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ABSTRACT OF THE DISSERTATION 

Sexually dimorphic foraging in bees and robust measurement of biodiversity 

By MICHAEL ROSWELL 

 

Dissertation Director: 

Rachael Winfree 
 
 
 
 
The field of ecology relies on the concept of species diversity to describe the structure of 

biological communities and ecosystems. But do we measure and interpret species diversity 

correctly? In my dissertation, I address two problems with the current species diversity 

paradigm. First, in measuring species diversity, we imagine that the roles that individuals play 

in ecosystems are cast by their species identities. However, if variation in the traits and 

behaviors of individuals of the same species is large, relative to variation between different 

species, this paradigm may fail. Second, we imagine that we can estimate species diversity in 

comparable ways in different systems. Yet our tools to measure diversity pertain to samples, 

which, even if collected the same way, may not be equally representative. Finally, diversity 

estimates contain uncertainty, but existing tools to describe that uncertainty make risky 

statistical assumptions.   

 

In my dissertation research, I tested whether variation within bee species might be as large as 

variation between them. Then, I addressed methodological challenges of comparing 

biodiversity. To support this research, I collected an unusual bee-plant interaction dataset. I 

designed my study to reveal aspects of community diversity and variation within species that 
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could be masked by undersampling in more typical datasets. My dataset is particularly large: 

~20,000 records of bees visiting flowers, collected at only six meadows in a single summer. 

Each community is relatively well-sampled; the number of individuals and interactions per 

community is several times what pollination ecologists usually collect.   

 

In my first chapter, on the degree of variation within species, I show how different sexes of the 

same bee species interact with different groups of plants. Pollination ecologists tend to lump 

all bees, regardless of sex, into groups by species. When lumping the sexes, ecologists assume 

that male bees are, from an ecological standpoint, the same as females, which, in fact, collect 

food for their offspring and thus forage at higher rates. I show that differences between sexes, 

within species, are comparable to differences between bee species. These differences arise 

from distinct activity periods for male and female bees, and also from flower choices made by 

the two sexes when they co-occur.  My findings challenge lumping organisms simply by 

species, and may help land managers decide which mix of plants will best support bee 

populations.  

 

In my second chapter, I use my dataset to illustrate best practices for measuring diversity. 

Rather than simply reveal patterns emerging from my own data, this chapter provides 

guidance on measuring the biodiversity of ecological communities more generally. Currently, 

conservation decisions and peer-reviewed papers rest on estimates of biodiversity that 

undershoot more in some places than others, often to the point of incorrectly identifying 

which communities are more diverse. Ecologists also use many metrics to compare 

biodiversity, and may lack conceptual justification for choosing one versus the other. This 
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chapter clarifies the biases arising from traditional tools of standardizing samples to make 

them comparable, reviews newer methods to reduce these biases, and provides a novel 

conceptual overview of diversity metrics themselves.  

 

In my third chapter, I showed that tools to quantify the uncertainty associated with different 

diversity estimates are not all reliable. In this chapter I define criteria for valid confidence 

intervals, and introduce two tools asses those criteria, “slugplots” and “checkplots.” These 

plots show that popular asymptotic biodiversity estimates lack robust uncertainty estimates, 

which makes using them even harder. I also show an under-reported bias/variance tradeoff 

within a popular family of diversity metrics. 

 

This dissertation provides new insights into the natural history of bees, clarifies best practices 

for measuring diversity, and rigorously assesses the statistical tools that ecologists rely upon 

to compare biodiversity.  
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INTRODUCTION 
 

I began my work in the Winfree lab on a project to assess federally-funded pollinator habitat 

enhancements. One of the project goals was to determine whether enhanced meadow 

habitats (i.e. those that had bee-attractive flowers planted in them) could support a greater 

diversity of wild bees. We found that much of the information about bee biodiversity that we 

collected over the course of the whole summer was, in fact, available to us within the first ten 

minutes of sampling at each site (Ward et al. 2014). At least as surprising, even when trying to 

estimate bee richness, it was as informative to look at bee abundance in those 10 minutes as it 

was to look at bee richness.  

 

During this initial work in the lab, I was also struck by apparent patterns of bee behavior in the 

field that I could not find documented in the literature. It seemed possible that these patterns, 

for example, that male and female bees seemed to have different flower preferences, were 

mere extrapolations of stochastic variation in the field. I was curious, however, how these 

patterns, if they were real, might shape how we asked and answered questions about bee 

ecology.  

 

I was pulled in two directions. On the one hand, my initial research suggested that we could 

avoid nuance:  simply count bees for 10 minutes, and we could compare bee biodiversity, 

specifically, species richness, between sites. On the other, it seemed like the bee ecology 

literature the lab group discussed neglected the cool biology that I thought I witnessed in the 

field. The papers I read at the time largely assumed that differences between bee species 
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really mattered for bee and pollination ecology, but that the finer distinctions like time of day, 

bee sex, and even seasonal activity patterns would come out in the wash.  

 

My thesis research has been motivated by a desire to reconcile my observations, my intuitions, 

and the data and metrics my colleagues use to answer ecological questions. In my first 

chapter I explored whether the nuance that stood out to me in the field could be ecology 

meaningful . Indeed, I found that in most bee species, males and females tended to visit 

different species of flowers, and that the differences between the sexes could be as great as 

typical differences between species.  

 

In my second chapter, I wrestled with the strikingly strong relationship between abundance 

and richness in our lab datasets, and generated a conceptual review and synthesis of practices 

for measuring biodiversity that minimize sampling artefacts. In close collaboration with my 

coauthor and committee member Jonathan Dushoff, I developed a new way to visualize a 

mathematical insight that diversity quantifies the average species rarity of a community. This 

chapter is currently in review, and I am eager to see how it can impact the field of ecology 

broadly.  

 

During this work we uncovered some patterns about the statistical uncertainty in biodiversity 

estimates that seemed at odds with the literature. My third chapter addresses these 

inconsistencies. Again, I collaborated closely with Jonathan to highlight statistical challenges 

in biodiversity measurement. Jonathan provided structured ideas on how to approach the 

inconsistencies we were seeing, and oversaw the simulations, analysis, and toolkit 
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development while I initiated our dialog with the literature and helped manifest the ideas in 

code, figures, and writing for an in-prep manuscript. This work contributes two key findings 

about Hill diversity estimation. First, the reciprocal of Simpson’s concentration, often touted 

as a stable and reliable diversity estimate,  is subject to large statistical uncertainty. Second, 

tools to describe statistical uncertainty in Hill diversity estimates are often unreliable, but they 

are much more reasonable approximations for observed sample diversity than for estimates 

of the true diversity of a full community.  This chapter also contains methods contributions 

beyond critiquing Hill diversity estimation procedures. It explicates the use of two new tools 

for assessing frequentist statistics, both confidence intervals and p-values. It also contains a 

simple but to the best of my knowledge, novel approach to simulating species abundance 

distributions that takes true diversity as an input, rather than the true diversity of the full 

distribution manifesting only as an epiphenomenon. These tools will hopefully prove 

immediately useful to other researchers upon publication. 

 

In the preparation of my dissertation, I have also received substantial training for a career as 

an ecologist. In my first chapter, I designed and executed an ambitious and successful field 

study that rendered a dataset that has been valuable for teaching and for intra- and 

extramural scientific collaborations beyond my dissertation work. I expanded my quantitative 

toolkit, both through developing my null model analyses, and also by learning to use random 

effects models. I trained and mentored several undergraduates and technicians in the process 

of collecting and preparing the data, and learned a great deal of bee identification.  

 



 

 

4 

In my second chapter, I became an expert in the literature on biodiversity assessment. I 

invested in conceptual and theoretical work that was neither driven by a particular hypothesis 

nor patterns in a particular dataset. I took on an overly ambitious project and at several points 

wrestled with letting go of a paper I did not believe was complete. I also wrestled with 

reviewer feedback that challenged the basic premises of my research, and was (with lots and 

lots of support and work from my two co-authors, Jonathan and Rachael) able to preserve the 

best parts of an earlier draft while preparing a truly major revision. I worked very hard to find 

confidence in the ideas and suggestions in this manuscript, and then to write them clearly and 

coherently.  

 

In my third chapter, I learned foundational ideas in classical statistics. I expanded my 

computational toolkit, using high-performance computing resources through the university, 

and analyzing simulated data. I had the experience of largely drafting a manuscript without 

lots of step-by-step handholding or feedback from coauthors.   

 

While some theses build strength through focus on a single guiding question, I am proud to 

submit this diverse dissertation, which testifies not only to my modest scholarly contributions 

to date, but also to the breadth and depth of both training and expertise that I acquired during 

my doctoral work.  

 

   

 
 
 
 



 

 

5 

 
CHAPTER 1 

Male and female bees show large differences in floral preference 

Manuscript Authors: Michael Roswell, Jonathan Dushoff, Rachael Winfree 

 

 

Post-publication notes on Chapter 1 

This chapter consists of a manuscript published by PLOS One in 2019. Since publication, I 

revisited the random effects model, to better understand both the median odds ratio 

estimates and also to determine how much of a problem the singular fits posed for model 

interpretation. 

 

Figure 4 in the manuscript displays the estimated median odds ratio for each random effect in 

the model. This is a summary of the model fit, and describes the importance of each effect in 

terms of how much the odds of a bee being male are expected to change between levels of 

that effect. There are two features of this figure that gave me some pause upon recent re-

inspection. First, in the more complex model with more interaction terms, the median odds 

ratios for the interactions with sampling round are often estimated with extremely high 

precision. This is puzzling, my intuition is that estimating complex interaction terms should be 

subject to greater, not less, uncertainty than estimating the main effects. Second, several 

median odds ratios are at exactly 1 with no error, corresponding to estimates of 0 variance for 

some effects from the model fit.  
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The small error terms on the interaction effects make some degree of sense. Imagine for a 

moment that each level for these interaction effects has been exactly and correctly captured 

by the BLUP in the model (that is, that the predicted effect of each combination of factors is 

always right). In that case, the precision with which the median odds ratio can be estimated 

would be entirely governed by the number of BLUPs, i.e. the number of levels of that random 

effect. In this case, median odds ratio should be estimated with highest precision for those 

effects with the greatest number of realized levels in the data, and with the least precision for 

the effects represented by the fewest levels in the data. Therefore, uncertainty for the 

interaction terms would be smaller than for the main effect terms because there are more 

levels realized in the data for the interaction effects (i.e. more BLUPs). 

  

One complicating issue here is that the number of observations at each level may be very 

small. While a single observation is an unbiased estimate of the mean, it is a terribly unreliable 

estimate. Because a small number of observations at each level occur more commonly for the 

interaction terms (same number of observations, just split among more levels), I could 

imagine that the model confounds variability within a level and variability between levels, and 

I expect this should contribute to the real uncertainty in the median odds ratio for interaction 

terms, though the way we computed this uncertainty it would not. I have not explored this 

issue further. 

 

The singular fit is a potentially more serious issue. It is literally not conceivable that there is 

truly 0 variability in sex ratio between sites, for example. The singular fit, then, could arise for 

several reasons, two of which I outline below. First, a singular fit can occur when there is not 
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enough data to specify a model, leading to overfitting and essentially meaningless estimates. 

Second, a singular fit can occur when fitting some models when an effect is “close to the 

boundary.” This type of problem is expected in binomial models, where correctly estimating 

probabilities that are truly close to 0 or 1 is technically challenging. I did not attempt to 

distinguish between these possibilities directly, opting instead to determine if the singular fit 

indicated that our conclusions were suspect. 

 

Two approaches I took to troubleshoot and examine the singular fits are 1) to fit the same 

model with different optimizers, and 2) to fit the same model in a Bayesian framework. We did 

the first of these in preparing the manuscript for publication, and it gave us some confidence 

that we were not making really foolish claims. Since then,  packages for fitting random effects 

models in STAN through R have become readily available (Ali et al. 2019). These tools allow 

users to specify models using glm-type linear model syntax in R, and the software pre-selects 

sensible priors. I imagine that singular fits are not technically possible when fitting a binomial 

random effects model with STAN, assuming that the prior does not include probabilities of 0 

or 1. If the singular fits in our model resulted from boundary issues, then I expect that fitting 

the same models in STAN will give very similar estimates, with the effects given a variance of 0 

in lme4 (Bates et al. 2016) having a small variance term in the fit from STAN. If the singular fits 

in our model are a symptom of an overly complex model for the available data, then I expect 

that the STAN fit could differ substantially.    

 

Whereas lme4 and rstanarm (Ali et al. 2019) use tools from somewhat different schools of 

statistical philosophy, if we fit the same models in both, we can leverage the fact that they 
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have quite different fitting machinery to assess the gravity of our singular fits for model 

interpretation. 

 

Effects that did not have a 0-variance estimate in lme4 had very similar variance estimates in 

rstanarm, and those that had a variance estimate of 0 from lme4  had very low variance 

estimates when fit with rstanarm. This gives me confidence that our published results are 

approximately correct. 
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Abstract 

Background 

Intraspecific variation in foraging niche can drive food web dynamics and ecosystem 

processes. In particular, male and female animals can exhibit different, often cascading, 

impacts on their interaction partners. Despite this, studies of plant-pollinator interaction 

networks have focused on the partitioning of the floral community between pollinator 

species, with little attention paid to intraspecific variation in plant preference between male 

and female bees. We designed a field study to evaluate the strength and prevalence of 

sexually dimorphic foraging, and particularly resource preferences, in bees.  

Study design 

We observed bees visiting flowers in semi-natural meadows in New Jersey, USA. To detect 

differences in flower use against a shared background of resource (flower) availability, we 

maximized the number of interactions observed within narrow spatio-temporal windows. To 

distinguish observed differences in bee use of flower species, which can reflect abundance 

patterns and sampling effects, from underlying differences in bee preferences, we analyzed 

our data with both a permutation-based null model and random effects models.   

Findings 

We found that the diets of male and female bees of the same species were often dissimilar as 

the diets of different species of bees. Furthermore, we demonstrate differences in preference 

between male and female bees. We show that intraspecific differences in preference can be 

robustly identified among hundreds of unique species-species interactions, without precisely 

quantifying resource availability, and despite high phenological turnover of both bees and 

plant bloom. Given the large differences in both flower use and preferences between male and 
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female bees, ecological sex differences should be integrated into studies of bee demography, 

plant pollination, and coevolutionary relationships between flowers and insects. 

 

Key words  

dimorphism, dissimilarity, Morisita-Horn, phenology, plant-pollinator interaction, pollination, 

pollinator habitat, preference 

 

Introduction 

Intraspecific variation in traits and behavior, including foraging niche, has important 

consequences for species interactions and conservation (Durell 2000, Bolnick et al. 2011). 

Sexual dimorphism is a large source of individual niche variation, and an important factor in 

plant-animal interactions, such as seed dispersal (Zwolak 2018). Sexual dimorphism underlies 

adaptation, speciation, and the way in which animals exploit their ecological niche (Butler et 

al. 2007, Temeles et al. 2010). Morphological, behavioral, and life-history dimorphisms can 

also drive the form and function of ecosystems, for example when predator sex ratio drives 

the community composition of lower trophic levels, affecting the physical and chemical 

properties of the environment (Fryxell et al. 2015, Start and De Lisle 2018).  

 

Though ecological dimorphisms were first studied in vertebrates (Selander 1966), they are 

common across taxa, including insects (Shine 1989). Surprisingly, in bees (Hymenoptera, 

Apoidea) for which both foraging (Willmer 2011) and sexual dimorphism (Alcock et al. 1978) 

have been well studied, sexually dimorphic foraging has rarely been documented. 

Intraspecific variation in floral preference is known for social (Heinrich 1979) and to a lesser 
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extent, solitary bees (Tur et al. 2014, Bruninga-Socolar et al. 2016), yet most community-level 

studies focus on species-level interactions, and specifically on how female bees forage.  

 

Male bees differ from their better-studied female counterparts in their life history and ecology. 

Female bees construct, maintain, provision, and defend nests, whereas male bees primarily 

seek mates (Willmer and Stone 2004). Both sexes drink floral nectar for their own caloric 

needs, but only females collect pollen to provision young, and thus forage at greater rates. 

Pollens from different flower species (the term we use throughout for the flowers from a 

species of plant) tend to be distinct not only in morphology but also in terms of nutritional 

content, and both of these (factors drive plant-specific foraging by bees (Cane and Sipes 

2006). While recent work shows variation in nectar is more important than previously 

acknowledged (Parachnowitsch et al. 2018), even species of bees that specialize narrowly on 

pollen hosts (oligolects) tend to nectar from many flower species. It is unclear what factors 

drive male bee preferences, though the criteria males use to select floral partners probably 

differ from those used by females.  

 

Although female bees are more prolific pollinators due to the greater time they spend foraging 

at flowers, when male bees have been studied, they prove to be important pollinators as well. 

This is true not only in specialized oil- or scent-collecting pollination systems, where males 

would be predicted to be important (Janzen 1971, Eltz et al. 2007, Etl et al. 2017), but also for 

males simply foraging for nectar (Cane 2002, Cane et al. 2011, Ogilvie and Thomson 2015). 

Male bees may also be particularly relevant for bee conservation. Males may be limiting in 

declining populations, either because genetic diversity is necessary for the development of 
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female offspring as a result of complementary sex determination, or because mate or sperm 

limitation results from poor male condition (Elias et al. 2010, Straub et al. 2016, Gloag et al. 

2019). As the dispersing sex in most bee species, males may be crucial for gene flow and 

metapopulation persistence even when they are not locally limiting (Ulrich et al. 2009, López-

Uribe et al. 2015).  

 

Observed differences in resource use, which reflects the overlap of consumers and resources 

(availability) as well as consumer preference, may fail to reveal more essential differences in 

foraging niche. Preferences may be more important than use alone in the context of species 

conservation, and may mediate the strength of selection imposed by interaction partners. 

Preference—the use of a resource in excess of its relative availability—is challenging to 

measure, because both resource use and availability must be known. Floral resource 

availability for pollinators is particularly hard to quantify outside an experimental context 

because the appropriate scale and units of floral resource availability are unclear. The 

composition, amount, and supply rate of pollen and nectar per flower, the number of flowers 

per inflorescence, of inflorescences per individual, and the number and distribution of 

individual plants over the square kilometers of a bee’s foraging range are all important 

components of availability (Hicks et al. 2016). Furthermore, floral availability can change 

rapidly over time. However, differences in flower use between bees foraging at the same place 

and time indicate differences in preference, which may occur between species, or between 

individuals of the same species.    

 

In this study, we assess differences between floral preferences of male and female bees in the 
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field. We collected bees foraging on flowers in meadows in New Jersey, USA. In order to 

observe preference differences, we collected as many individuals as possible during 

replicated, short (3-day) windows, during which we assumed floral availability and bee 

abundance were constant at each site. We compare the species composition of flowers visited 

by males and females of the most common bee species across the entire study as a naïve 

measure of differences in preference between the sexes. Then, using random effects models, 

we assess when differential flower species use by male and female bees likely arises from sex-

specific floral preference, as opposed to shifting overlap between foragers and floral resources 

(i.e. changes in availability without differences in preference). Specifically, we ask 

 

1) How much do male and female bee diets overlap? 

2) To what degree are particular flower species disproportionately visited by bees of one 

sex? 

3) To what extent are differences in floral use driven by preference, rather than 

phenological differences between male and female bees?  

 

Materials and methods 

 

Study design and data collection 

 

Because absolute preference is nearly impossible to observe outside of an experiment, we 

designed our study to reveal differences in preference between groups of bees. In order to 

collect a large number of males and females from  
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many native bee species, we selected six meadows (sites) in New Jersey, USA with a high 

abundance and diversity of flowers. These semi-natural meadows were managed for 

pollinator-attractive, summer-blooming forbs through seed addition, and a combination of 

mowing, burning, and weed removal. Most flower species present in the meadows are native 

to the eastern United States. We collected our data during peak bloom and maximum day 

length (6 June to 20 August 2016), and during good weather (sunny enough for observers to 

see their own shadow, no precipitation). We visited each site for three consecutive good 

weather days over five evenly spaced sampling rounds in the 11-week period of our study. In 

all analyses, we assume that bees and flowers detected at a site within one 3-day sampling 

round co-occurred. In contrast, we assume that turnover of both plant species in bloom and 

bee species activity can occur in the ~10 days between sampling rounds. 

 

During each 3-day sampling round, an observer walked parallel transects through the 

meadow (which ranged in size from 0.8–2.2 ha; mean=1.4 ha), observing every open flower 

within a moving 1-m semicircle, and net-collecting any bee seen actively foraging, which we 

defined as contacting anthers or collecting nectar from a flower (Figure A in S1 File). We 

collected all bee species except Apis mellifera L., the domesticated western honey bee, 

because Apis males do not forage. Observations began as soon as pollinator activity picked up 

in the morning (7–9 am) and continued into the late afternoon or evening until pollinator 

activity slowed substantially. Observers sampled nearly continuously, in 30-minute timed 

collection bouts with short breaks in between. If inclement weather precluded a minimum of 

six 30-minute sampling bouts in a day, we added an additional day to the sampling round as 

soon as weather permitted. 
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Flower species were identified in the field by the data collector. Bee species were identified 

using a dissecting microscope and published keys; Jason Gibbs (University of Manitoba), Joel 

Gardner (University of Manitoba), and Sam Droege (USGS) assisted with identification for bees 

in the genera Andrena, Anthophora, Coelioxys, Halictus, Heriades, Hoplitis, Hylaeus, 

Lasioglossum, Megachile, Melissodes, Nomada, Osmia, Pseudoanthidium, Ptilothrix, Sphecodes, 

Stelis, and Triepeolus, and at least one of them confirmed voucher specimens for every 

species. We determined every specimen to species except for the following four complexes: 

Most bees in the genus Nomada with bidentate mandibles (ruficornis group) were treated as 

one species. All specimens from the Hylaeus species complex that includes Hylaeus affinis, H. 

modestus, and at least one additional species, informally dubbed “species A,” were treated as 

a single species, denoted Hylaeus affinis-modestus, because females cannot be reliably 

distinguished. There is a cryptic species in the genus Halictus unlikely to occur in our area, 

Halictus poeyi, which is not morphologically distinct from H. ligatus; we treat all specimens in 

this complex as Halictus ligatus. We could not confidently separate all specimens of the two 

closely related Lasioglossum species Lasioglossum hitchensi and L. weemsi. Thus, we treat all 

specimens from either species as one, denoted Lasioglossum hitchensi-weemsi.  

 

All bee specimens are curated in the Winfree lab collection at Rutgers University, and the data 

used in this paper, along with R scripts used in data analysis and figure preparation, are 

available from the Dryad Digital Repository (doi:10.5061/dryad.c3rr6q1). No specific permits 

were required to collect these data, however, we obtained permission to access meadow 
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habitats and sample insects from Mercer County, the Institute for Advanced Study, Somerset 

County, and the Raritan Headwaters Association 

 

Analytical methods 

 

We performed all statistical analyses and simulations using R 3.5.1 (R Core Team 2018). 

 

1) How much do male and female bee diets overlap? 

 

To compare the diets of male and female bees, we used the Morisita-Horn index of resource 

overlap (Morisita 1959, Horn 1966). This dissimilarity index compares the proportion of all 

female bees found on each flower species to the proportion of all male bees found on each 

flower species. In other words, it compares the contribution of each flower species to female 

diets (where this term includes the food that females collect for themselves and also to feed to 

young) to the contribution of the same flower species to male diets. The Morisita-Horn index 

ranges from zero (completely similar) to one (maximally dissimilar), and has several good 

properties for our purposes. First, it uses proportions, placing visits from male and female 

bees on the same scale, even though most visits come from females. Second, it is much more 

sensitive to large proportions than to small ones, thereby down-weighting the contribution of 

flower species for which we have little information. Third, the Morisita-Horn estimates are 

resilient to undersampling and uneven sample size between groups (Barwell et al. 2015). 

 



 

 

17 

To determine whether the male-female differences we observed exceeded those expected by 

chance, we compared the observed compositional dissimilarity between flower visits from 

male and from female bees to dissimilarity measures from a null model that randomly 

permuted the bee sex associated with each flower-visit record. This permutation holds 

constant the total number of male and of female visits, and the total number of visits to each 

flower species from both sexes combined (Figure B in S1 File). The range of dissimilarity values 

from this simulation is the difference we would observe in our sample, if there were no true 

difference in flower species use between males and females of the same bee species. We 

evaluated the hypothesis that male and female diets overlap less than would be expected by 

chance; thus, we use a one-sided alpha of p<0.05. We iterated this null simulation 9999 times, 

which was sufficient to stabilize p-values near our chosen alpha (North, Curtis & Sham 2002). 

When the observed dissimilarity was greater than 9500 of the 9999 simulated dissimilarities, 

we concluded that we had detected a difference in the pattern of floral visitation between 

conspecific male and female bees, given the observed diet breadth and abundance of each 

sex. We also computed the mean null model value, and a 95% confidence interval for this 

mean using the 0.025 and 0.975 quantiles of the dissimilarity values generated for each null 

model. 

 

To compare the diet overlap we observed between sexes to a meaningful benchmark, 

interspecific diet overlap, we repeated the same null model analysis, this time comparing 

females of the focal species to females of other species. To compare the results, we present 

the difference between the observed dissimilarities and the null dissimilarities for each 

female-male and species-species comparison.  We performed one analysis for each bee 
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species for which we collected at least 20 visitation records for each sex (19 species). This 

sample size threshold is arbitrary, but null model variance shrinks with sample size, such that 

apparent patterns for species with smaller sample sizes are rarely interpretable (Figure C in S1 

File).  

Because we analyze 19 bee species, females of each species are compared to 18 others. We 

then compared the female-male difference (observed minus mean null dissimilarity in flower 

communities visited) to the analogous species-species difference (observed minus null 

dissimilarity).  

 

For this analysis, which evaluates holistic differences between male and female bees of the 

same species, we combined observations across the full season and all sites. This allows us to 

observe foraging niche differences that are driven by flower and/ or bee phenology, in 

addition to any sex-specific floral preference.  

 

2) To what degree are particular flower species disproportionately visited by bees of one 

sex? 

 

To answer this question, we fit a random intercepts model to our entire data set of 153 bee 

species to determine whether particular flower species are disproportionately visited by male 

or female bees, and whether the answer varies by bee species. In our model, bee sex is the 

response, and flower species, bee species, site, and their interactions are all random effects; 

we included no fixed effects. The random effects provide partial pooling, which is especially 

useful when there are many levels, few data associated with some or all levels, and/ or 
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inconsistent amounts of data across levels (Gelman and Hill 2007). We can infer 

disproportionate visitation by male vs. female bees for a flower species when predicted odds 

of visitors to that flower species being male are especially high or low.  

 

We statistically control for variation in the overall sex ratio across bee species through a 

random intercept of bee species, and variation in sex ratios across sites, through random 

intercepts for site, and the site-bee species and site-flower species interactions. Although we 

deemed it unlikely that, within bee species, sex ratios at birth vary greatly across space, any 

variability attributed to site terms could result from differences in bee sex ratios, or from 

differential overlap of bee foraging activity and flower bloom across space.  

 

We call this model the “summed model” because we sum interactions observed across the 

entire season (all five sampling rounds) at each site. In the summed model, the relationship 

between phenological overlap and the odds of flower-visiting bees being male would be 

incorporated into the species effects. This perspective is helpful for considering flower 

species’ contributions to the overall diets of male versus female bees. We fit the model with 

the R package lme4 (Bates et al. 2016) with the following call:  

 

Summed model  

lme4::glmer(bee_sex ~ (1|site)+ (1|flower_species)+ (1|bee_species)+ 

(1|flower_species:bee_species)+ (1|site:bee_species)+ (1|site:flower_species), 

family=”binomial”, data=data)   
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We included bee species and site as random, rather than fixed, effects to directly compare the 

variability in bee sex associated with each of these predictors to the variability associated with 

flower species (preference). Comparing the overall variability across these groups was more 

important to us than assessing predictions on a per-site or per-bee-species basis. We fit flower 

species, the primary covariate of interest, as a random effect to facilitate model fitting (fewer 

degrees of freedom) as well as interpretation. In our summed model, we included all two-way 

interactions, but omitted the three-way interaction, bee species by flower species by site. 

Although the sort of context-dependent preference this term could represent (e.g. males from 

bee species 1 prefer flower A at one site (relative to females), but shun it at another) may exist 

in nature, it is unlikely we would estimate it accurately in our model. 

 

We confirmed model convergence by comparing several fitting methods using the allFit 

function in lme4 (Bates et al. 2016), which all showed similar parameter estimates (Table A in 

S1 File). We tested whether residuals from our model were over dispersed using Bolker’s 

function “overdisp” (Bolker 2017), and visually assessed our additivity assumptions with 

binned residual plots (Gelman and Hill 2007) (Figure D in S1 File).  

 

3) To what extent are differences in floral use driven by preference, rather than 

phenological differences between male and female bees?  

 

Over the 11 weeks of our study, we observed turnover in bee species, in flower bloom, and 

within-bee species changes in sex ratio. Therefore, phenological overlap between male versus 

female bees and the bloom period of particular flower species, rather than preference of those 
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bees for those flowers, may explain much of the variation in sex ratio we observed across 

visitors. In question 3, we are explicitly interested in distinguishing sex-specific diet 

preferences from variable use resulting from seasonal resource availability and male vs. 

female abundance. We do this in the “seasonal model” by incorporating sampling round (our 

measure of phenology) as an additional random intercept effect, along with random 

intercepts for the interactions between sampling round and the other covariates. We chose to 

include sampling round as a random effect because this enables direct comparison to all 

other terms in both models. We ignored the three- and four-way interactions between bee 

species, flower species, and other covariates. We fit this model with the following call in the R 

package lme4, with new terms in bold:  

 

Seasonal model 

glmer(bee_sex ~  (1|site)+ (1|flower_species)+ (1|bee_species)+ 

(1|flower_species:bee_species)+ (1|site:bee_species)+ (1|site:flower_species)+ 

(1|sampling_round)+ (1|site:sampling_round)+ 

(1|flower_species:sampling_round)+  

(1| bee_species:sampling_round)+ (1|site:bee_species:sampling_round)+ 

(1|site:flower_species:sampling_round), family=”binomial”, data=data) 

 

Our index of preference for both the summed model and the seasonal model is the change in 

predicted odds that a bee is male when the flower species it visits is given. To describe the 

importance of model terms, we calculated a bootstrapped median odds ratio using code from 

Seth (Seth 2017), which gives the expected difference in odds that a flower-visiting bee is male 
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between levels of a predictor (Merlo et al. 2006). For example, a median odds ratio of five for 

the main effect of sampling round would indicate that the odds of a flower-visiting bee being 

male differ by about a factor of five between sampling rounds, while a median odds ratio of 

one would indicate that the odds of a flower-visiting bee being male do not change across 

rounds. If the median odds ratio is large for flower species in both models (and the random 

effects predictions for each species are consistent across both models), we could say that 

there are intrinsic (i.e. not simply phenological) properties of flower species identity that male 

or female bees prefer. If flower species is a strong predictor of bee sex in the summed model 

but not in the seasonal one, we would still conclude that flower species often contribute more 

strongly to the diet of one sex than the other, though these differences may not arise due to 

differing preferences. If the sampling round terms have large median odds ratios, then 

accounting for phenology is critical for identifying differences in preference in addition to 

differences in use. 

 

Because male bees require less pollen for their own diets and do not collect pollen to 

provision offspring, we predict that they would be less likely to visit flower species that do not 

produce nectar than females would. Post-hoc, we examined whether the predicted odds that 

visitors to nectarless flower species would be male were lower than for flower species known 

to produce both pollen and nectar in the seasonal model (Appendix A in S1 File).  

 

Results 
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In total we collected 18,698 bee specimens belonging to 152 bee species (Table B in S1 File) 

from a total of 109 flower species (Table C in S1 File), which together comprised 1417 unique 

species-species interactions. Although the ratio of male to female bees was highly variable 

across bee species (Table B in S1 File), roughly 18% of specimens were male (n=3372). Thus, 

the overall ratio of male to female bees we collected was 0.22, although this ratio varied 

markedly between flower species (Fig 1).  

 

Fig 1. The sex ratio (M:F) of flower-visiting bees varies across flower species.  

Each point represents a flower species; the x-axis is the number of bees collected from that 

species, the y-axis is the ratio of male to female bees collected from the flower. Flower species 

that received >19 visits are plotted (n=54). The shaded region is bounded by a smoothed fit to 

the 97.5th and 2.5th percentiles of the binomial distribution given by the observed ratio of 

males to females in our overall dataset (M/F=0.22; i.e. M/(M+F)=0.18). This distribution 

represents our expectation for random variation in sex ratio across flower species, if the sex 
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ratio of flower-visiting bees is independent of flower species identity (male and female bees 

exhibit the same floral preferences), and remains nearly constant across time and space. 

 

How much do male and female bee diets overlap? 

 

We found that male and female bee diets overlap significantly less than would be expected 

given random sampling of the flowers visited by both sexes (Fig 2), and that the differences in 

diet composition between male and female bees of several species were of similar magnitude 

to the differences in diet between species of bee (Fig 3). The patterns we observed did not 

result from a single tendency across all bee species, such as males always visiting a nested 

subset of flower species visited by females (Figure E in S1 File). 
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Fig 2. Flower visit patterns of male and female bees of the same species differed 

significantly.  

Red points are observed Morisita-Horn dissimilarities between flower communities visited by 

all male and all female bees of a particular species across all sites and sampling rounds. Black 

points are the mean dissimilarity (gray bars, 95% CI) from a permutation-based null model 

that randomly shuffles the sex associated with each visit record, maintaining the total number 

of males, females, and overall combined visits to each floral species. 
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Fig 3. The diets of male and female bees of the same species can be as dissimilar as the 

diets of females of two different bee species. 

Dissimilarities in this figure are the observed statistic minus, for each pairwise comparison, 

the mean dissimilarity in the null model. Each panel focuses on a bee species (panel name) 

and shows: above the label “sex”, observed diet dissimilarity between male and female bees 

of the focal species, minus the average null dissimilarity resulting from randomly permuting 

the sex identity of each visit record; above the label “sp”, observed diet dissimilarity between 

female bees of the focal species and each other bee species, minus the average null 

dissimilarity resulting from randomly permuting the species identity of each visit record. 
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To what degree are particular flower species disproportionately visited by bees of one 

sex? 

 

The sex ratio of flower-visiting bees varied across species of flower (Fig 2). After controlling for 

bee species identity (the strongest predictor of sex in our models, Fig 4), and site, we still 

found that some flower species received a disproportionate number of male bee visitors (Figs 

4 and 5). The median odds ratio for the main effect of flower species was 3.6 (bootstrapped CI 

3.0–4.2) in our summed model, indicating that, typically, the visitor sex ratio differs between 

two flower species by more than a factor of 3. Furthermore, we observed sex-based 

differences in flower use specific to particular bee species: the median odds ratio for the 

flower species by bee species interaction in our summed model was nearly as large 

(median=3.1, bootstrapped CI 3.0–3.3) as the main effect of flower species. By contrast, sex 

ratios did not differ between sites (median odds ratio for main effect of site=1).   
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Fig 4. Flower species, along with bee species, predicts the sex of visiting bees, indicating 

that floral preferences differ between male and female bees.  

Flower species is an important predictor of bee sex even after accounting for phenology 

(seasonal model). For each term (“bee”= bee species, “flower”=flower species, 

“round”=sampling round) in each model, the median odds ratio (+/- 95% bootstrapped 

credible interval) indicates the expected difference in odds that a flower-visiting bee is male 

between two levels. For example, a median odds ratio of 3.7 for the flower species term means 

the odds of a visitor being male are expected to differ by a factor of 3.7 between two randomly 

selected species of flower.  
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Fig 5.  Male bee preferences for and against flower species vary across flower species. 

Each point is the conditional mode of the random effects prediction (the random-effects 

analog to an estimate), for a flower species that received at least 20 visits, on the logit scale. 

Zero represents the odds of a visitor being male on a random flower, and -2 or 2 indicates a ~7 

fold decrease or increase in those odds, given flower species identity. Error bars are the square 

root of the conditional variances on the conditional mode * 1.96, and can be interpreted as the 

expected range in which the random effect for a particular flower truly lies, analogous to 1.96 
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times the standard error of the mean for a fixed effect. 

 

To what extent are differences in floral use driven by preference, rather than 

phenological differences between male and female bees?  

 

The flower species blooming in our system turned over throughout our 11-week sampling 

period, with several highly visited species blooming for only one of the three months during 

which we sampled. This turnover, along with potential sex-specific bee flight seasons (e.g. 

males emerge first in many solitary species, but are not produced until the end of the colony 

cycle for many social species), means that differences in diet between male and female bees 

could reflect seasonal availability and use, without also indicating preference differences 

between the sexes. Indeed, phenology predicts bee sex somewhat, with the odds of a flower-

visiting bee being male expected to change by a factor of 1.5 (bootstrapped CI 1.1–1.9) 

between sampling rounds (Fig 4). Phenological patterns of male vs. female flight seasons vary 

across bee species; the median odds ratio for the bee species by sampling round interaction is 

2.2 (bootstrapped CI 2.1–2.3) (Fig 4). Even after accounting for these effects, however, there 

remains a strong association between the species of flower a bee visits and its sex (Figs 4–5).  

 

The relative effects of each flower species on the sex of its visitors were changed very little by 

accounting for phenology; Pearson and Spearman correlations between the random effect of 

flower species in the seasonal model and the same random effect in the simpler summed 

model were both 0.98. Each flower species recorded in our study appears in Table C in S1 File, 

along with the number of male and female bees collected from it and the conditional mode of 
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the random effect prediction from the seasonal model. In addition to finding overall 

preference difference between males and females, we found evidence for bee-species-specific 

difference in floral preferences between the sexes (median odds ratios in both models for the 

bee species by flower species interaction > 2.8). A post-hoc examination of random effects 

predictions was consistent with our prediction that male bees avoid flower species that do not 

produce nectar, with the odds of visiting bees being male nearly twice as high, on average, for 

flower species that do produce nectar (Figure E in S1 File).  

 

Discussion 

 

We found strong evidence for sexually dimorphic foraging preferences in bees. At the level of 

individual flower species, we found that commonly, a disproportionate number of bee visitors 

were male, and that sexually dimorphic preferences drove these patterns. We found that the 

difference between the flower species visited by male and female bees of the same species 

was similar in magnitude to differences between females of different species. The partitioning 

of the floral community among bee species is a primary focus of pollination ecology and 

ecological network analysis (Bascompte and Jordano 2014), but male bees are typically 

disregarded or lumped together with their female counterparts. Our study suggests this may 

represent an important oversight. Further, our study provides strong confirmation of the few 

studies that investigate the foraging behavior of male bees, which found that males play a 

unique role in plant pollination (Cane 2002, Pascarella 2010, Cane et al. 2011, Ogilvie and 

Thomson 2015). Lastly, our result implies that male bees contribute substantially to the 

complexity of plant-pollinator networks in nature, and that network analyses might benefit 
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from separating males and females into different nodes (Bolnick et al. 2011, Zwolak 2018).    

 

Phenology, a previously reported mechanism for distinct use of floral resources by male and 

female bees (Robertson 1925, Ogilvie and Thomson 2015), explained some variation in the sex 

ratio of flower-visiting bees, but was less important than flower species identity over the 

period of our study. We expected to find an effect of phenology because both the identity of 

the flower species blooming within sites, and also the sex ratio of foragers within bee species, 

vary across the season. Males emerge first in most solitary bees. In contrast, for social species, 

initial broods usually consist primarily of female workers, then males and reproductive 

females emerge at the end of the colony cycle (Willmer and Stone 2004). To account for the 

possibility that phenology explained the disproportionate use of many flower species by one 

sex of bee, we extended our summed model by adding phenology terms. Surprisingly, 

phenology only weakly predicted the sex of flower-visiting bees. This is despite the fact that, 

as predicted by natural history, the sampling round(s) in which males were relatively more 

prevalent depended on bee species (the bee species by sampling round interaction was much 

bigger than the sampling round main effect; Fig 4). This indicates that our evidence for floral 

preference differences between male and female bees was robust to accounting for seasonal 

turnover in flower species bloom, bee species flight seasons, and the sex ratios within bee 

species.  

 

Patterns in bee-flower interaction data can arise from the sampling process itself (Blüthgen 

2010, Fründ et al. 2016). Our analyses control for these patterns. To evaluate diet overlap, we 

used a dissimilarity index that downweights rarely used resources, and implemented a null 
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model that accounts for differences that could arise from sampling effects or the fact that 

females outnumber males in our dataset by nearly a factor of 5. To evaluate preference, we 

used random effects models that incorporated all (nearly 19,000) observations, and shrank 

extreme values for rarely observed species-species interactions towards the global mean for 

each effect. Thus, our estimates for sex-specific preferences should be robust to the inevitable 

under-sampling of rarer taxa. Establishing differences in preference between categories of 

bees such as males and females, even when resource availability is seasonal and difficult to 

quantify, is possible using methods such as these, though absolute preference remains 

elusive.  

 

Some studies show, and conservation practice assumes that floral diversity is associated with 

more bee individuals and diversity, although this pattern could arise from many processes 

(Roulston and Goodell 2011, De Palma et al. 2015, Senapathi et al. 2016, Spiesman et al. 2017, 

Sutter et al. 2017). Complementary flower species use between the sexes implies one 

mechanism by which a bee species could benefit from a diversity of flower choices: a resource 

used in small proportions at the species level may be crucial for fitness in one sex. Such a 

dependency would likely be overlooked when individuals of both sexes are pooled before 

analysis. 

 

Within pollinating insects, sexually dimorphic preferences and contribution to plant 

reproduction have been reported before (Rusterholtz and Erhardt 2000, Alarcón et al. 2010, 

Broadhead et al. 2017). Though studies examining foraging differences between male and 

female bees (Ne’eman et al. 2006, Rundlöf et al. 2014, Ritchie et al. 2016, Ogilvie and Forrest 
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2017) and pollination by male bees (Cane 2002, Ostevik et al. 2010, Pascarella 2010, Cane et al. 

2011, Fliszkiewicz et al. 2011, Wolf and Moritz 2014) have been few outside sexual mimicry and 

scent collection pollination systems, they found that male and female bees visit different 

flowers, and that male bees could be important pollinators. Male bees may be especially 

implicated in long-distance pollen transfer (Janzen 1971, Roubik 1993, Kraus et al. 2009, Wolf 

and Moritz 2014), although outside the tropics there is little direct evidence this is true.  

 

Mating behaviors of male bees (Barrows 1976a, b, Alcock et al. 1978, Alcock 1983, 2013, Stone 

1995, Willmer and Stone 2004, Pinheiro et al. 2017) are better known than foraging behaviors. 

The two, however, are likely closely linked. Mating-related selection may drive differences in 

the sensory systems of male and female bees (Streinzer et al. 2013, Somanathan et al. 2017, 

Brand et al. 2018), or even their approaches to learning (Dötterl et al. 2011, Robert et al. 2016). 

The mate seeking behaviors of  male bees, such as patrolling routes (Barrows 1976a) or 

seeking flowers visited by conspecific females (Rossi et al. 2010) could generate differences 

from females via complementarity (males visiting flower species not visited by females), or 

nestedness (one sex primarily visiting a subset of species visited by the other). We found 

evidence for both (Figure E in S1 File). Divergent floral preferences between sexes may reflect 

nutritional needs or mating behavior, but could also reflect visual or olfactory sensitivities that 

differ between the sexes (Streinzer et al. 2013, Somanathan et al. 2017). 

 

Differences in body size and thermal ecology between male and female bees may also 

determine foraging behavior (Willmer and Stone 2004). In animals, size dimorphisms often 

mediate trophic relationships (Selander 1966, Givens 1978, Beck et al. 2007, Temeles et al. 
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2010, Alonso et al. 2016, Start and De Lisle 2018). Body size often manifests ecologically 

through thermal constraints, which also drive bee-plant interactions (Heinrich and Heinrich 

1983, Chappell 1984, Stone et al. 1999, Rader et al. 2013). In fact, male bees may have 

preferences relative to females for some flower species based solely on their thermal rewards 

(Sapir et al. 2006).  

 

Lastly, nutritional rewards likely drive differences in flower species preference between male 

and female bees. Whereas most female bees collect both nectar and pollen, male bees forage 

primarily for nectar to fuel flight (Willmer and Stone 2004). Thus, we predicted that male bees 

would avoid flowers that produce no nectar. Indeed, in both our models, the predicted odds 

of a bee visiting a nectar-less flower species being male were approximately half that of a bee 

visiting flower species that produce nectar (Figure E in S1 File). Within flower species that 

produce pollen and nectar, we found large variation in the relative preferences of male and 

female bees. Further investigation could reveal which floral traits mediate these sex-specific 

flower preferences and visitation rates in bees.  

 

Scaling up, it is currently unknown how the distinct foraging niches of male bees mediate 

either the robustness of pollinator communities to species loss and environmental 

perturbations (Ramos-Jiliberto et al. 2012, Brosi and Briggs 2013, Tur et al. 2014), or the 

effectiveness of different habitat ameliorations (Rusterholtz and Erhardt 2000, Rundlöf et al. 

2014, Williams and Lonsdorf 2018). This study suggests that both questions warrant further 

investigation. 
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Supporting information 

S1 File. Sampling scheme. (a) The six study sites in central New Jersey, USA. (b) Schematic 

sampling diagram (not to scale). One observer walked parallel 2m transects covering the 

entire sampling area. Each 30-minute sampling bout resumed where the previous one left off; 

observers typically covered the entire meadow once over a 3-day sampling round. (c) The 

southwestern-most site in peak bloom (Figure A).  Schematic cartoon of our simulation for 

the dissimilarity values associated with our null hypothesis that diets of male and female bees 

do not differ. (a) Each collection record for each bee species associates the sex of an individual 

bee to the flower species from which it was collected. (b) To compute the dissimilarity 

between males and females, we compare all visits to each flower species from males (purple 

vector) to all visits to each flower species from females (green vector). (c) The Morisita-Horn 

index summarizes the differences between the two vectors as a value between 0 (identical) 

and 1 (maximally dissimilar). (d) For our null model, we shuffle the sex column from our 

observation table. (e) This produces two null vectors. The row and column sums for the 

matrices in (b) and (c) are identical, but the elements can differ. (f) For our null model, we 

compute the dissimilarity between the null vectors. We repeated steps d-f 9999 times to 

generate confidence intervals for the null hypothesis that the sex of a visiting bee is unrelated 

to the flower species it is collected from. When comparing the flower species visited by 

different species of bee, we conducted an analysis identical except that rather than comparing 

two sexes of the same species, we compared two species of the same sex (i.e. exchanging 

“sex” and “species” throughout Figure A in S1 File) (Figure B).  Effect size for diet dissimilarity 

is independent of sample size, while standardized effect is strongly driven by the number of 

individuals of the sex with the fewest records. a) Observed Morisita-Horn dissimilarity in 



 

 

38 

flower communities visited by male and female bees of a single species, minus average null 

dissimilarity vs. the number of records for the less frequently observed sex. b) Observed minus 

null dissimilarity in composition of flowers visited by male and female bees of a single species, 

scaled by the variation in the null model, versus the number of records for the less frequently 

observed sex (Figure C).  Binned residual plots for each model show minor violation of the 

additivity assumption. Residuals and predicted values on the probability scale (Figure D).  

Seasonal model predictions are consistent with the hypothesis that male bees avoid flower 

species that do not produce nectar, relative to females. Each point is the random effect 

prediction (change in odds that a bee visiting that flower is male) for a flower species. 

Boxplots show the 25th, 50th, and 75th percentiles, with whiskers extending to more extreme 

values within 1.5x the interquartile range (Figure E).  Methods for post-hoc analysis of male 

avoidance of nectar-free flowers (Appendix A).  Model convergence confirmed based on 

similar parameter estimates across fitting routines. For each model, the estimate for each 

term is given for each of 6 fitting algorithms in the R package lme4. Subsequent analyses used 

parameter estimates in yellow, in both cases tied for the highest estimated likelihood with 

other very similar fits (Table A).  Bee species with number of female and male specimens 

collected (Table B).  Number of male and female visitors to each plant species, and bias 

towards attracting male bee visitors. This bias is the random effect prediction from the 

seasonal model, which indicates the change in log(odds) that a visiting bee is male when the 

species of flower it visits is given; greater values indicate male bias (Table C). 

 

Supporting Information S1 
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Figure A: Sampling scheme. (a) The six study sites in central New Jersey, USA. (b) Schematic 

sampling diagram (not to scale). One observer walked parallel 2m transects covering the 

entire sampling area. Each 30-minute sampling bout resumed where the previous one left off; 

observers typically covered the entire meadow once over a 3-day sampling round. (c) The 

southwestern-most site in peak bloom.
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Figure B. Schematic cartoon of our simulation for the dissimilarity values associated with our 

null hypothesis that diets of male and female bees do not differ. (a) Each collection record for 

each bee species associates the sex of an individual bee to the flower species from which it 

was collected. (b) To compute the dissimilarity between males and females, we compare all 

visits to each flower species from males (purple vector) to all visits to each flower species from 

females (green vector). (c) The Morisita-Horn index summarizes the differences between the 

two vectors as a value between 0 (identical) and 1 (maximally dissimilar). (d) For our null 

model, we shuffle the sex column from our observation table. (e) This produces two null 

vectors. The row and column sums for the matrices in (b) and (c) are identical, but the 

individual sex flower 
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elements can differ. (f) For our null model, we compute the dissimilarity between the null 

vectors. We repeated steps d-f 9999 times to generate confidence intervals for the null 

hypothesis that the sex of a visiting bee is unrelated to the flower species it is collected from. 

When comparing the flower species visited by different species of bee, we conducted an 

analysis identical except that rather than comparing two sexes of the same species, we 

compared two species of the same sex (i.e. exchanging “sex” and “species” throughout figure 

A). 
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Figure C. Effect size for diet dissimilarity is independent of sample size, while standardized 

effect is strongly driven by the number of individuals of the sex with the fewest records. a) 

Observed Morisita-Horn dissimilarity in flower communities visited by male and female bees 

of a single species, minus average null dissimilarity vs. the number of records for the less 

frequently observed sex. b) Observed minus null dissimilarity in composition of flowers visited 

by male and female bees of a single species, scaled by the variation in the null model, versus 

the number of records for the less frequently observed sex.  
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Figure D. Binned residual plots for each model show minor violation of the additivity 

assumption. Residuals and predicted values on the probability scale.   

 

 

Appendix A. Methods for post-hoc analysis of male avoidance of nectar-free flowers. 
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Based on previously published work we determined that 11 flower species in our dataset do 

not produce floral nectar: Chamaecrista fasciculata flowers (Rutter and Rausher 2004), Senna 

hebecarpa (Vaudo et al. 2014), Desmodium paniculatum (Robertson 1890), Solanum 

carolinianum (Bernardello 2007), Securigera varia (Bernardello 2007), Plantago lanceolata 

(Sharma et al. 1993), Hypericum perforatum (Willmer 2011), Hypericum punctatum (Willmer 

2011), Tradescantia ohioensis (Vaudo et al. 2016), Sisyrinchium angustifolium (Silvério et al. 

2012), Glyceria grandis (Bernardello 2007), Sorgahastrum nutans (Bernardello 2007).  

 

We compared the mean random effects predictions for each of these species from our 

seasonal model (main text figure 6)  with the random effects predictions for nectar-producing 

species. We compared the mean value for each set of random effects predictions with a 

Welch’s t-test. The difference was nearly significant according to this test (p=0.055), although 

the assumption of independence between observations was certainly invalidated by the 

random effects structure of our model. We report the difference in means as an odds ratio in 

the text and present boxplots below (Figure S5) 
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Figure E. Seasonal model predictions are consistent with the hypothesis that male bees avoid 

flower species that do not produce nectar, relative to females. Each point is the random effect 

prediction (change in odds that a bee visiting that flower is male) for a flower species. 

Boxplots show the 25th, 50th, and 75th percentiles, with whiskers extending to more extreme 

values within 1.5x the interquartile range. 
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Table A. M
odel convergence confirm

ed based on sim
ilar param

eter estim
ates across fitting routines. For each m

odel, the estim
ate for 

each term
 is given for each of 6 fitting algorithm

s in the R package lm
e4. Subsequent analyses used param

eter estim
ates in yellow

, in 

both cases tied for the highest estim
ated likelihood w

ith other very sim
ilar fits. 

term
 

m
odel 

bobyqa 
N

elder_M
ead 

nlm
inbw

 

optim
x.L-

BFGS-B 

nloptw
rap.N

LO
PT_ 

LN
_N

ELDERM
EAD 

nloptw
rap.N

LO
PT_ 

LN
_BO

BYQ
A 

intercept 
sum

m
ed 

-2.43 
-2.43 

-2.43 
-2.43 

-2.43 
-2.43 

bee species 
sum

m
ed 

2.04 
2.04 

2.04 
2.04 

2.04 
2.04 

flow
er species 

sum
m

ed 
1.40 

1.40 
1.40 

1.40 
1.40 

1.40 

site 
sum

m
ed 

0.00 
0.00 

0.00 
0.00 

0.00 
0.00 

bee species:flow
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sum
m
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1.21 

1.21 
1.21 

1.21 
1.21 

1.21 

site:bee species 
sum

m
ed 

0.62 
0.62 

0.62 
0.62 

0.62 
0.62 

site:flow
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m
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0.61 

0.61 
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bee species:flow
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1.09 
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Table B.  Bee species with number of female and male specimens collected.  

family genus species females males 
Andrenidae Andrena brevipalpis 1 0 
Andrenidae Andrena carlini 3 0 
Andrenidae Andrena commoda 3 0 
Andrenidae Andrena cressonii 16 0 
Andrenidae Andrena fragilis 2 0 
Andrenidae Andrena hippotes 4 0 
Andrenidae Andrena imitatrix 6 0 
Andrenidae Andrena krigiana 14 0 
Andrenidae Andrena nasonii 13 0 
Andrenidae Andrena nuda 2 0 
Andrenidae Andrena pruni 6 0 
Andrenidae Andrena robertsonii 8 0 
Andrenidae Andrena rudbeckiae 8 11 
Andrenidae Andrena rugosa 1 0 
Andrenidae Andrena spiraeana 1 0 
Andrenidae Andrena vicina 6 0 
Andrenidae Andrena wilkella 277 59 
Andrenidae Andrena wilmattae 2 0 
Andrenidae Calliopsis andreniformis 4 1 

Apidae Anthophora abrupta 4 0 
Apidae Anthophora terminalis 3 2 
Apidae Bombus auricomus 1 0 
Apidae Bombus bimaculatus 577 175 
Apidae Bombus citrinus 0 5 
Apidae Bombus fervidus 18 0 
Apidae Bombus griseocollis 681 815 
Apidae Bombus impatiens 2358 105 
Apidae Bombus perplexus 22 36 
Apidae Bombus vagans 14 2 
Apidae Ceratina calcarata 1417 133 
Apidae Ceratina dupla 151 19 
Apidae Ceratina mikmaqi 130 5 
Apidae Ceratina strenua 285 13 
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Apidae Melissodes agilis 0 7 
Apidae Melissodes bimaculatus 9 1 
Apidae Melissodes denticulatus 7 73 
Apidae Melissodes desponsus 1 7 
Apidae Melissodes subillatus 31 6 
Apidae Melissodes trinodis 1 7 
Apidae Nomada articulata 4 0 
Apidae Nomada bidentate_gr 8 0 
Apidae Nomada erigeronis 1 0 
Apidae Nomada lehighensis 1 0 
Apidae Nomada maculata 2 0 
Apidae Nomada pygmaea 15 0 
Apidae Ptilothrix bombiformis 0 1 
Apidae Triepeolus cressonii 0 1 
Apidae Triepeolus eliseae 1 0 
Apidae Triepeolus remigatus 1 0 
Apidae Xylocopa virginica 137 13 

Colletidae Hylaeus affinis_modestus 1376 363 
Colletidae Hylaeus fedorica 1 0 
Colletidae Hylaeus leptocephalus 1 3 
Colletidae Hylaeus mesillae 575 173 
Halictidae Agapostemon sericeus 5 5 
Halictidae Agapostemon virescens 203 76 
Halictidae Augochlora pura 1036 377 
Halictidae Augochlorella aurata 397 39 
Halictidae Augochlorella persimilis 434 116 
Halictidae Augochloropsis metallica 121 40 
Halictidae Dufourea novaeangliae 0 1 
Halictidae Halictus confusus 174 35 
Halictidae Halictus ligatus 2432 160 
Halictidae Halictus parallelus 6 18 
Halictidae Halictus rubicundus 31 19 
Halictidae Lasioglossum abanci 6 0 
Halictidae Lasioglossum admirandum 15 0 
Halictidae Lasioglossum anomalum 17 0 
Halictidae Lasioglossum atwoodi 7 1 
Halictidae Lasioglossum birkmanni 1 0 
Halictidae Lasioglossum bruneri 6 4 
Halictidae Lasioglossum callidum 54 0 
Halictidae Lasioglossum cattellae 14 4 
Halictidae Lasioglossum coeruleum 2 0 
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Halictidae Lasioglossum coreopsis 1 0 
Halictidae Lasioglossum coriaceum 14 0 
Halictidae Lasioglossum cressonii 16 5 
Halictidae Lasioglossum ellisiae 0 3 
Halictidae Lasioglossum ephialtum 1 0 
Halictidae Lasioglossum foxii 2 2 
Halictidae Lasioglossum fuscipenne 9 0 
Halictidae Lasioglossum gotham 74 2 
Halictidae Lasioglossum hitchensi_weemsi 152 27 
Halictidae Lasioglossum illinoense 70 7 
Halictidae Lasioglossum imitatum 462 15 
Halictidae Lasioglossum leucocomum 2 0 
Halictidae Lasioglossum leucozonium 2 0 
Halictidae Lasioglossum nigroviride 2 0 
Halictidae Lasioglossum oblongum 4 2 
Halictidae Lasioglossum obscurum 7 1 
Halictidae Lasioglossum oceanicum 104 23 
Halictidae Lasioglossum oenotherae 1 0 
Halictidae Lasioglossum paradmirandum 50 0 
Halictidae Lasioglossum pectorale 3 0 
Halictidae Lasioglossum pilosum 2 0 
Halictidae Lasioglossum platyparium 2 3 
Halictidae Lasioglossum rozeni 15 11 
Halictidae Lasioglossum smilacinae 4 0 
Halictidae Lasioglossum subviridatum 5 1 
Halictidae Lasioglossum tegulare 31 2 
Halictidae Lasioglossum trigeminum 44 0 
Halictidae Lasioglossum truncatum 2 0 
Halictidae Lasioglossum versatum 681 93 
Halictidae Lasioglossum viridatum 11 2 
Halictidae Lasioglossum zephyrum 12 1 
Halictidae Sphecodes atlantis 0 1 
Halictidae Sphecodes dichrous 3 5 
Halictidae Sphecodes heraclei 10 5 

Megachilidae Anthidiellum notatum 4 1 
Megachilidae Anthidium manicatum 7 8 
Megachilidae Anthidium oblongatum 18 19 
Megachilidae Coelioxys alternatus 1 2 
Megachilidae Coelioxys banksi 1 0 
Megachilidae Coelioxys germanus 0 1 
Megachilidae Coelioxys hunteri 0 1 
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Megachilidae Coelioxys modestus 0 1 
Megachilidae Coelioxys obtusiventris 1 0 
Megachilidae Coelioxys octodentatus 1 1 
Megachilidae Coelioxys porterae 0 1 
Megachilidae Coelioxys sayi 2 6 
Megachilidae Heriades carinatus 31 2 
Megachilidae Heriades leavitti 1 6 
Megachilidae Heriades variolosus 10 0 
Megachilidae Hoplitis pilosifrons 46 1 
Megachilidae Hoplitis producta 8 0 
Megachilidae Hoplitis spoliata 2 1 
Megachilidae Lithurgus chrysurus 0 6 
Megachilidae Megachile brevis 25 3 
Megachilidae Megachile campanulae 6 18 
Megachilidae Megachile exilis 11 29 
Megachilidae Megachile frugalis 26 6 
Megachilidae Megachile gemula 4 2 
Megachilidae Megachile georgica 1 0 
Megachilidae Megachile inimica 4 0 
Megachilidae Megachile integra 1 0 
Megachilidae Megachile melanophaea 0 1 
Megachilidae Megachile mendica 22 56 
Megachilidae Megachile montivaga 15 9 
Megachilidae Megachile petulans 0 2 
Megachilidae Megachile pugnata 2 3 
Megachilidae Megachile rotundata 11 8 
Megachilidae Megachile sculpturalis 17 32 
Megachilidae Megachile xylocopoides 2 1 
Megachilidae Osmia albiventris 3 0 
Megachilidae Osmia atriventris 9 0 
Megachilidae Osmia bucephala 21 0 
Megachilidae Osmia distincta 7 0 
Megachilidae Osmia georgica 5 0 
Megachilidae Osmia pumila 30 0 
Megachilidae Pseudoanthidium nanum 0 1 
Megachilidae Stelis lateralis 1 0 
Megachilidae Stelis louisae 1 2 

 

Table C. Number of male and female visitors to each plant species, and bias towards 

attracting male bee visitors. This bias is the random effect prediction from the seasonal 
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model, which indicates the change in log(odds) that a visiting bee is male when the species of 

flower it visits is given; greater values indicate male bias. 

family genus species 
female 
visits 

male 
visits 

random 
effect 

Verbenaceae Verbena urticifolia 58 71 2.117 
Asteraceae Erechtites hieraciifolius 130 203 1.880 
Fabaceae Senna hebecarpa 5 5 1.680 

Phytolaccaceae Phytolacca americana 108 74 1.581 
Asteraceae Euthamia graminifolia 50 18 1.468 
Asteraceae Eutrochium maculatum 461 166 1.367 
Fabaceae Melilotus officinalis 41 21 1.308 

Lamiaceae Nepeta cataria 99 81 1.270 
Lamiaceae Monarda punctata 0 1 1.243 

Campanulaceae Lobelia inflata 12 3 1.146 
Asteraceae Liatris spicata 186 128 1.140 
Asteraceae Solidago juncea 636 77 1.104 
Asteraceae Conyza canadensis 32 10 1.097 

Polygonaceae Fallopia convolvulus 3 4 1.046 
Asteraceae Erigeron strigosus 712 119 1.036 

Asclepidaceae Asclepias syriaca 28 89 0.929 
Verbenaceae Verbena hastata 8 3 0.925 

Lamiaceae Pycnanthemum verticillatum 5 8 0.886 
Asteraceae Cirsium arvense 351 96 0.859 
Lamiaceae Pycnanthemum muticum 398 60 0.817 
Asteraceae Solidago canadensis 8 2 0.816 
Asteraceae Heliopsis helianthoides 186 49 0.763 

Apocynaceae Apocynum cannabinum 283 92 0.754 
Fabaceae Trifolium hybridum 11 7 0.742 

Asteraceae Rudbeckia hirta 1174 189 0.645 
Asteraceae Solidago gigantea 107 9 0.613 
Lamiaceae Pycnanthemum tenuifolium 1113 421 0.608 
Rosaceae Drymocallis arguta 22 8 0.604 
Fabaceae Melilotus albus 20 9 0.570 

Cornaceae Swida racemosa 12 1 0.544 
Apiaceae Daucus carota 1783 350 0.523 

Asteraceae Helianthus strumosus 1 1 0.518 
Asteraceae Cichorium intybus 104 10 0.513 

Verbenaceae Verbena simplex 11 3 0.482 
Asteraceae Symphyotrichum novae-angliae 25 6 0.451 

Asclepidaceae Asclepias tuberosa 114 26 0.427 
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Asteraceae Cirsium discolor 5 2 0.350 
Asteraceae Echinacea purpurea 86 45 0.314 
Lamiaceae Prunella vulgaris 17 5 0.295 
Asteraceae Centuarea stoebe 321 50 0.268 
Asteraceae Erigeron annuus 26 3 0.264 

Onagraceae Oenothera fruticosa 2 1 0.220 
Polygonaceae Persicaria setacea 3 1 0.158 

Asteraceae Cirsium vulgare 112 16 0.121 
Fabaceae Trifolium campestre 365 39 0.110 

Asteraceae Ratibida pinnata 539 121 0.012 
Asteraceae Achillea millefolium 473 36 -0.008 
Asteraceae Bidens trichosperma 1 0 -0.015 
Asteraceae Solidago rugosa 1 0 -0.015 
Lythraceae Lythrum salicaria 364 38 -0.017 
Rosaceae Rubus flagellaris 1 0 -0.028 
Fabaceae Trifolium aureum 1 0 -0.033 

Campanulaceae Lobelia siphilitica 2 0 -0.034 
Gentianaceae Sabatia angularis 1 0 -0.034 

Asteraceae Vernonia noveboracensis 52 37 -0.044 
Fabaceae Vicia tetrasperma 1 0 -0.048 
Apiaceae Sanicula canadensis 1 0 -0.049 

Asteraceae Doellingeria umbellata 1 0 -0.052 
Ranunculaceae Ranunculus hispidus 1 0 -0.057 

Asteraceae Coreopsis tinctoria 1 0 -0.068 
Poaceae Sorghastrum nutans 1 0 -0.092 

Lamiaceae Teucrium canadense 3 0 -0.104 
Brassicaceae Barbarea vulgaris 3 0 -0.115 
Loniceraceae Lonicera japonica 1 0 -0.129 

Lamiaceae Monarda fistulosa 1398 401 -0.132 
Fabaceae Desmodium paniculatum 6 1 -0.137 

Onagraceae Oenothera biennis 2 0 -0.143 
Asteraceae Hieracium pilosella 2 0 -0.149 

Hypericaceae Hypericum punctatum 1 0 -0.177 
Poaceae Glyceria grandis 1 0 -0.187 
Alliaceae Allium vineale 3 0 -0.225 
Apiaceae Eryngium yuccifolium 2 0 -0.226 
Fabaceae Lotus corniculatus 142 33 -0.228 

Asteraceae Crepis capillaris 6 0 -0.236 
Rosaceae Rubus pensilvanicus 7 0 -0.242 

Cornaceae Swida amomum 4 0 -0.250 
Oxalidaceae Oxalis stricta 8 0 -0.250 
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Asteraceae Lactuca serriola 4 0 -0.257 
Rosaceae Rosa multiflora 5 0 -0.264 

Asteraceae Gaillardia aristata 4 0 -0.275 
Caryophyllaceae Dianthus armeria 3 0 -0.281 

Iridaceae Sisyrinchium angustifolium 9 0 -0.353 
Asteraceae Carduus nutans 1 0 -0.367 
Rubiaceae Galium mollugo 4 0 -0.369 

Polygonaceae Persicaria pensylvanica 4 0 -0.392 
Asteraceae Leucanthemum vulgare 406 20 -0.397 
Asteraceae Helianthus angustifolius 11 0 -0.412 
Solanaceae Solanum carolinense 14 0 -0.517 

Convulvulaceae Calystegia silvatica 5 0 -0.539 
Asteraceae Krigia biflora 19 0 -0.544 
Fabaceae Baptisia tinctoria 19 5 -0.566 

Asteraceae Solidago altissima 8 0 -0.587 
Rosaceae Potentilla recta 56 1 -0.629 
Fabaceae Securigera varia 38 1 -0.653 

Scrophulariaceae Verbascum blattaria 15 0 -0.722 
Asclepidaceae Asclepias incarnata 7 0 -0.737 

Commelinaceae Tradescantia ohiensis 34 1 -0.804 
Scrophulariaceae Penstemon hirsutus 36 0 -0.823 
Scrophulariaceae Penstemon digitalis 862 48 -0.842 

Fabaceae Trifolium repens 130 6 -0.848 
Lamiaceae Clinopodium vulgare 64 3 -0.855 
Asteraceae Coreopsis lanceolata 21 0 -0.857 
Fabaceae Trifolium pratense 192 20 -0.869 

Scrophulariaceae Verbascum thapsus 129 1 -1.085 
Hypericaceae Hypericum perforatum 223 10 -1.087 

Rosaceae Rosa carolina 71 1 -1.413 
Fabaceae Chamaecrista fasciculata 246 2 -1.514 

Scrophulariaceae Linaria vulgaris 275 4 -1.635 
Plantaginaceae Plantago lanceolata 147 0 -1.999 
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CHAPTER 2 

A conceptual guide to measuring species diversity 

Manuscript authors: Michael Roswell, Jonathan Dushoff, Rachael Winfree 

Key words: Hill numbers, rarefaction, coverage, rarity 

ABSTRACT 

Three metrics of species diversity — species richness, the Shannon index, and the Simpson 

index — are still widely used in ecology, despite decades of valid critiques leveled against 

them. Developing a robust diversity metric has been challenging because, unlike many 

variables ecologists measure, the diversity of a community often cannot be estimated in an 

unbiased way based on a random sample from that community. Over the past decade, 

ecologists have begun to incorporate two important tools for estimating diversity, coverage 

and Hill diversity. Coverage is a method for equalizing samples that is, on theoretical grounds, 

preferable to other commonly used methods such as equal-effort sampling, or rarefying 

datasets to equal sample size. Hill diversity comprises a spectrum of diversity metrics and is 

based on three key insights. First, species richness and variants of the Shannon and Simpson 

indices are all special cases of one general equation. Second, richness, Shannon, and Simpson 

can be expressed on the same scale and in units of species. Third, there is no way to eliminate 

the effect of relative abundance from estimates of any of these diversity metrics, including 

species richness. Rather, a researcher must choose the relative sensitivity of the metric 

towards rare and common species, a concept which we describe as “leverage.” In this paper 

we explain coverage and Hill diversity, provide guidelines for how to use them together to 

measure species diversity, and demonstrate their use with examples from our own data. We 

show why researchers will obtain more robust results when they estimate the Hill diversity of 
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equal-coverage samples, rather than using other methods such as equal-effort sampling or 

traditional sample rarefaction.    
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INTRODUCTION 

Species diversity is one of the more frequently measured quantities in ecology, yet how to 

measure it is complex, and sometimes contentious. The past decade has seen great advances 

in comparing and unifying various diversity metrics, and also in developing ways to 

standardize samples prior to measuring diversity (Jost 2006, Ellison 2010, Chiarucci et al. 

2011, Chao and Jost 2012, Colwell et al. 2012, Chase and Knight 2013, Chao and Chiu 2016, Cox 

et al. 2017). This latter step is necessary because — in contrast to many variables ecologists 

measure, for which a random sample from a community provides a reasonably unbiased 

estimate of the community itself — most species diversity values estimated from samples are 

a biased measure of the diversity of the larger community. This is mainly because the true 

relative abundance of rare species is poorly captured in samples, in which those species tend 

to appear only once or not at all. Here, we provide a conceptual guide to best practices for 

comparing the level of biodiversity of two or more communities, based on samples from those 

communities (Fig. 1). We begin by reviewing methods for standardizing samples, which is an 

important but often overlooked step in measuring diversity. In this section we review 

“coverage,” a conceptually elegant, but under-used, method for standardizing samples. We 

then provide a guide to using Hill diversity. We try to make this concept more intuitive to 

ecologists by showing how the different Hill diversities are all calculating the mean rarity of 

the species in the community, but doing so using different types of means (arithmetic, 

geometric, and harmonic). We also draw parallels between Hill diversity and the workings of 

calculations familiar to many ecologists: the link functions of generalized linear models. 
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Throughout the paper, for simplicity, we assume researchers sample discrete individuals, and 

discuss statistical matters in terms of individual- but not incidence-based diversity estimation 

(Colwell et al. 2012, Chao et al. 2014a, Chao and Jost 2015). Throughout, the references we cite 

typically discuss both approaches. Similarly, when we use the term “relative abundance,” we 

refer to the proportion of individuals belonging to a given species, but in most cases other 

measures like  proportional biomass or percent cover could be used instead. We assume that 

ecologists wish to determine which communities are more and less diverse, and by how much; 

in other words, that they aim to measure an “effect size” (Chao and Jost 2012, Chase and 

Knight 2013). Thus, we advocate for methods that will accurately reflect relative (but not 

necessarily absolute) differences in diversity. To demonstrate the preferred tools for 

standardizing samples and quantifying diversity — coverage and Hill diversity — we analyze a 

small data set on wild bees we collected from four meadows.  

 

EQUALIZING SAMPLES 

Diversity can only be meaningfully compared across communities that have been sampled 

equivalently in some way. Unfortunately, there are multiple ways to standardize samples, and 

the choice of sample standardization method can strongly influence results. In this section, we 

consider three main ways ecologists standardize their samples: by equalizing effort, 

equalizing sample size, or equalizing coverage.  

 

Conceptual problems with traditional methods of equalizing samples 

Many ecologists build equal-effort sampling into their study designs. Effort can be measured 

as the amount of time spent sampling, the area sampled, the number of traps set out, or the 
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like. This seems like the right way to compare communities: sample the same way and the 

same amount in each, and any differences should reflect only the diversity of each 

community, and not how the communities were sampled. But this is not true. In reality, two 

factors determine how well the sample represents the true diversity of the community: how 

many species there are and in what relative abundances, but also how hard one looks for 

those species.  

 

Equal-effort sampling only deals with the second factor. The problem with equal-effort 

sampling is that sample size generally varies across communities given equal effort, and 

sample size partly determines how well the observed abundance distribution matches the 

true species abundance distribution of the community. For instance, a small sample is likely to 

contain only a few species, all of them common. As samples contain more individuals, the 

number of species rises, and sample diversity grows (Preston 1948). In sum, diversity 

estimates (and especially species richness estimates) based on equal-effort sampling 

underestimate community diversity from samples that contain fewer individuals, because 

these samples often include fewer species by chance alone, regardless of the community from 

which they are drawn (Gotelli and Colwell 2001). 

 

A second way ecologists standardize samples is by sample size; for example, by removal of 

individuals from larger samples until all samples have the same number of individuals 

(rarefaction). However, rarefaction doesn’t provide unbiased samples either, because it still 

doesn't account for the distribution of relative abundances in the true, larger community 

(Willis 2019). Standardizing by sample size doesn’t work because more diverse communities 
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usually have both more and also rarer species, and thus require more effort to characterize. 

Even for two communities with very different numbers of rare species (and thus different 

diversities), the number of rare species that 'fit' into a fixed sample size, e.g. 100 individuals, 

could be similar. Furthermore, the differences in diversity between two samples of the same 

size changes idiosyncratically as sample size increases. It is not always possible to predict 

from smaller samples which of two communities would appear more diverse with much larger 

samples. In sum, sample-size standardization leads to larger underestimates of diversity for 

more diverse communities (Chao & Jost 2012). 

 

Coverage: a solution 

Sample-size and effort-based standardization do not fairly represent  community diversity 

because they do not account for the underlying species abundance distribution of the 

community being sampled (Brose et al. 2003, Cao et al. 2007, Beck and Schwanghart 2010, 

Willis 2019). In contrast, a newer method, coverage (Box 1), accounts for both the amount of 

sampling and, to a much greater extent than the other methods, the true diversity of the 

community. Coverage thereby recognizes that more diverse communities require more 

sampling in order to be equally well-characterized. Coverage was discovered in the 1940s by 

the founder of computer science, Alan Turing, but was only recently introduced as a tool for 

standardizing samples in ecology (Alroy 2010, 2017, Jost et al. 2010, Chao and Jost 2012). 

Coverage is a theoretically elegant way to standardize samples, and is increasingly used in the 

ecological literature.  
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Coverage describes how well a sample captures the true diversity of the whole community, 

including species that have not yet been detected. More precisely, coverage estimates the 

proportion of individuals in the (true, larger) community that are represented by species 

present in the sample. As this proportion increases, the share of individuals in the true 

community that belong to undetected species falls. For example, a coverage of 0.98 means 

that 2% of the individuals in the community being sampled belong to species the researcher 

has missed. For a sample to contain enough species to represent 98% of a more diverse 

community, it usually must be larger than a sample with 98% coverage from a less diverse 

community. Thus, when ecologists standardize samples by coverage, they compare samples 

that have more individuals (and/ or that required more effort to collect) from some 

communities than others. This results in more balanced information from each community.  

 

Sampling with equal coverage isn’t quite what we might want:  to sample each community 

until the same proportion of its diversity had been recorded. For example, if one used species 

richness as the diversity metric, one could imagine sampling each community until 90% of the 

species in each community had been detected. In this case, the comparison would be fair. 

Unfortunately, this method is not possible, because it is not usually possible to know how 

many species are truly there, nor in what proportions – if it were, we wouldn’t need to 

estimate diversity. Given that this ideal cannot be implemented, coverage is a practical 

approach to achieving more comparable samples, using information available to researchers. 

 

The key insight behind coverage is that the proportion of individuals in the community 

belonging to undetected species can be estimated reliably, based only on the frequencies of 
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species already in the sample (Good and Toulmin 1956, Chao and Jost 2012, Zhang 2016). This 

concept is best illustrated with a species accumulation curve (Box 1, Fig B1(a)). Imagine being 

at the endpoint of the curve, about to sample one more individual. The pool that individual 

will be sampled from contains all the as-yet-unsampled individuals in the community, most of 

which belong to species already detected, but some of which do not. If the next individual you 

obtain is a new species, the species accumulation curve goes up one step for a slope of 1. If it 

is not a new species, the curve moves horizontally one step for a slope of 0 (Fig B1(a), arrows). 

Thus, the slope of the species accumulation curve represents the probability that the next 

individual sampled will belong to a new species. This slope is (1-coverage). As coverage 

approaches 1, the species accumulation curve asymptotes.  

 

While ecologists have long used the slope of the species accumulation curve to measure 

sampling completeness, the advantage of the more recent formalization is that even when 

sampling is incomplete, samples can be compared at equal coverage (Fig. B1(b)). This 

comparison is 'fair' in the sense that the same proportion of individuals from each community 

is represented by the species in each sample. In sum, while it cannot remove sample 

diversity’s dependence on sample completeness (Willis 2019), coverage is the fairest available 

way to standardize samples because it standardizes what is known (the sample) relative to 

what is there (the true community). 

 

What coverage clarifies about species richness 

Ecologists may be attracted to species richness as a diversity metric because true richness 

depends only the number of species, but not on their relative abundances. However, 
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estimates of richness are, in fact, highly sensitive to the relative abundances of species in the 

community being sampled. The concept of coverage offers a nice demonstration of how this is 

so.  

 

Although sample coverage increases with sampling, the rate of this increase slows as sampling 

proceeds (Fig. B1(c)). This is because after initial sampling, the vast majority of individuals in a 

community do belong to species represented in the sample, and it takes a lot of work to find 

those comparatively few individuals belonging to the new, rare species. This means that 

sample richness depends on how rare the rare species are. For example, imagine two 

communities, one in which all species have the same abundance, and the second in which a 

few species are very common, but most are very, very rare. In the first community, at low and 

medium sample sizes, finding a new species with additional sampling remains quite likely. In 

the second, once samples are large enough that the common species have been detected, the 

chance of detecting a new (and very rare) species with additional sampling is low. This means 

that even if both communities had the same richness, samples from the first community 

would usually contain more species. In sum, species richness estimates are not only sensitive 

to the size of the sample and the true number of species in the community, but also to species 

relative abundances in the community, just like other diversity indices.  

 

A note on extrapolation 

To this point, we have discussed standardizing via rarefaction, but not extrapolation –that is, 

extending the pattern of species detection to a greater sample size, effort, or coverage than 

already obtained. Inferring what one might have seen with additional sampling is obviously 
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appealing, and compatible, at least in principle, with sample standardization. The past decade 

saw the introduction of unified methods for rarefaction and extrapolation for diversity 

estimation, based not only on sample size or effort, but also on sample coverage (Chao and 

Jost 2012, Colwell et al. 2012, Chao et al. 2014a).  

 

Standardizing to a level that involves extrapolation for at least some samples could be 

preferable to analyzing only very incomplete samples for every community. The caveat is, of 

course, that the farther from the sample an extrapolation extends, the more sensitive it is to 

the extrapolation method’s assumptions. A second issue is that neither empirical nor 

theoretical work yet guides what level of sample completeness is “good enough” to serve as a 

target level, though Chao and Jost (2012) suggest that extrapolating to double the observed 

sample size entails little risk. Because of these complexities and dangers, guidance on 

extrapolation is beyond the scope of this guide. However, we discuss using asymptotic 

diversity estimators, which could be considered an extreme form of extrapolation, below (See 

Asymptotic estimators).  

 

DIVERSITY METRICS 

In this section, we briefly review problems with species richness, and the traditional Shannon 

and Simpson indices, which are the ways ecologists most often measure the diversity of a 

community (Magurran and McGill 2011). We then explain Hill diversity, a general approach 

that includes, as special cases, species richness and modified versions of the traditional 

Shannon and Simpson indices. There is an increasing consensus that Hill diversity is the 

preferred way to measure not only the species diversity of a community, which is the subject 
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of this paper, but also differentiation among communities (Ellison 2010, Chao and Chiu 2016, 

Botta-Dukát 2018, Chao et al. 2019, Ohlmann et al. 2019), functional and phylogenetic 

diversity (Chao et al. 2014b, Kang et al. 2016), and genetic diversity (Sherwin et al. 2017, 

Alberdi and Gilbert 2019).  

 

To illustrate the main points we make here and elsewhere in the text, we present some 

analyses of a small data set extracted from a larger study (Roswell et al. 2019a, b). This data 

set includes wild bees we collected with hand nets from four meadows, using equal effort: 7 

person-hours over three consecutive days in each meadow (Fig. 2). In the first meadow (green 

squares in Fig. 2), we collected 578 individual bees that we identified to 40 bee species. In the 

second meadow (purple triangles), we collected 442 individuals of 40 species. In the third 

meadow (orange circles), we collected 745 individuals of 32 species. In the fourth (pink 

diamonds), we collected 225 individuals of 29 species. The question we seek to answer is, 

“which bee communities are more and less diverse, and by how much?” We use the data to 

show how the answer can vary with the amount of data collected, the method chosen to 

standardize samples, and the diversity metric used. 

 

Conceptual problems with traditional diversity metrics 

The number of species in a sample (species richness) is a very flawed measure of diversity. 

Richness is strongly associated with the number of individuals in the sample, especially at the 

earlier stages of sampling (Fig. 3). Furthermore, as sampling proceeds, the accumulation 

curves representing different communities often cross (Lande et al. 2000; colored lines in Fig. 

3). This means that the relative richness of two communities, as measured at a smaller sample 
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size, does not predict their relative richness at a larger sample size well (Cao et al. 2007, 

Coddington et al. 2009, Haegeman et al. 2013). This is often true even when estimators such as 

Chao1 are used to predict true diversity (colored clouds of points in Fig. 3; see ‘Asymptotic 

estimators’ below).  

 

Because richness is so sensitive to sampling effort and relative abundance, its estimation can 

hinge on how samples are standardized. Even the best asymptotic richness estimators, such 

as Chao1 (Gotelli and Colwell 2011), cannot reliably predict the true community diversity (Fig. 

3). Both sample richness and sample-based richness estimators are strongly influenced by the 

rarest species, which are precisely the species that we know least about. This is another way 

of saying that richness has high uncertainty. In fact, in the context of estimating and 

comparing community diversity from samples, this uncertainty is often insurmountable 

(Haegeman et al. 2013). 

 

The traditional diversity indices that explicitly include relative abundance (Magurran and 

McGill 2011), such as the Shannon (Shannon and Weaver 1963) and Simpson (Simpson 1949) 

indices, are more robust than richness to the sampling problems outlined above. However, 

their use creates a new set of problems: these indices do not scale intuitively, or similarly, with 

species gain and loss (Box 2; Jost 2009, Tuomisto 2010). These problems have led to the 

suggestion that diversity lacks any conceptual grounding (Hurlbert 1971). 

 

Hill diversity: a solution 

A unified method for measuring diversity was developed by Hill (1973), and re-introduced to 
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ecologists by Jost (2006). This method takes as its starting point that both the number and the 

relative abundance of species are components of diversity, and that these components 

cannot be fully separated. A community with more species is more diverse. And a community 

with a given number of species is more diverse when all species are equally abundant 

(extreme evenness) than when, for example, it has one dominant species and all other species 

are very rare (extreme dominance). Diversity metrics vary in the degree to which they reflect 

these two components. The diversity metric developed by Hill (1973) consists of a single 

equation that, depending on the value taken by its sole parameter, the exponent that we call 

“ℓ,” can vary from counting all species equally, even if they are vanishingly rare, to heavily 

emphasizing the species that are most common (Box 3).  

 

Hill diversity has several important advantages. First, Hill diversities 

behave in ways that are logically reasonable for a measure of diversity (Hurlbert 1971, Jost 

2009, Tuomisto 2010, Chao et al. 2014b). For example, if some proportion of a community's 

species were randomly removed, all Hill diversities decrease by the same proportion. 

Traditional diversity indices fail this and other common-sense expectations. 

 

But how do Hill diversities do this? One interpretation is that Hill diversities express the 

diversity of a community in terms of an imaginary community with that same diversity, but in 

which all species are equally abundant (Jost 2006). For example, imagine comparing two 

communities using a given Hill diversity (i.e., with a given exponent in eqn. B2). Imagine that 

community A has a diversity of 5 and community B has a diversity of 25. This means that 

community A has the same diversity as a perfectly even community with 5 species, and 
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community B has the same diversity as a perfectly even community with 25 species. Thus, 

there is a concrete sense in which community B is 5 times more diverse than community A.  All 

Hill diversities can be interpreted in this same way.  

 

A second advantage is that the calculation of Hill diversity is simple and already familiar to 

ecologists. Like the traditional diversity indices, Hill diversity summarizes relative (but not 

absolute) abundances, and the only data required to compute the sample Hill diversity are the 

relative abundances of species in a sample. The three forms of Hill diversity most commonly 

used by ecologists are species richness, and modifications of the traditional Shannon and 

Simpson indices. The key insight of Hill (1973) was that these three measures are special cases 

of the same general equation (Box 4). These three forms of Hill diversity — which we will refer 

to as species richness, Hill-Shannon diversity, and Hill-Simpson diversity — differ only in 

how they scale rarity (Box 5). Richness uses an arithmetic rarity scale, which gives high 

leverage to, and therefore remains very sensitive to, rare species; Hill-Simpson diversity uses 

a reciprocal scale, which shifts leverage towards, and is thus dominated by common species; 

Hill-Shannon uses a logarithmic scale, and falls between the two.  

 

A third, elegant aspect of Hill diversity is that each of its forms can be thought of as taking the 

mean of the sample. Specifically, here we develop the idea that rarity can be defined as the 

reciprocal of relative abundance, and that Hill diversities calculate the mean of the rarities of 

the species in the sample (Patil and Taillie 1982). If a community includes many species, all 

rare, that community has high mean rarity. In contrast, a community with only a few species, 

none of which is rare, has low diversity and low mean rarity. This way of understanding what 
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Hill diversities “really are” may be intuitive for many ecologists, who are accustomed to 

thinking about rarity in the context of diversity.  

 

The difference between richness, Hill-Shannon diversity, and Hill-Simpson diversity is that 

they calculate mean rarity using different types of means: the arithmetic, geometric, and 

harmonic means, respectively. An important point, which has generally been overlooked in 

the literature, is that these means differ not in how they weight the values they average (each 

value is always weighted by its frequency) but instead by how they scale these values.  Each 

type of mean locates a balance point among a set of items. But the different means spread 

these items apart and squish them together differently. Thus, they provide greater leverage to 

either higher or lower values, i.e., to either common or rare species. Many ecologists are 

already familiar with this scaling process as it is directly analogous to the use of link functions 

in generalized linear models. We explore this new way of visualizing Hill diversities, and the 

different forms of means generally, in Box 5. 

 

WHICH HILL DIVERSITY TO USE? 

Which variant of Hill diversity to use, then? There is no one answer to this question.  As 

Southwood quipped, about diversity indices in general, “There can be no universal ‘best-buy,’ 

although there are rich opportunities for inappropriate usage” (Southwood 1978). Hill 

diversity diminishes these opportunities, because Hill diversities require researchers to 

consciously chose how much leverage they want to afford to rare species. This decision is 

reflected in the value of the exponent ℓ. We discuss some advantages and disadvantages of 

using different values of ℓ below. 
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Species richness (ℓ = 1) is not recommended by any of the authors who have systematically 

tested diversity metrics (Hurlbert 1971, Kempton 1979, Magurran and McGill 2011, Chase and 

Knight 2013, Haegeman et al. 2013), because it is difficult to estimate accurately outside of an 

experimental setting. Sample richness varies drastically with sample size and sample 

equalization method. This is because it is very sensitive to the rarest species: species with the 

largest rarity values have especially high leverage over the arithmetic mean. The same 

problem affects asymptotic richness estimators (Melo 2004, Chao and Jost 2015). Species 

richness is best reserved for special cases, such as when the community is completely known, 

or if there is enough information to parameterize an occupancy model (Iknayan et al. 2014, 

Guillera-Arroita et al. 2019). 

 

Hill-Simpson diversity (ℓ = -1) may be a good choice for a research question that mainly 

concerns the patterns in the relative abundances of common species, requires confidence 

that the expected diversity would not change substantially with additional sampling, or 

relates to the probability that two randomly selected individuals are the same species 

(Simpson 1949, Hurlbert 1971). The reciprocal scale used to calculate Hill-Simpson diversity 

spreads low rarity values apart and squishes high ones together (Box 5). Therefore, Hill-

Simpson diversity is most sensitive to the differences in low rarity values (i.e., the relative 

abundance of common species). The expected value of sample Hill-Simpson diversity tends to 

be robust to sample standardization and to change little as sample sizes increases. 

Furthermore, true Hill-Simpson diversity may be estimated with little bias (Simpson 1949, 

Chao and Jost 2015, Grabchak et al. 2017), although the uncertainty in these estimates shrinks 
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slowly with additional sampling, and precise estimates remain difficult when there are many 

rare species. 

 

Hill-Shannon diversity (ℓ = 0) lies between richness and Hill-Simpson diversity, and may be the 

“just right” measure in many applications (Peet 1974, Kempton 1979). The geometric mean 

affords leverage to extreme values according to their proportional, not absolute, difference 

from the mean. Thus, it can respond strongly to both very high and to very low rarity values. 

Another argument in favor of Hill-Shannon is that many species abundance distributions are 

approximately log-normal (Williamson and Gaston 2005, McGill et al. 2007), and thus their 

central tendency might be well-described by the geometric mean. Observed Hill-Shannon 

diversity begins to stabilize at achievable sample sizes, and furthermore, asymptotic 

estimators for Hill-Shannon diversity perform reasonably well (Beck and Schwanghart 2010). 

The Hill-Shannon diversity retains some of the sensitivity of Hill diversities with higher 

exponents (such as richness), and also the robustness to sampling and sample 

standardization of Hill diversities with lower exponents (such as Hill-Simpson diversity). As a 

result, Hill-Shannon may be a good choice for characterizing gradients in biodiversity in an 

ecologically meaningful way.   

 

For research questions about diversity in a more general sense, researchers should consider 

using all three metrics, as well as intermediate values for the exponent ℓ (Fig. 4). Although Hill 

diversities with different scaling exponents tend to be highly correlated within communities 

(Magurran and McGill 2011), they emphasize different aspects of the community, and are not 

fully exchangeable (Hurlbert 1971, Patil and Taillie 1982). Using more than one diversity metric 
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portrays the diversities of the communities most fully because, for example, one community 

can be the most diverse when its many rare species are given great leverage (when ℓ is large), 

but a different community most diverse when its more even distribution of more common 

species is emphasized (when ℓ is small) (Patil and Taillie 1982).  

 

A diversity profile is constructed by estimating Hill diversity over the range of ℓ values. 

Researchers can do this in R with the functions “Diversity” in the package SpadeR (for 

asymptotic and sample diversities with estimated uncertainty; plotting features built in), 

“iNEXT” in the package iNEXT (for asymptotic and coverage-rarefied diversity estimates, with 

estimated uncertainty), and “renyi” in the package vegan (raw sample diversity) (Chao et al. 

2016, Hsieh et al. 2016, Oksanen 2016). Each of these packages parameterizes Hill diversity 

with the exponent q = 1- ℓ.  

 

ASYMPTOTIC ESTIMATORS 

 

Are asymptotic estimators the solution? 

This guide has focused on standardizing samples and then calculating sample diversity as a 

means to compare true diversities. This approach is imperfect, because sample diversity is not 

expected to equal true diversity (Hurlbert 1971, Dauby and Hardy 2012, Chao et al. 2014a). An 

alternative method is using asymptotic estimators to predict what diversity would be, if each 

community were sampled until the species accumulation curve reached its asymptote. 

Asymptotic estimators that do this (Chao and Jost 2015) are quite popular. However, we 
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believe that asymptotic estimators have two important limitations that ecologists sometimes 

overlook.  

  

First, at feasible levels of sampling, asymptotic Hill diversity estimators frequently do not 

reach their own asymptote  (Melo 2004, Beck and Schwanghart 2010, Chiu and Chao 2016, 

Close et al. 2018). In other words, the estimate of the asymptotic, “true” diversity value can 

increase with sampling (e.g. Fig. 3). This means that the diversity estimates given by 

asymptotic estimators are usually conditional on sample completeness, which hinders 

comparisons between communities and between studies. 

 

Second, the uncertainty associated with asymptotic estimators can be large and difficult to 

quantify, particularly for richness (Haegeman et al. 2013). When sample coverage is low, the 

approximated confidence intervals (CI) around asymptotic diversity estimates for all Hill 

diversities are wide. Even so, they are not reliably wide enough. In fact, the CI for asymptotic 

Hill diversity estimators frequently do not overlap the true community diversity at their stated 

level (e.g. 95%) (Mao et al. 2017).  For example, for a simulated community with a richness of 

200, a Hill-Simpson diversity of 50, and a log-normal distribution of species relative 

abundances, the “95% CI” around Chao 1 asymptotic estimates of richness (Chao and Jost 

2015) include the true richness value less than 50% of the time for a random sample of a few 

hundred individuals (Fig. 5). In contrast, the CI for sample diversity include the expected 

sample diversity at a rate closer to their stated confidence level (Fig. 5).  
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This stark difference in accuracy between the CI for sample diversity and the CI for  asymptotic 

diversity estimators ties back to the fact that asymptotic estimators can be biased by 

incomplete sampling. While variation in species’ sample frequencies drives uncertainty in 

both sample diversity and asymptotic diversity estimators (Chao and Jost 2015), CI for sample 

diversities are less ambitious, as they aim simply to contain the expected diversity of a 

sample, conditioned on size or effort (Smith and Grassle 1977). The CI for asymptotic 

estimators, by contrast, aspire to contain the true diversity of the full community, but often 

they do not. In particular, when the estimator is too low because it has not reached its own 

asymptote, the CI are likely to be too low also.  

 

Is lacking valid confidence intervals a fatal flaw for a method to estimate diversity? We believe 

it depends on the application. Ecologists studying biodiversity will likely estimate biodiversity 

across many communities, and then use a statistical model to understand how biodiversity 

responds to predictors, such as forest cover or temperature. In the model, the uncertainty in 

the diversity estimates gets conflated with unmodeled but true variation between 

communities, and both contribute to the regression’s error term. This problem can be 

remedied by increasing sample sizes (i.e., diversity estimates from more communities). For 

example, imagine sampling logged and unlogged forests to determine how logging affects 

species diversity (Chao and Jost 2012). Using a method such as standardizing by coverage or 

computing asymptotic diversity estimates may fail to provide a reliable estimate for any given 

site, but if enough sites are sampled, could reliably identify a group-level pattern. These 

methods would be preferable to a method that gave misleading estimates with better-known 

sampling uncertainty, such as sample diversity estimates under traditional rarefaction (Chao 
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and Jost 2012) 

 

Whether to use coverage or asymptotic estimators   

Thus far, we have presented two options for comparing community diversity based on sample 

data: either equalizing samples, preferably by coverage, and then calculating sample 

diversity, or using asymptotic estimators. We believe that comparing sample diversity after 

standardizing by coverage is the better method, but we do not mean to suggest that coverage 

is without its problems. Valid CI do not yet exist for expected sample diversity given coverage, 

as discussed in box 1. Yet, as mentioned above, a more accurate estimate with unknown 

uncertainty may be preferable to a more biased estimate with better known sampling 

variance. Standardizing by coverage and using asymptotic estimators are two different 

approaches to reducing biases that arise from comparing incomplete samples (Chao et al. 

2014a, Chao and Jost 2015, Willis 2019), yet both lack valid CI, and both are sensitive to 

sample completeness. Overall, we identify two advantages to using sample diversity after 

standardizing by coverage, rather than using asymptotic diversity estimators.  

 

First, the coverage method obeys the “replication principle,” which states that when 

combining completely distinct communities of equal size and diversity (on the chosen scale), 

the diversity of the combination will be roughly the sum of the components. The replication 

principle was proven to hold for sample diversity after standardizing by coverage (Chao et al. 

2014a), but to our knowledge, not for asymptotic diversity estimators. The advantage of using 

a metric that obeys the replication principle is admittedly less clear when comparing real-

world communities for which the replication principle is unlikely to apply (i.e., the 
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communities being compared are unlikely to be composed of modular, equal-size and equal-

diversity subcommunities). Nevertheless, it is reasonable to assume that asymptotic 

estimators that do not work in simple, unambiguous thought experiments are also likely to be 

problematic in 

 messy, real-world applications. 

 

Second, and more practically, while both types of estimates depend on sampling 

completeness, when researchers standardize by coverage, they are at least explicit about 

what their sampling completeness is. By contrast, asymptotic estimators attempt to estimate 

the true diversity of the full community, a quantity that is not conditioned on sampling. 

Because neither method is robust to sampling completeness, we advocate using the one (i.e. 

coverage) that both accounts for sample completeness and describes it in ecologically 

meaningful terms. Conditioning comparisons on sample completeness can help ecologists 

guard against interpreting patterns that reflect researcher decisions rather than ecological 

processes. 

 

Why not use both coverage and asymptotic estimators together? 

In practice, ecologists typically choose a method of standardization (effort, sample size, or 

increasingly, coverage), or use asymptotic diversity estimators with unstandardized samples. 

However, it is tempting to combine the two methods, because asymptotic estimators tend to 

be sensitive to sampling completeness (Close et al. 2018).  

 

While this sounds promising, in our view there are important issues to resolve before 
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coverage-based sample standardization should be combined with asymptotic estimators. 

First, both coverage and asymptotic diversity estimators usually rely on similar features of the 

data (such as the number of singletons), so combining them could introduce circularity. 

Second, it is not yet clear that more accurate comparisons emerge from any given 

combination of standardization method and asymptotic estimator, compared to using only 

coverage-based standardization or asymptotic estimators alone. Future theoretical and 

simulation-based work could build the case for a combined approach. 

 

STANDARDIZING SAMPLES, THEN CALCULATING HILL DIVERSITY: A WORKED EXAMPLE 

WITH OUR BEE DATA 

In this section we provide a demonstration analysis, using some of our own data, to show how 

the researcher's choice of how to standardize samples and calculate diversity affects 

interpretation of diversity patterns. We use three data standardization methods (effort, size, 

and coverage), as well as all three Hill diversities (richness, Hill-Shannon, and Hill-Simpson). 

We also compare asymptotic Hill diversity estimates to the standardized sample diversities. 

Our purpose is not to determine the accuracy of these methods, which we cannot do: we do 

not know the true diversities of our bee communities. Rather, our goal is to show how our 

choice of standardization method and diversity metric, as well as our level of sampling, can 

determine the results.   

 

First, our answer depends on how we standardize our data. This can be seen by focusing on 

one row at a time in Fig. 6. When we standardize by size, we could conclude that species 

richness is fairly similar across the four bee communities, but when we standardize by effort 
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or coverage, strong differences among communities emerge. These findings reinforce our 

argument that sample standardization is an important choice that researchers need to make 

carefully when measuring diversity. 

 

Second, the choice of Hill diversity (richness, Hill-Shannon, or Hill-Simpson) drives our 

understanding of the relative diversity of these four communities. We can see this by focusing 

on one column at a time in Fig. 6. For example, consider the column for which the data are 

standardized by coverage (Fig. 6, third column from left). Using richness as our metric 

indicates that there are large differences in diversity between the four communities, and that 

the purple community is the most diverse. Using Hill-Shannon or Hill-Simpson, however, leads 

us to the conclusion that the pink community is most diverse. Furthermore, when Hill-

Shannon diversity is used, the pink diamond community appears around 25% more diverse 

than the purple triangle community, but when Hill-Simpson diversity is used, this difference 

increases to about 80%. We expected this result, because communities with many rare species 

need not also be “most diverse” when emphasizing the more common ones. This underscores 

the importance of researchers explicitly stating what aspects of diversity matter most for a 

particular question, and then choosing the appropriate Hill diversity to reflect those aspects. 

 

Third, there are interactions among the choice of sample standardization method and the 

choice of diversity metric. As expected, although relative Hill-Shannon diversities depend on 

standardization, Hill-Shannon is far more robust than richness to standardization method. 

Hill-Simpson diversity is even more robust than Hill-Shannon diversity. While the absolute 

values of asymptotic diversity estimates are higher than the sample diversities, we see similar 
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relative diversity patterns using asymptotic estimators and coverage-based rarefaction. The 

robustness of Hill-Shannon and Hill-Simpson to sample standardization method is a strong 

argument for using these Hill diversities, rather than richness. 

 

Finally, we note that the relative diversities for our four samples are sensitive to sampling 

completeness, even after standardization (Fig. 7). If any Hill diversities were robust to sampling 

completeness, we would observe a constant distance between the lines for each community 

within a panel of Figure 7 (i.e., the colored lines would increase in parallel). Clearly this is not 

the case for any of the Hill diversities shown, regardless of how we standardize samples. It is 

also not the case for asymptotic Hill diversity estimators, which exhibit different – but not less 

– sensitivity to sampling completeness up to the point we sampled each community 

(Appendix C). This should be concerning to field ecologists, who rarely have the luxury of 

comparing complete samples. Even the sample diversity rankings, not to mention the relative 

differences in diversity, vary with sample completeness for all Hill diversities. In sum, sampling 

completeness almost always affects diversity estimates.  

 

CONCLUSIONS 

The unavoidable truth is that when ecologists compare local diversity, they must choose how 

sensitive their comparison will be to the rarest species, which are always inadequately 

represented in samples. There is no robust way to simply “count” the species in most natural 

communities; richness estimated from samples depends on species’ relative abundances and 

sampling completeness.  
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Whereas ecologists usually cannot compare true species richness, we have shown how 

ecologists can compare communities using sample richness, Hill-Shannon, and Hill-Simpson 

diversity, after rarefying samples to equal coverage. Using Hill diversities requires only minor 

modifications to the diversity metrics that ecologists already use. These small modifications 

make a big difference, as Hill diversities scale intuitively, are always expressed as rarities, and 

require that ecologists explicitly choose how sensitive their diversity metric is to rare species.  

 

Standardizing samples by coverage improves upon simply acknowledging the fact that both 

sample size and the true distribution of species abundances drive diversity estimates. It takes 

bigger samples to capture the diversity of more diverse communities. Coverage measures how 

representative samples are of the communities from which they are drawn, so equalizing 

coverage before measuring diversity can reduce bias in biodiversity comparisons.      

 

Even though the tools contained in this guide are the best available at present, they are still 

under development. Ecologists still lack heuristics for identifying sufficient sample coverage 

levels, for choosing the appropriate Hill diversity scaling exponent for a given question or 

dataset, and for robustly accounting for uncertainty in diversity estimates. Nonetheless, when 

researchers have a strong argument for comparing the species diversity of communities, the 

tools in this guide should facilitate doing so in a principled manner. Using coverage with Hill 

diversity, ecologists can assess relative differences in diversity between communities based 

on sample data, while clearly expressing the sample completeness upon which their 

inferences depend.   
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Glossary  

Sample diversity 
The (Hill) diversity of a sample. This quantity can be calculated directly, 

as the number of species and their relative abundances are known. 

True diversity The true (Hill) diversity of an entire community.  

Asymptotic 

diversity 

An estimate of the true (Hill) diversity of the community. This is known 

as the “asymptotic” diversity because as the sample size increases, 

sample diversity and other diversity estimates converge on their true 

values, which are seldom known a priori. 

Coverage 
The proportion of individuals in the community belonging to species 

represented in a sample. 

Hill diversity Also called Hill numbers; the generalized mean species rarity. 

Hill-Richness 
The Hill diversity when ℓ = 1, the arithmetic mean rarity, or the total 

number of species. Referred to simply as “richness” throughout. 

Hill-Shannon 
The Hill diversity when ℓ = 0, the geometric mean rarity, or the 

exponential of Shannon's entropy. 

Hill-Simpson 
The Hill diversity when ℓ = -1, the harmonic mean rarity, or the inverse 

of Simpson's concentration index. 

Leverage 

The influence of a value on the mean depends on the frequency of that 

value ("weight"), but also its displacement from other values in the set 

("leverage"). The farther a given value from the others, the more 

leverage that value has. Rescaling shifts leverage from low to high 

values, or vice-versa. 



 

 

83 

Rarefaction 
A process of randomly subsampling by removing individuals or 

subsamples. 

Extrapolation 
An approach to estimating the diversity of an augmented sample that 

may resemble rarefaction “in reverse.” 

Rarity 1/relative abundance (Patil and Taillie 1982). 
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 Figure 1. Comparing biodiversity between communities using sample data requires both 

sample standardization and appropriate metrics of biodiversity. (a) The true species diversity 

of an ecological community in the mountains may be double the true diversity of a community 

in the city. Nevertheless, samples collected from the mountains and city are unlikely to be 

directly comparable in terms of their diversity, even if the samples were collected using equal 
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effort. (b) This guide describes methods for standardizing samples, and diversity metrics for 

making equitable comparisons. (c) With appropriate sample standardization and metrics, 

ecologists can correctly estimate that the mountain community is twice as diverse as the city 

community.  
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Figure 2. Observed rank-abundance distributions for the bee samples from our four 

meadows. The sample from the green square community has strong dominance by a 

small number of species with a long ‘tail’ of rare species. The sample from the purple 

triangle community also has strong dominance and a long a tail of rare species, 

although it has fewer species of intermediate rarity. The sample from the orange circle 

community has a much shorter tail of rare species. The pink diamond community 

sample has the least variation in rarity, and the fewest species. Diversity metrics 

summarize these distributions to enable quantitative comparisons. 
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Figure 3. Species accumulation curves for number of species observed (y) versus the 

number of individuals sampled (x) for the bee communities in four meadows. The 

clouds of points represent the Chao1 estimates for the meadow of the same color. 

Chao1 predictions seem likely to continue increasing in most examples.  
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Figure 4. It can be useful to visualize a “diversity profile” across values of the exponent 

ℓ. Here we show the sample diversities of our four bee communities plotted as a 

function of the exponent ℓ in Equation B2. The y-axis is the value of the diversity 

metric, as calculated from the raw sample. The lines can cross because a sample can 

have, for example, a large number of rare species (high richness, rightmost points) but 

a small number of common species (low Hill-Simpson, leftmost points), as compared 

with another sample (middle points are Hill-Shannon).  
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Figure 5. Nominal 95% CI do not consistently include their target value 95% of the 

time for either sample diversity or asymptotic diversity estimates, but are much closer 

for sample diversity. To generate this figure, fixed numbers of individuals were 

randomly sampled 5000 times for each sample size, and for each sample, both the 

asymptotic diversity estimate and associated confidence intervals (left) and the 

sample diversity and associated confidence intervals (right) were computed for 

species richness, Hill-Shannon, and Hill-Simpson diversity. The y-axis in each panel 
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represents the percentage of samples for which the estimated 95% confidence 

intervals contained (left) the true diversity of the simulated community or (right) the 

average diversity of samples with a given number of individuals; in each case this 

should be 95%. We plotted the Y-axis on the log-odds scale to be able to show both 

strong conservativism and strong overconfidence. Simulation methods described in 

appendix B.  
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Figure 6. The answer to, “which communities are more and less diverse, and by how 

much?” depends on both how the samples are standardized (columns), and which 

diversity metric is used (rows). Standardization method matters most when Hill 

diversity is strongly driven by the rarity of the rarest species (species richness, top row) 

and matters least when rare species have little leverage (Hill-Simpson, bottom row). 

Error bars are “95% CI” that assume uncertainty arises from the process of randomly 

sampling a fixed number of individuals (i.e. the number of individuals in the sample 

after standardization) from each community; raw (i.e. equal effort) samples used for 

asymptotic estimates. We plotted the asymptotic Hill diversity estimators with 

separate y-axes, to facilitate comparing relative differences in estimated diversity. 
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Figure 7. In addition to standardization method (columns), Hill diversities (rows) are 

sensitive to the amount of sampling (x-axis). To generate this figure, one to fourteen 

30-minute data collection events per community were resampled without 

replacement 9999 times. For each group of 9999 random subsamples, average effort 

(number of 30-minute transects resampled), average size (number of individuals), or 

average coverage is plotted on the x-axis, and average sample diversity is plotted on 

the y (with tick marks places at log scaled intervals, but actual diversity values shown). 
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The logarithmic y-axis reveals a constant relative difference in diversity as a constant 

distance between lines. Uncertainty estimates omitted for clarity. Diversity often 

increases rapidly as coverage gets very close to one, because in our communities (and 

in natural communities in general) there are many rare species, each of which makes 

up a small share of the total abundance.   
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BOX 1: What is coverage? 

 

Coverage is a measure of how completely a community has been sampled. Specifically, it 

estimates the total true relative abundance in the community of all the species represented in 

the sample. Coverage can be visualized as the complement of the slope of a species 

accumulation curve (Fig. B1). Coverage increases more slowly as sample size increases and 

more and more species are detected. In ecological communities, this slowing is often quite 

dramatic  because, while most species in an ecological community are likely rare, most 

individuals in the community belong to common species. 

  

 

 

Figure B1. (a) As an ecologist collects individuals, there is some probability that the 

next individual would be from an already detected species (short horizontal arrow), or 
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from a new one (short diagonal arrow). The chance that it is from a new species is the 

slope of the species accumulation curve (red line) at that point. The probability of not 

picking a new species (1-the slope) is the coverage, which approaches 1 as  the curve 

flattens out. (b) Two species accumulation curves at equal effort (ends of black 

curves), equal size (light blue arrows), and equal coverage (red arrows). These three 

data standardization methods often result in different diversity estimates. (c) At higher 

values of coverage, to obtain even modest gains in coverage, sample sizes may need 

to increase by orders of magnitude. 

 

To estimate coverage, only 3 parameters are needed (Chao & Jost 2012): 

 

f1, the number of singletons (species represented by only 1 individual) in the sample 

f2, the number of doubletons (species represented by only 2 individuals) in the sample 

n, the total number of individuals in the sample 

 

Chao and Jost (Chao and Jost 2012) provide the following equation for coverage (C): 

 

                               Equation B1 

 

R code that will estimate coverage from sample abundances is available with the functions 

“iNEXT” and “estimateD” in the R package iNEXT (Hsieh et al. 2016).  

 

		
C =1− f1

n
n−1( ) f1

n−1( ) f1 +2 f2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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At present, standardizing samples based on coverage faces two unsolved issues. First, the 

methodology for rarefying to equal coverage is a bit clunky. The R package iNEXT uses 

rarefaction procedures for size-based rarefaction, but describes the sample size for each 

community in terms of the expected coverage for a sample of that size. The package authors 

justify this because both expected coverage and expected diversity are non-decreasing 

functions of sample size (Chao and Jost 2012, Chao et al. 2014a, Hsieh et al. 2016).  This is 

“clunky” because the relationship derived to predict coverage given sample size is run 

backwards, effectively assuming that there is a perfectly predictable relationship  between 

them. However, these approximations can work well  

 (Chao and Jost 2012, Chao et al. 2014a).  

 

Second, as a result of the indirect rarefaction procedure, the confidence intervals (CI) 

provided for coverage-standardized samples are too narrow (i.e., anti-conservative). This is 

because the number of individuals required to achieve a target coverage level is uncertain, but 

the CI only reflect variability in sample diversity given a particular, fixed sample size (Chao and 

Jost 2015).    
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BOX 2: Problems with the traditional Shannon and Simpson indices  

 

The first problem with traditional diversity indices is that they measure very different things 

(Tuomisto 2010). Species richness, of course, measures the number of species. The Shannon 

index measures uncertainty about the identity of species in the sample, and its units quantify 

information (bits; Hurlbert 1971), while the Gini-Simpson (1- Simpson’s original index) 

measures a probability, specifically, the probability that two individuals, drawn randomly 

from the sample, will be of different species (Simpson 1949, Hurlbert 1971). Because species 

richness, the Shannon index, and the Gini-Simpson index do not measure the same quantities, 

justifying the choice of one of them to represent diversity is particularly difficult. 

 

A second problem is that the Shannon and Gini-Simpson indices behave in ways that do not 

make sense for a metric of diversity. For example, if a diverse community (Fig. B2(a)) loses 1/3 

of its species, the traditional Shannon and Gini-Simpson indices shown only small 

proportional changes (Fig. B2(b)). Even a loss of 2/3 of species does not result in dramatic 

changes in index values (Fig. B2(c)). In contrast, all of the Hill diversity measures presented in 

this guide would give values of 30, 20, and 10 for the three communities. This property of Hill 

numbers is called the “replication principle” (Hill 1973, Chao et al. 2014a). Note that although 

in the illustrations, individuals are lost along with their species, the values of all diversity 

metrics would be the same if total abundance were held constant even as species were lost. 

That is because all the diversity metrics discussed in this guide consider only relative, not 

absolute, abundance.  
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Figure B2. Values for the traditional Shannon and Gini-Simpson indices, calculated for 

communities that have decreasing numbers of species.   
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BOX 3: Defining Hill diversity 

 

We define Hill diversity by the equation 

 

    Equation B2 
 

where D is diversity, S is the number of species, pi is the proportion of all individuals that 

belong to species i, rI  is the rarity of species i, defined as 1/ pi, and ℓ is the exponent that 

determines the rarity scale on which the mean is taken.  

 

An elegant aspect of Hill diversities is that Equation 2 is the equation for the generalized 

weighted mean, or Hölder mean (Bullen 2003). We intentionally use the exponent ℓ rather 

than “q” (Jost 2006) to highlight this insight; it is easily shown that our equation is 

algebraically equivalent to Jost’s, with ℓ= 1-q (appendix A). 

 

Hill diversities take the mean of the sample. Specifically, they measure the mean rarity of the 

species in the sample, where the rarity of a species is the reciprocal of its relative abundance 

(Patil and Taillie 1982). When computing this average, the rarity of each species is first scaled 

by the exponent ℓ, and then weighted by the relative abundance of that species. This average 

is then back-transformed onto the diversity scale because of the outer exponent, the power of 

1/ ℓ. It may be helpful to think of the exponent ℓ as determining the leverage provided to rare 

species, and to recognize that for all values of the exponent, each species is weighted by its 
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relative abundance. We discuss this idea further in Box 5. 

 

Hill diversity formalizes a simple truism: a community consisting of species that are, on 

average, more rare has higher diversity (Patil and Taillie 1982, Tuomisto 2010, Botta-Dukát 

2018, Kondratyeva et al. 2019).   
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BOX 4: Three particularly useful Hill diversity metrics 

 

While Hill diversities are a continuous function of the exponent ℓ in equation B2, three 

particular integer values of ℓ produce versions of metrics that are already familiar to 

ecologists: species richness, Hill-Shannon, and Hill-Simpson.  

 

The only data required to calculate the Hill diversity of a sample are the number of individuals 

of each species found in each sample. The equations below have only two types of 

parameters: 

 

S = number of species in the sample 

pi = (number of individuals of species i) / (total number of individuals in the sample) 

 

Species richness emphasizes (provides higher leverage to) rare species, and can be simply 

calculated as:  

 

S  

 

This is equivalent to Equation B2 when ℓ = 1. 

 

Hill-Shannon diversity emphasizes neither rare nor common species. It is defined as the limit 

of Equation 2 as ℓ approaches 0, and is calculated with the base of the natural logarithm, e, 

raised to the power of the traditional Shannon entropy index:  
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 Equation B3 

 

Hill-Simpson diversity emphasizes (provides higher leverage to) the common species. It is 

equivalent to Equation 2 when ℓ = -1.  It is also the inverse of the traditional Simpson index: 

 

          

 Equation B4 

 

Sample Hill diversities can be computed using the function “renyi” in the R package vegan 

(Oksanen 2016), and Hill diversities of equal-sized or equal-coverage samples can be 

approximately compared using the functions “iNEXT” and “estimateD” in the R package iNEXT 

(Hsieh et al. 2016). Estimates for asymptotic values of Hill diversity are available in SpadeR 

(Chao and Jost 2015, Chao et al. 2016).  

		e
− pi ln pi( )
i=1

S

∑

		

1
pi( )2

i=1

S

∑
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Box 5: A new way to visualize mean rarity 

 

When ecologists calculate Hill diversity, though they may not realize it, they calculate the 

arithmetic, geometric, or harmonic mean species rarity. The exponent ℓ in equation B2, which 

scales the rarities and determines what type of mean is calculated, could also be thought of as 

a link function. Every ecologist has used a link function to transform values onto a scale at 

which they will be additive, calculated the mean, and then back-transformed the mean onto 

the original scale. In fact, we do this just to calculate the standard deviation of a sample. 

 

To calculate the standard deviation, we raise each difference from the mean to the power 2, 

add these new, squared values together, divide by the sample size, and then back-transform 

to the original scale of the data by raising the computed mean to the power of 1/2. In other 

words, we use the quadratic link function. The root mean square error of a model is computed 

the same way.   

 

A generalized linear model with an identity link estimates the arithmetic mean of the data, 

and could be thought of as raising each value to the power of 1, taking the mean, and back 

transforming the mean by raising to the power of 1. Of course, this is the same as not 

transforming at all. When a log link is used in a generalized linear model, the data are 

transformed by taking the logarithm, and then typically the mean is back transformed to the 

original scale by exponentiating. Thus, the mean that is calculated with the log link is the 

geometric mean (which is the limit of the generalized mean when the scaling exponent ℓ 

approaches 0). The harmonic mean uses the reciprocal function as the link (to transform, raise 
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to the power of -1; to back transform, raise to the power of -1). A similar link function is used 

with gamma error structures in generalized linear models.  

 

But what do these transformed scales, these link functions, look like (figure B3)?  

 

  

Figure B3. A link function can be visualized in terms of how it scales values. On each 

scale, a power transformation with the scaling exponent shown on the left, the two 

yellow points are equidistant from the blue one. It is not possible to align more than 2 

points on two different scales; here, each scale is aligned to show that 2 and the higher 

yellow value are equidistant from 3. On the quadratic scale, the distance between two 

values is the difference between their squares. Thus, the distance between 2 and 3 is 

equal to the distance between 3 and √14 (~3.74) because 2^2 (4) and (√14)^2 (14) both 

differ from 3^2 (9) by 5. On the arithmetic scale, distances between pairs of values are 

their arithmetic differences. Thus, the distance between 3 and 2 is equal to the 

distance between 3 and 4; both differ from 3 by 1. On the logarithmic scale, the 

distance between two values is the factor (proportion) by which the two values differ. 
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Thus, the distance between 3 and 2 is equal to the distance between 3 and 4.5, 

because both differ from 3 by a factor of 1.5. On the reciprocal scale, the distance 

between two values is equal to the difference in their reciprocals. Thus, the distance 

between 3 and 2 is equal to the distance between 3 and 6. 

 

The three “link functions” used in computing the arithmetic, geometric, and harmonic means 

correspond to scaling exponents of 1, 0, and -1 in equation B2, respectively. The mean of a set 

of values, when put on the appropriate scale, is the balance point between them. This could 

be visualized as the fulcrum on a balanced lever. The scales differ in which values are spaced 

farthest apart (Fig. B3), and thus which extreme values will be most displaced from the center, 

or given the highest leverage. As the scaling exponent decreases, the leverage afforded to high 

values shrinks, and the leverage afforded the lowest values grows. For example, relative to the 

arithmetic scale (exponent = 1), a log-transformation (exponent = 0) spreads the small values 

out but compresses the largest values together.  

 

When thinking about the different Hill diversities, it may be useful to consider this leverage 

metaphor. Historically, the differences between Hill diversities with different exponents (for 

example, the difference between species richness, Hill-Shannon, and Hill-Simpson) have been 

discussed in terms of how heavily the exponents “weight” rare or abundant species (Jost 

2006, Magurran and McGill 2011). From equation B2, it is clear that this is not the simplest 

interpretation. Regardless of the exponent, each species is always weighted by its relative 

abundance, and every individual “counts” towards the average by the same amount. What 
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changes with the exponent is the scaling of the species’ rarities, or how far apart rarity values 

fall (Fig B4).  

 

Figure B4. Diversity, or mean rarity, is the balance point for the community along the 

rarity scale. Each panel shows the same ecological community of 40 individuals and 6 

species with abundances 20, 8, 5, 4, 2, and 1, and rarities 2, 5, 8,10, 20, and 40, 

respectively. Each block represents an individual; in this metaphor, the “mass” of each 

“block” is the same. Each individual’s x-axis value is its species’ rarity, which is the 

reciprocal of its relative abundance. All three panels display the same community: the 

same individuals, the same species, and the same rarities; only the scaling of the 

rarities changes between panels. The community’s balance point along the rarity 

scale, pictured in this figure as the fulcrum in each panel, is the mean rarity, or 

diversity, of the community. To ease comparison across scales, in each panel, we 

marked the arithmetic mean with a rose dot, the geometric mean with a blue dot, and 

the harmonic mean with a green dot. 
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Panels differ in which exponent is used to transform the rarity scale. The arithmetic 

scale provides high leverage to very rare species; although they carry little weight (few 

individuals), these species influence the mean a great deal because they sit far to the 

right of the rarity scale. The arithmetic mean rarity of the community is the Hill 

diversity when ℓ = 1, and is equal to species richness (value = 6). The logarithmic scale 

provides less leverage to very rare species. Thus, the geometric mean rarity of the 

community is lower (value ≈ 4). The geometric mean rarity is also known as the Hill-

Shannon diversity, or the Hill diversity when ℓ = 0. The reciprocal scale accords more 

leverage to low rarity values. Thus, the harmonic mean rarity, also known as the Hill-

Simpson diversity, or Hill diversity when ℓ  = -1, is much lower still (value ≈ 3). An 

interactive online application that enables users to specify species abundances and 

the scaling parameter is available at https://mean-rarity.shinyapps.o/rshiny_app1/ 

 

  



 

 

108 

Appendix A: Linking equations for Hill diversity 

It has previously been observed that Hill diversity is a measure of mean rarity (Patil and Taillie 

1982). However, may not be immediately obvious how Hill diversities are in fact calculating 

means. Here we link our intuition that Hill diversity computes mean rarity and notational 

conventions for Hill diversity in the literature. 

 

Suppose we have a simple community of 10 individuals of 4 species with abundances 5, 2, 2, 

and 1. Let us use the relative abundance of each species as a measure of its commonness, 

such that the commonness of species i is 

 

!" = $%&'($')*+
∑ $%&'($')*+-
+./

        

 Equation 1 

 

where the sum is taken over the total number of species in the community, S.  Rarity will 

simply be the reciprocal of this quantity, 

 

0" = 1 !"2 = ∑ $%&'($')*+-
+./
$%&'($')*+

       

 Equation 2 

 

Then, we could ask what the average rarity of species in this community is.  One approach 

would be to sum the rarity of each of the four species, and then divide this sum by 4: 
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(/45 6
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/4
7 6

/4
/ )

9          

 Equation 3 

 

This would give us an average rarity of 22/4, or 5.5. But perhaps this is an unintuitive way to 

average; there is only one individual with rarity 10, after all, yet the way we computed the 

average community rarity, it contributes as much to the average as the 5 individuals with 

rarity 2. Perhaps this seems strange.  

 

A popular solution to this kind of problem is to weight each unique quantity by the number of 

times it is observed, thus producing a weighted mean: 

 

∑ :";"'
" ,          

 Equation 4 

 

which describes the mean of a set of n items (in our case rarities) indexed by i, xi, each of which 

is weighted by something, wi (In our case that weight is the relative abundance of species i). To 

return to our previous notation, we now represent each species by its rarity value, and weight 

each species by its relative abundance in the sample, or its commonness:   

 

∑ !"0"<
"           

 Equation 5 

 

If we re-compute the mean using equation 5, we find each species i contributing exactly a 
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quarter of the rarity, i.e. 1, to a community mean rarity of 4. This is somewhat odd:  we just 

determined that in order to count the rarities fairly, we needed to account for the relative 

abundance of each species, yet all species appear to contribute equally to the mean rarity 

regardless of relative abundance. Nonetheless, this is a widely used diversity metric: species 

richness. In other words, richness is the arithmetic mean community rarity.  

 

From this example, it should be clear how this quantity is at once “independent” of the 

distribution of relative abundances of the species, and also an abundance-weighted average 

of species rarity (a “Hill diversity”).  It should also be clear why this diversity metric is so 

sensitive to the number of rare (and poorly sampled) species.  

 

As discussed in the main text, richness, the arithmetic mean, is a special instance of the 

generalized mean:  

 

(∑ :";"=)'
"

> =2          

 Equation 6 

 

This looks similar to equation 5 but there’s a new parameter, ℓ.  The generalized mean of a set 

(Equation 6) always lies between the smallest and greatest element (inclusive), and the 

exponent ℓ determines the leverage accorded to large versus small elements in defining the 

location of center of the set. Our original (arithmetic) mean, where ℓ = 1, is very sensitive to 

large (outlier) values of rarity (i.e. especially rare species). In fact, the arithmetic mean rarity 

increases just as much when you include one individual of a new, rarest species as if you 
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included hundreds or even millions of individuals of a new, but very common one!   

 

The geometric mean (the limit of Equation 5 as ℓ -> 0) or the harmonic mean (ℓ = -1) are also 

sensible ways to compute the mean community rarity. Rather than giving extreme leverage to 

the rarest species, these means emphasize more common ones, but to different extents.  

 

Hill-Simpson is the harmonic mean community rarity. The harmonic mean is, in sharp contrast 

to the arithmetic mean, insensitive to outliers (in our case, very rare species). It increases 

greatly with more common species, but hardly at all with rarer ones.  

 

Perhaps when we discuss the average rarity of our community, we seek a goldilocks answer 

that is driven by the rarity of typical species, rather than the rarest or most common? There is 

a special mean for this, too: the geometric mean (Hill-Shannon). The geometric mean lies 

between the arithmetic and harmonic means, and might be just right (Jost 2006).  

 

In closing, let us return to Hill numbers, which ecologists agree are the best way to describe 

the diversity of ecological communities (Ellison 2010, Haegeman et al. 2013), and show that 

they measure the mean community rarity. The equation for Hill numbers is in fact an equation 

for the generalized mean (Equation 5), but traditionally it is expressed in a somewhat different 

form. We will start with the generalized mean. The mean rarity in the community, in which the 

rarity of each species i  (ri) is weighted by its commonness (ci, relative abundance, also the 

inverse of rarity) is given by: 
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(∑ !"	0"=)'
"

> =2           

 Equation 6 

 

Replacing rarity, ri, with 1/ci, we have  

 

(∑ !">@=)'
"

> =2          

 Equation 7 

 

Substituting q for 1-ℓ we have 

 

(∑ !"A)'
"

> >@A2          

 Equation 8 

 

which has been the traditional equation for the Hill diversity of order q (Jost 2006).   
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Appendix B: Simulation methods for assessing confidence interval performance 

We simulated a log-normal species abundance distribution with 200 species and a Hill-

Simpson diversity of 50. We took 5000 samples each for 9 sample sizes ranging from 100 to 

10,000 (with replacement). For each sample, we generated the nominal 95% confidence 

intervals for both the sample diversity and the asymptotic diversity following (Hsieh et al. 

2016). Briefly, this procedure generates an extrapolated species abundance distribution by 

augmenting the sample. The augmented sample is then bootstrapped to simulate sampling 

uncertainty, and sample or asymptotic diversity is then computed for each bootstrapped 

sample. The resulting distribution of bootstrapped diversity values is then centered on the 

sample diversity or asymptotic estimate for the original sample; 0.025 and 0.975 quantiles of 

this new distribution are then chosen to provide a confidence interval. Here, we asked 

whether these confidence intervals contained, in the case of asymptotic diversity, the true 

diversity of the original simulated community, or in the case of sample diversity, the average 

sample from 5000 random samples pf the same size. R code for the protocol described above 

will be publicly available on FigShare or GitHub at time of publication. 
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Appendix C 

 

Figure 1. Asymptotic estimators and sample diversity are both sensitive to sample 

completeness, but not in identical ways. 9999 random samples of one to fourteen 30-minute 

transects were randomly sampled without replacement. For each sample, the number of 

individuals, estimated coverage, sample Hill diversity, and asymptotic Hill diversity estimate 

were computed. For each sample size, the mean value for effort (i.e. number of transects), 

number of individuals, sample coverage, and diversity estimate is plotted. For each group of 
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9999 random subsamples, average effort (number of 30-minute transects resampled), average 

size (number of individuals), or average coverage is plotted on the x-axis, and average sample 

diversity is plotted on the y (with tick marks placed at log scaled intervals, but actual diversity 

values shown). The logarithmic y-axis reveals a constant relative difference in diversity as a 

constant distance between lines. 
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CHAPTER 3 

Assessing diversity estimators and their uncertainty with checkplots 

 Manuscript authors: Michael Roswell, Rachael Winfree, Jonathan Dushoff 

ABSTRACT 

1. Ecologists frequently measure and compare quantities, such as Hill diversity, for 

which parametric uncertainty estimates are unknown or invalid. Approximate 

uncertainty estimates may be generated through Monte-Carlo resampling schemes 

such as bootstrapping.  However, the bootstrapping simulation may not realize the 

variability in ecological metrics that occurs under random sampling of natural 

communities.  

 

2. We simulated species abundance distributions with known diversity, and then 

sampled from them to evaluate the sampling uncertainty in Hill diversity. We then 

assessed whether recently proposed confidence intervals for Hill diversity estimates 

were valid, using two new visual diagnostic tools, the “slugplot” and the “checkplot.” 

 

3. We found that observed Hill-Simpson diversity had high sampling uncertainty even 

with large samples, in comparison to Hill-Shannon diversity and richness. Similarly, 

asymptotic Hill-Simpson diversity estimators often had higher variability than 

asymptotic  Hill-Shannon diversity and asymptotic richness estimators, though both 

of these are more sensitive to rare species. The proposed confidence intervals often 

performed well for sample diversity, especially for more even communities. Only with 

very large samples could proposed confidence intervals obtain nominal coverage for 



 

 

117 

asymptotic Hill-Shannon and Hill-Simpson estimators; the proposed confidence 

intervals performed poorly for the Chao1 richness estimator.  

 

4. Rough estimates of relative sampling uncertainty can help guide ecologists choice of 

which Hill diversity to use. We found that Hill-Simpson diversity, which can be 

estimated with little bias, often has greater sampling uncertainty than Hill-Shannon 

and in some cases, richness. Slugplots and checkplots are flexible tools for assessing 

confidence intervals and related statistics. We showed that proposed confidence 

intervals may work well for sample Hill diversities, but not for asymptotic Hill diversity 

estimates.   

 

Introduction 

 

Ecologists lack precise, robust, unbiased tools to estimate the species diversity of a 

community based on the diversity of samples drawn from it (Haegeman et al. 2013). While 

ecologists know this, do they know how accurately they can estimate diversity indices? The 

literature conveys that richness is very hard to estimate robustly, that Simpson’s index and its 

Hill-number version can be estimated with little bias from samples of nearly any size, and that 

Shannon’s entropy and its Hill number equivalent fall somewhere in between (Beck and 

Schwanghart 2010, Chase and Knight 2013, Haegeman et al. 2013, Chao and Jost 2015). In 

spite of these observations, we believe that ecologists often lack intuition for how accurate 

and precise commonly used diversity estimates are. We suspect that ecologists tend to 

overestimate their ability to precisely estimate true species richness and true Hill-Simpson 
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diversity, but underestimate their ability to describe the statistical uncertainty in the expected 

richness of a finite sample. As the field coalesces around the consensus that Hill diversities 

(eq. 1) are the best family of metrics for measuring and comparing species diversity, 

identifying methods to quantify the uncertainty in Hill diversity estimates becomes more 

important (Willis 2019). 

 

We define Hill diversity  as the mean species rarity in the community 

1)   

 

where  is diversity or mean rarity,  is the relative abundance of species ,  is the rarity of 

species  (defined as the reciprocal of ),  is the total species richness, and  is the scaling 

exponent that determines the type of mean computed (Roswell et al. ND) 

 

Quantitative measures of the statistical uncertainty in estimates of Hill diversity ( )  are 

technically difficult to produce, and furthermore, the existing tools rely on a variety of 

statistical approaches with incompatible interpretations. Thus, while a number of recent 

publications provide quantitative interval estimates for community diversity (Dauby and 

Hardy 2012, Zhang 2012, Haegeman et al. 2013, Chao and Jost 2015, Willis and Bunge 2015, 

Zhang and Grabchak 2016, Mao et al. 2017), the intervals they provide are not all equivalent. 

To the best of our knowledge, only one of these approaches is widely used in practice, namely 

variations of the “confidence intervals” described by Chao and Jost 2015 (Chao and Shen 
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2003, Colwell et al. 2012, Chao et al. 2014, 2019, Chao and Jost 2015), and included in the 

popular R packages SpadeR (Chao et al. 2016) and iNEXT (Hsieh et al. 2016). 

 

The Chao and Jost 2015 confidence intervals were designed to indicate the statistical 

uncertainty for both sample Hill diversity and also for asymptotic Hill diversity estimates. The 

sampling distributions of Hill diversity estimates are poorly known, which makes defining 

confidence intervals for these quantities very difficult.   

 

In this study, we describe a novel approach to assessing confidence intervals, and test the 

confidence intervals proposed by Chao and Jost (2015) using simulated species abundance 

distributions. First, we sample from simulated species abundance distributions to empirically 

describe the sampling distributions of Hill diversity estimates. Next, we ask whether the 

proposed intervals for both sample Hill diversities and for asymptotic Hill diversity estimates 

for the three most commonly used values for the scaling exponent ℓ (1, 0 and -1, 

corresponding to richness, Hill-Shannon diversity, and Hill-Simpson diversity) should be 

considered “confidence intervals,” using tools we introduce as “slugplots” and “checkplots.” 

 

Specifically, we ask 

  

1)    How much sampling variability is there in sample Hill diversities and in Chao and 

Jost’s (2015) asymptotic Hill diversity estimators? 
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2)    Does the method proposed by Chao and Jost (2015) generate valid confidence 

intervals that reflect this variability? If not, are these intervals conservative or 

overconfident? 

3)    Are the proposed intervals from this method biased high or low? 

4)    Does confidence interval performance depend on the species abundance 

distribution or choice of Hill diversity?  

 

STATISTICAL BACKGROUND 

p-values 

We define a p-value to be the probability of a particular observation (or one that is more 

extreme), given that a particular statistical hypothesis is true. 

 

Formally, we define the one-tailed p-value for an observation  and the statistical hypothesis 

 as  as the probability of observing a parameter as or more extreme than , and 

define 1-tailed p-values as 

1)  and  

2)  

 

where  is a random variable, and  describes the statistical hypothesis. 

 

p-values describe an observation  in terms of the quantiles of a random variable. If  is true, 

and  is a continuous random variable, then the probability density function of  is 

uniform on  , by the probability integral transform (Casella and Berger 2002).   
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If  is a discrete random variable, however,  is not always equal to . When for 

, ,  is associated, in theory, with a range of “platonic” p-

values between  and . When using p-values to construct confidence intervals or evaluate 

statistical hypotheses, it is prudent to be conservative, i.e. select only    or , in 

accordance with the tail appropriate for a given hypothesis. When evaluating a p-value, it can 

be informative break the tie not by selecting the most conservative p-value associated with , 

but instead by randomly sampling the range of p-values consistent with . p-values estimated 

this way, even for discrete random variables, always have a discrete uniform distribution on  

.  

 

What are confidence intervals for? 

A frequentist confidence interval (CI) with confidence level L is an interval estimate obtained 

by a method that is expected to result in the interval containing the true value a proportion L 

of the time no matter what the true value is (Cox and Hinkley 1974).  

 

CIs are commonly constructed as a collection of values that would not be rejected (at an 

aggregate p-value of ) if they were treated as null hypotheses (Neyman 1937). In 

other words, we construct CIs using a counterfactual null hypothesis: a value falls within the CI 

if, imagining that that value were the true parameter value under the null hypothesis, the null 

hypothesis would not be rejected for the observed statistic. 
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Frequentist confidence intervals are commonly used to express the range of population 

parameter values that are consistent with the data. Thus, when valid confidence intervals can 

be found, they provide practical guidance about uncertainty. Because a valid confidence 

interval depends on a sound method to estimate p-values (in order to conduct the 

counterfactual null hypothesis test), to test the validity of a confidence interval, it is sufficient 

to test the p-value upon which it is based.   

 

Defining confidence intervals 

In this manuscript, we only explore equal-tailed confidence intervals, or those that have equal 

chances of being too high and too low. Thus, we set . Furthermore, 2-sided 

 confidence intervals are bounded by  and , where  and  are given by the 1-

sided  confidence intervals  and . However, the process of 

imagining tests where every possible value of a parameter is the true value under the null, and 

finding the parameter value (  or  ) that, if it were the true parameter value under the null, 

would result in  may be computationally or conceptually infeasible. A simpler 

approach is to assume a kind of symmetry such that , where  indicates 

that  is the true value of the parameter of interest under the statistical hypothesis.  

 

Here, we introduce two diagnostic tools to assess confidence intervals and the p-values upon 

which they are based, which we call “slugplots” and “checkplots,” respectively. A slugplot is 

an ordered plot of estimates and their confidence intervals, computed from Monte-Carlo 

random samples of .  A checkplot is a histogram of estimated p-values for the simulated, 

true parameter value, but where p-values are computed based on a null hypothesis 
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parameterized by a Monte-Carlo random sample of  rather than the full knowledge of  

itself. 

 
Slugplots 

In a slugplot, confidence intervals for 1000 random samples are ordered to ease visual 

comparison with the true value. A slugplot makes it is easy to both verify if  of 

random samples have confidence intervals above the target value and  have 

confidence intervals below the target value, and also to examine bias when nominal coverage 

is not achieved. A slugplot (Fig 1) is thus more nuanced than a simple measure of statistical 

coverage, and is useful for examining CI performance for a given combination of parameter 

values and sample size. Slugplots are informative for continuous statistics but may be difficult 

to interpret for discrete statistics.   
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Figure 1. A slugplot for 95% CIs based on Student’s t- type p-values, constructed for 

1000 samples of 100 deviates from a normal distribution with mean= 22, standard 

deviation = 4. The slugplot exhibits near ideal behavior of these CIs, with 2.5% of CIs 

too low (red, at left) and 2.5% too high (red, at right). The point estimate for the mean 

for each sample is a darker shade for each CI.  

 

Checkplots 

Whereas a slugplot displays the empirical performance of a confidence interval (on the scale 

of the parameter of interest), it may be difficult to see from a given slugplot whether a 

confidence interval is theoretically sound. Partly, this is because it is possible to achieve 

nominal coverage for a particular parameter value and sample size by coincidence, despite 

having invalid confidence intervals. Furthermore, slugplots may be of little use for discrete 

statistics, for which valid confidence intervals will be conservative for most parameter values 

at modest sample sizes. A more general tool to assess p-values (and thus CI; a valid method to 



 

 

125 

compute p-values is both necessary and sufficient to construct valid CI) is a “checkplot,” a 

type of rank histogram.  

 

To create a checkplot, one must first generate samples via Monte-Carlo simulation based on 

known parameters. From each simulated sample, the researcher then estimates the 

probability that the population parameter value is less than or equal to the simulated 

parameter (whereas the population parameter is the simulated parameter; the probabilities 

are computed without considering this information). This is of course slightly different from 

the idealized test inversion invoked in ideal frequentist CI, and relies on a symmetry 

assumption that the 2-sided p-value of the  upper or lower confidence limit, given the 

estimate, is equal to the 2-sided p-value of the sample estimate, given the confidence limit. 

When all parameters for the true distribution ( These probabilities (p-values) are then binned 

into a histogram (a checkplot, Fig. 2). Because we break ties for discrete statistics randomly, a 

valid p-value always has a flat checkplot. 
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Fig 2 Checkplots can reveal accuracy, bias, and conservatism of a proposed p-value or 

confidence interval. a) an ideal checkplot has a uniform, unbroken distribution across 

all nominal p-values. b) checkplot with higher density around p=0.5, implying 

conservative confidence intervals c) Checkplot with low nominal p-values occurring 

more frequently than higher nominal p-values, implying biased, anti-conservative 

confidence intervals d) Checkplot with high density towards extreme p-values implies 

anti-conservative confidence intervals. 

 

Checkplots can reveal how approximated confidence intervals or p-values may provide 

misleading statistical guidance (“How to interpret a p-value histogram” in press, Hamill 2001, 

Talts et al. 2018). Humped, centered checkplots imply conservative confidence intervals and 

p-values. These are obviously preferable to U-shaped checkplots, which imply anti-
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conservative confidence intervals and p-values. When checkplots are skewed to one side, they 

imply biased statistics that consistently over- or under-predict population parameters.  

 

Because small deviations from the uniform distribution may be difficult to diagnose visually, 

we suggest generating up to 50,000 p-values per checkplot. Alternatively, the flatness of a 

checkplot might be assessed with a Chi-squared test (Wilks 2019). When developing or 

comparing approximated p-values, these nuanced diagnostics enable assessing CI 

performance beyond the simple statistical coverage probability (Fig 3). 
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Fig 3 Checkplots for p-values and their associated CIs for samples from a univariate 

normal distribution (based on Student’s  t-statistics) and for samples from a binomial 

distribution (based on Wald and exact statistics) reveal the validity of each statistic 

and their associated CI. (a) Confidence intervals for the true mean of sample from a 

normal distribution may be constructed by inverting a t-test, taking the sample mean 

as the “null hypothesis.” Therefore  , where  is the sample mean, from 

50,000 samples of 100 random deviates from a normal distribution with  and 

, falls uniformly across , generating a flat checkplot. (b) The Wald binomial 

test and associated confidence interval depend on the discrete binomial distribution 

converging on a continuous chi-squared distribution, which occurs asymptotically. 

However, at smaller sample sizes, the approximation can be poor (Brown et al. 2001). 

When the binomial proportion is close to 0.5, the Wald confidence intervals are 

conservative. The p-values for the true proportion, taking the sample proportion as 

the null, from 50,000 samples of 100 random Bernoulli trials with frequency of success 

= 0.5 is not uniform, and the checkplot shows a higher density of nominal p-values 

near 0.5. With more extreme binomial proportions, the Wald intervals become biased 

towards 0.5, and the checkplots show a high density p-values >0.95 (c-e). In addition 

to providing a misleading interval, the Wald statistic depends on which condition a 

researcher determines to be “success.” The inverse  distribution is used to estimate 

p-values for a binomial distribution in the exact binomial test and Clopper-Pearson 

interval (f-i). Due to the discreteness of the binomial distribution,  for 
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every value of . Thus, when generating a checkplot, we randomly sample from the 

interval  to simulate a “platonic” p-value for each sample. The exact 

binomial test delivers valid p-values, and therefore a flat checkplot can be made for 

any binomial proportion. The Clopper-Pearson interval is constructed from inverting 

the exact binomial test (using the observed frequency as the null), and is therefore 

also valid.  

 

METHODS 

All simulations and analyses were conducted in R 3.4.1 (R Development Core Team 2015) 

 

Simulating species abundance distributions 

We simulated species abundance distributions (fig 4) based on their true diversity and a 

parametric shape assumption. Rather than selecting the parameter values for these 

distributions based on a community assembly process, or fitting curves to field data, we chose 

parameter values by fitting curves, constrained by the true diversity of the full species 

abundance distribution. The distributions we simulated have known, finite diversity but 

infinite species abundances. There is effectively no difference between sampling with and 

without replacement from these distributions. Simulation details may be found in appendix 1. 
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Fig 4 While the log-normal and gamma distributions were similar for even 

communities, for uneven communities, the rarest species were much rarer for the 

gamma than for the log-normal. The top row shows rank-abundance distributions, the 

bottom shows a “Whittaker plot” where relative abundances are log-transformed 

(Whittaker, 1965). Columns labelled with their normalized evenness (Chao and Ricotta 

2019), which is approximately the ratio of Hill-Simpson diversity to richness. We also 
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simulated distributions with evennesses = {0.25, 0.75, 0.85}, and for each evenness and 

distributional assumption, distributions with 100 instead of 200 species. 

  

 

Community sampling and diversity estimation 

From each species abundance distribution, we sampled 10^2 to 10^5 individuals, 50,000 times 

each. For each sample, we computed the sample Hill diversity and estimated asymptotic Hill 

diversity (Chao and Jost 2015). We also generated “augmented” bootstrapped assemblages. 

We resampled from the bootstrapped assemblages 2000 times per sample, and computed 

diversity estimates for each bootstrap sample. We did this for sample and estimated 

asymptotic Hill diversities with the scaling exponent ℓ = 1, 0, and -1 (richness, Hill-Shannon 

diversity, and Hill-Simpson diversity). 

 

Assessing the sampling distribution of Hill diversities 

To describe the empirical sampling uncertainty for each sample and asymptotic Hill diversity 

across sample sizes, we computed the standard deviation of the log sample diversity or log 

estimated asymptotic diversity from the 50,000 random samples described above (McArdle et 

al. 1990). The standard deviation of the log diversity is a unitless measure that describes the 

expected proportional variability of the data, and is numerically and conceptually similar to 

the coefficient of variation. Because diversities are always positive, sd(log(diversity)) is an 

appropriate variability measure(McArdle et al. 1990, Gaston and McArdle 1994). 

 

Assessing confidence intervals for Hill diversity estimates 
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For each combination of sample size and simulated abundance distribution, we took 50,000 

empirical samples. For each sample, we then generated an “augmented” sample, and 

resampled this 2000 times. The p-value we computed was the rank the true value (mean 

sample diversity in the case of sample diversity, or true diversity in the case of asymptotic 

diversity) would have, were it among the 2000 bootstrap samples. In other words, we 

determined how many of the bootstrapped samples had sample- or estimated true diversity 

less than or equal to the true value. We also recorded the 0.025 and 0.975 quantiles of the 

bootstrap distributions, as these define the 95% CI (Chao and Jost 2015).  (fig 5).   
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Figure 5. Flowchart for simulation and analysis methods. (a) simulations took as 

inputs the true richness, the true evenness (and thus the true Hill-Simpson diversity, 

Chao and Ricotta 2019), and a distributional shape. (b) We wrote an R function that 

selected the optimal shape parameter for the continuous distribution and diversity 

constraints given by (a). (c) The true Hill diversities of the complete species abundance 

distribution were therefore known at the time of simulation. (d) We repeatedly took 

random samples of fixed size from each simulated species abundance distribution, 

and computed the observed diversity for the sample as well as the asymptotic 

diversity estimate based on the sample. (e) we used the methods proposed by Chao 

and Jost 2015 to generate an augmented species frequency distribution based on 

each sample. CI are generated by randomly resampling (bootstrapping) this 

distribution. We compute diversities for each bootstrap sample as well. Thus, for each 

of the 50,000 samples for a given species abundance distribution and sample size, we 

generated 1 augmented distribution and bootstrapped it 2000 times. (f) The bootstrap 

samples are ranked by their diversity, and the 0.025 and 0.975 quantiles of these 

ordered samples are equivalent to the upper and lower bounds of the 95% confidence 

interval. (g) We find the rank of the expected sample diversity within the bootstrap 

diversities, which is the p-value for the true parameter value. In the presence of ties, 

which are especially likely for richness, we sample all ranks compatible with that 

diversity. These p-values are then used to generate checkplots. (h) We use a similar 

procedure to estimate p-values for asymptotic diversity estimates. However, the 

population parameter of interest, in this case, is the true diversity, which may not be 

the expected value of the estimator under random sampling. (i) for each combination 
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of species abundance distribution, sample size, Hill number, and estimate type (i.e. 

sample or asymptotic), we compute the standard deviation of the log diversity of each 

of the 50,000 samples drawn from the true SAD. 

  

  

To assess the validity of the Chao and Jost 2015 confidence intervals, we created a slugplot 

and a checkplot for each combination of sample size, species abundance distribution, and Hill 

diversity, for both sample diversities and asymptotic diversity estimates.  

  

RESULTS 

  

How much sampling variability is there in sample Hill diversity and asymptotic Hill diversity 

estimators? 

  

The relative sampling variability of the Hill diversity estimates we examined depended on 

evenness and estimation method. For sample diversity, and often for asymptotic diversity 

estimates, Hill-Simpson diversity had the greatest sampling variability, and richness the least 

(fig 6). While this result may be counterintuitive, we note that the sampling variability of Hill 

diversities is not typically compared in a unitless manner. For a given community, richness is 

always greater than Hill-Shannon and Hill-Simpson, and so if all had the same proportional 

variability, the variance would be greatest for richness. Hill-Shannon diversity almost always 

has less proportional variability than Hill-Simpson diversity. As evenness increases, the 

sampling variability of all Hill diversity decreases, but it decreases most slowly for Hill-
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Simpson diversity. Thus, for all but the most skewed possible communities, sample Hill-

Simpson diversity has the greatest sampling uncertainty at all sample sizes. 

 

Whereas differences in evenness and distributional shape affected results, doubling richness 

from 100 to 200 species did not qualitatively affect results, and thus we display results for only 

a representative set of the 200-species communities. Full results can be found in Appendix 2. 

  

For the asymptotic diversity estimators, sampling uncertainty was initially very high, and 

always exceeded the variability we saw with sample diversity. Note that because our measure 

of variability was unitless, this is not simply because the asymptotic diversity estimates had 

greater mean values. Unlike for sample diversity, the ranking of sampling variability for 

asymptotic Hill diversity estimates was more consistent, with asymptotic richness estimators 

always more variable than asymptotic Hill-Shannon or Hill-Simpson estimators at small for all 

but the most even of communities (fig 7).  
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Figure 6. As community evenness increases, the sampling uncertainty in sample 

diversity decreases. However, it decreases fastest for richness, and slowest for Hill-

Simpson diversity, which had the greatest sampling uncertainty for the species 

abundance distributions we simulated. Sample Hill-Shannon diversity typically had 

less sampling variability than Hill-Simpson diversity, but if communities were 

sufficiently uneven, this pattern could be reversed. Columns indicate the evenness of 

the simulated species abundance distribution, and with one row for the gamma 

shaped SADs and one row for the log-normally shaped SADs. 
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Figure 7. Sampling variability in asymptotic estimators is high for all Hill diversities at 

low sample sizes. For all the species abundance distributions we examined, it was 

lower asymptotic for Hill-Shannon diversity estimates than asymptotic Hill-Simpson 

diversity estimates. For more even species abundance distributions, all asymptotic 

Hill number estimates had similar sampling uncertainty, uncertainty rapidly grew for 

asymptotic richness estimates as evenness declined. 

 

Do proposed uncertainty estimators capture observed sampling variability for sample- and 

asymptotic Hill diversities? 
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For small and moderate levels of sampling, the Chao and Jost method for constructing 

confidence intervals achieved nearly nominal coverage of expected sample diversity for all 

sample Hill diversities (Appendix 3). Nevertheless, nominal p-values derived from the 

bootstrap approximation were not exact, with deviations depending on both the species 

abundance distribution and Hill diversity exponent. (Appendix 4).  However, as sample sizes 

increase, sample richness can equal true richness, and therefore the true sample uncertainty 

declines. The Chao and Jost method for estimating this uncertainty was unstable. The 

uncertainty estimates for sample Hill-Simpson and Hill-Shannon diversity generally improved 

with sample sizes and nominal p-values appeared valid, with flat checkplots and perfect-

looking slugplots.  

  

For small sample sizes, the Chao and Jost method for constructing confidence intervals for 

asymptotic diversity estimates performed poorly (fig 8, Appendices 5,6 ). For large sample 

sizes, the Chao and Jost method for estimating the uncertainty in asymptotic diversity 

improved for Hill-Shannon and Hill-Simpson, but not for richness, where the downward bias 

of the estimator precluded good confidence interval coverage.   
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Fig 8 Checkplots for asymptotic richness and asymptotic Hill-Simpson estimates for 

increasing sample sizes. For richness estimates (a-d), the estimator and its nominal 

95% CI are too low for almost every sample. The downward bias (resulting in a high p-

value associated with the true richness) hardly shrinks even as sample sizes increase 

by several orders of magnitude. For asymptotic Hill-Simpson estimates (e-h), the 

nominal 95% CI are anti-conservative for lower sample sizes. By 10,000 individuals for 

this community, the checkplot  (h)is essentially flat, which means that at this sample 

size confidence intervals are valid.  Slugplots for richness at 100 (i) and 10,000 (j) 

individuals show many random samples for which the entire confidence interval sits 

below true richness (blue line, 200 species), and none where the entire interval sits 

above true richness. Slugplots for asymptotic Hill-Simpson estimates at 100 

individuals (k) shows the tendency to overestimate true Hill-Simpson diversity, which 

is entirely resolved by 10,0000 individuals (l), where nearly exactly 2.5% of the samples 

have CI that are too high and 2.5% are too low, consistent with the nominal 95% 

confidence.  

 

DISCUSSION 

  

We found that sampling uncertainty for sample Hill-Simpson diversity was higher than 

sampling uncertainty for sample Hill-Shannon diversity and richness. This was not expected 

based on statements prevalent in the diversity estimation literature that Hill-Simpson 

diversity can be estimated accurately from modest samples (Magurran and McGill 2011, Chase 

and Knight 2013). While the estimation bias (that is, a tendency to be consistently higher or 
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lower than the true value) for asymptotic or even observed Hill-Simpson diversity can be 

small, even with small sample sizes (Simpson 1949, Chao and Jost 2015), both observed Hill-

Simpson diversity and asymptotic Hill-Simpson estimators remain sensitive to fluctuations in 

species frequencies, even in large samples. This sensitivity means that there is a bias-variance 

tradeoff in diversity estimation, where Hill-Shannon diversity can be estimated with more bias 

but less variability between samples, while Hill-Simpson diversity is estimated with less bias 

but often high variability between samples.   

 

Proposed confidence intervals for sample Hill diversity capture the uncertainty arising from 

stochastic sampling variation in species frequencies. While the correspondence between 

sample diversity and the true diversity of a community is often weak (Willis 2019), Roswell et 

al. in review), the statistical tools for comparing rarefied diversity are impressively robust. Not 

only does statistical theory suggest such estimates should be possible (Smith and Grassle 

1977), recent estimators for true species frequencies enable simulating a realistic enough 

species pool for bootstrap approximations to work well in many cases (Chao and Jost 2015). 

However, the confidence intervals for sample richness become unstable, ironically, as sample 

richness approaches true richness. We note that field ecologists seldom have the luxury of 

worrying about that scenario.  

 

Despite progress on estimating true Hill diversity based on samples (i.e. asymptotic 

estimators), current tools have large uncertainty that cannot be robustly estimated. The 

estimators exhibit bias, and these biases are recapitulated when estimating uncertainty via 

the modified bootstrap proposed by Chao and Jost 2015. As sample sizes increase, the 
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performance of the confidence intervals for asymptotic Hill-Simpson and Hill-Shannon 

diversity improves, but the intervals for asymptotic richness estimates are not directly 

interpretable. One reason for this is that the best richness estimators are formally “lower 

bounds” (Chiu et al. 2014), for which a 95% confidence interval does not have a clear 

interpretation. The intervals suggested by (Chao and Jost 2015) do not achieve nominal 

coverage of true richness, even at very large sample sizes and under idealized sampling 

conditions, such as those we simulated here.  

 

We introduced three new tools in this paper: a species abundance distribution simulator, 

slugplots, and checkplots. Our community simulation algorithm allows users to simulate a 

species abundance distribution based on a priori determination of true diversity, in contrast to 

selecting the parameters of an infinite distribution, and then determining true diversity based 

on finite samples from it (Chao and Jost 2015, May et al. 2018).  

 

Slugplots provide a transparent visual representation of confidence interval performance for 

continuous statistics. These summaries clarify the direction and nature of bias or 

conservatism associated with nominal confidence intervals. Slugplots provide an empirical 

complement to checkplots, visualizing confidence interval performance on the scale of 

parameters of interest. 

 

Checkplots, a type of p-value histogram, address whether nominal p-values are valid 

probability measures. Because valid p-values are fundamental to equal-tail confidence 

intervals, they are useful to researchers who are interested in expressing effect sizes with 
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confidence intervals, even researchers who are skeptical of using p-values for statistical 

inference. Any researcher able to simulate data can also generate and read checkplots to 

evaluate whether a statistical tool is sound, even if analytical proofs of pivotality are not 

possible or accessible. 

 

 

In many realms of statistics, normal approximations are valid with very large sample sizes, but 

the approximations break down with smaller samples. Checkplots and slugplots can help 

researchers assess whether violating particular assumptions renders approximate p-values 

and confidence intervals uninterpretable, or if the approximations are acceptable for 

statistical practice. However, slugplots and checkplots are both information rich, and future 

work is needed to improve  their capacity for throughput, to explore and communicate how a 

statistical approximation fares across a range of parameter values.  

 

In the real world, where species have finite abundances, and species abundance distributions 

are not stationary, sampling variability is both greater and more difficult to estimate than in 

our simulations. We intentionally generated simple, replicable species abundance 

distributions and sampling procedures to test Chao and Jost’s uncertainty estimation tools. 

We assume that if the estimates are inaccurate for our simulations, they cannot work well in 

the real world. If they did work well on our simulated data, it would still be important to 

determine how the predictions from Chao and Jost’s methods would be affected by sampling 

without replacement, by changing species frequencies during sampling, or by the other real-

world complexities that we assumed away.   
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To robustly compare true diversity, ecologists need good diversity estimators, as well as tools 

to accurately quantify sampling uncertainty (Willis 2019). The approach to constructing 

confidence intervals proposed by Chao and Jost (2015) approximates statistical uncertainty in 

the diversity of a finite sample. The approach is less useful for asymptotic Hill diversity 

estimators, because at smaller samples, when uncertainty is greatest and most important to 

quantify, the CI can be both biased and anti-conservative.  

  

ACKNOWLEDGEMENTS 

We thank Rob Muldowney for computational support, and the Office of Advanced Research 

Computing (OARC) at Rutgers, The State University of New Jersey for providing access to the 

Amarel cluster and associated research computing resources that have contributed to the 

results reported here http://oarc.rutgers.edu. Thanks also to Michael Li, who invented 

slugplots.  



 

 

146 

Appendix 1 

To simulate species abundance distributions, we selected a true richness and evenness value, 

and 1 of 2 distributional shape assumptions (log-normal and gamma). To parameterize 

evenness, we used (Hill-Simpson diversity -1)/(richness-1), which is equal to 1 with a perfectly 

even species-abundance distribution, and 0 when Hill-Simpson diversity reaches its minimum, 

1, for any richness value (Chao and Ricotta 2019). We used the log-normal distribution 

because it fits observed sample species abundance distributions well (Enquist et al., n.d.; 

Baldridge, Harris, Xiao, & White, 2016; Matthews, Sadler, Kubota, Woodall, & Pugh, 2019). We 

used the gamma distribution because it fits observed species abundance distributions as well 

(Matthews & Whittaker, 2014; Matthews et al., 2019), but makes different assumptions about 

rare species, providing scope to test proposed confidence intervals (Béguinot, 2018). To fit 

each parametric distribution, we wrote a function in R that identifies the optimal shape 

parameter, given richness, Hill-Simpson diversity, and a distributional assumption (code will 

be on FigShare or GitHub at time of publication). The basic logic of this simulation was to use 

the target Simpson diversity and distributional family to set the relative abundance for a fixed 

number of species, where their relative abundances were given by evenly-spaced quantiles of 

the continuous gamma or lognormal distribution. 
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Appendix 2: Sampling uncertainty in sample and asymptotic Hill diversities 
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Appendices 3-6 available upon request from the author: 

Appendix 3: Slugplots for sample Hill diversity 

Appendix 4: Checkplots for sample Hill diversity 

Appendix 5: Slugplots for asymptotic Hill diversity 

Appendix 6: Checkplots for asymptotic Hill diversity  
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