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ABSTRACT OF THE DISSERTATION

Unsupervised Visual Domain Adaptation: A Probabilistic

Approach

by Behnam Babagholami Mohamadabadi

Dissertation Director: Vladimir Pavlovic

Arti�cial intelligent and machine learning technologies have already achieved signi�cant

success in various applications (computer vision, natural language processing, speech

recognition, etc.). Such methods work well only under a common assumption that

training and test data are drawn from the same distribution. However, the curse of

domain mismatch arises when the test data and the training data come from di�erent

distributions. In such distribution changes, most statistical models need to be rebuilt,

using newly collected training data. In many real world applications, it is expensive or

even impossible to collect the required training data and rebuild the models. One of

the ultimate goals of the open ended learning systems is to take advantage of previous

experience/ knowledge in dealing with similar future problems. Two levels of learning

can be identi�ed in such scenarios. One draws on the data by capturing the pattern and

regularities which enables reliable predictions on new samples. The other starts from

an acquired source of knowledge and focuses on how to generalise it to a new target

concept; this is also known as transfer learning which is going to be the main focus of

this thesis.

This thesis will focus on a family of transfer learning methods applied to the task

of visual object recognition, speci�cally image classi�cation. The visual recognition
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problem is central to computer vision research: many desired applications, from robotics

to information retrieval, demand the ability to correctly identify categories, places, and

objects. Transfer learning is a general term, and speci�c settings have been given speci�c

names: when the learner has access to only unlabeled data from the target domain

(where the model should perform) and labeled data from a di�erent domain (the source),

the problem is called unsupervised domain adaptation (DA).

The thesis focuses on four methods for this setting. The �rst one proposes a

probabilistic latent variable model by learning projections from each domain to a latent

(shared) space jointly with the classi�er in the latent space, which simultaneously

minimizes the domain disparity while maximizing the classi�er’s discriminative power.

Furthermore, the non-parametric nature of our adaptation model makes it possible to

infer the latent space dimension automatically from data.

The second method is based on the Gaussian Process (GP): The GP allows us to

induce a hypothesis space of classi�ers from the posterior distribution of the latent

random functions, turning the learning into a large-margin posterior separation problem.

The Third method is based on GANs: We introduce an adversarial discriminative

discrepancy measure which takes advantage of auxiliary information available in the

source and the target domains to better align the source and target distributions. Specif-

ically, we leverage the cohesive clustering structure within individual data manifolds,

associated with di�erent tasks, to improve the alignment.

The last one addresses domain adaptation for multiple target domains. We propose

an information theoretic approach for domain adaptation in the novel context of multiple

target domains with unlabeled instances and one source domain with labeled instances.

Our model aims to �nd a shared latent space common to all domains, while simultaneously

accounting for the remaining private, domain-speci�c factors. Disentanglement of shared

and private information is accomplished using a uni�ed information-theoretic approach,

which also serves to establish a stronger link between the latent representations and the

observed data.

We conduct experiments on a wide range of image classi�cation tasks. We test our

proposed methods and show that, in all cases, leveraging knowledge from a related
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domain can improve performance when there are no labels available for direct training

on the new target data.
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Chapter 1

Introduction

1.1 Motivation

In the context of Computer Vision (CV), an image in the most basic representation

is de�ned through a matrix of its pixels intensity values and the semantic organisation

of an image database is known as classi�cation where an ideal image classi�er should

be able to exploit complex high dimensional feature representations even when only

a few labelled training samples are available. In most classi�cation scenarios, it is

expensive to acquire vast amounts of labelled training samples in order to provide

classi�ers with a good coverage of the feature space. One possible solution to tackle this

problem is to synthesise images of training data using computer graphics techniques

(e.g. [102]), however, their appearance may not be realistic and it is not possible to

model all possible backgrounds. Using crowd sourcing [16], but the annotations obtained

are either costly or unreliable. Ideally, an image classi�er should be initially capable

of detecting similarities between data distributions and subsequently facilitates the

exploitation of the required knowledge from all the previously trained reliable models,

just as human can exploit previous experience when learning some similar concepts.

Another major challenge is the sampling bias problem [115]. Conventional statistical

machine learning revolves on an simpli�ed assumption that the training data, from which

the algorithms learn, are drawn i.i.d. from the same distribution as the test data, to

which the learned models are applied. This assumption and the corresponding algorithms

are fundamentally restrictive, being frequently challenged in numerous situations. For

example, a pedestrian detection system on automobiles encounters very di�erent data

when weather patterns change, when cameras age, or simply when people drive to new

locations. In other words, the training and test data are often mismatched.
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Figure 1.1: Sample images of certain classes (stapler, water bottle, cellphone, spray
can) as seen in a wed dataset, Imagenet [93], on the left, and in a real-life like dataset
(JHUIT-50 [67], HelloiCubWorld [31]), on the right. Note that while they should be
representing the same things, the images have very little in common

As a result, practical autonomous systems inevitably su�er from the sampling bias.

The systems are often deployed to new target environments for which it is unrealistic to

attempt to reproduce all sorts of the target environment when one develops the systems,

not to mention that real life environments are often not lab-reproducible. Hence, it is

highly desirable to have a new statistical machine learning paradigm to explicitly deal

with the mismatches in data.

A simple intuition of this problem is shown in Figure. 1.1. The images on the left

belong to a dataset which was mined from the web, the images on the right were captured

by a robot: the framing, the lightning conditions, the resolution, the background clutter

are all di�erent. If our model is trained with the images on the left it is easy to

understand why it will perform poorly in the real world. This is a pretty typical setup:

we wanted to perform recognition on a set of classes, we used the web to download

some training data (we will call it the source) and found out that the model did not

work well on real world data. During the deployment of our system we gathered some

unlabeled data (our target) for free. We know that the labeled source and unlabeled

target share the same classes and we would like for our model to perform well on both,

ignoring their speci�c biases. This problem is formally known as that of unsupervised

domain adaptation (we will de�ne it more rigorously in next Chapter).

This thesis concentrates on addressing this challenge in the framework of unsupervised
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domain adaptation. Domain Adaptation is at its core the quest for principled algorithms

enabling the generalization of visual recognition methods. Given at least a source

domain for training, the goal is to achieve recognition results as good as those achievable

on source test data on any other target domain, in principle belonging to a di�erent

probability distribution, without having prior access to labeled images. Solving this

problem will represent a major step towards one of the key goals of computer vision, i.e.

having machines able to answer the fundamental question ‘what do you see?’ in the

wild.
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1.2 Contributions

Working in the context of visual image recognition, we contribute to the �eld of

unsupervised domain adaptation with four novel and distinct techniques. We then

perform a qualitative and quantitative experimental evaluation of the proposed solutions,

to quantify their e�ectiveness and robustness demonstrating that employing the proposed

solutions assures better performances than simply training on the available data.

Speci�cally we present:

� A probabilistic latent variable model to address unsupervised domain

adaptation [39]. Speci�cally, we tackle the task of categorization of visual input

from di�erent domains by learning projections from each domain to a latent

(shared) space jointly with the classi�er in the latent space, which simultaneously

minimizes the domain disparity while maximizing the classi�er’s discriminative

power. Furthermore, the non-parametric nature of our adaptation model makes

it possible to infer the latent space dimension automatically from data. We

also develop a novel regularized Variational Bayes (VB) algorithm for e�cient

estimation of the model parameters.

� A systematic and effective way to achieve hypothesis (classifier) consis-

tency over both source and target domains using Gaussian processes

(GP) [61]. The GP allows us to induce a hypothesis space of classi�ers from the

posterior distribution of the latent random functions, turning the learning into a

large-margin posterior separation problem, signi�cantly easier to solve than previ-

ous approaches. We formulate a learning objective that e�ectively in
uences the

posterior to minimize the maximum discrepancy. This is shown to be equivalent

to maximizing margins and minimizing uncertainty of the class predictions in the

target domain.

� A discriminative discrepancy measure which takes advantage of aux-

iliary information available in the source and the target domains to
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better align the source and target distributions [40]. Speci�cally, we lever-

age the cohesive clustering structure within individual data manifolds, associated

with di�erent tasks, to improve the alignment. This structure is explicit in the

source, where the task labels are available, but is implicit in the target, making the

problem challenging. We address the challenge by devising a deep DA framework,

which combines a new task-driven domain alignment discriminator with domain

regularizers that encourage the shared features as task-speci�c and domain in-

variant, and prompt the task model to be data structure preserving, guiding its

decision boundaries through the low density data regions.

� An information theoretic approach for domain adaptation in the novel

context of multiple target domains with unlabeled instances and one

source domain with labeled instances [41]. Our model aims to �nd a shared

latent space common to all domains, while simultaneously accounting for the

remaining private, domain-speci�c factors. Disentanglement of shared and private

information is accomplished using a uni�ed information-theoretic approach, which

also serves to establish a stronger link between the latent representations and the

observed data. The resulting model, accompanied by an e�cient optimization

algorithm, allows simultaneous adaptation from a single source to multiple target

domains.
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1.3 Outline

Re
ecting the structure of this thesis, Chapter 2 will provide a formal de�nition of

domain adaptation in the context of visual object recognition, present an overview of

relevant works and introduce the datasets we will use for the experimental evaluation.

The domain adaption literature (Section 2.1) will present shallow, deep and adversarial

methods.

Chapter 3 will delve into the details of the four unsupervised domain adaptation

methods we propose in this thesis.

The thesis concludes with a summary discussion and remarks on possible future

directions of research in Chapter 4.
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1.4 Notations

Notions and their descriptions used in this thesis are summarized in Table 1.1.

Table 1.1: Notations and their descriptions.

Notation Description
X image space
Y label space
Z feature space
E Expectation operator
Ns; Nt number of source/target samples
N number of all samples, Ns +Nt
M number of domains
d the input dimension
C the number of classes
class C + 1 unknown target class
PS(x; y); PT (x; y) source/target distribution
PS(x),PT (x) source/target marginal distribution

DS = f(xsi ; ysi )gNs
i=1 set of source samples

Dt = fxtig
Nt
i=1 st of target samples

Xs data matrix [xs1; :::; x
s
Ns

] 2 Rd�Ns , source samples

Y s label matrix [ys1; :::; y
s
Ns

] 2 RC�Ns , source samples

Xt data matrix [xt1; :::; x
t
Nt

] 2 Rd�Nt , target samples

D domain label matrix [d1; :::; dN ] 2 RM�N
Zs feature matrix [zs1; :::; z

s
Ns

] 2 Rd�Ns , source samples

Zt feature matrix [zt1; :::; z
t
Nt

] 2 Rd�Nt , target samples

�(�);K(�; �) kernel feature map and kernel function induced by �(�)
G(�) encoder (feature extractor)
F (�) 2-dimensional Binary discriminator
D(�) (C + 1) dimensional Multi-class discriminator
h(�) (C + 1) dimensional multi-class classi�er
� K-dimensional binary vector for latent features
�s=�t zero-mean Gaussian noises for source/target samples
Id d� d-dimensional Identity matrix

s=
t precision values for Gaussian noises �s=�t

Ber(�k) bernoulli distribution with parameter �k
H(�) entropy operator
q(�) variational posterior distribution
H hypothesis space of classi�ers
eT (h) error rate of the classi�er h on target samples
eS(h) error rate of the classi�er h on source samples
Tr(�) matrix Trace operator
det(�) matrix determinant operator
BS=BT size of mini-batch for source/target samples
a; b; �; �r; �c; �d hyper-parameters
Q(zjx) conditional distribution of latent features given the samples
P (z) prior distribution over latent features
Q(z) aggregated posterior distribution over latent features
D(pjjq) statistical divergence between two distributions p and q
I(x; z) mutual information between two random variables x and z
zs=zp latent shared/private features
Gs=Gp shared/private encoder
R decoder
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Chapter 2

Background and Related Work

This chapter covers related work on unsupervised domain adaptation problem (in the

context of image classi�cation) where it begins with the problem formulation, continues

with a review of related work and �nally presents the datasets on which the proposed

algorithms will be tested.
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2.1 Computer Vision: Domain Adaptation

2.2 Unsupervised Domain Adaptation

Domain adaptation refers to the problem of leveraging labeled task data in a source

domain S to learn an accurate model of the same tasks in a target domain T where the

labels are unavailable or very scarce [115]. Due to many factors (e.g., illumination, pose,

and image quality), there is always a distribution change or domain shift between two

domains that can degrade the performance, as shown in Figure 2.1.

Amazon WebcamDSLR Caltech-256

MNIST USPS SVHN

(a)

(b)

CUFSBCS

(c)

LFW

Figure 2.1: (a) Some object images from the "Bike" and "Laptop" categories in Amazon,
DSLR, Webcam, and Caltech-256 databases. (b) Some digit images from MNIST, USPS,
and SVHN databases. (c) Some face images from LFW, BCS and CUFS databases.
Realworld computer vision applications, such as face recognition, must learn to adapt
to distributions speci�c to each domain.

More speci�cally, while the tasks have identical label sets Y s = Y t they possess

(slightly) di�erent conditional distributions PS(yjx) � PT (yjx). The domains are

di�erent in terms of marginal data distribution PS(x) 6= PT (x) in image spaces. Our

goal is to estimate a classi�er from source and target that can be used to classify sample

points from the target domain. Domain adaptation has been studied in two main

settings: one is the semi-supervised case, where the target presents few labeled data,

while the other is the unsupervised case that considers only unlabeled examples for the

target. In both cases, the source set is generally rich in labeled samples. In this thesis

we will focus on the unsupervised case.
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Figure 2.2: Illustration of the e�ect of instance re-weighting samples on the source
classi�er.

2.2.1 Literature survey

In recent years, numerous unsupervised domain adaptation methods have been

proposed. Traditional approaches addressed the problem of reducing the discrepancy

between the source and the target distributions by considering two main strategies. The

�rst is based on instance re-weighting [21, 69, 116, 42], where the source samples are

weighted according to their similarity to the target data. The re-weighted samples are

then used to learn a classi�cation model for the target domain (Figure 2.2). The main

issue with these type of approaches is that they do not o�er the modeling 
exibility of

incorporating the domain knowledge of data representations. Instance weighting is not


exible in modeling the intrinsic structures in data.

In some application domains, the data favor some special structures which could

ease the adaptation of classi�ers. For example, in computer vision, the data often

have low-rank or manifold properties. To exploit such structures, an alternative line of

research works on learning feature representations for domain adaptation.

The majority of the approaches try to bridge the gap between the source and target in

a joint feature space both considering shallow models [43, 76, 33] and deep architectures

[75, 34, 38, 15], so that a task classi�er trained on labeled source data can be e�ectively

transferred to the target. A feature representation is domain-invariant if the features

follow the same distribution regardless of whether the input data is from the source or

target domain. If a classi�er can be trained to perform well on the source data using

domain-invariant features, then the classi�er may generalize well to the target domain
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since the features of the target data match those on which the classi�er was trained.

The general Mechanism of these methods is illustrated in Figure 2.3.

One of the �rst such approaches is the Transfer Component Analysis (TCA) [85].

The main idea is to �nd a low-dimensional linear transformation such that the source and

target domains are as close as possible in their marginal distributions, while maintaining

the intrinsic structure of the original domains. The latter is achieved by incorporating

a local geometry (manifold) preserving regularization term into the TCA’s objective

function. Likewise, [94] proposed a metric learning-based DA method with cross-domain

constraints. This method learns a symmetric transformation to map source and target

domain samples onto a new domain invariant space. [46] proposed an feature alignment

method for DA based on the Sampling Geodesic Flow (SGF) that exploits the geodesic

distance between the source and target subspaces.

Gong et al. [43] improved the SGF technique using the whole geodesic curve (considers

all of the subspaces along the geodesic path) connecting the source and the target

subspace on the Grassmann manifold instead of sampling a few points on the geodesic.

Long et al. [76] proposed Transfer Sparse Coding (TSC) which learns robust sparse

representations by penalizing the distances between the sample means in the objective

function to bring the domains closer.

Likewise, [109] proposed a simple but e�ective method for unsupervised DA called

Correlation Alignment (CORAL), which minimizes domain shift by aligning the second-

order statistics of source and target distributions.

In overall, methods in this category di�er in how they align the domains. In

this regard, an important challenge is how to measure the discrepancy between the

two domains. Many domain discrepancy measures have been proposed in previous

DA studies, such as the moment matching-based methods [79, 15, 85, 127, 125], and

adversarial methods [117, 14, 99, 128, 35]. Moment matching-based methods use

Maximum Mean Discrepancy (MMD) [106] to align the distributions by matching all

their statistics. Inspired by Generative Adversarial Networks (GAN) [44], adversarial

divergences train a domain discriminator to discern the source from the target, while an

encoder feature extractor is simultaneously learned to create features indistinguishable
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Figure 2.3: Shared feature learning for domain adaptation.

across the source and the target, confusing the discriminator.

Domain Adaptation using MMD

Maximum mean discrepancy (MMD) [49] is a two-sample statistical test of the

hypothesis that two distributions are equal based on observed samples from the two

distributions. The test is computed from the di�erence between the mean values of

a smooth function on the two domains’samples. If the means are di�erent, then the

samples are likely not from the same distribution. The smooth functions chosen for

MMD are unit balls in characteristic reproducing kernel Hilbert spaces(RKHS) since it

can be proven that the population MMD is zero if and only if the two distributions are

equal [49] (Figure 2.4). Speci�cally, given two sets of source/target samples, the MMD

measures the distance between the mean of the two sets after mapping each sample to a

RKHS:

MMD2(Zs; Zt) =





 NsX
i=1

�(zsi )

Ns
�

NtX
j=1

�(ztj)

Nt





2

; (2.1)

where Zs=Zt denote the source/target features in shared space,Ns; Nt denote the number

of source/target samples, �(:) denotes the mapping from feature space to RKHS. In

practice, this mapping is typically unknown. By expanding Eq. 2.1, and using the kernel

trick to replace the inner products by their kernel values, we rewrite the squared MMD,
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Figure 2.4: Domain Adaptation using MMD distance.

leading to the following regularizer:

L(Zs; Zt) =
X
i;j

K(zsi ; z
s
j )

N2
s

� 2
X
i;j

K(zsi ; z
t
j)

NsNt
+
X
i;j

K(zti ; z
t
j)

N2
t

;

where K(:; :) denotes the kernel function.

Instead of aligning the source and target domains in a (low) dimensional manifold,

a few works attempted to reduce the domain mismatch by expanding the source and

target features in a non-parametric fashion using the notion of Reproducing Kernel

Hilbert Spaces (RKHS). The main assumption here is that in RKHS the domains can

be brought together more easily compared to parametric (�x-dimension) transforma-

tions. Speci�cally, [6, 7] proposed the Domain Invariant Projection (DIP) method that

compares the domain distributions in RKHS, while constraining the transformation to

be orthogonal.

More recently, [56] proposed a DA scheme to construct a RKHS using the Mahalanobis

metric in the target space. This is achieved by simultaneously learning the projections

from the source and target domains to RKHS, by minimizing a notion of domain distance

while maximizing a measure of discriminatory power of RKHS.

By the Taylor expansion of the Gaussian kernel, MMD can be viewed as minimizing

the distance between the weighted sums of all raw moments [70]. The interpretation

of MMD as moment matching procedures motivated Zellinger et al. [127] to match
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the higher-order moments of the domain distributions, which we call central moment

discrepancy (CMD). An empirical estimate of the CMD metric for the domain discrepancy

in the activation space [a; b]N is given by

CMDK(Xs; Xt) =
1

(b� a)



E(Xs)� E(Xt)




2
+

KX
k=2

1

jb� ajk


Ck(Xs)� Ck(Xt)




2

(2.2)

where Ck(X) = E((x� E(X))k is the vector of all kth-order sample central moments

and E(X) = 1
jXj
P

x2X x is the empirical expectation.

Based on our Misaligned-Feature-Norm Hypothesis [124], MMFND proposed the

Maximum Mean Feature Norm Discrepancy to characterize the mean-feature-norm

distance between the two distributions and verify whether bridging this statistical

domain gap can result in appreciable transfer gains.

Despite of the popularity of MMD, it is notoriously hard to choose the optimal

kernel(s) for MMD (e.g., how to set the bandwidth in Gaussian RBF) in domain

adaptation, considering that there are not labeled data in the target domain for cross-

validation. There exist some attempts to tackling this issue [49]. However, they are

often limited to speci�c application scenarios.

Adversarial Domain Adaptation

Recently, great success has been achieved by the GAN method [44], which its goal

is to generate realisic images via an adversarial process. GAN consists of two models:

a generative model G that extracts the data distribution and a discriminative model

D that distinguishes whether a sample is from the generator G or a given dataset by

assigning a binary label to the sample. The models are trained on the label prediction

loss in a mini-max fashion: simultaneously optimizing G to minimize the loss while also

training D to maximize the probability of assigning the correct label (Figure 2.5):

min
G

max
D

V (D;G) = Ex�pdata(x)[logD(x)] + Ez�pz(z)[log(1�D(G(z)))] (2.3)

In DA, this idea has been employed to ensure that the model cannot distinguish between




