
MACHINE LEARNING BASED IMAGE SEGMENTATION FOR
LARGE-SCALE OSTEOARTHRITIS ANALYSIS

By

CHAOWEI TAN

A dissertation submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Dimitris N. Metaxas

And approved by

New Brunswick, New Jersey

January, 2020



c© 2020

Chaowei Tan

ALL RIGHTS RESERVED



ABSTRACT OF THE DISSERTATION

Machine Learning based Image Segmentation for

Large-scale Osteoarthritis Analysis

by CHAOWEI TAN

Dissertation Director:

Dimitris N. Metaxas

Osteoarthritis (OA) is the most common degenerative joint disease worldwide, tending

to occur in the joints of hip and knee. Large adult population in the United States

have been affected by OA, and by 2030, an estimated 20 percent of Americans (about

70 million people) may be at increased risk for this disease. Effective medical image

segmentation methods play fundamental roles in the clinical analysis of the disease. In

this dissertation, three machine learning based segmentation for knee cartilage, femoral

head-neck junction and thigh muscular/adipose tissue are discussed, respectively. Fur-

thermore, large-scale OA analysis on the knee and hip joints could be further imple-

mented based on these segments.

Knee cartilages (i.e., femoral, tibial, and patellar cartilage) are essential tissue for
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knee radiographic OA diagnosis. Effective segmentation of knee cartilages in large-

sized and high-resolution 3D magnetic resonance (MR) data is firstly proposed. The

key contribution is an adversarial learning based collaborative multi-agent network.

The method employs three parallel segmentation agents to label cartilages in their

respective region of interest (ROI), and then fuses the three cartilages by a ROI-fusion

layer and drive a collaborative learning by an adversarial sub-network. The ROI-fusion

layer not only fuses the individual cartilages, but also backpropagates the training

loss from the adversarial sub-network to each agent to enable joint learning of shape

and spatial constraints. The proposed scheme is shown robust and accurate in knee

cartilage segmentation, and it is effective for cartilage biomarkers (e.g., surface area,

volume) estimation in large-scale quantitative tests. Second, a deep multi-task learning

network is exploited for the shape-preserved segmentation of the proximal part of femur

(i.e., femoral head and neck) in 2D MR images. This method combines the tasks

of region identification and boundary distance regression, and thus enables the task-

specific feature learning for continuous segmented object with smooth boundary. This

bone joint depiction could help the measurements of the femoral head-neck morphology

and reflect the evolution of hip OA. In the last part of the dissertation, the muscular

and adipose tissue extraction in 3D MR thigh data is investigated by an integrated

framework. Specifically, deformable models and learning based detection/classification

are integrated into the framework to enable robust tissue quantification for a large-scale

analysis of OA-related thigh tissue changes.
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Chapter 1

Introduction

Osteoarthritis (OA), the most prevalent arthritis, is a type of disease on degenerative

joints, including articular cartilage and subchondral bone. OA causes mechanical ab-

normalities of joints, and then results in activity limitation and physical disability [71].

OA may affect any joint in the body, but it is particularly common in the knee and hip

joints. In the United States at the present day, more than 30 million U.S. adults have

the radiological evidence of OA [21, 80]. By 2030, an estimated 20 percent of Americans

(about 70 million people) may be at increased risk for this disease [86].

As the development of computing technologies, computer-aided image processing is

fast growing and has been widely utilized in medical imaging in recent decades. Medi-

cal imaging is the technique of generating visual signal/image information to represent

the interior of a body for medical analysis, clinical intervention and physiological pre-

sentation [124]. Magnetic resonance (MR) is one of the medical imaging technologies

in radiology to form the anatomical images and physiological procedures [123]. MR

scanners employ strong magnetic fields to generate organic pictures of in the body, and

thus this imaging is non-invasive. MR technique can produce three dimensional (3D)

detailed anatomical images and is often used for disease detection, diagnosis, and treat-

ment monitoring. MR is the most promising imaging modality to detect the changes

of bony joints in structure and intensity, as it provides direct and noninvasive images
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Figure 1.1: Schematic view of tissue anatomy (from [54, 79, 126]).

of the whole joint, including the soft tissue (e.g., cartilage) [61, 97]. On the other

hand, computed tomography (CT) scans make use of computer-guided X-ray imaging

to measure multiple planes of the body, and allow volumetric representations to be

formatted for the demonstration of various bodily structures [122]. CT has the risks

of ionizing radiation exposure, yet has still been applied as a modality showing the

structural mechanisms of joints, and has acquired incremental usage in imaging bone

and identifying osteoarthritis in recent years [14, 117].

1.1 Background

Developed from computer vision field, image segmentation is the process of automatic or

semi-automatic partitioning a digital image into multiple segments (sets of pixels, also

known as objects) within 2D or 3D images [6, 40, 90, 108]. In medical image segmenta-

tion, these segments often represent different tissue, organs, biologically relevant struc-

tures, or pathological conditions, and can simplify and/or change the representation of

a medical image into something that is more meaningful and easier to analyze [50, 95].

Medical image segmentation is typically used to locate objects’ masks or boundaries

(e.g., lines and curves) in images. Since different imaging systems have highly diverse

characteristics on body organs, numerous algorithms of organ segmentation have been
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developed [73, 110, 146, 148] to assist clinicians or researchers to interpret and assess

medical images [27, 30, 101].

Modern machine learning models mostly rely on massive human annotation for su-

pervised training, and on the other hand, unsupervised learning builds a self-organized

learning to find the interior patterns in dataset without annotated labels. Machine

learning has been successfully applied in many applications of medical imaging [110,

111, 136]. With the fast increase of GPU computational ability and substantial growth

of medical data/annotation, deep learning [64] has become the mainstream or even

default machine-learning technique for medical image analysis [37, 134, 139, 137]. In

all the deep learning based derivatives, convolutional neural networks (CNNs) have re-

ceived special attention. By exploiting a series of convolutional layers, normalization

layers, activation function, pooling layers, and fully connected layers, many state-of-

the-art network models have been established for medical image classification, detection

and segmentation [47, 88, 113, 134, 141].

In clinical trials, OA may affect any joint in the body, but it is particularly common

in the knee. Knee OA is a chronic joint disease associated with the degeneration of

knee cartilages. Cartilages are thin and elastic tissue, and they cover the ends of knee

bones and supple the movement of knee joint. As the progresses of knee OA, the

knee cartilages get thinner and may even completely wear away in severe cases, and

eventually lose their functionality and cause some symptons (e.g., pain and stiffness in

knee joint) [109, 127]. The schematic diagram of knee cartilage anatomy is shown in

Fig. 1.1 (a). The assessment of morphological parameters (e.g., volume, surface area

and thickness) of knee cartilages with MR imaging is important to diagnose the severity

of OA and further analyze the treatments [20, 34, 44].
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As the body’s secondary weight-bearing joint, the hip joint is also commonly affected

by OA, and the corresponding schematic figure is demostrated in Fig. 1.1 (b). The hip

joint consists of the femoral head-neck bone and the acetabulum. Femoroacetabular

impingement (FAI) or known as hip impingement is a symptom with bone overgrowth

(called bone spurs) around the hip joint. FAI causes the joint bones an irregular shape

and results in a structural disorder of hip joint [93]. In recent years, FAI has been

growingly recognized as a potential forerunner of hip pain and main contributor to hip

OA later in people’s life [12, 82]. Insufficient femoral head-neck offset is common in FAI

and reflected by the alpha (or beta) angle, a validated measurement for quantifying this

anatomic deformity in patients with FAI [10, 87].

Additionally, the relevance of skeletal muscle and adipose tissue parameters (e.g.,

absolute or relative volume) in the thigh (shown in Fig. 1.1 (c)) are important modifiable

factors that have been identified as determinants of both radiographic (structural) and

symptomatic knee OA progression [9, 81, 106, 143]. Thus, as an auxiliary processing,

quantitative assessment of thigh tissue composition is also helpful in studies of relevance

between thigh tissue composition and knee OA [58, 111, 112].

1.2 Organization

In the following chapters, we focus on three segmentation modules for knee cartilage,

femoral head-neck junction and thigh tissue extraction, which play important roles in

knee and hip OA analysis, respectively. The methods are all designed to be robust and

scalable for 2D/3D MR imaging modality.

In Chapter 2, we introduce the collaborative multi-agent learning for MR knee artic-

ular cartilage segmentation. The 3D morphology and quantitative assessment of knee
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cartilages in MR imaging is of great importance for knee radiographic OA diagnostic

decision making. In order to capture the wide range and thin structure of cartilages

in detail, the MR data is usually acquired in large size (millions of voxels) and high

resolution. The proposed framework is an effective and efficient delineation of all the

knee articular cartilages in such imaging conditions. The key contribution is the adver-

sarial learning based collaborative multi-agent segmentation network. In the proposed

network, we use three parallel segmentation agents to label cartilages in their respective

region of interest (ROI), and then fuse the three cartilages by a novel ROI-fusion layer.

The collaborative learning is driven by an adversarial sub-network. The ROI-fusion

layer not only fuses the individual cartilages from multiple agents, but also backprop-

agates the training loss from the adversarial sub-network to each agent to enable joint

learning of shape and spatial constraints.

The first work is a specialized segmentation algorithm focusing on the knee car-

tilage segmentation problem. In Chapter 3, we propose a femoral head-neck bone

segmentation method using deep multi-task and task-specific feature learning network

for robust shape preserved organ segmentation. In this work, we introduce a deep

end-to-end network with two task-specific branches to ensure continuousness, smooth-

ness and shape-preservation in segmented structure without additionally sophisticated

shape adjustment, e.g., dense conditional random fields. First, we formulate the organ

segmentation as a multi-task learning process that combines both region and boundary

identification tasks, which can alleviate spatially isolated segmentation errors. Second,

we use boundary distance regression to ensure the smoothness of the segmented con-

tours, instead of formulating boundary identification as a classification problem [1].

Third, our deep network is designed to have a “Y” shape, i.e., the first half of the
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network is shared by both region and boundary identification tasks, while the second

half is branched for each task independently. This architecture enables the task-specific

feature learning for better region and boundary identification, and offers information

for segmentation refinement based on a fusion scheme using energy functional.

In Chapter 4, another application of thigh tissue quantification is discussed. The

work focus on large scale MR thigh image analysis via accurately quantifying major

tissue composition in the thigh by an integrated framework. Specifically, the frame-

work is able to distinguish muscular tissue and different types of adipose tissues, i.e.

subcutaneous adipose tissue(SAT), inter- and intra-muscular adipose tissue (IMAT and

IAMAT), efficiently. Deformable models and learning based techniques are integrated

in the framework to enable robust quantification. At last, we conclude the proposed

modules in Chapter 5, and discuss future work to produce robust results towards large

scale medical image data analytics.
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Chapter 2

Collaborative Multi-agent Learning for MR Knee

Articular Cartilage Segmentation

2.1 Introduction

The knee joint consists of knee bones, cartilages and menisci, and these tissue has com-

plex structure and may undergo low-contrast imaging quality. The schematic diagram

of knee anatomy is shown in Fig. 2.1 (a). Specially, the radiographic demonstrations

of knee articular cartilages (i.e., femoral, lateral tibial, medial tibial and patellar car-

tilage), shown in Fig. 1 (b) and (c), have a large coverage scope and are the essential

tissue components in the knee joint. Eckstein et al. [35] indicated that the cartilage

morphology outcomes (e.g., cartilage thickness, cartilage surface area) by measuring

3D Magnetic Resonance (MR) knee data can help to identify the symptomatic and

structural severity of knee OA. Bricca et al. [17] investigated the impact of knee joint

loading exercise on people at risk of articular cartilage defect, which is an important

hallmark of knee OA. On the other hand, the 3D cartilaginous labels are potential cri-

terias for extensive quantitative measures in the knee joint. For instance, knee cartilage

marks could help to compute the width of joint space narrowing and the derived dis-

tance map, which are considered as reference to assess the change of structure in knee

OA [19]. Hunter et al. [53] investigated the MR Osteoarthritis Knee Score (MOAKS)

by evolving a semi-quantitative scoring method based on the geometric relationships
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Figure 2.1: (a) Schematic view of knee anatomy (from [54]). (b) and (c) Demonstrative
images from the sagittal and coronal directions of a 3D magnetic resonance (MR)
knee data, respectively. They show a knee joint, including femoral bone (FB), tibial
bone (TB), patellar bone (PB), femoral cartilage (FC), lateral tibial cartilage (LTC),
medial tibial cartilage (MTC), patellar cartilage (PC), lateral meniscus (LM) and
medial meniscus (MM).

between cartilaginous masks.

In order to capture the wide-coverage and exhaustive structure of cartilages for

accurate assessment of knee OA, MR data is usually scanned with large size (millions of

voxels) and high resolution. Fig. 2.2 exhibits a 3D MR knee data from the experimental

dataset, which is from the public Osteoarthritis Initiative (OAI) database. All the

volumetric MR scans in the set have 0.375mm×0.375mm in-plane resolution and 0.7mm

between-slice resolution, the in-plane size is 384×384, and the slice numbers are all 160.

These 3D MR data with high pixel resolution can reveal detailed-grand organ shape,

structure and intensity information. Their large physical range in space also guarantees

the data can capture all the crucial cartilaginous tissue in the knee joint region for the

3D based processing and clinical metrics analysis. Furthermore, in a diagnosing routine

of knee OA, radiologists need to review the 3D medical images slice by slice to detect

clues of joint degeneration, and measure the corresponding quantitative parameters

manually. However, it is difficult to visually determine the symptoms of knee OA,

because the radiographic representations may vary a lot in different individuals.
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Figure 2.2: (a) and (b) show the coronal and sagittal slices of a 3D MR knee data. The
red, green and blue contours indicate the femoral cartilage (FC), tibial cartilage (TC)
and patellar cartilage (PC), respectively. (c) demonstrates the cartilage labels in 3D.

To facilitate this procedure, in OA research, some automated techniques of knee

cartilage segmentation have been proposed. Atlas-based automated segmentation has

been used to effectively segment objects of interest in biomedical images, which are

estimated by using image registration. Shan et al. [107] considered the spatial relation

of femur and tibia in knee area, and utilized the multi-atlas-based bone and cartilage

registrations to initialize the spatial tissue priors. Then these priors are used for a joint

decision of cartilage classification. Despite promising results by the atlas-driven carti-

lage segmentation, the accuracy of the above approaches highly relies on the results of

registration (which may perform poorly when the training atlases can not represent the

target subjects well) and the parameter setting of cartilage shape refinement. In addi-

tion, for large-size and large-scale dataset, the multi-atlas bone/cartilage registration

requires high computation cost and relatively long segmentation time. Classification-

oriented approach is another type of cartilage mask initialization.

In recent years, deep convolutional neural networks (DCNNs) has the ability to learn

multi-level contextual information from raw input data, and thus DCNNs have shown

superior potency in classification and segmentation problems. Prasoon et al. [98] pro-

posed a tibia cartilage classifier by learning a joint objective function from multi-plane
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2D DCNNs. This classifier can be trained with a limited memory budget, and slightly

outperforms previous 3D non-learning/learning voxel categorization approaches. But

its 2.5D feature learning strategy may not be sufficient for comprehensive information

representation in 3D space for organ/tissue segmentation. As a progressive develop-

ment, fully convolutional network (FCN) [72] has been highlighted as a fundamental for

anatomy segmentation in medical images. Liu et al. [70] developed a fully automated

framework for knee cartilage extraction by training a 2D FCN-based tissue probabil-

ity predictor to drive a 3D deformable simplex-mesh-based cartilage reconstruction.

Although this method demonstrates good performance, its shape representations by

deformable models are limited to the use of pairwise forces which have high sensitivity

in parameter setting and uncertainty in global/local image information assigning. Addi-

tionally, the mesh deformations and regularization iterations are still high computation

consuming. It may cause boundary delineation errors at regions with high variability

of cartilage shapes and weak appearance imaging quality, which may be common in

MR knee joint images. The over-the-counter deep learning method, VNet [83], has

shown superior performances in many 3D segmentation tasks, however, simply apply-

ing VNet to the MR knee data may have low accuracy and result in crash of training

due to huge GPU memory consumption. Besides, the task of multi-cartilage classifica-

tion suffers from severe class imbalance problem. Xu et al. [132] showed a contextual

additive network focusing on the boost of memory efficiency for cartilage segmentation.

The approach is based on small overlapping patches (a patch may only capture partial

target) which may sacrifice certain accuracy. Some previous methods [46, 114] present

multi-task networks. They introduce the distinctive boundary features of organ to im-

prove accuracy. But the tissue of cartilage has very thin structure and its topology may
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Figure 2.3: Flowchart of the collaborative multi-agent learning for segmentation.

change in degenerative conditions. Xu et al. [130] segmented thin objects in 2D images

through a myocardial infarction segmentation. Yet this 2D task-specific strategy may

still suffer from the memory issue when applying for the 3D knee data.

In this chapter, we propose a segmentation framework with collaborative multi-

agent learning (shown in Fig. 2.3) for the task of knee cartilage labeling in large-sized

and high-resolution 3D MR data. Through region of interest (ROI) extraction, 3 high-

resolution cartilage ROIs are fed into different segmentation agents. The multiple agents

collaborate by the help of discriminator and produce multi-class cartilage labels at the

end. The ROI-fusion layer not only fuses the individual cartilages from multiple agents

for discriminator, but also backpropagates the training errors from the adversarial sub-

network to each agent to enable joint learning of shape and spatial constraints. Such

collaborative multi-agent framework can obtain fine-grained segmentation in each ROI,

and ensure the spatial constraints between different cartilages. It satisfies the limits of

GPU resources and enables smooth training on the challenging data. The experimental

results show that the proposed method can extract all cartilages accurately. The frame-

work is also applied to test a large dataset with one thousand of subjects, to investigate

the knee OA related cartilaginous parameters (i.e., volume, surface area).
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Figure 2.4: Overview of the multiple cartilage ROIs extraction (only show the sagittal
view). The number of feature maps in the network is displayed under each block.

2.2 Methods

The overview of the proposed framework is shown in Fig. 2.3. The coarse cartilage seg-

mentor and ROI extraction (i.e.,
⊗

) steps aim to efficiently localize and extract three

local regions of FC, TC and PC, and feed the ROIs to segmentation agents respectively.

The blue dashed box shows the collaborative multi-agent cartilage segmentation mod-

ule, which consists of three segmentation agents, one ROI-fusion layer (i.e.,
⊕

), and

one joint-label discriminator.

2.2.1 ROI extraction

In order to initialize the collaborative multi-agent learning, we first extract the ROIs of

three cartilages. As shown in Fig. 2.4, by utilizing the location information of the multi-

cartilage marks from the coarse segmentor, the image and label ROIs of FC, TC and

PC are extracted from the original data. The segmentor’s structure is like VNet [83],

i.e., encoding-decoding. The encoding part contains 3 down-samplings (by convolutions

of filter size 2 and stride 2) to obtain 3 different scales of feature maps. The decoding

part has 3 up-samplings (by deconvolutions of filter size 2 and stride 2) to restore the
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Figure 2.5: Illustration of the multi-agent diverse GANs in [41, 51].

scale of feature maps to reach the original input size. The blue block in this figure

represents residual block followed by a down-sampling or up-sampling layer mentioned

above when changing resolution. All the convolutional layers in the residual blocks have

filter size 3, stride 1 and zero-padding 1. PReLU activation and batch normalization

follow the convolutional and deconvolutional layers. The coarse cartilage segmentor is

trained based on multi-class cross entropy loss `mce to obtain cartilage masks from the

down-sampled MR data (e.g., 192× 192× 160).

2.2.2 Collaborative multi-agent learning

Generative adversarial Networks (GANs) [43] have emerged as a powerful data syn-

thesis/augmentation approach in various applications. The advent of GANs suggests

that images can be synthesized by training a generative network with a discriminative

network. The generative network uses the input z with a fixed distribution (e.g. Gaus-

sian), and learn to transform it to a real sample distribution Xreal. The GANs-based

approaches are capable of generating “real” data because of its competitive mechanism.

For the stability in GANs’ training on diverse-class dataset, Ghosh et al. [41] proposed
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Figure 2.6: Demonstration of the collaborative multi-agent learning framework for fine-
grained cartilage segmentation. The agents yield binary labels and the spatial fusion
operation outputs a 4-channel result (FC, TC, PC and background).

the multi-agent diverse GANs which disposes multiple generators for one discrimina-

tor to adapt the diversity of samples in Fig. 2.5. This framework enables each agent

(generator) better captures the intra-class variances, and meanwhile makes the discrimi-

nator jointly finds the inter-class differences. On ther other hand, GANs have attracted

marked attention in the segmentation field [28, 74, 138]. In the segmentation with

GANs, the segmentor incorporates a discrimination (critic) network to discriminate

the segments from the ground truth labels. Through this adversarial process, the dis-

crimination part learns the higher order regularities from shaped structure and spatial

position, and effectively propagates this global information back to the segmentation

part to improve the reality of segmented outcomes.

Inspired by the aforementioned theories, in this learning stage (shown in Fig. 2.6),

we construct one big network by three individual segmentation agents, one ROI-fusion

layer, and one adversarial sub-network. The segmentation agent Ac={f,t,p} (f , t and

p stand for FC, TC and PC, respectively) aims to generate fine cartilage binary mask
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Ac(xi,c) in the respective ROI xi,c (its ground truth (GT) ROI is yi,c and i is the

data index). Each ROI is small enough to cover only one cartilage in it. Since the

large portion of background and other cartilages are excluded, the class imbalance

problem is relieved significantly. The small ROIs also reduce the requirement for the

computational resources (i.e., GPU memories) and enable fine-grained segmentation in

high-resolution data. All the segmentation agents have similar VNet-like pattern as the

coarse segmentor. To balance the receptive field of neurons and the GPU memory con-

sumption, we further reduce the down- and up-sampling operations to 2. Considering

the thin characteristics and unclear boundary of cartilage, we need to better utilize the

multi-resolution contextual features to capture its fine details. In VNet, skip connec-

tion is designed to merge the up-sampled high-level features Iuph in decoding path and

the equivalent-resolution low-level features Il in symmetrical encoding path by simple

concatenation. Here, we apply an attention mechanism [55] to extend the skip con-

nections. Formally, the connecting operation becomes o
(
α� Il, Iuph

)
, where o denotes

concatenation along the channel dimension, and � is element-wise multiplication. The

attention mask α = m
(
σr
(
cl (Il) + ch

(
Iuph
)))

serves as a weight map that guides the

learning to focus on desired region. Here, ch and cl are two convolutions of filter size

1 and stride 1; σr is an activation function (e.g., ReLU); m is another convolution of

filter size 1 and stride 1 with sigmoid to contract the features to a single-channel mask.

The light blue blocks in Fig. 2.6 represent the attention based concatenation, and its

schematic diagram is illustrated in Fig. 2.7.

Although individual agent can obtain fine segmentation in its ROI, the individual

learning losses the mutual constraints between cartilages. In order to make the agents

collaborate together to make use of the mutual position and shape priors of all the
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Figure 2.7: Illustration of the attention mechanism in skip connection.

cartilages for better delineations, we propose a collaborative learning strategy. This

strategy utilizes a ROI-fusion layer F to restore the single-cartilage output from each

agent back to the original knee joint space where the mutual constraints and priors

can be encoded. F(Af , At, Ap) is implemented by using the location information of the

three input ROIs to fuse the fine cartilage masks back to the original space. Then, the

multi-cartilage priors are learned implicitly by adversarial learning strategy. We utilize

a discriminator sub-network D to classify the fused multi-cartilage mask as “fake” and

the whole GT label yi as “real”. In adversarial learning, the agents and the discrimi-

nator are trained alternatively. The parameters of agents are fixed when training the

discriminator, and vice verse. In this way, discriminator sub-network can learn joint

priors of multiple cartilages and guide the agents to produce better segmentation. It is

important to note that the layer F not only fuses ROIs by their coordinates, but also

passes the gradient updates from the discriminator to the agents during backpropaga-

tion, so that the two parts can be optimized in this alternating fashion. Since it is not

intuitive to judge the labels without seeing the input in segmentation task, we borrow

the idea of conditional generative adversarial nets, and treat the input MR knee image

xi as the conditioning variable. Fig. 2.6 shows that the discriminator sub-network

consists of 4 down-sampling convolutional layers, and the same residual block in the
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agents is also employed under each resolution level for contextual information learning.

The input to the discriminator is a pair of MR knee image xi and multi-label cartilage

mask (either the GT label yi or F(Af , At, Ap)). A global average layer is utilized at

the end to generate a probability value for fake/real mask discrimination.

The loss functions of discriminator and agents are defined in Eq. 2.1 and Eq. 2.2.

Here, `b indicates the binary cross entropy loss. In Eq. 2.2, the first term Ls =

`b [Ac (xi,c) ,yi,c] is to train each single segmentation agent. The second term Lm =

`mce [F(Af , At, Ap),yi] and the third one are applied on the fused multi-cartilage mask

for joint-label learning. The discriminator D and segmentation agents Ac={f,t,p} are

alternatively trained by minimizing Eq. 2.1 and Eq. 2.2.

∑
i
{`b [D (xi,yi) , 1] + `b [D (xi,F (Af , At, Ap)) , 0]} (2.1)

∑
i

{∑
c={f,t,p}

Ls (xi,c,yi,c) + Lm + `b [D (xi,F (Af , At, Ap)) , 1]

}
(2.2)

2.3 Experiments

2.3.1 Experimental settings

We validate our proposed method on the iMorphics dataset from the OAI database.

This set includes 176 3D MR (sagittal DESS sequences) knee images. The set is splitted

into training: 120, validation: 26, testing: 30. Patients are randomly and exclusively

used in the three subsets. Fixed ROI size of each type of cartilage is pre-defined based

on adequate evaluation on the training data. We compare the proposed method with

the state-of-the-art dense atrous spatial pyramid pooling (DenseASPP) for semantic

segmentation [140]. It integrates the ASPP architecture in a dense connection manner,
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Table 2.1: Quantitative comparisons of approaches: mean and std of evaluation metrics.
Femoral Cartilage Tibial Cartilage Patellar Cartilage All Cartilages
DSC VOE ASD DSC VOE ASD DSC VOE ASD DSC VOE ASD

D1 0.862 24.15 0.103 0.869 22.93 0.104 0.844 26.65 0.107 0.866 23.59 0.095
0.024 3.621 0.042 0.034 5.184 0.061 0.052 7.429 0.049 0.023 3.475 0.026

D2 0.832 28.64 0.131 0.879 21.38 0.088 0.861 23.69 0.091 0.851 25.94 0.111
0.025 3.618 0.059 0.038 5.972 0.055 0.040 6.027 0.051 0.023 3.393 0.036

C0 0.814 31.30 0.205 0.806 32.42 0.199 0.771 35.74 0.350 0.809 31.99 0.213
0.029 4.155 0.095 0.033 4.577 0.055 0.132 14.56 0.129 0.031 4.350 0.095

P1 0.868 23.19 0.108 0.854 25.17 0.126 0.824 28.78 0.201 0.862 24.24 0.110
0.023 3.514 0.067 0.029 4.173 0.059 0.104 12.45 0.439 0.023 3.457 0.048

P2 0.900 18.82 0.074 0.889 19.81 0.082 0.880 21.19 0.075 0.893 19.19 0.073
0.037 6.006 0.041 0.038 6.072 0.051 0.043 6.594 0.038 0.034 5.434 0.034

which is able to generate large receptive field and multi-scale features for segmentation

tasks. We also evaluate performances of the proposed coarse segmentor and individual

agents to show the effectiveness of the collaborative learning. Dice similarity coefficient

(DSC), volumetric overlap error (VOE) and average surface distance (ASD) between

the GT labels and segmented results are reported. In the training (no pre-trained

weights used), we set the batch size to 1 and multiply a factor of 0.95 every 10 epochs

to reduce the learning rate (LR). The Adam (with initial LR 0.001) and stochastic

gradient descent (SGD, with initial LR 0.0002) solvers are used for each agent and the

discriminator. All the networks are trained and tested by a 12GB-RAM Titan X GPU.

2.3.2 Experimental results

Quantitative comparisons are shown in Table 2.1. C0 represents the coarse cartilage

extraction by the segmentor in Fig. 2.4. P1 denotes the fused results generated by

the proposed segmentation agents, without the joint learning by the adversarial sub-

network. P2 represents results from the proposed method by employing the collab-

orative multi-agent learning framework as in Fig. 2.6. For comparison, we integrate

two variants of DenseASPP into the collaborative multi-agent framework. In the first
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variant D1, the residual blocks and skip connections are replaced by DenseASPP blocks

in the two down-sampled levels of the agent network. While in the second variant D2,

only the deepest level is replaced with DenseASPP block.

From the table, we can see that the proposed segmentation P2 achieves the best

performance in all metrics. The mean results of C0 (i.e., a similar implementation of

VNet) are relatively good and have no gross failure in our experiments. This shows that

the coarse stage is reliable initialization. The proposed P2 obviously outperforming P1

shows that segmentation agents are improved with the help of the proposed collabo-

rative learning strategy. The overall performances of the DenseASPP based variants

D1 and D2 are close to that of P1. It indicates that the proposed agent network

with the attention based concatenation is effective enough, compared to the DenseA-

SPP blocks which have more complicated architecture. In addition, the results of the

proposed method are comparable to those reported in some recent studies [4, 132].

Xu et al. [132] reported a total DSC (0.887± 0.024) value of FC and TC. Ambellan et

al. [4] utilized both 2D and 3D deep learning based segmentations with statistical shape

models as shape refinement postprocessing for femoral and tibial cartilages extraction.

Using a similar set from OAI, they achieved2 DSC (0.893± 0.024), VOE (19.4± 3.87)

and ASD (0.19 ± 0.09) for FC, DSC (0.881 ± 0.038), VOE (21.05 ± 5.808) and ASD

(0.223±0.143) for TC. Without the sophisticated shape adjustment step, the proposed

method acquires the comparable DSC and VOE scores, and much lower surface distance

errors. Hence, the proposed framework can be used to automatically generate reliable

assessments of all important articular cartilages in quantitative analysis for knee OA.

2[4] separately presents the results of FC, medial TC and lateral TC at two timepoints. For conve-
nience, we average these results and get the approximate mean/std metrics.
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Figure 2.8: Results of subject 1. (a) and (b) show the segmentation and GT labels
for FC (red), TC (green), and PC (blue) in sagittal view. (c) is the segmented 3D
cartilages.

Figure 2.9: Results of subject 2. (a) shows the segmented cartilages in sagittal view.
(b) and (c) demonstrate the GT and segmentation results in 3D view.

Visualization results (two examples) of the proposed method are showed in Fig. 2.8

and 2.9. The two patients have obvious shape variance of cartilages. In Fig. 2.8 (a)-

(c), the proposed method can accurately extract most of the cartilage regions and

obtain smooth tissue boundaries. Furthermore, as indicated by green dashed circles in

Fig. 2.8 (a) and (c), our method can effectively capture a small cartilage defect. The

green dashed circles in Fig. 2.9 (a) and (c) indicate a possible cartilage damage/miss

symptom well captured by our method. The 3D view exhibiting accurate 3D pattern of

cartilage defects could be very useful in visual study of cartilage-related diseases. The

yellow arrows in Fig. 2.9 (c) show some minor errors occurred in some neighborhood

areas due to unclear boundaries.
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Figure 2.10: Visual comparisons between different methods for subject 1. (a) Segmented
results of C0. (b) D1. (c) D2. (d) P1. (e) P2. (f) GT labels.

To further validate the performance of the proposed method, we compare the seg-

ments between different methods and show the visual results of subject 1 and 2. The

result of C0 shown in Fig. 2.10 (a) affords a reliable initialization of cartilage labeling,

yet it can not capture the detailed grained cartilage labels. The down-sampled MR

data used in C0 may degenerate the structure of cartilage at a point with very thin

tissue layer, and causes the incomplete segmentation (indicated by the yellow circles in

Fig. 2.10 (a)) From Fig. 2.10 (b) to (d), the segmented labels have the similar shape

patterns and the accuracy is obviously increased compared to C0, but all of them over-

segment the defect area (indicated by the yellow circles in Fig. 2.10 (b) to (d)). P2 gives

the closest cartilages reconstruction comparing with the GT labels. In Fig. 2.11 (a),

C0 still suffers from the similar incomplete segmentation problem, although it could

segment the main structure of cartilages. D1 and D2 in Fig. 2.11 (b) and (c) show good
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Figure 2.11: Visual comparisons between different methods for subject 2. (a) Segmented
results of C0. (b) D1. (c) D2. (d) P1. (e) P2. (f) GT labels.

outcomes, but they still over-segment the damage/miss symptom located in the yellow

circles of Fig. 2.11 (b) and (c). P1 trends to restore the cartilage missing symptom,

yet it has an extra leaking issue, because of the absence of the adversarial sub-network.

On the other hand, with the help of the proposed collaborative learning, P2 obtains

the best result in Fig. 2.11 (e).

2.3.3 Extensive evaluations for knee OA analysis

The proposed scheme is effective for cartilage biomarkers (e.g., surface area and volume)

estimation in large-scale quantitative tests. We have applied the scheme on a 36-month

subset (1000 3D MR knee data) of OAI for OA-MOAKS analysis [53] and the segmented

results are visually evaluated (gross error < 10%). In the MOAKS metric, higher score

of index means the patient has more severe OA degree in the knee, and score 0 represent
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Figure 2.12: Correlation between MOAKS scores and mean volume/surface area of
patellar cartilage. In (a) and (b), the x-axis represents the MOAKS scores. Y-axis
denotes the value of surface area (in (a)) and volume (in (b)).

the patient is normal. From Fig. 2.12, the plots show a clear correlation between the

MOAKS scores and the mean volume/surface area of patellar cartilage.

2.4 Summary

In this chapter, we present a fully automatic method to segment three knee cartilages

in 3D MR images based on a collaborative multi-agent learning architecture. Each

segmentation agent depicts the high-resolution cartilage mask in its coarsely (but effi-

ciently) located ROI. A novel skip connection by multi-resolution attention mechanism

is introduced to enhance the feature extraction of target, while suppressing confusing in-

formation in neighborhood areas. Then, the depicted multiple ROIs are spatially fused

into the original space to form a multi-cartilage label image for collaborative learning.

The collaboration of agents is implemented by the novel ROI-fusion layer followed by an

adversarial discriminator to ensure the shape and position constraints. Learning of the

agents and discriminator are conducted in an alternating fashion. In our experiments,
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the proposed method achieves robust and accurate segmentation for all important ar-

ticular cartilages in high resolution and large 3D MR knee data. Moreover, in the

extensive test on a large-scale dataset, the outputs show that the proposed method is

not only effective for the experimental dataset, but also practical for extensive quanti-

tative analysis on knee OA. In future we will apply the method for quantifing cartilage

biomarkers (e.g., volume, thickness, surface area) in large-scale studies and detecting

cartilage defects for lesion estimation [35, 53]. Besides the cartilages, the proposed

framework could also be extended for other multi-organ segmentation tasks [118].
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Chapter 3

Shape Preserved Femoral Head-neck Bone Segmentation

3.1 Introduction

In recent years, studies have recognized femoroacetabular impingement (FAI) as an

important pathogenic mechanism to contribute the progression of hip OA [11, 38, 59,

100]. The impingement of this disease is conditioned on the influence of the abnormality

of bony shape on the femoral head-neck junction and/or the acetabulum. In the adult

population, FAI is one the major reasons to cause hip joint pain or tenderness, and

may eventually result to hip OA later in people’s life. There are three types of FAI,

i.e., cam-type, pincer-type and combined-type [45, 100, 104], in Fig. 3.1). In the cam-

type impingement, the proximal femoral neck or the femoral head-neck junction suffers

from irregular osseous prominence. The excess and abnormal bone growth grinds the

cartilage inside the acetabulum, and further causes non-smooth rotation of the femoral

head inside the acetabulum. In the pincer-type impingement, excessive acetabular

bone grows over its normal rim and over-covers the femoral head. Over time, this

situation could result in tears of the labrum, under the prominent rim of the acetabulum.

Furthermore, many FAI cases are mixed by the two typs of impingement, begetting

varying degrees of abnormal bone morphology. All of these FAI cases will injure the

contours at the femoral head-neck junction of patients, and thus it is highly imperative

to develop examination and treatment for the disease [63].
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Figure 3.1: Schematic view of FAI [1]. (a), (b) and (c) show cam-type, pincer-type and
combined-type FAI, respectively.

Although clinical history and physical examination findings are helpful for the di-

agnosis of FAI, radiologic studies are the most convincing way. Common radiologic

imaging methods for hip joint imaging include radiography [49, 85, 115], computed to-

mography (CT) [15, 91, 116], and magnetic resonance (MR) [5, 65, 94]. Radiography

(or x-rays) could show good outline of bone in images. CT provides more detailed

bone imaging than x-ray to diagnose the abnormally shaped bones of FAI. MR im-

age acquisition has been considered as an important method for hip bones imaging in

multiplane. Besides displaying the contour of bone, MR could offer better soft tissue

imaging, such as cartilage and labrum, and thus enable comprehensive evaluation of

the femoral head-neck junction shape [36, 129].

In order to quantify the degree of femoral deformity implicated by FAI, alpha (or

beta) angle is defined as a measure of femoral head asphericity, and another parameter,

anterior (or posterior) offset, is assessed between the femoral head and neck [32, 87, 145].

Based on the manual or automatic femoral head-neck bone segmentation (built from

the input images sampled in the coronal plane), to measure the alpha angle [3, 103], a

2D circle fitting is firstly placed over the femoral head. Then, the intersection point pca
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Figure 3.2: Measurements of the alpha (or beta) angle and anterior (or posterior) offset
are shown in (a) and (b), respectively.

between the fitted circle and the anterior femoral neck is marked. Third, the central

axis of the femoral neck, Lneck, is described by drawing a line to connect the femoral

head center (approximated by the fitted circle center po) and the femoral neck center.

After depicting the line La between the points pca and po, the angle between La and

Lneck is defined as the alpha angle. The definition of the beta angle is similar to the

alpha one, just replacing pca to pcp (the intersection point between the fitted circle and

the posterior femoral neck). To measure head-neck offset [3], a line Ltangent is drawn

which is tangent to the anterior (or posterior) femoral neck and meanwhile parallel

to Lneck. At the concavity of the anterior (or posterior) femoral neck, another line

Lparallel parallel to Ltangent is obtained. The perpendicular distance between Lparallel

and Ltangent is defined as the head-neck offset. The measurements of the two types of

parameters based on a segmented contour are demonstrated in Fig. 3.2. Cases with large

alpha (or beta) angle, or narrow head-neck offset, would be considered abnormal [7].

Manual delineation and measurement of the angle and offset parameters work well in

single image or small dataset [8, 84]. However, automatic assessments are very necessary
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Figure 3.3: (a)-(d) show the ground truth (green lines) and segmented contours (red),
respectively. The FCN method is tested on two MR femoral head-neck images in (a)-(b).
In order to extensively validate the method, two CT kidney cases are also tested. The
FCN-based results exist spatially isolated errors and smoothless segmented boundaries.

for numerous multi-slices. Therefore, the femoral head-neck bone segmentation plays

the key role in the measuring process. An automated segmentation performs statistical

shape modeling (SSM) to extract the proximal femoral surfaces, and further utilizes the

results to determine the variation of bone shape [22]. Xia et al. [128] incorporated Atlas-

based initialization and SSM to segment both proximal femoral bone and innominate

bone. Although SSM is a basic module to capture the range of shape variability, it is a

very challenging task to build the shape correspondence among all training labels. The

modeling has high computational intensity and may mismatch structure in occasional.

In recent progress of machine learning, fully convolutional network (FCN) [72] has
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been highlighted as a fundamental segmentation approach for anatomy delineation in

medical images. It exploits the deep convolutional neural networks (DCNN) for coarse-

to-fine inference and makes a prediction at every pixel. Without manually setting

handcrafted features, DCNN has the ability to learn a hierarchical representation of

raw input data. However, FCN is limited for lower-level tasks requiring precise local-

ization, e.g., semantic segmentation, since the DCNN-based inferences inside FCN build

invariance to spatial transformations and provide only abstraction of spatial details. In

Fig. 3.3, FCN is more likely to have predicted outliers due to the high variability of

organic shapes and low-contrast imaging quality in medical images. It may not produce

a continuous segmented object with smooth boundary.

Some current researches employ a new strategy called multi-task learning for organ

segmentation. The main task of this strategy is to optimize target extraction by leverag-

ing auxiliary information from a set of correlated tasks (e.g., background classification

or bounding box investigation). Zhang et al. [149] studied an effective facial landmark

detection with multi-task deep representation that combined heterogeneous but subtly

correlated tasks. The fast RCNN [42] jointly trains for classification and bounding-box

regression, and obtain superior object detection. Chen et al. [24] presented a multi-task

deep representation that combines region and boundary classifications to obtain con-

tinuous tissue description. In a diabetic macular edema grading approach, Li et al. [68]

utilized a multi-task framework to promote the performance of each individual task.

Based on these previous studies, we formulate the organ segmentation as a multi-

task network consisting of two parallel end-to-end branches, as shown in Fig. 3.4, to

alleviate the spatially isolated segmentation errors in Fig. 3.3. Each task involves two

symmetrical parts, i.e., encoding and decoding. The first task is a conventional fully
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Figure 3.4: Proposed deep multi-task and task-specific feature learning network. The
left half is encoding for the abstraction of multi-level contextual feature. The right
half has two decoding branches for the task-specific learning. Each blue convolution
block includes two convolutional layers with filter size of 3 × 3 and zero-padding of
1. Parametric rectified linear unit and batch normalization are also adopted in all
convolutional and deconvolutional layers.

convolutional network for the inference of organ probability map. The second task is

a novel deep regression network (DRN) that regresses the distance constraint infor-

mation of organic boundary. During the distance regressing, it produces continuously

numerical constraints of spatial information. Thus the DRN obtains better potential

to preserve the smoothness of boundary, comparing with the discrete classified labels

obtained by boundary classification. Gao et al. [39] proposed a boundary extractor

by learning a joint objective function from displacement estimation and organ classi-

fication, and these two tasks only share parameters in the final loss. But in Fig. 3.4,

the two task-specific branches in the proposed network share parameters in the en-

coding process in the first half of Y-shape network, while having their own decoding

parameters to represent the features for the classification and regression, respectively.

This structure ensures a balanced and sufficient parameters learning to represent the
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task-specific features for region and boundary identification. During the training, the

cumulative loss is optimized by jointly investigating the two losses from each single

branch. Adding the distance regression task can effectively regularize the smoothness

of segmented boundary and reduce the isolated segmentation errors. Simultaneously,

the classification branch is efficient for locating and extracting target. Finally, the pro-

posed method also explores a unified segmentation architecture which incorporates a

shape refinement. We combine the inferred organ probability map and the regressed

boundary distance map based on a fusion scheme using energy functional. This scheme

can efficiently refine organ boundary, and avoid the complex parameter tuning of addi-

tionally sophisticated shape adjustment (e.g. dense conditional random fields[25]).

The proposed architecture has multi-fold benefits. (1) Its multi-task architecture

combines both region and boundary identification, and mitigates spatially isolated seg-

mentation errors. (2) The usage of boundary distance regression is able to ensure the

smoothness of the segmented contours. (3) The Y-shape network structure enables

sufficient learning of task-specific feature for better region and boundary identification.

3.2 Method

In this section, we elaborate the design of multi-task learning architecture, and then we

specify the objective function and discusses its advantages in solving. Subsection 3.2.1

describes the background knowledge of multi-level contextual feature representation.

Subsection 3.2.2 presents the design of multi-task learning architecture. Subsection

3.2.3 gives the objective function and discusses its advantages in solving. In the last

subsection, a further refinement of the two parallel end-to-end branches is discussed.



32

3.2.1 Multi-level contextual feature representation

FCN-based approaches have led to significant quantitative improvements for the task

of semantic image segmentation. Given a certain size of receptive field, the predication

scores from FCN are generated to guide the final discrimination for object extraction.

However, the network with single receptive field can not properly deal with the complex

conditions of high variability of organ shape in medical images. For instance, at different

axial position of a medical volume data, the organ’s size in each sampled slice highly

varies. A receptive field with fixed size (e.g. 32 × 32) may completely capture the

targets at both ends of an organ (e.g., liver, kidney or bone), while larger receptive size

is required for slices in the intermediate locations since the organ’s area enlarges. Hence

multi-size contextual information is helpful to receive the integral interior structure of

tissue and the sufficient background knowledge surrounding it, and then improve the

recognition performance.

3.2.2 Deep end-to-end network with multi-task learning

In this subsection, we present a deep end-to-end network branched by two task-specific

learning for the organ segmentation. As shown in Fig. 3.4, the network takes the entire

2D image as input, and the first task is a conventional FCN for the inference of organ

probability map, and the second one is the novel DRN regressing the distance constraint

information of organic boundary.

The main structure of each task is designed as a symmetric way, i.e., encoding-

decoding, similar to [105]. The two branches share the encoding part, which contains 4

max-pooling layers with stride 2 to obtain 4 different resolutions of raw image. Under
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each resolution, two convolutional layers are utilized for feature abstraction. This suc-

cessive encoding allows to obtain multi-size contextual information which is helpful to

receive the integral interior structure of tissue and the sufficient background knowledge

surrounding it, and then improve the recognition performance. In the decoding part of

each task, we deploy 4 deconvolutional layers in a cascaded way for up-sampling feature

maps. Each deconvolutional layer adopts stride 2, so it avoids the usage of large up-

sampling factors (16, or 32), and effectively reduces computation and details missing in

deconvolution. These deconvolutional operations restore input image’s resolution from

lower to higher, and finally reach the original size. Each upscaling operation also follows

two convolutional layers, playing the same role to abstract features. The design of the

proposed network firstly makes the encoder extract high-level abstraction features, and

then the two decoders acquire pixel-wise organ probability map and boundary distance

map, respectively. Furthermore, building a multi-level features extractor is very neces-

sary for the end-to-end segmentation task of medical image. Under the conditions of

high variability of organic shapes and low-contrast imaging quality in medical images,

the multi-level features extractor can capture discriminative contextual information.

For the facilitation from correlated tasks, we do not treat the segmentation as a

single-task problem, but investigate the distance regression as regularization, and for-

mulate the problem as a multi-task learning framework. The deep contour-aware net-

work [24] made its boundary identification branch as classification. This approach

provides strong boundary constraints, and can increase the overall segmentation accu-

racy and reduce spatially isolated errors. However the classification-based auxiliary task

offers discrete boundary labels, which may cause some non-smooth segmented contours.

Hence, boundary distance regression is a reasonable criteria to produce continuously
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numerical constraints of spatial information. The distance regression performs as com-

plementary cues to the probability of organ classification, and then it regularizes the

trouble of classification outliers.

Another question is where to branch the regression path from our baseline segmen-

tation framework. A simple way to carry out the regression loss layer is directly from

the convolutional layer that provides input for the classification score map. But this

kind of network structure results in excessive overlapping layers between the main and

auxiliary tasks. Accordingly, the correlated tasks can not sufficiently train their re-

spective up-sampling path to represent the specific features. We address this issue by

setting the path branching at the end of the down-sampling path, as shown in Fig.

3.4. It balances the parameters in the shared and non-shared parts of each task, and

guarantees each task’s up-samplings have a large number of individual feature channels

for better task-specific feature learning. Meanwhile, the missing of spatial information

in the shared network can be regularized by the regression network through parameters

updating in backpropagation.

3.2.3 Formulation

We define the loss of the classification branch Lcls by applying multi-class cross entropy

loss to each pixel of the output probability map. In the regression branch, we formulate

the loss term Ldis based on the following loss:

Ldis =
1

2K

K∑
i=1

∑
x∈Ω

w (x)
∥∥∥D̂i (x)−Di (x)

∥∥∥2

2
(3.1)

where K is the number of classes. For the i-th class, D̂i (x) and Di (x) are the predicted

and the ground truth distance maps at pixel location x ∈ Ω, where Ω is the image space,

and ⊂ Z2. w is a weight function that gives higher penalty weight to the pixels that
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are farther away the organ border.

Thus, the objective function of the network is as follows:

arg min
{Wt}Tt=1

{
Lcls + αLdis + β

T∑
t=1

‖Wt‖22

}
(3.2)

where α and β are the balance weights. T represents the number of tasks. Wt denotes

the parameters of t-th task.

Based on the proposed multi-task network and losses, the objective function will

not suffer from the non-trivial solving issue mentioned in [60]. We can easily derive a

standard solution for the novel `2-based regression loss. Moreover, except the two loss

layers in the two branches, the rest layers use the same decoding network design, and

thus Eq. 3.2 holds low model complexity and can be effectively solved through, for

instance, the stochastic gradient descent (SGD) solver.

3.2.4 Energy functional based fusion scheme

A further refinement could fuse the predicted organ probability map P̂ and boundary

distance map D̂ to obtain the final segmentation. Here, the fusion scheme minimizes an

energy functional F (P̂ , D̂) based on the Chan-Vese model [23]. The scheme treats the

probability map P̂ as the optimization target, and the distance map D̂ is treated as the

signed distance function ϕ for the model deformation. Because D̂ has already been very

close to the real organ, it can be used as a good and straightforward initialization for

the fusion. With few iterations, the fusion can be quickly solved by the Euler-Lagrange

equation and narrow band method. For one image, this step would only take 0.02s.
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3.3 Experiment

3.3.1 Experimental settings

Besides testing the proposed method on the femur dataset, we validate two more

datasets. We first test a synthetic dataset including 6000 2D simulated images (train-

ing: 4000, validating: 1000, testing: 1000). We use 3 types of geometry elements (circle,

triangle and square) to construct the toy examples. The target for segmentation is com-

bined by a circle and a triangle, which is initially located in the center of image with

a stochastic offset in the x and y directions. In order to simulate complex varieties of

shape, the angle, length and direction of the target are randomly set. Each toy image

also includes some interferences by randomly placing several squares and circles with

various sizes surrounding the target. Meanwhile, heavy Gaussian noises are added to

blur all shapes. The second dataset includes 2304 2D MR femur-head junction images

(training: 1368, validating: 468, testing: 468). They are radially acquired from 64 3D

MR femur scans with voxel spacing (1mm, 1mm, 1mm). On each 3D femur volume, we

rotationally sample 36 slices around the femoral shaft, with 5 degrees interval angle.

Fig. 3.5 shows the radial imaging (a common analysis method for FAI [32, 103]) to

obtain the 2D femur-head junction series. The third set is built from 107 computed

tomography (CT) 3D kidney images. Each kidney image is resampled and cropped, and

has the same physical size (20cm×20cm×15cm) with voxel spacing (1mm, 1mm, 1mm).

Along the axial direction of each kidney data, we totally sample 16050 2D images with

1mm interval distance (training: 9000, validating: 3000, testing: 4050). Patients ran-

domly used in dataset 2 and 3 are independent from others. All the images are resized

to 128× 128, and their pixel intensity is linearly normalized in [0, 1].
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Figure 3.5: Radial imaging of femoral series. The left of (a) shows the rotated sampling
in cross-section axis, and the right half displays the axis of rotation (yellow dashed line)
in longitudinal-section axis. (b) are the radially acquired images from a 3D data.

Two state-of-the-art medical segmentation approaches are evaluated with our method.

One is the UNet [105], and the second is the deep contour-aware networks for ac-

curate gland segmentation (DCAN [24]). For validation, dice similarity coefficient

(DSC = 2TP
2TP+FP+FN ) and relative error (RE = FP+FN

TP+FN ) between the ground truth

(GT) labels and segmentation results are reported. TP , FP and FN are the number

of pixels correctly identified, incorrectly identified and incorrectly rejected respectively.

The mini-batch is employed in the training phase, and its size is set to around 80 for

each training of the compared methods. We use a momentum of 0.9 and a learning rate

initially set as 0.001 (multiplied by a factor of 0.95 every 10,000 iterations).
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Figure 3.6: 2D visual comparisons for simulated data, femur and kidney. Green, red,
blue and yellow lines are for the GT, UNet, DCAN and proposed method, respectively.

3.3.2 Experimental results

Fig. 3.6 (a)-(c) show visual comparisons between the proposed method and the UNet

model for three cases. Shown by these, the UNet model can locate the position of

organ (or target) correctly. Its segmented regions capture most of the correct tissue

areas, and get good quantitative measurements. Yet its results suffer from leakages to

the surrounding areas, where have similar pixel intensity to the targets. On the other

hand, the classification branch of our method is the same as the UNet, but with the

additional regression branch and the joint training, the proposed approach can prevent

the leakage issue, and thus obtain better total segmentation performance. Since the

few visual comparisons may not reflect the overall performance clearly, quantitative

comparisons of overlapping accuracies are shown in Table 3.1.
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Table 3.1: Quantitative comparisons.
Method Simulation Femur Bone Kidney

DSC RE DSC RE DSC RE

UNet 0.90 0.19 0.90 0.19 0.70 0.62

DCAN 0.92 0.15 0.91 0.18 0.83 0.31

Ours 0.96 0.09 0.93 0.14 0.90 0.19

After showing the effectiveness of the proposed model to prevent leakages, we also vi-

sually compare the boundary smoothness of results by the DCAN and proposed method.

In order to have a better view, only the segmented contours by the two approaches are

plotted for the same cases in Fig. 3.6 (d)-(f). The DCAN method does not show signif-

icant leakage problem, and obtains higher total segmentation accuracy comparing with

the UNet in Table 3.1. However, by considering the boundary smoothness shown in the

red boxes, the proposed method achieves better performance. The two methods both

utilize multi-task strategy to preserve shape, but in the DCAN, its boundary classifica-

tion task offers discrete boundary labels which may cause non-smooth boundary. In our

regression branch, the boundary distance regression could provide continuously numer-

ical constraints of spatial information during optimizing the regression loss. Hence the

proposed method could produce higher smoothness on boundary. Besides the visual

comparisons, the overall quantitative measurements between the two approaches are

shown in Table 3.1.

3.3.3 Extensive experiments of femoral head-neck morphology

With the help of the proposed method, researchers could efficiently and accurately

complete the measurements of femoral head-neck morphology visually demonstrated in

Fig. 3.7. These demonstration results are from an experiment on 50 3D MR femur-

neck data. In the future, the detected morphological characteristics (e.g., concavity
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Figure 3.7: Measurements of the femoral head-neck morphology. In each demonstration
image, the green cross shows the center of fitted circle on femoral head. The red curve
is segmented by the proposed method, and two straight lines intersect with the curve at
the two concavities of femoral neck, respectively. The blue line is used to help visually
indicate the horizontal direction

of femoral neck) could be employed to extend some FAI abnormality analyses (e.g.,

in [32]) for large-scale dataset, to investigate the longitudinal correlations of hip OA.

3.4 Conclusion

In the present work, we propose a deep multi-task network for robust shape preserved

organ segmentation. The network has a unified architecture to formulate organ seg-

mentation as multi-task learning that combines both region and boundary identifica-

tion. This multi-task learning with the novel boundary distance regression can alleviate

spatially isolated segmentation errors as well as ensure the smoothness of segmented

contours. The proposed deep network is designed as a “Y” shape, bifurcated at the end

of the encoding path. Hence the shared encoding and non-shared decoding paths have

balanced layers and parameters for each task branch.
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Chapter 4

Towards Large-scale MR Thigh Image Analysis via An

Integrated Quantification Framework

4.1 Introduction

In previous chapters, deep learning based segmentation methods have been discussed.

However, deformable models and machine learning based algorithms are still practi-

cal and effective techniques for medical image segmentation and tissue quantitative

analysis. In this chapter, an integrated framework is discussed for accurately quanti-

fying major tissue composition in MR thigh images. In the integrated framework, a

data-driven and sparsity-constrained deformable segmentation is proposed, and a joint

label fusion based multi-atlas labeling is also utilize, to enable robust quantification.

Quantification of all the major thigh tissue plays a critical role in various medical data

analysis tasks, e.g., the analysis of physical performance and the progression/diagnosis

of knee osteoarthritis.

In Fig. 4.1, the magnetic resonance (MR) image illustrates the tissues in thigh.

Thigh intra-muscular adipose tissue (IAMAT) is defined as the AT visible between mus-

cle fibers. Corresponding to the IAMAT, thigh inter-muscular adipose tissue (IMAT)

lies within the fascia lata (a fibrous membrane giving off sheath to the thigh muscles)

surrounding the leg musculature. Different from subcutaneous adipose tissue (SAT) in

the thigh, IMAT encompasses and permeates skeletal muscles, with which it shares a
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(a) (b) (c)

Figure 4.1: Schematic diagram of thigh tissue.

direct vascular connection [33]. The curve of fascia lata is demonstrated as the closed

dark-green contour in Fig. 4.1 (b), which is a fibrous membrane giving off sheaths to

the thigh muscles. Encircled by the fascia lata, the colored labels demonstrate the 11

individual muscle sub-regions: vastus lateralis (VLM), rectus femoris (RFM), vastus in-

termedius (VIM), vastus medialis (VMM), sartorius (SAM), gracilis (GRM), adductor

magnus (AMM), semimembranosus (SMM), semitendinosus (STM), long biceps femoris

(LBF), short biceps femoris (SBF). The boundaries of these sub-regions provide explicit

divide of IMAT and IAMAT. Fig. 4.1 (c) further shows different labels of the major

thigh tissue composition: skeletal muscle (brown), SAT (pink), IMAT (blue), IAMAT

(green), bone and marrow (purple). Bone surrounds marrow, having low and high pixel

intensity in MR images, respectively. With high pixel intensity, SAT, also called su-

perficial fascia, is the adipose layer between the dermis and the deep fascia around the

thigh muscles. Skeletal muscle, or leg musculature, has intermediate intensity. IMAT

and IAMAT are defined as the adipose tissue (AT) visible between muscle groups and

muscle fibers, respectively. Their pixel intensity are both high.

Research in [78] showed that thigh IMAT and IAMAT appear to blunt the adaptive

muscle quality. Kumar et al. [62] indicated people with higher IAMAT is more related
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to symptomatic and structural severity of knee OA. While Maly et al. [77, 76] revealed

the relationship between IMAT volume and knee extensor strength and physical per-

formance among women with or at risk of knee OA using magnetic resonance imaging

(MRI). Moreover the further study [29] displayed increase of IMAT content is associ-

ated with structural and pathological progression of knee OA in women. Additionally,

analysis on quadriceps in [67] found that subjects with knee OA have significantly less

quadriceps strength relative to body mass index (BMI). Thus, an accurate quantitative

assessment of thigh tissue is crucial for the purpose of clinical OA research.

However, with respect to knee OA, the relevance of skeletal muscle and adipose tis-

sue parameters such as absolute or relative volume is quantitatively indistinct. A key

reason is the lack of effective approaches to quantify these kinds of thigh tissue, and

sufficient experiments with considerable data. Manual delineation and measurement

may work well for a single MR slice, yet it is time-consuming, operator-dependent, and

inconsistent for numerous multi-slices or 3D data. On the other hand, in recent years,

several techniques have been proposed to perform automatic thigh tissue assessments.

A 2D segmentation by a gradient vector flow (GVF) based active contour could assess

IMAT and other tissues in thigh [96]. Makrogiannis et al. [75] incorporated parametric

deformable model and unsupervised tissue clustering for an improved IMAT extrac-

tion. [119] used a model based on k-means clustering and mathematical morphology

to classify and delineate IMAT and SAT. By utilizing a variational Bayesian Gaussian

mixture model, Tan et al. [112] proposed a more reliable framework to obtain IAMAT,

IMAT and other thigh tissues from multi-type imaging sources.

So far, all the above approaches still have space for improvement: (I) The first point

is the distinction of IMAT and SAT. Most of the above-mentioned existing methods
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(a) A lean case (b) An obese case (c) Weak fascia lata edges

Figure 4.2: (a) In a lean case, fascia lata (blue marked regions) is close to muscle
regions. (b) The red marked regions show fascia lata is away from muscle boundary in
a obese case. (c) Weak fascia lata edges are shown in the red marked regions.

assumed that the contour of the general muscular region is the boundary separating

SAT and IMAT, if we call the enclosed area including all the skeletal muscles as the

general muscular region. Since the fascia lata is close to the muscle groups in normal

subjects (as shown in Fig. 4.2 (a)), such an assumption is acceptable. However, this

assumption does not hold for pathological subjects, because the fascia lata may not

be close to muscle regions (as shown in Fig. 4.2 (b) and (c)). Although Orgiu et al.

[89] revised the separation of IMAT and SAT by snake-based muscle fascia segmen-

tation, this approach still has the parameter sensitivity issue in setting the 2D active

contours, and may merely work for a small dataset. (II) The second is how to explic-

itly discriminate IMAT and IAMAT. Prescott et al. [99] integrated thresholding and

morphological skeletonization to locate IAMAT. While Tan et al. [112] utilized level-

set-based segmentation to estimate the connectivity of the adipose tissue to muscle,

and then implicitly separate these two adipose. Due to the unclear appearance cues or

high shape variation of thigh tissue, these unsupervised strategies might still require

manual intervention when processing large dataset, which causes serious inconvenience.

(III) The last but not least one is the experiment setting. Some tissue analyses of ex-

isting frameworks were only based on very few test samples. So adequate subjects with



45

different pathological and temporal conditions should be included into the analysis to

show a clear relevance of different thigh tissue for knee OA.

Therefore, in this work, we focus on a novel integrated framework to perform 3D

segmentation and classification of the major thigh tissue composition using volumetric

mid-thigh axial T1-weighted MR images. In particular, we present supervised tissue

discrimination techniques utilizing small amount of supervised information in learning

to locate the borders that separate IMAT from SAT and IAMAT. Specifically, in prepro-

cessing, a boosted cascade with the Haar-like is trained to locate a sub-window of femur,

and the negative effect of femur for the quantification can be eliminated. According

to the boundary of the general muscular region acquired by an efficient unsupervised

tissue initialization, we formulate a novel detection-driven and sparsity-constrained de-

formable model to obtain accurate labeling of fascia lata, as well as integrate an indi-

vidual skeletal muscles segmentation with joint label fusion based multi-atlas labeling.

The segmented fascia lata and muscle sub-regions instruct explicit divide of all the thigh

tissue. The proposed method permits finer control over adaptivity allowing the 4 pri-

mary tissue to be reasonably segmented rather than just unsupervised tissue distinction

approaches as in some existing papers.

The main contribution of this work is twofold. (1) A comprehensive framework is

designed to discriminate thigh tissue in a supervised way. Especially, to our knowledge,

the proposed method is the first one to integrate both the fascia lata and individual

muscles segmentations, and hence give a practical distinguishment of the three different

adipose tissue: IMAT, IAMAT and SAT. (2) The framework is applied to test a large

dataset with hundreds of temporal related subjects, to investigate the knee OA related

changes of thigh muscle and adipose tissue volume.
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Figure 4.3: Flowchart of the thigh tissue quantification framework.

4.2 METHODS

Accurate labeling of the skeletal muscle, IMAT and IAMAT in thigh benefits the quan-

tification of thigh tissue composition, and even provides quantitative basis for the diag-

nosis of knee OA. Thus, we formulate this problem as a series of detection, segmentation

and classification work, and present a novel integrated framework. Start from noise re-

duced data, we robustly extract femur by a boosted cascade with Haar-like features,

and hence the negative effects of femur, which may mislead the follow-up quantifica-

tion, are eliminated. Then the general muscular region is efficiently obtained through

an unsupervised tissue segmentation integrating global image context and shape refine-

ment. Meanwhile, based on the remained image areas, we segment fascia lata as well as
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Figure 4.4: Overview of the femur sub-window detection.

individual skeletal muscles by a data-driven and sparsity-constrained deformable model

and label fusion based multi-atlas technique, respectively. After delineating the bound-

aries between individual muscle regions and IMAT, we utilize a statistical classifier to

separate IAMAT from skeletal muscles. The demonstration of the algorithm flowchart

is shown in Fig. 4.3.

4.2.1 Femur Extraction

Femur, shown as the purple label in Fig. 4.1 (c), includes marrow encompassed by

bone (or called cortical bone). We propose a coarse-to-fine strategy to extract femur

and benefit the AT, muscle quantification.

In the first step, we train a detector to locate the sub-window of femur. Fig. 4.4

shows the overview of the femur sub-window detection. In the offline or online stage,
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the Haar-like features are extracted on each positive/negative patch or testing image.

The small boxes consisting of white and dark rectangles represent the edge, line and

center-surround feature prototypes (total 14 types) stated in [69]. In the map of the

trained Adaboost-based cascade classifier [56], the red and blue points represent the

positive and negative samples, respectively, and the black line is the decision border

of each cascade classifier. Accordingly, the yellow area is the acceptance field, while

the green area represents the denial field in the feature space. Finally, a local femur

sub-window is detected shown as the red-dashed box.

In the second step, we separate marrow and bone in the detected sub-window by

an intensity-based Gaussian mixture model (GMM) with K Gaussian components.

This model describes the probability distributions of K classes of tissue components in

whole thigh or part of thigh. In this case, the K is 3, representing cortical bone, skeletal

muscle and marrow, which have low, middle-level, and high pixel value, respectively.

The intensity-based classification is merely carried out on the local femur region without

strong interference from other tissue compositions, so we can very robustly obtain the

femur area and exclude it from the follow-up steps. The separated marrow and bone

labels are demonstrated in Fig. 4.3 (a).

4.2.2 Unsupervised General Muscular Region Initialization

Reliable general muscular region initialization is a key step to provide baselines for both

the fascia lata labeling and the individual muscles segmentation. In the T1-weighted

MR thigh images, the pixel intensity of the primary anatomical tissues (adipose, mus-

cle) have significant differences. The adipose has high pixel value, while the value of

the muscle is at intermediate level. Additionally, SAT and muscles have considerably
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Figure 4.5: Unsupervised general muscular region extraction.

consistent spatial distributions. SAT, shown as the pink label in Fig. 4.1 (c), is a kind

of adipose tissue between the skin (green-dashed contour in Fig. 4.5 (a)) and muscles,

and firmly encircles the muscle region (brown label in Fig. 4.1 (c)). Thus, we employ

intensity map Xi and distance map Xd (for each pixel in the thigh, calculate its closest

distance to the skin) as features. Then utilize a common clustering method (e.g., fuzzy

c-means [13]) to roughly label the general muscular region. These two features constrain

the contour of the intermediate labels to be connected. At last, we use this contour to

set a GVF-snake [131] to evolve and obtain a contour-refined general muscular region.

The initialized model V0 is defined as a set of meshless nodes on the muscle region

contours across all axial images. The initialization is shown in Fig. 4.5.

4.2.3 Fascia Lata Labeling

As the pathological changes, the initialized boundary of the general muscular region

can not accurately distinguish the IMAT and SAT. Thus, capture the fascia lata and
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reconstruct its surface is an essential step in the thigh tissue quantification. The pro-

vided fascia lata segmentation approach includes two sub-steps: (1). A random forest

based detection using narrow-band and sparse strategy to search a set of points as fas-

cia lata prior; (2). A sparsity-constrained deformable model to effectively suppress the

detection outliers in the fascia lata prior, and obtain the surface.

Fascia Lata Prior Detection

We define the fascia lata prior as a set of control points obtained from the learned

detector. The dataset used in the paper consists of volumetric mid-thigh axial MR

scans. The axial scanning makes fascia lata in adjacent slices strongly correlated, so we

learn a 2D fascia lata detector by a random forest [16]. We use points on the manually

labeled fascia lata as positive samples. From each positive point, we collect f points

forward and b points backward along its normal direction at equal intervals as the

negative samples. To detect fascia lata, both local and global features at each point

are extracted. We extract steerable features [150] as the local feature. To compute

the steerable features of a image pixel, a few points are sampled from the image patch

centered at the pixel using a regular sampling pattern. Then local (intensity-based and

gradient-based) features are extracted for each sampling point. The steerable features

embed orientation and scale information into the distribution of sampling points, while

each individual feature set is locally defined. In this way, the transformation of image

patch can be well captured by the transformation of the sampling pattern. For the

global feature, we put the origin of the global coordinate at the thigh mass center

po = (xo, yo). The x-axis px and y-axis py are parallel to the image’s horizontal and

vertical axes, respectively. The global feature of pixel at ps is represented as a relative
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Figure 4.6: Detection results. The blue star symbols are the initial points (blue) in C0,
and the red ones are the detected control points Ce.

angle θ between ps − po and px.

In detecting, we consider two optimizing strategies. The first is narrow-band pro-

cessing, which restricts most computations into a thin band, obviously improves the

searching efficiency. Because the fascia lata, as shown in Fig. 4.2, is near or attached to

the outer boundary of muscles, we define the narrow band as the range surrounding the

initialized model. Another practical strategy is to detect a sparse set of control points.

Instead of detecting the control points for all the n vertices in the initialized model V0,

we only detect for a subset C0 ⊂ V0 which contains m(� n) vertices. The detected

result is denoted by Ce. To catch the control point qe ∈ Ce of a certain vertex q ∈ C0,

the 2D detector searches along q’s normal direction in the 2D image for the position

with highest probability to be the fascia lata. So there is a one-to-one correspondence

between the points of the two sets, C0 and Ce. Fig. 4.6 gives some detection results.

Fascia Lata Contour Reconstruction

For the fascia lata surface reconstruction, we utilize a deformable model and formulate

it as an energy equation problem as:

Etotal = Edata (Vd) + Eprior (Vd, Ve) (4.1)
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Here, Ve denotes a meshless model inferred by Ce. Starting from the initialized

model V0, we compute the deformed model Vd, which is driven by Ce to best approxi-

mate Ve. Thus, the data energy term Edata aims to preserve the local shape structure in

Vd by using the Laplacian coordinate. The prior energy term Eprior is used to minimize

the distance between the current model and the control model Ve.

A vertex i ∈ Vd is represented by the 3D homogeneous coordinate vi = (xi, yi, zi, 1)>,

and > stands for transpose. A control point k ∈ Ce is represented by the 3D cartesian

coordinate ve
k = (xk, yk, zk)>.

A. Data Term

The proposed model deforms each meshless vertex i ∈ Vd by a transformation matrix

Ti ∈ R3×4. The Ti is a special linear matrix defined in [144]. As formulated by Eq. 4.2,

the matrix includes a scalar ai for isotropic 3D scaling, a translation vector (pxi , p
y
i , p

z
i ),

and parameters (h1
i , h

2
i , h

3
i ) for linear approximation of rotations with small angles.

Ti =


ai −h1

i h2
i pxi

h1
i ai −h3

i pyi

−h2
i h3

i ai pzi


(4.2)

In our meshless model, each vertex has a Laplacian representation defined by the

distances to its neighbors. Since the transformation matrices (e.g., Ti and Tj) of two

neighboring vertices (i and j) should be similar for a local shape-preserving deformation,

we regularize the difference between the deformed neighboring vertices. Thus, the

energy function of the data term is defined as:
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Edata =
∑
i∈Vd

∑
j∈N (i)

‖Tivi − Tjvj‖22 (4.3)

where N (i) ⊂ Vd is the neighboring node set of vertex i, with s closest nodes. As a

result of minimizing the summation of the deforming difference, the energy term ensures

the local similarity and thus preserve shape details.

B. Prior Term

With the detected control points Ce, the proposed model can be robustly guided to the

estimated location. To obtain more accurate fascia lata reconstruction, we define the

energy function of the prior term as:

Eprior =
∑
k∈Ce

‖Tm
k vm

k − ve
k‖22 (4.4)

Here, each control point k ∈ Ce with 3D cartesian coordinate ve
k has an one-to-one-

matched vertex in Vd with 3D homogeneous coordinate vm
k . Tm

k is the transformation

matrix of this vertex (in Vd) corresponding to control point k. The prior term measures

the distance from Ce to Vd. So by minimizing this term, the deformable model evolves

to the detected fascia lata.

C. Energy Formulation

Integrating both `1 and `2 regularization as [147, 120] can balance the model deforma-

tion and the suppression of gross outliers from the control points detection. Thus, we

combine the energy term (4.3) and (4.4), and sovle the deformable model by minimizing

the total energy (Eq. 4.1) as:
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arg min
∀i,Ti;eC

∑
i∈Vd

∑
j∈N (i)

‖Tivi − Tjvj‖22 + α
∑
k∈Ce

‖Tm
k vm

k − ve
k − ek‖22 + β

∥∥∥eC∥∥∥
1

 (4.5)

where α and β are balance weights. ek represents the detection gross error of a

control point k, and eC = ((e1)>, ..., (em)>)> is a restructured error vector.

4.2.4 Individual Muscles Segmentation

With the detection and reconstruction of fascia lata, we can capture the important

anatomic trail and distinguish between IMAT and SAT in thigh. However, the thigh

tissue quantification still requires another key step, the discrimination of IMAT and

IAMAT, and hence provides an exact assessment of the two different adipose tissue.

IMAT lies within the fascia lata and encompasses skeletal muscles, while IAMAT is

the adipose located between muscle fibers. If we could get all the 11 individual skeletal

muscles, the segmented sub-regions would not only guide the skeletal muscle assessment,

their boundaries would also give explicit divide of these two muscular adipose.

In order to segment a target image It, we define an atlas-based segmentation with r

pre-registered atlases: A1 = (I ′1, L
′
1), ..., Ar = (I ′r, L

′
r), I

′
i denotes the ith on-line training

image nonlinearly registered to It, and L′i is the corresponding warped manual labels.

The result is an estimated label L̂t for a pixel (indexed by x) in It is usually obtained

by weighted summary as:

L̂t (x) =
r∑

i=1

wi (x)Li (x) (4.6)

here wi (x) is a weight of pixel x assigned to ith atlas, and
∑r

i=1wi (x) = 1.

However, this weight-determination way might have limitation, for it independently

assigns weight to each atlas. Wang et al. [121] stated that labeling errors produced by
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(a) (b) (c)

Figure 4.7: A demonstration on individual muscles segmentation. (a) A slice from a
femur and SAT removed input data. (b) 11 individual muscle regions are extracted
by the joint label fusion based atlas method. (c) Skeletal muscle (brown) and adipose
tissue (IAMAT) (green) are separated based on the segmented sub-regions.

different atlases may be correlated, and hence they modeled a novel atlas-based segmen-

tation by minimizing the total expected error between L̂t and the true segmentation Lt.

The joint label fusion can effectively correct labeling errors from the individual muscles

segmentation. This strategy obtains the fusing weights by minimizing a total expected

error which takes mutual dependency of each atlas into consideration, so it can process

thigh muscles with more variants of shape and appearance. Moreover, because of this

advantage, this muscle segmentation merely require a small training set for on-line reg-

istration and fusion. Secondly, the fusing weights can be very fast solved in a closed

form, which is a key acceleration for 3D thigh data processing. After removing some

segmentation errors through morphological operators and connected components, in

the muscle regions, we employ the pre-defined VBGMM classifier from subsection 4.2.1

to discriminate between IAMAT and muscle. In this case, we set K = 2, representing

these two types of tissue. Fig. 4.7 demonstrates the muscle and adipose labeling results.
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4.2.5 Thigh Tissue Composition Classification

Now, based on all the intermediate results from the above steps, we can classify all the

compositions of thigh tissue. (i) From the noise-reduced input data Ui, the femur Uf is

detected and can be excluded from the tissue quantification. (ii) The fascia lata border

segmentation can adjust the rough SAT labeling results from subsection 4.2.2, and

acquires exact SAT partition Us. (iii) Based on the remained volume Ur = Ui − Uf −

Us, the individual muscles segmentation explicitly discriminates between IMAT and

IAMAT. Thus we can obtain obtain the accurate labeling of muscle tissue as Um, and

that of IAMAT as Uia. (iv) The partition of IMAT is computed as Uima = Ur−Um−Uia.

Last, the integrated framework quantifies skeletal muscle and adipose tissue (IMAT,

IAMAT, SAT) in thigh.

4.3 Experiment

In this part, we first introduce the validation of fascia lata reconstruction and individual

muscles segmentation, including visualization of segmentation, quantitative and statis-

tical accuracy comparisons. Then, hundreds of subjects with different pathological and

temporal conditions are included to build a radiographic OA related quantitative anal-

ysis of thigh tissue composition in detail. All the data using in the experiment part

are mid-thigh MR volumetric scans from the public Osteoarthritis Initiative (OAI)

database. All the MR scans are axial T1-weighted, aged from 45 to 82. Images have

0.98mm or 0.78mm in-plane resolution and 5.0mm between-slice resolution. The in-

plane sizes range from 145 × 125 to 274 × 249, and the slice numbers are all 15. Due

to strong bias errors on most right legs, we only extracted and processed left legs. All

the modules in this section are implemented in Matlab and C++, tested on a computer
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(a) (b) (c)

Figure 4.8: 2D visual results on fascia lata segmentation. (a) A slice from original thigh
volume. (b) Blue and red star symbols are the initialized and detected control points
by the proposed method. (c) Red, yellow and green contours are from our model, MDM
and GT, respectively.

with 4.0 GHz Intel Core i7 4790K and 32Gb RAM and 4G-RAM GPU.

4.3.1 Training and Validation of Fascia Lata Reconstruction

A dataset containing 40 subjects is used for the training of the 2D fascia lata detector

and the validation of the fascia lata reconstruction. The training set of the detector

consists of 90 2D thigh images with ground truth labeled by experts. These images

were extracted from 30 volumetric scans. For each volumetric scan, we selected 3 cross-

sectional slices from the top, middle, and bottom of the middle thigh, respectively.

We set parameters f = 4 and b = 3 for the negative points collection. The random

forest has 500 trees. The number of predictors sampled for splitting at each tree node

is square root of the feature number. The rest 10 labeled volumes are used for the

reconstruction validating. For evaluation, we fill the interior of fascia lata, and report

the mean and standard deviation of DSC and RE. Besides, the distance errors between

the reconstructed surface and the ground truth surface were also reported.

Fig. 4.8 shows some results of a subject (female, 63 years old). A comparative

method, Metamorphs based deformable model (MDM) from [112] is involved in the



58

Table 4.1: Quantitative comparisons of fascia lata reconstruction.
Method DSC RE Dist Errs

µ σ µ σ µ(mm) σ

Initial 0.9503 0.0079 0.0951 0.0150 3.49 0.51

MDM 0.9574 0.0082 0.0851 0.0174 3.45 0.38

Ours 0.9784 0.0137 0.0438 0.0292 2.14 0.35

test. This method extracts the boundary between SAT and IMAT by a modified para-

metric deformable model, integrating a region-of-interest-based balloon term of the

Metamorphs model [52]. The MDM dynamically estimates tissue’s intensity probabil-

ity map in unsupervised way to generate a region based force. This force can enhance

external force and facilitate the model convergence. When the MDM runs on the re-

gions without loose fascia lata, it can obtain a strong region force and work well because

the fascia lata is located at muscle’s edges. However, in the red circled region of Fig.

4.8(a), the fascia lata is loose from the muscle boundary. In this case, the loose fascia

lata is excluded from the probability map, so the MDM can not obtain an effective

region force to capture the whole fascia lata contour. Moreover, segmentation using in-

sufficient meshes may make the MDM capture imprecise boundaries of muscles. Thus,

the MDM has under-segmentation issue (yellow contour in Fig. 4.8(c)). On the other

hand, although the testing case has the loose symptom, our method can detect most of

the control points on the fascia lata (Fig. 4.8(b)), which provides accurate cues for the

driving forces. Furthermore, because of the sparsity constraints, outliers do not have

much negative impacts on the model deformation.

Quantitative comparisons are shown in Table 4.1. We report DSC and RE of the

initialized model in subsection 4.2.2, the MDM, and the proposed approach. For the

distance errors (Dist Errs), we first calculate the closest distance to the GT at each point

on the resulting surfaces, and then compute the means and the standard deviations.



59

Table 4.2: Quantitative comparisons of VLM, RFM and VIM segmentation.
Method VLM RFM VIM

DSC RE DSC RE DSC RE

MV 0.8376 0.3281 0.3967 1.0896 0.8239 0.3450

MA-EASA 0.8459 0.2988 0.2268 0.9994 0.8216 0.3841

Ours 0.9240 0.1585 0.6324 0.8280 0.8983 0.2062

4.3.2 Validation of Individual Muscles Segmentation

On the other hand, for the muscles segmentation, another data set with 8 expert-labeled

atlas pairs is utilized for Atlas on-line training. The subjects selected for this training

set are verified as representative of the while experimental patients with respect to

age, gender, and appearance of thigh muscles. In the validation of the segmentation

approach, we conduct leave-one-out cross validation on the 8 training subjects, and

evaluate the mean of DSC and RE on the segmented regions of 11 individual thigh

muscles and their total volume (TotM). The comparisons include the common majority

voting (MV) [48] and a state-of-the-art Atlas segmentation [135] which is a hybrid of

multi-atlas and extended adaptive statistical atlas (MA-EASA).

Quantitative results are reported from Table 4.2 to 4.5. The proposed muscles

segmentation achieves the best performance, comparing with the MV and MA-EASA.

Especially for the TotM estimation, its DSC score is larger than 0.95, which provides

an important foundation to assure the correctness of IMAT and IAMAT analysis for

the knee OA diagnosis. However, for the analysis of separate muscle sub-region, e.g.

RFM, STM and SBF, the proposed approach still has space for improvement. The

area, shape and location of RFM, STM and SBF have very high variation in different

pathological cases, so the situation causes the registration of these muscle sub-regions

inaccurate in atlas and hence reduces the robustness of fusion.

Visualization results of the three segmentations are also demonstrated in Fig. 4.9. In
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Table 4.3: Quantitative comparisons of VMM, SAM and GRM segmentation.
Method VMM SAM GRM

DSC RE DSC RE DSC RE

MV 0.8063 0.3937 0.7068 0.5229 0.7878 0.4203

MA-EASA 0.8093 0.4054 0.5395 0.6160 0.5623 0.6716

Ours 0.8657 0.2773 0.8807 0.2438 0.9011 0.2083

Table 4.4: Quantitative comparisons of AMM, SMM and STM segmentation.
Method AMM SMM STM

DSC RE DSC RE DSC RE

MV 0.8265 0.3879 0.7480 0.5606 0.5770 0.8749

MA-EASA 0.8020 0.4949 0.6798 0.6931 0.5383 0.8928

Ours 0.8876 0.2396 0.8104 0.4602 0.7883 0.5305

Fig. 4.9 (b), the MV for this case can correctly capture most of the muscle sub-regions.

However in the red-dashed circles, this fusion strategy has obvious segmentation error

that wrongly labels RF muscle as VL muscle, or it can not label the entire area of

a muscle. On one point of the target image, the MV directly selects the major label

from the warped manual labels. If the on-line training set does not contain atlases

having high similarity to the target, registration error might cause unlabeled area or

labeling errors. In Fig. 4.9 (c), the MA-EASA fills the unlabeled muscles by involving

a label-entropy-based relaxation map and muscular spatial priors. But the red-dashed

circles of this figure show that the MA-EASA goes through the under-segmentation

issue of IAMAT. Furthermore, the MA-EASA’s segmented boundaries are serrated, for

the high variance of muscle shape makes the relaxation map coarse. In Fig. 4.9 (d), by

minimizing the atlas-dependent expected error, the joint label fusion handles most of

the issues of the previous methods. Although this approach still has over-segmentation

Table 4.5: Quantitative comparisons of LBF, SBF and TotM segmentation.
Method LBF SBF TotM

DSC RE DSC RE DSC RE

MV 0.8097 0.3797 0.5339 0.8363 0.8871 0.2199

MA-EASA 0.8362 0.3273 0.4762 0.8112 0.9201 0.1551

Ours 0.9053 0.1925 0.7395 0.6105 0.9566 0.0881
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(a) Ground truth of 11 muscles (b) Labels by MV

(c) Labels by MA-EASA (d) Labels by the proposed

Figure 4.9: 2D visual results on individual muscles segmentation. (a) A slice from
a ground truth volume. (b), (c), (d) Segmented individual muscles by the MV, the
MA-EASA and the proposed approach, respectively.

Table 4.6: p-values of tissue volume of G1 and G2.
Group smVol matVol imaVol iaVol
G1 0.1397 0.2240 0.0084 0.0014

G2 0.8291 0.7663 0.2163 0.0855

problem, the application described in this paper only requires the TotM estimation,

and hence the joint label fusion can work well for the thigh tissue quantification.

Table 4.7: p-values of tissue volume normalized by BMI of G1 and G2.
Group smVol/BMI matVol/BMI imaVol/BMI iaVol/BMI
G1 0.2089 0.2550 0.0047 0.0020

G2 0.8709 0.7010 0.2120 0.1158
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Table 4.8: p-values of tissue volume normalized by smVol of G1 and G2.
Group matVol/smVol imaVol/smVol iaVol/smVol
G1 0.4931 0.0346 0.0012

G2 0.8731 0.3084 0.1180

Table 4.9: p-values of tissue volume normalized by totVol of G1 and G2.
Group smVol/totVol matVol/totVol imaVol/totVol iaVol/totVol
G1 0.9364 0.7381 0.0095 0.00006

G2 0.4431 0.3689 0.6043 0.0159

4.3.3 Radiographic OA Related Analysis of Thigh Tissue Composition

With respect to knee OA, the relevance of muscle and adipose tissue parameters such

as absolute or relative volume are still unclear. In this subsection, we investigate ra-

diographic OA (ROA) related changes of muscle and adipose tissue volume in two

subcohorts (G1 and G2) from the OAI study. The OAI database is queried for subjects

with bilateral KLG (Kellgren and Lawrence system) scores at baseline (BL) and 48

months (M48). Subjects with bilateral KLG scores 0 or 1 are labeled as nROA (non-

radiographic OA), while those with KLG scores 2, 3 or 4 are labeled as ROA. G1 has

85 patients (29 male, 56 female, age: 45-76), and G2 includes 61 patients (29 male, 32

female, age: 45-78). All subjects in the two sets are nROA at baseline. At M48, G1

subjects are diagnosed with ROA, while G2 subjects stay nROA. Thus, entire 292 MR

subjects are processed in this test.

All results are visually inspected for segmentation errors, for we do not yet have

manual ground truth for these two subcohorts. Volume of skeletal muscle (smVol),

muscular adipose tissue (matVol), and separately of IMAT (imaVol) and IAMAT (iaVol)

are assessed. The total leg volume (totVol) is the sum of SAT, skeletal muscle, MAT,

and femur. So far paired t-tests are used for each variable to investigate whether changes

over 4 years in volume or in volume normalized by subject’s BMI (body mass index),
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smVol or totVol are significant.

Table 4.6 to 4.9 show the p-values of different variables in G1 and G2, which are

conducted by two-tailed hypothesis. In this medical test, the level of significance is set

as 0.01, so two paired samples have no evident difference when p-value> 0.01. The

p-values of G2 over 4 years are all larger than 0.01. Since subjects in G2 at BL and

M48 are without radiographic OA, age progress may have no effort to the volume of

these 4 tissue components or their normalized values. On the other hand, in G1 over

4 years, significant changes exist in the volume of IMAT and IAMAT, for the p-values

are less than 0.01. Even after normalizing to BMI, smVol and totVol, changes remain

significant (except for IMAT by smVol). Based on the experimental results, patients

with knee OA may have obvious changes of the adipose tissue factors, e.g. volume of

IMAT and IAMAT. These factors may be also helpful in studies of relevance between

thigh tissue composition and knee ROA.

4.4 Summary

The main advantage of this work is that the framework comprehensively discriminates

thigh tissue in a supervised way. Comparing with the snake-based muscle fascia seg-

mentation in Orgiu et al. [89], the random-forest-based detection can handle more

complex cases for large-scale analysis, and the follow-up fascia reconstruction using

sparsity constraint can make up for the deficiencies from detection errors. Thus, the

proposed framework can provide a more robust distinguishing way of the IMAT and

SAT. The second is how to explicitly discriminate IMAT and IAMAT. Due to the

highly variational appearance cues of thigh muscles, existing unsupervised strategies

have to require manual intervention, which is an serious shortcoming when processing
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large data set. Yet the proposed joint-label-fused and morphological-refined muscles

extraction can work well under such situation. Firstly, the atlas-based segmentation

does not require large on-line training data. In addition, the loss function in the joint

label fusion considers mutual error of each atlas, which can effectively correct labeling

mistakes. Lastly, the formulation to determine the fusing weights is a closed form, and

hence it can be very fast solved. Thus, all of these merits make the work in this paper

as a robust and scalable thigh tissue quantification.

Quantitative assessment of thigh tissue composition is essential in medical and clin-

ical analyses. In this chapter, we present an effective integrated framework to tackle

this application. The key contribution of this work is to exploit supervised tissue dis-

crimination techniques utilizing small amount of supervised information in learning

to automatically extract different thigh tissue: femur, skeletal muscle, SAT, IAMAT

and IMAT. Moreover, since only few manual annotations are required to label thigh

fascia and muscles, our method becomes scalable to thigh tissue analysis with differ-

ent input data format. We validate the novelties of the proposed methods, fascia lata

reconstruction and individual muscles segmentation, with state-of-the-art thigh tissue

classification and atlas-based segmentation, respectively. The quantitative comparisons

show that the accuracy and effectiveness of the proposed framework. Importantly, an-

other major contribution is to apply the framework to conduct extensive evaluations

on a data set including 292 3D MR thigh subjects in temporal and pathological pro-

gression. The experimental results confirm that the volume of IMAT and IAMAT, and

their normalized values by BMI, smVol and totVol are changeable factors under knee

OA conditions. Thus, the proposed framework on large MR thigh data set could be

helpful in studies of relevance between thigh tissue composition and knee ROA.
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Chapter 5

Conclusions

In this dissertation, we focus on three challenging but essential tissue extraction prob-

lems. We propose three machine learning based segmentation of knee cartilage, femoral

head-neck junction and thigh muscular/adipose tissue in MR data. Specifically, the new

segmentation paradigms include collaborative multi-agent learning, multi-task learn-

ing with boundary distance regression, and integrated scheme with data-driven and

sparsity-constrained deformable segmentation. Furthermore, we discuss the feasibility

of large-scale knee/hip OA analysis using the proposed segmentation methods. The

contributions are summarized as follows.

1. First, we develop a novel framework to effectively segment knee cartilages in fine

details from high-resolution and large-sized 3D MR data. The key contribution

is an end-to-end framework which utilizes adversarial learning to enable a joint

learning of shape and spatial relations between different cartilages from segmen-

tation agents. The 3D morphology and quantitative assessment of knee cartilages

is of great importance for knee radiographic OA diagnostic decision making. The

proposed scheme is effective for cartilage biomarkers (e.g., surface area and vol-

ume) estimation in large-scale quantitative tests. We have applied the scheme on

a 36-month subset (1000 knees) of OAI for OA-MOAKS analysis.

2. Second, we propose a deep multi-task network for robust shape preserved femoral
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head-neck segmentation. The novelty of this work is a unified end-to-end network

to combine classification and regression tasks into one “Y” shape net for accu-

rate bone segmentation. The auxiliary branch with the novel boundary distance

regression can help the segmented outcomes to alleviate spatially isolated segmen-

tation errors as well as ensure the smoothness of segmented contours. At last, the

designed Y-shape network structure, which bifurcates at the end of the encoding

path, could balance the training between the shared encoding and non-shared de-

coding paths. The proposed approach not only obtains the highest performance

in the testings, but only has been used for measurements of the femoral head-neck

morphology in the extensive experiment for hip OA analysis.

3. Besides the above deep learning based segmentation, we also explore the corre-

lation analysis between knee OA and thigh tissue composition by an integrated

framework for MR thigh tissue quantifying. The designed framework is able to

distinguish muscular tissue and different types of adipose tissues, i.e., SAT, IMAT

and IAMAT, efficiently. Deformable models and learning based techniques are in-

tegrated in the framework to enable robust quantification. Importantly, extensive

evaluations are conducted on a large set of 3D MR thigh volumes from longitu-

dinal studies of hundreds of subjects to investigate knee OA related changes of

muscular and adipose tissue volumes. The analysis is constructed by two sub-

cohorts (G1 and G2). G2 has 61 patients which keep healthy at baseline (BL)

and 48 months (M48), while G1’s 85 patients are healthy at BL but have knee

OA at M48. Paired t-tests are used to investigate the changes of these tissue

size over time passing with/without pathological progression. The experimental

results show that, in G1, patients’ IMAT and IAMAT are statistically significant
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Figure 5.1: Correlation between KLG scores and mean volume/surface area of femoral
cartilage on left/right leg. In (a) to (d), the x-axis represents the KLG scores, and
y-axis denotes the value of surface area and volume.

respectively, yet G2 has no such variation in the same tissue type. Thus we con-

clude from the statistical analysis that age may not directly affect thigh tissues,

but IMAT and IAMAT may have obvious changes in patients with knee OA.

This thesis work proposes effective knee cartilage, femoral head-neck junction and

thigh muscular/adipose tissue segmentation paradigms, and attempt to apply the seg-

mented results for quantitative computation of OA-related tissual analysis on large-scale

dataset. The encouraged potential future work includes the following several directions.

1. On the one hand, besides the OA-MOAKS analysis of patellar cartilage on the 36-

month OAI subset, we also do an OA-KLG analysis of femoral cartilage using the

same biomarkers and subset. The correlation between the KLG scores and mean
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Figure 5.2: Flowchart of the extended multi-agent segmentation with meniscal agents.

volume/surface area of femoral cartilage is displayed in Fig. 5.1. However, as the

plots in this figure shown, the biomarkers do not reveal significant correlation.

Using the whole femoral cartilage structure may be the main reason causing the

correlation searching failed. Only a portion of the femoral cartilage tissue is

in contact with the menisci and tibial cartilage, and the most relevant area to

the KLG scores may exist in the place where two bones touch/move with each

other. Thus, the cartilage segmentation framework should be extended and other

indicative knee tissue should be included into the task.

On the another hand, the menisci (i.e., lateral and medial meniscus, shown in

Fig. 2.1) of the knee are two pieces of cartilaginous tissue found between the lower

leg (tibia) and the thigh (femur) [125]. The menisci disperse friction, absorb shock

produced by activities from the two bones meeting in the knee joint space. The

meniscus is another important type of tissue in the knee joint for the estimation

of knee OA progression. For instance, Paproki et al. [92] developed a scheme

using 3D active shape model (ASM) to fit the shape of menisci for computing the
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Figure 5.3: Anatomical delineation of FC mask into three subregions (R1-3) located by
the boundary of LM mask in the light blue dashed box. The anatomical structure of
menisci is shown in the green dashed box [54, 125].

OA-related quantitative parameters including volume, sub-luxation and tibial-

coverage, and Kawahara et al. [57] estimated the OA progression from the KLG

scale by manually measuring several meniscal parameters (e.g., anterior/posterior

wedge thickness, anterior wedge angle). Thus, we could jointly segment the knee

cartilages and menisci under the collaborative multi-agent processing. Because

the menisci exist in the gap between the FC and TC, adding the meniscal agents

(i.e., LM and MM) into the proposed adversarial learning could enhance the

distinguishment of targets’ boundaries. The extended segmentation is illustrated

in Fig. 5.2. Next, the segments of menisci could help build the subregion-based

OA progression assessment [53]. As Fig. 5.3 shows, with the masks of LM and

FC, an automated subregion delineation could be set up on the FC to detect the

highest correlated subregion to the OA conditions.

2. Besides the femoral head-neck bone segmentation on 2D MR data, its 3D version

on CT data [66, 117] is a potential direction of development. 3D segmentation



70

with deep learning modules have been comprehensively developed. From the ba-

sic 3D DCNN based end-to-end baseline [83], Dou et al. developed the 3D deeply

supervised network [31]. Then Yang et al. integrated the GAN’s discriminating

module into the 3D semantic end-to-end segmentation [138]. Recently, an end-to-

end adversarial shape learning [18] also shows improved capture ability of organ

shape. Yet, the performance on 3D DCNN based segmentation is significantly

affected by number of training data. It is extremely challenging to build a suffi-

ciently large dataset of 3D CT femoral head-neck bone due to difficulty of data

acquisition and annotation in 3D data. Inspired some transfer learning work,

like [26], start by training a baseline 3D network with our current MR femur

scans, the trained model could be transferred to solve the CT femoral head-neck

junction problem.

3. With the help of the integrated extraction framework of thigh tissue, we could

not only carry out the correlation analysis between knee OA and thigh tissue

composition, but also effectively prepare a larger set of segmented data for train-

ing. Start from this labeled set, some manual quality control and annotation

refinement would be involved to obtain a reliable training set. In this way, the

difficulty of data annotation starting from scratch could be avoided or obviously

declined. However, on the other hand, the modules implemented by traditional

supervised learning in the thigh tissue analysis still have some issues, and could

be replaced and improved by deep learning based approaches. (I) From our ob-

servations, in the fascia lata reconstruction, the main segmentation errors are

due to the inaccurate control points from the fascia lata detection. The reasons
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causing these fallacious detections come from the blurred boundaries in some low-

quality areas or the heavy bias noise existing in the testing MR images. Hence,

in future, to improve the fascia lata reconstruction, we could combine the interior

area segmentation encircled the fascia lata and the contour prediction using deep

shape priors [2, 133]. (II) For the muscles segmentation, although Wang et al.

[121] utilized the unsupervised search to optimize the pairwise Atlas dependency

matrix Mx, the joint label fusion might still not precisely locate the muscular

boundaries, when these border areas have indistinct neighboring image patches.

In recent years, depending on the techniques from other fields, for example, the

nuclei and glands segmented in the histopathology image analysis have the similar

morphological appearances to the muscular tissue. Thus, the instance segmenta-

tion with attention mechanism in the histopathology problems [142, 102] could

enhance the robustness and accuracy on the thigh muscle segmentation, especially

on the border areas.
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[87] Nötzli, H., Wyss, T., Stoecklin, C., Schmid, M., Treiber, K., Hodler, J.: The
contour of the femoral head-neck junction as a predictor for the risk of anterior
impingement. The Journal of bone and joint surgery. British volume 84(4), 556–
560 (2002)

[88] Oktay, O., Schlemper, J., Folgoc, L.L., Lee, M., Heinrich, M., Misawa, K., Mori,
K., McDonagh, S., Hammerla, N.Y., Kainz, B., et al.: Attention u-net: Learning
where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

[89] Orgiu, S., Lafortuna, C.L., Rastelli, F., Cadioli, M., Falini, A., Rizzo, G.: Auto-
matic muscle and fat segmentation in the thigh from t1-weighted mri. Journal of
Magnetic Resonance Imaging (2015)

[90] Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Pattern recog-
nition 26(9), 1277–1294 (1993)

[91] Panzer, S., Augat, P., Esch, U.: Ct assessment of herniation pits: preva-
lence, characteristics, and potential association with morphological predictors of
femoroacetabular impingement. European radiology 18(9), 1869 (2008)

[92] Paproki, A., Engstrom, C., Chandra, S.S., Neubert, A., Fripp, J., Crozier, S.: Au-
tomated segmentation and analysis of normal and osteoarthritic knee menisci from
magnetic resonance images–data from the osteoarthritis initiative. Osteoarthritis
and cartilage 22(9), 1259–1270 (2014)

[93] Parvizi, J., Leunig, M., Ganz, R.: Femoroacetabular impingement. JAAOS-
Journal of the American Academy of Orthopaedic Surgeons 15(9), 561–570 (2007)

[94] Pfirrmann, C.W., Mengiardi, B., Dora, C., Kalberer, F., Zanetti, M., Hodler, J.:
Cam and pincer femoroacetabular impingement: characteristic mr arthrographic
findings in 50 patients. Radiology 240(3), 778–785 (2006)

[95] Pham, D.L., Xu, C., Prince, J.L.: Current methods in medical image segmenta-
tion. Annual review of biomedical engineering 2(1), 315–337 (2000)

[96] Positano, V., Christiansen, T., Santarelli, M.F., Ringgaard, S., Landini, L.,
Gastaldelli, A.: Accurate segmentation of subcutaneous and intermuscular adi-
pose tissue from mr images of the thigh. Journal of Magnetic Resonance Imaging
29(3), 677–684 (2009)

[97] Potter, H.G., Koff, M.F.: Mr imaging tools to assess cartilage and joint structures.
HSS journal 8(1), 29–32 (2012)

[98] Prasoon, A., Petersen, K., Igel, C., Lauze, F., Dam, E., Nielsen, M.: Deep feature
learning for knee cartilage segmentation using a triplanar convolutional neural
network. In: International conference on medical image computing and computer-
assisted intervention. pp. 246–253. Springer (2013)

[99] Prescott, J.W., Best, T.M., Swanson, M.S., Haq, F., Jackson, R.D., Gurcan,
M.N.: Anatomically anchored template-based level set segmentation: application



80

to quadriceps muscles in mr images from the osteoarthritis initiative. Journal of
digital imaging 24(1), 28–43 (2011)

[100] Pun, S., Kumar, D., Lane, N.E.: Femoroacetabular impingement. Arthritis &
rheumatology 67(1), 17–27 (2015)

[101] Qin, C., Yao, D., Shi, Y., Song, Z.: Computer-aided detection in chest radiogra-
phy based on artificial intelligence: a survey. Biomedical engineering online 17(1),
113 (2018)

[102] Qu, H., Yan, Z., Riedlinger, G.M., De, S., Metaxas, D.N.: Improving nuclei/gland
instance segmentation in histopathology images by full resolution neural network
and spatial constrained loss. In: International Conference on Medical Image Com-
puting and Computer-Assisted Intervention. pp. 378–386. Springer (2019)

[103] Rakhra, K.S., Sheikh, A.M., Allen, D., Beaulé, P.E.: Comparison of mri alpha an-
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