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Femoral shaft fracture, a bone fracture that involves the femur, typically sustained in high-

energy injuries, such as a car crash. Improper treatment of fixation or alignment may cause 

soft tissue injuries, bone loss and significant high risk on pulmonary compliance. 

Therefore, the treatments with surgical guidance are of importance in deducing the rate of 

compliance and improving the accuracy of the operation. Image-guided computer-assisted 

orthopedic surgery has been explored in improving the outcomes of the femoral shaft 

fracture treatments. And the domain intra-operative imaging modality fluoroscopy used in 

CAOS is 2D fluoroscopy. 3D anatomical representation from 2D fluoroscopy requires high 

volume of 2D data from different directions, which has pool reproductivities into 3D due 

to the limit field of view in 2D fluoroscopy. Furthermore, the increasing operation time 

with ionizing radiation exposure from fluoroscopy modality brings essential concerns for 

the safety of the surgeons and patients. Recently, ultrasound (US) has been investigated as 

an alternative intra-operative imaging modality due to its real-time, safe and 2D/3D 

imaging capabilities.  

      However, lower signal to noise ratio (SNR), imaging artifacts, limited field of view 

(FOV) and blurred bone boundaries have hindered wide spread adaption of US in CAOS. 

In order to overcome these limitations, automatic bone segmentation and intra-operative 
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registration methods have been developed. Accurate, robust and real-time segmentation 

and registration is necessary for successful guidance in US-based CAOS. This thesis 

presents an automated hierarchical registration method using reinforcement learning, for 

accurate, robust and real-time registration of intra-operative US to pre-operative CT data.  

      The proposed framework consists of: (1) bone shadow region image enhancement and 

segmentation, (2) point cloud modeling from the segmented bone surface image, and (3) 

point cloud registration using Q-learning of US-CT. Local phase image features are used 

as an input to an L1-norm-based regularization framework for enhancement of bone 

shadow regions. Simple bottom up ray casting method is used to segment the bone surfaces 

from the enhanced bone shadow images. In addition, CT data was segmented using 

intensity-based thresholding method. In other words, the complicated cross-modality US-

CT registration was transformed into point cloud registration. In the next step, we proposed 

a hierarchical registration method using supervised Q-learning that learns the optimal 

sequence of motion action to achieve the optimal alignment. Within this approach, the 

agent is modeled using PointNet++ framework, with point cloud data obtained by 

segmenting the US and CT data as the input, and the next optimal action as the output. The 

quantitative and qualitative evaluations are performed on over 100 test cases and have 

shown the potential in making ultrasound as an alternative intra-operative image modality 

in image-guidance. The target registration error (TRE) and fiducial registration error (FRE) 

range have average value of 4.32 mm and 3.82 mm respectively. And the success rate, 

which defines as the TRE and FRE are both less than 10mm, is 92.6% with an average time 

of 0.31 second for each step. 
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CHAPTER 1 

 

INTRODUCTION  

 

 

 

1.1 Thesis Motivation 

Improper treatment of fixation or alignment may cause soft tissue injuries, bone loss and 

significant high risk on pulmonary compliance [1, 2]. The incidence of heterotopic 

ossification and rotational malalignment after intramedullary nailing (IM) have been 

reported to range from 10% to 53% and 10% to 37%, respectively [76, 77]. Thus, the 

successful treatments for femoral fracture is of importance in reducing the complication 

and malalignment rate significantly. For that, Image-guided CAOS system has been 

explored in providing improved operative outcomes with computer technology in pre-, 

intra-, and post-operative procedures. In the image-guided CASO system, the domain intra-

operative imaging modality in femoral shaft fracture treatment is 2D fluoroscopy as a wide 

application in accurate targeting and tracking for image-guidance [3]. However, the 

cumulative radiation exposure to both surgeons and patients may cause unforeseen harm 

to them [4, 5]. Furthermore, the pool capabilities in 3-D of the intra-operative fluoroscopy 

imaging can result in screw mal-placement and injuries in muscles and nerves. And the 

high expense in 3D units and experience requirement for surgeons have prohibited the wide 

use of fluoroscopy in intra-operative image-guidance. For solving these issues, US has 

been investigated as an alternative intra-operative imaging modality in image guidance 

which is a radiation exposure free and real-time technology.  
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As the poor tissue/bone boundaries in conventional US images, directly usage of US 

images in orthopedic surgical guidance cannot deliver reliable results. For that, previous 

works have focused on bone surface segmentation [6, 7, 8] and the integration of US/CT 

registration in the intra-operative procedure of intramedullary nailing [9, 10, 11]. Those 

registration methods used the consecutive sequence of 2-D US images as the input that 

considered as 3-D volumes. However, the consecutive sequence of 2-D US image was still 

lack of spatial information that is necessary for surgical navigation.  

This thesis aims to provide an accurate 3-D bone surface information intra-operatively 

from US images in real-time for intramedullary nailing treatment. Also, the reinforcement 

learning (RL) method is applied in this project to provide the robust and the accuracy of 

the current registration methods. We believe the 3-D registration using RL for US/CT can 

provide more accurate and safe treatment for femoral shaft fracture treatment compared to 

the traditional treatments. 

 

1.2 Treatments of Femoral Shaft Fracture 

The surgical treatment of femoral shaft fracture has three different types of surgery, plates 

and screw, external fixation and intramedullary nailing. External fixation is usually used 

as an impermanent treatment for femur fractures that uses metal pins and screws to stabilize 

the bones in the proper position [12, 13]. Intramedullary nailing (IM) is considered as a 

standard treatment for the femur fractures due to its stable and full-length fixation [14, 15]. 

Besides, when IM is not possible, the plates and screws technique is used where the 

fractures extend into either the hip or knee joints [16, 17]. And the example of external 

fixation and intramedullary nailing were shown in Fig 1.1.  
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Figure 1.1: (a): External fixation treatment of femur fracture from [71]; (b) Intramedullary 

nailing treatment of femur fracture from [71] 

 

During the IM procedure, the special intramedullary rod was inserted across the 

fracture site and the locking screws were placed perpendicular to the rod to secure the 

intramedullary nailing [18, 72]. From the procedure, accurate tracking and targeting with 

minimal invasion are secure from the intra-operative fluoroscopy imaging guidance using 

C-arm [19]. Intra-operative fluoroscopy images enable the surgeons to get access to the 

good contrast images for both bone and metal implants in real-time. Using these images, 

the surgeon can fixate the fracture using the intramedullary rod and reduce the fractures 

with screws under guidance that shown in Fig 1.2. 

However, low reproducibility from 2-D to 3-D and the cumulative radiation exposure 

are still significant challenges for intra-operative fluoroscopy imaging during surgery 

guidance. The non-uniform exposure variation across the FOV of fluoroscopy, as well as 

the varying contrast from shot-to-shot, impeded the reproducibility from 2-D to 3-D [20]. 

Only partial data is suitable for the re-compute the spatial relationship between the pre-

operative and intra-operative medical data during the surgery guidance process. The failure 

(a) (b) 
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Figure 1.2 (a): A typical C-arm that’s used for acquiring intra-operative fluoroscopy images 

from GE; (b): The acquired fluoroscopy image showing the inserted intramedullary rod 

and screws through the distal site from Hazan et [19]. 

 

in the alignment of spatial relationships can significantly affect the surgery outcomes. 

Currently, the reported rate of infection for femoral fracture with IM ranges from 0.7% to 

2.1% [21]. In addition, the non-uniform rate for femoral fracture with IM ranges from 

0.3% to 7.6% [21, 22, 23]. 

      As for the cumulative radiation exposure issue, both surgeons and patients may suffer 

potentially harm during surgery. In the previous report, the average operation time for IM 

is 30 minutes and up to 180 minutes [24]. The repeated and long-term radiation exposure 

over several years has been linked to an increased incidence of cancer [25]. 

      Computer-Assisted Orthopedic Surgery (CAOS) and intra-operative US images with 

non-radiation exposure have been explored as potential alternative methods to alleviate the 

issues we discussed above, which are described in detail in the following sections. 

 

a) b) 
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1.3 Computer-Assisted Orthopedic Surgery (CAOS) 

1.3.1 Bone Segmentation in US images 

The bone segmentation in the US can be traced at least as far back as the 1990s. Previous 

researches on bone segmentation in US images used manually segmentation of bone 

surface in each 2-D US image for different bone fracture surgical procedures [34-36]. The 

manual bone segmentation methods typically require an additional 20 minutes of operation 

time on average for surgical procedures, which could not be applied in surgery procedures 

[34].  

      Then, an automatic bone segmentation method was developed for computer-assisted 

orthopedic surgery using watershed segmentation for pelvic ring fracture [37]. It helped 

the surgeon to locate the tissue/bone boundaries in US images. Moreover, the other 

intensity-based segmentation methods were developed to extract the bone surface 

information from the US image using the intensity feature of bone afterward [38-39]. The 

intensity-based segmentation algorithms could be accomplished with the required 

operation time, which is less than 2 minutes, but the accuracy and robustness still need to 

be improved due to the intensity-variant feature of US images. 

      The gradient-invariant based bone surface segmentation method was previously 

demonstrated [40], which has been successfully applied in US-CT registration for 

computer-assisted orthopedic surgery system [41]. This method extracted phase symmetry 

(PS) regions that indicate the acoustic interfaces with high intensity using Log-Gabor 

filters. However, this method cannot be implemented automatically as it has some hand-

tuned features. Therefore, the improved automatically segmentations based on PS 
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optimization has been demonstrated [42, 43] and applied in clinical data with the mean 

surface error of 0.62 mm on the pelvic surface [44]. 

      Dynamic programming has also been applied in improving the robustness of current 

intensity- or phase-based segmentation methods by eliminating the effects of disconnected 

surfaces [45, 46]. Recently, the convolution neural network (CNN) has also been used in 

bone segmentation on different types of bone [47, 48]. However, the reliable and accurate 

bone segmentation still remains to be explored and improved for data acquired with 

different US imaging parameters across different kinds and locations of clinical data set. 

 

1.3.2 Overview of the CAOS system 

CAOS is defined as a system integrated with computer-assisted techniques that aim to 

improve orthopedic surgery outcomes. The frameworks for CAOS vary widely depending 

on the utilization and availability of technologies. Advances in medical imaging and spatial 

tracking sensors have made surgical navigation systems possible [26]. 

      The CAOs system consists of three fundamental components, pre-operative modeling, 

surgical planning, and intra-operative imaging that shown in Fig 1.3. For the pre-operative 

modeling procedure, the golden standard method is CT scan imaging, which has the highest 

quality digital representation of the disease or injuries [26, 27]. Due to its high quality, the 

pre-operative CT can be used as a valuable assessment of the injuries as well as the helpful 

reference model for intra-operative surgical procedures. In the following surgical planning 

procedure, the necessarily quantitative analysis, path planning, and target positions can be 

identified and analyzed from the pre-operative CT model. For example, the desired 
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reduction and desired rod and screws locations are determined by the surgical expertise for 

IM. 

      The intra-operative imaging procedure is the most challenging task in CASO system as 

it requires to get the spatial relation between the anatomy and the instrument from the 

referenced preoperative model [27]. Tracking sensors, such as infrared cameras and 

electromagnetic sensors, are widely used to obtaining the reference position between the 

trackers and the patients in real-time [28, 29]. And the real-time medical data is obtained 

from tracked intra-operative imaging modality, such as X-ray and US [74]. After 

segmenting the anatomy information from the tracked images, the spatial alignment  

 

between the preoperative CT model and the intra-operative images should be made to 

provide the necessary information for surgery guidance. Also, this registration process is 

an essential part of the surgery guidance, and we’ll discuss the US-based CAOS system in 

the following sections. 
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Figure 1.3 Framework of a typical X-ray-Based CAOS system that used CT images as 

the pre-operative medical data and fluoroscopy as the intra-operative medical data. And 

the optical tracker provided additional information in intra-operative image guidance 

from Joskowicz et [73] 

 

1.3.3 US-Based CAOS system 

US-based CAOS refers to a CAOS system using the US as an intra-operative image 

modality to provide spatial anatomy structure information in real-time that shown in Fig 

1.4. In the typical US-based CAOS system, it mainly consists of navigator, impactor, 

virtual visualization monitors, ultrasound machine, and therapeutically subject [59]. The 

navigator and impactors are used for providing additional spatial information in vitro that 

improves the image guidance procedure. And the ultrasound machines collect the real-time 

US images and then sent them to the computer for process and visualization in the monitor 

[59, 74].  

Segmenting the pixels that contain anatomy structure intra-operatively from US images 

allows the physical location of the target structure to be known. In other words, for the 

femoral shaft fracture treatments, the segmentation of bone surface from US images is 

especially vital but challenging due to the low quality of the US. Moreover, the reliable 

and robust outcome of the US-CT registration process secures the accuracy of anatomy 

location targeting and the success rate of the surgery, which refers to compute the optimal 

alignment between the pre-operative CT data and intra-operative US data.  
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Figure 1.4 Example of a typical US-Based CAOS system that composes with the infrared 

camera, medical instrument, ultrasound probe, monitor, and the subject from [59]. 

 

1.4 Literature Review in Previous work of US-Based CAOS  

Several advanced studies have been explored towards achieving US-Based surgical 

interventions intra-operatively. These researches mainly focus on two different aspects, 

bone segmentation in US images and multi-modal registration algorithms, which 

committed to overcoming the challenges we discussed in Section 3.1. 

 

1.4.1 US-CT registration 

Previous studies on the US-CT registration have shown that the intra-operative US image 

is feasible to apply in surgical operations. According to the type of data, the existing 

registration of the fusion of CT and US can be divided into three catalogs, landmark-based 

digitization, surface-based registration, and volume-based registration [75].  
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For the landmark-based digitization, the digitized landmarks were generally selected to 

set up a reference plane that the intra-operative reference spatial transformation with 

preoperative CT data could be computed [60, 61, 62]. Jaramaz et al. [63] designed and 

employed the reference plane with three landmarks in hip replacement operation, which 

referred as anterior pelvic plane (APP) [64]. The orientation of the implants with respect 

to the APP can be measured during the surgical procedure. In the further reported results, 

this method demonstrated the average error on inclination and anteversion are −0.1 ± 1. 0° 

and −0.4 ± 2. 7° comparing with the ground truth [60, 61, 62]. However, setting up the 

APP with three landmarks is not accurate for most of the surgical treatments. Accurate 

spatial information should be determined during surgical guidance. 

One of the first papers in surface-based registration proposed a US-CT registration 

method used intensity feature for surgical guidance of a lumbar operation [49, 58]. 

Nevertheless, the bone surface information still required manual US segmentation for it. 

Other surface-based registration techniques have been explored to achieve automatic bone 

segmentation for US-CT registration [50-52]. Ionescu et al proposed one of the first 

surface-based registration methods in US-CT by extracting the cortical aspect of the bone 

in US images [50]. But most of these methods require alignment estimation or fiducial 

points identification before the real-time registration as the high computation expensive for 

the surface-based registration convergence. In order to improve the computation expensive 

of surface-based registration methods, point-based registration techniques have been 

developed to achieve time-efficiency [53-55]. Rasoulian et al. [65] employed the 

biomechanical spring model to simulate the point-based US spine and femur models and 

then aligned the point-based US models with the CT models using iterative closet point 
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(ICP) registration. The average target registration error of this proposed method was 2.2 

mm in vivo and 1.99 mm in vitro. 

Sometimes, the bone segmentation is not necessary for surgical guidance in US-Based 

CAOS as the volume-based registration can be employed to get the spatial information [66, 

67, 70]. Brendel et al. [67] proposed a volume-based registration method for US-CT of the 

lumbar spine. Before surgery, they segmented the CT surface model and designed the 

scanning path for the orientation of position of US probe with respect to the CT. Then the 

intra-operative registration can be done with the preoperative scanning path data using 

intensity-based registration. Besides, another application has been developed based on this 

idea [68]. They simulated the US images from the abdominal CT model as the preoperative 

medical data and then used intensity-based registration to achieve the alignment with the 

intra-operative US data. The reported RMS mean target registration error and success rate 

for the relative researches was 8.1 mm in the liver and kidney of 25 patients [69]. 

 

1.5 Thesis Objective 

Our main objective is the development of a robust, accurate and real-time intra-operative 

registration method using RL for US-based CASO with specific focus on femoral shaft 

fracture. Our specific aims, listed below, once achieved will improve our understanding of 

the challenges faces in US-based guidance and provide a new solution which has not been 

investigated previously. Finally, the outcomes achieved in this work will help us in the 

future development of an US-based surgery guidance system which could provide a 

potential alternative to X-ray as the intra-operative image modality during surgery. 

The specific aims of this thesis are listed below: 
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1. Develop and evaluate a robust bone surface segmentation method, specific to 

femur bones, to overcome the cross-modality problem encountered in US-CT 

based CAOS system.  

2. Develop and evaluate a point cloud-based registration method for intraoperative 

fusion of US and CT using reinforcement learning for femoral shaft fracture 

surgery. 
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CHAPTER 2 

 

US-BASED CAOS CHALLENGES 

 

 

This section represents the overview of current challenges for US-based CAOS, which 

includes the US imaging artifacts, bone surface segmentation in US image, and the US-CT 

registration methods. Besides, the basic concepts of the critical techniques that we used in 

this work to overcome the limitation of the current challenges are described in the 

following section. 

 

2.1 US imaging artifacts 

The main physical principle of US images is the acoustic reflection. In an ultrasound 

system, a transducer placed on the skin superficial to the interest area and emitted acoustic 

energy throughout the body. Also, the transducer receives the reflected acoustic signal 

which defines the intensity of the images, and the time delay between sending and receiving 

determines the position in the images [1]. The reflected intensity directly depends on the 

changes in the acoustic impedance along with the acoustic wave as shown in Fig 2.1. As 

the bone has the highest acoustic impedance, the reflected signal from bone typically has a 

high intensity as most of the incoming acoustic energy is reflected back to the transducer 

[2]. Although the US provides non-ionizing image modality in real-time, US images still 

have significant speckle noise and confounding soft tissue data compared to X-ray images. 

Thus, pre-processing is necessary before applying it in practice. 
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Figure 2.1 2D femur US image obtained with different settings in vivo has different 

speckle noises 

 

2.2 Bone surface segmentation in US images 

Secondly, the bone segmentation is the essential, but challenging pre-process procedure 

for CAOS system. As soft-tissue can also appear hyper-echogenic and image similarly to 

bone as high-intensity pixels, it is challenging to classify them correctly. Moreover, the 

noise and speckles in US images impede the differentiating process in the anatomical 

boundaries [3]. Furthermore, in the hand-held US system, the orientation of the US probe 

changes irregularly with respect to the bone surface can alter the appearance drastically 

[4]. Thus, the robust and accurate bone surface segmentation should be secured in a 

functional CAOS system for femoral shaft fracture.  

(a) (b) 
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Figure 2.2 (a): example CT scan slice from a femur in cortical view. The blue dashed 

rectangle and the arrow highlight the approximate location and rotation of the US image, 

respectively. (b): US image of the bone from the same femur in the left. 

 

2.3 US-CT registration 

Last but not least, US-CT registration is another challenging task in the CAOS system for 

femoral fracture as it provides real-time spatial relationships by integrating different image 

modalities. As the US and CT have different imaging principles, the appearances of those 

images are significant different in the resolution and the FOV as shown in Fig 2.2. While 

the CT scan captures the entire cortical view of the body with high quality, the US can only 

get the narrow one scanned side with low quality. The cross-modality for the US-CT 

registration must be accurate enough to align them rigidly in 3-D space despite these 

challenges. 

 

a) b) 
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2.4 Local phase image features 

Local phase features are pivotal in analyzing the structure of the image as they contribute 

to the visual appearance of the image [5, 34]. The phase image can be utilized in the feature 

extraction for an image as it contains the edges and detail of the image.  

From the previous studies, local phase features have been applied in feature extraction 

successfully using the local energy model [6]. This proposed method extracted the phase 

features from the prominent features located in the maximal phase of the Fourier 

components. In addition, the local phase features could also be extracted from the US 

image in the frequency domain using band-pass quadrature filters [7]. Afterward, some 

studies in the local phase feature demonstrated that the potential of the local phase features 

in bone surface enhancement for detecting the fracture [8-15]. 

 

 

Figure 2.3 A typical workflow for the Q-learning method, which is a reinforcement 

learning method interacting with the environment from [35]. 
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2.5 Hierarchical Reinforcement Learning in registration 

Reinforcement learning (RL) has been widely explored in operation researches, such as 

gaming reinforcement and registration procedure, in the machine learning and AI field due 

to its self-adaptation and self-learning [16, 33]. The agent in RL learns and updates 

according to the interactions with its environment [17]. Hierarchical reinforcement learning 

(HRL) refers to an RL algorithm that can be decomposed into some sub-problems to solve 

that could be more powerful than solving the entire problem [18-23]. And Q-learning is 

one of the classic HRL methods that have been utilized in different areas: face recognition, 

web-based education, etc [24, 25]. 

      Q-learning aims to find the optimal action for each state by estimate the action-value 

function (Q-value function) using iteration estimation. In Figure 2.3, we can know that the 

agent learns the action policy, which is modeled using the deep neural network (DNN), 

and then observes and learns the state and DNN from the interaction of the environment. 

To improve the efficiency of the accuracy in Q-value estimation, some studies have been 

explored in this field by improving the model of the Q-learning, such as doubly deep Q-

learning, prioritized replay, and dueling network [26-29, 33]. And they also demonstrated 

the potential of Q-learning in registration [30-32], which can be utilized in our work 

potentially. 
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CHAPTER 3 

 

METHODS  

 

 

3.1 Overview 

As explained previously, we aim to develop a fully automatic, robust and real-time intra-

operative US-CT registration method for femur fracture treatment. For that purpose, we 

proposed an RL-based registration method that consists of five main stages illustrated in 

Fig 3.1. It consists of data acquisition, bone shadow enhancement, point cloud modeling, 

hierarchical registration based on RL, and data augmentation.  

 

Figure 3.1 The framework of the proposed registration method using Q-learning, with CT 

data and simulated point clouds as the input and output for data acquisition, and the 

misalignment point clouds and the optimal action as the input and output for the Q-learning 

network. 
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3.2 Data Acquisition 

3.2.1 Overview 

When training a reliable registration agent, it requires a great number of labeled pairs with 

the known transformation matrix. However, it is difficult to obtain such a dataset in the 

medical domain. We proposed to generate the dataset mainly using 3D slicer [26] 

illustrated in Fig 3.2. For the femoral CT model acquisition, 3D slicer was used to visualize 

and segment the femur model from DICOM format and then transform them into ply 

format, which is a format of the point-cloud file. After getting the femoral CT data, the 

ultrasound simulator working on 3D slicer and Public software Library for Ultrasound 

(PLUS) toolkit was used to generate the consecutive simulated US image with has known 

transformation matrix of the CT femur model. 

 
 

Figure 3.2 Flowchart of the data acquisition process that consists of three steps, femur 

model acquisition, US images simulation and pairwise US-CT dataset generation. 

 

 

3.2.2 Femoral CT model acquisition 

TCIA is a service that de-identifies and hosts an extensive archive of medical images of 

cancer accessible for public download [25]. The data covers different types of image 

modality, such as MRI, CT, digital histopathology, with different common cancer diseases. 

femur CT 
model 

acquisition 
from TCIA

ultrasound 
simulation in 3D 

slicer+PLUC

Generated 
paired US-

CT 
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For our search focus, those CT covers the femur could be used in further research as the 

cancer tissue and the other soft tissue could be eliminated later. 

      3D slicer is an open-source software platform for medical image informatics, image 

processing, and three-dimensional visualization [26]. After loading the DICOM files from 

TCIA into 3D slicer, the 3D model was visualized in the Volume Rendering module in CT-

Bone mode and was segmented in the Segmentations module [27].  

 

   

Figure 3.3 3D slicer in the Segmentation module. The 3D human models were shown in 

the upper in CT-Bone mode that was segmented from the CT data. And the CT data from 

TCIA was shown in the lower where the blue portion indicated the segmented area based 

on the threshold range. 
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      In the Segmentations module, we first used a threshold effect in intensity to create a 

surface map, in which the intensity range is from 150 to 1600 after trails as shown in Fig 

3.3. Then the model was segmented and visualized based on the surface map. Next, the 

Draw and Grow-Cut effects were used to manual select the region of interest of the bone 

we wanted and then generate the surface map again optionally. The operation process 

mentioned above could be repeated until the femur bones were segmented clearly, the 

model was exported and saved as a point cloud file in the Segmentation module and 10 

different CT femur models were generated from 8 different patients in this procedure.  

 

3.2.3 Ultrasound images simulation 

The PLUS is an open-source toolkit for US acquisition, pre-processing and calibration for 

navigated image-guided intervention [28]. The simulated US images were acquired using 

Ultrasound Simulator in 3D slicer, SlicerIGT [29] and PLUS toolkit.  

In the US Simulator [33], PLUS toolkit generated and then sent the synthetic US images 

to 3D slicer in real-time, with a configuration file as the input. The configuration file 

contains the synthesized ultrasound properties, which consists of three main components, 

the acoustic properties and surface meshes of the models, the properties of the synthetic 

ultrasound machine and the properties of the algorithm. The scanlines were computed 

based on the properties in the configuration file, which includes the attenuation and 

absorption of the models, the refraction and the speed of sound [28].  

Then 3D slicer visualized the simulated US images from PLUS toolkit with the same 

models loaded into PLUS toolkit that contained the linear C5-2_60 transducer and the 

segmented CT femur model in the previous process. The positions and the orientations 



32 

 

 

information of each object in 3D slicer can be obtained in Transform Module in real-time, 

which means the different position and orientation of the simulated US image can also be 

obtained with respect to the transducer. 

In order to simulate the tracked 3-D US images, the 3D US images can be collected 

using Transform module in 3D slicer as shown in Fig 3.4. As the transducer moved along 

one direction with specific spacing, a consecutive sequence of simulated US images with 

known spatial information were generated which can be considered as 3D volumetric US 

images. And the spacing between two consecutive simulated US images in this work was 

set as 0.5 ~ 0.6 mm which was comparable to the actual tracking US system.  

 

   

 

 

 

 

 

Figure 3.4 (a) 3D layout view of US simulator in 3D slicer. The linear probe in the initial 

position was shown in two different views. The blue arrow indicates the data collection 

direction of the transducer. (b) The simulated ultrasound image from the current position 

of the transducer. 

(a) (b) 
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For the whole femur model, we used US simulator to generate 500 ~ 600 US images 

from one femoral CT model we generated previously, which depends on the length of the 

CT femur model. Here, And the size of the output US image was 860x616, where the 

resolutions were 0.084mm and 0.087mm, respectively. The initial positions of the femur 

model and the probe are [0, 0, 0] and [-10, -80, -15.46] respectively in the system 

coordination. Since there are four different coordination systems in the ultrasound 

simulator, the system, the transducer, the US image, and the femur bone coordination 

system. The referenced position between US images and femur bone would be described 

in the following point cloud modeling section. 

 

3.3 Femur bone surface enhancement 

Acoustic shadows occur in interfaces where there is a high impedance difference, such 

as air-tissue, tissue-bone, and tissue-lesion in 2D US [1]. Bone shadow can aid in the 

interpretation, such as identification of spinal levels, and has been incorporated as an 

additional feature to improve the segmentation of bone surfaces from US data. Real-time 

feedback of bone shadow information can also be used to guide the clinician to a 

standardized diagnostic viewing plane with minimal artifacts. In other words, the 

enhancement effectively removes the irrelevant tissue information during image guidance 

for femoral shaft treatment. 

The traditional approaches for bone shadow enhancement in 2D US images based on 

intensity or gradient-variant have shown its significant unreliable and limitations [2-4]. As 

the gradient information is unpredictable and could be affected by the imaging conditions,  
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Figure 3.5 (a) B-mode US image of femur obtained in vivo. Red arrows indicate the bone 

shadow region. (b) The bone shadow region enhancement is shown in jet color coding. The 

bone shadow region in the enhanced image is color coded in blue. 

 

the soft tissue and bone surfaces that are both denoted as high-intensity values would be 

both enhanced. The detection and segmentation of bone surface could be affected 

significantly. Thus, instead of using the traditional intensity-variant based method, we used 

local phase features that are intensity-invariant to enhance the tissue/bone interface in 2D 

US images as shown in Fig 3.5. Local phase features are crucial for analyzing the structural 

information of the image, as they could be considered as the interpretation of the visual 

appearance of the image [5]. 

The US response profile is highly correlated with the orientation of the transducer in a 

bone and dominant ridge-like edge along the scan line. In order to localize the presence of 

tissue/femur interface, the images are enhanced with the combination of three different 

local phase features, local phase tensor 𝐿𝑃𝑇(𝑥, 𝑦), local phase energy 𝐿𝑃𝐸(𝑥, 𝑦) and local 

weighted mean phase angle 𝐿𝜔𝑃𝐴(𝑥, 𝑦). 

(a) (b) 
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      The 𝐿𝑃𝑇(𝑥, 𝑦) is calculated using the gradient energy tensor GET filter that provides 

simultaneous analysis of local orientation and phase information [6]. The GET filter 

response is defined as:  

                  𝐺𝐸𝑇(𝑈𝑆𝐷𝐵(𝑥, 𝑦)) = 𝑇𝑒𝑣𝑒𝑛 + 𝑇𝑜𝑑𝑑 = [
𝐺𝐸𝑇11 𝐺𝐸𝑇12

𝐺𝐸𝑇21 𝐺𝐸𝑇22
]                 (3.1) 

where 

                      𝑇𝑒𝑣𝑒𝑛 = [𝐻(𝑈𝑆𝐷𝐵(𝑥, 𝑦))] [𝐻(𝑈𝑆𝐷𝐵(𝑥, 𝑦))]
𝑇
                              (3.2) 

                                      𝑇𝑜𝑑𝑑 = −0.5 ([∇𝑈𝑆𝐷𝐵(𝑥, 𝑦)] [∇∇2𝑈𝑆𝐷𝐵(𝑥, 𝑦)]𝑇 +

                                                                    [∇∇2𝑈𝑆𝐷𝐵(𝑥, 𝑦)] [∇𝑈𝑆𝐷𝐵(𝑥, 𝑦)]𝑇)                    (3.3) 

 

      The equations of 𝑇𝑒𝑣𝑒𝑛  and 𝑇𝑜𝑑𝑑  represent symmetric and asymmetric features 

respectively. And 𝐻 , ∇  and ∇2  denotes the Hessian, Gradient and Laplacian 

operations.  𝑈𝑆𝐷𝐵(𝑥, 𝑦)  is a distance weighted and band-pass filter that improves the 

enhancement result for the bone surface located deeper in the image and reduces the error 

enhancement for the soft tissue interfaces that located closer to the transducer surface. As 

band-pass filtering was obtained based on the even and odd symmetry response of Log-

Gabor filter, the 𝐿𝑃𝑇(𝑥, 𝑦) is calculated as: 

                          𝐿𝑃𝑇(𝑥, 𝑦) = √𝑇𝑒𝑣𝑒𝑛
2 + 𝑇𝑜𝑑𝑑

2 × cos ∅                                   (3.4) 

Here, ∅ represents the instantaneous phase obtained from the even and odd feature 

response [7].  

      In order to get a more compact bone surface representation with less soft tissue 

information, the 𝐿𝑃𝐸(𝑥, 𝑦) and 𝐿𝜔𝑃𝐴(𝑥, 𝑦) are computed using monogenic signal theory 

[8, 9], which is determined using Reisz filter in Fourier domain representation: 
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                             𝐻1(𝑢1, 𝑢2) =
𝑢1

√𝑢1
2+𝑢2

2
, 𝐻2(𝑢1, 𝑢2) =

𝑢2

√𝑢1
2+𝑢2

2
                      (3.5) 

  And the monogenic signal image 𝑈𝑆𝑀(𝑥, 𝑦) is formed by the combination of 𝐿𝑃𝑇(𝑥, 𝑦) 

and Reisz filtered component as follows:  

 

𝑈𝑆𝑀(𝑥, 𝑦) = [𝐿𝑃𝑇𝐵(𝑥, 𝑦), 𝐿𝑃𝑇𝐵(𝑥, 𝑦) × ℎ1(𝑢1, 𝑢2), 𝐿𝑃𝑇𝐵(𝑥, 𝑦) × ℎ2(𝑢1, 𝑢2)]           (3.6) 

 

  Where ℎ1(𝑢1, 𝑢2) 𝑎𝑛𝑑 ℎ2(𝑢1, 𝑢2) denote as the spatial representation of Reisz filter and 

* is convolution operator. In order to further enhance the edge information in the image, 

the α-scale space derivative quadrature filter (ASSD) is used for band-pass filtering, which 

is defined as [10]: 

 

                              𝐴𝑆𝑆𝐷(𝜔) = {𝑛𝑐𝜔𝛼𝑒𝑥𝑝(−𝜎𝜔2𝛼)  𝜔 ≥ 0
              0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                            (3.7) 

      In the above equation, In the above equation, a is a constant derivative parameter which 

is chosen to be α > 1 for the filters to satisfy the DC condition [1]. 𝑛𝑐  is a unit normalization 

constant calculated from the filter α value, and σ is the filter α-scale parameter [10]. 

The 𝐿𝑃𝐸(𝑥, 𝑦) and 𝐿𝜔𝑃𝐴(𝑥, 𝑦) are calculated as: 

         𝐿𝑃𝐸(𝑥, 𝑦) = ∑ |𝑈𝑆𝑀1(𝑥, 𝑦)| −  √𝑈𝑆𝑀2
2 (𝑥, 𝑦) + 𝑈𝑆𝑀2

3 (𝑥, 𝑦)𝑠𝑐                 (3.9) 

                     𝐿𝜔𝑃𝐴(𝑥, 𝑦) = arctan
∑ 𝑈𝑆𝑀1(𝑥,𝑦)𝑠𝑐

√∑ 𝑈𝑆𝑀1
2

𝑠𝑐 +∑ 𝑈𝑆𝑀2
2 (𝑥,𝑦)𝑠𝑐

                                          (3.10) 

  In the above equations, sc represents the number of scales. Then the 𝐿𝑃𝐸(𝑥, 𝑦) a feature 

map image that obtained the underlying shape of the bone boundaries while 𝐿𝜔𝑃𝐴(𝑥, 𝑦)  
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preserves all the details in structure for both soft tissue and bone boundaries. Thus, the final 

local phase features image 𝐿𝑃(𝑥, 𝑦) with a combination of these three different features 

could be represented as [1]: 

                         𝐿𝑃(𝑥, 𝑦) = 𝐿𝑃𝑇(𝑥, 𝑦) × 𝐿𝑃𝐸(𝑥, 𝑦) × 𝐿𝜔𝑃𝐴(𝑥, 𝑦)                (3.11) 

The combined image could not only suppress the soft tissue interface but make the bone 

surface more compact and localized, which could be used for the further enhancement and 

bone surface segmentation. The different local phases image and the combined image were 

illustrated in Fig 3.6. 

 

 

Figure 3.6 (a): B-mode US image of femur obtained in vivo. (b): Distance map used 

during LPT(x,y) image calculation. (c): LPT(x,y) image from (a). (d): LPE(x,y) image 

from (a). (e): LwPA(x,y) image from (a). (f): LP(x,y) image obtained with the 

combination of c-e. 

(a) (b) (c) 

(d) (e) (f) 
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      The bone shadow region enhancement is based on a confidence map (CM) approach 

using 𝐿𝑃(𝑥, 𝑦)  image [7]. And with the consideration of US signal scattering and 

attenuation, the CM could be represented as: 

                  𝐶𝑀𝐿𝑃(𝑥, 𝑦) = 𝑈𝑆𝐴(𝑥, 𝑦)𝐵𝑆𝐸(𝑥, 𝑦) + (1 − 𝑈𝑆𝐴(𝑥, 𝑦))𝜌              (3.12) 

Here 𝐶𝑀𝐿𝑃(𝑥, 𝑦) represents the CM image using [11], and 𝑈𝑆𝐴(𝑥, 𝑦) denotes as the US 

transmission map [11], 𝐵𝑆𝐸(𝑥, 𝑦) is the enhanced bone shadow image and 𝜌 is a constant 

value representative of echogenicity of tissue that nears the bone. In order to get the 

𝐵𝑆𝐸(𝑥, 𝑦), we could estimate the transmission by the following rules. The 𝑈𝑆𝐴(𝑥, 𝑦) could 

be minimized by the following function: 

          
𝜆

2
‖𝑈𝑆𝐴(𝑥, 𝑦) − 𝐶𝑀𝐿𝑃(𝑥, 𝑦)‖2

2 + ∑ ‖𝑊𝑗 ∘  (𝐷𝑗 ∗ 𝑈𝑆𝐴(𝑥, 𝑦))‖
1

𝐽∈𝑥         (3.13) 

      In the above objective function, x is an index set and ∘  is the element-wise 

multiplication operator. 𝑊𝑗 is a weighting matrix which is calculated as follow: 

                                  𝑊𝑗(𝑥, 𝑦) = 𝑒𝑥𝑝(−|𝐷𝑗 ∗ 𝐶𝑀𝐿𝑃(𝑥, 𝑦)|2)                         (3.14) 

      And 𝐷𝑗 is obtained in a higher-order differential filter that enhances the bone surface 

feature as well as suppresses image noise [12].  

  After estimating the 𝑈𝑆𝐴(𝑥, 𝑦), we could get 𝐵𝑆𝐸(𝑥, 𝑦) as:  

             𝐵𝑆𝐸(𝑥, 𝑦) = [(𝐶𝑀𝐿𝑃(𝑥, 𝑦) − 𝜌) [𝑚𝑎𝑥(𝑈𝑆𝐴(𝑥, 𝑦), 𝜖 )]𝛿⁄ ] + 𝜌          (3.15) 

Where 𝛿 is the attenuation coefficient and 𝜖 is a constant that ensures the division of zero 

won’t happen. In this work, 𝐶𝑀𝐿𝑃(𝑥, 𝑦) images were obtained with the following constant 

values: 𝛾 = 0.03, 𝛽 = 90, 𝜂 = 2. And for Eq. 3.12, the tissue echogenicity constant ρ was 

chosen as 90% of the maximum intensity value of 𝐶𝑀𝐿𝑃(𝑥, 𝑦). In the next step, 𝐵𝑆𝐸(𝑥, 𝑦) 
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images that illustrated in Fig 3.7 are used to extract bone surface information and the 

simulation of point-cloud data, which we will explain in the next section. 

 

 

Figure 3.7 (a): B-mode US image of the femur with different rotation and position in 

vivo; (b): 𝐶𝑀𝐿𝑃(𝑥, 𝑦) image from (a); (c): 𝐵𝑆𝐸(𝑥, 𝑦) image from (a) in jet color. 

 

3.4 Point cloud modeling from bone shadow region images 

Bottom up ray casting segmentation was used to obtain the bone surface information from 

𝐵𝑆𝐸(𝑥, 𝑦) as the bone surface has much a higher intensity than its neighbor in the bottom. 

The 2-D bone surface information in one image could be defined as: 

      𝑃2𝑑(𝑥, 𝑦) = {   
           (𝑥, 𝑦) ;   𝑖𝑓 𝐼(𝑥, 𝑦) − 𝐼(𝑥 − 1, 𝑦) ≥ ω  

𝑁𝑜𝑛𝑒;                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                  (3.16) 

(c1) (b1) (a1) 

(a2) (b2) (c2) 
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Where the 𝐼(𝑥, 𝑦) means the intensity of (x, y) in the 𝐵𝑆𝐸(𝑥, 𝑦) image. And ω is the 

threshold value for bone surface segmentation, which is set as 80 in this work after 

numerous trails. 

      After getting the bone surface point from 𝐵𝑆𝐸(𝑥, 𝑦) images, 2-D to 3-D transformation 

was needed to simulate the actual 3-D data. In the consecutive sequence of US images, the 

index of each image could be considered as the z-direction in 3D. Thus, we proposed to 

transform the simulated US images, which were in the US probe coordination into 3D CT 

femur model coordination with the help of the index information as illustrated in Fig 3.8. 

As those two data were in the scene of 3D slicer at the same time, the relative position 

between the 3-D CT femur model and simulated US images was known. The 3-D bone 

surface information from a consecutive sequence of the US images are calculated as 

follows: 

          𝑃3𝑑(𝑥, 𝑦, 𝑧) = [𝑃2𝑑(𝑥) ∗ 𝑟𝑥 + 𝑅𝑥, 𝑃2𝑑(𝑦) ∗ 𝑟𝑦 + 𝑅𝑦 , ℤ ∗ 𝑟𝑧 + 𝑅𝑧]         (3.17) 

Where 𝑃2𝑑(𝑥)  and 𝑃2𝑑(𝑦)  are the 2-D position in one image, and 𝑟𝑥  and 𝑟𝑦  are the 

resolution of the US images in x-, y-direction, respectively. ℤ  is the index of the 

consecutive sequence of the US image and 𝑟𝑧  is the spacing between two consecutive 

simulated US images. After transforming the 2-D data into 3-D data, the relative position 

𝑅𝑥 , 𝑅𝑥 𝑎𝑛𝑑 𝑅𝑥 are added to it. Then those simulated point-based 3D bone surface data is 

in the femur model coordination, which means they’re well registered and paired.  

      In the end, down-sampling is necessary as the original point-base bone surface have 

different size and different original length of US sequences. Down-sampling them into one 

fixed size makes the different size of the point-based bone surface could be represented in 

one size. As well as it’s more inconvenience as the input of the CNN in the next steps. And 
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in the next section, we’ll discuss the framework of the CNN and how the Q-learning works 

for hierarchical registration problem. 

 

Figure 3.8 A sparse consecutive sequences of 𝐵𝑆𝐸(𝑥, 𝑦) images from femur US images 

obtained in vivo. The blue arrow indicates the z-direction being used in the point cloud 

modeling. 

 

3.5 Hierarchical 3-D registration of the point cloud-based registration with RL 

3.5.1 Problem formulation 

As we mentioned above, the registration learning process could be treated as an optimal 

strategy learning process that aims to find the optimal sequence of motions to make the 

two point-based volumes aligned. Within the definition of the registration learning process, 

the agent is modeled using a deep convolution neural network, with the point-based data 

as the input and the optimal motion as the output. 
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      Let 𝑃𝑟   be a reference point-based bone surface volume and 𝑃𝑓 be the floating point-

based volume that needs to be registered to 𝑃𝑟. And the goal in the rigid-body registration 

is to estimate the transformation matrix 𝑇𝑔, which is a column-wise 4x4 homogeneous 

transformation matrix. Then for 𝑇𝑔 , 𝑇𝑔 is the matrix that makes the following equation 

workable 𝑃𝑟 = 𝑃𝑓 ∘ 𝑇𝑔 , which means the 𝑃𝑓  and 𝑃𝑟  are aligned with 𝑇𝑔 . 𝑇𝑔  can be 

represented in six parameters with three in translation [𝑡𝑥, 𝑡𝑦, 𝑡𝑧] and three in rotations 

[𝜃𝑥, 𝜃𝑦 , 𝜃𝑧] as:  

𝑇𝑔(𝑡𝑥, 𝑡𝑦, 𝑡𝑧, 𝜃𝑥, 𝜃𝑦, 𝜃𝑧) = [

1   0           0         𝑡𝑥

0
0
0

cos 𝜃𝑥 −sin 𝜃𝑥 𝑡𝑦

sin 𝜃𝑥     cos 𝜃𝑥 𝑡𝑧

  0            0           1

] 

             × [

cos 𝜃𝑦 0  sin 𝜃𝑦  0

0
−sin 𝜃𝑦

0

1       0      0
0 cos 𝜃𝑦   0

0       0      1

] × [

cos 𝜃𝑥   −sin 𝜃𝑥 0  0

sin 𝜃𝑥

0
0

cos 𝜃𝑥      0  0
      0       1     0
      0       0     1

]        (3.18) 

      Then the process of finding 𝑇𝑔  can be completed using Markov Decision Process 

(MDP) which defined by {𝑆, 𝐴, 𝜏, 𝑟, 𝛾} [13].  𝑆 are the set of states that the agent can be 

reach, 𝐴 is a set of action that the agent can take at a state, 𝜏 is the transition function that 

indicates the probability of each action to take at a state, 𝑟 is the reward the agent can 

receive when reaches at a state and 𝛾 is the discounted factor that affects the long term 

reward for the agent which is set as 0.9 in this work. 

      At each time t, the current 𝑠𝑡  is defined by the current transformation 𝑇𝑡 . And the 

associate observation of the whole system at time t according to 𝑇𝑡 is the difference of 𝑃𝑟 −

𝑃𝑓 ∘ 𝑇𝑡. The details of the computing the 𝑠𝑡 is described later. Then the agent chooses an 

action 𝑎𝑡  from the action set 𝐴 to update the state to improve the alignment result by 

𝑇𝑡+1 = 𝑎𝑡 ∘ 𝑇𝑡. The action set 𝐴 consists of twelve possible actions the agent can take that 
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leads to ±1 changes in one element of [𝑡𝑥, 𝑡𝑦 , 𝑡𝑧, 𝜃𝑥, 𝜃𝑦 , 𝜃𝑧], such as ±1mm in translations 

and ±1° in rotations. The transition function 𝜏 is defined that all available actions for the 

next state have an equal possibility at time t. The reward function is described explicitly 

below. 

      In the training process, the agent learns a 3-D registration policy that makes the two 

point-based data aligned with a sequential of optimal actions 𝑎𝑡
∗, which is the best action 

at time t to improve the alignment result. In the testing process, the output of the agent 

system is a sequence of N consecutive actions {𝑎1
∗ … 𝑎𝑁

∗  } with the learned registration 

policy to achieve the correct alignment. 

      For this agent, the details of the MDP process (i.e. input, reward, etc.) and the deep 

neural network for the MDP based reinforcement learning are described in detail in the 

following sections. 

 

3.5.2 The supervised Target DNN-based Q-learning 

3.5.2.1 The input of the agent system 

As we have registered pairs of US and CT point cloud models in the data acquisition 

procedure, then misalignment can be introduced to the simulated point cloud model that 

considered as 𝑃𝑟 and the CT point cloud model was treated as 𝑃𝑓 before using them in one 

registration training process. Moreover, the introduced transformation should be 𝑇𝑔 as the 

gold standard in the training process. 

    However, as the point-based data is unordered and the size of 𝑃𝑓 and 𝑃𝑟 are different, the 

difference between two point-based data that can be represented the current registration 

situation cannot be computed by a simply minus operation, like the image. For that, planar 
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projection and k-nearest neighbors (k-NN) are used to compute the corresponding point of 

𝑃𝑓 in 𝑃𝑟 which should be the 𝑠𝑡.  

      The rotation difference between the 𝑃𝑟 and 𝑃𝑓 may cause some problems in finding the 

nearest neighbor points as the nearest neighbor point is defined in the spherical 

coordination. We should specify the direction of it using planar projection as illustrated in 

Fig 3.9. The direction of the projective plane is defined as: 

             𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
√𝑎2+𝑏2

𝑐
) = 𝑎𝑟𝑐𝑐𝑜𝑠 (

𝑐

√𝑎2+𝑐2+𝑐2
) ;  𝜑 = 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑏

𝑎
)             (3.19) 

               𝑈 = {− 𝑠𝑖𝑛 𝜃 ,  𝑐𝑜𝑠 𝜃 ,  0}; 𝑉 = {𝑐𝑜𝑠 𝜃 ∗ 𝑠𝑖𝑛 𝜑 ,  𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜑 , 𝑐𝑜𝑠 𝜑}        (3.20) 

Where {𝑎, 𝑏, 𝑐} is the normal vector of the projected direction, 𝜃 and, 𝜑 are the rotation 

angle in x -y plane and z-[x-y] plane of {𝑎, 𝑏, 𝑐}. 𝑈 and 𝑉 are the normal vectors that 

represent the horizontal and vertical direction of the projective plane, respectively. 

          

Figure 3.9 Illustration of the planar projection method. It shows the relationship of the 

projective plane and its relative parameters with the normal vector of the perspective 

direction. 
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      And then, the points in the projective plane is calculated as: 

𝑐𝑒𝑛𝑡𝑒𝑟 = {cos 𝜃 ∗ cos 𝜑 ,  sin 𝜃 cos 𝜑 , 𝑠𝑖𝑛 𝜑} 

            𝑃𝑃(𝑥′, 𝑦′) = [(𝑃(𝑥, 𝑦, 𝑧) − 𝑐𝑒𝑛𝑡𝑒𝑟) ⋅ 𝑈,  (𝑃(𝑥, 𝑦, 𝑧) − 𝑐𝑒𝑛𝑡𝑒𝑟) ⋅  𝑉]             (3.21) 

Where the center is the center point of the projective plane and 𝑃𝑃(𝑥′, 𝑦′) is the projected 

2-D point of 𝑃(𝑥, 𝑦, 𝑧) in the projective plane.  

      K-NN is a non-parametric method used for classification and regression [15]. For the 

classification k-NN, if k = 1, the object is assigned to its nearest neighbor which means we 

can use it to find the nearest point of each point. The nearest neighbor points 𝑃𝑛 can be  

 

 

Figure 3.10 (a) The CT and US point cloud models in the projective plane. The red point 

set is CT model while the green is US model. (b) The KNN results for the US model in a. 

The green point set is the US model, and the green point set is the neighbor point in CT 

model for that US model. And the red point set is the difference between those two point 

sets with the same size. 

 

(a) (b) 
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treated as the 3-D corresponding point of 𝑃𝑓 in 𝑃𝑟. And the input of the system 𝑠𝑡 is defined 

as: 

 𝑠𝑡 = 𝑃𝑐(𝑥, 𝑦, 𝑧) = 𝑃𝑛−𝑃𝑓 ∘ 𝑇𝑔; 

                                           𝑃𝑛 = [𝑘𝑛𝑛 (𝑃𝑃𝑟(𝑥, 𝑦), 𝑃𝑃𝑓(𝑥, 𝑦))]
3𝑑

                               (3.22) 

 

      𝑠𝑡 is the difference of 𝑃𝑟  and 𝑃𝑓 which has the same size as 𝑃𝑓. 𝑃𝑛 is 3-D nearest points 

between 𝑃𝑓 and 𝑃𝑟 which transformed from the 2-D nearest points. We assumed that if 𝑃𝑛 

and 𝑃𝑓 ∘ 𝑇𝑔 are aligned, 𝑠𝑡 should be a set of nearly zero points as illustrated in Fig 3.10. 

With respect to that, the learning agent is learning how to make the 𝑠𝑡 become a set of 

nearly zero points. 

 

3.5.2.2 The supervised Q-learning 

For the agent, the policy learning process can be formulated as a reinforcement learning 

problem [14, 16-17]. And we mentioned above, Q-learning is an MDP-based learning 

agent to learn a policy to under what circumstances [18]. And the action-value function in 

Q-learning is defined as: 

               𝑄𝑡(𝑠𝑡, 𝑎𝑡) = 𝑚𝑎𝑥𝜏𝔼[𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+1 + ⋯ |𝑠𝑡, 𝑎𝑡 , 𝜏]                 (3.23) 

Where the actions-value function is estimated by a DNN and iteratively updated by the 

Bellman Equation [19]. Also, the action-value function using iterative value update can be 

represented as: 

                       𝑄𝑡(𝑠𝑡, 𝑎𝑡) ← (1 − 𝛼)𝑄𝑡(𝑠𝑡, 𝑎𝑡) + 𝛼 ∙ (𝑟𝑡 + 𝛾 ∙ max
𝑎

𝑄(𝑠𝑡+1, 𝑎))            (3.24) 
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Where 𝛼 is the learning rate (0 < 𝛼 ≤ 1), 𝑟𝑡 is the reward the agent achieved when moving 

from the state 𝑠𝑡 to the next state𝑠𝑡+1 after taking action 𝑎𝑡, max
𝑎

𝑄(𝑠𝑡+1, 𝑎) is the estimate 

of optimal future value. 

      In the traditional Q-learning algorithm, the iterative value update method for action-

value function using DNN undergoes an unguided exploration of the agent which can result 

in low training efficiency. Because the agent must try a great number of combinations of 

different actions to achieve the optimal registration path. Then, a supervised training path 

is used here to instruct the agent to follow a greedy registration path which mimics how 

human register two objects in a most efficient manner [20]. Thus, the optimal action 𝑎𝑡
∗ at 

time t along the supervised registration path is computed as: 

                                                     𝑎𝑡
∗ = min

𝑎𝑡∈𝐴

𝐷(𝑇𝑔, 𝑎𝑡 ∘ 𝑇𝑡)                                          (3.25) 

Where 𝑎𝑡
∗ aims to find the minimum difference or distance between the new and the ground 

truth transformation matrix. 𝐷(𝑇𝑔, 𝑎𝑡 ∘ 𝑇𝑡)  is the distance between two transformation 

matrices using the Euclidean norm of the 6-D parameters of 𝑇𝑔 ∘ (𝑎𝑡 ∘ 𝑇𝑡)−1 with the Eqn. 

3.18. And the Euclidean norm of the 6-D parameter 𝑣𝑡 is captured by the formula: 

                  ‖𝑣𝑡(𝑡𝑥, 𝑡𝑦, 𝑡𝑧, 𝜃𝑥, 𝜃𝑦, 𝜃𝑧)‖
2

= √𝑡𝑥
2 + 𝑡𝑦

2 + 𝑡𝑧
2 + 𝜃𝑥

2 + 𝜃𝑦
2 + 𝜃𝑧

2
        (3.26) 

      If there are more than one action leads to the optimal action at time t, those actions are 

taken with equal probabilities. Without loss of generality, the exploration limitation in 

transformation parameter space is within ±20mm translation for x, y-direction, ±30mm 

translation for z-direction and ±15°  rotation for x-, y-, z-direction. As we have pre-

alignment before using this agent, the limitation of these parameters is comparatively small 
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but corresponding to the maximum possible misalignment of the two volumes to be 

registered.  

      Therefore, the action-value Q-function under a supervised greedy path can be 

computed as in a recursive manner, and we assumed the agent could run sufficient steps to 

reach the optimal alignment position: 

                        𝑄(𝑠𝑡, 𝑎𝑡) = {
𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡

∗), 𝑖𝑓 𝐷(𝑇𝑔, 𝑎𝑡 ∘ 𝑇𝑡) > 𝜖

 𝑟(𝑠𝑡, 𝑎𝑡) + 𝑅,                           𝑜. 𝑤.                
            (3.27) 

Where 𝜖  is the distance tolerance, 𝑅  is a bonus reward and 𝑟(𝑠𝑡, 𝑎𝑡) is the immediate 

reward function. And the immediate reward 𝑟(𝑠𝑡, 𝑎𝑡) for the agent when taking 𝑎𝑡 at 𝑠𝑡 is 

formulated as: 

                                             𝑟(𝑠𝑡, 𝑎𝑡) =  𝐷(𝑇𝑔, 𝑇𝑡) − 𝐷(𝑇𝑔, 𝑎𝑡 ∘ 𝑇𝑡)                           (3.28) 

      The agent is considered as successful when the distance between the current 𝑇𝑡 and the 

ground truth 𝑇𝑔 transformation is not larger than the tolerance 𝜖 = 0.5. When the agent 

achieved success, it received a bonus reward 𝑅. The maximum immediate reward of the 

system is 1 with the continuous steps size 1, with the proof below: 

            𝑟(𝑠𝑡, 𝑎𝑡) =  𝐷(𝑇𝑔, 𝑇𝑡) − 𝐷(𝑇𝑔, 𝑎𝑡 ∘ 𝑇𝑡) 

                           = ‖𝑣𝑡‖2 − ‖𝑣𝑡+1‖2 ≤ ‖𝑣𝑡 − 𝑣𝑡+1‖2 = ‖𝑣𝑡+1 − 𝑣𝑡‖2 = 1             (3.29) 

      Then, with the Bellman Equation, the maximum action-value function should be nearly 

10. Thus, the success bonus reward 𝑅 is 10 which is estimate Q-value for the whole system. 

From the Eqn.3.27, we know that the agent can perform the registration process by 

choosing the action with maximum Q-value during testing.  
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      Based on the structure of the agent, with the difference point-based volume 𝑃𝑛 as the 

input and 12 nodes as the outputs which corresponds the action in action set A. For that, 

mean square root error (RMSE) as the loss function: 

                                      𝐿𝑜𝑠𝑠 = ∑ ∑ ‖𝑦𝑖(𝑃𝑘) − 𝑄(𝑠𝑘, 𝑎𝑖)‖2𝑎𝑖∈𝐴
𝑀
𝑘=1                            (3.30) 

Where 𝑦𝑖(𝑃𝑘) is the i-th output of the DNN for the k-th sample among the M training 

samples. In addition, the learning rate for the agent was 0.000006 with a decay of 0.65 

every 5,000 mini-batch based back propagations.  

 

3.5.2.3 PointNet++ based DNN 

Due to the irregular format of the point cloud, PointNet++ is a novel deep neural network 

that can directly process the point cloud data instead of rendering data voluminously [21, 

22]. PointNet++ is able to learn the deep local features of the point set from multiple scales 

by exploiting metric space distance.  

 

Figure 3.11 Illustration of the architecture of the classical hierarchical feature learning 

from PointNet++, which contains three different layers. It also showed the application of 

PointNet++ in set segmentation and classification using points after using the result of the 

hierarchical point set feature learning from [22]. 
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      And from Fig 3.11 we can see that the architecture of PointNet++ consists of three 

parts, hierarchical point set feature learning, feature learning under non-uniform sampling 

density, and point feature propagation for segmentation. Here, we used the architecture of 

PointNet++ to build our own DNN that learns the feature of out inputs for the agent which 

is identified as the Q-function for the system.  

      For the hierarchical point set feature learning, it is composed of a number of set 

abstraction levels, which consists of sampling layer, grouping layer, and PointNet layer. At 

each level, the new few feature points were processed and abstracted. The input of a set 

abstraction level is 𝑁 × (𝑑 + 𝐶) matrix, where 𝑁 is the number of the matrix, 𝑑  is the 

coordination dimension, and 𝐶  is the dimension of point features. And it outputs 

𝑁′ × (𝑑 + 𝐶′) number of points with new total number and point feature dimension. For 

the sampling layer, the iterative farthest point sampling (FPS) is used to choose a subset of 

points, which defines the centroids of local regions [23]. And the output of sampling layer 

is 𝑁′ × 𝑑 , a point set of the coordinates of centroids. Then, the grouping layer takes 

𝑁 × (𝑑 + 𝐶) matrix and  𝑁′ × 𝑑 as the input and outputs groups of point set  𝑁′ × 𝐾 ×

(𝑑 + 𝐶), where 𝐾 is the number of points in the neighborhood of centroid points. At the 

last layer, PointNet layer, of the set abstraction, it takes  𝑁′ × 𝐾 × (𝑑 + 𝐶) as input. Each 

local point features for each region is abstracted from its centroid point with the output data 

size is  𝑁′ × (𝑑 + 𝐶′).  For the local patterns learning process, we used the following 

function in PointNet [21]: 

                                                   𝑓{𝑥1, 𝑥2, … , 𝑥𝑛} = 𝛾 ( max
𝑖=1,…,𝑛

{ℎ(𝑥𝑖)})                       (3.31) 

Where {𝑥1, 𝑥2, … , 𝑥𝑛}  is a set of points with  𝑥𝑖 ∈ ℝ6 , and 𝛾  and ℎ  are multi-layer 

perception networks (MLP).  
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      As the varying density among the different regions of one single point cloud, feature 

grouping from regions across different scales is necessary for the further global feature 

learning process. Two density adaptive layers, multi-scale grouping, and multi-resolution 

grouping, are used to solve this problem whose arichitecure were shown in Fig 3.12. Multi-

scale grouping is deployed by randomly dropping out input points with a randomized 

probabilities 𝜗 , which we set as 0.95 here. It means each input can be dropped with 

probability (1 − 𝜗). And the multi-resolution grouping layer, the weighted local regions at 

each level are generated according to its density. The region with sparse density is weighted 

lower and considered less reliable as it suffers more from sampling deficiency. When the 

density of a local region is high, the local features have more fine details information 

because it can inspect at higher resolution recursively in lower levels. 

      The architecture of DNN for the agent is based on those layers we mentioned above. It 

consists of three set abstraction levels, one PointNet layer, and three fully connected layers. 

The input size of those set abstraction levels is 512, 256 and 128. And the input and output 

data size of PointNet layer is 160 and 256. After taking the output of a single PointNet 

layer as the input, the three fully connected layers output 12 nodes, which denotes as the 

estimation Q-value of each 𝑎𝑡 in action set 𝐴 in 𝑠𝑡. 

 
Figure 3.12 (a) Multi-scale grouping (b) Multiresolution grouping from [22] 
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3.6 Data augmentation 

3.6.1 Data Augment in registered models 

As we mentioned above, training a DNN requires a high number of labeled pairs with the 

known transformation matrix. Thus, we proposed two different ways to solve this problem. 

The first is to introduce randomly rigid-body motions to the femur model which could 

augment the available labeled data. 

      Each femur models are artificially introduced a rigid-body transformation 𝑃𝑟, where 𝑃𝑟 

is a 4x4 rigid-body rotation matrix as: 

                                            𝑃𝑟 = 𝑅𝑥(𝛼)𝑅𝑦(𝛽)𝑅𝑧(𝛾)                                       (3.32) 

      The angle 𝛼, 𝛽, 𝛾 are the rotation angle in x-, y- and z-direction respectively. They are 

randomly and independently generated from [ −10°, 10° ]. Five different rigid-body 

transformations were made towards the CT femur models.  

      The second method is to segment the whole simulated femur US images based on 

different positions and different lengths. For each femur model, we divided it into eight 

portions in the same length. Then the length of the portion was changed and repeated the 

division operation to obtain the new dataset. And the length of the portion was set as [45mm 

50mm 55mm 60mm]. These operations result in 10x5x8x4 = 1600 labeled pair test cases. 

And the testing and training dataset were separately randomly with an 8:2 ratio and came 

from different patients.  
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3.6.2 Generation of Input pairs 

However, the generated pairs from the previous operations are still not enough to secure a 

reliable dataset for training. The different transformations should be introduced to enlarge 

the dataset.  

      Due to the complex anatomy structure and non-convex nature in-vivo, the initial 

alignment should be made before fine-registration in the US-based CAOS system. Here, 

we degraded the full length of  𝑃𝑟 into a slightly shorter model. The truncated model which 

was 30 mm longer than 𝑃𝑓  in both side of z-direction can be considered as the initial 

estimation position for 𝑃𝑓  in the training process, which could also improve the time-

efficiency for the convergence of the DNN.  

                  

Figure 3.13 (a) The point cloud models from CT and US showing in blue and red, 

respectively. And the green point set represents the truncated CT model from the CT 

model. (b) The registered point cloud models of the truncated CT and US were shown in 

green and red from a. (c) The manual rotation and translation were introduced from b 

randomly, which is being used in the training process.  

(a) (b) (c) 
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      The size of the truncated model responses with the workable range of the agent. In 

addition, only the top surface that is visible in the US data of the femur bone from CT was 

used in the generation of input. Thus, the truncated 𝑃𝑟  and 𝑃𝑓  with known 𝑇𝑔  from the 

randomly rigid-body permutation are the inputs for the agents in each training progress. 

And these models were shown in Fig 3.13. 

      As we mentioned above, the input pairs were randomly selected from the registered 

pairs and then generated transformation to the simulated US point set before each 

registration process. Then each aligned pair was randomly de-aligned using rigid-body 

permutations within the same range of workable range for the agent, which is 

[ ±20mm, ±20mm , ±30mm, ±15°, ±15°, ±15° ]. Since the goal of registration is to 

estimate the transformation between each pair of the misaligned models, multiple 

transformations should be applied in the registered models to fully cover the parameter 

space. Thus, during training, each registered US-CT pair was augmented 3200 times by 

introducing random transformation during training process, resulting in more than 5M 

training data, which should be sufficient and unique enough for the reliable outcomes of 

the system. 

 

3.7 Quantitative analysis on point cloud modeling and registration results 

The evaluation of the accuracy of simulated point bone surface cloud and alignment results 

between the US-CT can be interpreted using quantitative measurement between two point 

clouds. Two types of quantitative measurements are used here, target registration error 

(TRE) and Fiducial registration error (FRE).  
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3.7.1 Fiducial registration error (FRE)  

The FRE for 3-D registration is the error in finding the correct position of fiducial 

markers, which equals the root mean square distance in fiducial alignment between two 

3-D models after registration [30]. And the FRE is computed as: 

                                                         𝐹𝑅𝐸2 =
1

𝑁
∑ |𝑥𝑖 − 𝑦𝑖|2𝑁

𝑖=1                                     (3.33) 

Where N is the total fiducial number, and 𝑥𝑖 and 𝑦𝑖 is the corresponding fiducial marker 

points in those two point clouds. If the alignment result is good, FRE should be nearly 

zero. In our analysis, six fiducial markers were selected manually in US point clouds. 

And the corresponding markers were automatically selected from the neighbor models 

for CT which have the same index with the US point clouds. 

 

3.7.2 Target registration error (TRE)  

 

The TRE is the distance between corresponding points other than fiducial points after 

registration, which does not need manual fiducial points selection [31]. TRE is also 

interpreted as a root-mean-square error but is uncorrelated with FRE [32]. The term target 

is used to suggest that the corresponding point with the same index in the point cloud pair 

in our system. And TRE is computed as: 

                                                           𝑇𝑅𝐸2 =
1

𝑁
∑ ∑ |𝑥𝑖𝑗 − 𝑦𝑖𝑗|

23
𝑗=1

𝑁
𝑖=1                               (3.34) 

Where j in the dimension number, ranging from 1-3, and 𝑥𝑖𝑗  and 𝑦𝑖𝑗  are the j-dim 

coordination value of corresponding points for point cloud pair. And for our system, we 

chose the total 512 number of points in the floating-point cloud as the interest points here. 

Generally, TRE is smaller than FRE that can be used as the lower bound of the registration 

evaluation. And FRE can be used as the upper bound of the quantitative analysis. 
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

 

 

4.1 Overview 

In this chapter, the qualitative and quantitative analysis of the point-cloud models from the 

bone surface segmentation and US-CT registration results are presented. In section 4.1, the 

results in point-set modeling are evaluated using TRE and FRE for both a single US image 

and a set of US images.   

  In section 4.2, the evaluation US-CT registration results are performed using TRE and 

FRE to compare the other traditional point cloud-based registration and the ground truth 

results.  

 

4.2 Femoral point cloud modeling from US images 

The accuracy of point cloud modeling is crucial for the following registration process 

which requires it reflects the distinct anatomy structure of the femur bone surface. For the 

bone segmentation results in the single US image, they were compared with the manual 

segmentation results and expertise segmentation results that are considered as the gold 

standard. Moreover, the point cloud modeling results from a set of US images were 

compared with the CT model that has delicate quality. 

 

4.2.1 Point-cloud modeling from a single US image 

From the segmentation results in Fig 4.1, the tissue/bone surfaces were clear enhanced and 

visualized in the enhanced bone surface images. Although some virtual artifacts appeared 
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in the enhanced US images, the effects of them were unknown to the final registration 

results and would be evaluated in the next steps in point cloud modeling. 

      The bone segmentation results using the enhanced bone surface images as the input is 

shown in Fig 4.1. From Fig 4.1, the segmentation results indicate that the proposed method 

yields a reliable segmentation that representing the actual anatomy structure. 

       
 

       
            

           

Figure 4.1 (a) B-mode US image of femur obtained in vivo. (b) BSE(x,y) image from a. 

(c) The manual bone surface segmentation result by expertise that used as the gold 

standard for evaluation. (d) The automatic bone surface segmentation using the proposed 

thresholding method.  

(a) (b) 

(c) (d) 
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      In the quantitative analysis, the median FRE error of the proposed segmentation method 

is 0.51 mm (SD: 0.08 mm) while the minimum and maximum error in FRE is 0.26 mm and 

0.93 mm respectively on 100 images. The quantitative results demonstrate the potential of 

applying the segmentation results from the US image in the future registration method as 

it has a comparable result with the expertise segmentation results. 

 

 

4.2.2 Point-cloud modeling from a set of US images 

The point-cloud modeling method takes the bone surface information as the input and 

integrates with the index of a set of US images as the depth information to reconstruct the 

femur point-cloud models. The qualitative result of modeling is shown in Fig 4.2. 

Comparing with the BSE(x,y) images, the point cloud modeling result was less noisy. And 

the result showed that the point-cloud models can represent the anatomy structure of the 

femur bone surface and has proper alignment with the CT models. Moreover, the virtual 

artifact appears in the enhanced US images cause some noisy points in the simulated point 

cloud models. However, those noise points can help to improve the robustness of the 

proposed DNN-based registration method.  

 

 Mean Min Max 

FRE 0.21 mm 0.16 mm 0.34 mm 

TRE 0.18 mm 0.14 mm 0.25 mm 

 

Table 4.1 Point Cloud modeling results evaluation between the simulated US models and 

CT models on 50 3-D paired using TRE, FRE. 
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Figure 4.2 (a) A single BSE(x,y) image selected from a set of US images. (b) The zoom 

view of registerd CT and US point clouds from c. (c) The point cloud modeling result for 

the US from b and the CT model in a point cloud format. The green was the CT model 

while the purple was the simulated US model. 

 

      To quantify the point cloud modeling results, the root means square error (RMSE), 

FRE and TRE for the modeling are used because the reconstruction process can be 

considered as the atypical “alignment” process. As we already know the relative portion of 

the simulated point clouds inside the CT models, we can measure the difference between 

these pairs to evaluate the reconstruction results. The mean of RMSE, FRE and TRE are 

0.62 mm, 0.21 mm and 0.18 mm on 20 models. And the maximum value of them is 0.78 

mm, 0.34 mm, and 0.25 mm respectively. The quantitative results manifest the point cloud 

models is qualify for the following process. 

 

(c) 

(b) (a) 
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4.3 US-CT registration evaluation 

Our proposed registration method was quantitatively evaluated using TRE and FRE 

analysis with a comparison with three mainstream point cloud registration methods. 

Iterative closet point (ICP) registration is the most famous point cloud registration method 

by minimizing the difference between two point clouds, which is widely used in bone 

registration [1-3]. Coherent point drift (CPD) uses a probabilistic approach to optimally 

align two point set that maximizes its Gaussian mixture model (GMM) [4, 5]. Normal 

distribution transformation (NDT) divides the data into cells and assigns the cells in 

normal distributions. Then it matches the normal distribution into the cells using Newton’s 

algorithm [6-8].  

  The experiment for the proposed method was conducted on a workstation with Intel Core 

i7 9400 @2.90 GHz CPU, 16GB RAM, and Nvidia GeForce RTX 2070 Super GPU in 

Python 3.7 while it took about 1 week and 2 days to converge for the proposed method. 

And that three mainstream point cloud registration methods were executed and evaluated 

in MATLAB 2019b. 

 

4.3.1 Evaluation of the proposed registration method 

The qualitative results for the proposed hierarchical registration method are shown in Fig 

4.3. The difference between the registered models was nearly zeros after registration which 

was represented in blue. However, there’re a few larger values in the difference value sets 

due to the difference of the density for the two models and the noises in the simulated bone 

surface point clouds. But we can still say the alignment results turn out good and can be 

considered as a potential method for future studies in practically.  
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Figure 4.3 Examples of 3-D registration results using the proposed RL registration 

method. The images from left to right: (1) The pre-register pairs of CT and US point 

cloud models. The green is the truncated CT model, while red is the US model. (2) The 

initial inputs for the RL system. The red is the US model, and the green is the neighbor 

points of that US model from the CT model. The input of the system, which is the 

difference between that models represents in blue. (3) The registration result for the mis-

register pairs.  

(a) (b) (c) 

(e) (f) 
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 TRE (mm) FRE (mm) Time (s) Success 

 Mean Min Max Mean Min Max Mean Min Max 1 step  

Proposed method 3.82 2.16 12.42 4.32 3.53 14.07 8.36 4.75 18.32 0.31 92.7% 

ICP 8.42 2.63 17.92 9.19 3.15 18.47 0.31 0.24 0.86 - 35.6% 

CPD 9.10 3.57 17.16 10.63 4.74 19.14 0.68 0.51 1.03 - 31.9% 

NDT 13.51 6.18 20.18 14.91 8.04 22.01 0.83 0.73 1.26 - 24.3% 

Table 2 Registration results evaluation on the proposed method and the other point cloud 

registration methods. The quantitative analysis was on TRE, FRE, Time, and success rate 

of each registration method. 

 

 

4.3.2 Comparison with state-of-art point-based registration methods 

The quantitative evaluation of registration accuracy was accessed with TRE and FRE, and 

the success of registration is defined as the TRE for the registered pairs is not larger than 

10 mm. Contrary to the proposed method, ICP, CPD, and NDT easily failed in challenging 

cases especially for the cases with more significant perturbation in the z-direction, resulting 

in relatively low success rate. It should be noticed that the ICP registration, which was 

widely used in the previous studies, performed worse in both accuracy and success rate 

than the proposed method without initial registration. 

The average error of FRE and TRE was 4.78 mm and 3.52 mm for the proposed method, 

and the success rate was over 92% that is much higher than those three methods. From the 

summary table, we can see that the success rate of the proposed method outperformed the 

other three mainstream registration methods. As the direct features like the similarity or 

normal distribution are quite similar in femur surfaces, the traditional registration methods 
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may not appropriate for it while the DNN-based method can learn the underlying 

contextual of the femur bone.  

  The average run time for each step in the proposed hierarchical registration in the testing 

cases was 0.31 s, and the total run time was 8.36 s, which cannot meet the real-time 

requirement. The run time for the RL-based registration method depends on the 

architecture of the computer, such as CPU and GPU, and the pipeline of the algorithm. And 

the average run time for the other three registration methods was less than 1 s, which were 

0.31 s, 0.68 s, and 0.83 s. The improvement of the proposed method should be solved in 

the future, and we’ll discuss it in the next section. 
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CHAPTER 5 

 

CONCLUSION AND FUTURE WORKS 

 

 

 

5.1 Conclusions 

The goal of this work was to investigate the use of reinforcement learning (RL) in point-

based ultrasound (US) to computed tomography (CT) registration for the surgical guidance 

of femoral shaft fracture. For that, we addressed the main challenges in applying the RL-

based method on US-CT registration for computer-assisted orthopedic surgery (CAOS) 

applications.  

      Firstly, we explore the utilization of US simulator in 3D slicer and PLUS toolkit to 

generate simulated US images from a synthetic femur phantom. The anatomical surface 

mesh data obtained from CT can be converted into simulated US volumetric images using 

a US physics-based model. Therefore, the simulation on any number of moving, 

intersecting objects secures the unique and sufficient dataset in training an RL model. 

      Secondly, we investigate how the enhancement of surface regions from ultrasound 

(US) data using local phase-based bone feature enhancement being applied in bone 

segmentation. Bone surfaces from US were segmented from the enhancement US images 

by bottom-up ray casting method. As applied the bone surface segmentation result in point 

cloud modeling, the anatomy structures were reflected accurately and optimally aligned 

with the CT models making US a valid modality for surgical guidance in CAOS. 

      Finally, we explore how to achieve automatic and flexible US-CT registration using Q-

learning. We proposed a 3-D rigid registration method using Q-learning takes the point-
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cloud models with known transformation matrix as the inputs and outputs a continuous 

motion of actions to achieve the alignment between the two un-aligned models. With the 

comparison with three traditional point-based registration method, the registration for Q-

learning outperforms in the registration error and the registration success rate significantly. 

Through the results for different lengths of volumetric US images, the proposed method 

demonstrated its robustness and flexibility in dealing with different circumstances 

successfully. Accordingly, we believe the proposed registration method could be used 

practically for medical image registration in CAOS. 

 

5.2 Limitations 

The US dataset of this work comes from the US simulator in 3D slicer, while the in-vivo 

US images have more speckle noises and inconsistent anatomy structure for the US images. 

Therefore, the in-vivo experiments are needed for further studies to evaluate the robustness 

of the bone surface segmentation and modeling as well as the 3-D rigid-body registration.     

      Also, the range for the registration method is limited as the full cover of parameter 

space requires dramatic high expense in computation. For the full parameter space with 

±30 perturbation in each parameter, more than 6012 cases should be generated for the 

agent which increases exponentially with the number of perturbations. Furthermore, the 

real-time of the proposed method could not be guaranteed under every circumstance as the 

total steps for each registration process vary greatly. Both of these limitations are actually 

the limitation on the architecture of the proposed method which indicates the optimization 

of the architecture should be investigated in the future. 

      Last but not least, while there is no theoretical guarantee that the agent could finally 

achieve correct registration with optimal motions, in practice the agent always converges 
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to one position that could not stop early when the correct registration position is achieved 

but never produce cyclical movements. This is presumably due to the fact that our 

supervised registration path is approximately a straight line in the registration parameter 

space.  

 

5.3 Future Works 

Overall, we believe our work for point cloud modeling on bone surfaces and the US-CT 

registration has shown that US can be applied in image guidance procedure for computer-

assisted orthopedic surgery (CAOS) practically as it has adequate accuracy and time-

efficiency. However, the presented architecture of the proposed method can still be 

improved and extended to various studies as described below: 

 

5.3.1 Improvement on Point cloud modeling for bone surfaces 

The proposed method in point cloud modeling has shown its time-efficiency to reconstruct 

the 3-D model from the bone surfaces in US images. However, the current bone surface 

sampling method for modeling is a simple random selection method. For further studies, 

we can use a more theoretical simulation method to provide more accurate simulation 

results for further investigation, such as particle simulation. As particle simulation can 

quickly simplify the bone surfaces with salient anatomic features. 

In addition, as the different densites of US point clouds may lead to different results as the 

accuracy in finding neighbor points in CT. More investigation should be performed in 

computing the relationship between the number of US and CT points with the registration 

error. 
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5.3.2 Improvement of the performance for the proposed method 

In the proposed work, the performance of the registration method depends on the 

architecture of the proposed RL-based registration method. In order to improve the 

workable range of the registration method and the time-consuming problems, the 

architecture can be improved by optimizing the PointNet++ based neural network that 

reduces the computation expense. Furthermore, training two different neural networks for 

initial alignment and fine alignment respectively, which can obviously reduce the 

computation expense in each network, can also be explored in improving the performance 

of the registration method. 

 

5.3.3 Assessment of US-CT registration framework in vivo 

The proposed method can be extended in-vivo as all the work in this thesis is based on the 

simulation phantom in the 3D slicer. However, the effects of the speckle noise in the in-

vivo US for the proposed method are still unknown. Thus, the robustness and accuracy of 

the proposed registration method should be evaluated in-vivo in order to achieve practically 

in the future. 

 

5.3.4 Comparison of registration results with other Deep learning-based 

registration methods 

The proposed RL-based registration is evaluated and compared with three different 

traditional point-based registration methods. Nevertheless, the proper performance 

comparisons between the proposed method and the other DL-based registration methods 

are still under investigation. The comparison results, which include time-complexity, 
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accuracy and the workable range, can indicate the accuracy and reliability of the proposed 

registration method
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