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ABSTRACT OF THE DISSERTATION

Machine Learning based Image Segmentation for

Large-scale Osteoarthritis Analysis

by CHAOWEI TAN

Dissertation Director:

Dimitris N. Metaxas

Osteoarthritis (OA) is the most common degenerative joint disease worldwide, tending

to occur in the joints of hip and knee. Large adult population in the United States

have been affected by OA, and by 2030, an estimated 20 percent of Americans (about

70 million people) may be at increased risk for this disease. Effective medical image

segmentation methods play fundamental roles in the clinical analysis of the disease. In

this dissertation, three machine learning based segmentation for knee cartilage, femoral

head-neck junction and thigh muscular/adipose tissue are discussed, respectively. Fur-

thermore, large-scale OA analysis on the knee and hip joints could be further imple-

mented based on these segments.

Knee cartilages (i.e., femoral, tibial, and patellar cartilage) are essential tissue for
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knee radiographic OA diagnosis. Effective segmentation of knee cartilages in large-

sized and high-resolution 3D magnetic resonance (MR) data is firstly proposed. The

key contribution is an adversarial learning based collaborative multi-agent network.

The method employs three parallel segmentation agents to label cartilages in their

respective region of interest (ROI), and then fuses the three cartilages by a ROI-fusion

layer and drive a collaborative learning by an adversarial sub-network. The ROI-fusion

layer not only fuses the individual cartilages, but also backpropagates the training

loss from the adversarial sub-network to each agent to enable joint learning of shape

and spatial constraints. The proposed scheme is shown robust and accurate in knee

cartilage segmentation, and it is effective for cartilage biomarkers (e.g., surface area,

volume) estimation in large-scale quantitative tests. Second, a deep multi-task learning

network is exploited for the shape-preserved segmentation of the proximal part of femur

(i.e., femoral head and neck) in 2D MR images. This method combines the tasks

of region identification and boundary distance regression, and thus enables the task-

specific feature learning for continuous segmented object with smooth boundary. This

bone joint depiction could help the measurements of the femoral head-neck morphology

and reflect the evolution of hip OA. In the last part of the dissertation, the muscular

and adipose tissue extraction in 3D MR thigh data is investigated by an integrated

framework. Specifically, deformable models and learning based detection/classification

are integrated into the framework to enable robust tissue quantification for a large-scale

analysis of OA-related thigh tissue changes.
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Chapter 1

Introduction

Osteoarthritis (OA), the most prevalent arthritis, is a type of disease on degenerative

joints, including articular cartilage and subchondral bone. OA causes mechanical ab-

normalities of joints, and then results in activity limitation and physical disability [71].

OA may affect any joint in the body, but it is particularly common in the knee and hip

joints. In the United States at the present day, more than 30 million U.S. adults have

the radiological evidence of OA [21, 80]. By 2030, an estimated 20 percent of Americans

(about 70 million people) may be at increased risk for this disease [86].

As the development of computing technologies, computer-aided image processing is

fast growing and has been widely utilized in medical imaging in recent decades. Medi-

cal imaging is the technique of generating visual signal/image information to represent

the interior of a body for medical analysis, clinical intervention and physiological pre-

sentation [124]. Magnetic resonance (MR) is one of the medical imaging technologies

in radiology to form the anatomical images and physiological procedures [123]. MR

scanners employ strong magnetic fields to generate organic pictures of in the body, and

thus this imaging is non-invasive. MR technique can produce three dimensional (3D)

detailed anatomical images and is often used for disease detection, diagnosis, and treat-

ment monitoring. MR is the most promising imaging modality to detect the changes

of bony joints in structure and intensity, as it provides direct and noninvasive images
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Figure 1.1: Schematic view of tissue anatomy (from [54, 79, 126]).

of the whole joint, including the soft tissue (e.g., cartilage) [61, 97]. On the other

hand, computed tomography (CT) scans make use of computer-guided X-ray imaging

to measure multiple planes of the body, and allow volumetric representations to be

formatted for the demonstration of various bodily structures [122]. CT has the risks

of ionizing radiation exposure, yet has still been applied as a modality showing the

structural mechanisms of joints, and has acquired incremental usage in imaging bone

and identifying osteoarthritis in recent years [14, 117].

1.1 Background

Developed from computer vision field, image segmentation is the process of automatic or

semi-automatic partitioning a digital image into multiple segments (sets of pixels, also

known as objects) within 2D or 3D images [6, 40, 90, 108]. In medical image segmenta-

tion, these segments often represent different tissue, organs, biologically relevant struc-

tures, or pathological conditions, and can simplify and/or change the representation of

a medical image into something that is more meaningful and easier to analyze [50, 95].

Medical image segmentation is typically used to locate objects’ masks or boundaries

(e.g., lines and curves) in images. Since different imaging systems have highly diverse

characteristics on body organs, numerous algorithms of organ segmentation have been
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developed [73, 110, 146, 148] to assist clinicians or researchers to interpret and assess

medical images [27, 30, 101].

Modern machine learning models mostly rely on massive human annotation for su-

pervised training, and on the other hand, unsupervised learning builds a self-organized

learning to find the interior patterns in dataset without annotated labels. Machine

learning has been successfully applied in many applications of medical imaging [110,

111, 136]. With the fast increase of GPU computational ability and substantial growth

of medical data/annotation, deep learning [64] has become the mainstream or even

default machine-learning technique for medical image analysis [37, 134, 139, 137]. In

all the deep learning based derivatives, convolutional neural networks (CNNs) have re-

ceived special attention. By exploiting a series of convolutional layers, normalization

layers, activation function, pooling layers, and fully connected layers, many state-of-

the-art network models have been established for medical image classification, detection

and segmentation [47, 88, 113, 134, 141].

In clinical trials, OA may affect any joint in the body, but it is particularly common

in the knee. Knee OA is a chronic joint disease associated with the degeneration of

knee cartilages. Cartilages are thin and elastic tissue, and they cover the ends of knee

bones and supple the movement of knee joint. As the progresses of knee OA, the

knee cartilages get thinner and may even completely wear away in severe cases, and

eventually lose their functionality and cause some symptons (e.g., pain and stiffness in

knee joint) [109, 127]. The schematic diagram of knee cartilage anatomy is shown in

Fig. 1.1 (a). The assessment of morphological parameters (e.g., volume, surface area

and thickness) of knee cartilages with MR imaging is important to diagnose the severity

of OA and further analyze the treatments [20, 34, 44].



4

As the body’s secondary weight-bearing joint, the hip joint is also commonly affected

by OA, and the corresponding schematic figure is demostrated in Fig. 1.1 (b). The hip

joint consists of the femoral head-neck bone and the acetabulum. Femoroacetabular

impingement (FAI) or known as hip impingement is a symptom with bone overgrowth

(called bone spurs) around the hip joint. FAI causes the joint bones an irregular shape

and results in a structural disorder of hip joint [93]. In recent years, FAI has been

growingly recognized as a potential forerunner of hip pain and main contributor to hip

OA later in people’s life [12, 82]. Insufficient femoral head-neck offset is common in FAI

and reflected by the alpha (or beta) angle, a validated measurement for quantifying this

anatomic deformity in patients with FAI [10, 87].

Additionally, the relevance of skeletal muscle and adipose tissue parameters (e.g.,

absolute or relative volume) in the thigh (shown in Fig. 1.1 (c)) are important modifiable

factors that have been identified as determinants of both radiographic (structural) and

symptomatic knee OA progression [9, 81, 106, 143]. Thus, as an auxiliary processing,

quantitative assessment of thigh tissue composition is also helpful in studies of relevance

between thigh tissue composition and knee OA [58, 111, 112].

1.2 Organization

In the following chapters, we focus on three segmentation modules for knee cartilage,

femoral head-neck junction and thigh tissue extraction, which play important roles in

knee and hip OA analysis, respectively. The methods are all designed to be robust and

scalable for 2D/3D MR imaging modality.

In Chapter 2, we introduce the collaborative multi-agent learning for MR knee artic-

ular cartilage segmentation. The 3D morphology and quantitative assessment of knee
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cartilages in MR imaging is of great importance for knee radiographic OA diagnostic

decision making. In order to capture the wide range and thin structure of cartilages

in detail, the MR data is usually acquired in large size (millions of voxels) and high

resolution. The proposed framework is an effective and efficient delineation of all the

knee articular cartilages in such imaging conditions. The key contribution is the adver-

sarial learning based collaborative multi-agent segmentation network. In the proposed

network, we use three parallel segmentation agents to label cartilages in their respective

region of interest (ROI), and then fuse the three cartilages by a novel ROI-fusion layer.

The collaborative learning is driven by an adversarial sub-network. The ROI-fusion

layer not only fuses the individual cartilages from multiple agents, but also backprop-

agates the training loss from the adversarial sub-network to each agent to enable joint

learning of shape and spatial constraints.

The first work is a specialized segmentation algorithm focusing on the knee car-

tilage segmentation problem. In Chapter 3, we propose a femoral head-neck bone

segmentation method using deep multi-task and task-specific feature learning network

for robust shape preserved organ segmentation. In this work, we introduce a deep

end-to-end network with two task-specific branches to ensure continuousness, smooth-

ness and shape-preservation in segmented structure without additionally sophisticated

shape adjustment, e.g., dense conditional random fields. First, we formulate the organ

segmentation as a multi-task learning process that combines both region and boundary

identification tasks, which can alleviate spatially isolated segmentation errors. Second,

we use boundary distance regression to ensure the smoothness of the segmented con-

tours, instead of formulating boundary identification as a classification problem [1].

Third, our deep network is designed to have a “Y” shape, i.e., the first half of the
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network is shared by both region and boundary identification tasks, while the second

half is branched for each task independently. This architecture enables the task-specific

feature learning for better region and boundary identification, and offers information

for segmentation refinement based on a fusion scheme using energy functional.

In Chapter 4, another application of thigh tissue quantification is discussed. The

work focus on large scale MR thigh image analysis via accurately quantifying major

tissue composition in the thigh by an integrated framework. Specifically, the frame-

work is able to distinguish muscular tissue and different types of adipose tissues, i.e.

subcutaneous adipose tissue(SAT), inter- and intra-muscular adipose tissue (IMAT and

IAMAT), efficiently. Deformable models and learning based techniques are integrated

in the framework to enable robust quantification. At last, we conclude the proposed

modules in Chapter 5, and discuss future work to produce robust results towards large

scale medical image data analytics.
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Chapter 2

Collaborative Multi-agent Learning for MR Knee

Articular Cartilage Segmentation

2.1 Introduction

The knee joint consists of knee bones, cartilages and menisci, and these tissue has com-

plex structure and may undergo low-contrast imaging quality. The schematic diagram

of knee anatomy is shown in Fig. 2.1 (a). Specially, the radiographic demonstrations

of knee articular cartilages (i.e., femoral, lateral tibial, medial tibial and patellar car-

tilage), shown in Fig. 1 (b) and (c), have a large coverage scope and are the essential

tissue components in the knee joint. Eckstein et al. [35] indicated that the cartilage

morphology outcomes (e.g., cartilage thickness, cartilage surface area) by measuring

3D Magnetic Resonance (MR) knee data can help to identify the symptomatic and

structural severity of knee OA. Bricca et al. [17] investigated the impact of knee joint

loading exercise on people at risk of articular cartilage defect, which is an important

hallmark of knee OA. On the other hand, the 3D cartilaginous labels are potential cri-

terias for extensive quantitative measures in the knee joint. For instance, knee cartilage

marks could help to compute the width of joint space narrowing and the derived dis-

tance map, which are considered as reference to assess the change of structure in knee

OA [19]. Hunter et al. [53] investigated the MR Osteoarthritis Knee Score (MOAKS)

by evolving a semi-quantitative scoring method based on the geometric relationships




