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THESIS ABSTRACT 
 

Assessment of Transcriptomic Constraint-based Methods for Central Carbon Flux Inference 
 

by Siddharth Bhadra-Lobo 
 

Dissertation Director: 
 

Dr. Desmond S. Lun 
 

 

Motivation: Determining intracellular metabolic flux through isotope labeling techniques such as 13C 

metabolic flux analysis (13C-MFA) incurs significant cost and effort. Previous studies have shown 

transcriptomic data coupled with constraint-based metabolic modeling can determine intracellular fluxes 

that correlate highly with 13C-MFA measured fluxes and can achieve higher accuracy than constraint-based 

metabolic modeling alone. These studies, however, used validation data limited to E. coli and S. cerevisiae 

grown on glucose, with significantly similar flux distribution for central metabolism. It is unclear whether 

those results apply to more diverse metabolisms, and therefore further, extensive validation is needed. 

Results: In this paper, we formed a dataset of transcriptomic data coupled with corresponding 13C-MFA flux 

data for 21 experimental conditions in different unicellular organisms grown on varying carbon substrates 

and conditions. Three computational flux-balance analysis (FBA) methods were comparatively assessed. The 

results show when uptake rates of carbon sources and key metabolites are known, transcriptomic data 

provides no significant advantage over constraint-based metabolic modeling (average correlation 

coefficients, transcriptomic E-Flux2 0.725 and SPOT 0.650 vs non-transcriptomic pFBA 0.768). When 

uptake rates are unknown, however, predictions obtained utilizing transcriptomic data are generally good and 

significantly better than those obtained using constraint-based metabolic modeling alone (E-Flux2 0.385 and 

SPOT 0.583 vs pFBA 0.237). Thus, transcriptomic data coupled with constraint-based metabolic modeling 

is a promising method to obtain intracellular flux estimates in microorganisms, particularly in cases where 

uptake rates of key metabolites cannot be easily determined, such as for growth in complex media or in vivo 

conditions.
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1 Introduction  
 Computational tools integrating transcriptomic data into genome-scale metabolic models can predict 

system-level and condition specific metabolic flux distributions. Many methods for inferring metabolic 

fluxes from gene expression data have been, and continue to be, developed [1-3]. However, the comparative 

performance of these methods lacks diverse experimental flux data for validation. Existing validation was 

performed exclusively against flux data generated from E. coli and S. cerevisiae (yeast) cultures grown on 

glucose as the sole carbon source [3, 4]. Cells cultured on identical substrates produce highly conserved 

glucose metabolism pathways [5]. This carbon source bias presents significant similarities in the measured 

metabolic flux distribution across previous validation datasets which may have been inadequate in assessing 

predictive performance.  

Carbon source availability and relative uptake rates influence cellular metabolism. In nature, heterotrophic 

microorganisms can encounter a wide set of possible carbon sources to support growth, including sugars, 

polyols, alcohols, organic acids, and amino acids [6]. Heterotrophs such as E. coli and Bacillus subtilis have 

been widely studied and cultured on a variety of substrates including monosaccharides (e.g. glucose, fructose, 

galactose), disaccharides (e.g. sucrose), and two-carbon compounds (e.g. acetate) [7-11]. Thus, under a 

multitude of possible carbon sources, an incorrectly constrained heterotrophic model can reduce the 

predictive accuracy of central carbon fluxes from conventional FBA methods. Gene expression may be useful 

to impute model constraints based on transcript abundance in the absence of specific carbon source and 

uptake rate data.  

Growth condition encompasses the availability of metabolic state-determining metabolites, both organic and 

inorganic (e.g. glucose, CO2, photons, NO3). Missing or incorrect growth condition information can change 

flux predictions to alternate metabolic states of the cell. Photoautotrophic unicellular metabolic models are 

generally well characterized and therefore simpler to constrain with respect to carbon source. The depletion 

of non-carbon metabolites may metabolically adapt the cell to alternate metabolic states. For example, light 

inhibition can shift metabolism from either autotrophic, heterotrophic, or a combination of both as 

mixotrophic in Synechocystis sp. PCC 6803 [12]. A substrate void of nitrate can induce replenishing of 

nitrogen from metabolic sinks such as amino acids for Synechococcus sp. PCC 7002 [13]. In the lack of 
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environmental condition specificity, informational deficit may be overcome with gene expression data such 

as key pathways being allocated flux values based on the upregulation of associated transcripts.  

Previous studies [2, 3] have extensively evaluated the predictive capability of in silico flux prediction using 

measured extracellular and intracellular fluxes in multiple experimental conditions, but under single carbon 

source bias (glucose) in two organisms. To this end, we have compiled an additional 21 experimental 

conditions of transcriptome measurements coupled with corresponding central carbon metabolic intracellular 

13C flux measurements in 4 organisms (8 in E. coli, 8 in Bacillus subtilis, 3 in Synechocystis sp. PCC 6803, 

and 2 in Synechococcus sp. PCC 7002). These conditions were applied to models run using two 

transcriptomic methods (E-Flux2 and SPOT) [4] and the non-transcriptomic method parsimonious FBA 

(pFBA) [14], a method present in previous validation studies [2-4] and shown to give good flux predictions. 

In this study, the generality of E-Flux2 and SPOT have been validated against pFBA using this new dataset 

of diverse carbon sources and conditional constraints.  

In the absence of carbon source and growth condition data, transcriptomic coupled constraint-based modeling 

is useful in bridging this information gap. If it is even feasible in the experimental condition of interest, the 

extraction of 13C-labeled isotopes is costly and laborious. The 13C-labeled data also conveys minimal growth 

condition information as it cannot be directly applied to non-carbon metabolites [15]. In contrast, gene 

expression data is relatively simple to gather and is obtained from cell culturing experiments regularly. With 

transcriptomic FBA methods, researchers can utilize their gathered expression data to estimate intracellular 

metabolism. 
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2 Materials and Methods 

2.1 Gene expression, flux datasets, and metabolic models 

 All gene expression measurements obtained were not normalized any further past the instrument 

processed signal. Any log-transformed data was transformed back to their original scale by exponentiation. 

2.1.1 Data and model for E. coli 

 For E. coli, both the measured gene expression (single color microarray) and 13C flux data were 

obtained from a previous study by Gerosa et al. [17]. In this study, data were measured from E. coli wild type 

BW25113 cells growing exponentially on eight different carbon sources: glucose, galactose, gluconate, 

fructose, glycerol, pyruvate, acetate, and succinate. We used iJO1366 [18] as the genome-scale metabolic 

model.  

2.1.2 Data and model for B. subtilis 

 For B. subtilis, we used transcriptomic (single color microarray) and 13C flux data published in [19] 

and [20], respectively. Data were obtained from B. subtilis BSB168 cells grown under eight conditions 

defined by different carbon sources: glucose, fructose, gluconate, succinate + glutamate, glycerol, malate, 

malate + glucose, and pyruvate. For the genome-scale metabolic model of B. subtilis, the model published 

by Oh et al. [21] was used. 

2.1.3 Data and model for Synechocystis sp. PCC 6803 

 For Synechocystis sp. PCC 6803, transcriptomic (RNA-seq) data was graciously provided by Dr. Le 

You (University of California San Diego, USA) and Dr. Yinjie Tang (Washington University in St. Louis, 

USA) [12]. The 13C flux data was compiled from three different publications [12, 22, 23]. Data were measured 

from the strain Synechocystis sp. PCC 6803 grown under three different conditions: photoautotrophic (i.e. 

HCO3- (bicarbonate) as the main carbon source) [23], photomixotrophic (i.e. open air CO2 + glucose) [22], 

and heterotrophic (i.e. open air CO2 + glucose, constrained photons) [12], respectively. We used the genome-
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scale metabolic model of Synechocystis sp. PCC 6803 developed by Knoop et al. [24]. An external pseudo-

compartment was added to the model through which metabolites can be exchanged with the external 

environment via cellular transport reactions. 

2.1.4 Data and model for Synechococcus sp. PCC 7002  

 For Synechococcus sp. PCC 7002, the transcriptomic (RNA-seq) data was obtained from a previous 

publication by Ludwig and Bryant [25]. The 13C flux data for this model was gathered from Qian et al. [26]. 

Data were measured from Synechococcus sp. PCC 7002 cells grown photoautotrophically (i.e. CO2 carbon 

source and photon uptake) with 10 mM nitrate and with no other nitrogen source. iSyp821 was used for the 

organism's genome scale-metabolic model [13]. 

2.2 Computational Prediction and Correlation 

2.2.1 Computational metabolic flux prediction  

 In this study, E-Flux2, SPOT [4], and pFBA [14] were used to predict metabolic flux distributions. 

Biomass production was set as the objective function for E-Flux2 and pFBA. All FBA methods used in this 

study are referenced from their original publications [4, 14]. Computations were carried out on the macOS 

Mojave platform using a personal computer with a 3.1 GHz Intel Core i5 processor with 8GB of RAM. E-

Flux2, SPOT and pFBA methods are implemented in MOST (Metabolic Optimization and Simulation Tool) 

which is available at http://most.ccib.rutgers.edu [27]. 

2.2.2 Correlation calculations 

 Validation of the predictive accuracy of the methods used in this study was done by calculating the 

uncentered Pearson product-moment correlation between in silico fluxes and corresponding 13C determined 

intracellular fluxes as previously described in [4]. A value of the correlation coefficient close to +1 or -1 

indicates a strong relationship via a positive or negative scale factor, respectively, between experimentally 

measured fluxes and computationally predicted fluxes; a value of 0 indicates no such relationship [28]. If a 

measured reaction corresponds to a set of consecutive reactions in the model that are linked with intermediate 
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metabolites (AND relationship), then the minimum flux value among the predicted fluxes was used. If a 

measured flux corresponds to multiple identical reactions (OR relationship), the sum of those predicted fluxes 

was used to calculate the correlation. 

Correlations were calculated between the measured and predicted fluxes per carbon source in MATLAB 

R2018b (The Math Works Inc., Natick, Mass., USA). The predicted fluxes for the transcriptomic methods 

(E-Flux2 and SPOT) were generated using the respective carbon source and/or growth condition gene 

expression profile. pFBA does not use gene expression and was run in two scenarios, one where the carbon 

source flux was not specified (i.e. maximal uptake allowed) and one where the carbon source flux is specified 

(for uptake rates used see Supplementary S1 Table). Carbon source fluxes were gathered from uptake rates 

from the respective 13C flux experiments (mmol/g DCW/h).
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3 Results 

 To test generality of E-Flux2 and SPOT, we evaluated predictive accuracy by calculating the 

uncentered Pearson correlation (Section Methods) between experimentally measured and computationally 

predicted intracellular fluxes using transcriptomic data, for the compiled 21 experimental conditions. The 

dataset consists of 8, 8, 3, and 2 conditions of E. coli, B. subtilis, Synechocystis sp. PCC 6803, and 

Synechococcus sp. PCC 7002, respectively (Section Methods provides carbon source information). We 

expect model choice affects the transcriptional FBA methods more than the non-transcriptional. A less 

complete model may have reduced constraint mapping from the relevant gene expression data. 

We have chosen the uncentered Pearson correlation as a good, goodness-of-fit metric because 

transcriptomic flux inference, in general, estimates that high transcript count corresponds with high flux, but 

not the actual flux value. Therefore, the predicted flux values are in arbitrary units. This type of correlation 

captures predictive accuracy irrespective of the scaling introduced by the gene expression data.  

 

 Testing flux prediction under known and unknown carbon sources, E. coli and B. subtilis fluxes were 

simulated under different carbon source availabilities, at three different stages. 

A. DC: Known carbon source and uptake rate information available, uptake rate is only supplied to the 

non-transcriptomic method, pFBA. 

B. AC: Unknown carbon source and uptake rate, only eight speculative carbon sources without uptake 

rate data are available to the model. 

C. Full AC: No carbon source information available, all possible carbon sources (and any other 

extracellular metabolites) opened for exchange into the model. 

 

 Testing flux prediction under different growth condition in PCC 6803 and PCC 7002. Fluxes were 

simulated under based on the organism’s possible metabolic states, at two different stages. Carbon sources 

are fewer and simpler to constrain in these photoautotrophic organisms, therefore here AC is the same as Full 

AC in the previous heterotrophic organisms.  
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A. DC: Growth condition information and metabolic state are known and uniquely applied to simulate 

each respective organism’s metabolic states. Carbon uptake rate data only supplied to pFBA. 

B. AC: No growth condition information is available, all possible carbon and inorganic metabolites 

available for simulating the mixotrophic condition. 

 

Unknown growth condition was used to demonstrate cases of complex media or in vivo growth of 

cultures. An example of this would be in studying the metabolism of enteric bacteria both pathogenic and 

commensal/mutualistic, in which the growth medium is complex, and the culture is grown in vivo. An 

example of a pathogenic model is Mycobacterium tuberculosis. In tuberculosis, the bacterium live inside of 

scar tissue of the lung and their metabolism is uncertain. To measure this using conventional 13C-MFA would 

not be feasible, but extraction of RNA expression data has been shown to be possible [29]. This may also be 

useful in other cases of bacterial pathogenesis. In the cases of commensalism/mutualism within the gut 

microbiome, the distribution of bacterial species in the gut has been shown to vary based on diet [30]. It may 

be possible to determine how metabolism in the microbes shift in the species that continue to persist in the 

gut during dietary changes, using transcriptomic flux prediction. A hypothetical experiment would be to 

sample RNA from the gut during a period of one type of host diet, then sample RNA again after a period of 

time on another diet. Although this is dependent on the expression profiles and metabolic models to be 

complete enough for prediction of central carbon metabolism. 

3.1 Known and Unknown Carbon Source 

3.1.1 Central Carbon Flux Correlations in E. coli 

 Under direct carbon source (DC) the E.coli models were supplied with only one carbon source each 

(Fig 1A). With complete carbon source information supplied, correlation between the transcriptomic and 

non-transcriptomic methods are similarly good. pFBA was provided an additional constraint to improve 

prediction with the experimentally measured carbon source uptake flux (uptake rate) being set within the 

pFBA runs only (Fig 1A). For a speculative set of possible carbon sources, Fig 1B shows the measured fluxes 

of E. coli grown on a single carbon source correlated with the predicted fluxes when supplied with all 8 
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carbon sources (AC) used in the measurements (i.e. glucose, galactose, gluconate, fructose, glycerol, 

pyruvate, acetate, and succinate) per model. Fig 1C simulates the absence of any carbon source and uptake 

rate information, with the model fully open for exchange with the extracellular environment. Here overall 

predictive accuracy drops across all methods as the number of available carbon sources increases. E-Flux2 

on average performs comparably to SPOT, with slightly worse correlation on average. Models run with all 

294 available carbon sources (Full AC) and 30 ion sources, shows that on average E-Flux2 and SPOT 

generate reasonable correlations (Fig 1C). All three methods produce lower correlations for carbon sources 

found in the TCA cycle (Fig 1C Full AC acetate, pyruvate, and succinate). These low correlations were 

investigated and determined to be due to predicting flux opposite in direction to the measured flux (Fig S3). 

The measured fluxes for glycolysis are negative in reaction direction and the predictions are positive, while 

the measured fluxes for TCA cycle reactions are positive, and the predicted fluxes are negative. SPOT 

maintains higher correlations compared to E-Flux2 and pFBA due to predicting the TCA cycle reactions in 

the correct direction. 

 

3.1.2 Central Carbon Flux Correlations in B. subtilis 

 The B. subtilis measured fluxes consist of 8 different carbon sources, with two cases of double 

carbon sources experiments (Fig 2 glutamate + succinate and malate + glucose). Fig 2A shows the DC 

correlations from E-Flux2 and pFBA is comparable, with known carbon flux giving the best correlations on 

average. In speculative carbon sources, Fig 2B, all three methods perform similarly on average for AC. pFBA 

performs similarly poorly to the other methods for the double carbon cases and only marginally better for 

glutamate + succinate (see Discussion). SPOT performs the best for the TCA cycle single carbon source 

cases (AC malate, AC pyruvate). The same can be seen in the Full AC models (269 carbon sources, 25 ion 

sources) (Fig 2C) but pFBA on average performs worse, most notably in the TCA cycle single carbon 

sources.  
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3.2 Known and Unknown Growth Condition 

3.2.1 Central Carbon Flux Correlations in PCC 6803 

 In Synechocystis sp. PCC 6803 autotrophic, mixotrophic, and heterotrophic conditions (Fig 3A) E-

Flux2 and pFBA produce very similar central carbon flux distributions under the autotrophic condition. These 

predictions correlate well with the autotrophic measured fluxes, suggesting that both methods are producing 

nearly identical flux distributions. In the mixotrophic condition, pFBA, with known carbon source and flux, 

produces a higher correlation than the other methods. All methods predict heterotrophic central carbon 

metabolism poorly, with SPOT predicting the only positive correlation between measured and predicted 

fluxes. SPOT produces similar correlation values with the three measured flux distributions, and the only 

non-negative correlation consistently for all three conditions. Fig 3B shows the correlations of fluxes 

predicted using the three conditional gene expression sets (expression data collected from autotrophic, 

mixotrophic, and heterotrophic cultures) while under mixotrophic constraints, simulating how predicted 

fluxes correlate under unknown conditions and guided by transcriptomic data. E-Flux2 and pFBA produce 

negative correlations for all mixotrophically constrained predictions. SPOT again provides the only positive 

correlations. 

 

3.2.2 Central Carbon Flux Correlations in PCC 7002 

 Measured fluxes from Synechococcus sp. PCC 7002 in nitrogen replete (10 mM nitrate) and 

nitrogen deprived (no nitrogen source) conditions correlated well with predicted fluxes under autotrophic 

constraints. SPOT produced significantly better central carbon flux for the nitrogen deprived condition and 

the other methods performed similarly across both nitrogen conditions (Fig 4, N replete). Fig 4B shows 

PCC 7002 in an AC mixotrophic condition not naturally exhibited in PCC 7002 (see Results and 

discussion, Unknown carbon source and growth condition). Both sets of predicted fluxes are allowed open 

uptake of all carbon sources as well as NO3 uptake, simulating unknown carbon source and unknown 

nitrate availability. SPOT performs well under the set of unknown conditions, while the other methods 

perform poorly. 
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4 Discussion 

4.1 Known and Unknown Carbon Source 

 For the E. coli and B. subtilis models, if carbon source and uptake rates are known, the directly 

provided carbon source and uptake rate information (DC) produces flux predictions in non-transcriptomic 

pFBA that are comparable to transcriptomic E-Flux2 (Fig 1A, 2A). SPOT provides a reasonable, but lower 

average prediction for both DC cases. E-Flux2 predicts flux similarly to pFBA except E-Flux2 was not 

provided any uptake rate information. The effect of gene expression derived reaction bounds predicts central 

carbon flux well, even without providing respective carbon uptake rates. This suggests that gene expression 

can serve as a substitute for measured carbon source uptake information, if the carbon source is known.  

If carbon source is speculatively known, and uptake rate is unknown, as presented with a relatively small 

set of 8 possible carbon sources (AC), pFBA predictive power drops significantly (Fig 2A, 2B). Without 

transcriptomic data, pFBA sets fixed proportion uptake rates of the available metabolites in the model across 

multiple cases. This affects the subsequent central carbon flux prediction as a single flux pattern is being 

predicted across all conditions. In contrast, the transcriptome coupled methods do not have the same uptake 

of carbon source per condition, as the gene expression dictates the proportions of carbon source flux for 

cellular uptake. This suggests that with unknown uptake rates and speculatively known carbon sources, gene 

expression can still serve as a substitute for measured uptake rate data. 

Under both unknown carbon source and unknown uptake rates (Full AC), where the models are allowed 

uptake of all possible carbon sources present in the model, the pFBA average prediction score drops further 

while E-Flux2 and SPOT remains similar to their AC correlations (Fig 1C, 2C). The E-Flux2 and SPOT 

average correlation even increases slightly from the B. subtilis AC to Full AC cases. A possible explanation 

is that in the overabundance of carbon sources, the gene expression can mediate the allocation of flux feeding 

into central carbon metabolism when presenting from multiple metabolic network entry points and thereby 

predict reaction directionality better (see supplementary S3 – S5 Fig). This is in contrast to when flux 

directionality is set based on a small set of carbon sources, such as the TCA cycle or glycolysis relevant 

metabolites.  
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Additionally, in the Full AC model, all ion uptake reactions were open, suggesting the transcriptome can 

also facilitate ion flux prediction, where 13C data generally does not provide information. For both unknown 

carbon source and unknown uptake rate conditions (Fig 1C, 2C), SPOT performs the best on average. This 

is likely due to SPOT maximizing correlation with flux prediction and the gene expression set, rather than 

setting expression-based reaction bounds (as in E-Flux2) which can set a large flux window that can affect 

predicted directionality in subsequent reactions (see supplementary S3 – S5 Fig). The generally higher 

prediction correlations for E-Flux2 and SPOT suggest that under both unknown carbon source and unknown 

uptake rates, gene expression data can substitute for carbon source and uptake rate information for central 

carbon flux prediction.  

On average the transcriptomic methods perform better than pFBA under unknown carbon source and 

uptake, but in one exception of the double carbon source conditions, pFBA predicts central carbon flux with 

higher accuracy than either transcriptomic method across the DC, AC, and Full AC cases (Fig 2. A, B, and 

C glutamate + succinate). This is potentially due to pFBA predicting low flux correctly for a subset of the 

measured flux values for B. subtilis, while E-Flux2 and SPOT allocated different fluxes for these reactions 

based on the presence of the associated transcripts (see reaction directions in supplementary S5 Fig). Hence, 

when a measured reaction has low flux, but some transcript abundance, the transcriptomic methods may 

attribute more flux to these reactions.  

Additionally, carbon source similarity effects flux predictions. On a carbon source basis, glutamate + 

succinate measured fluxes are similar to glycerol and pyruvate measured fluxes. The other double carbon 

source (malate + glucose) exhibits a measured flux distribution very close to the single carbon malate 

measured distribution (see supplementary S1 Fig A, S5 Fig). This suggests that some carbon sources produce 

similar flux distributions to others, both experimentally and in silico. This is supported by the clustering of 

pFBA flux patterns across all constraints and conditions (supplementary S1 Fig B, S5 Fig) which shows 

similarity between the predicted overall glutamate + succinate distribution to glycerol and pyruvate predicted 

distributions. This effect has also shown to shift flux predictions away from the measured distribution. In one 

case, the predicted distribution for malate + glucose more closely resembles the predicted glucose 

distribution, but in the measured flux patterns the malate + glucose measured flux distributions where more 

closely resembles the malate flux distribution. 
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4.2 Known and Unknown Growth Condition 

 For the cyanobacteria models (PCC 6803 and PCC 7002), carbon source is relatively easy to choose 

and constrain. The models we assessed are known to fix a single source of inorganic carbon under autotrophic 

condition, which pFBA can predict well with known carbon source and uptake rates (Fig 3A). In the 

autotrophic growth condition, uptake rate of the inorganic carbon source does not significantly affect central 

carbon flux prediction (see supplementary S2 Fig). But if an organism can increase biomass in multiple 

possible growth conditions (PCC 6803) then information pertaining to the presence and uptakes rates of 

inorganic carbon source versus glucose is much more useful.  

With unknown growth condition information for PCC 6803, a reasonable approach for modeling the flux 

distribution is under mixotrophic conditions. That is, allow uptake of both inorganic and organic carbon as 

well as photon flux and use the associated gene expression to dictate how fluxes should be allocated. Fig 3B 

shows that under such conditions, pFBA and E-Flux2 predict similarly poor central carbon flux. However, 

SPOT consistently produces positive correlations between the predicted and measured fluxes, across growth 

conditions. This suggests that with SPOT, gene expression can give some idea of what the condition an 

organism is growing under using gathered gene expression and the genome-scale metabolic model. A 

possible explanation for the lower predictive accuracy in both E-Flux2 and pFBA compared to SPOT, is that 

under glucose availability the typical glycolysis flux distribution is not always found it nature (S6 Fig). In 

PCC 6803, we found fluxes in the pentose phosphate pathway (sees supplementary Table S2), which is an 

alternative metabolic route to glycolysis, has significantly higher flux predicted through it for SPOT in 

comparison to the other methods. This is further supported by information suggesting that PCC 6803 is 

merely a facultative heterotroph and therefore only metabolizes exogenous organic carbon when given no 

other choice [31].  

In PCC 7002, the growth condition is only partially known. PCC 7002 is modeled under photoautotrophic 

conditions, but key secondary metabolite uptake rates are unknown (NO3 exchange). Here pFBA predicts 

central carbon flux poorly. By applying different uptake rates of non-carbon metabolites, it is possible to 

determine whether an organism is in one metabolic state versus another. For example, constraining the uptake 

of oxygen can produce a flux distribution for anaerobic metabolism [32]. Similarly, in PCC 7002 the presence 

and depletion of nitrate to the system can lead to different intracellular carbon utilization. 
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PCC 7002 is known to be an obligate photoautotroph [33]. Therefore, non-transcriptomic methods should be 

able to perform well in predicting central carbon metabolism, but Fig 4 shows that pFBA given known carbon 

source and uptake rate performs worse than the transcriptomic methods in both N replete and N deprived 

cases. In Fig 4A SPOT predicts N deprived central carbon flux better than the other methods. This likely due 

to the drawing of flux from the nitrogen sinks such as amino acids in order to accommodate for the lack of 

extracellular nitrate. 

4.3 Unknown Carbon Source and Growth Condition 

 As an extension of our findings, PCC 7002 was constrained under a second artificial growth 

condition was set to mimic mixotrophic conditions. We attempted to predict flux using the second 

condition’s set of incorrect conditional constraints and see how gene expression might help reduce prediction 

error. This allows for carbon sources other than CO2 allowed for uptake as well as unconstrained NO3 uptake 

for both the N replete and N deprived cases (Fig 4B). This mixotrophic state is not found in nature, and 

therefore the PCC 7002 central carbon flux distribution correlation was expected to be poor [33]. With the 

nitrate growth condition unspecified in the model, NO3 was allowed into the cell freely for both conditions. 

The correlations for E-Flux2 and pFBA were indeed poor, but SPOT produced strong correlations. This 

suggests that even in incorrectly constrained models supplied with unrealistic carbon sources and no 

secondary metabolite information, gene expression can still be used predict central carbon flux well (S7 Fig).

   

4.4 Conclusion 

 In this study, we compiled 21 experimental conditions and corresponding transcriptomic data for 

cells grown on various carbon sources and conditions. The predicted fluxes were correlated against 

experimentally measured fluxes to evaluate the predictive power of E-Flux2 and SPOT compared with the 

non-transcriptomic method, pFBA. pFBA is a representative method for comparison as it was shown to have 

good predictions, was used in the previous two validations studies, and does not use transcriptomic data [2, 

3].   
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If carbon source and uptake rate information are accurately known for microorganisms and gene expression 

data is unavailable, pFBA is a suitable method for central carbon flux prediction (Fig 1A, Fig 2A). Even with 

well-defined carbon source, uptake rate, and growth condition information (other factors on the cell’s 

metabolism, such as light intensity), E-Flux2 performed better than pFBA in 13 of the 21 models. In all of 

these cases E-Flux2 was not provided any measured uptake rate data, while pFBA was. 

If a carbon source or growth condition informational deficit is encountered, then SPOT is the method of 

choice as it consistently produced good correlations and can account for noncanonical internal metabolism 

(see Results and discussion, Known and unknown growth condition). Although pFBA can give good 

predictions, any uncertainty in carbon source or growth condition carries the risk of generating very poor 

predictions. Even with accurate carbon source and growth condition information pFBA can still produce 

negative correlations (Fig 3A). Gene expression can produce better central carbon flux as the expression data 

can account for other unknowns in the model, beyond just the carbon source (Fig 4A, N deprived). 

Based on the findings in this study, we propose a general decision tree to be used in constraint-based modeling 

for central carbon flux prediction in microorganisms (Fig 5). In this figure, if no expression data is available, 

then pFBA is the default method of choice. If any expression data is available, then a transcriptomic method 

is suggested as gene expression has been shown to account for additional informational deficits beyond 

carbon source such as ion exchanges.  

Using validated methods like SPOT can minimize the risk of predicting incorrect central carbon flux 

distributions in the absence of accurate carbon source and growth condition data. Not only does SPOT 

consistently produce positive correlations in all 21 samples, but also produces low if not the overall lowest, 

standard deviations in predictive accuracy (Figs 1-5, legend 𝜎-values). For future improvement, developing 

a method for better determining flux directionality based on gene expression values should improve flux 

transcriptomic flux prediction. 

In cells grown on well-defined media, it is relatively easy to determine carbon sources and uptake rates. The 

carbon source is generally known, while the uptake rate is determined from measuring how fast a culture 

consumes it. For cells grown in vivo or on complex media, where growth condition cannot be fully defined, 

13C-labeling may not be even feasible, let alone the cost. Additionally, specifics pertaining to the growth 

conditions such as inorganic compound exchange may not be available or easily measured. In such cases, 
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gene expression data can nevertheless be gathered simply and cheaply, and methods to infer intracellular 

metabolic flux from transcriptomic data (such as E-Flux2 and SPOT) have great utility.  
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B) E. coli Pearson AC
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C) E. coli Pearson Full AC
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A) B. subtilis Pearson DC
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B) B. subtilis Pearson AC
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C) B. subtilis Pearson Full AC
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Fig 1. E. coli predictions: Correlations between measured and predicted flux of E. coli grown on 8 different carbon sources for the 

three FBA methods E-Flux2 (red), SPOT (gray), pFBA (blue). Horizontal dashed lines are the respectively colored mean correlations 

per method. The mean (µ) is the average prediction correlation per method. The standard deviation (𝜎) is the spread of prediction 

correlation above and below the mean, denoted by the error bars. (A) Respective direct carbon source (DC) supplied. pFBA was given 

the additional constraint of known uptake rate in the single carbon source, while E-Flux2 and SPOT were not. All methods perform 

consistently across the individual carbon sources. (B) All 8 carbon sources supplied and correlated with measured flux from single 

carbon growth (AC). Correlations drop in all methods, particularly in the TCA cycle carbon sources (Acetate, Pyruvate, and Succinate). 

(C) All possible carbon sources in the model supplied (Full AC). All methods again lose performance, but the transcriptomic methods 

retain decent correlations. See Supplementary S1 Table for uptake rates used. 

 

Fig 2. B. subtilis predictions: Correlations between measured and predicted flux of heterotrophic B. subtilis grown on 8 different carbon 

sources for the three FBA methods E-Flux2 (red), SPOT (gray), pFBA (blue). Double carbon sources are denoted as glutamate with 

succinate (Glut + Succ) and malate with glucose (Mal + Glcs). Horizontal dashed lines are the respectively colored mean correlations 

per method. The mean (µ) is the average prediction correlation per method. The standard deviation (𝜎) is the spread of prediction 

correlation above and below the mean, denoted by the error bars. (A) Respective direct carbon source (DC) supplied. pFBA was given 

the additional constraint of known uptake rate in the single carbon source, while E-Flux2 and SPOT were not. All methods perform 

consistently across the individual carbon sources, with minor drops in correlation for double carbon sources (Glut + Succ and Mal + 

Glcs). (B) All 8 carbon sources supplied and correlated with measured flux from single carbon growth (AC). Correlations drop in all 

methods, particularly for Malate. (C) All possible carbon sources in the model supplied (Full AC). All methods again lose performance, 
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A) PCC 6803 Pearson DC All Conditions
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B) PCC 6803 Pearson AC Mixotrophic Condition
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Fig 3. Synechocystis sp. PCC 6803 Predictions: Correlations between measured and predicted flux of multitrophic Synechocystis 

sp. PCC 6803 grown in 3 different environment conditions for the three FBA methods E-Flux2 (red), SPOT (gray), pFBA (blue). 

Horizontal dashed lines are the respectively colored mean µ, correlations per method. The mean (µ) is the average prediction 

correlation per method. The above and below the mean.  A) Autotrophic, mixotrophic, and heterotrophic conditional constraints 

standard deviation (𝜎) is the spread of prediction correlation applied and correlated with respective measured fluxes, denoted by 

the error bars. pFBA was given the additional constraint of known uptake rate in the single carbon source, while E-Flux2 and 

SPOT were not. B) Mixotrophic condition constraints applied and correlated with all three conditional measured fluxes. See 

Section Methods for condition specific model constraints and see Supplementary S1 Table for uptake rates used. for uptake rates 

used. 
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A) PCC 7002 Pearson DC Autotrophic
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B) PCC 7002 Pearson AC Mixotrophic
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Fig 4. Synechococcus sp. PCC 7002 predictions:  Correlations between measured and predicted flux of multitrophic Synechococcus 

sp. PCC 7002 grown in autotrophic conditions for the three FBA methods E-Flux2 (red), SPOT (gray), pFBA (blue). Horizontal 

dashed lines are the respectively colored mean correlations per method. The mean (µ) is the average prediction correlation per 

method. The standard deviation (𝜎) is the spread of prediction correlation above and below the mean, denoted by the error bars. (A) 

Autotrophic conditional constraints applied and correlated with N replete and N deprived measured fluxes. Supplementary Materials 

for uptake rates used. (B) PCC 7002 in AC autotrophic condition (mixotrophic, see Discussion) and unconstrained NO3 uptake. See 

Section Methods for condition specific model constraints and see Supplementary S1 Table for uptake rates used. for uptake rates 

used. 
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Fig 5. General methods decision tree: The three FBA methods are shown as E-Flux2 (red), SPOT (gray), pFBA (blue). Left 

branches on the tree indicate a YES decision, right branches indicate a NO decision.  Growth condition refers to the availability 

of inorganic and organic metabolites that can shift metabolism between different states (e.g. photons s, NO3, CO2, glucose). 
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S1 FigA. B. subtilis carbon source clustering: B. subitilis single and double (Malate+Glucose and Glutamate+Succinate) carbon source 

measured flux data dendogram. Ward linkage was used and minimizes the sum of squared differences within all clusters based on 

measured flux values. 

 

 

S1 Fig B. B. subtilis pFBA carbon source based flux distribution clustering: All B. subitilis pFBA flux distributions. AC refers to 

the single flux pattern produced by pFBA when allowed all 8 carbon sources. FullAC refers to the single pFBA flux distribution produced 

under all possible carbon sources available in the model. FullAC distribution is the outgroup. Glut+succ looks similar to the other TCA 

metabolite fluxes, while the AC distribution looks similar to the the sugars in the right subclusters. 
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S2 Fig. PCC 6803 pFBA_mf vs pFBA: Similar to Fig 3 in the main text but shows that provided measured uptake rates with pFBA_mf 

(black) did not significantly improve the autotrophic flux prediction compared to pFBA (blue). 
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A) 

 

B) 

 

C) 
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S3 Fig. E. coli flux directionality AC vs Full AC: Measured flux (black), E-Flux2 (red), SPOT (gray), 

pFBA (blue), and gene expression transcript abundance (green); all self-normalized to maximum values 1 

and -1. Positive values reflect forward flux and negative values reflection reverse direction flux. The x-axis 

shows the measured central carbon flux reaction names. (A) Acetate data. (B) Pyruvate data. (C) Succinate 

data. These carbon sources had the lowest correlation values and these single carbon sources are also found 

in the TCA cycle. The difference in directionality between the black bars and the prediction bars highlights 

that glycolysis (PGI flux to PYK-PPS flux) and TCA cycle (RPI flux to TK2 flux) are being predicted in the 

opposite direction from the measured flux. 
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S4 Fig. E. coli flux directionality AC vs Full AC all carbon sources: Measured flux (black), E-Flux2 (red), 

SPOT (gray), pFBA (blue), and gene expression transcript abundance (green); all self-normalized to 

maximum values 1 and -1. Positive values reflect forward flux and negative values reflection reverse 

direction flux. The x-axis shows the measured central carbon flux reaction names.  
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S5 Fig. B. subtilis flux directionality AC vs Full AC all carbon sources: Measured flux (black), E-Flux2 

(red), SPOT (gray), pFBA (blue), and gene expression transcript abundance (green); all self-normalized to 

maximum values 1 and -1. Positive values reflect forward flux and negative values reflection reverse 

direction flux. The x-axis shows the measured central carbon flux reaction names. 
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S6 Fig PCC 6803 flux directionality DC and AC conditions: Measured flux (black), E-Flux2 (red), SPOT 

(gray), pFBA (blue), and gene expression transcript abundance (green); all self-normalized to maximum 

values 1 and -1. Positive values reflect forward flux and negative values reflection reverse direction flux. The 

x-axis shows the measured central carbon flux reaction names.  
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S7 PCC 7002 flux directionality DC and AC conditions: Measured flux (black), E-Flux2 (red), SPOT 

(gray), pFBA (blue), and gene expression transcript abundance (green); all self-normalized to maximum 

values 1 and -1. Positive values reflect forward flux and negative values reflection reverse direction flux. The 

x-axis shows the measured central carbon flux reaction names.  
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B) E. coli Spearman AC
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C) E. coli Spearman Full AC

A
ce
ta
te

Fr
uc
to
se

G
al
ac
to
se

G
lu
co
na
te

G
lu
co
se

G
ly
ce
ro
l

Py
ru
va
te

Su
cc
in
at
e

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

C
o
rr
el
at
io
n

A) B. subtilis Spearman DC
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B) B. subtilis Spearman AC
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C) B. subtilis Full Spearman AC
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A) PCC 6803 Spearman DC All Conditions
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B) PCC 6803 Spearman AC Mixotrophic Condition
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A) PCC 7002 Spearman DC Autotrophic
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B) PCC 7002 Spearman AC Mixotrophic
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S8 Spearman correlations equivalents of main figures 1-4: Figures 1 through 4 from the main paper have 

been recreated using another correlation calculation, the Spearman rank correlation. The correlations are 

similar to the Pearson correlation from the main paper but a shift of lower correlation between measured vs 

predicted flux. 

 

E. coli         

Physiology Acetate Fructose Galactose Glucose Glycerol Gluconate Pyruvate Succinate 

Growth rate  (h-1) 0.29 ± 0.01 0.49 ± 0.01 0.18 ± 0.01 0.65 ± 0.01 0.49 ± 0.01 0.59 ± 0.01 0.39 ± 0.01 0.51 ± 0.01 

Uptake rate carbon source 

(mmol gCDW-1 h-1) 

13.58 ± 

0.33 
8.33 ± 0.29 1.97 ± 0.10 9.65 ± 0.04 

10.14 ± 

0.15 
7.28 ± 0.03 

26.71 ± 

0.79 
15.90 ± 0.31 

Acetate secretion (mmol 

gCDW-1 h-1) 
- 3.33 ± 0.33 - 6.83 ± 1.03 0.60 ± 0.20 5.00 ± 0.16 

11.91 ± 

0.53 
3.32  ± 0.31 

Lactate secretion (mmol 

gCDW-1 h-1) 
- - - - - - 1.16 ± 0.07 - 

Fumarate secretion (mmol 

gCDW-1 h-1) 
- - - - - - - 1.14 ± 0.07 

Biomass yield (g g-1)  0.35 ± 0.00 0.33 ± 0.01 0.46 ± 0.03 0.37 ± 0.00 0.47 ± 0.01 0.41 ± 0 0.16 ± 0.01 0.26 ± 0.01 

 

B. subtilis 

Specific Rate 

(mmol g-1 h-

1) 

(mmol g-1 h-

1) 

(mmol g-1 h-

1) 

(mmol g-1 h-

1) 

(mmol g-1 h-

1) 

(mmol g-1 h-

1) 

(mmol g-1 h-

1) 

(mmol g-1 h-

1) 

glucose 7.36 - - - - - 5.95 - 

Fructose - 5.72 - - - - - - 

gluconate - - 5.13 - - - - - 

Succinate - - - 3.35 - - - - 

glutamate - - - 2.21 - - - - 

Glycerol - - - - 6.22 - - - 

malate - - - - - 26.51 14.6 - 

pyruvate - - - - - - - 8.26 

 

PCC 6803 

Specific Rate Autotroph mmol/g DCW/h Mixotroph mmol/g DCW/h Heterotroph mmol/g DCW/h 

glucose 0 0.24 0.41 

CO2 0 1000 1000 

HCO3 3.7 0 0 

Photons 1000 1000 50 
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PCC 7002 

Specific Rate NO3 replete (mmol g-1 h-1) NO3 depleted (mmol g-1 h-1) 

CO2 -29.5 -9.67 

NO3 -1000 0 

 

Table S1. Measured uptake rates: Measured uptake rates for the four organism models (E. coli, B. subtilis, 

PCC 6803, and PCC7002), sourced from literature (See Materials and Methods 2.1). For E. coli, mean values 

and standard deviations were obtained from 3 biological replicates. Any uptake rate set to 1000 is based on 

information indicating unconstrained uptake of the respective metabolite. In PCC 6803, the light inhibited 

culture was PSII chemically inhibited and cultured under aluminum foil. In an attempt to realistically 

constrain this experimental environment and chemical inhibition on the light reaction, 50 photon units were 

applied rather than 0. Additionally, this culture was grown in open air and therefore the CO2 intake is left 

unconstrained. All uptake rates are present in units of mmol/g DCW/h. 
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Rxn# Rxn Metabolites E-Flux2 SPOT pFBA 

R419 Glycerone phosphate  + D-Erythrose 4-phosphate   -->  Sedoheptulose 1,7-

bisphosphate   

0.0000 0.1922 0.0000 

R420 Glycerone phosphate  + D-Erythrose 4-phosphate   -->  Sedoheptulose 1,7-

bisphosphate   

0.0000 0.0000 0.0000 

R421 H2O  + Sedoheptulose 1,7-bisphosphate   -->  Orthophosphate  + Sedoheptulose 

7-phosphate   

0.0000 0.1922 0.0000 

R422 D-Glucose 6-phosphate  + NADP+  -->  D-Glucono-1,5-lactone 6-phosphate  + 

NADPH  + H+  

0.0000 0.0225 0.0000 

R423 D-Glucono-1,5-lactone 6-phosphate  + H2O   -->  6-Phospho-D-gluconate   0.0000 0.0225 0.0000 

R424 6-Phospho-D-gluconate  + NADP+  -->  NADPH  + H+ + CO2  + D-Ribulose 5-

phosphate   

0.0000 0.0225 0.0000 

R425 D-Ribose 5-phosphate   <==>  D-Ribulose 5-phosphate   0.0030 0.0002 -0.0031 

R426 D-Ribose 5-phosphate   <==>  D-Ribulose 5-phosphate   0.0030 0.0002 -0.0031 

R427 D-Glyceraldehyde 3-phosphate  + Sedoheptulose 7-phosphate   <==>  D-Xylulose 

5-phosphate  + D-Ribose 5-phosphate   

0.0099 0.0004 0.0011 

R428 D-Glyceraldehyde 3-phosphate  + D-Fructose 6-phosphate   <==>  D-Xylulose 5-

phosphate  + D-Erythrose 4-phosphate   

-0.0004 0.0004 0.0050 

R429 D-Ribulose 5-phosphate   <==>  D-Xylulose 5-phosphate   0.0034 -0.0007 -0.0061 

R430 D-Glyceraldehyde 3-phosphate  + Sedoheptulose 7-phosphate   <==>  D-

Fructose 6-phosphate  + D-Erythrose 4-phosphate   

-0.0099 0.1918 -0.0011 

 

Table S2. PCC 6803 Pentose Phosphate Pathway Fluxes: Predicted fluxes for 12 pentose phosphate 

pathway reactions for PCC 6803 under the heterotrophic growth condition and using heterotrophic gene 

expression data. Fluxes vectors were normalized by the l2 norm of the genome scale flux vector. Fluxes 

marked yellow show net flux values that are essentially zero flux (fluxes less than 1e-6). Green shows the 

net positive flux values. Red shows net negative flux values predicted, suggesting predicting the reversal of 

the pentose phosphate pathway. In SPOT, higher flux is passing through the pentose phosphate reactions, 

while in the E-Flux2 and pFBA show significantly less flux. 
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