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ABSTRACT OF THE DISSERTATION

Artificial Intelligence-Aided Prediction of Broken Ralaused Derailment Risk

by KANG ZHOU

Dissertation Director:

Dr. Xiang Liu

Broken rails are the leading cause of freight train derailments in the United States.
The American railroad industry annually spends billions of dollars on track inspection,
maintenance and repair. Accurate prediction of broken rail risk is criticaldaatimoad

industry to further improve operational safety, efficiency and the state of good repair.

This dissertation research focuses on predicting the risk of brokecauséd
derailment via Artificial Intelligence (Al) empowered by the fgegdwingfi bi g dat ao
railroad industry, related to netweldvel track characteristics, maintenance activities,
traffic and operation, as well as condition monitoring. The intended contributions of this
research include:

1 Development of a novel, customiz&dft Tile Coding based Neural Network

model (STGNN) to predict the spatigemporal probability of broken rail

occurrence for any given time horizon. This proposed Al algorithm shows



superior performance over several alternative algorithms in terms ofosoluti
quality, computational efficiencyand modeling flexibility.

1 An analysis ofthe relationship betweethe probability ofbroken raitcaused
derailment andhe probability ofbroken rail occurrence. New analysa®
performed to understand hdhe probablity of broken railcaused derailment
may vary with infrastructure characteristics, signal type, weather, and other
factors.

1 Development of an Integrated Broken Rail Derailment Risk Model for
predicing locationcentric broken raitaused derailment risén the network
l evel . Predictingiakd Ideati dbgsngahfhu

significant safety improvement and cost savings.

The major conclusions of this research include:

1 The proposed5TCGNN algorithm can predict broken rail risk fany time
period (from 1 month to 2 years), with better performance for-tezar
prediction than longerm prediction. The algorithm slightly outperforms
Extreme Gradient Boostind.ogistic Regressiorand Random Foresiandis
also much more flexible.

1 Appropriate mtwork segmentation is important for prediction accuracy. Our
proposedlynamicsegmentation scheme shows a significant improvement over
the fixedlength segmentation scheme.

1 Segment length, traffic tonnage, number of cail passes, raiveight, rail age,
track curvature, presence of turnout, and presence of historical rail dafects

all found tobe among influencing factors fbroken rail occurrence.



1 Signaled track in the cold season has the lowest ratio of brokerausiéd
derailmentsa broken rails, while noesignaled track in warm weather has the
highestMoreover, lower FRA track classes (Class 1, Class 2) have higher ratio
of broken raicaused derailments to broken rails, compared with higher track
classes Class 3 and Class 4.

1 A longer, heaver train traveling at a higher speed is associated with more cars

derailed per broken radaused derailment.

This work uses enterpridevel big data for over 20,000 miles of track from a major
freightrailroad in the United States. The newethodology, algorithm, and analysis results
can potentially be implemented for railroad rail asset management, in support of both short
term inspection and maintenance prioritization as well as-termg capital planning and

resource allocation.



DEDICATION

Especially to My Parents, | love you.



ACKNOWLEDG EMENTS

The completion of this dissertation could not have been possible without the
assistancdrom many peopleForemost, | would like to express my gratitugemy
dissertation advisor, Dr. Xiang Liu fdnis constant support, guidance and patience
throughout myresearchat Rutgers University. He has been always fully guiding me
whenever | ran intehallengesiuring my research path. His wisdom in my research area
alwaysextricates me from research dilemma. It is truly an honor and blessing to carry out

my researclwith him as my advisor.

| am also deeply thankful for Dr. Franklin Moon, Dr. Peter J. Jin and Dr.idingj
Yu serving on my committedt has been a privilege for me to acquire their guidance,

considerationand encouragement.

Special appreciation is made to Dr. Yuan Wang for his great insights, assistance
and encouragement as well as friendship beyondaimpletion of this dissertatioh.am
also grateful to Dr. Jihong Chen and Dr. Yun Bai for their guidancesapplort | also
would like to thank Mr. Zhipeng Zhang for fespport in my researcMy sincere thanks
are extended tGivil Engineering department staffs, Gina Cullari and Linda Szary. Special
thanksalso goto all my friends and colleagues at Rutgers University for their help in this

study: Zheyong Biarhuting Zhaand Pengyu Xie

This researchis based on a projecsponsored by the Federal Railroad

Administration of US Department of Transportation.

Vi



TABLE OF CONTENTS

ABSTRACT OF THE DISSERTATION......coiiiiiiiiiiiiiiiieieeeiiivvbeeeeee e e e s seeeeees ii
3 =11 [ N I [ ] PP Y
ACKNOWLEDGEMENTS.... ..ttt s ceeesssieerre e e aaaaea e e e s emmreeeeaaaaaeeaeasennnnnnnn] Vi
LIST OF FIGURES ... ...ttt ieeei bbbttt e e e e s sttt et e e e e e e e e e e e e e e e s e s ammmeaaeeas Xi
LIST OF TABLES......o ettt en e XV
CHAPTER 1 INTRODUCTION.....cittiiiiiieeee e eeecemmee e eee e 1
1.1 Background and Problem...........c.ccooeiiiiiiieeeiie e 1
1.2  ReSearch MOLIVALION...........uuuiiiiiiiiiiiiieeeiiiitie et e et e e e e e e e e e e e e e e 3
1.3  Reseah SIgNifiCANCE.........ccoiiiiiiiiiiicceee e 3
1.4 Research ODbjJective and SCOPE..........uuuiiiiiiii e eeeer e 4
1.5 Organization of the DiSSertation...........ccccouiiiee e ceeeiiiicice e eeeee e 5
CHAPTER 2 LITERATURE REVIEW.......ccoe e 8
228 R | 01 1o Yo [ T £ PSP 8
2.2 INfluenCing FACIOrS.........uuuiiiiie et 10
2.3  Statistical Models for Broken Rail Prediction...........cccoevvvieiieeecciciieneennn. 22
2.3.1  LINEAIr REGIESSION. ...cciiiiiiiiiiieiee et 25
2.3.2  LOQIStIC REGIESSION....uuuuuiiiiiie e e eee e e eeeeiei e e e e e e e ee e et eane e e e e e eeeeeeenees 26
2.3.3  Artificial Neural NetworkK..........ccooeiiiiiiiiieeeee e 27
2.3.4  SUIVIVAl ANAIYSIS.. ...ttt a e 28
2.3.5 Markov Stochastic MOAEl...........cueviiiiiiiiiiiiceeiiiieeeeee e 31
2.3.6  FUuzzy LOGQIC MOUEL.. ...ttt 32
2.3.7 Reliability MOEL.............uiiiiiiiiiiiii e 33

2.4  Machine-LearningBased Model..............coooiiiiiiieeen e 33
2.5 Derailment Severity Estimation Model...............iiiicrcieeeeeviieee e 34
CHAPTER 3 DATA DESCRIPTION AND PREPARATION........ccvvviiiiiiieeeeeeee 36
G 700 R [ 1 0 To (¥ Tod 1 o] o NSRRI 36
3.2  Database DeSClPLOM.........cceeiiiiiiiie e e 38
0t R I - (o Q| [P 38
3.2.2  Rail Laid Database.........cooeeeeeeiiiiiiiiieeei et 38

vii



3.2.3  Tonnage Database...........coovvvieiiiiiiieemieeieeeeeeeeeii e 39

3.2.4  Grade Database..........cccuuuuiiuimiiieeiiiiiiir e 40
3.2.5 Curvature Database.........cccoooeeiiiiiiiiieeei e 41
3.2.6  TrACK Chart......uuuiiiiiiiiiiiiiiiii e 42
3.2.7  Turnout Database............uuuuvuuiiiiiiceeiiiiiiicnen e errennn e A3
3.2.8  Signal DAtabase..........uuuiiiiiiiiiiiiieeeiiiiie e 43
3.2.9  Grinding Database..........cccceeeeeiiiiiiiieeen e 44
3.2.10 Ballast Cleaning Database............cccoeviiiiiiiieeciiiiie e 45
3.2.11 Rail Defect Database. ..........coovvviiiiiimiimmmriiieeeeeeiiiie e 46
3.2.12 Broken Rail Database.........cccccoviiiiiiiiieee e 48
3.2.13 Track Geometry Exception Database.............cccccvvevvieencvivivrreeneennen. . 49
3.2.14 VehicleTrack Interaction (VTI) Exception Database......................... 50
3.3 Data Preprocessing and Cleaning............cccoovvvvvieemneeeeeeeeceeeeemee 51
3.3.1  Unify Data Column Names...........cccuiiiiiiiiiimeniiiiieeeee e 51
3.32  Detection of Data DUPlICALE............euuiiiiiiiiiiieeeiiiieiiee e 52
3.3.3 Information Combination for Right Rail and Left Rail........................ K4
I B F= = [ 1 (=T | = 11 [0 o FO PP PPPPPPPPPPPPR 54
3.4.1 Handling Information ContradiCtion.............ccoeeeiiiiiiircceeeeeee e 57
3.4.2 Handling MisSINg ValUES..............coiviiviiiiiimmmee e emeeennneed 58
3.4.3 Feature CONSrUCHIQN........oooiiiiiiiiieeee e eeeneeeee e 59
3.5 Exploratory Data ANalYSIS.........ccuiiiiiiiiiiiiii e 62
CHAPTER 4 TRACK SEGMENTATION....ccovviiiiiiieiiiiiiiiiiiimeeeeeeeeeeeeeeeeiiinnnn
4.1 FixedLength versus Featuigased Segmentation.................cceeeevveeeeeennn.. 77
4.2  Track Segmentation Srategy.........ccouueieiiiiiiiicccee e 78
4.2.1 FixedLength Segmentation...............cccceeiiiiiieeceiieiiciee e eeeen 80
4.2.2 FeatureBased Segmentation..............cccoevvriiiieeeii e 81
4.3 Comparison of Track Segmentation Strategies............uvveveviiiveevrveeeeeeeen. 87
4.4 Chapter SUMMALY .. .ccceiiiiiieeeee ettt e e e et e e e e ee s b mmmr e e e e e e eesna e eeaeee 89
CHAPTER 5 DEVELOPMENT AND VALIDATION OF BROKEN RAIL
PREDICTION MODEL......ccciiiiiii s eees e s seerse s e e e e aaaaaaaaeeeeanans 91
5.1 Nomenclatures, Variables, and OperatorS............coeeveeiivivemreeviiiieeeeeeeiinnn, 91
5.2  Feature ENQINEEIING ........uuutiiiiiiiiiiiie ettt e e e e e e e 94
5.2.1  Feature CreatiOn..........ccoviiiiiiiiiiieeee e e e e e e eeeeeeeeee e eeeannnn s 94
5.2.2  Feature Transformation..............oooiiiiiiiiimmmn i 96
5.2.3  Feature SeleCtiQnN.......cccouiiiiieeeieiieieeees e enme e 98



5.3 Overview of SofiTile-CodingBased Neural Network...............cccceeeeirnnee. 103

5.4 Encoder: SOHTIE-COUING.........cuuuurummiiiiiiiee et eneera s 106
541 THE-COUING.....uuuuiiiiiiiiiiiiiiiii et eeeeei ettt e e e e e e e e 106
5.4.2  SOftETIHE-COUING.....ctiiiiiiiiiiiiieee e reer e e e e e e e e eeees 108

5.5 Architecture of STENN MoOdeL.........ooooiiiiiiiiiiiiee s 110
5.5.1 Forward Architecture of STGIN Model.............oovvviviiiiiiiiceeeeiiienes 110
5.5.2 Backward Architecture of STGIN Model...............coooiiiiiiiinnnns 111
5.5.3 Training Algorithm of STENN Model.............ccccoiiiiiiiiieeeiee 113

5.6 Decoder: Probability Transformation...............ceuuuiviiccniieeeeeiiiiiiiinnn 115

5.7  Model DeVEeIOPMENL.........cooviiiieiiiiceme e 118
5.7.1 Cumulative Probability and Probability Density...........ccccccceveeerieanee. 119
5.7.2 lllustrative Comparison between Two Typical Track Segments.....120
5.7.3  Sensitivity Analysis of STENN Model.........cccooooeeeeiiiiiiiiicee 122

5.8  Model Validation...........uiiiiiiiiie et reee e e e 125
5.8.1 Comparison with Alternative Models..............c.eeeviiiiiiieeciiiiiiiiiiiieee 125
5.8.2 Model Performance with Respect to Prediction Period................... 128
5.8.3 Comparison between Empirical and Predicted Numb8raken Rails132

5.9  Model APPICALION. ......uiiiiiiiiiiiiiiee e 133
5.9.1 Network Screening to Identify Locations with High Broken Rail
g (0] 0 F= Lo 1111 133
5.9.2  GIS ViSUANZALION.........ceiiiiiiiiiiie et eerrer e a e e e e eeees 135
5.9.3 Partial Features of Top 20 Segments with High Predicted Probability of
= 0] =] T =T O RRRSSR 138

5.10 Chapter SUMMALY.........covuiiiuiiiiiii i e e e e e e ememss e e e e e e eaaaaaaes 140

CHAPTER 6 BROKEN RAIL-CAUSED DERAILMENT RISK MODEL............ 142

6.1 Overview of Broken RaiCausederailment Risk Estimatian................... 142

6.2 Statistical Relationship Between Broken Rails and Broken®Railsed

(1T = V1 0 0= 0 143
6.2.1 Univariate Statistical Analysis of Broken Rails and Brokail
DEIAIMENTS. ...ttt e e e eeeer s e e e e e e e e e e e e et e e sebnnneeaeeeees 144
6.2.2 Multivariate Statistical Analysis of Broken Rails and Brolal
DEIAIMENTS. ...ttt e e e eeeer s e e e e e e e e e e e e et e e sebnnneeaeeeees 149

6.3 Broken RailCaused Derailment Severity EStimation..............ccc.ueveveeenes 151
6.3.1  MethodolOgy.......ccooiiiiiii e 152
6.3.2 Model DevelopmMEeNnL.. ... 157

6.4 Example Application of BrokeRail Derailment Risk Model.................... 161

iX



CHAPTER 7 CONCLUSION AND FUTURE WORK..........oooiiiiiiiiiiiiiieeeee 165

7.1 Summary and CONCIUSION........uuuuiiiiiiieee e eeeere e 165
7.2 Recommendations for Future WOork............ccooooiiiiiiiceeiiiiiiiee e 167
APPENDIX A NOMENCLATURES FOR DATA SUMMARY........ccccceiuvvrrrrnnnne. 168
APPENDIX B AGGREGATION FUNCTION FOR MERGING SIDES OF TRACK
............................................................................................................................. 173
APPENDIX C BROKEN RAIL-CAUSED DERAILMENT SEVERITY
ESTIMATION WITH ALTERNATIVE MODELS .......cccoiiiiieee e 177
C.1 Zeo-Truncated Negative Binomial (ZTNB) Model.................ceeeevivieeennn. 177
C.2  Artificial Neural NetworK.........cooooiiiiiiiieiieeee e 178
REFERENGCES..... ..o iiittees s sseens et e e e e e e e e eaeeesammraeeaaaaeas 180



LIST OF FIGURES

Figure 1. 1 Class | Railroad Mainline Freiglrain Derailment Frequency by Accident

Cause Group, 2000 10 201 7. ..o remeer et 2
Figure 1. 2 Framework for This Dissertation..........ccccoovvei i eceeeiiiiiiiee e eeeeeeeeeeeeeeea 7
Figure 2. 1 Classification of Selected Contributing Factors.............ccccoovvieeeivnnnnnns 11
Figure 3. 1Distribution of Rail Laid Year.......cccoeeeeiiiieeiiiiiieeei e eee 39
Figure 3. 2 Distribution of Grade (Percenmt).................uuvuuiiccceieeeeeiiiiiieenee e e e e 41
Figure 3. 3 Distribution of Data Curvature Degree (Curved Portion Qnly)............ 42
Figure 3. 4 Top 10 Defect Types During 2011 and 2016.............ccccceeeivmmeeeevnnnnnnns a7

Figure 3. 5 Distribution of Six Types of Remediation Action from 2011 to 2016...48

Figure 3. 6 Top 10 Types of Broken Rails from 2011 to 2016................ovvvvveeeen... 49
Figure 3. 7 Track Geometixception by Type from 2011 to 2016...............c.euee... 50
Figure 3. 8 Distribution of VTI Exception Types from 2012 to 2016...................... 51
Figure 3. 9 Example of Partial Duplication in Curve Degree Database................ 52
Figure 3. 10 Example of Exact Duplication in Signal Database...................ccccu.... 52
Figure 3. 11 Example of Partial Duplication in Signal Database........................... 53
Figure 3. 12 Example of Exact Duplication in Rail Defect Database.................... 53
Figure 3. 13 Data INtegration.............oooviiiiiiiiieemee e e 56
Figure 3. 14 Data Mapping to Reference Locatian.................ccovueemevveiiiieeeeeeennnnnn. 57
Figure 3. 15 Structure of the Integrated Database.................coovveemeiiiiiiie e, 60
Figure 3. 16 Example of Tumbling WIiNndOW...............coiiiiiiiieen e 61

Figure 3. 17 Feature Construction with Nearest Service Failure in the Study.Peread

Figure 3. 18 Feature Construction without Nearest Service Failure in the Study. B2riod

Xi



Figure 3. 19 Mean Annual Traffic Tonnage (MGT) in Terms of Rail Age CategaréEs

Figure 3. 20 Correlation between Each Two Input Variables............cccccoeeveeeeennnne 76
Figure 4. 1 Schematic lllustration of Fixkéngth Segmentation............................. 81
Figure 4. 2 Statit-eatureBased Sementation..............ccccceeiiiieiececeiiciiiee e eee e 84
Figure 4. 3 Dynamid-eatureBased Segmentation.................coovvvvvieemeeeeeeeeveeeeeniinnns 86

Figure 5. 1 Distribution of Annual Traffic Tonnage Before and After Feature
TranSTOMMALION.......oi it e e e e e e e e e e e e e e s s e e e e e e e e eeeas 97
Figure 5. 2 OptimizatioiBased Feature Selection Process...........ccceeeeeevvveeeeeeennnn. 101

Figure 5. 3 Selected Top 10 Important Features using LightGBM Algarithm.....102

Figure 5. 4 Schematic lllustration of STNN Algorithm Framework....................... 104
Figure 5. 5 lllustrativiExample of TileCoding............coovvviiiiiiiiiicreeeeeen 108
Figure 5. 6 lllustrative Example of Sefile-Coding............ccoovvvviiiiiiimeeeeiiceeeeeiiinns 110
Figure 5. 7 Forward Architecture of STXIN Model for Prediction................cccc...... 111
Figure 5. 8 Backward Architecture of STMN Model for Training Process............ 113
Figure 5. 9 Process of Ryability Transformation...............c.c.oovvvviiceiiiieeeeeiiiiins 117

Figure 5. 10 Cumulative Probability and Probability Density for SINCModel....... 120

Figure 5. 11 lllustrative Comparison Between Two Typical Segments in Terms of Broken

Rail Probability PrediCtion................uuuiiiiiiieeees e eerer s e e e e e 122
Figure 5. 12 AUC Values with Respect to Number of Training Steps................. 123
Figure 5. 13 AUC Values with Respect to FIR in the NI Model........................ 125

Figure 5. 14 Comparison of Computation Time for @f@nth Prediction by Alternative
IMOAEIS ... et e 128

Figure 5. 15Time-Dependent AUC Performance...........ccccceeeveeiviieemeceiiiiieeeeeeeiinnn, 130

Xii



Figure 5. 18Receiver Operating Characteristics Curve with Prediction Period as One

Figure 5. 17 Comparison of the Cumulative Probability by Prediction Periods Between
the Segments with and without Broken Ralls.............ccooovviieeei e 132
Figure 5. 18 Empirical and Predicted Numbers of Broken Rails on Network .Lev&3
Figure 5. 19 RislBased Network Screening for Broken Rail Identification with
Prediction Period as One MONIN............coooiiiiiiieee e 134
Figure 5. 20 Visualization of Predicted Broken Rail Probabilities Marked with Various
(O ] =T 0 0] £ =TSRRI 136

Figure 5. 21 Visualization of Screened Network (30% of Network Mileage) (Partial

Figure 6. 2 Number of BrokeRail Derailments per Broken Rail by Curvature......146
Figure 6. 3 Number of BrokeRail Derailments per Broken Rail by Signal Settind 47
Figure6. 4 Number of BrokeiRail Derailments per Broken Rail by Annual Traffic

31T 1S | /U PPPPPUPRURSPPR 148

Figure 6. 5 Number of BrokeRail Derailmentgper Broken Rail by FRA Track Classes

Figure 6. 6 Number of BrokeRail Derailments per Broken Rail by Annual Traffic

Density Level and Signal Setting.........ccovuuiiiiiiiiiieeee e eeeee e 150

Xiii



Figure 6. 7 Number of BrokeRail Derailments per Broken Rail by Season and Signal
Y= 11 o SRS 151
Figure 6. 8 Number of Cars (Railcars and Locomotives) Derailed per Broken Rail
Caused Freightrain Derailment, Class | Railroad on Mbne, 2000 to 2017.......... 153
Figure 6. 9 Schematic Architecture of Decision Tree (Jain, 2017)..........ccccceu..... 155
Figure 6. 10 Variable Importance for Train Derailment Severity Data................ 158
Figure 6. 11 Decision Tree in Broken R&@aused Derailment Severity Prediction159
Figure 6. 12 Stepy-Step Broken RaiCaused Derailment Risk Calculation......... 162

Figure A. 1 lllustration of Top 10 Types of Broken Rails...............ccccceeiieeennnnnns 170

Xiv



Table 2.

Table 2.

Table 3.

Table 3.

Table 3.

Table 3.

Table 3.

Table 3.

Table 3.

Table 3.

Table 3.

Table 3.

Table 3.

Table 3.

Table 3.

Table 3.

Table 3.

Table 3.

Table 3.

Table 3.

Table 3.

Table 3.

LIST OF TABLES

1 Literature by Influencing FacCtOrS.............euvvvviiiiicceeeecee e 11
2 Statistical Prediction Model.............ccuvviiiiiiicciece e 22
1 Summary of Provided Railroad Data................ccoovvieeeeeiiiiieeeeeeeeeeeee 37
2 Track Mileage for Each Type of Main Line Track..........ccccceeveiiiieecennnns 38
3 Track File FOrMAat.......cooiiiiiiiiiie e 38
4 Rail Laid Data FOrMAL...........oooiiiiiiiiiieeeiiieee e memrne e 39
5 Tonnage Data FOrMAL............iiiiiiiiiiiieme e 40
6 Grade Data FOrMAL..........c.oiiiiiiiiieeaee et 40
7 Curvature Data FOrmat............coevuviiiiiiiiiieeiii s 41
8 Distribution of Speed CategorieS......cccovveeeeeeiiiiieeeieie e, 42
9 Turnout Data FOrmat.............cooeeeeeiiiveeiiieereee 0 A3
10 Track TypBistribution of TUMNOULS.............oevvviiiiiiiire e, 43
11 Signal Data Format...........ccccoeeeeeiiiieeeiiieeeeeeeeeeeeeeeeeeveeee e 43
12 Grinding Data FOrMaL..........ccoeiiiiiie e eeeeeeeee e 44
13 Distribution of Grinding Fregncies with Respect to Year...................44
14 Ballast Cleaning Data FOrmat.............cccoooeiiieccnviiiiiiiie e eeeenn, 46
15 Total Track Mileage of Ballast Cleaning by Year..............cccocevveeenn. 46
16 Strategies for DUPliCation..............uciiiiiiiiieemee e 53
17 Information from Each Database Involved in the lated Database......55
18 Preferred Database for Each Attribute................ccooimiiiiii 58
19 Preferred Values of Missing Informatian.............cccccoeeveeeeei i, 59
20 Summary of Exploratory Data Analysis Results............cccccccevieeeeeenn, 63

XV



Table 3. 21 Broken Rail Rate (per Billion Tdfiles) by Rail Age, All Tracks on
Mainlines, 2013 10 2016.......ccoiiuuriiieeeeiieemti et e e e s rmee e anas 65
Table 3. 22 Broken Rail Rate (per Tragkle) by Product of Annual Traffic Tonnage
and Rail Age, All Tracks on Mainlines, 2013 t0 2016............ccovvvviiviimemeeereeeeeennnnnd 66
Table 3. 23 Broken Rail Rate (per Billion Tdfiles) by Rail Weight, All Tracks on
Mainlines, 2013 10 2016.......ccoiiurieieeeeiieemitie et rmeee e anae 66
Table 3. 24 Broken Rail Rate (per Billion TFdiles) by Curve Degree, All Tracks on
Mainlines, 2013 10 20L6.......ccoiiuriiieeeeiieeeit et e e e rmme e e e s e anae 67
Table 3. 25 Broken Rail Rate (per Billion Tdfiles) by Grade, All Tracks on
Mainlines, 2013 10 20L16.......ccoiiuriiieeeeiieeeiee e et e e e rmme e e e s e anas 68
Table 3. 26 Broken Rail Rate (per Billion Tdfiles) by Grinding Passes, All Tracks on
Mainlines, 2013 10 20L6.......ccoiiuuriiiieeeiieeeie e et amme e e e anae 69
Table 3. 27 Broken Rail Rate (per Billion Tdfiles) by Ballast Cleaning, All Tracks on
Mainlines, 2013 10 20L6.......ccoiiuriiiieeeiieeeie et rmne e 70
Table 3. 28 Broken Rail Rate (per Billion Tfiles) by Track Speed, All Tracks on
Mainlines, 2013 10 20L6.......ccoiiuuiiiieeeeiiieeie et e s rmne e e e e 71
Table 3. 29 Broken Rail Rate (per Billion TMiles) by Rail Quality, All Tracks on
Mainlines, 2013 10 20L6.......ccoiiuuriiiieeeiieeeie e et rmne e e e enae 71
Table 3. 3Broken Rail Rate (per Billion TeMiles) by Annual Traffic Density (MGT),
All Tracks on Mainlines, 2013 t0 2016...........ccccoiummiiiiimemrie e 72
Table 3. 31 BrokeRail Rate (per Billion TofMiles) by Presence of Track Geometry

Exceptions, All Tracks on Mainlines, 2013 t0 2016.............cccevvviiccciiiieeeeeeiieneee 3

XVi



Table 3. 32 Broken Rail Rate (per Billion Tdfiles) by Presence of Vehiclerack
Interaction Exceptions, All Tracks on Mainlines, 2013 t0 2016................ovvvvvueee.. 74
Table 4. 1 Track Segmentation Strategy..........oovvvvrrrrriiemmreeeeeeeeeeeiriie s vmmeeeeeens 79

Table 4. 2 FeaturAggregation Function in Segmentation Process (Partial. List)....80

Table 4. 3 Comparison of Different Segmentation Strategies............c.cccvvueemeeee.. 88
Table 4. 4 Feature Weights in DynankieatureBased Segmentation...................... 89
Table 5. 1 Nomenclatures, Variables, and OperatorS...........ccccvvvvvieeeiiieeeeeeeeeennnl 91

Table 5. 2 Selected Features on Top 100 Segments versus the Whole Networ03

Table 5. 3Training Algorithm for Probability Prediction by STAIN Model............. 114
Table 5. 4Parameter Setupf STGNN Model............ooovvviiiiiiiiiie e 118
Table 5. BComparison of Two Segments from the Test Dataset........................ 121
Table 5. 8Confusion Matrix for Classification Validatian................cccccceevicceernnee 126
Table 5. Model COMPANISONL...........coeviiiiiiiiiimme e e s 127

Table5. 82 er centage of Network Screedion@rovoé&esus
Rails Weighted by Segment Length with Prediction Period as One Month........134
Table 5. 9 Selecteleature Information of Top2Segments.............cceeeevvivivvieeen.. 139
Table 6. 1 Predictor Variables in Severity Prediction Madel..............ccccoovieennnn. 154

Table 6. 2 Selected Broken R&lhused Derailments on the Studied Class | Railroad and

Estimated Derailment SEVEIILY..............uuuiiiiiiiireeeeee e 160
Table 6. 3 Selected Characteristics of the Track Segment...............ccoovveeveennnnnn. 162
Table 6. 4 TrairRelated CharacteriStiCS............oooiiiiiiiiieeer e 163
Table A. 1 Description of Signal Code..........ccoooiiiiiiiiiiceeie e 168
Table A. 2 Nomenclatures for Rail Defect Type Code........cccooeeevviiiiiiieneeeeeens 168

Xvil



Table A. 3 Nomenclatures for Geometry Track Exception Type.........ccceeeeerene. 170

Table B. 1 Aggregation Functions for Merging the Rail Information on the Same Track

Xvili



CHAPTER 1

INTRODUCTION

1.1  Background and Problem

In 2017, American freight railroads generated almost $26 billion in tax revenues,
supported approximately 1.1 million jobs, ageneratechearly $220 billion in annual
economic activity and $71 billion in wages. Behind huge revenues, there are always
potert i a l accidents which damage the railroad
$660 billion in maintenance and capital expenditures between 1980 and 2017, and over
$24.8 billion in capital and maintenance disbursements in 20dne (AAR, 2018).
Although freighitrain derailment rates in the U.S. have been reduced by 44% since 2010,
derailmentremainsa common type of freight train accident in the U.S. According to
accidentdata from the Federal Railroad Administration (FRA) of the U.S. Departnient o
Transportation (USDOT), approximately 6,450 freigdain derailments occurred between
2000 and 2017, causing $2.5 billion worth of infrastructure and rolling stock damage (FRA

Rail, 2017).

The FRA of USDOT classifiegver380 distinct accident caus@sto categories of
infrastructure, rolling stoclhjuman factgrsignalingand othersThe FRA subgroups of

accident causes developed by Arthur D. LitA®L), which combine similar cause codes



into groups based on expadsessment (ADL, 199@reusedin thisdissertationBased

on the statistical analysis dme freighttrain derailmentshatoccurred on Class | mainline

from 2000 to 2017, broken rails or welds have consistently been the leading cause in recent
yearsof all freighttrain derailmerd (Figure1.1). As a result, brokenail prevention and

risk management hav@een a major activitjor a long time for the railroad industrin

addition to the United States, other countries with hdwauy railroad activity have also
identified the crucial importance of broken rail risk management (Kumar, 2006

Zarembski, 2009).
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Figure 1.1 Class IRailroadMainline FreightTrain Derailment Frequency by Accident

Cause Group, 2000 to 2017

Quantifying mainline brokemnail derailment risk and thus identifying the locations
with high risk can allow railroads to improve resource allocations for safety management

and maintenance optimizatiofhe derailment risk would depend on the probability of the



occurrence of brokerail derailment and the severity of brokexil-caused derailment that
is defined as the number of cars derailed from a train. The number of cars derailed in
freight-train derailments is related to several factors, including the train length, derailment

speedand proportion ofoaded carsL(u et al., 2018).

1.2 Research Motivation

The railroad agencies have undertaken a major task to collect and process railway
related datahroughout the all railway networikcluding track characteristics (e.gail
profile information, rail laid information), trafficelated information (e.gmonthly gross
tonnage, number of car passes), maintenance recordsrdé.grinding or track ballast
cleaning activities), the past defect occurrences, and manydattaesourcesn addition,
Federal Raiload Administration (FRA)hascollectedrailroad accident data since 1970s.
These multisource data provided the basis for understanding the potential factors that may
affect the occurrence of broken rails as welbaeskenrail-caused derailments. However,
there is still limited prior research that takes full advantage of thesevoelal data to
address the relationship between factors and bro&iéicaused derailment risk, while

using the risk information to screéme network and identify higheisk locations

1.3 ResearchSignificance

The U.S. freightailroadnetwork is widely considereasthe most dynamitreight
systems in the worldThe U.S. freight railroad agencies are private organizations that are
responsite for their own maintenance and improvement operations. They invest a large
proportion of revenuesand resources on the maintenance and repair of railroad

infrastructure The optimal expenditure of revenue dollars or resources allocated to railroad



infragructure becoms crucial for railroad industry which allows to achieve the best
outcorre with thelimited resources. However, the broken rail risk or breta@ihderailment

risk accounting fomfluencingfactors is not explicitly quanigd. It is expectedrom this
dissertation that railroad agencies can be placed in a better position to allocate safety

managemenesources.

1.4 ResearchObjective and Scope

The mairresearch objective of thiBssertations to predict the locatieepecialized
broken rail-caused derailment risk using Atrtificial Intelligence (Al) approaches, more
specifically machine learning techniques. Train derailment risk analysis accounts for
derailment probability and derailmecdauseé consequences simultaneously. Due to the
low frequency of brokenail-caused derailments, it is desirable to estimate the probability
of brokenrail-caused derailments through the broken rail occurrence. The estimation of the
probability of brokerrail-caused derailment includes the conditional probability of train

derailment given broken rail occurrence and the probability of broken rail occurrence.

The primary objective of this dissertation is to investigate brokefalad known
as A s er v ipredictiohaacounting fer a et of tragkelated and operational factors
based on railwayprovided big data. To accomplish this objective, a number of statistical
analyses and machine learning algorithms are conducted. The majority of data related to
broken rails from one Class | freight railroad were from 2011 to 2016, covering over 20,000

track miles on mainline tracks

This dissertatiomlso estimates the conditional probability of train derailment given

broken rail occurrence and the estimation of theesty of brokenrail-caused train



derailment Approximately,4,000 mainline broken rail&ere identifiecbetween 202 and
2016 on thestudiedrailway company tracgkvhereas during the same peri@d,mainline
freight-train brokerrail-causederailmentoccurred FRA, 2017). The severity of broken
rail-causedderailment which is defined as the number of cars (both loaded and empty)
derailed per derailment in thdissertation would be estimated based on tre@hated
factors (e.g.train length, speedpnnage)More specifically, the following objectivesf

this dissertation can be classified itive following:

1. Review the state of art of stied related to broken rail prediction and broken rail
severity;

2. Develop broka rail prediction model using macte learning algorithms
accounting for potential factors;

3. Conduct statistical analysis testimate the probability of brokerail-caused
derailmentgiventhe broken rail occurrenge

4. Developadecision treenodel to estimate the severity that results from bro&gn

causedlerailmentassociated withrain-relatedfactors

1.5 Organization of the Dissertation

The research schematic diagram is shown in Figure 1.2. The dissertation contains

seven chapter# brief description of each chapter will be addressed herein:

Chapterl presentghe research background and problem statemBEme research

objectives and scope are identified



Chapter2 conductsa comprehensive literature review related to this researck,scop
including a summary of contributing factors to broken rail prediction, models related to

broken rail prediction, and a brief review on broken rail severity analysis.

Chapter3 discussethestructureandt he pr eprocessing of r
multiple resourceso prepare theomprehensiveataset which will be used in theoken
rail prediction model Also, exploratory data analysis is conducted to identify the

significant factors contributing to broken rails.

Chapter4 comparesalternative track segmentation schemes and identifies the

importance of segmentation for improving the modeling accuracy.

As the main chapter, ChaptBrdevelops a novel, customized machine learning
model (SoftTile-CodingBased Neural Network) to prediatoken rail occurrence by time
and location, accounting for a variety of influencing factors. In this chapter, feature

engineering, feature transformation, and feature selection are involved.

Chapter 6 analyzes the statistical relationship between brokaitcaused
derailment and broken rail occurrence. Conditional probability of derailment given broken
rail is obtained. Also, a machine learning model is developed to estimate the severity of a
broken railcaused derailment. Finally, a broken-@ausedierailment risk analysis model
is proposed that integrates broken rail occurrence prediction, the conditional probability of

derailment given broken rail, as well as derailment severity.

Chapter7 summarizes the conclusions from this dissertation and recodatien

for future work.
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CHAPTER 2

LITERATURE REVIEW

This chapter providesraoverview of previous broken rail research, focusing on
influencing factors of broken railstatisticaland data analytic approachesd machine
learning approachds predicting broken raiJsand derailment severity models review
of mechanistic analyses of rail defects or broken rails can be found in da Silva et al. (2003)

and Fischer et a{2006).

2.1 Introduction

Broken rails originate from various types of rail defects, which can develop in any
type of raik as the result of several types of stresses, including bending and shear stress,
wheetlrail contact stresses, thermal stresses, anduasstresses (Cannon et al., 2003).
These stresses could originate from the rail manufacturing process, cyclical loading, and
impact from rolling stock, rail wear and plastic flow. They can exacerbate or produce
defects over time, including woiwut rails,defective welds, internal defects, corrugation,
and other rolling contact fatigue (RCF) defects, such as surface cracks, head checks, squats,
spalling and shelling (Kumar, 2006a). Worn out rails are the result of lateral wear and
vertical wear. Lateral war occurs primarily on the gauge face of the higher rail of a curve.
Vertical wear results from cyclical loading and rail grinding on the rail head running

surface. Internal defects generally come from inherent flaws in the rail, such as transverse



and conpound fissures (Schafer, 2008). Internal defects are commonly small and are only
detectable above a certain size. Defects formed due to rolling contact fatigue can be divided
into subsurfaceénitiated cracks and surfadeitiated cracks. Subsurfageitiated cracks

are often caused by metallurgical defects, which might turn into transverse defects in the
rail head. Additionally, increased traffic density and axle load can cause sifeted

cracks (Kumar, 2006a; Olofsson and Nilsson, 2002). Some stinitiated cracks might

turn into detail fractures from shelling/head checks. RCF sunféit&ted cracks might
decrease ultrasonic detection effectiveness, which further increases broken rail risk. In

summary, there are several common causes that ahirebroken rails, including:

1 Inherent defects originating from the rail manufacturing process, such as faulty
chemical composition, harmful segregation, piping, seams, laps, and guide
marks.

91 Defects due to a fault of the rolling stock, engine burnsidgkg of wheel,
severe brakig, etc.

1 Excessive corrosion of rails: excessive corrosion in the rail generally takes place
due to weather conditions, the presence of corrosive salts such as chéoritles
constant exposure of the rails to moisture and hiiynital locations near water
columns, ashpits, tunnels etc. corrosion normallgdda the development of
cracks in regions with a high concentration of stresses.

1 Poorlymaintained joints: poor maintenance of jojstsch as improper packing
of joint sleer and loose fittings.

1 Defects in welding of joints: these defects arise because of improper

composition of the thermite weld.
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1 Improper maintenance of track: ineffective iorproper maintenance of the

track or delayed renewal of the track.

1 Rail damages caed by derailments.

Thescope of this literature review will focus on broken rails due to defects resulting

from the rolling stock and abnormal traffic effects during the rail service
2.2 Influencing Factors

Most rail defects are detected and tredbetbre they deteriorate into a critical
defect (Kumar, 2006a). Broken rails are linked to many factors affecting one or more
processes of rail defect development, including defect initiation and/or propagation. This
study divides contributing factors infiwe hightlevel categories, including 1) track layout,

2) rail characteristics, 3) track maintenance, 4) operational information, and 5) defect
inspection history (Figure 2.1). The summary of impact of influencing factors on rail

defects or broken rails described in Table 2.1
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Rail age Grade
Rail weight Turnout Grinding
Rail quality Track curvature Ballast cleaning
ocation Maximum allowed speed Track geometry exceptio
Number of car passe Service failure
Traffic tonnage / VTI exception
Rail defect
Figure 2.1 Classification of Selected Contributing Factors
Table 2.1 Literature byinfluencingFactors
Factor Observation References
Chattopadhyay and Kumar, 2009;
Increased probability of rail
Dick, 2001; Dick et al.20@2, 2003
Rail age defects associated with increas
Jeong, 2001; Roney and Ebersoh
rail age.
2001; Shyr and BeAkiva, 1996
Dick, 2001;Dick et al., 20@, 2003
As rail weight increases, rail
Rail weight Hay, 1982; Shyr and Befkiva,
defect probability decreases.
1996
Curved tracks associated with
Track higher rail defecprobability An et al., 2017; Dick, 2001; Dick €
curvature than tangent track, all else bein al., 2003

equal
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No consistent conclusion is

obtained. Although curved

sections of rails have greater ra Chattopadhyay and Kumar, 2009;
stress, they usually have a high Shyr and BerAkiva, 1996
frequency of replacement than

tangent rails.

Steep gradesicrease the risk of An et al., 2017; Dick, 2001; Stock

Grade
rail defect. and Pippan, 2011
Corbin and Fazio, 1981; Dick,
2001;Dick et al., 20@, 2003;
Higher maximum allowed spee!
IHHA, 2001; Kassa et al., 2006;
is associated with laigher
Kassa and Nielsen, 2008; Kumarr,
probability of rail defect.
2006a, 2006b; Reddy, 2004; Shyr
Maximum
and BenrAkiva, 1996; Sun et al.,
allowed
2011
speed
Higher maximum allowed spee
is associatedvith better track
Dick 2001;Dick et al., 20@, 2003;
geometry, counteracting the
Shyr and BefrAkiva, 1996
effect of higher dynamiwheel
load
Increases in axle loads cause Algan and Gan, 2001; Brouzoulis,
Axle load more bending and shear stress 2014; Clayton, 1996; Dick et al.,

in the rail which might increase 2003; Esveld, 2001; Farfi$996;
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dynamicloadingsand increase IHHA, 2001; Jablonski and

rail defect risk. Pelloux, 1992; Kim and Kim, 2002
Kumar, 2006a, 2006b; Rey,
2004; Skyttebol et al., 2005; Zerbs

et al., 2009a, 2009b

Higher traffic density causes an An et al., 2017; Brouzoulis, 2014;

Traffic increase in rail defects, Dick, 2001; Dick et al., 2003; Jeor
density especially surfacaitiated et al., 1997; Kim and Kim, 2002;
defects. Kumar, 2006a, 2006b
Algan and Gan, 2001; Brouzasyl
Higher number of annual wheel
Annual 2014; Dick, 2001; Dick et al., 200:

wheel passes

passes is associated with highe

Kim and Kim, 2002; Shyr and Ben
rail defect risk.

Akiva, 1996; Skyttebol et al., 200%

Presence of geometry exceptio Ahlbeck, 1980; Hest al, 2013,

Track
increases probability of rail 2015; Jenkins et al., 1974; Reddy
geometry
defects and reduces the life of ¢ 2004; Zarembski and Bonaventur:
exception
rail. 2010; Zarembski et al., 2016
An et al., 2017; Dick et al., 2003;
Presence of turnouts increases Kassa and Nielsen, 2008; Schupg
Turnout
the rail defect risk. al., 2004; Skes et al., 2006; Sun e
al., 2011
Rail grinding might delay the ~ Burstow et al., 2002;
Rail grinding

occurrence of rail corrugation  Chattopadhyay et al., 2003;
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and reduce the probability of ra

Chattopadhyay et al., 2005; Farris
1996;Judge, 2000; Kalousek and
Magel, 1997; Kumar, 2006a,
2006b; Magel and Kalousek, 200z
Reddy, 2004; Soeleiman and
Rucinski, 1991; Shyr and Ben
Akiva, 1996; van den Bosch, 200z
Zarembski et al., 2005; Zarembsk
2005; Zarembski and Palese, 201

Zhao et al.2006, 2007a, 2007b

defects.
Ballast Ballast cleaning reduces the ris
cleaning of rail defects.

Lichtberger, 2005; Kumar, 2006a,

2006b

There is a higher probability of
Temperature
broken rails in colder weather.

An et al., 2017; Chattopadhyay ar
Kumar, 2009; Dick, 2001;
Garnham and Beynon, 1992; Jeot
and Gordon, 2009; Jeong et al.,
1997; Kumar, 2006a, 2006b;
Lichtberger, 2005t.iu et al.,

2013 Muster et al 1996;
Skyttebol et al., 2005; Zerbst et al

2009b




15

Welded rails suffer less impact

Joint or Dick et al., 2003; Dick, 2001; Zon
loading and have lower rail

welded etal., 2013
defect risk than joint rails.

Presence of a traction/brake

Traction/brak
section is prone to causing Anetal., 2017
e section
broken rails.
Dick, 2001; IHHA, 2001; Kumar,
More inspections decrease the 2006a, 2006b; Orringer, 1990;
Inspection
risk of broken rails. Orringer et al., 1988Sourget and
Riollet, 2006

More lubrication decreases the
Lubrication Thden, 1996
risk of rail defects.

Rail age Some researchers (Chattopadhyay and Kumar, 2009; Shyr and Ben
Akiva, 1996) used cumulative million gross tons (MGT) to represent rail age. Alternatively,
some others used the number of years that the rail is in place to medsage, due to the
changes in rail manufacturing technologi€sck, 2001;Dick et al., 20@, 2003).The
lifetime of the track can be translated into the total passage of cyclical loading. Having
encountered more cumulative traffic, less service tineftisPrior research has found that
the risk of rail failure increases with rail age, due to accumulative fatigue load cycles on
the rail, as well as older rail design techniques (Chattopadhyay and Kumar, 2009; Dick et

al., 2003; Jeong, 2001; Roney and Ebén, 2001; Shyr and Bekkiva, 1996)

Rail weight: Rail weight is measured as weight of laid rail per unit length, such as

pounds per yard in North America. It is an important factor in determining rail strength.
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Rail strength can be considered as either resistance to permanent plastic bending or
resistane to fracture (Jeong et al., 1998). Stress in rail is dependent on the ragextien

and weight (Hay, 1982). Heavier rails have larger esaess$ional area and stronger
stiffness, which are associated with higher moment of inertia. These can nedisglsnd

shear stresses under the same axle loads. The risk of broken rails or rail defects decreases

on segments of track with relatively heavy rail (Dick et al., 2003)

Track curvature: Curved track (horizontal geometry) experiences more lateral

loads fom wheel flanges (Dick, 2001) which result in more severe rail wear. Vehicles do
not bend to the shape of the curvature while moving over a curve, which results in greater
contact friction and stress. Excessive rail wear could damage the capabilityrail tbe
support cyclical loading. Previous research showed that curved rails are more likely to have
defects, all other conditions being equal (An et al., 2017; Chattopadhyay and Kumar, 2009;
Dick, 2001; Dick et al., 2003; Shyr and BARiva, 1996). Howeer, a higher frequency

of replacement on curved sections of rail than tangent sections can counteract the effect of

track curvature (Shyr and Beékkiva, 1996)

Grade: In North America, grade (vertical geometry) is expressed in terms of the
number of feet orise per 100 feet of horizontal distance. Steep elevations will increase the
probability of broken rails due to increases in longitudinal stress on the rail resulting from

both tractive and braking forces (An et al., 2017; Dick, 2001; Stock and Pigjl), 2

Maximum allowed speed The literature indicates that higher speed results in a

higher probability of broken rails, due to spaekpendent dynamic loading. For example,

Dick (2001) found that increase in speed causes an exponential increaseailured tlue
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to increases in defects and crack. However, Shyr andABe@a (1996) found that higher
maximum allowed track speed is correlated with better track geometry, thus counteracting

the effect of a higher dynamic wheel load

Axle load: Axle load isthe total weight borne by the track from all wheels in contact.
Skyttebol et al. (2005) showed that the time to failure of a rail depends on axle load. Impact
axle load, caused by vertical acceleration, further increases the probability of rail defects.
Zerbst et al. (2009a) found that irregularities in rails can significantly increase impact
loading. Zerbst et al. (2009b) stated that impact axle loads can significantly increase

bending and shear stresses in the rail and thus increase the probabilitgedecis

Traffic density: Annual traffic density is measured in millions of gross tons (MGT)

per year. Higher traffic density causes an increase in rail defects, especially-surface
initiated defects (Olofsson and Nilsson, 2002). Dick (2001) foundghpércent of service

failures occur on tracks with annual traffic levels above 100 MGT despite those tracks
representing only 12 percent of all rails (Dick, 2001). Dick et al. (2003) further found that

increases in traffic density have a significant impaclight rail

Annual wheel passesDick et al. (2003) found that the probability of rail service

failure increases as annual wheel passes increase and that, like traffic density, the effect is

magnified on the lighter rail (lower rail weight)

Track geometry exception Track geometry exceptions can be related to rail

alignment, cros$evel, curvature, overhead lines, gauge, profile, and warp (He et al. 2013,
2015). Jenkins et al. (1974) showed that the presence of geometry exception defects

generates aimncrease in dynamic wheel/rail loads. Zarembski et al. (2016) studied the
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relationship between geometry defects and rail defects based on data from two major
freight railroads in the United States. They found that the presence of track geometry

defects ca reduce rail life by an average of 30 percent

Prior vehicle-track interaction exception: A vehicletrack interaction

measurement system assists in the early identification of vehicle dynamics that can lead to
rapid degradation of track and equipment.tie measurement exceeds the defined
threshold, it is called vehicligack interaction exception. Vehieteack interaction could
represent the evolution of the vertical track level. The presence of v&laickeinteraction

exception is associated witthagher probability of broken rails (Vale and Calcada, 2013)

Turnout: Turnouts are essential components of railway infrastructure, which
provide flexibility to traffic operation. Turnout creates an environment of sharp rapid
diverging for the train. Dynaiminteraction between the train and turnout is more complex
than that on tangent and curved tracks. The high impact loads can generate serious damage
to the contact surfaces. (Xu et al., 2016). The dynamic interaction between the vehicle and
turnout affets the rail wear in railway turnouts, which affects the dynamic interaction in
reverse. Due to the abrupt changes in wingiécontact points, the profile wear aggravates
the wheelrail dynamic interaction and increases rail degradation as well. Dit(2083)
found that proximity to a turnout has a higher probability of a rail service failure. A number
of models have been used to simulate the dynamic interaction at the turnout. For example,
Sun et al. (2011) used the VAMPIREOdel Kassa et al. (2@) usedthe commercial muki
body system software GENSYS, Schupp et al. (2004) used the-boditi system

simulation pack SIMPACK, and Sebes et al. (2006) used the-Kertizian. These
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researchers have unanimously found that the presence of a turnowgesdresarisk of rail

defects

Rail grinding: Rail grinding removes surface defects and track surface

irregularities to reshape the rail profile, thus improving rail integrity. It can be used to
remove decarbonized layers on new rail, remove plastic flotalm&nd remove and
control the growth of short and long pitch corrugations, rail surface pitting, spalling, and
shells (Kalousek et al., 1989, Cuervo et al., 2015). There are preventive grinding and
corrective grinding. Preventive grinding aims to reméwe surface irregularities when
contact fatigue corrugations grow up to an average rail surface depth of 0.5mm. If crack
was not fully ground off by preventive grinding, corrective grinding with multiple passes
needs to be performed (Kalousek et al., 1988yr and BerAkiva (1996) used a statistical
model to show that rail defect rates decrease when grinding frequency increases. Van den
Bosch (2002) found that preventative grinding increased rail life, reduced rail corrugation,
and curbed the noise of wélegail interaction. Chattopadhyay et al. (2005) identified the

optimal grinding interval accounting for safety and economics

Ballast cleaning Ballast cleaning aims to replace small worn ballast with new

ballast. Failure to clean ballast can causeroper drainage, track support, and track
position. Kumar (2006a, 2006b) stated that proper ballast cleaning could reduce track stress

and thus reduce the rail defect risk

Temperature: Thermal stresses can influence rail defects and rail failures,
espe@lly for continuously welded rails (CWR). Compressions in the rail occur under high

temperatures, associated with thermal expansion of constrained rails. Thermal stresses
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increase the risk of sudden brittle rail failure, especially in winter season when
temperatures are low and the thermally induced tensile force is high. The occurrence of rail
failures is affected by ambient temperature (Jeong et al., 1997; Skyttebol et al., 2005), as
well as the difference between the rail neutral temperature and tratiopgéemperature
(Zerbst et al., 2009bDick (2001) found that in colder times of the year, rail defects are
more likely to result in broken railkiu et al. (2013) developeda model to quantify the

effect of seasonal variation for riddased inspeatn optimization. They found that broken

rails occur at a higher rate in colder weather. Zerbst et al. (2009b) studied the optimal

annual time to inspect rails due to temperature fluctuations by season

Joint or welded: Segments of rail are either weldegéther or connected at a joint.

Joint systems are favored in locations with low or moderate traffic density but high annual
temperature fluctuations, because it allows more room for expansion and contraction
(Kumar, 2006a, 2006b). However, rail jointsals r e pr es en't Aweak poin
system, resulting in a high impact load (Zong et al., 2013), and thereby causing rail defects

or failures. Continuous welded rails (CWR) reduce the risks associated with rail joints but
increases the risk of the trablickling under high temperatures. Furthermore, the number

of welds increases with successive repairs of rail defects and failures (Zhao et al., 2006),

and a portion of rail failures also occur due to defective welds (Dick, 2001)

Traction/brake section: A traction/brake section is an area of rail where trains

need to accelerate or decelerate. Due to the slipping action of wheels during starting and
when brakes are applied to the moving trains, the metal of the top of rails burns, which can
result in engie burns or worn rail. An et al. (2017) categorized traction/brake sections as

an environmental factor and as more prone to breakage due to higher longitudinal stresses
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Inspection: Considering the ultimate consequences of rail flaws or defects resulting
in broken rails, it is necessary to detect these flaws and take timely action to remedy them.
Rail flaws can be detected either by visual inspection or by rail flaw detection equipment
(e.g, nondestructive testing methods). The periodicity of rail flaw detection depends on
the sectional gross tonnage of the rail, speed limit, and other factors. Possibly, prior to
deteriorating into broken rails, some rail defects might be classified asuotatd¢ at the
time of rail flaw testing because defects might have been too small to be detected, or the
surface condition of the rails might have
Increasing testing frequency or using more advanceassohic/induction equipment may
lower this possibility. Inspection effectiveness depends on the inspection technology and
inspectorsd experience (Kumar, 2006b). A
inspectors catch crack occurrences and propagaaslier, which allows for earlier
remediation. Therefore, a higher inspection frequency would reduce the occurrence of
broken rails (but associated with higher inspection costs). Sourget and Riollet (2006) used

a statistical tool to optimize rail defdaspection frequency

Lubrication : The function of lubrication is to oil the running face of the outer rall
in order to reduce friction. It has been noticed that lubrication considerably reduces wear
by up to 50%. Thelen (1996) demonstrated that projpeickation of rails can help reduce
wheelrail interface friction, and thus reduce RCF and rail failures. This study also
suggested that the optimal lubrication applied to the rail should be based on the coefficient

of friction on the segment

F
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2.3 Statistical Models for Broken Rail Prediction

Understanding the relationship between broken rail risk and contributing factors
has been a core focus of broken rail risk management. A elosedintegrated
engineering model, which reflects the multivariate nature okéor rail risk, is complex
and difficult to generalize to specific operating scenarios. Therefore, many researchers
have attempted to simultaneously analyze the effects of multiple factors in the deterioration
process of rails using statistical (data ati@)lynodels. Reviewing such dadiaiven models
is the focus of this chapter. Table 2.2 provides an overview of the most significant research

undertaken overseas on the modeling of brokenrekited issues

Table 2.2 Statistial Prediction Model

Statistical
References Advantages Limitations
Model
Limited number offeatures
were involved;
Able to provide dinear
Only estimating lineal
Aglan and Gan, relationship  betweel
Linear relationship between outpt
2001; Jovanovic, output variable anc
regression variable and input variables
2004 input variables;
model Sensitive to output outlier;

Easy to apply
Only aitable for the

prediction of continuous

dependent output

Logistic Dick, 2001; Dick Able to involve the Difficult to develop the
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regression et al., 2002; interactionamonginput complex function between
model 2003; Schafer, features; explanatory variables and
2008; Sourget  Able to not only predict theresponse variable;
and Riollet, 2006 the  probability  of Ignoring the censore
broken rds on a events;
segment  but alst Not able to consider th
estimate the number ¢ time-dependent informatior
broken rails on a longe
track section
Unable to present
Schafer, 2008; guantitative functiona
Hybrid Able to account for all
Schafer and relationship between inpt
ANN/Logist possible interaction
Barkan, 2008a, variables and outpL
ic model among input features
2008b variable, which limits the
ability to be explained
Assessment of the Requires prior assumption «
Cox
impact of features on the reference rail breatsk
proportional
the entire lifetime of  rate at a given time.
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broken rails rails except for cumulative

gross tonnages

The following paragraphs describe each widely used statistical approach for broken

rail prediction.

2.3.1 Linear Regression

Aglan and Gar(2001) studied fatigue crack growth behavior of a premium rail steel
using a modified crack layer theory. The rate of energy expended on damage formation
and evolution within the active zone was evaluated. In their study, the crack growth was
simulated inthe laboratory with the determined maximum fatigue stress and stress ratio.
Constant loading was forced on the track. The simulation data in the laboratory was
collected and regressed to get three phases of crack growth: crack initiation, stable crack
growth, and unstable crack growth. In the stable crack growth process, the crack growth
and the cumulative traffic tonnage have a linear relationship. In their study, only traffic
was involved in the simulation, without considering the impact of other pdtéatars

on crack growth.

Overall, three limitations of linear regression analysis are as follows:

1 Itonly considers the measured parameters related to track geometry, which does
not directly reveal the impact of operational characteristics (train speedal
traffic tonnages, etc.) and other rail characteristics (rail age, turnout, bridge, etc.)

on track deterioration.
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1 It assumes a simple linear relationship between the independent variables and
dependent variables, which cannot capture possibly noonplex relationships.
It is also unable to structure the correlation and interaction between independent
variables.

1 It is more suitable for the prediction of continuous output, rather than the
prediction of discrete events like the probability of the ammae of rail defects

or broken rail defects

2.3.2 Logistic Regression

The logistic regression model is a statistical approach where the dependent variable
is categorical. It measures the relationship between the categorical dependent variable and
one or morendependent variables by estimating probabilities using a logistic function.
The logistic regression model has been used to describe service failure probabilities by
combining multiple variables to identify the multivariate correlations (Dick, 2001; Dick et
al., 2002; Dick et al., 2003, Schafer, 2008; Schafer and Barkan, 2008a, 2008b, Sourget and
Riollet, 2006). Stepwise regression was used to determine the most relevant parameters or
combinations of parameters. A probability threshold is determined toe¢stimhether one
broken rail is predicted to occur on the location. Logistic regression can provide
information to interpret the influence of each parameter on the dependent variable.

However, the limitations of this approach include:

1 It is difficult to dewelop the complex function between explanatory variables
and the response variable.

1 Itignores the role of time for the event to happen.
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1 Itis unable to consider tirdependent information

2.3.3 Artificial Neural Network

Artificial neural networks (ANN) have le@a used in various studies of event
prediction and classification. ANNs are computational tools that have the ability to learn
mathematical relationships between a series of input variables and their respective output
values. Schafer and Barkan (2008a; &f)0developed an artificial neural network model
for classifying track segment locations as either failure orfaiure. They add hidden
neurons one by one until the optimal network is obtained, in which the model accuracy and

generalization can achieam efficient tradeoff.

There are advantages and disadvantages using artificial neural network as a
classification tool. In terms of advantages, ANN is able to capture the nonlinear
relationship between input and output variables and possible interactioveehn inputs
variables. It also allows for customizing the objective function and learning techniques in
the neural network. The main disadvantage of the artificial neural network is that it is
difficult to present a clear functional relationship betwiepait and output variables, which
limits its explanatory ability. To overcome some of the disadvantages of simple ANN,
researchers proposed two types of hybrid model which combined artificial neural network
and logistic regression (Schafer, 2008; Schaidriarkan, 2008a; 2008b). The first hybrid
model applied a logistic regression model to-gekect the most useful variables and then
developed an ANN model based on these selected variables. The second hybrid model was
developed using the logistic regriessmodel to calculate the probability of broken rails

and added the calculated probability as an additional input parameter into the ANN model.
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The disadvantage of the hybrid model is that sometimes it might cause overfitting, which

reduces its efficiencwhen applied to unseen data

2.3.4 Survival Analysis

Survival analysis is generally defined as a set of methods for analyzing data where
the outcome variable is the time until the occurrencéroken rails In the existing
researches, the time to occuenf rail breaks (sacalled survival time) can be measured
in cumulative tonnages. As mentioned above, linear regrebs®ibeerused to model
continuous output variables as a function of a set of predictor variables. However, linear
regression is not suitablfor the modeling of survival timealue to its inefficiencyat
handling the censored observations which represent the information of survival time is
incomplete. Suppose tracks wetgveilledin a study for a period. A track which did not

experience theccurrence of rail breaks is said to be censored.

Severakurvivalmodds are available to analyze the relationdiepveerpredictor
variablesandthe survival time, including parametric, nonparametric and semiparametric
approaches. Parametric methodsuass that the underlying distribution of the survival
times follows known probability distributiongcluding parametric, nonparametric, and
semiparametric approaches. Parametric methods assume that the underlying distribution of
survival times may follovknown probability distributions, such as exponential or Weibull
distribution. Nonparametric models which do not represent a functional relationship
between survival times and predictor variables have not yet been used in broken ralil

analysis
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2.3.4.1Weibull Distribution

Exponential distribution assumes a constant hazard rate, which is not consistent
with empirical studies. Most of the other distributions used for parametric models do not
have closedorm expressions for the hazard rate in terms of predictahlas. As a result,
one commonly used distribution is the Weibull distribution with a scale parameter and
shape parameter. Weibull distribution is also a generalized form of the exponential

distribution.

Chattopadhyay and Kumar (2009) collected field dater a period of time and
developed a Weibull distribution model to estimate rail degradation accounting for
operational conditions, curvature, track, and environmental conditions. However, the
derivedhazard function was only the function of cumulatiertages. The collected field
data was divided into different groups according to different combinations of other
contributing variables. Corresponding failure models were developed related to each group.
Due to the limitation of the collected field datapsh of the groups had no rail failure
records. In their research, only the broken rail events were observed, wibhaken rails
being ignored. Therefore, the models regressed by the limited data might have a magnitude

of variances and biases.

Shyr and BnAkiva (1996) also used Weibull distribution to structure the
relationship between the probability of broken rails and the cumulative gross tonnages. In
addition, the model was extended to multiple types of broken rails. It was assumed that the
differenttypes of broken rails were independent, and the overall hazard rate was derived

as the sum of hazard rates from all potential types of broken rails. Furthermore, Shyr and
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BentAkiva (1996) also included variables, such as maintenance, metallurgy, anibopera
activities, in the hazard functions, in addition to cumulative gross tonnages. These variables
may change over time. Theoretically, the hazard rate was derived as a function- of time
dependent features. However, in their research, to make the mogéd,dine values of
features were assumed to change at most once a year. One limitation of their research is
that it only focused on the progressive deterioration of track from one defect to another

more severe defect, rather than the whole life cycleacktdeterioration

2.3.4.2Cox Proportional Hazard Regression

The Cox proportional hazard regression model (hereafter referred @ox
regression model) is used to present the rail break risk associated with the effects of various
influencing factors. It can calculate the hazard rate at any particular time given specific
explanatory variables. Here the time is measured by the cumeutatinages passing on
the rail. An et al. (2017) developed a ghdsed (segmetitased) model incorporating the
Cox regression model to evaluate the effect of explanatory factors on broken rail risk. The
coefficients of the explanatory variables can btemheined by the maximusikelihood
estimation method, which maximizes the probability with which rail breaks on grid
references occur simultaneously. The coefficients of the factors in the prediction model can
be interpreted as the corresponding changleeobroken rail risk with respect to variations
of each factor (An et al, 2017). The strength of teferencas that it considered human
factors (e.g., missing detection) and environmental factors (e.g., climate). Even though the
Cox regression model nacalculate the rail break risk given the cumulative tonnages of
rails and the corresponding features, there are still some limitations of the Cox regression

model. First, it requires prior assumption of the reference rail break rate at a given time,
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which depends on the rail characteristics and necessitates additional information from
experts, which is subject to simplification or human errors. Se€mdregressiomodel

ignores the change of the explanatory factors over. time

2.3.5 Markov Stochastic Model

Hokstad and Langseth (2005) modeled the rail degradation process within the fixed
inspection interval as a Markov chain. The final state of the Markov chain is rail failure.
Therall failure is divided into two categories: sudden failure and gradual degradati
failure. Any previous degraded states might transition into sudden failure and only the last
degraded state could degrade into the grad
research, the transition probabilities were estimated against thal atspection and
failure data. However, the probabilities are not related to any input variables (e.g.,
curvature, speed, traffic density, and others), which are constant regardless of the
associated characteristics of the locations. Meanwhile, theeeffic of Hokstad and

Langsethds research is subject to the effi

Bai et al. (2015, 2017) conducted research evaluating the deterioration of the rail.
Understanding that the deterioration process is uncertain, a Markov stochastic model was
used to describe the probabilities of the transition from one deterioratiotostatether.

A linear relationship was developed between the Markov transition probabilities and the
heterogeneity of the track section, such as gross tonnages and curvature. The parameters in
the linear function were estimated via a maximumtlibglihood function. The Markov
transition probabilities represent the probability from one degradation state to another after

the constant inspection interval. However, there are still some disadvantages of the Markov
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stochastic model in that research. First, atBohinumber of deterioration states were
considered in Markov stochastic model. Theoretically, the track degradation process
should be continuous, and track deteriorates gradually as the cumulative gross tonnage
increases. Second, that research assume@-to-@me correspondence between Markov
transition probabilities and research period interval (e.g., half a year). The Markov
transition probabilities matrix in their research were estimated based on the collected field
data whose inspection period is camit If the inspection period changes, the probabilities

must be recalculated using updated inspection data.

2.3.6 Fuzzy LogicModel

The fuzzy logic model is a good mathematical tool for modeling a process that is
distinguished by subjectivity, uncertainty, amg ui t vy, and I mprecisiol
(2012) used the fuzzy logic model to predict the frequency of broken rails in terms of input
variables. Four input variables are involved in the fuzzy logic model, including temperature,
rail age, gross tonnage, aodrve degree. The membership function for output variable,
number of broken rails, involves three fuzzy sdtsv, mid, and high. The fuzzy logic has
the following advantages: 1) it enables making decisions based on incomplete and
imprecise informationand 2) it does not rely on the previous states. However, there are

still some disadvantages to use the fuzzy logic model:

1 The fuzzy logic model works efficiently to predict the number of broken rails
on track sections only when the length of track seci®l@ge. As a result, the

accurate prediction on a small track section is not available.
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1 The membership function of the fuzzy logic model should be defined based on
expert knowledge.
1 The fuzzy logic model only focuses on analysis at a fixed time. liotaafiect

the rail deterioration process during the entire lifetime of the rail

2.3.7 Reliability Model

Zhao et al. (2006, 2007a) applied a reliability model to predict the number of
derailments by modeling the development of rail defects leading to railsbasakell as
derailments. The risk of derailment is measured by the expected number of rail breaks
multiplied by the severity of rail break. Four soiodels were integrated to predict the
occurrence of rail defects and breaks, including a weld defectcpogdmodel, fatigue
model, impact of grinding model, and imperfect inspection model. They assumed that rail
fatigue defects follow a Weibull distribution and imperfect inspection follows a non
homogeneous Poisson process. This research is able to eathelatrobabilities of weld
defects and fatigue defects, respectively. Accounting for the influence of the imperfect
inspection and grinding maintenance, the probability of broken rails was obtained with pre
defined parameters. The difficulty in using tie&ability model is the prelefinition of the
probability required in the model. I n addi
for the impact of other features (track characteristics and defect histories) on the broken

rails except for the grogsnnage

2.4  Machine-Learning-Based Model

With the support ofastgrowing volume and diversity of available data as well as

the advanced big data analytics, the application of machine ledvagegl models has been



34

prevailing in the recent researches. Chd &moi (2017) applied convolutional neural
network to detect rail crack based on crack damages. This apsaachune to shooting
conditions of test images. Support vector machine method was used fdestanctive
detection of rail defects based onration signals which are resulted from rail defects (Sun
et al.,, 2014). The research result pibvibke effectiveness of support vector machine
method.In addition, atreme gradient boosting algorithm (XGBoost) was developed to
address the impact of traclk@metry on development of rail defects (Mohammadi et al.,
2019). This approach correctly predidabout 83% of rail defects based on tonnage and
track geometry data. Tantithamthavorn et @016) proposed automated parameter
optimization of machine leaimy classification techniques for defect predictions. They
concluded that parameter settings can indeed have a large impact on the performance of

defect prediction models.

2.5 Derailment Severity Estimation Model

Simulation and statistical analysis are the tvasic approaches used in previous
studies to model train derailment severity. Simulation models predict the response of
railroad vehicles to specific traekd environmental conditions. These models are typically
based on nonlinear wheslil interactionmodels. For example, Yang et al. (1872973
developed a simulation model to determine the effect of ground friction, mating coupler
moment, and brake retarding force on the number of cars derailed. They found that the
position of the first car involvei the derailment (called pouuf-derailment, or POD) and
derailment speed could affect the number of cars derailed (Yang et alg, 1972). In
the | ate 1980s, Yang et al . 6s model was

independent car motiofCoppens et al., 1988; Birk et al., 1990). The precision of
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simulation models is subject to the accuracy of modeling train derailment dynamics. In
addition to simulation models, train derailment severity can also be estimated based on
historical data. S@aomanno and EHage (1989, 1991) developed a truncated geometric
model to estimate the mean number of cars derailed as a function of derailment speed,
residual train length, and accident cause. Finally, all previous derailment severity models
focused omaralyzing the mean number of cars deraileu et al. (2018) developeda
zerotruncated negative binomial (ZTNB) regression model to estimate the conditional
mean of train derailment severity with historical derailments on U.S. Class | railroad
mainlines fom 2001 to 2010. Meanwhile, a quantile regression (QR) model is also
developed to estimate derailment severity at different quantiles. However, these models
may involveseveral assumptions (e.g., oxdspersed count vables) in the processed
datasetsMartey and AttorOkine (20B) employed vie copula quantile regression model

to predict conditional mean and quantiles of derailment severity and found that vine copula
guantile regression model performed better at predicting at various quevdikthan the

classical quantile regression appraach
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CHAPTER 3

DATA DESCRIPTION AND PREPARATION

3.1 Introduction

A wide variety of field dataollections wereconduded to better undestandthe
condition and behavior of various rail assatsl they play a pivotal role in this research.
The collected data comes from two sources: the FRA accident database and enterprise
l evel Abi g datao fr om on e-raCdemiment data domesi g h't
from the FRA accident database, which records the time, location, severity, and
contributingcause(spf each train accident. Using this database, brokibicaused freight
train derailment data on the main tracks of the studied Clag#solachcould be obtained
for analyzing the relationship between broken rail and bro&itaused derailments, as
well as brokerrail derailment severity. The data provided by the railroad company
includes: 1) traffic data; 2) rail testing and track getmyn@spection data; 3) maintenance
activity data; and 4) track layout dafFifteen raw databases were received and listed in

Table 31 below for the entire railway netwodoveringthe periodgrom 2011to 2016.

The railroad network containsver 20,000 track milesincluding main lines (to
include multiple tracks on the maimgich are laid in parall@l siding, and yard tracks.
The research in thdissertatiorfocuses on the main line trasokhich include singlérack,

andmultiple tracks.The details are listed ihable3.2.
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Table 3.1 Summary oProvidedRailroad Data

Dateset Description
Rail Service Failure Data Broken rail data from 2011 to 2016
Rail Defect Data Detected raibefect data from 2011 to 2016

Track Geometry Exception Dai Detected track geometry exception data from 201

2016

VTI Exception Data Vehicle-track interaction exception data from 201z
2016

Monthly Tonnage Data Gross monthly tonnage and qaass data from 201
to 2016

Grinding Data Grinding pass data from 2011 to 2016

Ballast Cleaning Data Ballast cleaning data from 2011 to 2016

Track Type Data Single track and multiple track data

Rail Laid Data Rail laid year, new rail versug-laid rail, and rail
weight data

Track Chart Track profile and maximum allowed speed

Curvature Data Track curvature degree and length

Grade Data Track grade data

Turnout Data Location of turnouts

Signal Data Location and type of rail traffic signal

Network GIS Data Geographic information system data for the wh

network
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Table 3.2 Track Mileagefor Each Type oMain Line Track

Track Type Track Miles
Single Track 13,513
Multiple Tracks 7,126

3.2 Database Description

As noted abovefifteen datasetsre collected and provide raw supplementary
feature information foa specific track locatiarDatais collected at a specific point on the
rail or on smaller segmenkmsed on the type of measure. The details of each dataset are

presented in the following sections.

3.2.1 Track File

This databasencludesthe type of a specific segmeittt specifies the startg and
ending milepost locationsy prefix and track numberThe track file database is used as a
reference database to overlay all other databases (T&hlelt3contains more thaB00

prefixes.

Table 3.3 TrackFile Format

Prefix StartingMilepost EndingMilepost Track Type

3.2.2 Rail Laid Database

This database contains rail weight, new rail versdgiderail, and joint versus
continuous welded rails (CWR) (Table4B.Figure 3.1 illustrates the total rail miles in
terms of rail laid year and rail type (jointed radrsus CWR). The figure shows that most

welded rails were laid after the 1960s and most joint rails were laid before the 1960s on
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this railroad. This research will focus tre CWR that accounts for around 90 percent of

total trackmiles

Table 3.4 Rail Laid DataFormat

Prefix Starting Endng Track | Rail | Rail Rail | New | Joint

Milepost | Milepost | Type | Side | Weight | Gang| /Relad | Weld

Joint or Continuous Welded
1,200 1 - W
-

1,000+

800

600 -

Total Track Miles

400~

200+

0l | ‘ BLALL
1900 1915 1925 1935 1945 1955 1965 1975 1985 1995 2005 201
Rail Laid Year

Notes: W = welded rail; J = jointed rail

Figure 3.1 Distribution ofRail Laid Year

3.2.3 Tonnage Datdase

In the tonnage data file, gross tonnage, foreign gross tonnage, hazmat gross tonnage,
net tonnage, hazmat net tonnage, tonnage on each axle, and number of gross cars that have
passed on each segment are recorded monthly. Every segment in the tonnabtgeislata f

distinguished by prefix, track type, starting milepost, and ending milepost. This research
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uses the gross tonnage and number of gross cars (Tapl&raffic tonnage is recorded

on segments with varying lengths with an average length of 1.76 miles

Table 3.5 TonnageDataFormat

Prefix Starting | Ending | Track Monthly | Monthly | Year Month
Milepost | Milepost| Type Gross | Number

Tonnage| of Cars

3.2.4 Grade Database

Grade data describes the vertical slope of ground measyveccentThe grade is
recorded by dividing the entire network into smaller segments with an average length of
0.33 miles. The grade data format is illustrated in T&8d®e The average gradaf the
railroad network weighted by lengtls approximately zeroFigure 3.2 illustrates the

histogram of thg@ercent of the graden the railroad network.

Table 3.6 GradeDataFormat

Prefix StartingMilepost Endng Milepost Percent
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Figure 3.2 Distribution of Grade (Percent)

3.2.5 Curvature Database

Curvature data includes the degree of curvature, length of curvature, direction of
curvature, super elevation, offset, and spiral lengths. For the segments that are red includ
in this databasat is assumd that they are tangent tracks. There are approximately 5,800

curvetrack miles (26% of the network track miles). The curve data format is illustrated in

4.0 45

Table 37. Figure 3.3 shows the distribution of the curve degredemnailroad network

Table 3.7 CurvatureDataFormat

Prefix

Starting
Milepost

Ending
Milepost

Track
Type

Curve

Spiral

Curve

Degrees

Curve

Direction

Curve
Superelevation
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1,200

1,000 A

800 A

600 A

400 A

Total Track Miles

200 A

1.0 20 3.0 40 50 6.0 7.0 80 9.0 10.011.012.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0

Curve Degree

Figure 3.3 Distribution ofDataCurvature Degree (Curved Portion Only)

3.2.6 Track Chart

Track chart provides information on the track, including division, subdivision, track
alignment, track profile, as well as maximum allowable tspieed. The maximum freight
speed on the network is 60 MPH. The weighted average speed on the network is 40 MPH.

The distribution of the total segment length associated with speed dasagdisted in

Table 38.
Table 3.8 Distribution of Speed Categes
Speed Category (MPH) Total Track Miles Percentagef Network
0~10 1,571.79 7.7%
10~ 25 4,237.83 20.7%
25 ~40 5,210.90 25.4%

40 ~60 9,482.31 46.2%
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3.2.7 Turnout Database

Turnout data includes the turnout directidarnout size and other information
(Table 39). There are around 9,000 total turnouts in the network, with an average of 0.35
turnouts per tracknile. The distribution of track types with turnouts is illustrated aible

3.10.

Table 3.9 TurnoutDataFormat

| Prefix | Milepost | Turnout Direction | Diverging Prefix | Turnout Size |

Table 3.10 Track Type Distribution of Turnouts

Track Type Number of Turnouts
Single track 6,436
Multiple tracks 4,675

3.2.8 Signal Database

Signal data indicates whether a track is in a signalized territory (Tdld)e Bhere
are approximately 14,500 track miles with sigaalouning for 67% of track milesf the

railroad network.

Table 3.11 SignalDataFormat

Prefix StartingMilepost EndingMilepost SignalCodé

! Descriptions of signal codes are presented in Appendix A.
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3.2.9 Grinding Database

Rail grinding passes are used to remove surface defects and irregularities caused by
rolling contact fatigue between wheels and the rail. In additiorgmatiing could reshape
the railprofile, resulting in better load distribution (Kalousek et al., 1989, Cuervo et al.,
2015). The grinding passes for rails on the two sides of the track are recorded separately.

Low rail passes and high rail passes are geduin the dataset (Table 3)1For tangent

rail, the left rail is the low rail and the right rail is the high.rall

Table 3.12 Grinding DataFormat

Date | Subdivision| Prefix | Track | Starting | Endng | Low Rail | High Rall
Type | Milepost| Milepost | Passes Passes
Table 3.13 Distributionof GrindingFrequenezswith Respect tdrear
Total Grinding
Grinding Grinding-Rail-
Year Grinding- Passes per
Frequency Miles
Rail-Miles Rail-Mile
0 35,191
1 12,935
2011 31,848.1 0.72
2 3,475
2+ 2,888
0 21,287
2012 1 16,297 35,220.5 0.79
2 4,216
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2+ 2,690
0 20,558
1 19,949
2013 33,232.1 0.75
2 2,348
2+ 2,635
0 21,152
1 16,354
2014 33,558.0 0.75
2 5,008
2+ 1,975
0 20,091
1 21,085
2015 30,074.6 0.68
2 1,755
2+ 1,558
0 21,998
1 15,438
2016 32,575.3 0.73
2 5,245
2+ 1,809
3.2.10 Ballast Cleaning Datdase
Ball ast cleaning replaces the Adirtyo

The locations of ballast cleaning are identified using prefix, track stpgjngmilepost

and enthg milepost (Table 34). The total mileage of ballast cleaning egefar is listed

in Table 3.5.

W
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Table 3.14 Ballast Cleaning Data Format

Year | Prefix | TrackType | Starting Milepost | Ending Milepost | Pass Miles

Table 3.15 Total TrackMileageof Ballast Cleaning by Year

BallastCleaning | Ballasted Track | Total Track Miles with
Year
Frequency Miles Ballast Cleaning
1 900
2011 1,149
1+ 116
1 1,609
2012 1,864
1+ 122
1 1,335
2013 1,763
1+ 193
1 1,735
2014 2,393
1+ 285
1 1,862
2015 2,299
1+ 213
1 932
2016 1,166
1+ 99

3.2.11 Rail Defect Database

Various types of rail defectduring periods from 2011 to 20Hse recorded in the
rail defect database. There are 25 different types of defects recorded. A necessary
remediation action can be performed based on the type and severity of the detected defect.

There are 31 different action typescorded in the databada thisresearch, the numbers
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of each type of rail defects will be considered as input variables for predicting broken rail
occurrence. The top 10 defect types account for around 85 percent of total defects (Figure

3.4). Figure 3.5 shows the distributiohremediation actions to treat defects

TDD 21,539 (26.50%)
W 9,873 (12.15%)
Ssc 9,198 (11.32%)
I3
£ EFBW 6,738 (8.29%)
(a]
& BHB 4,587 (5.64%)
]
[}
g HW 4,308 (5.30%)
sSD 3,679 (4.53%)
EBF 3,165 (3.89%)
VSH 3,089 (3.80%)
HSH 2,736 (3.37%)

Notes: TDD: detail fracture; TW: defective field weld; SSC: shelling/spalling/corrugation; EFBW&achk
electric flash butt weld; BHB: bolt hole crack; HW: head web; SD: shelly spots; EBF: enginéracture;
VSH: vertical split head; HSH: horizontal split head.

Figure 3.4 Top 10 Defect Types During 2011 and 2816

2 All the types of rail defects are listed in Appendix A.
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R 30,374 (37.37%)

A 23,378 (28.76%)

S 13,261 (16.31%)

RE 8,625 (10.61%)

UN 3,823 (4.70%)

Type of Remediation Action

AS 1,828 (2.25%)

Notes: R: replace or remove rail section; A: apply joint/repair bars; S: slow down speed, RE: visually
inspect or supervise movement; UN: unknown; AS: apply new speed.

Figure 3.5 Distribution of Six Types of Remediation Action from 2011 to 2016

3.2.12 Broken Rail Database

The broken raildatabase contains 6,356oken railsduring the period from 2011
to 2016. Of the top 10 types of broken rails that account for around 87 percent of total
broken rails, the distribution of each type is shown in Figure 3.6bidken railresulting
from defect type BRO (broken rail outsidenpbar limits) is dominant, which accounts

for 28.3% of the total broken rails
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BRO 1,804 (28.38%)
TDD 1,300 (20.45%)
T™wW 904 (14.22%)
T BHB 306 (4.81%)
o
C
Qe CH 272 (4.28%)
(@]
P —
m
%S DR 265 (4.17%)
(]
S
~ BB 179 (2.82%)
VSH 174 (2.74%)
EFBW 170 (2.67%)
DT 152 (2.39%)

Notes: BRO: broken rail outside joint bar limits; TDD: detail fracture; TW: defective field weld; BHB: bolt
hole crack; CH: crushed head; DR: damaged rail; BB: broken b&&#i: vertical split head; EFBW: in
track electric flash butt weld; TDT: transverse fissure

Figure 3.6 Top 10 Types of Broken Rails from 2011 to 2916

3.2.13 Track Geometry Exception Datdase

Track geometry was measured periodicallgl aras corrected by taking necessary
maintenance or repair actions if needed. There are 31 types of track geometry exceptions
(track geometry defects) in the database provided by the railroad. Eight subgroups of track
geometry exceptions, in which similaxoeption types are combined, are developed. The

distribution ofeightsubgroups is listed in Figure 3.7

3 The pictures of top ten types of broken rails are listed in Appendix A.
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Gage 97,584(22.03%)

Cant 97,497(22.01%

Cross-level_CLIM 88,688(20.02%

Warp 31 62,959(14.21%

Warp 62 26,095(5.89%)

Type of Geometry Exception

Profile/Surface 25,800(5.82%

Alignment 22,889(5.17%

Speed/Elevation 21,524(4.86%

Figure 3.7 Track Geometry Exception by Type from 2011 to 2016

3.2.14 Vehicle-Track Interaction (VTI) Exception Datebase

The Vehicle Track Interaction (VTI) System is used to measure car body
acceleration, truck frame accelerations, and axle accelerations, which can assist in early
identification of vehicle dynamics that might lead to rapid degradation of track and
equipment When vehicle dynamics are beyond a threshold limit, necessary inspections
and repairs are implemented. The VTI exception data contains the information about
exception mileposts, GPS coordinates, speed, date, exception type, aneufolations
for theperiod from 2012 to 2016. There are eight VTI exception types, and the distribution

of each type is listed in Figure 3.8

4 The details of track geometry exceptions are described in AppAn
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Axle Vertical 18,090 (26.9%)

Truck Lateral 14,055 (20.9%)

VTI ClusterRule 1 11,076 (16.5%)
VTI ClusterRule 2 9,800 (14.6%)

Car Body Vertica 5,625 (8.4%)

Type of VTI Exception

VTI Combo Cluster 4,918 (7.3%)

VTl Combo McoCluster 2,761 (4.1%)

Car Body Latera 913 (1.4%)

Figure 3.8 Distribution of VTIException Types from 2012 to 2016

3.3 Data Preprocessing and Cleaning

The fdlowing sections describe the processing and cleaning of raw data, in order
to build an integrated central database for developing and validating machine learning

models

3.3.1 Unify Data Column Names

To start,this researchinified the formats of the column namand value types of
corresponding columns in each database, especially for the leoaideddatacolumns.
1 Prefix: an upto-3-letter coding system working as route identifiers.
1 Track Type: differentiate between single track and multiple tracks.
1 StartMP: Starting milepost of one segment, if available.
1 End MP: Ending milepost of one segment, if available.
1 Milepost: If available, used to identify points on the track.

1 Side: Including right side (R) and left side (L) to distinguish different sidesdfdlk.
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3.3.2 Detection of Data Duplicate

One of the common issues in data analysis is the duplicated data record. There are
two common types of data duplications: (a) two data records (each row in the data file
represents a data record) are exactly the sach¢bdammore than one record is associated
with the same observation, but the values in the rows are not identical, whietaiteso
partial duplication. To determine the duplicates, selecting the unique key is the first step
for handling duplicate recordSelection of unique key varies with the databases. For the
databases which are tinnedependent (meaning that this information is not {steamped),
such as curve degree and signal, a set of location information is used to determine the
duplicates. Forhte databases which are tidependent, such as the rail defect database
and service failure database, time information can be used to determine the duplicates.
Meanwhile, using the set of location information alone is likely to be not sufficient to
identify data duplicates because of possible recurrence of rail defects or service failures at
the same location. Figures 3.9 to 3.12 show some examples of data duplicates in certain
databasedn the following tables, the actual location information is maskegréserve
privacy.

Prefix MilePost TrackType Curve Degrees Curve_Elevation Curve_Direction Offset Spiral_1 Curve_Length_PARTIAL Spiral_2
ABC 143.6 sSG 10.17 2.5 L 2597 310 220 130
ABC 143.6 SG 7 2 L MNaM MNalN 80 130

Figure 3.9 Example of Partial Duplication in Curve Degree Database

Prefix  Start MP End MP Signal Code
ABC 801.5 801.51 YL-S
ABC 801.5 801.51 YL-S

Figure 3.10 Example of Exact Duplication in Signal Database
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Prefix  StartMP End MP Signal Code  Signal
ABC 3236 32351 CP
ABC 3236 323561 YL
ABC 32361 32362 CP 1
ABC 32361 32362 YL 0

(=R

Figure 3.11 Example of Partial Duplicatiom Signal Database

Prefix  TrackType Start MP  End MP Side Defect_Types Date_Found  Defect Size
ABC SG 1752 175.21 L SDZ 7/26/2013 20
ABC SG 175.2 175.21 L SDZ 7/26/2013 20

Figure 3.12 Example of Exact Duplication in Rail Defect Database

Different strategies for handling data duplications are listed below. Talbde 3.1
shows the selection of unique keys and proper strategies for databases. For the databases

which are not listed in Table &lit has been verified that no duplicates exist

1 Record Elimination: For exact duplications, there are two options for removing
duplicates. One is dropping all duplicates and the other is to drop one of the
duplicates

1 Worst Case Scenario Selection: For a partial duplication, select the-caeest
scenario value. For instance, over the junction of two consecutive curves, it is
possille that two different curve degrees were recorded. In this case, assign the

maximum curve degree to the junctig¢iihe connection point of two different

curves.
Table 3.16 Strategies for Duplication
Database Unique Key taldentify Data Duplicate Deduplication Strategy
Curve Prefix, track type, milepost, side Greater curve degree

Signal Prefix, milepost, signal code Drop either one
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Rail Defect Prefix, track type, milepost, side, defe Drop either one
type, date found, defect size
Service Failure Prefix, track type, milepost, side, de Drop either one

found, failure type

3.3.3 Information Combination for Right Rail and Left Rail

Some databases differentiate between the left and right rail of the same track. For
instance, the rail defect database can specify the side of the track where the rail defect
occurred. Also, the rail laid database can specify the rail laid date for dacbf $he rail.

However, some other databases cannot differentiate track sides, such as track geometry
exception database and turnout datab@isis. researcltombine the data from two sides

of a track. It is possible that two sides of the track haverdiitecharacteristics. When
combining the information from the two sides of the track, there are five possible values

for each attribute. They are nSelect ei tt
AMaxi mumo. The princi pl e hetfackssdo setthe trackgat pr e f
thefworse condition. For example, in terms of rail age, when combining right rail and left

rail, the older rail age between right rail and left is selected, while for rail weight, the
smaller rail weight is selected. Thapproach assigns more conservative attribute data to

each segment. The details are listed in the Table B.1 in Appendix B.

3.4  Data Integration

To develop the comprehensive database, all of the collected data from all sources
except geographical information sy (GIS) data would be trackable using a reference

database (which is the track filsed in this researghlhe reference database contains the
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location information (route identifieor prefix, starting milepost, ending milepost, and
track type) withoutinformation on any features affecting broken rail occurrence. The
information from each database which would be mapped into the comprehensive database

is listed in Table 3.4. Figure 3.13 also presents the maliurce data fusion process

Table 3.17 Information from Each Database Involved in the Integrated Database

(Partial List)

Database

Information

Service Failure

Rail Defect
Geometry

Exception

VTI Exception
Tonnage
Grinding

Ballast Cleaning

Rail Laid

Track chart
Curve Degree

Grade

Failure found date, failure type, curvatuoe tangent, curve
degree, rail weight, freight speed, annuahffic density,
remediation action, remediation date

Defect found date, defect type, remediation action
Geometry defect type, geometry defect dasgk class reducec
due to geometry exception, geometry exceptipnority,
exception remediation action

VTI type, VTI occurrence date, VTI priority, VTI critical
gross tonnagenumber of car passes,

grinding passes, grinding location

Ballast cleaning date, ballast aiéag location

Rail weight, rail laid year, rail quality (new rail or-la&d rail),
joint rail or continuous welded rail

Maximum allowedfreight speed

Curve degree, supetevation, curve direction, offsetpiral

Grade(perceny
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Turnout Turnout direction, turnout size
Signal Signal code
Location
; ¥ y
Prefix Track Type Milepost
S— S
Rail Defect DefectType P - Rail Laid
Year
Raw Databas
Location
- Attributes
Broken Rail Broken Rail - I
Layout ——
Attributes - Curve
Geometry Geametry Exception _ ——
Exception Operational
Attributes ——_—
Vehicle Trac i
E VTI Exception Maintenance - Grade
Attributes P—
R
Annual Traffic
[ Density Defect - fumout
Traffic History —
——
Tonnage
e CarPasses . Ballast
e
— —
Track Chart Speed - Grinding
e e

Figure 3.13 Data Integration

The minimum segment length available for most of the collected databases was 0.1
mile (528 ft). There are ov&06,000 track segments, each 0.1 mile in length, representing
an over 20,600 traekile network All supplementary attributes from other datalsase
would be mapped into the reference database based on the location index (Figure 3.14).
This process is known as data integration. The location index contains information

including prefix, track type, start MRand End MP. In the reference database, each
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supplementary feature for one location represents information series which cover the

period from 2011 to 2016.

Database #2 Database #3

Database #1 Traffic ’ Geometry ‘ Database #4
Rail laid ‘ ’ | Rail defects
Database #
u | Other databases
o v .......................................................................................................
i Integrated

Location | Timestamp | Railad | Trafic | Geometry | Rai defects | € Lifetime

Dataset

Servicefailure

Database #15

Figure 3.14 Data Mapping to Reference Location

3.4.1 Handling Information Contradiction

Contradiction is aonflict between two or more different nomll values that are
all used to describe the same property of the same entity. Contradiction is caused by
different sources providing different values for the same attribute of the same entity. For
example, tonnge data and rail defect data both provided the traffic informatnoimay
have different tonnage values for the same location. Data conflicts, in the form of
contradictions, can be resolved by selecting the preference source based on the data source
thati s assumed to be more fireliabl eo. For exa
failure database contain locatigpecific curvature degree information. If there is

information conflict on the degree of curvature, the information from the curvature
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database is used based on the assumption
data. The comprehensive database only retains the value of the preferred source.8able 3.1

shows the preferred data source for the attributes that have potentiaticziion issues

Table 3.18 Preferred Database for Each Attribute

Attribute Datebase Containing the Attribute PreferredDatabase

Curve degree  Service failure, rail defect, VTI exceptio Curve degree
curve degree

Rail weight Service failure, rail defect, rail laid Rail laid

Freight speed  Service failure, rail defect, track chart Track chart

Annual traffic ~ Service failure, rail defect, monthly tonnag Monthly Tonnage

3.4.2 Handling Missing Values

Handling missing data is enimportanttask when overlaying information from
different data sources to a reference dataset. Different solutions are available depending on
the cause of the data missing. For example, one reason for missing data in the integrated
database is that thevegas no occurrence of events at the specific location, for instance,
grinding, rail defect, and service failures, &gl the blank cells for this type of missing
data with zeros because they represent no observations of events of interest. The other
reason for missing data is that there is a missing value in the source data. For this type of
missing dataSelectthe preferred value to fill it. Take the speed information in the
integrated dataset as an example. Approximately 0.1 percent of the trackknkbaso

missing speed information. The track segments with missing speed information would be
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filled with the mean speed of the whole railway network. Tabl® Isfs the preferred

values for the missing values of each attribute

Table 3.19 Preferred Values of Missing Information

Preferred Value Attribute

Mean value Rail laid year, speed, grade, rail weight, montbhbnnage
number of car passes, grinding, ballast cleaning

Zero Curve degree, curvelevation, spiral, turnout, turnout size, r
defect, service failure, track geometry exception, VTI excep!
measure of VTI exception

Worse case Signal, rail quality (new rail versus-faid rail)

3.4.3 Feature Construction

In theintegrateddatabase, twtypes of attributeésinglevalue attribute and stream
attribute were mappedFigure 3.15) A singlevalue attribute is defined as a time
independent attribute, such as rail laid year, curve degree, grade, etc. A stream attribute
(aka time series data) defined as a set of thane-dependent datduring a period. For
most stream attributes, the period covers from 2011 to 2016, except for the atifibute
vehicletrack interaction exception, which covers from 2012 to 20%&nty timestamps
are definedvith a unique time interval of three months from Janu&n2012 to extract
shorterperiod data streasnin order to achieve that, a time window would be introduced.

A time window is the period between a start and end time. A set of data would be extracted

through the time window moving across continuous streaming data.
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From: 2011. 1.1

End: 2016. 12.31

Location

Time-independent

Data stream

Figure 3.15 Structure of the Integrated Database

Tumbling windows are one common type of time windows, which move across

continuous streaming data, splitting tlaeger data stream into finite sets of small data

streans. Finite windows are helpful for the aggregation of a data stream into one attribute

with a single value. In thieesearchtumbling window is applied to split the data stream

into finite sets.

In a tumbling window (Figure 3.16), events are grouped in a single window based

on time of occurrence. An everg within only one window. A timeébased tumbling

window has a length dfi. The first window (w) contains events that arrive at the tifiae

andTo + Ti. The second window () containsevents(e.g, occurrence of rail defects in

this researchthat arrived between the tinfe+ T) andTo + 2T,. Thelength of theumbling
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window is T; and none of the windows overlamdeach tumbling window represents a

distinct time segment.

W, W, A W,

€ € €3 €4 € € €7 €3 €9 €10 €11 €12 €13 €14 €15 €4 €17 €15 €
I T I I I 1

To To+T, To+2T, To+3T, Tot 4T, To+ 0 tTime

Note: erepresents theth event

Figure 3.16 Example of Tumbling Window

In thisdissertationthe tumbling windows usedo split the larger stream data into
sets of small datatreams(Figure 3.17 and Figure 3.18). The length of the tumbling
window is set as half a year. Two features are extracted by two consecutive tumbling
windows as shown in Figure 3.17 and Figure 31&ee timestamps are assigned to
|l ocation ALocl10 (Figure 3. dndependertdeaturdasshre t hr
unchanged for #ALoclo. Taking rail def ect é
grouped by the tumbling window. Fortimestam@2 01 3. 1. 106, two tumbl i
generated: Window 1 from 2012.7.1 to 2012.12.31 and Window 2 from 2012.1.1 to
2012.6.30. One feature about rail defect isttial number of rail defects that occurred in
Window 1, which is from 2012.7.1t0 2012.1231and i s denoted as fADe
feature about rail defect is the count number of rail defects that occurred in Window 2,
which is from 2012.1.1 to 2012.6. 30, and i
failure which occurred after timest@n2013.1.1, the lifetime is calculated by the days
between the timestamp and the date of the nearest (in terms of time of occurrence) service
failure. The event index is set to 1, which represents that service failure was observed after

the timestamp. Ifitere was no service failure after timestamp 2013.1.1 (Figure 3.18), the
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lifetime would be calculated by the days between the timestamp and the end time of
i nformation stream fi2016.12.310. The event

failure was not observed after that specified timestamp.

From: 2011. 1.1 End: 2016. 12.31

Loc 1 Time-Independent Time-Dependent Information Stream

2013.1.1 [2013.7.1 [2014.1.1)

nearest service failure
from timestamp

) ¢
Timestamp || |0 | | riveindeendent | Lfetime | | Event 201211 || 2012.7.2 u
2013.1.1 ¢ ime-independen L1 1 2012.6.30 || 2012.12.31
Timestamp ) Lifetime | | Event 2012.7.% 2013.1.2 L2
2013.7.1 Loc 1 Time-Independent| L2 1 2012.12.31|| 2013.6.30
Timestamp ) Lifetime = | Event 2013.1.% 2013.7.2 L3
2014.1.1 Locl ) \imeindenendent e 1 2013.6.30 | 2013.12.31

Figure 3.17 Feature Construction with Nearest Service Failure in the Study Period

From: 2011. 1.1 End: 2016. 12.31

Loc 1 Time-Independent| Time-Dependent Informatiop Stream

2018.1.1] [2013.7.1 [2014.1.1

Timestamp ) Lifetime | | Event 201213 || 2012.7.% L
ORI | Loc ! | | Timendependent \Sg 0 2012.6.30 || 2012.12.31
Timestamp Loc1 | | Timemndependent | Lifetime | Event 2012.7.% 2013.1.% L2
2013.7.1 oC (RS MEEEeEn L2 0 2012.12.31|| 2013.6.30
Timestamp ) Lifetime | | Event 2013.1.% 2013.7.1 L3
2014.1.1 Loc1 | [Nmeindecendent i 0 2013.6.30 || 2013.12.31

Figure 3.18 Feature Construction without Nearest Serweadure in the Study Period
3.5  Exploratory Data Analysis

Exploratory data analys (EDA) is conducted to develop a preliminary
understanding of the relationship between most of the variables and broken rail rate, which

is defined as the number of broken raitemalized by some metric of traffic exposure.
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Because many other variables are correlated with traffic tonnage, broken rail frequency is

normalized by tormiles in order to isolate the effect of ntimnagerelated factors. The

result of exploratory dat@nalysis is summarized in Tald20. The following sections will

detail the EDA finding for each variable based on the tataore recent years in the

database (i.2013 to 201k

Table 3.20 Summary of Exploratory Data Analis Results

Variable Relationship with Broken Rail Ra@per Billion TortMiles)
Broken rail rate first increases and then decreases with
increasing rail age. The turning point for rail agati40 years.

Rail age (yea)

The nonmonotonous relationshipay bedue to the correlation

between rail age and annual traffic density.

Rail weight (Ibs/yard

Broken rail rate decreases monotonously witlieased rail

weight.

Curve degree

A higher rate is associated with a higher curve degree.

Grade (percent)

Broken rail rate increases witticreasinggrade.

Maximum allowed

speed (MPH)

Higher roken rail rate is associated wltdwer maximum

allowable speed on track.

Rail quality

Relaid rail has a higher broken rail rate thawrail.

Traffic density

(MGT)

A higherbroken railrate is associated with a lower annual tra

density.

Prior track geometry Broken rail rate increases in the presence of prior track geol

exceptions

exception defects.
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Broken rail rate increases in the presence of Midr
Prior VTI exceptions
exceptions.

Broken rail risk initially decreases and then increases with

increasing grinding passes. The turning point is at one rail
Grinding grinding pass per yeafFhe nonmonotonous relationshipay be

due to the differenpurposesssociated with different grinding

operations

Ballast cleaning Broken railratedecreases with ballast cleaning.

Rail Age

The broken rail ratearecalculated for each category of the rail age (T&124).
The ratesaredetermined by dividing the total number of broken rails thaikaurred in
a certain category of rail age by the total-toikesin that categoryWith increasing ralil
ages, the lmken rail rate per billion tomiles first increased and then decreased. The
turning point of the rail age &t 40 years In other words, rail aged around 40 years (e.g.,
30-39 years, 4019 years) has the greatest number of broken rails per billiomiles. The
possiblereason is that rail age might have correlations with other variables, for example
traffic tonnage and maintenance operations, which bring a compoundteffettter with
rail age on broken rail rat€igure 3.19 shows the correlation betm rail age and annual
traffic tonnage, in which annual traffic tonnage is decreasing as rail age inckases.
on this assumption, theumbers obroken rais per mileare calculated for categories of
the product of annual traffic densgs (MGT) andrail ages years). It is shown in Table
3.22 that the increasing product of annual traffic tonnage and rail age increasas biee

of broken railgpertrackmile.
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Table 3.21 Broken Rail Rate (per Billion TeMiles) by Rail Agg,

All Tracks on Mainlines, 2013 to 2016

Rail age Number of Number of broken rails
(years) broken rails Billion ton-miles per billion torrmiles
1-9 515 380.50 1.35
10-19 591 333.06 1.77
20-29 555 250.90 2.21
30-39 940 355.36 2.65
40-49 533 203.22 2.62
50-59 128 52.50 2.44

60 and above 16 8.84 1.81
40 ¢

-

Q

2 30

[«B)

(@)

@

c

&

= 20

&

=

< 10

[

C

<
0 1 1 1 1 1 1 J

1-9 10-19 20-29 30-39 4049 50-59 60+
Rail Age (Years)

Figure 3.19 Mean Annual Traffic Tonnag@MGT) in Terms of Rail Age Categories
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Table 3.22 Broken Rail Rate (pefrack-Mile) by Product of Annual Traffidonnage

and Rail AgeAll Tracks on Mainlines, 2013 to 2016

Number of Number of broken rails
Traffic x age(MGTx years) broken rails Trackmiles pertrack-mile

0-300 825 30,956 0.027
300-600 598 13,655 0.044
600-900 579 9,418 0.061
900-1,200 510 6,319 0.081
1,20061,500 295 3,647 0.081
1,500 and above 470 4,501 0.104

Rail Weight

The broken rail rate in terms of the rail weight is presented in Bak8e It shows
that, all else being equalhaavier rail with darger railweightis associated with a lower
broken rail ratemeasured by number of broken rails per billiontoifes. This conclusion
is consistent with previous studiesd, Dick et al., 20, 2003). Stress in rail i®lated to
rail section and weight. Smalldighter rail sections experience more stress under a given

load and may be more likely to experience broken rails.

Table 3.23 Broken Rail Rate (per Billion TeMiles) by Rail Weight,

All Tracks on Mainlines, 2013 to 2016

Rail weight Number of Billion ton- Number of broken rails per

(Ibs/yard) broken rails miles billion ton-miles

115 and below 288 72.57 3.97
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115122 452 156.83 2.88
122132 1,022 384.29 2.66
132136 1,490 830.20 1.79
136 and above 356 235.24 1.51

Curve Deqgree

Curvature increases rail wear and causes additional shelling and defects that might
increase the probability of broken rails (Shyr and-B&iva, 1996). Table3.24 presents
broken railrates by curve degree Tangent trackbadaround 70 percent of brokeails,
butthe broken rail ratper billion tormilesis smaller tharthat oncurvaturetracksdue to
much larger traffic exposure (in terms of 4omles) on tangent track$én terms of tracks
with curves, the sharper curves involve higher broken rais.rBtevious research also
showsthat curved rails are more likely to have failures all other conditions being equal

(An et al., 2017; Dick, 2001).

Table 3.24 Broken Rail Rate (per Billion TeMiles) by Curve Degree,

All Tracks on Mainlines, 2013 to 2016

Billion Number of broken rails
Curve degree Number of broken rails ton-miles per billion tonmiles
Tangent 2,501 1,217.87 2.05
0-4 837 372.45 2.25
4-8 222 78.56 2.83

8 or more 48 10.5 4.68
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Grade

The effect of grade is illustrated in TalBl@5, in which the broken rail rate for each
gradecategory (0- 0.5 percent0.51.0 percent, and over 1.(percen} is presentedit
indicates that increasing gralas slightly greater broken rail rate. The highest broken rail
rate is on the tracks with the steepest slope (gremie percent 1)0Steep gradenight
increase longitudinal stress due to the amount of tractive effort and braking floeceby

increasebroken rail pobability Dick, 2003 An et al., 2017)

Table 3.25Broken Rail Rate (per Billion TeMiles) by Grade,

All Tracks on Mainlines, 2013 to 2016

Number of Billion Number of brokemails per
Grade (percent) broken rails ton-miles billion ton-miles
0-0.5 2,778 1,296.31 2.14
0.51.0 668 309.35 2.16
1.0+ 162 73.47 2.21

Rail Grinding

Rail grindingcanremove defects and surface irregularities from the head of the rail,
which lowers the probability of broken rails dtefracture originating inrail head As
mentioned previouslythere arepreventive grinding and corrective grindirfgreventive
grinding is normally applied periodically to remove surface irregularities, and corrective
grinding with multiple passes eatime is usually performetb removeserious surface

defects.
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As Table3.26 shows, broken rail rate withit any grinding (0 grinding pass) is
higher than that with preventive grinding pasékes research presumes one grinding pass
indicates preventativgrinding). This mayimply that preventive grinding can reduce
broken rail probabilitycompared with the case of no grindindgpowever, the broken rail
rate associated with more than one grinding pass is higher than that associated with just
one grinding pss. The multiple grinding passes, which might be scheduled as corrective
grinding passes, are associated with higher broken rail. rEtés is analogous to the
fichickenandegg problem There are more defects, and therefore corrective grinding is
usedBecause there is no identification of the type of grinding (preventive versus corrective)

in the database, the assumption and observation mentioned above need further scrutiny.

Table 3.26 Broken Rail Rate (per Billioifon-Miles) by Grinding Passes,

All Tracks on Mainlines, 2013 to 2016

Grinding passes Number of Number of broken rails
per year broken rails Billion ton-miles per billion tonmiles
0 835 294.32 2.84
1 1,836 998.06 1.84
2+ 937 386.74 2.42

Ballast Cleaning

Ballast cleaninguiims toreplae small worn ballasts with new ballasts. TaBl27
shows that the broken rail ramgthout ballast cleaning islightly higher than thatvith

ballast cleaning. This potentially illustrates that proper ballast cleaning can improve
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drainageandtrack support, which woulthusreduce the probability ddroken gils (Kumar

2006a, 2006b).

Table 3.27 Broken Rail Rate (peBillion Ton-Miles) by Ballast Cleaning, All Tracks on

Mainlines, 2013 to 2016

Ballast Number of broken Billion ton- Number of broken rails pe
cleaning rails miles billion ton-miles

No 3,151 1,454.47 2.17

Yes 457 224.67 2.03

Maximum Allowable Track Speed

To studythe relationship between track speed and broken rail rate, broken rail rates
were calculated for each category of track spé€dble3.28). The distribution indicates
that broken railon Class 4 or abovesgeed above 40 mphaccountfor over half ofthe
total number of broken railsutthebroken rail rat§number of broken rails per billion ten
miles), is the lowestInstead, the highest broken rate is associated with maximum track
speed from 0 to 25 mpthat corresponds tBRA trak Class lor Class 2. The possible
reason is that maximunallowable track speed is also correlated to other track
characteristicsengineering anthaintenancstandardsHigher track class, associated with
higherrail quality, would bear higher usageigher traffic density) which requires more

frequent maintenance operations accordingly.



71

Table 3.28 Broken Rail Rate (per Billion TeMiles) by Track Speed, All Tracks on

Mainlines, 2013 to 2016

Track Number of broken
speed FRA track Number of Billion ton- rails per billion ton
(MPH) class broken rails miles miles
0-25 Class 1 &2 430 132.48 3.25
2540 Class 3 1,075 348.2 3.08
40-60 Class 4 2,103 1,197.73 1.76
Rail Quality

The broken rail ratewith respect taail quality (new rail versus raid rail) are
listed in Table3.29. In terms of the number of broken rails, new rails involve four tohes
thatfor re-laid rails. However, after normalizifgoken railfrequency by traffic exposure

in ton-miles, the broken rail rate of-taid track is higher than that of new rails

Table 3.29 Broken Rail Rate (per Billion TeMiles) by Rail Quality, All Tracks on

Mainlines, 2013 to 2016

Number of broken  Billion ton- Number of broken rails per
Rail quality rails miles billion ton-miles
New rail 2,484 1,299.83 1.91
Relaid rail 644 196.68 3.27

Annual Traffic Density

The annual traffic density is measured in gross million tonnages (MGT). 3.@0le

lists the broken rail ragsby annual traffic density categories. There is an approximately
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monotonic trend showing thathigher annual traffic densityategoryis associad witha

lower broken rail rate. Rail tracks withhigher traffic densitcategory(> 20 MGT) have

a smaller number of broken rails per billiontaiies, which is around half of that on tracks
with alower traffic density (< 20 MGT). Thpossiblereasoris that annual traffic density

was probably correlated with other factors, such as rail ag&Artrack classin Figure

3.19, it is shown that higher annual traffic density is associated with smaller rail age. A
trackwith higher annual traffic densiig more likely to have higher FRA track class and

correspondinghjhavemore or better track inspection and maintenance.

Table 3.30 Broken Rail Rate (per Billion TeMiles) by Annual Traffic Density (MGT),

All Tracks onMainlines, 2013 to 2016

Annual traffic Number of Billion ton-  Number of broken rails per
density (MGT) broken rails miles billion ton-miles

0-20 947 276.42 3.43

20-60 2,153 1,100.65 1.96
60and above 508 302.06 1.68

Track Geometry Exception

The distribution of broken rail rate by track geometry exception is in TaBle
Around 94 percent of broken rails occurred at locations which did not experience track
geometry exceptionsvhich covered 98 percent of the traffic volume in 4woiies. In
contrast around 6 percent of broken rails occurred at locations that experienced track
geometry exceptions, which accoedtor only 2 percent of traffic volume in temiles. In

other words, the broken rail rate at locations with track geometry excepsons
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approximately three times as highthatat locations without track geometry exceptions.

A similar conclusion was also found in the literature (&grembski et al., 2016).

Table 3.31 Broken Rail Rate (per Billion TeMiles)by Presence of Track Geometry

Exceptions, All Tracks on Mainlines, 2013 to 2016

Track geometry Number of Billion ton- Number of broken rails per
exception broken rails miles billion ton-miles
No 3,403 1,644.92 2.07
Yes 205 34.21 5.99

Vehicle-Track Interaction Exception

Table3.32 presents the number of broken rails, traffic exposuresbiaien rail
rate by vehicldrack interaction (VTI) exceptions and non VTI exceptiohound 2.8
percent of broken rails occurred on tracks vathHeast oné/TI exception, while these
locations onlyhad0.3 percent of traffic volunsg(in ton mileg. The broken raitate with
occurrence of vehickrack interaction exceptions is six timasthat without occurrence
of vehicletrack interaction exceptionsiowever, the results herein may be subject to
statistical uncertainty given the much smaller sample size arfit tralume for the

trackage with VTI exceptions.
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Table 3.32 Broken Rail Rate (per Billion TeMiles) by Presence of Vehicl&€rack

Interaction Exceptions, All Tracks on Mainlines, 2013 to 2016

Number of broken Number of broken rails
VTI Billio n tonmiles
rails per billion tormiles
No 3,507 1,670.84 2.10
Yes 101 8.29 12.18

Correlation betweennput Variables

Correlation betweennput variables is measured by correlation coefficient to
measure how strong Enear relationship between two variables iBhe correlation
coefficient is determined by dividing the

standard deviations.

) (3-1)

where

" = correlation coefficient

® & @GR = Covariance of variabled andd®

‘O @ = expected value (mean) wdriableX

, = standard deviation @d

, = standard deviation @b

®, ® = two measured values
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In general, the value of the correlation coefficient can vary betwleand 1110

indicates gperfectly negativelinear correlation.flo indicates gperfectly positive linear

correlation. 0 means that there islimear correlationbetween the two vairides. Figure

3.20 shows the correlation matrix between the variables. Below are the major findings

observedrom the correlation matrix:

T

1

The most remarkable correlation occurs between maximllowed track speed
and annual traffic density. There is a pios! relatiorship (correlation coefficient
is 0.51)between these two variables, which means higher annual traffic density is

associated with higher maximuatiowedtrack speed.

Annual traffic density is also correlated with rail qualjbhew rail versuge-laid
rail). New rail is associated with higher annual traffic dengitgrrelation
coefficient is 0.46Wwhile relaid rail is associated with lower annual traffic density

(correlation coefficient is0.46)

Curve degree has a negative correlation whth maximum allowd track speed
(correlation coefficient is0.35) This represents th#te tracks with higher curve

degres are associated with lower maximwathowedtrack speesl

Rail age and annual traffic density have a negatweelation (correlation
coefficient is-0.26), which meanghe older rail isassociated with lower annual

traffic density which is also shown in Figure 3.19
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CHAPTER 4

TRACK SEGMENTATION

The track segmentation process is an important step for broken rail prediction.
However, to our knowledge, little prior research is available to provide guidance for

segmenting railway networks in order to pregiotential broken rail locations.

4.1  Fixed-Length versus FeatureBased Segmentation

There are two types of strategies for the segmentation proiesd:length
segmentation andeaturebased segmentationfixed-length segmentationdivides the
whole network into segments with a fixed length. Featurebasedsegmentation, the
whole networkcan be dividedinto segments with varying length#. fixed-length
segmentation is applied and the small adjacent segments are combined, these combined
segmentsnay have different characteristias certaininfluencing factors (e.gtraffic
tonnage, rail weight) affecting broke rail occurrenthis combination would introduce
potentially large variance into the database and further affect the pregietionmance.
Forfeaturebasedsegmentation, segmentation features are useé&surghe uniformity
of adjacent segments. It is feasible to group and combine these adjacent segments under
the condition that these adjacent segments embody similar fea@itieerwise, these
adjacent segments are isolatéeaturebasedsegmentation can reduce the varianodhe

new segments.
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All features involved in the segmentation process can be divided into three
categories: (1) trackayoutrelated features, (2) ipsctionrelated features and (3)
maintenanceelated features, as illustratedTiable4.1. The trackayoutrelated features
are the essential information of rail and track, such as rail age, curve, grade, rail weight,
traffic tonnage®tc. The tracklayout-related features would keep consistent on a relatively
longer track milepost in generdlhe inspectiofrelated features refer to the information
obtained according to the measurement or inspection records, stiEtkageometry
exceptiors, detectedrail defects and VIl exceptions These featuresnay change
frequentlywith time and locationsFor example, te rail defect information can only be
recorded when there is an inspection and the equipment or worker finds thésjdefs,
it is possiblethe more inspectia) the more defectmight be found This canlead to
uncertaintyfor broken rail predictionThe maintenaneeelated featuregcludegrinding,
ballastcleaning rail repair or maintenance efifferent types of maintenance actsomay

have different influences on raiitegrity.

4.2  Track Segmentation Strategy

As mentioned above, there are two types of segmentation strategiedefigéu
segmentation antkaturebased segmentatiofrurthermore, Here are two methods for
featurebasedsegmentation: statifeaturebased segmentation adgnamicfeaturebased

segmentatioiiTable 4.1) The details will be introduceaks follows.
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Table 4.1 Track Segmentation Strategy

Segmentation Fixedlength  Featurebased segmentation

strategies segmentiion  Staticfeaturebased Dynamicfeaturebased
segmentation segmentation

Considered  None Tracklayoutrelated Tracklayoutrelated

features featureqiincluding traffic  featuresinspection
tonnage) related features

maintenanceelated

features
Rules The length of  If the difference between Thefbesbsegment
the newly two adjacent O-nile lengthis foundby
emerged segments in feature value minimizinga pre
segment is is abovea given threshold defined loss function

fixed there will betwo different
new segments, otherwise
these two 0.Amile
segments are merged intc

one segment

During the segmentation process, the whole set effld network segments are
divided into different groups. Each group should keeputhiéormity on eachsegment
Aggregation functions are applied to assignupdatedvalues to the new segment. The
aggregation functions are given in Tadl@. Specifically, the average valgef nearby

0.1-mile segments for features such as the tra#figsity and speeateassigned to the new
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segmentand the summation valus usedfor features such as rail defects, geometry

defects and VTéxceptions

Table 4.2 Feature AggregatioRunction in SegmentatidArocesgPartial List)

Features Operation
Traffic density Mean
Rail weight Minimum
Rail age Maximum
Rail defect Sum
Broken railnumber Sum
Grindingpasses Mean
Ballast cleaning Mean
Geometry defects Sum
Speed Mean
Curvein degree Maximum
Gradein percent Maximum
VTI exceptions Sum

4.2.1 Fixed-Length Segmentation

The fixedlength segmentation is the segmentation strategy that usqzehe
defined fixed length to merge consecutive Orille segmentscompulsively, without
accounting forthe variance of the features on these segments. This feeggtlentation
strategy can be understood as a moving average filtering along the rail line. In the example

shown in Figurel.1, there are a total of fiftegii5) 0.1-mile segments. The values of two
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features, rail age and annual traffic density, are described by two lines. In thiefigéu

segmentation, a pmetermined fixed length is set to 0.3 miles. Therefore, three

consedative 0.Xmile segments are combined. For example, segmentsAicomposed of

the original 0.imile segmerg 1 to 3. The rail ages of these three-file segments are

not identical being 20, 20, and 2gears,respectively. The rail age assigned to the ne

segment Al should be the mean value of these three vdie1.3 years).

1 Advantages Fixedlength segmentation is the mastaightforwardeasiestapproach
for track segmentatioand thesegmentatiomlgorithm is the fastest.
1 Drawbacks: Theinherentdifference ofcertainfeatureson the same segment mbg

significant which would affect the modeling accuracy.
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Figure4. 1 Schematic Illustration dfixed-Length Segmentation

4.2.2 Feature-Based Segmentation

Featurebased segmentation aims to combine uniform segments together.

uniformity is defined by the internal varian@ee. variance among the Grhile segmenis

The
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on the new segment. The uniformity is measured by the information vidgsh is
calculatedby summingthe weighéd variances on involved features. The formula shown
below is used to calculate the information lobs.featurebased segmentation, the
information loss, 1 @ Gshould beminimized (ideally zero)vhen determining the length

of anewly mergedsegment.
, 1 @O B, ;0 2OO&RA (4-1)
where
A: the feature matrix
n: number of involved features
0 gthe® column ofod

0 dthe weight associated with theh feature

O O&\ : the standard deviation of thvth column of®

The loss function can be interpreted falows. Gven multiple featuresthe
information loss can bealculatel bythe weighted summation of tiseandard deviation of
each featureThe information lossgepesens the internalvarianceof records ofthe
involvedfeatures. The smaller the value of the loss functions fitetten the segmentation
resultcan be due to minimizing the internal variances of selected features on the same
segmentation. Ideally, wiin the same segment, selected feature values should be identical

or close, while on different segments, at least one feature significhifitlys.

StaticFeature-basedSegmentatia

In preparation fostaticfeaturebased segmentatiosegmentation features should

be selected to determine the uniformity of the adjacenimild segments. The static
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featurebased segmentation only uses the tlagbutrelated(static)features to measure

the informationlosswhen combining consecutiveggaents to a new longer segmelnt.
staticfeaturebasedsegmentation, the information loss| @ Oshould beminimized to
zerowhen determining the length of newly mergadymentThe weights associated with
each involved segmentation features are identidderefore, statifeaturebased
segmentation is an adaptive segmentation scheme in atsiegment is assigned when at
least one involved feature changBgyure 4.2 shows an illustrativestaticfeaturebased
segmentation example. The selected segmentdktatures might be continuous or
categorical. For categorical features, the uniformity is defined by whether the features
among 0.imile segments aralentical For continuous features, a toleraritbeeshold
should beusedto define the uniformity. Iftie difference of continuous feature values of
adjacent segments is smaller than the defined tolertmeeniformity still exists.In this
research, fofeaturebased segmentation, 10% of the standard deviation of differences of
continuous features of the/o consecutive O-inile segments is used as the tolerance. In
the example as shown in Fig#, two features, rail age and annual traffic density, are
both continuous variables. In order to simplify the illustration of the segmentation process,
it is assumed that the differences of each value for each feature are beyond the tolerance.
In the example, fifteen O-thile segments are combined into seven new, longer segments.

A new segment is assigned when any involved feature changes.

1 Advantages Staticfeadurebased segmentation is easy to understand, and the
algorithm is easy to design. The internal difference of statiée@ilreinformation is

also minimized.
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1 Drawbacks: When considering more features, the final merged segments can be more
scatteredvith alarge number of segmentatioide difference of featurdmetweerthe
adjacent 0.Amile segmentssuch as maintenance and defespectionhistory, are
difficult to be considereth staticfeaturebased segmentation because theyparet-

specialized evenison-static)
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Figure4. 2 Static-FeatureBased Segmentation

DynamicFeature-BasedSegmentation

Differing from fixed-length segmentation and stateaturebased segmentatipn
dynamicfeaturebasedsegmentation is the segmentation strategy that uses an optimization
model to minimize a preefined loss function to find th@esb segment length around a
local milepost. All features are used to calculate the information lossdnrotevaluate

the internal difference dhe mergedegmerg. The optimization modas shownas
0 AOCIibETioi (4-2)

, 1 @O0 B. ;0 2D0RA (4-3)
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where
0 : feature matrix withx rows (the number of O:finile segments i& )
n: number of involved features
0 :the"@hcolumn ofd (the"ah feature)
0 dthe weight associated with th¢h feature

O O\ : the standard deviation of tivth column of®

With a fixed beginning milepost, find the best thatis associated with the
minimum informationloss.0 indicates deature matrix associated with consecutive
0.1-mile segmerd. The optimizatiormodel can be interpreted as: finding the best segment
length to minimize the loss function, from all possible segment combinations. One example
is illustrated in Figurd.3. To solve the optimization modeteration algorithms usedo
optimize the segnm¢ation and get the approximately optimal solutiBesidesthe loss
functionis also employed tarfd the best segment length. For the example shown in Figure
4.3, two features are involved fdiynamicfeaturebasedsegmentation, which are rail age
and anual traffic density. The weights associated with the two features in the information
loss function are assumed to be the same. To illustnégetype ofsegmentation, the
minimum length of combined segment is set to 0.3 miles. It is shown that the minimum
information loss is obtained dhe original segment 8. Then the other segments are

combined to develop another new segment.

1 Advantages Dynamicfeaturebased segmentation takes all featurélsoth time
independent or timdependent)nto consideration. The influence of the diversity of
involved features can be controlled by changing the weights in the loss function.

Dynamicfeaturebasedsegmentation caalsoavoid the combined segments being too
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short Therefore, this type of segmentation strategy might be more appropriate for

networkscale broken rail prediction.

Drawbacks: The computation is timeonsuming comparedvith fixed-length
segmentation anskatic-featurebased segmentatiomhe developmendf algorithm is

more complex.
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Figure4. 3 DynamicFeatureBased Segmentation
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4.3  Comparison of Track Segmentation Strategies

To compare the performance of differes¢gmentation strategies, numerical
experiments are conducted. In this section, the performance of threelefngtd
segmentation setups, eightnamicfeaturebasedsegmentation setups, and one feature
based segmentatiosetup are compared The area under the receiver operating
characteristicfROC)curve is used as the metdiROCis a graph showing the performance
of a classification model at all classification thresholdse area under the curve (AUC)
measures the entire twbmensional areanderneath the entire ROC curltas one of the
mostwidelyusede val uati on metrics for checking any
with two main advantages. Firstly, AUC is scalgariant andmeasures how well
predictions are ranked, rather thdreit absolute valuessecondly, it isclassification
thresholdinvariantandmeasures the quality of the model's predictions irrespective of what
classification threshold is chosdn.general, he hgher the AUCIs, the better the model

performs

To conpare the performance of different segmentation strategies, Naive Bayes
classifier is used as a reference model to evaluate the performance of a segmentation
strategy. Naive Bayes classifier is used to select the optimal segmentation beategpe
of its fastcomputation speed. The segmented data selected by the Naive Bayes method will

later be applied in other machine learning algorithms.

The comparison result is shown in Tald. U-0.2, U-0.5, and U1.0 represent the
fixed-length segmentation witfixed segmentength of 0.2 mils, 0.5 miles, and 1.0 mile,

respectively. For thelynamicfeaturebasedsegmentation, E1L to D-8 represent eight
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alternativesetups, in which varying feature weights in the loss function are assigned
respectively. Idynamicfeaturebasedsegmentation, the involved features are categorized
into four groups. Features in Group 1 are related to the number of car passes. Group 2
contains features which are associated with traffic density. Group 3 contains features which
are relatd to the track layoutand rail characteristicsuch as curve degree, rail age, rail
weight etc. Features in Group 4 are associated with defect history and maintenance history,
such as prior defect history and grindpagsesThe feature weights assignedeach group

in eachdynamicfeaturebasedsegmentation setups are in Tadlé.

Table 4.3 Comparison of Differenfegmentation Strategies

Static
Fixed-Length Feature
DynamicFeatureBasedSegmentation
Segmentation Based
Segmentatio
U-
U-0.5|U-1.0 D-1 D-2 |D-3 D-4 D-5 D-6 |D-7 D-8
0.2
Average
0.20
Segmen 0.500(1.000 [0.300 0.621/0.282|0.377%0.36(0.327%0.197%0.22(0.341
0
Length
0.70
AUC 0.704{0.700 |0.813 0.832|0.777/0.8210.7930.7960.8250.8270.804
5
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Table 4.4 Feature Weights in DynamieeatureBased Segmentation

Group 1 Group 2 Group 3 Group 4
D-1 100 10 1 1
D-2 1 1 1 1
D-3 0 1 1 0
D-4 1 0 0 0
D-5 1 1 0 0
D-6 10 5 1 1
D-7 10 10 5 1
D-8 20 20 1 1

As shown in Tabld.3, thedynamicfeaturebasedsegmentation with the 1 setup
performs the best using the AUC as the mefar theD-1 setup, features about number
of car passes have the largest weight. Features abouttrdakil characteristicaswell
as features about defect history and maintenance history have the least weights in the loss
function.The new segmented dataset contains approximately 664,000 segments including
twenty timestamps. There are 37,162 segmexperiencing at least onedien rail from
2012 to 2016, accounting for about 5.&@%the whole dataseBy comparison, in the
original 0.Ekmile dataset, there a#7,221 segments (1.1%) with broken rails among

4,143,600 segments.

4.4  Chapter Summary

There are thresegmentatiorstrategies to segment thailroad network fixed-

length segmentation, stafieaturebased segmentation, andynamicfeaturebased



90

segmentatiorFixedlength segmentation does not accountdaturevarianceon the same
segment Static-featue-based segmentation only accounts for the ttag&utrelated
features(time-independentor static featuresyand ha two limitations. Firstly, when
considering additional features for network delineation, the segments can be more scattered
and shorterSecondly, based on the exploratory data analysis, the presence of geometry
exceptionsand rail defects could increase the broken rail réddewever, in the static
featurebased segmentation, defeetated features are nobnsideredAmong these three
segnentation strategiegthe dynamiefeaturebasedsegmentation schemasing aloss
function is shown to have the highg&rformance (using AUC as the metnigingthe

Naive Bayes algorithmThe possiblereason is that dynamieaturebased segmentation
minimizes the feature varianced the merged segmentk the following chapteb, a

broken rail prediction mode$ proposed in which theput and outputlata is generated

usingdynamicfeaturebased segmentation strategy.
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CHAPTER 5

DEVELOPMENT AND VALIDATION OF BROKEN RAIL PREDICTION

MODEL

The objective of this chapter is to predict broken rail probability using machine
learning algorithms empowered by fagbwingrailroadi bi g dat ao, Fel at ec
level track characteristics, maintenance activities, traffic and opesatierwell agrack
and rail inspection historie§o developan efficient, highaccuracy prediction model, a
novel, customized Soft Tile Coding bdsieural Network model (STGIN) is proposed
to predict the probability of broken rail occurrermetime and locationThis chapter will
introduce feature creation, feature transformation, feature selectamtel development

and validation.

5.1 Nomenclatures, Variables, and Operators

Table 5.1 Nomenclatures, Variables, and Operators

TerminolExpl anati on

STAEN Sofft-CediBaged Neur al Net wor k
N N Neur al Net wor k
MCP Mu l-Gliassi fication Probl em

BCP Bin@€rgssification Probl em
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Tot al Predictable Time Ranc
TPTR
t he -NSNNCmodel
FI R Feeding I mbal ance Ratio
I R | mbal ance Rati o
TPR Tr Pes i Ra tvee
FPR FalPs&i Ratvee
ROC ReceiOper aGhiamgct eri stics
AUC Ar &ad0OC Curve
Vari abl Denotation
t A variable representing a t
) Lifeftiam®marti ng ta bmseeatvearttriieomond
Y broken rails oti meadiegmeanl s ¢
a The number s off tdtoedliinngg f or
£ The number of tiles in a ti
Q The initigaglthotisengof the
Y'Y The Il ength of the time ran;
O™\ e Ti-eecoded vect'ow tdhf pairdaigded t
YUY R Softdmecoded vect™aw tcdf pairdaiade
— The weigbusabfnat wor k
Q An input feature set of on¢
The outtpiedteceodetd veciNNr mofde
n "G—
parameta@gnyen I nQut feature
0 MROMBARQ i s a batch of input
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Y "YAYHRY i s a batch of inpuD |
n The out putofpjdneahbiltehtiyni Itihre
Y The efcfoevcetriavgee j+t at it o i-tel i thihle
n’ The pr obabadfl jjtthye tdielrteshi ittryi It ihre
¥Y QhQ p¥YY Q Y i s t he |
oY i ntersection bet jaehent itliierhei n
and t he midnge
fl "6 e The | oss f u\NNctnioodrelof STC
| The | earning rate o-NNtmadaeli
Y A |ifetime threshold used t
. A probabiludged ttha esthtol @lut &
’ i nto binary value
The bliakely generated fYaosm
0 "WY
threshol d
o The bliakhely gendbdbatre,d iraoam
0 "@
threshol d
OperatoDenotation
06 Y The cumul ative probadinivty
ofoo A mapping dtroo nv@®vcetcotro r
Fohdcfbhehd A rangdet 6 r om
0] A set with discrete el ement
(00 An operator to obtain the |
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5.2  Feature Engineering

Featureengineering is an important process of model development which aims to
improve model accuracy or efficiency. Among feature engineering in this dissertation,
feature creation, feature transformation and feature selection ardadcFeature creation
focuses on deriving new features from the original features, while feature transformation
is used to scale the range of features and normalize the-kehafidd features (e,qaumber
of rail defects) by segment length. Feature cd&la identifies the set of features that

accounts for most variances in the model output.

5.2.1 Feature Creation

Original Features

The original features in the integrated database include:
Rail age (year), which is the number of years since the rail wakafdst
Rail weight (Ibs/yard)
New rail versus rdaid rail
Curve degree
Curve length (mile)
Spiral (feet)
Superelevation (feet)
Grade (percent)
Maximum dlowed operational speed (MPH)

Signaled versus nesignaled

To P Po Po Po Bo o o Do Do Do

Number of turnouts
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Number lallast cleaning
Number of ginding passes
Number of car passes

Annual goss tonnages

Number of broken rails
Number of rail defects (by type)

Number of track geometry exceptiory type)

o o o Po o Do o Do

Number of vehicldrack interaction exceptions (by type)

CrossTerm Features

In addition to considering the features individuathis research alsmonsides the
interaction items (i.e. creating cretesm features). In this study, creesm features can
be products, divisions, sums, the differences between two or more features. In addition
to finding the product of rail age and traffic tonnages, the mtsdof rail age and curve
degree, curve degree and traffic tonnage, rail age and track speed, and others are also
created. The division between traffic tonnage andwaightis calculated. In terms of the
sums of some features, the aim is to combinesspelasses or sparse categories. Sparse
classes (in categorical features) are those that have very few total observations, which
might be problematic for certain machine learning algorithms, causing models to be
oveffitted Taking rail defect types as araenple, there are more than ten different types
of rail defect recorded in the rail defect database. However, several rail defectatgbes
occur, which belong to sparse classes. To avoid spatsity,researchgroups similar
classes together to forrarber classe@vith more observationsfinally, this researclean

group the remaining sparse classes into a
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how many classethat each feature need$he decisioralso depends on the size of the
dataset ath the total number of other features in the database. Later, for feature selection,
all possible crosserm featuresriginating fromraw features in the databaese calibrated

and the optimal combination of featurs® selectedb improve the modeperformance.

The creation of crosterm features is done based on the data structure and domain

knowledge The selection of croderm features is conducted based on model performance.

5.2.2 Feature Transformation

Min-Max Normalization

The range of values siomefeatures in the database varies wid&lyr instance,
the valuemagnitudedor traffic tonnage andurve degreean bevery different. For some
machine learning algorithms, objective functionsay not work properly without
normalization. Feature normalizat makes each feature contribpt®portionately to the
objective function. Moreover, feature normalization can speed up the convergences for
gradient descenthat are used in various machine algorithm trainings. Mimax

normalization is calculated usitige following formula:

I — (5-1)

wherex is an original value, andv  is the normalized value for the feature.

Categorization of Continuous Features

There are two types of featureategorical (e.gsignaled versus nesignaled) and

continuous (e.gtraffic density).The categorization of ationtinuous features aa¢so done,
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besides retaining the original continuous tylper instance, track speed is in the range of
0 to 60 mphwhich can be categorizea accordance witkRA track classin the range of

[0,10], [10,25], [25,40], [4660], which designatesack classes from 1 to 4, respectively.
Feature Distribution Transformation

The distributions of continuodeatures valueare calculated. It is found that some
featuresare distributed skewed towards one directiofransformation functions are
appliedto transform the feature distribution irdmormal distributionin order to improve
the performance of the predictiafgorithm (T r a w iet@k, RG1Y. Forexample, Figure
5.1 plots the distributions of traffic tonnages before and after feature transformation. The
distribution of raw traffic tonnages is distributed skewed towards smaller values. However,
traffic tonnages areistributed approximately normally after logarithntransformation.
Normalization of feature distribution through feature transformation could benefit the

convergence efficiency of the model, especially for machine learning models.

Frequency
Frequency(Log)

Annual Trafic Tonnage Annual Trafic Tonnage

(a) Before (b) Atter

Figure5. 1 Distribution of Annual Traffic Tonnage Before and After Feature

Transformation
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Feature Scaling by Segment Length

After network segmentation based on input featuresdfgment lengths could vary.
It is alsopossible thathe valuesfor some featuresver the segments are proportional to
segment lengths. To avoid repeated consideration of the impact of segment length, feature
scaling by segment length is applied to the related features, such as the total number of rail
defectsand track geometry exceptions over the segménthis way, he density of some
featurevaluesby segment length is calculated. However, there are some segments with
very small segment lengths. The density of the features for these short segments cannot
represent the correct characteristics due to the randomness of occurrence. A length
threshold of 1 mile isusedfor the feature scaling by segment lengifo scaling is

conducted if a segment is shorter than 1 mile.

5.2.3 Feature Selection

One key concern in ¢horiginal model dataset is higlimensionality which would
increase the complexity and the overfitting probability of the model if all features are
involved in the model. dimensionality reduction is a process of reducing the number of
features under cordgration by obtaining a set of principal variables. Principal Component
Analysis (PCA) is the process to create new terms to obtain the principal variables.
However, in the engineering field, the effect of original engineering variables is preferred.

Therdore, feature selection is applied in the dissertation for dimensionality reduction.

Feature selection is the process in which a subset of feasumatomatically or
manually seleed from the set of original ones to optimize the model performasoey

defined critela (Cai et al., 2018). With feature selection, features contribdiiegiost to
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the model performance are selectetelevant features are discardadhe final model
Feature selection can also redtivedimension of model feature matindspeed up the
model trainingThere are several approaches to feature selection, such as forward selection,
backward selection, genetadgorithmsand so on. In this dissertation, we developed
comprehensive algorithm which combines forward selectimactkward selection and
simulated annealing togeth€@ne of the most prevalent criteria for feature selection is the

area under the operating characteristics cuaka.AUC).

In thisdissertationamachine learning algorithealledLightGBM (Light Gradient
BoostingMachine)is usedfor feature selectiogonsideringts fastcomputational speed
as well asacceptablenodel performancbased on the AUCT he details about LightGBM
can be found inKe et al., 2017)In feature selection, there are thousantipossible
combinations of features. It is impossiblaeteyateall possible combinations of features to
search for the optimal subset of featufedesigned method is applied for feataetection
which is described in detail in Figure 5I2. this ogimization-based feature selection
method, the forward searching, backward searching and simulated annealing techniques

are used irsteps:

Step 1.In forward searching, select one feature each time to be added into the

combination in order to maximally improve AUC, uritie AUC is not improved further.

Step 2.Use backward searching to select one feature to be removed from the
combination of featws obtained from step 1, in order to maximally improve AUC, until

AUC is not improved further.
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Step 3 After step 2, make multiple loops between step 1 and step 2 until the AUC

is not improved further.

Step 4.Because forward searching and backward seagckelect the features
greedily, it is possible teesult ina local optimal combination of features. The simulated
annealing(SA) algorithm makes the local optima stand out amidst the combination of
features. In this step, record the current combinatideatures with local optima and the

corresponding AUC.

Step 5.First, create the crogsrm features based on the combination of features
obtained from step 4. After creating the crtmsn features, repeat steps 1 to 4 until
obtaining the optimal combation of current features. Due to the computational
complexity of step 5, crogerm development is only conducted one tiffieis research
does not consider the interaction between the new createdtenssfeatures and other

featuresln the processye canuse an indicator N to represent whether creaticcrass

term features has been conducted otermnot .

features and repeat steps 1 to 4. | f N

features habeen obtained and the process is complete.
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Original Features
N=False

Yes AUC
Improvement
when adding a

eature 2

AUC
Improvement

No

Backward
when removing a Searching
eature

Cross-Term No
Development
N=True

Simulated
Annealing

Optimal
Combination

Figure5. 2 OptimizationBased Feature Selection Process

Originally, the number of variables involved in the model (including dummy

variables) is about 200. After feature selection, the top 10 variables are selected.Bigure

lists the 10 features chosen framproximately200 features.

il
il

Segment Length: Thength of the segment (mile)

Traffic_Weight: The division between annual traffic density and rail we¢agitual
traffic density divided by rail weight)

Car_Pass_fh: The number of car passes in the prior first half year
Rail_Age: The year between the resbayear and the rail laid year

Defect_hf: The number of detected defects in the prior first half year

Curve Degrees: The curve degree

Turnout: The presence of turnout

Service_Failures_fh: The number of detedismken railgn the prior first half year
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1 SpeekSegment Length: The product of the maximum allowpdrationakpeed
and the segment length

1 Age_Curve: The product of raalgeand curve degree

Feature Importance

Seg_Length
Traffic_Weight

Car_Pass_th
o .
§ Rail_Age
o Defects_fh
2 _

Curve_Degrees

Turnout

Service_Failures_fh
Speed Seg_Length

Age_Curve

Figure 5.3 Selected Top 10 Important Features using LightGBM Algorithm

In Figure 5.3, segment length shows the highest importance rate, and the ratio
between annual traffic density and traffic weight is the secoostimportant.Table5.2
showsthe impacts of the important features on the broken rail probatfNicpmparison
of the distribution of the important features among different tracks was conducted. Two
distributions of the important features are calculated, one for the top 100 track segments
with the highesprediced broken rail probabilities, the other the entire networkf the

studied railroad

From Tableb.2, it is foundthatthetop 100 track segmen{svith highestestimated

broken railprobabilitieg have larger average lengthihe distributions of traffic/weight
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for the railway network and thiep 100 track segmerappear to bdifferent, which reveals

that track segments with larger traffic/weight are prone to having higher broken ralil
probabiliies The statistical distributions of the number of car passes and rail age also
illustrate that hyher broken rail probability is associated with higher rail age and more car

passes on the track.

Table 5.2 Selected Features on Top 100 Segments versus the Whole Network

Traffic (MGT)/Rail | Number of car Rail Age
Segment Mileage
Weight(Ibs/yard) passes (years)
Top 100 Top 100 Top 100 Top 100
Network Network Network Network
Segmentg Segmentg Segmentg Segmentsg
Mean 0.20 3.24 0.16 0.32 247,435 | 465,958 | 25 36
25% 0.04 1.44 0.04 0.18 85,097 | 277,319 | 11 32
50% 0.10 2.62 0.14 0.32 225,740 | 474,450 | 25 38
75% 0.21 4.15 0.14 0.42 356,337 | 641,610 | 36 44

5.3  Overview of SoftTile-Coding-Based Neural Network

The relationship between contributing factors and broken rail risk has been
investigatedusing a variety of models in previous studies, such as logistic regression,
survival analysis (e.gWeibull model, Cox model), and the Markov stochastic model etc.
As stated in the literature review section, there are advantages and limitations for each
model. To address the challenges of predicting broken rail occurrence by location and time,
a SoftTile-CodingBased Neural Network (SFQN) is proposed in thidissertation As
illustrated in Figurés.4, the model framework contains five parts: (a) Dataset preparation;
(b) Input features; (c) Encoder: stife-coding of outcome labels; (d) Model arcliigre;

and (e) Decoder: probability transformation.
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((a). Dataset preparation)

|
l l

(c). Encoder: softile-coding of
output labels

/ (d). Model architecture \

(b). Input features
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(e). Decoder: probability transformatior

C Output )

Figure 5.4 Schematic lllustration of STGIN Algorithm Framework

—

In part (a), dataset preparation, an integrated dataset should be developed which
contains input features and outcome variables. The outcome variables are continuous
lifetimes, which may have a large rangre survival analysis researclhet lifetime could
betheexact lifetime or censored lifetime. The exact lifetime is defined as the duration time
from the starting observation time to the occurrence time of the event of ilftieedstund
date of broken rail in this researchhhile censored lifetime the duration from the starting
time to the ending observation time if no event occurs. Input features might be categorical
or continuous variables. For categorical features;hmencoding is applied to transform

categorical features into a binary veciarwhich only one element is 1 and the summation
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of the vector is equal to 1 (Buckman et al., 2018). To improve computational efficiency
and model convergence for continuous features;mar scalingis usedto rescale the
continuous features in the ranffom zero to one. Scaling the values of different features
on the same magnitude efficiently avoids neuron satufatiban randomly initialimg

the neural network.

In original datasets, the outcome variables are continuous lifetime valspscial
softtile-coding method ideveloped to transform the continuous outcome into a soft binary
vector. Similar to a binary vector, the summation of a soft binary vectgua & one.

The difference is that the soft binary vector not only consists of the values of 0 and 1, but
also of some decimal values suchp@s ¢ ¢hof8 . Thistype of soft binary vectois

referred toas a softile-encoded vector in thdissertabn.

After the encoding process of input features and outcome variables, a customized
Neural Networkis proposedvith a SoftMax layer to learn the mapping between the input
features and the encoded output labels. Specifically, the output of the Sotikax |
corresponds to the encoded output label using thetistioding technique. The
customized Neural Network with its output related to a-sleftencoded vector is named

as the STENN model.

A decoderprocesss developedor the softtile-coding. The decoding process is a
method that transforms a sdife-encoded vector into its probability along its original

continuous lifetime. Instead of obtaining one output (like a commostddengbased

5 Without scaling features, the coefficients of the features with larger magnitude will be smaller. The
coefficients of features with smaller magnitude will be larger.
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neural network), the ST-BIN algorithm can obtain a prability distribution of broken rail

occurrence withira specified study period.

5.4  Encoder: SoftTile-Coding

5.4.1 Tile-Coding

Tile-coding is a general tool used for function approximation (Sherstov and Stone,
2005). In this study, the continuous lifetimepiartitioned into multiple tilesvhich are
treaedmultiple categories, and each category relates to a unique time range. One partition
of the lifetime is called one tiling. Generally, multiple overlapping tiles are used to describe
one specific range of ghlifetime. There is a finite number of tiles in a tiling. In each tiling,

all tiles have the same length of time range, except for the last tile.

For a tilecoding with& tilings and each wit tiles, for each timg@eriod”Yon the
lifetime horizon, he encoded binary feature is denotedQid¢h it , and the element
"O "Y is described as:

ph'y "§Y QhQ p Y'Y Q

"0 Y S
mhi OEAOxEOA

NQ phttB FEMQ phtB ho
(5-2)
whereY"Yis the length of the time range of each tile, &ni the initial offset of each

tiling.

In general, the tileoded vectois definedas follows:

Definition 1: 'O\ ¢ O Y "Q pltB RIQ plith8 i is called atile-
encoded vectowith parameteti andé if it satisfies the conditions (&) "Y N ttp and

(b)B O Y p.
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Figure5.5illustrates two examples for tHeoding of two lifetime values at time (a)
and (b) with three tilingsd o) which contain four tilesg(  1). It is found that time (a)
is located in the tild for tiling-1, and in the tile for both tiling2 and tiling3. The
encoded vector of time (a) is given kit sriphttsriphd . Similarly, for time (b)

The encoded vector is calculated altpht sTiphip STiTiTdp

Normally, a specific lifetime value could be encoded into a binary vector using tile
coding if an event occurdHowever, in some situations, no events occur during the
observation time and the event of interest is assumedciarin the future. In this case,
the censored lifetime is obtained, and the exact lifetime is unavailable. The usual tile
coding function camot be used to encode this censored data. To address this issue; the soft

tile-codingapproach is proposed
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Figure 5.5 lllustrative Example of TileCoding

Note: (a) and (b) indicate two different lifetime

5.4.2 Soft-Tile-Coding

The softtile-coding function is applied to transform the continuous lifetime range
into a softbinary vector, which is a vector whose value is in range [0, 1]. When the event
of interest is not observed before the end of observatiohfdtime value is censorednd
exact lifetime is not observed. Although the exact lifetimmeot observedbr the eventit
is true that the event of interestiddnot occur within the observation time period.
Equivalently the event will happen in the tfire, beginning at the current ending
observation time. By using seite-coding,the proposed model could be improwetd

achieve better prediction performance. The mathematical process is as follows:

For a sofitile-coding withda tilings ande tiles in each tiling given a time range
"YW “YiHb on the timeline, the encoded binary feature is denotéd"¥& it , and the

elemenfY “Y is described as:
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—~ o pft¢ Q phQ 1 e
v n ki oE A LR BYP MR PR (53)

where

N AOCiI\w (5-4)
and"O Y is the encoded binary feature vector of fetiling using tilecoding.
In general, define theoft-tile-encoded vector as follows:

Definition 2: "Y1 R Y Y Q plef8 REIMQ plt8 i is called asoft-
tile-encoded vectowith parametett andg if it satisfies the conditions (&Y "Y N Tip

and (b)B Y Y p.

One example of sotile-coding with three tilingsd( ), eat of which contain
four tiles € 1), is illustrated in Figur®.6. It is found that the timé& is located in the
tile-3, tile-3, and tile4 for tiling-1, tiling-2, and tiling3, respectively. The seftle-encoded

vector is given asTimm®m® stimm@m® stitdrdp . In comparison, the tilencoded

vector is TiTdpht s riTdpht s TiTiTip
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Figure 5.6 lllustrative Example of SofTile-Coding

5.5 Architecture of STC-NN Model

5.5.1 Forward Architecture of STC-NN Model

As presenté in Figureb.7, the forward architecture of STIN model is mainly
based on a Neural Network. There are multiple processes to get the output probability of
event occurrence over tiM@m the input feature§ here are three main parts of the model:
(1) a neural network, (2) SoftMax layer with multiple soffmax functions, and (3) a
decoder: probability transformation. The input of the model is transformed into a vector
with values in range [0, 1]. The inpvector is denoted 8 "QN 1ip SQ pkMB O .
The hidden layers are densely connected with a nonlinear activation function specified by

the hyperbolic tangen® A 10E

There arax € output neurons of the neural network, which connect to a SoftMax

layer withd softmax functions. Each SoftMax function is bound witheurons. The





















































































































































































































