 0.24 0.63
Max. absolute error 2.44 2.95 4.21 1.12 0.99 2.05
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From the test results, we can see that the average error of the position estimation is

less than 2cm, and the average error of the Euler angle is less than 0.3◦. The standard

deviation of the position estimation error is around 1cm, and the standard deviation of the

Euler angle estimation error is less than 0.7◦. The maximum absolute position estimation

is less than 5cm, and the maximum absolute Euler angle estimation error is less than 3◦.

We can also see that the problem of yaw angle drift is eliminated once it is estimated

from the image.

(ii) Hover Above a Moving Platform

In this experiment, the landing platform has pose and heave motion while the drone

hovers above the ’H’landing sign autonomously. Fig. 2.28 shows the test results. The

green dash is the ground truth (data from Vicon motion capture system) and the red dot

is the estimated results. Table 2.2 is the summarized statistical results of the estimation

errors. Positions are given in cm, and Euler angles are in degrees.

Table 2.2: Evaluation of estimation performance when landing platform is moving.
xl(cm) yl(cm) zl(cm) φ(◦) θ(◦) ψ(◦)

Average error 2.75 -1.30 -1.74 -0.14 0.15 -2.14
Error standard deviation 1.34 1.21 3.15 0.23 0.35 1.82
Max. absolute error 7.43 4.72 8.55 1.73 1.56 2.73

From the test results, we can see that the average error of the position estimation is less

than 3cm, and the average error of the Euler angle is less than 3◦. The standard deviation

of the position estimation error is less than 3cm, and the standard deviation of the Euler

angle estimation error is less than 2◦. The maximum absolute position estimation is less

than 9cm, and the maximum absolute Euler angle estimation error is less than 3◦.

Comparing with the results on the stationary landing platform, we observe two aspects.

First, oscillation of the altitude is larger, which is due to the heave movement of the

landing platform. The ultrasonic altimeter measures the distance from the drone to the

surface of the platform. Second, because of the movement of the landing platform, the

performance of hovering this time is slightly poorer compared to the test when the land-

ing platform is stationary. The average error of both position estimation and Euler angle
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estimation, the error standard deviation of both position estimation and Euler angle es-

timation, and the maximum absolute error of both position estimation and Euler angle

estimation are slightly larger.

2.6.3 Experiments of Autonomous Landing

The difference between landing and hovering is that the desired altitude remains constant during

hovering but changes during landing. In landing, an altitude planner will generate the sequence

of desired altitudes, and the PID controller will drive the drone to track the reference. At the

same time, position and yaw angle PID controllers are also taking actions. Fig. 2.29 shows

the altitude when landing. In Fig. 2.29, blue dots represent the actual altitude, and red dots

represent the desired altitude generated by the altitude planner. Before 25.4 s, the drone is

hovering with oscillation due to the moving platform. The landing starts at 25.4 s and ends at

29.8 s. From 25.4 s to 29.4 s, the actual altitude is seen to follow the desired altitude. At 29.4

s, the actual altitude drops to 26 cm, and ’H’ sign is no longer completely shown in the image,

and the landing function of AR.Drone is called. The drone lands on the platform at 29.8 s, and

after that it moves with the platform.

We further evaluate the landing accuracy through statistical tests. We first test on a sta-

tionary platform, and then test on a moving platform. For each situation, we did 20 inde-

pendent experiments. In all experiments, the drone finds the landing platform and lands on it

autonomously. Fig. 2.30 and Fig. 2.31 show the landing accuracy results.

Fig. 2.30 is the landing position results when the landing platform is stationary. The red

circle is the center of ’H’, and the blue stars are the landing positions from the trials. After

AR.Drone lands on the platform, the distance from the body frame center to the center of ’H’

sign is measured. The average distance error is 7.9 cm, and the standard deviation of the landing

error is 2.64 cm. If we define success landing as the case that the drone completely lands on

the moving platform, our landing success rate is 100%. Fig. 2.31 is the landing position results

when the landing platform is moving. The average distance error is 9.0 cm, and the standard

deviation of the landing error is 4.79 cm.

Compare with the accuracy when the landing platform is stationary, this result is slightly

poorer because of the movement of the landing platform, but the landing success rate is still
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100%. Compare with [51], which did not define clearly the success landing, the average dis-

tance error is 12 cm under no environment disturbance, and the maximum success landing rate

is reported as 90%, our results are significantly better.
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Figure 2.14: Flow Chart Illustration

Figure 2.15: Reference image. Figure 2.16: Contour of a standard H.



35

Figure 2.17: State machine of the image processing.

(a) Original color image from the bottom
camera.

(b) Gray image.

(c) Binarized image with de-noising. (d) ’H’landing sign detected.

Figure 2.18: Operation results during the image processing.
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(a) Bright light condi-
tion; Smart-phone cam-
era; Medium distance.

(b) Medium light condition;
Smart-phone camera; Medium
distance.

(c) Medium light condi-
tion; AR.Drone bottom
camera; Short distance.

(d) Dark light condition;
AR.Drone bottom camera;
Medium distance.

(e) Dark light condition; AR.Drone
bottom camera; Medium distance.

Figure 2.19: ’H’ sign tracking algorithm robustness test.

Figure 2.20: Framework of the autonomous landing algorithms.
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Figure 2.21: Heading angle estimation and control results.

Figure 2.22: Coordinate ’V’ of the landing platform in image frame.
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Figure 2.23: Altitude estimation and control results.

Figure 2.24: Coordinate ’U’ of the landing sign in image frame.
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Figure 2.25: Position change during the approaching.

Figure 2.26: Trajectory of the approaching.
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Figure 2.27: Hover test results when landing platform is stationary.

Figure 2.28: Hover test results when landing platform is moving.
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Figure 2.29: Altitude landing performance.

Figure 2.30: Position accuracy evaluation when the landing platform is stationary.
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Figure 2.31: Position accuracy evaluation when the landing platform is moving.
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Chapter 3

A New Approach for Visual Monocular 3-D SLAM for Small UAVs

3.1 Introduction

In Chapter 2, an on-board monocular vision based solution that provides a quadrotor with

the capability to autonomously track and land on a vessel deck platform with simulated high

sea state conditions is presented. To use this method, a known pattern, such as the ’H’ sign,

is required. However, for many VTOL UAV landing tasks such as earthquake rescue [56], the

landing environment is unknown. So a navigation technique which requires no prior knowledge

for environment is needed.

Over the past few years, the Simultaneous Localization and Mapping (SLAM) technique

has received a lot of attention. In general, SLAM algorithm can be divided into appearance-

based methods and feature-based methods. Appearance-base methods is also called direct

methods. This type of method, such as LSD-SLAM [57], estimates motion and shape from

each pixel of the image by minimizing an error measure such as brightness or brightness-based

cross-correlation [58]. However, the performance of direct methods can be affected by lighting

conditions or non-Lambertian surfaces. Compare to direct methods, feature-based methods is

more robust since there is a wide choice of feature detectors.

Due to physical limitations, such as payload limited space of some applications, SLAM

algorithms using only one camera as the vision source (monocular SLAM) is required. First

monocular SLAM was developed in 2003 by Davison et al [59] and they named it MonoSLAM.

MonoSLAM estimate the camera motion and generate map using an extended Kalman filter

(EKF). The state vector of EKF includes 2 parts. The first part is the state of the camera

such as position and attitude. The second part is the state of feature points. Since new fea-

ture points are added to the state vector depending on camera movement, the size of the EKF
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could become very large and difficult to achieve real-time computation [60]. Another limita-

tion of MonoSLAM is that the map needs to be initialized by using a known object. In 2007,

G Klein et al split the tracking and the mapping algorithms into two different threads on pro-

cessor [61]. They call this method Parallel Tracking and Mapping (PTAM). The frequency

of tracking thread run faster than mapping thread, which significantly reduced computational

cost and PTAM is able to handle large number of feature points. In PTAM, the initial map

is reconstructed using five point algorithm [62]. Based on PTAM, R Mur-Artal et al devel-

oped ORB-SLAM in 2015 [63]. Compare to PTAM, ORB-SLAM includes multi-threaded

tracking, mapping, and closed-loop detection, and the map is optimized using pose-graph opti-

mization [60]. Since ORB-SLAM is an open source project, many applications are built based

on it [61].

For all feature-based SLAM algorithms, pin-hole camera model is the basis to estimate

camera movement and feature points. For bearing only monocular SLAM, when using only

the camera, the scale factor of pin-hole camera model is not observable [64]. To restore the

scale factor, measurements of two feature points or the distance from the camera to a feature

point is required [24]. However, for applications working in unknown environment, none of the

condition is satisfied. Many researchers use Inertial Measurement Unit (IMU) or other sensors

which can provide metric measurements to help determine the the scale factor. There are 3

kinds of approaches are commonly used. The first method is an online spline fitting approach.

Jung and Taylor adapted this method by fitting a second order spline into a set of several key

frames obtained by the SLAM algorithm with monocular vision [65]. The second method

directly sets the scale factor as a state in the state vector for EKF estimation. In [66], Gabriel

NÃijtzi et al use this method and the result shows that the scale factor estimation converging

time is 15s. The third method is called maximum likelihood approach, which is first proposed

by Jakob Engel et al [67]. This method choose a likelihood function which represents the error

of position estimation. By minimizing the function, global optimal solution of the scale factor

can be calculated. In [68], Gehrig Daniel et al apply ORB-SLAM on a commercial quadrotor

Parrot AR.Drone, and use the maximum likelihood approach to solve scale factor. In their

work, the scale factor estimation converging time is also 15s.

In this Chapter, a new approach to on-board sensor only feature based monocular 3-D
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SLAM algorithm is presented. It is able to navigate in previously unknown environments at

absolute scale without requiring artificial markers or external positioning aid. Only a down-

ward looking camera and an IMU on-board is required to complete this method. One of the

key contributions of this Chapter is the proposed method apply the pin-hold camera model in

an alternative prospective and derive a SLAM algorithm in close form. This SLAM algorithm

inherently combine the data from the camera and the IMU together. The scale factor prob-

lem does not exist in this approach, which gives absolute estimation of the camera position as

well as the map immediately when start to work. Another contribution of this Chapter is the

proposed SLAM algorithm requires no EKF or other optimization methods adopted by PTAM

and ORB-SLAM. So the computation cost of the proposed method is significantly lower than

MonoSLAM, PTAM and ORB-SLAM. The third contribution of this work is that the map gen-

eration requires no initialization, which makes it easy to use. This work also use the AR.drone

and Vicon system described in Section 2.2. The coordinate definitions are also defined in Sec-

tion 2.2.

The organization of this Chapter is as follows. In Section 3.2, the proposed SLAM algo-

rithm is derived. In Section 3.3, a practical realization of the proposed SLAM algorithm is

introduced in detail. In Section 3.4, the experimental results is discussed.

3.2 A New SLAM Algorithm

Currently, pinhole camera model [69] is the basis for all monocular feature based SLAM algo-

rithms. The equation of pinhole camera model can be present as
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Where matrix K represents the parameters of the camera, matrix R represents the rotations of

the camera, and vector t represents the position movements of the camera.

From equation 3.2 we can see that the model is a 3-D to 2-D transformation, which transfer

a point in inertial frame N directly into image frame I. And we notice that the parameter w is a

scale factor and it’s not a constant. That parameter is unable to determine just use images from

camera. So when mapping, current SLAM algorithms suffer from the dimensionless problem.

Compare equation 3.2 with equation 2.13, we can see that equation 2.13 is a 2-D to 2-D

transformation, which transfer a point in image frame I into body frame B. The derivation

of equation 2.13 is also based on the pinhole camera model, but it consider from inverse. In

equation 2.13, all parameters are related to the camera itself, and all of them are constant.

Because the definition of α and β , from equation 2.14, the scale factor is the zb of that point.

If we can determine zb, then we can find the coordinate of a point in body frame B. By using

matrix CL
B and CN

L , we can find the coordinate of a point in inertial frame N.

In this work, we describe the position of the drone and the position of the map points in

inertial frame N. For the map, a feature’s position in frame N, L, B, and I are represented as[
xn yn zn

]T
,
[
xl yl zl

]T
,
[
xb yb zb

]T
, and

[
u v

]T
, respectively. The drone’s position

in N is is represented as
[
x y z

]T
. The drone’s position located in frame L and B is at the

origin. At the same time, there is no definition of the drone’s position in image frame I.

From the definitions and Fig. 2.3, we have
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If we combine equation (3.3) and (3.4), we have
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As other monocular feature based SLAM, we assume that the objects in the environment

will stay still. So the features’ coordinates in frame N does not change. Suppose there are

two moments 1 and 2, and the drone get an image for both moments. The drone ’s position

of the two moments are
[
x1 y1 z1

]T
and

[
x2 y2 z2

]T
. At the same time, a feature, which

the coordinate in N is
[
xn yn zn

]T
, shows up in both images, and the feature’s coordinate in

frame B are
[
xb1 yb1 zb1

]T
and

[
xb2 yb2 zb2

]T
. From equation (3.5), we have:

CN
B 1


xb1

yb1

zb1

+


x1

y1

z1

=CN
B 2


xb2

yb2

zb2

+


x2

y2

z2

 (3.6)

If we define the drone’s position change


x2− x1

y2− y1

z2− z1

=


∆x

∆y

∆z

, combine with equation (2.14),

we have:

CN
B 1zb1


α1

β1

1

−CN
B 2zb2


α2

β2

1

=


∆x

∆y

∆z

 (3.7)

From the definitions of frame N, L and B, we also have:

cφ2cθ2zb2− cφ1cθ1zb1 = ∆z (3.8)

Take equation (3.8) into equation (3.7), we have:

zb1

CN
B 1


α1

β1

1

− cφ1cθ1
cφ2cθ2

CN
B 2


α2

β2

1


− ∆z

cφ2cθ2
CN

B 2


α2

β2

1

=


∆x

∆y

∆z

 (3.9)

In equation 3.9, Euler angles of moment 1 and moment 2 can be acquired from the IMU on-

board, and CN
B 1 and CN

B 2 can be calculated. At the same time,
[
α1 β1 1

]T
and

[
α2 β2 1

]T

can be determined by feature matching algorithms and equation 2.13. If we know
[
∆x ∆y ∆z

]T

by using velocity measurements in inertial frame, as:
∆x

∆y

∆z

=


∆t
2 (vx1 + vx2)

∆t
2 (vy1 + vy2)

∆t
2 (vz1 + vz2)

 (3.10)
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where ∆t is the time period from moment 1 to moment 2, then the only unknown term in

equation (3.9) is zb1, and it can be solved. Assume we already know
[
x1 y1 z1

]T
, using

equation (3.5), we can calculate
[
xn yn zn

]T
, which is the feature’s coordinate in frame N.

Using equation (3.5) again with the data of second moment, we can calculate
[
x2 y2 z2

]T
,

which is the drone’s position of the second moment. Fig. 3.1 shows the flow chart of the

proposed SLAM algorithm.

Figure 3.1: Flow chart of the proposed SLAM algorithm.

3.3 System Realization

3.3.1 ROS Packages

ROS (Robot Operating System) provides libraries and tools for robot applications. In this work

we develop all algorithm using ROS environment. The version of ROS is ’kinetic’, and it works

under Ubuntu 16.04.

The main algorithms are distributed in 4 packages. The first package is a control package.

We use PID controllers in experiments. The second package is a synchronization package.

Because the frequency of image topic update from camera is 10 Hz, the frequency of Euler
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angles and velocities topics update from IMU are 50 Hz, while frequency of the position and

Euler angles estimations from VICON are 200 Hz, a ROS synchronization tool is used to align

them. The third package is a image processing package. In this package, algorithms extract

SURF features and match between adjacent images. Then, mismatching is also identified. The

last package includes the main algorithms of the proposed SLAM algorithm. It gives the results

of the drone’s position estimation and the map points cloud.

3.3.2 PID controller

In this work, 4 PID controllers are used to control the AR.Drone. The controller design is

described in Section 2.4.4. The 4 PID controllers are tuned under no wind condition. We use

the Vicon data for feedback, set one point as the desired position, and tuned the gains P, I, and

D to hover the drone at the point. The control cycle’s frequency is 10Hz, and the unit of x, y

and z error is in meters, the unit of yaw angular velocity is in degree per second. The result’s

of the tuned gains used are listed in table 3.1.

Table 3.1: PID gains used.
P I D

For channel 1 0.6 0.0001 8.0
For channel 2 0.6 0.0001 8.0
For channel 3 0.08 0.0001 0.06
For channel 4 4.0 0.01 8.0

After the gains are tuned, the values are used for later experiments. The controls are sent

to AR.Drone through the SDK provided by the manufacturer. The mode of AR.Drone is set as

non-hover mode, so the controls to the drone are purely from the controllers designed.

3.3.3 Synchronization

To synchronize information from different sensors, ’message filters’ library of ROS is used.

The function takes in messages of different types from multiple sources, and outputs them

only if it has received a message on each of those sources with the same time stamp [70],

where time stamp is the internal time representation under ROS environment. In this work, the

synchronized information include the image flow from camera, the Euler angles and velocity
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in frame B estimation from IMU, and the Euler angles and drone’s position in frame N from

VICON. We name the synchronized data structure ’Sinfo’, and list the details of Sinfo in table

3.2. After synchronize information from different sensors, the synchronized data structure

(Sinfo) updates in 2 Hz.

Table 3.2: Members of Sinfo.
Name symbol ROS Massage Type
Time Stamp Header header std_msgs/Header
Image image sensor_msgs/Image
IMU Measurements imu sensor_msgs/Imu
Navigation Information navdata ardrone_autonomy/Navdata
Commands to AR.Drone cmd geometry_msgs/Twist
Position Data from VICON vcnposi geometry_msgs/Vector3
Euler angles from VICON vcnangl geometry_msgs/Vector3

3.3.4 Image processing

ROS kinetic has OpenCV library integrated and available to use in project. In this section,

the OpenCV functions are used for SURF feature extraction and feature matching. We take

[71] as our coding reference. From experimental observation, there are about thirty percent of

mismatching. A matching selection algorithm is developed to eliminate mismatching.

(i) SURF Feature Extraction SURF feature is used for tracking in this work. For SURF

feature extraction, a object of SURF handle is generated first, using ’SURF::create()’

function. Then, a threshold is set by using ’setHessianThreshold()’ method. We pick 60

as the minimum Hessian. After that, ’detect()’ method is used to create key points, which

is the SURF feature points. Usually, more than 100 SURF feature points will be created

in this step. To reduce computation cost, we only pick the first 60 key points for later

operation. If there are less than 60 SURF feature points created, the program will mark

no valid image source for this step.

(ii) Feature Matching After SURF feature points created, ’compute()’ method is used to cal-

culate descriptors of the feature points. For convenience, we name the image at moment

1 as Base Image (BI), and name the image at moment 2 as Search Image (SI). At each

step, the key points and corresponding descriptors of BI is copied from the data of SI at
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the previous step. At the same time, a feature calculation (including feature extraction

and descriptors calculation) is conducted for SI. So there is only one feature calculation

for each step.

When key points and the corresponding descriptors of both BI and SI are ready, a handle

for matching is created and ’match()’ function is used to generate one-to-one correspon-

dence of the key points belong to BI and SI. When matching pairs are generated, the

coordinates of a feature point in frame I for both BI and SI are stored with a quality

parameter. The matching is based on the comparison of the descriptors’ vector, and the

quality parameter is the distance of two vectors. The smaller the distance, the better cor-

respondent of the two key points. We set the threshold of the distance to be 0.2. If the

distance less than 0.2, the matching pair is considered as a valid matching pair. From our

experiment results, the number of the valid matching pairs is usually more than 30. If

there are more than 30 valid matching pairs, we sort the results by the quality parameter,

and pick 30 best matching pairs. If there are less than 30 valid matching pairs, we mark

no valid image source for this step.

(iii) Elimination of Mismatching Feature tracking inevitably produces mismatching, and mis-

matching generate wrong measurements of the map and the drone’s position. In this

work, we design a matching filter to reduce the number of mismatching.

For a matching pair, we define u change as ∆u = u2−u1, and v change as ∆v = v2− v1.

For correct matching, the ∆u should be similar, and ∆v should be similar as well. Based

on this fact, the matching filter first sort the 30 matching pairs by ∆u, and pick the middle

14 pairs. Then, sort the 14 matching pairs by ∆v, and pick the middle 6 pairs. After

filtering, mismatching rate is reduced significantly from about 40% to about 5%. By

using the u and v information of the 6 selected matching pairs, we calculate vectors of[
α1 β1 1

]T
and

[
α2 β2 1

]T
for each matching pair using equation 2.13. Fig. 3.2

shows two examples of feature matching. The image is taken from AR.Drone’s bottom

camera during flight. The BI is on the left, and the SI is on the right.

(iv) Organization of the Image Processor We draw a flow chart of the organization of the

image processor in Fig. 3.3. We also name the data structure after image processing as
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(a) Example 1.

(b) Example 2.

Figure 3.2: Two examples of feature matching.

’Iinfo’, and list the details of Iinfo in table 3.3. The data structure (Iinfo) update rate is

also 2 Hz.

3.3.5 Realization of the Proposed SLAM Algorithm

(i) Calculations for Features’ z Coordinates in Body Frame After the image processor,

SLAM module take over Iinfo topic and run the proposed SLAM algorithm. One criti-

cal challenge for SLAM module is to determine Features’ z Coordinates zb1 in frame B.

Basically, equation 3.9 can be written as

zb1


V11

V12

V13

=


V21

V22

V23

 (3.11)

From math, we have

zb1 =
V21

V11
=

V22

V12
=

V23

V13
(3.12)

However, in practice, we can not randomly take results from one of them, nor can we take

average of the 3 results. Suppose a drone locate at point p1 and p2 at moment 1 and 2. A
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Figure 3.3: Flow chart of the organization of the image processor.

feature point locates at p f and shows in BI and SI. At both moments, the drone’s Euler

angles are all zero. The movement from p1 to p2 is along −x direction, and y and z axis

of p1 and p2 are same. The moving distance is d. At moment 1, the drone is above the

feature point and the feature’s coordinate in image frame is at the image’s center (u0,v0).

The example shows in Fig. 3.4.

Figure 3.4: A example for calculation of zb1.

Apparently, at moment 2, the feature’s coordinate in image frame is (u0 +∆u,v0). From

equation 2.13, we have
[
α1 β1 1

]T
=
[
0 0 1

]T
, and

[
α2 β2 1

]T
=
[
0 λ∆u 1

]T
.
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Table 3.3: Members of Iinfo.
Name symbol Massage Type/ROS
Time Stamp Header header std_msgs/Header
Valid Image Source imgflag bool
Calculated α1 alpha_Base float64[6]
Calculated α2 alpha_Search float64[6]
Calculated β1 beta_Base float64[6]
Calculated β2 beta_Search float64[6]
IMU data of moment 1 imudata_Base sensor_msgs/Imu
IMU data of moment 2 imudata_Search sensor_msgs/Imu
Nav. data of moment 1 navdata_Base ardrone_autonomy/Navdata
Nav. data of moment 2 navdata_Search ardrone_autonomy/Navdata
Commands of moment 1 cmd_Base geometry_msgs/Twist
Commands of moment 2 cmd_Search geometry_msgs/Twist
VICON Posi moment 1 vcnposi_Base geometry_msgs/Vector3
VICON Posi moment 2 vcnposi_Search geometry_msgs/Vector3
VICON Euler moment 1 vcnangl_Base geometry_msgs/Vector3
VICON Euler moment 2 vcnangl_Search geometry_msgs/Vector3

We also have
[
∆x ∆y ∆z

]T
=
[
−d 0 0

]T
. From equation 3.9, we have:

zb1

[
−λ∆u 0 0

]T
=
[
−d 0 0

]T
. We can see that in this example, only zb1 =

V21/V11 gives us the result of zb1. That is because the movement of the drone only has

information in one dimension. If the drone stay at the same point at both movement, then

no moving information provided and zb1 can not be calculated.

Because of the above reason, we design an algorithm to calculate zb1 based on the drone’s

movement. First we define za
b1 =V21/V11, zb

b1 =V22/V12, and zc
b1 =V23/V13. We also set

a threshold (0.05) for V11, V12, V13, V21, V22, and V23. For example, if V11 or V21 less than

the threshold, za
b1 is not calculate. If za

b1, zb
b1, and zc

b1 are all not qualified to calculate,

then no information can be calculated from this feature matching pair. If there at least

one of za
b1, zb

b1, and zc
b1 can be calculate, then zb1 can be determined by taking average of

the valid results. Once zb1 be determined, using the algorithm derived in Section 3.2, the

feature’s coordinates and the drone’s position at moment 2 can be calculated.

(ii) Organization of the SLAM module For each step, 6 feature matching pairs are pushed

into the SLAM module. For each matching pair, if the corresponding zb1 can be cal-

culated, a feature’s coordinates and an estimation of the drone’s position at moment 2
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can be estimated, which means this matching pair provides information. From our ex-

periments, normally all 6 matching pairs provide information or non of them provides

information. If non of the matching pairs provide information, we mark no SLAM sign

for this step. At the same time, no map will be generated, and the estimation of the

drone’s position at moment 2 will be calculated purely by the drone’s position at moment

1 and
[
∆x ∆y ∆z

]T
. When all 6 matching pairs provide information, for better results,

we only take 5 of them. If there are no error, all 6 results of the drone’s position at mo-

ment 2 should be same. The idea is to pick the points are close to each other. For the 6

calculated drone’s position, we denote them as([
p1
] [

p2
]
· · ·

[
p6
])

(3.13)

And pi =
[
xi yi zi

]T
. Then we define the distance of two points as

D
(

pi, p j
)
=
√
(xi− x j)2 +(yi− y j)2 +(zi− z j)2 (3.14)

Then, we define total distance of a point pi as

di =
6

∑
j=1

D
(

pi, p j
)

(3.15)

With these definitions, we calculate the total distance for all 6 points, then sort the total

distance from small to large. After that, we discard the largest one and keep the rest 5

ones.

Table 3.4 shows the details of the map topic under ROS environment. For estimation of

the drone’s position at moment 2, we use least square to calculate based on the 5 results

we keep. Fig. 3.5 shows the organization of the SLAM module.

Table 3.4: Map topic definition.
Name symbol Massage Type/ROS
Time Stamp Header header std_msgs/Header
Map Points maps geometry_msgs/Vector3[5]
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Figure 3.5: Organization of the SLAM module.

3.3.6 Structure of Entire System

(i) EKF design An EKF is used in this work. We define the state vector X as:

X =



x

ẋ

y

ẏ

z

ż

θ

θ̇

φ

φ̇

ψ

ψ̇



(3.16)
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Where x,y,z are the position of the drone respect to N frame, and θ ,φ ,ψ are Euler angles.

The control vector U according to AR.drone is:

U =



uż

uθ

uφ

uψ̇


(3.17)

The drone have a drag force in frame B, and denote it as
[
0 0 − f

]T
, and have the

gravity in frame N, and denote it as
[
0 0 −mg

]T
. Transfer the drag force to frame N,

we have

CN
B


0

0

− f

= f


sφcψ− cφsθsψ

−sφsψ− cφsθcψ

cφcθ

 (3.18)

We can write f cφcθ = mg, and f = mg
cφcθ

. So the total force can be present as

F =


mg

cφcθ
(sφcψ− cφsθsψ)

mg
cφcθ

(−sφsψ− cφsθcψ)

0

 (3.19)

Let’s denote the force in x direction Fx, and the force in y direction Fy. We have

Fx =
mg

cφcθ
(sφcψ− cφsθsψ) (3.20)

and

Fy =
mg

cφcθ
(−sφsψ− cφsθcψ) (3.21)
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After that, we can model the system as:

xk = xk−1 +∆tẋk−1

ẋk = ẋk−1 +∆t Fx
m

yk = yk−1 +∆tẏk−1

ẏk = ẏk−1 +∆t Fy
m

zk = zk−1 +∆t 1
2(żk−1 + c1u1

k−1)

żk =
1
2(żk−1 + c1u1

k−1)

θk =
1
2(θk−1 + c2u2

k−1)

θ̇k = θ̇k−1

φk =
1
2(φk−1 + c3u3

k−1)

φ̇k = φ̇k−1

ψk = ψk−1 +∆t 1
2(ψ̇k−1 + c4u4

k−1)

ψ̇k =
1
2(ψ̇k−1 + c4u4

k−1)

(3.22)

If we linearize it and write it in matrix form Xk = AXk−1 +BUk−1, we have:

A =



1 ∆t 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 g∆t 0 0 0

0 0 1 ∆t 0 0 0 0 0 0 0 0

0 0 0 1 0 0 −g∆t 0 0 0 0 0

0 0 0 0 1 ∆t
2 0 0 0 0 0 0

0 0 0 0 0 1
2 0 0 0 0 0 0

0 0 0 0 0 0 1
2 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1
2 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 ∆t
2

0 0 0 0 0 0 0 0 0 0 0 1
2



(3.23)
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and:

B =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

c1∆t
2 0 0 0

c1
2 0 0 0

0 c2
2 0 0

0 0 0 0

0 0 c3
2 0

0 0 0 0

0 0 0 c4∆t
2

0 0 0 c4
2



(3.24)

Kalman Filter method is provided by OpenCV. In this work, we realize the Kalman Filter

using OpenCV function ’KF.predict()’ and ’KF.correct()’. The measurement vector Z is

equal to X for this system. The measurement of components x,y,z is from the proposed

SLAM module. The measurement of components ẋ, ẏ, ż can be directly read form the

ROS topic "navdata". The measurement of components θ , θ̇ ,φ , φ̇ ,ψ, ψ̇ can be directly

read form the ROS topic "imudata".

(ii) Organization of the Entire System We draw the organization of the entire system in Fig.

3.6. We emphasize that the SLAM module and EKF module does not use information

from Vicon state estimation. The Vicon data is synchronized just for comparison with

the results from the proposed algorithm.

3.4 Experiment Results

This work is tested in the ROS environment, and ’RVIZ’ package is used to show the estimated

drone’s position and the map points in real-time. RVIZ is a 3-D displaying tool to visualize

information under ROS environment. At the same time, experimental data is also saved in files

to replay and analyzed using MATLAB.
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Figure 3.6: Organization of the entire system.

3.4.1 Hovering on Flat Surface Test

To test the drone’s position estimation accuracy, we use Vicon data information to control the

UAV hover at point [0,0,1] in frame N. The flight data is saved to compare different algorithms.

With the saved flight data, we first apply SLAM algorithm to calculate position measurements,

apply EKF to estimate the drone’s position and record. Then display the same flight data, but

just use
[
∆x ∆y ∆z

]T
from IMU readings to calculate position measurements, and use the

same EKF setting to estimate the drone’s position and record. Fig. 3.7 shows the test results.

From Fig. 3.7, we can see that the drift of the position estimation is inhibited and the estimation

accuracy has improved when using the proposed SLAM algorithm. If we define the estimation

error as the absolute value of the difference of the estimation results and the Vicon results, we

can list the statistics results Table 3.5 and Table 3.6. From Table 3.5 and Table 3.6, we can

see that both the mean error and the standard deviation of the proposed SLAM algorithm are

smaller than when SLAM is not used. The results proves that the proposed SLAM algorithm

utilize the image information and the state estimation accuracy is improved.
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Figure 3.7: Drone’s position estimation test.

Table 3.5: Mean error comparison.
X axis Y axis Z axis Distance

Mean error SLAM (m) -0.0701 0.2032 0.0610 0.2514
Mean error NOSLAM (m) -0.5081 0.8814 0.1091 1.0407

3.4.2 Maneuver on Unflattened Surface Test

To simulate in realistic and test the proposed 3-D SLAM mapping, we build a structure using a

box. Fig. 3.9 shows the object deployed. The size of the box is 0.3m×0.5m×2.0m. We align

the long side with x axis, and hold up the left size to 0.6m to generate an inclined plane. We set

the maneuver planner to hover the drone above the object and move around it for 120 seconds.
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Table 3.6: Error standard deviation comparison.
X axis Y axis Z axis Distance

Standard deviation SLAM (m) 0.1106 0.1309 0.0320 0.1307
Standard deviation NOSLAM (m) 0.3092 0.5053 0.0429 0.5626

The reference hover position is defined as
xre f = 0.6sin(0.2t)

yre f = 0.2cos(0.2t)

zre f = 1.5

(3.25)

During the flight, the positioning results is saved and draw in Fig. 3.8. At the same time,

the map points is draw using RVIZ. Fig. 3.10 shows the map points accumulated from the

beginning step using blue dots. The size of the grid show in image is 0.5m× 0.5m, which

works as the distance reference. From Fig. 3.10, we can see the outline of the object is draw

with correct physical size.

Figure 3.8: SLAM algorithm positioning results.

To compare with PTAM algorithm, we also test the ’tum_ardrone’ package [72], with the

same maneuver. The mapping and positioning results are draw in Fig.3.11 and Fig.3.12, respec-

tively. In Fig.3.11, the green lines are the estimated trajectory of the drone, and the red dots are
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(a) Side view of the object. (b) Top view of the object.

Figure 3.9: Object for mapping testing.

(a) Side view from
front (X-Z plane).

(b) Top view (X-Y plane). (c) Side view
from right (Y-Z
plane).

Figure 3.10: SLAM mapping points.

the map points. At the same time, the PTAM state, scale, and the scale accuracy parameters

provided by ’tum_ardrone’ package is also plot in Fig.3.13. According to the ’tum_ardrone’

package information, the state description is listed in table 3.7. The scale parameter is the es-

timated scale factor of the map. And the scale accuracy parameter represents the confidence

of the estimated scale factor. The range of the scale accuracy parameter is from 0.5 to 1, and

0.5 represents no confidence for the estimated scale factor, 1 represents full confidence for the

estimated scale factor.

From Fig. 3.13, we can see that the PTAM generates map tracking at 7s. After generates

the initial tracking, the PTAM states stay ’PTAM_BEST’ for most of the time, some times goes

to ’PTAM_GOOD’, and drop to ’PTAM_LOST’ occasionally. To compare the positioning

accuracy, we define the position estimation error to be the absolute value of the difference of

the estimation results and the Vicon’s results. We compare the error standard deviation of the

proposed SLAM positioning data shown in Fig 3.8 with the PTAM positioning data shown in
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(a) Side view from front (X-Z plane). (b) Side view from right (Y-Z plane).

(c) Top view (X-Y plane).

Figure 3.11: PTAM mapping points.

Table 3.7: PTAM state description.
Value Name Description
0 PTAM_IDLE PTAM not running
1 PTAM_INITIALIZING Initialization
2 PTAM_LOST PTAM is running, but lost
3 PTAM_GOOD Tracking quality OK
4 PTAM_BEST Tracking quality best
5 PTAM_TOOKKF Took a new key frame (equivalent to PTAM_BEST)
6 PTAM_FALSEPOSITIVE PTAM thinks it is good, but its estimate is rejected

Fig. 3.12 from 7s to the end. Because the initial position selections of the proposed SLAM

algorithm, PTAM, and Vicon system are all different, we do not compare the mean position

error. The error standard deviation results are shown in table 3.8.

From table 3.8, we can see the the performance of the proposed SLAM algorithm is better

than PTAM except for Z axis under the same experiment condition. The reason for the error

standard deviation of Z axis of the proposed SLAM algorithm is not as good as other axis is

because at 94s, an unusual altitude measurement from the ultrasonic sensor of AR.Drone has

merged, which generates a disturbance. If we take the Z axis data to 94s, the error standard

deviation is 0.1749, which is better than PTAM.
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Figure 3.12: PTAM algorithm positioning results.

Table 3.8: Error standard deviation comparison.
X axis Y axis Z axis Distance

Standard deviation SLAM (m) 0.2284 0.1162 0.2302 0.2008
Standard deviation PTAM (m) 0.3267 0.2916 0.1841 0.2573

We should notice that the PTAM has to be combined with scale estimation algorithms. From

Fig. 3.13, the estimated scale factor is changing, and the confidence parameter is low, which

limits the practicality generated map. As a contrast, the proposed SLAM algorithm provides

uniform absolute scale of the map. We should also notice that the PTAM results displayed is

the best case we get. Due to the initializing process of PTAM, when start the algorithm, human

guidance is required to generate the first two key frames. Because of the unflattened surface

and the low quality of the image from the bottom camera of the AR.Drone, it is difficult to

initialize PTAM. We did 20 test for PTAM, and this is the best case we have. Another PTAM

state is shown in Fig. 3.14. From Fig. 3.14, we can see that the PTAM is mainly at state

’PTAM_LOST’ during the flight, and that makes the both positioning and mapping results

worse.
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Figure 3.13: PTAM parameters.

Figure 3.14: PTAM parameters in another case.
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Chapter 4

A K Nearest Neighborhood Based Wind Estimation

4.1 Introduction

Wind disturbance is another challenge for small VTOL UAVs. One limitation of small UAVs

is that they are sensitive to wind disturbance, leading to degraded flight accuracy and safety. If

UAVs could measure or estimate wind during the flight, the information can be used to enhance

the control for a more robust and safer flight. Such information can also be used to build a

wind field map for a region of interest. For example, the wind field of a urban street canyon is

generated by using UAV flight data, instead of using numerical models [73].

To measure the wind velocity, airspeed sensors such as pitot tubes are usually equipped on

fixed-wing UAVs. However, due to the rotor down-wash effect [74], for rotary-wing VTOL

UAVs, the measurement from airspeed sensors is not reliable if the airspeed sensors are de-

ployed close to the propellers. Recently, to measure the wind speed by sensors, Watkins et

al. mount a 3-D printed airspeed tube in front of a quadrotor by using a carbon fiber bar [75].

Since the carbon fiber bar is long enough, the rotor down-wash effect is avoided. Although the

method shows that rotary-wing VTOL UAVs can be used as flexible wind sensing platforms,

using the air tube and the bar increase the total size and weight. Furthermore, such UAVs are

not likely to have aggressive maneuverability. Accurate wind velocity estimation method with-

out airspeed sensors would be useful for the control compensation or wind field generation.

To achieve this goal, the relationship of the wind disturbance and the UAV response should be

generated.

Many researchers have solved this problem by building mathematical models. In general,

system identification and Kalman filter techniques are widely used. For system identification

methods, Lusardi et al develop a gust turbulence model through flight tests in [76]. The turbu-

lence properties are characterized by equivalent control input and the method is derived using
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measurements of control signals and inertial sensors from flight tests of a UH-60 helicopter.

In [77], Nicola has developed a method to estimate the wind velocity from the measurements

of a rotary-wing VTOL UAV flight in moving atmosphere. The wind velocity components are

estimated by using a variational formulation. The proposed method uses air-frame and rotor

model, and machine learning methods are used to determine the model parameters. In [78], a

method for aerodynamic model identification of a micro air vehicle is proposed by J. Velasco

et al. Without direct airspeed data measurement from sensors, the authors estimate the wind

velocity based on the multi-objective optimization algorithms that use identification errors to

estimate the wind-speed components that best fit the dynamic behavior observed. For Kalman

filter methods, Venkatasubramani et al solve this problem by using Kalman filter based wind

model identifications [79]. The approach uses only inertial, position, and control information,

without airspeed measurements. The technique is demonstrated using flight tests of an off-the-

shelf unmanned quad-rotor UAV. An accurate dynamic model of the aircraft is developed using

system identification techniques, and the model is used in a Kalman filter to estimate the ex-

ternal wind disturbances. In [80], Sikkel et al. extend a drag-force enhanced quadrotor model

by denoting the free stream air velocity as the difference between the ground speed and the

wind speed. The model is used to create a nonlinear observer capable of accurately predicting

the wind components. By using low-cost MEMS IMUs and GPS-velocity measurements, wind

components can be estimated by EKF.

All methods discussed above solve the problem by using equations including aerodynamic

models and wind field models. Such models need the details of the dynamics to ensure good

estimation result. However, in many cases, a dynamical model may not be available which

prevents use of model based wind estimation techniques. Also, the parameters in the dynamic

equations sometimes can be difficult to be determined accurately. Human UAV pilots, when

flying the UAV outdoor, they estimate the wind speed based on their experience, and they

achieve this by watching the response of the UAV with respect to the wind and their controls.

During this process, they do not use mathematical models and they do not have to determine

the parameters.

Inspired by this fact, in this work we propose a learning based method for rotary-wing
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VTOL UAVs to estimate the wind speed under hovering conditions, where the UAV is pro-

grammed to hover at a certain point. The method includes two stages: a training stage and a

wind speed estimation stage. During the training stage, we design a single set of PID controllers

to hover the UAV across a range wind speeds, and record the position, attitude, and controls.

Then, we extract a set of designed features from the flight data, and save these features as well

as the corresponding wind speed. During the on-line wind speed estimation stage, we use the K

Nearest Neighborhood (KNN) strategy [81]. While several learning based regression methods

including linear/polynomial regression are simple to implement, these methods often assign an

unjustified underlying function to determine the input-output relationship. On the other hand,

the KNN methodology is purely data driven, non-parametric, and often works well even in high

dimensional spaces. When hovering in unknown wind speed, the UAV generates the features

based on the real-time flight data by using the same method during the training stage. After-

wards, we compare the current features with the saved features, choose the most similar cases

in the database, then generate the wind speed estimation.

The key advantage of the proposed technique is that it works in situations where the aero-

dynamic model cannot be developed accurately. Instead, we only use position, attitude, and

control information to extract features. Direct air flow measurement from airspeed sensors is

not required, so the payload of extra sensors is saved. We compare our results with those from

the AR.Drone embedded system, and our estimation results are more robust and reliable.

The organization of this Chapter as follows. In Section 4.2, the background information

including experiment setup, coordinate system definition, and system structure is introduced.

In Section 4.3, the data curation of the learning method is described in detail. In Section 4.4, the

KNN algorithm we used is presented, including the feature normalization, distance calculation,

and the method to choose parameters. In Section 4.5, experiment results are demonstrated and

analyzed.

4.2 Equipment and System Setup

The small VTOL UAV used for this work is Parrot AR.Drone, which introduced in 2.2. The

global positioning system is Vicon, which is also introduced in 2.2.
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4.2.1 Fan and Anemometer

In this work, a commercial fan made by MAXXAIR, model BF24TF2N1 is used to generate

wind in the lab. It has two working modes: a high level mode and a normal level mode. The

diameter of this fan is 60 cm, and the height of the center of the fan to the ground is set to

be 1 m. To measure the wind speed, an anemometer made by Extech, model 45118 is used.

According to the anemometer, the measured maximum wind speed of this fan is 6 m/s for the

high level mode, and 2.7 m/s for the normal level mode, and the wind speed is reduced when

the distance to the fan is increased.

4.2.2 Coordinate System

The coordinate system used in this work is shown in Figure 4.1. The origin O is defined at the

projection of the center of the fan onto the ground. The Y axis points to the wind direction, the

Z axis points upward, and the coordinate system follows the right-hand rule.

Figure 4.1: Coordinate system set up.

4.2.3 The System

In this work, the Vicon camera system captures the motion of the AR.Drone, calculates AR.Drone’s

positions x, y, z, attitude Euler angles roll, pitch, yaw (φ , θ , ψ), and sends these data to the
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ground computer. Based on these data, the ground computer runs the designed controller, and

sends the calculated control commands u1, u2, u3, u4 to the AR.Drone. Figure 4.2 shows the

system structure and the system flow chart. In this work, the loop (show in Figure 4.2(b)) runs

at 30 Hz. Since we keep sending the control commands from ground station at 30 Hz rate,

the internal vision-based position hold using the bottom camera and sonar based altitude hold

algorithms of AR.Drone are not activated.

(a) System structure. (b) System flow chart.

Figure 4.2: System description.

4.3 Data Curation

During this stage, we design a single set of PID controllers introduced in Section 2.4.4, to hover

the UAV across a range wind speeds. From the recorded flight data, we extract features that

are related to the wind speed. Then, the extracted features and the wind speed are saved in a

database for wind estimation stage.

4.3.1 PID Controller

In this work, we design four independent PID controllers for the four control channels by using

the PID control law. The control channel u1 (roll angle) is calculated based on the x error.
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The control channel u2 (pitch angle) is calculated based on the y error. The control channel u3

(yaw angular velocity) is calculated based on the yaw angle error. And the control channel u4

(velocity of the altitude) is calculated based on the altitude error. For the control of yaw angle

ψ , the goal is to maintain it equal to 0◦, so the head of the drone will point along the y direction.

The 4 PID controllers are tuned under no wind condition. We use the Vicon data for feed-

back, set one point as the desired position, and tuned the gains P, I, and D to hover the drone

at the point. The control cycle’s frequency is 50Hz, and the unit of x, y and z error is in meters,

the unit of yaw angular velocity is in degree per second. The result’s of the tuned gains used

are listed in table 4.1.

Table 4.1: PID gains used.
P I D

For channel 1 0.6 0.0001 8.0
For channel 2 0.6 0.0001 8.0
For channel 3 0.08 0.0001 0.06
For channel 4 4.0 0.01 8.0

After the gains are tuned, the values are used for later experiments. The controls are sent

to AR.Drone through the SDK provided by the manufacturer. The mode of AR.Drone is set as

non-hover mode, so the controls to the drone are purely from the controllers designed.

4.3.2 Flight Data Collection

Based on the size of the flight area (7 m by 4 m), the maximum wind speed generated by the

fan (6 m/s), and the flight safety clearance (set to be 0.6 m to the boundary of the flight zone),

we select 8 wind speeds for training. The wind speed starts from 0 m/s and reaches maximum

at 4.2 m/s, with 0.6 m/s increment.

For different wind speeds, we use the same PID controllers to hover the drone at the cor-

responding positions. For each flight, we command the drone hover for 30 seconds. Since the

loop (Figure 4.2(b)) is run with 30 Hz, we collect 900 data points for each flight.

In each loop, we acquire 6 flight states from the Vicon system and 4 control commands from

the PID controller. For the 6 flight states, we denote them as
[
x y z φ θ ψ

]
. And for

the four control commands we denote them as
[
u1 u2 u3 u4

]
. We denote the desired hover
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position as xd , yd , and zd . Then, we can define the position error as xe = |xd− x|, ye = |yd− y|,

and ze = |zd− z|. Because the desired attitude angles are all zero, the true attitude is the attitude

error in this work. In each loop k, 10 data points are recorded, and we denote them as:

X(k) =
[
xe(k) ye(k) ze(k) φ(k) θ(k) ψ(k) u1(k) u2(k) u3(k) u4(k)

]
(4.1)

4.3.3 Features

(i) Features Definition

This section illustrates how we extract features from the flight data under each wind

situation. Figure 4.3 shows the comparison of the hover performance for 10 seconds

using the same PID controllers. In these figures, the blue dash represents the case that

the wind speed is zero, the red dot represents the case that the wind speed is 0.8 m/s,

and the green dot dash represents the case that the wind speed is 1.6 m/s. From the

comparison, we can see that the wind will significantly affect the hover flight. When

the wind speed increases, the position and attitude errors are increased, and the control

efforts are also increased in order to maintain the hover flight.

Based on our experience and observation, we choose 19 features which are highly related

to the wind speed. The first 7 features are related to the position error. They are the mean

and variance of xe, ye, ze, and the mean of total position error. The total position error Pe

is defined as:

Pe =
√

x2
e + y2

e + z2
e (4.2)

Similarly, the second 7 features are related to the attitude. They are the mean and variance

of the absolute values of the φ , θ , ψ , and the mean of total attitude error. The total attitude

error Ae is defined as:

Ae =
√

φ 2 +θ 2 +ψ2 (4.3)

The last 5 features are related to the control effort. For the control, in programming,

the scale is set from −1 to 1, where 0 means the control effort is zero, −1 and 1 means

the maximum control efforts for opposite directions. In this work, the control effort is

defined as the absolute value of the control commands, from 0 to 1. The 5 features we
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(a) Position comparison. (b) Attitude comparison.

(c) Control comparison.

Figure 4.3: Hover performance comparison.

used are the mean control effort of u1, u2, u3, u4, and the total control effort. The total

control effort C is defined as:

C =
√

u2
1 +u2

2 +u2
3 +u2

4 (4.4)

For each flight with the corresponding wind speed, we can analyze the flight data and

calculate the feature vector. We denote the feature vector Fr as:

Fr =
[

f1 f2 f3 . . . f19

]
(4.5)
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where: 

f1 = mean(xe) f2 = var(xe)

f3 = mean(ye) f4 = var(ye)

f5 = mean(ze) f6 = var(ze)

f7 = mean(Pe)

f8 = mean(|φ |) f9 = var(|φ |)

f10 = mean(|θ |) f11 = var(|θ |)

f12 = mean(|ψ|) f13 = var(|ψ|)

f14 = mean(Ae)

f15 = mean(|u1|) f16 = mean(|u2|)

f17 = mean(|u3|) f18 = mean(|u4|)

f19 = mean(C)

(4.6)

(ii) Features’ Effectiveness Validation

To validate that the designed features are effective, we check the Pearson-r coefficient

[82] by using Python’s Seaborn library. Pearson-r coefficient indicates the correlation

between two variables. It ranges from −1 to 1. The sign of Pearson-r coefficient shows

the two variables are positive correlated or negative correlated. When two variables are

irrelevant, the corresponding Pearson-r coefficient is 0, and when two variables are highly

correlated, the absolute value of Pearson-r coefficient is close to 1. It is expected for the

values of the features to increase as the wind speed increases. In the tests for all 19

features respect to the wind speed, Pearson-r coefficients are observed larger than 0.5,

thus proving the positive correlation between the feature vectors and the wind speed, and

it also indicates that the 19 selected features are effective. Table 4.2 shows the results of

the Pearson-r coefficient respect to the features.

4.3.4 Training Database Construction

For each wind speed, we conduct 10 independent flights and acquire 10 feature vectors. In

total, we have 8 wind speeds, so we have 80 feature vectors stored. For each feature vector, we
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Table 4.2: Features and the tested Pearson-r coefficients.
Features Pearson-r coefficient
f1 0.92
f2 0.81
f3 0.87
f4 0.67
f5 0.86
f6 0.82
f7 0.95
f8 0.90
f9 0.82
f10 0.90
f11 0.85
f12 0.73
f13 0.58
f14 0.96
f15 0.92
f16 0.87
f17 0.81
f18 0.91
f19 0.94

put the measured wind speed in the end. So we have a 80 by 20 matrix stored as the model. The

row index i starts from 1 to 80, and the column index j starts from 1 to 20. When j is between

1 to 19, the data represents the feature, and when j is 20, the data represents the wind speed.

Figure 4.4 illustrates the method to generate the database.

4.4 Wind Speed Estimation Stage

In this section, we introduce the KNN algorithm we used, including the feature normalization,

distance calculation, and the wind speed calculation. Also, the strategy to choose the parameter

K in KNN method is discussed.

4.4.1 KNN Algorithms

(i) Feature Normalization

As we can see, the feature vectors are of different magnitudes and units. To compare the

two features, we first normalize the features. We take feature f1 as an example. Suppose

that we have n independent experiment for training, and we have n feature f1. Now we
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Figure 4.4: Illustration of the method to generate the training database.

have another flight experiment to estimate the wind for this flight, and have one more f1.

In total, we have n+ 1 features. In the n+ 1 feature, we find the largest one fmax, and

the smallest one fmin. Take the difference, we have frange = fmax− fmin. After that, each

feature is divided by frange, and the results are the normalized features. We denote the

normalized feature vector as F .

(ii) Distance Calculation

To compare the distance d of two normalized feature vectors F1 and F2, we use the

weighted Manhattan distance. The weighted Manhattan distance used in this work is

defined as:

d = w1 · |F1(1)−F2(1)|+w2 · |F1(2)−F2(2)|+ · · ·+w19 · |F1(19)−F2(19)| (4.7)

where w is the weight for each feature, which is equal to the Pearsonr coefficient which

corresponds to the importance of the feature. The higher importance, the larger weight

will be assigned.

(iii) Wind Speed Estimation

When there is a new flight, we can extract a 1x19 feature vector using the same method
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as we used during model generation. Then, we compare the feature vector with the 80

feature vectors in the model, and record its distance to each one in the model. Among

the 80 distances, we choose K smallest ones, and get their row index i. After that, we

look at the column 20, add the wind speed together and divided by K. The results will

be the wind speed estimation for this flight. Figure 4.5 illustrates the method to calculate

the wind speed.

Figure 4.5: Illustration of the method to calculate the wind speed.

4.4.2 Choose the Value of K

The parameter K is important for the KNN algorithm to work properly. When K is either too

large or too small, the estimation result will not be reliable. As K is reduced, the fitting is better

but the function becomes more complex, while as K increases, the function is smoother but less

flexible and the training error increases. To find the appropriate value of K, we first test the

KNN algorithm by using the model data.

For each wind speed, we randomly choose 1 of the 10 experiments as the validation vectors,

and the rest of the 9 remain as the model. In total, we will have 8 validation vectors, and 72

vectors as the model. For K value selection, we test it from 1 to 72, and find the best choice

which leads to the minimum total estimation error of the 8 experiments. The estimation error
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E is defined as:

E = |ve− v| (4.8)

where ve is the estimated wind speed, v is the wind speed reference. And the total estimation

error is
8

∑
i=1

Ei.

Figure 4.6 shows the total estimation error using different K. We can see that when K = 8,

the total estimation error reaches the minimum. Because the 10 validation data vectors are

randomly chosen, the best value of K may not always be 8. We have repeated the experiment

10 times, and the average of the best K value is 11. So we choose 11 as the value of the K for

later experiments.

Figure 4.6: Totla error vs. parameter K.

4.5 Experiment Results

To test the performance, in this section, we first introduce the wind field of the fan, then we

compare the wind field estimation of our proposed method and the result from the AR.Drone.

Users are allowed to subscribe a wind estimation topic directly in ROS, which is provided by

the AR.Drone.
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4.5.1 Wind Field Generation

Based on the size of our lab, we choose 7 points along the wind direction, and measure the

wind speed at these points. The coordinate of these points are (0.0,1.2,1.0), (0.0,1.5,1.0),

(0.0,1.8,1.0), (0.0,2.1,1.0), (0.0,2.4,1.0), (0.0,2.7,1.0), and (0.0,3.0,1.0). They are along

the y axis and at the height of 1m. At each position, we use the anemometer to measure the

wind speed 5 times, and the average of the measurements is chosen as the reference wind speed

at this point. Table 4.3 list the distance to the fan and the corresponding wind speed. Figure 4.7

shows the measured wind speed at these points.

Table 4.3: Wind speed measurements and their corresponding distance to the fan.
Distance to the fan (m) 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Wind speed (m/s) 3.07 2.63 2.27 2.03 1.87 1.77 1.70

Figure 4.7: Wind speed change as the distance to the fan change.

4.5.2 Wind Speed Estimation Results

We assign the way point over the 7 positions, and hover the drone at each position for 20s.

Then, we use the saved database as the model, and choose K = 11 to calculate the wind speed
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estimations. At the same time, the wind speed estimation results of from the AR.Drone em-

bedded system are also recorded. We note that the wind estimation algorithms of AR.Drone

are not available, so we only list the results as a reference. Table 4.4 and Figure 4.8 show the

results of our proposed method and the result from the AR.Drone.

Table 4.4: The comparison of our proposed method and the AR.Drone.
Wind speed reference (m/s) 3.07 2.63 2.27 2.03 1.87 1.77 1.70
Estimation results (m/s) 2.99 2.41 2.34 2.15 1.89 1.74 1.71
AR.Drone results (m/s) 0.93 0.52 0.63 0.52 0.47 0.31 0.24

Figure 4.8: On-line wind estimation results.

From the results, for the 7 wind speeds, we calculate the estimation errors are 0.08 m/s, 0.22

m/s, 0.07 m/s, 0.12 m/s, 0.02 m/s, 0.03 m/s, and 0.01 m/s, respectively. The average estimation

error is 0.074 m/s. And the estimation relative errors are 2.6%, 8.4%, 3.1%, 5.9%, 1.1%, 1.7%,

and 0.6%, respectively. The average estimation relative error is 3.3%. At the same time, the

average estimation error of the AR.Drone’s embedded system is 1.673 m/s.
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Chapter 5

A Low-cost Quadrotor System Design

5.1 Introduction

For VTOL UAVs hardware, this thesis develops a quadrotor solution which is able to support

majority of research of small VTOL UAVs. The quadrotor’s structure is made by carbon fiber,

which provides large freedom of weight for on-board computers and sensors. For the on-board

computer, a high level processor and a low level processor work together as a two-level proces-

sor system. The low level processor is responsible for sensor data acquiring, synchronization,

and motor speed controls. Further more, the low-level processor also monitor the manual con-

trol signal during the flight, and is able to switch the control source to manual control under

emergency situation, which makes the platform safe to operate. For the high level processor,

a Ubuntu operation system is equipped. At the same time, Robot Operating System (ROS) is

also embedded to access on-line available ROS packages easily. Researches can also make their

own packages which contain their own algorithms. Another function for low level processor

is to communicate with users in real-time through wireless communication. The on-board sen-

sor system includes: 1) a downward looking camera, 2) an Inertial Measurement Unit (IMU)

which contains a 3-axis gyro and a 3-axis accelerometer, 3) a 3-axis compass, and 4) a down-

ward looking ultrasonic sensor. These sensors provide rich information. Combined with the

powerful two-level processor system, the whole system can help many important UAV research.

5.2 Quadrotor Frame and Power System

5.2.1 Quadrotor Frame

The frame of the quadrotor we choose is S500 version with carbon fiber landing gear. S500

frame is mainly made of durable PCB version carbon fiber material and exquisite design, which
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makes the frame strong enough and light as possible. The design of the 4 arms has 7 degree

dihedral angle design which increase flight stability while minimizing power loss. Another

outstanding feature of S500 frame is the landing gear design. The landing gear is made by 3K

carbon fiber pipe with 16mm diameter. At the same time, the landing gear is covered by soft

form, which make the landing soft to protect the devices on-board. Fig. 5.1 shows the S500

quadrotor frame components. From Fig. 5.1, we can see that the components are compact,

which make it easy to assemble. Fig. 5.2 shows the S500 quadrotor frame after assemble.

From Fig. 5.2, we can see that the free space of the frame is large for on-board devices.

Figure 5.1: S500 quadrotor frame components.

5.2.2 Power System

The whole system is powered by Li-Po battery. Li-Po battery is a rechargeable battery of

lithium-ion technology using a polymer electrolyte instead of a liquid electrolyte. High con-

ductivity semisolid (gel) polymers form this electrolyte. These batteries provide higher specific

energy than other lithium battery types and are used in applications where weight is a critical

feature, like mobile devices and radio-controlled aircraft [83]. In this work, we choose Turnigy

MultiStar 3 cells type. The full capacity is 5200 mAh. The voltage when fully charged is 12.6V.

The maximum current provided is up to 50A. From our experiment, it can support 15min flight

for the designed quadrotor platform. Fig. 5.3 shows the selected battery.
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(a) Top view of S500 frame. (b) Side view of S500 frame.

(c) Bottom view of S500 frame. (d) Inside view of S500 frame.

Figure 5.2: S500 quadrotor frame.

Electronic Speed Control (ESC) is typical for control modern brush-less motor. The ESC

can control the output voltage to the motor according to Pulse Width Modulation (PWM) [84]

signal input. The ESC we choose for the designed quadrotor platform is Turnigy MultiStar 20A

version. The maximum current tolerance is 20A. The 12.6V battery voltage is in the range of

the ESC. Fig. 5.4 shows the selected ESC.

The motor with propeller provides the drag force for the drone. We choose 920KV, size

2212 brush-less motor with 9450 Self-Tightening propeller for the designed quadrotor platform.

The 920 KV value of the motor means when the output voltage up to 1V, the rotations increase

920 per minute. The 2212 value is related to its physical size, which is able to install on the

S500 frame. 9450 value for the propeller represents it’s size. The length of the propeller is 9.4

inch long. Fig. 5.5 shows the selected motor and propeller.
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Figure 5.3: Turnigy MultiStar 3 cells Li-Po battery.

Figure 5.4: Turnigy MultiStar 20A ESC.

5.3 On-board Sensor System

The on-board sensor system includes: 1) a downward looking camera, 2) an Inertial Measure-

ment Unit (IMU) which contains a 3-axis gyro and a 3-axis accelerometer, 3) a 3-axis compass,

and 4) a downward looking ultrasonic sensor. The camera we select is ODROID USB-CAM

720P [85]. This camera provides real 720P HD resolution and 16:9 wide screen output. The

interface with ODROID XU4 is USB2.0 High-speed and plug-n-play interface. The image

flow rate is up to 30fps. The pixel size is 3.0um x 3.0um. The focal length is 3.5mm. The

field of view (FOV) is 68 degree. For the IMU and compass, we choose LSM9DS0 [86]. The

LSM9DS0 is one of only a handful of IC’s that can measure three key properties of move-

ment: angular velocity, acceleration, and heading in a single IC. The gyroscope can measure



86

(a) 920KV 2212 motor. (b) 9450 Self-Tightening propeller.

Figure 5.5: Motor and propeller combo.

angular velocity. Angular velocities are measured in degrees per second (DPS). The LSM9DS0

can measure up to ±2000 DPS, though that scale can also be set to either 245 or 500 DPS to

get a finer resolution. An accelerometer measures acceleration. The LSM9DS0 measures its

acceleration in g’s, and its scale can be set to either ± 2, 4, 6, 8, or 16g. There’s the magne-

tometer, which measures the power and direction of magnetic fields. The LSM9DS0 measures

magnetic fields in units of gauss (Gs), and can set its measurement scale to either ± 2, 4, 8, or

12 Gs. Ultrasonic sensors measure distance by using ultrasonic waves. The sensor head emits

an ultrasonic wave and receives the wave reflected back from the target. Ultrasonic sensors

measure the distance to the target by measuring the time between the emission and reception.

The ultrasonic sensor we used for the quadrotor platform is HRLV-EZ1 [87]. This ultrasonic

sensor detects objects from 1mm to 5meters, senses range to objects from 30cm to 5meters,

with large objects closer than 30cm typically reported as 30cm. The interface output formats

are pulse width, analog voltage, and serial digital in either RS232 or TTL. Fig. 5.6 shows the

selected sensors.

5.4 Manual Control System and Wireless Communication Module

The manual control system has a RC radio receiver on-board which can receive the manual

control signal from ground. Although when doing experiments, the drone is controlled by

on-board computers, is also monitoring the manual control signal for safety. In emergency

situation, researchers can switch to manual control mode immediately to avoid damages to the
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(a) ODROID USB-CAM 720P. (b) LSM9DS0 module.

(c) HRLV-EZ1.

Figure 5.6: On-board sensor system.

platform or environment. The manual control system we choose for the quadrotor platform is

DX18 by Spektrum which provides enough control channels for quadrotor. Fig. 5.7 shows the

transmitter and the on-board receiver.

The wireless communication module can send interested flight data to the ground in real-

time. The communication module we choose for the quadrotor platform is XBee Pro S1 [88].

XBee Pro S1 take the 802.15.4 stack (the basis for Zigbee) and wrap it into a simple to use serial

command set. It allow a very reliable and simple communication between micro-controllers,

computers, systems, really anything with a serial port. Point to point and multi-point networks

are supported. Fig. 5.8 shows the XBee Pro S1 communication module.
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(a) Transmitter. (b) On-board receiver.

Figure 5.7: Manual control system.

Figure 5.8: XBee Pro S1 communication module.

5.5 Two-level On-board Processor System

To optimize the on-board computation resource, the on-board processor system include a high-

level processor and a low-level processor. We name it two-level processor system. The high-

level processor in this design is ODROID-XU4 [89], while the low-level processor in this de-

sign is STM32F103ZET6 [90]. The high-level process run the algorithms for application. A

Ubuntu operation system is equipped. At the same time, Robot Operating System (ROS) is also

embedded to access on-line available ROS packages easily. Researches can also make their own

packages which contain their own algorithms. Another function for high-level processor is to
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communicate with users in real-time through wireless communication. The low level processor

is responsible for sensor data acquiring, synchronization, and motor speed controls.

ODROID-XU4 is a new generation of computing device with more powerful, energy-

efficient hardware and a smaller form factor. Offering open source support, the board can

run various flavors of Linux, including the latest Ubuntu 16.04 and Android 4.4 KitKat and

7.1 Nougat. By implementing the eMMC 5.0, USB 3.0 and Gigabit Ethernet interfaces, the

ODROID-XU4 boasts amazing data transfer speeds, a feature that is increasingly required to

support advanced processing power on ARM devices. This allows users to truly experience

an upgrade in computing, especially with faster booting, web browsing, networking and 3D

games [89]. Fig. 5.9 shows the on-board ODROID-XU4 processor.

Figure 5.9: ODROID-XU4.

STM32 is a family of 32-bit micro-controller integrated circuits by STMicroelectronics.

The STM32 chips are grouped into related series that are based around the same 32-bit ARM

processor core, such as the Cortex-M7F, Cortex-M4F, Cortex-M3, Cortex-M0+, or Cortex-M0.

Internally, each micro-controller consists of the processor core, static RAM, flash memory, de-

bugging interface, and various peripherals [91]. Fig. 5.10 shows the on-board STM32F103ZET6

processor minimum system board.
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Figure 5.10: STM32F103ZET6 processor minimum system board.

5.6 System Block Diagram

We draw system block diagram in Fig. 5.11. And Fig. 5.12 shows the complete quadrotor

platform.

Figure 5.11: System block diagram.
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5.7 Lesson Learned from the Design

When the system is built, an important step before use the sensor data and image information

is synchronization. The image from camera is acquired by the high-level processor, while the

other sensor data is acquired by the low-level processor. Since the clock signals for the high-

level and low-level processor are different, with the serial data port delay, the time stamps

for these information are different. After synchronization, the information update rate will

be slower than the slowest updated sensor. For comparison purpose, in this thesis, besides the

sensors data and the image flow, Vicon data is also synchronized for reference. While the Vicon

data is sent by wireless, the delay is inconsistent due to unstable wireless disturbance.

Currently, the synchronization tool this thesis used the ROS package ’message_filter’ pre-

sented in Chapter 3. A problem not solved yet is because wireless delay of Vicon data sending,

the synchronized information does not output with a constant frequency, which cause problem

when use.
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(a) Top view. (b) Side view.

(c) Top view in detail.

(d) Side view in detail.

Figure 5.12: Quadrotor research platform.
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Chapter 6

Conclusions and Future Work

6.1 Summary and conclusions

Motivated by more and more small VTOL UAV applications under GPS-Denied environment

with on-board sensors only, this thesis studies relevant advanced state estimation and naviga-

tion techniques. First, a robust on-board monocular vision based pattern tracking algorithm

that provides a quadrotor with the capability to autonomously track and land on a vessel deck

platform is presented. Second, a novel solution to on-board sensor only feature-based monoc-

ular 3-D SLAM algorithm is developed. At last, a K Nearest Neighborhood learning based

wind estimation method which does not require the details of the aerodynamic information is

provided.

In the work presented in Chapter 2, an autonomous approach for a quadrotor to land on

a vessel deck from long range is presented. On-board IMU and altimeter, image processing,

and Kalman filters are used to provide the state estimation. Experiments are implemented on

a self-designed landing platform, which can emulate the deck motion of a vessel 30 m wide

under sea state 6. The drone first recognize the red LEDs applied on the landing board from

long range, then estimate the relevant distance and directions and drive automatically approach

the landing board. Once the drone hover above the landing board, the bottom camera start to

work and recognize the designed ’H’ landing sign, adjust the position and land on the board.

Flight results demonstrate the landing success rate of 100% with a 9 cm average distance error.

In the work presented in Chapter 3, this thesis provide an new approach to on-board sensor

only feature-based monocular 3-D SLAM algorithm. The pin-hole camera model is derived

in an alternative prospective and the proposed algorithm combines the IMU measurements

inherently. Experimental results shows that the proposed method can generate the absolute map

immediately without artificial landmarks nor prior knowledge about the environment. With the
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positions of the feature points calculated, the camera’s position estimation is also improved

compares to using only IMU, which proves the effeteness of the proposed SLAM algorithm.

The mapping and positioning results are sensitive to feature matching and distance movement

measurements. This thesis use low cost Parrot AR.Drone as our VTOL UAV fro experiments.

Experimental results shows that the proposed SLAM algorithm is able to reconstruct absolute

3-D map of the environment and provide the drone’s position in real-time. At the same time,

the positioning accuracy is better than PTAM using same experimental condition.

In the work presented in Chapter 4, a KNN-based wind estimation method for a rotary-

wing VTOL UAV is presented. The proposed method uses the features generated by flight data

as the learning model, and does not require the details of the aerodynamic information. Also,

this method only uses flight data to generate the designed features for the training and wind

estimation stages, and does not require direct wind speed measurements. Experiment results

show that the proposed method can estimate the wind accurately, with a 0.074 m/s average

estimation error, and a 3.3% average estimation relative error, while the average estimation

error generated by AR.Drone’s embedded system is 1.673 m/s.

In the work presented in Chapter 5, a quadrotor hardware solution which is able to sup-

port majority of research of small VTOL UAVs is developed. The quadrotor research platform

equipped two-level processor system which is able to process all algorithms on-board. With

the sensor system embedded, rich flight information is provided to the researcher that can en-

able endless possibilities. Relied on the on-board wireless communication module, the flight

state and important parameters can be monitored by researchers in real-time, which makes the

platform humanized.

6.2 Recommendations for future work

Based on the studies of guidance and navigation of small VTOL UAVs to solve using on-

board sensor system under GPS-Denied environment, this thesis opens several avenues for

improvement.

(i) In Chapter 2, the moving deck simulates the waves of the sea, but it does not have hor-

izontal movements. To better simulate a ship motion in the sea, it is useful to resident
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the landing platform on a ground vehicle which provides additional horizontal motion

of the deck. Then the landing problem will be more challenging. Additionally, wind

disturbance shall be considered to make the algorithms more robust.

(ii) For visual SLAM algorithms, all feature-based visual SLAM algorithms require accu-

rate feature matching. If the matching is wrong, there will be error measurements for

both positioning and mapping. To make the feature-based visual SLAM algorithm more

robust, feature mismatching recognition and elimination algorithms are important to be

studied. Another constraint for feature-based visual SLAM algorithm is the movements

of the camera. If the camera stays stationary, the image provides no information. The

program should recognize this situation and handle properly to avoid mapping error.

Additionally, in the work presented in Chapter 3, the proposed SLAM algorithm requires

accurate estimation of the feature’s depth at moment 1 (zb1). This requires accurate

estimation for the position change between two steps. In future, visual odometer or other

advanced position change estimation technique can be integrated to estimate zb1 more

accurately and improve the robustness.

Another future direction is to track the map continuously. When the map generated,

the algorithm directly output the results without tracking. Because of that, although the

drift of positioning has been inhibited significantly, it still exist. If the map is tracking

continuously, the positioning drift problem can be solved.

(iii) For the wind estimation experiments, the direction of the wind can also be considered to

make the research more realistic. Secondly, optimal selection of the features related to

the wind with directions shall be studied. At last, experiments in outdoor environments

shall be considered to validate the results.

(iv) For small VTOL UAV design, currently, the camera image information and other sensor

information are output separately. Researchers should synchronize the information be-

fore use. The on-board sensor data acquiring system shall be synchronized when output.

An important research direction is embed the image acquiring on the low-level processor.

Another promising research direction is to develop more powerful battery or other power

source to make the fight time longer. At the same time, the weight of power system shall
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be reduced to give more freedom for on-board sensors and processors. Another direction

is try to make the UAV smaller size to enable more challenged application such as indoor

tasks.
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