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ABSTRACT OF THE DISSERTATION

Age of Information for Real-time Network Applications

By JING ZHONG

Dissertation Director:

Roy D. Yates and Emina Soljanin

Driven by recent advances in ubiquitous connectivity and pervasive computing, real-time

status updates to interested recipients have become increasingly popular in streaming

applications. These status updating systems all share a common need: the recipients

want their information about the sources to be as fresh as possible. This thesis aims to

analyze a recently proposed information freshness/timeliness metric, age of information

(AoI), in various real-time network applications, and optimize the corresponding AoI

metric given the network constraints.

In this thesis, we model the real-time status updating system as source-receiver pairs

connected through the networks. The first fundamental problem we consider is how

timely update messages should be compressed based on the given network capacity.

Different from traditional data compression techniques that shorten the average codeword

length, we show that the optimal lossless compression scheme for fast message delivery

depends on higher moments of the codeword length due to the queueing delay. The

AoI-optimal codebook can be constructed by a recursive search algorithm based on the

convex AoI penalty function.

In ultra-dense network deployments, real-time updates are expected to be distributed

to massive numbers of receivers via the nearby storage nodes at the network edge. Thus,

the second fundamental problem we address is how the real-time updates should be

replicated and distributed to multiple edge storage nodes through multicast networks.
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We answer the question by evaluating the average AoI at a receiver which has access to

a random number of edge storage nodes, given the distribution of the random network

delay. This system model is also applicable to time-sensitive content updates in Dynamo-

type distributed storage systems in which the write and read operations go to multiple

storage nodes simultaneously. We derive the AoI-optimal quorum mechanism that

balances the data consistency and operation latency.

Beyond the study of the two fundamental problems in AoI, we extend the similar AoI

analysis to applications with resource contention and scheduling. We examine a remote

cache updating system in which the local server maintains snapshots of the content at

different remote sources and updates those snapshots according to a constrained rate.

We compare AoI to an alternative Age of Synchronization freshness metric and evaluate

the optimal rate allocation scheme for the two different age metrics. We also examine

the edge cloud computational offloading system with multiple users, and investigate the

scheduling policy for incoming jobs in a vision processing application at an edge server.

We show that a greedy scheduling policy is optimal for a class of AoI-related penalty

functions.
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Chapter 1

Introduction

1.1 Status Updating

The recent technological advances in ubiquity and power of computing hardware and

communication devices have engendered a wide variety of applications. These range

from the pervasive mobile gaming, the rapid development of deep learning on computer

vision and natural language processing, the health monitoring system with Internet-

of-Things (IoT) devices, to the foreseeable autonomous cars in a connected mobile

environment. The global data traffic generated by mobile devices reached 11.5 exabytes

per month at the end of 2017, a 17-fold growth over the past 5 years [1]. Among all

this mobile data, one significant trend is the rapid growth of the Machine-to-Machine

(M2M) connections arising from IoT deployments. Mainly designed to support systems

for real-time information monitoring and tracking, these M2M connections are used

across different industries such as finance, healthcare, automotive and environmental

sensing [1].

These real-time monitoring systems all share a common need: the monitor needs to

track the status of the interesting sources and make sure its knowledge of the sources

is as fresh and timely as possible. Thus, we refer to this type of system as a status

updating system. Figure 1.1 illustrates a few examples of status updating systems.

Low-cost environmental sensors will be equipped in both rural and urban areas to

monitor air quality, soil moisture and vibration levels to prevent natural catastrophes

such as landslides, forest fires and etc. For high frequency trading in financial markets,

the execution of a trading algorithm relies on low latency to gather the most recent

stock price. For instance, microwave long-distance network for ultra-low latency data
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stock

monitor

autonomous cars

sensors

networksource

Figure 1.1: An overview of the status updating systems.

transmission have been built between key locations, such as Chicago and New York, to

guarantee the timeliness of the information delivered to the traders [2]. Data exchanges

between an autonomous vehicle and nearby vehicles and infrastructure can help to

achieve better route planning and emergency controls.

In these examples, the source and the interested monitor are usually connected

through a communication system. The information at the monitor lags behind the true

source mainly due to the following two reasons. First is the inactivity of the source.

Since the physical status at the source is unknown and generally varying in time, the

source is required to sample its state and send it to the monitor as a status update. If

the source hasn’t update the monitor for a long time period, the monitor’s knowledge of

the source becomes stale. Second is the physical constraint of the network. Due to the

uncertainty of the network, an update can be dropped in the network. Even though the

update is successfully delivered to the monitor, it may experience a random delay in the

network due to network congestion and propagation delay. In this case, the information

update delivered to the monitor can be outdated if it spends a long time in the network.

The challenge in designing a status updating system leads to a more fundamental

question: what should be the appropriate metric to quantify the timeliness, or information

freshness, of the status updating systems. Since the monitor maintains a more-or-less

outdated version of the status of the source, the correct metric should reflect how much

the information at the monitor lags behind the source. Unfortunately, we will see that

most commonly used network performance metrics, such as delay and throughput, are

not suitable for describing the timeliness.
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• Delay: Network delay measures the time elapsed from when a transmission starts

to when that transmission is completed. Delay quantifies how quickly each update

can be delivered to the monitor if an update is successfully delivered to the monitor.

But in a lossy system in which some update packets are dropped in the network

randomly, the average delay is undefined. Moreover, small network delay doesn’t

imply information freshness. For example, an autonomous car sends an update to

another car every 10s. Each update may be delivered rapidly, but the information

at the receiving car becomes stale since it doesn’t hear from the sending car for a

long time.

• Throughput: We refer to throughput as the average rate that information

is successfully communicated through the channel/network. Maximizing the

information throughput is not equivalent to making those information fresh. For

example, in a queueing-type network that handles the arriving packets in a first-

come-first-served way, one can always maximize the throughput by keeping the

system busy all the time. In this case, an update is very likely to experience long

network delay and the information conveyed in the update may becomes old.

• Distortion/Error: One can naturally connect the information freshness to a

distortion or error metric, which can be defined as the distance between the ground

truth status x at the source and an “estimate” of the status x̃ at the monitor. To

choose a proper distortion metric, we need to know the statistics of dynamics at

the source, but this is usually complicated and application dependent. Therefore,

we seek a simpler metric that indicates the loss or uncertainty in time but not

relying on the source statistics itself.

Given the our observations above, it’s desirable to introduce a temporal freshness metric

for real-time status updating systems.
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Source Network
X1X2 · · ·

Receiver
X1X2 · · ·

Figure 1.2: The simplest one-to-one active status updating model. Xi indicates the i-th
update by the source.

1.2 Age of Information Metric

In complex status updating systems, there may be large number of source-destination

pairs. To understand the updating system, we first assume the pairs are independent

of each other and focus on the simplest model with one source and one receiver only,

as shown in Figure 1.2. Since the source sends updates to the receiver proactively, we

call this an active updating system. In contrast, an updating system is called passive if

the receiver takes the responsibility to fetch the updates from the source. In [3], the

age of information (AoI), or simply the age, is defined to measure the freshness of the

information regarding the source at the monitor. When newest received update at time

t at the receiver reflects the status or state of the source at time u(t) ≤ t, we define the

instantaneous age of information, or simply the age, as the random process

∆(t) = t− u(t). (1.1)

We note that ∆(t) can be either a continuous time or discrete time stochastic process.

There are two important observations in (1.1):

1. If the status information at the receiver is not updated, i.e. u(t) is fixed, the age

process ∆(t) grows linearly at unit rate with the passage of time t.

2. If the status information at the receiver is updated at time t, u(t) is advanced to

a new value, let’s call it u′(t) ≥ u(t). The age process ∆(t) has a reduction from

t− u(t) to t− u′(t).

Suppose the source generates status updates about its own information and sends these

updates to the receiver through a communication network with random delay. Each

update is time-stamped when it was generated at the source. Denoting the generation
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∆(t)

t
U1 U2T1 T2

P1

P2

• × • ×

Figure 1.3: Sample path of the AoI process ∆(t). The status regarding the source is
generated at time marked by •, and updated at the receiver at time marked by ×.

time of each update i as Ui and the delivery time at the receiver as Ti, Figure 1.3

demonstrates a sample path of the age process in this type of system. The age at the

receiver ∆(t) increases linearly with slope 1 without new update delivery. Once a new

update i from the source is delivered to the receiver, the receiver’s information regarding

the source is refreshed, and the age is reset to Ti − Ui, which is the age of update i. In

this thesis, we define the age of information (AoI) specifically as the instantaneous age

∆(t).

Definition 1.2.1. The average AoI, or simply the average age, at the receiver is defined

as the time-average of the stochastic process ∆(t),

∆ = lim
τ→∞

1

τ

∫ τ

t=0
∆(t)dt. (1.2)

The average AoI was first introduced and evaluated for status updating through a

single server with exponential service times and first-come-first-served (FCFS) discipline

in [3]. That is, we simply replace the network in Figure 1.1 with a FCFS queue. It was

shown that although the end-to-end delay is an essential part of the age, minimizing

the age is different from simply reducing the average delay of every update. For a

given service rate µ, large delay can be avoided by sending updates infrequently, which

lowers the system utilization. However, this could result in higher age since updates are

delivered infrequently and the most recent update at the receiver will frequently be stale.
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On the other hand, sending updates too frequently will build up a long queue at the

server, which leads to high average age since every update arrives at a congested queue

and suffers a long waiting time. If updates arrive at the source in a memoryless way, it

was shown that there exist an optimal update arriving rate λ ≈ 0.53µ that minimizes

the average age.

We also observe in Figure 1.3 that the age value ∆(t) reaches a local peak value

right before the receiver’s information is refreshed by a new update i at time Ti. Thus

we define the peak age for each update i as

Pi = lim
t→Ti, t<Ti

∆(t). (1.3)

Different from the instantaneous age ∆(t), the peak age reflects the worst case of

information staleness in the system [4].

Definition 1.2.2. The average peak AoI, or simply the average peak age, at the receiver

is defined as the time-averaged of the sequence Pi,

∆P = lim
N→∞

1

N

N∑
i=0

Pi. (1.4)

The average AoI and the average peak AoI are the two most common age metrics

in the literature, since these straightforward definitions quantify the freshness of the

system strictly in time difference.

To further quantify the cost or penalty incurred by information staleness, we can

define the cost as a function or functional of the age. The age dependent penalty function

was first proposed in [5] and later generalized with the term cost of update delay (CoUD)

in [6]. Some examples of the age penalty function f are illustrated as follows:

1. The exponential function of the age f(∆) = ea∆ − 1 where a ≥ 0. This suits

applications in which the need for information refresh is more desired as the

information gets stale [7].

2. The fraction function f(∆) = (a∆)/(a∆ + b) that maps the age to the binary

interval [0, 1]. This converts the age to a mission failure probability for many
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attack-defense problems and remote control applications. [8]

If the destination is keeping track the status of a finite set of n sources, we may generalize

the penalty to the age vectors ∆(t) = [∆1(t), . . . ,∆n(t)]. An example penalty P is the

time-averaged of the sum of age penalty over all n sources as shown below

P = lim
T →∞

1

T

∫ T
t=0

n∑
i=1

f(∆i(t))dt. (1.5)

1.3 The Ongoing History of the Age of Information

1.3.1 AoI Evaluation in Different Network Models

The evaluation of the age metric in different networking systems is non-trivial since

the analysis relies on many aspects of the system model, including but not limited to

how the updates are generated at the source, how the transmitter or scheduler send

the updates and how the service facility in the network processes the updates. In most

cases, the service facility is modeled as a queue (or queues) with limited service capacity.

Most of the age analysis tried to obtain an average age or average peak age expression

and understand how the metric depends on different factors in the system model.

As mentioned in the begining, the study of status updating systems using the age

metrics originates from [3], in which a source generates update messages as a Poisson

process and send them to the destination through a FCFS queue with memoryless service

times. Similar analysis is applied to status updates through a Last-Come-First-Served

(LCFS) queue in [9]. It was shown that allowing preemption in service or waiting leads

to lower average age, implying that newly generated updates should be served first to

maintain freshness in most circumstances. In [10], multiple sources submits updates

through a shared FCFS queue to a single destination, and the region of feasible ages

at the receiver is derived by exploiting game theoretic results. The transmission of

status updates through a random network with infinite servers is studied in [11]. Due to

the random service time at different servers, the update may arrive at the destination

out of order and the receiver distinguishes whether an arrived update is informative

or not. Motivated by the observation that older packets are not informative to the
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status updating system, status updates through a M/M/1/1 and M/M/1/2 systems

were examined in [4]. Here we note that M/M/1/k queue stands for a single server that

only allows at most k customers / jobs in the queueing system, and M/M/1/1 stands

for a queue with no waiting room for incoming customers.

Similar to the difficulty in queueing analysis involve general arrival or service dis-

tribution, the age analysis is usually quite challenge. In [12], the average peak age

for multi-class status updating through a M/G/1 queue is obtained. The average age

expression for Gamma distributed service time is derived in [13]. For Gamma service

time, it’s interesting to observe that preemption is not necessarily the optimal choice for

the age. The study of M/G/1/1 preemptive queue for single source stream and multiple

streams were conducted in [14] and [15]. In [16], the stationary distribution of the age

for a G/G/1 queue is obtained by a sample path analysis of the age process, which holds

for a wide range of arrival and service distributions.

In [17], the problem of multi-sources updating was revisited and a relatively simple

mechanism named Stochastic Hybrid System (SHS) is introduced to compute the

moments of the age. This method enables the calculation of age in rather complicated

systems with multiple servers and complex network topologies such as [18]. In [19]

and [20], SHS method was applied to the age evaluation of status updating with an energy

harvesting server that collects randomly arriving energy units to transmit updates.

1.3.2 AoI-based Optimization and Scheduling

The analytical evaluation of age answers the question of how different factors in the

system affects the age metric. Most literature seeks the optimal updating rates that

minimizes the age assuming the source has no knowledge about the state of each update

and all the updates are generated in a randomized fashion. An alternative question

was asked in [3]: if the service time of each update is known to the source, and the

source can control when to generate a new update to avoid jamming in the network,

what is the optimal updating policy? Since our objective is to maintain the information

freshness at the receiver, an intuitive policy is: when the previous update is delivered to

the receiver and the channel is idle and ready for the next update, the source should
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generate an update immediately and send it to the receiver. This policy is usually called

just-in-time (JIT) or zero-wait policy, which surprisingly turns out to be suboptimal

under certain circumstances as shown in [21] and later generalized in [5]. If the service

time of the previous update is small, submitting a new update right away doesn’t

bring the receiver fresh enough information but may waste the network resources for

transmission. Therefore, the optimal policy is to be lazy and wait for a short time

period if the previous update is delivered quickly. The detailed conditions for when this

lazy policy stays optimal are in [5].

Compared to the evaluation of age, the scheduling and optimization research in

the age literature tackles another aspect of the problem, which is when to send, and

even what to send if there are multiple update candidates. In [22], it was shown that

a preemptive Last-Generated-First-Served (LGFS) scheduling policy is optimal for an

updating system with multiple servers. This policy is later shown to be optimal for

any non-decreasing functional of the age in multi-hop network [23]. Status updating

through multi-hop networks with link interference constraints was considered in [24],

where a simple stationary policies in which links are activated according to a stationary

probability distribution is considered. The scheduling of updates in an unreliable

broadcast network with a base station and multiple receivers is considered in [25]. In

this system, the base station accumulates updates from different sources but can only

update at most one receiver at a time. It was shown that a greedy policy, which updates

the source with maximum age, is the optimal policy for a symmetric network, and

a Whittle Index form policy is obtained for general networks by converting the age

minimization problem to a multi-arm bandit problem [26]. In [27], a similar problem

was considered, except for the difference that an information update will be discarded if

it is not selected by the base station for transmission. A single-hop network with several

nodes transmitting updates to a base station (BS) through independent wireless links

was considered in [28]. In this model, the BS selects at most one node for transmission

at each time slot, with a minimum throughput/frequency constraint for the each node.

Four different scheduling policies were compared in terms of the weighted sum of the

average age.
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1.3.3 AoI and Information Theory

Since AoI only quantifies the difference in time between the remote source and the receiver,

several attempts have been made to connect AoI to distortion measure using information

theoretic methods for time-correlated sources. In [29], the mutual information between

the real-time source value and the delivered samples at the receiver is used as the

distortion metric in time. It has been shown that the mutual information is a non-

increasing function of the age, and an optimal sampling method that minimizes the

time-averaged mutual information was obtained. A similar problem that allows the

receiver to construct real-time estimate of the Wiener process at the source based on

causally received samples was investigated in [30]. The optimal sampling policy for the

Wiener process that minimizes the mean square error (MSE) was shown to be threshold

type, and this problem can be reduced to an AoI optimization problem if the sampling

times are independent of the observed Wiener process at the source.

Most of the recent research focuses on the queueing theoretic aspect of the age

problem and assumes all the update packets are of equal size and can be transmitted

through the network reliably. However, these assumptions are not always guaranteed

in a communication system, especially in wireless links with constrained throughput.

Thus, it is suggested to apply source and channel coding to the update messages, in

order to limit the network resource usage and overcome channel errors or erasures.

Nevertheless, traditional source and channel coding results are in fact not adequate for

the age problem, since they are mostly obtained in an asymptotic regime which can be

potentially bad for a ultra-low latency requirement. From an age perspective, it is more

favorable to apply the information theoretic results in the finite blocklength regime.

A main focus of this thesis is on the lossless source coding on update messages. The

related work on source coding and our contribution will be discussed in detail in Chapter

2. In [31], differential coding scheme was applied to the transmission of correlated

update messages through erasure channel. Although the source can decide between

the differential and the actual information, it was shown that the differential encoding

scheme improves the age performance only if the receiver feedback is available at the
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source. Erasure codes were applied to the update packet to increase the probability

of packet recovery in a binary erasure channel in [32]. It has been shown that the

redundancy has to be carefully optimized, such that the updates can be recovered with

sufficiently high probability, and the information contained in the packet is still fresh

enough at the time of recovery. The results in [32] motivates our study about a more

general timely update distribution model in Chapter 3. In [14], a similar coded update

transmission problem with memoryless arriving updates at the source was studied as a

special case of the M/G/1/1 queueing model.

1.3.4 Other AoI Applications

The evaluation of AoI has been applied to different real-time applications. In [33], the

authors investigated the coexistence of DSRC and WiFi in vehicular network, in which

the DSRC network aims to minimize the AoI of vehicular updates, and the WiFi devices

seek to maximize the throughput. The random access problem with two networks was

formed from a game theoretic perspective. In mobile crowd-learning services such as the

navigation mobile app Google Waze [34], where the service providers rely on the user

community to voluntarily collect and report real-time information for a set of points of

interest (PoI), an important factor affecting the large-scale adoption of the service is the

freshness of the crowd-learned information [35]. In order to ensure the freshness of the

PoI states, a simple AoI-based reward mechanism was designed to incentive the selfish

users to report the information in time. In [36], an AoI-optimized trajectory planning

problem was studied in wireless sensor networks, where an unmanned aerial vehicle

(UAV) is dispatched to collect data from the ground sensor nodes. We refer to [37] for a

more thorough survey about the recent works on AoI research.

1.4 Road Map

In this thesis, we look at the status updating problem from three perspectives, including

compressing the updates, distributing the updates, and the shared resource allocation

for updates from multiple sources. These also represent three different key components
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to engineer in different real-time network applications. We investigate how these

components affect the information freshness of the system, and design the engineering

solutions to optimize the corresponding AoI metric.

In Chapter 2, we put our focus on the first fundamental problem: how the timely

update messages should be compressed to ensure the information freshness. We evaluate

the average age and average peak age for systems using lossless fixed-to-variable coding

schemes, and obtain the AoI-optimal lossless compression scheme by a recursive search

algorithm. For deterministic symbol arrivals, the key observation is that transmitting

maximally compressed messages with large blocklength is a losing proposition, since

the age benefits from the small blocklength and it depends on higher moments of the

encoded sequence length due to queueing delay. For random symbol arrivals, the design

of an AoI-optimized coding scheme requires some special treatments to encode the

idleness at the source.

In Chapter 3, we evaluate the AoI of an updating system that distributes timely

updates to multiple recipients through multicast networks. The interested receivers

are located at the network edge, and they retrieve the most recent update information

by accessing a subset of r edge nodes. We assume the source is able to choose how

long it waits for the multicast transmission of the current update before it restarts and

generates a new update. If the source waits for a long period for every update, each edge

node is more likely to get the latest generated update and pass it to the receiver, but

the information contained in the update is more likely to become outdated. In contrast,

the receiver may fail to get an update from the connecting edge nodes if the source

waits for a short period for every update. We derive the average age for any stationary

update restart policy, and obtain the optimal restart strategy for two different policies:

1) the sources waits for the earliest deliveries of every update to a subset of nodes and

2) the source waits for a fixed time threshold. We show that the average age associated

with these two policies coincide if both policies are optimized for the age. This system

model is also applicable to time-sensitive content updates in a Dynamo-type distributed

storage system [38] in which the write and read operations go to multiple storage nodes

simultaneously.
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In Chapter 4, we extend the AoI analysis to emerging applications in which the

update service facility is shared among multiple sources thus resource allocation and

scheduling kicks in. We examine a remote cache updating system where the local

server maintains snapshots of the content at different remote sources and refreshes those

snapshots with a constrained total rate. In order to keep the information about all the

sources fresh at the local cache, we formulate the rate allocation problem and compare

AoI to another age of synchronization freshness metric. We also investigate the edge

cloud computing system supporting multiple users, and evaluate different scheduling

policies at the edge server for incoming computing jobs in vision applications. We show

that a greedy scheduling policy is optimal for a class of AoI-related penalty functions.
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Chapter 2

Compressing Timely Updates

2.1 Streaming Data Compression and Recent Results

Over the past few years, substantial progress has been made on analyzing and optimizing

the age in various computing and networking systems. The improvement of the age

performance relies mostly on more efficient design of the transmission scheme, such

as optimizing the source updating rate, and scheduling the updates with the freshest

information as mentioned before. In these works, the information updates are usually

assumed to be identically distributed packet lengths and the service times are independent

of the content contained in the update. Very limited effort has been made to characterize

the information contained in a status update.

In many real-time updating systems, such as live video surveillance and information

updating in vehicular networks, the updates generated by the source observers reflect the

changes of the system in the real world, which can usually be described by a collection

of system states. Thus, efficient compression of the update information based on the

probabilistic model is desired in order to fit those source messages into the constrained

physical channel and reduce the transmission time. Shannon entropy characterizes

the fundamental limits on the amount of information required to represent a source

message based on the probability distribution of the source symbols [39]. The process of

translation between original source messages and encoded bit sequence is known as source

coding. Most of the traditional lossless source coding schemes have been focused on

minimizing the length of the encoded sequence in order to approach the Shannon entropy

of the source [40–43]. In a communication system, this is equivalent to minimizing the

average channel usage for transmitting the source messages. The difference between
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Figure 2.1: System diagram for streaming lossless source coding.

average codeword length and the Shannon entropy is usually called the source coding

redundancy. If we instead require the source coding system to reconstruct the messages

in a timely way, there are two new fundamental problems we need to address:

1. Is timely compression a different problem from traditional data compression that

minimizes the redundancy?

2. If the answer to the previous question is NO, what is the optimal lossless source

coding for timeliness?

Here we consider the lossless streaming source coding system illustrated in Figure 2.1.

Every update generated by the source is transmitted to the receiver through a binary

channel with a fixed rate, and the receiver is required to reconstruct the entire message

generated by the source in a timely fashion. The encoder and decoder pair has to agree on

a specific coding scheme that converts the source messages to bit sequences and vice versa.

In Section 2.2, the system with deterministic symbol arrivals is examined, and we show

that maintaining timeliness is fundamentally different from minimizing the redundancy.

Intuitively, the optimal coding scheme should fully utilize the channel resource and

reconstruct the source sequence as timely as possible. That means minimizing the coding

redundancy is usually suboptimal since the transmission delay in a constrained channel

depends on higher order moments of the encoded sequence length. An alternative system

with randomly arriving source symbols is examined in Section 2.4. In this system, we

need to carefully define the timeliness metric of the system, since the source stays idle

occasionally and whether the idleness i informative or not depends on the application

scenario. The age analysis in this case involves the evaluation of the queueing delay of

the service facility with random vacations.

The design of streaming source coding has appeared in different contexts. The early
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work of end-to-end delay study of source coding can be traced back to the analysis of

compression for communication concentrators [44]. Randomly arriving source symbols

are encoded into d-ary codewords and fed into a buffer that outputs one codeword letter

per time unit. It was shown that analyzing the average delay is difficult except for

the special case where the buffer size is infinite and the interarrival time of symbols is

exponentially distributed. The analysis for a finite buffer is extended in [45]. A variant

of the Huffman code was proposed to minimize the probability of buffer overflow, which

is shown to depend on the Laplace transform of the random codeword length. The

bounds on the probability of buffer overflow originated from the G/G/1 queue waiting

time upper bound in [46] and the lower bound in [47]. Similar queueing analysis on the

source coding system was conducted by [48], and later inspired the development of the

delay optimal prefix code in [49]. Given that the average delay is a function of the first

and second moments of the codelength, the algorithm in [49] converts the codebook

design problem to a coin collector’s problem and constructs the optimal codebook

using an alternative nodeset method. In [50], this nodeset method is generalized to the

construction of length-limited Huffman codes. The design of source coding scheme for

more general penalties was extended in [51]. In [52], the construction of an optimal

code based on the nodeset notation is further optimized with smaller time complexity

and applied to a larger class of quasi-linear penalty functions of the codelength. While

most of the delay analysis are for block coding schemes, the bounded expected delay in

sequential arithmetic coding is derived in [53].

Apart from the delay analysis of the streaming source coding system, there are other

significant works on the error-exponent analysis in delayed-decoding system. In [54],

the authors examined the system with deterministic symbol arrival in which the source

symbols arrive at the encoder sequentially one per time unit, and the receiver is required

to reconstruct the source with a fixed end-to-end delay constraint. It was shown that

the exponent of the decoding error probability is a function of the decoding delay. The

error exponent analysis was later applied to correlated sources using random binning

in [55]. In [56], the moderate deviations constants and the bounds on the error exponents

were derived for a slightly different streaming system that allows the encoder to know
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a certain number of future symbols at the time of encoding. The delayed sequential

coding for correlated video frames was studied in [57].

Although the problem of streaming source coding has received a lot of attention over

the years, only a few papers look at the system from an AoI perspective. It was shown

that the differential encoding scheme improves the average age when the channel is

unreliable and the feedback is available at the source. In [58], a streaming source coding

system with source blocking was examined. Each source symbol represents a timely

update message sent by the source, but the symbols that arrive at the encoder while

the channel is busy are skipped. An optimal Shannon code was proposed to minimize

the average age of the freshest source symbol at the receiver.

The rest of this chapter covers our works in [59–61]. In [59], we examine the average

AoI of a system with deterministic source symbol arrivals and lossless fixed-to-variable

coding schemes. Different from the lossy update model in [58], here we requires the

receiver to decode the entire source sequence. We observed that the encoder must

choose an appropriate source blocklength N to balance data compression delays against

network congestion deriving from insufficient compression. In [60], similar age analysis

was extended to a backlog-adaptive source coding model that makes the busy/idle state

at the channel interface available at the source encoder. This enables the encoder to

adjust the source blocklength based on the state of the channel and improves the age

performance under dynamic channel conditions. The system with random source symbol

arrivals was investigated in [61], in which the idleness at the source requires some special

encoding mechanism. Here we extend the results in [61] and show that the age analysis

is converted to the delay analysis in Geo/G/1 queueing system with service vacations.

2.1.1 Notation

• Definition: (Probability Generating Function) For a non-negative discrete ran-

dom variable X with CDF FX(x), the probability generating function (PGF) is defined
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as

X̂(z) = E
[
zX
]

=
∞∑
x=0

zx Pr[X = x]. (2.1)

The k-th order derivative is

X̂(k)(z) =
dk

dkz
X̂(z). (2.2)

Thus the first-order derivative is simply X̂(1)(z) = E
[
XzX−1

]
, and the expected value

E[X] and second moment can be obtained by

E[X] = lim
z→1

X̂(1)(z) (2.3)

E
[
X2
]

= lim
z→1

X̂(2)(z) + X̂(1)(z). (2.4)

2.2 Deterministic Symbol Arrivals Without Feedback

2.2.1 AoI for Fixed-to-Variable Codes

In this section, we focus on the source coding system with deterministic symbol arrivals

and without channel feedback. As shown in Figure 2.1, in each time slot (starting from

t = 1), the source generates a discrete i.i.d. symbol Xi from a finite alphabet X with

PMF PX(x). The encoder and decoder pair chooses a fixed-to-variable coding scheme,

which means the encoder has to wait for the arrival of N symbols at the encoder buffer,

and then group them into a single block and maps entire blocks into variable-length

bit strings. The k-th symbol block is Bk such that Bk+1 = XkN+1XkN+2 · · ·X(k+1)N .

The encoded sequence is then fed into the first-in-first-out (FIFO) buffer as shown in

Figure 2.1, which outputs one binary bit to the decoder through the channel at each

1/R time unit. Because a source block may be encoded into a codeword that is shorter

than the block length, it is possible that FIFO buffers becomes empty. Since the encoder

knows exactly when the FIFO buffer becomes empty, the encoder outputs a random
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Figure 2.2: Example of streaming source coding system with deterministic symbol
arrivals with three source symbols and blocklength N = 2.

gibberish bit φ ∈ {0, 1} independent of any codewords. In fixed-to-variable length

coding, the decoder is able to determine whether the next received bit is a gibberish bit

or not, since the generation time of next symbol block is known to the decoder [54].

When the decoder receives the prefix-free codeword, it reconstructs the corresponding

message. Note that all the message symbols contained in a single message block are

decoded at the same time and thus have the same delivery time. The delivery time of

block Bk is denoted by Dk The instantaneous age at time t is then reset to the age

of the last symbol in the most recently decoded block, since all symbols in the same

block are decoded simultaneously. Let N(t) denote the number of symbols observed by

the encoder by time t. At every time t, the decoder reconstructs the source sequence

up to X1, · · · , XN(u(t)), where u(t) < t is the time stamp of the most recent decoded

information symbol. We note that u(t) is advanced to a new time index only if a new

symbol is decoded. The instantaneous age of the information stream X
(ε)
N(u(t)) at the

receiver at time t is then given by ∆(t) = t− u(t). That is, if the most recently decoded

symbol at time t is Xi, which was produced by the source at time i, the instantaneous
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status age is ∆(t) = t− i.

Figure 2.2 depicts an example of the age process ∆(t) at the receiver with ternary

source symbols A,B,C, blocklength N = 2 and channel rate R = 1. Before the first

block arrives, the encoder randomly generates two gibberish bits 00 that are sent to the

channel. Since the decoder knows those bits are sent before when the first block arrives,

it ignores those gibberish bits and reconstructs nothing. The first two symbols CC are

grouped as the first block B1, and then encoded into a long codeword 111. Thus, the

codeword 110 corresponding to the second block AB has to be queued at the buffer first

and sent after the transmission completion of the previous block. We observe that the

blocklength N is the inter-arrival time between any two blocks at the input of encoder.

The age is a sawtooth function that increases linearly in time in the absence of any

symbol blocks and is reset to Dk − kN at time Dk when symbol block Bk is decoded at

the receiver.

By evaluating Figure 2.2, the average age is the average area under sawtooth diagram,

and the integration of the sawtooth area is equivalent to the sum of disjoint polygon

areas Qk. The average AoI of the coding system observed by the receiver is given by

∆ = lim
T →∞

1

T

∫ T
0

∆(t) dt

= lim
K→∞

1

NK

K∑
k=1

Qk, (2.5)

where the area of the disjoint polygon is

Qk =
[Dk − (k − 1)N ]2

2
− [Dk − kN ]2

2
. (2.6)

Substituting (2.6) back to (2.5) gives

∆ = lim
K→∞

1

K

K∑
k=1

(Dk − kN) +
N

2

= E[Dk − kN ] +
N

2
. (2.7)

From a queueing perspective, we can view a block Bk as a customer arriving at time
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kN and departing at time Dk. Then Dk − kN is exactly the system response time of

the customer. Since Dk ≥ kN , the average age is always lower bounded by N/2. The

interarrival times of customers are deterministic since the interarrival time of symbol

blocks is exactly the product of the block length and the symbol interarrival time N .

As a result, the term E[Dk − kN ] in (2.7) is the expected system time that block Bk

spends in the queue. Let E[T ] , E[Dk − kN ], for an arbitrary customer k when the

queue has reached steady-state. The average age is then given by

∆ = E[T ] +
N

2
. (2.8)

Alternatively, we denote ∆k as the k-th peak value of the age process ∆(t). The

average peak AoI at the receiver is then defined as

∆P = lim
K→∞

1

K

K∑
k=1

∆k. (2.9)

Evaluating Figure 2.2, the k-th peak age is given by ∆k = Dk − (k − 1)N . Since the

system response time Tk = Dk − kN , the average peak age is

∆P = E[T ] +N. (2.10)

Given a blocklength N , we observe that both the average age and the average peak age

simply have an additional constant term (N or N/2) other than the average system

response time E[T ] of the queueing system. Since the interarrival time Yk between

information symbols is deterministic and the service time in the system follows a general

distribution depending on the length of the codeword, the entire streaming source coding

system can be modeled as a discrete-time D/G/1 queueing system. In streaming block

coding, each encoded bit takes 1/R time unit to be transmitted by the FIFO buffer,

thus the service time of the symbol block Bk with corresponding binary code length Lk

is exactly Sk = Lk/R. To maintain a stable queueing system, it is required that the

arrival rate is strictly less than the service rate, i.e. 1/E[Y ] < 1/E[S] and we have the

following claim and definition of valid blocklength
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Lemma 2.2.1. Given a block length N , the streaming source coding system is stable if

and only if E[L] < NR.

We also have the following definition based on the stability of the system.

• Definition: A blocklength is valid if and only if there exist a codebook with average

codelength E[L] < NR for X ∈ X .

In a stable queueing system, the system time T = W + S is the sum of service time

S and waiting time W . That is, the average system time is E[T ] = E[S] + E[W ]. We

note that the interarrival time before k-th customer is Yk = N and the service times

Sk are also discrete random variable, the average waiting time for discrete-time D/G/1

queue can be obtained according to [62]

E[W ] =
E
[
S2
]
− E[S]− (N2 −N)

2(N − E[S])
+
N−1∑
r=1

1

1− zr
, (2.11)

where zr are the unique roots of the equation

zN − Ŝ(z) = 0, (2.12)

that are on or within the unit circle but not equal to 1. Note that solving the above

equation and obtain (2.11) is somewhat complicated, we instead apply bounds for G/G/1

queue in [63] such that the average waiting time is upper bounded and lower bounded

by

E[W ] ≤ E[S2]− E2[S]

2(N − E[S])
, (2.13)

E[W ] ≥ E[S2]− E2[S]

2(N − E[S])
− E[S]

2
. (2.14)

It’s interesting to point out that the upper bound in (2.13) and the lower bound in

(2.14) only differ by the half of the average service time. The upper bound in (2.13)

is the average waiting time for D/D/1 queue, while the lower bound in (2.14) is the

average waiting time for M/G/1 queue [63]. As a result, we have the following theorems.
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Theorem 2.2.2. The average AoI is

∆ =
E
[
L2
]
− E[L]−N2R2 +NR

2R(NR− E[L])
+
N−1∑
r=1

1

(1− zr)R
+

E[L]

R
+
N

2
, (2.15)

where zr are the unique roots of the equation

zN − L̂(z) = 0 (2.16)

that are on or within the unit circle but not equal to 1.

We note the roots zr occur in complex conjugate pairs. Thus,
∑N−1

r=1 1/(1− zr) is

real.

Theorem 2.2.3. The average AoI is upper and lower bounded by

∆ ≤ ∆̄ =
E[L2]− E2[L]

2R(NR− E[L])
+

E[L]

R
+
N

2
(2.17)

∆ ≥ ∆ =
E[L2]− E2[L]

2R(NR− E[L])
+

E[L]

2R
+
N

2
. (2.18)

We observe that both the exact expression of average age in Theorem 2.2.2 and the

bounds in Theorem 2.2.3 depend on the source block length N . Furthermore, we also

note that the distribution of the codeword length PL(l) depends on the block coding

scheme that is determined by the blocklength N . One objective is then to design the

AoI-optimal fixed-to-variable codebook with codeword length PL(l) that minimizes the

average age in Theorem 2.2.3. We realize this would be rather complicated since it

involves the optimization over the PGF of codelength L. Instead, we can use the upper

bound in Theorem 2.2.3 as an approximate of age average and optimize over the first and

second moments of the codeword length E[L] and E
[
L2
]

for a given N . This problem

can be divided into two subproblems:

1. For a fixed blocklength N , what is the AoI-optimal fixed-to-variable code?

2. What is the AoI-optimal blocklength N?

In section 2.2.2, we will discuss the recursive algorithm to search for the age optimal
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source coding scheme by using the upper bound in Theorem 2.2.3 as the objective

function. This search algorithm, originally introduced in [49], is also applicable for a

wide range of penalty functions of the codeword length. For the second subproblem,

we will instead evaluate numerically and demonstrate the behaviors of varying the

blocklength.

Here we also want to emphasize that this is different from traditional source coding

schemes that focus on minimizing the average information bit rate in order to approach

the Shannon entropy H(X) of the source [39]. The difference between the compression

rate, which is average codeword length per symbol E[L]/N , and the entropy H(X) is

usually called the source coding redundancy. It is well known that the redundancy

can be minimized and eliminated as the blocklength N grows to infinity. However, we

demonstrate in Theorem 2.2.2 and 2.2.3 that the compression rate is not the only factor

in the AoI metric. For a given blocklength N and channel rate R , the traditional purpose

of minimizing the average codeword length is equivalent to minimizing the average

channel usage for transmitting the source. Instead, the minimization of AoI requires the

encoder/decoder pair to fully utilize the channel resource and reconstruct the source

sequence as timely as possible. In particular, minimizing the coding redundancy is

usually suboptimal since the transmission and queueing delays in a constrained channel

depend on higher order moments of the codeword length.

Figure 2.3 demonstrates the comparison between the experimental ISA and the

upper and lower bounds in Theorem 2.2.3. Here we also define the offered load ρ as

the ratio between source entropy H(X) and the channel R. In this experiment we

choose two sources with different probability P as shown in 2.3a and 2.3b, and vary the

channel rate R. The source symbols are encoded using a Huffman code with blocklength

N = 2 and N = 3, respectively. In both example, we observe that the upper bound is

very tight to the experiment results. Since the upper bound and lower bound differ by

E[L]/2R, the gap between two bounds becomes larger as R decreases and the offered

load ρ approaches to 1. When R is large compared to H(X), the average age grows

almost linearly with the blocklength N .
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(a) source probability P = {0.6, 0.3, 0.1} and N = 2.
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(b) source probability P = {0.4, 0.3, 0.2, 0.1} and N = 3.

Figure 2.3: Comparing experimental average AoI, the upper and lower bounds for
deterministic symbol arrivals using Huffman codes.

2.2.2 Age-optimal Codes

In this section, we use the AoI metric as a penalty function and obtain a lossless fixed-to-

variable coding scheme that minimizes the penalty. Since the average age expression as

a function of the distribution of the codelength PL(l) is rather complicated in Theorem

2.2.2, the problem becomes rather intractable. Instead, if the penalty is a function of the

first and second moments of the codelength, E[L] and E
[
L2
]
, we can use the recursive

searching technique from [49] to obtain the optimal coding scheme that minimizes the

penalty. The procedure of obtaining the optimal code is described as follows.

Here we define an encoder to be monotonic if for any pair of symbol probabilities

PX(x1) ≥ PX(x2), the corresponding codeword length LX(x1) ≥ LX(x1). For any

monotonic fixed-to-variable codebook encoder ε, we plot the codebook in the (x, y)

plane as a point (x, y) =
(
E[L](ε),E

[
L2
]
(ε)
)

as shown in Figure 2.4. Here we define E

as the set of all monotonic encoders E = {ε1, ε2, . . .}. Note that the set E is finite for a



26

!"(Huffman)

!+
v

decreasing age

v
v

E[5]

E[5+]

7

78

!9

Figure 2.4: The illustration of convex hull algorithm and the representation of codebooks
in the coordinate.

finite size source alphabet.

We recall that a set C ∈ R2 is convex if the line segment connnecting any two

points of C is still within C. For any set E in R2, the convex hull of E is then defined

as the smallest convex set containing E . Specifically, we denote ε1 as the point that

minimizes E[L], which is lying at the left most end of the convex hull, and ε2 as the

point that minimizes E
[
L2
]

and lying at the bottom of the convex hull. We note that ε1

corresponds to a Huffman code since it’s the optimal fixed-to-variable code to minimize

the average codeword length E[L]. We then denote B(E) as the lower left boundary of

the convex hull, which is a polygonal arc connecting ε1 and ε2 as shown in Figure 2.4.

For average AoI, we use the upper bound in Theorem 2.2.3 as the penalty function.

Denoting (x, y) =
(
E[L],E

[
L2
])

, the upper bound in (2.13) becomes the penalty function

f1(x, y) =
y − x2

2R(NR− x)
+
x

R
+
N

2
, (2.19)

where 0 ≤ x ≤ NR according to Lemma 2.2.1. For a fixed z = f(x, y), the parabolic

curve y(x), which is shown in Figure 2.4, represents an equal penalty z contour. If the

contour curve y(x) has negative first derivative y′(x) < 0 and positive second derivative

y′′(x) > 0 in the feasible range of x, then we can show that the optimal codebook ε∗

lies within the lower left boundary of the convex hull B(E). If we draw a line through

the optimal codebook ε∗ tangent to the contour curve y(x), all other codebooks are no
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lower than the tangent line. In our case, we prove that both (2.19) and (2.88) satisfy

y′(x) < 0 and y′′(x) > 0 in the appendix. The goal is then to search all the codebooks

lying on B(E) and extract the optimal ε∗ for a given penalty function f .

The search of codebooks on B(E) can be done by a recursive linear programming

algorithm. First we define a linear function

g(L) = αE[L] + β E[L2], (2.20)

with two weighting parameters α, β ∈ [0, 1]. We note that (2.20) represents any tangent

line with slope −α/β in Figure 2.4. It was shown in [52] that the optimal code that

minimizes a linear penalty function in (2.20) can be obtained by converting the problem

to the coin collector’s problem, which was firstly introduced to describe a similar problem

in length-limited Huffman code in [50]. The coin collector’s problem can be efficiently

solved by a package-merge algorithm in O(|X |3) time in [49] and O(|X |2) time in [52].

A brief introduction to the algorithm is in the appendix on page 67.

We denote the subroutine that gets the codebook that minimizes (2.20) as Min-

Linear(). The codebook returned by MinLinear() is one of the codebooks ε lying at

the boundary B(E). Given that MinLinear() can be solved efficiently for any pair of

parameters α and β, we can obtain all the possible codebooks on B(E) by varying α

and β recursively.

The recursive search algorithm is outlined in Algorithm 1. We start from two extreme

cases: finding the optimal codebooks ε1, ε2 by calling the subroutine MinLinear()

with penalty function g with two sets of parameters (α, β) = (α1, β1) = (1, 0) and

(α, β) = (α2, β2) = (0, 1). (α1, β1) corresponds to a penalty function that returns a

prefix code ε1 that minimizes the average code length E[L], which is exactly the Huffman

code. One the other hand, (α2, β2) corresponds to a penalty function that returns a

prefix code ε2 that minimizes the second moment of the codeword length E
[
L2
]
. Then

the algorithm recursively searches available codebooks between two points ε1 and ε2

by calling a procedure Span(ε1, ε2). In the Span procedure, the value of α and β are

updated in steps 10 and 11, respectively. The subroutine MinLinear() is used again
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Algorithm 1 Convex Hull Boundary Search Algorithm

Require: MinLinear(α, β)
1: S ← empty
2: ε1 ← MinLinear(1, 0)
3: ε2 ← MinLinear(0, 1)
4: if ε1 = ε2 then
5: return ε1

6: else
7: S ←

{
ε1 & ε2 & Span(ε1, ε2)

}
8: return ε∗ = arg minε∈S f(L(ε))

9: procedure Span(ε1, ε2)
10: α← E[L2](ε1)− E[L2](ε2)
11: β ← E[L](ε2)− E[L](ε1)
12: ε3 ← MinLinear(α, β)
13: if ε3 = ε1 or ε3 = ε2 then
14: return empty
15: else
16: return ε3 & Span(ε1, ε3) & Span(ε2, ε3)

to obtain the optimal codebook for the new pairs of α and β. Graphically, this step is

equivalent to drawing a line segment l that connects the points corresponding to ε1 and

ε2, and then searching for the lowest line l′ parallel to l that touches the boundary B(E).

If l′ lies below l, then a new codebook ε3 is contained in the line l′. Otherwise, the

recursion stops if we couldn’t find a new codebook ε3. The procedure then repeats for

the new pair of codebooks (ε1, ε3) and (ε2, ε3) until all the codebooks lying on boundary

B(E) are found. After collecting all the codebooks, we compare all of them and select

the one that minimizes the penalty function f .

2.2.3 Numerical Evaluation

Figure 2.5 demonstrates the average AoI as a function of the channel rate R for

different blocklength N . In Figure 2.5a, we use the three symbols A,B,C with P (A) =

0.6, P (B) = 0.3, P (C) = 0.1, and vary the channel rate R above H(X) to vary the

offered load ρ. The thin solid line marks the average AoI using Huffman codes, while

the thick dashed line marks that using our Age-optimal codes. When R is large and ρ

is small, encoding with large blocklength is a losing proposition, since what we gain by

reducing the output rate of the encoder is forfeited because the delay of the system is
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(a) source probability P = {0.6, 0.3, 0.1}.
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(b) source probability P = {0.9, 0.08, 0.02}.

Figure 2.5: Comparing the average AoI with Huffman codes (thin solid lines) and
Age-optimal codes (dashed thick lines) with different blocklength N .

dominated by long interarrival times of large blocks. The arrival process at the FIFO

buffer is bursty with long codewords that arrive infrequently. Hence, the optimal strategy

in the high FIFO rate region is to choose the smallest N = 1. On the other hand, as R

decreases and the offered load ρ approaches to the stability limit given a blocklength N ,

the average AoI curve quickly blows up. This sharp transition effect occurs earlier for

smaller N since the corresponding average code length is larger. Since the redundancy of

block coding decays with the blocklength N , the threshold of the transition approaches

ρ = 1 as N increases. In this region of transition, it is complicated to obtain the optimal

blocklength analytically, since the minimum average AoI given a blocklength N depends
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on the specific codebook design, which is determined by the source probabilities. But

we observe that choosing the smallest possible valid blocklength N mostly gives the

minimum average AoI. For example, at ρ ≈ 0.95, we observe that N = 1 is no longer

valid, so we need to select a large N to obtain smaller compression rate E[L]/N , and

the next valid N in our example is N = 3.

Figure 2.5a also demonstrates the difference between the compression-optimal Huff-

man codes, and our age-optimal code. When ρ is small, the age-optimal codes obtained

by our search algorithm are identical to the Huffman codes. This is because the average

AoI is mainly dominated by the average codeword length when R is small as shown

in Theorem 2.2.3. As ρ becomes large, the age-optimal codes start to outperform the

Huffman codes for N = 3, due to the fact that the queueing delay that comes from

higher moments of the codelength starts to play an important role in the average AoI.

However, we also note that age-optimal codes are still close to the Huffman code for

other values of N . This is due to the fact that the variance of codelength is limited

by the tree structure of prefix-free codes. An age-optimal codebook can alleviate the

penalty arises from the queueing delay, but it won’t significantly reduce the penalty.

Figure 2.5b demonstrates another example with three symbols A,B,C with P (A) =

0.9, P (B) = 0.08, P (C) = 0.02. In this case, the entropy of the source is lower compared

to the previous example in Figure 2.5a. We have similar observations in this example,

except that the system becomes unstable in a faster way for all three different N . The

age-optimal codes are mostly identical to the Huffman codes. We suspect this is due

to the huge difference among the source probabilities. The optimization algorithm has

very little freedom in terms of choosing the codelength for source symbols. Since the

average codelength is a dominating factor in the age minimization, the encoder has

to assign short codewords to symbols with large probabilities, and long codewords to

symbols with small probabilities. We also suspect that the optimization is more likely to

have significant performance gain when the probabilities are somewhere between equally

likely and very steep.
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2.3 Deterministic Symbol Arrivals With Feedback

For fixed-to-variable coding schemes, generating a new codeword when the channel is

busy is a losing proposition since it injects additional workload and waiting time to the

system. It was shown in [5, 10] that the average AoI can be reduced by controlling the

update generation time given the state of the channel. In this section, we borrow the idea

from [5,10] and consider a similar streaming source coding system with deterministic

arrivals and channel idle/busy feedback as illustrated in Figure 2.1. The busy/idle state

at the channel interface is available at the source encoder. The source encoder buffers

arriving symbols and submits a new codeword only when the channel is idle. When

there is a backlog of b symbols, the encoder chooses the corresponding fixed-to-variable

codebook with a blocklength of at most b. In this scheme, the channel state feedback

allows the encoder to avoid subjecting codewords to unnecessary waiting at the channel

interface and to also mitigate the traffic load by compressing longer source blocks when

necessary. As opposed to traditional fixed-to-variable coding that maintains constant

blocklength for the entire source sequence, backlog-adaptive block coding is a variable-

to-variable scheme in which the methodology of fixed-to-variable coding is preserved but

the blocklength varies according to encoder backlog. This scheme is feasible in practice

because of the synchronization between the encoder and the decoder as described below.

The streaming source coding system with deterministic arrivals and channel idle/busy

feedback as illustrated in Figure 2.1 Starting at time t = 1, discrete memoryless source

symbols Xt arrive at each time unit sequentially. We assume that the encoder and

decoder agree on an initial source block length b, and they are synchronized in the sense

that both of them know the number of symbols queued at the encoder input buffer.

The encoder will wait until time n and then use a prefix-free fixed-to-variable code with

block length n for the input sequence Xn. The encoded sequence is then fed into a

first-in-first-out (FIFO) channel buffer, which outputs one binary bit to the decoder

every 1/R seconds. Since the codewords are prefix-free, the decoder collects received

bits and reconstructs the message block immediately when it sees a codeword. Since

the decoder knows when the entire codeword is received and when the last transmitted
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Figure 2.6: Sample path of the age ∆(t) (the upper envelope in bold) for backlog-adaptive
streaming source coding with the just-in-time (JIT) policy.

symbol of that codeword was sent, the decoder also knows there are u input symbols

queued at the encoder input buffer at that instant. Having agreeing on a pre-determined

function n′ = f(b, n), both the encoder and decoder know that blocklength f(b, n) will

be used to send the next block.

Figure 2.6 shows a sample path of the status age at the decoder. Every time the

encoder sees an idle channel, it stops collecting symbols and immediately submits

codeword for all b symbols in the encoder backlog, i.e., f(b, n) = b. We refer to this

scheme as the just-in-time (JIT) sequence parsing policy, which will be revisited later.

Let’s denote the kth source symbol block as Yk. This consists of Nk symbols starting

from symbol Xi, i.e., Yk = XiXi+1 · · ·Xi+Nk−1. Suppose source block Yk is encoded as a

codeword with length Lk(Yk). Since the source blocks Yk are i.i.d. given the blocklength

Nk, the code length Lk depends on Yk only through Nk and we rewrite Lk(Yk) as Lk(Nk).

The transmission time of the codeword through the channel is Sk = Lk(Nk)/R. The

delivery time of the block Yk is denoted by Dk = k+ Sk. Note that all message symbols

contained in a single message block are decoded at the same time and thus have the

same delivery time. We also denote the encoder backlog at the time instance when the

block Yk is encoded as Bk; thus Bk ≥ Nk.
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In Figure 2.6, the initial blocklength is N1 = 1 and the first source block is encoded

as a long codeword which takes a large service time S1 in the channel. When the entire

codeword of the block Y1 is delivered at time D1, source symbol X2 and X3 are queued

at the encoder buffer and ready for be encoded. Thus, in the just-in-time policy we

have N2 = B2 = 2. The waiting time gap from when symbol X3 is generated to when

Y2 = X2X3 is encoded, is denoted by W2. We note that although this is a best effort

scheme to alleviate the traffic, it doesn’t eliminate the source symbol waiting time

completely. Y2 is then encoded into a short codeword and delivered at time D2, which

is earlier than the arrival time of the next symbol X4. Since the channel is idle after

D2, the encoder generates a new codeword once the next symbol X4 arrives, resulting

in N3 = 1. The channel idle time after D2 is denoted by I3 = 4−D2.

At the encoder, block Yk incurs a waiting time Wk from the arrival of the first symbol

of Yk until the completion of the previous block, and then requires service time Sk for

transmission. The channel idle time measures the time gap from when the previous

block is decoded to when the next new symbol arrives. Denoting the system response

time for the kth block as Tk = Wk + Sk, the idle time is

Ik =

 0, Tk−1 ≥ 1,

dTk−1e − Tk−1, otherwise.
(2.21)

The age is a sawtooth function that increases linearly in time in the absence of any

decoded symbol blocks and is reset to Bk−Nk +Sk +Wk at time Dk when symbol block

Yk is decoded at the receiver. Following the approach in Section 2.2, the integration

of the sawtooth area is equivalent to the sum of disjoint polygonal areas Qk shown in

Figure 2.6. The average AoI is given by

∆ = lim
N→∞

∑N
k=1Qk∑N
k=1Nk

=
E[Qk]

E[Nk]
. (2.22)

The trapezoid area is given by

Qk =
1

2

(
(Bk +Wk + Sk)

2 − (Bk −Nk +Wk + Sk)
2
)
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= Nk(Bk +Wk + Sk)−
N2
k

2
. (2.23)

If follows from (2.22) and (2.23) that the average AoI can be rewritten as

∆ =
E[NkWk] + E[NkSk] + E[NkBk]

E[Nk]
−

E
[
N2
k

]
2 E[Nk]

, (2.24)

where

E[NkSk] =
∞∑
n=1

n E[Sk|Nk = n]PN (n). (2.25)

For optimal fixed-to-variable prefix codes, the average service time given the source

length E[Sk|Nk = n] can be bounded by

nH(X)

R
≤ E[Sk|Nk = n] ≤ nH(X) + 1

R
. (2.26)

Thus E[NkSk] is bounded by

H(X) E
[
N2
]

R
≤ E[NkSk] ≤

H(X) E
[
N2
]

R
+

E[N ]

R
. (2.27)

For backlog-adaptive source coding, both the encoder backlog Bk and previous

blocklength Nk−1 are known to the decoder. Let’s define the blocklength selection

process as a function Nk = f(Bk, Nk−1). The encoder and decoder are synchronized

during the compression process as long as the function f is determined beforehand and

kept unchanged. Here we consider the simplest case where the encoder has no control of

the blocklength but uses the entire backlog every time the channel becomes idle. That

is, Nk = Bk, which we refer to as the passive blocklength adaptation scheme. For this

scheme, we revisit the just-in-time parsing policy and analyze an alternative lazy parsing

policy.

One significant limitation of the passive scheme is the potential persistence of the

backlog. If the encoder occasionally outputs a very long codeword to the channel for the

previous block, the encoder will then encode a large source block afterward. This may
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not be favorable since the corresponding codeword for a large source block is expected

to be long, which may cause the decoder to wait for the long source phrase and the age

accumulates and persists.

It Section 2.2, we show by experiment that there exists an optimal choice for the

blocklength N given a channel rate R when fixed blocklength coding scheme is used.

We are interested in the equivalent problem here, i.e., whether there exists an optimal

strategy for the blocklength selection f . This leads us to the examination of a constrained

maximum blocklength selection scheme in Section 2.3.2, in which we set a maximum

threshold τ for the blocklength such that the encoder will only compress a length τ

source phrase even if the backlog is large.

2.3.1 Passive Blocklength Adaptation

2.3.1.1 Lazy Parsing Policy

We first consider a source sequence parsing policy that allows the encoder to wait for

an idle time after the delivery of every codeword. Every time the channel becomes

available, the encoder holds the backlog until the next source symbol arrives, and then

groups the new symbol with the backlog as the new source block to be encoded. We

refer to this scheme as the lazy parsing policy. In this case, the kth source blocklength

Nk depends on the previous codeword length Lk−1 by

Nk = Bk =

⌈
Lk−1(Nk−1)

R

⌉
. (2.28)

We denote L(n) = Lk(Nk = n) as the length of codeword using the source blocklength

Nk = n, and the conditional CDF of L(n) is

GL|N (l|n) = Pr [L ≤ l|N = n] . (2.29)
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Thus we can use a Markov chain to describe the blocklength process Nk. The transition

probability from blocklength i to j is

pij = GL|N (jR|i)−GL|N ((j − 1)R|i), i, j ∈ Z+. (2.30)

Note that pij depends only on the distribution of the codelength Lk and the channel

rate R. The distribution of code length GL|N for all N is known to both the encoder

and decoder since the codebook is chosen in the beginning and fixed for the entire source

sequence. Given a channel rate R, the steady-state probability, denoted by πn = PN (n),

can be obtained numerically based on (2.30). Then the average age is

∆ =
E
[
N2
]

2 E[N ]
+

E[NS]

E[N ]
, (2.31)

where

E[NS] =
1

R

∞∑
n=1

n E[L(n)]πn. (2.32)

2.3.1.2 Just-in-time Parsing Policy

For just-in-time parsing, the encoder submits a new codeword right after the service of

the previous block, and the kth source block length Nk depends on the previous waiting

time and service time by

Nk = Bk = max

(⌊
Wk−1 +

Lk−1(Nk−1)

R

⌋
, 1

)
. (2.33)

The average age (2.24) is written as

∆ =
E[NkWk] + E[NkSk]

E[Nk]
+

E
[
N2
k

]
2 E[Nk]

. (2.34)

We note that the waiting time Wk is a random variable which represents the difference

between the delivery time of the most recent source block Dk−1 and the largest integer

that is smaller than Dk−1, i.e. bDk−1c. Thus, 0 ≤ Wk < 1 but the distribution of
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Wk is unknown. Altering Wk will affect the stationary distribution of the blocklength

Nk, resulting in changes to the average age in (2.24) that are small but difficult to

characterize.

Due to the complexity of analyzing Wk, here we consider an approximate model

for the backlog process Nk, in which the waiting time Wk for each block in (2.33) is

Wk = 0. We assume the arrival of every source block is now postponed to the time

instance right after the completion of service for the previous block. In other words, this

approximation artificially postpones the source block arriving time to ensure Wk = 0

for every k. Note that the interarrival time in this model is no longer the blocklength of

the source but the service time of the previous block. The interarrival time is given by

Zk = max (Sk−1, 1) = max

(
Lk−1(Nk−1)

R
, 1

)
. (2.35)

Thus the backlog process at the encoder, a.k.a. the blocklength process, is B′k = N ′k =

bZkc. And N ′k can be represented by a Markov chain, where the transition probability

from state i to state j is

p′ij =

 GL|B(2R|i), j = 1,

GL|B ((j + 1)R|i)−GL|B(jR|i), j > 1.
(2.36)

Similarly, we denote the steady-state probability by π′n = P ′N (n), and the average age

in (2.24) becomes

∆′ =
E
[
Z2
k

]
2 E[Zk]

+
E[ZkSk]

E[Zk]
, (2.37)

with E[Zk] =
∞∑
n=1

E[Zk|Nk = n]π′n, (2.38)

E[ZkSk] = E

[
Zk

Lk(Nk)

R

]
=

1

R

∞∑
n=1

∞∑
n′=1

E[Zk|n] E
[
L(n′)

]
p′nn′π

′
n. (2.39)
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In (2.38) and (2.39), the conditional expected interarrival time is

E[Zk|Nk = n] =
E[L(n)]

R
+ E

[(
1− L(n)

R

)+
]
, (2.40)

where (·)+ = max(·, 0). This approximation with postponed arrivals and zero waiting

time is just an analysis technique instead of a practical system. Intuitively, it is expected

to provide lower average age compared to that of the true model in (2.24). Every time

a codeword is received at the decoder, the instantaneous age is reset to a smaller value

than that for the JIT policy. However, the symbol arrival rate is no longer 1 symbol per

time unit since once a symbol is postponed, the arrival times of all remaining source

symbols are postponed. Thus the effective symbol arriving rate is

λ′S = E

[
B′k
Zk

]
=

∞∑
n=1

E

[
bZk(n)c
Zk(n)

]
π′n < 1. (2.41)

2.3.2 Constrained Maximum Blocklength

While the previous section provided analysis for passive blocklength adaptation, we now

consider a baseline control scheme with the maximum constraints on the blocklength.

In this case, we have a Markov chain for the backlog Bk. We consider the analysis

of the more tractable lazy parsing policy and show how the constraints on the source

blocklength affect the Markov chain. Let τ denotes maximum blocklength constraint.

For any backlog Bk ≥ τ , the length of the compressed source block will be Nk = τ , i.e.,

the k-th blocklength is

Nk = min(τ,Bk). (2.42)

The new encoder backlog after the delivery of block Yk will be

Bk+1 = (Bk − τ)+ +

⌈
Lk(τ)

R

⌉
. (2.43)
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To describe the backlog process, we introduce the following notation

i+τ = (i− τ)+

iτ = min(τ, i), (2.44)

for any integer i. The transition probability from backlog Bk = i to Bk+1 = j is

qij = GL|B
(
(j − i+τ )R|iτ

)
−GL|B

(
(j − i+τ − 1)R|iτ

)
. (2.45)

The states from i = 1 to τ in this Markov chain remain the same as those in the lazy

parsing scheme in (2.30), while all other states i ≥ τ are duplicate states as the state

τ . That is, setting a threshold τ is equivalent to pruning all the states beyond state τ

and copying the state τ as τ + 1, τ + 2, . . .. We denote the steady-state probability of

backlog Bk = b as

πb = lim
k→∞

Pr[Bk = b]. (2.46)

The average age for constrained maximum blocklength (CMB) with lazy parsing policy

is given by

∆τ =
E[NB] + E[NS]

E[N ]
−

E
[
N2
]

2 E[N ]
, (2.47)

where

E[N ] =
∞∑
b=1

bτπb

E[NB] =
∞∑
b=1

bbτπb

E[NS] =
1

R

∞∑
b=1

bτL(bτ )πb. (2.48)
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(a) source probability P = {0.6, 0.3, 0.1}.
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(b) source probability P = {0.9, 0.08, 0.02}.

Figure 2.7: Comparing backlog-adaptive source codes to fixed blocklength codes for two
source models. For each source model, the entropy H(X) is fixed but the channel rate
R is varied.

2.3.3 Numerical Evaluations

Figure 2.7 compares the backlog-adaptive streaming source coding scheme to fixed

blocklength N using Huffman codes. A ternary source with distribution PX(x1) =

0.6, PX(x2) = 0.3, PX(x3) = 0.1 is used in Figure 2.7a. With H(X) fixed, the offered

load ρ = H(X)/R is controlled by varying the channel rate R. The backlog-adaptive

coding scheme achieves the same minimum average age as N = 1, which implies that

the blocklength adaptation mostly leads to the smallest blocklength N = 1. As the

offered load ρ increases and approaches 1, the sharp transition effect occurs earlier

for smaller N since the corresponding average information bits per symbol is larger.

We observe that the backlog-adaptive blocklength scheme using just-in-time parsing



41

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

5

10

15

Figure 2.8: Comparing just-in-time (JIT) parsing policy, its approximation with post-
poned arrivals, and the lazy update policy using Shannon code.

0.5 0.6 0.7 0.8 0.9 1

0

5

10

15

20

Figure 2.9: Example of average age for CMB with different τ using Shannon code.

outperforms any other fixed blocklength schemes in this example when the offered

load ρ is high, i.e., ρ > 0.9. The requirement for large blocklength N under heavy

load is automatically satisfied by the backlog-adaptive coding scheme, since a small

channel rate R results in a large average blocklength E[N ]. We also observe similar

behaviors of the backlog adaptive scheme in the experiment using another source

distribution PX(x1) = 0.9, PX(x2) = 0.08, PX(x3) = 0.02 and the same source as shown

in Figure 2.7b. We conclude that given a fixed channel rate R, the encoder backlog

process provides the encoder the ability to adapt its blocklength to the optimal choice.

Figure 2.8 shows the comparison of average age among the just-in-time parsing policy,

its approximation using postponed arrivals, and the lazy parsing policy. Here we use

Shannon code to the same ternary source with PX(x1) = 0.6, PX(x2) = 0.3, PX(x3) = 0.1.
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(a) P (X) = (0.6, 0.3, 0.1).
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(b) P (X) = (0.75, 0.125, 0.125).
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(c) P (X) = (0.8, 0.1, 0.1).

Figure 2.10: Examples of average age for CMB as a function of τ using Shannon code.
Different ternary source with offered load ρ = H(X)/R = 0.9.

In the low offered load ρ region, all three models achieve the same minimum average

age. As ρ increases, the lazy policy leads to higher age than the JIT policy and blows

up earlier. The approximation of JIT parsing with postponed arrivals provides very

tight results to the actual JIT scheme in this example.

Figure 2.9 shows the average age with different maximum blocklength constraint τ in

high traffic regime using the same source and backlog-adaptive Shannon code with JIT

parsing policy. Note that the scheme with τ =∞ has no constraint on the maximum

blocklength. We see that τ = 4 mostly gives the lowest average age for a wide range of

offered load, implying that constraining the maximum blocklength may possibly provide

lower average age than passive blocklength adaptation given a channel rate R. However,

this phenomenon depends on the source distribution and the coding scheme. Figure 2.10a
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depicts the average age as a function of τ at the offered load ρ = H(X)/R = 0.9. We

observe that age varies at low ρ region and achieves the minimum age at τ = 4. We

suspect the reason is that the code length distribution under N < τ = 4 is in favor of

the average age, and thus allowing the source block to grow larger is unnecessary. The

average age converges in experiment as τ increases, since the probability of getting a

very large source block is very small given an offered load ρ = 0.9. Figure 2.10b and

2.10c demonstrate the average age for other ternary source distributions. We observe

that the average age curve can be monotonic decreasing or following a certain converging

pattern. This indicates that the existence of an age-optimal τ is not always guaranteed,

and the average age given ρ depends on how the Markov chain in (2.45) evolves in a

complex way as τ changes.

2.4 Random Symbol Arrivals

When the source symbols arrive randomly in time and the source mostly stays silent,

the problem becomes more complicated due to different system requirements. One type

of system requires the receiver to keep track of the state of the source at every time

instance, including the case when the source doesn’t generate any new symbols. We

refer to this requirement as the reconstruction of the information stream including both

the source symbols and the idleness between symbols. In this case, every idleness at the

source at any time instance is also informative to the receiver, thus the encoder has to

choose a coding scheme that contains both the idleness symbol and the source symbols.

The other type of system cares about the source sequence consisting of the source

symbols themselves but not the idleness of the source. In this case, the requirement

for the receiver is the reconstruction of the source sequence only. Although only the

source symbols are informative, the source still need to reserve a special codeword or

flag to inform the receiver when there is no arriving source symbol. In both cases, the

transmission of an idleness flag will affect the transmission of the source sequence, since

it leads to additional overhead in the source symbol codeword.

Let’s consider the streaming source coding system in Figure 2.1 again. In each time
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Figure 2.11: Example timeline of randomly arriving symbols generated by the source.
The source symbols X1X2X3 are shaded in color.

slot (starting from t = 1), the source is either idle or it generates a discrete i.i.d. symbol

Xk from a finite alphabet X with PMF PX(x). The source is idle with probability 1− q,

and we use a special flag ε to indicate the idleness of the source at every symbol time

instance. Let NX(t) denote the number of symbols observed by the encoder by time t.

Figure 2.11 demonstrates an example timeline for the arriving symbols at the encoder

input. The first three symbols X1 = C, X2 = B and X3 = A arrive at times t = 1, 3, 9,

respectively. The source sequence up to t = 10 is CBA and NX(t = 10) = 3, but the

information stream including the idle flag ε between any two source arrivals is actually

CεBεεεεεεAε.

The encoder then has to decide whether to 1) encode the source symbols only or 2)

encode the information stream including all ε based on the timely information needed

at the monitor. It is application dependent whether the the idleness between symbols is

informative. If the monitor is an aggregator that collects and processes data generated by

IoT devices, the objective of the encoder/decoder pair is more likely to be reconstructing

the source sequence only. However, if the monitor would like to keep track of the source

state at every time instance and reproduce the timing information about every source

symbol, then the idleness ε is informative and needs to be encoded together with the

source symbols X.

The encoded bit sequence is fed into the channel which is a bit pipe with a First-

come-first-served (FCFS) buffer that outputs R bits per time unit. In this work, we

limit our focus to the general case R = 1, meaning that the source arrival time interval

matches the channel interval. Let Uk denote the arrival time of the source symbol Xk

at the input of the encoder. Based on different application requirements, we have the

following different age definitions and the corresponding coding objectives:
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1. Age of Information Stream (ISA): The receiver needs to recover the entire infor-

mation stream with all idle flags between source symbols. The age is defined as

the age of the most recent received stream symbol at the decoder, and an idle flag

ε is regarded as an informative update by the source.

2. Age of Source Sequence (SSA): the receiver needs to recover the source sequence

X1X2 . . . Xk only, and the age is defined as the age of the most recent received

source symbol at the decoder. The special idle flag ε is not regarded as an update

by the source and need not to be encoded.

In case 1, we note that the idleness is as important as the source symbols. Thus,

we can basically combine the idle flag symbol ε and original source alphabet X into

alphabet X ′ = {ε}∪X . Furthermore, the new symbols arrive at the input of the encoder

at every time instance and thus the arrival process is deterministic. In case 2, idle

flags are not required to be reconstructed since they are not informative. However, the

encoder has to send some special bit sequence to inform the decoder when there are

no new arriving symbols to encode. One simple method is to let the encoder produce

one single bit 0 and transmit it to the binary channel whenever the source is idle and

the channel buffer is empty. In this case, all other codewords are added a prefix bit

1 to be distinguishable from the idleness code 0. Another method is to add ε to the

symbols and construct an alternative codebook. We also note that this is not an issue if

symbols arrive in a deterministic way. Since the decoder knows the deterministic arrival

times of all symbols, the encoder can generates random gibberish bits when the channel

buffer becomes idle so that the decoder can ignore those gibberish bits according to the

symbol arrival time [64].

2.4.1 Age of Information Stream

We first focus on the analysis of information stream age including all the idleness symbol.

Since the idleness symbol ε is now part of the alphabet that we need to encode, we
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Figure 2.12: Example of the age of information stream (ISA) process with |X | = 3 and
blocklength N = 2.

construct the new source X(ε) ∈ X ′ with PMF

PX(ε)(x(ε)) =


1− q, if x(ε) = ε

q PX(x), if x(ε) ∈ X .
(2.49)

The system behaves exactly the same as the system with deterministic symbol arrivals

discussed and channel rate R = 1 in Section 2.2. Starting at time t = 1, discrete

memoryless symbols X(ε) arrive at every time unit sequentially, so the i-th information

symbol X
(ε)
i arrives at time i.

Figure 2.12 shows a sample path of the age process at the receiver with ternary

source symbols A,B,C and blocklength N = 2. Before the first block B1 arrives, the

encoder randomly generates two gibberish bits 00 and send it to the channel. Since the

decoder knows those bits are sent before when the first block arrives, it ignores those

gibberish bits and reconstructs nothing. The first symbol C and the next idle flag ε

are grouped as the first block B1, and then encoded into a long codeword 111. Thus,
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the codeword 100 corresponding to the second block B2 = Bε has to be queued at the

buffer first and sent after the transmission completion of the previous block B1. Since

the next two blocks are both εε, which is the most probable symbol1, they are mapped

to the shortest codeword 0 that takes only 1 time unit for transmission. We observe

that the blocklength N is the inter-arrival time between any two blocks at the input of

encoder. The age is a sawtooth function that increases linearly in time in the absence

of any symbol blocks and is reset to Dk − kN at time Dk when symbol block Bk is

decoded at the receiver.

We note that each encoded bit takes one time unit to be transmitted by the FIFO

buffer, thus the service time of the symbol block Bk with corresponding binary code

length Lk is exactly the code length Sk = Lk. To maintain a stable queueing system, it is

required that the arrival rate is strictly less than the service rate, i.e. 1/E[Y ] < 1/E[S]

and we have the following claim and definition of valid blocklength

Lemma 2.4.1. Given a block length N , the streaming source coding system is stable if

and only if E[L] < N .

• Definition: A blocklength is valid if and only if there exist a codebook with average

codelength E[L] < N for X(ε) ∈ X ′.

We note that N = 1 is not a valid blocklength for any source X with more than one

symbols. The encoder has to encode more than two alphabets including the idle flag ε,

then at least one alphabet gets codeword with length more than 1 and thus E[L] > 1.

Lemma 2.4.2. For a symbol arrival probability q, there exists a valid blocklength N

only if the original source X ∈ X has source entropy

H(X) <
1−Hb(q)

q
, (2.50)

where Hb(q) is the binary entropy function Hb(q) = −q log q − (1− q) log(1− q).

Proof. Lemma 2.4.1 can be written as E[L]/N < 1. Since E[L]/N > H(X(ε)), it is

1if the source symbol arrival probability q > 1/2
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required that H(X(ε)) < 1. The entropy of the new source is

H(X(ε)) = −(1− q) log(1− q)−
∑
x∈X

qPX(x) log qPX(x)

= −(1− q) log(1− q)− q
(

log q
∑
x∈X

PX(x) +
∑
x∈X

PX(x) logPX(x)
)

= Hb(q) + qH(X). (2.51)

Thus, Hb(q) + qH(X) < 1 and rearranging the terms yields Lemma 2.4.2.

If the source entropy H(X) and the source symbol arriving probability q satisfy

Lemma 2.4.2, we have the following corollary based on Theorem 2.2.2 and Theorem

2.2.3.

Corollary 2.4.3. The average age of information stream is

∆IS =
E
[
L2
]
− E[L]−N2 +N

2(N − E[L])
+
N−1∑
r=1

1

1− zr
+ E[L] +

N

2
, (2.52)

where zr are the unique roots of the equation

zN −
lmax∑
l=0

PL(l)zl = 0 (2.53)

that are on or within the unit circle but not equal to 1.

Corollary 2.4.4. The average age of information stream is upper bounded by

∆IS ≤ ∆̄IS =
E[L2]− E2[L]

2(N − E[L])
+ E[L] +

N

2
. (2.54)

For a given the blocklength N , we can use the the upper bound in Corollary 2.4.4 as

a penalty function and search for the optimal codebook using Algorithm 1 in Section

2.2.2.
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2.4.2 Age of Source Sequence

In this section, we focus on the age of the source sequence when the idleness ε is not

informative. If the receiver is only interested in the source sequence X1, X2, . . . , Xn

without any timing information, then the encoder does not have to encode every idle

symbol ε between source symbols. In order to reconstruct every source symbol in a

timely way, here we limit our analysis here to blocklength N = 1. However, since the

source symbols arrive randomly, the channel buffer as shown in Figure 2.1 is sometimes

empty but this is not allowed since the channel has to output either a bit 0 or 1 at

every time slot. Hence, the encoder is required to send a special codeword, which differs

from the codewords for the source symbols Xk, to the buffer when the buffer becomes

empty. We note that this scheme is identical to encoding the idle flag ε as a symbol in

the codebook, but we only apply the encoding and output the codeword ε(ε) when the

channel buffer is empty. When the decoder sees the codeword ε(ε), it knows there is an

idleness in the buffer and no new symbol arrives at the input of the encoder. The idle

flag ε is then discarded by the decoder.

2.4.2.1 Prefix Encoding

We first focus on the scenario where the symbol arrival probability q is very small. The

simplest way is to transmit a single bit “0” if the buffer is empty, and otherwise transmit

a “1” followed by an encoded bit sequence for the source X. We refer to this scheme as

prefix idleness encoding. In this scheme, the “0” bit occupies only one time slot and

thus doesn’t affect the next incoming source symbol. As a result, the length of every

encoded sequence for source symbol X is increased by 1, because of the extra bit 1 as

the header. Denote the original codelength for source symbol X as LX , then the new

length is then LXε = LX + 1. For this baseline coding scheme, the system is stable if

and only if E[LX ] + 1 < 1/q. That is, for sources with entropy H(X) ≥ 1/q − 1, there

is no feasible source code for a stable system.

On the other hand, a source symbol Xk is declared at the output of decoder after

the entire bit sequence corresponding to Xk is delivered to the decoder. At every time
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Table 2.1: Example of codebook using prefix idleness encoding.

Xε ε A B C

ε(Xε) 0 10 110 111
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Figure 2.13: Example of instantaneous age of source sequence (SSA) at the receiver of
streaming source coding with |X | = 3. The special idle flag ε is encoded only if there is
no new arriving symbol and the buffer becomes empty.

t, the decoder reconstructs the source sequence up to XN(u(t)), where u(t) < t is the

time stamp of the most recent decoded source symbol. We note that u(t) is advanced

to a new time index only if a new symbol is decoded. The age of the source sequence

XN(u(t)) at the receiver at time t is then given by ∆(t) = t− u(t).

Figure 2.13 depicts an example of the FIFO buffer output process and the age

process. Source symbols X ∈ {A,B,C} arrive at the input of the encoder sequentially,

and each symbol is encoded using the prefix-free codebook specified in Table 2.1. The

first symbol X1 = C arrives at time t = 1, so the encoder output a 0 bit to inform the

decoder that there is no arriving symbol at time t = 0. Right after source symbol C

comes, the corresponding bit sequence 111 is fed into the FIFO buffer and output to the

decoder one by one using L1 = 3 time units. Thus, the age ∆(t) increases linearly from
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an initial value ∆0 = 0 and drops to ∆(4) = 3 time units at time t = 4. The second

symbol X2 = B, which arrives at time t = 3, is deferred by one channel slot since the

buffer is serving the codeword for the previous symbol C. Symbol B is then delivered to

the decoder at time t = 7. The age is then reset to the waiting time plus the codeword

transmission time for symbol B. Afterwards, no new source symbol arrives at times

t = 8 and t = 9, so the encoder encodes two idle flags ε and send two 0’s consecutively

to the decoder. These two idle flags are then discarded by the decoder and the age ∆(t)

increases linearly.

Similarly, ∆(t) is a random process that varies in time with the receiver’s reconstruc-

tion of the source. We denote Yn as the interarrival time between the (n− 1)-th symbol

and the n-th source symbol, and Tn as total time that symbol n spends in the system.

Evaluating Figure 2.13 yields the average age of source sequence

∆SS = lim
T →∞

1

T

∫ T
0

∆(t) dt = lim
N→∞

∑N
n=1Qn∑N
n=1 Yn

, (2.55)

where the polygonal area is

Qn =
1

2

(
(Yn + Tn)2 − T 2

n

)
=
Y 2
n

2
+ YnTn. (2.56)

For a stable system in which Yn and Tn are i.i.d. for all integer n, the average age in

(2.55) is

∆SS =
E[Qn]

E[Yn]

=
E[YnTn]

E[Yn]
+

E
[
Y 2
]

2 E[Y ]

= E[T ] +
E
[
Y 2
]

2 E[Y ]
+

Cov[Yn, Tn]

E[Y ]
. (2.57)

Here the interarrival time Yn is geometrically distributed with Bernoulli success proba-

bility q. We also note that (2.57) applies to any distribution of Yn and Tn.

Similarly, we denote ∆k as the k-th peak value of the age process ∆(t). The average
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Figure 2.14: An example of the output process of the FIFO buffer in which the special
codeword reserved for empty buffer signal ε is 101.

Table 2.2: Example of codebook using embedded idleness encoding.

X A B ε C D

ε(X) 0 100 101 110 111

peak age at the receiver is then defined as

∆P
SS = lim

K→∞

1

K

K∑
k=1

∆k = E[T ] + E[Y ]. (2.58)

We view every source symbol as a customer, and the service time of each symbol is

then the number of time slots to transmit the binary codeword through the channel.

Tn is then the total system response time for customer n. Since the customers arrive

as a Bernoulli process, the key to calculate either AoI metric is the analysis of a

queueing system with geometric interarrival time and general discrete-time service time

that depends on the length of the codeword. We refer to this queueing model as a

discrete-time Geo/G/1 queue.

2.4.2.2 Embedded Encoding

We note that the previous prefix encoding scheme is suitable for small system offered

load ρ. However, when the system is mostly busy, the advantage of a short codeword for

the idleness symbol ε will be forfeited since the buffer is overloaded by serving longer

codewords for source messages. Therefore, it is necessary to have a more general idleness

encoding scheme which includes ε in the codebook and assigns ε a longer codeword.

In order to construct the new codebook, we assign the idleness symbol ε a probability

pε. Figure 2.14 depicts an example of the FIFO buffer output process with the same
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arrival process as Figure 2.13. The corresponding codebook with the embedded idleness

encoding is shown in Table 2.2. When the FIFO buffer becomes empty, the codeword

101 is transmitted to the decoder to indicate an idleness. In this case, the codeword

corresponding to symbol A is deferred by 1 time slot since the buffer is busy sending

the last bit 1 of the codeword corresponding to the idleness symbol ε.

If we treat every source symbol as a customer, the customer arrival process is identical

to that of the prefix encoding scheme. The only difference here is the additional waiting

time if the system is idle due to the transmission of idleness symbol ε. The transmission

of ε can be viewed as the vacation of the service when the channel becomes idle, in which

the service vacation length is exactly the length of the codeword for ε. Since ε will be

encoded and sent again if there is no new symbols in the encoder buffer, it is equivalent

to the case where the channel takes another vacation if the there is no customer waiting

in the channel buffer. Thus, the AoI analysis in (2.57) and (2.58) still holds, and the

corresponding target is the queueing analysis for Geo/G/1 queue with service vacation.

We also note prefix encoding is a special case of the embedded encoding model with

service vacation length being exactly 1.

2.4.2.3 Analysis for Geo/G/1 Vacation Queue

For geometric interarrival time Y with PMF Pr[Y = k] = (1−q)k−1q, the first and second

moments are E[Y ] = 1/q and E
[
Y 2
]

= (2−q)/q2. And the average system response time

is the sum of average service time and average waiting time, i.e. E[T ] = E[S] + E[W ].

Then the average age in (2.57) is rewritten as

∆ = E[W ] + E[S] +
2− q

2q
+ qCov[Yn, Tn]. (2.59)

For queueing system with service vacations, we denote the original waiting time in

Geo/G/1 queue as W0 and the additional waiting time due to the service vacation as W1.

It was shown in [65, Theorem 3] that the stationary waiting time W , can be decomposed

into the sum of two independent random variables W = W0 + W1. Therefore, the
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average waiting time is

E[W ] = E[W0] + E[W1]. (2.60)

And the PGF of the waiting time is

Ŵ (z) = Ŵ0(z)Ŵ1(z). (2.61)

First we define the offered load as ρ = qE[S]. For discrete-time Geo/G/1 queue,

the PGF of the original waiting time Ŵ0(z) and the average waiting time E[W0] can be

obtained from a distributional form of Little’s Law and the PGF of the mean queue

length as follows [66,67]

Ŵ0(z) =
(1− ρ)(1− z)

(1− z)− q
(

1− Ŝ(z)
) , (2.62)

E[W0] =
E
[
S2
]
− E[S]

2(1/q − E[S])
, (2.63)

where Ŝ(z) is the PGF of the service time.

In our system model, the service facility, including the encoder and the bit pipe

channel, goes into vacation for a fixed amount of time, which is denoted by V . At

each vacation completion time instance, the service facility checks if there is any new

customers, which is new symbols in our case in the encoder buffer. If there is any new

customer, the service will be resumed immediately, meaning that the encoder converts a

new symbol into bits and submits them to the bit pipe. Otherwise, the service facility

takes another vacation with period V . The PGF of the additional waiting time Ŵ1(z)

due to service vacation is [65]

Ŵ1(z) =
1− zV

V (1− z)
. (2.64)

Thus, the average waiting time E[W1] is given by

E[W1] = lim
z→1

d

dz
Ŵ1(z) =

V − 1

2
. (2.65)
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We note that E[W1] = 0 when V = 1, meaning there will be no waiting due to vacation

if the vacation takes exactly one time unit, which is identical to no vacation.

Substituting (2.63) and (2.65) back to (2.60), and substituting (2.62) and (2.64) to

(2.61), we obtain the average composite waiting time and the corresponding PGF as

follows

E[W ] =
E
[
S2
]
− E[S]

2(1/q − E[S])
+
V − 1

2
(2.66)

Ŵ (z) =
(1− ρ)(1− zV )

V
(

(1− z)− q
(

1− Ŝ(z)
)) . (2.67)

In [16], the covariance Cov[Yn, Tn] is proven to be non-positive for G/G/1 queue,

confirming the intuition that the interarrival time before customer n and the system

time of customer n should be negatively correlated. We extend the result in [16, eqn.

86] and have the following lemma.

Lemma 2.4.5. The covariance between the system time Tn and the interarrival time

Yn for Geo/G/1 queue is

Cov[Yn, Tn] = −1− q
q2

+
1− q
q2

T̂ (1− q) +
1− q
q

T̂ (1)(1− q). (2.68)

Proof of Lemma 2.4.5 is provided in the appendix on page 64. Here we note that

T̂ (1− q) = E
[
(1− q)T

]
and

(1− q) T̂ (1)(1− q) = E
[
T (1− q)T

]
. (2.69)

Since 1− q ∈ [0, 1], E
[
T (1− q)T

]
≤ E[T ] E

[
(1− q)T

]
and we have the following upper

bound on the covariance.

Lemma 2.4.6. The covariance Cov[Yn, Tn] for Geo/G/1 queue is upper bounded by

Cov[Yn, Tn] ≤ −1− q
q2

+

(
1− q
q2

+
1− q
q

E[T ]

)
T̂ (1− q). (2.70)
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Since the system response time T = S +W , the PGF of system time T̂ (z) is

T̂ (z) = Ŝ(z)Ŵ (z). (2.71)

And similarly the first order differentiation T̂ (1)(z) can be obtained by

T̂ (1)(z) =
d

dz
T̂ (z)

=
dŜ(z)

dz
Ŵ (z) +

dŴ (z)

dz
Ŝ(z)

= Ŝ(1)(z)Ŵ (z) + Ŵ (1)(z)Ŝ(z). (2.72)

To keep it simple, we denote

q̄ = 1− q. (2.73)

Let z = 1− q in (2.67), we have

Ŵ (q̄) =
(1− ρ) (1− q̄V )

qV Ŝ(q̄)
, (2.74)

T̂ (q̄) = Ŵ (q̄)Ŝ(q̄) =
(1− ρ) (1− q̄V )

qV
. (2.75)

For V = 1, we note that T̂ (q̄)|V=1 = 1− ρ, indicating that T̂ (q̄) is exactly the expected

idle time of the queue if there is no vacation. Since the offered load is given by

ρ = qE[S], (2.76)

the first-order derivatives are

Ŵ (1)(q̄) =
dŴ (z)

dz
|z=q̄

=
−(1− qE[S])

(
1− q̄V

) (
qS(1)(q̄)− 1

)
V
(
qŜ(q̄)

)2 − −(1− qE[S])q̄V

qŜ(q̄)
, (2.77)

T̂ (1)(q̄) = Ŝ(1)(q̄)Ŵ (q̄) + Ŵ (1)(q̄)Ŝ(q̄)
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=
1− qE[S]

q

(
1− q̄V

V qŜ(q̄)
− q̄V−1

)
(2.78)

Substituting (2.75) and (2.78) back to Lemma 2.4.5, and then putting Lemma 2.4.5 and

(2.66) back to (2.59) gives the following main theorem.

Theorem 2.4.7. The average AoI for discrete-time Geo/G/1 queue with deterministic

service vacations is given by

∆ =
E
[
S2
]
− E[S]

2(1/q − E[S])
+ E[S] +

V

2

+
q̄(1− qE[S])

(
1− q̄V

)
V q2

(
1 +

1

Ŝ(q̄)

)
− q̄(1− qE[S])

q
. (2.79)

For queueing system without service vacation, i.e. V = 1, we have the follows

Theorem 2.4.8. The average AoI for discrete-time Geo/G/1 queue without vacation is

given by

∆ =
E
[
S2
]
− E[S]

2(1/q − E[S])
+ E[S] +

1

2
+
q̄(1− qE[S])

q2Ŝ(q̄)
. (2.80)

Here we remark that the calculation of average age requires the complete knowledge

of the service distribution FS(x). We can instead bound the average age using Lemma

2.4.6 and (2.75) to have the following results

Corollary 2.4.9. The average AoI for discrete-time Geo/G/1 queue without vacation

is upper bounded by

∆ ≤ E[T ] +
2− q

2q
+ q̄
(

E[T ]
(
1− qE[S]

)
− E[S]

)
, (2.81)

where the average system time is

E[T ] =
E
[
S2
]
− E[S]

2(1/q − E[S])
+ E[S]. (2.82)

The bound in Corollary 2.4.9 depends only on the first and second moments of the

service distribution S. Alternatively, we can bound the average age by using the general
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bounds on the covariance term Cov[Yn, Tn] in [16, Lemma 18].

Corollary 2.4.10 (Alternative Bounds from G/G/1 Queue). The average age for

discrete-time Geo/G/1 queue without vacation is bounded by

∆ ≤
E
[
S2
]
− E[S]

2(1/q − E[S])
+ E[S] +

2− q
2q

, (2.83)

∆ ≥

(
E
[
S2
]
− E[S]

2(1/q − E[S])
+ E[S]

)
q̄1/q +

2− q
2q

. (2.84)

Note that the upper bound (2.83) is obtained by setting Cov[Yn, Tn] = 0, i.e.

removing the correlation between Yn and Tn. We will see that the upper bound in (2.83)

is surprisingly tight for most cases. Furthermore, the upper bound in (2.81) is very close

to (2.83) in some numerical results.

Theorem 2.4.11. The average peak AoI for discrete-time Geo/G/1 queue with deter-

ministic service vacations is given by

∆P = E[T ] + E[Y ]

=
E
[
S2
]
− E[S]

2(1/q − E[S])
+
V − 1

2
+ E[S] +

1

q
. (2.85)

2.4.2.4 Optimizing Prefix Encoding

In the prefix encoding scheme, the idle flag ε is encoded as a single bit 0. Thus, the

vacation period is V = 1 and the service facility is available at every time instance.

Let’s assume the encoder and decoder choose a codebook for the source symbols X

beforehand. Since every source symbol is now encoded into a sequence with prefix 1,

the service time of a source symbol with index n is

Sn = LX(Xn) + 1, (2.86)

where LX(·) is the length of the original codeword without the extra prefix 1. Substituting

(2.86) back to Theorem 2.4.8 gives the following results

Theorem 2.4.12. The average age of the source sequence using prefix idleness encoding
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Algorithm 2 AoI-aware Embedded Encoding

Require: Search(P, f), PX , f
1: ε← Search(PX , f)
2: pε = 1− qE[L(ε)]
3: for x in X do
4: PX(x)← (1− pε)PX(x)

5: return Search(PX ∩ pε, f)

is given by

∆SS,P =
E
[
L2
]

+ E[L]

2(1/q − E[L]− 1)
+ E[L] +

3

2
− qq̄E[L]

q2q̄L̂(q̄)
, (2.87)

where we denote L = LX and L̂(·) is the PGF of the codelength LX .

In order to obtain the optimal codebook with prefix encoding scheme for SSA, we

can reuse the convex hull search algorithm in Section 2.2.2 with the upper bound in

(2.83) as the penalty function. Since the service time Sn = Ln + 1 in SSA, rewriting

x = E[Ln] and y = E
[
L2
n

]
in (2.83) yields

f2(x, y) =
y + x

2(1/q − x− 1)
+ x+ 1 +

2− q
2q

, (2.88)

where 0 ≤ x ≤ 1/q − 1 to maintain a stable system. We prove in the appendix that

(2.88) is convex and thus the convex searching algorithm is applicable.

2.4.2.5 Optimizing Embedded Encoding

For any codebook containing the idleness symbol ε, the service time of a source symbol

is exactly the length of the codeword for the symbol, i.e. Sn = LX(Xn). And the service

vacation length is the codelength of the idleness symbol, V = Lε. Rewriting Theorem

2.4.8, we have the following theorem.

Theorem 2.4.13. The average age of the source sequence using embedded encoding

scheme is

∆SS,E =
E
[
L2
]
− E[L]

2(1/q − E[L])
+ E[L] +

Lε
2
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+
q̄(1− qE[L])

(
1− q̄Lε

)
Lεq2

(
1 +

1

L̂(q̄)

)
− q̄(1− qE[L])

q
, (2.89)

where we denote L = LX and L̂(·) is the PGF of the source symbol codelength LX .

We note that Theorem 2.4.13 provides the average age for a given codebook, which

encodes ε as a codeword with length Lε and all other source symbols X as codewords

with length LX . Although we obtain the exact expression for the average age, it is not

straightforward to obtain the age-optimal codebook design based on theorem 2.4.13,

since the construction of a codebook determines the distribution of source codelength

PL as well as the idleness codelength Lε.

Here we let Iε to be the fraction in time that the buffer is empty when a codebook

ε is used to compress the source, and pε to be the probability of idleness ε used to

construct the codebook. For a given source probability PX and convex penalty function

f(E[L],E
[
L2
]
), we can always exploits Algorithm 1 in Section 2.2.2 to obtain the optimal

codebook design. However, the probability for idleness pε in this case is in fact unknown

and subject to our choice. Intuitively, one should expect pε to be the actual frequency of

sending the idleness symbol ε in the streaming source coding system, which is correlated

to Iε, the fraction of idle time. Hence, we first use the following heuristic to obtain the

pε. First, we assume that the channel is not strictly binary. A special channel symbol φ

will be sent whenever the encoder buffer is empty. In this case, the encoder and decoder

pair doesn’t need to include the idleness symbol ε in the codebook design, and thus

the system behaves as a Geo/G/1 queue without vacation and the service time of each

symbol Xn is exactly the length of the codeword Sn = LX(Xn). Here we can use the

upper bound on the average age in (2.83) and have the following penalty function

f3(x, y) =
y − x

2(1/q − x)
+ x+

2− q
2q

. (2.90)

Alternatively, we can also use the exact expression of the average peak age in Theorem

2.4.11 with V = 1 as the penalty function

f4(x, y) =
y − x

2(1/q − x)
+ x+

1

q
. (2.91)
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Figure 2.15: Comparing experimental results and the bounds for SSA with Zipf source
using prefix idleness encoding.

In this case, the AoI-optimal codes can be obtained by Algorithm 1, which is denoted as

a subroutine Search() here. We note that Search() takes a set of probabilities P and

a penalty function f as the inputs. Then the fraction of time for the buffer being empty

Iε, which is 1 − ρ = 1 − qE[L] in this case, is then used as pε for for the embedded

idleness encoding. We then scale the probabilities of all original source symbols PX by

1 − pε, and use the subroutine Search() again to obtain a new codebook including

the idleness symbol ε. The detailed procedure for the predictive scheme is shown in

Algorithm 2.

2.4.3 Numerical Evaluations

In this section, we examine the streaming source coding system by numerical experiments

and evaluate both the SSA and ISA of the system. Figure 2.15 depicts the comparison

among the experimental SSA, the upper bound in (2.83) and the lower bound in (2.84)
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using prefix idleness encoding. In this experiment, the source X follows the Zipf

distribution with PMF

PX(x) =
1/xs∑n
1 1/xs

,

where we choose the exponent s = 1 in Figure 2.15a and s = 2 in Figure 2.15b. We

observe the average age has an inverted bell shape. When the symbol arrival probability

q is small, the receiver has to wait a long time to get an informative source symbol, and

the age is dominated by the slow symbol arrival rate. On the other hand, the system is

overloaded if q is very large and the backlog of queued symbols grows without bounds.

The upper bounds in both examples are very close to the experimental results, while

the lower bound becomes looser as q increases.

Figure 2.16 depicts the comparison between the AoI-optimal code and the Huffman

code for both ISA and SSA. In Figure 2.16a, we assume that the source X has 3

symbols with probabilities P (A) = 0.8, P (B) = 0.15, P (C) = 0.05. The AoI-optimal

code is obtained based on the penalty function in (2.19). We evaluate the ISA for the

AoI-optimal code and the Huffman code using blocklength N = 4, and vary the symbol

arriving probability q. We observe that when q is small, the AoI-optimal code is exactly

the Huffman code, which implies the system is mostly idle and the age is dominated by

the average code length. As q increases, the age optimal code starts to provide lower

average age than the Huffman code, meaning that the optimal coding strategy is to

balance the average codelength and the second moment of the codelength. However, the

difference between two coding schemes is actually in most of the time. This observation

is similar to what we had for deterministic symbol arrivals in Section 2.2, which may

be due to the limited variance in prefix codes. Figure 2.16b shows the evaluation of

the SSA for source X following the Zipf distribution. where we set the alphabet size

|X | = 100 and the exponent s = 2. The AoI-optimal code is obtained based on the

penalty function in (2.88). Similarly, the AoI-optimal code outperforms the Huffman

code for large q as the average age starts to depend on higher moments of the codeword

length.
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Figure 2.16: Comparison between AoI-optimal codes and Huffman codes.

Figure 2.17a and 2.17b depict average peak SSA for the two different empty buffer

encoding schemes by varying the symbol arriving rate q between 0 and 1/H(X). In

Figure 2.17a, the source X has 20 symbols and all the symbols are uniformly distributed

with PX(x) = 1/20. When the source arrival rate q is small, both scheme yield large

average peak age, and the embedded scheme is identical to the prefix scheme as expected

since the system is mostly idle. In this case, the optimal encoding scheme is to assign

the shortest codeword to the null symbol ε. As q increases, the average peak age first

decreases and then begins to rise since the system becomes unstable when the average

length of message codeword E[L] > 1/q. The curve corresponding to the embedded

scheme blows up later than that of the prefix scheme when the system load becomes

large. This is mainly because the embedded scheme assigns a longer codeword to the
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(b) average peak SSA versus arriving probability q for Zipf X.

Figure 2.17: Comparison between prefix idleness encoding and embedded encoding for
average peak SSA.

idleness symbol ε and this shortens the average length of the message codeword E[LX ].

Figure 2.17b shows a similar experiment for source X following the Zipf distribution,

where we set n = |X | = 20 and the exponent s = 1. Similarly, the embedded scheme

is identical to the prefix scheme when q is small, and it leads to lower age when the

system load is larger.

2.5 Appendix

Proof of Lemma 2.4.5

In [16], the covariance of interarrival time Yn and the system response time Tn is given

by

Cov[Yn, Tn] =

∫ ∞
0

E[(y − Y )(Y − E[Y ]) |Y ≤ y]Y (y)dT (y). (2.92)
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Since both Yn and Tn are discrete random variables, we rewrite the covariance as

Cov[Yn, Tn] =
∑
y∈T

E[(y − Y )(Y − E[Y ]) |Y ≤ y] Pr[Y ≤ y] Pr[T = y]. (2.93)

We denote f(y) = E[(y − Y )(Y − E[Y ]) |Y ≤ y] Pr[Y ≤ y] and thus Cov[Yn, Tn] =∑
y∈T f(y) Pr[T = y]. Then we can decompose f(y) into

f(y) = f1(y) + f2(y) + f3(y), (2.94)

where

f1(y) = (y + E[Y ]) E[Y |Y ≤ y] Pr[Y ≤ y], (2.95)

f2(y) = −E
[
Y 2|Y ≤ y

]
Pr[Y ≤ y], (2.96)

f3(y) = −yE[Y ] Pr[Y ≤ y]. (2.97)

For geometric Y , (2.95) can be rewritten as

f1(y) =

(
y +

1

q

)
E[Y |Y ≤ y] Pr[Y ≤ y] (2.98)

=

(
y +

1

q

)
(E[Y ]− E[Y |Y > y] Pr[Y > y]) (2.99)

=

(
y +

1

q

)(
1

q
−
(
y +

1

q

)
(1− q)y

)
(2.100)

=

(
y

q
+

1

q2

)
−
(
y +

1

q

)
(1− q)y. (2.101)

Note that we use total probability to get (2.99) and the memoryless property in (2.100).

Similarly, (2.96) and (2.97) are

f2(y) = −E
[
Y 2|Y ≤ y

]
Pr[Y ≤ y]

= −
(
E[Y ]− E

[
Y 2|Y > y

]
Pr[Y > y]

)
= −

2− q
q2
− (1− q)y

∞∑
x=y+1

x2 (1− q)x−1q

(1− q)y
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= −2− q
q2

+ (1− q)y
∞∑

x=y+1

x2 (1− q)x−y−1q

= −2− q
q2

+ (1− q)y
∞∑
x′=1

(x′ + y)2 (1− q)x′−1q

= −2− q
q2

+ (1− q)y
∞∑
x′=1

(x′ + 2yx′ + y2)2 (1− q)x′−1q

= −2− q
q2

+ (1− q)y
(
E
[
Y 2
]

+ 2yE[Y ] + y2
)

= −2− q
q2

+ (1− q)y
(

2− q
q2

+
2y

q
+ y2

)
. (2.102)

f3(y) = −yE[Y ] Pr[Y ≤ y]

= −y
q

+
y

q
(1− q)y. (2.103)

Substituting (2.101), (2.102) and (2.103) back to (2.94) yields

f(y) = −1− q
q2

+

(
1− q
q2

+
y

q

)
(1− q)y. (2.104)

Thus, the covariance is

Cov[Yn, Tn] =
∑
y∈T

f(y) Pr[T = y]

=
∑
y∈T

(
−1− q

q2
+

(
1− q
q2

+
y

q

)
(1− q)y

)
Pr[T = y]

= −1− q
q2

+
1− q
q2

∑
y∈T

(
(1− q)y Pr[T = y]

)
+

1

q

∑
y∈T

(
y(1− q)y Pr[T = y]

)
= −1− q

q2
+

1− q
q2

E
[
(1− q)T

]
+

1

q
E
[
T (1− q)T

]
. (2.105)

We observe that E
[
(1− q)T

]
is the PGF of the system time E

[
zT
]

where z = 1− q, and

E
[
T (1− q)T

]
=
∑
y∈T

y(1− q)y Pr[T = y]

= (1− q)
∑
y∈T

y(1− q)y−1 Pr[T = y]

= (1− q)
∑
y∈T

d

dz
zy|z=1−q Pr[T = y]
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= (1− q) d

dz
E
[
zT
]
|z=1−q

= (1− q)T (1)(1− q) (2.106)

Proof: ∆̄SS,P is a valid objective function.

For a specific equal age contour, we need to show that the contour is convex and

non-increasing for any valid ∆. We denote x = E[L], y = E
[
L2
]

and the upper bound

on z = ∆̄SS in (2.83). For any given z, (2.83) can be written as the quadratic function

y(x) = 2x2 − 2zx+

(
2

q
− 2

)
z − 2− q

q2
− 1, (2.107)

in which the discriminant is given by another quadratic function

δ(z) = (2z)2 − 8

((
2

q
− 2

)
z − 2− q

q2
− 1

)
= 4

(
z2 −

(
4

q
− 4

)
z +

2(2− q)
q2

+ 2

)
. (2.108)

We need to show that δ(z) ≥ 0 for all z, which is equivalent of showing the discriminant

of δ(z) is always negative as follows

δ′ =

(
4

q
− 4

)2

− 4

(
2(2− q)
q2

+ 2

)
= 8− 24

q
. (2.109)

Since q ∈ (0, 1), δ′ < 0 and thus δ(z) > 0 for all z. That implies y(x) = 0 has two

distinct roots and the contour y(x) is convex and non-increasing.

Coin Collector’s Problem and Package-Merge Algorithm.

In this section, we summarize the procedures used in [50,52] for the subroutine Min-

Linear(α, β) in Algorithm 1. The package-merge algorithm is a greedy algorithm for

finding an optimal solution for the coin collector’s problem. It was first introduced in [50]

to obtain an optimal length-limited Huffman code for a given distribution with alphabet
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Algorithm 3 Package-Merge Algorithm

1: S ← ∅
2: ∀d, Ld ← list of items with width 2d

3: while t > 0 do
4: minwidth ← the smallest term in the diadic expansion of t
5: if I = ∅ then
6: return No Solution
7: else
8: d← arg mind Ld
9: r ← 2d

10: if r > minwidth then
11: return No Solution
12: else if r > minwidth then
13: Delete the minimum weight item from Ld and insert it into S
14: t← t−minwidth

15: Pd+1 ← Package(Ld)
16: discard Ld
17: Ld+1 ←Merge(Pd+1, Ld+1)

18: return S

size n, in which no codeword is longer than L. In [52], this algorithm is revisited and

extended to the problem of finding optimal code for quasi-arithmetic penalties of the

codelength. An instance (I, t) of the coin collector’s problem of size n is defined as the

following:

1. A set I of m items, and each item has a width and weight. The width of each

item is a (possibly negative) integral power of 2, and each weight is a real number.

2. A non-negative real number t, which is the total width.

A solution to such an instance is defined to be a subset S of I whose widths sum to

t, and an optimal solution is a solution of minimum total weight. We can think of each

item as a coin, whose width is the face value and weight is the actual numismatic value.

The coin collector has run out of money and needs to use some of his collected coin to

buy something of cost t. The target is to select a subset of coins from his collection of

minimum numismatic value whose total face value is exactly t. Here we focus on the

binary version of the problem, in which the face values will only be powers of 2.

We first let Ld be the list of items of width 2d, and each list is sorted in the order

of increasing weight. We also define the dyadic expansion of the total weight t as its
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𝑖 (index)

𝑙 (level)
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𝜌 = 1/2
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𝜌 = 1/2
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3 4

Figure 2.18: An example of the nodeset notation (on the left) and its equivalent tree
notation (on the right). Each node (i, l) has width ρ = 2−l and weight µ = pi(2l − 1).

representation of powers of 2. For instance, 3.75 can be expressed as 21 + 20 + 2−1 + 2−2.

Here we use the implementation of the package-merge algorithm from [50], which is

illustrated in Algorithm 3. This implementation has O(m) time if the items are presorted

according to the weight.

In the Package() step, we form a new list Pd+1 by combining the items in consecutive

pairs from Ld, which is already sorted by the weights of the items. That is, the k-th

item of Pd+1 is the package formed by combining items 2k − 1 and 2k of Ld. If the

length of Ld is an odd number, the item with the largest weight is simply discarded.

The Merge() step is the merging of two sorted lists.

In order to reduce the codebook construction problem to the coin collector’s problem,

we first introduce the following nodeset notation for a codebook, which can also be

easily converted to the tree representation. For a source with n symbols, we first define

a node (i, l) to be an abstract representation of the item, in which i ∈ [1, n] is the index

of the node, and l ∈ [1, lmax] is the level of the node. Any set of nodes is a nodeset. For
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a prefix-free code T that can be represented as a tree,

nodeset(T ) = {(i, l)|1 ≤ l ≤ li}, (2.110)

where li is the depth of the i-th leaf of the tree notation for T as shown in Figure 2.18.

The total weight or width of a codebook T is simply the sum of the weights or widths

of all the nodes in nodeset(T ). We can see that the problem of finding an optimal

codebook for a function g(L) = αE[L] + β E[L2], can be translated to the problem of

finding the nodeset with minimum total weight g(L) = αE[L] + β E[L2]. In order to set

the total weight of nodeset(T ) to be g(L), we let the width and weight for each node to

be ρ(i, l) and µ(i, l), which are given by

ρ(i, l) = 2−l

µ(i, l) = αpi + βpi
(
l2 − (l − 1)2

)
. (2.111)

Figure 2.18 demonstrates an example with objective function g(L) = E[L2]. In this

case, it follows from (2.111) that µ(i, l) = pi(2l − 1) for each node. For any prefix-free

codebook T , it was also proved that the total width of nodeset(T ) is exactly n − 1,

which is also illustrated in the example in Figure 2.18. This enables us to directly obtain

the optimal codebook for g(L) by Algorithm 3 with width and weight in (2.111). For

details about the optimality of the algorithm and proofs of this formulation of problem

reduction, we suggest the reader to see the original work [50,52].
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Chapter 3

Distributing Timely Updates

3.1 Motivations

In Chapter 2, we mainly focus on the characterization of the update information

itself, and try to develop the suitable source coding to convert those information into

channel sequences given the channel capacity. In this case, the transmission time of

an update is a function of the size of the update packet, since the encoded bits are

transmitted to the destination sequentially through a pipe. This assumption holds when

the channel connecting the source and the destination is lossless with constant data

rate, mostly in low layer communications in optical fibers or wired links. However, if

the source and destination are far apart in different network domains, and the update

messages have to be encapsulated into higher layer packets and routed in the network,

the transmission time of each update is very likely to be random. For example, the

randomness in delay can be due to the queueing delay of a packet for network routing and

congestion. Alternatively, the randomness may come from multiple trials of transmission

of incremental encoded information to overcome packet loss [68]. Therefore, a different

challenge arises when the source or transmitter is no longer capable of controlling the

transmission time of an update.

Status updating through networks with random delays has been studied in different

contexts. A rich class of literature examines the system where the source has the

knowledge of the network service rate but not the delay of every update packet [3,4,11,17].

In this type of the system, the source or transmitter optimize the updating rate injected

into the networking system based on the type of the network. Under many circumstances,

the networking facility allowing new packet preemption leads to lower age of information
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at the destination since the service facility prioritizes fresher information over older ones.

On the other hand, one can assume the delivery time of every update can be known to

the sources via independent feedback channels, so that the sources can better manage

the updating time based on the delivery acknowledgement [5, 21].

In next-generation wireless networks with pervasive computing and dense sensor

networks, delay-sensitive data may be popular and simultaneously requested by large

numbers of receivers [69–72]. For example, the information updates of an autonomous

car will be broadcast to nearby vehicles and passengers equipped with portable sensing

devices to construct a shared view of the local environment and maintain safety [73, 74].

In the future smart city, massively connected IoT sensors and devices will be deployed

to gather the information about real-time traffic, air quality and etc. These real-time

data will then be collected and distributed to multiple data centers for real-time traffic

control and environmental monitoring [75,76].

In order to support ubiquitous real-time applications, lots of attention has been paid

to the concept and deployment of the network edge computing, or fog computing [77–79].

The network edge is more favorable than the core cloud network, since it provides closer

storage and computing proximity for end users, usually within one or two network hops

from the users and up to milliseconds delay. This benefits applications with ultra-low

latency requirements, such as VR/AR gaming and autonomous driving, by offering

computational offloading capability as well as content caching and sharing at the edge.

Thus, the timely content updates generated by an application at the source should be

distributed to the edge of the network redundantly, so that the nearby end users can

connect to those edge storage nodes and fetch the updates in a timely way. We note

that allocating content redundantly over multiple storage nodes has been well studied in

cloud storage and the content distribution network (CDN) [80–83]. It has been shown

that replicating data or applying erasure coding on the stored data not only increases

the reliability of the data, but also benefits the accessibility by shorten the content

download time through parallelism. Differently, here we utilize data redundancy in

space to achieve better information freshness.

In this chapter, we consider a multicast strategy for the distribution of timely updates.
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For every update, the source initiates a multicast transmission to the network and tries

to deliver the update to a group of edge nodes. The transmission of each update takes

random time in the network, due to the possible queueing delay in the network or the

usage of retransmission and error correction to recover lost data. Since the total number

of edge storage nodes can be very large and waiting for all the nodes to receive every

update may be too time consuming, we consider a proactive updating system in which

the source can stop the transmission of the current update at any time and start to

transmit a newly generated update in order to prevent the information at the storage

nodes from becoming stale. We note that each update packet can be relatively large,

so that each packet may be divided into smaller data chunks for transmission in the

network. Thus, stopping the transmission of the current update is simply stopping the

transmission of the remaining small data chunks. If each update is a small packet, this

can be done in practice by setting a time-to-live (TTL) value for each update packet

when it was generated, so that the update packet will be dropped by the IP network

when the TTL expires [84]. Alternatively, the transmission of the old update packets

can also be paused or stopped in some network protocols that support prioritized packet

preemption, such as IEEE 802.1 and 802.3 for time-sensitive data transmission in the

Ethernet [85,86]. Therefore, the source has the flexibility to control how long to wait

for the multicast transmission of an update, and each update is likely to be delivered

to only a subset of nodes due to early termination. Intuitively, if the source waits for

a long time for each update transmission, each node is more likely to get an update,

but the update message is also more likely to be outdated. On the other hand, if the

source preempts the current update transmission earlier, each node is less likely to get

an update, but the update information is fresher once it gets delivered.

Here we summarize and expand our results in single-hop multicast network with

shifted exponential service time [87], multicast network with prioritized users [88], and

content updates in Dynamo-type distributed storage [89]. In this chapter, we examine

a more general update replication and distribution system as shown in Figure 3.1. A

source generates and distributes timely updates to n nodes at the network edge through

multicast network with independent and identical distributed (i.i.d.) random delays.
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Source Node 3

Node 2

Node 1

Node n-1

Node n

j+1

j

j

j

j

j

...

Receiver 1

Receiver 2

Figure 3.1: Multicast systems for timely updates: the source sequentially transmit
content updates to multiple storage nodes at the network edge with random delays.
The next update j + 1 is generated right after the source terminates the transmission
of update j. Each receiver has access to a random subset of r nodes and selects the
freshest update from them.

The source controls when to stop the transmission of the current update and start the

an update. We refer to the scheme to stop the current update as the restart policy, and

the time duration for every update as the service interval. Since the receiving mobile

device is usually with constrained network resources due to power limitation, the end

user may only have access to a limited number of nearby edge nodes, and these nodes

are usually selected in random due to the varying wireless channel condition and the

real-time location of the mobile device [90–92]. Here we assume the receiver randomly

connects to r nodes at the edge and fetches the most recent update from those r nodes

at any time. Consequently, not every timely update may be successfully delivered to the

receiver, and thus there is a probability for the receiver to obtain stale messages from

the access nodes. We refer to r as the access number, which is the number of random

nodes the receiver has access to. Our objective is to provide the answer to the following

three questions:

1. Given that an access number r, what is the optimal restart strategy at the source

that minimizes the age metric at the receiver?

2. Assuming the source can select the optimized restart strategy given an access

number r, how many access nodes r does the receiver need to maintain a good

enough age?
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3. If the source chooses an optimized updating strategy based on a specific r1 but

the receiver has a different access number r2, what will be the age performance at

the receiver?

To start from the first question, we analyze the average age of the system for any given

receiver access number r. Given the distribution of the network delay, we derive the

optimal restart strategy analytically. For the second and third questions, we perform

numerical evaluations based on our age optimized updating scheme.

3.2 Related Work

This work is mostly motivated by prior results about updates through erasure channels

[32]. Since every data chunk can be erased with some probability, each update packet

is transmitted with redundancy in time, either through maximum distance separable

(MDS) codes with fixed redundancy, such as Reed-Solomon codes [93], or rateless codes

with infinite incremental redundancy [94]. Transmission with fixed redundancy in time

is equivalent to setting a fixed stopping time for every update transmission. Similarly,

using rateless codes with update delivery feedback is the same as waiting for every

update to be delivered to the destination. It was shown in [32] that the benefit of having

channel feedback is minor in terms of the age, which matches one of our observations

in this work. We also note that the model in [32] can be treated as a special case of

this work with discrete-time erasure channel. The model we consider is also relevant

to Hybrid-ARQ, a reliable transmission scheme that combines the conventional ARQ

with error correction at the physical layer [95], and cross-layer coded multicast where

an additional rateless code is applied at the packet level [68].

In [96] and [97], the age analysis is generalized to multicast networks with two-hop

and multi-hop, respectively. The problem of randomly arriving updates at the multicast

network is also addressed. In [25], it was shown that a greedy scheduling policy that

prioritize the highest age packet provides optimal weighted sum of age over all users for

wireless broadcast networks. In [23], update messages are replicated and sent to the

receiver through multiple servers; given a general packet arrival process and memoryless
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packet service times, it was shown that Last-Generated First-Serve scheduling policy is

age-optimal. In [98], a pull-based updating system is considered, in which the arriving

source updates are sent to multiple servers and the interested user fetches the update

by sending replicated requests to all the servers. Similar to our counting strategy in this

work, it was shown there exists an optimal number of responses k from n servers for the

user to wait for.

Data allocation with redundancy has captured lots of attention in the distributed

cloud storage community. Most of the work on data allocation and access in distributed

storage systems is concerned with either the recovery probability of the data [80, 81],

or the accessibility, as measured by the download latency of the service rate [82, 83].

It has been shown that the optimized allocation scheme is usually non-intuitive and

complicated, even for a given access model, and the optimization is challenging due

to the combinatorial nature of the problem. Although erasure coding was shown to

provide superior data reliability with less redundancy compared to replication, whether

a particular coding scheme incur additional load to the system is unclear, especially in

the unexplored network edge infrastructure side [99]. Therefore, the data redundancy

method needs to be carefully chosen in these distributed computing systems. In this

work, we mainly focus on the case where each update is replicated and stored as one

copy in every edge node. Applying erasure coding on timely updates across multiple

edge nodes will significantly reduce the storage overhead, but it requires an extensive

study on the a joint coding-allocation design due to the multi-version problem across

different nodes as shown in [100,101].

3.3 Time-average Age Analysis

We consider a system with a single source generating timely updates at-will and broad-

casting time-stamped updates to n storage nodes at the network edge through n links

with independent random delays, as shown in Figure 3.1. Each update is time-stamped

when it was generated. For every update j, it takes time Xij to reach node i. We

dnote Xij as the service time, and assume Xij to be i.i.d. for any link i and update
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j. When most recently received update at time t at node i is time-stamped at time

u(t), the instantaneous age of information, or simply the age, is the random process

∆i(t) = t− u(t). The evolution of the age process at a node can be described by the

following two scenarios:

1. If the information at the node is not updated, i.e. u(t) is fixed, the age process

∆(t) grows linearly in time t.

2. When an update successfully reaches the node at time t, u(t) is advanced to the

timestamp of the new update; let’s call it u′(t) ≥ u(t). The age process ∆(t) has

a discrete jump from t− u(t) to t− u′(t).

In this work, we consider a proactive updating system in which the source decides when

to stop the transmission of the current update and start the transmission of a fresh

update. For update j, the source waits for a time interval Yj and then preempts the

current update with a new update j + 1 with a fresh timestamp. We refer to the policy

to determine the service interval Yj for all j as the restart policy. For example, Yj can

be a fixed value so that the source waits for a constant amount of time for each update

j. Alternatively, the source can waits for the successful delivery of the current update j

to a subset of k nodes. This makes Yj a random variable determined by how long the

transmission to those k nodes takes. The source starts the transmission of update j + 1

immediately following the completion time of update j.

• Definition: A restart policy is stationary if the service intervals Yj are i.i.d..

In order to obtain a fresh update at the network edge, a receiver has access to a

subset of r edge nodes in the system randomly picket at the start of experiment, and

retrieves the freshest content among these r nodes. We denote R as the subset of nodes

the receiver is attached to. Under this model, the age at the client at time t is defined

as the minimum age over all the nodes, i.e.

∆(t) = min
i∈R

∆i(t). (3.1)
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The time average age process at the receiver is given by

∆ = lim
τ→∞

1

τ

∫ τ

t=0
∆(t). (3.2)

Since the service times Xij are i.i.d. for each node i and content update j, the age

processes at each node ∆i(t) are statistically identical. If the receiver has access to only

one node thus r = 1, the age process at the receiver is identical to the age at the node

i, ∆(t) = ∆i(t). Since the service time Xij is random, for any update j and a node i,

there are two possibilities for the age process ∆i(t) at the node i:

1. If Xij > Yj , i.e. the service time is greater than the allowed service interval, update

j will not be delivered to node i and the age at that node ∆i(t) increases linearly

over time for the entire service interval.

2. If Xij ≤ Yj , i.e. the service time is shorter than the service interval, then update

j will be delivered to node i. The instantaneous age ∆i(t) will be reset to Xij at

the time of update delivery.

Let Tj be the time the source generates and starts to transmit the update j. Since the

receiver obtains the freshest update among the r nodes in R, whether an update j is

delivered to the receiver or not depends on whether the update j is delivered to at least

one of the r nodes in R. Hence, for any update j, there are also two possibilities for the

age process at the receiver ∆(t):

1. If mini∈RXij > Yj , none of the r nodes successfully receive a node and the receiver

age ∆(t) increases linearly over time for the entire service interval.

2. If mini∈RXij ≤ Yj , at least one of the r nodes receives update j within the service

interval Yj . The instantaneous age ∆i(t) will be reset to Xij at the time of earliest

update delivery. That is,

∆i(t)|t=Tj+mini∈RXij = min
i∈R

Xij . (3.3)
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∆(t)

t•
T1

•
Tj−1

•
Tj
•

A1 Aj

Y1 Yj

(a) p = 1.

∆(t)

t• • • •
T1 Tj−1 Tj Tj+1 Tj+2 Tj+3

Yj+1 Yj+2

Ml

X̃j+3

X̃j+3

Al−1 Al

(b) 0 < p < 1: successful updates occur in intervals 1, j − 1, j,
and j + 3.

Figure 3.2: Sample path of the age ∆(t) with success probability p. Update delivery
instances are marked by •

After this delivery, the age increases linearly in time and none of the later deliveries

matters since all the updates have the same generation timestamp.

We denote ψj to be the binary index of whether the update j is delivered to the

receiver, thus

ψj =


1, if mini∈RXij ≤ Yj

0, if mini∈RXij > Yj .

(3.4)

For any stationary restart policy, the service interval Yj are i.i.d. for all j. Since Yj and

any of {Xij : i ∈ Z+} are independent, {ψj : j ∈ Z+} is a Bernoulli process with success

probability p = Pr[mini∈RXij ≤ Yj ].

If the system is designed such that every update j is delivered to the receiver, the

success probability p = 1. This can be achieved by forcing the source to always wait for
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the delivery of an update to all the nodes. Alternatively, the system can choose a restart

policy that yields p < 1, such as setting a constant time threshold τ for all updates j.

In this case, an update j may or may not be delivered to the receiver, depending on the

set of random service times {Xij : i = 1, 2, . . . , n}. Suppose an update is delivered to

the receiver during service interval j and the next successful delivery occurs at interval

j +M . Since {ψj} is a Bernoulli process, M is a geometric r.v. with probability mass

function (PMF)

PM (m) = (1− p)m−1p, m ≥ 1.

Thus M has first and second moments

E[M ] =
1

p
, E

[
M2
]

=
2− p
p2

. (3.5)

Figure 3.2 depicts the sample paths of age with p = 1 and 0 < p < 1, respectively.

We represent the area under the age sawtooth as the concatenation of the polygons

A1, . . . , Al as shown in Figs. 3.2a and 3.2b. In Figure 3.2b, the update j is delivered

to the receiver R in the service interval j, and the receiver waits for Ml = 3 service

intervals until the next successful update. Note that the restart policy with p = 1 can

be viewed as a special case with deterministic Ml = 1 since the update secceeds at every

service interval. We represent the length in time between two service intervals with

successful updates as

Wl =

j+Ml−1∑
j′=j

Yj′ . (3.6)

From Figure 3.2b, the average age is the average of the swatooth age diagram, which is

∆ = lim
L→∞

∑L
l=1Al∑L
l=1Wl

= lim
L→∞

1
L

∑L
l=1Al

1
L

∑L
l=1Wl

=
E[A]

E[W ]
. (3.7)
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We also denote the random variable X̃j as the service time of a successful update

delivered to the receiver, and X̃j has CDF

FX̃j (x) = Fmini∈RXij |ψj=1(x)

= Fmini∈RXij |mini∈RXij≤Yj (x). (3.8)

Evaluating Figure 3.2b, we have

Al =
1

2

(
Wl + X̃j+Ml

)2
− 1

2
X̃2
j+Ml

=
W 2
l

2
+ X̃j+Ml

Wl. (3.9)

Thus, the expected area is

E[A] =
1

2
E
[
W 2
]

+ E
[
X̃j+Ml

Wl

]
. (3.10)

Lemma 3.3.1. The random variables X̃j+Ml
and Wl are uncorrelated and

E
[
X̃j+Ml

Wl

]
= E

[
X̃
]

E[W ]. (3.11)

Proof. It follows from (3.6) that

E
[
X̃j+Ml

Wl

]
= E

X̃j+Ml

j+Ml−1∑
j′=j

Yj′


= E

[
X̃j+m (Yj + Yj+1 + . . .+ Yj+m−1)

]
Pr[Ml = m]

= E
[
X̃
]

E[Yj + Yj+1 + . . .+ Yj+m−1] Pr[Ml = m]

= E
[
X̃
]

E[W ] (3.12)

Here we use the fact that X̃m is independent of the service intervals Y0, . . . , Ym−1 and

is i.i.d. across all m.

Substituting (3.10) and Lemma 3.3.1 into (3.7) yields the average age

∆ =
1

E[W ]

(1

2
E
[
W 2
]

+ E
[
X̃
]

E[W ]
)
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=
E
[
W 2
]

2 E[W ]
+ E

[
X̃
]
. (3.13)

We remark that Wl is a random sum of random variables Yj , in which the number of

terms Ml and the sequence {Yj} may be dependent in (3.6). In order to obtain the first

and second moment of Wl in (3.6), we first define YS as the length of a service interval

given that the update is successfully delivered to the receiver, and YF as the length of a

service interval given that the update is failed to be delivered. Thus, YS and YF have

PDFs

fYS (y) = fY |ψ=1(y) (3.14)

fYF (y) = fY |ψ=0(y). (3.15)

Therefore, E[Y ] = pE[YS ] + (1− p) E[YF ].

Lemma 3.3.2. W has first and second moments

E[W ] = E[M ] E[Y ], (3.16)

E
[
W 2
]

= (E[M ]− 1) Var[YF ] + Var[YS ]

+
(
E
[
M2
]
− 2 E[M ] + 1

)
(E[YF ])2

+ (E[YS ])2 + 2(E[M ]− 1) E[YF ] E[YS ]. (3.17)

Here we note that (3.16) is the general form of the Wald’s identity, which holds even

when M and Y are dependent. If M and Y are independent, we note that (3.17) is

reduced to the Blackwell-Girshick equation [102]. Proof of the lemma appears in the

Appendix. Substituting (3.5) into Lemma 3.3.2, and then substituting Lemma 3.3.2

back to (3.13) leads to the following theorem.

Theorem 3.3.3. The average age at the receiver is

∆ =
1

E[Y ]

(
(1− p) Var[YF ] + pVar[YS ] +

(1− p)(2− p)
p

(E[YF ])2 + p(E[YS ])2

+ 2(1− p) E[YF ] E[YS ]
)

+ E
[
X̃
]
.
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Theorem 3.3.3 holds for general stationary restart policy with i.i.d. service interval

Yj . If the system employs a restart policy such that the service interval Yj is independent

of the event of success delivery ψj , we have fYF (y) = fYS (y) = fY (y). This also implies

Ml and the sequence {Yj} in (3.6) are independent.

Corollary 3.3.4. If the restart policy yields the service interval such that fYF (y) =

fYS (y) = fY (y), then the average age at the receiver is

∆ =
2− p

2p
E[Y ] +

1

2

Var[Y ]

E[Y ]
+ E

[
X̃
]
.

Proof. This can be shown by letting E[YF ] = E[YS ] = E[Y ] and Var[YF ] = Var[YS ] =

Var[Y ] in Theorem 3.3.3.

An example policy for Corollary 3.3.4 to hold is setting a fixed threshold τ for every

update j, as discussed in Section 3.4.2. In this case, Yj = τ and thus it’s independent of

whether an update is successfully delivered to the receiver as described by ψj . Another

example is the policy that lets the source restart as soon as there are w nodes receives

the current update for every update j. We show that the service interval Yj only depends

on w and the access number r in Section 3.4.1.

In contrast, we consider another policy in which Yj is a random variable and the

source draws every service interval Yj according to some distribution FY (y). For example,

the source chooses Yj to be either 1 or 10 equally likely for every j. For this randomized

policy, Yj and ψj are not independent and thus Corollary 3.3.4 does not apply. Given

the condition that update j is delivered to the receiver, we know the service interval Y

is more likely to be larger, and the expected value of YS is larger than Y . Similarly, the

service interval is expected to be smaller given the update j is not delivered, implying

that YF is expected to be smaller. In this case, we need to use Theorem 3.3.3 to obtain

the average age expression.
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3.4 Multicast with Homogeneous Nodes

The first system we investigate consists of only homogeneous nodes. That is, we assume

the source treats all the edge nodes equally, and the deliveries of an update to every

node is independent of the others.

3.4.1 Earliest-count Restart Policy with Feedback

Here we examine the Earliest-count (EC) restart policy in which the source counts the

earliest number of nodes each update reaches and restarts once that number reaches

the pre-determined threshold. Let’s assume every node i can acknowledge the source

through an independent instantaneous channel once the transmission of an update j

is completed. For every update j, the source terminates the multicast transmission

only if the source receives the earliest w acknowledgements from the n nodes in the

system, where we refer to w ∈ {1, 2, . . . , n} as the counter. If one node receives the

update earlier than any of the other nodes, it has to wait for an idle period until that

content reaches w − 1 other nodes. Otherwise, if update j is not delivered to a node i,

the node waits for the entire service interval Yj until the source starts the next write.

Since the service times X1j , X2j , . . . , Xnj are i.i.d., the service interval Yj is the w-th

smallest variable in X1j , X2j , . . . , Xnj .

3.4.1.1 Notation for Order Statistics

We denote the k-th order statistic of a set of n i.i.d. random variables X1, . . . , Xn, i.e.,

the k-th smallest variable, as Xk:n. For example, X1:n = minkXk. The mean, variance

and m-th moment of Xk:n is denoted by µk:n, σ2
k:n and µ

(m)
k:n , respectively. The order

statistics for some distributions are known as follows [103].

Shifted Exponential: For shifted exponential distributed X with cumulative

distributed function (CDF)

FX(x) = 1− e−λ(x−c), x ≥ c,
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the mean and variance of the order statistic Xk:n are given by

µk:n = c+
1

λ
(Hn −Hn−k) (3.18a)

σ2
k:n =

1

λ2

(
Hn2 −H(n−k)2

)
(3.18b)

where Hn and Hn2 are the generalized harmonic numbers defined as

Hn =
n∑
j=1

1

j

Hn2 =
n∑
j=1

1

j2
. (3.19)

Thus the second moment of the order statistic is

µ
(2)
k:n = c2 +

2c

λ
(Hn −Hn−k) +

1

λ2

(
(Hn −Hn−k)

2 +Hn2 −H(n−k)2
)
. (3.20)

Pareto: For Pareto distributed X with CDF

FX(x) = 1−
(
b

x

)ν
, (3.21)

the m-th moment of the order statistics is given by

µ
(m)
k:n = bm

Γ(n+ 1)Γ(n− k + 1− m
ν )

Γ(n− k + 1)Γ(n+ 1− m
ν )
, (3.22)

where Γ(n) = (n− 1)! is the gamma function.

3.4.1.2 Age Calculation

For Earliest-count policy, we note that the service interval is the w-th order statistics

denoted by

Yj = Xw:n. (3.23)
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In this case, the delivery of an update to the receiver depends on the choices of w and r.

We first denote Wj as the set of w nodes receiving an update during the service interval

j; Wj is randomly chosen among all n nodes at every service interval j, since the service

times Xij are i.i.d. for all i and j. For r +w > n, there is at least one overlapping node

between the set R and the set Wj , and thus every update will be eventually delivered

to at least one of the nodes in R, and thus to the receiver. In this case, the indicator

ψj = 1 for all j, and the age process evolves as shown in Figure 3.2a. For r + w ≤ n,

an update j may not be delivered to the receiver since the set Wj and set R can be

disjoint. This occurs with probability
(
n−w
r

)
/
(
n
r

)
since Wj is randomly chosen for each

j. Let’s denote the probability of an update failure at the receiver as q = 1− p, then

q(w,r) = Pr{R ∩W = ∅} =


0, r + w > n(
n−w
r

)
/
(
n
r

)
, r + w ≤ n.

(3.24)

For a given total number of nodes n, the failure probability q only depends on w and

r. Here we note that the indicator ψj is determined by whether the two subsets wj

and r overlap, and Yj is determined by the w-th smallest variable in X1j , X2j , . . . , Xnj

regardless of the random variable ψj .

Lemma 3.4.1. The service interval Yj is independent of ψj.

Proof. We first denote Xj = [X1j , . . . , Xnj ] as the vector of service times at the j-th

service interval. Since the subset R is randomly chosen,

Pr[ψj = 0|Xj = xj ] = q(w,r)

Pr[ψj = 1|Xj = xj ] = 1− q(w,r). (3.25)

Thus, ψj is independent of Xj , and for any set A, we have

Pr[ψj = 0,Xj ∈ A] = Pr[ψj = 0] Pr[Xj ∈ A]. (3.26)

For Earliest-count policy, Yj = Xw:n and thus we can rewrite it as a function Yj = gw(Xj)
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and let A(y) = {xj | gw(xj) ≤ y}. Therefore,

Pr[ψj = 0, Yj ≤ y] = Pr[ψj = 0,Xj ∈ A(y)]

= Pr[ψj = 0] Pr[Xj ∈ A(y)]

= Pr[ψj = 0] Pr[Yj ≤ y]. (3.27)

And we can repeat the step for the complement case ψj = 1. Thus, ψj and Yj are

independent.

Therefore, the average age can be obtained through Corollary 3.3.4.

Theorem 3.4.2. For the Earliest-count restart policy with w, the average age at the

receiver with access to r nodes is

1. for w + r > n,

∆(w,r) =
w∑
k=1

µk:n

(
n−k
r−1

)(
n
r

) +
1

2

µ
(2)
w:n

µw:n
;

2. for w + r ≤ n,

∆(w,r) =
w∑
k=1

µk:n

(
n−k
r−1

)(
n
r

)
−
(
n−w
r

) +
1

2

(
n
r

)
+
(
n−w
r

)(
n
r

)
−
(
n−w
r

)µw:n +
1

2

σ2
w:n

µw:n
.

Proof. Substituting p = 1− q into Corollary 3.3.4 yields

∆ =
1 + q

2(1− q)
E[Y ] +

1

2

Var[Y ]

E[Y ]
+ E

[
X̃
]
. (3.28)

It follows from (3.24) that

1 + q

2(1− q)
=


1
2 , r + w > n

1
2

(nr)+(n−wr )
(nr)−(n−wr )

, r + w ≤ n.
(3.29)
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Thus, for w + r > n, (3.28) can be written as

∆ =
1

2
E[Y ] +

1

2

Var[Y ]

E[Y ]
+ E[X̃]

=
1

2

E
[
Y 2
]

E[Y ]
+ E[X̃]. (3.30)

Denote the node iR as the node with least service time in the set of receiving nodes R,

i.e.,

iR = arg min
i∈R

Xi.

We note that the subset {Xi | i ∈ R} is constructed by choosing r nodes from the

set {X1:n, . . . , Xn:n}. The node iR has the smallest service time means the remaining

r − 1 service times in R are greater than k-th smallest among all n nodes Thus, the

remaining r − 1 service times are randomly chosen from the subset {Xk+1:n, . . . , Xn:n}.

Thus, the probability of the node iR being the k-th smallest among all n nodes is

Pr[iR = ik] =

(
n− k
r − 1

)/(n
r

)
, (3.31)

In addition, we rewrite the set of nodes with successful updates as

W = {i1, i2, . . . , iw}, (3.32)

where Xik = Xk:n is the k-th smallest service time.

For w+ r > n, the average service time for a successful update delivered to the client

is

E
[
X̃
]

= E
[
XiR

]
(3.33a)

=
n−r+1∑
k=1

E
[
XiR | iR = ik

]
Pr [iR = ik] , (3.33b)

=

n−r+1∑
k=1

E[Xk:n] Pr[iR = ik], (3.33c)
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=

n−r+1∑
k=1

µk:n

(
n−k
r−1

)(
n
r

) . (3.33d)

In (3.33a), the expectation of X̃ is defined as the expectation of the minimum of all

the service times Xi in the receiving set R, given that this node iR is also in the set W .

When w + r > n, the node iR is always in W, and we note that the order of iR, which

is denoted by k, can be at most n − r + 1 since there are r − 1 nodes in r that with

larger service time. (3.33b) is obtained by averaging over the conditional expectation of

all possible order statistics Xk:n, and (3.33d) follows from (3.31).

For w + r ≤ n, the node iR is not necessarily in the successful subset W, and thus

the order of iR, which is denoted by k, can be at most w. Hence,

E[X̃] = E
[
XiR | iR ∈ W

]
(3.34a)

=

w∑
k=1

E[Xk:n] Pr{iR = ik | iR ∈ W}, (3.34b)

=

w∑
k=1

µk:n
Pr[iR = ik]

1− q
, (3.34c)

=

w∑
k=1

µk:n

(
n−k
r−1

)(
n
r

)
−
(
n−w
r

) . (3.34d)

In (3.34d), we apply (3.31) and q =
(
n−w
r

)
/
(
n
r

)
in (3.24) for the case r + w ≤ n. Note

that the length of a service interval is Y = Xw:n. To get Theorem 3.4.2, we substitute

(3.33d) back to (3.30) for w + r > n, and substitute (3.29) and (3.34d) back to (3.28)

for w + r ≤ n.

For a special case where the receiver has access to only one node, we have the

following corollary by setting r = 1 in Theorem 3.4.3.

Corollary 3.4.3. For the Earliest-count restart policy with w, the average age at the

receiver with access to only r = 1 nodes is

∆(w,r=1) =
1

w

w∑
k=1

µk:n +
2n− w

2w
µw:n +

σ2
w:n

2µw:n
.
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If the source waits for all the nodes for every update, i.e. w = n, we denote the

expected service time as µ = E[X] and Corollary 3.4.3 becomes

∆(w=n,r=1) = µ+
1

2

µ
(2)
n:n

µn:n
. (3.35)

In both Theorem 3.4.2 and Corollary 3.4.3, the average age depends on the first and

second moment of the order statistics of the i.i.d. service time X. Assuming r and the

distribution of X is known to the source, our objective is to select the optimal stopping

counter w for the source such that the average age is minimized.

3.4.1.3 Shifted Exponential Model

We first consider the case where the service time follows a shifted exponential distribution

with CDF

FX(x) = 1− e−λ(x−c), x ≥ c. (3.36)

The constant time shift c > 0 captures the delay produced by the update generation

and assembly process. For example, c could represent the time to fetch temperature

data from a large set of sensors in the network, or the time to compress a video frame

into a size-constrained packet in remote video surveillance. On the other hand, c can

also represent a propagation delay on top of an exponential network delay if the source

and database are geographically separated.

Theorem 3.4.4. Let n be large and w < n, we denote β = 1− w/n and θ = r/n. For

shifted exponential (λ, c) service time X and a given r, the average age at the receiver

can be approximated as:

1. for w + r > n,

∆(w,r) ≈ ∆̂1(β) =

(
1

λr
+ c

)
(1− θr)− 1

λ
θr log

1

θ
+

1

2λ
log

1

β
+
c

2
.



91

2. for w + r ≤ n,

∆(w,r) ≈ ∆̂2(β) =
1

λr
+

1

2λ
log

1

β
+ c+

c(1 + βr)

2(1− βr)
.

Theorem 3.4.4 relies on the asymptotic approximation of the Harmonic function in

(3.18a) by Hk ≈ log k + γ, where γ ≈ 0.577 is the Euler-Mascheroni constant. For a

given β, we observe that the difference between the approximations in Theorem 3.4.4 is

given by

δ(β) = ∆̂2(β)− ∆̂1(β) =
θr

λ
log

1

θ
+ θr(c+

1

λr
) +

cβr

1− βr
. (3.37)

Since β ∈ (0, 1) and θ ∈ (0, 1), we observe δ(β) > 0 and thus ∆̂2(β) > ∆̂1(β) for any β.

Next, we focus on the case where w+ r > n and β = 1−w/n < r/n = θ. We show that

the function δ(β)→ 0 for any β and a given r, as n→∞ and thus ∆̂2(β) serves as a

good approximation within this region as well.

Since r ≥ 1 and 0 < β < 1, we have the following upper bound

δ(β) ≤ θ

λ
log

1

θ
+ θ(c+

1

λr
) +

cβ

1− β
, (3.38)

with equality holding at r = 1. We then let δ1 = θ
λ log 1

θ and

lim
n→∞

δ1 = lim
n→∞

r

nλ
log

n

r

= 0. (3.39)

Similarly, we let δ2(β) = θ(c + 1
λr ) + cβ

1−β and δ2(β) is monotonically increasing in β.

Thus,

lim
n→∞

δ2(β) ≤ lim
n→∞

δ2(β = θ)

= lim
n→∞

r

n
(c+

1

λr
) +

cr/n

1− r/n

= 0. (3.40)
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Therefore,

lim
n→∞

δ(β) ≤ lim
n→∞

δ1 + δ2(β) = 0. (3.41)

We note that (3.41) holds for any β ∈ (0, r/n). This implies that the difference between

the approximations ∆̂1(β) and ∆̂2(β) becomes negligible for large n. Thus ∆̂2(β) can

be also used as an approximation for the region w + r > n.

Corollary 3.4.5. The optimal β∗ that minimizes the approximation ∆̂2(β) in Theorem

3.4.4 for positive λ and c is

β∗ =
(

(λcr + 1)−
√

(λcr + 1)2 − 1
)1/r

.

The detailed proofs of Theorem 3.4.4 and Corollary 3.4.5 are provided in the appendix.

Based on the optimal β∗ obtained in Corollary 3.4.5, the optimal choice of stopping

counter w∗ can be obtained by solving

w∗ = n (1− β∗) (3.42)

Since w∗ may not be an integer, we will need to round it to the closest integer. For

a given r, we observe in Corollary 3.4.5 that the optimal η∗ depends on the shifted

exponential parameters λ and c but not the total number of nodes n. This implies the

source should always wait for a constant α∗ = 1− β∗ fraction of all the nodes for every

service interval. Based on this observation, we have the following results on the length

of service interval.

Corollary 3.4.6. For shifted exponential (λ, c) service times X and a given r, the

expected service interval using the optimal restart counter w∗ is approximated by

E[Y ] ≈ c− 1

λr
log
(

(λcr + 1)−
√

(λcr + 1)2 − 1
)
. (3.43)

Corollary 3.4.6 follows from substituting Corollary 3.4.5 back to the approximation

of expected service interval E[Y ]. See appendix for the proof. We also observe that the
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expected stopping time for every update is independent of the total number of nodes

n. For Earliest-counter restart policy with instantaneous feedback, we demonstrate the

optimal strategy for the source is to wait for a constant fraction of nodes independent of

n, which also gives a constant expected waiting time. This motivates us to investigate

an alternative threshold-type restart policy which doesn’t require the feedback of update

delivery.

3.4.1.4 Pareto Model

Pareto distribution is a simple heavy-tailed distribution that has been widely used

to model content transfer delay, computing delay and network traffic with potential

stragglers [104–106]. For Pareto distributed random variable X with CDF

F (x) = 1− (b/x)ν , (3.44)

the scale parameter b marks the non-zero offset of the distribution, and the shape

parameter ν describes the power law of the tail of the distribution. The tail of the

Pareto distribution decays faster for larger b and ν. We first approximate the order

statistic of Pareto r.v. X as follows.

Lemma 3.4.7. Let n be large and k < n, we denote α = k/n. The expected k-th order

statistics in (3.22) with m = 1 can be approximated by

µk:n ≈ b(1− α)−
1
ν . (3.45)

Proof. Asymptotically as the number of nodes n→∞, we can appoximate the Gamma

function by Stirling’s formula as

Γ(n+ 1) ≈
√

2πn
(n
e

)n
. (3.46)
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Thus, the expected order statistic in (3.22) with m = 1 can be approximated by

µk:n ≈ b

√
2πn

(
n
e

)n√
2π(n− k − 1

ν )
(

(n−k− 1
ν

)

e

)n−k− 1
ν

√
2π(n− k)

(
n−k
e

)n−k√
2π(n− 1

ν )
(

(n− 1
ν

)

e

)n− 1
ν

(3.47)

= b

√
n(n− k − 1

ν )nn(n− k − 1
ν )n−k−

1
ν√

(n− k)(n− 1
ν ) (n− k)n−k(n− 1

ν )n−
1
ν

(3.48)

≈ b
√
n(n− k)√
(n− k)n

nn(n− k)n−k−
1
ν

(n− k)n−knn−
1
ν

(3.49)

= b
n

1
ν

(n− k)
1
ν

(3.50)

= b(1− α)−
1
ν . (3.51)

We have the following theorem from Theorem 3.4.2 and the above approximation.

Theorem 3.4.8. Let n be large and w < n, we denote β = 1 − w/n and θ = r/n.

For Pareto (b, ν) service time X and a given r, the average age at the receiver can be

approximated as:

1. for w + r > n,

∆(w,r) ≈ ∆̂1(β) =
br

r − 1
ν

(
1− θr−

1
ν

)
+
b

2
β−

1
ν .

2. for w + r ≤ n,

∆(w,r) ≈ ∆̂2(β) =
br

(r − 1
ν ) (1− βr)

(
1− βr−

1
ν

)
+
b (1 + βr)

2 (1− βr)
β−

1
ν .

See the Appendix for the proof. When the receiver has access to only a single node

in the system, the approximation is given by the following corollary by letting r = 1 in

the approximation 2) in Theorem 3.4.8.

Corollary 3.4.9. Let n be large and w < n, we denote α = w/n. For Pareto (b, ν)

service time X, the average age at the receiver with access to r = 1 node is approximated
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by

∆(w,r=1) ≈ ∆̂(α) =
bν

(ν − 1)α
+
b(ν + 1)α− 2b

2(ν − 1)α
(1− α)−

1
ν .

For a given β, we observe that the difference between the approximations in Theorem

3.4.8 is given by

δ(β) =
br

r − 1
ν

(
1− βr−

1
ν

1− βr
−
(

1− θr−
1
ν

))
+
bβr−

1
ν

1− βr
. (3.52)

Since ν > 1 and r > 1, r − 1/ν > r − 1 > 0. Therefore, δ(β) > 0 for β ∈ (0, 1).

Similar to the discussion for shifted exponential service time, we focus on the case where

w + r > n and β = 1− w/n < r/n = θ. We show that the function δ(β)→ 0 for any β

and a given r, as n→∞.

Since β < r/n, we let

δ1(β) =
br

r − 1
ν

(
1− βr−

1
ν

1− βr
−
(

1− θr−
1
ν

))

≤ br

r − 1
ν

(
1−

(
1− θr−

1
ν

))
=
brθr−

1
ν

r − 1
ν

≤
br
(
r
n

)r
r − 1

ν

=
brr+1(
r − 1

ν

)
nr
. (3.53)

Similarly, we have

δ2(β) =
bβr−

1
ν

1− βr

≤
b
(
r
n

)r− 1
ν

1−
(
r
n

)r
≤ brr−

1
ν n

1
ν

nr − rr
. (3.54)
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Therefore,

lim
n→∞

δ(β) = lim
n→∞

δ1(β) + δ2(β)

≤ lim
n→∞

brr+1(
r − 1

ν

)
nr

+
brr−

1
ν n

1
ν

nr − rr

= 0. (3.55)

We note that (3.55) holds for any β ∈ (0, r/n). This implies that the difference between

the approximations ∆̂1(β) and ∆̂2(β) is negligible and thus ∆̂2(β) also serves as an

approximation for the region w + r > n.

Corollary 3.4.10. The optimal β∗ ∈ (0, 1) that minimizes the approximation ∆̂2(β) in

Theorem 3.4.8 is the root β of the following equation

(1 + rν)β2r − 2r2ν2βr+
1
ν + rν − 1 = 0. (3.56)

If the receiver has access to only a single node, we let r = 1 in Corollary 3.4.10 and

have the following corollary.

Corollary 3.4.11. The optimal α∗ ∈ (0, 1) that minimizes the approximation in Corol-

lary 3.4.9 is the root of the following equation

(1 + ν)α2 − α− ν(1− α)
1
ν = 0. (3.57)

3.4.1.5 Connection with Dynamo-style Storage Updates

Here we note that our system model with Earliest-count restart policy is also applicable

to Dynamo-style storage systems. In modern distributed storage systems, data is often

replicated across multiple machines or data centers to support fault tolerance due to

hardware failures, power outages or catastrophe. Replication of data also provides higher

availability by allowing simultaneous read from multiple servers. In order to overcome

the asynchrony in distributed storage systems, quorum-based algorithms [107–110] are

well developed and widely used in practice to ensure write and read consistency of
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replicated data. In a quorum system, either a write or read request of the data goes to

a set of different servers or locations. More specifically, the data source or writer sends

replicas of the data to all the nodes but only waits for the response from a subset of

nodes, which is known as the write quorum W . Similarly, the client or reader fetches the

data from a possibly different subset of nodes, which is called the read quorum R. In

order to guarantee strict consistency that every read operation returns the most recent

written content, a traditional quorum system requires the write quorum W and read

quorum R to overlap in at least one element. This is known as a strict quorum. When a

quorum is randomly selected by the writer and reader, a strict quorum requires that the

write quorum size w and read quorum size r satisfy w + r > n, where n is the number

of servers/nodes in the system.

However, as the write or read operation to a set of nodes experiences varying random

delays, consistency of the storage system comes at the price of delay. It has been shown

that a non-strict or partial quorum of reduced size is widely used in practice because

of the latency benefit despite a minor loss in consistency [111]. Amazon’s Dynamo

database [38], and a variety of subsequent database implementations such as Apache

Cassandra [112], use a non-strict quorum as the data replication mechanism in order

to maintain a balance between consistency and latency. Since strict consistency is not

guaranteed in partial quorum systems, the level of consistency is quantified by data

staleness. The definition of data staleness falls into two categories: 1) staleness in

time [113] [114] and 2) staleness in data version [111]. In [113], a read is considered

stale if the value returned was written more than δ time units before the most recent

write, where δ is a pre-determined threshold. In a slightly different time-based staleness

definition [114], the data is considered fresh if it was generated no more than δ time

units ago or it’s the most recent written data in the system. On the other hand, [111]

measures the staleness by how many versions the value returned by a read lags behind

the most recent write. This work described the impact of the quorum size on the

trade-off between staleness of data, which is defined as how recent the data version is,

and the waiting time for data availability in a probabilistic way.

Our system model as shown in Figure 3.1 with the Earliest-count restart policy
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represents a special case of the content updating problem in a Dynamo-style storage

system. In this case, the writer generates a new version of the data as soon as the

writing operation of the previous version is completed. Our system corresponds to the

case in which the reading latency is much smaller than the writing latency, and the

reader gets the most recent version of the content by reading from a random r nodes in

the system. One interesting question we can ask is: at any time t, how old is the content

if an interested client reads the data and the reading latency is negligible. Therefore,

AoI can be considered as an alternative staleness metric from a strictly time-based

perspective. It differs from other staleness metrics in distributed storage systems, since

we only take the age of the most recent written content into account.

If the write delays are i.i.d. for each node i and content update j, the ∆i(t) processes

at each node are statistically identical. The age processes for different read quorum R

are also statistically identical since R is randomly chosen by the system. Consequently,

the expected age of the content returned by a read operation at time t is statistically

identical to the time-averaged age of ∆(t) given by Theorem 3.4.2.

3.4.2 Threshold Restart Policy

The previous counting policy in section 3.4.1 replies on the instantaneous and noiseless

delivery feedback from every node. However, this assumption may not be practical when

the source is updating a massive amount of nodes, since the feedback can be delayed

and it can be costly to collect all of the individual feedback messages. Therefore, this

section investigates the stopping scheme when feedback is not available to the source in

this section. Since the service times are i.i.d., an intuitive restart policy is to let the

source wait for a fixed stopping time τ for every update j. Thus the service interval

is constant, Yj = τ for all j. Since the service times Xi are i.i.d. for all i, the failure

probability is

q = Pr[min
i∈R

Xi > τ ]

= (Pr[X > τ ])r
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= (1− FX(τ))r , (3.58)

and the success probability is

p = 1− q = 1− (1− FX(τ))r . (3.59)

Theorem 3.4.12. For threshold restart policy with τ , the average age at the receiver

with access to r nodes is

∆ =
τ

2
+

1

1−
(
1− FX(τ)

)r ∫ τ

x=0

(
1− FX(x)

)r
dx. (3.60)

The proof is provided in the Appendix. For given r and stopping threshold τ , we

show in the next two example distribution models that using the CDF FX(x) to compute

the average age as in Theorem 3.4.12 is rather convenient.

3.4.2.1 Shifted Exponential Model

Theorem 3.4.13. For shifted exponential (λ, c) service time X and a given r, the

average age at the receiver is

∆(τ, r) =
τ

2
+

1

λr
+

c

1− e−λr(τ−c)
. (3.61)

Proof. We first rewrite q =
(
1− FX(τ)

)r
for simplicity. For shifted exponential X and

τ ≥ c,

q =
(
eλ(τ−c)

)r
= eλr(τ−c). (3.62)

It follows from Theorem 3.4.12 that

∆(τ, r) =
τ

2
+

1

1− q

∫ τ

0
(1− FX(x))rdx

=
τ

2
+

1

1− q

(∫ c

0
1 dx+

∫ τ

c
e−λr(x−c)dx

)
=
τ

2
+

c

1− q
+

1

1− q
1− eλr(τ−c)

λr
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=
τ

2
+

c

1− q
+

1

λr
. (3.63)

Substituting (3.62) back completes the proof.

Corollary 3.4.14. For shifted exponential (λ, c) service time X and a given r, the

average age at the receiver is upper bounded by

∆(τ, r) ≤ ∆̄(τ, r) = c+
τ

2
+

τ

λr(τ − c)
. (3.64)

Proof. For x < 1, we have the upper bound ex ≤ 1
1−x . Since λ > 0, r ≥ 1 and τ > c,

the exponent −λr(τ − c) < 0 and it follows from Theorem 3.4.13 that

∆(τ, r) ≤
τ

2
+

1

λr
+

c

1− 1
1+λr(τ−c)

=
τ

2
+

1

λr
+
c (1 + λr(τ − c))

λr(τ − c)

=
τ

2
+
τ − c+ c+ cλr(τ − c)

λr(τ − c)

= c+
τ

2
+

τ

λr(τ − c)
. (3.65)

For a given threshold τ , we observe that the upper bound in Corollary 3.4.14 becomes

∆̄(τ, r) = c+
τ

2
+O

(
1

r

)
, (3.66)

which decreases in the order of O(1/r) and is lower bounded by c+ τ/2 for large r. That

means, having a larger access number r provides at least a decaying average age in the

order of O(1/r), even if the source chooses a constant τ which may not be optimal for

the value of r. However, the advantage of having more edge nodes access is huge in the

beginning, but it gets smaller as r increases.

For a given r, we observe the average age in Theorem 3.4.13 is a convex function of

the threshold τ . Simply letting d∆/dτ , we have the optimal threshold as the following

corollary.
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Corollary 3.4.15. For shifted exponential (λ, c) service time X, the age optimal stop-

ping threshold τ∗ is given by

τ∗ = c− 1

λr
log
(

(1 + λcr)−
√

(1 + λcr)2 − 1
)
. (3.67)

Corollary 3.4.16. For shifted exponential (λ, c) service time X, the minimized average

age using optimal stopping threshold τ∗ is given by

∆∗(r) = ∆(τ∗, r) =
c

2
+

c

1− φ(r)
+

1

λr

(
1− log

(
φ(r)

))
, (3.68)

where φ(r) = (1 + λcr)−
√

(1 + λcr)2 − 1.

We observe that the optimal threshold in Corollary 3.4.15 is identical to the ex-

pected length of the service interval for optimal Earliest-count policy in Corollary 3.4.6.

Although instantaneous delivery feedback is exploited in the Earliest-count policy to

obtain the optimal waiting counter w∗, the expected waiting time for every update is the

same as the optimal waiting time τ∗ if feedback is not available. Moreover, τ∗ depends

only on the distribution of the i.i.d. service time X. This implies that delivery feedback

is in fact not so powerful if the distribution of X is known. We’ll numerically compare

the resulting average age for the two different restart policy in section 3.4.3.

3.4.2.2 Pareto Model

Theorem 3.4.17. For Pareto (b, ν) service time X and a given r, the average age at

the receiver is

∆(τ, r) =
τ

2
+

bνr − bνrτ−νr+1

(νr − 1)(1− bνrτ−νr)
. (3.69)

Proof. We first rewrite q =
(
1− FX(τ)

)r
for simplicity. For Pareto X and τ ≥ b,

q =

(
b

τ

)νr
= bνrτ−νr. (3.70)
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It follows from Theorem 3.4.12 that

∆(τ, r) =
τ

2
+

1

1− q

∫ τ

0
(1− FX(x))rdx

=
τ

2
+

1

1− q

(∫ b

0
1 dx+

∫ τ

b

(
b

x

)νr
dx
)

=
τ

2
+

b

1− q
+

1

1− q

(
τbνrτ−νr

1− νr
− b

1− νr

)
=
τ

2
+

b

1− q
+

1

1− q
τq − b
1− νr

=
τ

2
+

bνr − qτ
(νr − 1)(1− q)

. (3.71)

Substituting (3.70) into (3.71) completes the proof.

Corollary 3.4.18. For Pareto (b, ν) service time X and a given r, the average age at

the receiver is upper bounded by

∆(τ, r) ≤ ∆̄(τ, r) =
τ

2
+

b

1− (b/τ)νr
+

τ

νr − 1
. (3.72)

Proof. Since b ≤ τ , it follows from (3.71) that

∆(τ, r) =
τ

2
+

bνr − qτ
(νr − 1)(1− q)

=
τ

2
+
bνr − b+ b− qτ
(νr − 1)(1− q)

≤ τ

2
+

(bνr − b) + (τ − qτ)

(νr − 1)(1− q)

=
τ

2
+

b

1− q
+

τ

νr − 1
. (3.73)

Substituting (3.70) back to (3.73) completes the proof.

Rewriting Corollary 3.4.18 in series expansion yields

∆̄(τ, r) =
τ

2
+

b

1−
(
1 + νr log(b/τ) + 1

2νr
2 log2(b/τ) + . . .

) +
τ

νr − 1

=
τ

2
+

b

−νr log(b/τ)− 1
2νr

2 log2(b/τ)− . . .
+

τ

νr − 1

≤ τ

2
+

b

−νr log(b/τ)
+

τ

νr − 1
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=
τ

2
+O

(
1

r

)
(3.74)

Similar to the shifted exponential model, we observe that the upper bound with

Pareto model also decreases in the order of O(1/r).

For a given r, we take the second derivative of Theorem 3.4.13 and yields

d2∆

dτ2
=
ν2r2bνr+1τνr−2

(
νr(bνr + τνr) + τνr − bνr

)
(νr − 1) (τνr − bνr)3

+
νrbνrτνr−1

(
(νr + 1)bνr + (νr − 1)τνr

)
(τνr − bνr)3 . (3.75)

Since ν > 1, r > 1 and 0 < b < τ , we note that d2∆/dτ2 > 0. Therefore, the average

age in Theorem 3.4.13 is a convex function of the threshold τ . Setting d∆/dτ = 0, we

obtain the optimal threshold in the following corollary.

Corollary 3.4.19. For Pareto (b, ν) service time X, the age optimal stopping threshold

τ∗ is the root of the following equation

(νr − 1)τ2νr − 2ν2r2bνr+1τνr−1 + (νr + 1)b2νr = 0. (3.76)

For threshold restart policy, we observe that the access number r is always coupled

with the exponent, which is λ in the shifted exponential model as shown in Theorem

3.4.17, and ν in Pareto model as shown in Theorem 3.4.17. Since the exponent captures

how fast the tail of the distribution decays, scaling the exponent by r is equivalent

to having a service time whose tail decays r times faster. This is mainly because the

receiver has access to r nodes and always selects the freshest update from all r nodes.

3.4.3 Numerical Evaluation

In this section, we numerically evaluate how the restart policy affects the average age

metric. We start from the evaluations of our approximations of the average age and the

corresponding optimization for both the Earliest-count policy and the threshold policy.

In Figure 3.3, we demonstrate the average age with shifted exponential service time

using both policies. We set the total number of nodes as n = 100, and the access number
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(a) access number r = 1, n = 100.
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(b) access number r = 5, n = 100.

Figure 3.3: Comparison of the average age between Earliest-count (EC) and threshold
policies using shifted exponential service time with c = 1. × marks the average age as
a function of w for EC policy. Solid line marks the approximate average age, and ◦
marks the minimized approximate age ∆̂. Dashed line marks the average age using the
optimal threshold restart policy.

r = 1 in Figure 3.3a, and r = 5 in Figure 3.3b. For the Earliest-count policy, we plot the

average age ∆ versus different counter w using symbol ×. Each × symbol corresponds

to the experimental time-average age for a given exponential rate λ. The analytical

approximation in Theorem 3.4.4 is drawn using solid line, and the near-optimal w∗

obtained by Corollary 3.4.10 is marked with ◦. We observe the approximation is barely

distinguishable from the real experimental average age, and the near-optimal w∗ is also

very close to the true optimal point that minimizes the average age as shown in both

figures. By looking at the three curves in a single figure, the optimal w∗ increases as

the exponential rate λ increases, meaning that the source should waits longer for each

multicast transmission if the average service time is longer. Comparing across Figure
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(a) access number r = 1, n = 100.
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(b) access number r = 5, n = 100.

Figure 3.4: Comparison of the average age between Earliest-count (EC) and threshold
policies using Pareto service time with b = 1. × marks the average age as a function
of w for EC policy. Solid line marks the approximate average age, and ◦ marks the
minimized approximate age ∆̂. Dash line marks the average age using the optimal
threshold restart policy.

3.3a and Figure 3.3b with different access number r, we observe that the average age

decreases as r increases. More importantly, the optimal w∗ moves to the left significantly.

For example, the receiver has access to a single node in Figure 3.3a. In this case, in order

to minimize the average age at the receiver, the source should consider the transmission

of the current update to be completed once the update is delivered to around 60 out of

100 nodes when λ = 0.5. However, if the receiver has access to r = 5 nodes as shown in

Figure 3.3b, it is best for the source to only wait for the deliveries to around 30 nodes

for each multicast transmission.

For the threshold policy, we plot the average age using the optimized threshold τ∗

in Theorem 3.4.15 as a horizontal dash line together with the Earliest-count policy with

the same color in r = 1 in Figure 3.3a and 3.3b. As the bottom of the bell shape curve
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Figure 3.5: Minimum average age obtained by optimizing counter w∗ for different node
numbers n in the system using shifted exponential service model with c = 1 and access
number r = 1.

for the Earliest-count policy touches the horizontal dash line for the threshold policy

in every case, we conclude that both policy lead to non-distinguishable average age

performance if both policies are carefully optimized. That is, instead of counting the

number of deliveries based on the instantaneous feedback, the source can achieve similar

age performance by simply setting a deadline in time for each multicast transmission

without the feedback.

Figure 3.4 demonstrates similar results as Figure 3.3 using Pareto service time with

b = 1 and three different choices of ν. Although the service time is now with heavy

tail, we note that most of our observations in Figure 3.3 are also applicable to Figure

3.4. It’s interesting to look at the average curve corresponding ν = 5 in Figure 3.4b.

Although choosing w ≈ 52 minimizes the average age, the age curve is mostly flat in the

range of [40, 70], with at most 0.1 units difference. If the timeliness requirement of the

system is not very strict, choosing any value of w in [40, 70] is good enough because the

resulting average age is very close to the true minimum.

Since the numerical results in Figures 3.3 and 3.4 use a large n = 100, we now

illustrate how the average age varies for smaller numbers of n. Figure 3.5 depicts the

optimized average age for the total number of nodes n ∈ [1, 20] using the Earliest-count

policy. In this example, we choose the service time model to be shifted exponential with

c = 1 and three different λ, and the access number r = 1. For every n, a corresponding

age-minimized w∗ is obtained by Corollary 3.4.10. When there is only one node in the
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(b) λ = 2, n = 100.

Figure 3.6: Comparison of the average age among receivers with different access number
r using shifted exponential service time with c = 1. ◦ marks the minimized average age.
Dash line marks the average age using the optimal threshold restart policy.

system, we observe that the average age is exactly at 3(c+ 1/λ)/2. In all three cases

of λ, the average age fluctuates for small n since the earliest w scheme is a heuristic

by waiting for an integer number of users w. As the number of users n grows, the

average age converges rapidly, which matches our conclusion in Theorem 3.4.8 that the

approximate average age depends only on λ and c when n is large enough and r is fixed.

In a heterogeneous network with many receivers, the access numbers r for different

receivers may not be identical. Thus, it’s very likely that the source may optimize

its multicast strategy based on access number r1 but a particular receiver will have a

different access number r2. Motivated by the observation in Figure 3.3 and 3.4 that the

average age can be near optimal for a wide range of w, it’s interesting to evaluate the

robustness of the system, for instance, how the optimal policy for a particular access

number r1 performs for other values of r2. Figure 3.6 compares the average age as a
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function of w for different values of r with the shifted exponential service distribution

to be. In Figure 3.6a, we observe that the optimal counter w∗ = 40 for access number

r, meaning that the source should wait for 40 out of 100 deliveries for each multicast

transmission. The resulting average age is about 2 for this receiver with r = 5. If the

source chooses this as the restart policy, then the average age of a receiver with r = 3

will not be optimal since its corresponding optimal w = 50. However, the age difference

is tiny since the age curve for r = 3 stays almost the same for w ∈ [40, 60]. Instead, if

the receiver has access to only r = 1 node but the source chooses w = 40, the resulting

average age will be much larger than its minimum average age that occurs at w = 73.

That means, if the source is not certain about the access number of the receiver, or the

access number of a receiver varies randomly, choosing the optimal w for Earliest-count

policy or the optimal τ for threshold policy may not be a winning choice. Instead,

we observe in Figure 3.6a that choosing w ≈ 60 can be the best solution if the access

number varies among all three values of r, since the average age at w = 60 is very close

to the minimum age for any of the three curves.

We observe in previous figures that the average age at the receiver decreases as the

access number r increases due to parallelism and data replication. Figure 3.7 illustrates

the optimized average age for different access number r. For each r, we use the threshold

policy and obtain the minimum average age with optimized τ∗(r). In Figure 3.7a, the

shifted exponential service time with different λ is used. The average age decreases

quickly when r is small, but it also saturates quickly and the benefit of having larger

access number r is very minor if the source optimizes the updating strategy for the given

r. For example, the largest average age reduction occurs at the increase from r = 1 to

r = 2, and the average age curve for λ = 2 decays very slowly when r > 5. Figure 3.7b

demonstrates similar results for Pareto service time with different ν. From an engineering

perspective, larger access number essentially means more connectivity resources and

power usage for both the end-user equipment and the edge nodes. Although more edge

access helps maintaining information freshness, our observation here shows that having

too much access is in fact unnecessary, since the benefit of larger r degrades quickly.

Figure 3.8 demonstrates the optimized average age ∆∗(r) for every r, together with
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(b) Pareto model with b = 1.

Figure 3.7: Minimum average age obtained by optimizing the threshold τ∗ as a funciton
of the access number r.

another average age curve corresponding to a sub-optimal threshold τ for all r. For the

sub-optimal policy, we assume the source doesn’t know the access number of a receiver

and assume the worst case r = 1 conservatively. Thus, the source chooses a threshold

policy with τ∗(r = 1), which is suboptimal for r > 1. In Figure 3.8a, we also show

the upper bound on the average age using the threshold policy that is optimized for

r = 1, assuming the service time is shifted exponentially distributed in Corollary 3.4.14.

We note that the upper bound decays in the order of O(1/r). The curve for optimized

average age decays slightly faster than that for the sub-optimal scheme. Figure 3.8b

shows the similar comparison and the upper bound in Corollary 3.4.18 with Pareto

service time.
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Figure 3.8: Average age as a function of the access number r using different threshold
policies.

3.4.4 Appendix

Proof of Lemma 3.3.2

We note the sequence Yj , . . . , Yj+Ml−1 and the number of summation terms Ml can

be dependent. Since Ml is geometric, the event Ml = m indicates a sequence of

m − 1 consecutive failures followed by a success. Thus, Yj′ is identical to YF for

j′ =∈ {j, . . . , j +Ml − 2} and the last variable in the sequence Yj+Ml−1 is identical to

YS . This implies

E[W ] =

∞∑
m=1

PM (m) E

[
m∑
i=1

Yi

∣∣∣M = m

]

=

∞∑
m=1

PM (m)
(

(m− 1) E[YF ] + E[YS ]
)

= E[YF ](E[M ]− 1) + E[YS ]. (3.77)
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Substituting (3.5) into (3.77) yields

E[W ] =
1

p

(
(1− p) E[YF ] + pE[YS ]

)
= E[M ] E[Y ]. (3.78)

For the second moment, we write E
[
W 2
]

in total expectation as

E
[
W 2
]

=
∞∑
m=1

PM (m) E

[( m∑
i=1

Yi

)2∣∣∣M = m

]

=
∞∑
m=1

PM (m)

Var

[
m∑
i=1

Yi

]
+

(
E

[
m∑
i=1

Yi

])2
 . (3.79)

Since the random variables Yi are independent, we let

η1 =
∞∑
m=1

PM (m) Var

[
m∑
i=1

Yi

]

=
∞∑
m=1

PM (m)
(

(m− 1) Var[YF ] + Var[YS ]
)

= Var[YF ]
(

E[M ]− 1
)

+ Var[YS ]. (3.80)

Similarly, we have

η2 =
∞∑
m=1

PM (m)

(
E

[
m∑
i=1

Yi

])2

=
∞∑
m=1

PM (m)
(

(m− 1) E[YF ] + E[YS ]
)2

=
(
E
[
M2
]
− 2 E[M ] + 1

)
(E[YF ])2

+ 2(E[M ]− 1) E[YF ] E[YS ] + (E[YS ])2. (3.81)

The claim follows by substituting (3.80) and (3.81) in (3.79).
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Proof of Theorem 3.4.4

For shifted exponential r.v. X, the ratio of the first moment to the second moment of

the order statistic Xw:n is

µ
(2)
w:n

µw:n
= µw:n +

σ2
w:n

µw:n

= µw:n +
Hn2 −H(n−w)2

2λ2c+ 2λ(Hn −Hn−w)
. (3.82)

As n→∞, the asymptotic expansion for the harmonic number is

Hn = log n+ γ +O

(
1

n

)
. (3.83)

Similarly, if we let w = αn = O(n),

Hn−w = log(n− w) + γ +O

(
1

n− w

)
= log(n− w) + γ +O

(
1

n

)
(3.84)

Thus,

Hn −Hn−w = log n− log(n− w) +O

(
1

n

)
. (3.85)

Thus, we can use the asymptotic as a tight approximation Hn−Hn−w ≈ log n−log(n−w)

as n→∞. Note that the sequence Hn2 is monotonically increasing and limn→∞Hn2 =

π2/6, thus Hn2 −H(n−w)2 ≤ π2/6 is negligible and

Hn2 −H(n−w)2

2λ2c+ 2λ(Hn −Hn−w)
= o(1). (3.86)

It follows from (3.86) and (3.18a) that

µw:n = c+
1

λ
(Hn −Hn−w)

= c+
1

λ
(log n− log(n− w)) +O

(
1

n

)
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= c+
1

λ

(
log

n

n− w

)
+O

(
1

n

)
. (3.87)

µ
(2)
w:n

µw:n
= µw:n + o(1)

= c+
1

λ

(
log

n

n− w

)
+ o(1). (3.88)

In Theorem 3.4.2, the binomial coefficient is upper bounded by
(
n
k

)
≤ nk

k! . For small k,

we use the upper bound as an approximation

(
n

k

)
≈ nk

k!
. (3.89)

Substituting (3.86) and (3.88) into Theorem 3.4.2 we have the following results. For

w + r > n, Theorem 3.4.2 is then rewritten as

∆ =

n−r+1∑
i=1

µi:n

(
n−i
r−1

)(
n
r

) +
1

2

µ
(2)
w:n

µw:n
(3.90a)

=

n−r+1∑
i=1

µi:n
r

n

r−2∏
j=0

n− i− j
n− 1− j

+
1

2
µw:n + o(1) (3.90b)

≈
n−r+1∑
i=1

µi:n
(n− i)r−1r

nr
+

1

2
µw:n (3.90c)

≈
n−r+1∑
i=1

(
1

λ
log

(
n

n− i

)
+ c

)
(n− i)r−1r

nr
+

1

2λ
log

(
n

n− w

)
+
c

2
(3.90d)

≈ r
∫ z=n−r

n

x=0

(
1

λ
log

(
1

1− x

)
+ c

)
(1− x)r−1dx+

1

2λ
log

(
1

1− α

)
+
c

2
(3.90e)

=

(
1− (1− z)r(1− r log(1− z))

)
λr

+ c (1− (1− z)r) +
1

2λ
log

(
1

1− α

)
+
c

2

(3.90f)

=

(
1

λr
+ c

)
(1− (1− z)r)− 1

λ
(1− z)r log

1

(1− z)
+

1

2λ
log

(
1

1− α

)
+
c

2
. (3.90g)

In (3.90e), we denote α = w/n and approximate the sum 1/n
∑w

i=1 f(i) by the integral∫ α
x=0 f(x)dx and this approximation is tight since

∣∣∣∣∣
∫ α=w/n

x=0
f(x)dx− 1

n

w∑
i=1

f(i)

∣∣∣∣∣ ≤ O
(

1

n2

)
. (3.91)
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Similarly, for w + r ≤ n,

∆ =
w∑
i=1

µi:n

(
n−i
r−1

)(
n
r

)
−
(
n−w
r

) +
1

2

(
n
r

)
+
(
n−w
r

)(
n
r

)
−
(
n−w
r

)µw:n +
1

2

σ2
w:n

µw:n
(3.92a)

=

w∑
i=1

µi:n
r
∏r−2
j=0(n− i− j)∏r−1

j=0(n− j)−
∏r−1
j=0(n− w − j)

+
1

2

∏r−1
j=0(n− j) +

∏r−1
j=0(n− w − j)∏r−1

j=0(n− j)−
∏r−1
j=0(n− w − j)

µw:n + o(1) (3.92b)

≈
w∑
i=1

µi:n
(n− i)r−1r

nr − (n− w)r
+

nr + (n− w)r

2(nr − (n− w)r)
µw:n (3.92c)

≈
w∑
i=1

(
1

λ
log

(
n

n− i

)
+ c

)
(n− i)r−1r

nr − (n− w)r
+

nr + (n− w)r

2(nr − (n− w)r)

(
1

λ
log

(
n

n− w

)
+ c

)
(3.92d)

≈
∫ α

x=0

(
1

λ
log

(
1

1− x

)
+ c

)
(1− x)r−1r

1− (1− α)r
dx+

1 + (1− α)r

2(1− (1− α)r)

(
1

λ
log

(
1

1− α

)
+ c

)
(3.92e)

=
1

λc
− (1− α)r

λ(1− (1− α)r)
log

(
1

1− α

)
+ c

+
(1 + (1− α)r)

2λ(1− (1− α)r)
log

(
1

1− α

)
+
c(1 + (1− α)r)

2(1− (1− α)r)
(3.92f)

=
1

λr
+

1

2λ
log

(
1

1− α

)
+ c+

c(1 + (1− α)r)

2(1− (1− α)r)
. (3.92g)

To obtain (3.92c), we use the limit in (3.86) as an approximate and substitute it back

to Theorem 3.4.2. To simplify the expression we further denote β = 1−α and θ = 1− z

to complete the proof.

Proof of Corollary 3.4.5

Since Theorem 3.4.4 contains two intervals, the optimal β∗ can occur in either interval.

For the first case where w + r > n thus β < r/n, we taking the derivative of ∆̂1 in

Theorem 3.4.4 and have

d∆̂1

dβ
= −β

r−1(λcr − r log β)

λ
− 1

2λβ
. (3.93)
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Since 0 < β < 1, d∆̂1/dβ < 0 and ∆̂1 is a monotonic decreasing function of β. Therefore,

the minimum of ∆̂1(β) occurs as β → r/n, which implies w = n− r + 1 since w is an

integer.

For the second case with w + r ≤ n thus β ≥ r/n, we obtain the derivatives of ∆̂2

as follows

d∆̂2

dβ
= −β

2r − 2(λcr + 1)βr + 1

2λβ(1− βr)2
(3.94)

d2∆̂2

dβ2
=

2λcrβr
(
(r + 1)βr + r − 1

)
+ (1− βr)3

2λβ2(1− βr)3
(3.95)

Since r ≥ 1 and β < 1 in (3.95), d2∆̂2/dβ
2 > 0 and thus ∆̂2(β) is convex. Setting

d∆̂1/dβ = 0 we have

β2r − 2(λcr + 1)βr + 1 = 0. (3.96)

We define η = βr, and the solution to (3.96) for η ∈ (0, 1) is given by

η∗ = (λcr + 1)−
√

(λcr + 1)2 − 1. (3.97)

Since it is required that β ≥ r/n, the minimum point exists only if

(λcr + 1)−
√

(λcr + 1)2 − 1 ≥
( r
n

)r
. (3.98)

Otherwise, the function ∆̂2(β) is monotonically increasing in β and the minimum of ∆̂2

occurs at w = n− r.

Proof of Corollary 3.4.6

For the expected service time, we let β = 1− w/n and rewrite (3.88) as follows

E[Y ] = c+
1

λ
log

1

β∗

= c+
1

λ
log

1

(η∗)1/r
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= c− 1

λr
log η∗

= c− 1

λr
log
(

(λcr + 1)−
√

(λcr + 1)2 − 1
)
. (3.99)

Proof of Theorem 3.4.8

For Pareto (ν, b) r.v. X, we approximate the ratio of the first moment to the second

moment of the order statistic using the same techniques as in Lemma 3.4.7. It follows

from (3.22) that

µ
(2)
w:n

µw:n
= b

Γ(n− k + 1− 2
ν )Γ(n+ 1− 1

ν )

Γ(n+ 1− 2
ν )Γ(n− k + 1− 1

ν )

≈ b

√
(n− k − 2

ν )(n− 1
ν ) (n− k − 2

ν )n−k−
2
ν (n− 1

ν )n−
1
ν√

(n− 2
ν )(n− k − 1

ν ) (n− k − 1
ν )n−k−

1
ν (n− 2

ν )n−
2
ν

≈ b
√

(n− k)n√
n(n− k)

(n− k)n−k−
2
ν nn−

1
ν

(n− k)n−k−
1
ν nn−

2
ν

= b
n

1
ν

(n− k)
1
ν

= b(1− α)−
1
ν = µw:n. (3.100)

That is, we can approximate the ratio µ
(2)
w:n/µw:n simply by the first moment of the order

statistic µw:n and the ratio

lim
n→∞

σ2
w:n

µw:n
= 0. (3.101)

Let’s substitute (3.100) and Lemma 3.4.7 into Theorem 3.4.2, and approximate the

binomial coefficient by
(
n
k

)
≈ nk

k! . For w + r > n, Theorem 3.4.2 is then rewritten as

∆ ≈
n−r+1∑
i=1

µi:n
(n− i)r−1r

nr
+

1

2
µw:n (3.102a)

≈
n−r+1∑
i=1

b
n

1
ν

(n− i)
1
ν

(n− i)r−1r

nr
+
b

2

n
1
ν

(n− w)
1
ν

(3.102b)

≈ br
∫ z=n−r

n

x=0
(1− x)r−

1
ν
−1dx+

b

2

n
1
ν

(n− w)
1
ν

(3.102c)
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=
br

r − 1
ν

(
1− (1− z)r−

1
ν

)
+
b

2
(1− α)−

1
ν . (3.102d)

For w + r ≤ n,

∆ ≈
w∑
i=1

µi:n
(n− i)r−1r

nr − (n− w)r
+

nr + (n− w)r

2(nr − (n− w)r)
µw:n (3.103a)

≈
w∑
i=1

b
n

1
ν

(n− i)
1
ν

(n− i)r−1r

nr − (n− w)r
+
b (nr + (n− w)r)

2(nr − (n− w)r)

n
1
ν

(n− w)
1
ν

(3.103b)

≈ br

(1− (1− α)r)

∫ α=w
n

x=0

(
(1− x)r−

1
ν
−1
)

dx+
b (nr + (n− w)r)

2(nr − (n− w)r)
(1− α)−

1
ν (3.103c)

=
br

(r − 1
ν ) (1− (1− α)r)

(
1− (1− α)r−

1
ν

)
+
b (1 + (1− α)r)

2 (1− (1− α)r)
(1− α)−

1
ν . (3.103d)

To obtain (3.103a), we use the limit in (3.101) as an approximate and substitute it back

to Theorem 3.4.2.

Proof of Corollary 3.4.10

Since Theorem 3.4.8 contains two intervals, the optimal β∗ can occur in either interval.

For the first case where w + r > n thus β < r/n, we taking the derivative of ∆̂1 in

Theorem 3.4.8 and have

d∆̂1

dβ
= −bβ

−1− 1
ν

2

(
1

ν
+ 2rβr

)
. (3.104)

For ν > 1, β ∈ (0, 1), b > 0 and r > 1, the derivative in (3.104) is strictly negative.

Thus the approximation ∆̂ is monotonically decreasing in β. Therefore, the minimum

of ∆̂1(β) occurs as β → r/n, which implies w = n− r + 1 since w is an integer.

For the second case with w + r ≤ n, we have β ≥ r/n. We obtain the derivatives of

∆̂2 as follows

d∆̂2

dβ
=
bβ−1− 1

ν

(
1
ν2

(β2r − 1)− 2r2βr+
1
ν + r

ν (β2r + 1)
)

2 (1− βr)2 (r − 1
ν )

. (3.105)
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Then we let the derivative w.r.t β to be zero, i.e.,

(
1

ν2
+
r

ν

)
β2r − 2r2βr+

1
ν +

r

ν
− 1

ν2
= 0. (3.106)

Multiplying both sides by ν2 completes the proof.

Proof of Theorem 3.4.12

Here we denote X = mini∈RXi for convenience and Corollary 3.3.4 can be rewritten as

∆ =
τ(1 + q)

2(1− q)
+ E[X|X ≤ τ ], (3.107)

where q is given by (3.58) and

E[X|X ≤ τ ] =

∫ ∞
x=0

xfX|X≤τ (x)dx

=
1

Pr[X ≤ τ ]

∫ τ

x=0
xfX(x)dx

=
1

p

∫ τ

x=0
xfX(x)dx. (3.108)

We note that X is the minimum of r i.i.d. continuous random variables X, one need to

calculate the PDF of X from fX(x), which may not be straightforward in most cases.

Instead, we use the following lemma to obtain the integral in (3.108).

Lemma 3.4.20.

∫ τ

x=0
xfX(x)dx =

∫ τ

0
(1− FX(x))dx− τ(1− FX(τ)). (3.109)

Proof. Since 1− FX(x) is the complementary CDF of X,

∫ τ

0
(1− FX(x))dx =

∫ τ

0

∫ ∞
x

fX(t) dt dx

=

∫ τ

0

∫ t

0
fX(t) dx dt+

∫ ∞
τ

∫ τ

0
fX(t) dx dt (3.110a)
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=

∫ τ

0
tfX(t) dt+

∫ ∞
τ

τfX(t) dt

=

∫ τ

0
xfX(x) dx+ τ

(
1− FX(τ)

)
. (3.110b)

We note that (3.110a) is obtained by the change of integration order. Rearranging terms

in (3.110b) completes the proof.

Substituting (3.58), (3.108) and Lemma 3.4.20 back to (3.107), we have

∆ =
τ(1 + q)

2(1− q)
+

1

1− q

(∫ τ

0
(1− FX(x))dx− τ(1− FX(τ))

)
=
τ(1 + q)

2(1− q)
+

1

1− q

∫ τ

0
(1− FX(x))rdx− τq

1− q

=
τ(1− q)
2(1− q)

+
1

1− q

∫ τ

0
(1− FX(x))rdx

=
τ

2
+

1

1−
(
1− FX(τ)

)r ∫ τ

0
(1− FX(x))rdx. (3.111)

3.5 Multicast with Prioritized Nodes

3.5.1 Priority-count Restart Policy with Feedback

In this section, we look at a prioritized restart policy in which the receiving storage

nodes are categorized into two groups. The priority group consists of nodes that require

the delivery of every update, while all other nodes without the delivery requirement are

regarded as the non-priority group. Once a node receives an entire update message,

it acknowledges the source by sending instantaneous feedback. This model arises in a

variety of delay-sensitive applications, e.g. vehicle networks where the update messages

are popular and simultaneously request by large numbers of users. Some receiving nodes

require the history of all updates for the purpose of data aggregation and processing;

thus the delivery of every update message is crucial.

The system model with prioritized counting is in Figure 3.1. We only evaluate the

age performance at the storage nodes, which is equivalent to where there is a receiver

with an access number r = 1. The priority group consists of nodes 1, . . . , k, and the

source guarantees the delivery of every update to all of these priority nodes. Similar to
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Source

Node 2

Node 1

Node k

Node k+1

j+1

j

j

j

j

...

Figure 3.9: Alternative system with prioritized-count restart policy: the k nodes in
the priority group are shaded. The transmission of update j + 1 is initiated only after
update j is delivered to all k nodes in the group.

the Earliest-count policy, we assume there is an instantaneous feedback channel from

every node i back to the source, and node i acknowledges the source instantly as soon

as the update is delivered to the node i. When all k nodes in the priority group report

receiving the update j, this update is considered completed and the transmissions of

this update to all other nodes are terminated. The source immediately generates the

next update j + 1 and repeats the multicast process. Since all the services are i.i.d., the

service interval is i.i.d. and the policy is stationary. For every update j, let’s denote

that the priority nodes have service times X1j , X2j , . . . , Xkj , and the non-priority node

has service time Xk+1,j . The service interval is given by the maximum of the service

time in the priority group, i.e.

Yj = max{X1j , X2j , . . . , Xkj} = µk:k. (3.112)

The non-priority node, which is denoted by k+1, is not considered in the service interval.

We are interested in the average age at both the priority node and the non-priority node,

and we will show that the average age depends on the order statistics of the random

link delay Xij , which is similar to the Earliest-count policy.

3.5.2 AoI at Priority Nodes

We start by evaluating the average age at a single node in the priority group. Although

the source transmits every update to the non-priority nodes, it only waits for the k nodes

in the priority group. This indicates the age analysis for a priority node is equivalent to
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that using the Earliest-count policy which waits for all the k out of k nodes. Thus, it

follows directly from (3.35) that

Theorem 3.5.1. The average age at an individual node in the priority group is

∆P = µ+
µk:k

2
+

σ2
k:k

2µk:k
.

Note that Theorem 3.5.1 is valid for any distribution of X with finite mean and

variance.

Corollary 3.5.2. For shifted exponential (λ, c) service time X, the average age at an

individual node in the priority group is lower bounded by

∆P ≥
3c

2
+

1

λ
+

log k + γ

2λ
, (3.113)

Proof. Substituting (3.18a) and (3.18b) into Theorem 3.5.1 gives

∆P =
3c

2
+

1

λ
+
Hk

2λ
+

Hk2

2λ2c+ 2λHk
. (3.114)

Note that Hk2 =
∑k

i=1
1
k2

is monotonically increasing for n ∈ Z+ and limk→∞Hk2 =

π2/6. Thus, given λ and c,

lim
k→∞

Hk2

2λ2c+ 2λHk
↓ 0. (3.115)

The harmonic number is given by Hk = log k + γ +O( 1
k ), which can be lower bounded

by

Hk ≥ log k + γ, for k ∈ Z>0. (3.116)

Thus, (3.113) is given by substituting (3.115) and (3.116) into (3.114).

Corollary 3.5.2 indicates that the average age in the priority group ∆P is independent
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of the number of nodes n in the system, and it behaves almost like a logarithmic function

as the number of nodes k increases.

3.5.3 AoI at Non-priority Nodes

For a node in the non-priority group, the transmission of the current update is terminated

right after the delivery of the update to all the k nodes in the priority group. That is, a

non-priority node i fails to receive the update j if and only if the service time Xij is

larger than the service times of all the k nodes in the priority group. For i.i.d. service

time X, the probability that Xk+1 is the largest among all k + 1 nodes is simply

q(k) = 1/(k + 1), (3.117)

since we can group all the k + 1 nodes and the rank of Xk+1 among k + 1 random

variables is uniform from 1 to k + 1.

We note that whether an update j is delivered to the node k + 1, which is indicated

by ψj , and the service interval Yj are no more independent, and thus Corollary 3.3.4

is not applicable. Intuitively, the non-priority node successfully gets an update if

Xk+1,j < max(X1j , . . . , Xkj) = Yj . Given that an update j is delivered to node k + 1,

we have extra information about the random variable Yj since Yj is expected to be

larger. Hence, we need to use a more general average age formula in Theorem 3.3.3.

The key to evaluate Theorem 3.3.3 is the random variable YS and YF , which indicastes

the length of a service interval given that the update is successfully delivered to the

non-priority node k + 1. We note that YS has CDF FYS (y) = FY |Y≥Xk+1
(y). Given

Y ≥ Xk+1, Y is the largest service time among X1, X2, . . . , Xk+1, i.e.,

YS = Xk+1:k+1. (3.118)

Similarly, YF has CDF FYF (y) = FY |Y <Xk+1
(y). That means, the maximum of

X1, X2, . . . , Xk is smaller than Xk+1, and Y is the k-th smallest among all k + 1
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random variables, i.e.

YF = Xk:k+1. (3.119)

This also proves our conjecture above that Yj and ψj are dependent and thus Y 6= YF 6=

YS . In Theorem 3.3.3, we also note that X̃ indicates the service time of a non-priority

node k + 1 given that Xk+1 < max(X1, . . . , Xk). This condition implies Xk+1 cannot

be the largest among all k + 1 nodes. Thus,

E
[
X̃
]

= E[Xk+1 |Xk+1 < Xk+1:k+1] =
1

k

k∑
i=1

µi:k+1. (3.120)

Substituting (3.117), (3.118), (3.119) and (3.120) back into Theorem 3.3.3 yields

Theorem 3.5.3. The average age at an individual node in the non-priority group is

∆E =
1

k

k∑
i=1

µi:k+1 + δ1(k) + δ2(k),

where we denote

δ1(k) =
σ2
k:k+1 + kσ2

k+1:k+1

2(k + 1)µk:k

δ2(k) =
k+2
k µ2

k:k+1 + kµ2
k+1:k+1 + 2µk+1:k+1 µk:k+1

2(k + 1)µk:k
.

For exponential service times, we have the next claim follows from Theorems 3.5.1

and 3.5.3.

Theorem 3.5.4. For exponential service time X, the average age is the same for both

priority and non-priority nodes and is given by

∆E = ∆P =
1

λ
+
Hk

2λ
+

Hk2

2λHk
, (3.121)

where k is the priority group size.

Proof. For priority nodes, we obtain the average age by substituting (3.18a) and (3.18b)
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to Theorem 3.5.1 with c = 0, which directly yields (3.121). For non-priority nodes, the

first term in Theorem 3.5.3 is

δ0(k) =
1

k

k∑
i=1

µi:k+1 (3.122a)

=
1

k

k∑
i=1

Hk+1 −Hk+1−i
λ

(3.122b)

=
Hk+1

λ
− 1

λk

k∑
i=1

Hi (3.122c)

=
Hk+1

λ
− k + 1

λk
(Hk+1 − 1) (3.122d)

=
1

λ
+

1

λk
− Hk+1

λk
. (3.122e)

In (3.122d), we use the series identity of Harmonic numbers
∑k

i=1Hi = (k+1)(Hk+1−1).

Similarly, substituting (3.18a) and (3.18b) into δ1(k) and δ2(k) gives

δ1(k) =
(H(k+1)2 − 1) + kH(k+1)2

2(k + 1)λHk

=
Hk2

2λHk
− k

2λ(k + 1)2Hk
, (3.123)

δ2(k) =
k + 2

2k(k + 1)

(Hk+1 − 1)2

λHk
+

k

2(k + 1)

H2
k+1

λHk

+
1

k + 1

(Hk+1 − 1)Hk+1

λHk
. (3.124)

We note that δ0(k) in (3.122e) and δ2(k) in (3.124) only contain first order harmonic

numbers, thus we combine two terms and rewrite Hk+1 = Hk + 1/(1 + k), which gives

δ0(k) + δ2(k) =
1

λ
+
Hk

2λ
+

k

2λ(k + 1)2Hk
(3.125)

The claim is given by the sum of (3.123) and (3.125).

Theorem 3.5.4 implies that the average age is identical for both groups regardless of

whether an update is delivered to a node or not, if the service times are exponentially

distributed.
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Figure 3.10: Average age versus the priority group size k. circle ◦ marks the priority
group and cross × marks the non-priority group. The lower bound for priority group is
shown as dashed line.

3.5.4 Numerical Comparisons

Figures 3.10a and 3.10b compare the simulation results of the average age for the

priority group ∆P and the non-priority group ∆E as a function of the priority group

size k. In Figure 3.10a, the link delay to every node i is exponentially distributed

with different λ. The average age curves for both groups overlap with each other and

increase monotonically, which matches Theorem 3.5.4. The lower bound on the average

age for the priority group in Corollary 3.5.2 captures the trend for varying k, and

becomes tighter for sufficiently large k. Figure 3.10b shows the similar result for shifted

exponential delay with c = 1. For small group size k, there is a significant difference

between the average age for two groups. As k increases, the age for non-priority group

∆E decreases slightly in the beginning and climbs up after a certain k. We also observe

that the age difference between two groups vanishes for large enough k.
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Figure 3.11: Average age versus the exponential shift c with λ = 2. The priority group
size k = 5.

Figure 3.11 depicts the average age as a function of the shift parameter c for shifted

exponential delay X. In Figure 3.11 with exponential rate λ = 2, both groups have

almost linear increasing average age for different the constant shift c. The two curves

start at the same point for c = 0, and the difference in slopes leads to a larger gap

between two curves as c increases.
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Chapter 4

Resource Sharing For Multi-source Updating

In the previous chapters, we focus on the age analysis for systems that consist of only

one source. We assume the service facility, either the lossless bit pipe in Chapter 2 or

the multicast network in Chapter 3, is dedicated to the transmission of the updates

from a single source. In complex updating systems with multiple sources and receivers,

the service facility is usually shared among multiple update streams. In order to resolve

the resource contention among multiple sources, the service facility has to allocate

its service capacity to different sources. For example, arriving updates from different

sources can be regulated by queueing and processed according to certain disciplines,

or they can scheduled in real-time by some controlling algorithm. In this chapter, we

examine two updating systems, including remote cache updating [115] and computing

jobs scheduling [116], both with resource sharing at the service facility, and demonstrate

the resource allocation scheme that minimizes the corresponding age metrics.

4.1 Remote Cache Updating

Data generated at remote sources is often stored in a local cache to improve data

availability and to reduce backhaul network traffic. Consider a system where a local

server is connected to multiple remote sources and maintains local copies of the sources

as shown in Figure 4.1. This system arises from a variety of applications. For instance,

the local server could represent a web search engine that maintains time-stamped copies

of millions of webpages. Alternatively, the remote sources could also be sensors in IoT

devices which collect environmental or human-body data such as temperature or heart

rate. In these examples, the local server is simply an aggregator that collects different

types of data for further computation and analysis.
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RefreshUpdate
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Figure 4.1: Diagram of local cache refresh with n remote sources.

In many of these applications, the data at the remote sources are dynamic and subject

to random changes by external environment. The remote data item is updated randomly

and replaced by new versions at the source, and these updates occur independently

without being pushed to the local cache. In order to stay current about the information

at the source, the local server has to refresh its cache by periodically downloading a

new version of the data from the remote source. Although periodic refresh prevents the

local cache from becoming outdated, the local server is usually subject to a finite refresh

rate because it is tracking a large number of sources. As a result, the local server has to

allocate its constrained refreshing rate to the set of sources with various update rates

and popularities.

In order to measure the freshness of the local cache, various freshness metrics have

been introduced and analyzed. In web crawling and news subscription problems [117–119],

the age of the local copy is defined as the time difference between now and when the

local copy became desynchronized with the remote source. We rephrase and refer to this

metric as the age of synchronization (AoS), since it is a different timeliness metric other

than the AoI in this work. The AoI metric has also been applied to the evaluation of

cacheing systems. In [120], content packets arrive at a local limited-capacity cache, and

the local cache decides dynamically which content will remain in the finite buffer based

on the effective age, which is a function of the history of requests and the freshness of the

packet. Under a different caching model in which a remote server sends dynamic content

items to a local cache through a limited-capacity data link, it was shown [121] that the

optimal updating rate to minimize the weighted age over all items follows a square root

law for the content popularities. The work in this section is mainly motivated by [121]

but also different in several ways. We assume content item is located at different server



129
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Y2 = τ
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Figure 4.2: Sample paths of the AoS and AoI. • indicates the update at the remote source and
× indicates the data update is synchronized at the local server.

sites, and each content is replaced by new versions with an update rate specified by an

external random process. We examine this local cache refresh system and address the

similar refresh rate allocation problem with two different freshness metrics. The goal is

to ensure the freshness of the local cache over all the sources, and compare the optimal

allocation policies for two different metrics. Another interesting question of our interest

here is whether and when there exists an optimal policy for both metrics.

Here we consider a distributed content caching system with n remote data sources,

and a local server which maintains local copies of all the sources as shown in Figure 4.1

The remote data sources receive random updates that reflect the real-world database

changes. Since the local server operates independently of the remote sources, the local

copy of a particular source becomes out-of-date once the source receives an update and

the local copy differs from the source. To overcome the asynchrony between the server

and the sources, the local server periodically fetches the most recent information from

each source. More specifically, we refer to the cache update at the local server as a

synchronization event, or refresh event. Here we model the random update at each

source i as a Poisson process with rate λi, and the server refreshes the local copy i

periodically every τi time units.

Figure 4.2 depicts a sample path of the remote source updates and the local cache

synchronizations. Let’s define U1, U2, . . . , Uj as the sequence of remote source update

times, and T1, T2, . . . , Tj as the sequence of local refresh times. Thus, we denote M(t)

as the number of local refreshes up to time z. We illustrate the difference between the
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two freshness metrics as follows:

1. Age of Synchronization (AoS): Let US(t) denote the earliest time that the remote

source gets an update since the last refresh of the local copy, i.e.,

US(t) = min{Uj |Uj > TM(t)}. (4.1)

For instance, US(T1) at time t = T1 is U1 in Figure 4.2, since U1 is the only update time

before T1. Similarly, US(T2) is U2 since U2 is the first update time after the previous

sync time T1. The AoS of the local cache at time t is then defined as

∆S(t) = (t− US(t))+, (4.2)

where (·)+ = max(·, 0). Note that if the local cache is the same as the remote source,

then ∆S(t) = 0.

2. Age of Information (AoI): We denote U I(t) as the time when the latest update is

generated,

U I(t) = max{Uj |Uj ≤ TM(t)}. (4.3)

The AoI of the local cache at time t is ∆I(t) = (t−U I(t))+. Note that AoI only depends

on the latest update time.

Figure 4.2 demonstrates the sample paths of two age metrics. AoS remains zero until

U1, the time instance that the local cache and the remote source become desynchronized,

and then it increases linearly until the synchronization point T1. In contrast, AoI starts

accumulating from some initial value, and is reset to the desynchronized time gap T1−U1

at time T1. At time T2, AoI drops to the time difference between now and the latest

update T2 − U3, while AoS is reset to zero.

We emphasize that although both metrics measure the freshness of the content cache,

they are different in terms of the reference object. AoS uses the remote source itself

as the reference, while AoI also takes the staleness of the remote sources into account.
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Based on the definition of AoI, a remote source also becomes stale compared to the

external dynamic process it is capturing. That is, the local cache catches up with a

remote source once a refresh event is completed.

4.1.1 Minimizing AoI and AoS

Here we consider the scenario where the server has a constrained total refresh frequency

f for all the sources. Our objective is to allocate the total refresh frequency to each

source such that the average age over all sources is minimized. Let’s assume that the

server refreshes source i periodically with frequency fi = 1/τi. We first start with the

following discussion of the average AoS and AoI for each source i at the local server.

Lemma 4.1.1. For a remote source i with Poisson update rate λi, the age of synchro-

nization at the local server is given by

∆S
i =

1

2fi
− 1

λi
+
fi
λ2
i

(
1− e−λi/fi

)
. (4.4)

Proof. We refer to the time interval from the previous synchronization at Tj−1 to the next

synchronization at Tj as a synchronization/refresh interval, and we define Yj = Tj−Tj−1

as the inter-synchronization time. For each source i, the length of the synchronization

interval is fixed at τi, i.e., Yj = τi for all j. Similarly, we denote the waiting time for

the first source update as Xj where Xj = US(Tj) − Tj−1. An example of Y2 and X2

is shown in Figure 4.2. In this case, the average AoS in the second synchronization

interval is the average area of the red triangle starting from time T1 +X2. Let’s denote

the area of the age triangle for a given Xj = x as

A(x) =


(τi − x)2/2, x ≤ τi

0, otherwise.

(4.5)

For a Poisson update process with exponential rate λi, the average AoS is given by

∆S
i =

E[A]

τi
=

1

τi

∫ ∞
x=0

E[A|X = x]λie
−λixdx
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Figure 4.3: Sample paths of AoI with infrequent source updates: no update in the 2nd and
3rd intervals. • indicates the update at the remote source and × indicates the data update is
synchronized at the local server.

=
1

τi

∫ τi

x=0

(τi − x)2

2
λie
−λixdx

=
τi
2
− 1

λi
+

1− e−λiτi
λ2
i τi

. (4.6)

Substituting fi = 1/τi completes the proof. Defining the load of the system as ρi = λi/fi,

we can also rewrite Lemma 4.1.1 (was also presented in [117]) as

∆S
i =

1

λi

(
ρi
2
− 1 +

1− e−ρi
ρi

)
. (4.7)

Lemma 4.1.2. For a remote source with Poisson update rate λi, the age of information

(AoI) at the local server is given by

∆I
i =

1

2fi
+

1

λi
. (4.8)

Proof. When the local server synchronizes the cache for source i at time Tj , the AoI is

reset to the age of the most recent update. We denote the time difference from the latest

update Uk to the synchronization point Tj as Zj = Tj − U I(Tj) as shown in Figure 4.3.

In this case, the AoI increases linearly in the second and third synchronization interval

since there is no source update in these two intervals. We also denote random variable

M as the number of intervals until the local server gets a new update from the source;
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M is geometric with failure probability p′ = e−λiτi . The average AoI is the average area

under the sawtooth, which can be decomposed into the sum of polygonal areas as shown

in Figure 4.3. Given that there are at least one updates in the j-th interval, e.g. the

intervals 1 and 4, we define a new random variable Z̃j such that PZ̃j (z) = PZj |Zj<τi(z).

With the evaluation of the figure, we obtain

∆i = lim
l→∞

∑l
k=1Ak∑l
k=1 Yk

=
E[Ak]

E[Yk]
, (4.9)

where E[Yk] = E[Mτi] = τi E[M ]. And the polygonal area is given by

Ak =
(Z̃j + (Mτi + Z̃j))Mτi

2
. (4.10)

It follows that

E[Ak] = τi E
[
Z̃j

]
E[M ] +

τ2
i E
[
M2
]

2
. (4.11)

Substituting (4.11) back to (4.9) yields

∆i = E
[
Z̃
]

+
τi E

[
M2
]

2 E[M ]
. (4.12)

Note that Z̃ represents time difference between the latest source update and the

synchronization point given that there exists an update in the synchronization interval

j, i.e. Zj > 0. Since the update process is Poisson, it implies

E
[
Z̃
]

= E[Z|Z ≤ τi] =

∫ τi

z=0
z
λie
−λiz

1− e−λiτi
dz

=
1

λi
− τie

−λiτi

(1− e−λiτi)
. (4.13)

For geometric M , we have

E
[
M2
]

E[M ]
=

1 + p′

1− p′
=

1 + e−λiτi

1− e−λiτi
. (4.14)

Substituting (4.13) and (4.14) back into (4.12) gives (4.8).
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We note that Lemma 4.1.2 is similar to the relaxed problem (13) in [121]. The

relaxed age in [121] can be viewed as a special case with λi = 1, which indicates the

remote content is updated at every time unit.

We assume each source i has a popularity factor pi at the local server. The opti-

mization problem is then given by

min
{fi}

n∑
i=1

pi∆i, subject to
n∑
i=1

fi = f, (4.15)

where the age metric ∆i can be the average AoS in Lemma 4.1.1 or the average AoI in

Lemma 4.1.2.

4.1.1.1 AoS minimization

Lemma 4.1.3. The objective function for AoS ∆S =
∑n

i=1 pi∆
S
i is convex on f1, f2, . . . , fn.

Proof. For the average AoS in 4.1.1, we have

d2∆S
i

df2
i

=
1− e−

λi
fi

f3
i

. (4.16)

For fi > 0 and λi > 0, e−λi/fi < 1 . Thus,
d2∆S

i

df2i
> 0 and ∆S

i is convex on fi. Since ∆S

is a linear separable function of ∆S
i , ∆S (f1, f2, . . . , fn) is convex.

Lemma 4.1.4. The optimal solution f∗i = fi(α) is given by the root of the following

equation

g(fi) = − 1

2f2
i

+
1− e−

λi
fi

λ2
i

− e
−λi
fi

λifi
=
α

pi
, (4.17)

where the constant α is the root of the following equation

n∑
i=1

fi(α) = f. (4.18)



135

Proof. To solve the minimization on a convex function, we denote α as the Lagrange

multiplier and form the Lagrangian as follows

L(f1, f2, . . . , fn) =

n∑
i=1

pi∆
S
i + α

n∑
i=1

fi − αf, (4.19)

where ∆S
i is given by Theorem 4.1.1. Setting ∂L/∂fi = 0 for every i ∈ {1, 2, . . . , n}

yields (4.17). Note that the optimal f∗i is a function of the constant α. To obtain the α,

we substitute f∗i = fi(α) into the constraint
∑n

i=1 fi(α) = f .

Here we note that directly solving (4.15) with AoS in Lemma 4.1.1 is complicated.

Instead, we propose two approximations for Lemma 4.1.1 that lead to the following

theorems.

Theorem 4.1.5 (Policy P1). When the constraint f is sufficiently large, a near-

optimal synchronization frequency fi for source i that minimizes an approximation of

the weighted average of AoS over all sources is

f∗i =
f(piλi)

1/3∑n
i=1(piλi)1/3

. (4.20)

Proof. The Taylor series for e−ρ is

e−ρ = 1− ρ+
ρ2

2
− ρ3

6
+O(ρ4). (4.21)

We let ρ = λi/fi and rewrite g(fi) in (4.17) in the expansion form

g(fi) = − 1

2f2
i

+
1−

(
1− λi

fi
+

λ2i
2f2i
− λ3i

6f3i
+ . . .

)
λ2
i

−
1− λi

fi
+

λ2i
2f2i
− λ3i

6f3i
+ . . .

λifi

= − 1

2f2
i

+

(
1

λifi
− 1

2f2
i

+
λi

6f3
i

− . . .
)
−
(

1

λifi
− 1

f2
i

+
λi

2f3
i

− λ2
i

6f4
i

+ . . .

)
=

(
λi

6f3
i

− λ2
i

24f4
i

+ . . .

)
+

(
− λi

2f3
i

+
λ2
i

6f4
i

+ . . .

)
= −

(
3λi
3!f3

i

− λi
3!f3

i

)
+

(
4λ2

i

4!f4
i

− λ2
i

4!f4
i

)
− . . .

=

∞∑
n=3

(−1)n(n− 1)λn−2
i

n!fni
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= − λi
3f3
i

+O

(
1

f4
i

)
. (4.22)

We consider the case where every λi is fixed and fi → ∞ and the higher order term

O
(

1
f4i

)
is negligible. For each source i, we set

−piλi
3f3
i

+ α = 0. (4.23)

Solving (4.23) under constraint in (4.1.4) yields (4.20).

Theorem 4.1.6 (Policy P2). When the constraint f is small compared to λ1, λ2, . . . , λn,

a near-optimal synchronization frequency fi for source i that minimizes an approximation

of the weighted average of AoS over all sources is

f∗i =
f
√
pi∑n

i=1

√
pi
. (4.24)

Proof. Here we consider the case where fi is small and ρi = λi/fi is large for all i. Since

limρi→∞
1−e−ρi
ρi

= 0 in (4.7), we can approximate (4.7) by

∆S
i ≈

τi
2
− 1

λi
. (4.25)

As in the proof for Thm. 4.1.5, we form the Lagrangian

L(f1, . . . , fn) =

n∑
i=1

(
1

2fi
− 1

λi

)
− α

n∑
i=1

fi + αf. (4.26)

Setting ∂L/∂fi = 0 for every i ∈ {1, 2, . . . , n} yields 1/(2f2
i ) = α. Applying the

constraint
∑n

i=1 fi = f in (4.15), it follows that the optimal refresh frequency for source

i is given by (4.24).

We observe in Theorem 4.1.5 that the AoS near-optimal refresh rate for a content i

should be proportional to the cube root of both its popularity and update frequency

when f is large. However, when f is small, the near-optimal policy in Theorem 4.1.6
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does not depend on the update frequency at the source λi. Instead, the refresh rate

follows a square-root law with respect to the popularity of the item pi. When the source

popularities are uniform, i.e., p1 = . . . = pn, it was shown in [117] that the uniform

refresh frequency allocation provides lower AoS than the update-proportional allocation

policy that assigns the refresh frequency proportional to the source update rate. Here

our near-optimal allocation policy lies between uniform and update-proportional.

4.1.1.2 AoI minimization

Theorem 4.1.7. The optimal synchronization frequency fi for source i that minimizes

the weighted average of AoI over all sources is given by

f∗i =
f
√
pi∑n

i=1

√
pi
. (4.27)

Similar to the proof of Theorem 4.1.6, Theorem 4.1.7 is obtained by forming a

Lagrangian using Lemma 4.1.2 .

The AoI optimal refresh policy f∗i in Theorem 4.1.7 is identical to the policy P2,

which is optimal for small f in Theorem 4.1.6. We also note that this policy is identical

to the optimal strategy in [121], indicating that the AoI optimal policy is independent

of the refresh rates. This is mainly because AoI only captures the freshness of the most

recent update at the source. Whenever the local server refreshes the cache, the AoI of

the most recent update is statistically identical and exponentially distributed with rate

λi, regardless of the refresh rate fi, since the update process at the source is memoryless.

This also implies that if the source popularities are uniform, i.e. p1 = p2 = . . . = pn, the

optimal scheme is to assign the refresh frequency uniformly, fi = f/n for all i.

Corollary 4.1.8. The average AoI of source i obtained through optimal policy P2 is

given by

∆I
i =

∑n
i=1

√
pi

2f
√
pi

+
1

λi
. (4.28)
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(a) refresh constraint f = 10
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(b) refresh constraint f = 0.1

Figure 4.4: AoS vs. the portion of refresh frequency f1/f in a two sources model with
unequal popularities p1 = 1, p2 = 5, and source update rates λ1 = 1, λ2 = 10.
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Figure 4.5: AoI vs. the portion of refresh frequency f1/f in a two sources model with
constraint f = 10, popularities p1 = 1, p2 = 5, and source update rates λ1 = 1, λ2 = 10.

4.1.2 Numerical Comparisons for Two Freshness Metrics

4.1.2.1 Special Case: Two Sources

To illustrate the difference between various refresh rate allocation policies, we first start

with the simplest case, where the local server maintains the caches for only two sources.

In Figure 4.4, the update rate at the two sources are λ1 = 1 and λ2 = 10, and we set

the total refresh frequency f to be either (a) f = 10 or (b) f = 0.1. We assume the

two sources have popularities p1 = 1 and p2 = 5. Figure 4.4a depicts the average AoS

versus the portion of frequency, which is limited to f = 10, assigned to the first source
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Figure 4.6: AoS-optimal allocation policy f1/f vs. total refresh frequency constraint f .
The two source update rates are given as λ1 = 1 and λ2 = 10.

f1/f , in which different allocation policies are marked. We observe that policy P1 in

Theorem 4.1.5 provides almost the minimum age. In this example with λ2p2/λ1p1 = 50,

Theorem 4.1.5 implies that the AoS near-optimal refresh frequencies should satisfy

f2/f1 = 501/3, thus f1 ≈ 0.21f . In Figure 4.4b, the total refresh frequency is f = 0.1. It

is shown that the minimum age occurs at policy P2 in Theorem 4.1.6. In this case, the

refresh frequencies should be f2/f1 =
√

5, i.e. f1 ≈ 0.31f .

Similarly, Figure 4.5 depicts the average AoI as a function of f1/f when f = 10.

The AoI optimal policy, which is identical to P2, in Theorem 4.1.7 indicates that the

AoI optimal refresh frequencies should also be f2/f1 =
√

5. We also note that policy P2

is independent of the source update rate λ1 and λ2. If the popularities are the same,

p1 = p2, average AoI is minimized when f1 = f2 = f/2.

In Figure 4.6, we again fix the source update rate at λ1 = 1 and λ2 = 10, but vary

the total refresh constraint f . The popularities are assumed to be p1 = 1 and p2 = 5.

For every f , we obtain the optimal allocation policy f1, f2 by numerically solving the

optimization problem in (4.15). We note that policy P1 is f1 ≈ 0.21f . When f is large,

e.g. f ≥ 10, policy P1 is very close to the true optimal policy. However, as f becomes

smaller, e.g. f ≤ 0.01, the AoS optimal policy converges to f1 ≈ 0.31f , indicating

that the optimal policy follows a square root law for the popularity as policy P2, i.e.,

f1/f2 =
√
p1/p2 = 1/

√
5. This also proves that when the total constraint f is small, P2

is the optimal policy for both AoS and AoI.

In Figs. 4.7a and 4.7b, we constrain the total source update rate at the two sources

to be λ1 + λ2 = 10, and vary the ratio β = λ1/λ2 between two update rates. The
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Figure 4.7: Optimal average age vs. the ratio of two source update rates β = λ1/λ2 in a
two sources model with equal popularity. The total source update rates are constrained
by λ1 + λ2 = 10, and the local refresh rate is constrained by f = 10.

total refresh frequency is fixed at f = 10, and we assume the popularities are the same

p1 = p2. In Figure 4.7a, we obtain the AoS near-optimal refresh policy f1 and f2 from

Theorem 4.1.5 for each update ratio β. We observe that the average AoS is maximized

when β = 1, i.e. the update rates for two sources are equal λ1 = λ2. As one source gets

more frequent updates than the other, the average AoS decreases as the allocation policy

puts more weight into the more frequent source. In Figure 4.7b, the AoI optimal policy

f1 and f2 from Theorem 4.1.5 is applied for each update ratio β. In this case, f1 = f2

for all β since p1 = p2. We observe a different behavior that the average AoI increases

as β increases, and the average AoI of the infrequent source blows up as β → ∞ as

presented in Lemma 4.1.2.

4.1.2.2 Many Sources

Now we consider an example with n = 100 sources. To demonstrate the average age at

each source ∆i instead of the weighted average over all the sources, we use uniform and

Zipf distributions as examples for both the source popularity and the source update

rate. We define the following distributions for pi and note that they also apply to λi.
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Figure 4.8: The average age ∆i for each source i in a system with n = 100 nodes, and
Zipf distribution scale parameter s = 1.

• Uniform distribution: pi = 1/n.

• Zipf distribution: pi = 1/is∑n
1 1/is

.

Figure 4.8a depicts the comparison of average AoS between different source update

and popularity models. In this case, we set the scale parameter in Zipf distribution as

s = 1. By comparing uniform and Zipf popularity pi, we observe that more popular

sources have lower average AoS since the allocation policy assigns higher refresh frequency

to more popular sources. However, as the distribution model for source update λi changes

from uniform to Zipf, our allocation policy leads to significantly lower average AoS for

less frequent sources and higher age for more frequent sources. Figure 4.8b depicts the

comparison of average AoI under the same scenario. Similarly, if we fix the update

distribution model λi to be Zipf and compare uniform and Zipf popularity models, we

observe the AoI optimal policy assigns more weight to popular sources and thus leads

to lower average AoI for the popular ones.
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Figure 4.9: Example of edge cloud traffic scheduling system.

4.1.3 Possible Extensions

Although we have obtained nice results on the optimal rate allocation for any given

timeliness metric, the results depend on the assumptions of instantaneous refresh and

exponential update time. A critical one is that the refresh event completes in a very short

time period, thus it’s negligible in the analysis. We believe this is a proper assumption

for web crawling systems, but may not be suitable for ultra-low latency communication

systems for sensor networks. The time scale we’re considering in a sensor network

update, which is typically less than 10ms between samples, is rather small compared to

website updates, thus the delay for a refreshing event may be significant and dominating.

The other possible improvement is a more refined definition of the age metrics. In

this model, either AoI or AoS grows linearly in time, thus they only quantify the loss or

distortion in time. It is of practical interest to look at more general penalty functions

that captures the level of dissatisfaction depending on the instantaneous age.

4.2 Job Scheduling in Real-time Edge Computing

Most of the prior research on timely updates uses an “enqueue and forward” model,

which assumes the source node receives randomly arriving information packets and
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selectively forwards them to the destination. However, in a wide range of computer

vision applications, such as autonomous driving vehicles, virtual reality gaming, object

tracking and facial recognition, networking delay is only part of the story when the

service facility needs to further process the incoming information packets, especially when

the computation overhead dominates the network transmission latency. These computer

vision applications indeed demand an alternative “enqueue, process and forward” (EPF)

model. For example, autonomous driving cars periodically, say every 20 ms, capture

the front scenes with stereo cameras, and send them to a nearby edge cloud. The edge

cloud is then required to perform heavy computer vision calculations [122–124] on those

received stereo images where the output involves the estimated depth of the surrounding

objects appeared in the images or 3D point cloud. Those outputs will be delivered back

to the autonomous driving cars (the destination nodes) for better understanding of the

traffic environment.

Timely environment updates are critical to guarantee the safety and efficiency of the

driving experience. We note that the age of those updates can grow substantially as

edge clouds perform computer vision calculations. Importantly, unlike central clouds

with nearly unlimited computing resources, edge clouds are typically constrained by

their computing capabilities and might be over-utilized when the incoming traffic is

heavy. Thus, resource contention among different video streams and the randomness of

the processing time may significantly contribute to making information stale.

Our first attempt is to examine an edge cloud computing system which supports the

real-time processing of multiple video streams. We first start by simplifying the problem

to the following baseline model. We assume the edge cloud servers are grouped as a single

processing unit, which sequentially process stereo video frames from multiple users. We

then can view each video frame arriving at the edge cloud server as a job, and the monitor

at the user itself is receiving the processed results as the information updates. In this

case, the source is self-updating itself through the closed-loop video frame processing

at the edge cloud. The age of an update is then defined as the difference between

current time and the generation time of that particular job at the source. Therefore,

the objective is to obtain the optimal scheduling policy for job processing so that the
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information freshness at each user is maintained.

There have been many relevant works on the scheduling of multiple users to minimize

the age of information [7, 25, 27, 125]. The scheduling of updates in an unreliable

broadcast network with a base station and multiple receivers is considered in [25]. In this

system, the base station accumulates updates from different sources but can only update

at most one receiver at a time. A similar problem is considered in [27], in which an

information update is discarded if it is not selected by the base station for transmission.

Our work is motivated by the queueing model in [7], in which the job arrival times are

synchronized among all sources. We note that the most relevant work to ours is [125].

It was shown by experiments that choosing the source with maximum age reduction

leads to lower average age than several other schemes.

We note that the system model we consider for edge computing is very similar to the

caching problem in Section 4.1. Both systems require the resource sharing at the service

facility, either cache refresh or job computation, among multiple updating streams. The

caching system differs from the edge computing system mainly by the size of sources. In

web crawling applications, the local cache keeps track of a massive amount of sources,

which makes it hard to keep track of the instantaneous age process for each source

and perform real-time scheduling. Therefore, simply allocating the constrained refresh

capacity to each content and periodically updating the local copy from the remote

source is a more practical solution for the local cache. Intuitively, real-time scheduling

of updates should outperform any stationary policy with service rate allocation, since

scheduling utilizes the instantaneous state of the system.

4.2.1 Edge Computing Model and Age Penalty Function

Here we assume the edge cloud server is shared by n self-driving vehicles, and we refer to

each vehicle as a user. As illustrated in Figure 4.9, each user i sequentially submits jobs

to the edge cloud with rate λi, and each job is temporarily stored at a pre-processing

buffer Bi that can hold a single user i job. In particular, an incoming job with newer

generation time will replace an old job already stored in the buffer since the newer job

always contains fresher information. Since each job is a video frame captured by the
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stereo camera, the job upload time from each user to the edge cloud is considered to be

random. We denote mij as the j-th job from user i, and Uij as the corresponding job

upload time to the edge cloud. We assume the upload time Uij is i.i.d. for all the jobs j

corresponding to a user i. Once a job mij is generated at time A
(i)
j , it will be delivered

to the buffer at time A
(i)
j + Uij . At any time t, user i has submitted Ni(t) jobs to the

buffer, and the most recent job is generated at time A
(i)
Ni(t)

, then the job stored at the

buffer Bi has an instantaneous age

δi(t) = t−A(i)
Ni(t)

, i = 1, . . . , n. (4.29)

We refer to δi(t) as the buffer age as it equals the age of an observer who views jobs

arriving at buffer Bi as updates. Under this model, the age δi(t) is reset to the upload

time Uij of the most recent job when the buffered job is replaced by a new job.

In this work, we assume the edge computing unit to be a single processor that can

only handle one job at a time with processing rate S identical across all users i and

jobs j. We consider only work-conserving policies: the server is kept busy whenever the

buffers B1, B2, . . . , Bn are non-empty; if the buffers are all empty, then the server stays

idle and waits for the next arriving job. For a work-conserving policy, once the server

finishes processing the previous job but the buffers are not empty, the scheduler selects

the next job from the buffers as shown in Figure 4.9.

Denote s as the processing time for job k and φk ∈ {1, 2, . . . , n} as the indicator for

the user corresponding to the k-th job processed by the server. We also assume that the

processing time s is independent of the job arrival time. The processor starts the k-th

job at time tk and completes at time tk + s. The processing result of job k, which is an

information update, is then immediately sent back to the monitor at the corresponding

user φk = i. Since the processing result is much smaller than the original job size, and

the downlink bandwidth is usually sufficiently large, we assume the download time is

negligible. Here we define the age at the monitor of user i as the difference between the

present time and user’s knowledge about the environment. Since the received update at

the monitor i contains the information generated at time A
(i)
Ni(tk), the instantaneous age
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at the monitor i is reset to

∆i(t)|t=tk+s = t−A(i)
Ni(tk). (4.30)

After that, the age at the monitor increases linearly in time until the monitor receives

another update.

We denote π as a scheduling policy that determines the job φk to be processed. In

this model, the processor records the time stamp of each processed job, which is the

generation time of these jobs. Thus, the processor also knows the set of instantaneous

ages {∆i(t) : i = 1, . . . , n} at each monitor at any time t. We let Π represent the set of

causal work-conserving policies in which the scheduling decisions are made based on

the history of the states of the system up to the present time. Here we only consider

non-preemptive policies in which the processor must complete the processing of the

current update before starting to serve another.

Figure 4.10 demonstrates sample paths of both age processes δi(t) and ∆i(t) for a

particular user i. The first job is generated by user i at time A
(i)
1 = 0, and arrives at the

buffer Bi at time A
(i)
1 + Ui1. Once its processing is completed, the age at the monitor

∆i is reset to the age of the original job itself, which is also the buffer age δi. Both the

third and fourth jobs are skipped by the scheduler since the processor is busy serving

other users.

We consider the scenario in which vehicles are moving with different velocities, and

thus have different age requirements. Let αi to be the weighting factor associated with

the user i. Here we are interested in sum age penalty functions [7], which is a class of

penalty functions defined as

Psum(t) =
n∑
i=1

αif(∆i(t)), (4.31)

where f : [0,∞) → R is any non-decreasing penalty function for an individual user,

which represents the dissatisfaction associated with information staleness. Since the

penalty should be zero if the information is timely, we usually impose the initial condition
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f(0) = 0. Some examples of penalty functions are:

1. The penalty is simply the age itself f(∆) = ∆.

2. The exponential function of the age f(∆) = ea∆ − 1 where a ≥ 0. This suits

applications in which the need for information refresh is more desired as the

information gets stale.

3. The fraction function f(∆) = (a∆)/(a∆ + b) that maps the age to the binary

interval [0, 1]. This converts the age to a mission failure probability for many

attack-defense problems and certain control applications [126].

The time-averaged penalty function is then defined as

E[Psum(t)] = lim
T →∞

1

T

∫ T
t=0

n∑
i=1

αif(∆i(t))dt. (4.32)

Our objective is to minimize time-averaged sum age penalty function over all n users by

choosing the casual traffic scheduling policy π. We note that the scheduling policy π at

any time t depend on the history of all prior states of the system, including:

1. the instant age at the monitors ∆1(t),∆2(t), . . . ,∆n(t),

2. the generation time of j-th job A
(i)
j from user i for all j ≤ Ni(t) up to the present

time t.

4.2.2 Scheduling Policy

In order to describe the optimal scheduling policy, we first define the penalty reduction

after the service by the processor. Assume that the processor becomes idle and there

are at least one job waiting in the buffers B1, B2, . . . , Bn at time tk, and it selects the

job from user i for processing. Assuming this job is the k-th job at the processor and

the service time is s time units, we observe in Figure 4.10 that the age reduction for

user i after the processing time s is

Di(tk + s) = ∆i(tk)− δi(tk). (4.33)
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Figure 4.10: Sample path of age processes δi(t) and ∆i(t) at the buffer and the user
monitor.

We remark that the processor obeys a non-preemptive scheduling policy, in which the

server doesn’t preempt any job being serviced by new incoming jobs. Thus, the age

reduction at time tk + s depends on the difference between the age at the user monitor

and buffer age, both at time tk. At time tk, the most recent served and delivered update

for user i is denoted by Mi(tk), which is generated at time A
(i)
Mi(tk). On the other hand,

the job in the buffer at time tk is generated at time A
(i)
Ni(tk). From Figure 4.10, we also

observe that the age reduction in ∆i(tk + s) after service is

Di(tk + s) = A
(i)
Ni(tk) −A

(i)
Mi(tk). (4.34)

That is, the reduction in age at user i after the service is exactly the inter-arrival time

between the two most recent served jobs. In Figure 4.10, the second job mi2 is selected

for processing, and the third job mi3 arrives at the buffer during the processing period.

After the service for mi2, the reduction in age is A2 − A1 since the job mi2 relects

the real-time information at time A2. We also note that the job in the buffer is not

necessarily the most recently generated one, since each job mij takes a random upload

time Uij to arrive at the buffer. Since the scheduler has direct access to the timestamp
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of the job ANi(tk) at each buffer i, the effect of the random upload time Uij on the age

reduction is not directly reflected in (4.34).

Since only one job can be processed at a time, only the age of the served user

∆i(tk + s) is reduced, and the age processes of all other users remain unchanged. Thus,

the reduction of the sum age penalty function in (4.31) at time tk + s is

Ri(tk + s) = αi

(
f
(
∆i(tk + s)

)
− f

(
∆i(tk + s)−Di(tk + s)

))
. (4.35)

Although the scheduling decision is made at time tk, the reduction occurs at time tk + s

where the processor service time s is random and unknown to the scheduler. Thus, the

scheduler knows the age reduction Di(tk + s) in (4.34), but not the penalty reduction

Ri(tk + s) in (4.35). We now consider the following greedy scheduling policy which is

independent of the processor service time by assuming the processing can be completed

instantaneously, i.e. s = 0, and the reduction occurs immediately.

Definition 4.2.1. Maximum Immediate Penalty Reduction (MIPR) Policy.

When the server becomes available and the buffers are not empty at time t, the job from

user i with the maximum penalty reduction Ri(t) is served, with ties broken arbitrarily.

That is, the scheduling indicator is

φk = arg max
i

αi (f(∆i(tk))− f(∆i(tk)−Di(tk))) . (4.36)

Intuitively. the greedy MIPR policy is optimal if the best decision made based on the

current benefit still remains as the best decision in the future. This property brings some

restrictions on the growth of the penalty function since the service time s is random.

Definition 4.2.2. A penalty function f has Base-Independent Growth (BIG) if

for any x and non-negative constant s ≥ 0, there exists two penalty functions g1 and g2

such that

f(x+ s) = f(x)g1(s) + g2(s).

The definition of BIG states that the evolution of function f after s time units can
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Figure 4.11: Average age vs. average job arrival time with different scheduling policies.
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Figure 4.12: Average age vs. number of users with different policies.

be described by a multiplicative term g1(s) and an additive term g2(s), both depending

on only s. Note that when the shift is s = 0, f(x) = f(x)g1(0) + g2(0) holds for all x,

which requires g1(0) = 1 and g2(0) = 0.

We note that f(x) = eax is an example of the BIG penalty function since f(x+ s) =

f(x)f(s). In step (4.42), the initial difference f(x1)−f(x1−d1) is amplified by f(s) = eas

as the time s increases. Similarly, f(x) = eax − 1 is also a BIG penalty function, since

we can write

f(x+ s) = ea(x+s) − 1

= (eax − 1) eas + eas − 1

= f(x)eas + (eas − 1) . (4.37)
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On the other hand, a linear function f(x) = ax+b is another BIG penalty where g1(s) = 1

and g2(s) = as. In this example, f(x1 + s)− f(x1 − d1 + s) = f(x1)− f(x1 − d1) only

depends on the initial difference instead of the time difference s.

Theorem 4.2.3. If the service times are identically distributed across all the jobs

from all users, the MIPR policy is the optimal (1) causal, (2) work-conserving and (3)

non-preemptive policy for BIG penalty function f , specifically

Psum,MIPR(t) ≤st Psum,π(t), (4.38)

for any t ≥ 0 and any π ∈ Π, where ≤st is the stochastic ordering defined in [127].

It follows from Theorem 4.2.3 that

E[Psum,MIPR] ≤ E[Psum,π]. (4.39)

The proof of Theorem 4.2.3 in the appendix follows the sample path technique used in [7].

One key idea used in the proof is the inductive comparison between two policies. By

greedily choosing the user that gives the maximum penalty reduction, the instantaneous

penalty after the service completion is always smaller than that in any other policy.

Definition 4.2.4. Maximum Weighted Age Reduction (MWAR) Policy. When

the server becomes available, the job from the user i with the maximum weighted age

reduction αiDi(tk) is served among all packets in the buffer, with ties broken arbitrarily.

Corollary 4.2.5. If the penalty function is f(∆) = ∆, then MWAR is the age optimal

MIPR policy.

Corollary 4.2.5 follows directly from Theorem 4.2.3. In this special case, the schedul-

ing policy is now independent of the current age of an individual user ∆i(tk). MWAR

policy is also the maximum-age-first (MAF) policy in [7] if the job arrivals are synchro-

nized among users.
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4.2.3 Performance Evaluation

In this section, we evaluate the effectiveness and the fairness of the proposed maximum

weighted age reduction (MWAR) policy by considering the average age over users

(1/n)
∑n

i=1 αi∆i as the penalty function. Here we let all the users to be equally weighted,

αi = 1 for all i. We compare the MWAR policy with four other policies with different

system setup. The four reference policies are:

1. first-come-first-served (FCFS): the scheduler selects the job with earliest arrival

time in the buffer;

2. last-come-first-served (LCFS): the scheduler selects the most recent arrived job in

the buffer;

3. max-age-first (MAF): the scheduler selects the job corresponding to the user with

maximum age;

4. random: the scheduler selects one of the jobs in the buffer uniformly at random.

Figure 4.11 compares the average age for each policy by fixing the processing rate

S = 1 and varying the job arrival rate λi. The number of users is set to n = 5 and each

user submits jobs according to Poisson process with average inter-update time 1/λ. The

service time is exponentially distributed and thus the average job processing time is

1/S = 1. As the average inter-job submission time 1/λ increases, all the curves increase

and the gap between any two policies becomes smaller. This is mainly because the age

becomes dominated by the idle time between updates instead of the processing delay,

and the scheduling doesn’t provide much performance gain. Among all five policies,

MWAR policy gives the lowest average age. And the MAF policy, which is shown to

be optimal when the job arrival times are synchronized in [7], provides slightly larger

average age. On the other hand, the other three policies (FCFS, LCFS and random)

lead to almost the same much larger average age regardless of the job arrival rate.

Figure 4.12 depicts the comparison with server processing rate S = 1 and user job

submission rate λi = 1/2 by varying the total number of users n. As n increases, the
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Figure 4.13: Average age of each user in MWAR policy.

processor becomes busier and thus MWAR provides larger performance gain. We also

notice the average age grows almost linear as n increases.

While all the experiments in Figure 4.11 sets all the user update rates λi identical

for all i. In Figure 4.13 and 4.14, we choose different job submission rate λi for each

user i and evaluate how the scheduling policy treats users with different λi. Figure

4.13 depicts the average age of each user ∆i by varying the processing rate S. The job

submission rates for the n = 5 users are λ1 = 2, λ2 = 1, λ3 = 2/3, λ4 = 1/2, λ5 = 2/5. As

the average processing time 1/S increases, the individual average age increases almost

linearly and the gap between any pair of users stays almost the same, which implies the

MWAR policy keeps the difference between users regardless of the available resource of

the service facility.

Figure 4.14 demonstrates the fraction of served job at the processor corresponding

to each user. This is equivalent to the allocated rate for each source in Section 4.1.

For example, when the average service processing time is 1/S = 1, around 30% of jobs

served by the processor are from user 1. When the processor is operating very fast, it

can handle most of the jobs and thus the fraction of jobs is almost proportional to the

rate of each user λi. As the processing time gets larger, we observe the scheduler starts

to treat all users fairly and service in an equal way. Since every user experience long

waiting time when the traffic load is high, the age for each user is almost equally large.

As a result, the scheduler is busy serving every user one by one as soon as it finishes an

old job.
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Figure 4.14: The fraction of service corresponding to each user in MWAR policy.

4.2.4 Future Work

Since this is our initial step to examine the resource scheduling system at the edge cloud,

the abstract model is oversimplified, and the resulting scheduling policy is straightforward

but difficult to be generalized. We believe this work can be extended in the following

directions:

1. The most difficult part of the scheduling problem is to handle jobs with asyn-

chronous arrivals since those jobs with different time-stamps give different age

reduction or penalty reduction in general. We’ve proved that the greedy policy is

optimal for the weighted sum of the average age over all users, but this conclusion

does not hold for most other penalty functions. Our next step should be the study

of other scheduling policies, especially Index form policies [26,128], for other types

of penalty functions.

2. The computational tasks of visual applications usually depends on the amount of

information contained in an image/frame and the amount of new objects needed

to be updated in the point cloud [129,130], and thus a more realistic model should

categorize the jobs into different types with different computational resource

requirements and various service time distributions.

3. Our current effort models the edge cloud as a whole computing unit that processes

incoming jobs sequentially. However, the edge cloud is expected to be a cluster

that consists of massive number of heterogeneous computing units that allows
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tenants to perform distributed and parallel computing.

4.2.5 Appendix: Proof of Theorem 4.2.3.

We denote P as the MIPR policy and Psum,π(t) as the penalty function of policy π at

time t. We will compare P and any other work-conserving policy π ∈ Π on a sample

path of Psum(t).

For any sample path in policy P and π, we set the initial ages ∆i,P (t = 0) = ∆i,π(t =

0) for users i = 1, 2, . . . , n. The initial penalties are Psum,P (t = 0) = Psum,π(t = 0). The

system evolution is described by the following cases:

1. If no update completes in [t′, t′ + s] , the age process of every user ∆i(t) =

∆i(t
′) + (t− t′) for t ∈ [t′, t′ + s] .

2. If there is an update completion at time t, the age of the served user ∆i(t) is

reduced.

Now we define the following class of penalty functions.

Definition 4.2.6. Function f is a Present-Determines-Future (PDF) function if

f satisfies the following conditions:

1. If a pair of n-tuple sequences {x1i}, {x2i} and non-negative n-tuple constants {αi}

satisfy
∑n

i=1 αif(x1i) ≤
∑n

i=1 αif(x2i), then for any s ≥ 0,

n∑
i=1

αif(x1i + s) ≤
n∑
i=1

αif(x2i + s). (4.40)

2. If x1, x2 and non-negative constants β ≥ 0, d1 ≥ 0, d2 ≥ 0 satisfy

f(x1)− f(x1 − d1) ≥ β
(
f(x2)− f(x2 − d2)

)
,

then for any s ≥ 0,

f(x1 + s)− f(x1 − d1 + s)

≥ β
(
f(x2 + s)− f(x2 − d2 + s)

)
.
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Lemma 4.2.7. If a penalty function f is BIG, then f is PDF.

Proof. We need to show BIG f satisfies both conditions of PDF. For condition 1),

n∑
i=1

αif(x1i + s) = g1(s)
n∑
i=1

αif(x1i) +
n∑
i=1

αig2(s)

≤ g1(s)
n∑
i=1

αif(x2i) +
n∑
i=1

αig2(s)

=
n∑
i=1

αif(x2i + s). (4.41)

Similarly, condition 2) is met as follows

f(x1 + s)− f(x1 − d1 + s)

=
(
f(x1)g1(s) + g2(s)

)
−
(
f(x1 − d1)g1(s) + g2(s)

)
=
(
f(x1)− f(x1 − d1)

)
g1(s)

≥β
(
f(x2)− f(x2 − d2)

)
g1(s) (4.42)

=β
(
f(x2 + s)− f(x2 − d2 + s)

)
. (4.43)

Now we can start the proof of Theorem 4.2.3 by the following lemma about the first

case with no update completion.

Lemma 4.2.8. For PDF f , if Psum,P (t) ≤ Psum,π(t) and there is no update completion

between t and t+ s, then

Psum,P (t+ s) ≤ Psum,π(t+ s). (4.44)

The proof follows directly from the condition 1) in the definition of PDF by setting

x1i = ∆iP (t) and x2i = ∆iπ(t) for i = 1, 2, . . . , n. Note that Lemma 4.2.8 guarantees

that given the sum age penalty in policy P is smaller than that in policy π at some time

t, the same ordering holds for any time beyond t if there is no update completion.
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Now we move to the second case with an update completion at time tk + s. Whether

under policy P or policy π, an update is serviced from time tk to tk + s. The penalty

of policy P is Psum,P before the completion and becomes P ′sum,P after the completion.

Similarly, the penalty of policy π is Psum,π before the completion and becomes P ′sum,π

after the completion. All policies have the same update arrival process and service

process. We first prove the following lemma about inductive comparison between two

sample paths.

Lemma 4.2.9. For PDF function f , if Psum,P ≤ Psum,π, then P ′sum,P ≤ P ′sum,π.

Proof. When job k is to go into service at time tk, the MIPR policy P chooses the user

φk = arg maxiRi(tk). At the service completion time tk + s,

P ′sum,P (tk + s) = Psum,P (tk + s)−max
i
Ri(tk). (4.45)

By the MIPR policy, choosing user i yields larger immediate penalty reduction than

choosing user j, Ri(tk) ≥ Rj(tk) and

f(∆i(tk))− f(∆i(tk)−Di(tk))

≥αj
αi

[
f(∆j(tk))− f(∆j(tk)−Dj(tk))

]
(4.46)

Since the age reductions Di and Dj are independent of the service time s, by the

definition of a PDF function we have

f(∆i(tk + s))− f(∆i(tk + s)−Di(tk + s))

= f(∆i(tk + s))− f(∆i(tk + s)−Di(tk))

≥ αj
αi

[
f(∆j(tk+s))−f(∆j(tk+s)−Dj(tk))

]
=
αj
αi

[
f(∆j(tk+s))−f(∆j(tk+s)−Dj(tk+s))

]
. (4.47)

Hence, the penalty reduction at time tk + s is Ri(tk + s) ≥ Rj(tk + s). Thus,

arg max
i
Ri(tk) = arg max

i
Ri(tk + s). (4.48)
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The penalty of any policy π after the service completion is

P ′sum,π(tk + s) = Psum,π(tk + s)−Ri(tk + s)

≥ Psum,π(tk + s)−max
i
Ri(tk + s)

≥ Psum,P (tk + s)−max
i
Ri(tk + s)

= P ′sum,P (tk + s). (4.49)

Now given that the penalty function evolves under the condition of either Lemma

4.2.8 and 4.2.9, by induction over time, we have Psum,P (t) ≤ Psum,π(t), for all t ≥ 0.

And thus

E[Psum,P (t)] ≤ E[Psum,π(t)]. (4.50)

for any casual work-conserving policy π.
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Chapter 5

Conclusions

5.1 Summary

The emergence of ubiquitous connectivity and pervasive computing have engendered lots

of real-time applications in which the interested recipients keep track of the information

status at the remote sources. This is achieved by the transmission of status updates

between the source and destination through some communication networks. In this

thesis, we formulated the status updating problem in different network applications,

and evaluated the corresponding age of information (AoI) metrics.

In Chapter 2, we studied the lossless source coding problem on arriving status

updates in favor of both the average AoI and the average peak AoI. In streaming

source coding, we converted the AoI minimization problem to an existing codebook

optimization problem with penalties depending on moments of the encoded sequence

length. For deterministic symbol arrivals, we showed that the age benefits from short

blocklength, which is essentially different from conventional lossless compression results.

For random symbol arrivals, the codebook design involves some special techniques to

encode the idleness at the source.

In Chapter 3, we extended the AoI analysis to updating systems with multiple

destinations. Each update is replicated and distributed to multiple nodes using multicast,

and the source controls when to terminate the transmission of the current update and

generate a new one. We showed that the average age performance at the receiver,

which has access to a subset of nodes, can be significantly improved by allowing the

source to carefully choose how long it waits for each update transmission. The system

model we considered is applicable to a wide range of applications, including live content
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distribution to the edge cloud, and content updates in quorum-type distributed storage.

In Chapter 4, we examined two updating systems with shared resource at the service

facility. We first looked at a remote cache updating system in which the local server

maintains snapshots of the content at different remote sources and refreshes these

snapshots with a total rate limit. The AoI metric was compared to an alternative AoS

metric. We showed that the the optimal rate allocation policies for the two different age

metrics coincide under some circumstances. The second application we investigated is the

edge cloud computational offloading system shared by multiple users. The AoI-optimal

scheduling policy for incoming jobs at the edge server was proved to be a greedy policy

that always processes the job with the maximum age reduction.

5.2 Future Work

There are numerous interesting open problems associated with information freshness as

captured by the age, mainly because of the importance of the age being a performance

metric for massive real-time applications. Our effort in this thesis only revealed a small

portion of them. Moreover, some limitations in our work also point to several new

directions for future research.

For the streaming source coding problem, we have proposed a near-optimal coding

scheme that outperforms Huffman codes, which minimizes the average codelength only.

However, we also numerically observed that the advantage is very minor in some cases,

especially when a large blocklength is used. We believe this is related to limitations

on the codelength variance for large source alphabet, which requires more thorough

understanding of the binary tree structure for prefix-free codes.

When we study the job scheduling problem at the edge cloud, we assume the entire

edge cloud to be a single powerful computing unit, which acts as a proxy for the

complicated modern edge systems. As what we discussed at the end of Chapter 4, an

interesting research direction is to relax this assumption and investigate whether greedy

policies stay optimal for edge systems that is equipped with heterogeneous computing

units and processing multi-type jobs.
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