Staff View
Liquid-based stationary phase for deterministic lateral displacement separation in microfluidics

Descriptive

TypeOfResource
Text
TitleInfo
Title
Liquid-based stationary phase for deterministic lateral displacement separation in microfluidics
Name (type = personal)
NamePart (type = family)
Du
NamePart (type = given)
Siqi
Affiliation
Mechanical and Aerospace Engineering, Rutgers University
Role
RoleTerm (authority = marcrt); (type = text)
author
Name (type = personal)
NamePart (type = family)
Shojaei-Zadeh
NamePart (type = given)
Shahab
Role
RoleTerm (authority = marcrt); (type = text)
author
Affiliation
Mechanical and Aerospace Engineering, Rutgers University
Name (authority = orcid); (authorityURI = http://id.loc.gov/vocabulary/identifiers/orcid.html); (type = personal); (valueURI = http://orcid.org/0000-0003-3860-7329)
NamePart (type = family)
Drazer
NamePart (type = given)
German
Affiliation
Mechanical and Aerospace Engineering, Rutgers University
Role
RoleTerm (authority = marcrt); (type = text)
author
Name (authority = RutgersOrg-Department); (type = corporate)
NamePart
Mechanical and Aerospace Engineering
Name (authority = RutgersOrg-School); (type = corporate)
NamePart
School of Engineering
Genre (authority = RULIB-FS)
Article, Refereed
Genre (authority = NISO JAV)
Accepted Manuscript (AM)
Note (type = peerReview)
Peer reviewed
OriginInfo
DateCreated (encoding = w3cdtf); (keyDate = yes); (qualifier = exact)
2017
Abstract (type = Abstract)
Deterministic lateral displacement (DLD) is a promising separation scheme in microfluidic systems. In traditional DLD, a periodic array of solid posts induces the separative migration of suspended particles moving through the system. Here, we present a radical departure from traditional DLD systems and use an array of anchored liquid-bridges as the stationary phase in the DLD device. The liquid-bridges are created between two parallel plates and anchored to the bottom one by cylindrical wells. We show that the non-linear particle dynamics observed in traditional DLD systems is also present in the anchored-liquid case, enabling analogous size-based separation of suspended particles. The use of liquid-bridges as the stationary phase presents additional possibilities in separation technologies, potentially eliminating or significantly reducing clogging, enabling renewable and/or reconfigurable systems, allowing a different set of fabrication methods and providing alternative ways to separate particles based on their interaction with liquid–liquid interfaces. Some of these advantages could also extend to filtration methods based on similar liquid-based stationary phases.
Language
LanguageTerm (authority = ISO 639-3:2007); (type = text)
English
PhysicalDescription
InternetMediaType
application/pdf
Extent
1 online resource (12 pages) : illustrations
Extension
DescriptiveEvent
Type
Citation
DateTime (encoding = w3cdtf)
2017
AssociatedObject
Name
Soft Matter
Type
Journal
Relationship
Has part
Detail
7649-7656
Identifier (type = volume and issue)
41
Reference (type = url)
https://doi.org/10.1039/C7SM01510K
Extension
DescriptiveEvent
Type
Grant award
AssociatedEntity
Role
Funder
Name
National Science Foundation
AssociatedEntity
Role
Originator
Name
German Drazer
AssociatedObject
Type
Grant number
Name
CBET- 1343924
RelatedItem (type = host)
TitleInfo
Title
Drazer, German
Identifier (type = local)
rucore30143000001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/t3-h389-vq48
Genre (authority = ExL-Esploro)
Accepted Manuscript
Back to the top

Rights

RightsDeclaration (AUTHORITY = FS); (TYPE = [FS] statement #1); (ID = rulibRdec0004)
Copyright for scholarly resources published in RUcore is retained by the copyright holder. By virtue of its appearance in this open access medium, you are free to use this resource, with proper attribution, in educational and other non-commercial settings. Other uses, such as reproduction or republication, may require the permission of the copyright holder.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
RightsEvent
Type
Permission or license
AssociatedObject
Type
License
Name
Multiple author license v. 1
Detail
I hereby grant to Rutgers, The State University of New Jersey (Rutgers) the non-exclusive right to retain, reproduce, and distribute the deposited work (Work) in whole or in part, in and from its electronic format, without fee. This agreement does not represent a transfer of copyright to Rutgers.Rutgers may make and keep more than one copy of the Work for purposes of security, backup, preservation, and access and may migrate the Work to any medium or format for the purpose of preservation and access in the future. Rutgers will not make any alteration, other than as allowed by this agreement, to the Work.I represent and warrant to Rutgers that the Work is my original work. I also represent that the Work does not, to the best of my knowledge, infringe or violate any rights of others.I further represent and warrant that I have obtained all necessary rights to permit Rutgers to reproduce and distribute the Work and that any third-party owned content is clearly identified and acknowledged within the Work.By granting this license, I acknowledge that I have read and agreed to the terms of this agreement and all related RUcore and Rutgers policies.
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
Document
CreatingApplication
Version
1.4
ApplicationName
macOS Version 10.15.2 (Build 19C57) Quartz PDFContext
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2020-01-28T22:55:18
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2020-01-28T22:55:18
Back to the top
Version 8.3.13
Rutgers University Libraries - Copyright ©2020