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ABSTRACT OF THE DISSERTATION

Unsupervised Visual Domain Adaptation: A Probabilistic

Approach

by Behnam Babagholami Mohamadabadi

Dissertation Director: Vladimir Pavlovic

Artificial intelligent and machine learning technologies have already achieved significant

success in various applications (computer vision, natural language processing, speech

recognition, etc.). Such methods work well only under a common assumption that

training and test data are drawn from the same distribution. However, the curse of

domain mismatch arises when the test data and the training data come from different

distributions. In such distribution changes, most statistical models need to be rebuilt,

using newly collected training data. In many real world applications, it is expensive or

even impossible to collect the required training data and rebuild the models. One of

the ultimate goals of the open ended learning systems is to take advantage of previous

experience/ knowledge in dealing with similar future problems. Two levels of learning

can be identified in such scenarios. One draws on the data by capturing the pattern and

regularities which enables reliable predictions on new samples. The other starts from

an acquired source of knowledge and focuses on how to generalise it to a new target

concept; this is also known as transfer learning which is going to be the main focus of

this thesis.

This thesis will focus on a family of transfer learning methods applied to the task

of visual object recognition, specifically image classification. The visual recognition
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problem is central to computer vision research: many desired applications, from robotics

to information retrieval, demand the ability to correctly identify categories, places, and

objects. Transfer learning is a general term, and specific settings have been given specific

names: when the learner has access to only unlabeled data from the target domain

(where the model should perform) and labeled data from a different domain (the source),

the problem is called unsupervised domain adaptation (DA).

The thesis focuses on four methods for this setting. The first one proposes a

probabilistic latent variable model by learning projections from each domain to a latent

(shared) space jointly with the classifier in the latent space, which simultaneously

minimizes the domain disparity while maximizing the classifier’s discriminative power.

Furthermore, the non-parametric nature of our adaptation model makes it possible to

infer the latent space dimension automatically from data.

The second method is based on the Gaussian Process (GP): The GP allows us to

induce a hypothesis space of classifiers from the posterior distribution of the latent

random functions, turning the learning into a large-margin posterior separation problem.

The Third method is based on GANs: We introduce an adversarial discriminative

discrepancy measure which takes advantage of auxiliary information available in the

source and the target domains to better align the source and target distributions. Specif-

ically, we leverage the cohesive clustering structure within individual data manifolds,

associated with different tasks, to improve the alignment.

The last one addresses domain adaptation for multiple target domains. We propose

an information theoretic approach for domain adaptation in the novel context of multiple

target domains with unlabeled instances and one source domain with labeled instances.

Our model aims to find a shared latent space common to all domains, while simultaneously

accounting for the remaining private, domain-specific factors. Disentanglement of shared

and private information is accomplished using a unified information-theoretic approach,

which also serves to establish a stronger link between the latent representations and the

observed data.

We conduct experiments on a wide range of image classification tasks. We test our

proposed methods and show that, in all cases, leveraging knowledge from a related
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domain can improve performance when there are no labels available for direct training

on the new target data.
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Chapter 1

Introduction

1.1 Motivation

In the context of Computer Vision (CV), an image in the most basic representation

is defined through a matrix of its pixels intensity values and the semantic organisation

of an image database is known as classification where an ideal image classifier should

be able to exploit complex high dimensional feature representations even when only

a few labelled training samples are available. In most classification scenarios, it is

expensive to acquire vast amounts of labelled training samples in order to provide

classifiers with a good coverage of the feature space. One possible solution to tackle this

problem is to synthesise images of training data using computer graphics techniques

(e.g. [102]), however, their appearance may not be realistic and it is not possible to

model all possible backgrounds. Using crowd sourcing [16], but the annotations obtained

are either costly or unreliable. Ideally, an image classifier should be initially capable

of detecting similarities between data distributions and subsequently facilitates the

exploitation of the required knowledge from all the previously trained reliable models,

just as human can exploit previous experience when learning some similar concepts.

Another major challenge is the sampling bias problem [115]. Conventional statistical

machine learning revolves on an simplified assumption that the training data, from which

the algorithms learn, are drawn i.i.d. from the same distribution as the test data, to

which the learned models are applied. This assumption and the corresponding algorithms

are fundamentally restrictive, being frequently challenged in numerous situations. For

example, a pedestrian detection system on automobiles encounters very different data

when weather patterns change, when cameras age, or simply when people drive to new

locations. In other words, the training and test data are often mismatched.
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Figure 1.1: Sample images of certain classes (stapler, water bottle, cellphone, spray
can) as seen in a wed dataset, Imagenet [93], on the left, and in a real-life like dataset
(JHUIT-50 [67], HelloiCubWorld [31]), on the right. Note that while they should be
representing the same things, the images have very little in common

As a result, practical autonomous systems inevitably suffer from the sampling bias.

The systems are often deployed to new target environments for which it is unrealistic to

attempt to reproduce all sorts of the target environment when one develops the systems,

not to mention that real life environments are often not lab-reproducible. Hence, it is

highly desirable to have a new statistical machine learning paradigm to explicitly deal

with the mismatches in data.

A simple intuition of this problem is shown in Figure. 1.1. The images on the left

belong to a dataset which was mined from the web, the images on the right were captured

by a robot: the framing, the lightning conditions, the resolution, the background clutter

are all different. If our model is trained with the images on the left it is easy to

understand why it will perform poorly in the real world. This is a pretty typical setup:

we wanted to perform recognition on a set of classes, we used the web to download

some training data (we will call it the source) and found out that the model did not

work well on real world data. During the deployment of our system we gathered some

unlabeled data (our target) for free. We know that the labeled source and unlabeled

target share the same classes and we would like for our model to perform well on both,

ignoring their specific biases. This problem is formally known as that of unsupervised

domain adaptation (we will define it more rigorously in next Chapter).

This thesis concentrates on addressing this challenge in the framework of unsupervised
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domain adaptation. Domain Adaptation is at its core the quest for principled algorithms

enabling the generalization of visual recognition methods. Given at least a source

domain for training, the goal is to achieve recognition results as good as those achievable

on source test data on any other target domain, in principle belonging to a different

probability distribution, without having prior access to labeled images. Solving this

problem will represent a major step towards one of the key goals of computer vision, i.e.

having machines able to answer the fundamental question ‘what do you see?’ in the

wild.
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1.2 Contributions

Working in the context of visual image recognition, we contribute to the field of

unsupervised domain adaptation with four novel and distinct techniques. We then

perform a qualitative and quantitative experimental evaluation of the proposed solutions,

to quantify their effectiveness and robustness demonstrating that employing the proposed

solutions assures better performances than simply training on the available data.

Specifically we present:

• A probabilistic latent variable model to address unsupervised domain

adaptation [39]. Specifically, we tackle the task of categorization of visual input

from different domains by learning projections from each domain to a latent

(shared) space jointly with the classifier in the latent space, which simultaneously

minimizes the domain disparity while maximizing the classifier’s discriminative

power. Furthermore, the non-parametric nature of our adaptation model makes

it possible to infer the latent space dimension automatically from data. We

also develop a novel regularized Variational Bayes (VB) algorithm for efficient

estimation of the model parameters.

• A systematic and effective way to achieve hypothesis (classifier) consis-

tency over both source and target domains using Gaussian processes

(GP) [61]. The GP allows us to induce a hypothesis space of classifiers from the

posterior distribution of the latent random functions, turning the learning into a

large-margin posterior separation problem, significantly easier to solve than previ-

ous approaches. We formulate a learning objective that effectively influences the

posterior to minimize the maximum discrepancy. This is shown to be equivalent

to maximizing margins and minimizing uncertainty of the class predictions in the

target domain.

• A discriminative discrepancy measure which takes advantage of aux-

iliary information available in the source and the target domains to
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better align the source and target distributions [40]. Specifically, we lever-

age the cohesive clustering structure within individual data manifolds, associated

with different tasks, to improve the alignment. This structure is explicit in the

source, where the task labels are available, but is implicit in the target, making the

problem challenging. We address the challenge by devising a deep DA framework,

which combines a new task-driven domain alignment discriminator with domain

regularizers that encourage the shared features as task-specific and domain in-

variant, and prompt the task model to be data structure preserving, guiding its

decision boundaries through the low density data regions.

• An information theoretic approach for domain adaptation in the novel

context of multiple target domains with unlabeled instances and one

source domain with labeled instances [41]. Our model aims to find a shared

latent space common to all domains, while simultaneously accounting for the

remaining private, domain-specific factors. Disentanglement of shared and private

information is accomplished using a unified information-theoretic approach, which

also serves to establish a stronger link between the latent representations and the

observed data. The resulting model, accompanied by an efficient optimization

algorithm, allows simultaneous adaptation from a single source to multiple target

domains.
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1.3 Outline

Reflecting the structure of this thesis, Chapter 2 will provide a formal definition of

domain adaptation in the context of visual object recognition, present an overview of

relevant works and introduce the datasets we will use for the experimental evaluation.

The domain adaption literature (Section 2.1) will present shallow, deep and adversarial

methods.

Chapter 3 will delve into the details of the four unsupervised domain adaptation

methods we propose in this thesis.

The thesis concludes with a summary discussion and remarks on possible future

directions of research in Chapter 4.
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1.4 Notations

Notions and their descriptions used in this thesis are summarized in Table 1.1.

Table 1.1: Notations and their descriptions.

Notation Description
X image space
Y label space
Z feature space
E Expectation operator
Ns, Nt number of source/target samples
N number of all samples, Ns +Nt
M number of domains
d the input dimension
C the number of classes
class C + 1 unknown target class
PS(x, y), PT (x, y) source/target distribution
PS(x),PT (x) source/target marginal distribution

DS = {(xsi , ysi )}Ns
i=1 set of source samples

Dt = {xti}
Nt
i=1 st of target samples

Xs data matrix [xs1, ..., x
s
Ns

] ∈ Rd×Ns , source samples

Y s label matrix [ys1, ..., y
s
Ns

] ∈ RC×Ns , source samples

Xt data matrix [xt1, ..., x
t
Nt

] ∈ Rd×Nt , target samples

D domain label matrix [d1, ..., dN ] ∈ RM×N
Zs feature matrix [zs1, ..., z

s
Ns

] ∈ Rd×Ns , source samples

Zt feature matrix [zt1, ..., z
t
Nt

] ∈ Rd×Nt , target samples

φ(·),K(·, ·) kernel feature map and kernel function induced by φ(·)
G(·) encoder (feature extractor)
F (·) 2-dimensional Binary discriminator
D(·) (C + 1) dimensional Multi-class discriminator
h(·) (C + 1) dimensional multi-class classifier
α K-dimensional binary vector for latent features
εs/εt zero-mean Gaussian noises for source/target samples
Id d× d-dimensional Identity matrix
γs/γt precision values for Gaussian noises εs/εt

Ber(πk) bernoulli distribution with parameter πk
H(·) entropy operator
q(·) variational posterior distribution
H hypothesis space of classifiers
eT (h) error rate of the classifier h on target samples
eS(h) error rate of the classifier h on source samples
Tr(·) matrix Trace operator
det(·) matrix determinant operator
BS/BT size of mini-batch for source/target samples
a, b, λ, λr, λc, λd hyper-parameters
Q(z|x) conditional distribution of latent features given the samples
P (z) prior distribution over latent features
Q(z) aggregated posterior distribution over latent features
D(p||q) statistical divergence between two distributions p and q
I(x; z) mutual information between two random variables x and z
zs/zp latent shared/private features
Gs/Gp shared/private encoder
R decoder
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Chapter 2

Background and Related Work

This chapter covers related work on unsupervised domain adaptation problem (in the

context of image classification) where it begins with the problem formulation, continues

with a review of related work and finally presents the datasets on which the proposed

algorithms will be tested.
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2.1 Computer Vision: Domain Adaptation

2.2 Unsupervised Domain Adaptation

Domain adaptation refers to the problem of leveraging labeled task data in a source

domain S to learn an accurate model of the same tasks in a target domain T where the

labels are unavailable or very scarce [115]. Due to many factors (e.g., illumination, pose,

and image quality), there is always a distribution change or domain shift between two

domains that can degrade the performance, as shown in Figure 2.1.

Amazon WebcamDSLR Caltech-256

MNIST USPS SVHN

(a)

(b)

CUFSBCS

(c)

LFW

Figure 2.1: (a) Some object images from the ”Bike” and ”Laptop” categories in Amazon,
DSLR, Webcam, and Caltech-256 databases. (b) Some digit images from MNIST, USPS,
and SVHN databases. (c) Some face images from LFW, BCS and CUFS databases.
Realworld computer vision applications, such as face recognition, must learn to adapt
to distributions specific to each domain.

More specifically, while the tasks have identical label sets Y s = Y t they possess

(slightly) different conditional distributions PS(y|x) ∼ PT (y|x). The domains are

different in terms of marginal data distribution PS(x) 6= PT (x) in image spaces. Our

goal is to estimate a classifier from source and target that can be used to classify sample

points from the target domain. Domain adaptation has been studied in two main

settings: one is the semi-supervised case, where the target presents few labeled data,

while the other is the unsupervised case that considers only unlabeled examples for the

target. In both cases, the source set is generally rich in labeled samples. In this thesis

we will focus on the unsupervised case.
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Figure 2.2: Illustration of the effect of instance re-weighting samples on the source
classifier.

2.2.1 Literature survey

In recent years, numerous unsupervised domain adaptation methods have been

proposed. Traditional approaches addressed the problem of reducing the discrepancy

between the source and the target distributions by considering two main strategies. The

first is based on instance re-weighting [21, 69, 116, 42], where the source samples are

weighted according to their similarity to the target data. The re-weighted samples are

then used to learn a classification model for the target domain (Figure 2.2). The main

issue with these type of approaches is that they do not offer the modeling flexibility of

incorporating the domain knowledge of data representations. Instance weighting is not

flexible in modeling the intrinsic structures in data.

In some application domains, the data favor some special structures which could

ease the adaptation of classifiers. For example, in computer vision, the data often

have low-rank or manifold properties. To exploit such structures, an alternative line of

research works on learning feature representations for domain adaptation.

The majority of the approaches try to bridge the gap between the source and target in

a joint feature space both considering shallow models [43, 76, 33] and deep architectures

[75, 34, 38, 15], so that a task classifier trained on labeled source data can be effectively

transferred to the target. A feature representation is domain-invariant if the features

follow the same distribution regardless of whether the input data is from the source or

target domain. If a classifier can be trained to perform well on the source data using

domain-invariant features, then the classifier may generalize well to the target domain
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since the features of the target data match those on which the classifier was trained.

The general Mechanism of these methods is illustrated in Figure 2.3.

One of the first such approaches is the Transfer Component Analysis (TCA) [85].

The main idea is to find a low-dimensional linear transformation such that the source and

target domains are as close as possible in their marginal distributions, while maintaining

the intrinsic structure of the original domains. The latter is achieved by incorporating

a local geometry (manifold) preserving regularization term into the TCA’s objective

function. Likewise, [94] proposed a metric learning-based DA method with cross-domain

constraints. This method learns a symmetric transformation to map source and target

domain samples onto a new domain invariant space. [46] proposed an feature alignment

method for DA based on the Sampling Geodesic Flow (SGF) that exploits the geodesic

distance between the source and target subspaces.

Gong et al. [43] improved the SGF technique using the whole geodesic curve (considers

all of the subspaces along the geodesic path) connecting the source and the target

subspace on the Grassmann manifold instead of sampling a few points on the geodesic.

Long et al. [76] proposed Transfer Sparse Coding (TSC) which learns robust sparse

representations by penalizing the distances between the sample means in the objective

function to bring the domains closer.

Likewise, [109] proposed a simple but effective method for unsupervised DA called

Correlation Alignment (CORAL), which minimizes domain shift by aligning the second-

order statistics of source and target distributions.

In overall, methods in this category differ in how they align the domains. In

this regard, an important challenge is how to measure the discrepancy between the

two domains. Many domain discrepancy measures have been proposed in previous

DA studies, such as the moment matching-based methods [79, 15, 85, 127, 125], and

adversarial methods [117, 14, 99, 128, 35]. Moment matching-based methods use

Maximum Mean Discrepancy (MMD) [106] to align the distributions by matching all

their statistics. Inspired by Generative Adversarial Networks (GAN) [44], adversarial

divergences train a domain discriminator to discern the source from the target, while an

encoder feature extractor is simultaneously learned to create features indistinguishable
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Figure 2.3: Shared feature learning for domain adaptation.

across the source and the target, confusing the discriminator.

Domain Adaptation using MMD

Maximum mean discrepancy (MMD) [49] is a two-sample statistical test of the

hypothesis that two distributions are equal based on observed samples from the two

distributions. The test is computed from the difference between the mean values of

a smooth function on the two domains’samples. If the means are different, then the

samples are likely not from the same distribution. The smooth functions chosen for

MMD are unit balls in characteristic reproducing kernel Hilbert spaces(RKHS) since it

can be proven that the population MMD is zero if and only if the two distributions are

equal [49] (Figure 2.4). Specifically, given two sets of source/target samples, the MMD

measures the distance between the mean of the two sets after mapping each sample to a

RKHS:

MMD2(Zs, Zt) =

∥∥∥∥ Ns∑
i=1

Φ(zsi )

Ns
−

Nt∑
j=1

Φ(ztj)

Nt

∥∥∥∥2

, (2.1)

where Zs/Zt denote the source/target features in shared space,Ns, Nt denote the number

of source/target samples, Φ(.) denotes the mapping from feature space to RKHS. In

practice, this mapping is typically unknown. By expanding Eq. 2.1, and using the kernel

trick to replace the inner products by their kernel values, we rewrite the squared MMD,
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Figure 2.4: Domain Adaptation using MMD distance.

leading to the following regularizer:

L(Zs, Zt) =
∑
i,j

K(zsi , z
s
j )

N2
s

− 2
∑
i,j

K(zsi , z
t
j)

NsNt
+
∑
i,j

K(zti , z
t
j)

N2
t

,

where K(., .) denotes the kernel function.

Instead of aligning the source and target domains in a (low) dimensional manifold,

a few works attempted to reduce the domain mismatch by expanding the source and

target features in a non-parametric fashion using the notion of Reproducing Kernel

Hilbert Spaces (RKHS). The main assumption here is that in RKHS the domains can

be brought together more easily compared to parametric (fix-dimension) transforma-

tions. Specifically, [6, 7] proposed the Domain Invariant Projection (DIP) method that

compares the domain distributions in RKHS, while constraining the transformation to

be orthogonal.

More recently, [56] proposed a DA scheme to construct a RKHS using the Mahalanobis

metric in the target space. This is achieved by simultaneously learning the projections

from the source and target domains to RKHS, by minimizing a notion of domain distance

while maximizing a measure of discriminatory power of RKHS.

By the Taylor expansion of the Gaussian kernel, MMD can be viewed as minimizing

the distance between the weighted sums of all raw moments [70]. The interpretation

of MMD as moment matching procedures motivated Zellinger et al. [127] to match
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the higher-order moments of the domain distributions, which we call central moment

discrepancy (CMD). An empirical estimate of the CMD metric for the domain discrepancy

in the activation space [a, b]N is given by

CMDK(Xs, Xt) =
1

(b− a)

∥∥E(Xs)− E(Xt)
∥∥

2
+

K∑
k=2

1

|b− a|k
∥∥Ck(Xs)− Ck(Xt)

∥∥
2

(2.2)

where Ck(X) = E((x− E(X))k is the vector of all kth-order sample central moments

and E(X) = 1
|X|
∑

x∈X x is the empirical expectation.

Based on our Misaligned-Feature-Norm Hypothesis [124], MMFND proposed the

Maximum Mean Feature Norm Discrepancy to characterize the mean-feature-norm

distance between the two distributions and verify whether bridging this statistical

domain gap can result in appreciable transfer gains.

Despite of the popularity of MMD, it is notoriously hard to choose the optimal

kernel(s) for MMD (e.g., how to set the bandwidth in Gaussian RBF) in domain

adaptation, considering that there are not labeled data in the target domain for cross-

validation. There exist some attempts to tackling this issue [49]. However, they are

often limited to specific application scenarios.

Adversarial Domain Adaptation

Recently, great success has been achieved by the GAN method [44], which its goal

is to generate realisic images via an adversarial process. GAN consists of two models:

a generative model G that extracts the data distribution and a discriminative model

D that distinguishes whether a sample is from the generator G or a given dataset by

assigning a binary label to the sample. The models are trained on the label prediction

loss in a mini-max fashion: simultaneously optimizing G to minimize the loss while also

training D to maximize the probability of assigning the correct label (Figure 2.5):

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.3)

In DA, this idea has been employed to ensure that the model cannot distinguish between
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Figure 2.5: Adversarial domain adaptation.

the source and target domains. [128] proposed a unified framework for adversarial-based

approaches and summarized the existing approaches according to whether to use a

generator, which loss function to employ, or whether to share weights across domains.

Overally speaking, adversarial-based approaches can be categorized into two subsettings:

generative models and non-generative models.

Generative Models

Synthetic target data with ground-truth labels are alternatives to address the issue of

a lack of training data. First, with the help of source data, generators render unlimited

quantities of synthetic target data, which are paired with source data to share labels or

appear as if they were sampled from the target domain while maintaining labels. Then,

the generated samples with labels are used to train the target model as if no DA were

required. Adversarial-based approaches with generative models are able to learn such a

transformation in an unsupervised manner based on GAN idea.

The core idea of CoGAN [73] is to generate synthetic target data that are paired with

synthetic source data. The model contains two GANs: GAN1 for generating source data

and GAN2 for generating target data. The weights of the first few layers of the generators

and the last few layers in the discriminators are tied. This weight-sharing constraint

allows CoGAN to achieve a domain-invariant feature space without correspondence



16

Figure 2.6: Generalized architecture for adversarial domain adaptation. Existing
adversarial adaptation methods can be viewed as instantiations of a framework with
different choices regarding their properties.

supervision. A trained CoGAN can adapt the input noise vector to paired images that

are from the two distributions and share the labels. Therefore, the shared labels of

synthetic target samples can be used to train the target model.

Yoo et al. [126] used GAN to transfer knowledge from the source domain to pixel-level

target images. A domain discriminator ensures the invariance of content to the source

domain, and another real/fake discriminator helps the generator to produce similar

images to the target domain.

Shrivastava et al. [103] proposed a combined simulated and unsupervised learning

method that uses a combined objective of minimizing an adversarial loss and a self-

regularization loss, where the goal is to make synthetic images look more realistic using

unlabeled target data.

Unlike other works in which the generator is conditioned only on a noise vector or

source images, Bousmalis et al. [15] developed a model that exploits GANs conditioned on

both noise and source images. The category classifier T is trained to predict class labels

of both source and synthetic images, while the discriminator is trained to predict the

domain labels of target and synthetic images. Moreover, to expect synthetic images with

similar foregrounds and different backgrounds from the same source images, a content

similarity loss is proposed to penalize large differences between source and synthetic
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images for foreground pixels only by a masked pairwise mean squared error [30].

Non-Generative Models

The key of (deep) feature based DA is learning domain-invariant representations

from source and target samples by which the distribution of both domains can be similar

enough such that the classifier can be directly used in the target domain even if it is

trained on source samples. Therefore, whether the features are domain-invariant or not

is crucial to transferring knowledge. Inspired by GAN, domain confusion loss, which

is produced by the discriminator, is introduced to improve the performance of deep

DA without generators. The domain adversarial neural network (DANN) [35] first

introduced a gradient reversal layer (GRL) that reversed the gradients of the domain

discriminator in order to encourage domain confusion. The network consists of shared

feature extraction layers and two classifiers. DANN minimizes the domain confusion

loss (for all samples) and label prediction loss (for source samples) while maximizing

domain confusion loss via the use of the GRL.

ADDA [117] recently proposed an adversarial framework for directly minimizing

the distance between the source and target encoded representations (shared features). A

discriminator and (target) encoder are iteratively optimized in a two-player game, where

the goal of the discriminator is to distinguish the target features from the source features,

with the goal of the encoder being to confuse the discriminator. ADDA minimizes the

source and target representation distances through iteratively minimizing these following

functions, which is most similar to the original GAN:

min
G,h
Lcls(Xs, Y s) = −E(xs,ys)∼PS(x,y)

C∑
c=1

1[c=ys] log h(G(xs))

min
D
LadvD(Xs, Xt, G) = −Exs∼PS(x)[logD(G(xs))]− Ext∼PT (x)[log(1−D(G(xt)))]

min
G
LadvM (G) = − Ext∼PS(x)[logD(G(xt))] (2.4)

where the mapping G is learned from the source and target data, Xs and Xt. h

represents a classifier working on the source domain. The first classification loss function

Lcls is optimized by training the source model using the labeled source data. The second



18

function LadvD is minimized to train the discriminator, while the third function LadvM

is learning a representation that is domain invariant.

The DupGAN [57] proposed a GAN-like model with duplex discriminators to

restrict the latent representation to be domain invariant, with its category information

preserved. Saito et al. [96] further introduce two classifiers as a discriminator to avoid

ambiguous features near the class boundaries. By deploying two classifiers, the method

therein employs the adversarial learning techniques to detect the disagreement across

classifiers, such that the encoder is able to minimize this discrepancy on target samples.

The ARCA [24] proposed a method that trains a shared embedding to align the joint

distributions of inputs (domain) and outputs (classes), making any classifier agnostic to

the domain. Joint alignment ensures that not only the marginal distributions of the

domain are aligned, but the labels as well. A novel objective function is introduced

that encourages the class-conditional distributions to have disjoint support in feature

space. Adversarial regularization was also exploited to improve the performance of the

classifier on the domain for which no annotated data is available.

Drop to Adapt (DTA) [66] leverages adversarial dropout to learn strongly discrimi-

native features by enforcing the cluster assumption on target domain by pushing the

decision boundary away from the target domain’s features. More precisely, to sup-

port various tasks, DTA introduces element-wise and channel-wise adversarial dropout

operations for fully-connected and convolutional layers, respectively.

CAT [27] proposed Cluster Alignment with a Teacher for unsupervised domain

adaptation, which can effectively incorporate the discriminative clustering structures in

both domains for better adaptation. Technically, CAT leverages an implicit ensembling

teacher model to reliably discover the class-conditional structure in the feature space

for the unlabeled target domain. Then CAT forces the features of both the source

and the target domains to form discriminative class-conditional clusters and aligns the

corresponding clusters across domains.

In addition to the adversarial distribution matching oriented algorithms, pseudo-

labels or conditional entropy regularization are also adopted in literature [95, 101, 128, 20].

Sener et al. [101] construct a k-NN graph of target points based on a predefined similarity
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Dataset Images classes Domains Description

Digit 140,000 10 4 mnist [65], svhn [84], usps [120], mnist-m [35]
Traffic Signs 150,000 43 2 Synthetic [83] and German Traffic Signs [107]
Office31 [94] 2500 10 3 Amazon, DSLR, Webcam

Office-Caltech [43] 4700 10 4 Amazon, DSLR, Webcam, Caltech
Multi-Pie [52] 120,000 6 5 face images taken from different angles

Visda [87] 280,000 12 2 Synthetic and Real Images
PACS [68] 10000 7 4 Photo, Art, Painting, Cartoon

Table 2.1: Statistics of the datasets.

graph. Pseudo-labels are assigned to target samples via their nearest source neighbors,

which allows end-to end joint training of the adaptation loss. Saito et al. [95] employ the

asymmetric tri-training, which leverages target samples labeled by the source-trained

classifier to learn target discriminative features. Zhang et al. [128] iteratively select

pseudo-labeled target samples based on their proposed criterion and retrain the model

with a training set including pseudo-labeled samples. However, these methods based on

pseudo-labeled target samples have a critical bottleneck where false pseudo-labels can

mislead learning of target discriminative features, leading to degraded performance.

2.2.2 Datasets

The following section presents the datasets commonly used by DA methods and the

protocols which will be used to evaluate our DA methods proposed in chapter 3. The

statistics of the datasets is available in Table. 2.1. In the following we describe each

dataset in detail.

Digits like datasets

The following datasets are fairly simple, with moderate intra class variability. They

are commonly used to evaluate the modern DA models.

• MNIST [65] is the dataset on which the first convolutional neural network was

trained. It has a training set of 60k examples, and a test set of 10k examples. It is

a subset of a larger set available from NIST. The digits have been size-normalized
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Figure 2.7: Samples from the digits datasets. From left to right: MNIST, SVHN,
MNIST-M and USPS.

and centered in a fixed-size image. The images contain a single digit numbers on

a black background.

• MNIST-M [35] is a variant where the background is substituted by a randomly

extracted patch obtained from color photos of BSDS500 [35].

• USPS [120] is a digit dataset automatically scanned from envelopes by the U.S.

Postal Service containing a total of 9, 298 16 × 16 pixel grayscale samples; the

images are centered, normalized and show a broad range of font styles.

• SVHN [84] is the challenging real-world Street View House Number dataset. It

contains over 600k 32× 32 pixel color samples, while we focused on the smaller

version of almost 100k cropped digits. Besides presenting a great variety of

shapes and textures, images from this dataset often contain extraneous numbers

in addition to the labeled, centered one.

• Synth Signs: the Synthetic Signs collection [83] contains 100k samples of common

street signs obtained from Wikipedia and artificially transformed to simulate

various imaging conditions.

• GTSRB: the German Traffic Signs Recognition Benchmark (GTSRB [107]) con-

sists of 51, 839 cropped images of German traffic signs.
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Figure 2.8: Samples from the signs datasets. From left to right: Synth Signs and GTSRB

Figure 2.9: Samples from the Office and Caltech settings. From left to right: Amazon,
DSLR, Webcam and Caltech

Real life datasets

These datasets are more complex and unconstrained; they better mimic real world

applications. Most of them are commonly used for evaluation of recent deep learning

based methods.

• The Office 31[94] dataset is one of the main benchmark datasets for testing

domain-adaptation methods. It contains 4652 images grouped into 31 classes from

three different domains: Amazon (A), DSRL (D) and Webcam (W). Amazon

images are collected from amazon.com, Webcam and DSLR images were manually

collected in an office environment. As can be seen in Figure 2.9, the domain gap

is pretty large between Amazon and the remaining two, and small between DSLR

and Webcam.

• Office-Caltech [43] dataset is obtained by selecting the subset of 10 common

categories in the Office31 and the Caltech256 datasets. It contains 2533 images of

which about half belong to Caltech256. Each of Amazon (A), DSLR (D), Webcam
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Figure 2.10: Samples from VisDA dataset. First two rows: Synthetic images. Last two
rows: Real Images.

(W) and Caltech256 (C) are regarded as separate domains.

• VisDA [87] is the large scale domain adaptation dataset containing two datasets:

synthetic dataset and real dataset. The synthetic dataset containing 152,397

images was generated by rendering 3D models of the same object categories as in

the real data (55,388 images) from different angles and under different lighting

conditions.

• Multi-PIE dataset [52] includes face images of 337 individuals captured from

different expressions, views, and illumination conditions categorized by the face

expressions (normal, smile, surprise, squint, disgust, scream) as labels. The

images from each view contains 27120 images of size 64× 64× 3.

• PACS [68] is a recently proposed benchmark which is especially interesting due to

the significant domain shift between different domains. It contains 9991 images in

total across 7 categories (“dog”, “elephant”, “giraffe”, “guitar”, “house”, “horse”

and “person”) and four domains of different stylistic depictions (“Photo”, “Art

painting”, “Cartoon” and “Sketch”). The diverse depiction styles provide a

significant domain gap. The goal is to train in a set of domains and recognize

objects in a very different domain.
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Figure 2.11: Samples from Multi-PIE dataset.

Figure 2.12: Samples from PACS dataset.
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Chapter 3

Learning to see across domains

This chapter presents different strategies that allow us to deal with the Unsupervised

Domain Adaptation problem. Four methods are presented: Punda, MCDA,TDDA,

MTDA-ITA. The first uses probabilistic latent variable model to learn projections from

each source and target domain to a latent (shared) space jointly with the classifier in the

latent space, which simultaneously minimizes the domain disparity while maximizing the

classifier’s discriminative power. The second proposes a more systematic and effective

way to match the distribution of the domains using Gaussian processes (GP). The GP

induces a hypothesis space of classifiers from the posterior distribution of the latent

random functions, turning the learning into a large-margin posterior separation problem.

The third improve the performance of adversarial DA by introducing a discriminative

discrepancy measure which takes advantage of auxiliary information available in the

source and the target domains to better align the source and target distributions. The last

method proposes an information theoretic approach for domain adaptation in the novel

context of multiple target domains with unlabeled instances and one source domain with

labeled instances. The model aims to find a shared latent space common to all domains,

while simultaneously accounting for the remaining private, domain-specific factors.
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3.1 PUnDA: Probabilistic Unsupervised Domain Adaptation for Knowl-

edge Transfer Across Visual Categories

Traditional machine learning algorithms assume that the training and test data

are independent and identically distributed (i.i.d.), coming from the same underlying

distribution [109]. However, in real-world data, this assumption rarely holds due to a

number of artifacts, such as different types of noise, changes in object view, etc. This

inevitably introduces different types of biases in the observed data sampled during the

training and test stage, causing the training and test data to change over time and space.

Consequently, the assumptions made by traditional learning algorithms are usually

violated, resulting in (significant) degradation of their performance during the inference

of test data.

In most existing unsupervised DA methods, the first step is to project the source

and target data onto a common space such that the source data is as close as possible

to the target data in their distribution [46, 42, 6, 34, 78, 60, 82, 38]. Then, a classifier

trained on the transformed source domain is applied to the target data, hoping that

it will perform equally well across the domains as the domain mismatch is minimized

through the learned projections.

However, most of these methods suffer from at least one or more of the following limi-

tations that can adversely affect their performance and/or constrain their applicability to

the target tasks. First, majority of existing methods are deterministic [46, 42, 6, 34, 78],

relying on costly cross-validation procedures to find the size of the underlying manifold

in which the mismatch between the source and target domains can effectively be reduced

— increasing the computational complexity of the model and making it more prone to

overfitting. Second, the minimization of the domain mismatch and learning of the target

classifiers are done independently resulting in the joint feature space that is suboptimal

for the main task, i.e., classification.

To overcome the above-mentioned limitations, in this section, we introduce a novel

probabilistic framework that we call Probabilistic Unsupervised Domain Adaptation

(PUnDA). In contrast to existing two-stage approaches where new feature spaces
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and classifiers are separately learned, our approach learns both the classifier and low

dimensional subspace jointly via a newly introduced Bayesian learning framework.

Moreover, the probabilistic nature of our PUnDA allows it to automatically infer the

dimensionality of the common subspace.

Since these benefits come with computational challenges if not addressed properly, we

introduce an efficient learning and inference method based on the variational Bayes (VB)

framework. Within this framework, we also propose an extension of the Maximum Mean

Discrepancy (MMD) score [13], traditionally used to measure the domain mismatch, with

the aim to align the source and target domains via estimated (variational) posteriors

- thus, exploiting the model uncertainty — something the deterministic approaches

fail to account for. Finally, the proposed VB learning in our PUnDA allows us to

effectively incorporate unlabeled data of the target domain into the classifier learning

via the regularizers specifically designed to minimize the expected classification loss in

target domain. Our method is expected to bring most benefits in the DA cases when:

(i) the data in both the source and target domains are tightly clustered, and (ii) the

clusters from the two domains are geometrically close to each other. We show in our

experiments on several benchmark datasets that the proposed approach significantly

outperforms the state-of-the-art methods for unsupervised DA as they fail to account

for the properties exploited in our PUnDA approach.

3.1.1 Unsupervised Domain Adaptation using Probabilistic Latent

Variable Models

In this section, we present PUnDA for unsupervised DA. We consider a multi-class

classification problem as the running example. Specifically, suppose we are given source-

domain training examples Xs = [xs1, ..., x
s
N ] ∈ Rd×Ns , with labels Y s = [ys1, ..., y

s
Ns

] ∈

R1×Ns , y ∈ {1, 2, ..., C} (we assume the shared set of class labels between the two

domains), and target data Xt = [xt1, ..., x
t
Nt

] ∈ Rd×Nt . Our goal is to assign the correct

class label Y t to target data points Xt. Figure 3.1 shows the model’s representation

as a Bayesian network. There are three observed variables represented by the shaded

nodes: the source features Xs, the target features Xt, and the source labels Y s. Note
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Figure 3.1: The graphical representation of PUnDA (the shaded circles denote the
observed data). {xsi , xtj} are the source and the target variables in the observation space,
{ysi , ytj} are the labels of the source and the target data, and {zsi , ztj} are the represen-
tation of two domains in the shared space. Gs/Gt are the source/target projection
matrices. The elements of W are the classifier parameters that are shared between both
the source and target domains. α defines the underlying dimension of the shared space,
and γs and γt are the noise parameters of the source and target domain, respectively.

that we assume that we do not have access to target labels, hence, Y t are unobserved.

By assuming the existence of a low-dimensional latent space where the source and target

distributions are similar, we model each feature xsi/x
t
i, as a linear transformation Gs/Gt

of their latent representations zsi /z
t
i in the source/target domain, corrupted with an

additive Gaussian noise εs/εt, as

xsi = Gs>zsi + εs, xti = Gt>zti + εt, (3.1)

where Gs = [gs1, ..., g
s
K ] ∈ Rd×K , and Gt = [gt1, ..., g

t
K ] ∈ Rd×K are the transformation ma-

trices for source and target domains, respectively. εs ∼ N (0, γ−1
s Id) and εt ∼ N (0, γ−1

t Id)

are the zero-mean Gaussian noise with precision values γs and γt, respectively (Id de-

notes a d× d identity matrix). To keep the exponential family conjugacy between the

prior and likelihood distributions, we place non-informative gamma hyper-priors on γs

and γt, as

γs ∼ Ga(c1, c2), γt ∼ Ga(c′1, c
′
2),
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where Ga denotes the Gamma distribution.

To automatically infer the dimensionality K of the shared latent space, we introduce

an auxiliary binary vector α ∈ {0, 1}K for the latent features {zsi }, {ztj}, where the

non-zero entries of α specify which latent features are used to represent the observations.

Consequently, the model in Eq. 3.1 is reformulated as

xsi = Gs>(α� zsi ) + εs, xti = Gt>(α� zti) + εs, (3.2)

where � denotes the element-wise multiplication operator. Note that all the source and

target data points (xsi/x
t
j) share the same set of important latent features defined by α,

but each have their unique weights (zsi /z
t
j).

Using the notion of the probabilistic hierarchical framework as in [32], we place a non-

parametric prior on the binary vector α by introducing auxiliary variables Π = {πk}Kk=1

drawn from the Beta distribution as

πk ∼ Beta(a/K, b(K − 1)/K),

where a, b are the hyper-parameters and the integer K is the largest possible dimension

for α (by letting K → ∞, the length of the binary code α can be learned from the

observed data [112]). Then, we model the binary vector α as a random sample from

the Bernoulli process parameterized by Π as

α ∼
K∏
k=1

Ber(αk;πk), k = 1, ...,K,

where αk denotes the k-th element of the binary vector α and Ber denotes the Bernoulli

distribution (we obtain the Indian Buffet Process (IBP) prior[51] on α by integrating

out Π and letting K →∞). For computational simplicity, we model the latent features

Zs = [zs1, ..., z
s
Ns

] ∈ RK×Ns and Zt = [zt1, ..., z
t
Nt

] ∈ RK×Nt using a multivariate zero-

mean Gaussian distribution:

P (zsi ) ∼ N (0, IK), P (ztj) ∼ N (0, IK).

Similarly, we also assume that the elements of the transformation matrices are drawn

from a multivariate zero-mean Gaussian distribution:

P (gsi ) ∼ N (0, Id), P (gtj) ∼ N (0, Id).
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In order to make the latent representations discriminative for the classification

task, we employ the softmax regression classifier. More precisely, for the shared space

representation α� z of a sample x, the probability of the x’s label y belonging to class

c = 1, . . . , C is computed as:

P (y = c|W , z, α) =
exp
(
w>c (α� z)

)∑C
c′=1 exp

(
w>c′ (α� z)

) ,
where W = [w1, ..., wC ] ∈ R(K+1)×C contains the class projection vectors. Again,

within our probabilistic framework, we assume that elements of W are drawn from a

multivariate zero-mean Gaussian distribution (wc ∼ N (0, IK+1)). It is worth noting

that W includes a bias by having an extra dimension z0 = 1 and α0 = 1 for z and α,

respectively.

Posterior Inference

Because computing the exact posterior distribution of the latent variables Ω =

{Zs, Zt,W , Gs, Gt, α,Π, γs, γt} is intractable, we derive a Variational Bayes (VB) algo-

rithm [37] to approximate this posterior distribution in the proposed PUnDA approach.

The goal of the VB is to approximate the true posterior distribution over the latent

variables P (Ω|Xs, Xt, Y s) with a variational distribution q(Ω), which is closest in KL

divergence to the true posterior distribution. It is easy to show that this equals to

maximizing the lower bound of the marginal likelihood P (Xs, Y s, Xt|Θ)

q∗(Ω) = arg max
q(Ω)

Eq
[

log(Xs, Y s, Xt,Ω|Θ)
]

+H[q(Ω)],

where Θ = {a, b,K, c, d, c′, d′} denotes the set of hyper-parameters, Eq[.] denotes the

expectation operator under the distribution q, and H[.] the entropy operator. For our

framework to yield a computationally effective inference method, we employ a factorized

variational distribution:

q(Ω) =ΠNs
i=1q(z

s
i )Π

Nt
j=1q(z

t
j)Π

K
k=1q(g

s
k)q(g

t
k)Π

C
c=1q(wc)q(γs)q(γt).

For simplicity, we also fix K and set it to a finite but large number. If K is large enough

(see Section 3.1.2), the observed data will reveal fewer than K components for shared

space features.
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Apart from maximizing the marginal likelihood, we also need the shared latent

features to be invariant to differences between the source and target domains, i.e., to

be robust to the covariate shift that may exist in the target space. To this end, we

introduce a regularizer L(Zs, Zt), based on on the Maximum Mean Discrepancy (MMD)

[13], designed to minimize the distance between the distributions of the source and

target representations. Using the kernel trick, we rewrite the squared MMD, leading to

the following regularizer:

L(Zs, Zt) =
∑
i,j

K(zsi , z
s
j )

N2
s

− 2
∑
i,j

K(zsi , z
t
j)

NsNt
+
∑
i,j

K(zti , z
t
j)

N2
t

,

where K(., .) denotes the kernel function. In contrast to most existing DA methods that

measure the domain distance directly in the learned RKHS [85, 6, 77, 119, 76], PUnDA

encodes this distance using the posterior distributions of the shared features Zs and Zt

– thus, accounting also for uncertainty of the projections from the two domains. To this

end, we use the Bhattacharyya kernel [22] to measure the posterior similarity as

K(q(zs), q(zt)) = log

∫
RK

q(zs)1/2q(zt)1/2 dzs dzt.

The intuition behind this kernel is that it measures the amount of overlap (similarity)

between two distributions q(zs) and q(zt), by integrating the square root of their product

over the whole space [22].

To learn a good classifier, we also leverage knowledge of the target domain samples

by minimizing the uncertainty of the classifier over the target samples. To this end, we

introduce a regularizer L′(W , Zt, α) designed to minimize the Shanon Entropy of the

probability vectors P (ytj |W , ztj , α) over the target domain samples:

L′(W , Zt, α) =

Nt∑
j=1

C∑
c=1

EP (ytj |W ,ztj ,α) logP (ytj = c).

Intuitively, if our assumptions about two sets of clusters being geometrically close

indeed hold in the used datasets, the probability vector P (ytj |W , α, ztj) = [p1
j , ..., p

C
j ]

should ideally look like a posterior probability vector [0, 0, ...., 1, ..., 0] (using 1-of-many

coding). Since we do not know the true label, we cannot measure directly the similarity

of P (ytj |W , α, ztj) and the correct label. However, we can minimize the entropy of
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P (ytj |W , α, ztj) by which we can reduce the amount of information that P (ytj |W , α, ztj)

contains about the confusing labels.

By defining the regularizers L(Zs, Zt) and L′(Zt,W , α), the proposed regularized

VB algorithm can be written as the following optimization problem:

q∗(Ω) = arg max
q(Ω)

Eq
[

log(Xs, Y s, Xt,Ω|Θ)
]

+H[q(Ω)]

− λL(Zs, Zt) + λ′L′(Zt,W , α),

where λ ≥ 0 and λ′ ≥ 0 denote the regularization parameters. The VB algorithm

solves the above optimization problem using the Coordinate Descent algorithm. The

computational complexity of each iteration of the proposed VB algorithm, for training, in

one iteration is O((Ns+Nt)dK
2), i.e., linear in the size of the source+target data Ns+Nt,

the data dimensionality d, and quadratic in the dimensionality of the shared space

K(K << d). Details of the proposed VB algorithm and its computational complexity

analysis, along with other derivations, are available in the Appendix.

Target Class Label Prediction

After computing the posterior distribution q∗(Ω), to determine the target class-label

ytj of a given target domain instance xtj , we first compute the distribution of ytj given xtj

by integrating out the latent variables {W , α, ztj}. Then, we select the most likely label

as

ŷtj = arg max
ytj∈{1,...,C}

P (ytj |xtj),

where P (ytj |xtj) can be computed as

P (ytj = c|xtj) =
∑
α

∫
P (ytj |W , α, ztj)q

∗(α)q∗(ztj)q
∗(W ) dztj dW .

Since the above expression cannot be computed in a closed form, we approximate

q∗(α), q∗(ztj), and q∗(W ) with their mean values: Eq∗(α)[α],Eq∗(W )[W ] and Eq∗(ztj)[z
t
j ],

respectively. Using this approximation, we compute ztj as:

ŷtj = arg max
c∈{1,...,C}

Eq∗(wc)[wc]
>(Eq∗(α)[α]� Eq∗(ztj)[z

t
j ]).
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3.1.2 Experimental Results

In this section, we show in our experiments on several benchmark datasets that

the proposed approach significantly outperforms the state-of-the-art methods for un-

supervised DA as they fail to account for the properties exploited in our PUnDA

approach.

We run extensive experiments on unsupervised DA tasks, where we use the hand-

crafted features (SURF) [9] and the current state-of-the-art deep-net features (VGG-Net)

[104]. We compare our approach to several state-of-the-art unsupervised DA methods

on two DA benchmark datasets: the Office+Caltech10 and Multi-PIE datasets.

Office+Caltech10 dataset contains images collected from four different sources and 10

object classes. The corresponding domains are Amazon, Webcam, DSLR, and Caltech.

The Multi-PIE dataset used in this experiment, includes face images of 67 individuals

captured from different expressions, views, and illumination conditions. We compare

the performance of the proposed PUnDA approach to the following benchmarks:

• 1-NN and SVM: original features are used without any adaptation, a basic

1-nearest neighbor (1-NNs) and linear SVM is found by comparing the target

samples to the training data from the source domain.

• GFK [43]: The geodesic flow kernel algorithm. Results are evaluated using the

kernel-NNs.

• SA [33]: The subspace alignment algorithm. Results are evaluated using 1-NN.

• CORAL [109]: The correlation alignment algorithm that uses a linear SVM on

the similarity matrix formed by the correlation matching.

• ILS [56]: Invariant Latent Space algorithm. Results are evaluated using 1-NN.

For the VB algorithm, we set the truncation level for the dimensionality of the latent

space to (K = 100) for both datasets. The hyper-parameters a, b of the Beta distributions

are set with a = 1 and b = 1 (other settings of a and b yield similar results). All Gamma

priors are set as Ga(10−6, 10−6) to make the prior distributions uninformative. In all



33

Table 3.1: Unsupervised domain adaptation results using VGG-FC6 features on Of-
fice+Caltech10 dataset with the evaluation setup of [56].

method A → W A → D A → C W → A W → D W → C D → A D → W D → C C → A C → W C → D Ave.

1-NN 60.9 52.3 70.1 66.4 91.3 60.2 57.0 86.7 48.0 81.9 65.9 55.6 66.4
SVM 63.1 51.7 74.2 73.3 94.2 68.2 58.7 91.8 55.5 86.7 74.8 61.5 71.1

GFK[43] 74.1 63.5 77.7 81.1 96.6 73.5 69.9 92.4 64.0 86.2 76.5 66.5 76.8
SA[33] 76.0 64.9 77.1 80.2 94.2 71.9 69.0 90.5 62.3 83.9 76.0 66.2 76.0

CORAL[109] 74.8 67.1 79.0 82.3 96.0 75.9 75.8 94.6 64.7 89.4 77.6 67.6 78.7
ILS[56] 82.4 72.5 78.9 87.2 89.3 79.9 79.2 94.2 66.5 87.6 84.4 73.0 81.3

PUnDA 82.7 76.2 82.3 86.9 89.8 82.6 83.1 93.4 69.2 90.3 88.3 76.2 83.4

Table 3.2: Unsupervised domain adaptation results using VGG-FC7 features on Of-
fice+Caltech10 dataset with the evaluation setup of [56].

method A → W A → D A → C W → A W → D W → C D → A D → W D → C C → A C → W C → D Ave.

1-NN 64.0 50.8 72.6 67.8 88.8 64.2 61.2 88.2 52.8 82.6 65.3 54.9 67.8
SVM 68.0 51.8 76.2 74.6 93.0 70.6 58.7 91.2 56.0 86.7 74.8 61.3 71.9

GFK[43] 74.0 57.6 76.6 76.0 92.9 69.5 67.5 91.9 62.9 84.1 73.6 63.4 74.2
SA[33] 75.0 60.7 76.2 76.4 94.0 69.0 66.0 89.5 59.4 82.6 73.6 63.2 73.8

CORAL[109] 71.8 61.3 78.6 82.0 94.6 73.7 71.2 93.5 63.0 88.6 76.0 63.8 76.5
ILS[56] 80.9 71.3 78.4 86.7 88.2 76.3 76.5 91.8 66.2 87.1 80.1 67.1 79.2

PUnDA 81.4 75.8 81.0 85.7 90.1 80.1 80.4 92.0 69.1 91.1 83.8 70.8 81.7

our experiments, we set λ = 0.1 and λ′ = 1. We use the classification accuracy for the

target data as the evaluation metric:

Accuracy =

∣∣{xt : xt ∈ Xt, f(xt) = yt}
∣∣∣∣{xt : xt ∈ Xt}

∣∣ ,

where f(xt) shows the predicted label by the methods for the target data point xt, and

yt is the actual label of xt.

Results for OFFICE+CALTECH10

For this dataset, we used 4096 dimensional VGG-fc6 and VGG-fc7 features extracted

with the network model of [104] for the deep-net feature experiments. Following the

experimental protocol in [56], we also use SURF features [9] (each image is encoded

with an 800-bin histogram and the histograms are then normalized to have zero mean

and unit standard deviation in each dimension) as hand-crafted features. We set the

latent space dimensionality to 20 for VGG features and to 100 for SURF features in all

compared methods, as these were empirically found to be the best for the competing

methods [56]. For each pair of the source and target domains, we conduct experiments

using 20 random train/test splits.

In Tables 3.1 and 3.3, we report the performance using VGG-FC6, VGG-FC7
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Table 3.3: Unsupervised domain adaptation results using SURF features on the Of-
fice+Caltech10 dataset with the evaluation setup from [56].

method A → W A → D A → C W →A W → D W → C D → A D → W D → C C → A C → W C → D Ave.

1-NN 23.1 22.3 20.0 13.8 40.6 12.2 23.0 51.7 19.9 21.0 19.0 23.6 24.2
SVM 25.6 33.4 35.9 32.1 78.9 25.2 34.6 70.2 31.2 43.8 30.5 40.3 40.1

GFK[43] 35.7 35.1 37.9 35.5 71.2 29.3 36.2 79.1 32.7 40.4 35.8 41.1 42.5
SA[33] 38.6 37.6 35.3 37.4 80.3 32.3 38.0 83.6 32.4 39.0 36.8 39.6 44.2

CORAL[109] 38.7 38.3 40.3 37.8 84.9 34.6 38.1 85.9 34.2 47.2 39.2 40.7 46.7
ILS[56] 40.6 41.0 37.1 39.0 78.7 34.2 38.9 79.1 36.9 48.6 42.0 44.1 46.7

PUnDA 42.5 40.3 39.5 42.4 85.2 36.5 40.3 83.2 38.9 50.1 41.7 45.8 48.8

and SURF features, respectively. As can be seen, for all the feature types, PUnDA

outperforms the state-of-the-art methods in most of domain transformations, and,

generally, provides the highest overall classification accuracies for all the feature types.

We also note that the VGG-fc7 is less favorable than VGG-fc6 for majority of the DA

algorithms compared.

The higher performance of PUnDA compared to other methods is mainly attributed

to the joint learning of the discriminative classifier and low-dimensional feature spaces.

The key observation is that good representations are beneficial to data classification,

with classification results providing supervisory signals to representation learning. Fur-

thermore, from the results obtained, it is obvious that it is more beneficial to make the

use of information coming from unlabeled target data during classifier learning process

compared to when no data from target domain is used. Indeed, using the proposed

learning scheme, we find a representation space in which we embed the knowledge from

the target domain into the learned classifier.

Sensitivity Analysis

In the experiments above, we keep λ = 0.1, λ′ = 1. To analyze the sensitivity of our

method to changes in parameters λ and λ′, we conducted additional experiments to

analyze the parameter sensitivity of PUnDA w.r.t. the various values of λ and λ′. To

this end, we consider random splits from each of the Office+Caltech10 dataset along

VGG-FC6 features here. Figure 3.2 shows the sensitivity analysis for the parameters

of PUnDA on these random splits. Sensitivity analysis is performed by varying one

parameter at the time over a given range, while for the other parameters we set them to

their final values (λ = 0.1, λ′ = 1). From Figure 3.2 (a), we see that when λ = 0 (no
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Figure 3.2: Sensitivity analysis of PUnDA.

domain mismatch regularization term is considered), the performance drops considerably.

For other values of λ, the performance is superior and there is little variation in the

model performance, evidencing the robustness of PUnDA w.r.t. λ. Similarly, from

Figure 3.2 (b), PUnDA is largely insensitive to the parameter λ′ over the specified

range of its values. Moreover, it is clear that using the unlabeled target data improves

the discriminative power of the classifier.

Results on Multi-PIE Faces

In this experiment, we follow the setting in [56] and use the views: C27 (looking for-

ward) and C09 (looking down), as the source domain, and the views: C05, C37, C02, C25

(looking towards left in an increasing angle, see Figure 3.12), as target domains. We

expect the face inclination angle to reflect the complexity of transfer learning. We

normalize the images to 32× 32 pixels and use the vectorized gray-scale images as fea-

tures. The dimensionality of the common feature space for all the feature learning-based

methods is set to 100.

Table 3.4 shows the classification accuracy w.r.t. the increasing angle of inclination.

As can be seen, PUnDA achieves the best performance (on average) as well as the best

scores for the 3 views and the second best for the C02. Clearly, with the increasing

camera angle, the feature structure changes up to a certain extent (the features become

heterogeneous). However, our method produces good accuracies even under such

challenging conditions.
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Table 3.4: Multi-PIE results. The changes in performance w.r.t. the changing face
orientations when frontal face images (C27) are considered as the source domain.

method C09 C05 C37 C25 C02 Ave.

1-NN 92.5 55.7 28.5 14.8 11.0 40.5
SVM 87.8 65.0 35.8 15.7 16.7 44.2

GFK[43] 92.5 74.0 32.1 14.1 12.3 45.0
SA[33] 97.9 85.9 47.9 16.6 13.9 52.4

CORAL[109] 91.4 74.8 35.3 13.4 13.2 45.6
ILS[56] 96.6 88.3 72.9 28.4 34.8 64.2

PUnDA 94.3 92.2 78.8 28.9 34.7 65.7

Model Selection

To demonstrate the ability of the proposed method to learn the dimensionality of

the latent space automatically, we conduct experiments on both Office+Caltech10 and

Multi-PIE datasets. We consider a random split from A → W of the Office+Caltech10

dataset along VGG-FC6 features, and C27→ C25 from the Multi-PIE dataset.

We plot the sorted values of E[q∗(α)] for the selected source/target datasets, inferred

by the algorithm in Figure 3.4. As can be seen, the PUnDA inferred approximately

25− 30 dimensions for the learned latent space for the selected domain transformations

of Office+Caltech10, and 80− 85 dimensions for the learned latent space for domain

transformations in the Multi-PIE dataset, fewer than 100, as initially provided. It is

worth noting that since the number of data points in the C27, C25 datasets is much

larger than the number of samples in the A,W dataset, we need more latent dimensions

for C27, C25 than for A,W to capture the variations in these datasets.

Remark

In the experiments conducted, we showed that our approach is able to achieve

better performance than the competing methods. Namely, as stated before, our method

is expected to bring most benefits in the DA cases when data in both domains are

tightly clustered, with the clusters being geometrically proximal. Indeed, Figure 3.3

depicts the embedding of the learned features zs/zt, and those of ILS and the original

features x. Colors indicate source (red) and target (blue) domains. Notice that PUnDA

significantly reduces the domain mismatch, resulting in the expected tight clustering.
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Figure 3.3: Feature visualization. The embedding of Multi-PIE C05 data using t-sne
algorithm [80]. (a) Original features. (b) PUnDA features. (c) ILS features.

This is partially due to the use of the proposed probabilistic MMD with Bhattacharyya

kernel, which penalizes the domain mismatch while exploiting the uncertainty in the

shared feature space - something the ILS fails to account for.

3.1.3 Summary

In this section, we proposed a novel probabilistic approach for unsupervised DA that

learns an efficient domain-adaptive classifier that can generalize well on target domains.

The key to the proposed approach is that it jointly learns a latent space along with its

size, and a softmax classifier, by exploiting both labeled source and unlabeled target

data in Bayesian fashion. To tackle the intractability of computing the exact posteriors

in our model, we proposed a novel Bayesian approximation to efficiently approximate

the target distributions. We showed on two benchmark datasets for image classification,
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Figure 3.4: Inferred E[q∗(α)] for the Office+Caltech10 and Multi-PIE datasets.

using both hand-crafted and deep-net features, the superiority of the proposed method

compared to the state-of-the-art methods for unsupervised domain adaptation of visual

domain categories.
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3.2 GPDA: A Deep Max-Margin Gaussian Process Approach for Un-

supervised Domain Adaptation

In previous section, we proposed an unsupervised DA method in which, the target

domain error can be provably reduced by having a shared input representation that

makes the source and target domains indistinguishable from each other.

The idea is to find a latent space shared by both domains such that the classifier

learned on it using the fully labeled data from the source will also perform well on

the target domain. This is accomplished, and supported in theory [11], by enforcing a

requirement that the distributions of latent points in the two domains be indistinguishable

from each other. A large family of UDA approaches including [46, 42, 1, 6, 34, 78, 2,

60, 82, 38] leverage this idea. However, their performance remains unsatisfactory, in part

because the methods inherently rely on matching of marginal, class-free, distributions

while using the underlying assumption that the shift in the two distributions, termed

covariate shift [108], can be reduced without using the target domain labels. The main

reason is that it merely matches the marginal input distributions of source and target,

ignoring the alignment of class distributions.

To address this issue, as effective solution was proposed in [97], which aims to take

into account the class-specific decision boundary. Its motivation follows the theorem

in [10] relating the target domain error to the maximal disagreement between any two

classifiers, tighter than the former bound in [11]. It implies that a provably small target

error is achievable by minimizing the maximum classifier discrepancy (MCD). The

approach in [97], the MCD Algorithm (MCDA for short), attempted to minimize

MCD directly using adversarial learning similar to GAN training [45], i.e., through

solving a minimax problem that finds the pair of most discrepant classifiers and reduces

their disagreement.

In this section, we further extend the MCD principle by proposing a more systematic

and effective way to achieve consistency in the hypothesis space of classifiers H through

Gaussian process (GP) [92] endowed priors, with deep neural networks (DNNs) used

to induce their mean and covariance functions. The crux of our approach is to regard
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the classifiers as random functions and use their posterior distribution conditioned on

the source samples, as the prior on H. The key consequence and advantages of this

Bayesian treatment are: (1) One can effectively minimize the inconsistency in H over

the target domain by regularizing the source-induced prior using a max-margin learning

principle [122], a significantly easier-to-solve1 task than the minimax optimization of [97]

which may suffer from the difficulty of attaining an equilibrium point coupled with the

need for proper initialization. (2) We can quantify the measure of prediction uncertainty

and use it to credibly gauge the quality of prediction at test time.

Although GP models were previously known to suffer from the scalability issues [92],

we utilize recent deep kernel techniques [58, 123] to turn the non-parametric Bayesian

inference into a more tractable parametric one, leading to a learning algorithm compu-

tationally as scalable and efficient as conventional (non-Bayesian) deep models.

3.2.1 Unsupervised Max-Margin Domain Adaptation using Gaussian

Process

Given source-domain training examples with labels DS = {(xSi , ySi )}NSi=1 and target

data DT = {xTi }
NT
i=1 with no labels, we seek to learn the embedding function G : X → Z

and a classifier h : Z → Y in the shared latent space Z. The embedding function G(·)

and the classifier h(·) are shared across both domains and will be applied to classify

samples in the target domain using the composition y = h(z) = h(G(x)).

Our goal is to find the pair (h,G) resulting in the lowest generalization error on the

target domain,

(h∗, G∗) = arg min
h,G

eT (h,G) = arg min
h,G

E(x,y)∼pT (x,y)[I(h(G(x)) 6= y)], (3.3)

with I(·) the 1/0 indicator function. Optimizing eT directly is typically infeasible.

Instead, one can exploit the upper bounds proposed in [10] and [11], which we restate,

without loss of generality, for the case of fixed G.

1In the sense of optimization stability: it is well known that a good equilibrium point of the minimax
optimization (adversarial learning), adopted in MCDA, is difficult to attain computationally, being
highly sensitive to the choice of optimization hyperparameters.
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Theorem 1. [10, 11] Suppose that H is symmetric (i.e., h ∈ H implies −h ∈ H). For

any h ∈ H, the following holds2:

eT (h) ≤ eS(h) + sup
h,h′∈H

∣∣dS(h, h′)− dT (h, h′)
∣∣+ e∗ (3.4)

≤ eS(h) + sup
h∈H

∣∣dS(h,+1)− dT (h,+1)]
∣∣+ e∗ (3.5)

Here eS(h) is the error rate of h(·) on the source domain, e∗ := minh∈H eS(h)+eT (h),

and dS(h, h′) := Ez∼S [I(h(z) 6= h′(z))] denotes the discrepancy between two classifiers h

and h′ on the source domain S, and similarly for dT (h, h′). We use z ∼ S to denote the

distribution of z in the latent space induced by G and pS(x, y).

The presence of eS(h) indicates that we need to choose a classifier h ∈ H that

performs well on the source domain. Unfortunately, we may not be able to control e∗

directly since it contains eT (h) that cannot be estimated from the training data. We

can just hope that our hypothesis space H contains an optimal h∗ that performs well

on both domains so that e∗ becomes small.

Looser bound. With e∗ the uncontrollable quantity, due to the lack of labels for T

in the training data, the optimal h can be sought through minimization of the source error

eS(h) and the worst-case discrepancy terms. In the looser bound in Eq. 3.5, the supremum

term is, up to a constant, equivalent to suph∈H Ez∼S [I(h(z) = +1)]+Ez∼T [I(h(z) = −1)],

the maximal accuracy of a domain discriminator (labeling S as +1 and T as −1). Hence,

to reduce the upper bound one needs to choose the embedding G where the source

and the target inputs are indistinguishable from each other in Z. This input density

matching was exploited in many previous approaches [118, 36, 15, 117], and typically

accomplished through adversarial learning [45] or the maximum mean discrepancy [50].

Tighter bound. Recently, [97] exploited the tighter bound in Eq. 3.4 under the

assumption that H is restricted to classifiers with small errors on S. Consequently,

dS(h, h′) becomes negligible as any two h, h′ ∈ H agree on the source domain. The

supremum in Eq.3.4, interpreted as the Maximum Classifier Discrepancy (MCD),

2Note that the theorems assume binary classification (y ∈ {+1,−1}), however, they can be straight-
forwardly extended to multi-class setups.
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reduces to:

sup
h,h′∈H

E(x,y)∼pT (x,y)[I(h(z) 6= h′(z))]. (3.6)

Named MCDA, [97] aims to minimize Eq. 3.6 directly via adversarial-cooperative

learning of two deep classifier networks h(z) and h′(z). For the source domain data,

these two classifiers and G aim to minimize the classification errors cooperatively. An

adversarial game is played in the target domain: h and h′ aim to be maximally discrepant,

whereas G seeks to minimize the discrepancy.

In this section, we propose to adopt the MCD principle, in a systematic and effective

way to achieve hypothesis consistency, instead of the difficult minimax optimization.

Our idea is to adopt a Bayesian framework to induce the hypothesis space. Specifically,

we build a Gaussian process classifier model [92] on top of the share space. The GP

posterior inferred from the source data naturally defines our hypothesis space H. We

then optimize the embedding G and the kernel of the GP so the posterior hypothesis

distribution leads to consistent, least discrepant, class predictions most of the time,

resulting in reduction of (3.6). Our approach is denoted by GPDA, and its details are

described below.

Gaussian Process

A Gaussian Process (GP) is an infinite collection of random variables {f(x)|x ∈ X},

such that any finite number of samples have a joint Gaussian distribution. A GP is

fully specified by the mean function µ(x) and the covariance function k(x,x′), typically

user-defined. GPs can also be interpreted as a distribution over functions f(x) ∼

GP(µ(x), k(x, x)) such that any finite collection of function values [f(x1), . . . , f(xN)]

have a joint Gaussian distribution:

[f(x1), . . . , f(xN)] ∼ N (µ,K), (3.7)

where µ is the N × 1 vector µi = µ(xi) and K is the N ×N covariance (Kernel) matrix

with Kij = K(xi,xj). A training dataset consists of N pairs of data (xi, yi)
N
i=1, where yi

are noisy observations of some latent function f with Gaussian noise yi = f(xi) + εi,

εi ∈ N (0, σ2). The likelihood of the data y|f ∼ N (f, σ2I) and the prior f ∼ N (0,K)



43

give the joint probability model p(f ,y) = p(y|f)p(f), where y denotes the noisy targets

and f denotes the vector of underlying latent function values. The predictive distribution

at a set of test points X∗ is given in closed form using the properties of conditional

Gaussians,

f∗|y, X,X∗,θ, σ2 ∼ N (f∗, cov(f∗)) (3.8)

f∗ = K∗(K + σ2I)−1y (3.9)

cov(f∗) = K∗∗ −K∗(K + σ2I)−1KT
∗ , (3.10)

where K∗∗ denotes the covariance matrix evaluated among the test inputs X∗ and K∗

denotes the covariance matrix evaluated between the test points X∗ and the training

set X. If there are N∗ test points, the covariance matrix K∗∗ is of size N∗ ×N∗ and K∗

is of size N∗ ×N .

Gaussian Process Classification

In Gaussian Process Classification (GPC), the target values are discrete class labels,

hence it is not appropriate to model them via a multivariate Gaussian density. Instead,

we use the Gaussian process as a latent function whose sign determines the class label

for binary classification; for multi-class classification one can use multiple GPs or a

multivariate GP.

The key difference between the GP regression and GPC is how the output data,

y, are connected to the underlying function values, f . Precisely, they are no longer

connected via a simple noise process as in the previous section, instead now discrete: for

example, for binary classification framework, say y = 1 for one class and y = −1 for the

other. In this case, one could try fitting a GP that produces an output of 1 for some

values of x and −1 for others, simulating the discrete nature of the problem. Then, the

classification of a new data point x∗ involves two steps:

1. Evaluate a ‘latent function’ f which models qualitatively how the likelihood of

one class versus the other changes over the x axis. This is the usual GP.
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2. Squeeze the output of this latent function onto [0, 1] using logistic function,

π(f) = σ(y = 1|f).

Writing these two steps schematically,

data, x∗
GP−−→ latent function, f∗|x∗

sigmoid−−−−→ class probability, π(f∗) .

GP-endowed Maximum Separation Model

We consider a multi-class Gaussian process classifier defined on Z: there are K

underlying latent functions f(·) := {fj(·)}Cj=1, a priori independently GP distributed,

namely

P (f) =
C∏
j=1

P (fj), fj ∼ GP
(
0, kj(·, ·)

)
, (3.11)

where each kj is a covariance function of fj , defined on Z × Z. For an input point

z ∈ Z, we regard fj(z) as the model’s confidence toward class j, leading to the class

prediction rule:

class(z) = arg max
1≤j≤K

fj(z). (3.12)

We use the softmax likelihood model,

P (y = j|f(z)) =
efj(z)∑C
r=1 e

fr(z)
, for j = 1, . . . , C. (3.13)

Source-driven H Prior. The labeled source data, DS , induces a posterior distribution

on the latent functions f ,

p(f |DS) ∝ p(f) ·
Ns∏
i=1

P (ysi |f(zsi )), (3.14)

where zsi = G(xsi ). The key idea is to use Eq. 3.14 to define our hypothesis space H.

The posterior places most of its probability mass on those f that attain high likelihood

scores on source while being smooth due to the GP prior.

It should be noted that we used the term prior of the hypothesis space H that

is induced from the posterior of the latent functions f . We use the H prior and the

posterior of f interchangeably.

Note that due to the non-linear/non-Gaussian likelihood in Eq. 3.13, exact posterior

inference is intractable, and one has to resort to approximate inference. We will discuss
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Figure 3.5: Illustration of ideal (pA) and problematic (pB) posteriors at some fixed
point z in the target domain. For each posterior, we also depict two plausible samples
(marked as crosses). In pA, most samples f(z), including the two shown, are consistent
in deciding the class label (class 2, red, predicted in this case). On the other hand, in pB
where f1(z) and f2(z) have considerable overlap, there is significant chance of different
predictions: class 2 for the first sample and class 1 for the second.

an approach for efficient variational approximate inference in Section 3.2.1. For the

exposition here, let us assume that the posterior distribution is accessible.

Target-driven Maximally Consistent Posterior. While DS serves to induce the

prior of H, DT will be used to reshape this prior. According to MCD, we want this

hypothesis space to be shaped in the following way: for each target domain point

zt = G(xt), xt ∼ PT (x), the latent function values f(zt) sampled from the posterior in

Eq. 3.14 should lead to the class prediction (made by (3.12)) that is as consistent as

possible across the samples.

This is illustrated in Figure 3.5. Consider two different H priors pA and pB at a

point z, pA(f(z)) and pB(f(z)), where for brevity we drop the conditioning on DS in

notation. The class cardinality is C = 3. For simplicity, we assume that the latent

functions fj ’s are independent from each other. Figure 3.5 shows that the distributions

of fj ’s are well-separated from each other in pA, yet overlap significantly in pB. Hence,

there is a strong chance for the class predictions to be inconsistent in pB (identical

ordering of colored samples below figure), but consistent in pA. This means that the

hypothesis space induced from pB contains highly discrepant classifiers, whereas most

classifiers in the hypothesis space of pA agree with each other (least discrepant). In

other words, the maximum discrepancy principle translates into the maximum posterior

separation in our Bayesian GP framework.
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We describe how this goal can be properly formulated. First we consider the posterior

of f to be approximated as an independent Gaussian3. For any target domain point

zt ∼ PT (x) and each j = 1, . . . , C let the mean and the variance of the H prior in

Eq. 3.14 be:

µj(z
t) :=

∫
fj(z

t) p
(
fj(z

t)|DS , zt
)
dfj(z

t), (3.15)

σ2
j (z

t) :=

∫
(fj(z

t)− µj(zt))2 p
(
fj(z

t)|DS , zt
)
dfj(z

t). (3.16)

The maximum-a-posterior (MAP) class prediction by the model is denoted by

j∗ = arg max1≤j≤C µj(z
t). As we seek to avoid fluctuations in class prediction j∗ across

samples, we consider the worst scenario where even an unlikely (e.g., at 5% chance level)

sample from fj(z
t), j other than j∗, cannot overtake µj∗(z

t). That is, we seek

µj∗(z
t)− ασj∗(zt) ≥ max

j 6=j∗

(
µj(z

t) + ασj(z
t)
)
, (3.17)

where α is the normal cutting point for the least chance (e.g., α = 1.96 if 2.5% one-side

is considered).

While this should hold for most samples, it will not hold for all. We therefore

introduce an additional slack ξ ≥ 0 to relax the desideratum. Furthermore, for ease of

optimization4, we impose slightly stricter constraint than (3.17), leading to the final

constraint:

max
1≤j≤C

µj(z
t) ≥ 1 + max

j 6=j∗
µj(z

t) + α max
1≤j≤C

σj(z
t)− ξ(zt). (3.18)

A constant, 1 here, was added to normalize the scale of fj ’s.

Our objective now is to find such embedding G, GP kernel parameters K, K(z, z′) =

φ(z)>φ(z′), and minimal slack ξ, to impose (3.18). Equivalently, we pose it as the

following optimization problem, for each z ∼ PT (z):

min
Φ,K

(
max
j 6=j∗

µj(z
t)− max

1≤j≤C
µj(z

t) + 1 + α max
1≤j≤C

σj(z
t)

)
+

(3.19)

with (a)+ = max(0, a).

3This choice conforms to the variational density family we choose in Section 3.2.1.

4We used the topk() function in PyTorch to compute the largest and the second largest elements.
The function allows automatic gradients.
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Note that Eqs. 3.18) and 3.19 are reminiscent of the large-margin classifier learning

in traditional supervised learning [121]. In contrast, we replace the ground-truth labels

with the the most confidently predicted labels by our model since the target domain is

unlabeled. This aims to place class boundaries in low-density regions, in line with entropy

minimization or max-margin confident prediction principle of classical semi-supervised

learning [47, 131, 111, 19].

In what follows, we describe an approximate, scalable GP posterior inference, where

we combine the variational inference optimization with the aforementioned posterior

maximum separation criterion (Eq. 3.19).

Variational Inference with Deep Kernels

We describe our scalable variational inference approach to approximate the posterior

in Eq. 3.14. Although there are scalable GP approximation schemes based on the

random feature expansion [91] and the pseudo/induced inputs [90, 105, 114, 29], here

we adopt the deep kernel trick [58, 123] to exploit the deeply structured features. The

main idea is to model an explicit finite-dimensional feature space mapping to define a

covariance function. Specifically, we consider a nonlinear feature mapping φ : Z → Rd

such that the covariance function is defined as an inner product in a feature space,

namely K(z, z′) := φ(z)>φ(z′), where we model φ(·) as a deep neural network. A

critical advantage of explicit feature representation is that we turn the non-parametric

GP into a parametric Bayesian model. As a consequence, all inference operations in the

non-parametric GP reduce to computationally more efficient parametric ones, avoiding

the need to store the Gram matrix of the entire training data set, as well as its inversion.

Formally, we consider K latent functions modeled as fj(z) = w>j φ(z) with wj ∼

N (0, I) independently for j = 1, . . . , C. We let W = [w1, . . . ,wC ]>. Note that the

feature function φ(·) is shared across classes to reduce the number of parameters and

avoid overfitting. The parameters of the deep model that represents φ(·) serve as GP

kernel parameters, since Cov(f(z), f(z′)) = Cov(w>φ(z),w>φ(z′)) = φ(z)>φ(z′) =
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k(z, z′). Consequently, the source-driven H prior in Eq. 3.14 becomes

p(W|DS) ∝
C∏
j=1

N (wj ; 0, I) ·
Ns∏
i=1

P (ysi |Wφ(zsi )). (3.20)

Since computing (3.20) is intractable, we introduce a variational density q(W) to

approximate it. We assume a fully factorized Gaussian,

q(W) =

C∏
j=1

N (wj ; mj ,Sj), (3.21)

where mj ∈ Rd and Sj ∈ Rd×d constitute the variational parameters. We further let

Sj ’s be diagonal matrices. To have q(W) ≈ p(W|DS), we use the following fact that

the marginal log-likelihood can be lower bounded:

logP
(
{ysi }

Ns
i=1

∣∣∣ {zsi }Nsi=1,φ(·)
)
≥ ELBO, (3.22)

where the evidence lower-bound (ELBO) is defined as:

ELBO :=

Ns∑
i=1

Eq(W)

[
logP (ysi |Wφ(zsi ))

]
−

C∑
j=1

KL
(
q(wj) || N (wj ; 0, I)

)
, (3.23)

with the likelihood stemming from Eq. 3.13. As the gap in Eq. 3.22 is the KL divergence

between q(W) and the true posterior p(W|DS), increasing the ELBO wrt the variational

parameters {(mj ,Sj)} brings q(W) closer to the true posterior. Raising the ELBO

wrt the GP kernel parameters (i.e., the parameters of φ) and the embedding5 Φ can

potentially improve the marginal likelihood, i.e., the left hand side in Eq. 3.22.

In optimizing the ELBO in Eq. 3.23, the KL term (denoted by KL) can be analytically

derived as

KL =
1

2

C∑
j=1

(
Tr(Sj) + ||mj ||22 − log det(Sj)− d

)
. (3.24)

However, there are two key challenges: the log-likelihood expectation over q(W) does

not admit a closed form, and one has to deal with large NS . To address the former, we

adopt Monte-Carlo estimation using M iid samples {W(m)}Mm=1 from q(W), where the

samples are expressed in terms of the variational parameters (i.e., the reparametrization

trick [64]) to facilitate optimization. That is, for each j and m,

w
(m)
j = mj + S

1/2
j ε

(m)
j , ε

(m)
j ∼ N (0, I). (3.25)

5Note that the inputs z also depend on Φ.
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For the latter issue, we use stochastic optimization with a random mini-batch BS ⊂ DS .

That is, we optimize the sample estimate of the log-likelihood defined as:

LL =
1

M

M∑
m=1

NS

|BS |
∑
i∈BS

logP (ysi |W(m)φ(zsi )). (3.26)

Optimization Strategy

We combine the maximum posterior separation criterion in Eq. 3.19 with the

variational inference of the previous section to arrive at the comprehensive optimization

task.

Our approximate posterior in Eq. 3.21 leads to closed-form expressions for µj(z) and

σj(z) in Eqs. 3.15–3.16 as follows:

µj(z) ≈m>j φ(z), σj(z) ≈
(
φ(z)>Sjφ(z)

)1/2
. (3.27)

With q(W) fixed, we rewrite our posterior maximum separation loss in Eq. 3.19 as follows.

We consider stochastic optimization with a random mini-batch BT ⊂ DT = {zti}
Nt
i=1

sampled from the target domain data.

MS :=
1

|BT |
∑
i∈BT

(
max
j 6=j∗

m>j φ(zti)− max
1≤j≤K

m>j φ(zti)

+ 1 + α max
1≤j≤C

(
φ(zti)

>Sjφ(zti)
)1/2)

+

(3.28)

Combining all objectives thus far, our GPDA algorithm6 can be summarized as the

following two optimizations alternating with each other:

• min{mj ,Sj} −LL + KL (variational inference)

• minΦ,k −LL + KL + λ ·MS (model selection)

with λ the impact of the max separation, e.g., λ = 10.0.

6In the algorithmic point of view, our algorithm can be seen as a max-margin Gaussian process
classifier on the original input space X without explicitly considering the shared space Z.
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Connection to MCD Approach

Perhaps the most related to our proposed method is the Maximum Classifier Dis-

crepancy Algorithm (MCDA) [97], that proposed directly optimizing the classifier

discrepancy measure in the context of deep neural networks. Our approach also has a

discrepancy minimization term over the predictions for target samples but the core idea

in our approach is fundamentally different where we model the classifier as a random

function and treat the posterior distribution of the classifier given training data, as the

hypothesis space of the classifiers. This results in a simple non-adversarial large margin

posterior separation problem, leading to highly stable convergence to a desirable solution

in contrast to MCDA using adversarial approaches which are difficult to optimize with

gradient descent and they often do not converge well without careful hyperparameter

tuning and proper initialization.

3.2.2 Experimental Results

We compare the proposed method with state-of-the-art on standard benchmark

datasets: Digit classification task consists of three datasets, containing ten digit classes:

MNIST [65], SVHN [84], USPS [117]. We also evaluated our method on the traffic

sign datasets, Synthetic Traffic Signs (SYN SIGNS) [83] and the German Traffic Signs

Recognition Benchmark [107] (GTSRB), which contain 43 types of signs. Finally, we

report performance on VisDA object classification dataset [87] with more than 280K

images across twelve categories.

We evaluate the performance of all methods with the classification accuracy score.

We used ADAM [62] for training; the learning rate was set to 0.0002 and momentum to

0.5 and 0.999. We used batches of size 32 from each domain, and the input images were

mean-centered. The hyper-parameters are empirically set as λ = 50.0, α = 2.0. The

sensitivity w.r.t. hyperparameters λ and α will be discussed in Section3.2.2. We also

used the same network structure as [97]. Specifically, we employed the CNN architecture

used in [34] and [14] for digit and traffic sign datasets and used ResNet101 [55] model

pre-trained on Imagenet [26]. We added batch normalization to each layer in these



51

models. Quantitative evaluation involves a comparison of the performance of our model

to previous works and to “Source Only” that do not use any domain adaptation. For

”Source Only” baseline, we train models on the unaltered source training data and

evaluate on the target test data.

Results on Digit and Traffic Signs datasets

We show the accuracy of different methods in Table 3.5. It can be seen the pro-

posed method outperformed competitors in all settings confirming consistently better

generalization of our model over target data. This is partially due to combining DNNs

and GPs/Bayesian approach. GPs exploit local generalization by locally interpolating

between neighbors [12], adjusting the target functions rapidly in the presence of training

data. DNNs have good generalization capability for unseen input configurations by

learning multiple levels of distributed representations. The results demonstrate GPDA

can improve generalization performance by adopting both of these advantages.

Results on VisDA dataset

Results for this experiment are summarized in Tabel 3.6. We observe that our

GPDA achieved, on average, the best performance compared to other competing

methods. Due to vastly varying difficulty of classifying different categories of objects, in

addition to reporting the average classification accuracy we also report the average rank

of each method over all objects (the lower rank, the better). The higher performance of

GPDA compared to other methods is mainly attributed to modeling the classifier as

a random function and consequently incorporating the classifier uncertainty (variance

of the prediction) into the proposed loss function in Eq. 3.28. The image structure for

this dataset is more complex than that of digits, yet our method exhibits very strong

performance even under such challenging conditions.

Another key observation is that some competing methods, e.g., MMD, DANN, perform

worse than the source-only model in classes such as car and plant, while GPDA and

MCDA performed better across all classes, clearly demonstrating the effectiveness of

the MCD principle.
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Table 3.5: Classification results on the digits and traffic signs datasets. Results are cited
from each study. The score of MMD is cited from DSN [15]. † indicates the method
used a few labeled target samples as validation, different from our GPDA setting. We
repeated each experiment five times and report the average and the standard deviation
of the accuracy. The accuracy for MCDA was obtained from classifier F1. n is MCDA’s
hyper-parameter, which denotes the number of times the feature generator is updated
to mimic classifiers. MNIST∗ and USPS∗ denote all the training samples were used to
train the models.

SVHN SYNSIG MNIST MNIST∗ USPS
METHOD to to to to to

MNIST GTSRB USPS USPS∗ MNIST

Source Only 67.1 85.1 76.7 79.4 63.4
MMD † [75] 71.1 91.1 - 81.1 -
DANN † [34] 71.1 88.7 77.1 85.1 73.0
DSN † [15] 82.7 93.1 91.3 - -
ADDA [117] 76.0 - 89.4 - 90.1
CoGAN [74] - - 91.2 - 89.1
PixelDA [14] - - - 95.9 -
ATDA † [95] 86.2 96.1 - - -
ASSC [53] 95.7 82.8 - - -
DRCN [38] 82.0 - 91.8 - 73.7

G2A [100] 92.4 - 92.8 95.3 90.8
SimNet [88] - - - 96.4 95.6

MCDA (n = 2) 94.2 93.5 92.1 93.1 90.0
MCDA (n = 3) 95.9 94.0 93.8 95.6 91.8
MCDA (n = 4) 96.2 94.4 94.2 96.5 94.1

GPDA 98.2 96.19 96.45 98.11 96.37

Ablation Studies

Two complementary studies are conducted to investigate the impact of two hyper-

parameters α and λ, controlling the trade off of the variance of the classifier’s posterior

distribution and the MCD loss term, respectively. To this end, we conducted additional

experiments for the digit datasets to analyze the parameter sensitivity of GPDA

w.r.t. α and λ, with results depicted in Figure 3.6(a) and Figure 3.6(b), respectively.

Sensitivity analysis is performed by varying one parameter at the time over a given

range, while for the other parameters we set them to their final values (α = 2, λ = 50).

From Figure 3.6(b), we see that when λ = 0 (no MCD regularization term), the

performance drops considerably. As λ increases from 0 to 50, the performance also
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Table 3.6: Accuracy of the ResNet model fine-tuned on the VisDA dataset. All models
adopt ResNet101 except for [88] which used ResNet152. Last column shows the average
rank of each method over all classes.

Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck mean Ave. ranking

Source Only 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4 7.25

MMD [75] 87.1 63.0 76.5 42.0 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.1 4.41
DANN [34] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4 5.58

SimNet [88] 94.3 82.3 73.5 47.2 87.9 49.2 75.1 79.7 85.3 68.5 81.1 50.3 72.9 3.83

MCDA (n = 2) 81.1 55.3 83.6 65.7 87.6 72.7 83.1 73.9 85.3 47.7 73.2 27.1 69.7 4.25
MCDA (n = 3) 90.3 49.3 82.1 62.9 91.8 69.4 83.8 72.8 79.8 53.3 81.5 29.7 70.6 4.08
MCDA (n = 4) 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9 3.00

GPDA (ours) 83.0 74.3 80.4 66.0 87.6 75.3 83.8 73.1 90.1 57.3 80.2 37.9 73.31 2.75
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Figure 3.6: Sensitivity analysis of our GPDA on the Digit datasets. S →M denotes
adaptation from SVHN to MNIST (similarly for others), and M → U (all) indicates
using all training samples.

increases demonstrating the benefit of hypothesis consistency (MS term) over the target

samples. Indeed, using the proposed learning scheme, we find a representation space

in which we embed the knowledge from the target domain into the learned classifier.

Similarly, from Figure 3.6(a), we see that when α = 0 (no prediction uncertainty) the

classification accuracy is lower than the case where we utilize the prediction uncertainty,

α > 0. The key observation is that it is more beneficial to make use of the information

from the full posterior distribution of the classifier during the learning process in contrast

to when the classifier is considered as a deterministic function.
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Figure 3.7: Histograms of prediction (un)certainty for our models: (a) after convergence,
(b) at an early stage of training. Abscissa is the Bhattacharyya distance b/w two largest
mean posteriors, an indication of prediction certainty; the higher the distance, the more
certain the prediction is. For each model, we compute the histograms of correctly
and incorrectly predicted samples (green vs. red). In our final model (a), there is a
strong correlation between prediction (un)certainty (abscissa) and prediction correctness
(color).

Prediction Uncertainty vs. Prediction Quality

Another advantage of our GPDA model, inherited from Bayesian modeling, is that

it provides a quantified measure of prediction uncertainty. In the multi-class setup

considered here, this uncertainty amounts to the degree of overlap between two largest

mean posteriors, p(fj∗(z
t)|DS) and p(fj†(z

t)|DS), where j∗ and j† are the indices of the

largest and the second largest among the posterior means {µj(zt)}Cj=1, respectively (c.f.,

(3.15)). Intuitively, if the two are overlapped significantly, our model’s decision is less

certain, meaning that we anticipate the class prediction may not be trustworthy. On

the other hand, if the two are well separated, we expect high prediction quality. To
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verify this hypothesis more rigorously, we evaluate the distances between two posteriors,

the measure of certainty in prediction, for two different cohorts: correctly classified

test target samples by our model and the incorrectly predicted ones. Specifically, for

the SVHN to MNIST adaptation task, we evaluate the Bhattacharyya distances [28]

between the two cohorts. In our variational Gaussian approximation in Eq. 3.27, the

Bhattacharyya distance can be computed in a closed form; Supplement for details.

The histograms of the distances are depicted in Figure 3.7, where we contrast the

two models, one at an early stage of training and the other after convergence. Our

final model in Figure 3.7(a) exhibits large distances for most samples in the correctly

predicted cohort (green), implying well separated posteriors or high certainty. For

the incorrectly predicted samples (red), the distances are small suggesting significant

overlap between the two posteriors, i.e., high uncertainty. In contrast, for the model

prior to convergence, Figure 3.7(b), the two posteriors overlap strongly (small distances

along horizontal axis) for most samples regardless of the correctness of prediction. This

confirms our algorithm enforces posterior separation by large margin during the training

process. This analysis also suggests that the measure of prediction uncertainty provided

by our GPDA model, can be used as an indicator of prediction quality, namely whether

the prediction made by our model is trustworthy or not. To verify this, we depict

some sample test images in Figure 3.8. We differentiate samples according to their

Bhattacharyya distances. When the prediction is uncertain (left panel), we see that

the images are indeed difficult examples even for human. An interesting case is when

the prediction certainty is high but incorrectly classified (lower right panel), where the

images look peculiar in the sense that humans are also prone to misclassify those with

considerably high certainty.

Analysis of Shared Space Embedding

We use t-SNE [80] on VisDA dataset to visualize the feature representations from

different classes. Figure 3.9 depicts the embedding of the learned features Φ(x), and

the original features x. Colors indicate source (red) and target (blue) domains. Notice

that GPDA significantly reduces the domain mismatch, resulting in the expected tight
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Figure 3.8: Selected test (MNIST) images according to the Bhattacharyya distances.
Right: samples with low distances (uncertain prediction). Left: high distances (certain
prediction). Top: correctly classified by our model. Bottom: incorrectly classified. For
each image, GT, Pr, and d means ground-truth label, predicted label, and the distance,
respectively.

clustering. This is partially due to the use of the proposed probabilistic MCD approach,

which shrinks the classifier hypothesis class to contain only consistent classifiers on

target samples while exploiting the uncertainty in the prediction.

3.2.3 Summary

In this section, we proposed a novel probabilistic approach for UDA that learns

an efficient domain-adaptive classifier with strong generalization to target domains.

The key is to model the classifier’s hypothesis space in Bayesian fashion and impose

consistency over the target samples in their space by constraining the classifier’s posterior

distribution. To tackle the intractability of computing the exact posteriors, we combined

the variational Bayesian method with a deep kernel technique to efficiently approximate

the classifier’s posterior distribution. We showed, on three challenging benchmark

datasets for image classification, that the proposed method outperforms current state-

of-the-art in unsupervised domain adaptation of visual categories.
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SVHN
MNIST

(a) Original (by domain) (b) Original (by classes)

SVHN
MNIST

(c) GPDA (by domain) (d) GPDA (by classes)

Figure 3.9: Feature visualization for embedding of digit datasets for adapting SVHN
to MNIST using t-SNE algorithm. The first and the second columns show the domains
and classes, respectively, with color indicating domain and class membership. (a),(b):
Original features. (c),(d): learned features for GPDA.
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3.3 Task-Discriminative Domain Alignment for Unsupervised Domain

Adaptation

In the previous two sections, we presented two methods using the process of domain

alignment in some shared space. However, this process often leads to unsatisfactory

adaptation performance, in part because it ignores the task-specific structure of the data.

In this section, we improve the performance of DA by introducing a discriminative

discrepancy measure which takes advantage of auxiliary information available in the

source and the target domains to better align the source and target distributions. Specif-

ically, we leverage the cohesive clustering structure within individual data manifolds,

associated with different tasks, to improve the alignment. This structure is explicit in

the source, where the task labels are available, but is implicit in the target, making the

problem challenging. We address the challenge by devising a deep DA framework, which

combines a new task-driven domain alignment discriminator with domain regularizers

that encourage the shared features as task-specific and domain invariant, and prompt

the task model to be data structure preserving, guiding its decision boundaries through

the low density data regions.

Existing discrepancy approaches, reviewed in Section 2.1, mainly focus on aligning

domain-level feature distributions without considering category-level alignment. Thus,

the alignment enforced by such discrepancy measures does not guarantee a good target

performance as it ignores the cluster structure of the samples, aligned with their task

labels. The assumption that the source features exhibit a well-defined cluster structure

naturally transfers to the target: target features indicative of the same tasks as the

source should manifest a similar cluster structure. In other words, when optimally

aligned, the target features should amass around the source clusters such that the

decision boundaries of the learned task classifiers do not induce partitioning of smooth

clusters of target features. However, the aforementioned domain discrepancy measures

only focus on global feature overlap, ignoring the finer task-aligned structure in the

data. Consequently, they may inaccurately match the clusters and also cause the source

features to form weakly separable clusters, as illustrated in Figure 3.10 ((b), (c)).
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(a) Original (b) MMD distance [75]

(c) Adversarial Divergence [35] (d) Task-specific Divergence

Figure 3.10: Feature visualization for embedding of digit datasets for adapting SVHN
to MNIST using t-SNE algorithm. The first and the second columns show the domains
and classes, respectively, with color indicating domain and class membership. (a),(b):
Original features. (c),(d): learned features for GPDA.

To alleviate the limitations of existing discrepancy measures for domain adaptation,

we introduce a task (e.g., classification)-specific adversarial discrepancy measure that

extends the discriminator output over the source classes, in order to additionally

incorporate task knowledge into the adversarial domain alignment. The new discrepancy

measure helps the feature extractor (encoder) make discriminative source/target features

by considering the decision boundary information. Consequently, source-target alignment

not only takes into account the domain-level feature densities but also the category-

conditioned clusters-of-features information to produce an improved overlap, evident in

Figure 3.10 (d).

Motivated by the information-bottleneck principle [113], whose goal is to improve

generalization by ignoring irrelevant (domain-variant) distractors present in the original

data features, we also introduce a source regularization loss by minimizing the

information between the source samples and their features by encouraging the marginal
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distribution of the source features to be similar to a prior distribution (the standard

normal distribution) to enforce the model to focus only on the most discriminative

(label-variant) features, less prone to overfitting. Moreover, an additional target

regularization term is imposed on the classifier, trained on the shared features of

the source samples, to encourage it not to pass through high-density regions of the

target data. Previous DA methods did not explicitly consider these desiderata. Our

ablation study in Section 3.3.4 empirically demonstrates the importance of the introduced

objectives.

3.3.1 Problem Formulation

In this section, we introduce a shared (stochastic) encoder Q (rather than a de-

terministic one introduced in previous sections) between the source and the target

domains that maps a sample x into a stochastic embedding7 z ∼ Q(z|x), and then

apply a classifier h to map z into the label space y ∼ h(y|z) (h is trained to classify

samples drawn from the encoder distribution). Although one can consider domain-wise

different encoders, more recent DA approaches tend to adopt a shared encoder, which

can prevent domain-specific nuisance features from being learned, reducing potential

overfitting issues.

We define the stochastic encoder Q as a conditional Gaussian distribution with

diagonal covariance that has the form Q(z|x) = N (z|fµ(x), fΣ(x)) where f is a deep

network mapping the data point x to the 2p-dimensional latent code, with the first p

outputs from f encoding fµ, and the remaining p outputs encoding fΣ. The classifier h

outputs a C-dim probability vector of class memberships, modeled as a softmax form

h(z) = softmax(fc(z)),where fc(z) is a deep network mapping the latents z to the logits

of C classes.

Remark 1. The reason to choose a stochastic encoder over a deterministic one is

two fold. First, it allows one to impose smoothness (local-Lipschtizness) constraint on

the classifier h over target samples; see Section 3.3.1 for more details. Second, adding

7Please see Remark 1 for the benefits of choosing a stochastic encoder over a deterministic one.
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continuous noise to the inputs of the discriminators has been shown to improve instability

and vanishing gradients in adversarial optimization problems through smoothening the

distribution of features [5]. Our stochastic encoder equipped with the reparametarization

approach inherently provides such mechanism to feature distribution smoothness; see

Sections 3.3.1 and 3.3.1 for more details.

The proposed domain adaptation method can be summarized by the objective

function consisting of six terms:

LClass + LDisc + LTeach + LSmooth + LEntropic + LAdv, (3.29)

where LClass is the classification loss applied to DS , LDisc is the domain discrepancy

loss measuring the discrepancy between the source and target distribution, LTeach is

the source-to-target teaching loss, which couples the source classifier with the target

discriminator. The remaining losses, LSmooth,LEntropic,LAdv will impose different reg-

ularization constraints on the model: LSmooth will impose Lipschitz classifiers in the

target space, LEntropic will strive to drive the classifier towards regions of low density in

the same target space, while LAdv will impose regularization towards a reference density

in the shared space Z. We next discuss each of the above losses in more detail and then

propose an algorithm to efficiently optimize the desired objective.

Source Classification Loss LClass

Having access to source labels, the stochastic mappings Q and h are trained on

source samples to correctly predict the class label by minimizing the standard cross

entropy loss,

LClass(Q, h) := −Ex,y∼Ps(x,y)

[
Ez∼Q(z|x)

[
y> log h(z)

]]
, (3.30)

where y is the C-D one-hot vector representing the label y.

Domain Discrepancy Loss LDisc

Since the stochastic encoder Q is shared between the source and target samples,

to make sure the source and the target features are well aligned in the shared space
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Figure 3.11: Proposed architecture includes a deep feature extractor G(x) and a deep label
predictor h(z), which together form a standard feed-forward architecture. Unsupervised domain
adaptation is achieved by adding a task-specific discriminator D(z) connected to the feature
extractor distinguishing the source from target features. The training proceeds standardly and
minimizes the label prediction loss (for source examples) LClass, the domain discrepancy losses
(for all samples) LDisc and LTeach, the source domain regularization loss LAdv, and the target
domain regularization losses LSmooth and LEntropic.

and respect the cluster structure of the original samples, we propose a novel domain

alignment loss, which will be optimized in adversarial manner.

Rather than using the standard adversarial approach to minimizing the alignment

loss between the source and the target densities in the shared space Z, i.e., finding

the encoder Q which ”fools” the best binary discriminator D trying to discern source

from target samples, our approach is inspired by semi-supervised GANs [25] where it

has been found that incorporating task knowledge into the discriminator can jointly

improve classification performance and quality of images produced by the generator.

We incorporate task knowledge by replacing what would be a binary discriminator with

a (C + 1)-way multi-class discriminator y′ = D(z) = softmax(fd(z)). The first C classes

indicate that a sample z belongs to the source domain and belongs to a specific classes

in Y, while the last (K + 1)-th class ”t” indicates z belongs to the target domain.

Since we have the class label for the source samples, the discriminator is trained

to classify source features correctly, hence creating crisp source clusters in the feature

space. On the other hand, the new discriminator seeks to distinguish the samples from
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the target domain from those of the source by assigning them to the (C + 1)-th, ”target”

class.

LDisc(Q,D) := −Ext∼PT (x)

[
Ezt∼Q(z|xt)

[
[0, 1]> logD(zt)

]]
− Exs,ys∼PS(x,y)

[
Ezs∼Q(z|xs)

[
[ys, 0]> logD(zs)

]]
, (3.31)

where [0, 1] is a one-hot vector indicating a point from the target domain and [y, 0]

stands for a point from the source domain, labeled according to class label y.

Teacher Target-Source Loss LTeach

Here, we seek the encoder Q to generate a feature representative of one of the

first C task-specific classes for target samples preserving their cluster structure and

aligning them to the source clusters in the feature space. However, the target data

points are unlabeled, and the encoder will not have the chance to enforce the desired

clustering structure of the target points, where points within a cluster would have the

same predicted label. To ”teach” the encoder, we ask the classifier h(·) to provide

pseudo soft labels for the target points to our new discriminator using the following loss:

LTeach(Q,D, h) := −Ext∼PT (x)

[
Ezt∼Q(z|xt)[[h(zt), 0]> logD(zt)]

]
. (3.32)

Intuitively, the encoder tries to fool the discriminator by assigning one of the first C

classes to target features, leveraging on the output of the classifier h (augmented with 0

for the C + 1-th dimension) as pseudo-labels for target features.

Remark 2. The proposed task-specific domain discriminator can be used to improve any

domain adaptation method that has an adversarial domain alignment component. Indeed,

we observe (see Section 3.3.4) that the proposed discriminator significantly improves

upon the standard binary discriminator.

Source Domain Regularization Loss

One of the standard goals in representation learning is to find an encoding of the data

point x that is maximally expressive about its label y while being maximally compressive
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about x—finding a representation z which ignores as many details of x as possible. This

is specifically useful for domain adaptation where we require a representation to be

domain invariant. Essentially, we want z to act like a minimal sufficient statistic of x for

predicting y in order to generalize better for samples form unseen domains. To do so,

we introduce a regularizer that acts on the aggregated posterior of the shared features

of the source samples Qz(z
s) = Exs∼PS(x)[Q(z|xs)]. The regularizer encourages z to be

less informative about x in the form of mutual information by matching the aggregated

posterior of the shared features with a factorized prior distribution Pz(z
s)8, which in

turn constrains the implicit capacity of zs and encourages it be factorized:

D
[
Pz(z

s)||Qz(zs)
]
, (3.33)

where D(·||·) is an arbitrary distribution divergence measure.

As the proxy for this divergence, we define an auxiliary loss which will be adversar-

ially optimized. We introduce an a binary discriminator F in the latent space trying to

separate true points sampled from Pz and fake ones sampled from Qz. The encoder Q

ensures the aggregated posterior distribution Qz can fool the binary discriminator into

thinking that the source features comes from the distribution Pz:

LAdv(Q,F ) = −Exs∼PS(xs)

[
Ezs∼Q(z|xs)

[
logF (zs)

]]
− Ezs∼P (zs)

[
log(1 − F (zs))

]
.

(3.34)

Remark 3. We empirically observed that imposing such regularization on target samples

could be harmful to performance. We conjecture this is due to the lack of true class

labels for the target samples, without which the encoder would not preserve the label

information of the features, leading to unstructured target points in feature space.

Target Domain Regularization Losses

In order to incorporate the target domain information into the model, we apply the

cluster assumption, which states that the target data points DT contains clusters and

that points in the same cluster have homogeneous class labels. If the cluster assumption

8In this work, we consider Pz(z
s) = N (0, I)
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holds, the optimal decision boundaries should occur far away from data-dense regions in

the feature space z. We achieve this by defining an entropic loss,

LEntropic(h,Q) := −Ext∼PT (x)

[
Ezt∼Q(z|xt)

[
h(zt)> log h(zt)

]]
. (3.35)

Intuitively, minimizing the conditional entropy forces the classifier to be confident on

the unlabeled target data, thus driving the classifier’s decision boundaries away from the

target data. In practice, the conditional entropy must be empirically estimated using

the available data.

However, Grandvale [48] suggested this approximation can be very poor if h is

not locally-Lipschitz smooth. Without the smoothness constraint, the classifier could

abruptly change its prediction in the neighborhood of training samples, allowing decision

boundaries close to the training samples even when the empirical conditional entropy is

minimized. To prevent this, we take advantage of our stochastic encoder and propose to

explicitly incorporate the locally-Lipschitz constraint in the objective function,

LSmooth(h,Q) := Ext∼PT (x)

[
Ezt1,zt2∼Q(z|xt)||h(zt1)− h(zt2)||1

]
, (3.36)

with ‖ · ‖1 the L1 norm. Intuitively, we enforce classifier consistency over proximal

features of any target point xt.

Remark 4. We empirically observed that having such constraints for source features

would not improve performance. This is because access to the source labels and forcing

the classifier to assign each source feature to its own class would already fulfill the

smoothness and entropy constraints on the classifier for the source samples.

3.3.2 Model Learning and Loss Optimization

Our goal is to train the task-specific discriminator D, binary discriminator F ,

classifier h, and encoder Q to facilitate learning of the cross-domain classifier h. By

approximating the expectations with the sample averages, using the stochastic gradient

Descent (SGD), and the reparametarization approach [63], we solve the optimization

task in the following four subtasks.
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Optimizing the encoder Q

Q∗ = arg min
Q

LClass(Q, h∗) + LDisc(Q,D∗, h∗) + λQ
[
LAdv(Q,F ∗)

]
, (3.37)

where λQ is a weighting factor. Intuitively, The first term in Eq. 3.37 encourages Q to

produce discriminative features for the labeled source samples to be correctly classified

by the classifier h. The second term simulates the adversarial training by encouraging

Q to fool the task-specific discriminator D by pushing the target features toward the

source features, leveraging the soft pseudo-labels provided by the classifier. Through the

last term, the encoder seeks to fool the binary discriminator F into treating the source

features as if they come from the fully-factorized P (z) to produce domain-invariant

source features.

Optimizing the classifier h

h∗ = arg min
h

λh[LClass(Q∗, h)] + λ′h
[
LEntropic(Q∗, h) + LSmooth(Q∗, h)

]
, (3.38)

where λh and λ′h are the trade-off factors. Intuitively, we enforce the classifier h to

correctly predict the class labels of the source samples by the first term in Eq. 3.38. We

use the second term to minimize the entropy of h for the target samples, reducing the

effects of ”confusing” labels of target samples. The last term guides the classifier to be

locally consistent, shifting the decision boundaries away from target data-dense regions

in the feature space.

Optimizing the task-specific discriminator D

D∗ = arg min
D
LDisc(Q∗, D). (3.39)

The loss in Eq. 3.39 prompts D to shape its decision boundary to separate the source

features (according to their class label) and target features from each other.



67

Optimizing the binary discriminator F

F ∗ = arg min
F
LAdv(Q∗, F ). (3.40)

Intuitively, the loss in Eq. 3.40 encourages F to separate the source features from the

features generated from the fully-factorized distribution Pz(z) by assigning label 1 and

0 to the source feature samples and Pz(z) samples, respectively.

3.3.3 Target Class Label Prediction

After model training, to determine the target class-label yt of a given target domain

instance xt, we first compute the distribution of yt given xt by integrating out the shared

feature zt. Then, we select the most likely label as

ŷt = arg maxyt∈{1,...,C} P (yt|xt), (3.41)

where P (yt|xt) can be computed as

P (yt = c|zt) = Ezt∼Q(z|xt)=N (fµ(xt),fΣ(xt))[hc(z
t)], (3.42)

where hc(.) is the c-th entry of the classifier output. Since the above expression cannot

be computed in a closed form, we approximate it with its mean value. Using this

approximation, we compute yt as:

ŷt = arg maxc∈{1,...,C} hk(z
t), zt = fµ(xt). (3.43)

Remark 5. We empirically observed that estimating the expectation in Eq. 3.42 with

Gibbs sampling from the posterior Q(z|xt) instead of its mean would not boost the

performance. We conjecture this is due to the smoothness constraint we impose on the

classifier through Eq. 3.36, enforcing consistency over proximal target samples drawn

from Q(z|xt).

3.3.4 Experimental Results

We compare our proposed method with state-of-the-art on three benchmark tasks.

The Digit datasets embody the digit cross-domain classification task across four datasets:
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MNIST, MNIST-M, SVHN, USPS, which consist of K = 10 digit classes (0-9). We

also evaluated our method on VisDA object classification dataset [87] with more than

280K images across twelve categories. Finally, we report performance on PACS [68]

containing 9991 images of seven categories extracted from four different domains:Photo

(P), Art paintings (A), Cartoon (C), and Sketch (S). We evaluate the performance of

all methods with the classification accuracy metric. We used ADAM [62] for training;

the learning rate was set to 0.0002 and momentums to 0.5 and 0.999. Batch size

was set to 16 for each domain, and the input images were mean-centered/rescaled

to [−1, 1]. All the used architectures replicate those of state-of-the-art methods. We

also set the hyper-parameters λQ = 0.4, λh = 0.05, λ′h = 0.01. We compare the

proposed method with several related methods, including CORAL [110], DANN [34],

ADDA [117], DTN [129], UNIT [72], PixelDA [14], DIAL [18], DLD [81], DSN [15],

and MCDA [96] on digit classification task (Digit datasets), and the object recognition

task (VisDA and PACS datasets).

Results On Digits Recognition

In this evaluation, we follow the same protocol across all methods. Specifically, we

use the network structure similar to UNIT [72].

We show the accuracy of different methods (averaged over five different runs) in

Table 3.7. The proposed method outperformed the competing methods in five out of

six settings, confirming consistently and significantly better generalization of our model

over target data.

The higher performance of the proposed model compared to other methods is mainly

attributed to the proposed task-specific alignment method, which not only encourages

the source features to be well-separated, according to their class label, but also aligns

the target to source features in a cluster-wise manner, ”matching” the source and target

clusters. This is in contrast to the standard domain-wise alignment, which ignores

the source/target inherent cluster structure. This superiority also benefits from the

proposed source and target domain regularizers, which improve the source feature

domain-invariance and the classifier’s robustness respectively. See Section 3.3.4 for more
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Table 3.7: Mean classification accuracy on digit classification. M: MNIST; MM: MNIST-
M, S: SVHN, U: USPS. The best is shown in red. The superscript shows the standard
deviation. *UNIT trains with the extended SVHN (> 500K images vs ours 72K).
*PixelDA uses (≈ 1, 000) of labeled target domain data as a validation set for tuning
the hyper-parameters.

method S → M M → MM M → U MM → M MM → U U → M

Source Only 62.10 55.98 78.30 84.46 80.43 50.64
1-NN 35.86 12.58 41.22 82.13 36.90 38.45
CORAL [110] 63.10 57.70 81.050.6 84.90 87.54 85.01
DANN[35] 73.80 77.40 81.60 61.05 85.34 77.40

ADDA[117] 77.68 91.47 90.51 92.82 80.70 90.10

DTN[129] 81.40 85.70 85.80 88.80 90.68 89.04

PixelDA[14] – 98.10∗ 94.10∗ – – –
UNIT[72] 90.6∗ – 92.90 – 90.60

DSN[15] 82.70 83.20 91.65 90.20 89.95 91.40

MCDA[96] 96.20 – 96.50 – – 94.10

Ours 94.67 98.01 99.05 99.11 99.16 97.85

details.

Results on Object Recognition

We also evaluate our method on two object recognition benchmark datasets VisDA [87]

and PACS [68]. We follow MCDA [96], and use ResNet101 [55] as the backbone net-

work which was pretrained on ImageNet dataset, and then finetune the parameters of

ResNet101 with the source only VisDA dataset according to the procedure described

in [96]. For the PACS dataset, we also follow the experimental protocol in [81], using

ResNet18 [55] pretrained on ImageNet dataset, and training our model considering 3

domains as sources and the remaining as target, using all the images of each domain.

For these experiments, we set the learning rate of resnets to 10−9. We choose this

small learning rate for ResNet parameters since the domain shift for both VisDA and

PACS are significant, the training procedure benefits from a mild parameter updates

back-propagated from the loss. Results for this experiment are summarized in Tables 3.8

& 3.9. We observe that our model achieved, on average, the best performance compared

to other competing methods for both datasets. The higher performance of our method

is mainly attributed to incorporating the category-level information into the domain
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Table 3.8: Accuracy of ResNet101 model fine-tuned on the VisDA dataset. Last column
shows the average rank of each method over all classes. The best in bold red, second
best in red.

Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck mean Ave. ranking

Source Only 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4 4.91

MMD [75] 87.1 63.0 76.5 42.0 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.13 3.08
DANN [34] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.42 3.00
MCDA [96] 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.90 2.41

Ours 88.2 78.5 79.7 71.1 90.0 81.6 84.9 72.3 92.0 52.6 82.9 18.4 74.03 1.83

Table 3.9: Mean classification accuracy on PACS dataset. The first row indicates the
target domain, while all the others are considered as sources.

method Sketch Photo Art Cartoon Mean

Resnet18 (Source Only) 60.10 92.90 74.70 72.40 75.00
DIAL [18] 66.80 97.00 87.30 85.50 84.20
DLD [81] 69.60 97.00 87.70 86.90 85.30

Ours 71.69 96.81 89.48 88.91 86.72

alignment through the proposed task-specific discriminator, which is beneficial to boost

the discriminability of the source/target features.

Analysis of the task-specific discriminator

To measure how effective the new task-specific discriminator is, we conducted an

experiment to compare the task-specific discriminator with the standard adversarial

discriminator (training a logistic function on the discriminator by assigning labels 0 and

1 to the source and target domains respectively and training the encoder with inverted

labels). The results are shown in Figure 3.12. As is evident from the figure, there is

a substantial increase in accuracy over all adaptation scenarios on switching from the

standard adversarial discriminator to our task-specific discriminator. The superiority

of the performance is mainly due to explicitly accounting for task knowledge in the

proposed discriminator during adversarial training that encourages the discriminativity

of the source/target samples in the feature space.

We further visualize the distribution of the learnt shared features to investigate

the effect of task-specific discriminator (Task-d) and its comparison to adversarial
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S-->M M-->MM M-->U MM-->M MM-->U U-->M
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Ours (Adversarial Discriminator) Ours (Task-specific Discriminator)

Figure 3.12: Comparison of proposed task-specific discriminator with the standard
adversarial discriminator on Digit dataset.

discriminator (Adv-d). We use t-SNE [80] on SVHN to MNIST adaptation to

visualize shared feature representations from two domains. Figure 3.13 shows shared

features from source (SVHN) and target (MNIST) before adaptation (a),(d), after

adaptation with Adv-d (b),(e), and after adaptation with Task-d (c),(f). While a

significant distribution gap is present between non-adapted features across domains (a),

the domain discrepancy is significantly reduced in the feature space for both Adv-d

(b) and Task-d (c). On the other hand, adaptation with Task-d led to pure and well-

separated clusters in feature space compared to the adaptation with Adv-d, and leads

to superior class separability. As supported by the quantitative results in Figure 3.12,

this implies that enforcing clustering in addition to domain-invariant embedding was

essential for reducing the classification error. This is depicted in (f), where the points

in the shared space are grouped into class-specific subgroups; color indicates the class

label. This is in contrast to (e), where the features show less class-specificity.

Ablation Studies

We performed an ablation study for our unsupervised domain adaptation approach

on Digit dataset. Specifically, we considered training without source regularization,

denoted as Ours (w/o-s), training without target regularization, Ours (w/0-t), and
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svhn
mnist_m

(a) Original (by domain) (b) Adversarial discriminator (c) Task-specific discriminator

(d) Original (by classes) (e) Adversarial discriminator (f) Task-specific discriminator

Figure 3.13: Feature visualization for embedding of digit datasets for adapting SVHN
to MNIST using t-SNE algorithm. The first and the second rows show the domains and
classes, respectively, with color indicating domain and class membership. (a),(d) Original
features. (b),(e) learned features for Ours with (binary) adversarial discriminator. (c),(f)
learned features for Ours with task-specific discriminator.

training by excluding both the source and the target regularization, Ours (w/o-st).

The results are shown in Figure 3.14. As can be seen, removing one or more of the

objectives results in noticeable performance degradation. The more parts are removed,

the worse the performance is. More precisely, disabling the source regularizer results in

an average ≈ 3.5% drop in performance. That demonstrates that the source regularizer

can improve the generalization over target samples by encouraging the source features

to be domain-invariant, less informative about the identity of either of the domains.

Immobilizing the target regularizer leads to ≈ 2.0% average drop in performance. These

results strongly indicate that it is beneficial to make use of the information from

unlabeled target data the during classifier learning process, which further strengthens
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Figure 3.14: Ablation of the proposed method on Digit dataset. The regularization
terms contribute to the overall performance.

the feature discriminability in the target domain. Finally, the average performance

drop that stems from disabling both the source and the target regularizer is ≈ 5.5%.

This suggests that the two components operate in harmony with each other, forming an

effective solution for domain adaptation.

3.3.5 Summary

In this section, we proposed a method to boosts the unsupervised domain adaptation

by explicitly accounting for task knowledge in the cross-domain alignment discrimina-

tor, while simultaneously exploiting the agglomerate structure of the unlabeled target

data using important regularization constraints. Our experiments demonstrate the

proposed model achieves state-of-the-art performance across several domain adaptation

benchmarks.
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3.4 MTDA-ITA: An Information Theoretic Approach for Unsuper-

vised Multi-Target Domain Adaptation

The methods presented in previous sections, focus on pairwise adaptation settings

where there is a single, labeled, source and a single target domain. However, in many

real-world settings one seeks to adapt to multiple, but somewhat similar, target domains.

Applying pairwise adaptation approaches to this setting may be suboptimal, as they fail

to leverage shared information among multiple domains. In this section, we propose an

information theoretic approach for domain adaptation in the novel context of multiple

target domains with unlabeled instances and one source domain with labeled instances.

Our model aims to find a shared latent space common to all domains, while simultaneously

accounting for the remaining private, domain-specific factors. Disentanglement of shared

and private information is accomplished using a unified information-theoretic approach,

which also serves to establish a stronger link between the latent representations and the

observed data. The resulting model, accompanied by an efficient optimization algorithm,

allows simultaneous adaptation from a single source to multiple target domains.

Most works on uDA today focus on a single-source-single-target-domain scenario.

However, in many real-world applications, unlabeled data may come from different

domains, thus, with different statistical properties but with common task-related content.

For instance, we may have access to images of the same class of objects (e.g., cars)

recorded by various types of cameras, and/or under different camera views and at

different times, rendering multiple different domains (e.g., datasets). Likewise, facial

expressions of emotions, such as joy and surprise, shown by different people and recorded

under different views, result in multiple domains with varying data distributions. In

most cases, these domains have similar underlying data distributions. This, in turn, can

be leveraged to build more effective and robust classifiers for tasks such as the object or

emotion recognition across multiple datasets/domains.

To this end, most of the uDA methods focus on the single-source-single-target DA

scenario. However, in the presence of multiple domains, as typically encountered in

real-world settings, this pair-wise adaptation approach may be suboptimal as it fails to
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leverage simultaneously the knowledge shared across multiple domains.

For instance, Zhao et al. [130] showed that by having access to multiple source

domains can facilitate better adaptation to a single target domain, when compared to

the pair-wise DA approach. It is intuitive that the access to multiple labelled source

domains offers more adaptation flexibility for the target domain (i.e., by efficiently

exploring the data labels across multiple source domains that are related to the target

domain). Yet, it requires labels for the data from multiple source domains, which can

be costly and time/labour-intensive to obtain. On the other hand, a simultaneous

adaptation to multiple and unlabelled target domains may circumvent the need for

manual labeling of multiple domains/datasets. This DA scenario is important as we

usually have access to multiple unlabeled domains; yet, it is also more challenging due to

the lack of supervision in the target domains. Still, multi-target DA offers advantages

over a single-target DA when: (i) there is direct knowledge sharing between the source

and multiple target domains, and (ii) the source and a target domain are related through

another target domain. While this seems intuitive, it is critical how the data from

multiple unlabelled target domains are leveraged within the multi-target DA approach,

in order to improve its performance over the pair-wise DA and naive-fusion of multiple

target domains.

To this end, we propose a Multi-Target DA-Information-Theoretic-Approach (MTDA-

ITA) for a single-source-multi-target DA. We exploit a single source domain and focus

on multiple target domains to investigate the effects of multi-target DA; however, the

proposed approach can easily be extended to multiple source domains. This approach

leverages the data from multiple target domains to improve performance compared to

individually learning from pair-wise source-target domains. Specifically, we simultane-

ously factorize the information from each available target domain and learn separate

subspaces for modeling the shared (i.e., correlated across the domains) and private (i.e.,

independent between the domains) subspaces of the data [98]. To this end, we employ

deep learning to derive an information theoretic approach where we jointly maximize the

mutual information between the domain labels and private (domain-specific) features,

while minimizing the mutual information between the domain labels and the shared



76

(domain-invariant) features. Consequently, more robust feature representations are

learned for each target domain by exploiting dependencies between multiple target

domains.

3.4.1 Information Theory: Background

Let x = (x1, x2, ..., xd) denote a d-dimensional random variable with probability

density function (pdf) given by p(x). Shannon differential entropy [71] is defined in

the usual way as H(x) = −Ex [ln p(x)] where E denotes the expectation operator. Let

z = (z1, z2, ..., zm) denote a m-dimensional random variable with pdf p(z). Then mutual

information between two random variables, x and z, is defined as I(x; z) = H(x)+H(z)−

H(x, z). Mutual information can also be viewed as the reduction in uncertainty about

one variable given another variable—i.e., I(x; z) = H(x)−H(x|z) = H(z)−H(z|x).

3.4.2 Multi-target Domain Adaptation

In this section, we describe our proposed information theoretic approach that supports

domain adaptation for multiple target domains simultaneously, finding factorized latent

spaces that are non-redundant, and that can capture explicitly the shared (domain

invariant) and the private (domain dependent) features of the data well suited for better

generalization for domain adaptation.

Let (X,Y,D) = {(xi, yi, di)}Ni=0 be a collection of M domains (a labeled source

domain, and M − 1 unlabeled target domains), where xi denotes the i-th sample, and

yi = [y1
i , y

2
i , ..., y

C
i ] and di = [d1

i , d
2
i , ..., d

M
i ] are the C-D and M -D encoding of the class

and domain labels for xi, respectively. Note that the class labels are only available for

the source samples. The latent space representation of the data point x is denoted as

z = [zs, zp], where zs and zp are the (latent) shared and private features of the data

point x, respectively. By factorizing the joint distribution p(x, y, d, zs, zp) as

p(x, y, d, zs, zp) = p(x)p(d)p(zs|x)p(zp|x)p(y|zs), (3.44)

we propose to maximize the following objective function:

L(x, y, d) = λrI(x; z) + λcI(y; zs) + λd
(
I(d; zp)− I(d; zs)

)
, (3.45)
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where p(x) and p(d) denote the underlying (true) data distribution and domain label

distribution, respectively, I(x; y) denotes the Mutual Information between the random

variables x and y. λr, λc and λd denote the hyper-parameters controlling the weights of

the objective terms. The proposed objective function in Eq. 3.45 maximizes the three

terms described below:

• I(x; z) : encourages the latent features (both shared and private) to preserve

information about the data samples (that can be used to reconstruct x from z).

• I(y; zs): enables to correctly predict the true class label of the samples out of their

common shared features.

• I(d; zp)−I(d; zs) : encourages the latent private features to preserve the information

about the domain label and penalizes the latent shared features to be domain

informative. This not only reduces the redundancy in the shared and private

features, but also, penalizes the redundancy of different private spaces, while

preserving the shared information.

An additional term could be used to minimize the mutual information between the

shared (zs) and private (zp) features. However, computing the mutual information (even

approximating it) is intractable due to the highly complex joint distribution p(zs, zp).

Since we want zs and zp features to encode different aspects of x, we enforce such

constraint by jointly maximizing the term: I(d; zp)− I(d; zs).

3.4.3 Optimization

The following lower bound for mutual information is derived using the non-negativity

of KL-divergence [8]; i.e., Σxp(x|z) ln p(x|z)
q(x|z) ≥ 0 gives:

I(x; z) ≥ H(x) + Ep(x,z)[ln q(x|z; θr)] (3.46)

q(x|z; θr) is any arbitrary distribution parameterized by θr. We need a variational

distribution q(x|z; θr) because the posterior distribution p(x|z) = p(z|x)p(x)/p(z) is

intractable since the true data distribution p(x) is assumed to be unknown. Similarly, we
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can derive lower bounds for I(d; zp) ≥ H(d)+Ep(d,zp)[ln q(d|zp; θp)] and I(d; zs) ≥ H(d)+

Ep(d,zs)[ln q(d|zs; θs)], where q(d|zp; θp) is any arbitrary distribution parameterized by

θp.
9 We further drive lower bound for I(y; zs) as I(y; zs) ≥ H(y) +Ep(y,zs)[ln q(y|zs; θc)],

where q(y|zs; θc) is a variational distribution parameterized by θc approximating p(y|zs).

Let next Gs(x; θs) be a function (shared encoder) parameterized by θs that maps a

sample x to its corresponding shared feature zs, and Gp(x; θp) be an analogous function

(private encoder) which maps x to zp, the feature that is private to each domain

(Figure 3.15). We also define R(zs, zp; θr) (decoder) as a decoding function mapping the

concatenation of the latent features zs and zp to a sample reconstruction x̂, and D(z; θd)

(domain classifier) as a decoding function mapping zs and zp to a M -dimensional vector:

the predictions of the domain label d̂. Finally, h(zs; θc) is a task-specific function (label

classifier) mapping zs to a K-dimensional probability vector of the class label ŷ.

We represent p(d), p(x), p(y) as the empirical distribution of a finite training set

(e.g. p(d) = 1
N

∑N
i=1 δ(d − di)) as in the case of variational autoencoders (VAE) [3,

89], p(zs|x), p(zp|x) as deterministic functions of x as p(zs|x) = δ
(
zs −Gs(x; θs)

)
and

p(zp|x) = δ
(
zp−Gp(x; θp)

)
, and the variational distributions q(y|zs), q(x|z) and , q(d|z)

as

q(y|zs) = SoftMax(h(zs; θc)),

q(d|z) = SoftMax(D(z; θd)),

q(x|z; ρ) ∝ exp(‖x−R(z; θr)‖1) (3.47)

where SoftMax(·) denotes the softmax or normalized exponential function [17], and

‖.‖1 denotes the L1 norm. Then, the optimization task can be posed as a minimax

saddle point problem, where we use adversarial training to maximize (3.45) w.r.t. the

parameters (θs, θp, θc), and to minimize (3.45) w.r.t. the parameters (θr,θd), using

Stochastic Gradient Descent (SGD).

9Note that, for simplicity, we shared the parameters θd between the approximate posterior distributions
q(d|zs, θp) and q(d|zp; θs).
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Figure 3.15: MDTA-ITA: The encoder Gs(x) captures the feature representations (zs) for a
given input sample x that are shared among domains. Gp(x) captures domain–specific private
features (zp) using the shared private encoder. The shared decoder R(zp, zs) learns to reconstruct
the input sample by using both the private and shared features. The domain classifier D(zs/zp)
learns to correctly predict the domain labels of the actual samples from both their shared and
private features while the classifier h(zs) learns to correctly predict the class labels from the
shared features.

Optimizing the parameters θr of the decoder F

θ̂r = arg min
θr

LR =
λr
N

N∑
i=1

‖xi −R
(
Gs(xi), Gp(xi)

)
‖1. (3.48)

The decoder G(zs, zp; θr) is trained in such a way so as to minimize the difference between

original input x and its decoding from corresponding shared and private features via

the decoder F .

Optimizing the parameters θd of the domain classifier D

θ̂d = arg min
θd

LD =− λd
N

N∑
i=1

d>i lnD
(
Gs(xi)

)
− λd
N

N∑
i=1

d>i lnD
(
Gp(xi)

)
. (3.49)

D(z; θd) can be considered as a classifier whose task is to distinguish between the

shared/private features of the different domains. More precisely, the two terms in
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Eq. 3.49 encourage D to correctly predict the domain labels from the shared and private

features, respectively.

Optimizing the parameters θc of the label classifier h

θ̂c = arg min
θc

{
−H(y)− Ep(y,zs)

[
ln q(y|zs)

]}
. (3.50)

Since we have access to the source labels, H(y) is a constant for source samples. we can

approximate H[y] for the target samples using the output of the classifier h, leading to

the following optimization problem:

θ̂c =arg min
θc

Lh = − 1

N

Ns∑
i=1

yTi lnh
(
Gs(xi)

)
− λc
N −Ns

N∑
i=Ns+1

h
(
Gs(xi)

)>
lnh
(
Gs(xi)

)
+

λc
N −Ns

N∑
i=Ns+1

h
(
Gs(xi)

)>
ln

(
1

N −Ns

N∑
i=Ns+1

h
(
Gs(xi)

))
, (3.51)

where Ns denotes the number of source samples. Intuitively, we enforce the classifier h to

correctly predict the class labels of the source samples by the first term in Eq. 3.51. We

use the second term to minimize the entropy of q(y|zs) for the target samples; effectively,

reducing the effects of ”confusing” labels of target samples, as given by p(y|zs) that

leads to decision boundaries occur far away from target data-dense regions in the feature

space. The intuition behind the last term is that by minimizing only the entropy (second

term), we may arrive at a degenerate solution where every target point xt is assigned

to the same class. Hence, the last term encourages the classifier h to have balanced

labeling for the target samples where it reaches its minimum, lnC, when each class is

selected with uniform probability.
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Optimizing the parameter θs of the shared encoder Gs

θ̂s = arg min
θs

LS =
λr
N

N∑
i=1

‖x−R
(
Gs(xi), Gp(xi)

)
‖1−

λc
N

Ns∑
i=1

yTi lnC
(
Gs(xi)

)
+
λd
N

N∑
i=1

d>i lnD
(
Gs(xi)

)
−

λc
N −Ns

N∑
i=Ns+1

h
(
Gs(xi)

)>
lnh
(
Gs(xi)

)
+

λc
N −Ns

N∑
i=Ns+1

h
(
Gs(xi)

)>
ln

(
1

N −Ns

N∑
i=Ns+1

h
(
Gs(xi)

))
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The first term in Eq. 3.52 encourages the shared encoder Gs to preserve the recovery

ability of the shared features. The second term is the source domain classification

loss penalty that encourages Gs to produce discriminative features for the labeled

source samples. The third term simulates the adversarial training by trying to fool

the domain classifier D when predicting the domain labels d, given the shared features

zs. The effect of this is two-fold: (i) the rendered shared features are more distinct

from the corresponding private features, (ii) the shared features of different domains are

encouraged to be similar to each other. The last two terms encourage Gs to produce

the shared features for target samples so that the classifier is confident on the unlabeled

target data, driving the shared features away from the decision boundaries.

Optimizing the parameter θp of the private encoder Gp

θ̂p = arg min
θp

LP =
λr
N

N∑
i=1

‖xi −R
(
Gs(xi), Gp(xi)

)
‖1 −

λd
N

N∑
i=1

d>i D
(
Gp(xi)

)
. (3.53)

The first term in Eq. 3.53 encourages the private encoder Gp to preserve the recovery

ability of the private features. The second term enforces distinct private features be

produced for each domain by penalizing the representation redundancy in different

private spaces. This, in turn, encourages moving this common information from multiple

domains to their shared space.
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To train our model, we alternate between updating the shared encoder Gs, the

private encoder Gp, the decoder F , the classifier h, and the domain classifier D using

the SGD algorithm.

Connection to Multiple Domain Transfer Networks

Recent studies have shown remarkable success in multiple domain transfer (MDT) [23,

4, 59, 54] though not in the context of the image classification, rather in the context of

image generation. choi et al. [23] proposed StarGAN, a generative adversarial network

capable of learning mappings among multiple domains in the contest of image to image

translation framework. The goal of StarGAN is to train a single generator G though

this requires passing in a vector along with each input to the generator specifying the

output domain desired, that learns mappings among multiple domains. To achieve this,

G is trained to translate an input image x into an output image x′ conditioned on the

target domain label d, G(x, d)→ x′. Similar to our domain classifier module D, they

introduce an auxiliary classifier that allows a single discriminator to control multiple

domains.

Anoosheh et al. [4] introduced ComboGAN, which decouples the domains and

networks from each other. Similar to our encoder/decoder modules, ComboGAN’s

generator networks contain encoder/decoders assigning each encoder and decoder to a

domain. They combine the encoders and decoders of the trained model like building

blocks, taking as input any domain and outputting any other. For example during

inference, to transform an image x from an arbitrary domain X to x′ from domain

X′, they simply perform x′ = GX′X(x) = DecoderX′(EncoderX(x)). The result of

EncoderX(x) can even be cached when translating to other domains as not to repeat

computation.

The main differences between the MDT methods and ours is that, unlike our method

which does domain alignment in feature space, MDT methods adapt representations

not in feature space but rather in raw pixel space; translating samples from one domain

to the “style” of a other domains. This works well for limited domain shifts where

the domains are similar in pixel-space, but can be too limiting for settings with larger
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domain shifts that results in poor performance in significant structural change of the

samples in different domains.

Connection to Domain Separation Networks

The method closest to our work is Domain Separation Networks (DSN) [15], which

use the notion of auto-encoders to explicitly separate the feature representations private

to each source/target domain from those that are shared between the domains. Although

extending DSN to multiple domains might seem trivial, DSN requires an autoencoder

per domain, making the model impractical in the case of more than a couple of domains.

The overall loss of DSN consists of a reconstruction loss for each domain modeled by

a shared decoder, a similarity loss such as MMD, which encourages domain invariance

modeled by a shared encoder, and a dissimilarity loss modeled by two private encoders:

one for the source domain and one for the target domain. While one could attempt

to generalize DSN to multiple target domains by having individual per-target domain

private encoders, doing so would prove problematic when the number of target domains

is large — each private encoder would require a large ”private” dataset to learn the

private parameters. Precisely, for multiple (M) target domains, we could train a DSN

model with one shared encoder, M + 1 private encoder (one for each domain), and

one shared decoder. This leads to M + 3 models to train that implies the number of

models increases linearly with the number of domains, as does the required training

time. Second, DSN uses an orthogonality constraint among the shared and the private

representations which may not be strong enough to remove redundancy and enforce

disentangling among different private spaces. Precisely, DSN defines the loss via a soft

subspace orthogonality constraint between the private and shared representation of each

domain. However, it does not enforce the private representation of different domains to

be different that may result in redundancy of different private spaces.

In addition, DSN enforces separation of spaces using the notion of Euclidean

orthogonality, e.g., ‖zs − zp‖2. In case of multiple target domains, this would result in

learning of all pairs of private spaces independently. To address those deficiencies, we

first explicitly couple different private encoders into a single private encoder model, Eθp
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of Figure 3.15 , which allows us to generalize to an arbitrary number of target domains.

To assure that the information among the private and shared spaces is not shared

(i.e., ”orthogonal”), we define an information-theoretic criteria enforced by a domain

classifier,Dθd of Figure 3.15, which aims to segment the private space into clusters

that correspond to individual target domains. By using Dθd within the adversarial

framework, MTDA-ITA learns simultaneously the shared and private features from

different domains (see Figure 3.9). Furthermore, our loss functions, Eqs. 3.51 & 3.52,

contain terms that encourage 1) classifier determination (low entropy, second terms) to

suppress prediction of uncertain labels and 2) balanced labeling (last term) to avoid

degenerate solutions where all instances in target are assigned to a single class. We also

show in Section 3.4.4 that our model performs better than the trivial extension of DSNs

to the multi-domain case.

3.4.4 Experimental Results

We compare the proposed method with state-of-the-art methods on standard bench-

mark datasets: a digit classification task that includes 4 datasets: MNIST [65],

MNIST-M [35], SVHN [84], USPS [117], and Multi-PIE dataset [52]. We evaluate

the performance of all methods with classification accuracy metric. We repeated each

experiment 5 times and report the average of the accuracy.

We used ADAM [62] for training; the learning rate was set to 0.0002 and momentum

parameters to 0.5 and 0.999. We used batches of size 16 from each domain, and

the input images were mean-centered/rescaled to [−1, 1]. The hyper-parameters are

empirically set as λr = 1.0, λc = 0.01, λd = 0.20. All the used architectures replicate

those of state-of-the-art methods. Specifically, we use the network structure similar

to UNIT [72]. Precisely, our private/shared encoders consisted of three convolutional

layers as the front-end and four basic residual blocks as the back-end. The decoder

consisted of four basic residual blocks as the front-end and four transposed convolutional

layers as the back-end. The discriminator and the classifier consisted of stacks of

convolutional layers. We used ReLU for nonlinearity. Tanh function is used as the

activation function of the last layer in the decoder F for scaling the output pixels to
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[−1, 1]. The quantitative evaluation involves a comparison of the performance of our

model to previous work and to Source Only and 1-NN baselines that do not use

any domain adaptation. For Source Only baseline, we train our model only on the

unaltered source training data and evaluate on the target test data. We compare the

proposed method MTDA-ITA with several related methods designed for pair-wise

source-target adaptation: CORAL ([110]), DANN [34], ADDA [117], DTN [129],

UNIT [72], PixelDA [14], and DSN [15]. We reported the results of two following

baselines: (i) one is to combine all the target domains into a single one and train it

using MTDA-ITA, which we denote as (c-MTDA-ITA). (ii) the other one is to train

multiple MTDA-ITA separately, where each one corresponds to a source-target pair

which we denote as (s-MTDA-ITA). For completeness, we reported the results of the

competing methods by combining all the target domains into a single one (denoted by

c-DTN, c-ADDA, and c-DSN) as well. We also extend DSN to multiple domains

by (i) having one private encoder for all domains denoted by (1p-DSN), (ii) adding

multiple private encoders to it denoted by (mp-DSN) and contrast them with our

model.

Digits Datasets

We combine four popular digits datasets (MNIST, MNIST-M, SVHN, and

USPS) to build the multi-target domain dataset. All images were uniformly rescaled

to 32 × 32. We take each of MNIST-M, SVHN, USPS, and MNIST as source

domain in turn, and the rest as targets. We use all labeled source images and all

unlabeled target images, following the standard evaluation protocol for unsupervised

domain adaptation [35, 77]. We show the accuracy of different methods in Tables 3.10

and 3.11. The results show that first of all c-MTDA-ITA has worse performance than s-

MTDA-ITA and MTDA-ITA. We have similar observations for ADDA, DTN, and

DSN that demonstrates a naive combination of different target datasets can sometimes

even decrease the performance of the competing methods. Furthermore, MTDA-ITA

outperforms the state-of-the-art methods in most of domain transformations. The higher

performance of MTDA-ITA compared to other methods is mainly attributed to the
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Table 3.10: Classification results on digit datasets. M: MNIST; MM: MNIST-M, S:
SVHN, U: USPS. c-X: combining all target domains into a single one and train it
using X. s-MTDA-ITA: training multiple MTDA-ITA where each one correspond to
a source-target pair. 1p-DSN: extended DSN with single private encoder.mp-DSN:
extended DSN with multiple private encoder. Last column shows the average rank
of each method over all adaptation pairs.*UNIT trains with the extended SVHN
(> 500K images vs ours 72K). *PixelDA uses (≈ 1, 000) of labeled target domain data
as a validation set for tuning the hyper-parameters.

method S → M S → MM S → U M → S M → MM M → U Ave. ranking

Source Only 62.10 ± 0.60 40.43 ± 0.70 39.90 ± 0.60 30.29 ± 0.59 55.98 ± 0.48 78.30 ± 0.38 14.00
1-NN 35.86 18.21 29.31 28.01 12.58 41.22 15.00

CORAL [110] 63.10 ± 0.61 54.37 ± 0.53 50.15 ± 0.63 33.40 ± 0.74 57.70 ± 0.69 81.05 ± 0.80 11.33
DANN [35] 73.80 ± 0.49 61.05 ± 0.80 62.54 ± 0.91 35.50 ± 0.65 77.40 ± 0.73 81.60 ± 0.60 8.75

ADDA [117] 77.68 ± 0.92 64.23 ± 0.70 64.10 ± 0.79 30.04 ± 0.98 91.47 ± 1.0 90.51 ± 0.80 6.43
c-ADDA 80.10 ± 0.69 56.80 ± 0.79 64.80 ± 0.88 27.50 ± 0.86 83.30 ± 0.90 84.10 ± 0.98 8.95

DTN [129] 81.40 ± 0.42 63.70 ± 0.39 60.12 ± 0.52 40.40 ± 0.50 85.70 ± 0.39 85.80 ± 0.46 6.04
c-DTN 82.10 ± 0.62 59.30 ± 0.59 56.87 ± 0.65 38.32 ± 0.50 80.90 ± 0.80 79.31 ± 0.78 7.96

PixelDA [14] – – – – 98.10∗ 94.10∗ –
UNIT ([72]) 90.6∗ – – – – 92.90 –

DSN [15] 82.70 ± 0.37 64.80 ± 0.40 65.30 ± 0.28 49.30 ± 0.30 83.20 ± 0.30 91.65 ± 0.40 2.85
c-DSN 83.10 ± 0.20 60.56 ± 0.36 60.35 ± 0.59 46.80 ± 0.45 80.49 ± 0.40 88.21 ± 0.38 4.84

1p-DSN 81.00 ± 0.47 58.22 ± 0.68 58.06 ± 0.48 45.11 ± 0.33 77.33 ± 0.52 85.16 ± 0.63 4.90
mp-DSN 83.40 ± 0.30 61.00 ± 0.50 58.10 ± 0.64 47.35 ± 0.40 79.30 ± 0.59 86.45 ± 0.71 5.33

s-MTDA-ITA 82.90 ± 0.13 63.10 ± 0.28 63.54 ± 0.30 49.60 ± 0.25 87.42 ± 0.19 89.21 ± 0.28 2.88
c-MTDA-ITA 79.20 ± 0.28 59.90 ± 0.30 63.70 ± 0.26 45.30 ± 0.30 82.12 ± 0.22 87.47 ± 0.25 4.25
MTDA-ITA 87.70 ± 0.24 68.30 ± 0.15 70.03 ± 0.20 56.01 ± 0.21 93.50 ± 0.18 94.20 ± 0.20 1.16

joint adaptation of related domains where each domain could benefit of other related

domains. Furthermore, from the results obtained, we see that it is beneficial to use

information coming from unlabeled target data (see Eq. 3.51 for updating the classifier

C) during the learning process, compared to when no data from target domain is used

(See the ablation study section for more information). Indeed, using our scheme, we find

a representation space in which embeds the knowledge from the target domain into the

learned classifier. By contrast, the competing methods do not provide a principled way of

sharing information across all domains, leading to overall lower performance. The results

also verify the superiority of MTDA-ITA over both mp-DSN, and 1p-DSN. This

can be due to (i) having multiple private encoders increase the number of parameters

that may lead to mp-DSN overfitting, (ii) superiority of the MTDA-ITA’s domain

adversarial loss over the DSN’s MMD loss to separate the shared and private features,

(iii) utilization of the unlabeled target data to regularize the classifier in MTDA-ITA.
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Table 3.11: Classification results on digit datasets. M: MNIST; MM: MNIST-M, S:
SVHN, U: USPS. c-X: combining all target domains into a single one and train it
using X. s-MTDA-ITA: training multiple MTDA-ITA where each one correspond
to a source-target pair. mp-DSN: extended DSN with multiple private encoder.
*UNIT trains with the extended SVHN (> 500K images vs ours 72K). *PixelDA
uses (≈ 1, 000) of labeled target domain data as a validation set for tuning the hyper-
parameters.

method MM → S MM → M MM → U U → S U → M U → MM

Source Only 40.00 ± 0.61 84.46 ± 0.29 80.43 ± 0.50 23.41 ± 0.52 50.64 ± 0.37 41.45 ± 0.38

1-NN 21.45 82.13 36.90 15.34 38.45 18.54
CORAL [110] 40.20 ± 0.60 84.90 ± 0.70 87.54 ± 0.44 38.90 ± 0.96 85.01 ± 0.61 60.45 ± 0.70

DANN [35] 51.80 ± 0.91 61.05 ± 0.71 85.34 ± 0.64 35.50 ± 0.84 77.40 ± 0.64 61.60 ± 0.64

ADDA [117] 40.64 ± 0.86 92.82 ± 0.48 80.70 ± 0.48 41.23 ± 0.78 90.10 ± 0.58 56.21 ± 0.79

c-ADDA 35.43 ± 0.94 88.47 ± 0.61 74.19 ± 0.58 39.36 ± 0.99 84.67 ± 0.94 52.54 ± 0.88

DTN [129] 48.80 ± 0.66 88.80 ± 0.38 90.68 ± 0.35 42.43 ± 0.61 89.04 ± 0.36 55.78 ± 0.40

c-DTN 44.21 ± 0.61 83.60 ± 0.54 84.98 ± 0.41 39.75 ± 0.64 85.04 ± 0.45 48.86 ± 0.54

UNIT [72] – – – 90.60 –

DSN [15] 51.50 ± 0.64 90.20 ± 0.31 89.95 ± 0.29 48.20 ± 0.59 91.40 ± 0.30 60.45 ± 0.35

c-DSN 47.10 ± 0.50 84.60 ± 0.40 84.80 ± 0.39 40.50 ± 0.61 86.05 ± 0.46 56.25 ± 0.50

1p-DSN 45.00 ± 0.60 81.96 ± 0.60 83.03 ± 0.49 39.30 ± 0.51 84.55 ± 0.56 55.03 ± 0.60

mp-DSN 47.15 ± 0.64 85.51 ± 0.54 83.24 ± 0.24 38.30 ± 0.74 87.40 ± 0.35 55.47 ± 0.44

s-MTDA-ITA 50.55 ± 0.18 94.82 ± 0.21 89.05 ± 0.28 40.13 ± 0.30 87.10 ± 0.25 61.01 ± 0.24

c-MTDA-ITA 47.32 ± 0.19 90.20 ± 0.30 90.01 ± 0.24 41.10 ± 0.35 85.35 ± 0.28 60.31 ± 0.34

MTDA-ITA 55.50 ± 0.22 98.20 ± 0.10 94.10 ± 0.11 46.00 ± 0.48 91.50 ± 0.23 67.30 ± 0.15

Multi-PIE dataset

For this experiment, we use 5 different camera views (positions) C05, C08, C09,

C13, and C14 as different domains and the face expressions (normal, smile, surprise,

squint, disgust, scream) as labels. Each domain contains 27120 images of size

64× 64× 3. We used each view as the source domain, in turn, and the rest as targets.

We expect the face inclination angle to reflect the complexity of transfer learning.

Tables 3.12, 3.13 and 3.14 show the classification accuracy of different methods. As

can be seen, MTDA-ITA achieves the best performances as well as the best scores in

most settings that verifies the effectiveness of MTDA-ITA for multi-target domain

adaptation. Clearly, with the increasing camera angle, the image structure changes up

to a certain extent (the views become heterogeneous). However, our method produces

better results even under such very challenging conditions.
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Table 3.12: Classification results on Multi-PIE dataset. Last column shows the average
rank of each method over all adaptation pairs.

method C13 → C05 C13 → C08 C13 → C09 C13 → C14 C14 → C05 C14 → C08 C14 → C09 C14 → C13 Ave. ranking

Source Only 50.79 ± 0.33 45.90 ± 0.50 40.04 ± 0.40 59.68 ± 0.29 60.03 ± 0.55 36.80 ± 0.61 40.11 ± 0.50 60.57 ± 0.36 16.08
1-NN 33.21 37.01 34.45 48.79 47.44 28.24 30.86 44.86 17.00

CORAL 54.89 ± 0.52 48.90 ± 0.48 40.30 ± 0.53 68.90 ± 0.35 59.98 ± 0.45 40.63 ± 0.55 40.80 ± 0.53 65.11 ± 0.45 11.95
DANN 57.86 ± 0.41 50.30 ± 0.43 45.30 ± 0.50 70.68 ± 0.35 57.20 ± 0.45 40.22 ± 0.55 40.77 ± 0.45 70.50 ± 0.55 9.92

ADDA 64.83 ± 0.69 63.20 ± 0.45 55.48 ± 0.65 74.25 ± 0.55 73.62 ± 0.75 43.56 ± 0.95 38.68 ± 0.95 72.84 ± 0.75 9.33
c-ADDA 59.20 ± 0.25 30.70 ± 0.63 53.20 ± 0.40 68.33 ± 0.35 65.88 ± 0.38 30.60 ± 0.61 45.34 ± 0.48 64.30 ± 0.40 11.50

DTN 63.78 ± 0.29 60.45 ± 0.35 60.55 ± 0.35 72.60 ± 0.25 70.67 ± 0.30 41.55 ± 0.65 41.45 ± 0.45 70.67 ± 0.45 8.75
c-DTN 57.53 ± 0.42 55.24 ± 0.45 57.14 ± 0.39 65.16 ± 0.35 63.80 ± 0.42 38.97 ± 0.71 39.80 ± 0.65 62.10 ± 0.45 10.92

PixelDA 45.68 ± 0.52 44.95 ± 0.42 44.45 ± 0.55 90.50 ± 0.25 46.28 ± 0.60 45.89 ± 0.61 44.45 ± 0.51 69.15 ± 0.45 9.95
UNIT 44.14 ± 0.10 44.47 ± 0.11 44.21 ± 0.12 44.47 ± 0.11 43.03 ± 0.1 44.44 ± 0.15 44.47 ± 0.15 44.47 ± 0.05 11.07

DSN 64.15 ± 0.30 57.70 ± 0.38 49.15 ± 0.45 80.75 ± 0.27 82.20 ± 0.28 38.75 ± 0.53 45.00 ± 0.25 80.50 ± 0.35 5.15
c-DSN 57.34 ± 0.45 31.63 ± 0.60 51.17 ± 0.40 74.52 ± 0.37 82.01 ± 0.35 34.25 ± 0.58 42.63 ± 0.55 79.42 ± 0.35 8.20

1p-DSN 55.84 ± 0.50 30.03 ± 0.50 49.06 ± 0.38 72.11 ± 0.50 81.22 ± 0.45 33.33 ± 0.58 42.03 ± 0.24 78.78± 0.57 8.63
mp-DSN 55.20 ± 0.46 30.40 ± 0.50 47.80 ± 0.35 75.30 ± 0.25 80.75 ± 0.20 30.20 ± 0.55 43.00 ± 0.35 79.02 ± 0.40 8.88

s-MTDA-ITA 70.10 ± 0.27 58.90 ± 0.25 58.10 ± 0.27 80.12 ± 0.15 82.05 ± 0.18 45.90 ± 0.30 52.67 ± 0.30 81.60 ± 0.24 3.65
c-MTDA-ITA 60.34 ± 0.17 55.67 ± 0.21 57.10 ± 0.23 73.50 ± 0.20 76.80 ± 0.10 43.10 ± 0.12 48.10 ± 0.14 80.90 ± 0.11 5.01
MTDA-ITA 78.40 ± 0.2 66.70 ± 0.17 70.30 ± 0.14 85.49 ± 0.11 87.20 ± 0.10 61.40 ± 0.14 60.05 ± 0.13 86.70 ± 0.10 1.20

Table 3.13: Classification results on Multi-PIE dataset.

method C08 → C05 C08 → C09 C08 → C13 C08 → C14 C09 → C05 C09 → C08 C09 → C13 C09 → C14

Source Only 33.70 ± 0.33 50.10 ± 0.28 50.80 ± 0.32 40.13 ± 0.26 33.32 ± 0.44 48.24 ± 0.32 49.24 ± 0.30 36.19 ± 0.27

1-NN 28.75 35.39 39.79 32.13 26.82 35.30 34.26 28.41
CORAL [110] 35.89 ± 0.44 55.79 ± 0.50 60.00 ± 0.29 40.67 ± 0.48 35.89 ± 0.40 51.56 ± 0.43 50.45 ± 0.41 40.67 ± 0.35

DANN [35] 40.20 ± 0.50 56.89 ± 0.39 55.83 ± 0.40 43.25 ± 0.41 50.63 ± 0.38 58.40 ± 0.51 55.81 ± 0.53 48.90 ± 0.43

ADDA [117] 37.40 ± 0.68 58.40 ± 0.73 60.40 ± 0.83 42.10 ± 0.48 29.40 ± 0.70 53.30 ± 0.49 45.30 ± 0.53 38.30 ± 0.63

c-ADDA 41.60 ± 0.64 39.65 ± 0.70 50.00 ± 0.52 46.25 ± 0.52 45.01 ± 0.63 52.14 ± 0.53 37.43 ± 0.60 43.26 ± 0.58

DTN [129] 44.13 ± 0.41 57.42 ± 0.42 55.89 ± 0.48 45.76 ± 0.39 44.53 ± 0.49 57.34 ± 0.35 52.43 ± 0.38 51.55 ± 0.40

c-DTN 45.10 ± 0.44 49.78 ± 0.50 47.43 ± 0.46 45.79 ± 0.48 49.80 ± 0.40 55.69 ± 0.35 50.10 ± 0.38 52.31 ± 0.29

PixelDA [14] 46.45 ± 0.45 44.33 ± 0.38 44.87 ± 0.41 46.83 ± 0.29 45.63 ± 0.34 16.37 ± 0.27 45.43 ± 0.35 47.00 ± 0.49

UNIT [72] 43.88 ± 0.18 43.99 ± 0.23 44.47 ± 0.19 44.47 ± 0.24 44.47 ± 0.17 43.95 ± 0.21 44.64 ± 0.22 44.47 ± 0.19

DSN [15] 46.25 ± 0.53 47.50 ± 0.60 62.15 ± 0.58 39.72 ± 0.55 45.85 ± 0.48 56.65 ± 0.50 56.5 ± 0.38 42.87 ± 0.43

c-DSN 45.82 ± 0.53 44.64 ± 0.42 45.60 ± 0.48 46.32 ± 0.52 45.18 ± 0.47 45.52 ± 0.55 44.79 ± 0.53 47.37 ± 0.48
1p-DSN 44.12 ± 0.73 44.14 ± 0.20 45.00 ± 0.38 45.62 ± 0.42 44.78 ± 0.47 45.02 ± 0.65 44.21 ± 0.48 46.97 ± 0.38
mp-DSN 42.19 ± 0.46 44.70 ± 0.53 42.47 ± 0.48 40.50 ± 0.39 45.00 ± 0.51 43.80 ± 0.50 45.79 ± 0.48 42.39 ± 0.49

s-MTDA-ITA 44.77 ± 0.19 45.61 ± 0.18 60.00 ± 0.27 46.70 ± 0.28 49.06 ± 0.24 55.33 ± 0.22 59.90 ± 0.30 50.64 ± 0.26

c-MTDA-ITA 44.35 ± 0.27 42.67 ± 0.24 58.90 ± 0.26 44.32 ± 0.26 46.74 ± 0.22 54.11 ± 0.21 56.89 ± 0.23 49.64 ± 0.19

MTDA-ITA 46.30 ± 0.25 60.60 ± 0.18 60.50 ± 0.19 50.40 ± 0.20 55.59 ± 0.25 57.80 ± 0.21 64.20 ± 0.18 56.34 ± 0.20

Ablation Studies

We performed an ablation study on the proposed model measuring impact of various

terms on the model’s performance. To this end, we conducted additional experiments

for the digit datasets with different components ablation, i.e., training without the

reconstruction loss (denoted as MTDA-woR) by setting λr = 0, training without the

classifier entropy loss (denoted as MTDA-woE) by setting λc = 0, training without

the multi-domain separation loss (denoted as MTDA-woD) by setting λd = 0.

As can be seen from Figure 3.16, disabling each of the above components leads to

degraded performance. More precisely, the average drop by disabling the classifier

entropy loss is ≈ 3.5%. Similarly, by disabling the reconstruction loss and the multi-

domain separation loss, we have ≈ 4.5% and ≈ 22% average drop in performance,
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Table 3.14: Classification results on Multi-PIE dataset.

method C05 → C08 C05 → C09 C05 → C13 C05 → C14

Source Only 31.56 ± 0.40 40.67 ± 0.36 39.89 ± 0.22 54.70 ± 0.25

1-NN 27.28 31.22 33.66 47.04
CORAL [110] 36.55 ± 0.66 38.60 ± 0.67 40.60 ± 0.58 55.29 ± 0.47

DANN [35] 40.30 ± 0.60 41.20 ± 0.65 40.12 ± 0.60 58.90 ± 0.38

ADDA [117] 33.21 ± 0.81 30.86 ± 0.90 52.44 ± 0.80 70.18 ± 0.60

c-ADDA 46.88 ± 0.65 36.38 ± 0.88 39.14 ± 0.85 65.41 ± 0.69

DTN [129] 38.50 ± 0.51 30.56 ± 0.46 55.78 ± 0.36 68.90 ± 0.31

c-DTN 41.70 ± 0.42 31.10 ± 0.48 50.19 ± 0.45 60.34 ± 0.35

PixelDA [14] 44.93 ± 0.42 44.75 ± 0.45 45.18 ± 0.45 46.88 ± 0.49

UNIT ([72]) 44.47 ± 0.21 44.47 ± 0.21 44.47 ± 0.20 44.51 ± 0.28

DSN [15] 45.12 ± 0.46 44.35 ± 0.49 48.12 ± 0.53 75.00 ± 0.39

c-DSN 42.52 ± 0.48 38.54 ± 0.64 34.15 ± 0.64 69.45 ± 0.55

1p-DSN 41.64 ± 0.58 37.84 ± 0.63 34.65 ± 0.44 68.75 ± 0.85

mp-DSN 41.30 ± 0.28 35.14 ± 0.35 34.40 ± 0.35 65.70 ± 0.27

s-MTDA-ITA 44.40 ± 0.23 44.60 ± 0.25 47.65 ± 0.27 80.20 ± 0.13

c-MTDA-ITA 40.49 ± 0.25 40.70 ± 0.25 42.80 ± 0.25 71.60 ± 0.10

MTDA-ITA 49.01 ± 0.20 48.20 ± 0.27 53.13 ± 0.22 84.29 ± 0.10

respectively. Clearly, by disabling the multi-domain separation loss, the accuracy drops

significantly due to the severe data distribution mismatch between different domains.

The figure also demonstrates that leveraging the unlabeled data from multiple target

domains during training enhances the generalization ability of the model that leads

to higher performance. In addition, the performance drop caused by removing the

reconstruction loss , i.e., without the private encoder/decoder, indicates (i) the benefit

of modeling the latent features as the combination of shared and private features, (ii)

the ability of the model’s domain adversarial loss to effectively learn those features.

In order to examine the effect of the private features on the model’s classification

performance, we took the MTDA-ITA and trained it without the private encoder

(denoted as MTDA-woP). As Figure 3.16 shows, without the private features, the

model performed consistently worse (≈ 2% average drop in performance) in all scenarios.

This demonstrates explicitly modeling what is unique to each domain can improve the

model’s ability to extract domain–invariant features. In summary, this ablation study

showed that the individual components bring complimentary information to achieve the
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Figure 3.16: Ablation of MTDA-ITA on Digit dataset. We show that each component
of our method, Reconstruction loss, Classifier entropy loss with separating shared/private
features, contributes to the overall performance.

best classification results.

Analysis of shared/private space embedding

In the experiments conducted, we showed that our approach is able to achieve better

performance than the competing methods including the extended DSN with one private

encoder (1p-DSN) which is the most similar method to ours.

Indeed, Figure 3.17 depicts the embedding of the MTDA-ITA learned private/shared

features, those of 1p-DSN and the original features from different domains for Digit

datasets (SVHN is the source). Notice that both MTDA-ITA and 1p-DSN reduces

the domain mismatch for the shared features (circle markers in Figure 3.17) and separate

the shared features from private features. On the other hand, MTDA-ITA increases

the domain separation for the private features (triangle markers, pure and well-separated

domain clusters in (c)) while 1p-DSN is unable to enforce the private representation of

different domains to be different (e) that may result in redundancy of different private
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spaces. This is partially due to the proposed multi-domain separation loss through the

use of the domain classifier D, which penalizes the domain mismatch for the shared

features and rewards the mismatch for the private features, something the 1p-DSN

fails to account for. Moreover, as supported by the quantitative results in Tables 3.10

and 3.11, the class label separation in the shared space for 1p-DSN (f), is still evident

but not as strong as in the MTDA-ITA (d). This can be attributed to the lack of

redundancy in the private space that helps MTDA-ITA to learn more disentangled

shared features and usage of the target samples during training, something the 1p-DSN

fails to account for.

3.4.5 Summary

In this section, we presented an information theoretic end-to-end approach to uDA

in the context of a single source and multiple target domains that share a common

task or properties. The proposed method learns feature representations invariant under

multiple domain shifts and simultaneously discriminative for the learning task. This is

accomplished by explicitly separating representations private to each domain and shared

between source and target domains using a novel discrimination strategy. Our use of a

single private domain encoder results in a highly scalable model, easily optimized using

established back-propagation approaches. Results on three benchmark datasets for image

classification show superiority of the proposed method compared to the state-of-the-art

methods for unsupervised domain adaptation of visual domain categories.
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Figure 3.17: Feature visualization for embedding of digit datasets using t-SNE algorithm.
The first and the second columns show the domains and classes, respectively, with color
indicating domain and class membership. (a),(b) Original features. (c),(d) learned
features for MTDA-ITA (triangle marker: private features, circle marker: shared
features). Large clusters in the right column represent points from the shared space,
while the smaller ones are from the private spaces. (e),(f) learned features for 1p-DSN.
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Chapter 4

Conclusions

This chapter summarizes the main results and contributions presented in this thesis,

discusses the open issues and sketches possible future directions of research.
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4.1 Summary

A quick overview of the current state-of-the-art image (object) classification methods

shows us that all approaches based on a large amount of labeled training data perform

reasonably well on difficult datasets [55]. However, most of them provide very few

guarantees when only a small amount of labeled training data points is available, or more

in general, if there is a mismatch between the training and the testing distribution [115].

The purpose of this thesis has been to understand how to best transfer what we know

to a new domain, where data is scarce. We have shown that there are multiple ways of

addressing this, depending on the availability of auxiliary data. More specifically, we

tackled the problem as an unsupervised domain adaptation problem, in chapter 3, and

proposed multiple solutions: we showed that we can reduce the domain gap by aligning

the feature distributions of source (train) and target (test) domains using a Probabilistic

MMD measure(PUnDA, 3.1) or by using adversarial methods (3.3, 3.4). In section 3.2

we showed a complex approach using Gaussian process that, by utilizing max-margin

principle, reaches even better performance.

In conclusion, our work demonstrated that, by properly exploiting auxiliary knowl-

edge, we can train effective shallow/deep models even when annotated data is scarce.

For this purpose we presented a number of alternative solutions, ranging from clas-

sical domain adaptation approaches to innovative, across domains, transfer learning

techniques, each suitable for different learning conditions.
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4.2 Future Research

All the proposed methods for domain adaptation have been presented together with

an analysis of their properties, and evaluating their performances. We briefly describe

in the following a few aspects of this work relevant for future work.

All of our proposed methods are designed to work in the unsupervised domain

adaptation setting, with the assumption that no labels are available for the target

domain. Clearly this hypothesis does not always hold and it is likely that, if (a few)

target labels are available, a better alignment between domains can be achieved. A

potential future work would be to investigate how to modify our models to best adapt

to this semi-supervised setting.

Likewise, our DA methods could be adapted to work on the recent problem of open

set [86] domain adaptation, a more realistic scenario where only a few categories of

interest are shared between source and target.

Our models in this thesis has been evaluated on the task of image classification

(object recognition). There are no specific requirements in the algorithm which limit

its applicability to this setting, and it would be very interesting to see how much we

can transfer to more complicated task (e.g., object detection or semantic segmentation).

In fact, such domain adaptation tasks are quite challenging as there usually exists a

significant gap between source and target domains [96, 132].
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