Staff View
Artificial intelligence-aided prediction of broken rail-caused derailment risk

Descriptive

TitleInfo
Title
Artificial intelligence-aided prediction of broken rail-caused derailment risk
Name (type = personal)
NamePart (type = family)
Zhou
NamePart (type = given)
Kang
DisplayForm
Kang Zhou
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Liu
NamePart (type = given)
Xiang
DisplayForm
Xiang Liu
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Jin
NamePart (type = given)
Jing (Peter)
DisplayForm
Jing (Peter) Jin
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Moon
NamePart (type = given)
Franklin
DisplayForm
Franklin Moon
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Yu
NamePart (type = given)
Jingjin
DisplayForm
Jingjin Yu
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
School of Graduate Studies
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (encoding = w3cdtf); (keyDate = yes); (qualifier = exact)
2020
DateOther (encoding = w3cdtf); (qualifier = exact); (type = degree)
2020-01
CopyrightDate (encoding = w3cdtf); (qualifier = exact)
2020
Language
LanguageTerm (authority = ISO 639-3:2007); (type = text)
English
Abstract (type = abstract)
Broken rails are the leading cause of freight train derailments in the United States. The American railroad industry annually spends billions of dollars on track inspection, maintenance and repair. Accurate prediction of broken rail risk is critical for the railroad industry to further improve operational safety, efficiency and the state of good repair.

This dissertation research focuses on predicting the risk of broken rail-caused derailment via Artificial Intelligence (AI) empowered by the fast-growing “big data” in the railroad industry, related to network-level track characteristics, maintenance activities, traffic and operation, as well as condition monitoring. The intended contributions of this research include:
•Development of a novel, customized Soft Tile Coding based Neural Network model (STC-NN) to predict the spatial-temporal probability of broken rail occurrence for any given time horizon. This proposed AI algorithm shows superior performance over several alternative algorithms in terms of solution quality, computational efficiency, and modeling flexibility.
•An analysis of the relationship between the probability of broken rail-caused derailment and the probability of broken rail occurrence. New analyses are performed to understand how the probability of broken rail-caused derailment may vary with infrastructure characteristics, signal type, weather, and other factors.
•Development of an Integrated Broken Rail Derailment Risk Model for predicting location-centric broken rail-caused derailment risk on the network-level. Predicting and identifying “high-risk” locations can ultimately lead to significant safety improvement and cost savings.

The major conclusions of this research include:
•The proposed STC-NN algorithm can predict broken rail risk for any time period (from 1 month to 2 years), with better performance for near-term prediction than long-term prediction. The algorithm slightly outperforms Extreme Gradient Boosting, Logistic Regression, and Random Forest, and is also much more flexible.
•Appropriate network segmentation is important for prediction accuracy. Our proposed dynamic segmentation scheme shows a significant improvement over the fixed-length segmentation scheme.
•Segment length, traffic tonnage, number of rail car passes, rail weight, rail age, track curvature, presence of turnout, and presence of historical rail defects are all found to be among influencing factors for broken rail occurrence.
•Signaled track in the cold season has the lowest ratio of broken rail-caused derailments to broken rails, while non-signaled track in warm weather has the highest. Moreover, lower FRA track classes (Class 1, Class 2) have higher ratio of broken rail-caused derailments to broken rails, compared with higher track classes Class 3 and Class 4.
•A longer, heavier train traveling at a higher speed is associated with more cars derailed per broken rail-caused derailment.

This work uses enterprise-level big data for over 20,000 miles of track from a major freight railroad in the United States. The new methodology, algorithm, and analysis results can potentially be implemented for railroad rail asset management, in support of both short-term inspection and maintenance prioritization as well as long-term capital planning and resource allocation.
Subject (authority = RUETD)
Topic
Civil and Environmental Engineering
Subject (authority = local)
Topic
Artificial intelligence-aided prediction
Subject (authority = LCSH)
Topic
Railroad rails -- Maintenance and repair -- Computer simulation
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_10397
PhysicalDescription
Form (authority = gmd)
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
1 online resource (xviii, 189 pages) : illustrations
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
RelatedItem (type = host)
TitleInfo
Title
School of Graduate Studies Electronic Theses and Dissertations
Identifier (type = local)
rucore10001600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/t3-xhss-q005
Genre (authority = ExL-Esploro)
ETD doctoral
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Zhou
GivenName
Kang
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2019-10-10 16:20:57
AssociatedEntity
Name
Kang Zhou
Role
Copyright holder
Affiliation
Rutgers University. School of Graduate Studies
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
RightsEvent
Type
Embargo
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2020-01-31
DateTime (encoding = w3cdtf); (qualifier = exact); (point = end)
2022-01-30
Detail
Access to this PDF has been restricted at the author's request. It will be publicly available after January 30th, 2022.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
CreatingApplication
Version
1.7
ApplicationName
Microsoft® Word 2016
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2020-01-14T01:48:49
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2020-01-14T01:48:49
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024