
c© 2020

Liu Liu

ALL RIGHTS RESERVED.

TRADING QUALITY FOR RESOURCE CONSUMPTION THROUGH
APPROXIMATION MANAGEMENT

by

LIU LIU

A dissertation submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosopy

Graduate Program in Computer Science

Written under the direction of

Ulrich Kremer

And approved by

New Brunswick, New Jersey

JANUARY 2020

ABSTRACT OF THE DISSERTATION

Trading Quality for Resource Consumption through Approximation Management

by Liu Liu

Dissertation Director:

Prof.Ulrich Kremer

The goal of traditional optimizations is to map applications onto limited machine re-

sources such that application performance is maximized while application semantics (pro-

gram correctness), is preserved. Semantics is thought of as a unique mapping from inputs

to outcomes. Relaxing application semantics through approximations has the potential

of orders of magnitude performance improvements by trading off outcome quality for re-

source usage. Here, an execution outcome is not only based on its inputs but also resource

availability and user quality expectations.

Emerging approximation techniques provides various ways to trade-off output quality

for lower resource consumption. However, as a developer, the guidance and support on

how to utilize the power of approximation in everyday applications are limited and rarely

discussed in recent works. The offline training overhead to support approximation is usu-

ally huge, but often be treated as ”free.” Besides, it is surprising that end-users involvement

is always overlooked when determining the quality notion, which should be highly subjec-

tive. Finally, supporting approximation in a multi-programming environment is crucial to

let approximation be widely accepted as a general technique.

In this dissertation, I introduce Rapids, Reconfiguration, Approximation, Preferences,

ii

Implementation, Dependencies, and Structure, a framework for developing and executing

applications suitable for dynamic configuration management for approximate computing.

The main contribution of Rapids is its design to address the above concerns through ex-

ploiting the different expertise/strengths of the three actors (developers, users, applications)

involved. I conduct comprehensive experiments and show that Rapids is adaptive and ex-

tendable by providing customizable configuration spaces for developers and the support

for customizable quality for end-users. It has low overheads and small cross-platform

porting costs. I also introduce an extension of Rapids, Rapids-M (Rapids for Multi-

programming), which is the first system that discusses cross-application approximation

management. The target is to understand and overcome the challenges in approximation

management fundamentally, then let both developers and end-users benefit from approxi-

mation with little extra efforts so that a wider audience can accept the technique.

iii

ACKNOWLEDGEMENTS

Like every new student, the first thing I was told was that pursuing a Ph.D. would not

be easy. The 6-year adventure of my Ph.D. life was arduous, unforgettable, but still happy.

Thanks to all the people besides me who make this journey an enjoyable experience of my

life.

I’m eternally grateful to my advisor, Prof.Ulrich Kremer (Uli), for his constant support

and guidance. Uli’s talent in programming languages provides invaluable insights into the

research topic, which is relatively new. Most new ideas and major signs of progress along

the road were made in front of the whiteboard in his office. Besides the academic support,

I was also encouraged by Uli when facing difficulties, for example, when the conference

deadline was 3 AM in the night, or when our submission got rejected, or I was desperately

struggled with a hard problem for a long time and about to give up. Uli was also supportive

and generous when it comes to my plan for the future. With all these supports, my Ph.D.

life has been more organized and more productive than it supposed to be.

I would like to sincerely thank Prof.Sibren Isaacman, who gave numerous practical

suggestions and pinpointed multiple detailed flaws in both the design and implementation

of my work. Besides, the help of formalizing and polishing the language for all submissions

was huge. His ideas and patience in academic writing made an enormous contribution to

our submissions.

Also, I’d like to thank all the members of my committee, for bringing up potential

working directions and useful comments on both research and presentation skills. Thank

you, Prof.Abhishek Bhattacharjee, Prof.Eric Allender, Prof.Richard Martin, Prof.Desheng

Zhang, and Linbin Yu. I much appreciate Desheng for bringing up fresh and different ideas

and angles that bring up the possibility of applying approximation on diverse fields of work,

like urban computing.

Then, I want to thank my internship managers during two of my summers, Nick Ko-

iii

rostelev from Google Infrastructure, and Linbin Yu from Facebook Adaptive Apps. I en-

joyed both summers and gained invaluable industry experiences, including the coding style

of a higher standard and a better idea of system design. These cannot be achieved if without

Nick and Linbin’s help and guidance.

Besides, I want to express my gratitude to all the people standing beside me for their

support. Eric Cong, my first friend at Rutgers, supported me whenever my life gets bumpy.

Yixin Gu, my oldest friend, starting from middle school, always provided useful advice

surviving all the dark moments of my life. Thanks to Zi Yan from RUArch Lab, Yan Zhu,

Lin Zhong from CBIM, Fang Wang, Junjie Ouyang, and Zuohui Fu for making my life

much more joyful. Also, I would like to thank Yi Dong for staying by my side and taking

care of me during this most critical period in my life.

Lastly, I want to thank my parents, Xueli Liu and Yang Liu, for supporting me with

unconditionally loving and care. I could never ”survive” this without your help.

My research presented in this dissertation is supported by the grant CSR-1617551 from

National Science Foundation.

iv

TABLE OF CONTENTS

Abstract . ii

Acknowledgments . iii

List of Tables . x

List of Figures . xii

Chapter 1: Introduction . 1

1.1 Notions and Definitions in Approximation 4

1.1.1 Basic Terms . 5

1.1.2 More Complications to be addressed in Approximation 10

1.2 Three Main Problems of Approximation 13

1.2.1 Configuration Space Specification 13

1.2.2 Cost and Quality Model Construction 14

1.2.3 Runtime Reconfiguration . 15

1.3 Limitations of Current Approaches . 16

1.3.1 Lack of Expressive Development Model 17

1.3.2 Naive Cost / Quality Model Construction 18

1.3.3 Insufficient Support for Multi-Programming 19

v

1.3.4 Summary of Challenges . 20

1.4 Thesis . 21

1.4.1 Thesis Statement . 21

1.4.2 Contribution . 21

1.4.3 Rapids: A Framework for Single Application Approximation Man-
agement . 22

1.4.4 Rapids-M: The first System for Cross-Application Approximation
Management . 24

1.5 Evaluation Summary . 25

1.6 Organization . 27

Chapter 2: State of the Art . 29

Chapter 3: Sample Applications . 35

Chapter 4: Rapids . 43

4.1 Introduction . 43

4.2 Application Representation: KDG . 47

4.2.1 Developers’ Insight as Structure 48

4.2.2 Cost Model using KDG . 50

4.2.3 Custom Quality Metrics/Models and Virtual Knobs 51

4.3 Problem Specification . 55

4.3.1 KDG Weight Derivation . 56

4.3.2 Effective Training . 58

4.3.3 Runtime Optimization Problem Formulation 60

vi

4.4 Key Results . 62

4.4.1 Space Reduction . 62

4.4.2 Output Quality . 63

4.4.3 User Preferred Sub-Metric Comparison 65

Chapter 5: Rapids in Multi-Programming Environment 66

5.1 Introduction . 66

5.2 Rapids-M Framework Overview . 70

5.3 Rapids-M Offline Phase . 72

5.3.1 Resource Usage Prediction: M . 73

5.3.2 Performance Prediction: P . 74

5.3.3 Bucket Determination . 75

5.4 Rapids-M Online Configuration Manager 78

5.5 Key Results . 80

5.5.1 Strategies Used for Comparison 80

5.5.2 Evaluation Metrics . 81

5.5.3 Improvement on Overall Output Quality 82

Chapter 6: Implementation . 85

6.1 The Rapids Framework . 85

6.2 Rapids-M Implementation . 89

Chapter 7: Evaluation . 94

7.1 Rapids: Single-App Scenario Evaluation 94

vii

7.1.1 Problem Size Reduction from Developer’s Insight 94

7.1.2 Model Validation . 95

7.1.3 Application Output Quality . 96

7.1.4 Custom Quality . 96

7.1.5 Reconfiguration and Overhead . 98

7.1.6 Overhead Optimization . 101

7.1.7 Summary of Key Results . 103

7.2 Rapids-M: Cross-Application Evaluation 104

7.2.1 Model Validation . 104

7.2.2 Optimality . 108

7.2.3 Global Reconfigurations . 110

7.2.4 Static Evaluation . 111

7.2.5 Reconfiguration Overheads . 113

7.2.6 Summary of Key Results . 115

Chapter 8: Conclusion and Future Work . 117

8.1 Conclusion . 117

8.2 Future Work . 118

Bibliography . 132

Appendix-A: Training Tuning . 133

A.1 4-Stage Training Process Tuning . 133

A.2 Per-Application Training Tuning . 135

viii

Appendix-B: Runtime Tuning . 137

ix

LIST OF TABLES

1.1 Example Profile for Ferret. The row with configuration marked bold has
lower cost than the row above it, but produces higher quality 7

1.2 Roles and Challenges of the different Stakeholders 22

3.1 Approximation Opportunity . 41

4.1 Knobs and Sub-Metrics in FaceDetection 54

4.2 Symbols Used in Problem Definition . 56

4.3 Search Space Pruning and Specification Effort, RS Calculated with Error
Bound ε = 5% . 62

4.4 User-Preferred Sub-Metrics Value Improvement 65

5.1 Strategies Used for Comparison . 81

6.1 Data Collected by Rapids-M Profiler . 91

6.2 Rapids-M Implementation with Offline Overheads 92

7.1 Application with Input Dependency . 99

7.2 Overhead in All Applications . 103

7.3 Selected Model for all Benchmarks. 105

7.4 Selected Features For All Benchmarks. 106

x

7.5 Best Fit Model For All System Features. MAX is longest training time
(secs); Best is training time (secs) to produce best model using all features;
Rapids-M is time (secs) to construct it model using selected features; Ratio
is Rapids-M / Best. 108

A.1 Per-Application Training Configuration Fields Explanation 136

B.1 Runtime Control Configuration Field Explanation 137

xi

LIST OF FIGURES

1.1 iPhone: a Typical Example of Supporting Higher Demands through In-
creasing Resource Availability . 1

1.2 Example Approximate Application . 5

1.3 Example of cross-application approximation management where execu-
tions of three active applications overlapping with each other 12

4.1 KDG nodes in NavApp . 48

4.2 KDG nodes with edges in NavApp . 49

4.3 KDG sample configuration: Screen=75 (value), Map=“sat”, PollingFreq=“5s”,
GPS=“ON”. 50

4.4 Partition-based RS Construction . 60

4.5 Normalized Quality over Different Budgets for Linux Applications. Bar
height: Mean Quality; Error Line: Quality Range 64

5.1 Execution Trace of Applying Rapids on Multi-Programming Environment . 67

5.2 Approach Overview . 70

5.3 m-model Construction . 74

5.4 p-model Construction . 75

5.5 Application Configuration Affects Environment Vertical Bar Shorter =⇒
Higher Inner-Cluster Similarity; Black Bold Number: Number of configs
in a cluster; Red Percentage Number: MRE of performance model prediction 76

xii

5.6 Sample 10-minute execution trace with up to 4 active applications using
different strategies, budget scale=1.0 . 83

5.7 Dynamic Configuration Selection Comparison 84

6.1 Rapids Overview . 85

6.2 Developer: Structural KDG for NavApp 86

6.3 Developer: Evaluation Module Implementation 87

6.4 Developer: Application Source Code Modification to Involve Rapids . . . 87

6.5 Rapids-M Framework Implementation Overview: Boxes with solid bor-
der: provided by Rapids-M; Boxes with dashed border: required from
developers . 89

7.1 Normalized Required Training Time, higher the slower 95

7.2 Model Prediction Error on Target Machine, lower the better 96

7.3 Optimality of Default Solution under Custom Quality across Different Bud-
gets. X-axis: Budget Percentage, 50p:50%. 97

7.4 Change of Sub-Metric in Ferret. Solid: preferred; Dashed: not preferred . 98

7.5 Monitor Frequency and Budget Utilization. X-axis: number of budget ex-
amination performed, x=1: monitor only once, x=100: monitor 100 times
(or the finest granularity supported by application); 100

7.6 Reconfiguration Overhead . 102

7.7 Prediction R2 score on All Features using Different Models; RAPID M:
best model with feature selection . 107

7.8 Impact of Error Propagation on Optimality under Different Budget Scale;
P: Applying p-model to the measured system environment; P+M: Rapids-
M approach that applies the p-model to the output of the m-model 109

7.9 Static Configuration Selection Comparison with Enough Budget (scale=150%).
ES: Equal Share, CO: Context Oblivious, AS: Aware Share, RM: Rapids-
M, details was introduced in Section 5.5. 112

xiii

7.10 Static Selection Comparison with Moderate Budget (scale=100%) 113

7.11 Static Selection Comparison with Limited Enough Budget (scale=80%) . . 113

A.1 Per-Application Training Configuration 136

B.1 Application Runtime Configuration File 138

xiv

1

CHAPTER 1

INTRODUCTION

From small digital devices such as mobile phones, tablets, or ARM [1] boards to per-

sonal computers and large databases, the trend for higher computation resource demand

is inevitable, especially after the recent breakthroughs in artificial intelligence. Figure 1.1

shows a brief history of the iPhone’s battery capacity and main memory. Compared to

its first generation in 2007, the latest iPhone (11ProMax) released in 2019 is equipped

with around 31× more memory and 3× more battery capacity. Admittedly, increasing the

computation power or battery capacities does play an essential role in improving the appli-

cation performance or extending the life length. However, such approach is quite expensive

in terms of both monetary cost and resource consumption. The retail price for an iPhone-1

in 2007 was $499, and the most recent iPhone-11ProMax costs $1099 - around $855 in

2007 dollars considering the inflation.

iPhone Model (Year)

In
cr

ea
si

ng
 B

at
te

ry
 C

ap
ac

ity

In
cr

ea
si

ng
 M

em
or

y
C

ap
ac

ity

0X

1X

2X

3X

0X

10X

20X

30X

40X

iph
on

e(2
00

7)

3G
(20

08
)

3G
S(20

09
)

4(2
01

0)

4S
(20

11
)

5(2
01

2)

5S
(20

13
)

6P
lus

(20
14

)

6s
 P

lus
(20

15
)

7 P
lus

(20
16

)

X(20
17

)

XS M
AX(20

18
)

11
 P

ro
MAX(20

19
)

Figure 1.1: iPhone: a Typical Example of Supporting Higher Demands through Increasing
Resource Availability

An alternative to increasing resource availability at a high cost is to reduce the resource

2

demand. For example, “Dark Theme” [2] have been introduced in the most recent devel-

opment guideline for Android development. The most important purpose, listed as the first

benefit on the guideline, is to reduce the power usage. IOS also introduced a similar ap-

proach “Dark Mode” [3] in 2019. More aggressively, both Android and IOS systems have

“Power Saving Mode” which conserves the battery power through limiting CPU perfor-

mance, reducing screen brightness, turning off the touch key light, vibration feedback, etc.

All these approaches reduce the resource demands through providing users with an “ap-

proximate” version of the original service with a reasonably lower quality of service that

the users can tolerate.

The idea of “Approximation” is quite fundamental in nature as a principle to survive un-

der limited resources, e.g., animals lowering body functions during winters when food can

be hardly found. In the world of computer science, viewing a program as a representation of

a mathematical function that maps the input to output values has been a fundamental notion

in specifying program semantics and proving program properties. Further, implementa-

tions of mathematical functions have always involved sacrificing precision/accuracy for an

effective and efficient computable solution. For example, computer architectures support

fixed and floating-point operations of specific bitwidth (e.g., single and double precision),

coherency models provide a particular view of a shared memory address space (e.g., strong

coherency vs. “relaxed” weak coherency [4]), and many applications are based on models

that only approximate an actual physical process based on the knowledge of the limited

memory and computing resources of the target architecture or computing substrate (e.g.,

the spatial and temporal resolution in grid-based fluid dynamics [5] codes). In other words,

computer architects, OS designers, and application developers have been no strangers to

the idea of approximation and its trade-offs.

More recently, the idea of using “Approximation” to optimize program behaviors for

resource constraints has gained prominence as a solution for the dilemma of the high de-

mand and the low resource availability. These resource constraints exist on multiple plat-

3

forms to mobile phones [6, 7], underwater vehicles [8, 9], or large-scale data centers [10].

Such constraints may also exist in multiple forms including execution time, latency, peak

power, energy consumption, etc. The potential of approximation creates a new dimension

of application performance to explore and inspires multiple works that focus on adapting

application behavior to resource constraints. In the world of approximation, users are will-

ing to tolerate an application outcome of lower quality that respects a given resource con-

straint, rather than having the application fail “halfway through” or produce no outcome

at all [11, 7]. In this dissertation, my work focuses on execution time as the main (user

level) resources that is managed, with a few examples of energy consumption. However,

the techniques introduced in this work can be extended to other resources as well assuming

appropriate measurement infrastructures.

One important question, also a common misunderstanding, is whether “Approxima-

tion” is just a technique to run applications more efficiently. The answer to this common

question is “Yes, and No”. First of all, “Approximation” does not affect any application

behavior when the resources are not limited. Secondly, the efficiency improvement is in-

deed the most apparent change one notices after an application is approximated, but it

always comes with a price. As an approach intended to reduce the application resource

consumption when resources are limited, the main difference between approximation and

other techniques that just aim to “speed-up” the execution can be realized through a com-

parison: To complete a single-threaded application with an execution time requirement,

the “Parallelization” technique can potentially shorten the execution time by leveraging

the multi-core system after transforming the application to the multi-thread version. Such

improvement can be achieved without sacrificing any output quality. However, if the short-

ened execution time still violates the constraint, the “Approximation” will be the technique

that can further extend the speed-up, but with a price. It may run the application under

different settings, like skipping iterations, or even dropping code blocks. Such strategies

could lower the output quality while cutting down the consumption, as long as such quality

4

degradation is acceptable.

1.1 Notions and Definitions in Approximation

Approximation is suitable for applications in which end-users are willing to tolerate a rea-

sonable amount of quality loss for better performance under constrained resource availabil-

ity. Such applications include video/audio players [12, 13], face detection, object recogni-

tion, or machine learning. For these applications, there are several necessary conditions for

approximate applications that I target in this dissertation:

• There is a correlation between resource consumption and semantically sound ap-

plication outcomes, i.e., applications have to be tunable, with a set of configurable

components and their corresponding settings defining the configuration space of the

application;

• Application outcomes under a feasible configuration can be compared and ranked

according to a quality metric;

• There are well-defined points during application execution that allow safe and effi-

cient reconfiguration of the application, i.e., transition from the current to the target

configuration.

Figure 1.2 shows a piece of code from a benchmark application, Ferret [14]. Ferret

is a image similarity query application that accepts image queries and returns the top-K

images in a database ranked by content-similarity for each query. The application has two

phases. It first locates the top-2K images using a Multi-Probe LSH [15] algorithm. Then,

it calls a routine that computes the Earth Mover’s Distance (EMD) [16] to rank the images

and return the top-K. This example is a typical use-case of applying approximation:

• Different values assigned to the three variables on Line-2/3/4 can affect the program

behavior in terms of the execution time and output results.

5

1 ...
2 int hash = 8; // [2, 8]
3 int probe = 20; // [2,20]
4 int itr = 500; // [2, 25]
5 ...
6 while (ent = readdir(pd)) { // pd points to a dir containing 3500 images
7 if (do query(ent, hash, probe, itr) != 0) // query for top−K similar images
8 return −1;
9 reconfigure(&hash, &probe, &itr); // re−assign values to knobs if necessary

10 }
11 ...

Figure 1.2: Example Approximate Application

• The results (top-K similar images) can be further evaluated through a quality metric,

G-score [17].

• The application reads and processes query images sequentially which allows to re-

assign values to the three variables (Line-9).

I use the example application to explain some of the basic terms used throughout the dis-

sertation:

1.1.1 Basic Terms

Mission and Work Unit: In this dissertation, I call a full execution of an applications a

mission. A mission can be partitioned into a collection of work units. For example, if the

mission is to process a video, then processing each single frame can be considered a “work

unit”. Such design gives the runtime control an opportunity to examine the work progress

and monitor the resource consumption of the work units that have been accomplished.

The concept similar to work unit was first introduced by Hoffman and etc [18], called

“heartbeat”. It is defined as the point of completion of each iteration in the outer-most loop.

In other words, target applications for approximation need to have the pattern of executing

multiple iterations of a main control loop. At the moment of completing each iteration,

the application reads the next unit of input, processes this unit, produces the corresponding

6

output, then executes the next iteration of the loop. Note that the “input unit” here only

represents the data preparation for the next iteration, and does not necessarily have to be an

I/O operation. As the application processes each input unit, it also reads the configuration

provided by the control system and determines the algorithm to be used. A “work unit” in

this work is not limited to a “heartbeat”. It can be in other forms as well, for example, “one

second of execution”.

For Ferret: As shown in Figure 1.2, the Mission is to “query 3500 images in the

directory” (completing all iterations of the loop on Line-6), and each single image is a

Work Unit (do query() on Line-7).

Knobs and Configurations: In approximate applications, the configurable components

(program variables, or certain execution paths) can be viewed as tunable “knobs”, i.e., en-

tities that, when changed, alter the program execution behavior thus impacting the quality

and cost of the application’s outcome. A configuration defines an execution plan in which

each knob gets assigned a particular value. Different configurations can trigger different

execution logics as shown on Line-7 where these values are passed into do query() as pa-

rameters. Each knob in an application may come with a value range, which defines the

possible values the knob can have. The purpose of having such constraints could be for

security, functionality, or other purposes.

For Ferret, there are three knobs, namely “hash”, “probe”, and “itr”, specified on

Line-2 / 3 / 4. Each of these knob can have a value within a specific range. The first one,

“hash”, sets the number of hash buckets per table within the range of 2∼8. “probe” sets

the number of probing buckets in the multi-probe phase from 2∼20. “itr” sets the maximum

number of iterations when computing the EMD (Earth Mover’s Distance) within 2∼25.

Configuration Space and Feasible Configurations: The Cartesian product of the knobs

with their value ranges define the full configuration space. If no other constraints exist, a

configuration is considered valid (feasible) if all knobs are assigned values that fall within

7

Table 1.1: Example Profile for Ferret. The row with configuration marked bold has lower
cost than the row above it, but produces higher quality

Configurations Cost
(second)

Quality
(score)hash itr probe

2 2 2 52.38 55.95
...
2 14 10 55.02 57.40
4 25 12 61.56 80.58
6 2 2 60.53 90.08
...
8 25 20 78.38 100

their ranges. The universe of feasible configurations is the configuration space. The size of

the configuration space is determined by the number of knobs, and the number of values per

knob. It is also the size of the optimization problem (searching for optimal configuration).

For Ferret: The three knobs, each with integer values, form up the configurations space

with the size of 7× 19× 24 = 3192.

Budget and Cost: The budget is a user-defined constraint that defines the maximum

resource consumption (execution time / energy) she/he is willing to spend on the mission.

Different configurations may have different levels of resource demands when processing

each work unit. The overall cost of an application is defined as the resource consumption

to finish the application, which can be estimated by multiplying the cost-per-unit by the

number of work units.

For Ferret, the column “Cost” in Table 1.1 shows the different cost-per-unit in terms of

execution time when running under different configurations (knobs being assigned different

values) as shown in the first three columns. The first and last row show the cheapest and

the most expensive configuration, respectively.

Default Configuration: Each application should come with a default configuration where

each knob is assigned a default value from the developer. An application running under the

default configuration is the non-approximate version of the execution. The result from the

8

execution under the default configuration has the highest quality, which is also called the

“reference result” in Capri [19]. In most cases, the default configuration is also the most

expensive configuration.

Quality: The quality metric is a method to map the execution result to a numerical value.

In approximation, the output quality can be evaluated by comparing the results from exe-

cutions under approximate configurations against the result under the default configuration

(non-approximate execution).

For Ferret, the output of a query image is a sorted list containing the ID of the top-K

images. I use a common ranking function ”G-score” [17] that computes the score of the

result (top-k similar images) by comparing the result with the “reference result”. The last

column in Table 1.1 reports the quality for each configuration in Ferret. More details about

the metric can be found in Chapter 3. Note that in Table 1.1, the execution of { hash=2,

probe=14, itr=10} runs faster than { hash=4, probe=25, itr=12} (lower cost), however

produces a lower quality, 57.4, than the slower one, 80.58. Configurations can be ranked

by the quality that allows the control system to determine if one configuration is ”better”

than another.

Optimal configuration: The optimal configuration under a budget is the configuration

producing the highest quality with a cost less than the budget. If the maximum and the

minimum cost of all configurations are Cmax and Cmin, then the default configuration is

usually the optimal configuration when budget≥ Cmax, unless there exist other cheaper

configurations that produce the same quality (highest quality). The cheapest configuration

is the optimal configuration if the budget = Cmin or is too low to afford all other configura-

tions. The problem of searching for such optimal configurations under different budgets is

not trivial, because 1) the configuration space is huge, and 2) more expensive configurations

do not always have higher quality. There are two main types of approaches for this prob-

lem, namely model-based and control-based approaches. Both approaches first perform a

9

profiling phase to construct the cost and quality models. The model-based approaches, like

Capri [12], or this work, construct the cost and quality models such that they can be used

to predict the estimated cost and quality for different configurations. Then the system can

locate the optimal configuration by prediction and searching algorithms. Control-based ap-

proaches like PowerDial [20], or Jouleguard [6], leverages control theory methods that use

closed mathematical formulations such as differential equations to gradually converge to a

configuration which satisfies the budget constraints. Both types of approaches have their

own benefits and drawbacks. As pointed out in Caloree [21], Model-based approaches

can accurately model the cost and quality of complex, interacting knobs, but does not ad-

dress system dynamics; Control-based approaches [20, 6] adjust to dynamic changes, but

struggle with complex knob interactions.

For Ferret, as described above, configurations with lower cost do not always produce

lower quality.

Reconfiguration: The optimal configuration under a budget can be found through dif-

ferent approaches as described above. However, the application may encounter fluctuating

performance during runtime compared to the measured cost during training. Upon the

completion of each work unit, the online controlling system has the chance to re-evaluate

the optimality of the current configuration and decide whether to switch to a new configu-

ration. In general, the reconfiguration can be defined as a periodic check that first monitor

the resource usage, then take actions if the optimal configuration changes. During each

reconfiguration, the system first checks the current resource usage and the work progress

(Monitor). The budget per work unit for the remainder of the execution will be re-evaluated.

If the current configuration is no longer optimal under the updated budget, a new configu-

ration might be selected (Reconfigure). This feedback loop of monitor/reconfigure aims to

make sure the total cost of the execution does not violate the budget constraints in dynamic

environments. The over/under estimation of cost could be due to multiple reasons with

some most important ones listed below:

10

• Input Dependencies: The cost to process different inputs can be significantly differ-

ent. For example, in a video encoding application, processing a frame can be much

faster if the current frame is identical or similar to its previous frames.

• System Noise: Since the target application will not be the only application running

in the system, computation resources will be shared across all active applications.

• Model Accuracy: For applications with knobs with continuous settings, it is infea-

sible to train all configurations and observe the costs. Instead, a model can be con-

structed by observations from a sub-sampled configurations set. The inherit error in

the model could lead to the under/over estimation in the runtime. Determining the

sampling strategy for better model accuracy is one of the main focuses of this work.

For Ferret, the reconfiguration can happen on (Line-9 in Figure 1.2) after every single

iteration (work unit). Alternatively, it can be performed after the completion of every n

iterations by the developer.

1.1.2 More Complications to be addressed in Approximation

Continuous Knobs: As previously discussed, the size of the configuration space is the

Cartesian Product of all knob values. However, this only applies to the case where all

knobs have a finite number of values (discrete). For many applications, the value of a knob

could be continuous (e.g., floating point value) or semi-continuous (integer values within a

large range). In this case, the size of the configuration space may be considered infinite.

For Ferret, the value for knob ”itr” ranges from 2 to 25. In some related works in-

cluding MEANTIME [22] or JoulGuard [6], the knob was treated as a knob with discrete

values sampled from the range. In my work, the knob can be treated as a continuous knob.

The distinction between discrete and continuous leads to different models I use, which will

be discussed in detail in Chapter 4.

11

Inter-Knob Dependencies: For many applications, in addition to the per-knob constraints,

there can be inter-knob constraints (dependencies), e.g., if a ≤ 10 then b ≥ 20. Such

constraints are quite common in real world applications for multiple reasons, including

security constraints, low quality configuration filtering, etc. The size of the configuration

space could potentially be reduced by pruning the undesirable or invalid configurations.

However, it increases the complexity of solving the optimization problem since additional

constraints are placed on the configuration space.

For Ferret, Equation 1.1 shows an example of the inter-knob constraints. The con-

straint indicates that if there are only a few iterations for EMD calculation (2 ≤ itr ≤ 5)

in the multi-probe stage, then more hash buckets (hash = 8) should be generated in the

first stage to guarantee that the candidates are already accurate enough. Overall, the size

of the configuration space gets pruned to 39.4% by having 8 of such constraints. More

details will be discussed in Chapter 3.

(2 ≤ itr ≤ 5) ⇒ (hash = 8) (1.1)

Custom Quality: For many applications, the output quality is provided as a hard metric,

e.g, PSNR [23] in video encoding/decoding. However, there exists a large collection of

applications with highly subjective, soft quality notions, which requires involvement from

end-users. As different users may have different quality preferences, it is hard to effectively

adjust the quality model to encode users’ preferences once being constructed. A larger

audience can benefit from approximation if such quality customization can be supported.

For Ferret, Coverage (how many real top-K results are included in the execution re-

sult) and Ranking (how accurate is the top-K images being ranked) are two different

sub-metrics to users. Coverage is calculated by the first addend in Equation 3.3. Given a

fixed k, higher z results in higher Coverage, i.e., more “correct” results being returned.

Ranking is the rest of the equation. Results with lower ranks have less effect on the score

12

Figure 1.3: Example of cross-application approximation management where executions of
three active applications overlapping with each other

of Ranking than results with high ranks (top results).

Cross-Application Approximation: When multiple approximate applications are running

together, the performance impact can be more severe than minor environmental noise. In

one of my experiments, an application may suffer from up to 15× slowdown in a multi-

programming environment. Solely relying on reconfiguration to tackle this issue will not

be sufficient since the new selection still uses an incorrect model created when no other

application was executing. Also, applications may start and exit in random order as shown

in Figure 1.3, which may lead to more frequent but unnecessary reconfigurations. For

example, when App-C is about to start, the newly introduced workload from B will create

a change in system resource consumption, and then potential performance influence to all

active applications. The triggered reconfiguration in each application may further change

the resource consumption. Predicting the slowdown from cross-application interference is

crucial to make approximation available in the multi-programming environment.

The goal of approximation is to configure the application dynamically with the optimal

configuration, such that the resource consumption does not violate the budget, but still

produces the highest possible quality. Recent research on approximation have made rapid

progress on the three main aspects as follows:

• Semantics: How to express configuration space and quality notions.

13

• Model: How to construct the cost and quality models.

• Runtime: When and how to perform runtime configuration control to adapt to uncer-

tainties.

The remainder of the introduction will cover these aspects in detail. I will also discuss

the limitations of the existing approaches and introduce my proposed solutions.

1.2 Three Main Problems of Approximation

1.2.1 Configuration Space Specification

Designing a proper tool that is expressive and flexible enough for configuration space spec-

ification but introduces minimal efforts to the developers is crucial. The size of the con-

figuration space for an application with even a few knobs could still be huge. Once the

configuration space is defined, all configurations in the space are assumed to be “approved”

by the developers (feasible). Defining the configuration space is crucial, as the important

stage for developers to carefully specify all possible constraints, if any, in order to protect

the application from failure or unexpected behavior. However, the options provided for

developers to define the configuration space and fully utilize the power of approximation

are quite limited.

Developers need proper tools to specify the knobs that can be approximated and their

attributes. In most cases, a knob is in the form of a variable in the program, e.g, “hash”,

“itr”, “probe” in the previous Ferret example. To this end, language / runtime library based

approaches have received increased attention where approximation is an explicit part of a

program’s semantics. Here I list two representative types of approaches:

• Auto-detect: Some researchers proposed to automatically extract the knobs through

either static or dynamic analysis on the program itself, e.g., a LLVM [24] pass em-

bedded to pin-point the variables which can be approximated.

14

• Manual-label: Another type of research provides language extensions for developers

to specify knobs manually, e.g., a notation before a variable to let the system know

that the variable can be approximated.

Both approaches aim to help developers to set up the configuration space as the bound-

ary when searching for optimal configurations, or the training set for model construction.

However, both approaches may have inherent drawback, i.e., Auto-detect may limit the

developers’ control over knob attributes specification and Manual-label may put too much

burden and responsibility on the developers.

1.2.2 Cost and Quality Model Construction

Designing an efficient training process for the cost and quality model construction is cru-

cial. Once the configuration space is defined, the system needs to know the cost and quality

for each configuration in the space which is called the profile of an application. This

profile will be used to determine if a configuration is valid when a budget is provided, or

if a configuration is better than another when they deliver different levels of quality. An

example of such a profile is shown in Table 1.1 where each row shows the expected cost

(per work unit) and quality for a specific configuration.

Current approaches [12, 20, 25, 6, 26], including this work, construct such profile

through a training process where all or sub-sampled configurations are executed on the

target machine. For each trained configuration, the cost and the quality are observed and

recorded. For Cost models, the measuring strategy is quite straight-forward if the measure-

ment tools are available. For example, a timer would be enough to measure execution time,

and a power gauge (e.g., Trepn [27] on Android) in the system can report the energy/power

consumption. For Quality models, the measurement involves a specific evaluation process

to examine the execution result and report a numerical value as the quality metric.

The purpose of constructing the cost model fc() and quality model fq() is to define the

optimization problem for configuration (ci) selection when a budget is provided. Equa-

15

tion 1.2 shows the general optimization problem. The consumption represents the re-

source used by successfully executed work units which could by measured during runtime.

˜consumption is the estimated consumption calculated by summing up all the cost of the

configuration used for processing each executed unit. The difference between the measured

and the estimated consumption is considered environmental uncertainty.

obj : maximize(fq(ci))

s.t. fc(ci) ∗ remaining units ≤ (budget− consumption)

˜consumption =
∑
i

fC(ci), i = 1, 2, ...last finished unit

consumption− ˜consumption = uncertainty

(1.2)

Constructing the profile can be quite time-consuming. For an application with n knobs,

each of which having m settings on average, the size of the configuration space is O(nm).

Training all configurations in the space is usually not possible due to the size of the con-

figuration space, even though some proposed approaches do perform such time-consuming

process. In MEANTIME [22], one of the applications takes over weeks to be trained.

1.2.3 Runtime Reconfiguration

Runtime reconfiguration should be enhanced to deal with multiple types of dynamic distur-

bance. For each instance of a program execution, the application user provides a runtime

budget which is assumed to be fixed for the particular execution instance. Ideally, the “con-

sumption” in Equation 1.2 should be close to “ ˜consumption“. However, this may not be

the case due to multiple reasons: input dependencies, environmental noises, unpredictable

behaviors, cross-application interference, etc. Once the difference between the expected

and real consumption (“uncertainty”) gets large enough such that the optimal configuration

changes, a reconfiguration is required.

The goal of reconfiguration is to ensure that the cost of the application completion is

16

eventually below the budget. The reconfiguration is performed between work units, and that

it can often be implemented by just setting knob values [20] or calling different versions of

functions [28]. There are two main types of approaches:

• Consumption Monitor: Most proposed approaches including my work follow the re-

configuration process as described in the previous section that reconfigures based on

the feedback of work progress and consumption feedback. It provides strong support

for most dynamic environment noises, and limited support for input dependencies by

treating it as a type of noise.

• Input Inspection: Some other researchers, including Chameleon[29], proposed ap-

proaches to reconfigure before processing each work unit, e.g., select different con-

figurations based on features of input data. It can deal with input dependencies but

not environmental noises.

No matter which type of approach is used, it relies on instant online measurement (work

progress, consumption, input data feature) as the guidance to update the problem shown

in Equation1.2. The most important limitation of “Input Inspection” is that it introduces

heavy runtime overhead for inspecting input data, only to deal with input dependencies.

That is also why this work follows the most common approach, ”Consumption Monitor”.

However, there is another important source of disturbance in approximation management,

the cross-application interference, which cannot be properly handled by all existing ap-

proaches. In my experiments, the performance degradation (disturbance) caused by the

interference can be up to 15×, which is much more severe than all other types of distur-

bance sources.

1.3 Limitations of Current Approaches

Though, approximation seems to be an ideal solution for running applications under con-

strained resources, however, it has not yet seen widespread use in industry. Based on the

17

real experience of developing approximate applications, I observed multiple roadblocks.

1.3.1 Lack of Expressive Development Model

- Knob Specification

A generic and expressive enough development framework is needed to properly support

the developers to integrate approximation strategies into existing applications without in-

troducing too much effort. In Powerdial [20], developers can only specify command line

arguments rather than actual knobs. In FlexJava [30], developers can specify the minimal

quality requirements. However, it is still left to the compiler [24] to which extent the spec-

ified approximation is exploited. In EnerJ [31], the developers are responsible for carefully

annotating each variable and determining whether the variable can be stored or operated

on using approximate hardware. All these approaches either put too much responsibilities

on the developers, or are not expressive enough to let developers participate in defining the

approximation strategy.

- Constraints Specification

Existing approaches only focus on the specification on a per-knob level. Developers are

unable to encode inter-knob relations (e,g. if kA <= 10 then kB >= 5), which further

limit their expressiveness. Such correlations between knobs and their desired values can be

treated as a developer’s insight about the application.

Though, a training phase with proper quality filters can identify those “bad” configura-

tions that result in “bad” results or even lead to failure. This only applies to the naive case

where 1) all configurations are trained, and 2) all knobs are discrete. If any of these two

conditions is not satisfied, there will be configurations that fail to be filtered. Additionally,

the developers’ insights can be extremely valuable, not only to fine-tune the configuration

space, but also to encode runtime restrictions. For example, although a configuration may

produce an acceptable outcome, a developer may decide to eliminate the configuration for

18

safety reason or application feature related purpose. Currently, the constraint would only

be handled by some form of conditional statements in the source code. Such configuration

management is therefore cumbersome and potentially error prone.

1.3.2 Naive Cost / Quality Model Construction

- Cost Model Training Time

The training time for application could be extremely long, however it is often considered to

be free in existing works. It is not considered part of the overhead of a particular approach.

One possible reason of why this overhead is ignored is that those works do not consider the

distinction between the developers and the users. In other words, the model is trained and

will be executed on the same type of machine. This prevents the approximation technique

from being adopted in areas where the model is highly device-dependent, e.g., mobile

applications. The cost model has to be re-constructed through training each machine users

may have. However, it would be impractical for the developers to train the application for

all possible devices before shipping the application to users. An effective retraining process

on the user’s machine would be ideal. It should be performed when downloading/installing

an application onto the machine. Note that in this work, I target applications whose output

quality will not change when being executed on different machines. In other words, making

performance or other hardware-related metrics (cache miss, memory footprint) the quality

is out of the scope of my work.

- Quality Notion Definition

Another assumption made in existing approaches is that there exists a pre-defined quality

metric for all applications. Assuming “quality” as a hard metric (a metric with a fixed and

objective evaluation method), like the Cost (either time or energy), makes the quality model

construction easier. However, such one-size-fits-all approach forces the users to accept

a quality notion that may not make sense to him/her. For several applications, multiple

19

metrics can be used for evaluating quality [32]. For example, both clustering accuracy and

mean centroid distance can be used as metrics for k-means clustering [33]. In addition,

no distinction is made between the application developer and application user, limiting

user-level customized quality and higher-level reasoning.

1.3.3 Insufficient Support for Multi-Programming

All existing approaches are developed based on the assumption that the target application

is the only running application on the platform, where the performance disturbances are

treated as noise. In a multi-programming scenario, n applications are executed (active) at

the same time on a target platform. A user assigns an unique resource budget to each appli-

cation. Multiple concurrent executions of the same application are possible, each with their

individual execution time budgets. The multi-application configuration selection problem

determines a configuration for each active application such that (1) an application can finish

within the user specified time budget, if such configurations exist, and (2) the overall qual-

ity across all active applications is as high as possible. Since all applications execute on

the same hardware platform, they interfere with each other through resource sharing (e.g.,

memory hierarchy, CPUs / cores, buses / communication networks). Different configu-

rations may have different resource footprints and different quality outcomes, making an

optimal or close to optimal selection of configurations across all applications a significant

challenge.

Control theoretical approaches aim to describe the system using closed mathematical

formulations such as differential equations (e.g., [20]) to adjust runtime behaviors through

reconfiguration based on the observed system state, which seems to be a candidate solu-

tion in this case. However, as pointed out by Caloree [21], these approaches could easily

fall into local optimal solution compared to learning based approaches due to the inherit

nature of control theory. Based on my observations, there are also several drawbacks of di-

rectly extending single-application control strategies to multi-programming environments,

20

including frequent reconfiguration, high failure rate, low output quality, etc. Unfortunately,

none of the existing approaches ever considers this special and common case in real world

environments.

1.3.4 Summary of Challenges

To summarize, I list the main challenges for approximation:

• How to expressively define and construct the configuration space. As a developer,

hardcoding inter-knob constraints (dependencies) in source code is error-prone and

it is not easy to directly encode such dependencies into a machine learning model,

especially when the constraints are rather complex as shown in Equation 1.3.

(2 ≤ itr ≤ 5) ⇒ (hash = 8) ∧ (4 ≤ probe ≤ 6) (1.3)

• How to effectively assess the cost and quality of application outcomes using dif-

ferent configurations. There are hundreds or thousands of configurations even for

a relatively simple example application with only three knobs. Training the entire

configuration space is usually time-consuming and infeasible if the training has to be

done on the users’ end, e.g., after shipping the application to a user’s device whose

cost were unknown. There should be an effective way to intelligently sample the con-

figuration space and construct the cost and quality models on a much smaller training

set.

• How to support the subjective application quality metric from different users. The

overall quality metric will change accordingly when the user tunes the preferences

on different sub-metrics. There should be a smarter way to quickly reconstruct the

quality model instead of performing a new round of training and re-evaluating the

results.

21

• How to extend the one-app control strategy to the multi-programming environment.

Treating a set of n applications as a single, meta application would allow these strate-

gies to be applied to the multi-programming case. However, the resulting size of the

combined configuration space is exponential in n, making this approach infeasible

in practice. Moreover, the performance model is constructed based on the observa-

tions obtained from running the application under a stable environment. However,

in multi-programming environment, the more dynamic and unpredictable behaviors

could pose major performance impact to each active application. The globally opti-

mal configuration selection requires the system to understand the mutual impact of

“local” configuration selections on the “global“ runtime environment..

1.4 Thesis

1.4.1 Thesis Statement

In this dissertation, I introduce the scenario where there is the need to sacrifice quality for

a reduced resource consumption using the technique of approximation. I also point out that

even the state-of-the-art approaches have overlooked and failed to solve some of the key

issues which are major roadblocks of using approximation to benefit developers and users.

My work can be summarized as:

”Ensure mission completeness with resource constraints in uncertain environments by

utilizing the resource wisely and effectively.”

1.4.2 Contribution

Approximation can be highly application-specific. Multiple research groups have proposed

a variety of specific approximation techniques, including Loop Perforation [26], Precision

Scaling [34], Instruction Memoization [35], Task Dropping [10], Data Sampling [36], etc.

Rather than proposing new approximation techniques, this dissertation focuses on design-

ing a generic development framework and a runtime execution model for developing and

22

Table 1.2: Roles and Challenges of the different Stakeholders

Expertise Challenge
Developer Implementation Configuration Space
User Behavior Expectation Custom Quality
Framework Model construction Porting/Re-training Models

Runtime Control Environmental Disturbance

executing approximate applications with those techniques mentioned above. I designed

and implemented Rapids, a framework that allows developers to expressively integrate

approximation strategies when designing and developing applications, enables an efficient

application training process, and enables users to fine-tune the application by providing

customize quality preferences. Beyond that, this dissertation also makes the first step into

cross-application approximation management. I developed Rapids-M, the first system to

extend approximation management to a multi-programming environment that can handle

the much more dynamic environments.

Approximation management can be done effectively and efficiently in both single and

multi-application environments addressing the shortcomings listed above. My thesis ad-

dresses the shortcomings as follows:

1.4.3 Rapids: A Framework for Single Application Approximation Management

- Separation of roles:

One key design feature of Rapids is that it makes an explicit distinction between the ap-

plication developer, the application user, and the framework itself. Each of these three

components has a particular role to play as summarized in Table 1.2. The idea is to parti-

tion the whole problem to different roles according to their expertise. The developers have

key insights about the application implementation, but might not be aware of the expecta-

tion from different individual users. Different users may need to fine-tune the application

to their own needs, but lack the knowledge of details on the implementation and models.

The framework should be focusing on the model construction and online configuration. It

23

should be flexible enough to deal with a variety of models and applications, rather than

specifically tailored for particular approximation strategies.

- KDG, a data structure as application representation:

I designed KDG (Knob Dependency Graph), a compact DAG (Directed Acyclic Graph)

based representation as the central data structure that glues all three roles of approximation

together. The graph encodes all knobs with their types, ranges, and inter-knob constraints

(dependencies). The KDG is a compact and complete representation of the configura-

tion space. Developers can express insight into applications, including each knob’s type,

setting range, and inter-knob dependencies. The KDG allows developers to customize the

configuration space based on size, safety requirements, or the desirability for the target user

community of the application. It also serves as the foundation of the Cost/Quality model

construction during the training. During runtime, the KDG provides an effective mecha-

nism for users to easily fine-tune the application behavior without knowing the underlying

implementation details.

- Virtual Knobs, knobs for users:

In the KDG, I introduce another new concept, Virtual Knobs, as a way to fill in the seman-

tic gap between the subjective quality and specific low-level knob settings, allowing users

to easily tune the application behavior at a level of abstraction that makes sense to them,

without understanding the implementation details. These high-level virtual knobs can be

designed and implemented by the developers using the framework. The resulting config-

uration space with its default quality model can thus be customized by the user to fit his /

her particular needs or expectations. Customized quality models are dynamically created

just-in-time in response to users’ virtual knobs preferences expressed before application

execution.

- Representative Set, enables fast retraining:

24

To construct the performance model, the expensive and exhaustive training will only be per-

formed once. During the training, Rapids calculates a smaller training set, called the Rep-

resentative Set (RS), through a smart sampling strategy alongside constructing the model.

RS enables fast model reconstruction when applications are ported to other platforms.

- Effective Problem Formulation:

Rapids can compile the KDG along with the budget provided by the user to a Mixed In-

teger Quadratic Programming Problem (MIQCP) [37]. The compilation also supports con-

ceptually continuous knobs, thereby avoiding the precision loss due to sampling strategies

needed by previous approaches. The generated problem can be solved efficiently during

runtime with low overheads to determine the optimal configuration.

- Flexible Execution Model:

The Rapids runtime system handles the minor performance disturbance due to environ-

mental noises through constant monitoring and periodic reconfiguration. This feedback-

loop can be fine tuned by developers, including the monitoring frequency, reconfigure

threshold, cost violation tolerance, etc.

1.4.4 Rapids-M: The first System for Cross-Application Approximation Management

- Partitioning the problem:

The novel design feature of Rapids-M is to handle the explosion of the configuration space

by partitioning the problem into two sub-problems. The first problem provides an estimated

global view of the environment and generates a coarse-grained answer for each application.

Then, each application uses the global result to search for optimal configurations locally.

Such a global-local approach reduces the complexity of the problem and outperforms other

approaches by having lower reconfiguration frequency, lower failure rate, and higher over-

all output quality.

25

- Configuration Buckets, reduces configuration space:

I introduce a new concept called bucket that clusters the large number of application con-

figurations into a few buckets based on their resource demand similarities. Such clustering

strategies reduce the configuration search space size when n applications are running to-

gether from O((mk)n) to O(bn) where m and k are the number of knobs and settings per

knob for an application respectively, and b is the number of configuration buckets per ap-

plication. For all of our applications, b is usually several magnitudes smaller than mk.

- p-model and m-model, efficient slowdown prediction:

I also introduce two separate models that enable the per-configuration slowdown predic-

tion. In my experiments, I observed that different configurations in an application may

suffer from different levels of performance degradation given the same workload in the

system. This makes the problem hard to solve, since the same application with different

configurations are to be treated as totally different applications when predicting the slow-

down. The m-model and p-model, along with the use of buckets, are the basis to define a

heuristic that gives accurate enough slowdown prediction with a low overhead.

- Global Runtime Manager:

Rapids-M includes a runtime manager that enables the isolation between applications

when searching for optimal configurations, i.e., no inter-application communication is

required. This centralized manager monitors the progress of each application, and re-

evaluates the optimal configuration for each application whenever the environment changes,

for example, when an application terminates, a new applications join, or other environmen-

tal changes.

1.5 Evaluation Summary

The evaluation of Rapids is based on a benchmark suite of eight applications running on

Linux and Android systems. Four of these applications have customizable quality notions.

26

I evaluate the system with respect to the three main contributions: 1) Developers: Con-

figuration space reduction from developer encoded insights, 2) Framework: Training time

reduction and the model accuracy, 3) Users: Improvement of user-preferred sub-metrics

relative to default metrics. Finally, I evaluate the runtime performance by measuring the

overhead and the overall output quality. Benchmark applications show an average configu-

ration space reduction of 68.7%. Two RS strategies further reduce the configuration space

and result in a training time reduction of 87.2% or 92.4% compared to state-of-the-art ap-

proaches while maintaining cost prediction errors of less than 2.5% across all applications.

Instead of using a control-theoretical approach, configuration management is formulated as

a mixed integer quadratic constrained optimization problem which is solved directly. The

overhead of dynamic reconfiguration for execution time or energy consumption remained

below 3.2%, with 1.84% on average. Customized quality results in significantly improved

user-preferred quality outcomes, with 1.76× improvement on average across a range of

user supplied resource budgets, and over 3× improvement in some cases. In general, by a

little extra efforts from developers, the training overhead can be greatly reduced by filtering

out invalid configurations. Comparing to enforce constraints in source code, using KDG is

a more convenient approach, not only because a graph representation is more intuitive, but

also for avoiding the studious and error prone hard-coding. Enabling custom quality is a

novel idea that takes users’ opinion into consideration when deciding the quality metric.

In multi-programming environments, Rapids-M achieves 3.4% higher success rate

when the target quad-core system is not busy (up to 4 active apps), and 22.75% higher when

busy compared to existing approaches in which each application adapts itself individually.

This translates to 2.6% (not busy) and 52.99% (busy) higher overall output quality. Fur-

thermore, Rapids-M achieves such improvement with an average of 40% fewer performed

reconfigurations.

I evaluated the approach on both the framework design and the application performance

to motivate the future study in approximation. A new designing philosophy for approximate

27

applications and techniques to support approximation in multi-programming environments

makes a valuable contribution to a wider acceptance of approximation.

1.6 Organization

The remainder of the dissertation is organized as follows:

• Chapter-2 summarizes the state-of-the-art approaches on multiple aspects of approx-

imation and point out the respective limitations. These limitations are also parts of

the motivation of this thesis.

• Chapter-3 describes eight benchmark applications for evaluation, 6 of which are

LINUX applications adopted from open-source benchmark projects, and the other

2 are designed under Rapids from scratch. These applications are selected to cover

multiple real world use cases where users can benefit from approximation.

• Chapter-4 introduces Rapids, a framework for application-level configuration and

quality management. At the end of the chapter, I report some of the key evaluation

results on Rapids (e.g., Execution quality improvement, custom quality support).

• Chapter-5 introduces Rapids-M, an extension of Rapids that targets the approxima-

tion management in a multi-programming environment. At the end of the chapter, I

report some of the key evaluation results in execution quality improvement.

• Chapter-6 describes the detailed implementation of both Rapids and Rapids-M, in-

cluding the framework infrastructure overview, code architecture, API’s for hooking

up applications and fine-tuning the framework, training process, required effort from

developers, and user involvement. Both Rapids and Rapids-M have been made

publicly available on Github.

• In Chapter-7, I report the evaluation of Rapids and Rapids-M on the training time

reduction, the model accuracy, the runtime output QoS, and the support for custom

28

QoS.

• Chapter-7 concludes and discusses future research directions.

29

CHAPTER 2

STATE OF THE ART

Multiple groups of researchers have made tremendous progress on different aspects in the

field of approximation. In this chapter, I list some representative works that motivated,

inspired, or are highly related to my work. These works are categorized based on their

different focus areas.

- Development Support for Approximation: On one hand, developing approximate ap-

plications requires interactions with the application programmer/developer since configu-

ration management is a semantic issue. On the other hand, the burden on the developer

needs to be reduced through new abstractions and automatic techniques. Most existing

approaches for adaptive configuration management target applications that have been writ-

ten without approximation in mind. Compiler-based automatic techniques [20, 38, 39, 40,

41, 42] identify program variables or functions as “knobs”. This is similar in spirit to the

“dusty deck” approach to automatic parallelization and vectorization which has been only

partially successful [43, 44, 45]. Approaches like [46, 47, 20, 21] use automated configu-

ration identification to minimize application developers’ effort. However, a “dusty deck”

approach does not allow the program developer to express insights into relevant structures

and behaviors of an application, e.g., relative constraints between pairs of knob values.

Alternatively, language-based approaches provide language extensions [48, 49, 50, 51] or

runtime libraries for developers, making approximation part of the semantics of the pro-

gram. The application developer is responsible for writing code to implement configuration

or quality management. For example, in EnerJ [31], developers may annotate variables as

“approximate” or “precise” so that the execution can be deployed on different hardware

to save energy. In Petabricks [28], developers can provide alternative, approximate im-

30

plementations of functions that can be selected at runtime. FlexJava [30] is in the same

spirit as EnerJ but using fewer annotations and allowing some level of quality manage-

ment. There are many more language / library based systems with different abstractions

to manage configurations and quality. However, these languages have only limited, if any,

support for reconfiguration. Most importantly, the language semantics approach solely re-

lies on the developer to hardcode the configuration management strategy, a challenging and

potentially error prone task.

- Model Construction: Current approaches establish a correlation between configurations

and an application’s resource cost (performance or energy) and quality outcome through

a profiling (training) phase [20, 12, 25, 6, 26], where all or randomly sub-sampled [21]

configurations are executed on the target machine, and their costs and quality are measured

and recorded. The cost of training is proportional to the size of the configuration space

which may lead to significant training times in practice. For example, [22] reports profiling

times of more than two weeks for an evaluated application. This is typically not acceptable

if the application is to be deployed by users on new machines which would require a full

retraining. Therefore, enabling a fast offline profiling is crucial in many cases when the

application needs to be executed on different target machines.

Moving from a discrete to continuous configuration space also requires a model that can

capture the non-linear behavior of the system. [52] and [53] propose to control a non-linear

system using piece-wise linear approximation that translates the problem into a mixed in-

teger programming problem (MIP)[54]. Further, the ability to port the configuration space

management system to new hardware/software platforms is important but new hardware/-

software configurations may not be known a priori. The result may be significant porting

costs because inevitably the training process has to be redone due to the change on resource

availability (different memory/cache size, number of cores, etc). A random sampling strat-

egy (e.g., Caloree[21] takes 20 random samples) could help speed up the process. But in

order to work well, it needs some insurance of a reasonable sample coverage to determine

31

configuration costs and qualities. For example, 2 samples may be enough to accurately

construct the model for some applications, while some other applications may require way

more than 20 samples. In my work, Rapids carefully selects the samples based on their

importance to constructing an accurate model, and the number of samples is determined by

the application itself and the model error tolerance.

- Hardware Architectural Support: Hardware support for probabilistic and approximate

computing has also received significant attention in recent years allowing the use of faulty

hardware and operations [55, 56, 57, 58, 59, 60, 61, 62] or operations [63, 64]. However,

they require the application developers to carefully identify the configurable components,

but do not allow developers to express more complex correlations between components

and their settings. Also, different approximation technique requires different hardware

designs, e.g., approximate storage, approximate instruction execution, etc. Each of these

approaches is not general enough to encode other techniques than what it was designed for.

A practical developing framework[65, 66, 67] for configurable applications with end-to-

end support[68] for developers has remained an unsolved challenge.

- Resource Consumption Prediction: Exploiting application performance degradation

has been explored by several groups. Significant research focuses on constructing the cost

model. Learning based models [12, 69, 70, 13, 71, 19, 72] predict performance through

either input and/or execution features, whose accuracy is bound by the richness of the data

set. Additionally, examining each input introduce significant runtime overhead (e.g., the

rendering logic for a web-page can only be determined after extracting and evaluating the

features of the page in Chamelon [29]). Though Rapids-M uses a similar learning-based

approach to predict the slowdown for each configuration by examining the features of active

applications, such examination only happens once when the global environment changes

rather than for each input data (work unit). Control theoretical approaches [73, 6, 20, 74,

22] aim to deal with runtime disturbance. However, to directly extend these approaches

32

to a multi-programming environment, the model has to be built on the entire search space

which is infeasible due to the search space size. Even getting the profile for a single large

application may take weeks ([22]).

- Quality Prediction: Probabilistic and approximate programming uses probability vari-

ables and their distributions to predict the output quality[75, 76, 77, 78, 79, 80, 81]. This

type of research focuses on representations of the distributions and operations induced by

operations on their associated probabilistic approximate variables. In the database com-

munity, approximation has been used to minimize the query overhead given a predicted

statistical error bounds of query results [82, 83], and more recently in the context of Map-

Reduce [84] applications [85, 10]. Proving and/or verifying approximation error bounds

has also been the topic of ongoing research [86, 87]. However these approaches perform

repeated training if quality metrics changes, thus cannot effectively enable users to express

different quality preferences.

- Custom Quality: Existing approaches further assume some pre-defined quality notion

where each application “comes with” a quality function for its output, e.g., PSNR for video

processing [13]. Akturk et al. [88] categorizes the quality metric used in common approx-

imation applications including some of my benchmark applications (Bodytrack, Swap-

tions). However, many applications have subjective quality notions, so the application

user needs to be involved in defining the quality function. For example, a face-detection

application may use F-score [89] as the quality metric, which is defined as the harmonic

mean of the recognition precision and recall. However, the precision can be more impor-

tant than recall when used in target recognition. On the other hand, higher recall can help

the application performance when used in crowd counting. Allowing users to express such

preference requires the system to be flexible enough that the quality model can be quickly

updated when such preferences change. It is too time consuming to repeat the training

process to reflect any changes to the quality notion.

33

- Dynamic Reconfiguration: The ability to dynamically reconfigure is crucial in approx-

imate computation to adapt to the inherent error in constructed models or unpredictable

disturbance during runtime. The former issue could be a result of input dependencies or

normal runtime noise. Approaches like [12, 29] fine-tune the cost model by evaluating

each input. PowerDial [20], Jouleguard [6] and other control-thereotical approaches [90,

91, 92] continuously monitor the resource usage, and reconfigure when considered bene-

ficial. However, none of these approaches can be directly extended to multi-programming

environment.

- Cross-application Interference Prediction: Optimizing the behaviors of groups of ap-

plications in a multi-programming environment has been the goal of different research

efforts [93, 94, 71]. Models for predicting application interference have been investigate

due to the non-linear impact of resource sharing on individually observed application slow-

downs. D-Factor [95] explores the inter-application performance degradation through com-

puting the slow-down factor measured by the degradation when running with computation

or memory-intensive stressers. However, D-Factor requires the measurement/observation

of the current system footprint for the prediction. The ESP system [71] is similar to our

approach since it measures specific system footprints for different applications. However,

since approximation is not considered, each application has only a single footprint, result-

ing in a very small set of samples over which to train their model. Also, ESP is limited

since it requires the training process to be performed for k applications running simultane-

ously to produce a model that is able to predict the slow-down among a subset of those k

applications. In contrast, our approach uses comprehensive configuration spaces for each

application. Also, each application is trained individually, making our approach more flex-

ible and scalable since groups of applications do not have to be known and to be trained as

a group in advance.

- Specific Approximation Techniques: There exists a large family of approximation tech-

34

niques, and these techniques can be highly application-specific. This thesis aims to develop

a system to seamlessly exploit approximation techniques developed by others, instead of

introducing new techniques. Each of the following techniques can potentially be encoded in

Rapids as a knob. For applications with iterative computations, Loop Perforation [26, 96]

gives approximate answers by skipping certain iterations. Compute and memory-intensive

applications with precision tolerance can benefit from precision scaling [34, 97, 98]. Mem-

oization is also a technique used to speed up floating point calculation by reusing results of

similar computation instructions [35, 99]. Dropping inputs through sampling is commonly

used as the approximation for applications with large set of inputs [50, 10, 100]. Similarly,

dropping tasks or jobs is common for applications under large multi-task frameworks, e.g.,

on GPU [36] or Map-Reduce frameworks[85, 10, 101].

35

CHAPTER 3

SAMPLE APPLICATIONS

To assess the practical, end-to-end effectiveness of Rapids, I implemented and evaluated

a prototype system. Besides the Ferret application introduced in Chapter 1, the evaluation

uses eight different sample applications/workloads in total, six of which are Linux appli-

cations and the other two are on Android platforms. Five of the Linux applications are

from widely used benchmarks with known quality metrics, namely Swaptions[14], Body-

track[14], Ferret[14], SVM[102], and NeuralNet (NN)[102]. The other one, FaceDetec-

tion uses the OpenCV standard library[103], and the two Android applications, NavApp

and VideoApp, are freshly developed using the Rapids framework. The eight workloads

have been chosen to illustrate the features and benefits of the Rapids and Rapids-M frame-

works while allowing others to assess the effectiveness through applications used by related

work.

- Swaptions is a financial analysis application to calculate the pricing of a portfolio of

swaptions. For each swaption, it performs a Monte-Carlo [104] simulation and reports the

result pricing. The computation is based on an iterative simulation algorithm. The execu-

tion time and accuracy increases as the number of simulations increases.

Knob: (1). It controls the number of iterations to simulate, within [100000, 1000000].

Larger number of iterations leads to higher overhead but can better ensure the convergence

of the calculation.

Dependencies: I do not encode dependencies in Swaptions because it is a single-knob

application.

QoS Metric: The QoS loss for each swaption can be computed using the vector distor-

tion [105] described in Equation 3.1. n and wi are the total number of elements in the

36

vector and their weights, and in the case, n = wi = 1. ŷ is the computed price from the

execution and y is the price when executing with highest setting. The total QoS loss is the

average loss across all swaptions.

n∑
i=1

wi ∗ abs((ŷi − yi)/yi) (3.1)

- Bodytrack is a computer vision application that tracks a set of human body components

from a video frame by frame. Bodytrack employs an annealed particle filter to track the

pose using edges and the foreground silhouette as image features, based on a 10 segment 3D

kinematic tree body model. These two image features were chosen because they exhibit

a high degree of invariance under a wide range of conditions and because they are easy

to extract. An annealed particle filter was employed in order to be able to search high

dimensional configuration spaces without having to rely on any assumptions of the tracked

body such as the existence of markers or constrained movements.

Knob: (2). One sets the number of annealing layers with 5 settings from {1,2,3,4,5}. The

other sets the number of particles to track within [100, 4000]. Intuitively, tracking more

particles in each annealing layer results in more accurate estimation on body components

for having more estimations. More layers gives more opportunities to refine the estimation.

However, tuning up any of the two knobs can increase the execution time for performing

more calculation.

Dependencies: Dependencies exist between the lower annealing layers and higher particle

number layers. The intuition is that if a frame is processed with fewer layers, more particles

should be considered for a meaningful tracking result.

QoS Metric: Each output line is a vector which represents the position of different body

components. I use Equation 3.1 for QoS with y once again representing the highest settings

and wi set proportional to the size of the body component being tracked.

37

- Ferret is a ranking application that accepts image queries and returns the top-K images

in a database ranked by content-similarity. The application has two phases. It first locates

the top-2K images using a Multi-Probe LSH [15] algorithm. Then, it calls a routine that

computes the Earth Mover’s Distance (EMD) to rank the images and return the top-K.

Knob: (3) The first sets the number of hash buckets per table within [2, 8]. The second sets

the number of probing buckets in the multi-probe phase from [2, 20]. Similarly to Ferret,

having more hash buckets or probing more tables could result in higher overhead but can

cover more candidates to select the better top-2K results. The third sets the maximum

number of iterations when computing the EMD within [20, 500]. Setting a lower value on

this knob could cause earlier termination of the EMD calculation before the convergence.

Dependencies: Dependencies exist between the first and the second knob by having edges

among the lower number of hash buckets and higher number of probing buckets. A table

with a small number of buckets has to probe more buckets to find more accurate results.

There are also edges between lower numbers of buckets and higher numbers of iterations.

This gives more accurately ranked top-K results given relative poor top-2K candidates.

QoS Metric: The output of a query image is a sorted list containing the ID of the top-K

images. I use a common ranking function that compares two lists (list1, list2) of results for

a query: ∑
i∈Z

|rank1(i)− rank2(i)| −
∑
i∈S

rank1(i)−
∑
i∈T

rank2(i) (3.2)

Here, Z is the set of result images appearing in both list1 and list2. S and T are the sets of

images appearing exclusively in list1 and list2. rank1 is the rank of an image in list1, and

rank2 the rank in list2. Given N results for each query, the results for the equation range

from 0 to −(N + 1) ∗N .

err =2 ∗ (k − z)(k + 1)+∑
i∈Z

|r1(i)− r2(i)| −
∑
i∈S

r1(i)−
∑
i∈T

r2(i)
(3.3)

38

with Q = 1− err/k(k + 1)

Here, Z is the set of images appearing in both list1 and list2 of size z. S and T are the

sets exclusively in list1 and list2 of size k. r1 and r2 are the ranks of an image in list1 and

list2.

Customization: Coverage and Ranking are exposed as virtual knobs to users. Coverage

is calculated by the first addend in Equation 3.3. Given a fixed k, higher z results in higher

Coverage, i.e., more “correct” results being returned. Ranking is the rest of the equation.

Ranking “wrong” results lower yields better Ranking.

- FaceDetection is a vision application that detects human faces from a series of input

images. First a multi-level image pyramid [106] scans each level looking for a face of a

fixed size. If a face is found, it filters out false positives by examining nearby pixels. Op-

tionally, it performs a round of filtering by checking the presence of eyes (one or two) in

each detected area.

Knob: (3) The first determines the number of pyramid levels, ranging from {5,10,15,20}.

The next determines the number of neighbors to examine in the filtering phase {0,4,8}.

Higher value on the first two knobs gives a more accurate recognition result for having

a larger window for examination for each recognized face but require more computation.

The last controls the threshold of the minimum number of eyes detected {0,1,2}. Larger

settings on this knob enforces a stricter rule to determine whether a face is truly a face.

It may lead to lower recall, but will definitely help the precision. Turning this knob to 0

will save a significant amount of computation time because this step will be skipped in the

program. All three knobs are discrete only in FaceDetection.

Dependencies: I do not encode dependencies in FaceDetection because 1) all configu-

rations produce a reasonable results, and 2) each of the two sub-metrics benefits from an

opposite knob settings from the other, therefore there does exist obvious dependencies.

QoS Metric: I adopt the standard measurement of recognition performance, the F-measure [89]

39

using Equation 4.7. By default, k1 = k2 = 1 (F1-score). Customization:Precision and

Recall. When k1 > k2, precision weighs more than recall, and vice-versa.

- SVM and NN are two supervised learning applications that classify input images. They

run 1000 iterations on a set of labeled training data and construct a SVM (Support Vector

Machine) and a NN (Neural Network) model for classification.

Knob: (3) There are three configurable knobs. The first determines the learning rate, within

[1e-7,1e-5]. The next knob is Discrete only and it determines the batch size {64, 128, 256,

512, 1024}. The last one determines the regularization rate within [5000, 25000]. Intu-

itively, a larger batch size would provide a more accurate gradient direction with a higher

cost. For learning rate, a small learning rate would converge slower after each iteration,

however a more aggressive learning rate may miss the optimal point and result in bad qual-

ity.

Dependencies: I intentionally do not encode dependencies in these apps to show that

Rapids can be treated as a parameter tuning strategy in machine learning, i.e., locating

the optimal parameters for highest accuracy through quality model.

QoS Metric: Prediction accuracy as shown in Equation 3.4.

accuracy =
correct prediction

total input
(3.4)

- NavApp is a navigation application to guide a user from location A to B. It uses the

Google-Maps API to compute estimated travel time and constantly shows the user’s cur-

rent location. Runtime uncertainty comes from the user behavior, real-time traffic and the

Google Map API’s prediction error.

Knob: (4) One knob controls the screen brightness from [1%, 100%]. The second is Dis-

crete only and controls the map layout {basic, satellite, and hybrid}. The third sets the

polling frequency of location reading {5s, 8s, 10s}. The forth controls the GPS {on, off}.

40

Dependencies: I inserted edges between the information and the screen brightness from the

basic consideration of human ability to interpret simpler information on darker screens. It

also have dependencies from localization frequency to map display.

QoS Metric: NavApp is a real world application that composes different real service com-

ponents. There is not a concrete well-defined QoS metric for such an application. I define

the QoS metric to be a weighted sum over all individual sub-metrics.

Customization: Priorities can be given to brightness, localization, and information as

shown in Equation 3.5.

Q = wb ∗ brightness+ wl ∗ localization+ wi ∗ information

brightness = Screen/100.0

localization =
PollingFreq/3.0 +GPS/2.0

2

information = Map/3.0

(3.5)

- VideoApp allows the user to watch a high-resolution video locally or stream a lower-

quality video from a remote server.

Knob: (4) One controls the screen brightness as in NavApp. The second controls the video

frame-rate from {15fps, 30fps, 45fps, 60fps}. The third controls the video resolution from

{144P, 240P, 480P, 720P}. The last controls the network from {On, Off}

Dependencies: I used edges from lower frame-rate to lower resolutions to avoid unrea-

sonable situations, e.g. displaying a 720P/15fps or a 240P/60FPS video. Also, I have

dependencies among network and resolutions to either deliver high quality video from the

server or a low quality video locally

QoS Metric: As in NavApp, VideoApp does not come with a well-defined overall quality

metric. I again adopted the weighted sum as in NavApp to calculate the overall perfor-

mance as shown in Equation 3.6.

41

Customization: Priorities can be given to brightness, smoothness, and resolution.

Q = wb ∗ brightness+ ws ∗ smoothness+ wr ∗ resolution

brightness = Screen/100.0

smoothness = FPS/60.0

resolution = Resolution/720.0

(3.6)

Table 3.1 shows the significant opportunities for approximation in all the sample appli-

cations. Min Cost reports the lowest cost relative to the default setting in execution time

or power consumption. Min Quality reports the quality degradation under the default

quality metric. The last two columns summarize the opportunity for both developers and

users to participate in Rapids.

Table 3.1: Approximation Opportunity

Min
Cost

Min
Quality Dependency

Custom
Quality

Swaptions 10.08% 57.78% - -
SVM 57.98% 49.96% - -
NN 76.55% 42.8% - -
Bodytrack 7.51% 40.84% yes -
FaceDetection 27.43% 41.23% - yes
Ferret 37.26% 54.91% yes yes
NavApp 56.12% 22.2% yes yes
VideoApp 67.62% 27.7% yes yes

- Environments for Experimental Evaluation:

For the sample applications, developers performed the off-line training phase on a Linux

machine or an Android phone. Application users ran the applications on an embedded

Linux board or a separate phone. Cost is execution time for Swaptions, Bodytrack, Fer-

ret, and FaceDetection; cost is energy consumption for NavApp and VideoApp. Key

specifications are:

42

LINUX machinesDeveloper : 6-Cores at 3.7GHz, —- 16GB RAM at 2666MHz; Target :

Nvidia TX1 [107], 1.9 GHz 64-bit 4-core —- 2 MB L2 cache. Android machines:

Developer : Nexus-5: 2.26GHz 4-core processor — 2GB RAM. 4.95-inch screen, 1080x1920

pixels; Target : Nexus-6: 2.26GHz 4-core processor — 3GB RAM. 5.96-inch screen,

1440x2560 pixels.

43

CHAPTER 4

RAPIDS

In this chapter, I introduce Rapids, a system to support approximation management in

the single-application scenario. The main contributions and theoretical foundation are de-

scribed in the first three sections. At the end, I report some of the key results comparing to

other works. A more detailed discussion of the implementation and a thorough experimen-

tal evaluation can be found in Section 6.1 and Section 7.1, respectively.

4.1 Introduction

The objective of application-level configuration management is to trade application output

quality for resource consumption under user-supplied budget constraints. However, not all

applications can be reconfigured. There are several conditions for approximate applications

that this work targets.

(A) There is a useful correlation between resource usage and application outcomes. Appli-

cations have to be tunable, with a set of knobs and their corresponding settings, i.e., there

has to be a feasible configuration space.

(B) There are well-defined points during application execution that allow safe and efficient

reconfiguration of the application, i.e., transition from the current to a new target configu-

ration.

(C) The application outcomes under different configurations can be compared and ranked

according to a quality metric. Optionally, the application quality can be customizable in a

way that makes sense to application users.

I will use NavApp as an illustrating example in this chapter instead of Ferret because

1) the example of NavApp shows a different type of use case in contrast to Ferret where

energy is used as the cost metric, and 2) the KDG for NavApp includes OR edges which

44

were not presented in Ferret.

NavApp - an illustrating example: NavApp provides driving directions to the desired

destination and runs on mobile platforms. In NavApp, the configurable components in-

clude the brightness of the screen, the way the route is communicated and displayed (map,

satellite image, text-only), and the spatio-temporal precision of the actual reported loca-

tion. Each such component (knob) introduces corresponding energy costs. For example, a

brighter screen consumes more energy than a dimmer screen, rendering a route on a satel-

lite image for display is more energy expensive than displaying the direction in a simple

text box, or polling the GPS more frequently to get more precise localization needs more

power. However, there typically are dependencies among these knobs. For example, dis-

playing a high-resolution satellite image on a dimmed screen may not be feasible due to

low readability.

The user has to provide an energy budget (e.g., 5% of currently remaining battery en-

ergy) and relative preference of the different components (e.g., route display quality is

more critical than localization precision). The latter defines the desired user-customized

quality experience. Based on the provided destination and overall energy budget, NavApp

determines the predicted travel time, thereby determining the power constraint, i.e., energy

per second in milliwatts, (each second of execution is considered a work unit) for the entire

application execution. The goal is to give an as-even-as-possible quality experience, choos-

ing a configuration that maximizes the user-specified knob priorities while respecting the

overall energy budget. Reconfiguration would be necessary if the power constraint (budget

per work unit) changes, for instance, due to a longer or shorter predicted mission time. For

example, if the driver takes a wrong turn, the remaining energy budget may not sustain the

current service quality level, and therefore, a lower quality configuration would be chosen

for the remainder of the trip.

Any system that supports application-level approximations has to define the configura-

tion space, allow the specification of a custom quality notion, model the cost and quality of

45

each configuration, and provide an efficient algorithm to perform reconfigurations. Existing

approaches [25, 20, 6, 12, 26] treat applications primarily as “black boxes” with some pro-

gram variables exposed as “knobs” that may be manipulated in order to influence the cost

and quality during the execution. A training phase for all or randomly sub-sampled [21]

configurations is used to establish a correlation between knob settings and the observed

program quality and resource usage. Once training is complete, a selected configuration

can be modified to adapt to real-time constraints using control-theoretical strategies. With

the explosion of the configuration space, the training cost can be huge (up to weeks [22]).

Such training overhead is unacceptable, especially when the model has to be re-built ac-

ceptably quickly when porting the application to another device, or if updating the current

cost or quality models becomes necessary [69]. I explore how structural knowledge about

the application and their knobs and value ranges can be leveraged to significantly reduce

the configuration space that needs to be trained to build accurate cost and quality models

for the entire feasible configuration space. The configuration space reduction leads to a

reduced training time, in some cases by orders of magnitude. In order to help application

users get involved in the quality determination (if needed), I propose a quality model that

is flexible enough for users to fine-tune the application behavior without understanding the

underlying implementation details.

I introduce Rapids (Reconfiguration, Approximation, Preferences, Implementation,

Dependencies, and Structure; some key aspects of my approach.), a new programming

and runtime framework that considers the structure of applications for customized config-

uration management. For each application and target system, application developers first

define the application structure with its knobs and the dependencies between them. Rapids

performs an initial training to construct the cost and quality models, and encode them along

with structural information in the KDG (Knob Dependence Graph). Rapids also calcu-

lates a small set of representative configurations to be used as a training set to significantly

reduce the cost for reconstruct the cost model. In Rapids, the application developer can

46

optionally implement “virtual knobs” that allow users to express their quality expectations

at a level of abstraction that makes sense to them. These high-level virtual knobs close

the semantic gap between subjective quality and specific, low-level knob settings. The re-

sulting configuration space with its default, developer-provided quality model can thus be

customized by the user to fit his / her particular needs or expectations. During runtime, ap-

plication users specify the relative importance of each knob for his/her overall, customized

quality experience without detailed knowledge of the application structure. Rapids then

uses its structure-aware quality model, the customized knob priorities, and the provided

budget to adapt application behaviors with the goal of maximizing overall quality while re-

specting the provided budget. Rapids automatically reconfigures if the observed resource

consumption does not match the predicted consumption. The contributions of this chapter

are:

1. KDG: A new structural approach to specifying approximate applications with knob

dependencies. In KDG, I introduce multiple new concepts:

• Dependencies: A new way to encode inter-knob constraints in optimization

problems that significantly reduces the feasible configuration space by leverag-

ing the developers’ insights.

• Representative Set: A much smaller subset of configurations that can be used to

effectively rebuild the cost model when porting applications to unknown plat-

forms.

• Virtual Knobs: A bridge closing the gap between the detailed underlying im-

plementation and the high level quality notions that allows users to customize

application behavior without much effort.

2. A new strategy to formalize the optimization problem that determines the optimal

configuration under a budget based on KDG.

47

3. The implementation of the Rapids programming and runtime system, and its evalua-

tion on a range of important tunable applications. Rapids and its application bench-

mark suite will be made publicly available, allowing my results to be reproduced and

extended.

The evaluation of Rapids is based on a benchmark of eight applications running on

Linux and Android systems. Four of these applications have customizable quality notions.

For the applications with customizable quality, the default quality model only achieves as

little as 34.8% of the quality, compared to the customized case, with 81.9% on average

across the three applications. Rapids allows users to tune the developer-provided default

quality model, significantly improving an application’s quality outcome with 1.76× im-

provement on average across a range of user-supplied resource budgets, and over 3× im-

provement in some cases. Benchmark applications show an average configuration space

reduction of 68.7%. The two RS (Representative Set) strategies further reduce the con-

figuration space and result in a training time reduction of 87.2% or 92.4% compared to

state-of-the-art approaches, while maintaining cost prediction errors of less than 2.5%. In-

stead of using a control-theoretical approach, configuration management is formulated as a

Mixed Integer Quadratic Constrained Programming (MIQCP) problem that can be solved

directly. The overhead of dynamic reconfiguration for execution time or energy consump-

tion remained below 3.2%, with 1.84% on average.

4.2 Application Representation: KDG

To understand Rapids, I must first introduce the KDG, a compact DAG based data structure

that encodes a developer’s insights about the structure of the application through the graph’s

nodes and edges. It is a representation of the configuration space of an application and is

used for offline cost / quality model construction and online optimization. It provides the

basis for formulating configuration selection as a constrained optimization problem.

48

4.2.1 Developers’ Insight as Structure

The KDG allows developers to encode information including knob type, per-knob value

range and inter-knob dependency through the graph structure.

Nodes represent knob settings. The KDG supports two types of nodes: Discrete and Con-

tinuous. Each knob consists of a collection of Discrete nodes or a single Continuous node.

Each Discrete node within a knob is associated with a specific setting. A Continuous node

represents a possible value range of a setting.

Figure 4.1: KDG nodes in NavApp

Figure 4.1 shows the knobs in NavApp. There are 4 knobs, 3 of which have discrete

nodes: “Map”, “GPS”, and “PollingFreq”. The last knob “Screen” has a continuous node.

Edges represent dependencies between knob settings. Edges are directed with the sink

depending on the source. Edges thus encode developers’ insight into inter-component de-

pendencies. They are not required for system function, but allow the developer to help

guide the system and user experience. For discrete nodes, dependencies are on the entire

node. In a continuous node, a dependency may be on a range of possible values, i.e., on a

segment.

49

To make KDG flexible, the KDG supports two types of dependencies, AND and OR.

AND dependencies allow a node to be dependent on a set of different nodes which are all

needed to satisfy the dependence. In contrast, OR dependencies allow a node to require

at least one node in a knob or set of knobs. That is, OR dependencies are grouped: at

least one source node has to be selected from each OR group. A node AND-depends on all

independent OR groups.

Figure 4.2: KDG nodes with edges in NavApp

In Figure 4.2, node “Sat”has an AND dependency on segment [50,100] in Screen. If a

satellite image is rendered as the map layout, the screen brightness must be at least 50% be-

cause the background on satellite images are darker and is hard to interpret on a dark screen.

Similarly, “Hybrid” requires at least 25% brightness for having additional highlighted road

name and information overlay on the satellite image. “Basic” has OR dependencies on 5s,

8s in PollingFreq since without satellite image guidance, a basic layout requires more ac-

curate localization for users to interpret the current location. These constraints reflect the

developer’s design and assessment of a desirable configuration space. Rapids supports a

high level specification of the KDG as shown in Figure 6.2. I believe that this representation

is much easier to understand and maintain than alternative implementations, for example,

through conditional statements embedded and distributed across the source code.

Configurations are represented in the KDG as a selection of nodes or values. For knobs

with Discrete nodes, a single node will be selected. For knobs with a Continuous node,

a specific value will be selected. Figure 4.3 demonstrates a particular configuration. The

50

KDG is a compact representation of the entire configuration space where each configuration

has to satisfy the edge dependencies.

In all previous work, a particular configuration in an application can be represented as a

variable vector. This can also be represented by KDG with only one type of node (discrete

or continuous), and no dependencies.

Figure 4.3: KDG sample configuration: Screen=75 (value), Map=“sat”, PollingFreq=“5s”,
GPS=“ON”.

4.2.2 Cost Model using KDG

The KDG provided by the developer contains only structural information. A full KDG

includes the structure, weights (both for cost and quality models), and user preference (as

weight augmentation). A training phase is performed to collect a set of data points that map

configurations to corresponding costs which are used to build a regression model that in turn

provides weights to the KDG. The overall cost C of a specific configuration is calculated as

the sum of (1) the contribution by each individual discrete Cdis and continuous Ccont knob,

and (2) the contribution of the combined effects of each pair of knobs Ccorr, as shown in

Equation 4.1. Based on observation, a second-order linear regression model that captures

the first and second order parameter values (weights) for each node, and the pair-wise knob

coefficients is accurate enough for the weight prediction on both discrete and continuous

nodes.

C = Cdis + Ccont + Ccorr (4.1)

51

Node Weights in the KDG represent the contribution of a particular node to the overall

cost. For a discrete node, the weights for each node j in a knob i is represented by single

value cji . For a continuous node, the weight for a knob i with value range [mini,maxi]

is represented by a function F i
c() that maps a value vi within the range to its contribution.

Equations 4.2 and 4.3 show the cost contribution of the discrete and continuous nodes,

respectively. Only the selected discrete nodes (vji = 1) will contribute to the overall cost.

Cdis =
∑
i

∑
j

cji × v
j
i , v

j
i ∈ 0, 1 (4.2)

Ccont =
∑
i

F i
c(vi), mini <= vi <= maxi (4.3)

Correlated Weights model the combined contribution of pairs of knobs. This design

captures knob correlations that are more complex than simple addition. For example, in a

nested loop with the two knobs representing the loop bounds, the total cost is proportional

to #outer iteration∗#inner iteration. Experimentally, I found that modeling quadratic

relations between knobs was sufficient to capture program behaviors. Note that a numerical

value v̄ is required for discrete nodes with categorical values.

Ccorr =
∑
m

∑
n

corrnm × (v̄m × v̄n) (4.4)

4.2.3 Custom Quality Metrics/Models and Virtual Knobs

Quality and cost metrics rank outcomes of application executions under different configu-

rations. Quality metric Q measures an aspect of observed application outcomes. A model

Q̃ for a metric Q predicts the expected measurements for a configuration without applying

the metric to the observed outcome. In other words, a model Q̃ approximates the measured

metric Q for a configuration. Even though there are input dependencies in many applica-

tions, it is assumed that configurations giving better outcomes during the training process

52

are also very likely to produce higher quality in real execution. The better the model, the

lower the expected metric prediction errors. The produced models are used by Rapids to

select the highest quality configuration under a user-provided resource budget.

Customized Quality Sub-Metrics: In general, quality is a subjective metric and therefore

needs application users’ involvement. If an application comes with a pre-fixed quality met-

ric that cannot be customized, for example PNSR [13] or SSIM [108] for video playback,

the construction process will be identical to the cost model except that the observation

is no longer the cost but the measured quality metric value. For those applications with

customizable quality, it requires at least two distinct quality sub-metrics, i.e., two distinct

ways to rank configuration quality. These sub-metrics should be easily reasoned about by

the application users and may have different preferences among different target users. In

the presence of customizable quality, two distinct quality preferences may result in differ-

ent configuration selections under the same budget, each maximizing the distinct subjective

quality.

Definition: Custom Quality using Sub-Metrics — An application has custom quality

if the quality Q can be represented by a function F over several weighted quality metrics

(q1, . . . qn), n ≥ 2. The quality metrics q1 to qn are referred to as sub-metrics. Users can

provide relative preferences on each sub-metric through their weights.

Q = F ([(w1, q1), . . . (wn, qn)]) (4.5)

Example: I will use another application, FaceDetection, as an example to illustrate

the custom quality because the quality metric in FaceDetection is one typical use case

where custom quality is important to different users. In FaceDetection and other similar

classification problems, F-Score is widely used as the overall quality metric. A larger

family of customized metrics can be expressed based on the precision p and recall r sub-

53

metrics, as defined in Equation 4.6.

p =
TP

TP + FP
, r =

TP

TP + FN
(4.6)

where TP denotes True Positive, FP False Positive, and FN False Negative. Users may

express different importance of sub-metrics p or r through providing different weights wp

for precision and wr for recall in Equation 4.7. For example, the F1-score can be specified

by choosing wp = wr = 1.

Qface = Fface([wp, p], [wr, r]) = (1 + β2) · p · r
(β2 · p) + r

, with β =
wr

wp

(4.7)

The two high-level sub-metrics, ”Precision” and ”Recall”, can be easily reasoned about

by application users. Given the same output result, these two metrics will have the same

values since they have a fixed evaluation strategy fp, fr. However, the overall quality might

have different values if users provide different weights to these two metrics.

Custom Quality Models: For single quality metrics Q, the quality model Q̃ can be con-

structed offline similar to the cost model as discussed in Section 4.2.2. Each configuration

measurement collected from training now includes the measured quality metric in addition

to the measured cost metric. The resulting quality model has coefficients for single knobs

and pairs of knobs.

Rapids allows customizable quality metrics through developer-defined custom qual-

ity metrics with default weights at application development time, and user-specified sub-

metric weights at application execution time. For each employed quality sub-metric qi,

Rapids builds a model q̃i through training in its “offline” phase. Table 4.1 shows the set

of configurable knobs (left column) used to implement models for the recall and precision

sub-metrics (right column) for the example FaceDetection application.

54

Table 4.1: Knobs and Sub-Metrics in FaceDetection

Configurable Knobs Sub-Metrics
Neighbour Pixel, Decomposition Level, Eye Detection Enabled Precision, Recall

Just before application execution, a user may customize his / her quality expectation

metric Q by providing weights wi for each sub-metric qi as shown in Equation 4.5. Thus,

Rapids must compute the quality model Q̃ “online” based on the known sub-metric models

q̃i and the user supplied weights wi. Unfortunately, there is often no obvious way to use

the set of knobs and pairs of knobs coefficients of the individual sub-metric models q̃i to

effectively compute Q̃.One approach is to express Q̃ as a mapping over weighted individual

knob coefficients as illustrated in Equation 4.8.

Q̃([k1, . . . kn]) => Q̃([w1 ∗ k1, . . . wn ∗ kn]) (4.8)

However, this straight-forward extension requires the user to know how to tune the weights

on the detailed knobs, e.g., # Neighbour Pixel, # Decomposition Level, and Eye Detection

in FaceDetection, which is non-intuitive and complex because how these low-level imple-

mentation related knobs affect the overall quality is unclear. Another approach would be to

re-evaluate the execution output with the new Q and reconstruct Q̃. However, this requires

the retaining of outputs/results obtained during training and will result in significant space

and time overheads. Finally, a full retraining would also be possible, but I consider this

approach to be prohibitively expensive in terms of execution time, rendering it infeasible.

Instead, Rapids predicts all sub-metrics for each trained configuration in the train-

ing phase and calculates the overall quality using the developer provided function (F in

Equation 4.5) with the quality models q̃i instead of the quality metrics qi. Also, providing

preferences on sub-metrics are much more straightforward. This is more efficient since qi

requires actual application execution results while q̃i only needs the configurations.

The set of calculated quality values yields the overall quality model Q̃ by solving the

55

regression problem as discussed above, and described in more detail in Section 4.3.1. This

approach eliminates the overhead of backing-up execution results and the re-evaluation

process. Experiments show that the overhead of dynamically constructing quality models

is negligible, less than half a second for all four of the applications with customizable

quality. This overhead occurs once just before application execution.

Virtual knobs: As discussed above, nodes in the KDG are associated with application-

level objects (e.g. program variables) and their possible value settings, which together de-

fine the configuration space. Both cost and quality metrics are defined over this “concrete”

configuration space. However, in order to allow application users to customize their quality

experience, the knobs of a concrete configuration may be too low level to allow users to

make an informed choice. Therefore, Rapids introduces a set of higher-level, “virtual”

knobs for the sole purpose of allowing users to reason and manage their quality expecta-

tions. The key here is that now users can fine-tune the quality on the level of sub-metrics

instead of concrete knob settings and their low-level quality notions.

To support user preferences among sub-metrics, Rapids developers can selectively ex-

pose these metrics as virtual knobs to users. Each virtual knob corresponds to a specific

sub-metric. The idea of virtual knobs is similar to an interface between the users and

the KDG. Unlike the configurable knobs in KDG, virtual knobs do not have quality/cost

weights. Users tune these knobs to express relative preferences among sub-metrics. In the

FaceDetection example, users can tune the two virtual knobs, “precision” and “recall”

and the system can automatically update the quality model accordingly.

4.3 Problem Specification

As described in the previous section, the KDG structure is used to determine whether a

certain configuration can be chosen. Weights form the basis of the cost/quality models.

Virtual knobs provide a user-level interface to customize the quality model. There are four

key problems:

56

1. KDG Weights Derivation: How to derive the weights that define the models.

2. Effective Training: How to make model construction efficient.

3. Finalizing KDG: How virtual knobs influence the optimal quality configuration.

4. Runtime Optimization: How to calculate the optimal configuration to maximize qual-

ity given a weighted KDG and a cost budget.

The solution to the third problem is presented in Section 4.2.3. The solutions to the other

problems are discussed below.

4.3.1 KDG Weight Derivation

Table 4.2: Symbols Used in Problem Definition

Symbol Description
Ki Knob i
N j

i Node j in Ki (Discrete)
Sj
i Segment j in Ki (Continuous)
vi Knob i ’s value

v(N j
i) Discrete Node j ’s numerical value

mini,maxi Boundary of Ki (Continuous)
minj

i ,max
j
i Boundary of Sj

i

n Size of training set

ŷk, yk
Prediction and real measurement

for Configuration k
Cj

i Contribution (weight) of discrete N j
i

aji , c
j
i Weight function params for Sj

i

α[m][n], β[m][n], γ[m][n]
Correlation function params

between Km, Kn

CCx(i) Contribution of Ki, x = {Dis, Cont}
CCcorr(m,n) Correlated contribution of Km and Kn

pi User provided priority for Ki

ε error threshold

Rapids assumes that the application is performing a long running task which can be

partitioned into multiple work units. KDG models the expected cost for finishing a single

work unit. At any given moment during runtime, the cost model will be used as a hard

57

metric to predict the cost consumption required to finish all the remaining work units. The

quality model is used to rank all configurations.

The weights are extracted through a value propagation strategy from training. Suppose

the application is trained through a number of configurations each with the same train-

ing input. Rapids records the observed cost or quality y for each configuration k. The

weight value or function parameters of the nodes can be calculated by solving the problem

on Line 4.9. The objective is to minimize the error between the predicted value and the

observed value. The prediction is composed of three components, (a) the contribution of

discrete nodes, (b) continuous nodes, and (c) the correlation between different knobs. I use

the same model for both quality and cost. To simplify the discussion, I will only present

the process of deriving the cost weights.

Minimize :
n∑

k=1

(yk − ŷk)2 (4.9)

∀k : ŷk =
∑
i

(CCdis(i) + CCcont(i)) +
∑
i,j

CCcorr(i,j) (4.10)

Discrete Nodes: In each configuration, only those nodes being “selected” will con-

tribute to the overall cost. The total contribution of discrete nodes can be formulated in a

specific configuration as shown in Line 4.11, where N j
i = 1 if the node is selected in the

configuration and 0 otherwise.

CCdis(i) =
∑

N j
i ∗ C

j
i (4.11)

Continuous Nodes: Unlike Discrete nodes, the cost contribution of a Continuous node

is represented by a function. I use a piece-wise-linear approach to represent these functions.

To demonstrate this method, consider a set of configurations with m values (excluding the

upper and lower bound) in Ni. The range of Ki can be partitioned to m + 1 segments as

58

Si,1, Si,2, ...Si,m+1. A linear function is associated with each segment. Given a configura-

tion with the knob value, I first determine the segment that this value falls into. Only one

segment will be selected, i.e., only one of the Sj
i can be set to 1 in any Ki. The contribution

for continuous nodes is formulated as shown in Line 4.12, where vi is the value of node

each configuration:

CCcont(i) =
∑
j

Sj
i ∗ (aji ∗ vi + cji) (4.12)

Correlation: I use a quadratic term to represent the contribution of each correlated

pair of knobs (m,n). The value v for discrete nodes shall be provided from the developer

in case each node in a knob is not numerical. Equation 4.13 shows the formulation of the

correlated contribution.

CCcorr(m,n) = α[m][n] ∗ v2m + β[m][n] ∗ vm ∗ vn + γ[m][n] ∗ v2n (4.13)

4.3.2 Effective Training

The size of the configuration space is exponential in the number of nodes for discrete knobs

and number of segments for continuous knobs. In Section 4.3.1 above, I describe how to

derive a discretized, exhaustive configuration space together with accurate cost and quality

models represented as weights of the KDG. When porting an application to a new target

hardware/software architecture, the model construction process discussed in Section 4.3.1

needs to be performed again for the new platform. This can be rather expensive. One

reason this cost was ignored in all previous works is that those works do not consider the

distinction between the developers and the users. In other words, the model is trained and

will be executed on the same machine. To some extent, this prevents approximation tech-

niques from being adopted in areas where the cost model is highly device-dependent, e.g.,

mobile applications. However, it is not practical to train models for all possible devices.

59

Therefore, an effective retraining process that can be executed on the users’ end would be

ideal.

The selection of the training set impacts the training cost (time, energy) to construct

the model. Intuitively, a larger training set yields better a model at a greater cost. To

significantly reduce the cost of retraining the models, Rapids introduces the notion of a

Representative Set (RS), a subset of configurations that is sufficient to accurately recon-

struct the entire cost/quality model at the potential cost of a slight accuracy loss.

Definition: RS with error threshold ’ε’: A subset of all configurations that allows the con-

struction of a cost model with an average prediction error ≤ ε.

During the construction of the full models, the computation of the representative set

is also performed offline on the development platform. The RS computation is based on

the configuration space of the model construction and its measured observations for each

configuration. This is considered the ground truth. Rapids implements two different RS

construction methods. Experiments show that these two strategies are both effective in

significantly reducing the training set sizes for the benchmark applications. Selection-

based RS takes longer to construct but usually has smaller size. Developers can choose

which one to use according to the application and the accuracy of both strategies.

Partition-based RS: For each knob, Rapids first considers only its highest and low-

est settings. RS is initialized with these configurations. Rapids evaluates the prediction

accuracy of the model constructed from these configurations against the ground truth by

solving the problem described in Equation 4.9. If the developer defined error bound ε is

not satisfied, Rapids partitions each knob by a factor of 2, i.e. adding one more setting in

the middle of two selected settings per knob. This process iterates until the error bound ε is

satisfied or a pre-defined maximum partition level is reached.

Selection-based RS: Rapids initializes RS with only two configurations, the most

and least expensive configuration. Subsequently, Rapids iterates through all unselected

60

Figure 4.4: Partition-based RS Construction

configurations and constructs the model using that configuration and the current RS. The

one configuration that yields the highest prediction accuracy will be added to the RS. The

termination condition is again falling within error threshold.

4.3.3 Runtime Optimization Problem Formulation

Given a fully weighted KDG and a user-provided budget at application execution time,

Rapids computes the optimal solution by solving a MIQCP [37] problem as specified

by Equation 4.14. The problem formulation consists of an objective function and several

classes of constraints to enforce the validity of the computed solution. The goal is to find the

configuration that delivers the highest quality application outcome within the cost budget

while satisfying all knob attributes and edge dependencies. For example, any solution

has to respect knob dependencies, can only select a single setting per knob, and has to

respect the user provided resource budget. The last line shows the optional constraints

where developers can enforce specific knob(s) to be selected or not selected in the solution.

61

Maximize :
∑
i

(CCq
dis(i) + CCq

cont(i)) +
∑
m,n

CCq
corr(m,n)

s.t.
∑
i

(CCc
dis(i) + CCc

cont(i)) +
∑
m,n

CCc
corr(m,n) ≤ B

∀AND(so− > si), si − so ≤ 0 //edges

∀OR(so1, so2, ...son− > si), si−
∑
i

soi ≤ 0

∀N j
i , N

j
i = 1→ vi = v(N j

i) //node

∀Sj
i , S

j
i = 1→ minSj

i
≤ vi ≤ maxSj

i
//segment

∀i, j,
∑
j

Sj
i ≤ 1 //single node per knob

∀i, j,
∑
j

N j
i ≤ 1 //single seg per knob

∗ ∀i∗, Ni∗ = 1|0 //optional PRESET knob

(4.14)

where all CCq’s are calculated with the same approach as cost but with measured overall

quality with user-provided priorities. The second line ensures that the overall cost does not

exceed the provided budget B. The third and forth lines show constraints for AND and

OR edges. The fifth line ensures that knob values are within their segment ranges. The

next constraint requires that only one segment or node can be chosen within each knob.

Lastly, developers can optionally provide extra constraints to force particular nodes to be

selected, or have specific values. This is useful especially when developers need to turn on

or turn off some features in the application (e.g., turn off GPS) without changing the model.

Rapids solves the optimization problem using the off-the-shelf solver gurobi [109].

Extra constraint in Weight Derivation: The correlated contribution derived from the

model construction may make the problem shown in Equation 4.14, which makes it impos-

sible to be solved efficiently. I tackle this problem by adding additional constraints 4.15

that make the matrix-Q [109] PSD (Positive Semi Definite) facing the problem to be con-

62

Table 4.3: Search Space Pruning and Specification Effort, RS Calculated with Error Bound
ε = 5%

Application Knob(#) Conf Discrete(#) Spec (#loc) KDG(#) RS P(#) RS S(#)
Swaptions 1 10 (10+) 2 - 2 (20%) 2 (20%)
Bodytrack 2 50 (5×10+) 5 28 (56%) 15 (30.0%) 12 (24.0%)
Ferret 3 700 (7×10+ × 10+) 12 276 (39.4%) 14 (2.0%) 4 (0.6%)
FaceDetection 3 90 (3×3×10+) 4 - 54 (30%) 18 (20%)
SVM 3 250 (5×5× 10+) 4 - 8 (3.2%) 4 (1.6%)
NN 3 250 (5×5× 10+) 4 - 8 (3.2%) 4 (1.6%)
NavApp 4 180 (10+×3×3×2) 7 40 (22.2%) 12 (6.7%) 6 (3.8%)
VideoApp 4 320 (10+×4×4×2) 11 24 (7.5%) 12 (3.75%) 4 (1.25%)

vex. Doing so will have certain impact on the accuracy of the model, however the problem

cannot be solved by the tool I use if the constraint is not satisfied. If Gurobi [109] or other

tools can support solving non-convex models in the future, this constraint can be removed.

β2
[m][n] <= 4α[m][n] ∗ γ[m][n] (4.15)

4.4 Key Results

I present some of the key evaluation results for Rapids in terms of space reduction, and

the output quality. Detailed evaluation on other aspects, e.g., model accuracy, overhead,

control sensitivity, etc, can be found on Section 7.1.

4.4.1 Space Reduction

One main benefit of allowing developers to express inter-knob dependencies through edges

in KDG is to tailor the configuration space by filtering out invalid configurations. The

reduction in the size of the space could both lead to a reduced the training and online

optimization time. To support such feature in Rapids, I minimize the extra effort required

from the developers by automating most of the training process and providing useful API’s

for developers to integrate their applications into the system.

Pruned Search Space: Table 4.3 shows the space pruning and cost prediction error rate

for all the applications. Conf reports the number of all possible configurations where every

63

combination of knob setting is considered “valid.” KDG reports the number of “valid”

configurations after developers encode dependencies using #loc lines of specification code

to customize the configuration space in the KDG using the number of lines for specification

in column Spec. Developers should have a good understanding of their applications and

can therefore provide meaningful dependencies among knobs.

RS P and RS S report the size of RS with an error threshold ε of 5%. To give a

meaningful comparison for knobs with continuous settings, the settings of each continuous

node are discretized by uniform sampling where the number of sampled data points is

shown with a plus mark in the third column labelled Conf Discrete.

4.4.2 Output Quality

It is impractical to compute the optimal quality configuration for each application under

different budgets due to the enormous size of the configuration space. However, the rela-

tive quality of the selected configurations can be assessed through comparison of different

sampling strategies. The strategies used for comparison purpose are described below:

1. FULL: All configurations, no developer encoded dependencies (treated as oracle).

2. KDG: Configurations with dependencies.

3. Rand-20: A heuristic used in CALOREE [21] that constructs the model with 20

random configurations.

4. RS P(RAPIDS): Partition-based RS.

5. RS S(RAPIDS): Selection-based RS.

Here, for coverage purpose, I run each application with 10 different time/energy bud-

gets. For each run i, budget = min+ i∗(max−min)/10, where i =1 to 10 andmin/max

are the minimum (cheapest setting) / maximum (default setting) time requirement. The

results are shown in Figure 4.5. The “error bars” report the range of qualities under the

64

Figure 4.5: Normalized Quality over Different Budgets for Linux Applications. Bar height:
Mean Quality; Error Line: Quality Range

different budgets, and the height of the solid bars show the average quality under all bud-

gets. The qualities are normalized relative to the highest quality configuration under an

unlimited budget. On average, RS P and RS S achieve 9.5% and 9.6% higher quality

than Rand-20, respectively. The size of RS is smaller than 20 in all applications (fewer

observations), and Rapids stops to take more observations if the cost model accuracy is

achieved. Therefore, Rand-20 achieves higher quality in some applications for having a

better model constructed from more observations. Having way more observations is also

not a good approach for over-fitting, e.g., for NN, KDG performs worse than both Rand-20

or Representative Set.

Overall, developers can express insights on the application structure through KDG

with a few lines of code, which results in a pruned search space over multiple magni-

tudes smaller. After performing the exhaustive training only once, Rapids computes an

extremely compact training set, Representative Set, yielding fast re-training times and re-

sulting in only a small QoS loss (on average <= 7.5%) compared to the oracle.

65

Table 4.4: User-Preferred Sub-Metrics Value Improvement

Preferred Sub-Metrics and Improvement

Ferret coverage ranking
3.2x 3.59x

FaceDetection precision recall
1.13x 1x

NavApp brightness localization information
1.45x 1.5x 1.5x

VideoApp brightness smoothness resolution
1.29x 1.26x 1.62x

4.4.3 User Preferred Sub-Metric Comparison

User provided preferences change application behavior when selecting the optimal solu-

tion for a budget. It is expected to see improvement on the user preferred sub-metrics when

preference is provided. For the four applications with customizable quality, Table 4.4 re-

ports the average improvement in different sub-metrics under the same budget when users

tune preferences. The recall in FaceDetection does not change when preference increases

because the optimal selection with the default quality metric produces the highest recall.

Overall, improvements can be up to 3.2×, with 1.76× on average.

66

CHAPTER 5

RAPIDS IN MULTI-PROGRAMMING ENVIRONMENT

In this chapter, I introduce Rapids-M, an extension to Rapids that handles cross-application

approximation management in a multi-programming environment.

5.1 Introduction

In a multi-programming scenario, n applications are executed (active) at the same time

on a target platform. A user assigns a unique time budget to each application. Multiple

concurrent executions of the same application are possible, each with their individual ex-

ecution time budgets. The multi-application configuration selection problem determines a

configuration for each active application such that (1) an application can finish within the

user specified time budget, if such configurations exist, and (2) the overall quality across

all active applications is as high as possible.

Direct Extension towards Multi-Programming Environment: The ability of reconfig-

uration makes Rapids capable of adapting the application to dynamic environments. In

all of my experiments, Rapids manages to finish the mission even with limited resource

availability. However, as described in Chapter-1, directly extending existing approaches,

including Rapids, to multi-programming environments can suffer from multiple problems

which do not exist in single-app scenario. Figure 5.1 shows the execution trace of running

multiple applications together, each given enough budget to successfully finish the mission

with default setting and managed by an individual Rapids controller. The dashed line with

a cross at the end indicates that the execution fails during the middle of the application.

That is, Rapids cannot find a feasible configuration to complete the mission. The failure

is due to the lack of a global view of running applications, and the naive adaption method

67

Figure 5.1: Execution Trace of Applying Rapids on Multi-Programming Environment

that simply treats other applications as environmental noise.

Aside from execution failure, there are more problems of directly extending any exist-

ing work to multi-programming environment including frequent reconfigurations, and low

quality output. The next section will describe Rapids-M, designed to handle this situation.

Global Configuration Problem: At system-defined points in time, tx, determine a global

configuration vector [c1, c2, . . . cn] with one entry for each active application 1 ≤ i ≤ n,

where an entry is either a valid configuration ci or terminate, such that

(1)
∑n

i Qual Metrici(ci) is maximized (terminate entries are ignored), and

(2) for each active application i, its remaining work units at time tx can be successfully exe-

cuted within its remaining execution time budget under ci, or the application is terminated.

Multi-programming environments are inherently unpredictable since applications may

start at any point in time with different execution time budgets, thereby changing the avail-

able resources for each of the currently active applications, currently active application.

68

The focus of this work is to 1) model and quantify the interference of different active

applications and their configurations, and 2) choose high quality configurations for each

application so as to maximize overall global quality. If the multi-programming environ-

ment changes due to initiation or termination of applications, this approach will recompute

the overall global configuration using the interference and prediction models.

Since all applications execute on the same hardware platform, they interfere with each

other through resource sharing (e.g., memory hierarchy, CPUs / cores, buses / commu-

nication networks). Different configurations may have different resource footprints and

different quality outcomes, making an optimal or close to optimal selection of configura-

tions across all applications a significant challenge. In previous work, single application

performance models are constructed by applying machine learning strategies on all or a

subset of the application’s configuration space. Treating a set of n applications as a single,

meta application would allow these strategies to be applied to the multi-programming case.

However, the resulting size of the combined configuration space is exponential in n, mak-

ing this approach infeasible in practice. Moreover, the performance model is constructed

based on the observations obtained from running the application under a stable environ-

ment. Online adaption is only designed to deal with input dependencies or runtime noise,

but not the interference from other applications.

This chapter discusses the design and evaluation of a new local-global-local approach

that allows a systematic exploration of the combined configuration search spaces of all ac-

tive applications. It first reduces the space of the problem by clustering configurations (lo-

cally) in single applications into equivalence groups, called buckets. Buckets combine con-

figurations according to their similar resource demands and performance slowdown charac-

teristics – the two dimensions of the summary strategy for reducing exploration space sizes.

Since the performance degradation of an application is due to resource availability on the

machine, each bucket also comes with 1) a performance model that predicts the application

slowdown given the system environment, and 2) the resource demand by configurations in

69

the bucket. Across applications (globally), a machine model is constructed to predict the

overall system workload for any bucket combinations from active applications, including

the option of not selecting a bucket for an application. These combinations are exhaustively

evaluated, resulting in the optimal bucket combination with the highest overall global qual-

ity. This bucket combination has to be feasible, i.e., each bucket in the combination has

to contain at least one configuration that satisfies the execution time constraint (budget)

of the associated application as provided by the user. Finally, a (local) selection within

each bucket will be performed to allow individual applications to react to minor platform

uncertainties and input dependencies that can be handled without a global reconfiguration,

thereby avoiding reconfiguration overhead.

Rapids-M (RAPIDS for Multiprogramming) is a prototype implementation of the new

local-global-local approach to configuration management across multiple applications. Ex-

perimental results show that application configurations can be partitioned into a small num-

ber of buckets allowing the system to produce global configurations of high quality that are

able to successfully execute applications under user provided execution time budgets, when

possible. Machine learning models are used to model the platform-specific configuration

interactions on the level of target system footprints (m-model), and to determine applica-

tion specific models for configuration slow-downs in response to varying overall system

loads (p-model). Both, m-model and p-models allow the prediction of system and con-

figuration behaviors, i.e., assessing the mutual interference and benefits of configuration

selections.

Experimental results on six applications and different execution traces show the effec-

tiveness of Rapids-M and its implementation. Runtime overhead is defined as the addi-

tional execution time needed to solve the global selection problem, the local problem, and

any resulting dynamic reconfigurations. Training times for the m-model and p-models are

also reported, capturing Rapids-M’s offline overhead. Compared to existing approaches in

which each application adapts itself individually, on a 4-core machine, Rapids-M achieves

70

3.4% higher success rate when the system is not busy (≤4 active apps), and 22.75% higher

when busy. This translates to 2.6% (not busy) and 52.99% (busy) higher overall output

quality. Furthermore, Rapids-M achieves such improvement with an average of 40% fewer

performed reconfigurations.

5.2 Rapids-M Framework Overview

Figure 5.2: Approach Overview

Rapids-M uses the “standard” notion of a configuration as defined in Rapids, and also

by most existing adaptive configuration management approaches for single applications

[46, 20, 21]. Rapids-M is a framework that manages the configurations of concurrently

active applications with the goal of choosing individual application configurations such that

all individual resource constraints are satisfied while maximizing the overall, combined

quality of all active applications.

A single application’s configuration space is the Cartesian product of all knob value

ranges, where each value range is discrete, i.e., each knob has finitely many value settings.

Assuming that a single application has k knobs with discrete ranges of m values, the re-

71

sulting configuration space is O(mk). Existing approaches constructs performance models

to determine the best configuration for a given optimization objective at runtime. Using

the straight-forward approach of treating all active applications as a single, meta applica-

tion, the size of the resulting configuration space is O((mk)n) for n applications which

can be multiple orders of magnitude bigger and therefore infeasible to explore. How-

ever, configuration space exploration is necessary because of the mutual interdependence

of the individual application configurations due to target system resource.To the best of my

knowledge, the Rapids-M framework is the first to address configuration management of

multiple active applications.

One main design feature of Rapids-M is to model cross-application configuration in-

terference not at the configuration space level, but on the system footprints associated with

each configuration. Figure 5.2 shows the general idea of such abstraction. A system foot-

print is a vector of hardware counters that characterize the use of different system resources

by an executing application. Footprints can be used to represent a configuration’s resource

demands, and also resource demands of groups of active applications. Since resource shar-

ing is based on target machine resource contention, system footprints are the right abstrac-

tion to represent the impact of such sharing. This strategy has two main advantages: (1)

many configurations of an application may have the same system footprint, and (2) the

impact of other applications and their configurations on the performance of a given appli-

cation’s configuration can be modeled based on the combined system footprint of these

other application configurations. In other words, for the assessment of a configuration’s

performance modeled as an expected slow-down, only the combined system footprint/-

workload of other applications is relevant, and not their particular configuration selections.

The resulting summary information is the key to allowing effective configuration space

exploration management across multiple applications. This summary information is com-

puted and exploited with a local offline model training phase, followed by an online global

configuration and online local configuration selection phase.

72

In the offline phase, single application configurations are clustered into groups with

similar system footprints and similar slowdown behavior in response to overall system

workloads. Such groups of configurations are referred to as buckets. The individual ap-

plication configuration spaces are exhaustively explored and each configuration’s system

footprint is recorded together with its cost and quality under different system workloads.

This data is used to train the p-model that captures the slowdown for each configura-

tion in response to different system workloads. The interaction of different workloads and

configuration footprints is captured by the m-model which is trained on data obtained by

measuring runtime properties of configuration system footprints executing with randomly

generated, “stresser” workloads.

At runtime, the global optimization manager uses the constructed p-models and m-

model to assess the impact of global events (e.g., start/exit of applications) on resource

availability, and to select the set of local configurations that maximize the overall quality

under the changed resource availability. A globally optimal bucket along with the predicted

slowdown for all configurations in this bucket is assigned to each application.

The local controller relies on optimization strategies used in single-application sce-

nario, e.g., Rapids, for configuration selection with the predicted slowdown. However, the

local configuration managers can only select configurations within the bucket assigned by

the global manager. Therefore, I will concentrate the discussion on Rapids-M’s offline

component and the online global configuration manager.

5.3 Rapids-M Offline Phase

The three key models and abstractions that are generated in Rapids-M’s offline phase are

the target system’s m-model, p-models and their associated buckets.

73

5.3.1 Resource Usage Prediction: M

The performance of an application can significantly degrade when the overall system re-

source utilization is high. For example, Bodytrack suffers from as high as 15X slow-down

in terms of execution time. Predicting the overall environment is crucial before estimat-

ing the performance degradation of an application under multi-programming environment.

More specifically, how would the system workload change when a new application starts if

there are already other active apps running?

Rapids-M trains the m-model with a Linux “stress” tool [110] that introduces arbitrary

workloads to the system, including I/O, CPU utilization, harddisk access, and etc. The sys-

tem footprint is measured by Intel’s performance counter monitor (PCM) [111]. Vector V

represents the system footprint where each entry corresponds to a particular system metric

considered by Rapids-M, for example, [FREQ, Mem-READ, Mem-WRITE, IPC, L2HIT,

L3HIT, L2MISS, L3MISS]. For each training data point, Rapids-M collects two running

instances, which could be an instance of “stress” tool or an application, each with different

workloads. It records the system footprint when each instance executes in isolation (V1,

V2) and together (V1,2). Rapids-M constructs a separate regression model for each feature

in the vector based on the data collected. Suppose m features are collected in each vector.

Equation 5.1 shows the model construction for the k-th feature in V1,2. The first m columns

of X are list of V1s and the last k columns are list of V2s, i.e., each row of input is [V1, V2]

and its corresponding output is V1,2. The goal is to locate β that minimizes the error ε.

V1,2[k] = Xβ + ε (5.1)

The m-model is a collection of such models each predicts a particular feature in V1,2.

When running n applications together, the overall system footprint is estimated by applying

M iteratively:

V = M ⊗ ...(M ⊗ (M ⊗ (V1, V2), V3)...Vn) (5.2)

74

Figure 5.3: m-model Construction

5.3.2 Performance Prediction: P

Rapids-M predicts the performance degradation for each application under different envi-

ronment by a performance regression model p-model. p-model is trained by collecting the

application slow-down under different environments. During the training, Rapids-M first

records the execution time for an application under configuration c when running alone. It

then runs the configuration under a number of different environments created by running

another “stresser”. This stresser could be a another application or an instance of “stress”

tool. Under each environment, Rapids-M records the overall system footprint V and the

execution slow-down (α). The regression model is to minimize the error between predic-

tion ᾱ and observed slow-down α. Note that a unique p-model is constructed for each

bucket. During construction, configurations that are not part of the bucket are not consid-

ered. Figure 5.4 shows the construction of p-model.

Different models may be better fit for a particular footprint feature in m-model predic-

tion or the slowdown in p-model, and they may not be relevant to all features in the vector.

The solution to the latter is discussed in ESP [71] by first filtering out insignificant features,

then training a higher-order model with the remaining features. However, this approach has

the drawbacks that is uses a single, linear model approach for all applications, and does not

distinguish between different configurations. Also, to support the slowdown prediction for

75

Figure 5.4: p-model Construction

up to k applications, ESP needs to collect the training data by actually running k applica-

tions together. In contrast, the p-models and m-model are trained individually. Rapids-M

also maintains a model-pool with multiple available models, including Regular Linear-

Regression (LR) regression [102], Elastic-Net (EN) regression with cross-validation [102],

Lasso (LS) regression with cross-validation [102], Bayesian-Ridge (BR) regression [102],

and a fully connected Two-Layer-Neural-Network with 50 neurons and ’relu’ activation

function (NN) [112]. When constructing the models, Rapids-M trains all models in the

pool and picks the one with highest accuracy. For each of these candidate models except

NN, Rapids-M first iteratively selects the top-K important features in the footprint. Then,

it decides whether to use a higher order regression by comparing the models from linear

and higher order features.

5.3.3 Bucket Determination

Observation shows that configurations in an application can behave differently in both in-

troducing workload and performance degradation under a particular environment. How-

ever, these configurations can still be clustered into a limited number of groups. Configu-

rations within each group share similar behavior: introduce similar workload to the system

and suffer from similar slow-down given a particular environment.

Figure 5.5 shows the dendrogram of hierarchically clustered configurations in one of

76

Figure 5.5: Application Configuration Affects Environment
Vertical Bar Shorter =⇒ Higher Inner-Cluster Similarity; Black Bold Number: Number
of configs in a cluster; Red Percentage Number: MRE of performance model prediction

the benchmark applications (Ferret) by system footprints. The X-axis shows the index of

all 700 configurations. For simplicity, I truncate the indexes of N configurations on the

X-axis and represent them by (N). Branches in the graph show the result of clustering.

For example, all 700 configurations are clustered together at the “root” of the tree (Black

Dot). When moving downward, two “sub-tree”s (clusters) are formed with size 250 and 450

(Yellow Dots). The Y-axis shows the average euclidean distance within a group. The height

of each “sub-tree” reveals the closeness of all configurations in the cluster. Configurations

are clustered into buckets. Configurations within each bucket have higher similarity in

terms of system footprints when moving down the dendrogram.

The number of buckets can be determined by the distance threshold, i.e., the maximum

euclidean distance within a cluster. In Figure 5.5, if the threshold is 4, all configurations

can be clustered into 5 bucket (dashed line). For each bucket, a performance model is

constructed to capture the relationship between slow-down and the execution environment.

In Figure 5.5, the red number on the left represents the average prediction error (Mean

Relative Error) for all 5 buckets. Using buckets reduces the configuration search space size

from O((mk)n) to O(bn) where b is the number of configuration buckets per application.

The bucket design has to satisfy two aspects of similarity: 1) switching between config-

77

urations belonging to the same bucket will not introduce significant impact to other appli-

cations, i.e., lower in the dendrogram, and 2) all configurations within a bucket suffer from

the same performance degradation under a particular environment, i.e., lower MRE. The

number of buckets could range from 1 (all configuration have a similar system footprint), to

N (all configurations have a unique footprint). Having more buckets result in higher sim-

ilarity for included configurations, while increasing the problem size. On the other hand,

fewer buckets could hurt the accuracy of m-model and the p-model. I implement a variant

of Hierarchical Clustering[113] in Rapids-M.

Input: all configs, Tdis, Tacc
Result: buckets
buckets = [all configs];
// initial configuration partition
buckets = h cluster(buckets, criterion=’dis’, Tdis)
err,worst id = evaluate(buckets);
while err ≥ Tacc do

// refine clustering of the worst bucket
tmp buckets = h cluster(buckets[worst id], criterion=’number’,2);
buckets[worst id] = tmp buckets;
err, worst id = validate(buckets)

end
return buckets;

Algorithm 1: Bucket Determination

Algorithm 1 describes the approach. I first run a standard Hierarchical Clustering pro-

cedure to generate the initial buckets, satisfying the distance threshold Tdis. Then, I evaluate

each bucket by training the p-model with 70% of its observations, then validating with the

remaining 30%. If the p-model accuracy Tacc theshold is not satisfied, I iteratively refine

the bucket that have the worst p-model accuracy until the threshold is satisfied. In Rapids-

M, I use Tdis=4 and Tacc=6%. The choice of these numbers was based on the experiences

with the sample applications.

78

5.4 Rapids-M Online Configuration Manager

The goal of Rapids-M is to find a global optimal configuration for all active applications.

By grouping configurations into buckets, the size of the search space is reduced from all

combinations of application configurations to all combinations of application buckets. This

strategy can reduce the required search space by multiple orders of magnitude. The global

optimization problem is solved in two steps: 1) finding the globally optimal bucket for each

application, and 2) finding the optimal configuration within each bucket. The global man-

ager provides each local manager with a particular globally optimal configuration, together

with all feasible configurations in the bucket to which the optimal configuration belongs.

The latter information allows the local manager to change configurations if needed without

impacting configuration choices in other applications. Algorithm 2 describes the runtime

algorithm to compute the optimal global configuration.

Invariant of Algorithm 2: If the predicted slow-downs (p-models) and the predicted

configuration interactions (m-model) are correct (accurate within an error threshold), the

selected local configurations are globally optimal under the user defined time constraints

and priority weights assuming all active applications can successfully finish the remainder

of their execution. The global manager is invoked each time a new application becomes

active, an active application terminates, or an active application requires a new bucket

assignment. Global reconfiguration may also be triggered every fixed time interval, or

may be requested on demand, i.e., a local controller reports that no feasible configuration

in the assigned bucket fCgs set meets the application’s runtime constraint due to system

uncertainties.

79

Input: Set of n applications with user specified execution time constraints Ti,

for 1 ≤ i ≤ n. For each application, set of buckets with associated p-models,

bucket footprints, and cost / quality models. A target machine m-model.

Result: Termination or Bucket selection for each application i, bi.

foreach bucket combinations [b1, b2 . . . bn] do
determine global footprint (gfp) using m-model:

gfp =
⊗

M (fp(b1), fp(b2), . . . fp(bn))

determine vector of slow-down factors (sdf) for each bucket using the

bucket-specific p-models pb

sdf = [pb1(gfp), pb2(gfp), . . . pbn(gfp)]

foreach bucket bi do
determine set of feasible configurations (fCgs) that satisfy the

execution time constraint T rem
i for the remainder of the execution:

fCgs(bi) =

{c ∈ bi | sdf [i] ∗ cost(c) ∗#remaining workunits(c) ≤ T rem
i }

if fCgs == ∅ then
reject bucket combination and break

end

compute the maximal quality configuration mQCg(bi) of all feasible

configurations of bi:

mQCg(bi) = c with qual(c) ≥ qual(cx) for all cx ∈ fCgs(bi))

end

compute the global quality GQ([b1, b2 . . . bn]) as a

n∑
i

qual(mQCg(bi))

end

Select valid (non rejected) combination of buckets with maximal GQ: [bmaxQ
1 ,

bmaxQ
2 . . . bmaxQ

n]

Return to each application i its bucket bmaxQ
i and feasible configurations

fCgs(bmaxQ0
i). If no bucket assignment for an application, select

“terminate”.
Algorithm 2: Global Configuration Manager

80

5.5 Key Results

In this section, I report some of the key evaluation results for Rapids-M in terms of re-

ducing reconfiguration frequency, improving output quality, success rate, and lowering the

rejection rate. Detailed evaluation on other aspects, e.g., model accuracy, overhead, selec-

tion optimality, etc, can be found in Section 7.1.

5.5.1 Strategies Used for Comparison

Since to the best of my knowledge Rapids-M is the first system that performs configu-

ration management across sets of applications, the alternative strategies are constructed as

extensions to existing single application approaches or multi-application strategies for other

problems (e.g., ESP for scheduling). Determining the optimal solution requires exhaustive

physical measurements which is not possible due to the size of the configuration space. I

define the following alternative configuration selection strategies. The strategies differ in

what information they use to determine each applications configuration.

ContextOblivious (CO): Applications ignore the fact that they share resources with oth-

ers applications. Configuration decisions are made based on the initial assigned budget and

the difference between the assumed and actual resource availability is treated as “environ-

mental noise”. At times of reconfiguration, the available remaining budget is adjusted by

this observed noise.

AwareShare (AS): This strategy is partially inspired by ESP[114]. It first measures

the overall environment of different combinations of benchmark applications under their

default configurations (ignoring buckets). Then the environment is used together with

Rapids-M’s p-models to select optimal configurations for each application. This strategy

is used only as an oracle in static evaluation where the combination of running applications

is known before execution and the environment can be measured.

Rapids-M (RM): This strategy utilizes the full power of Rapids-M: configurations are

81

clustered into buckets, the m-model predicts the system environment, and p-models pre-

dict slowdown.

Rapids-M with Rush-To-End (RM-Rush): This strategy extends Rapids-M with a

rush-to-end feature that artificially increases the predicted slowdown up to 1.5X when 60%

of the work units are completed and the remaining budget is no more than 10% of predicted

cost. This feature is designed as an insurance policy that tries to avoid failing an execution

after most of the work has been done.

EqualShare (ES): Each application divides its assigned resource budget (execution time)

by the number of concurrently active applications. This reduced budget is used to determine

the application’s configuration.

Always Low(LOW): This strategy always picks the lowest setting for all applications.

Table 5.1: Strategies Used for Comparison

Utilizes
m-model

Slowdown
for N apps

Available in
Evaluation

CO - 1.0 Static / Dynamic
AS - P(measured) Static
RM X P(M()) Static /Dynamic

RM-Rush X rush(P(M())) Dynamic
ES - N Static / Dynamic

LOW - - Dynamic

Table 5.1 summarizes the differences between the strategies. The slowdown predic-

tion aggressiveness increases going down the table. For each possible group of two to

six sample applications and three different budget constraint levels (high, medium, low), I

measured the overall combined quality of the applications.

5.5.2 Evaluation Metrics

I evaluate the performance of Rapids-M by dispatching different applications starting at

random times with a given budget. Each application gets to reconfigure during the execu-

82

tion. I first generate a series of execution traces showing when to start which application

by giving each application infinite budget such that all applications finish successfully with

the highest setting producing the highest possible output quality. For each generated trace,

I repeat the trace with shrinking budgets to force reconfiguration using different strategies.

Different strategies are evaluated on four aspects:

• Rejection Rate: Failing to find a feasible configuration at the application start time.

This could happen when the strategy over-predicts the slowdown.

• Success Rate: Finishing the execution within budget.

• Reconfiguration: Number of reconfiguration due to performance changing. More fre-

quent reconfiguration is usually caused by the mis-match between the real execution

time and the predicted cost. Since the same cost model is shared across all strategies,

the performance difference translates to the accuracy of the slowdown prediction.

• Output Quality: Normalized overall output quality from 0 to 1 for applications that

successfully finish. The quality achieved by the lowest setting is 0. A failed execution

is penalized by a negative quality of -0.5. An application has to terminate success-

fully with a valid configuration in order to be considered in the overall quality. In

other words, their is no partial quality notion if an application “dies”.

It is important to note that even “bad” strategies for the global configuration case can do

rather well for an entire execution since the prediction error can be somewhat compen-

sated for at each reconfiguration point. However, the number of local reconfigurations are

expected to significantly increase when using “bad” models.

5.5.3 Improvement on Overall Output Quality

To demonstrate the performance in different scenarios, I run the experiment with a thresh-

old N such that the simulator will stop dispatching new applications when there are N

83

Figure 5.6: Sample 10-minute execution trace with up to 4 active applications using differ-
ent strategies, budget scale=1.0

active applications. Figure 5.6 shows an example of a 10-minute-execution trace where

N=4. As shown in the graph, most executions got rejected by ES because of the over

estimation on slowdown. On the other hand, for CO, executions are more likely to fail dur-

ing the middle of execution for under estimating the slowdown. Only 2 runs failed under

Rapids-M, and these runs are “rescued” by adding the ’rush to end’ strategy.

Figure 5.7 shows the results of 18 traces, each repeated with multiple budget settings

using different strategies. To summarize, ES predicts the slowdown so aggressively that

it rejects most executions and has 54.4% of Rapids-M’s success rate. On a 4-core ma-

chine, Rapids-M achieves a 3.4% higher success rate than existing approaches (modeled

by CO) when the system is not busy (≤4 active apps), and 22.75% higher when busy. This

translates to 2.6% and 52.99% higher output quality. Furthermore, Rapids-M achieves its

improvement while reducing the number of reconfigurations to 40% of CO. RM RUSH

further improves the quality by an average of 1.6% higher by enabling more applications

to finish.

84

Figure 5.7: Dynamic Configuration Selection Comparison

85

CHAPTER 6

IMPLEMENTATION

In this chapter, I first introduce the main design feature of Rapids, including the develop-

ment workflow and how application developers and application users can interact with the

system. Rapids-M shares most of the infrastructure with Rapids, but with an extra layer

of control logic plus a global server implementation.

6.1 The Rapids Framework

Behavior Expectation
 and Runtime

 Training and
 Modeling

Cost
ModelApp

Developer User

App

Reconfigure
using

KDG with
customized

quality

User Cost budget
User Quality preferences

Framework Model
Constructor

Valid
Configurations Default

Quality
Model

RS
Implementation
& Specification

 KDG
Specification

App

Quality Evaluation
Virtual knobs

Re-train
RS Cost
Model

Updated
Custom
Quality
Model

&
Framework

Runtime

Development Platform Target Platform

Knob Actions

Figure 6.1: Rapids Overview

Rapids provides an end-to-end framework to write and execute reconfigurable applica-

tions. Rapids’s work flow consists of three main phases: (1) application specification and

implementation (done by the Developer), (2) automatic training and modeling (done by

86

Knobs :

continuous knob name C [vmin, vmax];

...

discrete knob name D {v1, v2, ...vn};
...

Dependencies :

sink knob name{v} < −source knob name{v} AND|OR source knob name[vmin, vmax];

...

SubMetrics :

sub metric name1, sub metric name2, ...

Figure 6.2: Developer: Structural KDG for NavApp

the Model Constructor), and (3) custom quality model specification and construction, bud-

get specification, runtime monitoring, and reconfiguration (done by the User & Runtime

Framework).

Developers’ Effort: Rapids provides a profiling platform and a runtime library that al-

lows application developers to communicate important application properties to the frame-

work. To do the profiling, developers need to prepare:

- KDG specification: A file to specify insights including knob type, value range, and depen-

dencies. Rapids uses the file to generate the KDG structure to represent the configuration

space used to train cost and quality models. An example specification for the NavApp

application is shown in Figure 6.2.

- Evaluation Module: A Python module that includes a) command and command-line ar-

guments for application execution, b) the optional sub-metric (qi in Eq 4.5) evaluation

strategy, and c) an overall QoS function (F in Eq. 4.5). The execution framework is pro-

vided by extending a class from a base class AppMethods, included in the framework, and

implementing at least the three functions shown in Figure 6.3.

- Source code modifications: In the application code, the developer inserts library calls as

shown in Figure 6.4 to a) bind particular actions (e.g. change a variable’s value) to knobs

87

1 from rapidlib linux import AppMethods
2 Class MyAppMet(AppMethods):
3 def get command(self, configs=None):
4 # return the execution cmd
5 def get submetrics(self):
6 # return all submetric values
7 def get final qos(self, weights, submetrics):
8 # return overall quality

Figure 6.3: Developer: Evaluation Module Implementation

1 #include ”RSDGMission.h”
2 ...
3 mission = RSDGMission(DESCRIPTION FILE);
4 //mission−>promtCustomQuality();
5 mission−>regKnob(knobNames, ¶s);
6 mission−>setUnit(TOTAL WORK UNIT, UNIT PER CHECK);
7 mission−>setBudget(BUDGET);
8 for (int i=0; i<TOTAL WORK UNIT; i++)
9 {

10 work(paras); // actual work
11 mission−>finishOneUnit();
12 }...

Figure 6.4: Developer: Application Source Code Modification to Involve Rapids

88

and their settings (Line 5), b) inform Rapids about the execution progress (Line 12), (e.g.,

how much remaining work) c) expose virtual knobs corresponded to sub-metrics to users

if the developer chooses to support custom quality (Line 4), and d) accept user defined

budgets (Line 7). More detailed API‘s to fine-tune the mission are also available. I believe

that the additional demand on the developers is reasonable and well within their expertise.

Training and Model Construction: On the development platform, Rapids generates an

exhaustive training set over all knob settings, eliminating all invalid configurations accord-

ing to the developer’s KDG specification. The developer provided Evaluation Module is

used to calculate costs and sub-metrics (or default metrics), which in turn build the models

and RS as discussed in Section 4.3.2.

Users’ Effort and Runtime Control: Before execution of the main routine, users can

optionally express their quality preferences through a developer provided interface. Rapids

will then finalize the quality model. If no customized quality is specified, the developer

defined default model is used. Users then provide a resource budget (time or energy).

During runtime, Rapids tracks the remaining resource budget relative to the remaining

work. The runtime system continuously monitors the application and performs automatic

re-configuration if needed to maintain the maximum possible quality while respecting the

provided budget even under changing conditions due to system uncertainties.

89

Figure 6.5: Rapids-M Framework Implementation Overview:
Boxes with solid border: provided by Rapids-M; Boxes with dashed border: required from
developers

6.2 Rapids-M Implementation

The Rapids-M framework is implemented as a set of offline and online modules. Dur-

ing new application development or adapting an existing application for execution within

Rapids-M, the application developer has to provide information to Rapids-M’s offline lo-

cal module via provided, simple APIs as the same in Rapids. This information enables

the offline application profiler to automatically collect profiling data for an application,

which is needed for offline construction of p/m-models and bucket partitioning, and online

configuration management to track application progress through monitoring completion of

work units. The offline model training is performed on the target platform to produce the

system footprints and stresser workloads. The artificial stresser workloads are generated

by LINUX’s “stress” tool [110].

In contrast to other approaches (e.g., [114]), Rapids-M collects each application’s pro-

90

file data, and constructs the models independently of other applications, making Rapids-M

easily scalable. The offline generated information is represented in an application profile

and stored on the Rapids-M server, which also hosts the online global configuration man-

ager. At runtime, i.e., just before application execution, the application user specifies an

execution time budget (cost budget). During application executions, the global configura-

tion manager keeps track of all active applications’ progress and their remaining budget. It

then determines bucket assignments for each application using Algorithm 2. Application

start and termination events trigger the reevaluation of the local bucket assignments, in ad-

dition to explicit requests from local controllers. Each active application has its own local

controller, which communicates with the global configuration manager to receive bucket

assignments or to request global bucket reassignments. The local controller is responsi-

ble for selecting the optimal configuration within its assigned bucket. Configurations in

the same bucket shares similar footprints, thereby local reconfiguration can be performed

safely without impacting the overall system footprint visible by other applications, i.e.,

performance impact on others is small.

Figure 6.5 shows the overview of Rapids-M framework. I implement and evaluate the

system on a single-socket machine with 4 Cores at 3.7GHz, and 16GB RAM at 2666MHz.

The Rapids-M profiler and learner (model construction and prediction) is implemented in

Python and has ˜12.2K lines of code. Rapids-M development framework is implemented in

Python for developers to hook up the applications for training. The local runtime controller

is implemented as a C++ library (˜6.5K lines of code) with simple API’s to be integrated

into source code by developers. During runtime, it communicates with the online global

configuration manager (in PHP). The manager communicates with the learner via sockets.

Rapids-M constructs the m-model for the target machine on the server using the lo-

cally created stresser profiles. The construction took 173 seconds to complete without

feature selection.

Local Application Profiler: The profiler is designed as a data collector for the developers

91

Table 6.1: Data Collected by Rapids-M Profiler

Data Description Usage

base-run
c cost when alone calculate slow-down
v footprint when alone m-model construction
q output quality online selection

stress-run [cas] cost when app+stressers calculate slow-down
[vs] footprint of stressers m-model Construction

[vas]
overall footprint of
app+stressers

m-model Construction
p-model Construction

to train the application for Rapids-M required models. The profiler requires the application

specification from developers, i.e., individual knob settings, output quality evaluation, and

execution instructions.

Table 6.1 shows the profiling strategy of Rapids-M. For each configurationCi, Rapids-

M profiler runs 1 + K tests. The first run is a base-run that the application runs alone on

the target system using Ci and measure the Base Cost: c, Output Quality: q, and System

Footprint: v. Then it runs the application K times each with a different “stresser”. After

each run, Rapids-M records the System Footprint of the stresser when running alone: vs,

the Overall System Footprint: vas, and the execution time of the application cas executing

with the stresser.

Table 6.2 summarizes the offline overhead of development in Rapids-M. The second

column reports the number of lines of code changes required from the developer to integrate

Rapids-M into the origin source code. The column “# configs” reports the total number

of configurations in the application. Note that in Rapids-M, all knobs have discrete set-

tings. The column “data profiling” reports the time required to collect the data from each

application. The last column reports the time to construct the buckets and their p-models.

As shown in the table, the effort required from the developer is minimal, as compared to

the relatively large configuration space. The data collecting phase can be time-consuming

and the overhead is proportional to the complexity of the application.

Global Learner: After the profiler(s) collects the training data, the data are sent over

92

Table 6.2: Rapids-M Implementation with Offline Overheads

Lines of Source
Code Changes

Offline Training Overhead
configs data profiling bucket/p-model constr

Swaptions 14 10 44.4 mins 22.72 secs
Bodytrack 17 50 72.5 mins 35.69 secs
Ferret 20 700 8.7 hours 189.79 secs
Facedetect 20 90 28.2 hours 374.34 secs
SVM 20 250 12.4 hours 21.32 secs
NN 20 250 27.6 hours 15.95 secs

to a global server for model construction. During the training, the learner performs the

following tasks:

• Construct / Update the m-model for the machine: using all the observed system

footprint from all applications, X = [vs, va] Y = [vas]

• Compute the bucket for the application: using the observed system footprint of all

configurations: [v]

• Construct the p-model for the bucket: using the overall system footprint and the

slowdown for the application: X = [vas], Y = [cs/c]

• Update the bucket based on the prediction accuracy

Global Manager: During the initialization phase, after the learner finishes the bucketi-

zation / p-model construction for the application and updates the m-model, the models

will be stored on the server. Summary information will be kept as app profile for runtime

control.

During runtime, the manager keeps track of the state of all applications on the machine.

There are three cases when running applications need to contact the server:

• Before execution: The application notifies the server that it is about to run so that the

server can predict the slow-down for all the currently active applications.

93

• Re-configuration: The application actively requests a new bucket assignment when

no configuration in the current bucket can satisfy the budget constraint.

• Routine Check: The application periodically checks with the server for updated

bucket assignment. This is needed since the assignment can be changed when new

applications start on the same machine. By default, Rapids-M performs a routine

check after each 10% of the total work units.

• After execution: The application reports the termination of the execution to let the

server re-evaluate the slow-down for the remaining applications.

Each application on the machine is in a state of either ACTIVE or IDLE. All ACTIVE

applications will also be associated with a budget. The manager updates the global bucket

selection whenever a new request comes in, except “Routine Check.”

Local Controller: The global manager returns the optimal bucket assignment for an ap-

plication along with an optimal configuration within the bucket based on the remaining

budget and execution progress reported by the application. The local controller deploys the

configuration. However, unexpected disturbances like input dependencies may affect the

real execution time for the application. The local controller adapts the application behavior

by re-selecting the optimal configuration within the assigned bucket.

94

CHAPTER 7

EVALUATION

In this chapter, I report the detailed evaluation results of both Rapids and Rapids-M.

7.1 Rapids: Single-App Scenario Evaluation

I evaluate the system with respect to the work’s three main contributions: 1) Developers:

Configuration space reduction from developer encoded insights, 2) Machine: Training time

reduction and the model accuracy, 3) Users: Improvement of user-preferred sub-metrics

relative to default metrics. Finally, I evaluate the runtime performance by measuring the

overhead and the overall output quality.

7.1.1 Problem Size Reduction from Developer’s Insight

In Section 4.4, I report the configuration space reduction by leveraging structural insights

from the developers. The pruned search space results in reduced training time but at the

same time may introduce some errors in the prediction.

Reduced Training Time: Filtering out “invalid” configurations through the KDG or cal-

culating RS both prune the configuration space and thus reduce the training time. The total

training time may not linear in the number of trained configurations due to the execution

time difference for each configuration. I report the total training time for constructing the

cost model through different approaches; i) FULL: All configurations, no developer en-

coded dependencies ii) KDG: Configurations with dependencies, iii) Rand-20: A heuris-

tic used in CALOREE [21] that constructs the model with 20 random configurations, iv)

RS P(RAPIDS): Partition-based RS, and v) RS S(RAPIDS): Selection-based RS.

As shown in Figure 7.1, allowing developers to specify dependencies among knobs

95

N
or

m
al

iz
ed

 T
ra

in
in

g
Ti

m
e

0

0.25

0.5

0.75

1

Swap
tio

ns

Face
Dete

cti
on

SVM NN
Ferr

et

Bod
ytr

ack

Nav
App

Vide
oA

pp

av
era

ge
*

FULL KDG Rand-20 RS_P(RAPIDS) RS_S(RAPIDS)

Figure 7.1: Normalized Required Training Time, higher the slower

reduces the training time by an average of 38.55%. The RS calculated by Rapids further

reduces the training time to 12.76% (7.5% on average), which translates to up to 13× faster

retraining when porting to other devices. When using training for a pre-defined number of

samples (e.g, 20), the training time is reduced to an average of 21.24%. The significant

reduction in training cost of the RS approach enables Rapids to quickly retrain itself when

applications are ported to unknown target devices.

7.1.2 Model Validation

Rapids constructs the cost model quickly based on a pruned space (KDG) and/or RS.

However, a reduced training set may lead to a higher prediction error. To this end, I evaluate

the accuracy of such reconstructed models on the target machines. For fairness, FULL is

not considered because all configurations excluded in the KDG are “invalid”. KDG serves

as the oracle with accuracy = 1.0 because the model is built with all observations. Fig 7.2

shows the corresponding prediction errors across all valid configurations. On average,

96

Figure 7.2: Model Prediction Error on Target Machine, lower the better

the model constructed from Rand-20 results in a 6.39% prediction error (averaged in 10

runs). Rand-20 performs well in simple applications like Swaptions, but has high error for

complex applications. In Ferret, the model has an average error of 20.4% with a maximum

of 65.1%. The two RS strategies have a much smaller average error: 2.4% and 3.1%.

7.1.3 Application Output Quality

Clearly, model accuracy can impact the configuration selection, i.e., the achieved overall

configuration quality. The result was shown in Section 4.4.2 and the overall quality of the

execution using both RS strategies outperform Rand− 20.

7.1.4 Custom Quality

Application developers can provide a customizable, higher level quality notion through

virtual knobs where users can express their preferences for a particular quality outcome at

a level of abstraction that makes sense to them. In turn, Rapids automatically builds the

required quality models to support configuration selection and reconfiguration. I evaluate

this benefit on the four applications with custom quality metrics.

97

Budget

O
pt

im
al

ity

0%

50%

100%

150%

m
in 5p 10
p

15
p

20
p

25
p

30
p

35
p

40
p

45
p

50
p

55
p

60
p

65
p

70
p

75
p

80
p

85
p

90
p

95
p

m
ax

NavApp VideoApp FaceDetect Ferret

Figure 7.3: Optimality of Default Solution under Custom Quality across Different Budgets.
X-axis: Budget Percentage, 50p:50%.

- Optimality Evaluation: Under a given budget, the optimal configuration may vary be-

tween the default (Q) and the custom (Qc) quality metric. The default optimal configura-

tion (c) under Q may provide significantly lower quality (Qc(c)) than the custom optimal

configuration (cc) underQc. I show this optimality reduction under different execution time

budgets from min to max time requirements in 5% increments in Figure 7.3 min and max

are the times required for the highest and lowest quality configurations. By enumerating

different possible user priorities from 1.0 to 2.0 in increments of 0.1 on one sub-metric,

I report the average relative quality value Qc(c)/Qc(cc). The result show that there is

substantial quality improvement due to customization across all applications, in particular

under intermediate budgets where tradeoff decisions are most crucial.

- User Preferred Sub-Metric Comparison: The improvement on the preferred sub-metric

was shown in Section 4.4.3. Here I report a detailed result for Ferret to illustrate how dif-

ferent user-provided preferences affect the sub-metric. As shown in Fig 7.4, I evaluate the

Coverage and Ranking sub-metrics by running the application with budget of 1/2 * (max

- min). I adjust the preference of one of the metrics from 1.0 to 2.0 (shown in solid lines)

98

Preferences on Preferred Sub-Metric

M
et

ric
 R

aw
 V

al
ue

0

0.05

0.1

0.15

0.2

0.25

1.2 1.4 1.6 1.8 2

Coverage when Preferred Ranking
Ranking when Preferred Coverage

Figure 7.4: Change of Sub-Metric in Ferret. Solid: preferred; Dashed: not preferred

and keep the other as 1.0 (shown in dashed lines). For example, solid-blue and dashed-red

lines represent the change of sub-metric values when “Coverage” has an increasing prefer-

ence. Figure 7.4 shows an improvement on preferred sub-metrics as preference increases.

The metric that is not preferred suffers. This is expected since knob settings that benefit

one sub-metric may hurt the other.

7.1.5 Reconfiguration and Overhead

Rapids constructs the performance model based on a training set of input from each appli-

cation. During runtime, the predicted and the real performance can be different for three

main reasons: 1) Embedded prediction error in the model, 2) Application input depen-

dencies, and 3) Dynamic runtime environment. Table 7.1 shows the input dependency of

different applications. Bodytrack, FaceDetection, and Ferret have the most significant

deviation of cost per each work unit.

Rapids overcomes these issues by constantly monitoring the resource usage and per-

forming reconfiguration if necessary during runtime. The full reconfiguration procedure in

Rapids has three steps:

99

Table 7.1: Application with Input Dependency

Training Input Test Input Mean Std
Swaptions 5 50 2191.22 25.72
SVM 2 10 2658.3 11.98
NN 2 10 3165.2 57.26
Bodytrack 30 261 235.61 16.16
FaceDetection 50 861 393.27 65.13
Ferret 20 3500 87.85 80.19

1. Monitor (∼1ms): Calculate the new budget per work unit by checking the remaining

budget and execution progress

2. Problem Solving (∼17ms): Generate and solve the new optimization problem and

retrieves the new configuration.

3. Result Deployment (∼1ms): Apply the new configuration to application.

If no solver is available on the target device (e.g., Gurobi [109] cannot be deployed on

ARM), Rapids contacts a remote server for results. The overhead of each remote recon-

figuration average 191ms/133ms (ARM/Android). In NavApp and VideoApp, I report the

overhead as additional energy consumption.

The Monitor (step-1) frequency is 10% of the total work units by default and can be

tuned by the developers. Figure 7.5 shows the different runtime behavior of the applications

when the monitor frequency changes. In this experiment, I run all applications under three

different budget (0.2, 0.5, 0.8 × (budget range)) multiple times with different monitoring

granularity. The experiment aims to investigate deeper into the effect of different monitor

frequencies so that the developers can also follow this work to determine what frequency

to use during their development processes.

- Budget Utilization and Output Quality: The figure on the left of Figure 7.5 reports

the change of the budget utilization when the frequency increases. In general, having a

higher monitor frequency could potentially increase the budget utilization for having a more

chances to update the configuration according to the current consumption. Lower monitor-

100

Figure 7.5: Monitor Frequency and Budget Utilization. X-axis: number of budget ex-
amination performed, x=1: monitor only once, x=100: monitor 100 times (or the finest
granularity supported by application);

ing frequencies can lead to missing of potential reconfigure opportunities. As shown in

the graph, the utilization rate grows rapidly from frequency = 2to10. Then, it keeps

relatively stable after the frequency increases even higher. For applications with higher in-

put dependency, a more frequent reconfiguration rate could better utilize the user-provided

budget.

The figure on the right of Figure 7.5 reports the change on normalized QoS. Due to

the different output quality reaction to different provided budget, rather than reporting in-

dividual output quality, I only report the average normalized quality for all applications.

There are four pairs of lines in the graph, where the dashed line in each pair shows the

normalized output quality under different monitoring frequencies. The solid line shows the

corresponding “pseudo optimal” static configuration by offline search. Each pair of lines

show the result for a particular budget setting. The output quality starts low at the begin-

ning for all budget settings(when only reconfigure once), and remains at the same level after

101

x=10. Interestingly, the output quality by reconfiguration is always higher than pseudo op-

timal when X=1 under budget=0.2, 0.5, and 0.8. This is because that the “pseudo optimal”

configuration is found within the search space formed up by discretized continuous knobs.

The real optimal configuration can be missing in such discrete space but can be found by

having a model constructed for continuous knobs. When budget=1.1 and X=1, the output

quality is lower than pseudo optimal because of the error in the quality model. However, the

quality increases as the monitor frequency increases by benefiting from reconfiguration.

7.1.6 Overhead Optimization

Ideally, systems like Rapids can monitor the budget usage and working progress after ev-

ery work unit to avoid wasting budget or violating budget constraints. However, excessively

frequent monitoring and reconfiguration can lead to higher overhead without noticeable

quality gain. To minimize the overhead, I embedded two optional optimization strategies

in Rapids:

1. Budget Optimization: Terminating the reconfiguration procedure after “Monitor”

(Step-1 as described in section 7.1.5) if the new budget per work unit is within 5%

range of the previous value.

2. Configuration Optimization: Terminating the reconfiguration procedure after “Prob-

lem Solving” (Step-2) if all the knob values in the new configuration are within 1%

of their previous values.

The intuition behind the two methods is to avoid less meaningful reconfigurations if the re-

sulting new configuration will be identical or similar to the current configuration. I conduct

two series of experiments to evaluate such optimizations.

- Actual Performed Reconfiguration: Figure 7.6a shows the number of reconfigurations that

are actually performed by Rapids given different monitoring frequencies. For each point

on each line in the left figure, the difference between the X value (monitor frequency) and

102

the Y value (actual performed reconfiguration) is the number of “Solving+Deployment”

(step-2/3) being skipped by the budget optimization. The difference between the left and

right figure is the number of “Deployment” (step-3) being skipped by the configuration

optimization.

As shown in the graph, with under a granularity of 1% (100 on X-axis), all the appli-

cations reconfigure less than 10 times of “Deployment” (step-3) after optimized. Finally in

Figure 7.6b, I report the portion of total execution time across all applications under differ-

ent monitoring frequencies. The total overhead time has a similar trend as the left graph in

Figure 7.6a because of the overhead being dominated by the problem solving (step-2).

As discussed, more frequent reconfigure frequency does not yield noticeable quality

gain. Even though the total overhead is still below 1% when X=100, SYSTEM is set to

have a default monitor interval of 10% of the entire work units, i.e. reconfigure 10 times.

(a) Performed Reconfiguration under different Moni-
tor Frequency

(b) Reconfiguration Overhead to total execution time

Figure 7.6: Reconfiguration Overhead

Table 7.2 reports the overall Rapids overhead for all the applications. As shown in

the table, the overhead is usually below 3% comparing to the entire execution, which is

considered negligible.

103

Table 7.2: Overhead in All Applications

w/ Rapids w/o Rapids Overhead
Swaptions 461 458 1.09%
Bodytrack 264 260 1.44%

Ferret 551 544 1.22%
FaceDetection 92 89 3.2%

NN 23.1 22.5 2.67%
SVM 35.7 34.6 3.17%

NavApp* - - <0.05%
VideoApp* - - <0.05%

7.1.7 Summary of Key Results

Specifying knob dependencies using Rapids requires minimal developer effort with around

20 lines on average for the benchmarks, which makes Rapids an expressive, flexible, and

easy-to-use. Such dependencies can help Rapids filter out invalid configurations, therefore

shorten the training time by an average of 38.55%. This empowers the developers with

more control over defining the application structure.

Based on the KDG, two Representative Set (RS) strategies enables training time reduc-

tion up to 2 orders of magnitude. The resulting model from the reconstruction using RS

has an average error around 3% and outperform the Rand − 20 approach which causes

significant errors for 3 of our applications (Ferret, NavApp, and FaceDetection). This

implies that choosing the training set carefully is crucial and have to be application specific.

The virtual knobs enable users to customize the quality outcomes at a level of abstrac-

tion that makes sense to them. For our benchmark applications, Rapids manages to im-

prove the preferred metric to up to 3.2× and 1.76× on average. This result justifies the

necessity and the feasibility of supporting custom quality.

The runtime overhead of Rapids is small for all of our benchmark applications in

terms of execution time or energy consumption. Deeper investigation into the monitor

frequency show that the budget utilization can be improved by performing more frequent

reconfigurations. However, such improvement is not found in the quality, as opposed to

what I expect. This could be due to multiple reasons, including how quality can be input

104

dependent, or how the input are ordered in the sequence, etc. The lesson learned from

the investigation in overhead is that having a moderate amount of reconfiguration should

be enough for most applications. That is also why I pick “10” as the default monitor

frequency in all of my other experiments. However, overhead can also be determined by

the length of the mission. I measured that the average raw cost (time) of performing a full

reconfiguration is around 20ms. This makes Rapids not suitable for applications/missions

whose total execution time is on the magnitude of milliseconds.

7.2 Rapids-M: Cross-Application Evaluation

For Rapids-M, I first evaluate the model accuracy of both p-model and m-model. The er-

ror in the performance model can affect the performance of configuration selection. How-

ever, if online reconfiguration is allowed, even a bad model could also achieve an accept-

able result due to the online adaption, as shown in Section 5.5. Therefore, another set of

experiments is performed to evaluate the performance of Rapids-M compared to multiple

existing approaches in a static mode with no reconfiguration. In particular, I report the sta-

bility of different strategies by comparing the number of performed reconfigurations. Then

I compare the failure rate and output quality to show how Rapids-M outperforms existing

strategies.

7.2.1 Model Validation

Rapids-M predicts the performance degradation (slowdown) of an application by first pre-

dicting the overall system footprint using the m-model and then the per-application slow-

down with the corresponding p-model. The prediction accuracy relies on the quality of

both m-model and p-models.

Bucketing and p-models: To validate both the necessity and the benefits of bucketing,

I perform a series of tests to show that the prediction accuracy of per-configuration slow-

down is high enough with only a few buckets.

105

Table 7.3: Selected Model for all Benchmarks.

configs & # buckets Model Poly MRE

Swaptions 10 & 1 BR T 2%
Bodytrack 50 & 2 BR / BR T / T 1%/2%

Ferret 700 & 5
EN / BR / BR

/ BR / EN
T / T / T
/ T / F

2%/1% / 2%
/1%/2%

FaceDetect 90 & 3 EN / BR / BR T / T / T 1% /1% /1%

SVM 250 & 4
LS / LR

/ BR / BR
T / T
/ F / T

1%/2%
/1%/2%

NN 250 & 5
BR / BR / BR

/ LS / BR
T / T / T
/ F / T

2%/1% /1%
/3% /1%

m-model: I then evaluate the accuracy of using m-model to predict the overall system

footprint.

p+m Model: Finally, I evaluate the entire strategy by predicting the performance degra-

dation under a controlled environment with the artificially introduced workload.

Rapids-M constructs the p / m models from a set of publicly available models as dis-

cussed in Section 5.3: 1) Neural Net (NN)[112] with 1 hidden layer and 50 neurons, using

’relu’ as the activation function; 2) Linear regression (LR)[102]; 3) Lasso (LS)[102] re-

gression with cross-validation; 4) Elastic net (EN)[102] regression with cross-validation;

and 5) BayesianRidge (BR)[102] regression. The Rapids-M framework uses a modular

design and allows developers to add more models to the model pool.

Bucketing with p-model: The purpose of bucketing configurations is to reduce the search

space size from the number of all combination of configurations to the number of combina-

tions of buckets. However, this approach is constrained by requiring a good prediction of

both environment and slowdown. Configurations are clustered based on generated system

workloads using a hierarchical clustering strategy. The number of buckets is determined

by the accuracy of the per-bucket slowdown model (p-model).

In Table 7.3, the column named “# configs & # buckets” shows the number of buckets

constructed from the total number of configurations. Column “Model” and “Poly” report

106

Table 7.4: Selected Features For All Benchmarks.

Application
Selected Feature

EXEC FREQ INST INSTnom% IPC L2MISS L2MPI L3HIT L3MPI L3MISS PhysIPC% MEM
Swaptions * * * * * * * * * * * *

Ferret * * * * * * * * * * * *
Bodytrack * * * * *

SVM * * * * * * * * * * * *
NN * * * * *

FaceDetect * * * * * * * * * *

the type of model and whether the model use polynomial features or not. Column “MRE”

reports the per-bucket mean relative error of slow-down prediction. This different models

and their settings being selected reveal that there isn’t a unique model which fits for all ap-

plications. Comparing to ESP [71] where Elastic Net is used across multiple applications,

Rapids-M locates the best model on an application bucket level.

Table 7.4 reports the selected features for each application using the criterion of having

a R2 score higher than 0.92. Different selections on features reveal that not all features

are important to specific applications. For example, Bodytrack is less sensitive to most of

the cache-related features (L2MISS/HIT, L3MISS/HIT). By not considering those not-so-

important features, the complexity of the model can be reduced.

Rapids-M reduces the overall problem size by clustering large configuration spaces

into a few buckets. The approach reduces the size of the following optimization problem

while still providing an a slow-down prediction with an error below 3%, and 1.5% on

average, which justifies the feasibility of such approach.

System Profile Prediction with m-model: I then validate the system profile (resource con-

sumption) prediction of the m-model. On average, Rapids-M provides a R2 score of 0.93

for all features. Different models yield different prediction accuracy and require different

training times. Rapids-M first locates the best model that yields the highest R2 score. Then

it selects the least number of input features for the model to achieve an accuracy threshold.

In the experiment, I use R2 ≥ 0.92 as the criterion. Figure 7.7 shows the R2 score for

all features using different models. For all regression methods except Neural Net (NN), I

report the R2 score for both linear and polynomial input features. For each feature, the last

107

Features

R2
 S

co
re

0

0.25

0.5

0.75

1

EXEC FREQ INST INSTnom% IPC L2MISS L2MPI L3HIT L3MISS L3MPI PhysIPC% MEM

LR-1

LR-2

LS-1

LS-2

EN-1

EN-2

BR-1

BR-2

NN

SVR-1

SVR-2

RAPID_M

Figure 7.7: Prediction R2 score on All Features using Different Models; RAPID M: best
model with feature selection

bar shows the Rapids-M selected model with highest R2 and selected feature.

Table 7.5 reports the training overhead. The column “MAX” reports the longest times

for all models in seconds. Column “Best” lists the time for constructing the best model

using all features with highest score. Column “Rapids-M” reports the time required by

Rapids-M to construct the best model with the selected features. Column “Ratio” com-

pares the time for Rapids-M and “Best”. It shows that Rapids-M reduces the m-model

training time to less than 5% for most features. For for some features (e.g., “L3MISS”),

the selected model can take longer to converge when only using selected features. The last

two columns in Table 7.5 report the selected model type and the model accuracy in terms

of relative error.

To summarize, more expensive models do not always yield more accurate predictions.

A subset of features may be good enough for a given model. Different system features

may be best fit into different models and may not require all available features. Rapids-M

selects the best model for each individual feature and filters out less relevant features. This

selection phase reduces the training time by 42% on average (in many cases, more than

99%) while maintaining the R2 score at 0.93 comparing to the best model at 0.96.

108

Table 7.5: Best Fit Model For All System Features. MAX is longest training time (secs);
Best is training time (secs) to produce best model using all features; Rapids-M is time
(secs) to construct it model using selected features; Ratio is Rapids-M / Best.

MAX Best RAPID M Ratio Model MRE
EXEC 56.31 0.24 0.01 <=0.01 LR 12.9%
FREQ 48.83 0.24 0.01 <=0.01 NN 7.4%
INST 49.50 0.23 0.01 0.03 BR 4.7%

INSTnom% 51.25 0.23 0.01 <=0.01 LR 12.9%
IPC 42.91 0.43 0.01 <=0.01 BR 5.3%

L2MISS 88.44 39.8 39.96 1.00 BR 29.8%
L2MPI 137.95 0.45 0.01 <=0.01 BR 38.2%
L3HIT 360.29 40.61 45.98 1.13 NN 3.1%

L3MISS 81.24 46.48 86.23 1.86 NN 19.4%
L3MPI 88.20 0.41 0.39 0.96 BR 27.2%

PhysIPC% 87.54 0.48 0.01 <=0.01 BR 5.3%
MEM 88.51 0.48 0.01 <=0.01 BR 10.0%

7.2.2 Optimality

Table 7.5 reports the accuracy of the m-model. Its error will be propagated to the predicted

slow-down error (see Figure 7.3), potentially negatively impacting the bucket and config-

uration selection. I conduct another simulation to investigate how such error propagation

affects the optimality of the selection.

The experiment first runs an application with a stresser and records (1) the footprint

of the application, fpa, (2) the footprint of the stresser fps, (3) the overall environment

env, and (4) the application slowdown sd. The stresser could be another application or an

“stress” instance. With the performance profile of the application, the optimal configuration

copt can be computed using sd. I then compute the selected, “optimal” configuration cp

by using the slowdown predicted by applying the p-model to env. Finally, I predict the

environment envm by applying the m-model to [fpa, fps], and predict the slowdown using

the p-model on envm, then make the selection cm+p. The difference between copt and cm+p

or cp is caused by the error in the p-model with or without the m-model. I evaluate such

difference in terms of (1) hit rate: whether the selection is identical, and (2) quality loss:

109

Figure 7.8: Impact of Error Propagation on Optimality under Different Budget Scale; P:
Applying p-model to the measured system environment; P+M: Rapids-M approach that
applies the p-model to the output of the m-model

relative loss of quality caused by the error, calculated by |(q̃ − q)|/q where q̃ and q denote

the quality of the configuration picked by the strategy and the optimal configuration. Since

copt is the optimal configuration found offline, any selection that yields a higher quality

than copt will also be considered a loss of quality for under estimation of the cost.

I run the simulation covering the whole range of possible budgets from 10% to 100%

of MAX −MIN , where MAX and MIN represent the highest and lowest cost of all

configurations when running alone.

Figure 7.8 shows the optimality evaluation result of the simulation. The X-axis repre-

sents the available budgets percentage. The lines following the left axis report the average

correctness of the configuration selection across all applications, e.g, 100% means that the

optimal configuration from Rapids-M gives the exact same configuration as the oracle. The

bars following the right Y-axis shows the relative loss of quality. Note that the “P ONLY”

is not used in the real deployment of Rapids-M but is only intended to show the impact of

110

prediction error caused by m-model. This is because the bucket selection is determined by

invoking m-model, however it is assumed to be pre-defined in this simulation. As shown

in the graph, if the environment is known, the error in p-model contributes to ≤10% of

selection difference as the optimal. The errors of combining m and p-model (Rapids-M)

introduces 19.9% of different selection on average. However, the wrongly selected config-

uration is close enough to the optimal configuration that only contributes to less than 6%

of output quality loss with an average of 3.3%. This indicates that the embedded errors in

M or P-Model only affect the output quality to a limited extent.

7.2.3 Global Reconfigurations

I conduct several experiments to show the effectiveness of key components of our approach.

These experiments concentrate on showing the performance of Rapids-M in producing

configuration selections of high quality. The evaluation methodology compares possible

configuration selection strategies with Rapids-M on different sets of concurrently active

applications.

- Review of Rapids-M’s Features:

Reconfiguration is a central feature of Rapids-M. There are two main reasons that make

reconfiguration in Rapids-M more complex compared to the single application scenario.

The first (global) is the main focus of Rapids-M, namely the changes to the execution en-

vironment and therefore available resources due to applications entering and exiting their

executions. The second (local) reason is related to individual applications reconfiguring to

compensate for small disturbances during runtime but at the same time avoiding affecting

other applications. A special feature of the Rapids-M framework is the fact that global re-

configurations are handled through bucket selection, while local reconfiguration is handled

through reconfiguration within the bucket, thereby not impacting other application’s con-

figurations. Local reconfigurations are handled by individual applications through Rapids

or other existing techniques without contacting the Rapids-M server, making them much

111

more efficient.

7.2.4 Static Evaluation

In Section 5.5, I report the improvement of output quality in Rapids-M compared to other

approaches when running multiple applications, each with a specific budget. The result

were collected under the condition that each application can re-configure. In this section, I

introduce another set of experiments that assess the effectiveness of the different strategies

under a controlled (static) environment where the number of executed applications is fixed.

An optimal strategy would select single configurations for each application that together

maximize the global quality. Each application starts at the same time and reconfiguration is

disabled. The result will indicate how well the strategies work in modeling the interactions

across active applications. If an application finishes before other applications, it will restart

with the same configuration until all applications finish at least once thereby maintaining

the overall system environment.

Strategies are evaluated on three aspects:

• Violation: Execution time ≥ provided budget.

• Misprediction: No feasible configuration can be found by the strategy though there

exists at least one. (Usually caused by over-prediction on slow-down.)

• Exceeding Rate: The rate reports by what fraction the execution time exceeds the

budget. E.g, rate=1.0 indicates the overall runtime is twice the budget.

Figure 7.9 shows the performance of the computed global configurations by the differ-

ent selection strategies when the budget is high (each application gets a budget with scale

= 150%). The scale is defined the same as in Figure 7.8 that budget = MIN + x% ∗

(MAX −MIN) when scale = x%, where MAX and MIN represent the highest and low-

est cost of all configurations when running alone. Figures 7.10 and 7.11 show the result

when the budget is squeezed to a lower value, 100% and 80%. The results show that:

112

Figure 7.9: Static Configuration Selection Comparison with Enough Budget (scale=150%).
ES: Equal Share, CO: Context Oblivious, AS: Aware Share, RM: Rapids-M, details was
introduced in Section 5.5.

• For budget violation, 12.7% of executions using CO violate the budget when the

system is not busy (≤4 active apps), and 56.1% when busy. Rapids-M has a violation

rate of 6.11% and 40.5% respectively. As a comparison, the designed oracle AS

violates 3.5% and 26.6%. The violation by the oracle may be caused by either errors

in the p-model, input dependencies, or minor system effects since no reconfiguration

is performed.

• For those executions that violates the budget, Rapids-M exceeds the budget by an

average of 6.6%. CO exceeds the budget by 11.45% on average and up to 50%.

• ES predicts the slowdown too aggressively and 40.74% of executions die because

no feasible configuration can be provided resulting in misprediction.

Generally, budget violation could be “rescued” by reconfiguration during runtime. How-

ever, more frequent violations along with higher exceeding rate puts more pressure on the

113

Figure 7.10: Static Selection Comparison with Moderate Budget (scale=100%)

Figure 7.11: Static Selection Comparison with Limited Enough Budget (scale=80%)

dynamic reconfiguration. This experiment shows that Rapids-M lowers the violation rate

by 33.9% compared to CO and has an average exceeding rate of 6.6%.

7.2.5 Reconfiguration Overheads

Rapids-M and existing approaches for single application configuration selection incur

114

overheads due to training of different models. These off-line training times can be sub-

stantial, sometimes in the order of days. The overhead is determined by the number of

configurations and the length of per-configuration training for collecting meaningful re-

sults. For the six benchmark applications, Rapids-M took in average 10 hours to collect

data for the p-models, ranging from ≤ 1 hour up to 28 hours for complicated applications.

The model construction time with the data took 109 seconds on average, up to 6 minutes.

The evaluation methodology for the dynamic runtime overhead is based on a test en-

vironment that initiates different benchmark applications in different order with arbitrary

delays. An overall resource budget is selected randomly within the low to high budget range

of the applications. All quality metrics are normalized and weighted equally. Applications

contact the server at the beginning and end of their execution, and at pre-set intervals to

check whether a new bucket has been assigned by the server. The Rapids-M’s server calls

are synchronous, i.e., the application has to wait until the server returns an answer. If a

new bucket is selected, the application has to perform a reconfiguration within the assigned

bucket. The dynamic overhead is measured as the average time an application has to wait

for an answer from the server and the local reconfiguration time if the bucket assignment

changed. The average execution time overhead experienced by each application was less

than 5% of their execution time. On average, every fifth call to the Rapids-M server re-

sulted in a reconfiguration, with each reconfiguration performed in less than 0.2% of the

overall execution time.

Overall, the average turn around time of requesting a bucket assignment is ∼ 201ms.

The major part of the overhead comes from the online computation of the forward pass

through M and P-Model. Therefore, I believe the overhead can be further reduced by

selecting a more powerful server and/or a network with a lower latency. The overhead for

local reconfigurations is small as in Rapids.

115

7.2.6 Summary of Key Results

In Rapids-M, configurations are grouped based on similarity of footprint and the slow-

down behavior. Such bucketization strategy enables the reduction of search space to orders

of magnitudes. In general, the number of buckets is defined by the nature of the applica-

tion, the machine it runs on, and the threshold used in Algorithm 1. A stricter accuracy or

distance threshold may improve the accuracy of the models, but may also introduce more

buckets which contradicts the idea of space reduction. In my experiments, I set the thresh-

old to be 6% and 4.0 as the accuracy and distance threshold. For applications, I discretized

all continuous knobs with 10 settings. In this setting, the ratio of the number of buckets and

configurations per application is on average 3.6%. By having 6 applications, the reduction

on the combined search space is over 9 orders of magnitude. Such reduction enables to

examine the globally optimal bucket combination of all six active applications even when

they are all active.

For each of such bucket, Rapids-M constructs a specialized performance model (p-

model) with average prediction error of ≤3%. Combined with the m-model, which has

a less accurate prediction around 14% per feature, Rapids-M introduces ≤5% of quality

loss compared to the oracle across different budget settings. This reveals that my approach

is still feasible even the m-model is not perfect.

In the dynamic experiments, I created 15 different execution traces covering different

number of maximum active applications. These traces are repeated using different budget

settings. The result shows that over-estimating (ES) or under-estimating (CO) the slow-

down can both cause severe impacts to the execution in terms of success rate and reject

rate. These failed execution can hurt the overall quality. Compared with these approaches,

Rapids-M makes configuration selections that lower the average budget violation rate by

33.9% with an average exceeding rate of 6.6%. At runtime, Rapids-M successfully fin-

ishes 22.75% more executions which results in a 1.52× improvement of output quality

under high system loads.

116

At the early stage of developing Rapids-M, I found that most of the overhead are spent

on the loading the models into memory. I optimized the implementation by making the

learner a in-memory service. This optimization greatly reduces the overhead of Rapids-M.

For my benchmark applications, the overhead of Rapids-M is within ≤1% of the applica-

tion’s execution time.

Also, as a prototype system, the manager/learner are running on the same machine as

the applications. The interference from the infrastructure of Rapids-M was not modeled

in the P or m-model. I believe the overall performance of Rapids-M can be further im-

proved, both in terms of overhead and application quality, after the system is deployed on

a dedicated separate server.

117

CHAPTER 8

CONCLUSION AND FUTURE WORK

8.1 Conclusion

In this dissertation, I explored multiple aspects of approximation, including a novel de-

velopment framework, offline training, user involvement, and online control. I pinpointed

the limitations of existing approaches on each of these aspects and proposed Rapids and

Rapids-M. I then conducted multiple experiments with various benchmarks, including ap-

plications ported from existing benchmark suites and newly built from scratch.

In Chapter-4, I showed that by exploring the application structural information, both

developers and end-users could benefit from Rapids. First, I showed that Rapids al-

lows developers to easily express insights like inter-knob constraints through the newly

designed graph-based representation, KDG, with minimal extra efforts. Then I explained

how the configuration space could be tailored by KDG through specifying dependencies.

Such dependencies can help Rapids filter out invalid configurations, therefore shorten the

training time by an average of 38.55%. This empowers the developers with more control

over defining the application structure. Beyond that, I also introduced the Representative

Set, which allowed a significantly faster retraining process (reduction up to 2 orders of

magnitude) when applications got ported to unknown platforms. The virtual knobs enable

users to customize the quality outcomes at a level of abstraction that makes sense to them.

For our benchmark applications, Rapids manages to improve the preferred metric to up to

3.2× and 1.76× on average.

In Chapter-5, I introduced Rapids-M. To the best of my knowledge, Rapids-M is the

first framework that enables effective and efficient approximation / configuration manage-

ment across approximate applications that execute concurrently on the same target system.

118

Reconfigurations are initiated when applications start or finish their executions, or when

system divergence is detected since such events typically result in changes in overall sys-

tem loads. The global impact of a local configuration selection is predicted through local

configuration system footprints, a global model that combines different footprints, and a

performance model that considers the overall system environment. This local/global strat-

egy allows the specification of configurations that can be considered equivalent, thereby

Rapids-M significantly reduces the configuration search space of each application by up

to two orders of magnitude through clustering configurations with similar behaviors into

buckets, thereby allowing the exploration of the entire overall search space. For each of

such bucket, Rapids-M constructs a specialized performance model with average pre-

diction error of ≤3%, and a machine model for predicting overall system environments.

Applications can be trained independently. Such a design along with the reduced search

space makes Rapids-M scalable. Experimental results using six applications and differ-

ent concurrent traces of application start and exit events show that Rapids-M is able to

select globally optimal configurations. Compared to other possible approaches, Rapids-M

makes configuration selections that lower the average budget violation rate by 33.9% with

an average exceeding rate of 6.6%. At runtime, Rapids-M successfully finishes 22.75%

more executions which results in a 1.52× improvement of output quality under high system

loads. For our benchmark applications, the overhead of Rapids-M is within ≤1% of the

application’s execution time.

8.2 Future Work

All the discussed work targeted to make a more extensive audience accepts the approxi-

mation. However, there are still several potential improvements and directions worth to be

explored.

In Rapids,

1. User Study: Currently, I myself act as the “developer”, the “user”, and also the de-

119

veloper of Rapids. This could lead to a subjective or biased evaluation of Rapids in

terms of the easiness, expressiveness of the system. A user-study could be conducted

on groups of developers to enrich the application collection and validate the usability

of Rapids. Similarly, a user-study on end-users can also help to justify the necessity

of supporting custom quality. I encourage continued efforts in these directions, to

make approximation a more practical technique.

2. Advanced Model Construction: I use the Representative Set to enable a faster re-

training process by constructing the cost model only based on observations of a few

selected configurations. However, the model recovered from limited observations

usually suffers from a slightly lower accuracy. It suggests that there is an opportunity

to refine the model based on future observations, for example through Reinforced

Learning. Or even more aggressively, gradually construct the cost model on new

machines directly from the scratch using reinforced learning. I believe such incorpo-

ration of modern machine learning approach could make Rapids even more powerful

in the case of distributing applications to heterogeneous platforms.

3. Larger Deployment: KDG is designed as a compact representation of cooperating

knobs. These knobs are typically variables or code-paths in an application. How-

ever, knobs can encode more complex services. For example, a particular node in

IOT [115], or an edge device in edge computing clouds [116]. For these larger use-

cases, KDG can be used to deal with problems where the constrained resources are

bandwidth, latency, computing power peak, etc.

In Rapids-M,

1. Domain Specific Models: The system footprint prediction (m-model) has a not-so-

great prediction accuracy due to the high variance in the low level hardware metrics.

However, these metrics can highly affect the application performance. In the current

Rapids-M, m-model was constructed by choosing the best model from a pool of

120

off-the-shelf models. A more dedicated model focusing on the specific problem of

Rapids-M is facing could be a more impactful direction towards making Rapids-M

much more reliable.

2. High Intensity Evaluation: Currently, Rapids-M was tested on a load that has a

maximum of 6 active applications. A more intense evaluation can be performed

with 20+ active applications. Increasing the intensity might expose new and more

interesting problems and open up new areas that worth investigating.

Lastly, my current results were collected through experiments using a limited number

of applications deployed on a few platforms. A broader deployment on various machines

ranging from more constrained platforms (e.g., wearable devices) to much more powerful

platforms (e.g., data centers) with different applications could be a huge next step to bring

Rapids, Rapids-M, and the concept of approximation to a wider audience.

121

BIBLIOGRAPHY

[1] D. Seal, ARM Architecture Reference Manual, 2nd. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2000, ISBN: 0201737191.

[2] G. Inc. (2019). Dark Theme Development Guides.
https://developer.android.com/guide/topics/ui/look-and-feel/darktheme.

[3] A. Inc. (2019). Dark Mode Development Guides.
https://developer.apple.com/design/human-interface-guidelines/ios/visual-
design/dark-mode/.

[4] D. J. Sorin, M. D. Hill, and D. A. Wood, “A primer on memory consistency and
cache coherence,” Synthesis Lectures on Computer Architecture, vol. 6, no. 3,
pp. 1–212, 2011.

[5] R. Bridson, Fluid simulation for computer graphics. AK Peters/CRC Press, 2015.

[6] H. Hoffmann, “JouleGuard: Energy guarantees for appoximate applications,” in
Symposium on Operating Systems Principles (SOSP), Monterey, CA, 2015.

[7] I. Constandache, S. Gaonkar, M. Sayler, R. R. Choudhury, and L. Cox, “Enloc:
Energy-efficient localization for mobile phones,” in INFOCOM 2009, IEEE,
IEEE, 2009, pp. 2716–2720.

[8] B. Chen and D. Pompili, “Uncertainty-aware localization solution for under-ice
autonomous underwater vehicles,” in Proceedings of the 9th Annual IEEE
Communications Society Conference on Sensor, Mesh and Ad Hoc
Communications and Networks (SECON), Seoul, Korea, 2012, pp. 308–316.

[9] A. Alvarez, R. Stoner, and A. Maguer, “Performance of pumped and un-pumped
CTDs in an underwater glider,” in OCEANS 2013 IEEE - San Diego, 2013,
pp. 1–5.

[10] I. Gori, R. Bianchini, S. Nagarakatte, and T. Nguyen, “ApproxHadoop: Bringing
approximations to MapReduce frameworks,” in International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS), Istanbul, Turkey, 2015, pp. 383–397.

[11] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Krishnamurthy,
“MCDNN: An approximation-based execution framework for deep stream
processing under resource constraints,” in Proceedings of the 14th Annual

122

International Conference on Mobile Systems, Applications, and Services,
ser. MobiSys ’16, Singapore, Singapore: ACM, 2016, pp. 123–136.

[12] X. Sui, A. Lenharth, D. S. Fussell, and K. Pingali, “Proactive control of
approximate programs,” in Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’16, Atlanta, Georgia, USA: ACM, 2016, pp. 607–621,
ISBN: 978-1-4503-4091-5.

[13] R. Xu, J. Koo, R. Kumar, P. Bai, S. Mitra, S. Misailovic, and S. Bagchi,
“Videochef: Efficient approximation for streaming video processing pipelines,” in
2018 USENIX Annual Technical Conference (USENIX ATC 18), 2018, pp. 43–56.

[14] C. Bienia, “Benchmarking modern multiprocessors,” PhD thesis, Princeton
University, 2011.

[15] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “Multi-probe lsh: Efficient
indexing for high-dimensional similarity search,” in Proceedings of the 33rd
international conference on Very large data bases, VLDB Endowment, 2007,
pp. 950–961.

[16] Y. Rubner, C. Tomasi, and L. J. Guibas, “The earth mover’s distance as a metric
for image retrieval,” International journal of computer vision, vol. 40, no. 2,
pp. 99–121, 2000.

[17] J. Bar-Ilan, M. Mat-Hassan, and M. Levene, “Methods for comparing rankings of
search engine results,” Computer networks, vol. 50, no. 10, pp. 1448–1463, 2006.

[18] H. Hoffmann, J. Eastep, M. D. Santambrogio, J. E. Miller, and A. Agarwal,
“Application heartbeats: A generic interface for specifying program performance
and goals in autonomous computing environments,” in Proceedings of the 7th
international conference on Autonomic computing, ACM, 2010, pp. 79–88.

[19] X. Sui, A. Lenharth, D. S. Fussell, and K. Pingali, “Proactive control of
approximate programs,” ACM SIGOPS Operating Systems Review, vol. 50, no. 2,
pp. 607–621, 2016.

[20] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and
M. Rinard, “Dynamic knobs for responsive power-aware computing,” in ASPLOS
’11, Newport Beach, California, USA, 2011.

[21] N. Mishra, J. D. Laferty, and H. Hofmann, “Caloree: Learning control for
predictable latency and low energy,” in ASPLOS ’18, Williamsburg, Virginia,
USA, 2018.

123

[22] A. Farrell and H. Hoffmann, “MEANTIME: Achieving both minimal energy and
timeliness with approximate computing,” in 2016 USENIX Annual Technical
Conference (USENIX ATC 16), Denver, CO, Jun. 2016, pp. 421–435.

[23] Q. Huynh-Thu and M. Ghanbari, “The accuracy of PSNR in predicting video
quality for different video scenes and frame rates,” Telecommunication Systems,
vol. 49, no. 1, pp. 35–48, 2012.

[24] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong program
analysis & transformation,” in Proceedings of the International Symposium on
Code Generation and Optimization: Feedback-directed and Runtime
Optimization, ser. CGO ’04, Palo Alto, California: IEEE Computer Society, 2004,
pp. 75–, ISBN: 0-7695-2102-9. [Online]. Available:
http://dl.acm.org/citation.cfm?id=977395.977673.

[25] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and
M. Rinard, “Dynamic knobs for responsive power-aware computing,” in
Proceedings of the sixteenth international conference on Architectural support for
programming languages and operating systems, ser. ASPLOS, Newport Beach,
California, USA: ACM, 2011, pp. 199–212, ISBN: 978-1-4503-0266-1.

[26] S. Sidiroglou, S. Misailovic, H. Hoffmann, and M. Rinard, “Managing
performance vs. accuracy trade-offs with loop perforation,” in ESEC/FSE’11,
Szeged, Hungary, 2011.

[27] Q. Inc. (2015). Tredn Power Profiler.
https://developer.qualcomm.com/software/trepn-power-profiler.

[28] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman, and
S. Amarasinghe, “Petabricks: A language and compiler for algorithmic choice,” in
Proceedings of the 30th ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI ’09, Dublin, Ireland: ACM, 2009,
pp. 38–49.

[29] M. Dong and L. Zhong, “Chameleon: A color-adaptive web browser for mobile
OLED displays,” in Proceedings of the 9th International Conference on Mobile
System, Applications, and Services, ser. MobiSys ’11, Washington D.C., USA,
2011, pp. 85–98.

[30] J. Park, H. Esmaeilzadeh, X. Zhang, M. Naik, and W. Harris, “Flexjava: Language
support for safe and modular approximate programming,” in Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering, ACM, 2015,
pp. 745–757.

http://dl.acm.org/citation.cfm?id=977395.977673

124

[31] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and D. Grossman,
“EnerJ: Approximate data types for safe and general low-power computation,” in
ACM Conference on Programming Language Design and Implementation (PLDI),
San Jose, California, USA, 2011.

[32] S. Mittal, “A survey of techniques for approximate computing,” ACM Computing
Surveys (CSUR), vol. 48, no. 4, p. 62, 2016.

[33] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analysis and
characterization of inherent application resilience for approximate computing,” in
Proceedings of the 50th Annual Design Automation Conference, ACM, 2013,
p. 113.

[34] M. A. Anam, P. N. Whatmough, and Y. Andreopoulos,
“Precision-energy-throughput scaling of generic matrix multiplication and discrete
convolution kernels via linear projections,” in The 11th IEEE Symposium on
Embedded Systems for Real-time Multimedia, IEEE, 2013, pp. 21–30.

[35] C. Alvarez, J. Corbal, and M. Valero, “Fuzzy memoization for floating-point
multimedia applications,” IEEE Transactions on Computers, vol. 54, no. 7,
pp. 922–927, 2005.

[36] S. Byna, J. Meng, A. Raghunathan, S. Chakradhar, and S. Cadambi, “Best-effort
semantic document search on gpus,” in Proceedings of the 3rd Workshop on
General-Purpose Computation on Graphics Processing Units, ACM, 2010,
pp. 86–93.

[37] I. K. Center. (). Miqcp: Mixed integer programs with quadratic terms in the
constraints, [Online]. Available:
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.
7.1/ilog.odms.cplex.help/CPLEX/UsrMan/topics/discr_
optim/mip_quadratic/03_introMIQCP.html.

[38] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture support for
disciplined approximate programming,” in ACM SIGPLAN Notices, ACM, vol. 47,
2012, pp. 301–312.

[39] D. Mahajan, A. Yazdanbakhsh, J. Park, B. Thwaites, and H. Esmaeilzadeh,
“Prediction-based quality control for approximate accelerators,” in Second
Workshop on Approximate Computing Across the System Stack, WACAS, 2015.

[40] L. McAfee and K. Olukotun, “Emeuro: A framework for generating multi-purpose
accelerators via deep learning,” in 2015 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO), IEEE, 2015, pp. 125–135.

https://www.ibm.com/support/knowledgecenter/SSSA5P_12.7.1/ilog.odms.cplex.help/CPLEX/UsrMan/topics/discr_optim/mip_quadratic/03_introMIQCP.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.7.1/ilog.odms.cplex.help/CPLEX/UsrMan/topics/discr_optim/mip_quadratic/03_introMIQCP.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.7.1/ilog.odms.cplex.help/CPLEX/UsrMan/topics/discr_optim/mip_quadratic/03_introMIQCP.html

125

[41] A. K. Mishra, R. Barik, and S. Paul, “Iact: A software-hardware framework for
understanding the scope of approximate computing,” in Workshop on Approximate
Computing Across the System Stack (WACAS), 2014, p. 52.

[42] V. Vassiliadis, K. Parasyris, C. Chalios, C. D. Antonopoulos, S. Lalis, N. Bellas,
H. Vandierendonck, and D. S. Nikolopoulos, “A programming model and runtime
system for significance-aware energy-efficient computing,” in ACM SIGPLAN
Notices, ACM, vol. 50, 2015, pp. 275–276.

[43] M. J. Wolfe, Optimizing Supercompilers for Supercomputers. Cambridge, MA,
USA: MIT Press, 1990, ISBN: 0262730820.

[44] H. Zima and B. Chapman, Supercompilers for Parallel and Vector Computers.
New York, NY, USA: ACM, 1991, ISBN: 0-201-17560-6.

[45] K. Kennedy and J. R. Allen, Optimizing Compilers for Modern Architectures: A
Dependence-based Approach. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2002, ISBN: 1-55860-286-0.

[46] S. Wang, C. Li, H. Hoffmann, S. Lu, W. Sentosa, and A. I. Kistijantoro,
“Understanding and auto-adjusting performance-sensitive configurations,” in
Proceedings of the Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating Systems, ACM, 2018,
pp. 154–168.

[47] J. Park, X. Zhang, K. Ni, H. Esmaeilzadeh, and M. Naik, “Expax: A framework
for automating approximate programming,” Georgia Institute of Technology,
Tech. Rep., 2014.

[48] R. St Amant, A. Yazdanbakhsh, J. Park, B. Thwaites, H. Esmaeilzadeh,
A. Hassibi, L. Ceze, and D. Burger, “General-purpose code acceleration with
limited-precision analog computation,” ACM SIGARCH Computer Architecture
News, vol. 42, no. 3, pp. 505–516, 2014.

[49] J. Bornholt, T. Mytkowicz, and K. McKinley, “Uncertain<t>: A first-order type
for uncertain data,” in International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Salt Lake City, UT,
2014, pp. 51–66.

[50] J. Ansel, Y. L. Wong, C. Chan, M. Olszewski, A. Edelman, and S. Amarasinghe,
“Language and compiler support for auto-tuning variable-accuracy algorithms,” in
International Symposium on Code Generation and Optimization (CGO 2011),
IEEE, 2011, pp. 85–96.

126

[51] A. Yazdanbakhsh, D. Mahajan, B. Thwaites, J. Park, A. Nagendrakumar,
S. Sethuraman, K. Ramkrishnan, N. Ravindran, R. Jariwala, A. Rahimi, et al.,
“Axilog: Language support for approximate hardware design,” in Proceedings of
the 2015 Design, Automation & Test in Europe Conference & Exhibition, EDA
Consortium, 2015, pp. 812–817.

[52] E. Incerto, M. Tribastone, and C. Trubiani, “Software performance self-adaptation
through efficient model predictive control,” in Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering, IEEE Press, 2017,
pp. 485–496.

[53] A. L. Cervantes, O. E. Agamennoni, and J. L. Figueroa, “A nonlinear model
predictive control system based on wiener piecewise linear models,” Journal of
Process Control, vol. 13, no. 7, pp. 655–666, 2003.

[54] S. Burer and A. N. Letchford, “Non-convex mixed-integer nonlinear
programming: A survey,” Surveys in Operations Research and Management
Science, vol. 17, no. 2, pp. 97–106, 2012.

[55] R. Hegde and N. R. Shanbhag, “Energy-efficient signal processing via algorithmic
noise-tolerance,” in Proceedings. 1999 International Symposium on Low Power
Electronics and Design (Cat. No. 99TH8477), IEEE, 1999, pp. 30–35.

[56] A. Sampson, J. Nelson, K. Strauss, and L. Ceze, “Approximate storage in
solid-state memories,” ACM Transactions on Computer Systems (TOCS), vol. 32,
no. 3, p. 9, 2014.

[57] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architectural support for
disciplined approximate programming,” in International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS), London, UK, 2012.

[58] J. Miguel, M. Badr, and N. Jerger, “Load value approximation,” in International
Symposium on Microarchitectures, Cambridge, UK, 2014, pp. 127–139.

[59] D. Khudia, B. Zamirai, M. Samadi, and S. Mahlke, “Rumba: An online quality
management system for approximate computing,” in International Symposium on
Computer Architecture (ISCA), Portland, OR, 2015, pp. 554–566.

[60] S. Misailovic, M. Carbin, S Achour, Z. Qi, and M. Rinard, “Chisel: Reliability-
and accuracy-aware optimizations of approximate computational kernels,” in
International Conference on Object Oriented Programming Systems Languages
and Applications (OOPSLA), Portland, OR, 2014, pp. 309–328.

127

[61] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for power with an
underdesigned multiplier architecture,” in 2011 24th Internatioal Conference on
VLSI Design, IEEE, 2011, pp. 346–351.

[62] A. Rahimi, A. Ghofrani, K.-T. Cheng, L. Benini, and R. K. Gupta, “Approximate
associative memristive memory for energy-efficient gpus,” in Proceedings of the
2015 Design, Automation & Test in Europe Conference & Exhibition, EDA
Consortium, 2015, pp. 1497–1502.

[63] Y. Fang, H. Li, and X. Li, “Softpcm: Enhancing energy efficiency and lifetime of
phase change memory in video applications via approximate write,” in 2012 IEEE
21st Asian Test Symposium, IEEE, 2012, pp. 131–136.

[64] A. Ranjan, S. Venkataramani, X. Fong, K. Roy, and A. Raghunathan,
“Approximate storage for energy efficient spintronic memories,” in 2015 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC), IEEE, 2015, pp. 1–6.

[65] J. Kramer and J. Magee, “Self-managed systems: An architectural challenge,” in
2007 Future of Software Engineering, IEEE Computer Society, 2007,
pp. 259–268.

[66] R. De Lemos, H. Giese, H. A. Müller, M. Shaw, J. Andersson, M. Litoiu,
B. Schmerl, G. Tamura, N. M. Villegas, T. Vogel, et al., “Software engineering for
self-adaptive systems: A second research roadmap,” in Software Engineering for
Self-Adaptive Systems II, Springer, 2013, pp. 1–32.

[67] J. Andersson, L. Baresi, N. Bencomo, R. de Lemos, A. Gorla, P. Inverardi, and
T. Vogel, “Software engineering processes for self-adaptive systems,” in Software
Engineering for Self-Adaptive Systems II, Springer, 2013, pp. 51–75.

[68] R. Tawhid and D. Petriu, “Integrating performance analysis in the model driven
development of software product lines,” in International Conference on Model
Driven Engineering Languages and Systems, Springer, 2008, pp. 490–504.

[69] P. Jamshidi, M. Velez, C. Kästner, N. Siegmund, and P. Kawthekar, “Transfer
learning for improving model predictions in highly configurable software,” in
Software Engineering for Adaptive and Self-Managing Systems (SEAMS), 2017
IEEE/ACM 12th International Symposium on, IEEE, 2017, pp. 31–41.

[70] V. Dalibard, M. Schaarschmidt, and E. Yoneki, “Boat: Building auto-tuners with
structured bayesian optimization,” in Proceedings of the 26th International
Conference on World Wide Web, International World Wide Web Conferences
Steering Committee, 2017, pp. 479–488.

128

[71] N. Mishra, J. D. Lafferty, and H. Hoffmann, “Esp: A machine learning approach
to predicting application interference,” in Proceedings of the International
Conference on Autonomic Computing, ser. ICAC, Columbus, Ohio, USA, 2017.

[72] J. Knight and N. Leveson, “An experimental evaluation of the assumption of
independence in multiversion programming,” IEEE Transactions on Software
Enginnering, vol. 12, no. 1, pp. 96–109, 1986.

[73] W. Baek and T. M. Chilimbi, “Green: A framework for supporting
energy-conscious programming using controlled approximation,” in Proceedings
of the 2010 ACM SIGPLAN conference on Programming language design and
implementation, ser. PLDI ’10, Toronto, Ontario, Canada: ACM, 2010,
pp. 198–209, ISBN: 978-1-4503-0019-3. DOI: 10.1145/1806596.1806620.
[Online]. Available:
http://doi.acm.org/10.1145/1806596.1806620.

[74] H. Zhang and H. Hoffmann, “Maximizing performance under a power cap: A
comparison of hardware, software, and hybrid techniques,” in ASPLOS’16,
Atlanta, Georgia, USA, 2016.

[75] A. Gordon, T. Henzinger, A. Nori, and S. Rajamani, “Probabilistic programming,”
in International Conference on Software Engineering (ICSE), Hyderabad, India,
2014.

[76] N. Ramsey and A. Pfeffer, “Stochastic lambda calculus and monads of probability
distributions,” in ACM Symposium on Principles of Programming Languages
(POPL), Portland, OR, 2002, pp. 154–165.

[77] A. Pfeffer, “IBAL: A probabilistic rational programming language,” in
International Joint Conference on Artificial Intelligence (IJCAI), Seattle, WA,
2001, pp. 733–740.

[78] J. Borgstrom, A. Gordon, M. Greenberg, J. Margetson, and J. V. Gael, “Meaure
transformer semantics for bayesian machine learning,” in European Symposium on
Programming (ESOP), Saarbrucken, Germany, 2011.

[79] W. Gilks, A. Thomas, and D. Spiegelhalter, “A language and program for complex
bayesian modelling,” Journal of the Royal Statistical Society, Series D (The
Statistician), vol. 43, no. 1, pp. 169–177, 1994.

[80] N. Goodman, V. Mansinghka, D. Roy, K. Bonawitz, and J. Tenenbaum, “Church:
A language for generative models,” in Conference in Uncertainty in Artificial
Intelligence (UAI), Helsinki, Finland, 2008, pp. 220–229.

https://doi.org/10.1145/1806596.1806620
http://doi.acm.org/10.1145/1806596.1806620

129

[81] S. Park, F. Pfenning, and S. Thrun, “A probabilistic language based on sampling
functions,” in ACM Symposium on Principles of Programming Languages
(POPL), Long Beach, CA, 2005, pp. 171–182.

[82] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy, “The aqua
approximate query answering system,” in ACM Sigmod Record, ACM, vol. 28,
1999, pp. 574–576.

[83] K. Zeng, S. Gao, B. Mozafari, and C. Zaniolo, “The analytical bootstrap: A new
method for fast error estimation in approximate query processing,” in ACM
SIGMOD’14, Snowbird, UT, 2014, pp. 277–288.

[84] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large
clusters,” in Symposium on Operating System Design (OSDI), San Francisco, CA,
2004.

[85] N. Laptev, K. Zeng, and C. Zaniolo, “Early accurate results for advanced analytics
on mapreduce,” Proceedings of the VLDB Endowment, vol. 5, no. 10,
pp. 1028–1039, 2012.

[86] M. Carbin, D. Kim, S. Misailovic, and M. C. Rinard, “Proving acceptability
properties of relaxed nondeterministic approximate programs,” in Proceedings of
the 33rd ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’12, Beijing, China: ACM, 2012, pp. 169–180, ISBN:
978-1-4503-1205-9. DOI: 10.1145/2254064.2254086. [Online]. Available:
http://doi.acm.org/10.1145/2254064.2254086.

[87] S. Chaudhuri, S. Gulwani, R. Lublinerman, and S. Navidpour, “Proving programs
robust,” in ESEC-FSE’11, 2011.

[88] I. Akturk, K. Khatamifard, and U. R. Karpuzcu, “On quantification of accuracy
loss in approximate computing,” in Workshop on Duplicating, Deconstructing and
Debunking (WDDD), vol. 15, 2015.

[89] N. Chinchor, “Muc-4 evaluation metrics,” in Proceedings of the 4th conference on
Message understanding, Association for Computational Linguistics, 1992,
pp. 22–29.

[90] M. H. Santriaji and H. Hoffmann, “Grape: Minimizing energy for gpu applications
with performance requirements,” in 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), IEEE, 2016, pp. 1–13.

[91] M. Maggio, A. V. Papadopoulos, A. Filieri, and H. Hoffmann, “Self-adaptive
video encoder: Comparison of multiple adaptation strategies made simple,” in

https://doi.org/10.1145/2254064.2254086
http://doi.acm.org/10.1145/2254064.2254086

130

2017 IEEE/ACM 12th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS), IEEE, 2017, pp. 123–128.

[92] ——, “Automated control of multiple software goals using multiple actuators,” in
Proceedings of the 2017 11th joint meeting on foundations of software
engineering, ACM, 2017, pp. 373–384.

[93] M. M. Alves and L. M. d. A. Drummond, “A quantitative model for predicting
cross-application interference in virtual environments,” arXiv preprint
arXiv:1610.04309, 2016.

[94] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds: Managing performance
interference effects for qos-aware clouds,” in Proceedings of the 5th European
conference on Computer systems, ACM, 2010, pp. 237–250.

[95] S.-H. Lim, J.-S. Huh, Y. Kim, G. M. Shipman, and C. R. Das, “D-factor: A
quantitative model of application slow-down in multi-resource shared systems,”
ACM SIGMETRICS Performance Evaluation Review, vol. 40, no. 1, pp. 271–282,
2012.

[96] M. Samadi and S. Mahlke, “Cpu-gpu collaboration for output quality monitoring,”
in 1st Workshop on Approximate Computing Across the System Stack, 2014,
pp. 1–3.

[97] P. Düben, S. Yenugula, J. Augustine, K Palem, J. Schlachter, C. Enz, T. Palmer, et
al., “Opportunities for energy efficient computing: A study of inexact general
purpose processors for high-performance and big-data applications,” in 2015
Design, Automation & Test in Europe Conference & Exhibition (DATE), IEEE,
2015, pp. 764–769.

[98] B. Shim, S. R. Sridhara, and N. R. Shanbhag, “Reliable low-power digital signal
processing via reduced precision redundancy,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 12, no. 5, pp. 497–510, 2004.

[99] A. Rahimi, L. Benini, and R. K. Gupta, “Spatial memoization: Concurrent
instruction reuse to correct timing errors in simd architectures,” IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. 60, no. 12, pp. 847–851, 2013.

[100] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker: Saving dram
refresh-power through critical data partitioning,” ACM SIGPLAN Notices, vol. 47,
no. 4, pp. 213–224, 2012.

[101] G. Hu, S. Rigo, D. Zhang, and T. Nguyen, “Approximation with error bounds in
spark,” in 2019 IEEE 27th International Symposium on Modeling, Analysis, and

131

Simulation of Computer and Telecommunication Systems (MASCOTS), IEEE,
2019, pp. 61–73.

[102] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine
learning in Python,” Journal of Machine Learning Research, vol. 12,
pp. 2825–2830, 2011.

[103] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.

[104] C. Z. Mooney, Monte carlo simulation. Sage Publications, 1997, vol. 116.

[105] M. Rinard, “Probabilistic accuracy bounds for fault-tolerant computations that
discard tasks,” in Proceedings of the 20th annual international conference on
Supercomputing, ACM, 2006, pp. 324–334.

[106] E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden,
“Pyramid methods in image processing,” RCA engineer, vol. 29, no. 6, pp. 33–41,
1984.

[107] N. Corporation, Nvidia jetson tx1 developer kit, 2017. [Online]. Available:
http://www.nvidia.com/object/embedded-systems-dev-
kits-modules.html.

[108] Z. Wang, L. Lu, and A. C. Bovik, “Video quality assessment based on structural
distortion measurement,” Signal processing: Image communication, vol. 19, no. 2,
pp. 121–132, 2004.

[109] M. I. P. Tool. (2017). Gurobi optimizer 7.25, [Online]. Available:
http://www.gurobi.com/products/gurobi-optimizer.

[110] A. Waterland. (2002). The stress workload generator, [Online]. Available:
https://people.seas.harvard.edu/˜apw/stress/.

[111] Intel. (2012). Intel performance counter monitor - a better way to measure cpu
utilization, [Online]. Available: www.intel.com/software/pcm.

[112] F. Chollet, Keras, https://github.com/fchollet/keras, 2015.

[113] R. C. Dubes and A. K. Jain, Algorithms for clustering data, 1988.

[114] N. Mishra, J. D. Lafferty, and H. Hoffmann, “Esp: A machine learning approach
to predicting application interference,” in 2017 IEEE International Conference on
Autonomic Computing (ICAC), IEEE, 2017, pp. 125–134.

http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html
http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html
http://www.gurobi.com/products/gurobi-optimizer
https://people.seas.harvard.edu/~apw/stress/
www.intel.com/software/pcm
https://github.com/fchollet/keras

132

[115] K. Ashton et al., “That ‘internet of things’ thing,” RFID journal, vol. 22, no. 7,
pp. 97–114, 2009.

[116] W. Shi and S. Dustdar, “The promise of edge computing,” Computer, vol. 49,
no. 5, pp. 78–81, 2016.

[117] L. Liu. (2019). RAPIDS Online Portal, [Online]. Available:
https://niuye8911.github.io/rapidlib-linux.

[118] ——, (2019). RAPIDS Repository on Github, [Online]. Available:
https://github.com/niuye8911/rapidlib-linux.

[119] M. I. P. Tool. (1999). Lp solve 5.5, [Online]. Available:
http://lpsolve.sourceforge.net/5.5.

https://niuye8911.github.io/rapidlib-linux
https://github.com/niuye8911/rapidlib-linux
http://lpsolve.sourceforge.net/5.5

133

APPENDIX A

TRAINING TUNING

The local infrastructure of Rapids and Rapids-M are shared in multiple aspects, including

1) KDG specification, 2) code instrumentation, and 3) training framework. A detailed step-

by-step guide of developing an approximate application can be found online through the

web portal [117] of Rapids. The source code of Rapids trainer can be downloaded on

RAPIDS-Repo [118]. In this chapter, I introduce the training procedure and some key

parameters to tune the training process. Then, I will describe how developers can tune the

training on a per-application level.

A.1 4-Stage Training Process Tuning

The entry point of the training procedure is the script named “rapid.py”. The training

process for Rapids or Rapids-M can be partitioned into 4 parts:

1. KDG Structure Generation: generates the skeleton of KDG structure.

2. Training: profiles the application execution time and quality.

3. KDG Weight Population: derives the weights in KDG from the data collected in

training.

4. RS calculation: Calculate the Representative Set from the KDG.

All these four stages have tunable parameters to fine tune the procedure to developers’

need. These parameters are listed as constants at the beginning of the script.

- KDG Structure Generation: In this step, the script takes the KDG specification file and

generates the structure of KDG in the XML format with all knobs attributes encoded. If

https://github.com/niuye8911/rapidlib-linux

134

there exists any continuous knob in the KDG, Rapids will discretize the application to 10

discrete settings. Developers can change the granularity by giving different values to the

constant GRANULARITY .

- Training: In this step, the script will train the application using the valid configurations

determined by the KDG.

For Rapids, each configuration will be trained once and collect the observation of

its cost and quality. The result for cost observations will be stored in RAPIDS_ROOT\

modelConstr\Rapids\APP_NAME\APP_NAME-cost.fact. The file for quality

will be under the same directory named APP_NAME-quality.fact.

For Rapids-M, more data are required for M and p-model construction. Therefore, the

system footprint for each configuration will also be collected during the training. Besides,

each configuration will also be trained against a “stresser” to observe the overall footprint

and the corresponding slowdown. As a result, the slowdown information will be stored in

three separate files:

• APP_NAME-sys.csv: the footprint for each configuration when running alone

(for bucket construction)

• APP_NAME-perf.csv: the overall footprint and the slowdown when running with

stresser (for p-model training)

• APP_NAME-mperf.csv: the footprint of the stresser and the application when

running alone, and the overall footprint. (for m-model construction)

For each configuration, the number of “stresser”s to train each configuration with can be

changed by updating the constant NUM OF FIXED ENV (default = 30).

- KDG Weight Population: In this step, Rapids will use the collected observations to

derive the weights for each node or the functions representing the continuous knobs. If

the application contains continuous knobs, the KDG will represent the knob as a series

135

of segments. Developers can change the criterion on two aspects when determining the

segmentation granularity (partition depth):

• MAX PARTITION (default=5): the max depth of partitioning the knob value range.

The number of the discretized point in the range is 2n when n is the depth.

• PARTITION ERR THRESHOLD (default = 0.05) : the target error threshold to de-

termine whether the partition depth is good enough.

The result of this step is a fully populated cost KDG for a quality KDG for the default over-

all quality and all the sub-metrics. The result KDG will be named as APP_NAME-cost.

rsdg under the same directory as other outputs. For quality KDGs, they will be named

APP_NAME-mv[0/1/2...n].rsdg , where 0 stands for the default quality and [1∼n]

represent the sub-metrics.

- RS Calculation: In this step, Rapids will construct the Selection-based Representative

Set. Developers can change the constant RS THRESHOLD (default = 0.05) to define

the error threshold for RS construction.

A.2 Per-Application Training Tuning

In this section, I describe how developers can customize the training process for each indi-

vidual application. For each application, the developer can provide the training script with

a configuration file containing the application-level configuration. Figure A.1 shows the

template configuration file and Table A.1 explains the fields developers can configure.

136

1 {
2 "appName": "APP_NAME",
3 "appPath": "PATH/TO/YOUR/EXECUTABLE",
4 "appMet": "PATH/TO/THE/PYTHON/APP_METHODS.py",
5 "appDep": "PATH/TO/THE/RSDG/SPECIFICATION_FILE

",
6 "withQoS": 1,
7 "RS": 0,
8 "qosRun": 0,
9 "overheadRun": 0,

10 "withSys": 0,
11 "withPerf": 0,
12 "withMModel": 0
13 }

Figure A.1: Per-Application Training Configuration

Table A.1: Per-Application Training Configuration Fields Explanation

parameter Description
withQos collect quality value

RS construct KDG
withSys collect footprint
withPerf collect slowdown

withMModel collect “Stesser” footprint
qosRun perform quality evaluation as in Figure 4.5

overheadRun perform overhead evaluation as in Figure 7.5 and Figure 7.6a

137

APPENDIX B

RUNTIME TUNING

After training the application, a run config file will be generated for each application

containing some key information about the application to be used in the runtime. Figure B.1

shows the skeleton of the configuration file. Developers can use the file to configure the

execution of the application, and are highly encouraged to design their own GUI to expose

certain fields in the file to the user.

Table B.1 explains the key fields in the file. The first column explains the designed

purpose of particular fields. For example, “budget” and “preferences” (current implemen-

tations for the “Virtual Knobs”) are supposed to be tuned by users. Developers are highly

encouraged to implement their own GUI to accept users input for these fields and update in

the file accordingly for Rapids or Rapids-M runtime to finalize the quality model.

Table B.1: Runtime Control Configuration Field Explanation

Field Name Description

Expose to user
budget budget in seconds

preferences preferences to sub-metrics

Used by runtime
rapidScript Finalize the quality KDG according to

“preferences”appMet

For developers

UNIT PER CHECK monitor frequency as in Figure 7.1.1
OFFLINE SEARCH use “FULL”1 as in Section 7.1.1

REMOTE use remote2 server for optimization
GUROBI formalize optimization problem in Gurobi3

MISSION LOG log the re-configuration activity
DEBUG verbose information4

RAPID M use RAPIDS M server
RUSH TO END use RUSH TO END method as in Section 5.5.1

1. “FULL” is the black box approach and it requires the “.cost” if selected
2. REMOTE is a MUST in Rapids-M and optional in Rapids
3. Rapids also supports the LP SOLVE [119] problem format but LP SOLVE typically
has much higher overhead than GUROBI
4. verbose information includes overhead per re-configuration, working progress, etc

138

1 {
2 "basic": {
3 "app_name": "APP_NAME",
4 "defaultXML": "PATH/TO/KDG/WITH/DEFAULT/

QUALITY"
5 },
6 "mission": {
7 "budget": YOUR_BUDGET,
8 "UNIT_PER_CHECK": 10,
9 "OFFLINE_SEARCH": false,

10 "REMOTE": true,
11 "GUROBI": true,
12 "RAPID_M": true,
13 "MISSION_LOG": true,
14 "DEBUG": true,
15 "RUSH_TO_END": false,
16 "POWER_SAVING": false
17 },
18 "appMet": "PATH/TO/PYTHON/APP_METHODS.py",
19 "rapidScript": "PATH/TO/rapid.py",
20 "preferences": [pref_to_sub_metrics]
21 }

Figure B.1: Application Runtime Configuration File

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Notions and Definitions in Approximation
	Basic Terms
	More Complications to be addressed in Approximation

	Three Main Problems of Approximation
	Configuration Space Specification
	Cost and Quality Model Construction
	Runtime Reconfiguration

	Limitations of Current Approaches
	Lack of Expressive Development Model
	Naive Cost / Quality Model Construction
	 Insufficient Support for Multi-Programming
	Summary of Challenges

	Thesis
	Thesis Statement
	Contribution
	Rapids: A Framework for Single Application Approximation Management
	Rapids-M: The first System for Cross-Application Approximation Management

	Evaluation Summary
	Organization

	State of the Art
	Sample Applications
	Rapids
	Introduction
	Application Representation: KDG
	Developers' Insight as Structure
	Cost Model using KDG
	Custom Quality Metrics/Models and Virtual Knobs

	Problem Specification
	KDG Weight Derivation
	Effective Training
	Runtime Optimization Problem Formulation

	Key Results
	Space Reduction
	Output Quality
	User Preferred Sub-Metric Comparison

	Rapids in Multi-Programming Environment
	Introduction
	Rapids-M Framework Overview
	Rapids-M Offline Phase
	Resource Usage Prediction: M
	Performance Prediction: P
	Bucket Determination

	Rapids-M Online Configuration Manager
	Key Results
	Strategies Used for Comparison
	Evaluation Metrics
	Improvement on Overall Output Quality

	Implementation
	The Rapids Framework
	Rapids-M Implementation

	Evaluation
	Rapids: Single-App Scenario Evaluation
	Problem Size Reduction from Developer's Insight
	Model Validation
	Application Output Quality
	Custom Quality
	Reconfiguration and Overhead
	Overhead Optimization
	Summary of Key Results

	Rapids-M: Cross-Application Evaluation
	Model Validation
	Optimality
	Global Reconfigurations
	Static Evaluation
	Reconfiguration Overheads
	Summary of Key Results

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Training Tuning
	4-Stage Training Process Tuning
	Per-Application Training Tuning

	Runtime Tuning

