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Broken rails are the leading cause of freight train derailments in the United States. 

The American railroad industry annually spends billions of dollars on track inspection, 

maintenance and repair. Accurate prediction of broken rail risk is critical for the railroad 

industry to further improve operational safety, efficiency and the state of good repair.   

This dissertation research focuses on predicting the risk of broken rail-caused 

derailment via Artificial Intelligence (AI) empowered by the fast-growing “big data” in the 

railroad industry, related to network-level track characteristics, maintenance activities, 

traffic and operation, as well as condition monitoring. The intended contributions of this 

research include: 

• Development of a novel, customized Soft Tile Coding based Neural Network 

model (STC-NN) to predict the spatial-temporal probability of broken rail 

occurrence for any given time horizon. This proposed AI algorithm shows 
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superior performance over several alternative algorithms in terms of solution 

quality, computational efficiency, and modeling flexibility.  

• An analysis of the relationship between the probability of broken rail-caused 

derailment and the probability of broken rail occurrence. New analyses are 

performed to understand how the probability of broken rail-caused derailment 

may vary with infrastructure characteristics, signal type, weather, and other 

factors.  

• Development of an Integrated Broken Rail Derailment Risk Model for 

predicting location-centric broken rail-caused derailment risk on the network-

level. Predicting and identifying “high-risk” locations can ultimately lead to 

significant safety improvement and cost savings.  

The major conclusions of this research include:  

• The proposed STC-NN algorithm can predict broken rail risk for any time 

period (from 1 month to 2 years), with better performance for near-term 

prediction than long-term prediction. The algorithm slightly outperforms 

Extreme Gradient Boosting, Logistic Regression, and Random Forest, and is 

also much more flexible.   

• Appropriate network segmentation is important for prediction accuracy. Our 

proposed dynamic segmentation scheme shows a significant improvement over 

the fixed-length segmentation scheme. 

• Segment length, traffic tonnage, number of rail car passes, rail weight, rail age, 

track curvature, presence of turnout, and presence of historical rail defects are 

all found to be among influencing factors for broken rail occurrence. 
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• Signaled track in the cold season has the lowest ratio of broken rail-caused 

derailments to broken rails, while non-signaled track in warm weather has the 

highest. Moreover, lower FRA track classes (Class 1, Class 2) have higher ratio 

of broken rail-caused derailments to broken rails, compared with higher track 

classes Class 3 and Class 4.  

• A longer, heavier train traveling at a higher speed is associated with more cars 

derailed per broken rail-caused derailment.  

This work uses enterprise-level big data for over 20,000 miles of track from a major 

freight railroad in the United States. The new methodology, algorithm, and analysis results 

can potentially be implemented for railroad rail asset management, in support of both short-

term inspection and maintenance prioritization as well as long-term capital planning and 

resource allocation.   
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background and Problem 

In 2017, American freight railroads generated almost $26 billion in tax revenues, 

supported approximately 1.1 million jobs, and generated nearly $220 billion in annual 

economic activity and $71 billion in wages. Behind huge revenues, there are always 

potential accidents which damage the railroads’ benefits. U.S. freight railroads spent over 

$660 billion in maintenance and capital expenditures between 1980 and 2017, and over 

$24.8 billion in capital and maintenance disbursements in 2017 alone (AAR, 2018). 

Although freight-train derailment rates in the U.S. have been reduced by 44% since 2010, 

derailment remains a common type of freight train accident in the U.S. According to 

accident data from the Federal Railroad Administration (FRA) of the U.S. Department of 

Transportation (USDOT), approximately 6,450 freight-train derailments occurred between 

2000 and 2017, causing $2.5 billion worth of infrastructure and rolling stock damage (FRA 

Rail, 2017).   

The FRA of USDOT classifies over 380 distinct accident causes into categories of 

infrastructure, rolling stock, human factor, signaling and others. The FRA subgroups of 

accident causes developed by Arthur D. Little (ADL), which combine similar cause codes 
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into groups based on expert assessment (ADL, 1996), are used in this dissertation. Based 

on the statistical analysis on the freight-train derailments that occurred on Class I mainline 

from 2000 to 2017, broken rails or welds have consistently been the leading cause in recent 

years of all freight-train derailments (Figure 1.1). As a result, broken-rail prevention and 

risk management have been a major activity for a long time for the railroad industry. In 

addition to the United States, other countries with heavy-haul railroad activity have also 

identified the crucial importance of broken rail risk management (Kumar, 2006a; 

Zarembski, 2009).  

 
Figure 1. 1 Class I Railroad Mainline Freight-Train Derailment Frequency by Accident 

Cause Group, 2000 to 2017 

Quantifying mainline broken-rail derailment risk and thus identifying the locations 

with high risk can allow railroads to improve resource allocations for safety management 

and maintenance optimization. The derailment risk would depend on the probability of the 
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occurrence of broken-rail derailment and the severity of broken rail-caused derailment that 

is defined as the number of cars derailed from a train. The number of cars derailed in 

freight-train derailments is related to several factors, including the train length, derailment 

speed, and proportion of loaded cars (Liu et al., 2013b).  

1.2 Research Motivation 

The railroad agencies have undertaken a major task to collect and process railway 

related data throughout the all railway network including track characteristics (e.g., rail 

profile information, rail laid information), traffic-related information (e.g., monthly gross 

tonnage, number of car passes), maintenance records (e.g., rail grinding or track ballast 

cleaning activities), the past defect occurrences, and many other data sources. In addition, 

Federal Railroad Administration (FRA) has collected railroad accident data since 1970s. 

These multi-source data provided the basis for understanding the potential factors that may 

affect the occurrence of broken rails as well as broken rail-caused derailments. However, 

there is still limited prior research that takes full advantage of these real-world data to 

address the relationship between factors and broken rail-caused derailment risk, while 

using the risk information to screen the network and identify higher-risk locations.  

1.3 Research Significance 

The U.S. freight railroad network is widely considered as the most dynamic freight 

systems in the world. The U.S. freight railroad agencies are private organizations that are 

responsible for their own maintenance and improvement operations. They invest a large 

proportion of revenues and resources on the maintenance and repair of railroad 

infrastructure. The optimal expenditure of revenue dollars or resources allocated to railroad 
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infrastructure becomes crucial for railroad industry which allows to achieve the best 

outcome with the limited resources. However, the broken rail risk or broken-rail derailment 

risk accounting for influencing factors is not explicitly quantified. It is expected from this 

dissertation that railroad agencies can be placed in a better position to allocate safety 

management resources. 

1.4 Research Objective and Scope 

The main research objective of this dissertation is to predict the location-specialized 

broken rail-caused derailment risk using Artificial Intelligence (AI) approaches, more 

specifically machine learning techniques. Train derailment risk analysis accounts for 

derailment probability and derailment-caused consequences simultaneously. Due to the 

low frequency of broken rail-caused derailments, it is desirable to estimate the probability 

of broken rail-caused derailments through the broken rail occurrence. The estimation of the 

probability of broken rail-caused derailment includes the conditional probability of train 

derailment given broken rail occurrence and the probability of broken rail occurrence. 

The primary objective of this dissertation is to investigate broken rail (also known 

as “service failure”) prediction accounting for a set of track-related and operational factors 

based on railway-provided big data. To accomplish this objective, a number of statistical 

analyses and machine learning algorithms are conducted. The majority of data related to 

broken rails from one Class I freight railroad were from 2011 to 2016, covering over 20,000 

track miles on mainline tracks. 

This dissertation also estimates the conditional probability of train derailment given 

broken rail occurrence and the estimation of the severity of broken rail-caused train 
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derailment. Approximately, 4,000 mainline broken rails were identified between 2012 and 

2016 on the studied railway company track, whereas during the same period, 25 mainline 

freight-train broken rail-caused derailments occurred (FRA, 2017). The severity of broken 

rail-caused derailment, which is defined as the number of cars (both loaded and empty) 

derailed per derailment in this dissertation, would be estimated based on train-related 

factors (e.g., train length, speed, tonnage). More specifically, the following objectives of 

this dissertation can be classified into the following: 

1. Review the state of art of studies related to broken rail prediction and broken rail 

severity; 

2. Develop broken rail prediction model using machine learning algorithms 

accounting for potential factors; 

3. Conduct statistical analysis to estimate the probability of broken rail-caused 

derailments given the broken rail occurrence; 

4. Develop a decision tree model to estimate the severity that results from broken rail-

caused derailment associated with train-related factors. 

1.5 Organization of the Dissertation  

The research schematic diagram is shown in Figure 1.2.  The dissertation contains 

seven chapters. A brief description of each chapter will be addressed herein: 

Chapter 1 presents the research background and problem statement.  The research 

objectives and scope are identified. 
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Chapter 2 conducts a comprehensive literature review related to this research scope, 

including a summary of contributing factors to broken rail prediction, models related to 

broken rail prediction, and a brief review on broken rail severity analysis.  

Chapter 3 discusses the structure and the preprocessing of railroad “big data” from 

multiple resources to prepare the comprehensive dataset which will be used in the broken 

rail prediction model. Also, exploratory data analysis is conducted to identify the 

significant factors contributing to broken rails. 

Chapter 4 compares alternative track segmentation schemes and identifies the 

importance of segmentation for improving the modeling accuracy. 

As the main chapter, Chapter 5 develops a novel, customized machine learning 

model (Soft-Tile-Coding-Based Neural Network) to predict broken rail occurrence by time 

and location, accounting for a variety of influencing factors. In this chapter, feature 

engineering, feature transformation, and feature selection are involved. 

Chapter 6 analyzes the statistical relationship between broken rail-caused 

derailment and broken rail occurrence. Conditional probability of derailment given broken 

rail is obtained. Also, a machine learning model is developed to estimate the severity of a 

broken rail-caused derailment. Finally, a broken rail-caused derailment risk analysis model 

is proposed that integrates broken rail occurrence prediction, the conditional probability of 

derailment given broken rail, as well as derailment severity. 

Chapter 7 summarizes the conclusions from this dissertation and recommendation 

for future work. 
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Figure 1. 2 Framework for This Dissertation 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

This chapter provides an overview of previous broken rail research, focusing on 

influencing factors of broken rails, statistical and data analytic approaches and machine 

learning approaches to predicting broken rails, and derailment severity models. A review 

of mechanistic analyses of rail defects or broken rails can be found in da Silva et al. (2003) 

and Fischer et al. (2006). 

2.1 Introduction 

Broken rails originate from various types of rail defects, which can develop in any 

type of rails as the result of several types of stresses, including bending and shear stress, 

wheel-rail contact stresses, thermal stresses, and residual stresses (Cannon et al., 2003). 

These stresses could originate from the rail manufacturing process, cyclical loading, and 

impact from rolling stock, rail wear and plastic flow. They can exacerbate or produce 

defects over time, including worn-out rails, defective welds, internal defects, corrugation, 

and other rolling contact fatigue (RCF) defects, such as surface cracks, head checks, squats, 

spalling and shelling (Kumar, 2006a). Worn out rails are the result of lateral wear and 

vertical wear. Lateral wear occurs primarily on the gauge face of the higher rail of a curve. 

Vertical wear results from cyclical loading and rail grinding on the rail head running 

surface. Internal defects generally come from inherent flaws in the rail, such as transverse 
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and compound fissures (Schafer, 2008). Internal defects are commonly small and are only 

detectable above a certain size. Defects formed due to rolling contact fatigue can be divided 

into subsurface-initiated cracks and surface-initiated cracks. Subsurface-initiated cracks 

are often caused by metallurgical defects, which might turn into transverse defects in the 

rail head. Additionally, increased traffic density and axle load can cause surface-initiated 

cracks (Kumar, 2006a; Olofsson and Nilsson, 2002). Some surface-initiated cracks might 

turn into detail fractures from shelling/head checks. RCF surface-initiated cracks might 

decrease ultrasonic detection effectiveness, which further increases broken rail risk. In 

summary, there are several common causes that can result in broken rails, including: 

• Inherent defects originating from the rail manufacturing process, such as faulty 

chemical composition, harmful segregation, piping, seams, laps, and guide 

marks. 

• Defects due to a fault of the rolling stock, engine burns, skidding of wheel, 

severe braking, etc. 

• Excessive corrosion of rails: excessive corrosion in the rail generally takes place 

due to weather conditions, the presence of corrosive salts such as chlorides, and 

constant exposure of the rails to moisture and humidity in locations near water 

columns, ashpits, tunnels etc. corrosion normally leads to the development of 

cracks in regions with a high concentration of stresses. 

• Poorly maintained joints: poor maintenance of joints, such as improper packing 

of joint sleeper and loose fittings. 

• Defects in welding of joints: these defects arise because of improper 

composition of the thermite weld. 
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• Improper maintenance of track: ineffective or improper maintenance of the 

track or delayed renewal of the track. 

• Rail damages caused by derailments. 

The scope of this literature review will focus on broken rails due to defects resulting 

from the rolling stock and abnormal traffic effects during the rail service. 

2.2 Influencing Factors 

Most rail defects are detected and treated before they deteriorate into a critical 

defect (Kumar, 2006a). Broken rails are linked to many factors affecting one or more 

processes of rail defect development, including defect initiation and/or propagation. This 

study divides contributing factors into five high-level categories, including 1) track layout, 

2) rail characteristics, 3) track maintenance, 4) operational information, and 5) defect 

inspection history (Figure 2.1). The summary of impact of influencing factors on rail 

defects or broken rails is described in Table 2.1. 
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Figure 2. 1 Classification of Selected Contributing Factors 

Table 2. 1 Literature by Influencing Factors 

Factor Observation References  

Rail age 

Increased probability of rail 

defects associated with increased 

rail age.  

Chattopadhyay and Kumar, 2009; 

Dick, 2001; Dick et al., 2002, 2003; 

Jeong, 2001; Roney and Ebersohn, 

2001; Shyr and Ben-Akiva, 1996 

Rail weight 

As rail weight increases, rail 

defect probability decreases. 

Dick, 2001; Dick et al., 2002, 2003; 

Hay, 1982; Shyr and Ben-Akiva, 

1996 

Track 

curvature 

Curved track is associated with 

higher rail defect probability 

than tangent track, all else being 

equal  

An et al., 2017; Dick, 2001; Dick et 

al., 2003 

Grinding

Track 

Location

Operational 

Information

Broken Rails

Ballast cleaning

Track 

Maintenance

Rail defect

Track geometry exception

Service failure

VTI exception

Maximum allowed speed

Number of car passes

Traffic tonnage

Defect Inspection 

History

Turnout

Track curvature

Grade

Track Layout
Rail 

Characteristics

Rail size

Rail quality

Rail age

Rail weight
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No consistent conclusion is 

obtained. Although curved 

sections of rails have greater rail 

stress, they usually have a higher 

frequency of replacement than 

tangent rails.  

Chattopadhyay and Kumar, 2009; 

Shyr and Ben-Akiva, 1996 

Grade 

Steep grades increase the risk of 

rail defect. 

An et al., 2017; Dick, 2001; Stock 

and Pippan, 2011 

Maximum 

allowed 

speed 

Higher maximum allowed speed 

is associated with a higher 

probability of rail defect. 

 

Corbin and Fazio, 1981; Dick, 

2001; Dick et al., 2002, 2003; 

IHHA, 2001; Kassa et al., 2006; 

Kassa and Nielsen, 2008; Kumar, 

2006a, 2006b; Reddy, 2004; Shyr 

and Ben-Akiva, 1996; Sun et al., 

2011 

Higher maximum allowed speed 

is associated with better track 

geometry, counteracting the 

effect of higher dynamic wheel 

load. 

Dick 2001; Dick et al., 2002, 2003; 

Shyr and Ben-Akiva, 1996 

Axle load 

Increases in axle loads cause 

more bending and shear stresses 

in the rail, which might increase 

Algan and Gan, 2001; Brouzoulis, 

2014; Clayton, 1996; Dick et al., 

2003; Esveld, 2001; Farris, 1996; 
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dynamic loadings and increase 

rail defect risk.  

IHHA, 2001; Jablonski and 

Pelloux, 1992; Kim and Kim, 2002; 

Kumar, 2006a, 2006b; Reddy, 

2004; Skyttebol et al., 2005; Zerbst 

et al., 2009a, 2009b 

Traffic 

density 

Higher traffic density causes an 

increase in rail defects, 

especially surface-initiated 

defects. 

An et al., 2017; Brouzoulis, 2014; 

Dick, 2001; Dick et al., 2003; Jeong 

et al., 1997; Kim and Kim, 2002; 

Kumar, 2006a, 2006b 

Annual 

wheel passes 

Higher number of annual wheel 

passes is associated with higher 

rail defect risk. 

Algan and Gan, 2001; Brouzoulis, 

2014; Dick, 2001; Dick et al., 2003; 

Kim and Kim, 2002; Shyr and Ben-

Akiva, 1996; Skyttebol et al., 2005 

Track 

geometry 

exception 

Presence of geometry exceptions 

increases probability of rail 

defects and reduces the life of a 

rail. 

Ahlbeck, 1980; He et al, 2013, 

2015; Jenkins et al., 1974; Reddy, 

2004; Zarembski and Bonaventura, 

2010; Zarembski et al., 2016 

Turnout 

Presence of turnouts increases 

the rail defect risk. 

An et al., 2017; Dick et al., 2003; 

Kassa and Nielsen, 2008; Schupp et 

al., 2004; Sebes et al., 2006; Sun et 

al., 2011 

Rail grinding 

Rail grinding might delay the 

occurrence of rail corrugation 

Burstow et al., 2002; 

Chattopadhyay et al., 2003; 
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and reduce the probability of rail 

defects. 

Chattopadhyay et al., 2005; Farris, 

1996; Judge, 2000; Kalousek and 

Magel, 1997; Kumar, 2006a, 

2006b; Magel and Kalousek, 2002; 

Reddy, 2004; Soeleiman and 

Rucinski, 1991; Shyr and Ben-

Akiva, 1996; van den Bosch, 2002; 

Zarembski et al., 2005; Zarembski, 

2005; Zarembski and Palese, 2010; 

Zhao et al., 2006, 2007a, 2007b 

Ballast 

cleaning 

Ballast cleaning reduces the risk 

of rail defects. 

Lichtberger, 2005; Kumar, 2006a, 

2006b 

Temperature  

There is a higher probability of 

broken rails in colder weather. 

An et al., 2017; Chattopadhyay and 

Kumar, 2009; Dick, 2001; 

Garnham and Beynon, 1992; Jeong 

and Gordon, 2009; Jeong et al., 

1997; Kumar, 2006a, 2006b; 

Lichtberger, 2005; Liu et al., 

2013a; Muster et al., 1996; 

Skyttebol et al., 2005; Zerbst et al., 

2009b 
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Joint or 

welded 

Welded rails suffer less impact 

loading and have lower rail 

defect risk than joint rails. 

Dick et al., 2003; Dick, 2001; Zong 

et al., 2013 

Traction/brak

e section 

Presence of a traction/brake 

section is prone to causing 

broken rails. 

An et al., 2017 

Inspection 

More inspections decrease the 

risk of broken rails. 

Dick, 2001; IHHA, 2001; Kumar, 

2006a, 2006b; Orringer, 1990; 

Orringer et al., 1988; Sourget and 

Riollet, 2006 

Lubrication 

More lubrication decreases the 

risk of rail defects. 

Thelen, 1996 

Rail age: Some researchers (Chattopadhyay and Kumar, 2009; Shyr and Ben-

Akiva, 1996) used cumulative million gross tons (MGT) to represent rail age. Alternatively, 

some others used the number of years that the rail is in place to measure rail age, due to the 

changes in rail manufacturing technologies (Dick, 2001; Dick et al., 2002, 2003). The 

lifetime of the track can be translated into the total passage of cyclical loading. Having 

encountered more cumulative traffic, less service time is left. Prior research has found that 

the risk of rail failure increases with rail age, due to accumulative fatigue load cycles on 

the rail, as well as older rail design techniques (Chattopadhyay and Kumar, 2009; Dick et 

al., 2003; Jeong, 2001; Roney and Ebersohn, 2001; Shyr and Ben-Akiva, 1996).  

Rail weight: Rail weight is measured as weight of laid rail per unit length, such as 

pounds per yard in North America. It is an important factor in determining rail strength. 
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Rail strength can be considered as either resistance to permanent plastic bending or 

resistance to fracture (Jeong et al., 1998). Stress in rail is dependent on the rail cross-section 

and weight (Hay, 1982). Heavier rails have larger cross-sectional area and stronger 

stiffness, which are associated with higher moment of inertia. These can resist bending and 

shear stresses under the same axle loads. The risk of broken rails or rail defects decreases 

on segments of track with relatively heavy rail (Dick et al., 2003). 

Track curvature: Curved track (horizontal geometry) experiences more lateral 

loads from wheel flanges (Dick, 2001) which result in more severe rail wear. Vehicles do 

not bend to the shape of the curvature while moving over a curve, which results in greater 

contact friction and stress. Excessive rail wear could damage the capability of the rail to 

support cyclical loading. Previous research showed that curved rails are more likely to have 

defects, all other conditions being equal (An et al., 2017; Chattopadhyay and Kumar, 2009; 

Dick, 2001; Dick et al., 2003; Shyr and Ben-Akiva, 1996). However, a higher frequency 

of replacement on curved sections of rail than tangent sections can counteract the effect of 

track curvature (Shyr and Ben-Akiva, 1996). 

Grade: In North America, grade (vertical geometry) is expressed in terms of the 

number of feet of rise per 100 feet of horizontal distance. Steep elevations will increase the 

probability of broken rails due to increases in longitudinal stress on the rail resulting from 

both tractive and braking forces (An et al., 2017; Dick, 2001; Stock and Pippan, 2011). 

Maximum allowed speed:  The literature indicates that higher speed results in a 

higher probability of broken rails, due to speed-dependent dynamic loading. For example, 

Dick (2001) found that increase in speed causes an exponential increase in rail failures due 
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to increases in defects and crack. However, Shyr and Ben-Akiva (1996) found that higher 

maximum allowed track speed is correlated with better track geometry, thus counteracting 

the effect of a higher dynamic wheel load.  

Axle load: Axle load is the total weight borne by the track from all wheels in contact. 

Skyttebol et al. (2005) showed that the time to failure of a rail depends on axle load. Impact 

axle load, caused by vertical acceleration, further increases the probability of rail defects. 

Zerbst et al. (2009a) found that irregularities in rails can significantly increase impact 

loading. Zerbst et al. (2009b) stated that impact axle loads can significantly increase 

bending and shear stresses in the rail and thus increase the probability of rail defects.  

Traffic density: Annual traffic density is measured in millions of gross tons (MGT) 

per year. Higher traffic density causes an increase in rail defects, especially surface-

initiated defects (Olofsson and Nilsson, 2002). Dick (2001) found that 75 percent of service 

failures occur on tracks with annual traffic levels above 100 MGT despite those tracks 

representing only 12 percent of all rails (Dick, 2001). Dick et al. (2003) further found that 

increases in traffic density have a significant impact on light rail. 

Annual wheel passes: Dick et al. (2003) found that the probability of rail service 

failure increases as annual wheel passes increase and that, like traffic density, the effect is 

magnified on the lighter rail (lower rail weight).  

Track geometry exception: Track geometry exceptions can be related to rail 

alignment, cross-level, curvature, overhead lines, gauge, profile, and warp (He et al. 2013, 

2015). Jenkins et al. (1974) showed that the presence of geometry exception defects 

generates an increase in dynamic wheel/rail loads. Zarembski et al. (2016) studied the 
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relationship between geometry defects and rail defects based on data from two major 

freight railroads in the United States. They found that the presence of track geometry 

defects can reduce rail life by an average of 30 percent.  

Prior vehicle-track interaction exception: A vehicle-track interaction 

measurement system assists in the early identification of vehicle dynamics that can lead to 

rapid degradation of track and equipment. If the measurement exceeds the defined 

threshold, it is called vehicle-track interaction exception. Vehicle-track interaction could 

represent the evolution of the vertical track level. The presence of vehicle-track interaction 

exception is associated with a higher probability of broken rails (Vale and Calcada, 2013). 

Turnout: Turnouts are essential components of railway infrastructure, which 

provide flexibility to traffic operation.  Turnout creates an environment of sharp rapid 

diverging for the train. Dynamic interaction between the train and turnout is more complex 

than that on tangent and curved tracks. The high impact loads can generate serious damage 

to the contact surfaces. (Xu et al., 2016). The dynamic interaction between the vehicle and 

turnout affects the rail wear in railway turnouts, which affects the dynamic interaction in 

reverse. Due to the abrupt changes in wheel-rail contact points, the profile wear aggravates 

the wheel-rail dynamic interaction and increases rail degradation as well. Dick et al. (2003) 

found that proximity to a turnout has a higher probability of a rail service failure. A number 

of models have been used to simulate the dynamic interaction at the turnout. For example, 

Sun et al. (2011) used the VAMPIRE model, Kassa et al. (2006) used the commercial multi-

body system software GENSYS, Schupp et al. (2004) used the multi-body system 

simulation pack SIMPACK, and Sebes et al. (2006) used the semi-Hertizian. These 
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researchers have unanimously found that the presence of a turnout increases the risk of rail 

defects. 

Rail grinding: Rail grinding removes surface defects and track surface 

irregularities to reshape the rail profile, thus improving rail integrity. It can be used to 

remove decarbonized layers on new rail, remove plastic flow metal, and remove and 

control the growth of short and long pitch corrugations, rail surface pitting, spalling, and 

shells (Kalousek et al., 1989, Cuervo et al., 2015). There are preventive grinding and 

corrective grinding. Preventive grinding aims to remove the surface irregularities when 

contact fatigue corrugations grow up to an average rail surface depth of 0.5mm. If crack 

was not fully ground off by preventive grinding, corrective grinding with multiple passes 

needs to be performed (Kalousek et al., 1989). Shyr and Ben-Akiva (1996) used a statistical 

model to show that rail defect rates decrease when grinding frequency increases. Van den 

Bosch (2002) found that preventative grinding increased rail life, reduced rail corrugation, 

and curbed the noise of wheel-rail interaction. Chattopadhyay et al. (2005) identified the 

optimal grinding interval accounting for safety and economics.  

Ballast cleaning: Ballast cleaning aims to replace small worn ballast with new 

ballast. Failure to clean ballast can cause improper drainage, track support, and track 

position. Kumar (2006a, 2006b) stated that proper ballast cleaning could reduce track stress 

and thus reduce the rail defect risk. 

Temperature: Thermal stresses can influence rail defects and rail failures, 

especially for continuously welded rails (CWR). Compressions in the rail occur under high 

temperatures, associated with thermal expansion of constrained rails. Thermal stresses 
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increase the risk of sudden brittle rail failure, especially in winter season when 

temperatures are low and the thermally induced tensile force is high. The occurrence of rail 

failures is affected by ambient temperature (Jeong et al., 1997; Skyttebol et al., 2005), as 

well as the difference between the rail neutral temperature and the operation temperature 

(Zerbst et al., 2009b). Dick (2001) found that in colder times of the year, rail defects are 

more likely to result in broken rails. Liu et al. (2013a) developed a model to quantify the 

effect of seasonal variation for risk-based inspection optimization. They found that broken 

rails occur at a higher rate in colder weather. Zerbst et al. (2009b) studied the optimal 

annual time to inspect rails due to temperature fluctuations by season.  

Joint or welded: Segments of rail are either welded together or connected at a joint. 

Joint systems are favored in locations with low or moderate traffic density but high annual 

temperature fluctuations, because it allows more room for expansion and contraction 

(Kumar, 2006a, 2006b). However, rail joints also represent “weak points” in the track 

system, resulting in a high impact load (Zong et al., 2013), and thereby causing rail defects 

or failures. Continuous welded rails (CWR) reduce the risks associated with rail joints but 

increases the risk of the track buckling under high temperatures. Furthermore, the number 

of welds increases with successive repairs of rail defects and failures (Zhao et al., 2006), 

and a portion of rail failures also occur due to defective welds (Dick, 2001).  

Traction/brake section: A traction/brake section is an area of rail where trains 

need to accelerate or decelerate. Due to the slipping action of wheels during starting and 

when brakes are applied to the moving trains, the metal of the top of rails burns, which can 

result in engine burns or worn rail.  An et al. (2017) categorized traction/brake sections as 

an environmental factor and as more prone to breakage due to higher longitudinal stresses.  
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Inspection: Considering the ultimate consequences of rail flaws or defects resulting 

in broken rails, it is necessary to detect these flaws and take timely action to remedy them. 

Rail flaws can be detected either by visual inspection or by rail flaw detection equipment 

(e.g., non-destructive testing methods). The periodicity of rail flaw detection depends on 

the sectional gross tonnage of the rail, speed limit, and other factors. Possibly, prior to 

deteriorating into broken rails, some rail defects might be classified as undetectable at the 

time of rail flaw testing because defects might have been too small to be detected, or the 

surface condition of the rails might have presented additional “noise” that masks the defects. 

Increasing testing frequency or using more advanced ultrasonic/induction equipment may 

lower this possibility. Inspection effectiveness depends on the inspection technology and 

inspectors’ experience (Kumar, 2006b). A higher inspection frequency would mean that 

inspectors catch crack occurrences and propagation earlier, which allows for earlier 

remediation. Therefore, a higher inspection frequency would reduce the occurrence of 

broken rails (but associated with higher inspection costs). Sourget and Riollet (2006) used 

a statistical tool to optimize rail defect inspection frequency.  

Lubrication: The function of lubrication is to oil the running face of the outer rail 

in order to reduce friction. It has been noticed that lubrication considerably reduces wear 

by up to 50%. Thelen (1996) demonstrated that proper lubrication of rails can help reduce 

wheel-rail interface friction, and thus reduce RCF and rail failures. This study also 

suggested that the optimal lubrication applied to the rail should be based on the coefficient 

of friction on the segment. 
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2.3 Statistical Models for Broken Rail Prediction 

Understanding the relationship between broken rail risk and contributing factors 

has been a core focus of broken rail risk management. A closed-form integrated 

engineering model, which reflects the multivariate nature of broken rail risk, is complex 

and difficult to generalize to specific operating scenarios. Therefore, many researchers 

have attempted to simultaneously analyze the effects of multiple factors in the deterioration 

process of rails using statistical (data analytic) models. Reviewing such data-driven models 

is the focus of this chapter. Table 2.2 provides an overview of the most significant research 

undertaken overseas on the modeling of broken rail-related issues.  

Table 2. 2 Statistical Prediction Model 

Statistical 

Model 

References Advantages Limitations 

Linear 

regression 

model 

Aglan and Gan, 

2001; Jovanovic, 

2004 

 

• Able to provide a linear 

relationship between 

output variable and 

input variables; 

• Easy to apply 

 

• Limited number of features 

were involved; 

• Only estimating linear 

relationship between output 

variable and input variables; 

• Sensitive to output outlier; 

• Only suitable for the 

prediction of continuous 

dependent output 

Logistic Dick, 2001; Dick • Able to involve the • Difficult to develop the 



23 

 

 

 

regression 

model 

et al., 2002; 

2003; Schafer, 

2008; Sourget 

and Riollet, 2006  

interaction among input 

features; 

• Able to not only predict 

the probability of 

broken rails on a 

segment but also 

estimate the number of 

broken rails on a longer 

track section 

complex function between 

explanatory variables and 

the response variable;  

• Ignoring the censored 

events; 

• Not able to consider the 

time-dependent information 

Hybrid 

ANN/Logist

ic model 

Schafer, 2008; 

Schafer and 

Barkan, 2008a, 

2008b 

• Able to account for all 

possible interactions 

among input features  

• Unable to present 

quantitative functional 

relationship between input 

variables and output 

variable, which limits the 

ability to be explained 

Cox 

proportional 

hazard 

regression 

model 

An et al., 2017 

• Assessment of the 

impact of features on 

the entire lifetime of 

rails; 

• Able to consider the 

censored event 

• Requires prior assumption of 

the reference rail break risk 

rate at a given time. 

• Ignores the change of the 

explanatory factors over 

time 

Weibull 

model 

Chattopadhyay 

and Kumar, 

• Able to consider the 

censored event; 

• Relies on the assumption 

that failure time follows a 
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2009; Shyr, 

1993; Shyr and 

Ben-Akiva, 1996 

• Able to account for the 

time-dependent 

information 

known Weibull distribution 

Markov 

Stochastic 

process and 

hazard 

model 

Bai et al., 2015, 

2017; Hokstad et 

al., 2005 

 

 

• Presents the probability 

matrix from one state 

to multiple states, 

rather than just 

focusing on the service 

failure 

• Finite rail condition states 

are considered; 

• One-to-one correspondence 

between Markov transition 

probabilities and period 

interval was assumed 

Fuzzy logic 

model 

Veskovic et al., 

2012 

• Resembles human 

decision making; 

• Enables making 

decisions based on 

incomplete and 

imprecise information 

• Difficult to define the 

membership function; 

• Only focuses on the analysis 

at a fixed time rather than 

the lifetime of rail; 

• Finite condition states are 

considered 

Reliability 

model 

Zhao et al., 

2006, 2007a 

• Does not rely on big 

data;  

• Able to describe the 

impacts of certain 

activities (e.g., 

grinding, inspection) on 

the occurrence of 

• Relies on accurate 

information regarding the 

probabilities and hazard rate 

of fatigue defects; 

• Unable to account for the 

impact of other track 

characteristics on broken 



25 

 

 

 

broken rails  

 

rails except for cumulative 

gross tonnages 

The following paragraphs describe each widely used statistical approach for broken 

rail prediction.  

2.3.1 Linear Regression 

Aglan and Gan (2001) studied fatigue crack growth behavior of a premium rail steel 

using a modified crack layer theory. The rate of energy expended on damage formation 

and evolution within the active zone was evaluated. In their study, the crack growth was 

simulated in the laboratory with the determined maximum fatigue stress and stress ratio. 

Constant loading was forced on the track. The simulation data in the laboratory was 

collected and regressed to get three phases of crack growth: crack initiation, stable crack 

growth, and unstable crack growth. In the stable crack growth process, the crack growth 

and the cumulative traffic tonnage have a linear relationship. In their study, only traffic 

was involved in the simulation, without considering the impact of other potential factors 

on crack growth. 

Overall, three limitations of linear regression analysis are as follows:  

• It only considers the measured parameters related to track geometry, which does 

not directly reveal the impact of operational characteristics (train speed, annual 

traffic tonnages, etc.) and other rail characteristics (rail age, turnout, bridge, etc.) 

on track deterioration. 
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• It assumes a simple linear relationship between the independent variables and 

dependent variables, which cannot capture possibly more complex relationships. 

It is also unable to structure the correlation and interaction between independent 

variables. 

• It is more suitable for the prediction of continuous output, rather than the 

prediction of discrete events like the probability of the occurrence of rail defects 

or broken rail defects. 

2.3.2 Logistic Regression 

The logistic regression model is a statistical approach where the dependent variable 

is categorical. It measures the relationship between the categorical dependent variable and 

one or more independent variables by estimating probabilities using a logistic function. 

The logistic regression model has been used to describe service failure probabilities by 

combining multiple variables to identify the multivariate correlations (Dick, 2001; Dick et 

al., 2002; Dick et al., 2003, Schafer, 2008; Schafer and Barkan, 2008a, 2008b, Sourget and 

Riollet, 2006). Stepwise regression was used to determine the most relevant parameters or 

combinations of parameters. A probability threshold is determined to estimate whether one 

broken rail is predicted to occur on the location. Logistic regression can provide 

information to interpret the influence of each parameter on the dependent variable. 

However, the limitations of this approach include: 

• It is difficult to develop the complex function between explanatory variables 

and the response variable. 

• It ignores the role of time for the event to happen.  
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• It is unable to consider time-dependent information. 

2.3.3 Artificial Neural Network 

Artificial neural networks (ANN) have been used in various studies of event 

prediction and classification. ANNs are computational tools that have the ability to learn 

mathematical relationships between a series of input variables and their respective output 

values. Schafer and Barkan (2008a; 2008b) developed an artificial neural network model 

for classifying track segment locations as either failure or non-failure. They add hidden 

neurons one by one until the optimal network is obtained, in which the model accuracy and 

generalization can achieve an efficient tradeoff. 

There are advantages and disadvantages using artificial neural network as a 

classification tool. In terms of advantages, ANN is able to capture the nonlinear 

relationship between input and output variables and possible interactions between inputs 

variables. It also allows for customizing the objective function and learning techniques in 

the neural network. The main disadvantage of the artificial neural network is that it is 

difficult to present a clear functional relationship between input and output variables, which 

limits its explanatory ability. To overcome some of the disadvantages of simple ANN, 

researchers proposed two types of hybrid model which combined artificial neural network 

and logistic regression (Schafer, 2008; Schafer and Barkan, 2008a; 2008b). The first hybrid 

model applied a logistic regression model to pre-select the most useful variables and then 

developed an ANN model based on these selected variables. The second hybrid model was 

developed using the logistic regression model to calculate the probability of broken rails 

and added the calculated probability as an additional input parameter into the ANN model. 
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The disadvantage of the hybrid model is that sometimes it might cause overfitting, which 

reduces its efficiency when applied to unseen data. 

2.3.4 Survival Analysis 

Survival analysis is generally defined as a set of methods for analyzing data where 

the outcome variable is the time until the occurrence of broken rails. In the existing 

researches, the time to occurrence of rail breaks (so-called survival time) can be measured 

in cumulative tonnages. As mentioned above, linear regression has been used to model 

continuous output variables as a function of a set of predictor variables. However, linear 

regression is not suitable for the modeling of survival time, due to its inefficiency at 

handling the censored observations which represent the information of survival time is 

incomplete. Suppose tracks were surveilled in a study for a period. A track which did not 

experience the occurrence of rail breaks is said to be censored. 

Several survival models are available to analyze the relationship between predictor 

variables and the survival time, including parametric, nonparametric and semiparametric 

approaches. Parametric methods assume that the underlying distribution of the survival 

times follows known probability distributions, including parametric, nonparametric, and 

semiparametric approaches. Parametric methods assume that the underlying distribution of 

survival times may follow known probability distributions, such as exponential or Weibull 

distribution. Non-parametric models which do not represent a functional relationship 

between survival times and predictor variables have not yet been used in broken rail 

analysis.  
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2.3.4.1 Weibull Distribution 

Exponential distribution assumes a constant hazard rate, which is not consistent 

with empirical studies. Most of the other distributions used for parametric models do not 

have closed-form expressions for the hazard rate in terms of predictor variables. As a result, 

one commonly used distribution is the Weibull distribution with a scale parameter and 

shape parameter. Weibull distribution is also a generalized form of the exponential 

distribution.  

Chattopadhyay and Kumar (2009) collected field data over a period of time and 

developed a Weibull distribution model to estimate rail degradation accounting for 

operational conditions, curvature, track, and environmental conditions. However, the 

derived hazard function was only the function of cumulative tonnages. The collected field 

data was divided into different groups according to different combinations of other 

contributing variables. Corresponding failure models were developed related to each group. 

Due to the limitation of the collected field data, most of the groups had no rail failure 

records. In their research, only the broken rail events were observed, with non-broken rails 

being ignored. Therefore, the models regressed by the limited data might have a magnitude 

of variances and biases. 

Shyr and Ben-Akiva (1996) also used Weibull distribution to structure the 

relationship between the probability of broken rails and the cumulative gross tonnages. In 

addition, the model was extended to multiple types of broken rails. It was assumed that the 

different types of broken rails were independent, and the overall hazard rate was derived 

as the sum of hazard rates from all potential types of broken rails. Furthermore, Shyr and 
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Ben-Akiva (1996) also included variables, such as maintenance, metallurgy, and operation 

activities, in the hazard functions, in addition to cumulative gross tonnages. These variables 

may change over time. Theoretically, the hazard rate was derived as a function of time-

dependent features. However, in their research, to make the model simple, the values of 

features were assumed to change at most once a year. One limitation of their research is 

that it only focused on the progressive deterioration of track from one defect to another 

more severe defect, rather than the whole life cycle of track deterioration. 

2.3.4.2 Cox Proportional Hazard Regression 

The Cox proportional hazard regression model (hereafter referred to as Cox 

regression model) is used to present the rail break risk associated with the effects of various 

influencing factors. It can calculate the hazard rate at any particular time given specific 

explanatory variables. Here the time is measured by the cumulative tonnages passing on 

the rail. An et al. (2017) developed a grid-based (segment-based) model incorporating the 

Cox regression model to evaluate the effect of explanatory factors on broken rail risk. The 

coefficients of the explanatory variables can be determined by the maximum-likelihood 

estimation method, which maximizes the probability with which rail breaks on grid 

references occur simultaneously. The coefficients of the factors in the prediction model can 

be interpreted as the corresponding change of the broken rail risk with respect to variations 

of each factor (An et al, 2017). The strength of this reference is that it considered human 

factors (e.g., missing detection) and environmental factors (e.g., climate). Even though the 

Cox regression model can calculate the rail break risk given the cumulative tonnages of 

rails and the corresponding features, there are still some limitations of the Cox regression 

model. First, it requires prior assumption of the reference rail break rate at a given time, 
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which depends on the rail characteristics and necessitates additional information from 

experts, which is subject to simplification or human errors. Second, Cox regression model 

ignores the change of the explanatory factors over time. 

2.3.5 Markov Stochastic Model 

Hokstad and Langseth (2005) modeled the rail degradation process within the fixed 

inspection interval as a Markov chain. The final state of the Markov chain is rail failure. 

The rail failure is divided into two categories: sudden failure and gradual degradation to 

failure. Any previous degraded states might transition into sudden failure and only the last 

degraded state could degrade into the gradual failure. In Hokstad and Langseth (2005)’s 

research, the transition probabilities were estimated against the actual inspection and 

failure data. However, the probabilities are not related to any input variables (e.g., 

curvature, speed, traffic density, and others), which are constant regardless of the 

associated characteristics of the locations. Meanwhile, the efficiency of Hokstad and 

Langseth’s research is subject to the efficiency of the inspection. 

Bai et al. (2015, 2017) conducted research evaluating the deterioration of the rail. 

Understanding that the deterioration process is uncertain, a Markov stochastic model was 

used to describe the probabilities of the transition from one deterioration state to another. 

A linear relationship was developed between the Markov transition probabilities and the 

heterogeneity of the track section, such as gross tonnages and curvature. The parameters in 

the linear function were estimated via a maximum log-likelihood function. The Markov 

transition probabilities represent the probability from one degradation state to another after 

the constant inspection interval. However, there are still some disadvantages of the Markov 
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stochastic model in that research. First, a limited number of deterioration states were 

considered in Markov stochastic model. Theoretically, the track degradation process 

should be continuous, and track deteriorates gradually as the cumulative gross tonnage 

increases. Second, that research assumed a one-to-one correspondence between Markov 

transition probabilities and research period interval (e.g., half a year). The Markov 

transition probabilities matrix in their research were estimated based on the collected field 

data whose inspection period is constant. If the inspection period changes, the probabilities 

must be re-calculated using updated inspection data. 

2.3.6 Fuzzy Logic Model 

The fuzzy logic model is a good mathematical tool for modeling a process that is 

distinguished by subjectivity, uncertainty, ambiguity, and imprecision. Vesković et al. 

(2012) used the fuzzy logic model to predict the frequency of broken rails in terms of input 

variables. Four input variables are involved in the fuzzy logic model, including temperature, 

rail age, gross tonnage, and curve degree. The membership function for output variable, 

number of broken rails, involves three fuzzy sets - low, mid, and high. The fuzzy logic has 

the following advantages: 1) it enables making decisions based on incomplete and 

imprecise information, and 2) it does not rely on the previous states. However, there are 

still some disadvantages to use the fuzzy logic model: 

• The fuzzy logic model works efficiently to predict the number of broken rails 

on track sections only when the length of track sections is large. As a result, the 

accurate prediction on a small track section is not available. 
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• The membership function of the fuzzy logic model should be defined based on 

expert knowledge. 

• The fuzzy logic model only focuses on analysis at a fixed time. It cannot reflect 

the rail deterioration process during the entire lifetime of the rail. 

2.3.7 Reliability Model 

Zhao et al. (2006, 2007a) applied a reliability model to predict the number of 

derailments by modeling the development of rail defects leading to rail breaks as well as 

derailments. The risk of derailment is measured by the expected number of rail breaks 

multiplied by the severity of rail break. Four sub-models were integrated to predict the 

occurrence of rail defects and breaks, including a weld defect prediction model, fatigue 

model, impact of grinding model, and imperfect inspection model. They assumed that rail 

fatigue defects follow a Weibull distribution and imperfect inspection follows a non-

homogeneous Poisson process. This research is able to calculate the probabilities of weld 

defects and fatigue defects, respectively. Accounting for the influence of the imperfect 

inspection and grinding maintenance, the probability of broken rails was obtained with pre-

defined parameters. The difficulty in using the reliability model is the pre-definition of the 

probability required in the model. In addition, Zhao’s reliability model failed to account 

for the impact of other features (track characteristics and defect histories) on the broken 

rails except for the gross tonnage. 

2.4 Machine-Learning-Based Model 

With the support of fast-growing volume and diversity of available data as well as 

the advanced big data analytics, the application of machine learning-based models has been 
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prevailing in the recent researches. Cha and Choi (2017) applied convolutional neural 

network to detect rail crack based on crack damages. This approach is immune to shooting 

conditions of test images. Support vector machine method was used for non-destructive 

detection of rail defects based on vibration signals which are resulted from rail defects (Sun 

et al., 2014). The research result proved the effectiveness of support vector machine 

method. In addition, extreme gradient boosting algorithm (XGBoost) was developed to 

address the impact of track geometry on development of rail defects (Mohammadi et al., 

2019). This approach correctly predicted about 83% of rail defects based on tonnage and 

track geometry data. Tantithamthavorn et al. (2016) proposed automated parameter 

optimization of machine learning classification techniques for defect predictions. They 

concluded that parameter settings can indeed have a large impact on the performance of 

defect prediction models. 

2.5 Derailment Severity Estimation Model 

Simulation and statistical analysis are the two basic approaches used in previous 

studies to model train derailment severity. Simulation models predict the response of 

railroad vehicles to specific track and environmental conditions. These models are typically 

based on nonlinear wheel-rail interaction models. For example, Yang et al. (1972a, 1973b) 

developed a simulation model to determine the effect of ground friction, mating coupler 

moment, and brake retarding force on the number of cars derailed. They found that the 

position of the first car involved in the derailment (called point-of-derailment, or POD) and 

derailment speed could affect the number of cars derailed (Yang et al., 1972a, 1973b). In 

the late 1980s, Yang et al.’s model was extended by considering coupler failure and 

independent car motion (Coppens et al., 1988; Birk et al., 1990). The precision of 
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simulation models is subject to the accuracy of modeling train derailment dynamics. In 

addition to simulation models, train derailment severity can also be estimated based on 

historical data. Saccomanno and EI-Hage (1989, 1991) developed a truncated geometric 

model to estimate the mean number of cars derailed as a function of derailment speed, 

residual train length, and accident cause. Finally, all previous derailment severity models 

focused on analyzing the mean number of cars derailed. Liu et al. (2013b) developed a 

zero-truncated negative binomial (ZTNB) regression model to estimate the conditional 

mean of train derailment severity with historical derailments on U.S. Class I railroad 

mainlines from 2001 to 2010. Meanwhile, a quantile regression (QR) model is also 

developed to estimate derailment severity at different quantiles. However, these models 

may involve several assumptions (e.g., over-dispersed count variables) in the processed 

datasets. Martey and Attoh-Okine (2018) employed vine copula quantile regression model 

to predict conditional mean and quantiles of derailment severity and found that vine copula 

quantile regression model performed better at predicting at various quantile levels than the 

classical quantile regression approach. 
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CHAPTER 3 

 

DATA DESCRIPTION AND PREPARATION 

 

3.1 Introduction 

A wide variety of field data collections were conducted to better understand the 

condition and behavior of various rail assets and they play a pivotal role in this research. 

The collected data comes from two sources: the FRA accident database and enterprise-

level “big data” from one Class I freight railroad. The broken-rail derailment data comes 

from the FRA accident database, which records the time, location, severity, and 

contributing cause(s) of each train accident. Using this database, broken rail-caused freight 

train derailment data on the main tracks of the studied Class I railroad could be obtained 

for analyzing the relationship between broken rail and broken rail-caused derailments, as 

well as broken-rail derailment severity. The data provided by the railroad company 

includes: 1) traffic data; 2) rail testing and track geometry inspection data; 3) maintenance 

activity data; and 4) track layout data. Fifteen raw databases were received and listed in 

Table 3.1 below for the entire railway network covering the periods from 2011 to 2016.  

The railroad network contains over 20,000 track miles including main lines (to 

include multiple tracks on the mains which are laid in parallel), siding, and yard tracks. 

The research in this dissertation focuses on the main line tracks which include single track, 

and multiple tracks. The details are listed in Table 3.2. 
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Table 3. 1 Summary of Provided Railroad Data 

Dataset Description 

Rail Service Failure Data Broken rail data from 2011 to 2016  

Rail Defect Data Detected rail defect data from 2011 to 2016 

Track Geometry Exception Data Detected track geometry exception data from 2011 to 

2016 

VTI Exception Data Vehicle-track interaction exception data from 2012 to 

2016 

Monthly Tonnage Data Gross monthly tonnage and car pass data from 2011 

to 2016 

Grinding Data Grinding pass data from 2011 to 2016 

Ballast Cleaning Data Ballast cleaning data from 2011 to 2016 

Track Type Data Single track and multiple track data  

Rail Laid Data Rail laid year, new rail versus re-laid rail, and rail 

weight data 

Track Chart Track profile and maximum allowed speed 

Curvature Data Track curvature degree and length   

Grade Data Track grade data  

Turnout Data Location of turnouts  

Signal Data Location and type of rail traffic signal  

Network GIS Data Geographic information system data for the whole 

network  
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Table 3. 2 Track Mileage for Each Type of Main Line Track 

Track Type Track Miles 

Single Track 13,513 

Multiple Tracks 7,126 

3.2 Database Description 

As noted above, fifteen datasets are collected and provide raw supplementary 

feature information for a specific track location. Data is collected at a specific point on the 

rail or on smaller segments based on the type of measure. The details of each dataset are 

presented in the following sections. 

3.2.1 Track File 

This database includes the type of a specific segment. It specifies the starting and 

ending milepost locations by prefix and track number. The track file database is used as a 

reference database to overlay all other databases (Table 3.3).  It contains more than 500 

prefixes.  

Table 3. 3 Track File Format 

Prefix Starting Milepost Ending Milepost Track Type 

3.2.2 Rail Laid Database 

This database contains rail weight, new rail versus re-laid rail, and joint versus 

continuous welded rails (CWR) (Table 3.4). Figure 3.1 illustrates the total rail miles in 

terms of rail laid year and rail type (jointed rail versus CWR). The figure shows that most 

welded rails were laid after the 1960s and most joint rails were laid before the 1960s on 



39 

 

 

 

this railroad. This research will focus on the CWR that accounts for around 90 percent of 

total track miles.  

Table 3. 4 Rail Laid Data Format 

Prefix Starting 

Milepost 

Ending 

Milepost 

Track 

Type 

Rail 

Side 

Rail 

Weight 

Rail 

Gang 

New 

/Relaid 

Joint/ 

Weld 

 

 
Notes: W = welded rail; J = jointed rail 

Figure 3. 1 Distribution of Rail Laid Year 

3.2.3 Tonnage Database 

In the tonnage data file, gross tonnage, foreign gross tonnage, hazmat gross tonnage, 

net tonnage, hazmat net tonnage, tonnage on each axle, and number of gross cars that have 

passed on each segment are recorded monthly. Every segment in the tonnage data file is 

distinguished by prefix, track type, starting milepost, and ending milepost. This research 



40 

 

 

 

uses the gross tonnage and number of gross cars (Table 3.5). Traffic tonnage is recorded 

on segments with varying lengths with an average length of 1.76 miles. 

Table 3. 5 Tonnage Data Format 

Prefix Starting 

Milepost 

Ending 

Milepost 

Track 

Type 

Monthly 

Gross   

Tonnage 

Monthly 

Number 

of Cars 

Year Month 

3.2.4 Grade Database 

Grade data describes the vertical slope of ground measured in percent. The grade is 

recorded by dividing the entire network into smaller segments with an average length of 

0.33 miles. The grade data format is illustrated in Table 3.6. The average grade of the 

railroad network weighted by length is approximately zero. Figure 3.2 illustrates the 

histogram of the percent of the grade on the railroad network. 

Table 3. 6 Grade Data Format 

Prefix Starting Milepost Ending Milepost Percent 
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Figure 3. 2 Distribution of Grade (Percent) 

3.2.5 Curvature Database 

Curvature data includes the degree of curvature, length of curvature, direction of 

curvature, super elevation, offset, and spiral lengths. For the segments that are not included 

in this database, it is assumed that they are tangent tracks. There are approximately 5,800 

curve-track miles (26% of the network track miles). The curve data format is illustrated in 

Table 3.7. Figure 3.3 shows the distribution of the curve degree on the railroad network. 

Table 3. 7 Curvature Data Format 

Prefix Starting 

Milepost 

Ending 

Milepost 

Track 

Type 

Curve 

Spiral 

Curve 

Degrees 

Curve 

Direction 

Curve  

Super-elevation 

Percent of Grade

T
o
ta

l 
T

ra
c
k
 M

il
e
s

Grade (Percent)



42 

 

 

 

 

Figure 3. 3 Distribution of Data Curvature Degree (Curved Portion Only) 

3.2.6 Track Chart 

Track chart provides information on the track, including division, subdivision, track 

alignment, track profile, as well as maximum allowable train speed. The maximum freight 

speed on the network is 60 MPH. The weighted average speed on the network is 40 MPH. 

The distribution of the total segment length associated with speed categories is listed in 

Table 3.8.  

Table 3. 8 Distribution of Speed Categories 

Speed Category (MPH) Total Track Miles Percentage of Network 

0 ~ 10 1,571.79 7.7% 

10 ~ 25 4,237.83 20.7% 

25 ~40 5,210.90 25.4% 

40 ~60 9,482.31 46.2% 
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3.2.7 Turnout Database 

Turnout data includes the turnout direction, turnout size and other information 

(Table 3.9). There are around 9,000 total turnouts in the network, with an average of 0.35 

turnouts per track-mile. The distribution of track types with turnouts is illustrated in Table 

3.10. 

Table 3. 9 Turnout Data Format 

Prefix Milepost Turnout Direction Diverging Prefix Turnout Size 

Table 3. 10 Track Type Distribution of Turnouts 

Track Type Number of Turnouts 

Single track 6,436 

Multiple tracks 4,675 

3.2.8 Signal Database 

Signal data indicates whether a track is in a signalized territory (Table 3.11). There 

are approximately 14,500 track miles with signal, accounting for 67% of track miles of the 

railroad network.  

Table 3. 11 Signal Data Format 

Prefix Starting Milepost Ending Milepost Signal Code1 

 
1 Descriptions of signal codes are presented in Appendix A. 
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3.2.9 Grinding Database 

Rail grinding passes are used to remove surface defects and irregularities caused by 

rolling contact fatigue between wheels and the rail. In addition, rail grinding could reshape 

the rail-profile, resulting in better load distribution (Kalousek et al., 1989, Cuervo et al., 

2015). The grinding passes for rails on the two sides of the track are recorded separately. 

Low rail passes and high rail passes are included in the dataset (Table 3.12). For tangent 

rail, the left rail is the low rail and the right rail is the high rail. 

Table 3. 12 Grinding Data Format 

Date Subdivision Prefix Track 

Type 

Starting 

Milepost 

Ending 

Milepost 

Low Rail 

Passes 

High Rail 

Passes 

Table 3. 13 Distribution of Grinding Frequencies with Respect to Year 

Year 

Grinding 

Frequency 

Grinding-Rail-

Miles 

Total 

Grinding-

Rail-Miles  

Grinding 

Passes per 

Rail-Mile 

2011 

 0  35,191 

31,848.1 0.72 

1 12,935 

2 3,475 

2+ 2,888 

2012 

0 21,287 

35,220.5 0.79 1 16,297 

2 4,216 
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2+ 2,690 

2013 

0 20,558 

33,232.1 0.75 

1 19,949 

2 2,348 

2+ 2,635 

2014 

0 21,152 

33,558.0 0.75 

1 16,354 

2 5,008 

2+ 1,975 

2015 

0 20,091 

30,074.6 0.68 

1 21,085 

2 1,755 

2+ 1,558 

2016 

0 21,998 

32,575.3 0.73 

1 15,438 

2 5,245 

2+ 1,809 

 

3.2.10 Ballast Cleaning Database 

Ballast cleaning replaces the “dirty” worn ballast with fresh ballast (Ashley, 2008). 

The locations of ballast cleaning are identified using prefix, track type, starting milepost 

and ending milepost (Table 3.14). The total mileage of ballast cleaning each year is listed 

in Table 3.15. 
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Table 3. 14 Ballast Cleaning Data Format 

Year Prefix Track Type Starting Milepost Ending Milepost Pass Miles 

Table 3. 15 Total Track Mileage of Ballast Cleaning by Year 

Year 

Ballast Cleaning 

Frequency 

Ballasted Track 

Miles 

Total Track Miles with 

Ballast Cleaning 

2011 

1 900 

1,149 

1+ 116 

2012 

1 1,609 

1,864 

1+ 122 

2013 

1 1,335 

1,763 

1+ 193 

2014 

1 1,735 

2,393 

1+ 285 

2015 

1 1,862 

2,299 

1+ 213 

2016 

1 932 

1,166 

1+ 99 

3.2.11 Rail Defect Database 

Various types of rail defects during periods from 2011 to 2016 are recorded in the 

rail defect database. There are 25 different types of defects recorded. A necessary 

remediation action can be performed based on the type and severity of the detected defect. 

There are 31 different action types recorded in the database. In this research, the numbers 
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of each type of rail defects will be considered as input variables for predicting broken rail 

occurrence. The top 10 defect types account for around 85 percent of total defects (Figure 

3.4). Figure 3.5 shows the distribution of remediation actions to treat defects.  

 
Notes: TDD: detail fracture; TW: defective field weld; SSC: shelling/spalling/corrugation; EFBW: in-track 

electric flash butt weld; BHB: bolt hole crack; HW: head web; SD: shelly spots; EBF: engine burn fracture; 

VSH: vertical split head; HSH: horizontal split head. 

Figure 3. 4 Top 10 Defect Types During 2011 and 20162 

 
2 All the types of rail defects are listed in Appendix A. 
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Notes: R: replace or remove rail section; A: apply joint/repair bars; S: slow down speed, RE: visually 

inspect or supervise movement; UN: unknown; AS: apply new speed. 

Figure 3. 5 Distribution of Six Types of Remediation Action from 2011 to 2016 

3.2.12 Broken Rail Database 

The broken rail database contains 6,356 broken rails during the period from 2011 

to 2016. Of the top 10 types of broken rails that account for around 87 percent of total 

broken rails, the distribution of each type is shown in Figure 3.6. The broken rail resulting 

from defect type BRO (broken rail outside joint bar limits) is dominant, which accounts 

for 28.3% of the total broken rails. 
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Notes: BRO: broken rail outside joint bar limits; TDD: detail fracture; TW: defective field weld; BHB: bolt 

hole crack; CH: crushed head; DR: damaged rail; BB: broken base; VSH: vertical split head; EFBW: in-

track electric flash butt weld; TDT: transverse fissure 

Figure 3. 6 Top 10 Types of Broken Rails from 2011 to 20163 

3.2.13 Track Geometry Exception Database 

Track geometry was measured periodically and was corrected by taking necessary 

maintenance or repair actions if needed. There are 31 types of track geometry exceptions 

(track geometry defects) in the database provided by the railroad. Eight subgroups of track 

geometry exceptions, in which similar exception types are combined, are developed. The 

distribution of eight subgroups is listed in Figure 3.7. 

 

 
3 The pictures of top ten types of broken rails are listed in Appendix A. 
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Figure 3. 7 Track Geometry Exception by Type from 2011 to 20164 

3.2.14 Vehicle-Track Interaction (VTI) Exception Database 

The Vehicle Track Interaction (VTI) System is used to measure car body 

acceleration, truck frame accelerations, and axle accelerations, which can assist in early 

identification of vehicle dynamics that might lead to rapid degradation of track and 

equipment. When vehicle dynamics are beyond a threshold limit, necessary inspections 

and repairs are implemented. The VTI exception data contains the information about 

exception mileposts, GPS coordinates, speed, date, exception type, and follow-up actions 

for the period from 2012 to 2016. There are eight VTI exception types, and the distribution 

of each type is listed in Figure 3.8. 

 
4 The details of track geometry exceptions are described in Appendix A. 
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Figure 3. 8 Distribution of VTI Exception Types from 2012 to 2016 

3.3 Data Preprocessing and Cleaning 

The following sections describe the processing and cleaning of raw data, in order 

to build an integrated central database for developing and validating machine learning 

models. 

3.3.1 Unify Data Column Names 

To start, this research unified the formats of the column names and value types of 

corresponding columns in each database, especially for the location-related data columns. 

• Prefix: an up-to-3-letter coding system working as route identifiers. 

• Track Type: differentiate between single track and multiple tracks.  

• Start MP: Starting milepost of one segment, if available.  

• End MP: Ending milepost of one segment, if available.  

• Milepost: If available, used to identify points on the track. 

• Side: Including right side (R) and left side (L) to distinguish different sides of the track. 
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3.3.2 Detection of Data Duplicate 

One of the common issues in data analysis is the duplicated data record. There are 

two common types of data duplications: (a) two data records (each row in the data file 

represents a data record) are exactly the same and (b) more than one record is associated 

with the same observation, but the values in the rows are not identical, which is so-called 

partial duplication. To determine the duplicates, selecting the unique key is the first step 

for handling duplicate records. Selection of unique key varies with the databases. For the 

databases which are time-independent (meaning that this information is not time-stamped), 

such as curve degree and signal, a set of location information is used to determine the 

duplicates. For the databases which are time-dependent, such as the rail defect database 

and service failure database, time information can be used to determine the duplicates. 

Meanwhile, using the set of location information alone is likely to be not sufficient to 

identify data duplicates because of possible recurrence of rail defects or service failures at 

the same location. Figures 3.9 to 3.12 show some examples of data duplicates in certain 

databases. In the following tables, the actual location information is masked to preserve 

privacy.  

 

Figure 3. 9 Example of Partial Duplication in Curve Degree Database  

 

Figure 3. 10 Example of Exact Duplication in Signal Database 
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Figure 3. 11 Example of Partial Duplication in Signal Database 

 

Figure 3. 12 Example of Exact Duplication in Rail Defect Database 

Different strategies for handling data duplications are listed below. Table 3.16 

shows the selection of unique keys and proper strategies for databases. For the databases 

which are not listed in Table 3.16, it has been verified that no duplicates exist. 

• Record Elimination: For exact duplications, there are two options for removing 

duplicates. One is dropping all duplicates and the other is to drop one of the 

duplicates. 

• Worst Case Scenario Selection: For a partial duplication, select the worst-case-

scenario value. For instance, over the junction of two consecutive curves, it is 

possible that two different curve degrees were recorded. In this case, assign the 

maximum curve degree to the junction (the connection point of two different 

curves).  

Table 3. 16 Strategies for Duplication 

Database Unique Key to Identify Data Duplicate Deduplication Strategy 

Curve Prefix, track type, milepost, side Greater curve degree 

Signal Prefix, milepost, signal code Drop either one  
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Rail Defect Prefix, track type, milepost, side, defect 

type, date found, defect size 

Drop either one 

Service Failure Prefix, track type, milepost, side, date 

found, failure type 

Drop either one 

3.3.3 Information Combination for Right Rail and Left Rail 

Some databases differentiate between the left and right rail of the same track. For 

instance, the rail defect database can specify the side of the track where the rail defect 

occurred. Also, the rail laid database can specify the rail laid date for each side of the rail. 

However, some other databases cannot differentiate track sides, such as track geometry 

exception database and turnout database. This research combines the data from two sides 

of a track. It is possible that two sides of the track have different characteristics. When 

combining the information from the two sides of the track, there are five possible values 

for each attribute. They are “Select either one”, “Sum”, “Mean”, “Minimum”, and 

“Maximum”. The principle of selecting preferred value for the track is to set the track at 

the “worse condition”. For example, in terms of rail age, when combining right rail and left 

rail, the older rail age between right rail and left is selected, while for rail weight, the 

smaller rail weight is selected. This approach assigns more conservative attribute data to 

each segment. The details are listed in the Table B.1 in Appendix B. 

3.4 Data Integration 

To develop the comprehensive database, all of the collected data from all sources 

except geographical information system (GIS) data would be trackable using a reference 

database (which is the track file used in this research). The reference database contains the 
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location information (route identifier or prefix, starting milepost, ending milepost, and 

track type) without information on any features affecting broken rail occurrence. The 

information from each database which would be mapped into the comprehensive database 

is listed in Table 3.17. Figure 3.13 also presents the multi-source data fusion process. 

Table 3. 17 Information from Each Database Involved in the Integrated Database  

(Partial List) 

Database Information  

Service Failure Failure found date, failure type, curvature or tangent, curve 

degree, rail weight, freight speed, annual traffic density, 

remediation action, remediation date 

Rail Defect Defect found date, defect type, remediation action 

Geometry 

Exception 

Geometry defect type, geometry defect date, track class reduced 

due to geometry exception, geometry exception priority, 

exception remediation action 

VTI Exception VTI type, VTI occurrence date, VTI priority, VTI critical 

Tonnage gross tonnage, number of car passes, 

Grinding grinding passes, grinding location 

Ballast Cleaning Ballast cleaning date, ballast cleaning location 

Rail Laid Rail weight, rail laid year, rail quality (new rail or re-laid rail), 

joint rail or continuous welded rail 

Track chart Maximum allowed freight speed 

Curve Degree Curve degree, super-elevation, curve direction, offset, spiral 

Grade Grade (percent) 
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Turnout Turnout direction, turnout size 

Signal Signal code 

 

 

Figure 3. 13 Data Integration 

The minimum segment length available for most of the collected databases was 0.1 

mile (528 ft). There are over 206,000 track segments, each 0.1 mile in length, representing 

an over 20,600 track-mile network. All supplementary attributes from other databases 

would be mapped into the reference database based on the location index (Figure 3.14). 

This process is known as data integration. The location index contains information 

including prefix, track type, start MP, and End MP. In the reference database, each 
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supplementary feature for one location represents information series which cover the 

period from 2011 to 2016. 

 

Figure 3. 14 Data Mapping to Reference Location 

3.4.1 Handling Information Contradiction  

Contradiction is a conflict between two or more different non-null values that are 

all used to describe the same property of the same entity. Contradiction is caused by 

different sources providing different values for the same attribute of the same entity. For 

example, tonnage data and rail defect data both provided the traffic information and may 

have different tonnage values for the same location. Data conflicts, in the form of 

contradictions, can be resolved by selecting the preference source based on the data source 

that is assumed to be more “reliable”. For example, both the curvature database and service 

failure database contain location-specific curvature degree information. If there is 

information conflict on the degree of curvature, the information from the curvature 
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database is used based on the assumption that this is a more “reliable” database for this 

data. The comprehensive database only retains the value of the preferred source. Table 3.18 

shows the preferred data source for the attributes that have potential contradiction issues. 

Table 3. 18 Preferred Database for Each Attribute 

Attribute Database Containing the Attribute   Preferred Database 

Curve degree Service failure, rail defect, VTI exception, 

curve degree 

Curve degree 

Rail weight Service failure, rail defect, rail laid Rail laid 

Freight speed Service failure, rail defect, track chart Track chart 

Annual traffic Service failure, rail defect, monthly tonnage Monthly Tonnage 

3.4.2 Handling Missing Values 

Handling missing data is one important task when overlaying information from 

different data sources to a reference dataset. Different solutions are available depending on 

the cause of the data missing. For example, one reason for missing data in the integrated 

database is that there was no occurrence of events at the specific location, for instance, 

grinding, rail defect, and service failures, etc. Fill the blank cells for this type of missing 

data with zeros because they represent no observations of events of interest. The other 

reason for missing data is that there is a missing value in the source data. For this type of 

missing data, Select the preferred value to fill it. Take the speed information in the 

integrated dataset as an example. Approximately 0.1 percent of the track network has 

missing speed information. The track segments with missing speed information would be 
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filled with the mean speed of the whole railway network.  Table 3.19 lists the preferred 

values for the missing values of each attribute. 

Table 3. 19 Preferred Values of Missing Information 

Preferred Value Attribute 

Mean value Rail laid year, speed, grade, rail weight, monthly tonnage, 

number of car passes, grinding, ballast cleaning 

Zero Curve degree, curve elevation, spiral, turnout, turnout size, rail 

defect, service failure, track geometry exception, VTI exception, 

measure of VTI exception 

Worse case Signal, rail quality (new rail versus re-laid rail) 

3.4.3 Feature Construction 

In the integrated database, two types of attributes (single-value attribute and stream 

attribute) were mapped (Figure 3.15). A single-value attribute is defined as a time-

independent attribute, such as rail laid year, curve degree, grade, etc. A stream attribute 

(aka time series data) is defined as a set of the time-dependent data during a period. For 

most stream attributes, the period covers from 2011 to 2016, except for the attribute of 

vehicle-track interaction exception, which covers from 2012 to 2016. Twenty timestamps 

are defined with a unique time interval of three months from January 1st, 2012 to extract 

shorter-period data streams. In order to achieve that, a time window would be introduced. 

A time window is the period between a start and end time. A set of data would be extracted 

through the time window moving across continuous streaming data. 
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Figure 3. 15 Structure of the Integrated Database 

Tumbling windows are one common type of time windows, which move across 

continuous streaming data, splitting the larger data stream into finite sets of small data 

streams. Finite windows are helpful for the aggregation of a data stream into one attribute 

with a single value. In this research, tumbling window is applied to split the data stream 

into finite sets. 

In a tumbling window (Figure 3.16), events are grouped in a single window based 

on time of occurrence. An event is within only one window. A time-based tumbling 

window has a length of Tl. The first window (w1) contains events that arrive at the time T0 

and T0 + Tl. The second window (w2) contains events (e.g., occurrence of rail defects in 

this research) that arrived between the time T0 + Tl and T0 + 2Tl. The length of the tumbling 

Location Time-independent Data stream

From: 2011. 1.1 End: 2016. 12.31
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window is Tl and none of the windows overlap and each tumbling window represents a 

distinct time segment.  

 
Note: ei represents the i-th event 

Figure 3. 16 Example of Tumbling Window 

In this dissertation, the tumbling window is used to split the larger stream data into 

sets of small data streams (Figure 3.17 and Figure 3.18). The length of the tumbling 

window is set as half a year. Two features are extracted by two consecutive tumbling 

windows as shown in Figure 3.17 and Figure 3.18. Three timestamps are assigned to 

location “Loc1” (Figure 3.17). For the three timestamps, the time-independent features are 

unchanged for “Loc1”. Taking rail defect as an example, the counts of rail defects are 

grouped by the tumbling window. For timestamp “2013.1.1”, two tumbling windows are 

generated: Window 1 from 2012.7.1 to 2012.12.31 and Window 2 from 2012.1.1 to 

2012.6.30. One feature about rail defect is the total number of rail defects that occurred in 

Window 1, which is from 2012.7.1 to 2012.12.31, and is denoted as “Defect_fh”. Another 

feature about rail defect is the count number of rail defects that occurred in Window 2, 

which is from 2012.1.1 to 2012.6.30, and is denoted as “Defect_sh”. If there was service 

failure which occurred after timestamp 2013.1.1, the lifetime is calculated by the days 

between the timestamp and the date of the nearest (in terms of time of occurrence) service 

failure. The event index is set to 1, which represents that service failure was observed after 

the timestamp. If there was no service failure after timestamp 2013.1.1 (Figure 3.18), the 
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lifetime would be calculated by the days between the timestamp and the end time of 

information stream “2016.12.31”. The event index is set to 0 which represents that service 

failure was not observed after that specified timestamp. 

 

Figure 3. 17 Feature Construction with Nearest Service Failure in the Study Period 

 

Figure 3. 18 Feature Construction without Nearest Service Failure in the Study Period 

3.5 Exploratory Data Analysis 

Exploratory data analysis (EDA) is conducted to develop a preliminary 

understanding of the relationship between most of the variables and broken rail rate, which 

is defined as the number of broken rails normalized by some metric of traffic exposure. 
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Because many other variables are correlated with traffic tonnage, broken rail frequency is 

normalized by ton-miles in order to isolate the effect of non-tonnage-related factors. The 

result of exploratory data analysis is summarized in Table 3.20. The following sections will 

detail the EDA finding for each variable based on the data in more recent years in the 

database (i.e. 2013 to 2016). 

Table 3. 20 Summary of Exploratory Data Analysis Results 

Variable Relationship with Broken Rail Rate (per Billion Ton-Miles) 

Rail age (years) 

Broken rail rate first increases and then decreases with 

increasing rail age. The turning point for rail age is at 40 years. 

The non-monotonous relationship may be due to the correlation 

between rail age and annual traffic density. 

Rail weight (lbs/yard) 

Broken rail rate decreases monotonously with increased rail 

weight. 

Curve degree A higher rate is associated with a higher curve degree. 

Grade (percent) Broken rail rate increases with increasing grade. 

Maximum allowed 

speed (MPH) 

Higher broken rail rate is associated with lower maximum 

allowable speed on track. 

Rail quality Re-laid rail has a higher broken rail rate than new rail. 

Traffic density 

(MGT) 

A higher broken rail rate is associated with a lower annual traffic 

density.  

Prior track geometry 

exceptions 

Broken rail rate increases in the presence of prior track geometry 

exception defects. 
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Prior VTI exceptions 

Broken rail rate increases in the presence of prior VTI 

exceptions. 

Grinding 

Broken rail risk initially decreases and then increases with 

increasing grinding passes. The turning point is at one rail 

grinding pass per year. The non-monotonous relationship may be 

due to the different purposes associated with different grinding 

operations. 

Ballast cleaning Broken rail rate decreases with ballast cleaning.  

Rail Age 

The broken rail rates are calculated for each category of the rail age (Table 3.21). 

The rates are determined by dividing the total number of broken rails that has occurred in 

a certain category of rail age by the total ton-miles in that category. With increasing rail 

ages, the broken rail rate per billion ton-miles first increased and then decreased. The 

turning point of the rail age is at 40 years. In other words, rail aged around 40 years (e.g., 

30-39 years, 40-49 years) has the greatest number of broken rails per billion ton-miles. The 

possible reason is that rail age might have correlations with other variables, for example 

traffic tonnage and maintenance operations, which bring a compound effect together with 

rail age on broken rail rate. Figure 3.19 shows the correlation between rail age and annual 

traffic tonnage, in which annual traffic tonnage is decreasing as rail age increases. Based 

on this assumption, the numbers of broken rails per mile are calculated for categories of 

the products of annual traffic densities (MGT) and rail ages (years). It is shown in Table 

3.22 that the increasing product of annual traffic tonnage and rail age increases the number 

of broken rails per track-mile. 
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Table 3. 21 Broken Rail Rate (per Billion Ton-Miles) by Rail Age,  

All Tracks on Mainlines, 2013 to 2016 

Rail age 

(years) 

Number of 

broken rails Billion ton-miles 

Number of broken rails 

per billion ton-miles 

1-9 515 380.50 1.35 

10-19 591 333.06 1.77 

20-29 555 250.90 2.21 

30-39 940 355.36 2.65 

40-49 533 203.22 2.62 

50-59 128 52.50 2.44 

60 and above 16 8.84 1.81 

 

Figure 3. 19 Mean Annual Traffic Tonnage (MGT) in Terms of Rail Age Categories 
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Table 3. 22 Broken Rail Rate (per Track-Mile) by Product of Annual Traffic Tonnage 

and Rail Age, All Tracks on Mainlines, 2013 to 2016 

Traffic × age (MGT× years) 

Number of 

broken rails Track-miles 

Number of broken rails 

per track-mile 

0-300 825 30,956 0.027 

300-600 598 13,655 0.044 

600-900 579 9,418 0.061 

900-1,200 510 6,319 0.081 

1,200-1,500 295 3,647 0.081 

1,500 and above 470 4,501 0.104 

Rail Weight 

The broken rail rate in terms of the rail weight is presented in Table 3.23. It shows 

that, all else being equal, a heavier rail with a larger rail weight is associated with a lower 

broken rail rate, measured by number of broken rails per billion ton-miles. This conclusion 

is consistent with previous studies (e.g., Dick et al., 2002, 2003). Stress in rail is related to 

rail section and weight. Smaller, lighter rail sections experience more stress under a given 

load and may be more likely to experience broken rails. 

Table 3. 23 Broken Rail Rate (per Billion Ton-Miles) by Rail Weight,  

All Tracks on Mainlines, 2013 to 2016 

Rail weight 

(lbs/yard) 

Number of 

broken rails 

Billion ton-

miles 

Number of broken rails per 

billion ton-miles 

115 and below 288 72.57 3.97 
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115-122 452 156.83 2.88 

122-132 1,022 384.29 2.66 

132-136 1,490 830.20 1.79 

136 and above 356 235.24 1.51 

Curve Degree 

Curvature increases rail wear and causes additional shelling and defects that might 

increase the probability of broken rails (Shyr and Ben-Akiva, 1996). Table 3.24 presents 

broken rail rates by curve degrees. Tangent tracks had around 70 percent of broken rails, 

but the broken rail rate per billion ton-miles is smaller than that on curvature tracks due to 

much larger traffic exposure (in terms of ton-miles) on tangent tracks. In terms of tracks 

with curves, the sharper curves involve higher broken rail rates. Previous research also 

shows that curved rails are more likely to have rail failures, all other conditions being equal 

(An et al., 2017; Dick, 2001). 

Table 3. 24 Broken Rail Rate (per Billion Ton-Miles) by Curve Degree,  

All Tracks on Mainlines, 2013 to 2016 

Curve degree Number of broken rails 

Billion  

ton-miles 

Number of broken rails 

per billion ton-miles 

Tangent 2,501 1,217.87 2.05 

0-4 837 372.45 2.25 

4-8 222 78.56 2.83 

8 or more 48 10.25 4.68 
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Grade 

The effect of grade is illustrated in Table 3.25, in which the broken rail rate for each 

grade category (0 - 0.5 percent 0.5-1.0 percent, and over 1.0 percent) is presented. It 

indicates that increasing grade has slightly greater broken rail rate. The highest broken rail 

rate is on the tracks with the steepest slope (over grade percent 1.0). Steep grade might 

increase longitudinal stress due to the amount of tractive effort and braking forces, thereby 

increase broken rail probability (Dick, 2001; An et al., 2017).  

Table 3. 25 Broken Rail Rate (per Billion Ton-Miles) by Grade,  

All Tracks on Mainlines, 2013 to 2016 

Grade (percent) 

Number of  

broken rails 

Billion  

ton-miles 

Number of broken rails per 

billion ton-miles 

0-0.5 2,778 1,296.31 2.14 

0.5-1.0 668 309.35 2.16 

1.0 + 162 73.47 2.21 

Rail Grinding 

Rail grinding can remove defects and surface irregularities from the head of the rail, 

which lowers the probability of broken rails due to fractures originating in rail head. As 

mentioned previously, there are preventive grinding and corrective grinding. Preventive 

grinding is normally applied periodically to remove surface irregularities, and corrective 

grinding with multiple passes each time is usually performed to remove serious surface 

defects.   
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As Table 3.26 shows, broken rail rate without any grinding (0 grinding pass) is 

higher than that with preventive grinding passes (this research presumes one grinding pass 

indicates preventative grinding). This may imply that preventive grinding can reduce 

broken rail probability compared with the case of no grinding. However, the broken rail 

rate associated with more than one grinding pass is higher than that associated with just 

one grinding pass. The multiple grinding passes, which might be scheduled as corrective 

grinding passes, are associated with higher broken rail rates. This is analogous to the 

“chicken-and-egg” problem. There are more defects, and therefore corrective grinding is 

used. Because there is no identification of the type of grinding (preventive versus corrective) 

in the database, the assumption and observation mentioned above need further scrutiny.  

Table 3. 26 Broken Rail Rate (per Billion Ton-Miles) by Grinding Passes,  

All Tracks on Mainlines, 2013 to 2016 

Grinding passes 

per year 

Number of  

broken rails Billion ton-miles 

Number of broken rails 

per billion ton-miles 

0 835 294.32 2.84 

1 1,836 998.06 1.84 

2+ 937 386.74 2.42 

Ballast Cleaning 

Ballast cleaning aims to replace small worn ballasts with new ballasts. Table 3.27 

shows that the broken rail rate without ballast cleaning is slightly higher than that with 

ballast cleaning. This potentially illustrates that proper ballast cleaning can improve 
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drainage and track support, which would thus reduce the probability of broken rails (Kumar 

2006a, 2006b). 

Table 3. 27 Broken Rail Rate (per Billion Ton-Miles) by Ballast Cleaning, All Tracks on 

Mainlines, 2013 to 2016 

Ballast 

cleaning 

Number of broken 

rails 

Billion ton-

miles 

Number of broken rails per 

billion ton-miles 

No 3,151 1,454.47 2.17 

Yes 457 224.67 2.03 

 

Maximum Allowable Track Speed 

To study the relationship between track speed and broken rail rate, broken rail rates 

were calculated for each category of track speeds (Table 3.28). The distribution indicates 

that broken rails on Class 4 or above (speed above 40 mph) account for over half of the 

total number of broken rails but the broken rail rate (number of broken rails per billion ton-

miles), is the lowest. Instead, the highest broken rate is associated with maximum track 

speed from 0 to 25 mph that corresponds to FRA track Class 1 or Class 2. The possible 

reason is that maximum allowable track speed is also correlated to other track 

characteristics, engineering and maintenance standards. Higher track class, associated with 

higher rail quality, would bear higher usage (higher traffic density), which requires more 

frequent maintenance operations accordingly.  
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Table 3. 28 Broken Rail Rate (per Billion Ton-Miles) by Track Speed, All Tracks on 

Mainlines, 2013 to 2016 

Track 

speed 

(MPH) 

 

FRA track 

class 

Number of 

broken rails 

Billion ton-

miles 

Number of broken 

rails per billion ton-

miles 

0-25 Class 1 & 2 430 132.48 3.25 

25-40 Class 3 1,075 348.92 3.08 

40-60 Class 4 2,103 1,197.73 1.76 

Rail Quality 

The broken rail rates with respect to rail quality (new rail versus re-laid rail) are 

listed in Table 3.29. In terms of the number of broken rails, new rails involve four times of 

that for re-laid rails. However, after normalizing broken rail frequency by traffic exposure 

in ton-miles, the broken rail rate of re-laid track is higher than that of new rails.  

Table 3. 29 Broken Rail Rate (per Billion Ton-Miles) by Rail Quality, All Tracks on 

Mainlines, 2013 to 2016 

Rail quality 

Number of broken 

rails 

Billion ton-

miles 

Number of broken rails per 

billion ton-miles 

New rail 2,484 1,299.83 1.91 

Re-laid rail 644 196.68 3.27 

Annual Traffic Density 

The annual traffic density is measured in gross million tonnages (MGT). Table 3.30 

lists the broken rail rates by annual traffic density categories. There is an approximately 



72 

 

 

 

monotonic trend showing that a higher annual traffic density category is associated with a 

lower broken rail rate. Rail tracks with a higher traffic density category (> 20 MGT) have 

a smaller number of broken rails per billion ton-miles, which is around half of that on tracks 

with a lower traffic density (< 20 MGT). The possible reason is that annual traffic density 

was probably correlated with other factors, such as rail age or FRA track class. In Figure 

3.19, it is shown that higher annual traffic density is associated with smaller rail age. A 

track with higher annual traffic density is more likely to have higher FRA track class and 

correspondingly have more or better track inspection and maintenance.  

Table 3. 30 Broken Rail Rate (per Billion Ton-Miles) by Annual Traffic Density (MGT), 

All Tracks on Mainlines, 2013 to 2016 

Annual traffic 

density (MGT) 

Number of 

broken rails 

Billion ton-

miles 

Number of broken rails per 

billion ton-miles 

0-20 947 276.42 3.43 

20-60 2,153 1,100.65 1.96 

60 and above 508 302.06 1.68 

Track Geometry Exception 

The distribution of broken rail rate by track geometry exception is in Table 3.31. 

Around 94 percent of broken rails occurred at locations which did not experience track 

geometry exceptions, which covered 98 percent of the traffic volume in ton-miles. In 

contrast, around 6 percent of broken rails occurred at locations that experienced track 

geometry exceptions, which accounted for only 2 percent of traffic volume in ton-miles. In 

other words, the broken rail rate at locations with track geometry exceptions is 
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approximately three times as high as that at locations without track geometry exceptions. 

A similar conclusion was also found in the literature (e.g., Zarembski et al., 2016).  

Table 3. 31 Broken Rail Rate (per Billion Ton-Miles) by Presence of Track Geometry 

Exceptions, All Tracks on Mainlines, 2013 to 2016 

Track geometry 

exception 

Number of 

broken rails 

Billion ton-

miles 

Number of broken rails per 

billion ton-miles 

No 3,403 1,644.92 2.07 

Yes 205 34.21 5.99 

 

Vehicle-Track Interaction Exception 

Table 3.32 presents the number of broken rails, traffic exposures, and broken rail 

rate by vehicle-track interaction (VTI) exceptions and non VTI exceptions. Around 2.8 

percent of broken rails occurred on tracks with at least one VTI exception, while these 

locations only had 0.3 percent of traffic volumes (in ton miles). The broken rail rate with 

occurrence of vehicle-track interaction exceptions is six times as that without occurrence 

of vehicle-track interaction exceptions. However, the results herein may be subject to 

statistical uncertainty given the much smaller sample size and traffic volume for the 

trackage with VTI exceptions.   
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Table 3. 32 Broken Rail Rate (per Billion Ton-Miles) by Presence of Vehicle-Track 

Interaction Exceptions, All Tracks on Mainlines, 2013 to 2016 

VTI 

Number of broken 

rails 

Billion ton-miles 

Number of broken rails 

per billion ton-miles 

No 3,507 1,670.84 2.10 

Yes 101 8.29 12.18 

Correlation between Input Variables 

Correlation between input variables is measured by correlation coefficient to 

measure how strong a linear relationship between two variables is. The correlation 

coefficient is determined by dividing the covariance by the product of the two variables’ 

standard deviations.   

𝜌𝑋𝑖𝑋𝑗 =
𝑐𝑜𝑣[𝑋𝑖,𝑋𝑗]

𝜎𝑋𝑖𝜎𝑋𝑗
=
𝐸[(𝑋𝑖−𝐸[𝑋𝑖])(𝑋𝑗−𝐸[𝑋𝑗])]

𝜎𝑋𝑖𝜎𝑋𝑗
   (3-1) 

where  

 𝜌𝑋𝑖𝑋𝑗 = correlation coefficient 

 𝑐𝑜𝑣[𝑋𝑖, 𝑋𝑗] = Covariance of variables 𝑋𝑖 and 𝑋𝑗 

𝐸(𝑋) = expected value (mean) of variable X 

𝜎𝑋𝑖 = standard deviation of 𝑋𝑖 

𝜎𝑋𝑗 = standard deviation of 𝑋𝑗 

𝑋𝑖, 𝑋𝑗 = two measured values 
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In general, the value of the correlation coefficient can vary between -1 and 1. “-1” 

indicates a perfectly negative linear correlation. “1” indicates a perfectly positive linear 

correlation. 0 means that there is no linear correlation between the two variables.  Figure 

3.20 shows the correlation matrix between the variables. Below are the major findings 

observed from the correlation matrix: 

• The most remarkable correlation occurs between maximum allowed track speed 

and annual traffic density. There is a positive relationship (correlation coefficient 

is 0.51) between these two variables, which means higher annual traffic density is 

associated with higher maximum allowed track speed.  

• Annual traffic density is also correlated with rail quality (new rail versus re-laid 

rail). New rail is associated with higher annual traffic density (correlation 

coefficient is 0.46) while re-laid rail is associated with lower annual traffic density 

(correlation coefficient is -0.46).  

• Curve degree has a negative correlation with the maximum allowed track speed 

(correlation coefficient is -0.35). This represents that the tracks with higher curve 

degrees are associated with lower maximum allowed track speeds.  

• Rail age and annual traffic density have a negative correlation (correlation 

coefficient is -0.26), which means the older rail is associated with lower annual 

traffic density, which is also shown in Figure 3.19. 
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Figure 3. 20 Correlation between Each Two Input Variables 
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CHAPTER 4 

 

TRACK SEGMENTATION 

 

The track segmentation process is an important step for broken rail prediction. 

However, to our knowledge, little prior research is available to provide guidance for 

segmenting railway networks in order to predict potential broken rail locations. 

4.1 Fixed-Length versus Feature-Based Segmentation 

There are two types of strategies for the segmentation process: fixed-length 

segmentation and feature-based segmentation. fixed-length segmentation divides the 

whole network into segments with a fixed length. For feature-based segmentation, the 

whole network can be divided into segments with varying lengths. If fixed-length 

segmentation is applied and the small adjacent segments are combined, these combined 

segments may have different characteristics of certain influencing factors (e.g., traffic 

tonnage, rail weight) affecting broke rail occurrence. This combination would introduce 

potentially large variance into the database and further affect the prediction performance. 

For feature-based segmentation, segmentation features are used to measure the uniformity 

of adjacent segments. It is feasible to group and combine these adjacent segments under 

the condition that these adjacent segments embody similar features. Otherwise, these 

adjacent segments are isolated. Feature-based segmentation can reduce the variances in the 

new segments.  
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All features involved in the segmentation process can be divided into three 

categories: (1) track-layout-related features, (2) inspection-related features and (3) 

maintenance-related features, as illustrated in Table 4.1. The track-layout-related features 

are the essential information of rail and track, such as rail age, curve, grade, rail weight, 

traffic tonnages etc. The track-layout-related features would keep consistent on a relatively 

longer track milepost in general. The inspection-related features refer to the information 

obtained according to the measurement or inspection records, such as track geometry 

exceptions, detected rail defects, and VTI exceptions. These features may change 

frequently with time and locations. For example, the rail defect information can only be 

recorded when there is an inspection and the equipment or worker finds the defect(s). Also, 

it is possible the more inspections, the more defects might be found. This can lead to 

uncertainty for broken rail prediction. The maintenance-related features include grinding, 

ballast cleaning, rail repair or maintenance etc. Different types of maintenance actions may 

have different influences on rail integrity.  

4.2 Track Segmentation Strategy 

As mentioned above, there are two types of segmentation strategies: fixed-length 

segmentation and feature-based segmentation. Furthermore, there are two methods for 

feature-based segmentation: static-feature-based segmentation and dynamic-feature-based 

segmentation (Table 4.1). The details will be introduced as follows. 
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Table 4. 1 Track Segmentation Strategy 

Segmentation 

strategies 

Fixed-length 

segmentation 

Feature-based segmentation 

Static-feature-based 

segmentation 

Dynamic-feature-based 

segmentation 

Considered 

features 

None Track-layout-related 

features (including traffic 

tonnage) 

Track-layout-related 

features, inspection-

related features, 

maintenance-related 

features 

Rules  The length of 

the newly 

emerged 

segment is 

fixed 

If the difference between 

two adjacent 0.1-mile 

segments in feature values 

is above a given threshold, 

there will be two different 

new segments, otherwise, 

these two 0.1-mile 

segments are merged into 

one segment 

The “best” segment 

length is found by 

minimizing a pre-

defined loss function 

During the segmentation process, the whole set of 0.1-mile network segments are 

divided into different groups. Each group should keep the uniformity on each segment. 

Aggregation functions are applied to assign the updated values to the new segment. The 

aggregation functions are given in Table 4.2. Specifically, the average values of nearby 

0.1-mile segments for features such as the traffic density and speed are assigned to the new 
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segment, and the summation value is used for features such as rail defects, geometry 

defects and VTI exceptions. 

Table 4. 2 Feature Aggregation Function in Segmentation Process (Partial List) 

Features Operation 

Traffic density Mean 

Rail weight Minimum 

Rail age Maximum 

Rail defect Sum 

Broken rail number Sum 

Grinding passes Mean 

Ballast cleaning Mean 

Geometry defects Sum 

Speed Mean 

Curve in degree Maximum 

Grade in percent Maximum 

VTI exceptions Sum 

4.2.1 Fixed-Length Segmentation 

The fixed-length segmentation is the segmentation strategy that uses the pre-

defined fixed length to merge consecutive 0.1-mile segments compulsively, without 

accounting for the variance of the features on these segments. This forced segmentation 

strategy can be understood as a moving average filtering along the rail line. In the example 

shown in Figure 4.1, there are a total of fifteen (15) 0.1-mile segments. The values of two 
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features, rail age and annual traffic density, are described by two lines. In the fixed-length 

segmentation, a pre-determined fixed length is set to 0.3 miles. Therefore, three 

consecutive 0.1-mile segments are combined. For example, segment A-1 is composed of 

the original 0.1-mile segments 1 to 3. The rail ages of these three 0.1-mile segments are 

not identical, being 20, 20, and 24 years, respectively. The rail age assigned to the new 

segment A-1 should be the mean value of these three values (i.e. 21.3 years).   

• Advantages: Fixed-length segmentation is the most straightforward (easiest) approach 

for track segmentation and the segmentation algorithm is the fastest.  

• Drawbacks: The inherent difference of certain features on the same segment may be 

significant, which would affect the modeling accuracy.  

 

 

Figure 4. 1 Schematic Illustration of Fixed-Length Segmentation 

4.2.2 Feature-Based Segmentation 

Feature-based segmentation aims to combine uniform segments together. The 

uniformity is defined by the internal variance (i.e. variance among the 0.1-mile segments) 
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on the new segment. The uniformity is measured by the information loss, which is 

calculated by summing the weighted variances on involved features. The formula shown 

below is used to calculate the information loss. In feature-based segmentation, the 

information loss  Loss(𝐴) should be minimized (ideally zero) when determining the length 

of a newly merged segment. 

Loss(𝐴) = ∑ 𝑤𝑖 ∙ std(𝐴𝑖)𝑖∈[1,𝑛]                                              (4-1) 

where  

 A: the feature matrix  

 n: number of involved features 

 𝐴𝑖: the 𝑖th column of 𝐴 

 𝑤𝑖: the weight associated with the i-th feature 

std(𝐴𝑖): the standard deviation of the i-th column of 𝐴 

The loss function can be interpreted as follows. Given multiple features, the 

information loss can be calculated by the weighted summation of the standard deviation of 

each feature. The information loss represents the internal variance of records of the 

involved features. The smaller the value of the loss functions, the “better” the segmentation 

result can be, due to minimizing the internal variances of selected features on the same 

segmentation. Ideally, within the same segment, selected feature values should be identical 

or close, while on different segments, at least one feature significantly differs.  

Static-Feature-based Segmentation 

In preparation for static-feature-based segmentation, segmentation features should 

be selected to determine the uniformity of the adjacent 0.1-mile segments. The static-
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feature-based segmentation only uses the track-layout-related (static) features to measure 

the information loss when combining consecutive segments to a new longer segment. In 

static-feature-based segmentation, the information loss  Loss(𝐴) should be minimized to 

zero when determining the length of newly merged segment. The weights associated with 

each involved segmentation features are identical. Therefore, static-feature-based 

segmentation is an adaptive segmentation scheme in which a segment is assigned when at 

least one involved feature changes. Figure 4.2 shows an illustrative static-feature-based 

segmentation example. The selected segmentation features might be continuous or 

categorical. For categorical features, the uniformity is defined by whether the features 

among 0.1-mile segments are identical. For continuous features, a tolerance threshold 

should be used to define the uniformity. If the difference of continuous feature values of 

adjacent segments is smaller than the defined tolerance, the uniformity still exists. In this 

research, for feature-based segmentation, 10% of the standard deviation of differences of 

continuous features of the two consecutive 0.1-mile segments is used as the tolerance. In 

the example as shown in Figure 4.2, two features, rail age and annual traffic density, are 

both continuous variables. In order to simplify the illustration of the segmentation process, 

it is assumed that the differences of each value for each feature are beyond the tolerance. 

In the example, fifteen 0.1-mile segments are combined into seven new, longer segments. 

A new segment is assigned when any involved feature changes. 

• Advantages: Static-feature-based segmentation is easy to understand, and the 

algorithm is easy to design. The internal difference of static rail feature information is 

also minimized.  
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• Drawbacks: When considering more features, the final merged segments can be more 

scattered with a large number of segmentations. The difference of features between the 

adjacent 0.1-mile segments, such as maintenance and defect inspection history, are 

difficult to be considered in static-feature-based segmentation because they are point-

specialized events (non-static). 

 

 

Figure 4. 2 Static-Feature-Based Segmentation 

Dynamic-Feature-Based Segmentation 

Differing from fixed-length segmentation and static-feature-based segmentation, 

dynamic-feature-based segmentation is the segmentation strategy that uses an optimization 

model to minimize a pre-defined loss function to find the “best” segment length around a 

local milepost. All features are used to calculate the information loss function to evaluate 

the internal difference of the merged segments. The optimization model is shown as 

𝐿 = argmin
𝑚
𝐿𝑜𝑠𝑠(𝐴𝑚)                                                       (4-2) 

Loss(𝐴𝑚) = ∑ 𝑤𝑖 ∙ std(𝐴𝑖
𝑚)𝑖∈[1,𝑛]                                              (4-3) 
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where  

 𝐴𝑚: feature matrix with 𝑚 rows (the number of 0.1-mile segments is 𝑚) 

 n: number of involved features 

𝐴𝑖
𝑚: the 𝑖-th column of 𝐴𝑚 (the 𝑖-th feature) 

 𝑤𝑖: the weight associated with the i-th feature 

std(𝐴𝑖
𝑚): the standard deviation of the i-th column of 𝐴𝑚 

With a fixed beginning milepost, find the best 𝐴𝑚  that is associated with the 

minimum information loss. 𝐴𝑚 indicates a feature matrix associated with m consecutive 

0.1-mile segments. The optimization model can be interpreted as: finding the best segment 

length to minimize the loss function, from all possible segment combinations. One example 

is illustrated in Figure 4.3. To solve the optimization model, iteration algorithm is used to 

optimize the segmentation and get the approximately optimal solution. Besides, the loss 

function is also employed to find the best segment length. For the example shown in Figure 

4.3, two features are involved for dynamic-feature-based segmentation, which are rail age 

and annual traffic density. The weights associated with the two features in the information 

loss function are assumed to be the same. To illustrate this type of segmentation, the 

minimum length of combined segment is set to 0.3 miles. It is shown that the minimum 

information loss is obtained at the original segment 8. Then the other segments are 

combined to develop another new segment. 

• Advantages: Dynamic-feature-based segmentation takes all features (both time-

independent or time-dependent) into consideration. The influence of the diversity of 

involved features can be controlled by changing the weights in the loss function. 

Dynamic-feature-based segmentation can also avoid the combined segments being too 
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short. Therefore, this type of segmentation strategy might be more appropriate for 

network-scale broken rail prediction.  

• Drawbacks: The computation is time-consuming compared with fixed-length 

segmentation and static-feature-based segmentation. The development of algorithm is 

more complex.  

 

Figure 4. 3 Dynamic-Feature-Based Segmentation 
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4.3 Comparison of Track Segmentation Strategies 

To compare the performance of different segmentation strategies, numerical 

experiments are conducted. In this section, the performance of three fixed-length 

segmentation setups, eight dynamic-feature-based segmentation setups, and one feature-

based segmentation setup are compared. The area under the receiver operating 

characteristics (ROC) curve is used as the metric. ROC is a graph showing the performance 

of a classification model at all classification thresholds. The area under the curve (AUC) 

measures the entire two-dimensional area underneath the entire ROC curve. It is one of the 

most widely used evaluation metrics for checking any classification model’s performance 

with two main advantages. Firstly, AUC is scale-invariant and measures how well 

predictions are ranked, rather than their absolute values. Secondly, it is classification-

threshold-invariant and measures the quality of the model's predictions irrespective of what 

classification threshold is chosen. In general, the higher the AUC is, the better the model 

performs.   

To compare the performance of different segmentation strategies, Naïve Bayes 

classifier is used as a reference model to evaluate the performance of a segmentation 

strategy. Naïve Bayes classifier is used to select the optimal segmentation strategy because 

of its fast computation speed. The segmented data selected by the Naïve Bayes method will 

later be applied in other machine learning algorithms.  

The comparison result is shown in Table 4.3. U-0.2, U-0.5, and U-1.0 represent the 

fixed-length segmentation with fixed segment length of 0.2 miles, 0.5 miles, and 1.0 mile, 

respectively. For the dynamic-feature-based segmentation, D-1 to D-8 represent eight 
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alternative setups, in which varying feature weights in the loss function are assigned, 

respectively. In dynamic-feature-based segmentation, the involved features are categorized 

into four groups. Features in Group 1 are related to the number of car passes. Group 2 

contains features which are associated with traffic density. Group 3 contains features which 

are related to the track layouts and rail characteristics, such as curve degree, rail age, rail 

weight etc. Features in Group 4 are associated with defect history and maintenance history, 

such as prior defect history and grinding passes. The feature weights assigned to each group 

in each dynamic-feature-based segmentation setups are in Table 4.4. 

Table 4. 3 Comparison of Different Segmentation Strategies 

 

Fixed-Length 

Segmentation 

Static-

Feature-

Based 

Segmentation 

Dynamic-Feature-Based Segmentation 

U-

0.2 

U-0.5 U-1.0 

 

D-1 D-2 D-3 D-4 D-5 D-6 D-7 D-8 

Average 

Segment 

Length 

0.20

0 

0.500 1.000 0.300 0.621 0.282 0.377 0.360 0.327 0.197 0.220 0.341 

AUC 

0.70

5 

0.704 0.700 0.813 0.832 0.777 0.821 0.793 0.796 0.825 0.827 0.804 
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Table 4. 4 Feature Weights in Dynamic-Feature-Based Segmentation 

  Group 1 Group 2 Group 3 Group 4 

D-1 100 10 1 1 

D-2 1 1 1 1 

D-3 0 1 1 0 

D-4 1 0 0 0 

D-5 1 1 0 0 

D-6 10 5 1 1 

D-7 10 10 5 1 

D-8 20 20 1 1 

As shown in Table 4.3, the dynamic-feature-based segmentation with the D-1 setup 

performs the best using the AUC as the metric. For the D-1 setup, features about number 

of car passes have the largest weight. Features about track and rail characteristics as well 

as features about defect history and maintenance history have the least weights in the loss 

function. The new segmented dataset contains approximately 664,000 segments including 

twenty timestamps. There are 37,162 segments experiencing at least one broken rail from 

2012 to 2016, accounting for about 5.6% of the whole dataset. By comparison, in the 

original 0.1-mile dataset, there are 47,221 segments (1.1%) with broken rails among 

4,143,600 segments.  

4.4 Chapter Summary 

There are three segmentation strategies to segment the railroad network: fixed-

length segmentation, static-feature-based segmentation, and dynamic-feature-based 
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segmentation. Fixed-length segmentation does not account for feature variance on the same 

segment. Static-feature-based segmentation only accounts for the track-layout-related 

features (time-independent or static features) and has two limitations. Firstly, when 

considering additional features for network delineation, the segments can be more scattered 

and shorter. Secondly, based on the exploratory data analysis, the presence of geometry 

exceptions and rail defects could increase the broken rail rate. However, in the static 

feature-based segmentation, defect-related features are not considered. Among these three 

segmentation strategies, the dynamic-feature-based segmentation scheme using a loss 

function is shown to have the highest performance (using AUC as the metric) using the 

Naïve Bayes algorithm. The possible reason is that dynamic-feature-based segmentation 

minimizes the feature variances of the merged segments. In the following chapter 5, a 

broken rail prediction model is proposed in which the input and output data is generated 

using dynamic-feature-based segmentation strategy.   
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CHAPTER 5 

 

DEVELOPMENT AND VALIDATION OF BROKEN RAIL PREDICTION 

MODEL 

 

The objective of this chapter is to predict broken rail probability using machine 

learning algorithms empowered by fast-growing railroad “big data”, related to network-

level track characteristics, maintenance activities, traffic and operations, as well as track 

and rail inspection histories. To develop an efficient, high-accuracy prediction model, a 

novel, customized Soft Tile Coding based Neural Network model (STC-NN) is proposed 

to predict the probability of broken rail occurrence by time and location. This chapter will 

introduce feature creation, feature transformation, feature selection, model development, 

and validation.  

5.1 Nomenclatures, Variables, and Operators 

Table 5. 1 Nomenclatures, Variables, and Operators 

Terminology Explanation 

STC-NN Soft-Tile-Coding-Based Neural Network 

NN Neural Network 

MCP Multi-Classification Problem 

BCP Binary Classification Problem 
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TPTR 

Total Predictable Time Range, describing the upper time limit of 

the STC-NN model 

FIR Feeding Imbalance Ratio 

IR Imbalance Ratio  

TPR True Positive Rate 

FPR False Positive Rate 

ROC Receiver Operating Characteristics 

AUC Area Under ROC Curve 

Variable Denotation 

t A variable representing a timestamp 

𝑇 
Lifetime from starting observation time to occurrence time of 

broken rails or ending observation time for a segment 

𝑚 The number of tiling for soft-tile-coding 

𝑛 The number of tiles in a tiling  

𝑑𝑗 The initial offset of the j-th tiling 

∆𝑇 The length of the time range of each tile 

𝐹(𝑇|𝑚, 𝑛) Tile-encoded vector of a lifetime 𝑇 with parameter 𝑚 and 𝑛 

𝑆(𝑇|𝑚, 𝑛) Soft-tile-encoded vector of a lifetime 𝑇 with parameter 𝑚 and 𝑛 

𝜃 The weights of a neural network   

𝑔 An input feature set of one rail segment 

𝑝(𝑔|𝜃) 
The output soft-tile-encoded vector of the STC-NN model with 

parameters 𝜃, given input feature set 𝑔 

𝐺 {𝑔1, 𝑔2, … , 𝑔𝑁} is a batch of input feature set 
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𝑇 {𝑇1, 𝑇2, … , 𝑇𝑁} is a batch of input lifetime corresponding to 𝐺 

𝑝𝑖𝑗 The output probability of the j-th tile in the i-th tiling  

𝑟𝑖𝑗(𝑇) The effective coverage ratio of the j-th tile in the i-th tiling 

𝑝𝑖𝑗
∗  The probability density of the j-th tile in the i-th tiling 

𝑡𝑖𝑗(𝑇) 

⟦[𝑖∆𝑇 + 𝑑𝑗 , (𝑖 + 1)∆𝑇 + 𝑑𝑗) ∩ [0, 𝑇]⟧  is the length of 

intersection between time range of the j-th tile in the i-th tiling 

and the range 𝑡 ∈ [0, 𝑇] 

ℒ(𝑔, 𝑇|𝜃,𝑚, 𝑛) The loss function of STC-NN model 

𝛼 The learning rate of training algorithm of STC-NN model  

𝑇0 A lifetime threshold used to cut out a lifetime into binary value 

𝑃0 
A probability threshold used to cut out a cumulative probability 

into binary value 

𝐿𝑟(𝑇𝑖|𝑇0) 
The binary label generated from a lifetime, given 𝑇0  as the 

threshold 

𝐿𝑝(𝑇|𝑃0) 
The binary label generated from 𝑃(𝑡 < 𝑇) , given 𝑃0  as the 

threshold 

Operator Denotation 

𝑃(𝑡 < 𝑇) The cumulative probability of broken rail within 𝑡 ∈ [0, 𝑇) 

(𝑎, 𝑏) A mapping from vector 𝑎 to vector 𝑏 

[𝑎, 𝑏], [𝑎, 𝑏), (𝑎, 𝑏] A range from 𝑎 to 𝑏 

{∙} A set with discrete elements 

⟦∙⟧ An operator to obtain the length of a set with continuous values 
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5.2 Feature Engineering 

Feature engineering is an important process of model development which aims to 

improve model accuracy or efficiency. Among feature engineering in this dissertation, 

feature creation, feature transformation and feature selection are included. Feature creation 

focuses on deriving new features from the original features, while feature transformation 

is used to scale the range of features and normalize the length-related features (e.g., number 

of rail defects) by segment length. Feature selection identifies the set of features that 

accounts for most variances in the model output. 

5.2.1 Feature Creation 

Original Features 

The original features in the integrated database include: 

• Rail age (year), which is the number of years since the rail was first laid  

• Rail weight (lbs/yard) 

• New rail versus re-laid rail 

• Curve degree  

• Curve length (mile) 

• Spiral (feet) 

• Super-elevation (feet) 

• Grade (percent) 

• Maximum allowed operational speed (MPH) 

• Signaled versus non-signaled  

• Number of turnouts 
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• Number ballast cleaning 

• Number of grinding passes 

• Number of car passes  

• Annual gross tonnages  

• Number of broken rails   

• Number of rail defects (by type)  

• Number of track geometry exceptions (by type) 

• Number of vehicle-track interaction exceptions (by type) 

Cross-Term Features 

In addition to considering the features individually, this research also considers the 

interaction items (i.e. creating cross-term features). In this study, cross-term features can 

be products, divisions, sums, or the differences between two or more features. In addition 

to finding the product of rail age and traffic tonnages, the products of rail age and curve 

degree, curve degree and traffic tonnage, rail age and track speed, and others are also 

created. The division between traffic tonnage and rail weight is calculated. In terms of the 

sums of some features, the aim is to combine sparse classes or sparse categories. Sparse 

classes (in categorical features) are those that have very few total observations, which 

might be problematic for certain machine learning algorithms, causing models to be 

overfitted. Taking rail defect types as an example, there are more than ten different types 

of rail defect recorded in the rail defect database. However, several rail defect types rarely 

occur, which belong to sparse classes. To avoid sparsity, this research groups similar 

classes together to form larger classes (with more observations). Finally, this research can 

group the remaining sparse classes into a single “other” class. There is no formal rule for 
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how many classes that each feature needs. The decision also depends on the size of the 

dataset and the total number of other features in the database. Later, for feature selection, 

all possible cross-term features originating from raw features in the database are calibrated, 

and the optimal combination of features are selected to improve the model performance. 

The creation of cross-term features is done based on the data structure and domain 

knowledge. The selection of cross-term features is conducted based on model performance.  

5.2.2 Feature Transformation 

Min-Max Normalization 

The range of values of some features in the database varies widely. For instance, 

the value magnitudes for traffic tonnage and curve degree can be very different. For some 

machine learning algorithms, objective functions may not work properly without 

normalization. Feature normalization makes each feature contribute proportionately to the 

objective function. Moreover, feature normalization can speed up the convergences for 

gradient descent that are used in various machine algorithm trainings. Min-max 

normalization is calculated using the following formula: 

 

𝑥𝑛𝑒𝑤 =
𝑥−𝑚𝑖𝑛⁡(𝑥)

𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛⁡(𝑥)
     (5-1) 

 

where x is an original value, and  𝑥𝑛𝑒𝑤 is the normalized value for the feature. 

 

Categorization of Continuous Features  

There are two types of features: categorical (e.g., signaled versus non-signaled) and 

continuous (e.g., traffic density). The categorization of all continuous features are also done, 
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besides retaining the original continuous type. For instance, track speed is in the range of 

0 to 60 mph, which can be categorized in accordance with FRA track class, in the range of 

[0,10], [10,25], [25,40], [40-60], which designates track classes from 1 to 4, respectively.  

Feature Distribution Transformation 

The distributions of continuous features values are calculated. It is found that some 

features are distributed skewed towards one direction. Transformation functions are 

applied to transform the feature distribution into a normal distribution, in order to improve 

the performance of the prediction algorithm (Trawiński et al., 2012). For example, Figure 

5.1 plots the distributions of traffic tonnages before and after feature transformation. The 

distribution of raw traffic tonnages is distributed skewed towards smaller values. However, 

traffic tonnages are distributed approximately normally after logarithmic transformation. 

Normalization of feature distribution through feature transformation could benefit the 

convergence efficiency of the model, especially for machine learning models. 

 

Figure 5. 1 Distribution of Annual Traffic Tonnage Before and After Feature 

Transformation 
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Feature Scaling by Segment Length 

After network segmentation based on input features, the segment lengths could vary. 

It is also possible that the values for some features over the segments are proportional to 

segment lengths. To avoid repeated consideration of the impact of segment length, feature 

scaling by segment length is applied to the related features, such as the total number of rail 

defects and track geometry exceptions over the segments. In this way, the density of some 

feature values by segment length is calculated. However, there are some segments with 

very small segment lengths. The density of the features for these short segments cannot 

represent the correct characteristics due to the randomness of occurrence. A length 

threshold of 1 mile is used for the feature scaling by segment length. No scaling is 

conducted if a segment is shorter than 1 mile.  

5.2.3 Feature Selection 

One key concern in the original model dataset is high-dimensionality which would 

increase the complexity and the overfitting probability of the model if all features are 

involved in the model. dimensionality reduction is a process of reducing the number of 

features under consideration by obtaining a set of principal variables. Principal Component 

Analysis (PCA) is the process to create new terms to obtain the principal variables. 

However, in the engineering field, the effect of original engineering variables is preferred. 

Therefore, feature selection is applied in the dissertation for dimensionality reduction. 

Feature selection is the process in which a subset of features is automatically or 

manually selected from the set of original ones to optimize the model performance using 

defined criteria (Cai et al., 2018). With feature selection, features contributing the most to 
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the model performance are selected. Irrelevant features are discarded in the final model. 

Feature selection can also reduce the dimension of model feature matrix and speed up the 

model training. There are several approaches to feature selection, such as forward selection, 

backward selection, genetic algorithms and so on. In this dissertation, we developed a 

comprehensive algorithm which combines forward selection, backward selection and 

simulated annealing together. One of the most prevalent criteria for feature selection is the 

area under the operating characteristics curve (aka. AUC).  

In this dissertation, a machine learning algorithm called LightGBM (Light Gradient 

Boosting Machine) is used for feature selection considering its fast-computational speed 

as well as acceptable model performance based on the AUC. The details about LightGBM 

can be found in (Ke et al., 2017). In feature selection, there are thousands of possible 

combinations of features. It is impossible to iterate all possible combinations of features to 

search for the optimal subset of features. A designed method is applied for feature selection 

which is described in detail in Figure 5.2. In this optimization-based feature selection 

method, the forward searching, backward searching and simulated annealing techniques 

are used in steps:   

Step 1. In forward searching, select one feature each time to be added into the 

combination in order to maximally improve AUC, until the AUC is not improved further. 

Step 2. Use backward searching to select one feature to be removed from the 

combination of features obtained from step 1, in order to maximally improve AUC, until 

AUC is not improved further. 
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Step 3. After step 2, make multiple loops between step 1 and step 2 until the AUC 

is not improved further. 

Step 4. Because forward searching and backward searching select the features 

greedily, it is possible to result in a local optimal combination of features. The simulated 

annealing (SA) algorithm makes the local optima stand out amidst the combination of 

features. In this step, record the current combination of features with local optima and the 

corresponding AUC.  

Step 5. First, create the cross-term features based on the combination of features 

obtained from step 4. After creating the cross-term features, repeat steps 1 to 4 until 

obtaining the optimal combination of current features. Due to the computational 

complexity of step 5, cross-term development is only conducted one time. This research 

does not consider the interaction between the new created cross-term features and other 

features. In the process, we can use an indicator N to represent whether creation of cross-

term features has been conducted or not. If N is equal to “False”, then create cross-term 

features and repeat steps 1 to 4. If N is equal to “True”, then the optimal combination of 

features has been obtained and the process is complete. 
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Figure 5. 2 Optimization-Based Feature Selection Process 

Originally, the number of variables involved in the model (including dummy 

variables) is about 200. After feature selection, the top 10 variables are selected. Figure 5.3 

lists the 10 features chosen from approximately 200 features.  

• Segment Length: The length of the segment (mile) 

• Traffic_Weight: The division between annual traffic density and rail weight (annual 

traffic density divided by rail weight)  

• Car_Pass_fh: The number of car passes in the prior first half year 

• Rail_Age: The year between the research year and the rail laid year 

• Defect_hf: The number of detected defects in the prior first half year 

• Curve Degrees: The curve degree  

• Turnout: The presence of turnout 

• Service_Failures_fh: The number of detected broken rails in the prior first half year 
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• Speed×Segment Length: The product of the maximum allowed operational speed 

and the segment length 

• Age_Curve: The product of rail age and curve degree 

  

Figure 5. 3 Selected Top 10 Important Features using LightGBM Algorithm 

In Figure 5.3, segment length shows the highest importance rate, and the ratio 

between annual traffic density and traffic weight is the second most important. Table 5.2 

shows the impacts of the important features on the broken rail probability. A comparison 

of the distribution of the important features among different tracks was conducted. Two 

distributions of the important features are calculated, one for the top 100 track segments 

with the highest predicted broken rail probabilities, the other for the entire network of the 

studied railroad.  

From Table 5.2, it is found that the top 100 track segments (with highest estimated 

broken rail probabilities) have larger average lengths. The distributions of traffic/weight 
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for the railway network and the top 100 track segments appear to be different, which reveals 

that track segments with larger traffic/weight are prone to having higher broken rail 

probabilities. The statistical distributions of the number of car passes and rail age also 

illustrate that higher broken rail probability is associated with higher rail age and more car 

passes on the track. 

Table 5. 2 Selected Features on Top 100 Segments versus the Whole Network 

 

Segment Mileage 

Traffic (MGT)/Rail 

Weight (lbs/yard) 

Number of car 

passes  

Rail Age 

(years) 

Network 

Top 100 

Segments 

Network 

Top 100 

Segments 

Network 

Top 100 

Segments 

Network 

Top 100 

Segments 

Mean 0.20 3.24 0.16 0.32 247,435 465,958 25 36 

25% 0.04 1.44 0.04 0.18 85,097 277,319 11 32 

50% 0.10 2.62 0.14 0.32 225,740 474,450 25 38 

75% 0.21 4.15 0.14 0.42 356,337 641,610 36 44 

5.3 Overview of Soft-Tile-Coding-Based Neural Network 

The relationship between contributing factors and broken rail risk has been 

investigated using a variety of models in previous studies, such as logistic regression, 

survival analysis (e.g., Weibull model, Cox model), and the Markov stochastic model etc. 

As stated in the literature review section, there are advantages and limitations for each 

model. To address the challenges of predicting broken rail occurrence by location and time, 

a Soft-Tile-Coding-Based Neural Network (STC-NN) is proposed in this dissertation. As 

illustrated in Figure 5.4, the model framework contains five parts: (a) Dataset preparation; 

(b) Input features; (c) Encoder: soft-tile-coding of outcome labels; (d) Model architecture; 

and (e) Decoder: probability transformation. 
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Figure 5. 4 Schematic Illustration of STC-NN Algorithm Framework 

In part (a), dataset preparation, an integrated dataset should be developed which 

contains input features and outcome variables. The outcome variables are continuous 

lifetimes, which may have a large range. In survival analysis research, the lifetime could 

be the exact lifetime or censored lifetime. The exact lifetime is defined as the duration time 

from the starting observation time to the occurrence time of the event of interest (the found 

date of broken rail in this research), while censored lifetime is the duration from the starting 

time to the ending observation time if no event occurs. Input features might be categorical 

or continuous variables. For categorical features, one-hot encoding is applied to transform 

categorical features into a binary vector, in which only one element is 1 and the summation 

(d). Model architecture

(c). Encoder: soft-tile-coding of 

output labels

(e). Decoder: probability transformation

(b). Input features
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of the vector is equal to 1 (Buckman et al., 2018). To improve computational efficiency 

and model convergence for continuous features, min-max scaling is used to rescale the 

continuous features in the range from zero to one. Scaling the values of different features 

on the same magnitude efficiently avoids neuron saturation5 when randomly initializing 

the neural network. 

In original datasets, the outcome variables are continuous lifetime values. A special 

soft-tile-coding method is developed to transform the continuous outcome into a soft binary 

vector. Similar to a binary vector, the summation of a soft binary vector is equal to one. 

The difference is that the soft binary vector not only consists of the values of 0 and 1, but 

also of some decimal values such as 1/𝑛⁡(𝑛 = 2, 3, … ). This type of soft binary vector is 

referred to as a soft-tile-encoded vector in this dissertation.   

After the encoding process of input features and outcome variables, a customized 

Neural Network is proposed with a SoftMax layer to learn the mapping between the input 

features and the encoded output labels. Specifically, the output of the SoftMax layer 

corresponds to the encoded output label using the soft-tile-coding technique. The 

customized Neural Network with its output related to a soft-tile-encoded vector is named 

as the STC-NN model.  

A decoder process is developed for the soft-tile-coding. The decoding process is a 

method that transforms a soft-tile-encoded vector into its probability along its original 

continuous lifetime. Instead of obtaining one output (like a common tile-coding-based 

 
5 Without scaling features, the coefficients of the features with larger magnitude will be smaller. The 

coefficients of features with smaller magnitude will be larger. 
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neural network), the STC-NN algorithm can obtain a probability distribution of broken rail 

occurrence within a specified study period.  

5.4 Encoder: Soft-Tile-Coding 

5.4.1 Tile-Coding 

Tile-coding is a general tool used for function approximation (Sherstov and Stone, 

2005). In this study, the continuous lifetime is partitioned into multiple tiles which are 

treated multiple categories, and each category relates to a unique time range. One partition 

of the lifetime is called one tiling. Generally, multiple overlapping tiles are used to describe 

one specific range of the lifetime. There is a finite number of tiles in a tiling. In each tiling, 

all tiles have the same length of time range, except for the last tile.  

For a tile-coding with 𝑚 tilings and each with 𝑛 tiles, for each time period 𝑇 on the 

lifetime horizon, the encoded binary feature is denoted as 𝐹(𝑇|𝑚, 𝑛), and the element 

𝐹𝑖𝑗(𝑇) is described as:  

𝐹𝑖𝑗(𝑇) = {
1, 𝑇 ∈ [𝑖∆𝑇 − 𝑑𝑗 , (𝑖 + 1)∆𝑇 − 𝑑𝑗)

0, otherwise
; ⁡⁡𝑖 = 1,2, … , 𝑛; 𝑗 = 1,2, … ,𝑚⁡                                

(5-2) 

where ∆𝑇 is the length of the time range of each tile, and 𝑑𝑗 is the initial offset of each 

tiling. 

In general, the tile-coded vector is defined as follows:  

Definition 1: 𝐹(𝑇|𝑚, 𝑛) = {𝐹𝑖𝑗(𝑇)|⁡𝑖 = 1,2, … , 𝑛; 𝑗 = 1,2, … ,𝑚} is called a tile-

encoded vector with parameter 𝑚 and 𝑛 if it satisfies the conditions (a) 𝐹𝑖𝑗(𝑇) ∈ {0, 1}⁡and 

(b) ∑ 𝐹𝑖𝑗(𝑇)𝑖 = 1.    
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Figure 5.5 illustrates two examples for tile-coding of two lifetime values at time (a) 

and (b) with three tilings (𝑚 = 3) which contain four tiles (𝑛 = 4). It is found that time (a) 

is located in the tile-1 for tiling-1, and in the tile-2 for both tiling-2 and tiling-3. The 

encoded vector of time (a) is given by (1,0,0,0⁡|⁡0,1,0,0⁡|⁡0,1,0,0)𝑇. Similarly, for time (b) 

The encoded vector is calculated as (0,0,1,0⁡|⁡0,1,0,1⁡|⁡0,0,0,1)𝑇.  

Normally, a specific lifetime value could be encoded into a binary vector using tile-

coding if an event occurs. However, in some situations, no events occur during the 

observation time and the event of interest is assumed to occur in the future. In this case, 

the censored lifetime is obtained, and the exact lifetime is unavailable. The usual tile-

coding function cannot be used to encode this censored data. To address this issue, the soft-

tile-coding approach is proposed. 
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Figure 5. 5 Illustrative Example of Tile-Coding 

Note: (a) and (b) indicate two different lifetimes. 

5.4.2 Soft-Tile-Coding 

The soft-tile-coding function is applied to transform the continuous lifetime range 

into a soft-binary vector, which is a vector whose value is in range [0, 1]. When the event 

of interest is not observed before the end of observation, the lifetime value is censored, and 

exact lifetime is not observed. Although the exact lifetime is not observed for the event, it 

is true that the event of interest did not occur within the observation time period. 

Equivalently, the event will happen in the future, beginning at the current ending 

observation time. By using soft-tile-coding, the proposed model could be improved and 

achieve better prediction performance. The mathematical process is as follows:  

For a soft-tile-coding with 𝑚 tilings and 𝑛 tiles in each tiling, given a time range 

𝑇 ∈ [𝑇0, ∞) on the timeline, the encoded binary feature is denoted as 𝑆(𝑇|𝑚, 𝑛), and the 

element 𝑆𝑖𝑗(𝑇) is described as:  
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𝑆𝑖𝑗(𝑇) = {
1/(𝑛 − 𝑘𝑗 + 1), 𝑖 ≥ 𝑘𝑗

0⁡⁡⁡, otherwise
; ⁡⁡𝑖 = 1,2, … , 𝑛; 𝑗 = 1,2, … ,𝑚           (5-3) 

where  

𝑘𝑗 = argmax
𝑗
𝐹𝑗(𝑇0)                                                      (5-4) 

and 𝐹𝑗(𝑇0) is the encoded binary feature vector of the 𝑗th tiling using tile-coding.  

In general, define the soft-tile-encoded vector as follows:  

Definition 2: 𝑆(𝑇|𝑚, 𝑛) = {𝑆𝑖𝑗(𝑇)|⁡𝑖 = 1,2, … , 𝑛; 𝑗 = 1,2, … ,𝑚} is called a soft-

tile-encoded vector  with parameter 𝑚 and 𝑛 if it satisfies the conditions (a) 𝑆𝑖𝑗(𝑇) ∈ [0, 1] 

and (b) ∑ 𝑆𝑖𝑗(𝑇)𝑖 = 1.   

One example of soft-tile-coding with three tilings (𝑚 = 3), each of which contain 

four tiles (𝑛 = 4), is illustrated in Figure 5.6.  It is found that the time T is located in the 

tile-3, tile-3, and tile-4 for tiling-1, tiling-2, and tiling-3, respectively. The soft-tile-encoded 

vector is given as (0,0,0.5,0.5⁡|⁡0,0,0.5,0.5⁡|⁡0,0,0,1)𝑇 . In comparison, the tile-encoded 

vector is (0,0,1,0⁡|⁡0,0,1,0⁡|⁡0,0,0,1)𝑇. 
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Figure 5. 6 Illustrative Example of Soft-Tile-Coding 

5.5 Architecture of STC-NN Model 

5.5.1 Forward Architecture of STC-NN Model 

As presented in Figure 5.7, the forward architecture of STC-NN model is mainly 

based on a Neural Network. There are multiple processes to get the output probability of 

event occurrence over time from the input features. There are three main parts of the model: 

(1) a neural network, (2) a SoftMax layer with multiple soft-max functions, and (3) a 

decoder: probability transformation.   The input of the model is transformed into a vector 

with values in range [0, 1]. The input vector is denoted as 𝑔 = {𝑔𝑖 ∈ [0,1]|𝑖 = 1,2, …𝑀}. 

The hidden layers are densely connected with a nonlinear activation function specified by 

the hyperbolic tangent, tanh(∙).  

There are 𝑚 × 𝑛 output neurons of the neural network, which connect to a SoftMax 

layer with 𝑚 softmax functions. Each SoftMax function is bound with 𝑛 neurons. The 
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mapping from the input 𝑔 to the output of the softmax layer can be written as 𝑝(𝑔|𝜃), 

where 𝜃  is the parameter of the NN. According to Definition 2, 𝑝(𝑔|𝜃) is a soft-tile-

encoded vector with parameter 𝑚 and 𝑛.  

The soft-tile-encoded vector 𝑝(𝑔|𝜃) is only an intermediate result, and it can be 

transformed into probability distribution by a decoder. 

 
Figure 5. 7 Forward Architecture of STC-NN Model for Prediction 

5.5.2 Backward Architecture of STC-NN Model 

The backward architecture of the STC-NN model for training is presented in Figure 

5.8. Given a feature set as the input, a soft-tile-encoded vector is calculated through the 

SoftMax layer. Instead of going further for probability transformation, in the training 

process the model loss is calculated with the soft-tile-encoded vector as the final output 

and a loss function can be defined as Equation (5-5):  

ℒ(𝑔, 𝑇|𝜃,𝑚, 𝑛) =
1

2
‖𝑝(𝑔|𝜃) − 𝐹(𝑇|𝑚, 𝑛)‖2⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5-5) 

where, 𝑝(𝑔|𝜃) is the output of the STC-NN model, given input 𝑔  with parameters 𝜃 . 

𝐹(𝑇|𝑚, 𝑛) is a tile-encoded vector if the feature set 𝑔 relates to an observed lifetime 𝑇; 
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otherwise, 𝐹(𝑇|𝑚, 𝑛) = 𝑆(𝑇|𝑚, 𝑛), which is a soft-tile-encoded vector if the feature set 𝑔 

relates to an unknown lifetime during the observation period with length 𝑇.  

Given a training dataset with batch size of 𝑁, denoted as {𝐺 = {𝑔1, 𝑔2, … , 𝑔𝑁}, 𝑇 =

{𝑇1, 𝑇2, … , 𝑇𝑁}}, the overall loss function can be written as:   

ℒ(𝐺, 𝑇|𝜃,𝑚, 𝑛) =
1

2
∑ ‖𝑝(𝑔𝑖|𝜃) − 𝐹(𝑇𝑖|𝑚, 𝑛)‖

2𝑁
𝑖 1 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5-6) 

The training process is given as an optimization problem which aims to find the 

optimal parameters 𝜃∗ , such that the loss function ℒ(𝐺, 𝑇|𝜃,𝑚, 𝑛)  is minimized. The 

optimal parameters  𝜃∗ is written as Equation (5-7).  

𝜃∗ = argmin
𝜃
ℒ(𝐺, 𝑇|𝜃,𝑚, 𝑛)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5-7) 

The optimal solution of 𝜃∗ can be estimated using the stochastic gradient descent 

(SGD) algorithm, which is achieved by randomly picking one record {𝑔𝑖, 𝑇𝑖} from the 

dataset, and following the updated process using Equation (5-8):   

𝜃 ← 𝜃 − 𝛼 ∙ ⁡
∂𝑝(𝑔𝑖|𝜃)

∂𝜃
∙ (𝑝(𝑔𝑖|𝜃) − 𝐹(𝑇𝑖|𝑚, 𝑛)); ⁡𝑖 = 1,2, … ,𝑁⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5-8) 

where 𝛼 is the learning rate and ∂𝑝(𝑔𝑖|𝜃)/ ∂𝜃 is the gradient (first-order partial derivative) 

of the output soft-tile-encoded vector to parameter 𝜃. It should be noted that the calculation 

of the gradients ∂𝑝(𝑔𝑖|𝜃)/ ∂𝜃 is based on the chain rule from the output layer backward to 

the input layer, which is known as the error back propagation. Practically, this research 

uses a mini-batch gradient descent algorithm instead of a pure SGD algorithm to balance 

the computation time and convergence rate.  
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Figure 5. 8 Backward Architecture of STC-NN Model for Training Process 

5.5.3 Training Algorithm of STC-NN Model 

Different from the training algorithms commonly used for typical neural networks, 

the training algorithm of STC-NN is customized to deal with the skewed distribution in the 

database. For a rare event, the dataset recording can be highly imbalanced (i.e. more non-

observed events than the observed events of interest due to their rarity). In the model dataset, 

the number of records with the observation of broken rails is about 4.34% of the whole 

dataset. According to Definition 3, the IR of the broken rail dataset is about 22:1, and it is 

quite challenging to learn from our dataset.  

Definition 3: Imbalance Ratio ( 𝑅) is defined as the ratio of the number of records 

without event occurrence to the number of records with events. 

To enhance the performance of the neural network model, instead of feeding the 

data randomly, a constraint is proposed for fed model data (training data) in the training 

process. The definition of Feeding Imbalance Ratio (𝐹 𝑅) is described below.  

Definition 4: Feeding Imbalance Ratio (𝐹 𝑅) is defined as the IR of each mini-

batch of data to be fed into the model during the training process.  
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For example, if 𝐹 𝑅 = 1, it means that each fed mini-batch of data contains half 

records with events and the other half records without events.  When 𝐹 𝑅 = 22, the ratio 

between records with non-event and records with events in the dataset fed into the model 

is the same as the original dataset. Note that 𝐹 𝑅 is an important parameter for training the 

STC-NN model. If the⁡𝐹 𝑅 is too large, the dataset fed into the model is highly imbalanced, 

and it is difficult to learn the feature combination related to the event occurrence. However, 

if the 𝐹 𝑅 is too small, the features related to the event are well learned by the model. 

However, it will lead to a problem of over-estimated probability of the event occurrence. 

The pseudo code of the training algorithm is presented as follows:  

Table 5. 3 Training Algorithm for Probability Prediction by STC-NN Model 

Input:  

𝐹 𝑅, 𝑏𝑎𝑡𝑐 _𝑠𝑖𝑧𝑒, 𝑛_𝑒𝑝𝑜𝑐 , 𝑚, 𝑛, 𝛼 

Training dataset: (𝐺, 𝑇); 

The numbers of layers and neurons of neural network; 

Initialize:  

Initialize a neural network 𝑝(∗ |𝜃);  

Split the (𝐺, 𝑇) into (𝐺, 𝑇)+ and (𝐺, 𝑇)− according to broken rail occurrence; 

Main:  

For _ in range (𝑛_𝑒𝑝𝑜𝑐 ), do    

(𝐺, 𝑇)+ = (𝐺, 𝑇)+. shuffle() 

(𝐺, 𝑇)− = (𝐺, 𝑇)−. shuffle()⁡ 

For _ in range (round(𝑠𝑖𝑧𝑒((𝐺, 𝑇)+)/𝑏𝑎𝑡𝑐 _𝑠𝑖𝑧𝑒)), do   



115 

 

 

 

(𝐺, 𝑇)𝑖
+ =⁡ (𝐺, 𝑇)+. next_batch(𝑏𝑎𝑡𝑐 _𝑠𝑖𝑧𝑒)⁡ 

(𝐺, 𝑇)𝑖
− ⁡= ⁡ (𝐺, 𝑇)−. next_batch(⁡𝐹 𝑅 ∗ ⁡𝑏𝑎𝑡𝑐 _𝑠𝑖𝑧𝑒) 

𝐹𝑖
+ = 𝑡𝑖𝑙𝑒_𝑐𝑜𝑑𝑖𝑛𝑔(𝑇𝑖

+) 

𝑆𝑖
− = 𝑠𝑜 𝑡_𝑡𝑖𝑙𝑒_𝑐𝑜𝑑𝑖𝑛𝑔(𝑇𝑖

−) 

(𝐺, 𝐹)𝑖 = shuffle(concat(𝐺𝑖
+, 𝐺𝑖
−), concat(𝐹𝑖

+, 𝑆𝑖
−)) 

Update the parameter 𝜃 of 𝑝(∗ |𝜃) given mini-batch (𝐺, 𝐹)𝑖.  

End For 

End For 

Output: The neural network 𝑝(∗ |𝜃).  

Note: all superscript + and – indicate records with and without broken rails, respectively. 

5.6 Decoder: Probability Transformation 

The decoder of soft-tile-coding is used to transform a soft-tile-encoded vector into 

a probability distribution with respect to lifetime. Given the input of a feature set 𝑔, soft-

tile-encoded output 𝑝(𝑔|𝜃) = {𝑝𝑖𝑗|𝑖 = 1,…𝑛; 𝑗 = 1,…𝑚}  can be obtained through the 

forward computation of the STC-NN model. Decoder-like operation is used to transform 

𝑝(𝑔|𝜃)  into probability of broken rails associated with a specific prediction period.  The 

decoder of soft-tile-coding is defined as follows:  

Definition 5:  Soft-tile-coding decoder. Given a lifetime value 𝑇 ∈ [0,∞), and a 

soft-tile-encoded vector 𝑝 = {𝑝𝑖𝑗|𝑖 = 1,…𝑛; 𝑗 = 1,…𝑚} , the occurrence probability 

𝑃(𝑡 < 𝑇) is estimated as: 

 

𝑃(𝑡 < 𝑇) =
1

𝑚
∑ ∑ 𝑝𝑖𝑗

∗ ∙ 𝑟𝑖𝑗(𝑇)
𝑛
𝑗 1

𝑚
𝑖 1 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5-9) 
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where, m and n are the number of tilings and tiles respectively;  𝑝𝑖𝑗
∗ ⁡ and  𝑟𝑖𝑗(𝑇) are the 

probability density and effective coverage ratio of the j-th tile in the i-th tiling, respectively. 

The value of 𝑝𝑖𝑗
∗  can be calculated using 𝑝𝑖𝑗 divided by the length of time range of the 

corresponding tile. Note that there is no meaning for time 𝑡 < 0, so the length of the first 

tile of each tiling should be reduced according to the initial offset 𝑑𝑗, and 𝑝𝑖𝑗
∗  is calculated 

as follows.  

 

𝑝𝑖𝑗
∗ = {

𝑝𝑖𝑗/∆𝑇⁡⁡⁡⁡⁡⁡⁡, 𝑖 > 1

𝑝𝑖𝑗/(∆𝑇 − 𝑑𝑗)⁡, 𝑖 = 1
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ (5-10) 

The effective coverage ratio 𝑟𝑖𝑗(𝑇) can be calculated according to Equation (5-11):  

𝑟𝑖𝑗(𝑇) = {
⁡⁡𝑡𝑖𝑗(𝑇)/∆𝑇⁡⁡⁡⁡⁡⁡⁡, 𝑖 > 1

𝑡𝑖𝑗(𝑇)/(∆𝑇 − 𝑑𝑗)⁡, 𝑖 = 1
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ (5-11) 

where, 𝑡𝑖𝑗(𝑇) = ⟦[𝑖∆𝑇 + 𝑑𝑗 , (𝑖 + 1)∆𝑇 + 𝑑𝑗) ∩ [0, 𝑇]⟧  is the length of intersection 

between time range of the j-th tile in the i-th tiling and the range 𝑡 ∈ [0, 𝑇]. The operator 

⟦∙⟧ is used to obtain the length of time range.   

According to Definitions 2 and 5, it is easy to verify that 𝑃(𝑡 = 0) = 0  and 

𝑃(𝑡 < 𝑇⁡|⁡𝑇 → ∞) = 1. And 𝑃(𝑡 < 𝑇) can be interpreted as the accumulative probability 

of event occurrence within the lifetime T. An example of the soft-tile-coding decoder is 

given in Figure 5.9. The vector 𝑝 is the output of the STC-NN model and the red rectangles 

on the tiles are 𝑡𝑖𝑗(𝑇). 
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Figure 5. 9 Process of Probability Transformation 

There is an upper time limit when the essential parameter 𝑛 and ∆𝑇 are determined. 

Definition 6 is used to specify the total predictable time range of the STC-NN model, as 

follows. 

Definition 6: Total Predictable Time Range (TPTR) is defined as the time period 

between defined starting observation time and ending observation time. The TPTR of the 

STC-NN model is defined as 𝑇𝑃𝑇𝑅 = (𝑛 − 1)∆𝑇, where 𝑛 is the number of tiles in each 

tiling and ∆𝑇 is the length of each tile. In this research, n tiles in each tiling cover the 

lifetime range between starting observation time and maximum failure time among all the 

research data. Normally, the failure has not been observed till the ending observation time 

would involve censored lifetime data. Therefore, the maximum failure time among all the 

data should be infinite. The first n-1 tiles are set with a fixed and finite time length of ∆𝑇 

which covers the observation period. The last tile covers the time period 𝑡 > (𝑛 − 1)∆𝑇 

which is beyond the observation. No additional information about the failure time is 
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provided by the last tile for the prediction. Therefore, the effective total predictable time 

range (TPTR) equals (𝑛 − 1)∆𝑇. 

5.7 Model Development 

After the dataset is prepared, the whole dataset is split into the training dataset and 

test dataset according to different timestamps. As a standard setup, the data from 2012 to 

2014 are used for training, while the data from 2015 and 2016 are used as a test dataset to 

blindly validate the model.  

The STC-NN model is developed and trained with the training dataset. In this case 

study, the default parameters of the STC-NN model are presented in Table 5.4. There are 

50 tilings, and 13 tiles in each tiling. The length of each tile ∆𝑇 is 90 days, which means 

the TPTR of the STC-NN model is 3 years. Furthermore, the parameters of the training 

process are presented in Table 5.4. Note that the learning rate is set to be 0.1 initially, and 

then decreases by 0.001 for each epoch of training. 

Table 5. 4 Parameter Setup of STC-NN Model 

Parameter Setup 

𝑚 50 

𝑛 13 

∆𝑇 90 days 

𝑑𝑗 Randomly generated from a uniform distribution between [0, ∆𝑇) 

𝐹 𝑅 1 

𝑏𝑎𝑡𝑐 _𝑠𝑖𝑧𝑒 128 
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𝑛_𝑒𝑝𝑜𝑐  20 

𝛼 0.1, decreasing by 0.001 for each epoch of training. 

Hidden 

layers of NN 

2 layers, each with 200 neurons. 

5.7.1 Cumulative Probability and Probability Density 

In order to illustrate the output of the STC-NN model, 100 segments are randomly 

selected from the test dataset. The predicted results of these 100 segments are described in 

Figure 5.10. The left two sub-figures (a) and (c) show the cumulative probability and 

probability density respectively with timestamp (starting observation time) January 1, and 

the right two, (b) and (d), show these with the timestamp July 1. The overall length of the 

time axis is 36 months which equals to the total predictable time range. As shown in Figure 

5.10.a and 5.10.b, the slope of the cumulative probability curve varies in terms of time axis. 

The time-dependent slope of cumulative probability is measured as the probability density 

in terms of time axis which are plotted as Figure 5.10.c and Figure 5.10.d. The probability 

density is a wave-shaped curve which represents the fluctuation periodically. In Figure 

5.10.c and Figure 5.10.d, the peaks of the probability density curve occur regularly with a 

time circle which is proved to be one year. The probability density represents the hazard 

rate or broken rail rate with respect to the time axis. Figure 5.10.c and 5.10.d state that the 

broken rail risk varies in one year and the highest broken rail probability is associated with 

the winter season in one year. With the timestamp being same, the probability density 

curves of different segments have the same shape. The values of the probability density 

given a time moment are different which is due to the variant characteristics associated 

with different segments. More details would be explained in the following Section 5.7.2. 
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Note: Jan indicates January 1st; Jul indicates July 1st; a. cumulative probability with timestamp January 1st; 

b. cumulative probability with timestamp July 1st; c. probability density with timestamp January 1st; d. 

probability density with timestamp July 1st 

Figure 5. 10 Cumulative Probability and Probability Density for STC-NN Model  

5.7.2 Illustrative Comparison between Two Typical Track Segments 

In this section, two typical segments from the test dataset are selected to discuss 

details of the cumulative probability and probability density. Some main features for the 

two selected segments are listed in Table 5.5. There are totally over one hundred features 

(raw features and their transformations or combinations). However, only the most 

important features are shown in Table 5.5. The table shows that Segment A is 0.3 miles in 

length with 135 lbs/yard rail and it has been in service for 18.7 years, while Segment B is 

0.5 miles in length with 122 lbs/yard rail and its age is 37 years. As for the broken rail 

occurrence, compared to Segment A where no broken rail was observed, there is a broken 

rail found at Segment B in 341 days with the starting observation date of January 1, 2015. 

It means that a broken rail occurred at Segment B around the end of year 2015. 
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Table 5. 5 Comparison of Two Segments from the Test Dataset 

Features Segment A Segment B 

Division  D1 D1 

Prefix (Anonymized) AAA BBB 

Track type Single track Single track 

Starting observation date January 1, 2015 January 1, 2015 

Rail weight (lbs/yard)  135 122 

Rail age (years) 18.7  37  

Curve or not  With curve With curve 

Annual traffic density 25.12 MGT  23.57 MGT  

Segment Length (miles) 0.3  0.5 

Broken rail occurrence  

None found in two years (2015 

and 2016) 

Found in 341 days 

Using the trained STC-NN model, the broken rail probabilities of these two 

segments are predicted and the results are presented in Figure 5.11. The top two figures 

show the cumulative probability and probability density of Segment A, while the bottom 

two show the cumulative probability and probability density of Segment B. The blue and 

pink curves represent the starting timestamps of January 1st and July 1st, respectively. The 

following observations are made:  
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(1) The overall cumulative probability of Segment A is smaller than that of Segment 

B.  

(2) The slope of cumulative probability curve varies by time, which result in a curve-

shaped probability density. 

(3) The peak of the probability density curve occurs regularly with a time circle, which 

is approximately one year.  

(4) Probability density of broken rail occurrence is higher in the colder season (e.g., 

December, January, and February) compared to the warmer season (e.g., June, July, 

August). Similar conclusions can be found in previous studies (e.g., Liu et al., 

2013a).  

 
 
Notes: Pink lines represent the prediction with January 1st as the starting observation time (timestamp). Blue 

lines represent the prediction with July 1st as the starting observation time (timestamp).  

Figure 5. 11 Illustrative Comparison Between Two Typical Segments in Terms of Broken 

Rail Probability Prediction 

5.7.3 Sensitivity Analysis of STC-NN Model 

Some assumptions and parameters are generated during the development of the 

STC-NN. A sensitivity analysis is necessary to test the reasonability of the model setting. 
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5.7.3.1 Training Step Analysis 

Training step in neural network is an important parameter that could affect the 

model performance on both the training data and test data. In the sensitivity analysis of 

training step, the range of test training step is changed from 50 to 500. Figure 5.12 plots 

the AUC for one season and one year with respect to training steps. More details about 

AUC is explained in the following Section 5.8. The AUC values for one season and one 

year increase as the training step increases for the training data, while the AUC values for 

test data decrease as the training step increases.  

The possible reason is that more training step increases the complexity of the model, 

and further increases the performance of the classifier on the training data. However, the 

complexity of the model affects its generalization. The more complex the model is, the less 

generalized it might be. Less generalizability of the model could result in an overfitting 

problem, leading to decreased model performance for the testing data. 

 

Figure 5. 12 AUC Values with Respect to Number of Training Steps 

5.7.3.2 Sensitivity Analysis of Model Parameters 

This section discusses some main factors that contribute to model performance. 

Generally, almost all the presented parameters have significant influence on the 
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performance of the STC-NN model.  The model parameters can be divided into three 

groups according to their functions: (1) soft-tile-coding of the output label: number of 

tilings 𝑚, number of tiles in each tiling 𝑛, length of each tile ∆𝑇, the initial offset of each 

tiling 𝑑𝑗 ; (2) the FIR used in the training algorithm; and (3) the nonlinear function 

approximation using neural network: the training step 𝑛_𝑒𝑝𝑜𝑐 , learning rate 𝛼, the batch 

size 𝑏𝑎𝑡𝑐 _𝑠𝑖𝑧𝑒 and the number of hidden layers and neurons.  

Since the core part of the STC-NN model is a neural network with multiple layers, 

the influence of 𝑛_𝑒𝑝𝑜𝑐 , 𝛼, 𝑏𝑎𝑡𝑐 _𝑠𝑖𝑧𝑒 and the numbers of hidden layers and neurons 

can be tuned similarly as in commonly used neural networks. For illustrative convenience, 

this research only focuses on the influence of the parameters of soft-tile-coding and the 

FIR during the training process.  

For soft-tile-coding, the number of tilings 𝑚 should be large enough so that the 

decoded probability can be smooth. Otherwise, the probability density will become stair-

stepping. Especially, when 𝑚 = 1, the STC-NN model degenerates into the model for the 

Multi-Classification Problem (MCP). The ∆𝑇 and 𝑛 together influence the TPTR. Firstly, 

TPTR is determined according to the maximal lifetime observed from the training dataset. 

Secondly, a proper value of ∆𝑇  is set. With the pre-defined ∆𝑇, the number of tiles is 

calculated to keep TPTR unchanged. In an extreme condition, if ∆𝑇 = TPTR, 𝑛 = 2 and 

𝑚 = 1, the STC-NN model degenerates into a model for the Binary Classification Problem 

(BCP).  

To analyze the influence of FIR on the performance of the STC-NN model, a 

replication experiment is carried out, where the training algorithm is executed 10 times to 
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evaluate the AUC of each FIR in {1, 2, 3, 4, 5, 7, 10, 15, 22}. The results are presented 

using box-plot, as shown in Figure 5.13, where the red notch is the median value, and the 

upper and lower limit of the blue box show the 25% and 75% percentile, respectively. 

Figures (a), (b) and (c) in Figure 5.13 are related to one-month, one-season and one-year 

time prediction period, respectively. It shows that the AUCs decrease and the variance of 

AUCs gets larger given the larger FIR values, indicating that the prediction accuracy 

becomes lower. The result becomes more unstable when the mini-batch of data fed into the 

dataset is more imbalanced. When the value of FIR equals 22, which is the exact IR of the 

training dataset, most of the AUCs are less than 0.8, and some even become less than 0.7 

within the one-year prediction period. The large variance indicates that the performance is 

unstable, and the results may be hard to repeat. In contrast, if FIR is set to be 1, the AUCs 

outperform all those with FIR > 1 and the variance is very small as well, indicating that 

the result is more stable and repeatable. 

 

Figure 5. 13 AUC Values with Respect to FIR in the STC-NN Model 

5.8 Model Validation 

5.8.1 Comparison with Alternative Models 

Prior studies have argued that threshold-dependent performance metrics (i.e., 

precision and recall) are problematic for two reasons: (1) they depend on an arbitrarily-
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selected threshold (Rahman and Devanbu, 2013); and (2) they are sensitive to imbalanced 

data (He and Garcia, 2009). Instead, the Area Under the Receiver Operating Characteristics 

Curve (AUC) is used to measure the discrimination power of our STC-NN model as 

suggested by recent research (Lessmann et al., 2008). 

AUC is computed by measuring the area under the curve that plots the true positive 

rate (TPR) against the false positive rate (FPR), while varying the threshold that is used to 

determine whether a record is classified as positive or negative. Values of AUC range from 

0 (worst performance), to 0.5 (random guessing performance), and to 1 (best performance). 

The true positive rate and the false positive rate can be calculated based on the confusion 

matrix. The confusion matrix (Table 5.6) is used to present the results of a classification 

algorithm, TP (True Positives) records the actual positives that are correctly classified. 

Similarly, FP (False Positive) records the actual negatives that are incorrectly classified as 

positives. In this research, the “positive” represents the occurrence of broken rail, and the 

“negative” means no broken rail on the rail segment within the prediction period. The four 

values, TP, FN, FP, TN, are used to calculate true positive rate (TPR) and false positive 

rate (FPR) as shown in Equation (5-12) and Equation (5-13) respectively. 

Table 5. 6 Confusion Matrix for Classification Validation 

 Predicted (Classified)  

Actual Positive Negative 

Positive TP FN 

Negative FP TN 
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𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒⁡𝑅𝑎𝑡𝑒⁡ = ⁡
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                    (5-12) 

𝐹𝑎𝑙𝑠𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒⁡𝑅𝑎𝑡𝑒⁡ = ⁡
𝐹𝑃

𝐹𝑃+𝑇𝑁
                                   (5-13) 

As shown in Table 5.7, the proposed STC-NN model appears to outperform several 

commonly used alternative algorithms such as Random Forests, XGBoost, Logistic 

Regression, traditional Neural Network and Cox Proportional Hazard Regression model, 

using AUC as the performance metric. The AUC for one-month prediction in the STC-NN 

model is around 0.86, while the largest AUC for one month of alternative algorithms is 

around 0.76. The AUC for one-year prediction in the STC-NN model is around 0.84, while 

the largest AUC for one year of alternative algorithms is around 0.83. The computational 

time represents the running efficiency of the model, which also indicates the model’s 

superiority. The STC-NN model is implemented on the platform of TensorFlow-GPU, 

which ran on NVIDIA GTX860m of a Lenovo Y50 laptop. For the STC-NN model and 

Cox Proportional Hazard Regression model, the models only need to be trained one time 

to obtain the prediction results for one month, three months, and one year. However, for 

the other models, three different models should be trained to get the results for these three 

different prediction periods. As shown in Figure 5.14, the STC-NN model performs more 

efficiently than alternative algorithms.  

Table 5. 7 Model Comparison  

Model AUC 

One month Three months One year 

Random Forests 0.71 0.78 0.79 
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Logistic Regression 0.62 0.69 0.71 

XGBoost 0.76 0.79 0.83 

Neural Network 0.78 0.80 0.81 

Cox Proportional Hazard Regression 0.75 0.78 0.81 

STC-NN (Our Developed Algorithm) 0.86 0.85 0.84 

 

Figure 5. 14 Comparison of Computation Time for One-Month Prediction by Alternative 

Models 

5.8.2 Model Performance with Respect to Prediction Period 

For a given observation time 𝑇0, the reference label 𝐿𝑟(𝑇𝑖|𝑇0) is defined as follows:  

𝐿𝑟(𝑇𝑖|𝑇0) = {
1, 𝑇𝑖 < 𝑇0
0, 𝑜𝑡 𝑒𝑟𝑤𝑖𝑠𝑒

; ⁡⁡⁡⁡𝑖 = 1,2                                     (5-14) 
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where 𝑇𝑖 is the lifetime of the i-th segment from the test dataset. Equation (5-14) can be 

interpreted as a binary operator that labels 𝑇𝑖 as 1 if 𝑇𝑖 is less than 𝑇0, otherwise, labelling 

it as 0.  

Given the same observation time 𝑇0 , the cumulative probability at time 𝑇0  is 

calculated as its predicted probability. When given a specific threshold 𝑃0 ∈ [0, 1] , the 

predicted probability is converted into a binary vector as shown in Equation (5-15).  

𝐿𝑝(𝑇0|𝑃0) = {
1, 𝑃(𝑡 < 𝑇0) > 𝑃0
0, 𝑜𝑡 𝑒𝑟𝑤𝑖𝑠𝑒

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5-15) 

The output of the STC-NN model is the probability with respect to different 

prediction periods. Given a specific 𝑇0, the corresponding AUC is calculated. Therefore, a 

series of time-dependent AUCs are obtained. Figure 5.15 plots the AUCs in term of 

different prediction period. Figure 5.16 shows the true positive rate against false positive 

rate with one month as the prediction period. The major findings from Figure 5.15 and 

Figure 5.16 are described below: 

(1) As shown in Figure 5.15, the AUCs within three years are larger than 0.83, and the 

largest AUC is found in the first month, with AUC=0.86. Figure 5.16 shows the ROC 

curve with the prediction period as one month. 

(2)  As shown in Figure 5.15, the AUCs show a decreasing trend over time, indicating the 

model perform better for shorter term prediction.  

(3) The time scope is 36 months (three years), which is related to the setup of the STC-NN 

model. Figure 5.15 shows that the AUCs stay almost unchanged after two years. This 

is because in test dataset the observation period only covers two years. 
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Figure 5. 15 Time-Dependent AUC Performance 

 

Figure 5. 16 Receiver Operating Characteristics Curve with Prediction Period as One 

Month 
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Figure 5.17 shows a comparison of the cumulative probability over time between 

the segments with (blue color line) and without (red color line) broken rails, respectively. 

The four sub-figures from (a) to (d) show the cumulative probabilities of broken rails at 

half-year, one-year, two-years and 2.5-years, respectively. For a short-term period, such as 

one-half year (Figure 5.17 a), the red curve (without observed broken rails) and blue curve 

(with observed broken rails) are clearly separated. As the prediction period gets longer 

(Figure 5.17 b, c, d), the cumulative probability curves overlap for the blue and red, making 

it difficult to separate the two curves, which leads to the decreasing trend of AUCs over 

time as shown in Figure 5.15. For long term prediction, the input feature set changes during 

the ‘long term’ as time-dependent factors such as traffic, rail age, geometry defects and 

some other maintenance are highly time-variant.  This is a possible explanation for why 

the STC-NN model has better performance in the short term than in the long term.  
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Figure 5. 17 Comparison of the Cumulative Probability by Prediction Periods Between 

the Segments with and without Broken Rails 

5.8.3 Comparison between Empirical and Predicted Number of Broken Rails 

To illustrate the model performance, this research also compares the empirical 

number of broken rails and predicted number of broken rails in one year on the network 

level. As Figure 5.18 shows, the total empirical numbers of broken rails in 2015 and 2016 

are 823 and 844 respectively. The predicted number of broken rails for 2015 and 2016 are 

768 and 773 correspondingly. The errors for 2015 and 2016 are 6.7 percent and 8.4 percent, 

respectively.   
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Figure 5. 18 Empirical and Predicted Numbers of Broken Rails on Network Level 

5.9 Model Application 

5.9.1 Network Screening to Identify Locations with High Broken Rail Probabilities 

The prediction model can be used to screen the network and identify locations 

which may be more prone to broken rail occurrence. The results can be displayed via a 

curve in Figure 5.19. The x-axis represents the percentage of network scanned, while the 

y-axis is the percent of correctly “captured” broken rails, if scanning such scale of 

subnetwork. For example, if the broken rail prediction model (e.g., STC-NN as described 

above) is used to predict the probability of broken rails in one month, it can “find” over 

71% of broken rails in one month (the percentage is weighted by segment length) by 

focusing on 30% of network mileage (as shown in Table 5.8). Without a model to identity 

broken-rail-prone locations, a naïve rule (which assumes that broken rail occurrence is 
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random on the network) might be screening 71% of network mileage to find the same 

percentage of broken rails. 

 

Figure 5. 19 Risk-Based Network Screening for Broken Rail Identification with 

Prediction Period as One Month 

Table 5. 8 Percentage of Network Screening versus Percentage of “Captured” Broken 

Rails Weighted by Segment Length with Prediction Period as One Month 

Percentage of 

Network Screening 

Percentage of “Captured” Broken Rails 

(Percentage is Weighted by Segment Length) 

10% 36.5% 

15% 46.2% 
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25% 64.3% 
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30% 71.8% 

35% 77.6% 

40% 83.8% 

5.9.2 GIS Visualization 

The proposed broken rail prediction model can be applied to identify a shortlist of 

segments that may have higher broken rail probabilities. This information may be useful 

for the railroad to prioritize the track inspection and maintenance activities. In addition, the 

analytical results can be visualized on a Geometric Information System (GIS) platform. 

Figure 5.20 visualizes the predicted broken rail probability based on the categories of the 

probabilities (e.g., extremely low, low, medium, high, extremely high). These five groups 

are defined based on Jenks natural breaks classification method with predicted probabilities. 
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Figure 5. 20 Visualization of Predicted Broken Rail Probabilities Marked with Various 

Categories   

Figure 5.21 shows that the 30 percent of the screened network mileage to identify 

the locations with relatively higher broken rail probabilities. As summarized in Table 5.8, 
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the model can identify over 71% of broken rails (weighted by segment length) by 

performing a screening of 30% of network, which is marked in red (Figure 5.22). 

 

Figure 5. 21 Visualization of Screened Network (30% of Network Mileage) (Partial 

Display) 



138 

 

 

 

 

Figure 5. 22 Visualization of Broken Rails within Screened Network (30% of Network 

Mileage) (Partial Display) 

5.9.3 Partial Features of Top 20 Segments with High Predicted Probability of 

Broken Rails   

With ranking the predicted broken rail probability in one year, a list of locations 

with higher probabilities of broken rails is shown in Table 5.9. 
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Table 5. 9 Selected Feature Information of Top 20 Segments 

Segment 

ID 

Annual Traffic 

(MGT) 

Rail Age 

(Year) 

Rail Weight 

(lbs/yard) 

Speed 

(MPH) 

Curve 

Degree Probability 

1 53.26 21.01 135 50 0.94 0.392 

2 60.26 38.93 139 50 0.35 0.379 

3 58.90 10.66 136 50 0.27 0.379 

4 38.73 30.38 135 60 0.25 0.378 

5 70.17 1.48 136 60 0.11 0.377 

6 73.83 27.35 133 57 0.24 0.377 

7 57.36 40.17 139 50 0.34 0.377 

8 59.83 2.40 136 50 0.34 0.376 

9 59.27 36.96 140 50 0.25 0.374 

10 44.93 18.95 135 38 1.43 0.370 

11 70.90 31.22 136 58 0.00 0.370 

12 58.43 31.45 134 50 0.32 0.370 

13 74.78 22.48 134 40 1.13 0.369 

14 78.91 34.98 122 57 0.00 0.369 

15 55.33 26.71 135 50 0.44 0.369 

16 56.34 23.60 137 50 0.18 0.368 

17 62.45 11.51 136 46 1.00 0.368 

18 63.21 21.33 135 50 0.41 0.368 

19 67.88 15.91 135 50 1.19 0.368 

20 85.87 18.67 135 58 0.73 0.368 
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5.10 Chapter Summary 

This chapter proposes a novel, customized Soft-Tile-Coding-Based Neural 

Network (STC-NN) model to predict broken rail probability using railroad big data. First, 

tile-coding approach was applied to handle the exact lifetime values. Then, a soft-tile-

coding technique was developed to deal with censored lifetime data when no broken rail 

was found during the observation period. Then, forward architecture of STC-NN with a 

SoftMax layer and a soft-tile-coding decoder was designed to fit the training data. After 

that, the backward architecture of the STC-NN model was presented and a customized 

training algorithm was designed to tackle the challenging problem of imbalance 

distribution in the research dataset (only a small portion of segments had broken rails in a 

short observation period). Feeding Imbalance Ratio (FIR) was proposed as a constraint on 

the fed data in the training process. Then, the soft-tile-coding decoder was derived to 

transform a soft-tile-encoded vector into a probability distribution.  

A case study was carried out on a network-level dataset covering over 20,000 miles 

on mainline tracks. A comparison in terms of the prediction accuracy and computational 

time was conducted between the proposed STC-NN model and alternative machine 

learning algorithms using AUC as the primary measure of model performance. The main 

conclusions include:  

(1) The output of the STC-NN model is the probability distribution of broken rail 

occurrence by time.  A seasonal fluctuation has been observed, with the peak of the 

probability density likely occurring in the colder season (in this study, it includes 

December, January and February). 
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(2) The STC-NN model performs better for the short-term prediction than long-term 

prediction. The AUC for the three-year prediction period is around 0.84. For one-

month-ahead prediction, the AUC of STC-NN is around 0.86.  

(3) The STC-NN model outperforms several commonly used machine learning 

algorithms, in terms of both prediction accuracy and computational time.  

(4) For one-month prediction, the risk-based screening 10%, 20%, and 30% of the total 

network mileage can “catch” 34%, 55%, and 71% of potential broken rails, 

respectively.  

(5) The STC-NN algorithm is fast and suitable for broken rail prediction even for a 

short prediction horizon (e.g., one month or three months in advance).  
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CHAPTER 6 

 

BROKEN RAIL-CAUSED DERAILMENT RISK MODEL 

 

Chapter 5 describes the prediction of broken rail probability given a specified time 

period. In this chapter, a broken rail-caused derailment risk model is proposed. Three 

sections are included: (a) statistical analysis of relationship between broken rails and 

broken-rail derailments, in which the broken-rail derailment probability given a broken rail 

was calculated with respect to specific variables; (b) estimation of the severity of a broken-

rail derailment, in which a decision tree model was developed accounting for several input 

variables; (c) example application of the broken-rail derailment risk model. 

6.1 Overview of Broken Rail-Caused Derailment Risk Estimation 

In this research, the definition of risk contains two elements: probability of an event 

(e.g., broken rail-caused train derailment) and the consequence (e.g., number of cars 

derailed) given occurrence of an event. As for broken-rail derailment risk, it is calculated 

through multiplying the broken-rail derailment probability by the broken-rail derailment 

severity: 

𝑅𝑖𝑠𝑘(𝐷𝐵) = 𝑃(𝐷𝐵) ∗ 𝑆(𝐷𝐵)                                （6-1） 

where 

𝑅𝑖𝑠𝑘(𝐷 ∙ 𝐵)= broken-rail derailment risk, 
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𝑃(𝐷 ∙ 𝐵)= the probability of broken-rail derailment, 

𝑆(𝐷 ∙ 𝐵)= the severity of broken-rail derailment, 

𝐷𝐵= broken rail-caused derailment. 

Broken-rail derailment has a very low probability of occurrence, and thus directly 

estimating its occurrence is challenging due to the very small sample size. A more practical 

method is to indirectly estimate broken rail derailment probability based on: 1) the 

probability of broken rail occurrence, and 2) the conditional probability of a derailment 

given a broken rail. Using Bayes’ Theorem, broken rail derailment probability (𝑃(𝐷𝐵)) 

can be calculated by:  

𝑃(𝐷𝐵) = 𝑃(𝐷|𝐵) ∗ 𝑃(𝐵)                                                 (6-2) 

where  

𝑃(𝐷|𝐵)= probability of broken-rail derailment given a broken rail; 

𝑃(𝐵)= probability of a broken rail, which can be estimated by the broken rail 

prediction model (Chapter 5). 

6.2 Statistical Relationship Between Broken Rails and Broken Rail-Caused 

Derailments  

In order to estimate the probability of broken-rail derailment given a broken rail, 

the statistical relationship was analyzed between broken-rail derailments and broken rails. 

In this research, the broken rails from 2012 to 2016 were used in the broken rail prediction 

model. For consistency, the statistical analysis is conducted based on the broken-rail 

derailments which occurred from 2012 to 2016. From 2012 to 2016, the studied railroad 

had 25 mainline broken-rail derailments and 4,051 broken rails.  
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6.2.1 Univariate Statistical Analysis of Broken Rails and Broken-Rail Derailments 

There are certain track-related characteristics or traffic conditions that are expected 

to be associated with the occurrence of broken-rail derailments. This section intends to 

analyze the relationships between the occurrence of broken-rail derailment per broken rail 

by single variables.  

6.2.1.1 Derailment per Broken Rail by Season 

This section considers two seasonal periods: colder period and warmer period 

(Figure 6.1). In this research, the colder period is from November to April and the warmer 

period is from May to October. The colder period accounts for approximately 80 percent 

of broken rails but only 64 percent of broken-rail derailments. The other 20 percent of 

broken rails occurred during the warmer period, but were associated with 36 percent of 

broken-rail derailments. In terms of the rate of broken-rail derailment per broken rail, the 

rate in the warmer period is two times of that in the colder period.  This conclusion is 

consistent with previous research (Reiff, 1997). In lower temperatures, thermally induced 

tensile force is higher and rails are much more sensitive to repeated loading and are much 

more likely to break. Even though the colder period involves more broken rails, broken 

rails under colder temperatures could be easier to be detected (either visually or by electric 

track circuit continuity) when the rails are in tension and thus are further pulled apart. As 

a result, more broken rails might be detected and removed, before leading to train 

derailments. By contrast, in the warmer period, cracks are held more tightly when the rail 

is compressed and are more difficult to be detected. Therefore, these “weak” rails may not 

be easily detected but are more likely to cause derailments.  
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Notes: November to April for the Colder Period; Other Months for the Warmer Period 

Figure 6. 1 Number of Broken-Rail Derailments per Broken Rail by Season 

6.2.1.2 Derailment per Broken Rail by Track Curvature 

Approximately 35 percent of broken rails occurred on tangent tracks, while only 24 

percent of broken-rail derailments took place there. Slightly over half of the broken rails 

occurred at locations with curves lower than 2 degrees, which account for approximately 

half of the broken rail-caused derailments. In terms of curvature of over 2 degrees, only 13 

percent of broken ails were associated with 24 percent of derailments. The ratio between 

broken-rail derailments and broken rails on curvatures over 2 degrees is two and half times 

higher than that on tangent tracks (Figure 6.2).   
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Figure 6. 2 Number of Broken-Rail Derailments per Broken Rail by Curvature 

6.2.1.3 Derailment per Broken Rail by Signal 

Less than 10 percent of broken rails and more than 50 percent of broken-rail 

derailments occurred in non-signaled territories (aka. dark territories). The rate measured 

by the number of broken-rail derailments per broken rail in non-signalized tracks is ten 

times of that in signalized tracks (Figure 6.3). A possible reason is that signaled trackage 

uses low-voltage electric current in the rails (known as “track circuits”) to detect the 

presence of trains in a given section. An important secondary benefit of track circuits is 

that they enable detection of several types of infrastructure problems, most notably in the 

context of this study, broken rails (Liu et al., 2017).  
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Figure 6. 3 Number of Broken-Rail Derailments per Broken Rail by Signal Setting 

6.2.1.4 Derailment per Broken Rail by Annual Traffic Density (in MGT) 

According to the annual traffic tonnage crossing over the track, the railway network 

can be divided into two categories: tracks with lower traffic density and tracks with higher 

traffic density. Higher traffic is defined as having annual traffic tonnage of more than 20 

million gross tonnages (MGT), and if the annual traffic tonnage is below this threshold, the 

track has a lower traffic density. This classification referred to the previous study (Liu et 

al., 2017). About three-quarters of broken rails occurred at higher traffic locations, and 

these resulted in 40 percent of the broken-rail derailments. Although the prior literature 

found that higher traffic density causes an increase in rail defects or failures (Dick, 2001; 

Dick et al., 2003), these defects or failures may be addressed more promptly in high-density 

track territories, due to stricter inspection and maintenance standards.  
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Figure 6. 4 Number of Broken-Rail Derailments per Broken Rail by Annual Traffic 

Density 

6.2.1.5 Derailment per Broken Rail by FRA Track Class 

The maximum speeds for FRA Track Class 1 and Class 2 are 10 mph and 25 mph 

(for freight railroads), respectively. The maximum speeds for FRA Track Class 3, and 

Class 4 are 40 mph, and 60 mph (for freight railroads), respectively. Approximately 13 

percent of broken rails occurred at Track Class 1 and Track Class 2, while over 30 percent 

of broken-rail derailments took place on these tracks (Figure 6.5). For the combination of 

Class 3 and above, 86 percent of broken rails resulted in 68 percent of derailments. In terms 

of number of broken-rail derailments per broken rail, the ratio of Track Class 1 & 2 is three 

times of that of Class 3, and Class 4 in combination. Similar to the higher traffic territory, 

Class 3, and Class 4 have more stringent inspection and maintenance requirements 
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compared to lower track classes. As a result, this leads to a lower probability of derailment 

given broken rail occurrence.  

 

Figure 6. 5 Number of Broken-Rail Derailments per Broken Rail by FRA Track Classes 

6.2.2 Multivariate Statistical Analysis of Broken Rails and Broken-Rail 

Derailments 

The analyses above showed that season, traffic, curvature, and signal setting are all 

related to the conditional probability of derailment given a broken rail. However, the 

approach in the previous section only considered one variable at a time and ignored the 

interaction or correlation between multiple variables. This section develops a multivariate 

analysis of the relationship between broken rails and broken-rail derailments. Note that the 

analysis might be subject to greater uncertainty due to a smaller sample size in each 

category.  
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As shown in Figure 6.6, lower traffic density (< 20 MGT), non-signaled locations 

have the largest ratio measured as the number of derailments per broken rail. Around 11 

percent of broken rails occurred in the lower traffic density, non-signaled territory, which 

resulted in over half of the broken rails. In the datasets, very few non-signaled tracks are 

associated with higher traffic tonnages. Only 0.6 percent of broken rails occurred on higher 

traffic, non-signalized tracks, where there were no broken-rail derailments in the studied 

period. By contrast, higher traffic, signalized locations account for almost 70 percent of 

broken rails. However, since the number of broken-rail derailments in this category is 36% 

of the total, the ratio of number of derailments per broken rail is relatively low. Note that 

the combination of non-signaled, high traffic is still rare and therefore, the sample size is 

quite small, leading to a greater statistical uncertainty.  

 

Figure 6. 6 Number of Broken-Rail Derailments per Broken Rail by Annual Traffic 

Density Level and Signal Setting 

Figure 6.7 illustrates the distribution of broken-rail derailments per broken rail by 

season and signal setting. In general, in both the colder and warmer period, non-signalized 
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tracks have higher numbers of broken-rail derailments per broken rail. Only 2.5 percent of 

broken rails occurred on the non-signalized tracks during the warmer period, but they 

resulted in 20 percent of broken-rail derailments. By contrast, on signalized tracks in the 

colder period, there is a much lower ratio of broken-rail derailments to broken rails.  

 

Figure 6. 7 Number of Broken-Rail Derailments per Broken Rail by Season and Signal 

Setting 

6.3 Broken Rail-Caused Derailment Severity Estimation 

Statistical analysis has been used in prior studies to model train derailment severity 

(Liu et al., 2013b; Saccomanno and El-Hage, 1989, 1991; Anderson, 2005, Bagheri, 2009). 

The most commonly used metric in the study of train derailment is the number of cars 

derailed per accident. The generic term of “cars” refers to all types of vehicles, including 

locomotives, railcars and cabooses, unless specifically stated otherwise. Monetary damage 

and number of casualties are also used to assess derailment severity. However, prior studies 

(Barkan et al., 2003; Martey and Attoh-Okine, 2018) stated that monetary damage is prone 

0.003
0.006

0.021

0.0490

0.00

0.01

0.02

0.03

0.04

0.05

Colder Period,
Signalized

Warmer Period,
Signalized

Colder Period, Non-
Signalized

Warmer Period, Non-
Signalized

N
u

m
b

e
r 

o
f 

B
ro

k
e

n
-R

a
il
 D

e
ra

il
m

e
n

ts
 P

e
r 

B
ro

k
e

n
 R

a
il

Season and Signal Setting



152 

 

 

 

to substantial variation due to factors such as the cost difference between locomotives and 

railcars, and differences in repair costs between regular track and special track. 

In the analysis of train derailment severity, accident cause has been widely studied 

(Saccomanno and El-Hage, 1991; Barkan et al., 2003; Liu et al., 2012). Liu et al. (2013b) 

pointed out that broken rails are likely to involve high-frequency and high-severity 

derailments, and thus pose greater accident risk than other causes. For example, broken 

rails, as the most common cause of freight-train derailment on U.S. Class I mainlines, 

caused an average of 14 derailed cars in a freight-train derailment, which is greater than 

the average number of cars derailed in a bearing-failure-caused derailment (Liu et al., 

2013b). This section will focus on modeling the severity of freight-train derailment caused 

by broken rails. 

6.3.1 Methodology 

6.3.1.1 Data Description 

This research used broken rail-caused freight train derailment data on the main line 

of a Class I railroad from 2000 to 2017. In this period data was collected on 938 Class I 

broken rail-caused freight-train derailments on mainlines in the United States. The generic 

use of “cars” here refers to locomotives and all types of railcars (laden or empty), unless 

otherwise specified. Using the collected broken rail-caused freight-train derailment data, 

the distribution of the number of cars derailed is plotted in Figure 6.8. 
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Figure 6. 8 Number of Cars (Railcars and Locomotives) Derailed per Broken Rail-

Caused Freight-Train Derailment, Class I Railroad on Mainline, 2000 to 2017 

6.3.1.2 Model Variables 

The response variable here is the total number of cars derailed (e.g., locomotives, 

laden railcars and empty railcars) in one derailment. Several factors affect train derailment 

severity. Based on the review of the literature, the following predictor variables (Table 6.1) 

were identified for statistical analyses in this research. For example, train derailment speed 

is the speed of train operation when the accident occurs. The effect of this factor on 

derailment severity is the first and most widely studied in the literature (e.g., Saccomanno 

and El-Hage 1991; Anderson 2005; Bagheri et al. 2011; Liu et al. 2013b). It has been found 

that, given that all other factors are equal, derailment speed is positively associated with 

the number of cars derailed. This finding is reasonable, as speed is an indicator of a train’s 

kinetic energy. 
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Table 6. 1 Predictor Variables in Severity Prediction Model 

Variable Name  Definition Type of Variable 

TONS Gross tonnage Continuous 

TRNSPD Train derailment speed (MPH) Continuous 

CARS_TOTAL Total number of cars Continuous 

CARS_LOADEDP Proportion of loaded cars Continuous 

TRAINPOWER Distribution of train power (distributed or non-

distributed) 

Categorical 

WEATHER Weather conditions (clear, cloudy, rain, fog, 

snow, etc.) 

Categorical 

TRKCLAS FRA track class Categorical 

TRKDNSTY Annual track density in MGT  Continuous 

 

6.3.1.3 Decision Tree Model 

The methodology developed in this research is built upon a machine learning 

algorithm called Decision Tree. A decision tree is a type of supervised learning algorithm 

that splits the population or sample into two or more homogeneous sets based on the most 

significant splitter / differentiator in input variables (Safavian and Landgrebe, 1991). It can 

cover both classification and regression problem in machine learning.  
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Figure 6. 9 Schematic Architecture of Decision Tree (Jain, 2017) 

Figure 6.9 presents the structure of a simplified decision tree. Decision Node A is 

the parent node of Terminal Node B and Terminal Node C. In comparison with other 

regression methods and other advanced machine learning methods, decision tree has 

several advantages (Pal and Mather, 2003): 

• It is easy to understand, interpret, and visualize. 

• Decision trees implicitly perform variable screening or feature selection. They can 

quickly identify the most significant variables and relationships between two or 

more variables.  

• They can handle both numerical and categorical data. They can also handle multi-

output problems. 

• Nonlinear relationships between parameters do not affect tree performance. 

• It requires less data cleaning compared to some other modeling techniques. It is not 

influenced by outliers and missing values to a fair degree. 
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For example, compared to the Zero-Truncated Negative Binomial that was 

previously used in the study of train derailment severity (Liu et al., 2013b), which involves 

several assumptions (e.g., over-dispersed count variables), the decision tree method does 

not require these prerequisites but can still exclude the impacts from the nonlinear 

relationship between parameters. KNN (K-nearest neighbors algorithm) is one commonly 

used machine learning algorithm, but it can only be used in classification problems. Instead, 

decision tree is applicable for both continuous and categorical response variables. Random 

forests, gradient boosting, and artificial neural network are three other machine learning 

algorithms that have been widely used. In particular, random forests and gradient boosting 

are two algorithms based upon decision tree methods and aim to overcome some limitations 

in decision tree, such as overfitting. However, in this research, since only 938 broken rail-

caused derailments are analyzed, the advantages of these advanced machine learning 

methods may not be significant due to relatively small sample size. In fact, the prediction 

accuracy of decision tree is comparable to other methods (random forests, gradient 

boosting, and artificial neural network) based on the data in this research. The preliminary 

testing results indicate that decision tree, random forests, gradient boosting, and artificial 

neural network all have similar prediction accuracy in terms of MSE (Mean Square Error) 

and MAE (Mean Absolute Error). Moreover, the features of decision tree, such as being 

simple to understand and visualize, and being a fast way to identify most significant 

variables, will be highlighted. 

There are many specific algorithms to build a decision tree, such as CART 

(Classification and Regression Trees) using Gini Index as a metric, ID3 (Iterative 

Dichotomiser 3) using Entropy function and Information gain as metrics. Among these, 
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CART with Gini Index and ID3 with Information gain are commonly used. In this research, 

the development of a derailment severity prediction model is based upon the CART 

algorithm. The Gini impurity is a measure of how often a randomly chosen element from 

the set would be incorrectly labeled, if it was randomly labeled according to the distribution 

of labels in the subset. The Gini impurity can be computed by summing the probability 𝑝𝑖 

of an item with label 𝑖 being chosen, multiplied by the probability of wrongly categorizing 

that item (1 − 𝑝𝑖). It reaches its minimum (zero) when all cases in the node fall into a single 

target category. To compute Gini impurity for a set of items with 𝐽 classes, support i ∈

{1, 2, … , 𝐽}, and let  𝑝𝑖 be the fraction of items labeled with class 𝑖 in the set. 

 𝐺(𝑝) = 𝑝𝑖

𝐽

𝑖 1

 𝑝𝑘 = 𝑝𝑖

𝐽

𝑖 1

(1 − 𝑝𝑖) = (𝑝𝑖 − 𝑝𝑖
2) = 𝑝𝑖

𝐽

𝑖 1

− 𝑝𝑖
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𝐽
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 𝑝𝑖
2

𝐽

𝑖 1

𝐽

𝑖 1𝑘≠𝑖

 

                

(6-3)  

Where  𝐺(𝑝) is the Gini impurity; 𝑝𝑖 is the probability of an item with label 𝑖 being chosen; 

𝐽 is the classes of a set of items. 

6.3.2 Model Development 

First, the importance of each predictor in the database is identified and two 

measures of variable importance, Mean Decrease Accuracy (%IncMSE) and Mean 

Decrease Gini (IncNodePurity), are reported. Mean Decrease Accuracy (%IncMSE) is 

based upon the average decrease of prediction accuracy when a given variable is excluded 

from the model. Mean Decrease Gini (IncNodePurity) measures the quality of a split for 

every variable of a tree based on the Gini Index. For both measures, the higher value 

represents greater importance of a variable in the broken rail-caused train derailment 
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severity (Figure 6.10). Both metrics indicate that train speed (TRNSPD), number of cars 

in one train (CARS_TOTAL), and gross tonnage per train (TONS) are the three most 

significant variables impacting broken rail-caused train derailment severity.  

 

Figure 6. 10 Variable Importance for Train Derailment Severity Data 

A decision tree has been developed for the training data (Figure 6.11). The response 

variable in the developed decision tree is the number of derailed cars. Three independent 

variables are employed in the built decision tree: TRNSPD (train derailment speed); 

CARS_TOTAL (number of cars in one train); and TONS (gross tonnage of a train). It 

indicates that these three factors have significant impacts on the freight-train derailment 

severity, in terms of number of cars derailed, while other variables (e.g., proportion of 

loaded cars, distribution of train power, weather condition, FRA track class, and annual 

track density) are statistically insignificant in the developed decision tree. For example, 

using the developed decision tree model, for a broken rail-caused freight-train derailment 

with a speed lower than 20 mph, the expected number of cars derailed is 7.5. Also, if a 100-
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car freight train traveling at 30 mph derails due to broken rails, the expected number of 

cars derailed is 19.  

 

Figure 6. 11 Decision Tree in Broken Rail-Caused Derailment Severity Prediction6
 

To further validate the accuracy and practicability of the developed decision tree, 

selected broken rail-caused accidents of the studied Class I railroad in the last several years 

are listed in Table 6.2. The table lists the historical information of the accident, such as 

train speed (TRNSPD), gross tonnage (TONS), total number of cars in one train 

(CARS_TOTAL), number of derailed cars, as well as the estimated number of derailed 

cars via the decision tree model.  

 
6 TRNSPD: Train derailment speed (MPH); CARS_TOTAL: number of cars in one train; TONS: gross 

tonnage of a train. 

CARS_TOTAL < 86

CARS_TOTAL < 51
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Table 6. 2 Selected Broken Rail-Caused Derailments on the Studied Class I Railroad and 

Estimated Derailment Severity7 

No Gross 

tonnage 

(Tons) 

Train 

speed 

(MPH) 

Total number 

of cars in one 

train  

Observed 

number of 

derailed cars 

Estimated 

number of 

derailed cars 

1 5,000 9 56 6 7 

2 7,229 25 59 6 10 

3 9,873 24 82 21 15 

4 3,284 28 34 14 15 

5 4,217 34 54 22 15 

6 8,190 16 65 12 7 

7 21,297 39 152 31 31 

8 5,448 43 73 23 15 

9 14,107 23 107 17 15 

10 2,300 15 25 4 7 

11 2,272 37 24 11 9 

12 5,764 47 86 29 23 

13 14,847 33 111 27 19 

14 21,118 10 152 9 7 

15 13,869 13 141 11 7 

16 4,866 10 50 8 7 

17 15,000 7 152 13 7 

 
7 All fields, excluding the estimated number of derailed cars in the last column using the decision tree 

model, are the observed values from the FRA REA database (FRA, 2018). 
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18 6,649 23 96 2 10 

19 13,689 15 190 15 7  

Average    14.8 12.3 

 

6.4 Example Application of Broken-Rail Derailment Risk Model  

In order to estimate the broken-rail derailment risk, calculation steps are illustrated 

in Figure 6.12: 

o Step 1: Use broken rail prediction model to estimate the probability of broken rail 

𝑃(𝐵). 

o Step 2: Estimate the probability of broken-rail derailment given a broken rail 

𝑃(𝐷|𝐵), then calculate the probability of broken-rail derailment 𝑃(𝐷𝐵). 

o Step 3: Based on the decision tree model, estimate the severity of broken-rail 

derailment (𝑆(𝐷𝐵)) given specific variables.  

o Step 4: Calculate the broken-rail derailment risk 𝑅𝑖𝑠𝑘(𝐷𝐵). 
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Figure 6. 12 Step-by-Step Broken Rail-Caused Derailment Risk Calculation 

A step-by-step calculation example is used to illustrate the application of the broken 

rail derailment risk model. For illustrative convenience, a 0.2-mile signalized segment is 

used, with characteristics regarding rail age, traffic density, curve degree and others. More 

details of the example segment are summarized in Table 6.3. To calculate the severity given 

a broken-rail derailment on the segment, the train characteristics are also considered (Table 

6.4). 

Table 6. 3 Selected Characteristics of the Track Segment 

Rail age (years) 23 

Segment length (miles)  1 

Rail weight (lbs/yard) 136 

Broken Rail Derailment Risk

Risk(DB) = P(D|B)  P(B)  S(DB)

Broken Rail 

Derailment Probability

Broken Rail 

Derailment Severity 

S(DB)

Broken Rail Probability

P(B)

Probability of Derailment 

Given Broken Rail

P(D|B)

e.g., rail age, segment 

length, rail weight, annual 

traffic density, etc. 

e.g., curvature degree, 

signalized/non-signalized, etc. 

e.g., train speed, number 

of cars in one train, gross 

tonnage. 
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Annual traffic density (MGT)  30 

Annual number of car passes  432,000 

Curve degree 5.5 

Speed 40 mph 

Number of rail defects (all types) in last year 2 

Number of broken rails in last year 1 

Signalized/Non-signalized Signalized 

Presence of turnout  No  

 

Table 6. 4 Train-Related Characteristics 

Train operational speed (MPH) 40 

Number of cars in one train 100 

Gross tonnage 9,000 

  

The broken rail-caused derailment risk can be calculated with the mentioned steps 

in this example: 

• Step 1: Using the broken rail prediction model, the probability of broken rail on this 

track segment is estimated to be 0.015, 𝑃(𝐵) = 0.015; 

• Step 2: For curvature and signalized track segment, the estimated probability of 

derailment given a broken rail is 0.006, 𝑃(𝐷|𝐵) = 0.006 . The estimated 

probability of broken-rail derailment on this particular track segment is calculated 

by 𝑃(𝐷|𝐵) ∗ 𝑃(𝐵) = 0.006 ∗ 0.015 = 0.00009; 
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• Step 3: Use the decision tree model to estimate the average number of derailed cars 

per derailment on this track segment based on the given variables. The calculation 

procedure is illustrated in Figure 6.11. The estimated number of derailed cars is 23 

given a broken-rail derailment on the track segment, with train speed 40 MPH, 

number of cars in one train 100, and gross tonnages 9,000; 

• Step 4: The annual expected number of derailed cars is estimated to be 𝑅𝑖𝑠𝑘(𝐷𝐵) =

0.00009 ∗ 23 = 0.00207. 

  



165 

 

 

 

 

CHAPTER 7 

 

CONCLUSION AND FUTURE WORK 

 

7.1 Summary and Conclusion 

This dissertation develops new models to predict broken-rail derailment risk using 

railroad big data. The risk model is built upon 1) prediction of broken rail probability; 2) 

estimation of the conditional probability of broken-rail derailment given a broken rail; and 

3) derailment severity, measured by the number of cars derailed. Several research tasks 

were performed: 

(1) A literature review was conducted regarding previous research on risk factors as 

well as data-driven models related to broken rail prediction. Knowledge gaps were 

identified. 

(2) A novel network segmentation approach was developed based on important factors. 

Automated feature generation and selection techniques were also used to improve 

model accuracy and generalization. 

(3) a novel, customized Soft Tile Coding based Neural Network model (STC-NN) was 

proposed to predict broken rail probability by location and time horizon. 

The following conclusions were made based on this work: 
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(1) It is found that segment length, traffic tonnage, number of car passes, rail age, and 

the number of prior detected defects have a larger importance for the prediction of 

broken rails, based on the data used in this research.   

(2) The proposed STC-NN model can be used to predict broken rail probability with 

good accuracy and flexibility. The algorithm demonstrates that in the colder season, 

the broken rail probability will be higher, given all else being equal. The proposed 

STC-NN is more accurate for the near-term prediction (e.g., one month or three 

months ahead). To predict broken rail occurrence within one month, the AUC of 

STC-NN is about 0.86, while other models (e.g., random forest, logistic regression, 

XGBoost, neural network, Cox regression) have the AUC below 0.78. Overall, the 

STC-NN outperforms these alternative machine learning algorithms in terms of 

one-month, three-month, and one-year data. The proposed STC-NN is able to 

“catch” over 71% of broken rails (weighted by segment length) by performing a 

risk-informed screening of 30% of network mileage with one month as prediction 

period. 

(3) Signaled track in the colder period has the lowest ratio of broken rail-caused 

derailments to broken rails, while non-signaled track in warmer weather has the 

highest. This indicates that a more focused visual track inspection might be helpful 

in the warmer period for non-signaled territories if the goal is to reduce the chance 

of derailment per broken rail.   

(4) In terms of derailment severity, a longer, heavier train traveling at a higher speed is 

associated with more cars derailed per broken rail-caused derailment. 
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7.2 Recommendations for Future Work 

There are several research areas that the dissertation does not cover, which will 

leave them for future research. First, by no means the data used in this research is 

comprehensive and exhaustive. Certain factors (e.g., tie condition, weather condition, 

human operation) may also be important but the corresponding information is not available 

yet in this study. In the future, additional variables could be collected to examine whether 

the model can be further improved. Second, due to data limits, derailment severity model 

may not be generalized. More derailment data from other railroads should be collected to 

understand whether there is railroad-specific difference in terms of broken-rail derailment 

severity. Third, machine learning algorithm allows the efficient utilization of multi-

dimensional and multi-variety information resources for the prediction. However, as the 

major challenge of the machine learning algorithm, it is difficult to interpret. How to 

interpret the casual effects, causal interaction in high-dimension and the application of the 

machine learning for decision making will be accounted for in the future research.  
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APPENDIX A 

 

NOMENCLATURES FOR DATA SUMMARY 

Table A. 1 Description of Signal Code 

Signal Code Description 

CP Control point signal 

YL-S Main track yard limits signaled 

TWC-ABS Track warrant control with automatic block signals 

COT Current of traffic-track signaled in one direction 

TC Train control 

CP/CSS Cab signal system 

311 Railroad crossings at grade 

 

Table A. 2 Nomenclatures for Rail Defect Type Code 

Abbreviation Description 

TDD Detail Fracture 

TW Defective Field Weld 

SSC Shelling/Spalling/Corrugation 

EFBW In-Track Electric Flash Butt Weld 

SD Shelly Spots 

EBF Engine Burn Fracture 
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BHB Bolt Hole Crack 

HW Head Web 

HSH Horizontal Split Head 

VSH Vertical Split Head 

EB Engine Burn – (Not Fractured) 

OAW Defective Plant Weld 

FH Flattened Head 

CH Crushed Head 

SW Split Web 

SDZ Shelly Spots in Dead Zones of Switch 

TDT Transverse Fissure 

TDC Compound Fissure 

LER Loss of Expected Response-Loss of Ultrasonic Signal 

BRO Broken Rail Outside Joint Bar Limits 

DWL Separation Defective Field Weld (Longitudinal) 

BB Broken Base 

PIPE Piped Rail 

DR Damaged Rail 
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Figure A. 1 Illustration of Top 10 Types of Broken Rails8 

Table A. 3 Nomenclatures for Geometry Track Exception Type 

Subgroup Geometry Track Exception Type 

CROSS-LEVEL/CLIM9 

CROSS-LEVEL 

CLIM 

GAGE 

WIDE GAGE 

PLG 24 1ST LEVEL 

 
8 The picture source is FRA Track Inspector Rail Defect Reference Manual (FRA, 2015). 
9 Cross Level Index Meter 

BRO

TDD

CH

DR

BHB

VSH

BB

TDT

EFBW

TW
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PLG 24 2ND LEVEL 

GWP 1ST LEVEL 

GWP 2ND LEVEL 

LOADED GAGE 

TIGHT GAGE 

CANT 

LEFT RAIL CANT 

RIGHT RAIL CANT 

CONC LT RAIL CANT 

CONC RT RAIL CANT 

ALIGNMENT 

ALIGNMENT LEFT 

ALIGNMENT RIGHT 

ALIGNMENT 

ALIGNMENT LFET 31 FT 

ALIGNMENT RIGHT 31 FT 

WARP 31 WARP 31FT 

WARP 62 

WARP 62 FT 

WARP 62 FT>6IN XLV 

SPEED/ELEVATION 

EXCESS. ELEVATION 

CURVE SPEED 3IN 

CURVE SPEED 4IN 

RUN OFF LEFT 

RUN OFF RIGHT 

RIGHT VERT ACC 
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PROFILE/SURFACE 

PROFILE RIGHT 62 FT 

PROFILE LEFT 62 FT 

UNBALANCE 4IN 

UNBALANCE 3IN 
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APPENDIX B 

 

AGGREGATION FUNCTION FOR MERGING SIDES OF TRACK 

Table B. 1 Aggregation Functions for Merging the Rail Information on the Same Track 

Attribute Description Preferred 

Value 

Division Division information Either one 

Subdivision Subdivision information Either one 

Prefix A 3-alphabet coding system as route 

identifiers 

Either one 

Track_type Single track or multiple tracks (SG, track 

1, track 2, track 3, track 4) 

Either one 

Rail_laid _year The year when the rail was laid Minimum   

Rail_weight Rail weight measured as pounds per yard Minimum 

Rail_quality Two categories: new rail and re-laid rail Worse case 

Curve_degree The curve degree posted at the location Either one 

Spiral_1 The spiral length (feet) at the beginning of 

the curve 

Either one 

Spiral_2 The spiral length (feet) at the ending of 

the curve 

Either one 
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Super-elevation Super-elevation between two rails on the 

curve 

Either one 

Grade_percent The feet of rise per 100 feet of horizontal 

distance 

Either one 

Speed The maximum allowed speed (mph) at the 

location  

Either one 

Signal Whether track circuits were set at the 

location (yes or no) 

Either one 

Turnout_num Total number of turnouts posted at the 

location 

Either one 

Ballast_time The total number of ballast cleaning at the 

location in the particular time period 

Either one 

Grinding_time The total number of grinding passes at the 

location in the particular time period 

Mean  

Service_failure_time The total number of service failure 

(broken rails) (including all types) 

occurred at the location in the particular 

time period 

Sum 

Car_passes_time The number of cars passing at the location 

in the particular time period 

Mean 

Tonnages_time The gross million tonnages (MGT) 

experienced at the location in the 

particular time period 

Mean  
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Defect_type_time The total number of rail defects with 

specific type at the location in the 

particular time period 

Sum 

Geometry_type_time The total number of geometry exception 

defects with specific type at the location 

in the particular time period 

Sum 

Geometry_time The total number of geometry exception 

defects (including all types) at the location 

in the particular time period 

Sum 

Geometry_priority_time The total number of geometry exception 

defects with the specific priority in the 

particular time. Geometry exceptions are 

automatically prioritized based on the 

deviation of the measure from the class of 

track being measured. 

Sum  

Class reduced_time Class reduction due to geometry 

exceptions in the particular time period. It 

is calculated by the difference between the 

original track class and the updated track 

class.  

Maximum 

VTI_type_time The total number of vehicle-track 

interaction exceptions with the specific 

type in the particular time period 

Sum 
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Measure_VTI_type_time The max measurements corresponding to 

different vehicle-track interaction 

exception types in the particular time 

Maximum 

VTI_priority_time The total number of vehicle-track 

interaction exceptions with specific 

priority in particular time period. 

Mean 
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APPENDIX C 

 

BROKEN RAIL-CAUSED DERAILMENT SEVERITY ESTIMATION 

WITH ALTERNATIVE MODELS 

 

C.1     Zero-Truncated Negative Binomial (ZTNB) Model 

Zero Truncated Negative Binomial (ZTNB) model is one popular count data 

regression models used in accident analysis. This model assumes that the Poisson mean 

follows a gamma distribution and has been used for analyzing over-dispersed data, in 

which the variance is greater than mean. Moreover, traditional Negative Binomial model 

can analyze data with zero counts but the number of cars derailed per derailment accident 

represents non-negative count data. Therefore, Zero Truncated Negative Binomial (ZTNB) 

model can calculate the probability of response variable based on positive count data using 

Bayes’s Theorem and account for the exclusion of zeros. The response surface of a Zero 

Truncated Negative Binomial (ZTNB) model is shown below. A detailed discussion of the 

ZTNB model can be found in Grogger and Carson (1991): 

log(𝜇𝑖) = 𝛽0 + 𝛽1𝑋1𝑖 +⋯+𝛽𝑘𝑋𝑘𝑖                                  (C-1) 

 



178 

 

 

 

Where 𝜇𝑖  is the estimated derailment severity for the 𝑖 th observation, 𝛽𝑘  is the 

parameter coefficient of the 𝑘th predictor variable (𝑘 = 0 for intercept), 𝑋𝑘𝑖 is the value of 

the 𝑘th predictor variable for the 𝑖th observation. 

After removing insignificant independent variables using P-values as the measure, 

a Zero Truncated Negative Binomial (ZTNB) model is developed based on a set of 938 

broken rail-caused freight-train derailments from 2000 to 2017. For example, below model 

accounts for main effect only. 

log(𝜇) = 1.16 + 0.27TRNSPD + (6.15 × 10−6)TONS + (6.63 × 10− )cars_total 

where 𝜇 is the estimated derailment severity. 

C.2     Artificial Neural Network 

Artificial Neural Network is another main tool in machine learning. It is a brain-

inspired system which is intended to replicate the way that humans learn. Neural networks 

consist of input and output layers, as well as (in most cases) a hidden layer consisting of 

units that transform the input into something that the output layer can use. They are 

excellent tools for finding patterns which are far too complex or numerous for a human 

programmer to extract and teach the machine to recognize. The output of the entire network, 

as a response to an input vector, is generated by applying certain arithmetic operations, 

determined by the neural networks. In the prediction of broken rail-caused derailment 

severity, the neural network can use a finite number of past observations as training data 

and then make predictions for testing data. 
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The prediction accuracy of these four models, which are Zero-Truncated Negative 

Binomial, random forest, gradient boosting, and artificial neural network, are presented in 

the below table. MSE (Mean Square Error) and MAE (Mean Absolute Error) are employed 

as two metrics. 

Table C. 1 Prediction Accuracy of Alternative Models 

Prediction Models MSE MAE 

Zero-Truncated Negative 

Binomial 

Main component only 52.65 5.21 

With second order and interaction 52.59 4.99 

Decision tree 48.55 4.91 

Random forest  48.30 4.89 

Gradient boosting  52.50 5.00 

Artificial Neural Network  55.68 5.23 
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