
CODES FOR PRIVATE DISTRIBUTED COMPUTATION
WITH APPLICATIONS TO MACHINE LEARNING

by

RAWAD BITAR

A dissertation submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Salim El Rouayheb

And approved by

New Brunswick, New Jersey

January, 2020

i

Rawad Bitar

ABSTRACT OF THE DISSERTATION

Codes for Private Distributed Computation with

Applications to Machine Learning

By RAWAD BITAR

Dissertation Director:

Salim El Rouayheb

We consider the problem of private distributed computation. Our main interest in this

problem stems from machine learning applications. A master node (referred to as master)

possesses a tremendous amount of confidential data (e.g., personal, genomic or medical data)

and wants to perform intensive computations on it. The master divides these computations

into smaller computational tasks and distribute them to untrusted workers that perform these

tasks in parallel. The workers return their results to the master, who processes them to obtain

its original task. In large scale systems, the appearance of slow and unresponsive workers,

called stragglers, is inevitable. Stragglers incur large delays on the computation if they are not

accounted for. Our goal is to construct codes that maintain the privacy of the data and allow

flexible straggler mitigation, i.e., tolerate the presence of a varying number of stragglers.

We propose the use of communication efficient secret sharing (CE-SS) in private linear coded

computation with straggler mitigation. A CE-SS scheme satisfies the properties of threshold

ii

secret sharing. Moreover, it allows the master to reconstruct the secret by reading and commu-

nicating the minimum amount of information from a variable number of workers, up to a given

threshold. We introduce three explicit constructions of CE-SS codes called Staircase codes.

The first construction achieves optimal communication and read costs for a given number of

workers d. The second construction achieves optimal costs universally for all possible values of

d between k and n. The third construction, which is the most general, achieves optimal costs

universally for all values of d in any given set ∆ ⊆ {k, . . . , n}.

We analyze the performance of Staircase codes in distributed computation systems where

the workers have fixed resources. We model the workers service time by i.i.d. shifted exponential

random variables. We derive upper and lower bounds on the Master’s mean waiting time. We

derive the distribution of the Master’s waiting time, and its mean, for systems with up to two

stragglers. We show that Staircase codes always outperform existing solutions based on classical

secret sharing codes. We validate our results with extensive implementation on Amazon EC2.

We consider the case where the workers have time-varying resources. We develop a private

and rateless adaptive coded computation (PRAC) algorithm for distributed matrix-vector mul-

tiplication. PRAC is based on the use of Fountain codes coupled with MDS codes to maintain

privacy and to adaptively assign tasks to the workers. The assigned tasks are proportional to

the estimated resources at the workers. We provide theoretical guarantees on the performance

of PRAC and compare it to baselines. Moreover, we validate our theoretical results through

simulations and implementation on Android devices.

We go beyond linear coded computation and tackle the problem of distributed gradient

descent for general convex loss functions in the presence of stragglers. However, we drop the

privacy constraints on the master’s data. We propose an approximate gradient coding scheme

called Stochastic Gradient Coding (SGC), which works when the stragglers are random. SGC

distributes data points redundantly to workers according to a pair-wise balanced design, and

then simply ignores the stragglers. We prove that the convergence rate of SGC mirrors that

of batched Stochastic Gradient Descent (SGD) for the `2 loss function, and show how the

iii

convergence rate can improve with the redundancy. We also provide bounds for more general

convex loss functions. We show empirically that SGC requires a small amount of redundancy to

handle a large number of stragglers and that it can outperform existing approximate gradient

codes when the number of stragglers is large.

We study private information retrieval (PIR) which is an extension of private distributed

computation. The data is public and stored (replicated) at the workers. The master wants to

retrieve a file without revealing its identity to the workers. Robust PIR capacity is the minimum

amount of information downloaded by the master to retrieve the file in the presence of a fixed

number of stragglers. We show that communication efficient secret sharing achieve robust PIR

capacity simultaneously for all number of stragglers, up to a given threshold. As a result, we

construct a family of universally robust PIR called Staircase-PIR.

iv

Acknowledgements

Glory to God in the highest, on earth peace and joy to people. First, and foremost I thank

God for this wondrous journey full of passion, success, and failure. Devotedly learning and

attempting to turn failures into success would have been a lot harder without God’s ubiquitous

help.

I am indebted to my family. The footsteps of my parents and two brothers are the cornerstone

of my personality, and their continuous support is the foundation of my achievements. I am also

forever grateful to Maroun Hayek and Hayate Hayek for their parental love and for providing a

comforting home in New York.

It is a pleasure to have Dr. Salim El Rouayheb as my Ph.D. advisor. He made this long and

tough journey flow smoothly. Even though I was his first student, he was equipped and ready to

help overcome all the hurdles of my Ph.D. Dr. El Rouayheb, thanks for all those long meetings

full of brainstorming and fruitful discussions. You are an inspiration. You taught me from

scratch how to formulate practical problems and how to form an intuition about each solution.

You revamped my presentation skills and kept trying to pass your reader-friendly writing style,

despite this task being hard for students with my background.

A special thanks to all my collaborators, you seasoned my thesis. Prof. Sidharth Jaggi,

thank you for the various pointers on tackling research problems. You enlarged my problem-

solving arsenal. Dr. Mary Wootters quickly formulating your intuition is impressive. Thanks

for showing me how to connect coding theory to convergence analysis, a building block of

my research. Dr. Parimal Parag, you redefined the concept of being available. Thank you

v

for meeting at night to compensate for the time difference. Dr. Hulya Seferoglu, thank you

for explaining how to tackle complexities arising from implementing coding theoretical tools

in networks; Collaborating with your group widened my horizon. Dr. Venkat Dasari, thank

you for introducing application-oriented research problems. Moreover, thank you and the Army

Research Lab for the generous funding. Dr. Yasaman Keshtkarjahromi, thank you for producing

exceptional ideas. Mr. Yuxuan Xing, thank you for implementing PRAC on Android devices.

I never thought I would see my research ideas implemented on a smartphone. Mr. Peiwen

Tian, thank you for implementing Staircase codes on Amazon EC2. Mr. Serge Kas Hanna, we

may have written one paper together, yet our daily discussions in the lab greatly influenced my

research.

I am lucky to have a considerate and reliable defense committee. Despite attending my

talks on several occasions, Prof. Emina Soljanin, Dr. Predrag Spasojevic, and Prof. Roy Yates

responded quickly to my emails and accepted to be on my comprehensive exam committee, Ph.D.

proposal committee, and Ph.D. defense committee. Thank you for engaging with my overlapping

talks and providing constructive feedback. Prof. Antonia Wachter-Zeh, my gratitude for e-

attending the defense from a different continent goes beyond my ability to express it in words.

I also thank Prof. Anand Sarwate, who was so kind to be a member of my comprehensive exam

committee and Ph.D. proposal committee.

Traveling around the world and living in different countries seasoned my journey; Thanks

to everyone who made it possible. In particular, I would like to thank Prof. Sidharth Jaggi

for inviting me to spend a semester at the Chinese University of Hong Kong. Living and doing

research in the far-east is a marvelous experience. Moreover, I would like to thank Dr. El

Rouayheb for extending the invitations he received. In an equal manner, I would like to thank

Prof. Camilla Hollanti and Prof. Rafael Schaefer for generously accommodating me at their

respective institutions and for providing a welcoming research environment. Thank you, Prof.

Marcelo Firer, for inviting me to participate in the Saõ Paulo coding school. I learned a lot and

made many connections within the information theory community.

vi

Influential characters shaped the path leading to my Ph.D. In particular, I thank Mr. Char-

bel Hayek, Mr. Simon Farsah, Dr. Georges Salloum, Dr. Nabil Karkour and Dr. Gilles Ballouz

for molding my career. Your guidance is invaluable.

I started my Ph.D. at the Illinois Institute of Technology (IIT) and transferred to Rutgers

University alongside my advisor. I thank Ms. Darnita Murphy and Ms. Bonnie Dow for being

always happy to help. Darnita, thank you for going out of your way to provide solutions in

a matter of hours, if not minutes! Further, I thank Dr. Dong Jin, Prof. Guillermo Atkin,

and Prof. Yongyi Yang for forming a wonderful Ph.D. proposal committee at IIT and for

providing valuable feedback improving my thesis. Furthermore, thanks to Ms. Christy Lafferty,

Ms. Pamela Heinolds, Ms. Tea Akins, and Mr. John Scaffidi for producing a smooth transfer

and a welcoming atmosphere at Rutgers. Christy, thank you for meticulously answering my

complicated questions! John, thanks for printing all those posters!

I am blessed to have supportive, enthusiastic, and lighthearted friends by my side. They are

the propeller that keeps pushing forward irrespective of the surrounding conditions. Through

their actions, they sustained my eager to fulfill this chapter of my life. Sabine El Hajj, because of

our daily chats, I started to regain my optimism. Thank you for your continuous encouragement

and for helping me overcome my weaknesses. Serge Kas Hanna, it is a pleasure to be your friend,

lab-mate, flat-mate, and gym partner for four consecutive years. You helped in every aspect

of this journey. The time we spent was as enjoyable as the first Kung Pao chicken we had in

Chicago. Georges Hourane, Anthony Antoun, Ralph Salem, and Elie Harfoush, you guys are

simply amazing. Together, we made the best memories! Gus Sleiman and Shatha Abbassi,

your friendship is indispensable; You are the beating heart of New Jersey. Razane Tajeddine, it

feels like we started our journeys yesterday. The lab is not the same without junk dinners from

7-Eleven and Lebanese TV shows. Xiao Huang, thank you for being a magnificent, selfless,

and supportive friend. Linda Feldmann, you are the best landlord. Thank you for hosting

me and treating me like family throughout the three years I spent in Chicago. Sreechakra

Goparaju, you were never hesitant to offer guidance, even though I have known you briefly.

vii

I enjoyed helping with the book chapter; you convert stressful work into fun times. Rafael

D’Oliveira, Ghadir Ayache, Carolina Naim, and Fangwei Ye, you vivify the walls surrounding

our desks. Fangwei, thank you for your guidance during my stay in HK. Peiwen Tian, you are an

exceptional colleague and friend; Next time we compete in a Basketball tournament, we should

win. Ashutosh Jain and Abhay Kulkarni, we were destined to meet in IIT, become friends, and

move to the same town in New Jersey. Thank you for the fun road trips and activities. Shrihari

Sankarasubramanian, thanks for the tips to survive the windy city.

viii

Dedication

To my family Tony, Colette, Jad and Imad.

ix

Table of Contents

Abstract . i

Acknowledgements . v

Dedication . ix

List of Figures . xv

List of Tables . xvii

1. Introduction . 1

1.1. Overview of the Thesis . 5

1.2. Communication Efficient Secret Sharing . 7

1.3. Private Coded Computing via Staircase Codes 9

1.4. Adaptive Private Coded Computation . 10

1.5. Stochastic Gradient Coding for Straggler Mitigation in Distributed Learning . . . 13

1.6. Universally Robust Private Information Retrieval 15

1.7. Publications . 17

2. Communication Efficient Secret Sharing . 18

2.1. Introduction . 19

2.2. Problem Formulation and Main Results . 22

2.3. Staircase Code Constructions . 25

x

2.3.1. Staircase code construction for given d . 25

2.3.2. Universal Staircase code construction . 28

2.4. Staircase Code for Given d . 29

2.5. Universal Staircase Codes . 33

2.5.1. Example . 33

2.5.2. Proof of Theorem 2.2 . 36

2.6. ∆-Universal Staircase Codes . 39

2.7. Conclusion . 40

3. Private Coded computation via Staircase Codes 41

3.1. Introduction . 42

3.1.1. Contributions . 45

3.1.2. Organization . 46

3.2. System Model . 47

3.2.1. Computations model . 47

3.2.2. Workers model . 47

3.2.3. General scheme . 48

3.2.4. Encoding . 48

3.2.5. Delay model . 49

3.3. Main Results . 50

3.4. Bounds on the Master’s Mean Waiting Time for all (n, k, z) Systems 54

3.4.1. Proof of the upper bound on the mean waiting time 54

3.4.2. Proof of the lower bound on the mean waiting time 55

3.5. Distribution of the Master’s Waiting Time for all (n, k, z) Systems 57

3.6. Interplay Between Code Design and Latency . 59

3.7. Simulations . 62

3.8. Implementation and Validation of the Theoretical Model 63

xi

3.8.1. Implementation for systems with rate k/n = 1/2 65

3.8.2. Implementation on 4 worker instances at different times 65

3.9. Related Work . 66

3.10. Conclusion and Open Problems . 67

4. Adaptive Private Coded Computation . 69

4.1. Introduction . 70

4.2. System Model . 73

4.3. Design of PRAC . 77

4.3.1. Overview . 77

4.3.2. Dynamic rate adaptation . 77

4.3.3. Coding . 78

4.4. Performance Analysis of PRAC . 80

4.4.1. Privacy . 80

4.4.2. Task completion delay . 82

4.5. Performance Evaluation . 84

4.5.1. Simulations . 84

4.5.2. Implementation on Android devices . 89

4.6. Related work . 92

4.7. Conclusion . 94

5. Stochastic Gradient Coding for Straggler Mitigation in Distributed Learning 96

5.1. Introduction . 97

5.1.1. Contributions . 100

5.1.2. Relationship to previous work on approximate gradient coding 102

5.1.3. Organization . 103

5.2. Setup . 104

xii

5.2.1. Probabilistic model of stragglers . 104

5.2.2. Computational model . 104

5.3. Stochastic Gradient Coding . 104

5.4. Summary of our Main Results . 107

5.4.1. Theoretical results . 107

5.4.2. Numerical simulations . 110

5.5. Theoretical Results . 110

5.5.1. Special case: `2 loss function . 112

5.5.2. Beyond `2 loss function . 114

5.6. Simulation Results . 115

5.6.1. Simulation setup . 115

5.6.2. Convergence . 116

5.6.3. Dependency between stragglers across iterations 118

5.7. Proofs . 120

5.7.1. Proof of Theorem 5.6 . 120

5.7.2. Proof of Theorem 5.9 . 127

5.8. Related Work . 130

6. Universally Robust Private Information Retrieval 134

6.1. Introduction . 135

6.2. Problem formulation and main results . 138

6.3. Staircase-PIR scheme . 140

6.3.1. Staircase-PIR construction . 140

6.3.2. Examples of Staircase-PIR . 142

6.4. From secret sharing to PIR . 145

6.5. Conclusion . 148

xiii

7. Conclusion . 149

7.1. Summary of the Dissertation . 150

7.1.1. Theoretical study . 150

7.1.2. Simulations and implementations . 153

7.2. Future Directions . 153

References . 156

Appendices . 167

Appendix A. Hiding the attribute vectors . 168

Appendix B. Additional Proofs for Chapter 3 . 170

B.1. Proof of Theorem 3.2 . 170

B.2. Proof of Theorem 3.4 . 172

Appendix C. Additional Proofs for Chapter 4 . 174

C.1. Extension of proof of Theorem 4.1 . 174

C.2. Proof of Theorem 4.5 . 175

C.3. Proof of Theorem 4.6 . 176

xiv

List of Figures

1.1. Distributed computing system and its challenges. 1

1.2. Example of robust private information retrieval with n = 3 workers, no collusion

and one straggler. 16

3.1. Private distributed matrix multiplication with 3 workers. 43

3.2. Theoretical upper and lower bounds for systems with rate of the exponential

random variable λ = 1, shift c = 1 and no colluding workers, i.e., z = 1. 52

3.3. Histogram of the number of contacted workers for an (n, k, z) = (100, 50, 1) sys-

tem simulated on MATLAB. 59

3.4. Normalized difference between the mean waiting time of universal Staircase codes

and ∆-universal Staircase codes. 59

3.5. Savings for the fixed rate regime, k/n = 1/2 and 1/4. 61

3.6. Savings for the fixed number of parities regime, n− k = 5 and 10. 63

3.7. Comparison of the performance of Staircase codes on Amazon EC2 to theoretical

bounds and to values obtained by simulations. 64

3.8. Empirical complementary CDF of the master’s waiting time (and its average)

observed on Amazon EC2 clusters for systems with rate k/n = 1/2, using a

synthetic dataset. 65

3.9. An (n, k, z) = (4, 2, 1) system implemented on Amazon EC2 cluster at different

times, using the LFW dataset [1]. 66

xv

4.1. Comparison between PRAC and the baselines Staircase codes, GC3P, and C3P

in different scenarios with n = 50 workers and z = 13 colluding workers. 87

4.2. Comparison between PRAC, Staircase codes and GC3P in scenario 1 for different

values of the number workers and number of colluding workers. 88

4.3. Comparison between the average completion time of PRAC and Staircase codes

as a function of the number of colluding workers z. 90

4.4. Completion time as function of the number of workers in homogeneous setup. . . 91

4.5. Completion time as function of the number of workers in heterogeneous setup. . 92

5.1. Comparison between Ignore–Stragglers–SGD, SGC and ErasureHead in terms

of the distance between xt and x? the value of x that minimizes the loss function.111

5.2. Final convergence of all algorithms run for T = 5000 iterations as function of p

the probability of workers being stragglers. 111

5.3. Convergence as function of probability of workers being stragglers p is shown for

small p = 0.1 in (a) and for large p = 0.7 in (b) for n = 10 workers. 117

5.4. The effect of the dependency of stragglers across iterations on the performance

of SGC. We assume that the identity of the stragglers change every ν iterations. 119

A.1. Secure distributed matrix-vector multiplication with n workers, where the master

needs to hide both the data A and the matrix x. 168

xvi

List of Tables

1.1. Overview of the results of this thesis. 5

1.2. Example of a CE-SS code based on Staircase code with n = 3 workers. 8

1.3. Example of PRAC in heterogeneous and time-varying setup for n = 3 workers. . 12

2.1. Example of a (4, 2, 1, 3) CE-SS code based on Staircase code over F5. 19

2.2. Summary of notations for Chapter 2 . 25

2.3. The structure of the matrix M that contains the secret and keys in the Staircase

code construction for given d. 26

2.4. Structure of the matrix M that contains the secret and keys in the universal

Staircase code construction. 29

2.5. Example of a (4, 2, 1) universal Staircase code over F5. 33

3.1. The shares sent to the 3 workers when using Staircase codes. 44

3.2. Summary of notations for Chapter 3 . 51

4.1. Example of PRAC operation in heterogeneous and time-varying setup for n = 3

workers. 72

4.2. Summary of notations for Chapter 4 . 76

4.3. Depiction of PRAC in the presence of stragglers. 78

5.1. High-level overview of the trade-offs offered by various distributed gradient-

descent models. 99

5.2. Summary of notations for Chapter 5 . 105

xvii

5.3. Summary of the stochastic algorithms that we implement in our simulations. . . 115

6.1. An example of Staircase-PIR code for n = 3, k = 2 and z = 1. 136

6.2. Summary of notations for Chapter 6 . 140

6.3. The structure of the matrix M used to encode the queries of Staircase-PIR. . . . 141

6.4. The responses sent by the servers when using an (n, k, z) = (4, 2, 1) Staircase-PIR

scheme. 143

xviii

1

Chapter 1

Introduction

In the era of big data, most people’s activities are migrating to the digital world. Social media,

online consumer services (shopping, making reservations, etc), online financial services (banking,

investing, etc), wearable devices and internet of things are mere examples of how much people

rely on information and communications technology. A tremendous amount of information is

being generated daily [2]. Running machine learning algorithms on this data is computationally

intensive. To speed up the computation, the master node possessing the data (referred to as

Master

. . .

Ta
sk

Workers

Data

Task 1

Task 2

Task n

(a) Master sends the tasks to the workers.

Master

. . .

Re
sul
t

Workers

Result

Result 1

Result 2

Result n

(b) Workers send the results to the master.

Figure 1.1: Distributed computing system with n worker machines. The master wants to run
large computation on its data. In a first step the master divides the large computation task
into n smaller tasks and sends them to the workers to compute those tasks in parallel. In a
second step the workers return their results to the master who combines them to obtain the
computation of its original task. Challenges of distributed computing systems are privacy and
straggler mitigation. Privacy: any subset of workers does not learn anything about the data
from the tasks assigned to them. Straggler mitigation: the master tolerates the presence of a
slow or unresponsive workers.

2

master) divides the computational task into smaller tasks and distribute them to untrusted

worker machines. The workers perform the smaller computations in parallel and then return

their results to the master, who can process them to obtain the result of its original task.

A distributed computing system is depicted in Figure 1.1. In this thesis, we focus on the

following challenges of distributed computing, from an information theoretic point of view.

Information theoretic data privacy: Distributing computations to untrusted workers raises

privacy and reliability concerns [3,4]. In many applications, the master wants to run computa-

tions on sensitive data that must be kept private from the workers, such as data generated from

wearable devices, genomic data, and medical data. We require information theoretic privacy,

i.e., we impose no constraints on the computational power of the compromised workers. The

assumption that we have to make here is a limit on the number of workers colluding against

the master.

Straggler mitigation: The overall computing time at the master is affected by the variability

in the computation times of the workers. Accounting for the slowest workers referred to as

stragglers significantly reduces the overall computation time [5].

Computation setup Consider the following optimization problem. Let A be an m×` matrix

representing the data of the master. Let y be a vector of length m representing the labels of

the data, i.e., the jth row vector aj of A is labeled by the jth coordinate yj of y. The master

wants to find a vector x? that minimizes a given loss function L(A,x,y), i.e.,

x? = min
x∈F`

q

L(A,x,y).

This minimization is solved using the iterative gradient descent algorithm. The master starts

with a random guess x0 and updates it at iteration t ≥ 1 as follows

xt+1 = xt − γt∇L(A,xt,y). (1.1)

3

Here, t ≥ 1, ∇L(A,xt,y) is the gradient of the loss function and γt is a parameter of the

algorithm. Consider the `2 loss function where L(A,x,y) = 1/2 ‖Ax− y‖22, which is the loss

used in many algorithms, such as principal component analysis, support vector machines, and

other gradient-descent based algorithms [6, 7]. In this case equation (1.1) becomes

xt+1 = xt − γtAT (Ax− y). (1.2)

The superscript T denotes the transpose of a matrix. This update rule consists of two matrix-

vector multiplications, namely Ax and AT (Ax − y). Throughout the thesis (except for Chap-

ter 5) we focus on linear computations, namely we focus on the multiplication of A by the vector

x, and the remaining follows. We focus on maintaining the privacy of the matrix A and not the

vector x.

Our goals We look at the private coded computing problem from a coding theoretic perspec-

tive. We want to construct codes that allow the master to run private linear computation and:

(i) maintain the privacy of A; (ii) tolerate stragglers; and (iii) minimize the overhead spent

on ensuring privacy. Beyond matrix-vector multiplication, we study the effect of codes on the

number of iterations in the distributed gradient descent setting.

Related works We briefly explain the works that are closely related to this thesis and high-

light the ideas of interest.

Secret sharing [8, 9] can be readily used to construct codes for matrix-vector multiplication

that achieve information theoretic privacy and mitigate the effect of a given number of stragglers

as we illustrate in the next example.

Example 1.1. Assume the master has n = 3 workers available to help compute Ax. The master

wants to ensure privacy of A against individual workers and wants to tolerate at most n−k = 1

straggler. The following 3 shares (R,A+R,A+2R) form a secret sharing scheme, with R being

an m× ` random matrix, called key, chosen uniformly at random and independently of A. The

4

master sends one share to each worker, let S1 = R, S2 = A+R and S3 = A+ 2R. The master

sends x to each worker, the workers compute Six and send the result to the master. The master

can decode Ax after receiving any two responses. For instance, if worker 3 is a straggler the

master obtains Ax = S2x − S1x. Privacy is ensured, because the matrix A is padded with the

key in each share.

In classical secret sharing the master ignores the computations of n − k workers and has

to download and decode the introduced randomness used for privacy. In Example 1.1, even if

there were no stragglers, the master ignores one of the computations and decodes both Rx and

Ax from any two full responses of the workers. Hence, more delays are incurred by spending

communication and computation resources on decoding Rx, which is only needed for privacy.

We want to construct codes that allow the master to: (i) maintain the privacy of A; (ii) tol-

erate a flexible amount of stragglers; (iii) use partial computations from the workers to reduce

delays; and (iv) minimize the resources spent on computing and communicating the randomness

used for privacy. We extend our ideas to private function retrieval where the data is public and

owned by the workers and the master wants to compute a private function of this data.

Gradient coding [10] are coding theoretic schemes targeted for straggler mitigation in dis-

tributed gradient descent applications [11–13]. The goal is to allow the master to tolerate a

fixed number of stragglers and still decode the gradient of the loss function. The number of tol-

erated stragglers depends on the amount of computation assigned to the workers (redundancy).

Approximate gradient coding allows the master to tolerate a variable number of stragglers for

a given redundancy at the expense of computing an approximation of the gradient [14–17].

Approximating the gradient increases the number of iterations required by the master to reach

the desired vector x?.

We want to design an approximate gradient coding scheme that (i) requires small redun-

dancy; (ii) allows the master to wait for the fastest few workers to compute an estimate of the

gradient; and (iii) enjoy better convergence rate than the previously proposed schemes.

5

Organization The rest of this Chapter is organized as follows. In Section 1.1, we give an

overview of the thesis and summarize the main results (also shown in Table 1.1). In Sections 1.2

to 1.6, we introduce in more details the problems studied in each chapter and explain their

connection to our goals. Along the way, we outline our main contributions. The chapters are

meant to be self-contained; the reader may skip to the chapter of preference and need not read

the thesis sequentially. In Section 1.7, we list the publications that resulted from this thesis.

1.1 Overview of the Thesis

The thesis is divided into the following chapters:

• Chapter 2: We focus on communication efficient secret sharing problem. The master

wants to share a secret with n workers such that a legitimate user contacting the workers

to decode the secret can tolerate any number of stragglers, up to a given threshold. In

addition, for every number of stragglers, the workers read and communicate the minimum

overhead of randomness to the user who decodes only this overhead and the stored secret.

We construct Staircase codes, a new family of communication efficient secret sharing.

• Chapter 3: We analyze the performance of Staircase codes in private distributed computa-

tion. We assume that the workers have similar resources. We model the computation time

Chapter Topic Contribution

Chapter 2 Communication
efficient secret sharing

Construct Staircase codes that allow flexible straggler mitigation
and minimize the communication cost.

Chapter 3
Private coded
computing via
Staircase codes

Analyze the performance of Staircase codes in private coded
computing where the workers have similar resources and show
they outperform existing schemes .

Chapter 4 Dynamic private
coded computing

Construct PRAC, a private and adaptive rateless code that allow
the master to adapt to the different and time-varying resources
of the workers.

Chapter 5 Approximate gradient
coding

Introduce Stochastic Gradient Coding (SGC) which enjoys good
convergence speed, high flexibility in the number of stragglers
and small redundancy.

Chapter 6 Private information
retrieval

Construct Staircase-PIR codes that simultaneously achieve the
minimum download cost for any number of stragglers.

Table 1.1: Overview of the results of this thesis.

6

of the workers by i.i.d. shifted exponential random variables. We are the first to analyze

the performance of private coded computation with straggler mitigation. We show that

Staircase codes outperform methods based on classical secret sharing schemes.

• Chapter 4: We consider the case where the resources at the workers are different and

change dynamically. We introduce PRAC, a private rateless and adaptive coding technique

that adapts to the time-varying resources at the workers. The idea is to use Fountain codes

that are rateless and couple them with MDS codes to achieve privacy. We show that, under

this model, PRAC outperform previously introduced private coded computation schemes.

• Chapter 5: We consider the approximate gradient coding problem with no privacy con-

straints on the data. We introduce a new family of codes that we call stochastic gradient

codes (SGC). We show that SGC requires a small redundancy, allows a high flexibility in

straggler mitigation and enjoys a good convergence rate that mirrors the convergence rate

of centralized stochastic gradient descent.

• Chapter 6: We study private information retrieval (PIR) with flexible straggler mitigation.

The main cost of PIR is the amount of information downloaded by the master as function

of the number of stragglers. We show that communication efficient secret sharing achieve

the minimum download cost simultaneously for all number of stragglers, up to a given

threshold. As a result, we construct Staircase-PIR, a family of PIR codes that achieve

minimum download cost simultaneously for all number of stragglers.

Remark 1.1. Throughout this thesis we focus on maintaining the privacy of the data A. In some

applications, x may contain information about A and need to be protected as well. We explain

how all our schemes can be generalized to such settings in Appendix A. In fact, the problem of

securing both A and x simultaneously is an active research topic, see for example [18–21].

7

1.2 Communication Efficient Secret Sharing

We study this problem in Chapter 2. Consider the private matrix-vector multiplication problem.

Information theoretic privacy of the master’s data and straggler mitigation can be insured by

encoding A using classical secret sharing [8,9]. Secret sharing allows the master to tolerate the

presence of up to n − k stragglers for a fixed parameter k < n and guarantees the privacy of

the data against any z < k colluding workers. We illustrate the idea in Example 1.1.

We want to construct secret sharing schemes that provide the master flexibility in the number

of stragglers, up to a given threshold. Besides, we know that secret sharing schemes designed

for fewer stragglers requires less randomness because the amount of randomness used to encode

the data is proportional to k− z. For fixed z, increasing k, i.e., tolerating less n− k stragglers,

allows the reduction of randomness. Hence, we want secret sharing schemes with parameters

n, k and z that allow the master to decode the result from any d workers, k ≤ d ≤ n, while

downloading the amount of randomness required by a secret sharing scheme with parameter n,

k = d and z.

Such secret sharing schemes are known as communication efficient sharing schemes (CE-SS).

The existence of CE-SS and a lower bound on the amount of randomness needed to decode the

desired result are shown in [22,23]. CE-SS schemes that allow the master to tolerate 0 or n− k

stragglers are given in [23]. The idea in constructing such schemes is to divide the shares given

to the workers into small sub shares as illustrated in Example 1.2.

Contribution We construct universal Staircase codes [24, 25] for all parameters n, k and z

such that z < k ≤ n. The master contacts any d workers, k ≤ d ≤ n to decode the secret while

achieving the information theoretic minimum communication cost. In other words, the master

can tolerate any number of stragglers up to n−k. Privacy is guaranteed against any z colluding

workers. We construct two other families of Staircase codes. The first one allows the master

to decode the secret from any k or any d, for a given d > k, workers while achieving minimum

communication cost. The second one called ∆-universal Staircase codes allows the master to

8

Worker 1 Worker 2 Worker 3
A1 +A2 +R1 A1 + 2A2 + 4r1 A1 + 3A2 + 4R1

R1 +R2 R1 + 2R2 R1 + 3R2

Table 1.2: An example of a CE-SS code based on the Staircase code construction over F5 for
n = 3 workers, threshold k = 2 and z = 1 colluding workers. The master contacting any k = 2
workers downloads all their shares, i.e., 4 matrices in total, in order to decode A. However, if
there are no stragglers, the master downloads the first matrix (in blue) of each share, i.e., 3
matrices in total, in order to decode A. Notice that if there are no stragglers, the master can
only decode R1, whereas if there is a straggler the master has to decode R1 and R2.

decode the secret from any d workers while achieving minimum communication cost, for any

value of d ∈ ∆, where ∆ ⊆ {k, . . . , n}.

Example 1.2. Consider again the secret sharing problem of Example 1.1 with n = 3, k = 2,

z = 1. We construct a communication efficient secret sharing based on Staircase codes introduced

in Chapter 2. We divide the matrix A into 2 row blocks A1, A2 and assume A is uniformly

distributed over Fm×`5 . We use two keys R1, R2 each drawn independently and uniformly at

random from Fm/2×`5 . The shares encoded using Staircase codes and given to the workers are

shown in Table 1.2.

The CE-SS scheme enjoys the following properties. First, the master decodes the secret

either by contacting any k = 2 workers and downloading all their shares, i.e., 4 matrices or

by contacting all 3 workers and downloading the first matrix (in blue) of each share, i.e., 3

matrices in total. The key idea here is that the master is only interested in decoding A and not

necessarily the keys. When there are no stragglers, d = 3, the master decodes A and only the

key R1, whereas when d = k = 2, the master has to decode A and both of the keys. The amount

of information downloaded by the master achieves the minimum communication cost. Second,

privacy is achieved because the matrix A is padded by random keys R1, R2 and each z = 1 party

cannot obtain any information about A1 and A2.

In the following, we analyze the performance of private coded computing schemes based on

Staircase codes in terms of the delays experienced by the master.

9

1.3 Private Coded Computing via Staircase Codes

We study this problem in Chapter 3. We want to analyze the performance of private coded

computing schemes based on universal Staircase codes. Note that communication is a major

bottleneck in many distributed computing systems, such as cloud computing and crowdsourcing.

Therefore, minimizing the communication cost at the master plays an important role in reducing

the aggregate delays.

We focus on the setting where the workers have similar computation power and a similar

network connection. We assume that the service times of the workers are independent and

identically distributed (i.i.d.) random variables following a shifted exponential distribution.

This assumption is per the literature on coded computing [6, 26]. Staircase codes divide the

computation tasks assigned to the workers into smaller sub-tasks so the workers have more

flexibility in sending partial results to the master. The master keeps receiving partial results

from the workers until it can decode its original computation. Hence, an additional assumption

we impose is that the service time of a worker (time to compute and send one task to the

master) is equally divided between the sub-tasks.

Contribution We analyze the waiting time at the master under i.i.d. shifted exponential

distribution of the workers’ service time [27,28]. We derive bounds on the mean waiting time at

the master and show that universal Staircase codes always outperform classical secret sharing.

We validate our results with extensive simulations on MATLAB and extensive implementations

on Amazon EC2 clusters.

As a consequence of our results, universal Staircase codes outperform any private distributed

computing scheme that imposes a threshold on the number of stragglers. To the extent of our

knowledge, the work in [27] is the first to analyze latency for private distributed coded computing

under the presence of stragglers.

We illustrate the scheme based on Staircase codes in the following example.

Example 1.3. Consider the same setting of Example 1.2 with n = 3, k = 2 and z = 1. We

10

divide the matrix A into 2 row blocks A1, A2 and assume A is uniformly distributed over Fm×`5 .

We use two keys R1, R2 each drawn independently and uniformly at random from Fm/2×`5 . The

shares encoded using Staircase codes introduced in Chapter 2 and given to the workers are shown

in Table 1.2.

The master sends x to the workers. Each worker multiplies x by its sub-shares sequentially

from top to bottom and sends the result to the master independently. The master has two

possibilities to decode Ax: 1) the master receives the multiplication of the first sub-share (in blue)

from all the workers; or 2) the master receives the multiplication of the full shares from any two

workers. The master sends a stop message to the workers after receiving enough multiplication

results to decode Ax. The master here has flexibility in the number of stragglers and achieves

the minimum communication cost for any number of stragglers. The overall waiting time at the

master is the minimum between the time all workers send back the result of the first subtask to

the master and the time any two workers send the results of all their subtasks to the master.

The main assumption of this setting that may nod hold in other scenarios is the assumption

of i.i.d.service times of the workers. We tackle the case where workers have different service

times in the next section.

1.4 Adaptive Private Coded Computation

We study this problem in Chapter 4. Here we consider private coded computation on workers

that have different and time-varying resources. Resources of the workers depend on many

factors such as the location of the workers, network congestion, computation workload and

worker battery life. Applications include clusters with variability in the computation workload

and network congestion at the workers. Other applications include Internet of Things networks

and Edge computing where the workers also enjoy great variability due to the difference in the

nature of the devices (phone, tablet, sensor, etc).

In this setting, the key assumption of i.i.d. service times at the workers does not hold. Thus,

11

schemes pre-allocating equal tasks to the workers do not fully utilize the computation resources

at the workers. We want to design coding schemes that adapt to the variability of the resources

and reduce the waiting time at the master. The idea is to use Fountain codes [29–31] coupled

with an MDS code to ensure privacy. Fountain codes are a family of rateless codes that allow

the master to keep generating and sending tasks to the workers until it receives enough answers

to decode Ax.

Previous works did not consider the privacy constraint on the master’s data. In [32], the

authors consider a static setting with different resources known a priori to the master. The

master assigns tasks to the workers that are proportional to the computation power of each

worker. Our codes are based on the work of [33] in which the authors use Fountain codes to

dynamically allocate sub-tasks to the workers. The frequency of allocating the sub-tasks to

the workers is inversely proportional to their respective estimated service time. This method is

shown to adapt to the dynamic behavior of the system and avoid idling times at the workers.

Contribution We construct PRAC, a private and adaptive rateless code designed to allow

the master to adaptively allocate tasks to the workers while maintaining the privacy of the

data. The code is rateless in the sense that the master can keep generating sub-tasks until it

can decode the desired result. We analyze the waiting time of the master when using PRAC.

We show that PRAC outperform any private codes that pre-allocate the tasks to the workers,

unless the workers have i.i.d. service times [34,35]. We supplement our theoretical findings with

extensive simulations on MATLAB and implementation on Android devices.

We illustrate PRAC in the following example.

Example 1.4. We consider the same setting as in Example 1.3, where the master sends tasks

to n = 3 workers. The master divides A into 3 row blocks A1, A2 and A3; and encodes these

matrices using a Fountain code1 [29–31]. Notice here that the master has flexibility in deciding

1Fountain codes are desirable here for two properties: (i) they provide a fluid abstraction of the coded packets
so the master can always decode with high probability as long as it collects enough packets; (ii) They have low
decoding complexity.

12

Time Worker 1 Worker 2 Worker 3
1 R1 A1 +R1 A3 +R1

2 R2

3 A2 + A3 +R2

4

Table 1.3: Example of PRAC in heterogeneous and time-varying setup for n = 3 workers. The
master divides A into 3 row blocks A1, A2 and A3 and encodes them using Fountain codes
to adaptively send tasks to the workers. An instance of Fountain coded codewords is A1, A3,
A2 + A3 and A1 + A3. At first instance, the master generates 2 codewords A1 and A3 and
generate a random matrix R1 and send a first subtask to all workers. Notice that each subtask
must be “masked” with a new random key to guarantee privacy. When a worker finishes its
computation, the master generates a new codeword and possibly a new key and send a new
task to that worker. The master keeps generating tasks until it receives enough computations
to decode Ax. This is possible since the generation of codeword is based on Fountain codes,
that are rateless.

on how to divide A, and the threshold k is not needed. An example set of codewords (referred to

as packets) is A1, A3, A2 + A3 and A1 + A3. Before sending a packet to a worker, the master

generates a random key matrix R with the same dimensions as Ai with entries drawn uniformly

at random from the same alphabet as the entries of A. The key matrix is added to the coded

packets to provide privacy as shown in Table 1.3. Now the master adaptively sends the sub-tasks

to the workers. In particular, at time slot 1 a key matrix R1 is created, combined with A1 and

A3, and transmitted to workers 2 and 3, respectively. R1 is also transmitted to worker 1 to

obtain R1x that will help the master in the decoding process. The computation of (A1 +R1)x is

completed at the end of time slot 1. Thus, at that time slot, the master generates a new matrix,

R2, and sends it to worker 2. At the end of time slot 2, worker 1 finishes its computation,

therefore the master adds R2 to A2 + A3 and sends it to worker 1. Now the master waits for

worker 2 to return R2x and for worker 1 to return (A2 +A3 +R2)x to decode Ax. Note that if

worker 3 finishes its computation before worker 1, the master sends A1 +A2 +R2 to worker 3 to

multiply it with x. Thanks to using key matrices R1 and R2, and assuming that workers do not

collude, privacy is guaranteed. On a high level, privacy is guaranteed because the observation of

the workers is statistically independent of the data A.

So far we considered linear distributed gradient descent, i.e., matrix-vector multiplication.

Our ultimate goal is to design private coded computing schemes for general functions needed in

13

machine learning. We start by focusing on non-private distributed stochastic gradient descent.

1.5 Stochastic Gradient Coding for Straggler Mitigation in

Distributed Learning

We study this problem in Chapter 5. We consider the setting where the master wants to run

a stochastic gradient-descent based algorithm using general convex loss functions. We drop the

privacy constraint on the data A. Recall that the master chooses a vector x0 at random and at

iteration t > 0 it updates x as follows

xt+1 = xt − γt∇L(A,xt,y).

Here, γt is a parameter of the algorithm and ∇L(A,xt,y) is the gradient of the loss function

and is additively separable, i.e.,

∇L(A,x,y) =

m∑
j=1

∇L(aj ,x, yj).

In this setting, to distribute the computation to the workers, the master sends some of the

rows of A to each of the workers without pre-processing. Each worker evaluates the gradient of

the loss function on the rows it possesses and sends a linear combination of those evaluations

to the master. The master collects the results of the workers and computes ∇L(A,xt,y).

In the previous sections we assumed that the master needs to compute the exact value of

∇L(A,xt,y) at each iteration t. However, it is known from the literature on stochastic gradient

descent (SGD) [36–38] that the master can compute an estimate of the gradient at iteration t.

The estimate is the evaluation of the gradient of the loss function on a small subset of rows ai

of A. SGD enjoys a faster compute time per iteration as compared to gradient descent (GD),

however, it requires more iterations to reach x?.

Hence, stragglers mitigation can be done in three ways:

14

1. Ignore stragglers: The master partitions the rows of A to the workers and simply ignores

the stragglers at each iteration. The master computes an estimate of the gradient. This

is similar to the work in [39].

2. Gradient coding, e.g., [6,10,12,13]: The master assigns the rows of A with high redundancy

to the workers. More precisely, if the master wants to tolerate s stragglers, then each row

of A is assigned to s+ 1 workers. The master waits for all but s workers to compute the

exact value of the gradient.

3. Approximate gradient coding, e.g., [13–17,40,41]: The master assigns the rows of A with

low redundancy, independent from the number of stragglers, to the workers. The master

waits for all non-stragglers and computes an estimate of the gradient. If less than s

workers are stragglers, the master can compute the exact value of the gradient with high

probability. If more than s workers are stragglers, the master computes an estimate of

the gradient.

All those frameworks minimize the communication cost as each worker sends one vector

(linear combination of the evaluations) to the master. However, each framework has its ad-

vantages and drawbacks in terms of redundancy (affects computation time per iteration), the

total number of iterations spent to reach x? and flexibility in the number of stragglers. On a

high-level, the master trades redundancy for the number of iterations spent to reach x? (referred

to as convergence). Adding redundancy increases the time spent per iteration, yet decreases the

total number of iterations spent to reach x?. Gradient coding schemes have good convergence

but require high redundancy and do not offer flexibility in the number of stragglers. We focus

on approximate gradient coding because it allows the master high flexibility in the number of

stragglers and requires a small amount of redundancy. Our motivation for requiring flexibility in

the number of stragglers stems from the variability of service time at the workers. Furthermore,

we view the straggler phenomena here as the master waiting for a fixed amount of time per

15

iteration. All workers that take more time than decided by the master are considered as strag-

glers. Therefore, we assume that each worker is a straggler with probability p independently

from other workers and independently across iterations.

Contribution We introduce an approximate gradient coding scheme called Stochastic Gra-

dient Coding (SGC) which works in the random straggler model and which enjoys good conver-

gence speed, high flexibility in the number of stragglers and small redundancy. The estimate

of the gradient in SGC is a weighted linear combination of the evaluation of the gradient of

the loss function at different rows of A. We analyze the convergence rate of SGC, and we

present experimental work which demonstrates that SGC outperforms the most recently pro-

posed schemes [14, 17] when p (the fraction of workers that the master will ignore in each

iteration) is relatively large. We show that SGC mirrors results from the literature on SGD,

and how redundancy affects the convergence rate of SGC.

Next, we derail from coded computing for machine learning and consider private information

retrieval which is an extension of private coded computing.

1.6 Universally Robust Private Information Retrieval

We study this problem in Chapter 6. We consider private function retrieval [42] as an extension

to private coded computing. The data is public and possessed by n workers and the master

wants to compute a private function of this data. A particular case of interest is when the

master wants to retrieve a chunk of this public data. This can be thought of as projecting the

data on a vector of 0’s with a 1 in the position of the chunk of interest. The privacy requirement

translates to hiding the identity of the chunk (referred to as file) of interest from any subset of z

workers. This problem is known in the literature as private information retrieval (PIR) [43,44].

The main requirement of PIR is to minimize the amount of information downloaded by the

master.

PIR in the presence of stragglers, termed as robust PIR, is studied in the literature, e.g., [45–

16

Master

e1
+

2r

e
1

+
r r

Workers

Wants Ai , eiA

Data A

Data A

Data A

(a) Master sends the queries to the workers.

Master

(e
1

+
2r

)A

(e
1

+
r)
A rA

Workers

Obtains eiA from
(e1 + r)A− rA

Data A

Data A

Data A

(b) Workers project the data on the query vec-
tor and sends the results to the master.

Figure 1.2: Example of robust private information retrieval with n = 3 workers, no collusion
and one straggler. The workers own the database A. The master wants to retrieve the ith
file Ai , Aei from the database where ei is the all-zero vector with 1 in the ith position. The
identity of the file must remain hidden from the workers. The master generates a random vector
r and sends the query vectors r, ei + r and ei + 2r to the workers. The workers project the
database A on the query vectors and return their results to the master. The master tolerates one
straggler and obtains Aei from any two responses. For example if the first worker is straggler,
the master obtains Ai = (ei + r)A − rA from the remaining two workers. The download cost
of this example is equal to 2, because the master downloads two vectors in order to decode Ai.
The value of ei is hidden from the workers because it is padded by a random vector.

52] and the minimum download cost termed as capacity of robust PIR schemes is characterized

in [46,47,51] when the data is replicated among the workers. The common focus of the literature

has been on designing robust PIR that are not necessarily universal, which are tailored to a

specific number of stragglers n − k. We illustrate the idea in Figure 1.2. In [49] the authors

present a universally robust PIR scheme for the no collusion case, i.e., z = 1, and when the

data is stored on the servers using a maximum distance separable (MDS) code.

Contribution We consider the case where the data is replicated among the workers. We

bridge communication efficient secret sharing to the problem of robust PIR. We show that all

communication efficient secret sharing schemes achieve capacity of robust PIR simultaneously

for all number of stragglers. In particular, we construct Staircase-PIR, a family of universally

robust PIR that simultaneously achieve the minimum download cost for all number of stragglers,

up to a given threshold.

17

1.7 Publications

We list the publications which results form the main contributions of this dissertation.

J1. Rawad Bitar and Salim El Rouayheb, “Staircase Codes for Secret Sharing with Optimal Com-

munication and Read Overheads,” IEEE Transactions on Information Theory, Vol. 64, No. 2,

February 2018.

C1. Rawad Bitar, Mary Wootters and Salim El Rouayheb, “Stochastic Gradient Coding for Straggler

Mitigation in Distributed Learning,” IEEE Information Theory Workshop (ITW), 2019.

C2. Rawad Bitar, Yuxuan Xing, Yasaman Keshtkarjahromi, Venkat Dasari, Salim El Rouayheb, and

Hulya Seferoglu, “PRAC: Private and Rateless Adaptive Coded Computation at the Edge,” SPIE

Defense + Commercial Sensing, Baltimore, 2019.

C3. Rawad Bitar and Salim El Rouayheb, “Staircase-PIR: Universally Robust Private Information

Retrieval,” IEEE Information Theory Workshop (ITW), Guangzhou, 2018.

C4. Rawad Bitar, Parimal Parag and Salim El Rouayheb, “Minimizing Latency for Secure Distributed

Computing,” IEEE International Symposium on Information Theory (ISIT), Aachen, 2017.

C5. Rawad Bitar and Salim El Rouayheb, “Staircase Codes for Secret Sharing with Optimal Commu-

nication and Read Overheads,” IEEE International Symposium on Information Theory (ISIT),

Barcelona, 2016.

P1. Rawad Bitar, Mary Wootters and Salim El Rouayheb, “Stochastic Gradient Coding for Straggler

Mitigation in Distributed Learning,” submitted to IEEE Journal on Selected Areas in Informa-

tion Theory, Special Issue on Deep Learning: Mathematical Foundations and Applications to

Information Science, 2019.

P2. Rawad Bitar, Yuxuan Xing, Yasaman Keshtkarjahromi, Venkat Dasari, Salim El Rouayheb, and

Hulya Seferoglu, “Private and Rateless Adaptive Coded Computation at the Edge,” submitted to

IEEE Transactions on Information Forensics and Security, 2019.

P3. Rawad Bitar, Parimal Parag and Salim El Rouayheb, “Minimizing Latency for Secure Coded

Computing Using Secret Sharing via Staircase Codes,” submitted to IEEE Transactions on Com-

munication, 2019.

18

Chapter 2

Communication Efficient Secret

Sharing

We study the communication efficient secret sharing (CE-SS) problem. We use the terminology

of secret sharing literature: the workers are called parties, the data of the master is called secret

and the master plays the role of a master who shares the secret with the parties and a user who

wants to decode the secret. We abstract the concept of stragglers and study the problem of a

user contacting a given number of parties to decode the secret.

In the classical setting of threshold secret sharing, a master encodes a secret into n shares

and distributes them to n parties, such that a user contacting any k, k ≤ n parties and down-

loading their shares can decode the secret and any collection of at most z, z < k colluding

parties cannot obtain any information about the secret. A CE-SS scheme satisfies the previous

properties of threshold secret sharing. Moreover, it allows the user to reconstruct the secret

by contacting any set of d ≥ k, parties, reading and communicating the minimum amount of

information. We introduce three explicit constructions of CE-SS codes called Staircase codes.

The first construction achieves optimal communication and read costs for a given d. The second

construction achieves optimal costs universally for all possible values of d between k and n. The

19

Party 1 Party 2 Party 3 Party 4
s1 + s2 + r1 s1 + 2s2 + 4r1 s1 + 3s2 + 4r1 s1 + 4s2 + r1

r1 + r2 r1 + 2r2 r1 + 3r2 r1 + 4r2

Table 2.1: An example of a CE-SS code based on the Staircase code construction over F5 for
n = 4 parties, threshold k = 2, z = 1 colluding parties and any d = 3 parties can efficiently
reconstruct the secret. A user contacting any k = 2 parties downloads all their shares, i.e.,
4 symbols in total, in order to decode the secret. The resulting overheads are CO = RO = 2
symbols. However, a user contacting any d = 3 parties decodes the secret by downloading the
first symbol (in blue) of each share, i.e., 3 symbols in total. Hence, CO = RO = 1 symbol.
For instance, a user contacting parties 1, 2 and 3 downloads s1 + s2 + r1, s1 + 2s2 + 4r1, and
s1 + 3s2 + 4r1 and can decode the secret and r1. Notice that a user contacting d = 3 parties
can only decode r1, whereas a user contacting k = 2 parties has to decode r1 and r2.

third construction, which is the most general, achieves optimal costs universally for all values

of d in any given set ∆ ⊆ {k, . . . , n}. The introduced Staircase codes allow the master to store

a secret of maximal size, i.e., equal to k− z shares, and they are all designed over a small finite

field Fq, for any prime power q > n. However, Staircase codes may require to divide the secret

and the shares into many symbols.

2.1 Introduction

Consider the threshold secret sharing (SS) problem [8, 9] in which a master encodes a secret

using random keys into n shares and distributes them to n parties. The threshold SS allows

a legitimate user contacting any set of at least k, k < n, parties to reconstruct the secret by

downloading their shares. In addition, the scheme ensures that any set of at most z, z < k < n,

colluding parties cannot obtain any information, in an information theoretic sense, about the

secret. The following example illustrates the construction of a threshold SS on n = 4 shares.

Example 2.1 (Threshold SS). Let n = 4, k = 2 and z = 1 and let s be a secret uniformly

distributed over F5. Then, the following 4 shares (s+ r, s+ 2r, s+ 3r, s+ 4r) form a threshold

SS scheme, with r being a random symbol, called key, chosen uniformly at random from F5 and

independently of s. A user can decode the secret by contacting any k = 2 parties, downloading

their shares and decoding s and r. Privacy is ensured, because the secret is padded with the key

in each share.

20

Threshold secret sharing code constructions have been extensively studied in the literature,

e.g., [8, 9, 53–57]. The literature on secret sharing predominantly studies non-threshold secret

sharing schemes, with so-called general access structures, e.g., [58–60]. We refer the interested

reader to the following survey works [61–63] and references within. In this paper, we focus on

the problem of communication (and read) efficient secret sharing (CE-SS). A CE-SS scheme

satisfies the properties of threshold secret sharing described in the previous paragraph. In

addition, it achieves minimum communication and read overheads when the user contacts d

parties for any k ≤ d ≤ n. The communication overhead (CO) is defined as the extra amount

of information (beyond the secret size) downloaded by a user contacting d parties in order to

decode the secret. The read overhead RO is defined similarly. Next, we give an example of a

CE-SS code that minimizes CO and RO. The CE-SS code in this example belongs to the family

of Staircase codes which we introduce in Section 2.3.1.

Example 2.2. Consider again the SS problem of Example 2.1 with n = 4, k = 2, z = 1. We

assume now that the secret s is formed of 2 symbols s1, s2 uniformly distributed over F5 and we

use two keys r1, r2 drawn independently and uniformly at random from F5. To construct the

Staircase code, the secret symbols and keys are arranged in a matrix M as shown in (2.1). The

matrix M is multiplied by a 4× 3 Vandermonde matrix V to obtain the matrix C = VM . The

4 rows of C form the 4 different shares and give the Staircase1 code shown in Table 2.1.

s1 r1

s2 r2

r1 0

 .

1 1 1

1 2 4

1 3 4

1 4 1

V

M

C = VM = (2.1)

The CE-SS scheme enjoys the following properties. First, a user decodes the secret either by

contacting any k = 2 parties and downloading all their shares, i.e., 4 symbols, or by contacting

any d = 3 parties and downloading the first symbol (in blue) of each share, i.e., 3 symbols

1The nomenclature of Staircase codes comes from the position of the zero block matrices in the general
structure of the matrix M (see the general construction in Table 2.4).

21

in total. The key idea here is that the user is only interested in decoding the secret and not

necessarily the keys. When d = 3, the user decodes the secret and only the key r1, whereas when

d = k = 2, the user has to decode the secret and both of the keys. This code actually achieves

the minimum CO and RO equal to 1 symbol for d = 3 (and 2 symbols for d = k = 2) given later

in (2.4) and (2.5). Second, privacy is achieved because the secret s1, s2 is padded by random

keys r1, r2 and each z = 1 party cannot obtain any information about s1 and s2.

Related work: The CE-SS problem was introduced by Wang and Wong in [22] where they

focused on perfect CE-SS, i.e., the case in which z = k − 1 < n− 1. The authors showed that

there exists a tradeoff between the number of contacted parties d and the amount of information

downloaded by a user in order to decode the secret. They derived a lower bound on CO and

constructed codes for the special case of z = k − 1 using polynomial evaluation over Fq, where

q > n + v, that achieve minimum CO and RO universally for all k ≤ d ≤ k + v − 1, for some

positive integer v. Zhang et al. [64] constructed CE-SS codes for the special case of z = k − 1

over Fq, where q > n, that achieve minimum CO and RO for any given k ≤ d ≤ n. Recently,

Huang et al. [65] studied the CE-SS problem for all values of z, i.e., z < k < n, and generalized

the lower bound on CO. The authors constructed explicit CE-SS codes for any z achieving the

minimum CO and RO for d = n over Fq, q > n(n− z). Moreover, they proved the achievability

of the lower bound on CO and RO universally for all possible values of k ≤ d ≤ n using random

linear code constructions2. In our setting, we assume that the master has direct access to all

the parties. In the case where the master can access the parties through a network, Shah et

al. [68] studied the problem of minimizing the communication cost of privately delivering the

shares to the parties.

Contributions: We introduce three new classes of explicit constructions of linear CE-SS codes

that achieve minimum CO and RO. More specifically, we make the following contributions:

1. We describe the Staircase code construction that achieves minimum CO and RO for any

2After the appearance of the original version of this work on Arxiv [66], an equivalent CE-SS code construction
for all parameters was given concurrently in [67] and [23].

22

given k ≤ d ≤ n. This construction generalizes the construction in Example 3.1.

2. We describe the Universal Staircase code construction that achieves minimum CO and RO

simultaneously for all values of k ≤ d ≤ n.

3. We generalize the previous two constructions into the ∆-Universal Staircase code con-

struction, which achieves minimum CO and RO simultaneously for all possible values of

d ∈ ∆, for any given set ∆ ⊆ {k, . . . , n}.

The Staircase codes can store a secret of maximal size, i.e., equal to k − z shares, and require

a small finite field Fq of size q > n, which is the same requirement for Reed Solomon based SS

codes [53]. However, unlike SS codes, these codes require to divide the secret and the shares

into α symbols (α defined later).

Organization: The Chapter is organized as follows. In Section 2.2, we formulate the CE-

SS problem, introduce the necessary notations and summarize our results. We describe the

Staircase code and Universal Staircase code constructions in Section 2.3. In Section 2.4, we prove

that the Staircase codes achieve privacy and minimum CO and RO. In Section 2.5, we prove that

the Universal Staircase codes achieve privacy and minimum CO and RO. We describe the most

general ∆-Universal Staircase code construction in Section 2.6. We conclude in Section 4.7.

2.2 Problem Formulation and Main Results

We consider the CE-SS problem. A secret s of size u , k − z units is formed of uα symbols

(1 unit = α symbols). The secret symbols are drawn independently and uniformly at random

from a finite alphabet, typically a finite field. A CE-SS code is a scheme that encodes the

secret, using random keys, into n shares w1, . . . , wn, of unit size each, and distributes them to

n distinct parties. Let Wi denote the random variable representing the share of party i, let S

denote the random variable representing the secret s, let [n] = {1, . . . , n}, and for any subset

B ⊆ [n] denote by WB the set of random variables representing the shares indexed by B, i.e.,

WB = {Wi; i ∈ B}. Then, a CE-SS code must satisfy the following properties:

23

1. Perfect privacy: Any subset of z or less parties should not be able to get any information

about the secret. The perfect privacy condition can be expressed as

H(S | WZ) = H(S), ∀Z ⊂ [n] s.t. |Z| = z. (2.2)

2. MDS: A user downloading k shares is able to recover the secret, i.e.,

H(S | WA) = 0, ∀A ⊆ [n] s.t. |A| = k, (2.3)

and the secret is of maximal size u = k − z units as implied by (2.2) and (2.3) (see [65,

Proposition 1]).

3. Minimum CO and RO: a user contacting d parties, k ≤ d ≤ n, is able to decode the secret

by reading and downloading exactly u + CO(d) units of information in total from all the

contacted shares, where

CO(d) =
uz

d− z
. (2.4)

Equation (2.4) represents the achievable information theoretic lower bound [22, Theorem 3.1], [65,

Theorem 1] on the communication overhead, CO(d), needed to satisfy the constraints in (2.2)

and (2.3), when the user contacts d parties3. Since the amount of information read cannot be

less than the downloaded amount, the following lower bound on RO holds,

RO(d) ≥ CO(d). (2.5)

We will refer to a CE-SS code described above as an (n, k, z, d) CE-SS code. For instance, the

code in Example 3.1 is an (4, 2, 1, 3) CE-SS code. We define a universal (n, k, z) CE-SS code

that achieves minimum CO(d) and RO(d) simultaneously for all possible values of d. Note that

3Note that a user contacting d parties and achieving (2.4) for a threshold secret sharing with threshold k
downloads the same amount of information as a user contacting d parties in a threshold secret sharing with
threshold d.

24

the MDS constraint can be omitted since it is subsumed by the minimum CO and RO constraint

since it corresponds to the case of d = k and CO(k) = z. However, we will make this distinction

for clarity of exposition. In the sequel whenever referring to k, k < n should be understood

and whenever referring to z, z < k < n should be understood. Also, whenever referring to d,

k ≤ d ≤ n should be understood unless otherwise stated.

Given the model described above, we are ready to state our main results. We introduce the

first class of Staircase codes that satisfy minimum CO and RO for any given d.

Theorem 2.1. The (n, k, z, d) Staircase CE-SS code defined in Section 2.3.1 over Fq, q > n,

satisfies the required MDS and perfect privacy constraints given in (2.2) and (2.3) for any given

z < k < n, and achieves optimal communication and read overheads CO(d) and RO(d) given

in (2.4) and (2.5) for any given k ≤ d ≤ n.

Our next result introduces the Universal Staircase codes which achieve optimal overheads si-

multaneously for all possible values of d.

Theorem 2.2. The (n, k, z) Universal Staircase CE-SS code defined in Section 2.3.2 over Fq,

q > n, satisfies the required MDS and perfect privacy constraints given in (2.2) and (2.3) for

any given z < k < n, and achieves optimal communication and read overheads CO(d) and RO(d)

given in (2.4) and (2.5) simultaneously for all k ≤ d ≤ n.

Theorem 2.3 generalizes the first two constructions.

Theorem 2.3. Let ∆ ⊆ {k, . . . , n}. The (n, k, z,∆) ∆-universal Staircase codes defined in

Section 2.6 over Fq, q > n, satisfies the required MDS and perfect privacy constraints given

in (2.2) and (2.3) for any given z < k < n, and achieves optimal communication overhead

CO(d) and read overhead RO(d) given in (2.4) and (2.5) simultaneously for all d ∈ ∆.

All Staircase codes constructions require dividing the shares into α symbols (therefore di-

viding the secret into uα symbols) as defined in Sections 2.3 and 2.6. No lower bounds on α

are currently known for a given field size q.

25

Symbol Meaning Symbol Meaning
n number of parties RO read overhead
k threshold on contacted parties CO communication overhead
z number of colluding parties V Vandermonde matrix
d number of contacted parties S matrix containing the secret
s secret of size k − z units Ri matrix containing random symbols
α number of symbols in one unit Dj matrix with entries from S and Ri, i ≤ j

r random symbol M
structured matrix containing S, Ri’s and
Dj ’s

w share of unit size given to a party [n] set of natural numbers from 1 to n

h defined as h , n− k + 1 Z Z ⊂ [n], |Z| = z, indices of colluding
parties

di defined as di , n− i+ 1 I I ⊂ [n], |I| = d, indices of contacted
parties

αi defined as α , di − z VZ matrix formed of rows of V indexed by Z
α defined as α , LCM(α1, . . . , αh−1) S random variable representing the secret s
u secret size u , k − z units W random variable representing the share w
0 matrix with all 0 entries R random variable representing all the keys

Table 2.2: Summary of notations for this Chapter.

We note that codes achieving minimum CO and RO for all possible values of d were presented

in [67] and [23] concurrently with the original version of this work [66]. As explained in [23], the

Staircase code constructions and the construction in [23] are equivalent. The equivalence be-

tween the two constructions is similar to the equivalence between the construction of threshold

SS codes based on linear block codes and the one based on polynomial evaluations4. Stair-

case codes presented here is a linear block code construction based on Vandermonde matrices,

whereas the construction presented in [23] is based on polynomial evaluations.

2.3 Staircase Code Constructions

2.3.1 Staircase code construction for given d

We describe the (n, k, z, d) Staircase code construction that achieves optimal communication

and read overheads CO(d) and RO(d) for any given k ≤ d ≤ n. In this construction, we take

α = d− z. Hence, the secret s of size u units is formed of u(d− z) symbols s1, . . . , suα, where

si ∈ Fq and q > n. The symbols si are arranged in an α×u matrix S. The construction uses zα

iid random keys drawn uniformly at random from Fq and independently of the secret. The keys

4This is also similar to constructing Reed Solomon codes either based on polynomial evaluations, or based
on linear block codes with a Vandermonde generator matrix.

26

are partitioned into two matrices R1 and R2 of dimensions z × u and z × (α− u) respectively.

Let D be the transpose of the last (α− u) rows of the matrix5

 S
R1

 and let 0 be the all zero

square matrix of dimensions (α − u) × (α − u), note that α − u ≥ 0 since d ≥ z + u. The key

ingredient of the construction is to arrange the secret and the keys in a d×α matrix M defined

in Table 2.3. The inspiration behind this construction is the class of Product Matrix codes that

minimizes the repair bandwidth in distributed storage systems6 [70].

M =

 S
D

R2

R1
0

d×α

α−uu

α

z

u

z

α−u

Table 2.3: The structure of the matrix M that contains the secret and keys in the Staircase
code construction for given d.

Encoding: Let V be an n × d Vandermonde7 matrix defined over Fq. The matrix M , defined

in Table 2.3, is multiplied by V to obtain the matrix C = VM . The n rows of C form the n

different shares.

Decoding: A user contacting k parties downloads all the shares of the contacted parties. A user

contacting d parties, indexed by I ⊆ [n], downloads the first k symbols from each contacted

party corresponding to vi
[
S R1

]T
, i ∈ I, where vi denotes the ith row of the Vandermonde

matrix V (the superscript T denotes the transpose of a matrix). The decoding procedure given

in the proof of Theorem 2.1 guarantees that the user will be able to decode the secret in both

cases.

Example 2.2 (Continued). We give the details of the construction of the (n, k, z, d) = (4, 2, 1, 3)

CE-SS code of Example 3.1. Recall that u = k−z = 1. We take α = d−z = 2, thus the secret s is

formed of uα = 2 symbols s1, s2 uniformly distributed over Fq, q = 5 > n = 4. The construction

5If α− u ≤ z, i.e., d ≤ 2z + u, then D consists of the transpose of the last α− u rows of R1.
6After the appearance of the original version of this work on Arxiv [66], a connection between the family of

regenerating codes and CE-SS codes was explored in more details in [69].
7We require all square sub-matrices formed by consecutive columns of V to be invertible. Vandermonde and

Cauchy matrices satisfy this property.

27

uses zα = 2 iid random keys r1, r2 drawn uniformly at random over F5 and independently of

the secret. The keys are partitioned into two matrices R1 and R2 of dimensions z × u = 1× 1

and z × (α− u) = 1× 1, respectively. The matrix D is the transpose of the last α− u = 1 row

of R1. Hence, we have, R1 = D = r1, R2 = r2, and S =

s1

s2

 . The secret and the keys are

arranged in a d × α = 3 × 2 matrix M . Let V be an n × d = 4 × 3 Vandermonde matrix. M

and V are given again in (2.6).

M =

s1 r1

s2 r2

r1 0

 and V =

1 1 1

1 2 4

1 3 4

1 4 1

 . (2.6)

The shares are the rows of the matrix C = VM as given in Table 2.1. We want to check that

this code satisfies the following properties:

1) Minimum CO and RO for d = 3: We check that a user contacting d = 3 parties can reconstruct

the secret with minimum CO and RO. For instance, if a user contacts the first 3 parties and

downloads the first symbol of each contacted share, then the downloaded data is given by,

1 1 1

1 2 4

1 3 4

s1

s2

r1

 . (2.7)

The matrix on the left is a 3 × 3 square Vandermonde matrix, hence invertible. Therefore,

the user can decode the secret (and r1). This remains true irrespective of which 3 parties

are contacted. The user reads and downloads 3 symbols of size 3/α = 3/2 units resulting in

minimum overheads, CO(3) = RO(3) = 3/2− u = 1/2, as given in (2.4) and (2.5).

2) MDS: We check that a user contacting k = 2 parties can reconstruct the secret. Suppose the

user contacts parties 1 and 2 and downloads all their shares given by

1 1 1

1 2 4

s1 r1

s2 r2

r1 0

 . (2.8)

28

The system in (2.8) is equivalent to the two following systems

1 1 1

1 2 4

s1

s2

r1

 and

1 1

1 2

r1

r2

 .
The decoder uses the latter system to decode r1 and r2. This is possible because the matrix on

the left is a square Vandermonde matrix, hence invertible. Then, the decoder subtracts the

obtained value of r1 from the former system to obtain again the following invertible system1 1

1 2

s1

s2

 . The decoder then decodes s1 and s2. Again, this procedure is possible for any 2

contacted parties.

3) Perfect privacy: At a high level, perfect privacy is achieved here because each symbol in a

share is “padded" with at least one distinct key statistically independent of the secret, making

the shares of any party independent of the secret.

2.3.2 Universal Staircase code construction

We describe the (n, k, z) Universal Staircase code construction that achieves optimal communi-

cation and read overheads CO(d) and RO(d) simultaneously for all possible values of k ≤ d ≤ n.

Let d1 = n, d2 = n− 1, . . . , dh = k, with h = n− k + 1, and αi = di − z, i = 1, . . . , h. Choose

α = LCM(α1, α2, . . . , αh−1), that is the least common multiple of all the αi’s except for the last

αh = k − z = u. The secret s consists of uα symbols s1, . . . , suα, uniformly distributed over

Fq, q > n, arranged in an α1 × uα/α1 matrix S.

The construction uses zα iid random keys, drawn uniformly at random from Fq and indepen-

dently of the secret. The keys are partitioned into h matrices Ri, i = 1, . . . , h, of respective

dimensions z × uα/αiαi−1 (take α0 = 1). The matrices R1, . . . , Ri consist of the overhead of

keys decoded by a user contacting di parties. We form h matrices Mi, i = 1, . . . , h, as follows,

M1 =

 S
R1

 , M2 =

D1

R2

0

 , . . . , Mj =

Dj−1

Rj
0

 , . . . , Mh =

Dh−1

Rh
0

 .

uα/α1 uα/α1α2 uα/αj−1αj α/αh−1

n

z

α1

n z

α2

1

n z

αj

n − dj

n z

u

h − 1

(2.9)

Each matrix Dj is formed of the (n− j + 1)
th row of

[
M1 M2 . . .Mj

]
wrapped around to make

29

M =

D2

. . . Dh−1

D1 Rh
S R3

. . .

R2 0
R1 0

. . .
0

 . staircase
structure

n× α

M1 M2 M3
. . . Mh

Table 2.4: Structure of the matrixM that contains the secret and keys in the universal Staircase
code construction.

a matrix of dimensions αj+1×uα/αjαj+1 for j = 1, . . . , h−1. The 0’s are the all zero matrices

used to complete the Mi’s to n rows. The secret and the keys are arranged in the matrix

M =
[
M1 . . .Mh

]
defined in Table 2.4.

The matrix M is characterized by a special structure resulting from carefully choosing the

entries of the Dj ’s and placing the all zero sub-blocks in a staircase shape, giving these codes

their name. This staircase shape allows to achieve optimal communication and read overheads

CO and RO for all d.

Encoding: The encoding is similar to the Staircase code construction. Let V be an n × n

Vandermonde matrix defined over Fq. The matrix M , defined in Table 2.4, is multiplied by V

to obtain the matrix C = VM . The n rows of C form the n different shares.

Decoding: To reconstruct the secret, a user contacting dj parties indexed by I ⊆ [n] downloads

the first uα/αj symbols from each contacted party corresponding to vi
[
M1 . . .Mj

]
, for all i ∈ I.

The decoding procedure given in the proof of Theorem 2.2 guarantees that the user will be able

to decode the secret.

We postpone the example of a Universal Staircase code to Section 2.5.1 to have it next to

the proof of Theorem 2.2.

2.4 Staircase Code for Given d

Proof of Theorem 2.1. Consider the (n, k, z, d) Staircase code defined in Section 2.3.1 with u =

k − z. We prove Theorem 2.1 by establishing the following properties of the code:

30

1) Minimum CO(d) and RO(d): We prove that a user contacting d parties can reconstruct the

secret while incurring minimum CO and RO. A user contacting d parties downloads the first

u symbols of each party. Let I ⊂ [n], |I| = d, be the set of indices of the contacted parties,

then the downloaded data is given by VI
[
S R1

]T
, where VI is a d× d square Vandermonde

matrix formed of the rows of V indexed by I, hence invertible. The user can always decode

the secret (and the keys in R1) by inverting VI . The code is optimal on communication and

read overheads CO(d) and RO(d), because the user only reads and downloads ud symbols of size

ud/α = ud/(d − z) units resulting in an overhead of ud/α − u = uz/α = uz/(d − z) achieving

the optimal CO(d) and RO(d) given in (2.4) and (2.5).

2) MDS: We prove that a user contacting k parties and downloading all their shares can re-

construct the secret. Let I ⊂ [n], |I| = k, be the set of indices of the contacted parties. The

information downloaded by the user is VIM and is given by,

VI

S D

R1

R2

0

 .

First, we show that the user can decode the entries of D and R2. The decoder considers the

system,

VI

[
D R2 0

]T
= V ′I

[
D R2

]T
. (2.10)

Recall that the dimensions of the all zero matrix in (2.10) are (α − u) × (α − u), then V ′I is a

k× k square Vandermonde matrix formed by the first k columns of VI . Therefore, the user can

always decode the entries of D and R2 because V ′I is invertible. Second, we prove that the user

can always decode the entries of S and R1 and hence reconstruct the secret. Recall that D is

the transpose of the last α−u rows of M1 ,
[
S R1

]T
. By subtracting the previously decoded

entries of D from VI

[
S R1

]T
, the user obtains V ′IM

′
1, where V ′I is defined above and M ′1 is

a k × u matrix formed by the first k rows of M1. Therefore, the user can always decode the

entries of M ′1 because V ′I is invertible. If k ≥ α, then S is directly obtained since it is contained

31

in M ′1. Otherwise, M ′1 consists of the first k rows of S. The remaining rows of S are contained

in D and were previously decoded. In both cases, the user can decode all the secret symbols

s1, . . . , suα.

3) Perfect privacy: We prove that for any subset Z ⊂ [n], |Z| = z, the collection of shares

indexed by z, denoted by WZ = {wi, i ∈ Z}, does not reveal any information about the secret

as given in equation (2.2), i.e., H(S | WZ) = H(S) where WZ denotes the set of random variable

representing the collection of shares WZ . Let R denote the random variable representing all the

random keys, then it suffices to prove that H(R | WZ , S) = 0 as detailed in Lemma 2.4.

Lemma 2.4. Let Wi denote the random variable representing share wi, and for any subset

B ⊆ {1, . . . , n} denote by WB the set random variables representing the shares indexed by B, i.e.,

WB = {Wi; i ∈ B}. For all Z ⊂ {1, . . . , n}, |Z| = z, the perfect privacy constraint H(S | WZ) =

H(S), given in (2.2), is equivalent to H(R | WZ , S) = 0.

Proof. The proof is standard [71,72] but we reproduce it here for completeness. In what follows,

the logarithms in the entropy function are taken base q. We can write,

H(S | WZ) = H(S)−H(WZ) +H(WZ | S)

= H(S)−H(WZ) +H(WZ | S)−H(WZ | S, R) (2.11)

= H(S)−H(WZ) + I(WZ ; R | S)

= H(S)−H(WZ) +H(R | S)−H(R | WZ , S)

= H(S)−H(WZ) +H(R)−H(R | WZ , S) (2.12)

= H(S)− zα+ zα−H(R | WZ , S) (2.13)

= H(S)−H(R | WZ , S). (2.14)

Equation (C.2) follows from the fact that given the secret s and the keys R any share can be

decoded, equation (2.12) follows because the random keys are chosen independently from the

32

secret and equation (C.6) follows because the Staircase code constructions use zα independent

random keys.

Therefore, to prove that the privacy condition H(S | WZ) = H(S) is satisfied is equivalent to

prove that H(R | WZ , S) = 0.

Therefore, we need to show that given the secret s as side information, any collection of z

shares can decode all the random keys. A collection of WZ shares can be written as

VZ

S D

R1

R2

0

 , (2.15)

where VZ is a z × d matrix corresponding to the rows of VZ indexed by Z. The linear system

in (2.15) can be divided into two systems as follows,

VZ

[
S R1

]T
, (2.16)

VZ

[
D R2 0

]T
. (2.17)

Given the secret as side information, it can be subtracted from (2.16), which becomes

VZ

[
0 R1

]T
= V ′′ZR1,

where, V ′′Z is a z × z square Vandermonde matrix consisting of the last z columns of VZ . The

entries of R1 can always be decoded because V ′′Z is invertible. Now that R1 is decoded and

we have S as side information, we can obtain D as the last α − u rows of
[
S R1

]T
. Then,

the entries of D are subtracted from the second system to obtain V ∗ZR2, where V ∗Z is a z × z

square Vandermonde matrix consisting of the (u + 1)st to the kth columns of VZ . Hence, the

entries of R2 can always be decoded because V ∗Z is invertible. Therefore, H(R | WZ , S) = 0,

∀ Z, Z ⊂ [n], |Z| = z and perfect privacy is achieved.

33

Party 1 Party 2 Party 3 Party 4
s1 + s2 + s3 + r1 s1 + 2s2 + 4s3 + 3r1 s1 + 3s2 + 4s3 + 2r1 s1 + 4s2 + s3 + 4r1

s4 + s5 + s6 + r2 s4 + 2s5 + 4s6 + 3r2 s4 + 3s5 + 4s6 + 2r2 s4 + 4s5 + s6 + 4r2

r1 + r2 + r3 r1 + 2r2 + 4r3 r1 + 3r2 + 4r3 r1 + 4r2 + r3

s3 + r4 s3 + 2r4 s3 + 3r4 s3 + 4r4

s6 + r5 s6 + 2r5 s6 + 3r5 s6 + 4r5

r3 + r6 r3 + 2r6 r3 + 3r6 r3 + 4r6

Table 2.5: An example of a universal Staircase code for (n, k, z) = (4, 2, 1) over F5.

2.5 Universal Staircase Codes

2.5.1 Example

We describe here the construction of an (n, k, z) = (4, 2, 1) Universal Staircase code over Fq, q =

5 > n = 4, by following the construction in Section 2.3.2. We have d1 = 4, d2 = 3, d3 = 2

and α1 = 3, α2 = 2, α3 = 1 and α = LCM(α1, α2) = LCM(3, 2) = 6. The secret s is formed

of uα = (k − z)α = 6 symbols uniformly distributed over F5. The construction uses zα = 6 iid

random keys drawn uniformly at random from F5 and independently of the secret. The secret

symbols and the random keys are arranged in the following matrices,

S =

s1 s4

s2 s5

s3 s6

 , R1 =
[
r1 r2

]
,

R2 =
[
r3

]
and R3 =

[
r4 r5 r6

]
.

To build the matrix M which will be used for encoding the secret, we start with

M1 =

S

R1

 =

s1 s4

s2 s5

s3 s6

r1 r2

 .

Then, D1 is the α2 × uα/α1α2 = 2× 1 matrix that contains the symbols of the nth row of M1,

i.e., D1 =
[
r1 r2

]T
. Therefore, M2 =

[
D1 R2 0

]T
=
[
r1 r2 r3 0

]T
. Similarly, we have

34

D2 =
[
s3 s6 r3

]
and

M3 =

s3 s6 r3

r4 r5 r6

0 0 0

0 0 0

 .

We obtain M by concatenating M1, M2 and M3,

M =

s1 s4 r1 s3 s6 r3

s2 s5 r2 r4 r5 r6

s3 s6 r3 0 0 0
r1 r2 0 0 0 0

 .
M1 M2 M3

(2.18)

Here, V is the n×n = 4× 4 Vandermonde matrix over F5 given in (2.19). The shares are given

by the rows of the matrix C = VM and shown in Table 2.5.

V =

1 1 1 1

1 2 4 3

1 3 4 2

1 4 1 4

 . (2.19)

The constructed Universal Staircase code satisfies the following properties:

1) MDS: We check that a user contacting d3 = k = 2 parties can decode the secret. Suppose

that the user contacts parties 1 and 2. The data downloaded by the user is V{1,2}M and is

given by,

[
1 1 1 1
1 2 4 3

]
s1 s4 r1 s3 s6 r3

s2 s5 r2 r4 r5 r6

s3 s6 r3 0 0 0
r1 r2 0 0 0 0

 .
M1 M2 M3

V{1,2}

(2.20)

We will show that the user can decode the secret by successively solving the linear systems

V{1,2}M3, V{1,2}M2 and V{1,2}M1. The decoder starts by considering V{1,2}M3 which gives,

1 1

1 2

s3 s6 r3

r4 r5 r6

 . (2.21)

35

The matrix on the left is invertible, and the user can decode the secret symbols and keys in

(2.21). Then, the decoder considers the system V{1,2}M2 after subtracting from it the value

of r3 decoded in the previous step. The obtained system is again invertible and the decoder

can decode r1 and r2. The decoder then considers V{1,2}M1, after canceling out r1, r2, s3, s6

decoded so far, to obtain the following system,

1 1

1 2

s1 s4

s2 s5

 .
The matrix on the left is again invertible and the decoder can reconstruct the secret. This

remains true irrespective of which 2 parties are contacted.

2) Minimum CO and RO for d2 = 3 and d1 = 4: We check that a user contacting d parties,

d = 3, 4, can decode the secret while achieving the minimum communication and read overheads

given in (2.4) and (2.5). Suppose a user contacts d2 = 3 parties indexed by I ⊂ [n]. The user

reads and downloads the first uα/α2 = 3 symbols of each contacted share corresponding to

VI

[
M1 M2

]
(in black and red), where VI is the matrix formed by the rows of V indexed by I.

The user will be able to reconstruct the secret by implementing a decoding procedure similar to

the one above. The resulting CO and RO are equal to 3/2−u = 1/2 units achieving the optimal

CO(d2) and RO(d2) given in (2.4) and (2.5). In the case when a user contacts d1 = 4 parties, the

user reads and downloads the first uα/α1 = 2 symbols of each contacted share corresponding

to VIM1 (in black). The user can always decode the secret because VI here is a 4 × 4 square

Vandermonde matrix, hence invertible. The resulting CO and RO are equal to 1/3 achieving the

optimal CO(d1) and RO(d1) given in (2.4) and (2.5).

3) Perfect privacy: At a high level, perfect privacy is achieved here because each symbol in a

share is “padded” with at least one distinct key statistically independent of the secret, making

the shares of any party independent of the secret.

36

2.5.2 Proof of Theorem 2.2

Consider the (n, k, z) Universal Staircase code construction defined in Section 2.3.2. We prove

Theorem 2.2 by establishing the following properties.

1) Encoding is well defined: We prove that the (n − j + 1)st row of
[
M1 . . .Mj

]
has the same

number of entries as Dj , j = 1, . . . , h − 1. Therefore, we can always construct the matrix Dj .

In fact, the number of entries of one row of
[
M1 . . .Mj

]
is equal to the sum of the number of

columns of the Mi’s, i = 1, . . . , j. Notice that αi−1 = αi + 1, then we can write,

uα

αiαi−1
= uα

(
1

αi
− 1

αi−1

)
.

Hence, the number of columns of
[
M1 . . .Mj

]
is given by,

uα

α1
+ uα

(
1

α2
− 1

α1

)
+ · · ·+ uα

(
1

αj
− 1

αj−1

)
=
uα

αj
, (2.22)

which is equal to the number of entries of Dj .

2) MDS and minimum CO(d) and RO(d) for all k ≤ d ≤ n: We prove that for all k ≤ d ≤ n,

a user contacting d parties can decode the secret while achieving the minimum communication

and read overheads given in (2.4) and (2.5). Notice that the MDS property follows directly

from the fact that a user contacting dh = k parties can reconstruct the secret by reading and

downloading all the contacted shares.

A user contacting dj , j = 1, . . . , h, parties downloads the first uα/αj symbols of each party.

Let I ⊆ [n], |I| = dj , be the set of indices of the contacted parties and let VI be the matrix

formed of the rows of V indexed by I. The total downloaded data is given by VI
[
M1 . . .Mj

]

37

and can be divided into j linear systems given as follows,

VIM1 = VI

[
S R1

]T
(2.23)

VIM2 = VI

[
D1 R2 0

]T
(2.24)

...

VIMj−1 = VI

[
Dj−2 Rj−1 0

]T
(2.25)

VIMj = VI

[
Dj−1 Rj 0

]T
. (2.26)

We prove by induction that the user can always reconstruct the secret by iteratively decoding

Mi, i = j, . . . , 1, in each linear system VIMi. To that end, we verify the induction hypothesis for

i = j. Given the system in (2.26), we show that the user can always decode Mj . The zero block

matrix in (2.26) is of dimensions (n − dj) × (uα/αjαj−1). Therefore, (2.26) can be rewritten

as V ′I
[
Dj−1 Rj

]T
, where V ′I is the square Vandermonde matrix of dimensions dj × dj formed

by the first dj columns of VI . Hence, the user can always decode the entries of Mj by inverting

V ′I .

Next, suppose that the user can decode all the Mi’s, i = j, . . . , l + 1, we prove that the

user can always decode Ml. The lth system is given by VIMl. By construction Ml contains dl

non-zero rows, because the 0 block matrix is of dimensions (n−dl)× (uα/αlαl−1). In addition,

the entries of the last l − 1 non-zero rows of Mj are present in Df for f = j − 1, . . . , l − 1,

which were previously decoded. It can be checked that dj = dl− (l− 1) for all l < j. Therefore,

after subtracting the last l − 1 rows of Ml, the system becomes V ′IM
′
l , where V

′
I is again the

dj × dj square Vandermonde matrix defined above and M ′l is the matrix formed of the first

dj = dl − (l − 1) rows of Ml. Henceforth, the user can always decode M ′l by inverting V ′I .

Finally, the user can decode all the entires of Ml that consist of the entries of M ′l and the

entries of the last l − 1 rows of Ml, which were previously decoded.

Next, we show that minimum CO and RO are achieved. The number of symbols read and

downloaded by a user contacting dj parties is equal to dj(uα/αj) symbols which corresponds

38

to dju/αj units. Then, the communication and read overheads are given by dju/αj − u =

uz/αj = uz/(dj − z), which matches the optimal CO(dj) and RO(dj) for all dj = k, . . . , n, given

in (2.4) and (2.5).

3) Perfect privacy: Similarly to the proof of perfect privacy in Theorem 2.1, we need to show

that H(R | WZ , S) = 0 for all Z ⊂ [n], |Z| = z (see Lemma 2.4). This is equivalent to showing

that given the secret s as side information, any collection WZ of z shares can decode all the

random keys. A collection of WZ of z shares can be written as VZ
[
M1 . . .Mh

]
, which can be

divided into h = n− k + 1 linear systems as follows,

VZM1 = VZ

[
S R1

]T
(2.27)

VZM2 = VZ

[
D1 R2 0

]T
(2.28)

...

VZMh = VZ

[
Dh−1 Rh 0

]T
. (2.29)

We will prove by induction that given the secret s as side information, any collection WZ

of z shares can always iteratively decode Ri, i = 1, . . . , h, in each linear system VZMi. To that

end, we verify the induction hypothesis for i = 1 by showing that a collection of WZ shares can

always decode R1 in (2.27). Recall that the dimensions of R1 are z × uα/α1. Given the secret

s, (2.27) becomes,

VZ

[
0 R1

]T
= V ′′ZR1,

where V ′′Z is a z×z square Vandermonde matrix formed by the last z columns of VZ . Therefore,

R1 can be decoded by inverting V ′′Z .

Next, we suppose that any collection ofWZ shares can decode all the Ri’s for i = 1, . . . , l−1,

and show that any collection of WZ can decode Rl. The lth system is given by VIMl =

VI

[
Dl−1 Rl 0

]T
. By construction, Dl−1 consists of the entries of the last row of Ml−1

which were previously decoded. Given the previously decoded information, any collection of

39

WZ shares can cancel out the entries of Dl−1 to obtain V ∗ZRl. Since the dimensions of Rl are

z × uα/αlαl−1, the matrix V ∗Z is a z × z square Vandermonde matrix formed by the (αl + 1)st

to (αl + z)th rows of VZ . Thus, Rl can be always decoded because V ∗Z is invertible. Therefore,

all the keys can always be decoded. Hence, H(R | WZ , S) = 0. This concludes the proof of

Theorem 2.2.

2.6 ∆-Universal Staircase Codes

We explain how to modify the Universal Staircase codes to construct Staircase codes that achieve

minimum CO and RO only for a desired subset ∆ of all possible d’s, i.e., ∆ ⊆ {k, . . . , n}. We

refer to these codes as (n, k, z,∆) ∆-universal Staircase codes. The advantage of these codes

over universal codes is that they may require smaller number of symbols per share α.

Encoding: Let ∆′ , ∆ \ {k} and order the d’s in ∆′ in decreasing order. We write ∆′ =

{di1 , . . . , di|∆′|} ⊆ {d1, . . . , dh−1}, where di1 > di2 > · · · > di|∆′| . Let αij = dij − z for

all dij ∈ ∆′ and let α = LCM(α1, . . . , α|∆′|). Define di|∆′|+1
, k and αi|∆′|+1

, u. The

secret symbols are arranged in a matrix S of dimensions αdi1 × uα/αdi1 and the random keys

are partitioned into the matrices Ri1 , . . . , Ri|∆′|+1
, of dimensions z × uα/αi1 for Ri1 and z ×

uα(αij−αij−1)/(αijαij−1) for all other Rij , j = 2, . . . , |∆′|+1. ConstructMi1 as the di1×uα/αi1

matrix structured as M1 in (2.9). And, for each dij , j = 2, . . . , |∆′| + 1, construct Mij as the

di1 × uα(αij − αij−1
)/(αijαij−1) structured as Mij in (2.9). The matrix Dij , j = 1, . . . , |∆′|, is

the matrix of dimensions αij+1 ×uα(αij+1 −αij)/(αij+1αij) containing the last dij − dij+1 rows

of
[
Mi1 . . .Mij

]
, from row dij to row dij+1

+ 1. Then, concatenate the constructed matrices,

Mi1 , . . . ,Mi|∆′|+1
, to obtain the matrix M of dimensions di1 × α. The matrix M is multiplied

by a Vandermonde matrix of dimensions n× di1 to obtain the shares.

Decoding: To reconstruct the secret, a user contacting dij parties, indexed by I ⊆ [n], downloads

the first uα/αij symbols from each contacted party corresponding to vi
[
Mi1 . . .Mij

]
, for all

i ∈ I. The decoding procedure follows the same steps of the decoding procedure presented in

40

the proof of Theorem 2.2 and the user will be able to decode the secret.

We omit the proof of Theorem 2.3 since it follows the same steps of the proof of Theorem 2.2.

2.7 Conclusion

We considered the communication efficient secret sharing (CE-SS) problem. The goal is to

minimize the read and download overheads for a user interested in decoding the secret. To

that end, we introduced a new class of deterministic linear CE-SS codes, called Staircase Codes.

We described three explicit constructions of Staircase codes. The first construction achieves

minimum overhead for any given number of parties d contacted by the user. The second is a

universal construction that achieves minimum overheads simultaneously for all possible values

of d. The third construction achieves optimal costs universally for all values of d in a given set

∆ ⊆ {k, . . . , n}. All Staircase code constructions can store a secret of maximal size and require

a small finite field Fq of size q > n. However, these code constructions require dividing the

shares into α symbols.

In conclusion, we point out some problems that remain open. The model we considered

here and the proposed Staircase codes can provide security against parties corrupted by a

passive Eavesdropper. However, the problem of constructing communication and read efficient

codes that provide security against an active (malicious) adversary remains open. Moreover,

Staircase codes require dividing the secret into α symbols. No bounds on the minimum value of

α is known, but we conjecture that the value of α required by Staircase codes is the minimum

one could hope for in order to maintain minimum read overhead.

41

Chapter 3

Private Coded computation via

Staircase Codes

We assume that the workers have similar resources, i.e., similar computation and communication

capacities. However, some of the workers may be stragglers, e.g., slow or busy. We are interested

in reducing the delays experienced by the Master. We focus on linear computations as an

essential operation in many iterative algorithms. We propose a solution based on Staircase

codes introduced in the previous chapter. Staircase codes allow flexibility in the number of

stragglers up to a given maximum, and universally achieve the information theoretic limit on

the download cost by the Master, leading to latency reduction. We find upper and lower bounds

on the Master’s mean waiting time. We derive the distribution of the Master’s waiting time,

and its mean, for systems with up to two stragglers. We show that Staircase codes always

outperform existing solutions based on classical secret sharing codes. We validate our results

with extensive implementation on Amazon EC2.

42

3.1 Introduction

We consider the setting of distributed computation in which a server M, referred to as master,

possesses confidential data (e.g., personal, genomic or medical data) and wants to perform

intensive computations on it. M wants to divide these computations into smaller computational

tasks and distribute them to n untrusted worker machines that can perform these smaller tasks

in parallel. The workers then return their results to the master, who can process them to obtain

the result of its original task.

We are interested in applications in which the worker machines do not belong to the same

system or cluster as the master. Rather, the workers are online computing machines that

can be hired or can volunteer to help the master in its computations, e.g., cloud computing

and crowdsourcing platforms like the SETI@home [73] and folding@home [74] projects. The

additional constraint, which we worry about here, is that the workers cannot be trusted with

the sensitive data, which must remain hidden from them. Privacy could be achieved using fully

homomorphic encryption that allows computation over encrypted data. However, homomorphic

encryption incurs high computation and storage overheads [75], which may not be feasible in

certain applications.

We propose information theoretic privacy to achieve the privacy requirement. Information

theoretic privacy is typically used to provide privacy with no constraints on the computational

power of the adversary (compromised workers). Our main motivation for information theoretic

security is the low complexity of the resulting schemes (compared to homomorphic encryption).

The assumption that we have to make here is a limit on the number of workers colluding against

the master.

We focus on linear computations (matrix multiplication) since they form a building block

of many iterative algorithms, such as principal component analysis, support vector machines

and other gradient-descent based algorithms [6, 7]. The workers introduce random delays due

to the difference of their workloads or network congestion. This causes the master to wait for

the slowest workers, referred to as stragglers in the distributed computation community [5,76].

43

Our goal is to reduce the aggregate delay experienced by the master.

Privacy can be achieved by encoding the data, with random keys, using linear secret sharing

codes [18] as illustrated in Example 3.1. However, these codes are not specifically designed to

minimize latency as we will highlight later.Master

M

Encoding

W2W1 W3

AData

S1 S2 S3

Randomness

R

Workers

(a) The master M encodes its dataA with a ran-
dom matrix R into 3 secret shares S1, S2, S3.
Any two shares can decode A. For example,
S1 = R, S2 = A + R, and S3 = A+ 2R. M
sends the share Si to worker Wi. The random-
ness R is used to ensure privacy.

M

S2

W2

S1

W1

S3

W3

x x x

S 1
x

S2x

S
3 x

(b) To compute Ax, M sends x to all the
workers. Each worker Wi computes Six
and sends the result to M. M can decode
Ax after receiving any two responses, e.g.,
Ax = S2x− S1x = (A+R)x−Rx.

Figure 3.1: Private distributed matrix multiplication with 3 workers. The master encodes its
data using a linear secret sharing code, e.g., Shamir’s codes (given in the caption) [8, 53] or
Staircase codes (given in Table 3.1) [24,25]. Decoding Ax follows from the linearity of the code.

Example 3.1. Let the matrix A denote the data set owned by the master and let x be a given

vector. M wants to compute Ax. Suppose that M gets the help of 3 workers out of which at most

1 may be a straggler. M generates a random matrix R of same dimensions as A with entries

drawn from the same alphabet as the entries of A. M encodes A and R into 3 shares S1 = R,

S2 = R+A and S3 = R+ 2A using a secret sharing scheme [8,53]. M sends share Si to worker

Wi (Figure 3.1a) and then sends x to all the workers. Each worker computes Six and sends it

back to M (Figure 3.1b). M can decode Ax after receiving any 2 responses. For instance, if the

first two workers respond, M can obtain Ax = S2x − S1x. No information about A is revealed

to the workers, because A is one-time padded by R.

In the previous example, even if there were no stragglers, M still has to wait for the full

responses of two workers, and the response of the third one will not be used for decoding. In

44

S1 S2 S3

A1 +A2 +R1 A1 + 2A2 + 4R1 A1 + 3A2 + 4R1

R1 +R2 R1 + 2R2 R1 + 3R2

Table 3.1: The shares sent by M to each worker when using Staircase codes. In this example,
each share is divided into two sub-shares. The master sends x to all the workers. Each worker
multiplies the sub-shares by x (going from top to bottom) and sends each multiplication back to
M independently. The master can decode Ax by receiving the multiplication of x by either the
first sub-share of each worker (in black) or two sub-shares from any two workers (in black and
blue). After receiving enough sub-shares, the master sends a stop message to the workers telling
them to stop computing on the remaining sub-shares. Note that if M uses the first three sub-
shares, it only decodes half of Rx, i.e., R1x, and does not need to decode R2x. The operations
shown are in F5.

addition, M always has to decode Rx in order to decode Ax. Hence, more delays are incurred

by spending communication and computation resources on decoding Rx, which is only needed

for privacy. We overcome those limitations by using Staircase codes introduced in [24, 25] (see

Chapter 2 for more details) which do not always require decoding Rx. Thus, possibly reducing

the computation load at the workers and the communication cost at the master. In addition,

Staircase codes allow more flexibility in the number of responses needed for decoding Ax, as

explained in the next example.

Example 3.2 (Staircase codes). Consider the same setting as Example 3.1. Instead of using a

classical secret sharing code, M now encodes A and R using the Staircase code given in Table 3.1.

The Staircase code requires M to divide the matrices A and R into A =
[
AT1 AT2

]T
and R =[

RT1 RT2

]T
. In this setting, M sends two sub-shares to each worker, hence each task consists

of 2 sub-tasks. The master sends x to all the workers. Each worker multiplies the sub-shares

by x (going from top to bottom) and sends each multiplication back to M independently. Now,

M has two possibilities for decoding: 1) M receives the first sub-task from all the workers, i.e.,

receives (A1 + A2 + R1)x, (A1 + 2A2 + 4R1)x and (A1 + 2A2 + 4R1)x and decodes Ax which

is the concatenation of A1x and A2x. Note that here M decodes only R1x and does not need to

decode R2x. 2) M receives all the sub-tasks from any 2 workers and decodes Ax. Here M has

to decode R1x and R2x. After receiving enough sub-tasks, the master sends a message to the

workers instructing them to stop computing the remaining sub-tasks. One can check that no

information about A is revealed to the workers, because each sub-share is padded by a random

45

matrix.

Under a shifted exponential delay model for each worker, we show that the Staircase code

given in Example 3.2 can lead to a 45% improvement in delay over the secret sharing code

given in Example 3.1. Our goal is to give a general systematic study of the delay incurred by

Staircase codes and compare it to classical secret sharing codes.

3.1.1 Contributions

To the extent of our knowledge, this is the first work to analyze latency for private distributed

coded computation under the presence of stragglers. We consider the distributed computation

setting described above in which we require the workers to learn no information (in an informa-

tion theoretic sense) about the master’s data. We study the waiting time of the master caused

by delays of the workers. We follow the literature, e.g., [6, 26], and model the service time at

the workers as a shifted exponential random variable. This service time includes upload time,

computation time and download time, i.e., computation and network latency. Finding codes

that minimize the delay at the master is still an open problem in general. In this work, we

take the download communication cost as a proxy for delay when designing the coding schemes.

More precisely, we study the performance of Staircase codes [24,25] that achieve the information

theoretic limit on download cost [23] and compare them to classical secret sharing codes.

Before we state our contributions, we introduce some necessary notations. We denote by n

the number of workers available to help the master, by k the minimum number of non stragglers

and by z the maximum number of colluding workers. We refer to such private distributed

computation system by an (n, k, z) system. Our contributions are summarized by the following:

1. General bounds for systems with any number of stragglers: We derive an upper and a

lower bound on the master’s mean waiting time when using Staircase codes (Theorem 3.1).

Moreover, we derive the exact distribution of the master’s waiting time when using Stair-

case codes, in an integral form (Theorem 3.4). Using the upper bound, we compare

the performance of Staircase codes to classical secret sharing codes and characterize the

46

savings obtained by Staircase codes. We show that Staircase codes always outperform

classical secret sharing codes.

2. Exact characterization for systems with up to 2 stragglers: We use the integral expression

of Theorem 3.4 to find the exact distribution of the master’s waiting time for systems

with up to n− k = 1 and up to n− k = 2 stragglers (Corollary 3.5). Moreover, we derive

the exact expressions of the master’s mean waiting time for these systems (Theorem 3.2)

and use these expressions to show the tightness of our upper bound.

3. Simulations and validation: We ran extensive MATLAB simulations for different system

parameters. We focus on two regimes: regime with fixed rate k/n and regime with fixed

maximum number of stragglers n−k. Our main observation is that the upper bound, based

on Jensen’s inequality, is a good approximation of the mean waiting time. Furthermore,

we validate our results with extensive implementation on Amazon EC2 clusters. The

savings obtained on EC2 clusters are within the range of the values predicted by the

theoretical model. To give an example, for n = 4 workers, large data and high traffic

regime, our implementation shows 59% (Figure 3.8a) savings in the mean waiting time

while the theoretical model predicts 66% savings (Figure 3.5a).

3.1.2 Organization

The chapter is organized as follows. We formalize the problem and define the model in sec-

tion 3.2. In section 3.3, we present and discuss our main results. In Sections 3.4 and 3.5, we

study the probability distribution of the master’s waiting time and derive bounds on the mean

waiting time. We show, in Section 3.6, that the (random) number of workers that minimizes

the waiting time is concentrated around its average. We evaluate the performance of Staircase

codes via simulation in Section 3.7. In Section 3.8, we give a representative sample of our

implementation on Amazon EC2 clusters and compare them to our theoretical findings. We

give an overview of the related works in Section 3.9. We conclude the chapter in section 4.7.

We prove Theorem 3.2 and discuss how our scheme can be extended to provide privacy over

47

multiple iterations of an algorithm in Appendix B.1 and Appendix A, respectively.

3.2 System Model

We consider a master server M which wants to perform intensive computations on confidential

data represented by an m × ` matrix A (typically m >> `). In machine learning applications

m denotes the number of data points (examples) possessed by M and ` denotes the number of

attributes (features) of each example. M divides these computations into smaller computational

tasks and assigns them to n workers Wi, i = 1, . . . , n, that can perform these tasks in parallel.

The division is horizontal, i.e., each worker gets a given number of rows of A with all their

corresponding columns.

3.2.1 Computations model

We focus on linear computations. The motivation is that a building block in several iterative

machine learning algorithms, such as gradient descent, is the multiplication of A by a sequence

of `× 1 attribute vectors x1,x2, In the sequel, we focus on the multiplication Ax with one

attribute vector x.

3.2.2 Workers model

The workers have the following properties: 1) The workers incur random delays while executing

the task assigned to them by M resulting in what is known as the straggler problem [5,6,76]. We

model all the delays (including the computation and communication delay) incurred by each

worker by an independent and identical shifted exponential random variable. This distribution

captures the constant part of the task-dependent service time at each server, along with the

unpredictable randomness in service due to uncorrelated background processes at each server.

Further, this distribution is widely used to model service in compute cluster [6, 26], and lends

itself well to analytical tractability. 2) Up to z, z < k, workers can collude, i.e., at most z workers

48

can share with each other the data they receive from M. The threshold z could be thought of

as a desired level of security. This has implications on the privacy constraint described later.

3.2.3 General scheme

M encodes A, using randomness, into n shares Si sent to worker Wi, i = 1, . . . , n. Any k or more

shares can decode A, and any collection of z workers obtain zero information about A. For any

set B ⊆ {1, . . . , n}, let SB = {Si, i ∈ B} denote the collection of shares given to worker Wi for all

i ∈ B. Let A denote the random variable representing A and SB denote the collection of random

variable representing the shares indexed by B. The previous requirements can be expressed as,

H(A|SB) = 0, ∀B ⊆ {1, . . . , n} s.t. |B| ≥ k,

H(A|SZ) = H(A), ∀Z ⊆ {1, . . . , n} s.t. |Z| ≤ z.

At each iteration, the master sends x to all the workers. Then, each worker computes Six and

sends it back to the master. In the case where the share Si consists of sub-shares, each worker

multiplies the sub-shares by x and sends the result back to the master independently. Since

the scheme and the computations are linear, the master can decode Ax after receiving enough

responses. After receiving enough responses the master sends a stop message to the workers

instructing them to stop computing on the remaining sub-shares. We refer to such scheme as

an (n, k, z) system. We note that our scheme can be generalized to the cases the where the

attribute vectors x contain information about A, and therefore need to be hidden from the

workers. We describe the generalization of our scheme to such case in Appendix A.

3.2.4 Encoding

We consider classical secret sharing codes [8,53] and universal Staircase codes [24,25]. We now

describe their properties that are necessary for the delay analysis (detailed description can be

found in Section 2.3.2). Secret sharing codes require the division of A into k − z row blocks

49

each of dimension m
k−z × ` and encodes them into n shares of the identical dimension. Any k

shares can decode A. Similarly, Staircase codes encode A into n shares of m
(k−z)×` each with the

additional requirement that each share is divided into α = LCM{k−z+1, . . . , n−z} sub-shares.

Decoding A requires δdα sub-shares, δd , (k−z)
(d−z) , from any of the d shares, d ∈ {k, . . . , n}. We

show that Staircase codes outperform classical codes in terms of incurred delays.

3.2.5 Delay model

Let TA be the random variable representing the time spent to compute Ax at one worker. We

assume a mother runtime distribution FTA
(t) that is shifted exponential with rate λ and a con-

stant shift c. As mentioned before, this is distribution is widely used for modeling service time

in a compute cluster [6,26], and primarily motivated by its analytical tractability. Furthermore,

the shifted exponential distribution captures the two parts of the service completion time: the

constant part of the task-dependent service time at each server, and the stochasticity in service

due to uncorrelated background processes at each server. For each i ∈ {1, . . . , n}, we let Ti

denote the time spent by worker Wi to execute its task. Due to the encoding, each task given to

a worker is k−z times smaller than A, or Ti = TA

(k−z) . It follows that FTi
is a scaled distribution

of FTA
. That is,

FTi
(t) , FTA

((k − z)t) = 1− e−λ(k−z)(t− c
k−z)

, for t ≥ c/(k − z). (3.1)

For an (n, k, z) system using Staircase codes, we assume that Ti is evenly distributed among

the sub-tasks1. That is, the time spent by a worker Wi on one sub-task is equal to Ti/α, and

the time spent on αδd = αk−zd−z sub-tasks is δdTi.

Let T(i) be the ith order statistic of the Ti’s and TSC(n, k, z) be the time the master waits

until it can decode Ax. If the aggregate wait is due to d workers each finishing δd fraction of

1Therefore, we make two assumptions on the waiting time of the sub-tasks: (1) the parameters of its distri-
bution (effective c and λ) vary linearly with the sub-task size and (2) the waiting time of sub-tasks of the same
task take equal service time, and therefore are not independent. These assumptions make the problem more
amenable to theoretical analysis. In Section 3.8, we compare our model to traces obtained from Amazon cloud
and show that our model provides insightful engineering guidelines.

50

its α sub-tasks, then the master’s waiting time is δdT(d). We can write

TSC(n, k, z) = min
d∈{k,...,n}

{
δdT(d)

}
. (3.2)

It is useful for our analysis to look at Ti as the sum of an exponential random variable T ′i and

a constant offset, i.e.

Ti = T ′i + c/(k − z), where T ′i ∼ exp (λ(k − z)).

From this interpretation, it is easy to verify that the dth order statistic T(d) of (T1, T2, . . . , Tn)

can be expressed as

T(d) = T ′(d) + c/(k − z),

where T ′(d) is the dth order statistic of n iid exponential random variables with rate λ(k − z).

Therefore, we can write the master’s waiting time for Staircase codes as

TSC(n, k, z) = min
d∈{k,...,n}

{
δd

(
T ′(d) +

c

k − z

)}
. (3.3)

For an (n, k, z) system using classical secret sharing codes, the master’s waiting time TSS(n, k, z)

is equal to the time spent by the fastest k workers to finish their individual tasks. Hence, we

can write

TSS(n, k, z) = T(k). (3.4)

We drop the (n, k, z) notation from TSC(n, k, z) and TSS(n, k, z) when the system parameters

are clear from the context.

3.3 Main Results

We characterize the delay performance of private coded computation when using Staircase codes

and compare it to classical secret sharing codes. The performance of Staircase codes is reflected

51

Symbol Meaning Symbol Meaning
n number of workers M master server
k threshold on non stragglers Wi worker i
z number of colluding workers A data matrix of the master
d number of non stragglers x attribute vector of dimension `× 1
m number of rows in A Si share sent to worker i
` number of columns in A TA time to compute Ax at one worker

α number of sub-shares in one share Ti
time spent to compute one task at the
worker

c
shift of the shifted exponential
distribution T(i) ith order statistic of T1, . . . , Tn

λ
rate of the shifted exponential
distribution TSC

master’s waiting time when using
Staircase codes

δd
fraction of the share needed when d
workers are not stragglers TSS

master’s waiting time when using
secret sharing

Hn Harmonic number Hh ,
n∑
i=1

1/i T ′A
exponential random variable,
T ′A = TA + c

Table 3.2: Summary of notations for this Chapter.

in the master’s waiting time TSC. Towards our goal, we establish in Theorem 3.1 general bounds

on the master’s mean waiting time E[TSC(n, k, z)] when using Staircase codes for all (n, k, z)

systems, under the shifted exponential delay model.

Theorem 3.1 (Bounds on the master’s mean waiting time E[TSC]). Let Hn be the nth harmonic

sum defined as Hn ,
∑n
i=1

1
i , with the notation H0 , 0. The mean waiting time of the master

E[TSC] for an (n, k, z) Staircase coded system is upper bounded by

E[TSC] ≤ min
d∈{k,...,n}

(
Hn −Hn−d

λ(d− z)
+

c

d− z

)
, (3.5)

and lower bounded by

E[TSC] ≥ c

n− z
+ max
d∈{k,...,n}

k−1∑
i=0

(
n

i

) i∑
j=0

(
i

j

)
2(−1)j

λ (2(n− i+ j)(d− z) + (n− d)(n− d+ 1))
.

(3.6)

We derive in Section 3.5 a general integral expression (B.3) leading to the CDF FTSC(t)

of TSC, the waiting time of the master for all (n, k, z) systems. Using the general integral

expression, we derive the exact expression of the CDF FTSC(t) for systems with n = k + 1 and

n = k + 2 as stated in the next Theorem.

52

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Number of workers n

M
ea

n
w

ai
ti

ng
ti

m
e

Upper bound in (3.6)
Mean waiting time in (3.8)
Lower bound in (3.5)

(a) Systems with n− k = 2 stragglers.

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

Number of workers n

M
ea

n
w

ai
ti

ng
ti

m
e

Upper bound in (3.6)
Staircase codes
Classical codes
Lower bound in (3.5)

(b) Systems with fixed rate k/n = 1/2.

0 20 40 60 80 100
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Number of workers n

P
er

ce
nt

ag
e

of
ti

m
e

sa
vi

ng
s

k/n = 1/2

k/n = 1/4

k/n = 1/5

(c) Savings for systems with fixed k/n.

Figure 3.2: Theoretical upper and lower bounds for systems with rate of the exponential random
variable λ = 1, shift c = 1 and no colluding workers, i.e., z = 1. Figure 4.3a compares the
bounds derived in Theorem 3.1 to the theoretical mean waiting time for (k + 2, k, 1) derived
in Corollary 3.2. Observe that the upper bound in (3.5) is a good approximation of the mean
waiting time in (3.8). Figure 4.3b compares the bounds in (3.5) and (3.6) to the simulated mean
waiting time for (n, k, z) systems with fixed rate k/n = 1/2. We obtain the mean waiting time
by averaging over 10000 iterations for each value of n. Figure 4.2b compares the upper bound
in (3.5) to the mean waiting time of classical secret sharing in (3.9). The savings are computed
as the normalized difference between the waiting time of Staircase codes and classical secret
sharing codes, i.e., (E[TSC]− E[TSS]) /E[TSS].

53

Theorem 3.2 (Exact expression of E[TSC] for systems with up to 2 stragglers). The mean

waiting time of the master for (k+ 1, k, z) and (k+ 2, k, z) systems is given in (3.7) and (3.8),

respectively.

E [TSC(k + 1, k, z)] =
c

k − z + 1
+

1

λ

k+1∑
i=1

(−1)i
(
k + 1

i

) i exp
(
−λc
k−z

)
(k − z)i+ 1

− 1

(k − z + 1)i

 . (3.7)

E[TSC(k + 2, k, z)] = E[TSC(k + 2, k + 1, z)]

+
1

λ

k+2∑
i=2

(−1)i
(
k + 2

i

)(
i

2

)exp
(
− 4λc
k−z

)
(k − z)i+ 4

−
2 exp

(
− 3λc
k−z

)
(k − z)i+ 3

 . (3.8)

To give insights into the theoretical bounds above, we compare in Figure 4.3a bounds (3.5)

and (3.6) for the case of n = k + 2 to the exact expression in (3.8). We see that the upper

bound in (3.5) is closer to the actual value and the gap between the two bounds closes as n

increases. We also establish the comparison for fixed rate regimes, in particular rate k/n = 1/2.

Since here n ≥ k + 2, we compare in Figure 4.3b the bounds to numerical results obtained by

simulation and observe the same behavior as before. We also plot in the same figure the mean

waiting time for classical secret sharing codes obtained from (3.4) and given by

E[TSS] =
Hn −Hn−k

λ(k − z)
+

c

k − z
. (3.9)

This allows to verify that Staircase codes always outperform classical secret sharing codes. In

Figure 4.2b, we plot the lower bound on the relative savings brought by Staircase codes for

systems with rate k/n = 1/2, 1/4, 1/5. For instance, for rate 1/4, the savings are lower bounded

by 40% for large n. We supplement our theoretical results in Section 3.7 with an extensive array

of simulations in addition to measurement results obtained by implementation on Amazon EC2

clusters. The savings obtained in the implementation on Amazon cloud are within the savings

predicted by the theoretical model.

54

3.4 Bounds on the Master’s Mean Waiting Time for all

(n, k, z) Systems

We derive an upper and a lower bound on the master’s mean waiting time E[TSC(n, k, z)] for

all (n, k, z) systems, i.e., we prove Theorem 3.1. We divide the proof into two parts: proof of

the upper bound, and proof of the lower bound.

3.4.1 Proof of the upper bound on the mean waiting time

Proof. We use Jensen’s inequality to upper bound the mean waiting time E[TSC]. Since min is

a convex function, we can use Jensen’s inequality to upper bound the mean waiting time,

E[TSC] = E
[

min
d∈{k,...,n}

{
δdT

′
(d) +

c

d− z

}]
≤ min
d∈{k,...,n}

{
δdE

[
T ′(d)

]
+

c

d− z

}
. (3.10)

We need the following Theorem in order to derive an exact expression of the mean of the dth

order statistic of n iid exponential random variables.

Theorem (Renyi [77]). The dth order statistic T ′(d) of n iid exponential random variables T ′i is

equal to the following random variable in the distribution

T ′(d) ,
d∑
j=1

T ′j
n− j + 1

.

Using Renyi’s Theorem, the mean of the dth order statistic E
[
T ′(d)

]
can be written as

E[T ′(d)] = E[T ′j]

d−1∑
j=0

1

n− j
=
Hn −Hn−d

λ(k − z)
. (3.11)

From equations (3.10) and (3.11), the mean waiting time is upper bounded by

E[TSC] ≤ min
d∈{k,...,n}

{
Hn −Hn−d

λ(d− z)
+

c

d− z

}
.

55

We give an intuitive behavior of the upper bound. The harmonic number can be approximated

by Hn ≈ log(n)+γ, where γ ≈ 0.577218 is called the Euler-Mascheroni constant. Alternatively,

we can use the upper and lower bounds log(n) < Hn < log(n + 1) on the Harmonic number

Hn, to upper bound the mean waiting time

E[TSC] < min

{
min

d∈{k,...,n−1}

{
1

λ(d− z)
log

(
n+ 1

n− d

)
+

c

d− z

}
,

1

λ(n− z)
log (n+ 1) +

c

n− z

}
.

3.4.2 Proof of the lower bound on the mean waiting time

Proof. Recall that TSC = min{δdT(d) : d ∈ {k, . . . , n}} = min{δdT ′(d) +
c

d− z
: d ∈ {k, . . . , n}}.

Since the minimum of the sum is greater than the sum of the minimums, we can lower bound

the waiting time TSC in terms of residual waiting time T ′SC , min{δdT ′(d) : d ∈ {k, . . . , n}}, as

TSC = min
d∈{k,...,n}

{δdT ′(d) +
c

d− z
} ≥ T ′SC +

c

(n− z)
.

Since the mean of a continuous random variable can be computed by integrating the tail prob-

ability, we lower bound E[T ′SC] by lower bounding the tail probability of T ′SC exceeding any

threshold value t. We observe that T ′SC is greater than t, if and only if the dth order statistic

T ′(d)’s is greater than
t
δd

for each d ∈ {k, . . . , n}. That is,

{T ′SC > t} =

n⋂
d=k

{
T ′(d) >

t

δd

}
.

Recall that tδ−1
d (k − z) = t(d − z) is increasing in d, and so is T ′(d). For the residual service

times T ′1, . . . , T ′n, we consider the following set

Cd(t) ,
{
T ′(k) >

t

δd

} n⋂
i=d+1

{
T ′(i) − T

′
(i−1) >

t

δi
− t

δi−1

}
.

56

For each d ∈ {k, . . . , n}, we observe that Cd(t) ⊆ {T ′SC > t} since {T ′(k) > tδ−1
d } ⊆ ∩dj=k{T ′(j) >

tδ−1
j }. It follows that, Pr {T ′SC > t} ≥ maxd∈{k,...,n} Pr(Cd(t)). Next, we evaluate Pr(Cd(t))

explicitly. To this end, we first observe that δj−1 − δj−1
−1 = (k − z)−1 identically for each

j ∈ {1, . . . , n}. Further, we apply Renyi’s Theorem and independence of residual times T ′i s to

write

Pr (Cd(t)) = Pr

{
T ′(k) >

t

δd

} n∏
j=d+1

Pr

{
T ′j

n− j + 1
>

t

(k − z)

}
. (3.12)

In the following, we would use F (t) = 1−e−λt for t ≥ 0 to represent the cumulative distribution

function (CDF) and F̄ (t) = 1 − F (t) to represent the complementary cumulative distribution

function (CCDF), of an exponential random variable with rate λ. It follows that the CCDF for

the residual service time T ′i is Pr{T ′j > t} = F̄ ((k− z)t). Utilizing the exponential form, we can

write

n∏
j=d+1

Pr

{
T ′j

n− j + 1
>

t

(k − z)

}
= F̄

 n∑
j=d+1

(n− j + 1)t

 = F̄

(
(n− d)(n− d+ 1)t

2

)
.

(3.13)

From definition, it follows that δk = 1. Further, the kth order statistic of n residual service

times exceeds a threshold if and only if at most k − 1 different residual service times are less

than the threshold, c.f., Lemma 3.3. That is,

Pr
{
T ′(k) > t

}
=

k−1∑
i=0

(
n

i

)
F ((k − z)t)i F̄ ((k − z)t)n−i . (3.14)

Since F (t) = 1− F̄ (t), using the binomial expansion, we have

F ((k − z)t)i =

i∑
j=0

(
i

j

)
(−1)jF̄ ((k − z)t)j . (3.15)

57

Exploiting the exponential form of F̄ (t), aggregating results from (3.13), (3.14) and (3.15), we

can re-write (3.12) as

Pr (Cd(t)) =

k−1∑
i=0

(
n

i

) i∑
j=0

(
i

j

)
(−1)jF̄

(
t(n− i+ j)(d− z) + t(n− d)(n− d+ 1)/2

)
. (3.16)

The proof follows from the integral
∫∞

0
e−xtdt = 1

x , the linearity of integrals, and the following

lower bound

E[T ′SC] =

∫ ∞
0

Pr {T ′SC > t} dt ≥
∫ ∞

0

max
d∈{k,...,n}

Pr(Cd(t))dt ≥ max
d∈{k,...,n}

∫ ∞
0

Pr(Cd(t))dt.

Lemma 3.3. Marginal complementary distribution of dth order statistics T ′(d) of n iid random

variables (T ′1, . . . , T
′
n) with common distribution fT ′(t) is given by

Pr{T ′(d) > t} =

d−1∑
i=0

(
n

i

)
FT ′(t)F̄T ′(t)

n−i.

We note the cumulative distribution function (CDF) of f by FT ′(t) , fT ′(T
′ < t) and the

complementary cumulative distribution function (CCDF) of f by F̄ , fT ′(T
′ > t) = 1−FT ′(t).

Proof. The dth order statistic is greater than t, if and only if at most d− 1 out of n iid random

variables (T1, . . . , Tn) can be less than t, and the rest are greater than t.

3.5 Distribution of the Master’s Waiting Time for all (n, k, z)

Systems

Now we are ready to derive an integral expression for the probability distribution of TSC, the

master’s waiting time when using Staircase codes.

Theorem 3.4 (Integral expression leading to FTSC(t)). The distribution of the master’s waiting

58

time TSC of an (n, k, z) system using Staircase codes is given by

FTSC (t) = 1− n!

∫
(yk,...,yn)∈A(t)

FT ′(yk)k−1

(k − 1)!
dFT ′(yk) . . . dFT ′(yn) for t > 0. (3.17)

We denote the residual service time at each worker Wi, i = 1, . . . , n, by the random variable

T ′i = Ti − c
k−z , and the associated distribution by F (yi) , FT ′(yi) = 1− exp(−λyi) for yi > 0.

For i = k, . . . , n, we define ti as ti , max
{(

i−z
k−z

)(
t− c

i−z
)
, 0
}
. We denote by A(t) the set of

ordered variables (yk, . . . , yn) such that

A(t) , {0 ≤ yk ≤ yk+1 ≤ · · · ≤ yn : tk < yk, . . . , tn < yn}.

We apply Theorem 3.4 to get the mean waiting time of the master and the exact distribution

of the waiting time for systems with n = k+ 1 and n = k+ 2 in Theorem 3.2 and Corollary 3.5,

respectively.

Corollary 3.5 (Exact expression of FTSC(t) for systems with up to 2 stragglers). The distri-

bution of the master’s waiting time for (k + 1, k, z) and (k + 2, k, z) systems is given in (3.18)

and (3.19), respectively.

FTSC(k+1,k,z)(t) = FT ′(tk+1)k+1 + FT ′(tk)kF̄T ′(tk+1)(k + 1). (3.18)

FTSC(k+2,k,z)(t) = FT ′(tk+2)k+2 + (k + 2)F̄T ′(tk+2)
[
FT ′(tk+1)k+1

+ (k + 1)FT ′(tk)k(F̄T ′(tk+1)− 1

2
F̄T ′(tk+2))

]
. (3.19)

Both distributions are defined for t > 0, and FT ′(t) , 1− exp(−λ(k − z)t).

We omit the proof of Corollary 3.5 since it follows from simply integrating (B.3) and defer

the proofs of Theorem 3.2 and Theorem 3.4 to Appendix B.1 and Appendix B.2, respectively.

59

3.6 Interplay Between Code Design and Latency

We have seen so far that universal Staircase codes allows the master to decode Ax from any

random number d of workers, k ≤ d ≤ n. However, the downside is that the universal construc-

tion requires a large number of sub-tasks α = LCM{k−z+1, . . . , n−z}. In many applications,

there may be an overhead associated with excessive divisions into sub-tasks. We show that we

can reduce the number of sub-tasks at the expense of a small increase of the master’s waiting

time. Using the so-called ∆-universal Staircase codes [25] reduces the number of sub-tasks at

the expense of limiting the master to a set ∆ ⊆ {k, . . . , n} of number of workers allowing the

master to decode Ax (see Section 2.6 for more details.) In other words, the master can decode

Ax by downloading enough information from any d workers, d ∈ ∆. It remains to prove that d

is concentrated around its mean. Hence, restricting d to a set ∆ centered around its mean, leads

to a reduction in the master’s waiting time. Figure 3.3 depicts the concentration of d around

its average for a (100, 50, 1) system simulated on MATLAB. Figure 3.4, depicts the normalized

difference between the mean waiting time of universal Staircase codes and ∆-universal Staircase

codes for (n, n/2, 1) systems with λ = c = 1 and ∆ = {d∗ − 1, d∗, d∗ + 1}, where d∗ is the value

of d that minimizes our upper bound in (3.5).

50 60 70 80 90 100
0

100

200

300

400

500

600

700

Number of contacted workers d

O
cc
ur
en

ce

Figure 3.3: Histogram of the number of con-
tacted workers for an (n, k, z) = (100, 50, 1)
system simulated on MATLAB over 10000
iterations with λ = 1 and c = 1.

20 40 60 80 100
0%

1%

2%

3%

4%

5%

Number of workers n

N
or
m
al
iz
ed

di
ffe

re
nc

e

Figure 3.4: Normalized difference between the
mean waiting time of universal Staircase codes
and ∆-universal Staircase codes for systems
with rate k/n = 1/2, z = 1, λ = 1 and c = 1
and ∆ = {d∗ − 1, d∗, d∗ + 1}, where d∗ is the
value of d that minimizes (3.5).

60

Next, we prove that the number of workers d that minimize the waiting time is concentrated

around its average.

Lemma 3.6. For an (n, k, z) system, the probability distribution of the distance between d and

its average is

Pr{|d− E[d]| > t} ≤ 2e−2t2/n(n−k)2

.

We prove Lemma 3.6 by showing that the number of workers d that first finish the aggregate

computation is concentrated around its mean, using McDiarmid’s inequality. Recall that d :

Rn+ → {k, . . . , n} is a function of the compute times T1, . . . , Tn.

d(T1, T2, . . . , Tn) , arg min

{
k − z
i− z

T(i) : i ∈ {k, . . . , n}
}
.

Claim 3.7. The number of workers d that minimize the waiting time is a bounded difference

function of compute times with constants (n−k, . . . , n−k). That is, for each i ∈ [n] taking two

vectors t, ti ∈ Rn+ that differ only in one position, i.e., tj = tij for all j ∈ [n] \ {i} and ti 6= tii,

sup{|g(t)− g(ti)| : t, ti ∈ Rn+} ≤ n− k. (3.20)

The claim follows from the fact that d ∈ {k, . . . , n}. We prove the tightness of (3.20) using

the following example.

Example 3.3. Consider the following realizations (ordered for simplicity) of T1, . . . , Tn of an

(n, k, z) system, such that Tk = tk, Ti = ti < tk for i = 1, . . . , k − 1, and ti > (i−zk−z)tk for i =

k+1, . . . , n. The corresponding g(t1, . . . , tn) is equal to k, because tk < (k−zi−z)ti for all k < i ≤ n.

Next, consider the ordered variables (T1, . . . , T
′
n) where only Tn changes to t′n ∈ (tn−1, (

n−z
k−z)tk)

while the other Tj’s, j ∈ {1, . . . , n− 1}, remain unchanged, then g(t1, . . . , t
′
n) = n. We observe

that the set (tn−1, (
n−z
k−z)tk) is not always empty since the condition (k−z

n−z−1)Tn−1 > tk only

61

implies that (n−z−1
k−z)tk < Tn−1 < Tn < (n−zk−z)tk. Hence, there always exist a case where

sup
t1,...,tn∈Rn

t′i∈R

|g(t1, . . . , ti, . . . , tn)− g(t1, . . . , t
′
i, . . . , tn)| = n− k.

Therefore, we can apply the McDiarmid’s inequality to obtain the concentration bound on d.

0 20 40 60 80 100
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Number of workers n

Pe
rc
en
ta
ge

of
ti
m
e
sa
vi
ng

s

Simulation for k/n = 1/4

Bound in (3.21) for k/n = 1/4

Simulation for k/n = 1/2

Bound in (3.21) for k/n = 1/2

(a) Savings for λc = 100.

0 20 40 60 80 100
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Number of workers n
Pe

rc
en
ta
ge

of
ti
m
e
sa
vi
ng

s

Simulation for k/n = 1/4

Bound in (3.21) for k/n = 1/4

Simulation for k/n = 1/2

Bound in (3.21) for k/n = 1/2

(b) Savings for λc = 1.

0 20 40 60 80 100
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Number of workers n

Pe
rc
en
ta
ge

of
ti
m
e
sa
vi
ng

s

Simulation for k/n = 1/4

Simulation for k/n = 1/2

Bound in (3.21) for k/n = 1/4

Bound in (3.21) for k/n = 1/2

(c) Savings for λc = 0.001.

Figure 3.5: Savings for the fixed rate regime, k/n = 1/2 and 1/4. The lower bound on the
savings of Staircase codes obtained from (3.21) is compared to the numerical values obtained
by simulations. We consider systems with no colluding workers, i.e., z = 1, we fix λ = 1 and
vary c. For instance, for systems with rate k/n = 1/2 and λc = 100 Staircase codes can provide
up to 66% reduction in the mean waiting time.

62

3.7 Simulations

We use the normalized difference between the mean waiting time of Staircase codes and classical

secret sharing codes as a performance metric for Staircase codes. We refer to this metric as

the savings. Using the result of Theorem 3.1, we can get a lower and an upper bound on the

savings brought by Staircase codes. The lower bound on the savings is given in (3.21).

E[TSS]− E[TSC]

E[TSS]
≥ 1− min

d∈{k,...,n}

{
(k − z)(λc+Hn −Hn−d)

(d− z)(λc+Hn −Hn−k)

}
. (3.21)

To get an idea of the actual savings and the tightness of the bound in (3.21), we ran numerical

simulations of the mean waiting time induced by the use of Staircase codes. By looking at (3.21),

we notice that the bound depends on λ and c only through2 λc (our simulations show that the

actual savings also have a strong dependency on λc). Therefore, we consider three cases for λc :

large values of λc (λc = 100), medium values of λc (λc = 1) and small values of λc (λc = 0.001).

We ran the simulations for two regimes:

• Fixed rate k/n: the plots can be seen in Figure 3.5. We deduce from the plots that the

lower bound is tighter for large values of λc. Moreover, the savings increase with the

decrease of the rate k/n and the increase of λc. Note that for large values of λc, the lower

bound in (3.21) converges to 1− k/n.

• Fixed number of parities n− k: the plots can be seen in Figure 3.6. We deduce from the

plots that similarly to the fixed rate regime the lower bound is tight for large values of λc

and that the savings increase with the increase of the number of parities n− k and with

the increase of λc. However, we observe that the savings vanish asymptotically with n in

this regime.

2Note that for c = 0 we go to the exponential model and the savings would depend only on λ.

63

20 40 60 80 100
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Number of workers n

Pe
rc
en
ta
ge

of
ti
m
e
sa
vi
ng

s

Simulation for n− k = 10

Bound in (3.21) for n− k = 10
Simulation for n− k = 5

Bound in (3.21) for n− k = 5

(a) Savings for λc = 100.

10 20 30 40 50 60
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Number of workers n

Pe
rc
en
ta
ge

of
ti
m
e
sa
vi
ng

s

Simulation for n− k = 10

Bound in (3.21) for n− k = 10
Simulation for n− k = 5

Bound in (3.21) for n− k = 5

(b) Savings for λc = 1.

10 20 30 40 50 60
0%

10%

20%

30%

40%

50%

Number of workers n

Pe
rc
en
ta
ge

of
ti
m
e
sa
vi
ng

s

Simulation for n− k = 10
Simulation for n− k = 5

Bound in (3.21) for n− k = 10

Bound in (3.21) for n− k = 5

(c) Savings for λc = 0.001.

Figure 3.6: Savings for the fixed number of parities regime, n− k = 5 and 10. The lower bound
on the savings of Staircase codes obtained from (3.21) is compared to the numerical values
obtained by simulations. Similarly to Figure 3.5, we consider systems with z = 1, λ = 1 and
vary c.

3.8 Implementation and Validation of the Theoretical Model

We describe a representative sample of our implementation on Amazon EC2 clusters and discuss

our observations. In Section 3.8.1, we present traces for systems with fixed rate k/n = 1/2

(Figure 3.8). We noticed that the straggler behavior, and therefore the savings, can depend

on the date and time of the implementation. To highlight this dependence, we present in

Section 3.8.2 the traces of one system implemented at different date and times (Figure 3.9).

Discussion on the theoretical model: Before giving the details, we summarize our findings in

Figure 3.7 that lists all the parameters that we implemented and compares the savings obtained

64

0 5 10 15 20 25
0%

10%

20%

30%

40%

50%

60%

70%

Number of workers n

Pe
rc
en
ta
ge

of
ti
m
e
sa
vi
ng

s Amazon EC2
MATLAB
Lower bound (3.21)

(a) Systems with k = n/2 and z = 1 implemented
on Amazon EC2 instances. The data is a matrix
of size 387000× 250.

0 1 2 3 4
0%

10%

20%

30%

40%

50%

Experiment number

Pe
rc
en
ta
ge

of
ti
m
e
sa
vi
ng

s

MATLAB
Lower bound (3.21)
Amazon EC2

(b) (4, 2, 1) system implemented three different
times on Amazon EC2 instances. The data is a
matrix of size 42000× 250.

Figure 3.7: Comparison of the performance of Staircase codes on Amazon EC2 to the theoretical
bound in (3.21) and the value obtained by simulations assuming the shifted exponential model
in Section 3.2. To compute the bound, we measured the shift c∗ and the rate λ∗, respectively,
as the minimum response time and the inverse of the average response time at one worker over
1000 iterations.

on Amazon to the theoretical lower bound (3.21) and numerical savings obtained by simulations.

We observe that the savings of the system on EC2 can surpass the numerical values resulting

from our theoretical model in Section 3.2 for large sizes of the matrix A. However, for small

sizes of A, the savings in practice can be less.

The difference between the theoretical results and the implementations can be attributed

to several reasons. First, in our model we assume in (4.6) that the total service time of a task

does not change when divided into α sub-tasks, each requiring the same service time. Whereas,

our implementation on Amazon shows that the download time decreases faster than linearly

with the size of the sub-task for large sub-tasks. Second, for small sub-tasks, we noticed an

additional overhead of sending the results of multiple sub-tasks. This overhead becomes non-

negligible when the task is small. Third, we have assumed a homogeneous setting where all

workers have the same behavior which is not always the case in practice.

Despite these differences, our adopted theoretical model is more amenable to theoretical

analysis and provides insightful engineering guiding principles.

65

3.8.1 Implementation for systems with rate k/n = 1/2

We present the implementation of (4, 2, 1), (10, 5, 1) and (20, 10, 1) systems on Amazon EC2

clusters. We use M4.large EC2 instances [78] from Amazon web services (AWS) for our imple-

mentation. We assign the master’s job to an instance located in Virginia and the workers job

to instances located in Ohio. We plot in Figures 3.8a, 3.8b and 3.8c the empirical complemen-

tary CDF of the master’s waiting time for Staircase codes and classical secret sharing codes for

(4, 2, 1), (10, 5, 1) and (20, 10, 1) systems, respectively. The average savings brought by Staircase

codes are 59%, 42% and 32% for systems with n = 4, n = 10 and n = 20 workers, respectively.

These results are also summarized in Figure 3.7. Note that for this set of implementation, the

master’s data A is a matrix of size 378000 × 250 with entries generated uniformly at random

from {1, . . . , 255}. We run 1000 multiplications of A by a randomly generated vector x.

0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

avg = 0.5071

avg = 1.2409

Time t (sec)

P
r(

w
ai

tin
g

tim
e
≥
t) Staircase

Classical

(a) (n, k, z) = (4, 2, 1).

0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1

avg = 0.3087 avg = 0.5337

Time t (sec)

P
r(

w
ai

tin
g

tim
e
≥
t) Staircase

Classical

(b) (n, k, z) = (10, 5, 1).

0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

avg = 0.2663
avg = 0.3912

Time t (sec)

P
r(

w
ai

tin
g

tim
e
≥
t) Staircase

Classical

(c) (n, k, z) = (20, 10, 1).

Figure 3.8: Empirical complementary CDF of the master’s waiting time (and its average)
observed on Amazon EC2 clusters for systems with rate k/n = 1/2. The data matrix A is
a 378000× 250 matrix with entries generated uniformly at random from {1, . . . , 255}. Staircase
codes bring 59% reduction in the mean waiting time for n = 4. Those numbers were obtained
by repeating the multiplication process 1000 times.

3.8.2 Implementation on 4 worker instances at different times

We present the trace of a (4, 2, 1) system implemented at different dates and times on Amazon

EC2 clusters. We follow the same setting as before except that A is a 42000 × 250 matrix

generated using the LFW dataset of public faces3 [1]. We observe that the distribution of the

3To obtain the data matrix A, we convert the first 56 faces to 3 matrices each. Each matrix is a 250 × 250
matrix representing the color value of the pixels of each image in red, green and blue, respectively.

66

master’s waiting time and the savings brought by using Staircase codes depend on the date

and time of the implementation. This can be due to the varying state of the instances and the

varying volume of traffic at Amazon servers.

8 · 10−2 0.1 0.12 0.14 0.16 0.18 0.2
0

0.2

0.4

0.6

0.8

1

avg = 0.0914
avg = 0.1571

Time t (sec)

P
r(

w
ai

tin
g

tim
e
≥
t)

Staircase
Classical

(a) Tuesday 10-10-2017,
12:15 PM.

6 · 10−28 · 10−2 0.1 0.12 0.14 0.16 0.18
0

0.2

0.4

0.6

0.8

1

avg = 0.0725 avg = 0.1044

Time t (sec)
P

r(
w

ai
tin

g
tim

e
≥
t) Staircase

Classical

(b) Saturday 01-20-2018,
12:10 PM.

0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28
0

0.2

0.4

0.6

0.8

1

avg = 0.1456

avg = 0.1965

Time t (sec)

P
r(

w
ai

tin
g

tim
e
≥
t) Staircase

Classical

(c) Thursday 10-5-2017, 2:24
PM.

Figure 3.9: An (n, k, z) = (4, 2, 1) system implemented on Amazon EC2 cluster at different
times. The matrix A is a 42000× 250 matrix representing 56 images from the LFW dataset [1].
We observe that the distribution of the master’s waiting time and the savings brought by
using Staircase codes (42%, 30%, and 25% respectively) depend on the date and time of the
implementation.

3.9 Related Work

The problem of stragglers has been identified and studied by the distributed computing commu-

nity, see e.g., [5,39,76,79–93]. Recently, there has been a growing research interest in studying

codes for straggler mitigation and delay minimization in distributed systems with no privacy

constraints. The early body of work focused on minimizing latency of content download in

distributed storage systems, see e.g., [26, 94–96] and later the focus has shifted to using codes

for straggler mitigation in distributed computation.

In [6] Lee et al. studied the use of MDS codes for straggler mitigation in linear distributed

machine learning algorithms. Yu et al. [97] introduced a coding scheme called polynomial codes

to mitigate straggler in distributed matrix multiplication. Tandon et al. [10] introduced a

framework called gradient coding for straggler mitigation in distributed gradient-descent based

algorithms. In the same spirit of work, Halbawi et al. [11] proposed a gradient coding scheme

that decreases the decoding complexity at the master.

67

In [7], Dutta et al. proposed new coding techniques that reduce the computation time at

the workers side while accounting for stragglers. Moreover, coded computation was studied

for specific applications, such as coded convolution [98] and coded linear transformations [99].

In a related context, Li et al. [100, 101] showed a fundamental tradeoff between the workers’

computation load and the communication complexity in coded computation.

Secure multiparty computation [4] can be used in this setting to provide privacy. However,

the methods there are generic and not tailored to to matrix multiplication and therefore do not

have efficient communication cost and flexible straggler mitigation. The work that is closest to

ours is [18] that studies the problem of distributively multiplying two private matrices under

information theoretic privacy constraints using classical secret sharing codes. The problem of

distributively multiplying two private matrices and the problem of running private distributed

machine learning algorithm in the presence of stragglers has been further studied after the

appearance of the original manuscript of this work [27] in [19–21,102] and [103–105] respectively.

In general, privacy in distributed computation is studied separately, mostly in the computer

science community. Our work can also be related to the work on privacy-preserving algorithms,

e.g., [106–109]. However, the privacy constraint in this line of work is computational privacy,

and the proposed algorithms are not designed for straggler mitigation.

3.10 Conclusion and Open Problems

We consider the problem of private coded computation. We propose the use of a new family

of secret sharing codes called Staircase codes that reduces the delays caused by stragglers. We

show that Staircase codes always lead to smaller waiting time compared to classical secret

sharing codes, e.g., Shamir secret sharing codes. The reason behind reducing the delays is

that Staircase codes allow flexibility in the number of stragglers up to a given maximum, and

universally achieve the information theoretic limit on the download cost by the master, leading

to latency reduction. We consider the shifted exponential model for the workers’s response

time. In our analysis, we find upper and lower bounds on the master’s mean waiting time.

68

We characterize the distribution of the master’s waiting time, and its mean, for systems with

n = k− 1 and n = k− 2. For general (n, k, z) systems. Moreover, we derive an expression that

can give the exact distribution, and the mean, of the waiting time of the master. We supplement

our theoretical study with extensive implementation on Amazon EC2 clusters.

While Staircase codes reduce the master’s waiting time by minimizing the download cost,

they are not designed to minimize latency. The problem of designing codes that minimize the

latency remains open in general. Another open problem, which we leave for future work, is

when malicious workers corrupt the results sent to the master.

69

Chapter 4

Adaptive Private Coded

Computation

We consider the case where the workers are have different and time-varying resources, i.e., the

workers have different computation and communication specifications that can change with

time. Resources of the workers depend on many factors such as the geographic location of

the workers, network congestion, computation workload and worker battery life. Applications

include clusters with variability in the computation workload and network congestion at the

workers. Other applications include Internet of Things networks and Edge computing where

the workers also enjoy great variability due to the difference in the nature of the devices (phone,

tablet, sensor, etc).

Our goal is to design coding schemes that adapt to the variability of the resources at the

workers and reduce the waiting time at the master. Our key tool is the theory of coded compu-

tation, which advocates mixing data in computationally intensive tasks by employing erasure

codes and offloading these tasks to the workers. We develop a private and rateless adaptive

coded computation (PRAC) algorithm for private coded matrix-vector multiplication by taking

into account the privacy requirements and the heterogeneous and time-varying resources of the

70

workers. PRAC is based on Fountain codes coupled with an MDS code to ensure privacy. We

show that in this setting PRAC outperforms known secure coded computation methods. We

provide theoretical guarantees on the performance of PRAC and its comparison to baselines.

Moreover, we supplement our theoretical results with extensive simulations and implementation

on Android devices.

4.1 Introduction

Edge computing is emerging as a new paradigm to allow processing data near the edge of the

network, where the data is typically generated and collected. This enables computation at the

edge in applications such as Internet of Things (IoT), in which an increasing number of devices

(sensors, cameras, health monitoring devices, etc.) collect data that needs to be processed

through computationally intensive algorithms with stringent reliability, security and latency

constraints.

One of the promising solutions to handle computationally intensive tasks is computation

offloading, which advocates offloading tasks to remote servers or cloud. Yet, offloading tasks to

remote servers or cloud could be luxury that cannot be afforded by most of the edge applications,

where connectivity to remote servers can be lost or compromised, which makes edge computing

crucial.

Edge computing advocates that computationally intensive tasks in a device (master) could

be offloaded to other edge or end devices (workers) in close proximity. However, offloading tasks

to other devices leaves the IoT and the applications it is supporting at the complete mercy of

an attacker. Furthermore, exploiting the potential of edge computing is challenging mainly

due to the heterogeneous and time-varying nature of the devices at the edge. Thus, our goal

is to develop a private, dynamic, adaptive, and heterogeneity-aware cooperative computation

framework that provides both privacy and computation efficiency guarantees. Note that the

application of this work can be extended to cloud computing at remote data-centers. However,

we focus on edge computing as heterogeneity and time-varying resources are more prevalent at

71

the edge as compared to data-centers.

Our key tool is the theory of coded computation, which advocates mixing data in computa-

tionally intensive tasks by employing erasure codes and offloading these tasks to other devices

for computation [6,7,10,11,27,97–101,110–112]. The following canonical example demonstrates

the effectiveness of coded computation.

Example 4.1. Consider the setup where a master device wishes to offload a task to 3 workers.

The master has a large data matrix A and wants to compute a matrix vector product Ax.

The master device divides the matrix A row-wise equally into two smaller matrices A1 and A2,

which are then encoded using a (3, 2) Maximum Distance Separable (MDS) code to give S1 = A1,

S2 = A2 and S3 = A1 + A2. The master sends each “share” Si to worker i, i ∈ {1, 2, 3}. Also,

the master sends x to the workers and ask them to compute Six, i ∈ {1, 2, 3}. When the master

receives the computed values (i.e., Six) from at least two out of three workers, it can decode its

desired task, which is the computation of Ax. The power of coded computations is that it makes

S3 = A1 +A2 act as a “joker" redundant task that can replace any of the other two tasks if they

end up straggling or failing.

The above example demonstrates the benefit of coding for edge computing. However, the

very nature of task offloading from a master to worker devices makes the computation frame-

work vulnerable to attacks. One of the attacks, which is also the focus of this Chapter, is

eavesdropper adversary, where one or more workers can behave as an eavesdropper and can

spy on the coded data sent to these devices for computations.1 For example, S3 = A1 + A2

in Example 4.1 can be processed and spied by worker 3. Even though A1 + A2 is coded, the

attacker can infer some information from this coded task. Privacy against eavesdropper attacks

is extremely important in edge computing [113–115]. Thus, it is crucial to develop a private

coded computation mechanism against eavesdropper adversary who can gain access to offloaded

tasks.

1Note that there are other types of attacks; for example Byzantine adversary, which are out of scope of this
work.

72

Time Worker 1 Worker 2 Worker 3
1 R1 A1 + A3 +R1 A3 +R1

2 R2

3 A2 + A3 +R2

4 A2 +R2

Table 4.1: Example of PRAC operation in heterogeneous and time-varying setup for n = 3
workers.

We develop a private and rateless adaptive coded computation (PRAC) mechanism. PRAC

is (i) private as it is secure against eavesdropper adversary, (ii) rateless, because it uses Fountain

codes [29–31] instead of Maximum Distance Separable (MDS) codes [116,117], and (iii) adaptive

as the master device offloads tasks to workers by taking into account their heterogeneous and

time-varying resources. Next, we illustrate the main idea of PRAC through an illustrative

example.

Example 4.2. We consider the same setup as in Example 4.1, where a master device offloads

tasks to 3 workers. The master has a large data matrix A and wants to compute matrix vector

product Ax. The master divides the matrix A row-wise into 3 sub-matrices A1, A2, A3; and

encodes these matrices using a Fountain code2 [29–31]. An example set of coded packets is

A2, A3, A1 + A3, and A2 + A3. However, prior to sending a coded packet to a worker, the

master generates a random key matrix R with the same dimensions as Ai and with entries

drawn uniformly at random from the same alphabet as the entries of A. The key matrix is

added to the coded packets to provide privacy as shown in Table 4.1. In particular, a key matrix

R1 is created at the start of time slot 1, combined with A1 + A3 and A3, and transmitted to

workers 2 and 3, respectively. R1 is also transmitted to worker 1 in order to obtain R1x that

will help the master in the decoding process. The computation of (A1 +A3 +R1)x is completed

at the end of time slot 1. Thus, at that time slot the master generates a new matrix, R2, and

sends it to worker 2. At the end of time slot 2, worker 1 finishes its computation, therefore the

master adds R2 to A2 + A3 and sends it to worker 1. A similar process is repeated at the end

of time slot 3. Now the master waits for worker 2 to return R2x and for any other worker to

2Fountain codes are desirable here for two properties: (i) they provide a fluid abstraction of the coded packets
so the master can always decode with high probability as long as it collects enough packets; (ii) They have low
decoding complexity.

73

return its uncompleted task in order to decode Ax. Thanks to using key matrices R1 and R2,

and assuming that workers do not collude, privacy is guaranteed. On a high level, privacy is

guaranteed because the observation of the workers is statistically independent from the data A.

This example shows that PRAC can take advantage of coding for computation, and provide

privacy.

Contributions. We design PRAC for heterogeneous and time-varying private coded compu-

tation with colluding workers. In particular, PRAC codes sub-tasks using Fountain codes, and

determines how many coded packets and keys each worker should compute dynamically over

time. We provide theoretical analysis of PRAC and show that it (i) guarantees privacy con-

ditions, (ii) uses minimum number of keys to satisfy privacy requirements, and (iii) maintains

the desired rateless property of non-private Fountain codes. Furthermore, we provide a closed

form task completion delay analysis of PRAC. Finally, we evaluate the performance of PRAC

via simulations and implementation on Android devices.

The use of Fountain codes in encoding the sub-tasks provides PRAC flexibility in the number

of stragglers and on the computing capacity of workers, reflected by the number of sub-tasks

assigned to each worker. In contrast, existing solutions for private coded computation require

the master to set a threshold on the number of stragglers that it can tolerate and pre-assign

the sub-tasks to the workers based on this threshold.

Organization. The structure of the rest of this Chapter is as follows. We start with presenting

the system model in Section 4.2. Section 4.3 presents the design of private and rateless adaptive

coded computation (PRAC). We characterize and analyze PRAC in Section 4.4. We present

evaluation results in section 4.5. Section 5.8 presents related work. Section 4.7 concludes the

Chapter.

4.2 System Model

Setup. We consider a master/workers setup at the edge of the network, where the master device

74

M offloads its computationally intensive tasks to workers Wi, i ∈ N , (where |N | = n) via device-

to-device (D2D) links such as Wi-Fi Direct and/or Bluetooth. The master device divides a task

into smaller sub-tasks, and offloads them to workers that process these sub-tasks in parallel.

Task Model. We focus on the computation of linear functions, i.e., matrix-vector multiplica-

tion. We suppose the master wants to compute the matrix vector product Ax, where A ∈ Fm×`q

can be thought of as the data matrix and x ∈ F`q can be thought of as an attribute vector. We

assume that the entries of A and x are drawn independently and uniformly at random3 from Fq.

The motivation stems from machine learning applications where computing linear functions is

a building block of several iterative algorithms [118, 119]. For instance, the main computation

of a gradient descent algorithm with squared error loss function is

x+ = x− γAT (Ax− y), (4.1)

where x is the value of the attribute vector at a given iteration, x+ is the updated value of x at

this iteration and the learning rate γ is a parameter of the algorithm. Equation (4.1) consists

of computing two linear functions Ax and ATw , AT (Ax− y).

Worker and Attack Model. The workers incur random delays while executing the task as-

signed to them by the master device. The workers have different computation and communi-

cation specifications resulting in a heterogeneous environment which includes workers that are

significantly slower than others, known as stragglers. Moreover, the workers cannot be trusted

with the master’s data. We consider eavesdropper adversaries, where one or more of workers

can be eavesdroppers and can spy on the coded data sent to these devices for computations. We

assume that up to z, z < n, workers can collude, i.e., z workers can share the data they received

from the master in order to obtain information about A. The parameter z can be chosen based

on the desired privacy level; a larger z means a higher privacy level and vice versa. One would

want to set z to the largest possible value for maximum, z = n− 1 security purposes. However,

3We abuse notation and denote both the random matrix representing the data and its realization by A. We
do the same for x.

75

this has the drawback of increasing the complexity and the runtime of the algorithm. In our

setup we assume that z is a fixed and given system parameter.

Coding & Secret Keys. The matrix A can be divided into b row blocks (we assume that b

divides m, otherwise all-zero rows can be added to the matrix to satisfy this property) denoted

by Ai, i = 1, . . . , b. The master applies Fountain coding [29–31] across row blocks to create in-

formation packets Uj ,
∑m
i=1 ci,jAi, j = 1, 2, . . . , where ci,j ∈ {0, 1}. Note that an information

packet is a matrix of dimension m/b× `, i.e., Uj ∈ Fm/b×`q . Such rateless coding is compatible

with our goal to create adaptive coded cooperation computation framework.

In order to maintain privacy of the data, the master device generates random matrices

Ri of dimension m/b × ` called keys. The entries of the Ri matrices are drawn uniformly at

random from the same field as the entries of A. Each information packet Uj is padded with a

linear combination of z keys fj(Ri,1, . . . , Ri,z) to create a secure packet Sj ∈ Fm/b×`q defined as

Sj , Uj + fj(Ri,1, . . . , Ri,z).

The master sends x to all the workers, then it sends the keys and the Sj ’s to the workers

according to our PRAC scheme described later. Each worker multiplies the received packet by

x and sends the result back to the master. Since the encoding is rateless, the master keeps

sending packets to the workers until it can decode Ax. The master then sends a stop message

to all the workers.

Privacy Conditions. Our primary requirement is that any collection of z (or less) workers

will not be able to obtain any information about A, in an information theoretic sense.

In particular, let Pi, i = 1 . . . , n, denote the collection of packets sent to worker Wi. For any

set B ⊆ {1, . . . , n}, let PB , {Pi, i ∈ B} denote the collection of packets given to worker Wi

for all i ∈ B. Let A denote the random variable representing the matrix A and PB denotes the

collection of random variables representing the packets given to worker Wi for all i ∈ B. The

76

Symbol Meaning Symbol Meaning
M master R random matrix
Wi worker i U Fountain coded packet of Ai’s
n number of workers S secure Fountain coded packet
z number of colluding workers Ti time to compute a packet at Wi
A m× ` data matrix T(d) dth order statistic of Ti’s
Ai ith row block of data matrix A T time spent by M to decode Ax
m number of rows in A RTTi time to communicate a packet at Wi
b number of row blocks in A τt,i computation time of the tth packet at Wi
x `× 1 attribute vector ε overhead of Fountain codes
Pi collection of all packets sent to Wi Pt,i tth packet sent to Wi

Table 4.2: Summary of notations for this Chapter.

privacy requirement4 can be expressed as

H(A|PZ) = H(A), ∀Z ⊆ {1, . . . , n} s.t. |Z| ≤ z. (4.2)

H(A) denotes the entropy, or uncertainty, about the random variable A and H(A|PZ) denotes

the uncertainty about the random variable A after observing the collection of packets PZ .

Delay Model. Each packet transmitted from the master to a worker Wi, i = 1, 2, ..., n,

experiences the following delays: (i) transmission delay for sending the packet from the master

to the worker, (ii) computation delay for computing the multiplication of the packet by the

vector x, and (iii) transmission delay for sending the computed packet from worker Wi back to

the master. We denote by τt,i the computation time of the tth packet at worker Wi and RTTi

denotes the average round-trip time spent to send and receive a packet from worker Wi. The

time spent by the master is equal to the time taken by the (z + 1)st fastest worker to finish its

assigned tasks.

4In some cases the vector x may contain information about A and therefore must not be revealed to the
workers. We explain in Appendix A how to generalize our scheme to account for such cases.

77

4.3 Design of PRAC

4.3.1 Overview

We present the detailed explanation of PRAC. Let Pt,i ∈ Fm/b×`q be the tth packet sent to

worker Wi. This packet can be either a key or a secure packet. For each value of t, the master

sends z keys denoted by Rt,1, . . . , Rt,z to z different workers and up to n − z secure packets

St,1, . . . , St,n−z to the remaining workers. The master needs the results of b + ε information

packets, i.e., Ut,ix, to decode the final result Ax, where ε is the overhead required by Fountain

coding5. To obtain the results of b + ε information packets, the master needs the results of

b + ε secure packets, St,ix = (Ui,j + fj(Rt,i, . . . , Rt,z))x, together with all the corresponding6

Rt,ix, i = 1, . . . , z. Therefore, only the results of the St,ix for which all the computed keys

Rt,ix, i = 1, ..., z, are received by the master can account for the total of b + ε information

packets.

4.3.2 Dynamic rate adaptation

The dynamic rate adaptation part of PRAC is based on [110]. In particular, the master of-

floads coded packets gradually to workers and receives two acknowledgements (ACKs) for each

transmitted packet; one confirming the receipt of the packet by the worker, and the second

one (piggybacked to the computed packet) showing that the packet is computed by the worker.

Then, based on the frequency of the received ACKs, the master decides to transmit more/less

coded packets to that worker. In particular, each packet Pt,i is transmitted to each worker Wi

before or right after the computed packet Pt−1,ix is received at the master. For this purpose,

the average per packet computing time E[τt,i] is calculated for each worker Wi dynamically based

on the previously received ACKs. Each packet Pt,i is transmitted after waiting E[τt,i] from the

time Pt−1,i is sent or right after packet Pt−1,ix is received at the master, thus reducing the idle

5The overhead required by Fountain coding is typically as low as 5% [31], i.e., ε = 0.05b

6Recall that fj(Rt,1, . . . , Rt,z) is a linear function, thus it is easy to extract (Rt,i)x, i = 1, ..., z, from
(fj(Rt,1, . . . , Rt,z))x.

78

Time Worker 1 Worker 2 Worker 3 Worker 4
1 R1,1 R1,2 A4 +R1,1 +R1,2 A3 + A4 + A6 +R1,1 + 2R1,2

2 R2,1

3 R2,2

4 A3 +R2,1 +R2,2 A4 + A5 +R2,1 + 2R2,2

5 R3,1

6 A2 +R3,1 +R3,2 R3,2

7 R4,1 A1 +R3,1 + 2R3,2

8 R4,2 A2 + A3 +R4,1 +R4,2

Table 4.3: Depiction of PRAC in the presence of stragglers. The master keeps generating
packets using Fountain codes until it can decode Ax. The master estimates the average task
completion time of each worker and sends a new packet to avoid idle time. Each new packet
sent to a worker must be secured with a new random key. The master can decode A1x, . . . , A6x
after receiving all the packets not having R4,1 or R4,2 in them.

time at the workers. This policy is shown to approach the optimal task completion delay and

maximizes the workers’ efficiency and is shown to improve task completion time significantly

compared with the literature [110].

4.3.3 Coding

We explain the coding scheme used in PRAC. We start with an example to build an intuition

and illustrate the scheme before going into details.

Example 4.3. Assume there are n = 4 workers out of which any z = 2 can collude. Let A and

x be the data owned by the master and the vector to be multiplied by A, respectively. The master

sends x to all the workers. For the sake of simplicity, assume A can be divided into b = 6 row

blocks, i.e., A =
[
AT1 AT2 . . . AT6

]T
. The master encodes the Ai’s using Fountain code. We

denote by round the event when the master sends a new packet to a worker. For example, we

say that worker 1 is at round 3 if it has received 3 packets so far. For every round t, the master

generates z = 2 random matrices Rt,1, Rt,2 (with the same size as A1) and encodes them using

an (n, z) = (4, 2) systematic maximum distance separable (MDS) code by multiplying Rt,1, Rt,2

by a generator matrix G as follows

G

Rt,1
Rt,2

 ,

1 0

0 1

1 1

1 2

Rt,1
Rt,2

 . (4.3)

79

This results in the encoded matrices of Rt,1, Rt,2, Rt,1 + Rt,2, and Rt,1 + 2Rt,2. Now let us

assume that workers can be stragglers. At the beginning, the master initializes all the workers

at round 1. Afterwards, when a worker Wi finishes its task, the master checks how many packets

this worker has received so far and how many other workers are at least at this round. If this

worker Wi is the first or second to reach round t, the master generates Rt,1 or Rt,2, respectively,

and sends it to Wi. Otherwise, if Wi is the jth worker (j > 2) to reach round t, the master

multiplies
[
Rt,1 Rt,2

]T
by the jth row of G, adds it to a generated Fountain coded packet, and

sends it to Wi. The master keeps sending packets to the workers until it can decode Ax. We

illustrate the idea in Table 4.3.

We now explain the details of PRAC in the presence of z colluding workers.

1. Initialization: The master divides A into b row blocks A1, . . . , Ab and sends the vector x

to the workers. Let G ∈ Fn×zq , q > n, be the generator matrix of an (n, z) systematic

MDS code. For example one may use systematic Reed-Solomon codes that use Vander-

monde matrix as generator matrix, see for example [120]. The master generates z random

matrices R1,1, . . . , R1,z and encodes them using G. Each coded key can be denoted by

giR1 where gi is the ith row of G and Rt ,
[
RTt,1 . . . RTt,z

]T
. The master sends the z

keys R1,1, . . . , R1,z to the first z workers, generates n − z Fountain coded packets of the

Ai’s, adds to each packet an encoded random key giR1, i = z + 1, . . . n, and sends them

to the remaining n− z workers.

2. Encoding and adaptivity: When the master wants to send a new packet to a worker (noting

that a packet Pt,i is transmitted to worker Wi before, or right after, the computed packet

Pt−1,ix is received at the master according to the strategy described in Section 4.3.2), it

checks at which round this worker is, i.e., how many packets this worker has received so

far, and checks how many other workers are at least at this round. Assume worker Wi is at

round t and j − 1 other workers are at least at this round. If j ≤ z, the master generates

and sends Rt,j to the worker. However, if j > z the master generates a Fountain coded

packet of the Ai’s (e.g., A1 +A2), adds to it gjRt and sends the packet (A1 +A2 +gjRt)

80

to the worker. Each worker computes the multiplication of the received packet by the

vector x and sends the result to the master.

3. Decoding and speed: Let pi denote the number of packets sent to worker Wi. We define

pmax , max
i
pi such that at the end of the process the master has Rt,ix for all t =

1, . . . , pmax and all i = 1, . . . , z. The master can therefore subtract Rt,i, t = 1, . . . , pmax

and i = 1, . . . , z, from all received secure information packets, and thus can decode the

Ai’s using the Fountain code decoding process. The number of secure packets that can be

used to decode the Ai’s is dictated by the (z+1)st fastest worker, i.e., the master can only

use the results of secure information packets computed at a given round if at least z + 1

workers have completed that round. If for example the z fastest workers have completed

round 100 and the (z + 1)st fastest worker has completed round 20, the master can only

use the packets belonging to the first 20 rounds. The reason is that the master needs all

the keys corresponding to a given round in order to use the secure information packet

for decoding. In Lemma 4.4 we prove that this scheme is optimal, i.e., in private coded

computation the master cannot use the packets computed at rounds finished by less than

z + 1 workers irrespective of the coding scheme.

4.4 Performance Analysis of PRAC

4.4.1 Privacy

In this section, we provide theoretical analysis of PRAC by particularly focusing on its privacy

properties.

Theorem 4.1. PRAC is a rateless real-time adaptive coded computation scheme that allows

a master device to run distributed linear computation on private data A via n workers while

satisfying the privacy constraint given in (4.2) for a given z < n.

Proof. Since the random keys are generated independently at each round, it is sufficient to

81

study the privacy of the data on one round and the privacy generalizes to the whole algorithm.

Let t be a given round of PRAC. We show that for any subset Z ⊂ {1, . . . , n}, |Z| = z, the

collection of packets PZ , {Pt,i, i ∈ Z} sent at round t reveals no information about the data

A as given in (4.2), i.e., H(A) = H(A|PZ). Let R denote the random variable representing all

the keys generated at round t, then it is enough to show that H(R|A, PZ) = 0 as detailed in

Appendix C.1 (a similar proof is given in Lemma 2.4). Therefore, we need to show that given A

as side information, any z workers can decode the random keys Rt,1, . . . , Rt,z. Without loss of

generality assume the workers are ordered from fastest to slowest, i.e., worker W1 is the fastest

at the considered round t. Since the master sends z random keys to the fastest z workers, then

Pt,i = Rt,i, i = 1, . . . , z. The remaining n − z packets are secure information packets sent to

the remaining n − z workers, i.e., Pt,i = St,i = Ut,i + f(Rt,1, . . . , Rt,z), where Ut,i is a linear

combination of row blocks of A and f(Rt,1, . . . , Rt,z) is a linear combination of the random keys

generated at round t. Given the data A as side information, any collection of z packets can be

expressed as z codewords of the (n, z) MDS code encoding the random keys. Thus, given the

matrix A, any collection of z packets is enough to decode all the keys and H(R|A, PZ) = 0 which

concludes the proof.

Remark 4.2. PRAC requires the master to wait for the (z + 1)st fastest worker in order to be

able to decode Ax. We show in Lemma 4.4 that this limitation is a byproduct of all private

coded computation schemes.

Remark 4.3. PRAC uses the minimum number of keys required to guarantee the privacy con-

straints. At each round PRAC uses exactly z random keys which is the minimum amount of

required keys (c.f. Equation (C.5) in Appendix C.1).

Lemma 4.4. Any private coded computation scheme for distributed linear computation limits

the master to the speed of the (z + 1)st fastest worker.

Proof. We prove the lemma by contradiction. Assume that there exists a private coded com-

putation scheme for distributed linear computation that is secure against z colluding workers

82

and allows the master to decode Ax using the help of the fastest z workers. Without loss of

generality, assume that the workers are ordered from the fastest to the slowest, i.e., worker W1

is the fastest and worker Wn is the slowest. The previous assumption implies that the results

sent from the first z workers contain information about Ax, otherwise the master would have

to wait for at least the (z+ 1)st fastest worker to decode Ax. By linearity of the multiplication

Ax, decoding information about Ax from the results of z workers implies decoding information

about A from the packets sent to those z workers. Hence, there exists a set Z ⊂ {1, . . . , n} of z

workers for which H(A|PZ) 6= 0, where PZ denotes the random variable representing the tasks

allocated to those z workers, hence violating the privacy constraint. Therefore, any private

coded computation scheme for linear computation limits the master to the speed of the (z+1)st

fastest worker in order to decode the wanted result.

4.4.2 Task completion delay

In this section, we characterize the task completion delay of PRAC and compare it with Staircase

codes [27] (explained in Chapter 2 and Chapter 3), which are secure against eavesdropping

attacks in a coded computation setup with homogeneous resources. First, we start with task

completion delay characterization of PRAC.

Theorem 4.5. Let b be the number of row blocks in A, let τt,i denote the computation time of

the tth packet at worker Wi and let RTTi denote the average round-trip time spent to send and

receive a packet from worker Wi. The task completion time of PRAC is approximated as

TPRAC ≈ max
i∈{1,...,n}

{RTTi}+
b+ ε∑n

i=z+1 1/E[τt,i]
, (4.4)

≈ b+ ε∑n
i=z+1 1/E[τt,i]

, (4.5)

where Wi’s are ordered indices of the workers from fastest to slowest, i.e., W1 = arg mini E[τt,i].

Proof. The proof of Theorem 4.5 is given in Appendix C.2 .

83

Now that we characterized the task completion delay of PRAC, we can compare it with

the state-of-the-art. Private coded computation schemes that exist in the literature usually use

static task allocation, where tasks are assigned to workers a priori.

The most recent work in the area is Staircase codes, which is shown to outperform all

existing schemes that use threshold secret sharing [27]. However, Staircase codes are static;

they allocate fixed amount of tasks to workers a priori. Thus, Staircase codes cannot leverage

the heterogeneity of the system, neither can it adapt to a system that is changing in time. On

the other hand, our solution PRAC adaptively offloads tasks to workers by taking into account

the heterogeneity and time-varying nature of resources at workers. Therefore, we restrict our

focus on comparing PRAC to Staircase codes.

Staircase codes assigns a task of size b/(k−z) row blocks to each worker.7 Let Ti be the time

spent at worker Wi to compute the whole assigned task. Denote by T(i) the ith order statistic

of the Ti’s and by TSC(n, k, z) the task completion time, i.e., time the master waits until it can

decode Ax, when using Staircase codes. In order to decode Ax the master needs to receive a

fraction equal to (k − z)/(d− z) of the task assigned to each worker from any d workers where

k ≤ d ≤ n. From (4.6) the task completion time of the master can be expressed as

TSC(n, k, z) = min
d∈{k,...,n}

{
k − z
d− z

T(d)

}
. (4.6)

Theorem 4.6. The gap between the completion time of PRAC and coded computation using

staircase codes is lower bounded by:

E[TSC]− E [TPRAC] ≥ bx− εy
y(x+ y)

, (4.7)

where x =
n− d∗

E[τt,n]
, y =

d∗ − z
E[τt,d∗]

and d∗ is the value of d that minimizes equation (4.6).

Proof. The proof of Theorem 4.6 is given in Appendix C.3.

7Note that in addition to n and z, all threshold secret sharing based schemes require a parameter k, z < k < n,
which is the minimum number of non stragglers that the master has to wait for before decoding Ax.

84

Theorem 4.6 shows that the lower bound on the gap between secure coded computation

using Staircase codes and PRAC is in the order of number of row blocks of A. Hence, the gap

between secure coded computation using Staircase codes and PRAC is linearly increasing with

the number of row blocks of A. Note that, ε, the required overhead by fountain coding used in

PRAC, becomes negligible as b increases.

Thus, PRAC outperforms secure coded computation using Staircase codes in heterogeneous

systems. The more heterogeneous the workers are, the more improvement is obtained by using

PRAC. However, Staircase codes can slightly outperform PRAC in the case where the slowest

n − z workers are homogeneous, i.e., have similar compute service times Ti. In this case both

algorithms are restricted to the slowest n − z workers (see Lemma 4.4), but PRAC incurs an

ε overhead of tasks (due to using Fountain codes) which is not needed for Staircase codes.

In particular, from (C.9) and (4.6), when the n − z slowest workers are homogeneous, the

task completion time of PRAC and Staircase codes are equal to b+ε
n−zE[τt,n] and b

n−zE[τt,n],

respectively.

4.5 Performance Evaluation

4.5.1 Simulations

In this section, we present simulations run on MATLAB, and compare PRAC with the following

baselines: (i) Staircase codes [27], (ii) C3P [110] (which is not secure as it is not designed to

be secure), and (iii) Genie C3P (GC3P) that extends C3P by assuming a knowledge of the

identity of the eavesdroppers and ignoring them. We note that GC3P serves as a lower bound

on private coded computation schemes for heterogeneous systems8 for the following reason:

for a given number of z colluding workers the ideal coded computation scheme knows which

workers are eavesdroppers and ignores them to use the remaining workers without need of

randomness. If the identity of the colluding workers is unknown, coded computation schemes

8If the system is homogeneous Staircase codes outperform GC3P, because pre-allocating tasks to the workers
avoids the overhead needed by Fountain codes.

85

require randomness and become limited to the (z + 1)st fastest worker (Lemma 4.4). GC3P

and other coded computation schemes have similar performance if the z colluding workers are

the fastest workers. If the z colluding workers are the slowest, then GC3P outperforms any

coded computation scheme. Note that our solution PRAC considers the scenario of unknown

eavesdroppers. Comparing PRAC with G3CP shows how good PRAC is as compared to the best

possible solution for heterogeneous systems. In terms of comparing PRAC to solutions designed

for the homogeneous setting, we restrict our attention to Staircase codes which are a class of

secret sharing schemes that enjoys a flexibility in the number of workers needed to decode the

matrix-vector multiplication. We showed in Chapter 3 that Staircase codes outperform any

coded computation scheme that requires a threshold on the number of stragglers.

In our simulations, we model the computation time of each worker Wi by an independent

shifted exponential random variable with rate λi and shift ci, i.e., F (Ti = τ) = 1− exp(−λi(τ −

ci)). We take ci = 1/λi and consider three different scenarios for choosing the values of λi’s for

the workers as follows:

• Scenario 1: we assign λi = 3 for half of the workers, then we assign λi = 1 for one quarter

of the workers and assign λi = 9 for the remaining workers.

• Scenario 2: we assign λi = 1 for one third of the workers, the second third have λi = 3

and the remaining workers have λi = 9.

• Scenario 3: we draw the λi’s independently and uniformly at random from the interval

[0.5, 9].

Recall that Staircase codes require an extra parameter k to determine the threshold on the

number of stragglers. Therefore, when running Staircase codes, we choose the parameter k that

minimizes the task completion time for the desired n and z. We do so by simulating Staircase

codes for all possible values of k, z ≤ k ≤ n, and choosing the one with the minimum completion

time.

We take b = m, i.e., each row block is simply a row of A. The size of each element of A and

86

vector x are assumed to be 1 Byte (or 8 bits). Therefore, the size of each transmitted packet

Pt,i is 8` bits. For the simulation results, we assume that the matrix A is a square matrix, i.e.,

` = m. We take m = 1000, unless explicitly stated otherwise. Ci denotes the average channel

capacity of each worker Wi and is selected uniformly from the interval [10, 20] Mbps. The rate

of sending a packet to worker Wi is sampled from a Poisson distribution with mean Ci.

In Figure 4.1 we show the effect of the number of rows m on the completion time at the

master. We fix the number of workers to 50 and the number of colluding workers to 13 and

plot the completion time for PRAC, C3P, GC3P and Staircase codes. Notice that PRAC and

Staircase codes have close completion time in scenario 1 (Figure 4.3a) and this completion time

is far from that of C3P. The reason is that in this scenario we pick exactly 13 workers to be

fast (λi = 9) and the others to be significantly slower. Since PRAC assigns keys to the fastest z

workers, the completion time is dictated by the slow workers. To compare PRAC with Staircase

codes notice that the majority of the remaining workers have λi = 3 therefore pre-allocating

equal tasks to the workers is close to adaptively allocating the tasks.

In terms of lower bound on PRAC, observe that when the fastest workers are assumed to

be adversarial, GC3P and PRAC have very similar task completion time. However, when the

slowest workers are assumed to be adversarial the completion of GC3P is very close to C3P

and far from PRAC. This observation is in accordance with Lemma 2. In scenarios 2 and 3

we pick the adversarial workers uniformly at random and observe that the completion time of

PRAC becomes closer to GC3P when the workers are more heterogeneous. For instance, in

scenario 3, GC3P and PRAC have closer performance when the workers’ computing times are

chosen uniformly at random from the interval [0.5, 9].

In Figure 4.2, we plot the task completion time as a function of the number of workers n for

a fixed number of rows m = 1000 and λi’s assigned according to scenario 1. In Figure 4.2(a), we

change the number of workers from 10 to 100 and keep the ratio z/n = 1/4 fixed. We notice that

with the increase of n the completion time of PRAC becomes closer to GC3P. In Figure 4.2(b),

we change the number of workers from 20 to 100 and keep z = 13 fixed. We notice that with

87

0 100 200 300 400 500 600 700 800 900 1,000
0

5

10

15

20

25

30

35

Number of rows in A

Av
er
ag

e
co
m
pl
et
io
n
ti
m
e

Staircase codes
PRAC
GC3P 1
GC3P 2
C3P

(a) Scenario 1 with the fastest 13 workers as eavesdropper for GC3P 1 and the
slowest workers as eavesdropper for GC3P 2.

0 200 400 600 800 1,000
0

5

10

15

20

25

30

35

Number of rows in A

Av
er
ag

e
co
m
pl
et
io
n
ti
m
e

Staircase codes
PRAC
GC3P
C3P

(b) Scenario 2 with 13 workers picked at random
to be eavesdroppers.

0 200 400 600 800 1,000
0

5

10

15

20

25

30

35

Number of rows in A

Av
er
ag

e
co
m
pl
et
io
n
ti
m
e

Staircase codes
PRAC
GC3P
C3P

(c) Scenario 3 with 13 workers picked at random
to be eavesdroppers.

Figure 4.1: Comparison between PRAC and the baselines Staircase codes, GC3P, and C3P in
different scenarios with n = 50 workers and z = 13 colluding workres for different values of the
number of rows m. For each value of m we run 100 experiments and average the results. When
the eavesdropper are chosen to be the fastest workers, PRAC has very similar performance to
GC3P. When the eavesdroppers are picked randomly, the performance of PRAC becomes closer
to this of GC3P when the non adversarial workers are more heterogeneous.

88

the increase of n, the effect of the eavesdropper is amortized and the completion time of PRAC

becomes closer to C3P. In this setting, PRAC always outperforms Staircase codes.

20 40 60 80 100
0

50

100

150

200

250

300

Number of workers n

Av
er
ag

e
co
m
pl
et
io
n
ti
m
e

Staircase codes
PRAC
GC3P
C3P

(a) Task completion time as a function of the number of workers with z = n/4.

20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

Number of workers n

Av
er
ag
e
co
m
pl
et
io
n
ti
m
e

Staircase codes
PRAC
GC3P
C3P

(b) Task completion time as a function of the number of workers with z = 13.

Figure 4.2: Comparison between PRAC, Staircase codes and GC3P in scenario 1 for different
values of the number workers and number of colluding workers. We fix the number of rows to
m = 1000. For each value of the x-axis we run 100 experiments and average the results. We
observe that the difference between the completion time of PRAC and this of GC3P is large for
small values of n− z and decreases with the increase of n− z.

In Figure 4.3, we plot the task completion time as a function of the number of colluding

89

workers. In Figure 4.3(a), we choose the computation time at the workers according to sce-

nario 1. We change z from 1 to 40 and observe that the completion time of PRAC deviates

from that of GC3P with the increase of z. More importantly, we observe two inflection points

of the average completion time of PRAC at z = 13 and z = 37. Those inflection points are due

to the fact that we have 12 fast workers (λ = 9) and 25 workers with medium speed (λ = 3)

in the system. For z > 36, the completion time of Staircase codes becomes less than that of

PRAC because the 14 slowest workers are homogeneous. Therefore, pre-allocating the tasks is

better than using Fountain codes and paying for the overhead of computations. To show that

Staircase codes always outperforms PRAC when the slowest n−z workers are homogeneous, we

run a simulation in which we divide the workers into three clusters. The first cluster consists of

bz/2c fast workers (λ = 9), the second consists of bz/2c+1 workers that are regular (λ = 3) and

the remaining n−z workers are slow (λ = 1). In Figure 4.3(b) we fix n to 50 and change z from

1 to 40. We observe that Staircase codes always outperform PRAC in this setting. In contrast

to non secure C3P, Staircase codes and PRAC are always restricted to the slowest n−z workers

and cannot leverage the increase of the number of fast workers. For GC3P, we assume that the

fastest workers are eavesdroppers. We note that as expected from Lemma 4.4, when the fastest

workers are assumed to be eavesdroppers the performance of GC3P and PRAC becomes very

close.

4.5.2 Implementation on Android devices

Setup. The master device is a Nexus 5 Android-based smartphone running 6.0.1. The worker

devices are Nexus 6Ps running Android 8.1.0. The master device connects to worker devices

via Wi-Fi Direct links and the master is the group owner of Wi-Fi Direct group. The master

device is required to complete one matrix multiplication (y = Ax) where A is of dimensions

60 × 10000 and x is a 10000 × 1 vector. We also take m = b i.e., each packet is a row of A.

We introduced an artificial delay at the workers following an exponential distribution. The

introduced delays serves to emulate applications running in the background of the devices. A

90

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

Number of colluding workers z

Av
er
ag

e
co
m
pl
et
io
n
ti
m
e

Staircase codes
PRAC
GC3P
C3P

(a) Task completion time as a function of the number of colluding workers
for n = 50. Computation time of the workers are chosen according to
scenario 1.

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

Number of colluding workers z

Av
er
ag

e
co
m
pl
et
io
n
ti
m
e

PRAC
Staircase codes
GC3P
C3P

(b) Task completion time for n = 50 workers and variable z. Computation
times of the workers are chosen such that the n − z slowest workers are
homogeneous.

Figure 4.3: Comparison between PRAC and Staircase codes average completion time as a
function of number of colluding workers z. We fix the number of rows to m = 1000 and design
the system in a way that n − z workers are significantly slower than the other z workers. We
observe that PRAC outperforms Staircase codes except when the n − z slowest workers are
homogeneous. All secure codes are affected by the increase of number of colluding helpers
because their runtime is restricted to the slowest n− z workers. In contrast, C3P leverages the
increase of the number of fast workers.

worker device sends the result to the master after it is done calculating and the introduced

delay has passed. Furthermore, we assume that z = 1 i.e., there is one unknown worker that is

91

2 3 4 5

Number of Workers

0

50

100

150

200

250

C
o
m

p
le

ti
o
n
 t
im

e
 (

s
)

Staircase

PRAC

GC3P

C3P

Figure 4.4: Completion time as function of the number of workers in homogeneous setup.

adversarial among all the workers. The experiments are conducted in a lab environment where

there are other Wi-Fi networks operating in the background.

Baselines. Our PRAC algorithm is compared to three baseline algorithms: (i) Staircase

codes that preallocate the tasks based on n, the number of workers, k, the minimum number

of workers required to reconstruct the information, and z, the number of colluding workers;

(ii) GC3P in which we assume the adversarial worker is known and excluded during the task

allocation; (iii) Non secure C3P in which the security problem is ignored and the master device

will utilize every resource without randomness. In this setup we run C3P on n− z workers.

Results. We present a representative sample of our results and refer interested readers

to [] form more results and explanations. Figure 4.4 presents the task completion time with

increasing number of workers for the homogeneous setup, i.e., when all the workers have similar

computation times. Computation delay for each packet follows an exponential distribution with

mean µ = 1/λ = 3 seconds in all workers. C3P performs the best in terms of completion time,

but C3P does not provide any privacy guarantees. PRAC outperforms Staircase codes when

the number of workers is 5. The reason is that PRAC performs better than Staircase codes

in heterogeneous setup, and when the number of workers increases, the system becomes a bit

more heterogeneous. GC3P significantly outperforms PRAC in terms of completion time. Yet,

it requires a prior knowledge of which worker is adversarial, which is often not available in real

world scenarios.

We note that in all our experiments when n− z slowest workers are homogeneous Staircase

92

2 3 4 5

Number of Workers

0

50

100

150

200

250

300

350

C
o
m

p
le

ti
o
n
 t
im

e
 (

s
)

Staircase

PRAC

GC3P

C3P

(a) We assume a fast worker is adversarial
for GC3P.

2 3 4 5

Number of Workers

0

50

100

150

200

250

300

350

C
o
m

p
le

ti
o
n
 t
im

e
 (

s
)

Staircase

PRAC

GC3P

C3P

(b) We assume a slow worker is adversar-
ial for GC3P.

Figure 4.5: Completion time as function of the number of workers in heterogeneous setup.

codes outperform GC3P and PRAC. This happens because pre-allocating the tasks to the

workers avoids the overhead of sub-tasks required by Fountain codes and utilizes all the workers

to their fullest capacity.

4.6 Related work

Mobile cloud computing is a rapidly growing field with the aim of providing better experience

of quality and extensive computing resources to mobile devices [121, 122]. The main solution

to mobile computing is to offload tasks to the cloud or to neighboring devices by exploiting

connectivity of the devices. With task offloading come several challenges such as heterogeneity of

the devices, time varying communication channels and energy efficiency, see e.g., [123–126]. We

refer interested reader to [110] and references within for a detailed literature on edge computing

and mobile cloud computing.

The problem of stragglers in distributed systems is initially studied by the distributed com-

puting community, see e.g., [5,76,82,93]. Research interest in using coding theoretical techniques

for straggler mitigation in distributed content download and distributed computing is rapidly

growing. The early body of work focused on content download, see e.g., [26, 94–96,127]. Using

codes for straggler mitigation in distributed computing started in [6] where the authors pro-

posed the use of MDS codes for distributed linear machine learning algorithms in homogeneous

93

workers setting.

Following the work of [6], coding schemes for straggler mitigation in distributed matrix-

matrix multiplication, coded computation and machine learning algorithms are introduced and

the fundamental limits between the computation load and the communication cost are studied,

see e.g., [97, 128] and references within for matrix-matrix multiplication, see [6, 10–13, 15, 100,

101, 111, 129–133] for machine learning algorithms and [7, 98, 99, 134] and references within for

other topics.

Codes for privacy and straggler mitigation in distributed computation are first introduced

in [27] where the authors consider a homogeneous setting and focus on matrix-vector mul-

tiplication. Beyond matrix-vector multiplication, the problem of private distributed matrix-

matrix multiplication and private polynomial computation with straggler tolerance is stud-

ied [19–21, 102, 103, 135]. The former works are designed for the homogeneous static setting in

which the master has a prior knowledge on the computation capacities of the workers and pre-

assigns the sub-tasks equally to them. In addition, the master sets a threshold on the number

of stragglers that it can tolerate throughout the whole process. In contrast, PRAC is designed

for the heterogeneous dynamic setting in which workers have different computation capacities

that can change over time. PRAC assigns the sub-tasks to the workers in an adaptive manner

based on the estimated computation capacity of each worker. Furthermore, PRAC can tolerate

a varying number of stragglers as it uses an underlying rateless code, which gives the master

a higher flexibility in adaptively assigning the sub-tasks to the workers. Those properties of

PRAC allow a better use of the workers over the whole process. On the other hand, PRAC is

restricted to matrix-vector multiplication. Although coded computation is designed for linear

operations, there is a recent effort to apply coded computation for non-linear operations. For

example, [104] applied coded computation to logistic regression, and the framework of Gradient

coding started in [10] generalizes to any gradient-descent algorithm. Our work is complemen-

tary with these works. For example, our work can be directly used as complementary to [104]

to provide privacy and adaptive task offloading to logistic regression.

94

Secure multi-party communication (SMPC) [4] can be related to our work as follows. The

setting of secure multi-party computation schemes assumes the presence of several parties (mas-

ters in our terminology) who want to compute a function of all the data owned by the different

parties without revealing any information about the individual data of each party. This setting

is a generalized version of the master/worker setting that we consider. More precisely, an SMPC

scheme reduces to our Master/worker setting if we assume that only one party owns data and

the others have no data to include in the function to be computed. SMPC schemes use thresh-

old secret sharing schemes, therefore they restrict the master to a fixed number of stragglers.

Thus, showing that PRAC outperforms Staircase codes (which are the best known family of

threshold secret sharing schemes) implies that PRAC outperform the use of SMPC schemes

that are reduced to this setting. Works on privacy-preserving machine learning algorithms are

also related to our work. However, the privacy constraint in this line of work is computational

privacy and the proposed solutions do not take stragglers into account, see e.g., [106,107,109].

We restrict the scope of this paper to eavesdropping attacks, which are important on their

own merit. Privacy and security can be achieved by using Maximum Distance Separable (MDS)-

like codes which restrict the master to a fixed maximum number of stragglers [102, 103]. Our

solution on the other hand addresses the privacy problem in an adaptive coded computation

setup without such a restriction. In this setup, security cannot be addressed by expanding the

results of [102, 103]. In fact, we developed a secure adaptive coded computation mechanism

in our recent paper [136] against Byzantine attacks. The private and secure adaptive coded

computation obtained by combining this paper and [136] is out of scope of this paper.

4.7 Conclusion

The focus of this Chapter is to develop an adaptive private coded computation scheme that

allows the master to adapt to the varying resources at the workers and mitigate the effect of

stragglers. Focusing on eavesdropping attacks, we designed a private and rateless adaptive coded

computation (PRAC) mechanism considering (i) the privacy requirements of IoT applications

95

and devices, and (ii) the heterogeneous and time-varying resources of the workers. Our pro-

posed PRAC model can provide adequate privacy and latency guarantees to support real-time

computation at the edge. We showed through analysis and MATLAB simulations that PRAC

outperforms known private coded computtion methods when resources are heterogeneous.

96

Chapter 5

Stochastic Gradient Coding for

Straggler Mitigation in Distributed

Learning

We go beyond coded matrix-vector multiplications and consider coded computation for general

distributed gradient descent algorithms in the presence of stragglers. In this chapter, we drop

the privacy constraints on the master’s data. Recent work on gradient coding and approximate

gradient coding have shown how to add redundancy in distributed gradient descent to guarantee

convergence even if some workers are stragglers. We propose an approximate gradient coding

scheme called Stochastic Gradient Coding (SGC), which works when the stragglers are random.

SGC distributes data points redundantly to workers according to a pair-wise balanced design,

and then simply ignores the stragglers. We prove that the convergence rate of SGC mirrors

that of batched Stochastic Gradient Descent (SGD) for the `2 loss function, and show how the

convergence rate can improve with the redundancy. We also provide bounds for more general

convex loss functions. We show empirically that SGC requires a small amount of redundancy to

handle a large number of stragglers and that it can outperform existing approximate gradient

97

codes when the number of stragglers is large.

5.1 Introduction

We consider the same setting where a master wants to run a gradient-descent-like algorithm to

solve an optimization problem distributed across several workers. Let B ∈ Rm×` be the data

matrix and let bi ∈ R` denote the ith row of B. Let y ∈ Rm be a vector of labels, so bi has

label yi. Define A , [B|y] to be the concatenation1 of B and y. The master wants to find a

vector x? ∈ R` that best represents the data B as a function of the labels y. That is, the goal

is to iteratively solve an optimization problem

x? = arg min
x
L(A,x), (5.1)

for a given loss function L, by simulating or approximating an update rule of the form

xt+1 = xt − γt∇L(A,xt). (5.2)

Many natural loss functions L(A,x) can be written as the sum over individual rows ai of A,

i.e.,

L(A,x) =

m∑
i=1

L(ai,x), (5.3)

such loss functions lend themselves naturally to distributed algorithms. In a distributed setting,

the master partitions the data matrix A into rows ai which are distributed between the workers.

Each worker returns some linear combination(s) of the gradients∇L(ai,xt) that it can compute,

and the master aggregates these together to compute or approximate the update step (5.2).

We focus on the setting where some of the workers may be stragglers, i.e., slow or unre-

sponsive. This setting has been studied before in the systems community [5, 39, 79, 137], and

1 In contrast to the remaining of the dissertation, in this chapter the master wants to send the vector y to
the workers. Therefore, we adapt the notation so that the matrix A is the one sent to the workers.

98

recently in the coding theory community [6, 10, 12]. A typical approach is to introduce some

redundancy: for example, the same piece of data ai might be held by several workers. There

are several things that one might care about in such a scheme and in this paper we focus on

the following four desiderata:

(A) Convergence speed. We would like the error ‖xt−x?‖2 to shrink as quickly as possible.

(B) Redundancy. We would like to minimize the amount of storage and computation over-

head needed between the workers.

(C) Communication. We would like to minimize the amount of communication between the

master and the workers.

(D) Flexibility. In practice, there is a great deal of variability in the number of stragglers

over time. We would like an algorithm that degrades gracefully if more stragglers than

expected occur.

Exact gradient coding for worst-case stragglers. Much existing work has focused on

simulating gradient descent exactly, even in the presence of worst-case stragglers, for example

[6, 10, 12, 13]. In that model, at each round an arbitrary set of s workers (for a fixed s) may

not respond to the master. The goal is for the master to obtain the same update xt at round t

that gradient descent would obtain. For this to happen, the master should be able to obtain an

exact value of the gradient ∇L(A,xt). This has given rise to (exact) gradient coding [10], which

focuses on optimizing desiderata (A) and (C) above. However, these schemes (and necessarily,

any scheme in this model) do not do so well on (B) and (D). First, it is not hard to see that

in the presence of s worst-case stragglers, it is necessary for any n − s workers to be able to

recover all of the data, which necessitates a certain amount of overhead. Namely, every data

vector should be replicated on s+ 1 different workers. Second, the gradient coding schemes for

example in [10, 12] are brittle in the sense that they work perfectly for s failures, but cannot

handle more than s stragglers.

No coding at all for random stragglers. On the other hand, there has also been work

99

on approximately simulating gradient descent. One approach (similar to the one in [39]) is to

assume that the stragglers are random, rather than worst-case, and not employ any redundancy

at all. Thus, the master obtains an approximate update (5.2) instead of an exact one by

computing the sum in (5.3) without the responses of the stragglers. (We will later refer to this

algorithm as “Ignore–Stragglers–SGD.”) If the stragglers are independent at each round, this

algorithm is a close approximation to Batch–SGD, see e.g. [138–141], and performs in about

the same way. However, for convex loss functions it is well known that, while Batch–SGD does

converge to x?, the convergence is not as fast as that of classical gradient descent [36–38]. Thus,

this approach maintains the good communication cost (C) of the coded approaches by requiring

each worker to send one linear combination of the gradients to the master, and improves on (B)

and (D), but sacrifices (A), the convergence rate.

Approximate gradient coding: adding redundancy to approximate the gradient.

A line of work known as approximate gradient coding [13–17, 40, 41] introduces redundancy in

order to speed up the convergence rate of such an approximate scheme. This line of work

studies the data redundancy d (that is, the number of times each row ai of the data matrix A is

replicated) needed to tolerate s stragglers and allow the master to compute an approximation

of the gradient if more than s workers are stragglers [13,14,16,17]. In [15] a variant of this idea

is studied; in that work the data is encoded using LDPC code rather than being duplicated. In

approximate gradient coding, the master is required to compute the exact gradient with high

Approach Stragglers? (A) (B) (C) (D)

Full gradient descent No � � x N/A

Exact gradient coding Worst-case stragglers � x � x
No coding Random stragglers x � � �

Appx. gradient coding Random? stragglers � � � �
Table 5.1: High-level overview of the trade-offs offered by distributed gradient-descent various
models. In this work, we focus on provable guarantees on the trade-offs between (A) and (B)
in the approximate gradient coding model, and demonstrate that our scheme simultaneously
achieves (A),(B),(C),(D).
?We note that there are works in approximate gradient coding which study worst-case stragglers, but we focus
on the model with random stragglers. See Remark 5.1.

100

probability if fewer than s workers are stragglers. If more than s workers are stragglers, the

distance between the computed gradient at the master and the true gradient can be made small

if the redundancy factor is poly-logarithmic in the number of workers. So far, this line of work

has mostly focused on desiderata (B), (C) and (D), and most works have not directly analyzed

the convergence time (A). Two exceptions are [15] and [17], which we discuss more below.

These strengths and weaknesses are summarized at a high level in Table 5.1.

We introduce an approximate gradient coding scheme called Stochastic Gradient Coding

(SGC) which works in the random straggler model and which does well simultaneously on

desiderata (A)-(D). We analyze the convergence rate of SGC, and we present experimental

work which demonstrates that SGC outperforms the most recently proposed schemes [14, 17]

when p (the fraction of workers that the master will ignore in each iteration) is relatively large.

Remark 5.1 (Motivation for the random straggler model, and for large p.). A model of random

stragglers has been studied before (e.g., [13–17, 40, 142]), and is motivated as an easy-to-study

model that captures non-persistent stragglers. However, one might also work in a “random

stragglers” model even if all of the workers are fast: just like how SGD samples fewer points

to save time and computation, so the master might sample random workers to save bandwidth

and computation.

This second setting further motivates the case when p might be relatively large, which is the

setting that we focus on in this work.

5.1.1 Contributions

We consider an approach that we call Stochastic Gradient Coding (SGC). The coding idea—

which is similar to previous approaches in approximate gradient coding [14]—is simple: the

master distributes data to the workers with a small amount of repetition according to a pair-

wise balanced scheme (which we will define below); a data point ai is replicated di times, and

di can vary from data point to data point. Below, the redundancy parameter d refers to the

101

average of the di’s. Once the data is distributed, the algorithm proceeds similarly to the Ignore–

Stragglers–SGD algorithm described above: workers compute gradients on their data and return

a linear combination, and the master aggregates all of the linear combinations it receives to do

an update step.

Remark 5.2 (The role of redundancy in SGC and in approximate gradient coding with random

stragglers.). Since our scheme is replication-based, the reader may wonder why we use the word

“coding.” Here, we are using it in the same way as is standard to describe the many replication-

based schemes in the gradient coding literature, for example [10,13,14,17].2 Since each worker

responds with only a single vector (rather than all of the partial gradients it can compute), and

a worker (with all its data) straggles as a unit, it matters how the data is distributed between

the workers. We will see that this matters in our experiments in Section 5.6, where we compare

the SGC method of distributing data to the different data distribution methods of [17].

One point of our work is to understand to what extent adding redundancy can speed up the

convergence of SGD. To this end, we will also compare SGC with the “Ignore–Stragglers–SGD”

algorithm alluded to above, where there is no replication of the data and the master simply

ignores slow workers when estimating the gradient.

One contribution of this work is to provide a rigorous convergence analysis of SGC. We

show that SGC with only a small amount of redundancy d is able to regain the benefit of

(A) from the (exact) coded approaches, while still preserving the benefits of (B), (C), (D)

that the “Ignore–Stragglers–SGD” approach sketched above does. A second contribution is

extensive experimental evidence which suggests that for the same small redundancy factor d

SGC outperforms other schemes when there are many stragglers.

More precisely, our contributions are as follows (all in the stochastic straggler model):

• In the special case of the `2 loss function, we show that SGC with redundancy factor

d > 1, can obtain error bounds where ‖x?−xt‖2 decreases at first exponentially and then

proportionally to 1
td . This mirrors existing results on SGD (which corresponds to the case

2We note also that our replication-based data distribution is similar to a Fractional Repetition (FR) code [143].

102

d = 1), and quantifies the trade-off between replication and error. This is made formal in

Theorem 5.6.

• For more general loss functions, we show that SGC has at least the same convergence rate

as Ignore–Stragglers–SGD, and we give some theoretical evidence that the error ‖x?−xt‖

may decrease as d increases. This is made formal in Theorem 5.9.

• We provide numerical simulations comparing SGC to gradient descent, Ignore–Stragglers–

SGD and a few other versions of SGD, and other approximate gradient coding methods.

Our simulations show that indeed SGC improves the accuracy of Ignore–Stragglers–SGD,

with far less redundancy than would be required to implement exact gradient descent using

coding. In addition, we compare SGC to other approximate gradient methods existing in

the literature and show that SGC outperforms the existing methods when the probability

of workers being stragglers is high.

5.1.2 Relationship to previous work on approximate gradient coding

We provide a more detailed description of previous work in Section 5.8, but first we briefly

mention some of the main differences between our work and existing work on approximate

gradient coding [13–17,40].

First, we note that our SGC scheme is quite similar to Bernoulli Gradient Coding (BGC)

studied in [14], where the data is distributed uniformly at random to d workers. One difference

between our work and that work is that we allow for the redundancy of different data points

ai to vary for different i; we will see that for the `2 loss function it makes sense to choose di

based on ‖bi‖2. A second difference between our work and [14] is that [14] does not provide

a complete convergence analysis. The works [13, 16, 40] also study schemes similar in flavor to

SGC, but these works also do not provide complete convergence analyses.

The works of [15, 17] do provide convergence analyses, although for schemes that are quite

different from SGC. More precisely, [15] studies a scheme with LDPC coding, rather than

repetition. The work of [17] studies a scheme based on Fractional Repetition (FR) codes, which

103

was proposed in [14]. However, the FR codes studied by [17] results in a very different data

distribution scheme than the one we study. Their scheme partitions the data and the workers

into different blocks and every worker in a block receives all of the data from the corresponding

block.

Additionally, we obtain slightly different error guarantees than the analyses of [15,17]. More

precisely, the analysis of [17] proves a bound where the error decreases exponentially in T (the

number of iterations of the algorithm) until some noise floor is hit. The analysis of [15] studies

the special case of the `2 loss function, and shows that the error decays like O(1/
√
T). In

contrast, for SGC and for the special case of the `2 loss function, we show that the error decays

exponentially in T at first and then switches to decaying like O(1/T); this mirrors existing

results for SGD for the `2 loss function. We give a more general result that holds for general

convex loss functions and show that the error decays as O(1/T).

Finally, we provide empirical results which suggest that our scheme can outperform existing

gradient coding schemes (in particular, the FR-based approach of [14,17] and BGC [14]) in some

parameter regimes. We do not compare our scheme empirically to that of [15, 40, 41] because

they requires more work on the master’s end (to encode and decode) and are thus not directly

comparable to our work.

5.1.3 Organization

We give a more precise definition of our set-up in Section 5.2. We describe the SGC algorithm

in Section 5.3. In Section 5.4, we give a more detailed overview of both our theoretical and

empirical results, which are fleshed out in Sections 5.5 and 5.6 respectively. We provide more

detail on related work in Section 5.8.

104

5.2 Setup

5.2.1 Probabilistic model of stragglers

In this paper, we adopt a probabilistic model of stragglers. More precisely, we assume that at

every iteration each worker may be a straggler with some probability p, and this is independent

between workers and between iterations. Our probabilistic model is similar to the model in

[13–17, 40] and is in contrast to the worst-case model assumed by much of the literature on

coded computation. (See Remark 5.1). In our numerical simulations, we relax the assumption

of independence and show that similar results hold when the identities of the stragglers are

somewhat persistent from round to round and change only after a fixed number of iterations.

5.2.2 Computational model

Our computational model has two stages, a distribution stage and a computation stage.

In the distribution stage, the master encodes the data using unequal data repetition code.

More precisely, the master can decide to send each row ai of A to di different workers. We refer

to the parameter d = 1
m

∑m
i=1 di as the average redundancy of the scheme.

The computation stage is made up of rounds, each of which contains two repeating steps. In

the first step, the master does some local computation and then sends a message to each worker.

In the second step, each worker does some local computation and tries to send a message back

to the master; however, with probability p the message may not reach the master. Then the

round is over and the master repeats the first step to begin the next round. We refer to the

total amount of communication per round as the communication of the scheme. We allow each

worker to send only one message to the master to reduce the communication.

5.3 Stochastic Gradient Coding

In this section, we describe our solution, which we call Stochastic Gradient Coding (SGC).

The idea behind SGC is extremely simple. It is very much like the Ignore–Stragglers–SGD

105

Symbol Meaning Symbol Meaning
n number of workers A data matrix of the master
ai ith row of A y label vector of dimension m× 1
bi ith row of B B the concatenation of A and y
m number of rows in A Wj worker j
` number of columns in A Sj indices of rows of A given to Wj
t iteration number T total number of iterations
x? desired vector of dimension `× 1 xt value of x at iteration t
di replication factor of ai L(A,xt) loss function evaluated at A and x

γt step size at iteration t ∇L(A,xt)
gradient of the loss function evaluated
at A and x

d average redundancy d ,
m∑
i=1

di/m p probability of worker being straggler

Table 5.2: Summary of notations for this Chapter.

algorithm described above, except we introduce a small amount of redundancy. We describe

the distribution stage and the computation stage of our algorithm below. Our scheme has

parameters d1, . . . , dm, which control the redundancy of each row, and a parameter γt which

controls the step size. We will see in the theoretical and numerical analyses how to set these

parameters.

In our analysis, we focus on pair-wise balanced schemes:

Definition 5.3. We say that a distribution scheme that sends ai to di different workers is

pair-wise balanced if for all i 6= i′, the number of workers that receives ai and ai′ is
didi′
n .

Notice that with a completely random distribution scheme, the expected number of workers

who receive both ai and ai′ for i 6= i′ is equal to didi′
n . In our analysis, it is convenient to

deal with schemes that are exactly pair-wise balanced. However, for small di it is clear that no

such schemes exist (indeed, we may have didi′
n < 1). In our simulations, we choose a uniformly

random scheme3 which seems to work well (see Section 5.6). We believe that our analysis should

extend to a random assignment as well, although for simplicity we focus on pair-wise balanced

schemes in our theoretical results.

The way SGC works is as follows:

• Distribution Stage. The master creates di copies of each row ai, i = 1, . . . ,m, and

3In our simulations, we assign rows to di workers uniformly at random, which approximates a pair-wise
balanced scheme. Similarly, the BGC construction of [14] approximates a pair-wise balanced scheme where each
row is assigned to d workers uniformly at random, i.e., di = d for all i ∈ [m].

106

sends them to di distinct workers according to a pair-wise balanced scheme. We denote

by Sj , j = 1, . . . , n, the set of indices of the data vectors given to worker Wj , i.e., Sj =

{i;ai is given to Wj}.

• Computation Stage. At each iteration t, the master sends xt to all the workers. Each

worker Wj computes

fj(xt) , γt
∑
i∈Sj

1

di(1− p)
∇L(ai,xt) (5.4)

and sends the result to the master. The master aggregates all the received answers from

non straggler workers, sums them and updates x as follows:

xt+1 = xt − γt
n∑
j=1

m∑
i=1

Iji
di(1− p)

∇L(ai,xt),

where Iji is the indicator function for worker j being non straggler and having obtained

point ai during the data distribution, i.e.,

Iji =

1 if worker j is non straggler and has point ai,

0 otherwise.

Note that Iji depends on the iteration t, however we drop t from the notation for notational

convenience since the value of t will be clear from the context.

For use below, we define

ĝt ,
n∑
j=1

m∑
i=1

Iji
di(1− p)

∇L(ai,xt). (5.5)

We call ĝt the estimate of the gradient at iteration t which estimates the exact gradient of the

loss function in (5.3),

gt ,
m∑
i=1

∇L(ai,xt).

107

5.4 Summary of our Main Results

In this section, we summarize both our theoretical and numerical results.

5.4.1 Theoretical results

Our main theoretical contributions are to derive results for SGC that mirror known results for

SGD and Batch–SGD. There are two important differences between our results and those for

Batch–SGD.

1. First, one of our goals is to show how the error ‖x? − xt‖22 depends on the redundancy

parameter d; we show that it is roughly like 1/d. This explains why SGC can work much

better than Ignore–Stragglers–SGD (say, so that ‖xt − x?‖22 is half as large), even with

relatively low redundancy (say, d = 2). In Batch–SGD we always have d = 1.

2. Second, it is nontrivial to adapt existing results for Batch–SGD to our setting. The reason

is that the batches are not uniform in our setting; rather, they depend on the way that

the data is distributed. We note that this is true even if the data is distributed randomly

to begin with: in that case it is true that the marginals of the batches are uniformly

random (that is, in each round the set of gradients that the master receives is a uniformly

random subset of all of them) but because the randomness from the initial distribution is

fixed throughout the computation, if we view it this way then the batches are no longer

independent. The main technical challenge in our analysis (in particular, the proof of

Theorem 5.4 below) is to deal with this issue.4

We adapt existing result from the SGD literature to prove a tighter bound that holds for

arbitrary convex loss functions. And we derive a stronger convergence guarantee for the `2 loss

function.

Special case: `2 loss function. We begin with a result which is specialized for the `2 loss

4We note that this is not an issue for our proof of Theorem 5.5, since we are able to adapt existing results
that depend only on the mean and variance of the gradient estimates.

108

function. This result is of a similar flavor as the results of [144–146] on SGD and the randomized

Kaczmarz algorithm.5 Those works show that the speed of convergence is exponential to begin

with, and then begins to decay polynomially like 1/t once an unavoidable limit is reached. In

this work, we show an analogous result for the `2 loss function. In this case we show that the

convergence is exponential to begin with, until the noise is on the order of `2 normal of the

residual r , Bx? − y, and then it begins to decay polynomially like 1/(dt).

Thus, our analysis generalizes the case when d = 1 (aka, Ignore–Stragglers–SGD), and we

see that as the repetition factor d increases, the error of SGC decreases. We state our main

theorem informally below, and we state the formal version in Section 5.5. Throughout the paper

we use the superscript T to denote the transpose of a matrix.

Theorem 5.4 (Informal; see Theorem 5.6 for a formal version). Consider an SGC algorithm

run on a matrix A , [B|y] of dimension m × (` + 1) distributed to n workers. Suppose that

the distribution scheme is pairwise balanced, and that each row ai of A = [B|y] is sent to di

different workers, where di is chosen proportional to ‖bi‖22.

Suppose that n is sufficiently large and that

d =
1

m

m∑
i=1

di ≥ 8

(
p

1− p

)
.

Choose an error tolerance ε > 0. Then, it is possible to choose a step size γt at each step t

so that the following guarantee holds on the iterates xT of SGC, for T ≥ 2 log(1/ε2):

E
[
‖xT − x?‖22

]
≤ ε2‖x0 − x?‖22 +

1

d · T
·
(

log2(1/ε)
p

1− p

)
· ‖r̃‖2,

where r̃ = (Bx? − y)/‖BTX‖2.

That is, if the residual r̃ is very tiny, so that the second term is smaller than the first, then

the algorithm reaches accuracy ε in roughly log(1/ε) steps. However, if r̃ is larger, then the

convergence becomes polynomial, matching what we expect from SGD. In this second case, the

5We note that [145] also holds for more general loss functions.

109

difference is that the replication factor d appears in the denominator, so that when d is larger,

the error is smaller, explaining why replication helps. Notice that if p is constant, we expect

good performance when d = O(1). In contrast, to exactly simulate gradient descent via coding

would require d = Ω(n).

The main difficulty in proving Theorem 5.6 (the formal version of Theorem 5.4) is that

because the data distribution is fixed ahead of time, the “batches” that the master acquires in

each round are not uniformly random, but rather come from some distribution determined by

the data distribution.

Beyond `2 loss function. Our result above is limited in that it only applies to the `2 loss

function. We believe that the analysis of Theorem 5.6 should apply to general loss functions,

but for now we observe that in fact a convergence rate of 1/t does follow for SGC from a result

of [36].

In that work, the authors give a general analysis of stochastic gradient descent, which works

as long as (in our language) the master is computing an unbiased estimator of the gradient.

The convergence speed of the algorithm then depends on the variance of this estimate. This

result applies in our setting:

Theorem 5.5 (Informal; see Theorem 5.9 for a formal version). Suppose that SGC is run on a

matrix A , [B|y] of dimension m×(`+1) distributed to n workers. Suppose that the distribution

scheme is pairwise balanced, and that each row ai of A is sent to di different workers, di ≤ n.

Consider a version of the optimization problem in (5.1) where x is constrained to a convex set

W. Under some mild assumptions on the loss function L and assuming there exists a constant

C such that

‖∇L(ai,x)‖22 ≤ C
2

for all i ∈ [n] and for all x ∈ W, then there is a way to choose the step size γt at each step t so

that the error after T iterations is bounded by

E
[
‖xT − x?‖22

]
≤ O(1/T).

110

The proof of Theorem 5.5 (given Lemma 1 in [36]) boils down to showing that our gradient

estimator ĝt is an unbiased estimator of the true gradient and that E
[
‖ĝt‖22

]
is bounded for all

t, which we do in Section 5.7.

We give more precise statements of these theorems in Section 5.5, and prove them in Sec-

tion 5.7.

5.4.2 Numerical simulations

We run extensive simulations on synthetic data A of dimension 1000 × 100 generated from a

Gaussian distribution. We compare SGC to four other algorithms detailed in Section 5.6 and

show that SGC outperforms all other algorithms when there are many stragglers. A typical

result is shown in Figure 5.1. In it, we observe that SGC and ErasureHead outperform

Ignore–Stragglers–SGD at the expense of doubling the redundancy. In Figure 5.2 we plot the

convergence of approximate gradient codes as function of p. We observe that SGC outperforms

ErasureHead when the number of stragglers is large, p > 0.6. As expected, the approximate

algorithms have worse accuracy than full-blown gradient descent, but we note that implementing

exact gradient descent with a p fraction of stragglers would require redundancy d ≈ pn � 2.

Moreover, we observe the flexibility of the approximate algorithms in the number of stragglers,

and we note that computing GD exactly would lack this flexibility. In Section 5.6, we comment

on how the dependency between stragglers affect the convergence of SGC. Our implementation

is publicly available [147].

5.5 Theoretical Results

In this section we precisely state our theoretical results. We begin with a specialized result for

the `2 loss function, and then include a result for more general loss functions.

111

0 1000 2000 3000 4000 5000

10−6

10−5

10−4

10−3

10−2

10−1

100

101

Number of iterations, t

‖x
t
−
x
?
‖

n = 10 workers, p = 0.7

ErasureHead
Ignore–Stragglers–SGD
SGC
GD

Figure 5.1: Comparison between Ignore–Stragglers–SGD, SGC and
ErasureHead in terms of the distance between xt and x? the
value of x that minimizes the loss function. SGC outperforms
Ignore–Straggler–SGD at the expense of adding small redundancy,
d = 2 in this example.

0 0.2 0.4 0.6 0.8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Probability of straggling p

‖x
T
−
x
?
‖

n = 10 workers

Ignore–Stragglers–SGD
SGC
ErasureHead

Figure 5.2: Final convergence of all algorithms run for T = 5000 it-
erations as function of p the probability of workers being stragglers.
We omit GD in this setting, because it has the same performance
as all algorithms when p = 0.

112

5.5.1 Special case: `2 loss function

We begin with a result that holds for the special case of an `2 loss function, aka, regression.

Inspired by the approach of [146] for SGD, our approach is to consider a weighted distribution

scheme; that is, we choose di proportionally to ‖bi‖22. While the statement below is only for

the `2 loss function, we conjecture that it holds for more general loss functions.

Define a parameter

µ =
1
m ‖B‖

2
F

‖BTB‖
.

This parameter measures how incoherent B is. If B is orthogonal, µ = 1, while if, for example,

B is the all-ones matrix, then µ = 1/m. It is not hard to check that µ ∈ [0, 1].

Suppose that D is a pair-wise balanced distribution scheme which sends ai to di different

workers, where

di = σ · ‖bi‖22, (5.6)

σ =
md

‖B‖2F
=

d

µ‖BTB‖
, (5.7)

d =
1

m

∑
i∈[m]

di. (5.8)

The parameter d is the average redundancy of the scheme that will control σ and the di’s.

Notice that, as stated, it is possible that the di end up being non-integers; in the following, we

will assume for simplicity below that di ∈ Z for all i. Notice that if ‖bi‖2 = 1 for all i, then this

will be the case because we can choose di = d to be any integer of our choice, and this defines

σ.

Theorem 5.6. Consider an SGC algorithm run on a matrix A , [B|y] of dimension m×(`+1)

distributed to n workers according to a pairwise balanced distribution scheme with di as described

above, with loss function

L([B|y],x) = ‖Bx− y‖22 ,

113

and assume that the degrees di ≤ n are all integers.

Suppose the stragglers follow the stochastic model of Section 5.2, and that each worker is a

straggler independently with probability p. Choose ε > 0 and choose T ≥ 2 log(1/ε2).

Suppose that the number of workers n satisfies n ≥ 8
(

p
1−p

)
, and that

8µ

(
p

1− p

)
≤ d.

Choose a step size

γt =
1

‖BTB‖
·min

{
1

2
,

log(1/ε2)

t

}
.

Then, after T iterations of SGC, we have

E
[
‖xT − x?‖22

]
≤ ε2‖x0 − x?‖22 +

1

dT

(
log2(1/ε2)

(
p

1− p

)
‖r̃‖2µ

)

where the expectation is over the stragglers in each of the T iterations of SGC and where µ is

as above, and where

r̃ =
‖Bx? − y‖22
‖BTB‖2

.

Corollary 5.7. Suppose that Bx? = y (that is, we are solving a system for which there is a

solution) and that n ≥ 8p/(1− p). Then the algorithm described in Theorem 5.6 converges with

E
[
‖xT − x?‖22

]
≤ ε2‖x0 − x?‖2

provided that T ≥ 2 log(1/ε2) and d ≥ 8µp/(1− p).

In particular, since µ ≤ 1, this says that we need to take d & p/(1 − p) and the algorithm

converges extremely quickly.

114

5.5.2 Beyond `2 loss function

Now, we consider a constrained version of the problem given in (5.1), where x belongs to a

bounded set W. In this section, we state a result for general loss functions L which are λ-

strongly convex:

Definition 5.8 (Strongly convex function). A function L is λ-strongly convex, if for all x, x′

∈ R` and any subgradient g of L at x,

L(x′) ≥ L(x) + 〈g,x′ − x〉+
λ

2
‖x′ − x‖22 . (5.9)

Theorem 5.9 below follows from the analysis in [36].

Theorem 5.9. Suppose that SGC is run on a matrix A , [B|y] of dimension m × (` + 1)

distributed to n workers with each row of A sent to di different workers, di ≤ n, according to a

pairwise balanced distribution scheme. Consider a version of the optimization problem in (5.1)

where x is constrained to a convex set W, i.e.,

x? = arg min
x∈W

L(A,x),

and at each step of the algorithm xt+1 = ΠW(xt − γtĝt), where Π is the projection operator.

Let p denote the probability of a given worker being a straggler at a given iteration. Suppose

that the loss function L is λ-strongly convex with respect to the optimal point x? ∈ W, and that

all of the partial gradients ∇L(ai,x) are bounded for i ∈ [n] and x ∈ W, i.e. there exists a

constant C so that

‖∇L(ai,x)‖22 ≤ C, ∀x ∈ W, i ∈ [n].

Suppose that the step size is set to be γt = 1/(λt). Then the error after T iterations is bounded

by

E‖xT − x?‖22 ≤
4

λ2T
·mC2

(
p

1− p
· 1

dmin
+

(m− 1)p

n(1− p)
+m

)
(5.10)

115

Algorithm Brief description

Stochastic Gradient Code (SGC)

The master sends each data vector bi to di workers chosen at random, where
di is proportional to the `2 norm of bi and is computed as in (5.6) with
d = 2. Each worker sends to the master the weighted sum of its partial
gradients as in (5.4). The master computes the gradient estimate as the sum
of the received results from non straggling workers.

Bernoulli Gradient Code (BGC) [14] Similar to SGC but all data vectors are replicated d times, i.e., di = 2 for all
i ∈ [m].

ErasureHead [14, 17]
Partitions the data set equally and sends each partition to d workers.
Workers send the sum of the partial gradients to the master who computes
the gradient estimate as the sum of distinct received partial gradients
divided by total number of data vectors.

Ignore–Stragglers–SGD
Partitions the data among the workers with no redundancy. Workers send
the sum of the partial gradients to the master who computes the gradient
estimate as the sum of distinct partial gradients divided by the average
number of data vectors received per iteration.

SGC–Send–All
Same as SGC with one difference: at each iteration the workers send all the
partial gradients to the master. The master computes the gradient estimate
as the sum of distinct partial gradients divided by the average number of
data vectors received per iteration.

Table 5.3: Summary of the stochastic algorithms that we implement in our simulations.

where dmin , min
i∈[m]

di.

This shows that SGC does have a convergence rate of O(1/T), matching regular SGD [36,

Lemma 1]. This means that at least the convergence rate is not hurt by the fact that the

data assignment is fixed. However, unlike Theorem 5.6, this result does not always significantly

improve as d increases (although we note that the bound above is decreasing in dmin, so in some

parameter regimes—when n � m and p is close to 1—this does indicate some improvement).

We leave it as an interesting open problem to fully generalize our result of Theorem 5.6 to

general loss functions.

5.6 Simulation Results

5.6.1 Simulation setup

We simulated the performance of SGC on synthetic data B of dimension 1000×100. The data is

generated as follows: each row vector bi is generated using a Gaussian distribution N (0, 100).

We pick a random vector x̄ with components being integers between 1 and 10 and generate

yi ∼ N (〈bi, x̄〉 , 1). Our code and the generated data set can be found in [147].

116

We run linear regression using the `2 loss function, i.e.,

L(ai,xt) =
1

2
(〈bi,xt〉 − yi)2

.

We show simulations for n = 10 workers. For each simulation we vary the probability of a

worker being a straggler from p = 0 to p = 0.9 with a step of 0.1. We run the algorithm for

5000 iterations with a variable step size given6 by

γt = 7
ln(10100)

t0.7
. (5.11)

For all simulations, we run each experiment 10 times and average the results. For SGC, each

data vector ai is replicated di times, where the di’s are computed as in (5.6) and (5.7) with

d = 2. Then, each di is rounded to the nearest integer. Due to rounding, the actual value of d

given in (5.8) will be close to 2. In our generated data set, the majority of the di’s are equal to

2 while the others are either 1 or 3 resulting in average redundancy d = 2.024. For the other

algorithms in Table 5.3, the average redundancy d is chosen to be exactly equal to 2.

We omit comparing SGC to the gradient codes in [13] and [40] because they do not match

our setting; the former requires a high redundancy factor d and the latters requires the master

to run a decoding algorithm at each iteration.

5.6.2 Convergence

In Figures 5.3a and 5.3b, we plot the error ‖xt − x?‖ for up to 5000 iterations for small and large

probability of workers being stragglers, namely for p = 0.1 and p = 0.7, respectively. Here, x?

given in (5.1) is computed using the pseudoinverse of B, i.e., x? =
(
BTB

)−1
BTY . We notice

that for all p the convergence rate of SGC exhibits two phases: an exponential decay followed

by an error floor. To see the benefit of replication, we compare SGC to Ignore–Stragglers–SGD.

6In our theoretical analysis we assumed that the step size γt is proportional to 1/t. In our numerical
simulations, we tried different functions of γt and observed that the one in (5.11) gives better convergence rate
for all the considered algorithms.

117

0 1000 2000 3000 4000 5000

10−5

10−3

10−1

101

Number of iterations, t

‖x
t
−
x
?
‖

Ignore–Stragglers–SGD
BGC
SGC
SGC–Send–All
ErasureHead

(a) Error vs iterations, p = 0.1.

0 1000 2000 3000 4000 5000

10−4

10−3

10−2

10−1

100

101

Number of iterations, t

‖x
t
−
x
?
‖

ErasureHead
Ignore–Stragglers–SGD
BGC
SGC
SGC–Send–All

(b) Error vs iterations, p = 0.7.

0 0.2 0.4 0.6 0.8

10−7

10−6

10−5

10−4

10−3

10−2

Probability of straggling p

‖x
T
−

x
?
‖

Ignore–Stragglers–SGD
BGC
SGC
ErasureHead
SGC–Send–All

(c) Error at T = 5000 vs p.

Figure 5.3: Convergence as function of probability of workers being stragglers p is shown for
small p = 0.1 in (a) and for large p = 0.7 in (b) for n = 10 workers. SGC convergence has two
phases: an exponential decay in the beginning until it reaches an error floor. SGC has same
performance as BGC, but outperforms ErasureHead for large values of p. In (c) the error
floor at T = 5000 iterations is shown versus p.

Both have the same performance in the exponential phase, but SGC has a lower error floor

due to redundancy. A lower bound on the performance of SGC is SGC–Send–All which has

a lower error floor because it computes a better estimate of the gradient at the expense of a

higher communication cost. However, as p increases the gap between the two error floor of SGC

and SGC–Send–All decreases. In our simulations, we notice the error floor of both algorithms

almost match for p ≥ 0.6 as can be seen in Figure 5.3c.

For our chosen data set, SGC and BGC have similar performance. This is mainly due to the

fact that most of the data vectors have the same replication factor in BGC and SGC which is 2

times. For other data sets with more variance in the di’s, we observe that SGC can have better

118

performance. ErasureHead has better error floor than SGC for small values of p. However,

for large p the rate of the exponential decay drastically decreases for ErasureHead.

5.6.3 Dependency between stragglers across iterations

Our theoretical analysis assumes that the stragglers are independent across iterations. We check

the effect of this dependency on the numerical performance of SGC. We use a simple model

to enforce dependency of stragglers across iterations by fixing the stragglers for ν iterations,

after which the stragglers are chosen again randomly and iid with a probability p and this

is repeated until the algorithm stops. The special value of ν = 1 implies that the stragglers

are independent. A large value of ν implies a longer dependency among the stragglers across

iterations. We observe in Figure 5.4 that SGC still maintains the two phases behavior. However,

as ν increases, the rate of convergence decreases and the error floor increases.

119

0 1000 2000 3000 4000 5000

10−4

10−3

10−2

10−1

100

101

Number of iterations, t

‖x
t
−

x
?
‖

ν = 1000
ν = 500
ν = 100
ν = 50
ν = 1

(a) Error versus iterations, p = 0.7.

0 200 400 600 800 1,000

1

2

3

4

5

·10−3

Iterations until stragglers change, ν

‖x
T
−
x
?
‖

p = 0.8
p = 0.7
p = 0.5
p = 0.3
p = 0.1

(b) Error at iteration T = 5000 versus ν.

Figure 5.4: The effect of the dependency of stragglers across iterations on the performance
of SGC. We assume that the identity of the stragglers change every ν iterations. In (a) the
convergence of the error as function of the number of iterations is shown for different values of
ν and p = 0.7. SGC maintains an exponential decay in the error for the tested values of ν and
p. However, the rate of the decay decreases and the error floor increases with the increase of ν.
In (b), the error at iteration T = 5000 as function of ν is shown for different values of p.

120

5.7 Proofs

5.7.1 Proof of Theorem 5.6

In this section, we prove Theorem 5.6. In the case when the loss function is

L([B|y],x) =
1

2
‖Bx− y‖22,

we have

∇L(ai,x) = (〈bi,x〉 − yi) · bi,

so that
m∑
i

∇L(ai,x) = BT (Bx− y) = ∇L(A,x).

Fix an iteration t. Let Zi (which depends on t; we suppress this dependence in the notation)

be defined by

Zi =

n∑
j=1

Iji .

That is, Zi is the number of workers who hold ai who are not stragglers at round t. Thus, Zi

is a binomial random variable with mean di(1− p) and variance dip(1− p). Let

Z̃i = Zi − E [Zi] ,

so that

E
[
Z̃2
i

]
= dip(1− p)

and

E
[
Z̃iZ̃j

]
=
didj
n

p(1− p).

121

From the definition of xt+1 and replacing ĝt by its value from (5.5), we have

xt+1 = xt − γtĝt

= xt − γt
n∑
j=1

m∑
i=1

Iji
di(1− p)

∇L(ai,x)

= xt − γt
m∑
i=1

Zi
di(1− p)

(〈bi,xt〉 − yi)bi

= xt −
m∑
i=1

Ziδi(〈bi,xt〉 − yi)bi,

where we define

δi =
γt

di(1− p)
.

(Notice that δi also depends on t; we suppress this for notational convenience).

Expanding out the terms, we have

xt+1 − x? = xt − x? −
m∑
i=1

E [Zi] δibib
T
i (xt − x?)

−
m∑
i=1

Z̃iδibib
T
i (xt − x?)

−
m∑
i=1

E [Zi] δi(〈bi,x?〉 − yi)bi

−
m∑
i=1

Z̃iδi(〈bi,x?〉 − yi)bi

where we have split up Zi = E [Zi] + Z̃i and

(〈bi,xt〉 − yi)bi = bib
T
i (xt − x?) + (〈bi,x?〉 − yi)bi.

Letting

r := Bx? − y

122

be the optimal residual and writing the above in matrix notation, we have

xt+1−x? = (xt−x?)−(1−p)BTDdDδB(xt−x?)−BTDZ̃DδB(xt−x?)−(1−p)BTDdDδr−BTDZ̃Dδr,

where DZ̃ is diagonal with entries Z̃i, Dδ is diagonal with entries δi, and Dd is diagonal with

entries di. Recalling that

δi =
γt

(1− p)di

we have

Dδ ·Dd =
γt

1− p
.

Thus we can simplify the above as

xt+1 − x? = (xt − x?)− γtBTB(xt − x?)−BTDZ̃DδB(xt − x?)− γtBT r−BTDZ̃Dδr

= (xt − x?)− γtBTB(xt − x?)−BTDZ̃DδB(xt − x?)−BTDZ̃Dδr

using the fact that BT r = 0 since r = Bx?−y is the optimal residual. We simplify this further

as:

xt+1 − x? = (I − γtBTB +BTDZ̃DδB)(xt − x?)−BTDZ̃Dδr.

Now we compute E
[
‖xt+1 − x?‖2

]
, where the expectation is over the choice of xt+1, condi-

tioned on xt. We have

E
[
‖xt+1 − x?‖2

]
= (xt − x?)T

[
(I − γtBTB)2 +BTDδE[DZ̃BB

TDZ̃]DδB
]

(xt − x?) (5.12)

+ rTDδE[DZ̃BB
TDZ̃]Dδr (5.13)

+ rTDδE[DZ̃BB
TDZ̃]DδB(xt − x?) (5.14)

+ rTDδE[DZ̃]BBT (I − γtBTB)(xt − x?) (5.15)

+ (xt − x?)T (I − γtBTB)(BTE[DZ̃]DδB)(xt − x?). (5.16)

123

We handle each of these terms below. First, we observe that (5.15) and (5.16) are zero because

EDZ̃ = 0. In order to handle (5.12), (5.13), (5.14), we compute

E
[
DZ̃BB

TDZ̃

]
.

The off-diagonal elements are given by

E
[
Z̃iZ̃j 〈bi,bj〉

]
=
didj
n

p(1− p) 〈bi,bj〉 ,

and the diagonal elements are given by

E
[
Z̃2
i ‖bi‖2

]
= dip(1− p)‖bi‖2 = d2

i p(1− p)/σ.

Thus,

E
[
DZ̃BB

TDZ̃

]
= p(1− p)

(
1

n
DdBB

TDd +
1

σ

(
I − Dd

n

)
D2
d

)
.

Now we handle the terms (5.12) and (5.13). First, for (5.12), we have

(xt − x?)T
[
(I − γtBTB)2 +BTDδE

[
DZ̃BB

TDZ̃

]
DδB

]
(xt − x?)

= (xt − x?)T
[
(I − γtBTB)2 + p(1− p)BTDδ

(
1

n
DdBB

TDd +
1

σ

(
I − Dd

n

)
D2
d

)
DδB

]
(xt − x?)

= (xt − x?)T
[
(I − γtBTB)2 +

p(1− p)
n

BTDδDdBB
TDdDδB +

p(1− p)
σ

BT
(
I − Dd

n

)
DδD

2
dDδB

]
(xt − x?)

= (xt − x?)T
[
(I − γtBTB)2 +

p(1− p)γ2
t

n
BTBBTB +

γ2
t p

(1− p)σ
BT

(
I − Dd

n

)
B

]
(xt − x?),

where in the last line we used the fact again that DδDd = γtI/(1− p). Now we can bound this

term by

(5.12) ≤
(

(1− γt‖BTB‖)2 +
pγ2
t

(1− p)n
‖BTB‖2 +

γ2
t p

(1− p)σ
‖BTB‖

)
‖xt − x?‖2,

124

where above we have used the fact that

∥∥∥∥BT (I − Dd

n

)
B

∥∥∥∥ ≤ ‖BTB‖,
because I − Dd/n is a diagonal matrix whose diagonal entries are all in [0, 1] (using the fact

that di ≤ n for all i). The second term (5.13) is bounded by

(5.13) = rTDδE
[
DZ̃BB

TDZ̃

]
Dδr

= p(1− p)rTDδ

(
1

n
DdBB

TDd +

(
I − Dd

n

)
1

σ
D2
d

)
Dδr

=
p(1− p)

n
rTDδDdBB

TDdDδr +
p(1− p)

σ
rT
(
I − Dd

n

)
DδD

2
dDδr

≤ γ2
t p

(1− p)n
rTBBT r + γ2

t ·
p

1− p
·
rT
(
I − Dd

n

)
r

σ

≤ γ2
t ·

p

1− p
· ‖r‖

2

σ
,

where we have used the fact that BT r = 0, and that rT (I −Dd/n) r ≤ ‖r‖2 because di ≤ n for

all i.

Finally we bound (5.14). We have, using our expression for E[DZ̃BB
TDZ̃] from above that

(5.14) = rTDδE[DZ̃BB
TDZ̃]DδB(xt − x?)

= p(1− p)rTDδ

(
1

n
DdBB

TDd +
1

σ

(
I − Dd

n

)
D2
d

)
DδB(xt − x?)

=
p(1− p)

n
rTDδDdBB

TDdDδB(xt − x?) +
p(1− p)

σ
rTDδ

(
I − Dd

n

)
D2
dDδB(xt − x?)

=
γ2
t p

(1− p)n
rTBBTB(xt − x?) +

γ2
t p

(1− p)σ
rT
(
I − Dd

n

)
B(xt − x?)

using the fact that DδDd = γtI/(1 − p) in the last line. Now, the first term is equal to zero

125

because rTB = 0, and we have

(5.14) =
γ2
t p

(1− p)σ
rT
(
I − Dd

n

)
B(xt − x?)

=
γ2
t p

(1− p)σn
rTDdB(xt − x?)

again using the fact that rTB = 0. Finally, we can bound

(5.14) =
γ2
t p

(1− p)σn
rTDdB(xt − x?)

≤ γ2
t p

(1− p)σn
‖r‖‖DdB(xt − x?)‖

≤ γ2
t p

(1− p)σ
‖r‖‖B(xt − x?)‖

≤ γ2
t p

(1− p)σ
‖r‖
√
‖BTB‖‖xt − x?‖

≤ γ2
t p

(1− p)σ

(
‖r‖2 + ‖BTB‖‖xt − x?‖2

2

)
,

using the arithmetic-geometric-mean inequality in the final line. In particular, this term is

similar to terms that appear in both (5.12) and (5.13), and (along with the observation that

(5.15), (5.16) are zero) we have

E‖xt+1 − x?‖2 ≤ (5.12) + (5.13) + (5.14)

≤
(

(1− γt‖BTB‖)2 +
pγ2
t

(1− p)n
‖BTB‖2 +

γ2
t p

(1− p)σ
‖BTB‖

)
‖xt − x?‖2

+ γ2
t ·

p

1− p
· ‖r‖

2

σ

+
γ2
t p

(1− p)σ

(
‖r‖2 + ‖BTB‖‖xt − x?‖2

2

)
≤
(

(1− γt‖BTB‖)2 +
pγ2
t

(1− p)n
‖BTB‖2 +

2γ2
t p

(1− p)σ
‖BTB‖

)
‖xt − x?‖2

(5.17)

+ 2γ2
t ·

p

1− p
· ‖r‖

2

σ
. (5.18)

126

Now we recall our choice of

γt =
1

‖BTB‖
·min

{
1

2
,

log(1/ε2)

t

}
,

and the definition of

σ =
d

µ

1

‖BTB‖
.

Let

γ̃t := ‖BTB‖γt = min

{
1

2
,

log(1/ε2

t

}
.

Now we can simplify our bounds on (5.17) and (5.18) as:

(5.17) ≤
(

(1− γt‖BTB‖)2 +
pγ2
t

(1− p)n
‖BTB‖2 + 2

γ2
t p

(1− p)σ
‖BTB‖

)
‖xt − x?‖2

≤
(

(1− γ̃t)2
+

(
p

1− p

)
(γ̃t)

2 · 1

n
+

(
2p

1− p

)
(γ̃t)

2
(µ
d

))
‖xt − x?‖2

≤
(

(1− γ̃t)2
+

1

2
(γ̃t)

2

)
‖xt − x?‖2,

using the assumptions that n ≥ 4p/(1− p) and d ≥ 8µp/(1− p). Now we have:

(5.17) ≤
(

(1− γ̃t)2
+

1

2
(γ̃t)

2

)
‖xt − x?‖2

=

(
1− 2γ̃t +

3

2
γ̃t

)
‖xt − x?‖2

≤ (1− γ̃t) ‖xt − x?‖2,

using from the definition of γ̃t that γ̃t ≤ 1/2 and hence γ̃2
t ≤ 1

2 γ̃t.

127

Meanwhile,

(5.18) ≤ 2γ2
t ·

p

1− p
‖r‖2

σ

≤ 2 (γ̃t)
2

(
p

1− p

)
‖r‖2

σ‖BTB‖2

≤ 2 (γ̃t)
2

(
p

1− p

)
‖r̃‖2

σ‖BTB‖
,

recalling that r̃ = r/‖BTB‖. Thus

(5.18) ≤ 2 (γ̃t)
2

(
p

1− p

)
‖r̃‖2

σ‖BTB‖

= 2 (γ̃t)
2

(
p

1− p

)(µ
d

)
‖r̃‖2.

Putting the two terms together, we conclude that for fixed t,

E
[
‖xt+1 − x?‖22

]
≤ (1− γ̃t) ‖xt − x?‖22 + 2 (γ̃t)

2

(
p

1− p

)(µ
d

)
‖r̃‖2.

Now, we proceed by induction, using the fact that the stragglers are independent between

the different rounds, to conclude that

E
[
‖xT − x?‖22

]
≤

(
T∏
t=1

(1− γ̃t)

)
‖x0 − x?‖22 + 2T γ̃2

T

(
p

1− p

)(µ
d

)
‖r̃‖22

≤
(

1− log(1/ε2)

T

)T
‖x0 − x?‖22 + 2T · log2(1/ε2)

T 2

(
p

1− p

)(µ
d

)
‖r̃‖22

≤ ε2‖x0 − x?‖22 +
2

Td
·
(

log2(1/ε2)

(
p

1− p

)
µ‖r̃‖22

)
.

This proves the theorem.

5.7.2 Proof of Theorem 5.9

In this section we prove Theorem 5.9. Our proof of Theorem 5.9 relies on the following result

from [36] which shows that any stochastic algorithm with a “good” estimator of the true gradient

128

converges with rate O(1
T). We translate this result to our setting.

Lemma 5.10 (Lemma 1 in [36]). Suppose L is λ-strongly convex over a convex set W, and that

ĝt is an unbiased estimator of a subgradient gt of the loss function L at xt, i.e., E [ĝt] = gt.

Suppose also that for all t, E
[
‖ĝt‖22

]
≤ G.7 Then if we pick γt = 1/λt, it holds for any T that

E
[
‖xT − x?‖22

]
≤ 4G

λ2T
.

Proof of Theorem 5.9. In order to apply Lemma 5.10, we need to show that the estimate of the

gradient obtained by the master at each iteration is unbiased. To see this, recall that at each

iteration t, the master computes the following estimate of the gradient:

ĝt ,
n∑
j=1

m∑
i=1

Iji
di(1− p)

∇L(ai,xt). (5.19)

Therefore,

E [ĝt] =

n∑
j=1

m∑
i=1

EIji
di(1− p)

∇L(ai,xt). (5.20)

Recall that Iji is an indicator function equal to 1 if worker j is non straggler and has data vector

ai. Thus,

E [ĝt] =

n∑
j=1

m∑
i=1

1 worker j has data vector ai

di
∇L(ai,xt)

=

m∑
i=1

∇L(ai,xt)

= ∇L(A,xt).

Now, we need to show that under the conditions of the theorem, the variance E‖ĝ(A,xt)‖22

is bounded. (Here, the randomness is over the choice of the stragglers in round t). As in

7 Here, the randomness in the expectation is over the next round of stragglers, conditioned on the previous
rounds.

129

the proof of Theorem 5.6, let Zi be the binomial random variable that counts the number of

non-stragglers (in a given round t) who have block i. Thus we have

E
[
Z2
i

]
= dip(1− p) + d2

i (1− p)2, E [Zi1Zi2] =
di1di2
n

p(1− p) + di1di2(1− p)2.

We compute

E
[
‖ĝ(A,xt)‖22

]
≤ E

[
max
x∈W

‖ĝ(A,x)‖22

]

= E

max
x∈W

∥∥∥∥∥∥
n∑
j=1

m∑
i=1

Iji
di(1− p)

∇L(ai,x)

∥∥∥∥∥∥
2

2

=

1

(1− p)2
E

max
x∈W

∥∥∥∥∥
m∑
i=1

Zi
di
∇L(ai,x)

∥∥∥∥∥
2

2

=

1

(1− p)2
E

[
max
x∈W

m∑
i1=1

m∑
i2=1

Zi1Zi2
di1di2

〈∇L(ai1 ,x),∇L(ai2 ,x)〉

]

≤ 1

(1− p)2

m∑
i1=1

m∑
i2=1

E[Zi1Zi2]

di1di2
max
x∈W

〈∇L(ai1 ,x),∇L(ai2 ,x)〉 ,

where above we have used the fact that the terms E[Zi1Zi2]/(di1di2) are all positive to move

the maximum inside the sum. We have

〈∇L(ai1 ,x),∇L(ai2 ,x)〉 ≤ ‖∇L(ai1 ,x)‖2‖∇L(ai2 ,x)‖2

by Cauchy-Shwarz, and thus

max
x∈W

〈∇L(ai1 ,x),∇L(ai2 ,x)〉 ≤ max
i∈[n]

max
x∈W

‖∇L(ai,x)‖22 ≤ C2,

130

by the assumptions of the theorem. Thus, we may continue the derivation above as

E
[
‖ĝ(A,xt)‖22

]
≤ C2

(1− p)2

m∑
i1=1

m∑
i2=1

E[Zi1Zi2]

di1di2

=
C2

(1− p)2

(
m∑
i=1

(
dip(1− p) + d2

i (1− p)2

d2
i

))

+
C2

(1− p)2

∑
i1 6=i2

(
di1di2p(1− p)

ndi1di2
+
di1di2(1− p)2

di1di2

)
= C2

 m∑
i=1

(
p

(1− p)di
+ 1

)
+
∑
i1 6=i2

(
p

n(1− p)
+ 1

)
≤ mC2

(
p

1− p
· 1

dmin
+

(m− 1)p

n(1− p)
+m

)

Plugging this estimate into Lemma 5.10 proves Theorem 5.9.

5.8 Related Work

In this section we survey the related work more broadly than in the introduction.

Coding techniques for straggler mitigation Straggler workers are the bottleneck of dis-

tributed systems and mitigation of stragglers is a must [5]. Amongst popular techniques, coding

theoretic techniques are being used for straggler mitigation in different applications such as

machine learning, see e.g. [10–13, 15, 100, 101, 103, 111, 129–131, 131–133, 133, 148–150], matrix

multiplication, see e.g., [6,18,27,97,110,128,151–154], linear transforms, see e.g., [7,98,99,155],

and content download, see e.g., [94–96,156–158].

There is a growing body of work on gradient coding, which focuses on the special and

important case of gradient descent. For example, [10–12] present coding techniques to avoid

stragglers and perform a gradient descent update at each iteration, i.e., at each iteration the

master observes the gradient evaluated at the whole data matrix A. In this framework, the

master distributes the data to workers with redundancy. In the works cited above, the goal is to

131

exactly compute the gradient, even in the presence of stragglers, and the amount of redundancy

depends on the number of stragglers to be tolerated. However, it is still useful (and often much

more efficient) to approximate the gradient, rather than computing it exactly. This setting is

what our work focuses on and we discuss it in more detail below.

Approximate gradient coding In approximate gradient coding, the goal is not to compute

the gradient exactly, but rather to compute an approximation to the gradient. This is the

approach that we take, and there are several previous works which do this. The ones most

relevant to our work are [13–17,39–41,142], which we discuss in more detail below.

In [39], the authors consider a setting where there are “extra” workers, and all the workers

sample data randomly from B at each round. Again, the master waits for the fastest n − s

workers to complete. This is quite similar to the Ignore–Stragglers–SGD scheme; the difference

is that in Ignore–Stragglers–SGD, the data is partitioned among the workers and the data held

by the workers is fixed throughout the algorithm, while in [39] the workers sample a fresh subset

of data at each iteration. The sampling of the data in [39] is done with replacement which may

incur redundancy in the data held by the workers.

In [15], the authors focus on linear loss functions and use LDPC codes to encode the data

sent to the workers. If fewer than s stragglers are present, then the master can compute the

exact gradient. However, if more than s stragglers are present the master leverages the LDPC

code to computes an estimate of the gradient. In [40] the authors propose a replication-based

scheme to distribute the data to the workers. The data distribution scheme can be seen as

a bipartite graph with the data vectors on one side and the workers on the other. An edge

is drawn between a data vector i and a worker j if the vector ai is given to worker j. The

distribution of the degrees of the nodes corresponding to data vectors and to workers are drawn

according to an LDGM scheme. The main drawback is that the master has to run a decoding

algorithm to decode the sum of the partial gradients at each iteration.

In [13, 14], the authors present approximate gradient schemes. The main idea is to bound

132

the distance between the computed approximate gradient and the actual gradient at each step.

Both of these schemes have a similar framework to ours: the data is replicated among nodes ac-

cording to an appropriate design, and the workers return a linear combination of the gradients

that they can compute. In [13] the authors present a data replication scheme based on Ra-

manujan graphs. In [14] the authors present two constructions. The first is based on fractional

repetition codes (FRC) and partitions the workers and data into blocks; within a block, each

worker receives every data point from the corresponding block. The second construction called

Bernoulli Gradient Coding (BGC) distributes each data point randomly to d different workers.

We note that BGC is an approximation of the pairwise-balanced schemes we consider and can

be seen as a case of SGC when all the data ai have the same norm.

In [41] the authors present a data replication scheme based on balanced incomplete block

designs. The scheme guarantees that the computed estimate of the gradient is close to the

actual gradient even if the stragglers are not chosen randomly across iterations. This work is

motivated by systems in which stragglers cannot be modeled statistically.

In [142], the authors also study a replication-based scheme, but they focus on a model

where individual workers return many gradients asynchronously, rather than returning a linear

combination of the gradients they can compute.

In [16] the authors present fundamental bounds on the error between the approximated

gradient and true gradient at each round as function of the redundancy. In [17], the authors

analyze the convergence rate of the fractional repetition scheme presented in [14] and show that

under standard assumptions on the loss function, the algorithm maintains the convergence rate

of centralized stochastic gradient descent.

Other work on stochastic gradient descent Beginning with its introduction in [159], there

has been a huge body of work on stochastic gradient descent (in a setting without stragglers),

and we draw on this mathematical framework for our theoretical results. In the special case

of `2 loss (which we focus on in this work), SGD coincides with the randomized Kaczmarz

133

method [144,145], and our proof of Theorem 5.6 is inspired by these analyses.

There has been a great deal of work on SGD and Batch–SGD in distributed settings where

there is no redundancy of the data between workers and dealing with stragglers is not the

primary concern, see e.g., [146, 160–163]. In addition to the synchronous setting in which

the master waits for all workers to make an update on x, there has been work on the asyn-

chronous setting in which the master makes an update on x every time a worker gets back, see

e.g., [93, 140, 164–166]. For example, [166] shows that asynchronous SGD asymptotically be-

haves similarly to synchronous SGD in terms of convergence for convex optimization and under

the similar assumptions on the loss function. In [165], the authors compare the convergence

rate of synchronous and asynchronous SGD as a function of the wall clock time rather than

number of iterations.

134

Chapter 6

Universally Robust Private

Information Retrieval

We consider the problem of private information retrieval (PIR) as an extension to private coded

computing. We follow the nomenclature of the PIR literature: the master is a user who wants

to retrieve a file from a database owned by several servers. We consider the setting where the

database consists of m files replicated on n servers that can possibly collude. We focus on

devising robust PIR schemes that can tolerate stragglers, i.e., slow or unresponsive servers.

In many settings, the number of stragglers is not known a priori or may change with time.

We define universally robust PIR as schemes that achieve asymptotic, in m, PIR capacity,

i.e., asymptotically optimal download rate, simultaneously for any number of stragglers up to

a given threshold. We introduce Staircase-PIR schemes and prove that they are universally

robust. Towards that end, we establish an equivalence between robust PIR and communication

efficient secret sharing.

135

6.1 Introduction

We consider the problem of designing PIR schemes on replicated data [43, 44], i.e., the data

consisting of m files is replicated on n servers that can possibly collude. We use the terminology

of the PIR literature: workers are referred to as servers, the master is a now a user who is

querying the data. A user queries the servers to obtain a file of interest while keeping the

identity of the file private, even if z servers collude with z < n. We focus on information-

theoretic privacy (instead of computational privacy), which guarantees privacy without making

any assumption on the computation power of the servers as long as no more than z servers

collude.

Robustness: Under the setting described above, we are interested in PIR schemes that are

robust. A robust PIR scheme allows the user to retrieve the file by receiving responses from

any k servers z < k ≤ n. The robustness property is motivated by the need to mitigate the

effect of stragglers [5, 6, 10,11,26,28,76,95–98,149], i.e., slow or unresponsive servers.

PIR capacity: A challenge in designing PIR schemes is maximizing their download rate defined

as the ratio of the retrieved file size to the amount of information downloaded by the user. The

PIR capacity is defined as the maximal rate achievable by a PIR scheme and was shown in [46]

to be

Cm(z, k) =
1− z/k

1− (z/k)
m . (6.1)

Note that Cm(z, k) converges exponentially with the number of files m to its asymptotic value

C(z, k) = 1− z

k
. (6.2)

For instance, for m = 3 files and k = 10 servers, C3(1, 10) is at 99% of its asymptotic value

C(1, 10) (assuming no collusion z = 1). Given the tremendous amount of files being stored in

current systems, we focus on PIR schemes achieving the asymptotic capacity given in (6.2).

Universality: In many cases, the exact number of stragglers (slow or unresponsive servers) is not

136

Server1 Server 2 Server 3
Storage x x x

Queries
r1 ei + r1 2ei + em+i + r1

r2 em+i + r2 2em+i + r2

Responses
rT1 x (ei + r1)Tx (2ei + em+i + r1)Tx

rT2 x (em+i + r2)Tx (2em+i + r2)Tx

xT = [x1, . . . , xm, xm+1, . . . , x2m]

fi = [xi, xm+i] = [eTi x, e
T
m+ix]

eTi = [0, . . . , 0, 1︸︷︷︸
ith

, 0, . . . , 0]

entry
r1 and r2: random vectors

Notation

Table 6.1: An example of Staircase-PIR code for n = 3, k = 2 and z = 1. The user sends 2
sub-queries to each server. Each server projects the data on the sub-query vectors and sends the
result to the user. If all 3 servers are not stragglers, the user only downloads the first response
(in blue) from each server to retrieve the required file as follows xi = (ei + r1)Tx − rT1 x and
xm+i = (2ei + em+i + r1)Tx − rT1 x − 2xi. The rate of this scheme is equal to C(1, 3) = 2/3,
because the user downloads 3 responses to retrieve the 2 parts of the file fi = [xi, xm+i]. If
1 server is a straggler, the user downloads 2 responses from each of the remaining servers to
retrieve the file. The user can retrieve the file irrespective of which server is a straggler. The
rate of this scheme is C(1, 2) = 1/2, because the user downloads 4 responses to retrieve the file.

known a priori. This motivates the study of universally robust PIR schemes that can tolerate a

varying number of stragglers. More precisely, a universally robust PIR scheme is a scheme that

allows the user to retrieve the file from any d servers, k ≤ d ≤ n, while achieving the asymptotic

PIR capacity C(z, d) given in (6.2) simultaneously for all possible values of d. While a robust

PIR scheme designed for the worst case number of stragglers (d = k) can tolerate up to n − k

stragglers, it does not necessarily achieve the capacity for all possible values of d.

In the case where the stragglers are non-responsive, universally robust PIR guarantees that

the user can always obtain the file even if up to n − k servers do not reply to its queries. On

the other hand, when the stragglers are slow servers, universally robust PIR offers the user a

tradeoff between download rate and waiting time. The user can pick the number of servers to

wait for and universally robust PIR scheme achieves asymptotic capacity irrespective of this

choice. We illustrate the idea in Example 6.1.

Example 6.1 (Universally robust Staircase-PIR). Let n = 3 servers and we want to tolerate

up to 1 straggler, i.e., k = 2. Assume the servers do not collude, i.e., z = 1. We describe the

Staircase-PIR that simultaneously achieves C(1, 2) = 1/2 in the case of 1 straggler d = 2 and

C(1, 3) = 2/3 in the case of no stragglers d = 3.

137

Let f1, . . . , fm be the files stored on the servers. We divide each file fi into 2 parts and denote

the ith file as fi = [xi, xm+i]. We represent the data by the vector1 x where the entries of this

vector are indexed as follows x = [x1, . . . , xm, xm+1, . . . , x2m]T . Let ei denote the all zero vector

of length 2m with a ‘1’ in the ith entry. The ith file can be expressed as fi = [eTi x, eTm+ix]

which is the projection of x on ei and em+i. To construct the Staircase-PIR scheme, we use

two independent random vectors r1 and r2 each of length 2m and with entries drawn uniformly

at random from F2. We encode the queries using Staircase codes as shown in Table 6.1.

The user sends 2 sub-queries to each server which projects the data on the queries and sends

the result to the user. If one server is straggler, the user downloads all the sub-queries from the

other 2 servers to retrieve the file. For instance, if server 3 is the straggler, the user downloads

all the responses from servers 1 and 2, 4 responses in total, and retrieves fi = [xi, xm+i] as

xi = (ei + r1)Tx − rT1 x and xm+i = (em+i + r2)Tx − rT2 x. The rate in this case is equal

to 2/4 = 1/2 = C(1, 2). However, if no server is a straggler, the user only downloads the

first response (in blue) of all 3 servers to retrieve the file. The rate in this case is equal to

2/3 = C(1, 3). Privacy is achieved because ei and em+i are padded with random vectors r1, r2.

Related work: Private information retrieval was introduced by Chor et al. [43, 44] and was fol-

lowed up by a large body of work, e.g., [46, 47, 51, 167–175]. The literature mainly focused on

reducing the communication cost of privately retrieving the file. The early body of work mea-

sured the communication cost by the amount of information uploaded (queries) and downloaded

(responses) by the user [167–170]. Given the increasing size of stored files, the recent body of

work measures the communication cost by the amount of information downloaded by the user,

assuming the queries are too small compared to the downloaded files [46,47,51,171–175] which

is the assumption we adopt in this paper.

Robust PIR was studied in the literature, e.g., [45–52] and the capacity of robust PIR

schemes under download cost was characterized in [46,47,51] for replicated data. The common

focus of the literature has been on designing robust PIR that are not necessarily universal,

1The superscript T denotes the transpose operator.

138

which are tailored to a specific number of stragglers. In [49] the authors present a universally

robust PIR scheme for the no collusion case and when the data is stored on the servers using a

maximum distance separable (MDS) code.

Contributions: We introduce Staircase-PIR, a universally robust PIR scheme achieving asymp-

totic capacity for any number of stragglers up to a given threshold. Compared to the previous

work on universal PIR [49], this work allows servers’ collusion but is restricted to the case of

replicated data. The main ingredient of the proposed scheme is Staircase secret sharing codes

introduced by the authors in [24,25]. Moreover, we establish an equivalence between robust PIR

schemes achieving asymptotic capacity and communication efficient secret sharing schemes.

6.2 Problem formulation and main results

We consider robust private information retrieval. The data x is formed of m files f1, . . . , fm

and is replicated on n servers. A user wants to retrieve a file fi from the data without revealing

the identity i of the file to the servers. A robust PIR scheme encodes a set of queries q1, . . . ,qn

to be sent by the user to all the servers. Let W denote the random variable representing the

identity of the file that the user wants and let F be the random variable representing the file

fi. Let Qi denote the random variable representing query qi and let [n] , {1, . . . , n}. For any

subset B ⊆ [n] denote by QB the set of random variables representing the queries indexed by

B, i.e., QB = {Qi : i ∈ B}. Let H(.) denote the entropy function. Then, a universally optimal

robust PIR scheme is defined as follows.

Definition 6.1 (Universally robust PIR). A universally robust PIR (UR-PIR) scheme is a

scheme that satisfies the following properties:

1) Privacy: Any subset of z or less queries should not reveal any information about the identity

of the file, i.e.,

H(W | QZ) = H(W), ∀Z ⊂ [n] s.t. |Z| = z. (6.3)

139

2) Robustness: When receiving the responses of d servers, k ≤ d ≤ n, the user obtains the file,

H(F | QA) = 0, ∀A ⊆ [n] s.t. k ≤ |A| ≤ n. (6.4)

3) Optimality: The capacity of robust PIR is [46]

C(z, k) = 1− z

k
. (6.5)

We say that the scheme is optimal if the rate of the scheme achieves C(z, k) given in (6.5), i.e.,

H(F)

H(QA)
= 1− z

d
, ∀A ⊂ [n] s.t. |A| = d, (6.6)

for all d, k ≤ d ≤ n.

In addition, we refer to a robust PIR achieving capacity C(z, k) as an (n, k, z) robust PIR

and we refer to a universally robust PIR achieving capacity C(z, d) for all k ≤ d ≤ n as

an (n, k, z) UR-PIR. We introduce Staircase-PIR, a deterministic construction for all (n, k, z)

UR-PIR schemes.

Theorem 6.2. The (n, k, z) Staircase-PIR scheme described in Section 6.3.1 is a universally

robust PIR, i.e., satisfies the required privacy and robustness constraints given in (6.3) and (6.4)

for any given z < k ≤ n, and achieves the asymptotic capacity of robust PIR

C(z, d) = 1− z

d
,

simultaneously for all d such that k ≤ d ≤ n.

140

Symbol Meaning Symbol Meaning
n number of servers Cm(n, k) capacity of PIR scheme
k threshold on non stragglers C(n, k) asymptotic capacity of PIR scheme
z number of colluding servers E matrix containing ei’s
d number of non stragglers Ri matrix containing ri’s
m total number of files in x Dj matrix with entries from E and Ri, i ≤ j

fi ith file of the data x M
structured matrix containing E, Ri’s and
Dj ’s

di defined as di , n− i+ 1 x the data stored at the servers
αi defined as α , di − z qi query sent to server i
α defined as α , LCM(α1, . . . , αn−k) r random vector
α′ defined as α′ , (k − z)α 0 matrix with all 0 entries

ei
all zero vector with 1 in the ith
position e′j,i defined as e′j,i , e(j−1)m+i

Table 6.2: Summary of notations for this Chapter.

6.3 Staircase-PIR scheme

6.3.1 Staircase-PIR construction

We describe the (n, k, z) Staircase-PIR scheme. The scheme consists of three steps: i) the user

encodes the queries q1, . . . ,qn and sends them to the servers; ii) each server j projects the data

on the received query, i.e., computes qTj x and sends the result to the user; and iii) the user

decodes the requested file. We start by explaining the encoding of the queries. Let dj = n−j+1,

and αj = dj − z, j = 1, . . . , n − k + 1. Staircase-PIR divides each query into α sub-queries,

where α = LCM(α1, . . . , αn−k) is the least common multiple of all the αj ’s except for the last

αn−k+1 = k− z. Consequently, the construction assumes that each file fi of the data is divided

into α′ = (k − z)α parts, i.e., fi = [xi, xm+i, . . . , x(α′−1)m+i] = [eTi x, . . . , e
T
(α′−1)m+ix], where

x = [x1, . . . , xm, xm+1, . . . , xα′m]T . For simplicity of notation, let e′j,i , e(j−1)m+i where i is

the index of the requested file and is dropped when it is clear from the context.

To retrieve file i, the user encodes e′1, . . . , e
′
α′ together with zα iid random vectors, drawn

uniformly at random from F2 and independently of the e′j ’s. To encode the queries, we arrange

the e′j ’s in an α1 × α′/α1 matrix E and the random vectors in n − k + 1 matrices Rj , j =

1, . . . , n− k+ 1, of respective dimensions z×α′/αjαj−1 (take α0 = 1). Note that each entry of

the matrices E and the Rj ’s is a vector of dimension αm.

141

We arrange E and the Rj ’s in n− k + 1 matrices Mj , j = 1, . . . , n− k + 1, as follows,

M1 =

E
R1

 and Mj =

Dj−1

Rj

0

 j 6= 1,

where, Dj is a matrix of dimensions αj+1 × α′/αjαj+1, j = 1, . . . , n − k, formed of the

(n− j + 1)
th row of

[
M1 M2 · · · Mj

]
wrapped around to fit the above mentioned dimensions.

Each Mj matrix is completed to n rows with the all zero matrix 0. We obtain the encoding

matrix M defined in Table 6.3 by concatenating the n−k+ 1 matrices Mj , j = 1, . . . , n−k+ 1.

Note that the positions of Rj and Dj−1 (similarly R1 and E) in M can be switched without

affecting the construction.

M =

D2

. . . Dh−1

D1 Rh
E R3

. . .

R2 0R1 0 . . .
0

 .
Table 6.3: The structure of the matrix M used to encode the queries of Staircase-PIR.

Encoding of the queries: Let V be an n×n Vandermonde2 matrix over Fq, q > n. The matrix

M is multiplied by V to obtain the query matrix Q = VM . The queries sent to the servers are

the n rows of Q. Note that each row of Q consists of α entries, hence each query is divided in

α sub-queries.

Retrieving the file: To retrieve the wanted file by waiting for any dj servers indexed by J ⊆ [n],

the user only downloads the projection of x on the first α′/αj sub-queries from each contacted

server corresponding to
(
vl

[
M1 · · · Mj

])T
x, for all l ∈ J , where vl denote the lth row of V .

Decoding all the e′’s from the received parts of the responses is guaranteed by Theorem 2.2,

therefore retrieving the file [e′1, . . . , e
′
α′]

Tx follows from the linearity of the scheme.

Optimality: When waiting for dj servers, the user downloads djα′/αj responses to retrieve the

α′ parts of the file. Therefore, the rate of the scheme is given by α′/(djα
′/αj) = αj/dj =

2All square sub-matrices formed by consecutive columns of V must be invertible. Two family of matrices
satisfying this property are Vandermonde and Cauchy matrices.

142

(dj − z)/dj = C(z, dj) as given in (6.2).

Privacy: Each subset of at most z servers obtain no information about the identity of the

wanted file. The servers only observe the queries, Theorem 2.2 guarantees that the queries sent

to any z servres leak no information about the e′j ’s. We skip this proof and refer the interested

reader to Section 2.5 for a detailed proof.

6.3.2 Examples of Staircase-PIR

First we show how the scheme in Example 6.1 was obtained using the general construction.

Example 6.1 (Continued). Recall that we want to construct an (n, k, z) = (3, 2, 1) Staircase-

PIR scheme. Each file is divided into two parts fi = [eTi x, eTm+ix] and the construction uses

two random vectors r1 and r2. The matrix M is created by arranging the vectors ei and em+i

in E = [ei, em+i] and by having R1 = [r1], R2 = [r2] and D1 = [em+i]. The matrix M in this

example is given by

M =

R1 R2

E
D1

0

 =

r1 r2

ei em+i

em+1 0

 .
The user constructs the query matrix Q = VM as given in (6.7), where each row qi of Q is the

query sent to server i. The queries are given in Table 6.1.

Q = VM =

1 0 0

1 1 0

1 2 1

r1 r2

ei em+i

em+1 0

 . (6.7)

Next we give a second example that illustrates in more details the general construction of

Staircase-PIR.

Example 6.2. We construct an (n, k, z) = (4, 2, 1) Staircase-PIR. Let d1 = 4, d2 = 3, d3 = 2,

α1 = 3, α2 = 2, α3 = 1 and α = LCM(α1, α2) = LCM(3, 2) = 6. We divide the files into α′ =

(k− z)α = 6 parts each, i.e., the file fi is formed of fi = [eTi x, . . . , e
T
5m+ix] , [e′1

T
x, . . . , e′6

T
x].

The construction uses zα = 6 iid random vectors drawn uniformly at random from F2. The

143

Server 1 Server 2
(e′1 + e′2 + e′3 + r1)Tx (e′1 + 2e′2 + 4e′3 + 3r1)Tx
(e′4 + e′3 + e′6 + r2)Tx (e′4 + 2e′5 + 4e′6 + 3r2)Tx

(r1 + r2 + r3)Tx (r1 + 2r2 + 4r3)Tx
(e′3 + r4)Tx (e′3 + 2r4)Tx
(e′6 + r5)Tx (e′6 + 2r5)Tx
(r3 + r6)Tx (r3 + 2r6)Tx

Server 3 Server 4
(e′1 + 3e′2 + 4e′3 + 2r1)Tx (e′1 + 4e′2 + e′3 + 4r1)Tx
(e′4 + 3e′5 + 4e′6 + 2r2)Tx (e′4 + 4e′5 + e′6 + 4r2)Tx

(r1 + 3r2 + 4r3)Tx (r1 + 4r2 + r3)Tx
(e′3 + 3r4)Tx (e′3 + 4r4)Tx
(e′6 + 3r5)Tx (e′6 + 4r5)Tx
(r3 + 3r6)Tx (r3 + 4r6)Tx

Table 6.4: The responses sent by the servers when using an (n, k, z) = (4, 2, 1) Staircase-PIR
scheme.

e′j’s and the random vectors are arranged in the following matrices,

E =

e′1 e′4

e′2 e′5

e′3 e′6

 , R1 =
[
r1 r2

]
,

R2 =
[
r3

]
, and R3 =

[
r4 r5 r6

]
.

To build the matrix M which will be used for encoding the queries, we start with

M1 =

e′1 e′2 e′3 r1

e′4 e′5 e′6 r2

T .
Then, D1 is the α2 × α′/α1α2 = 2× 1 matrix containing the entries of the nth row of M1, i.e.,

D1 =
[
r1 r2

]T
. Therefore, M2 =

[
D1 R2 0

]T
=
[
r1 r2 r3 0

]T
. Similarly, we have

D2 =
[
e′3 e′6 r3

]
and

M3 =

e′3 e′6 r3

r4 r5 r6

0 0 0

0 0 0

 .

We obtain M by concatenating M1, M2 and M3,

144

M =

e′1 e′4 r1 e′3 e′6 r3

e′2 e′5 r2 r4 r5 r6

e′3 e′6 r3 0 0 0

r1 r2 0 0 0 0

 .

The matrix V is the n× n = 4× 4 Vandermonde matrix over F5 given in (6.8). The query qj

sent to server j is the jth row of the matrix Q = VM . The responses to the queries, i.e., QTx

are given in Table 6.4.

V =

1 1 1 1

1 2 4 3

1 3 4 2

1 4 1 4

 . (6.8)

After receiving the query qj, each server j projects the data x on qj and sends the result

back to the user. We illustrate how the user can retrieve the wanted file by achieving the PIR

capacity C(z, d) given in (6.2) simultaneously for d1 = 4, d2 = 3 and d2 = 2.

Suppose the user waits for d1 = 4 servers. The user downloads the first α′/α1 = 2 responses

of each server corresponding to VMT
1 x (first two rows in black in Table 6.4). Recall that V

is a Vandermonde matrix, hence is invertible. The user multiplies the received responses by

the inverse of V to decode MT
1 x which contains e′j

T
x for j = 1, . . . , 6, therefore retrieving the

desired file. The rate of this PIR scheme is equal to 6/8 = 3/4 = C(1, 4), because the user

decodes the 6 parts of the file by downloading 8 responses.

If the user waits for d2 = 3 servers, the user downloads the first α′/α2 = 3 responses of each

contacted server corresponding to VJ
[
M1 M2

]T
x (in black and red), where VJ is the matrix

formed by the rows of V indexed by J ⊂ [n]. Recall that VJ here is a 3 × 4 Vandermonde

matrix. The user can retrieve the file as follows. Since M2 has a 0 as its last entry, VJMT
2 x

reduces to V ′JM
T
2 x, where V ′J is the 3 × 3 invertible Vandermonde matrix formed of the first

three columns of VJ . The user can then decode MT
2 x which consists of rT1 x, rT2 x and rT3 x. By

subtracting rTi x from VJM
T
1 x, the user obtains V ′JM

′
1
T
x where M ′J is the matrix formed of

the the first three columns of M1. By inverting V ′J the user can decode M ′1
T
x which contains

145

the required file. The rate of this PIR scheme is equal to 6/9 = 2/3 = C(1, 3), because the user

decodes the 6 parts of file by downloading 9 responses.

Following a similar procedure, the user can retrieve the file by downloading all the responses

of any 2 servers. The rate here is C(1, 2) = 1/2 because the user downloads 12 responses to

decode the requested file.

On a high level, privacy is guaranteed because each sub-query is padded with a different

random vector.

6.4 From secret sharing to PIR

The connection between secret sharing and PIR has been studied in the literature, e.g., [45,167,

176]. Our Staircase-PIR construction was obtained using Staircase codes for communication

efficient secret sharing explained in Chapter 2. In this section, we explore more this connection

between communication efficient secret sharing [22–24, 64, 177] and capacity achieving robust

PIR schemes. We redefine secret sharing and communication efficient secret sharing in the

language of this chapter.

Definition 6.3 (Secret sharing scheme). A secret sharing scheme is an encoding of a secret s

into n shares w1, . . . ,wn , stored on n servers, such that a user accessing any subset of z or less

shares obtains no information about s, however by accessing any collection of k or more shares

the user can reconstruct the whole secret. Let S denote the random variable representing the

secret s and Wi denote the random variable representing the share wi. A secret sharing scheme

satisfies the following properties:

1) Perfect secrecy: expressed as

H(S | WZ) = H(S), ∀Z ⊂ [n] s.t. |Z| = z. (6.9)

146

2) MDS: or reconstruction of the secret,

H(S | WA) = 0, ∀A ⊆ [n] s.t. |A| = k, (6.10)

and the secret is of size (k − z) units as implied by (6.9) and (6.10) (see [23, Proposition 1]).

We refer to a secret sharing scheme as defined above as an (n, k, z) secret sharing.

Definition 6.4 (Communication efficient secret sharing). A communication efficient secret

sharing is a secret sharing scheme that allows the user to reconstruct the secret by downloading

a part of any d shares, k ≤ d ≤ n. When accessing d servers, the user needs only to download

the optimal rate d(k − z)/(d− z) units of information given in [22,23].

Now we are ready to describe how to obtain a robust PIR scheme from a secret sharing (SS)

scheme. We call this construction SS-PIR construction.

SS-PIR construction: An (n, k, z) robust PIR can be constructed using linear secret sharing

as follows. Let fi, the ith entry of the data x, be the file of interest expressed as fi = xi = eTi x.

To construct an (n, k, z) robust PIR scheme, the user encodes the queries q1, . . . ,qn using an

(n, k, z) linear secret sharing scheme with s = ei and sends those queries to the n servers. After

receiving the query, each server j projects the data x on qj and sends qTj x to the user.

Proposition 6.5. An information retrieval scheme obtained from the SS-PIR construction is

a robust PIR scheme, i.e., guarantees privacy and robustness and achieves asymptotic capacity

equal to

C(z, k) = 1− z

k
.

Proof. We show that an information retrieval scheme constructed using linear secret sharing

scheme is a robust PIR scheme, i.e., guarantees privacy and robustness, that achieves asymptotic

PIR capacity.

Privacy: Any subset of z or less servers obtain no information about the identity of the file

147

of interest. Each server observes a query encoded using an (n, k, z) secret sharing. From the

secrecy constraint of secret sharing (6.9), any z or less servers obtain no information about ei,

which represents the identity of the file.

Robustness: After receiving the responses qTj x from any k servers, j ∈ [n], the user can retrieve

fi. From the MDS property of the secret sharing (6.10), the user can decode ei from any k

queries qj , j ∈ [n]. By linearity of the secret sharing scheme, after receiving k responses qTj x

from the servers, the user is able to decode fi = eTi x. In other words, since all the queries are

multiplied by the same vector x, being able to decode the secret s = ei from the queries implies

the ability of decoding the file eTi x from the responses, c.f. Section 6.3.2.

Optimality: We show that this PIR scheme is optimal, i.e., achieves C(z, k) given in (6.2). To

retrieve the file, the user has to download k responses, i.e., k units of information. Secret sharing

assumes that the size of the retrieved file is k − z units of information3. Therefore, the rate of

this PIR scheme is (k − z)/k achieving C(z, k).

We generalize Proposition 6.5 to show that a PIR scheme constructed using a communication

efficient secret sharing is universally robust.

Proposition 6.6. An information retrieval scheme constructed using an (n, k, z) linear commu-

nication efficient secret sharing scheme is a universally robust PIR that achieves PIR capacity

C(z, d) = 1− z

d
,

simultaneously for all k ≤ d ≤ n.

The implication of this Proposition is that any communication efficient secret sharing includ-

ing Staircase codes can be used to obtain universally robust PIR through SS-PIR construction.

3The scheme can be scaled so that the file is of size 1 unit of information, each query becomes of size 1/(k−z).

148

Proof. We show that an information retrieval scheme encoding the queries using a linear com-

munication efficient secret sharing scheme is an (n, k, z) UR-PIR. Note that privacy and robust-

ness to any number of unresponsive servers are guaranteed by the properties of secret sharing

and by the ability of decoding the secret by accessing any d shares. The additional property

that we comment on is the optimality of retrieving the file when any number of servers d,

k ≤ d ≤ n, are stragglers. When a user receives responses from d servers it only needs to

download d(k − z)/(d− z) units of information to retrieve the file of size k − z. Therefore, the

rate of this scheme is equal to (d− z)/d achieving (6.2) with equality.

6.5 Conclusion

We study robust private information retrieval (PIR). A user wants retrieve a file by querying

n servers without revealing the identity of the required file to the servers. We assume the

servers can collude and consider the setting in which the servers might be stragglers, i.e., slow

or unresponsive. We introduce Staircase-PIR, a universally robust PIR scheme that allows the

user to successfully retrieve the file by waiting only for the non straggler servers. This scheme

achieves the PIR capacity simultaneously for any number of stragglers up to a given threshold.

Moreover, we give a general construction to obtain universally robust PIR from communication

efficient secret sharing.

149

Chapter 7

Conclusion

This dissertation tackles the problem of private coded computation in the presence of stragglers.

We focus on linear computation, i.e., matrix-vector multiplication. Private coded computation

schemes based on classical secret sharing tolerate the presence of a fixed number of stragglers

and guarantee privacy. Classical secret sharing schemes allow the master to share a secret with

n workers such that any k ≤ n workers can decode the secret and any z < k workers obtain no

information about the secret, in an information theoretic sense.

We propose the use of communication efficient secret sharing in the setting where the workers

have similar and fixed resources. In addition to the properties of secret sharing, a communication

efficient secret sharing allows a legitimate user to decode the secret by contacting k ≤ d ≤ n

workers and downloading the minimum amount of information as a function of d to decode the

secret. We construct Staircase codes, a new family of communication efficient secret sharing

schemes, in Chapter 2 and analyze their performance in this private coded computation setting

in Chapter 3.

In the setting where the workers have different and are time-varying resources, we propose

new private and rateless codes called PRAC that adapt to the dynamically changing resources

of the workers (Chapter 4). PRAC estimates the available resources at the workers and allocates

tasks that are proportional to the estimated resources. We show that, in this setting, PRAC

150

outperforms any scheme that pre-allocates the tasks to the workers.

We consider the extension of private coded computation to private information retrieval

(PIR) and construct Staircase-PIR (Chapter 6) that achieves the minimum communication

cost simultaneously for any number of stragglers, up to a given threshold.

Beyond linear coded computation, this dissertation contributes to the growing literature on

approximate gradient coding. We introduce in Chapter 5 a new family of codes called stochastic

gradient codes (SGC) for distributed gradient-descent-like algorithm for any additively separable

loss function. SGC requires a constant amount of redundancy in distributing the data, tolerates

any number of stragglers and enjoys a fast convergence rate.

In addition to the theoretical contributions, this dissertation provides extensive simulations

on MATLAB and extensive implementation of the proposed codes on Amazon EC2 clusters and

Android devices. The simulations and implementations serve as a validation of the theoretical

results and provide insights for further research directions.

In the following sections, we summarize the topics discussed in this dissertation and briefly

outline its contributions. We conclude with open problems and future research directions.

7.1 Summary of the Dissertation

7.1.1 Theoretical study

The main goal of this thesis is to introduce new codes for private coded computing with strag-

gler mitigation. We notice that communication efficient secret sharing schemes are a natural

candidate for such codes. Therefore, we first construct communication efficient secret sharing

codes and analyze their performance in private coded computing.

Communication efficient secret sharing In communication efficient secret sharing (CE-

SS), a master shares a secret with n parties. A legitimate user contacts d parties, such that

k ≤ d ≤ n for some parameter k, to decode the secret. The goal is to minimize the read

151

and download overheads for the user. We introduce a new class of linear CE-SS codes called

Staircase Codes. We divide Staircase codes into three classes. The most general construction is

called ∆-universal Staircase code, it allows the user to achieve optimal costs universally for all

values of d in a given set ∆ ⊆ {k, . . . , n}. Two other classes of interest are universal Staircase

codes that allow the user to achieve optimal costs for all values of d ∈ {k, . . . , n}; and Staircase

codes for fixed d that allow the user to achieve optimal costs for a predetermined value of d. All

Staircase code constructions can store a secret of maximal size and require a small finite field

Fq of size q > n. However, these code constructions require dividing the shares into α symbols.

The difference between the three constructions is the value of α. The value of α increases with

the cardinality of the set ∆.

Private coded computing via Staircase codes We analyze the performance of Staircase

codes in a private coded computing setting where the workers have a fixed resources available.

In many systems of interest, communication is the main bottleneck. Therefore, minimizing

the communication cost by using Staircase codes significantly reduces the delays caused by

stragglers. We show that universal Staircase codes outperform any codes that set a threshold

on the number of stragglers. More precisely, Staircase codes allow flexibility in the number of

stragglers up to a given threshold. This flexibility is accompanied by a universal reduction of

the communication cost at the master for any given number of stragglers. The reduction in

communication results from saving resources spent on computing the random keys used only

for privacy purposes. We assume an i.i.d. shifted exponential distribution of the service time of

the workers. We derive an upper bound and a lower bound on the master’s mean waiting time

when using Staircase codes. We characterize the distribution of the master’s waiting time, and

its mean, for systems with n = k−1 and n = k−2. Moreover, we derive an expression that can

give the exact distribution, and the mean, of the waiting time of the master for general (n, k, z)

systems.

152

Adaptive private coded computing We consider the setting in which the resources at

the workers are time-varying. Applications include clusters with variability in the computation

workload and network congestion at the workers. Other applications include Internet of Things

networks and Edge computing where the workers also enjoy great variability due to the difference

in the nature of the devices (phone, tablet, sensor, etc). The goal here is to develop a private

coded computation scheme that adaptively assigns the sub-tasks to the workers. We aim to

assign a task (number of sub-tasks) proportional to the estimated resources at the worker.

We design a private and rateless adaptive coded computation (PRAC) scheme that adaptively

assigns sub-tasks to the workers to efficiently use their available resources while maintaining

the privacy of the data. PRAC is based on the use of Fountain codes coupled with an MDS

code to ensure privacy. We show that under this setting, PRAC outperforms all private coded

computing schemes that pre-allocate the tasks to the workers.

Stochastic gradient coding We study the effect of coding on the convergence of non-private

coded computing schemes. In this setting, the master replicates the data to the workers without

further preprocessing. The workers can thus compute any function of the data they possess. We

focus on computing additively separable loss functions which encompass many loss functions

used in the machine learning literature. We propose stochastic gradient coding, a new strategy

that replicates the data to the workers in an unequal manner. Each worker computes a linear

combination of the gradient of the loss function on the data it has received and sends the

result to the master. The master sums the results received from the non-stragglers to compute

an estimate of the true gradient. We show that with a constant amount of redundancy SGC

maintains a good convergence rate and mirrors known results from the literature on stochastic

gradient descent. Also, we show that SGC outperforms other approximate gradient coding

schemes in the regime where lots of workers are stragglers.

Private information retrieval We study robust private information retrieval (PIR). In this

setting, the data is public and owned by the workers. The master wants to retrieve a file by

153

querying n workers without revealing the identity of the retrieved file to the workers. We assume

the workers can collude and consider the setting in which the workers might be stragglers, i.e.,

slow or unresponsive. The main cost of a PIR scheme is the download cost incurred by the

master to retrieve the file. PIR capacity, i.e., minimum download cost, depends on the number

of stragglers. We bridge communication efficient secret sharing to the robust private information

retrieval problem. We show that a communication efficient secret sharing scheme achieves PIR

capacity simultaneously for any number of stragglers. As a result, we introduce Staircase-PIR,

a family of robust PIR codes that achieves capacity simultaneously for any number of stragglers,

up to a given threshold.

7.1.2 Simulations and implementations

We complement the theoretical study presented in this dissertation with extensive simulations

and implementations on MATLAB, Amazon EC2 clusters, and Android devices. We simulate

Staircase codes, PRAC, and SGC on MATLAB to supplement our theoretical findings. Fur-

thermore, we implement Staircase codes on Amazon EC2 clusters. We observe that Staircase

codes provide the most latency reduction when the workers and the master are geographically

far from each other. Also, we notice that our assumption of equally dividing the response time

between subtasks does not hold for large tasks. We implement PRAC on Android devices to

emulate a heterogeneous environment. We observe that PRAC outperforms Staircase codes,

and thus all threshold secret sharing schemes when the workers have different computation and

communication power. However, when the workers have similar response time (more homoge-

neous) Staircase codes outperform PRAC as expected. This is due to the overhead introduced

by using Fountain codes in PRAC.

7.2 Future Directions

Bounds on the share size We pointed out that Staircase codes require dividing the secret

(and the shares) into α symbols. So far, no bounds on the values of α are known. However,

154

we conjecture that the value of α required by Staircase codes is optimal if one wishes to reduce

the read overhead. We leave the problem of finding bounds on α and constructing CE-SS codes

with possibly smaller values of α as an open problem.

Minimizing latency in homogeneous private coded computing In terms of latency in

private coded computing, Staircase codes reduce the master’s waiting time by minimizing the

download cost. However, they are not designed to minimize latency. The problem of designing

codes that minimize the latency remains open in general. Further, equally dividing the response

time of the workers among the subtasks seems to not reflect our observations from Amazon

EC2 implementations. We expect that modeling the response time of the subtasks as shifted

exponential random variables with smaller shifts and rates would be a better representation of

our observations.

Malicious adversaries Throughout the dissertation, we assumed that the colluding workers

only intend to eavesdrop on the master’s data. However, the workers could be malicious and

corrupt the results sent to the master. Security against malicious workers in coded computing

is crucial and its literature is growing. Staircase codes can be readily extended to this setting

due to their error correction capability inherent from their similarity to Reed-Solomon codes.

Error correction assumes that the adversary has full knowledge of the data being stored and

computed. In distributed storage, this assumption implies a penalty on the size of the stored

secret that is twice the number of compromised workers. The more interesting case to study

is when the adversary’s knowledge is limited to the information obtained by the compromised

workers. Leveraging the limitation of the adversary’s knowledge reduces the penalty on the size

of the stored secret. It is not clear how to extend such ideas to distributed computing and PIR.

Private coded computation for machine learning applications In this dissertation, we

restricted our focus to private linear coded computing which is used in many machine learning al-

gorithms. However, constructing private coded computing schemes for general gradient-descent

155

algorithms with flexible straggler tolerance remains open. We note that progress is being made

in this direction. In [103,148] the authors introduce private and secure coded computing schemes

for multivariate polynomials. Yet those codes still impose a threshold on the number of strag-

glers and need not extend to any gradient-descent like algorithm. We are actively investigating

this problem.

Another problem of interest is the problem of hiding the attribute vector x. Here, we provide

a “systems” solution to hide the attribute vector in Appendix A by replicating the computations

on a disjoint set of workers. A more efficient way is to encode both A and x using secret sharing

schemes. This problem is referred to as private matrix-matrix multiplication and is currently

an active research topic, see [19] and references within. Despite the improvement on this topic,

all introduced codes set a threshold on the number of stragglers, which is restrictive as it forces

the workers to spend resources on computing the randomness used only for privacy.

156

References

[1] E. Learned-Miller, G. B. Huang, A. Roy Chowdhury, H. Li, and G. Hua, “Labeled faces in
the wild: A survey,” in Advances in face detection and facial image analysis. Springer,
2016, pp. 189–248.

[2] “How much data is generated each day,” 2019. [Online]. Available: "https://www.
weforum.org/agenda/2019/04/how-much-data-is-generated-each-day-cf4bddf29f/"

[3] P. Blanchard, R. Guerraoui, J. Stainer et al., “Machine learning with adversaries: Byzan-
tine tolerant gradient descent,” in Advances in Neural Information Processing Systems
(NIPS), 2017, pp. 119–129.

[4] R. Cramer, I. B. Damgrd, and J. B. Nielsen, Secure Multiparty Computation and Secret
Sharing, 1st ed. New York, NY, USA: Cambridge University Press, 2015.

[5] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the ACM, vol. 56,
no. 2, pp. 74–80, 2013.

[6] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran, “Speeding up
distributed machine learning using codes,” IEEE Transactions on Information Theory,
vol. 64, no. 3, pp. 1514–1529, 2017.

[7] S. Dutta, V. Cadambe, and P. Grover, “Short-Dot: Computing large linear transforms dis-
tributedly using coded short dot products,” in Advances In Neural Information Processing
Systems (NIPS), 2016, pp. 2100–2108.

[8] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22, no. 11, pp.
612–613, 1979.

[9] G. R. Blakley, “Safeguarding cryptographic keys,” in Proceedings of the National Computer
Conference, vol. 48, 1979, pp. 313–317.

[10] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient coding: Avoid-
ing stragglers in distributed learning,” in International Conference on Machine Learning
(ICML), 2017, pp. 3368–3376.

[11] W. Halbawi, N. Azizan, F. Salehi, and B. Hassibi, “Improving distributed gradient descent
using Reed-Solomon codes,” in IEEE International Symposium on Information Theory
(ISIT), 2018, pp. 2027–2031.

[12] M. Ye and E. Abbe, “Communication-computation efficient gradient coding,” in Interna-
tional Conference on Machine Learning (ICML), vol. 12, 2018, p. 9716p.

[13] N. Raviv, I. Tamo, R. Tandon, and A. G. Dimakis, “Gradient coding from cyclic mds
codes and expander graphs,” arXiv preprint arXiv:1707.03858, 2017.

[14] Z. Charles, D. Papailiopoulos, and J. Ellenberg, “Approximate gradient coding via sparse
random graphs,” arXiv preprint arXiv:1711.06771, 2017.

"https://www.weforum.org/agenda/2019/04/how-much-data-is-generated-each-day-cf4bddf29f/"
"https://www.weforum.org/agenda/2019/04/how-much-data-is-generated-each-day-cf4bddf29f/"

157

[15] R. K. Maity, A. S. Rawat, and A. Mazumdar, “Robust gradient descent via moment
encoding with LDPC codes,” arXiv preprint arXiv:1805.08327, 2018.

[16] S. Wang, J. Liu, and N. Shroff, “Fundamental limits of approximate gradient coding,”
arXiv preprint arXiv:1901.08166, 2019.

[17] H. Wang, Z. Charles, and D. Papailiopoulos, “ErasureHead: Distributed gradient descent
without delays using approximate gradient coding,” arXiv preprint arXiv:1901.09671,
2019.

[18] M. J. Atallah and K. B. Frikken, “Securely outsourcing linear algebra computations,” in
Proceedings of the 5th ACM Symposium on Information, Computer and Communications
Security (ASIACCS), 2010, pp. 48–59.

[19] R. G. D’Oliveira, S. E. Rouayheb, and D. Karpuk, “Gasp codes for secure distributed
matrix multiplication,” arXiv preprint arXiv:1812.09962, 2018.

[20] W.-T. Chang and R. Tandon, “On the capacity of secure distributed matrix multiplica-
tion,” in 2018 IEEE Global Communications Conference (GLOBECOM). IEEE, 2018,
pp. 1–6.

[21] J. Kakar, S. Ebadifar, and A. Sezgin, “Rate-efficiency and straggler-robustness
through partition in distributed two-sided secure matrix computation,” arXiv preprint
arXiv:1810.13006, 2018.

[22] H. Wang and D. S. Wong, “On secret reconstruction in secret sharing schemes,” IEEE
Transactions on Information Theory, vol. 54, no. 1, pp. 473–480, Jan 2008.

[23] W. Huang, M. Langberg, J. Kliewer, and J. Bruck, “Communication efficient secret shar-
ing,” IEEE Transactions on Information Theory, vol. 62, no. 12, pp. 7195–7206, 2016.

[24] R. Bitar and S. E. Rouayheb, “Staircase codes for secret sharing with optimal commu-
nication and read overheads,” in IEEE International Symposium on Information Theory
(ISIT), 2016, pp. 1396–1400.

[25] R. Bitar and S. El Rouayheb, “Staircase codes for secret sharing with optimal commu-
nication and read overheads,” IEEE Transactions on Information Theory, vol. 64, no. 2,
pp. 933–943, 2018.

[26] G. Liang and U. C. Kozat, “TOFEC: Achieving optimal throughput-delay trade-off of
cloud storage using erasure codes,” in IEEE International Conference on Computer Com-
munications (INFOCOM), 2014, pp. 826–834.

[27] R. Bitar, P. Parag, and S. El Rouayheb, “Minimizing latency for secure distributed com-
puting,” in IEEE International Symposium on Information Theory (ISIT), 2017, pp. 2900–
2904.

[28] ——, “Minimizing latency for secure coded computing using secret sharing via staircase
codes,” arXiv preprint arXiv:1802.02640, 2018.

[29] M. Luby, “Lt codes,” in null. IEEE, 2002, p. 271.

[30] A. Shokrollahi, “Raptor codes,” IEEE/ACM Transactions on Networking (TON), vol. 14,
no. SI, pp. 2551–2567, 2006.

[31] D. J. MacKay, “Fountain codes,” IEE Proceedings-Communications, vol. 152, no. 6, pp.
1062–1068, 2005.

[32] A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, “Coded computation over
heterogeneous clusters,” IEEE Transactions on Information Theory, 2019.

158

[33] Y. Keshtkarjahromi, Y. Xing, and H. Seferoglu, “Dynamic heterogeneity-aware coded
cooperative computation at the edge,” in 26th International Conference on Network Pro-
tocols (ICNP). IEEE, 2018, pp. 23–33.

[34] R. Bitar, Y. Xing, Y. Keshtkarjahromi, V. Dasari, S. El Rouayheb, and
H. Seferoglu, “PRAC: Private and Rateless Adaptive Coded Computation at the
Edge,” in SPIE - Defense + Commercial Sensing, vol. 11013, 2019. [Online]. Available:
https://doi.org/10.1117/12.2519768

[35] R. Bitar, Y. Xing, Y. Keshtkarjahromi, V. Dasari, S. E. Rouayheb, and H. Sefer-
oglu, “Private and rateless adaptive coded matrix-vector multiplication,” arXiv preprint
arXiv:1909.12611, 2019.

[36] A. Rakhlin, O. Shamir, and K. Sridharan, “Making gradient descent optimal for strongly
convex stochastic optimization,” arXiv preprint arXiv:1109.5647, 2011.

[37] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-scale machine
learning,” SIAM Review, vol. 60, no. 2, pp. 223–311, 2018.

[38] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.

[39] J. Chen, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting distributed synchronous
sgd,” arXiv preprint arXiv:1604.00981, 2016.

[40] S. Horii, T. Yoshida, M. Kobayashi, and T. Matsushima, “Distributed stochastic gradient
descent using LDGM codes,” arXiv preprint arXiv:1901.04668, 2019.

[41] S. Kadhe, O. O. Koyluoglu, and K. Ramchandran, “Gradient coding based on block designs
for mitigating adversarial stragglers,” arXiv preprint arXiv:1904.13373, 2019.

[42] H. Sun and S. A. Jafar, “The capacity of private computation,” IEEE Transactions on
Information Theory, vol. 65, no. 6, pp. 3880–3897, 2018.

[43] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private information retrieval,” in
IEEE Symposium on Foundations of Computer Science, 1995, pp. 41–50.

[44] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private information retrieval,”
Journal of the ACM (JACM), vol. 45, no. 6, pp. 965–981, 1998.

[45] A. Beimel and Y. Stahl, “Robust information-theoretic private information retrieval,” in
International Conference on Security in Communication Networks. Springer, 2002, pp.
326–341.

[46] H. Sun and S. A. Jafar, “The capacity of robust private information retrieval with colluding
databases,” IEEE Transactions on Information Theory, vol. 64, no. 4, pp. 2361–2370,
April 2018.

[47] ——, “The capacity of robust private information retrieval with colluding databases,”
arXiv preprint arXiv:1605.00635, 2016.

[48] C. Devet, I. Goldberg, and N. Heninger, “Optimally robust private information retrieval.”
in USENIX Security Symposium, 2012, pp. 269–283.

[49] R. Tajeddine and S. El Rouayheb, “Robust private information retrieval on coded data,”
arXiv preprint arXiv:1707.09916v1, 2017.

[50] R. Tajeddine, O. W. Gnilke, D. Karpuk, R. Freij-Hollanti, and C. Hollanti, “Robust
private information retrieval from coded systems with byzantine and colluding servers,”
arXiv preprint arXiv:1802.03731, 2018.

https://doi.org/10.1117/12.2519768

159

[51] K. Banawan and S. Ulukus, “The capacity of private information retrieval from coded
databases,” arXiv preprint arXiv:1609.08138, 2016.

[52] ——, “The capacity of private information retrieval from byzantine and colluding
databases,” arXiv preprint arXiv:1706.01442, 2017.

[53] R. J. McEliece and D. V. Sarwate, “On sharing secrets and reed-solomon codes,” Com-
munications of the ACM, vol. 24, no. 9, pp. 583–584, 1981.

[54] H.-Y. Chien, J. Jinn-Ke, and Y.-M. Tseng, “A practical (t, n) multi-secret sharing scheme,”
IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sci-
ences, vol. 83, no. 12, pp. 2762–2765, 2000.

[55] E. D. Karnin, J. W. Greene, and M. E. Hellman, “On secret sharing systems,” IEEE
Transactions on Information Theory, vol. 29, no. 1, pp. 35–41, 1983.

[56] C.-P. Lai and C. Ding, “Several generalizations of Shamir’s secret sharing scheme,” In-
ternational Journal of Foundations of Computer Science, vol. 15, no. 02, pp. 445–458,
2004.

[57] C.-C. Yang, T.-Y. Chang, and M.-S. Hwang, “A (t, n) multi-secret sharing scheme,”
Applied Mathematics and Computation, vol. 151, no. 2, pp. 483–490, 2004.

[58] J. Benaloh and J. Leichter, “Generalized secret sharing and monotone functions,” in Pro-
ceedings on Advances in Cryptology. Springer-Verlag New York, Inc., 1990, pp. 27–35.

[59] M. Ito, A. Saito, and T. Nishizeki, “Secret sharing scheme realizing general access struc-
ture,” Electronics and Communications in Japan (Part III: Fundamental Electronic Sci-
ence), vol. 72, no. 9, pp. 56–64, 1989.

[60] E. F. Brickell, “Some ideal secret sharing schemes,” in Advances in Cryptology–
EUROCRYPT’89, 1990, pp. 468–475.

[61] C. Padró, “Lecture notes in secret sharing.” IACR Cryptology ePrint Archive, vol. 2012,
p. 674, 2012.

[62] A. Beimel, “Secret-sharing schemes: a survey,” in Coding and Cryptology. Springer, 2011,
pp. 11–46.

[63] R. Cramer, I. B. Damgård, and J. B. Nielsen, Secure Multiparty Computation and Secret
Sharing. Cambridge, England: Cambridge University Press, 2015.

[64] Z. Zhang, Y. M. Chee, S. Ling, M. Liu, and H. Wang, “Threshold changeable secret sharing
schemes revisited,” Theoretical Computer Science, vol. 418, pp. 106–115, 2012.

[65] W. Huang, M. Langberg, J. Kliewer, and J. Bruck, “Communication efficient secret shar-
ing,” arXiv preprint arXiv:1505.07515, May 2015.

[66] R. Bitar and S. E. Rouayheb, “Staircase codes for secret sharing with optimal communi-
cation and read overheads,” arXiv preprint arXiv:1512.02990, Dec 2015.

[67] W. Huang, M. Langberg, J. Kliewer, and J. Bruck, “Communication efficient secret shar-
ing,” arXiv preprint arXiv:1505.07515v2, April 2016.

[68] N. B. Shah, K. V. Rashmi, and K. Ramchandran, “Distributed secret dissemination across
a network,” IEEE Journal of Selected Topics in Signal Processing, vol. 9, no. 7, pp. 1206–
1216, Oct 2015.

[69] A. S. Rawat, O. O. Koyluoglu, and S. Vishwanath, “Centralized repair of multiple
node failures with applications to communication efficient secret sharing,” arXiv preprint
arXiv:1603.04822, 2016.

160

[70] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating codes for
distributed storage at the MSR and MBR points via a product-matrix construction,”
IEEE Transactions on Information Theory, vol. 57, no. 8, pp. 5227–5239, 2011.

[71] N. B. Shah, K. Rashmi, and P. V. Kumar, “Information-theoretically secure regenerating
codes for distributed storage,” in IEEE Global Telecommunications Conference (GLOBE-
COM), 2011, pp. 1–5.

[72] S. E. Rouayheb, E. Soljanin, and A. Sprintson, “Secure network coding for wiretap net-
works of type II,” IEEE Transactions on Information Theory, vol. 58, no. 3, pp. 1361–1371,
2012.

[73] Https://setiathome.berkeley.edu.

[74] Https://foldingathome.stanford.edu.

[75] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic encryption from (stan-
dard) LWE,” SIAM Journal on Computing, vol. 43, no. 2, pp. 831–871, 2014.

[76] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large clusters,”
Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[77] A. Rényi, “On the theory of order statistics,” Acta Mathematica Academiae Scientiarum
Hungarica, vol. 4, no. 3-4, pp. 191–231, 1953.

[78] Https://aws.amazon.com/ec2.

[79] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica, “Improving mapreduce
performance in heterogeneous environments.” in Osdi, vol. 8, 2008, p. 7.

[80] G. Ananthanarayanan, S. Kandula, A. G. Greenberg, I. Stoica, Y. Lu, B. Saha, and
E. Harris, “Reining in the outliers in map-reduce clusters using mantri.” in OSDI, vol. 10,
2010, p. 24.

[81] S. Narayanamurthy, M. Weimer, D. Mahajan, T. Condie, S. Sellamanickam, and S. S.
Keerthi, “Towards resource-elastic machine learning,” in NIPS 2013 BigLearn Workshop,
2013.

[82] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A lock-free approach to parallelizing
stochastic gradient descent,” in Advances in Neural Information Processing Systems, 2011,
pp. 693–701.

[83] I. Mitliagkas, C. Zhang, S. Hadjis, and C. Ré, “Asynchrony begets momentum, with an
application to deep learning,” in Communication, Control, and Computing (Allerton),
2016 54th Annual Allerton Conference on. IEEE, 2016, pp. 997–1004.

[84] B. Recht, C. Re, J. Tropp, and V. Bittorf, “Factoring nonnegative matrices with linear
programs,” in Advances in Neural Information Processing Systems (NIPS), 2012, pp.
1214–1222.

[85] Y. Zhuang, W.-S. Chin, Y.-C. Juan, and C.-J. Lin, “A fast parallel SGD for matrix fac-
torization in shared memory systems,” in 7th ACM conference on Recommender systems,
2013, pp. 249–256.

[86] H. Yun, H.-F. Yu, C.-J. Hsieh, S. Vishwanathan, and I. Dhillon, “NOMAD: Non-locking,
stOchastic Multi-machine algorithm for Asynchronous and Decentralized matrix comple-
tion,” VLDB Endowment, vol. 7, no. 11, pp. 975–986, 2014.

[87] J. Liu, S. J. Wright, C. Ré, V. Bittorf, and S. Sridhar, “An asynchronous parallel stochastic
coordinate descent algorithm.” Journal of Machine Learning Research, vol. 16, no. 285-
322, pp. 1–5, 2015.

161

[88] J. Duchi, M. I. Jordan, and B. McMahan, “Estimation, optimization, and parallelism
when data is sparse,” in Advances in Neural Information Processing Systems, 2013, pp.
2832–2840.

[89] Y.-x. Wang, V. Sadhanala, W. Dai, W. Neiswanger, S. Sra, and E. P. Xing, “Asynchronous
parallel block-coordinate frank-wolfe,” stat, vol. 1050, p. 22, 2014.

[90] C.-J. Hsieh, H.-F. Yu, and I. S. Dhillon, “Passcode: Parallel asynchronous stochastic dual
co-ordinate descent.” in International Conference on Machine Learning (ICML), vol. 15,
2015, pp. 2370–2379.

[91] H. Mania, X. Pan, D. Papailiopoulos, B. Recht, K. Ramchandran, and M. I. Jordan,
“Perturbed iterate analysis for asynchronous stochastic optimization,” SIAM Journal on
Optimization, vol. 27, no. 4, pp. 2202–2229, 2017.

[92] T. M. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, “Project Adam: Building an
efficient and scalable deep learning training system.” in OSDI, vol. 14, 2014, pp. 571–582.

[93] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior, P. Tucker,
K. Yang, Q. V. Le et al., “Large scale distributed deep networks,” in Advances in neural
information processing systems, 2012, pp. 1223–1231.

[94] L. Huang, S. Pawar, H. Zhang, and K. Ramchandran, “Codes can reduce queueing delay
in data centers,” in IEEE International Symposium on Information Theory (ISIT), 2012.

[95] G. Joshi, Y. Liu, and E. Soljanin, “Coding for fast content download,” in 50th Annual
Allerton Conference on Communication, Control, and Computing, 2012.

[96] S. Kadhe, E. Soljanin, and A. Sprintson, “Analyzing the download time of availability
codes,” in IEEE International Symposium on Information Theory (ISIT), 2015.

[97] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: an optimal design for high-
dimensional coded matrix multiplication,” in Advances in Neural Information Processing
Systems (NIPS), 2017, pp. 4403–4413.

[98] S. Dutta, V. Cadambe, and P. Grover, “Coded convolution for parallel and distributed
computing within a deadline,” in IEEE International Symposium on Information Theory
(ISIT), 2017, pp. 2403–2407.

[99] Y. Yang, P. Grover, and S. Kar, “Computing linear transformations with unreliable com-
ponents,” IEEE Transactions on Information Theory, vol. 63, no. 6, pp. 3729–3756, 2017.

[100] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “A unified coding framework for dis-
tributed computing with straggling servers,” in IEEE Globecom Workshops (GC Wkshps),
2016, pp. 1–6.

[101] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental tradeoff be-
tween computation and communication in distributed computing,” IEEE Transactions
on Information Theory, vol. 64, no. 1, pp. 109–128, 2018.

[102] H. Yang and J. Lee, “Secure distributed computing with straggling servers using polyno-
mial codes,” IEEE Transactions on Information Forensics and Security, vol. 14, no. 1,
pp. 141–150, 2019.

[103] Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and S. A. Avestimehr, “La-
grange coded computing: Optimal design for resiliency, security, and privacy,” in The
22nd International Conference on Artificial Intelligence and Statistics (AISTATS), 2019,
pp. 1215–1225.

162

[104] J. So, B. Guler, A. S. Avestimehr, and P. Mohassel, “Codedprivateml: A fast and privacy-
preserving framework for distributed machine learning,” arXiv preprint arXiv:1902.00641,
2019.

[105] Q. Yu and A. S. Avestimehr, “Harmonic coding: An optimal linear code for privacy-
preserving gradient-type computation,” arXiv preprint arXiv:1904.13206, 2019.

[106] H. Takabi, E. Hesamifard, and M. Ghasemi, “Privacy preserving multi-party machine
learning with homomorphic encryption,” in 29th Annual Conference on Neural Informa-
tion Processing Systems (NIPS), 2016.

[107] R. Hall, S. E. Fienberg, and Y. Nardi, “Secure multiple linear regression based on homo-
morphic encryption,” Journal of Official Statistics, vol. 27, no. 4, p. 669, 2011.

[108] L. Kamm, D. Bogdanov, S. Laur, and J. Vilo, “A new way to protect privacy in large-scale
genome-wide association studies,” Bioinformatics, vol. 29, no. 7, pp. 886–893, 2013.

[109] S. Gade and N. H. Vaidya, “Private learning on networks: Part ii,” arXiv preprint
arXiv:1703.09185, 2017.

[110] Y. Keshtkarjahromi, Y. Xing, and H. Seferoglu, “Dynamic heterogeneity-aware coded
cooperative computation at the edge,” in 26th International Conference on Network Pro-
tocols (ICNP), 2018.

[111] C. Karakus, Y. Sun, S. Diggavi, and W. Yin, “Straggler mitigation in distributed opti-
mization through data encoding,” in Advances in Neural Information Processing Systems
(NIPS), 2017, pp. 5434–5442.

[112] M. F. Aktas, P. Peng, and E. Soljanin, “Effective straggler mitigation: Which clones
should attack and when?” ACM SIGMETRICS Performance Evaluation Review, vol. 45,
no. 2, pp. 12–14, 2017.

[113] S. N. Shirazi, A. Gouglidis, A. Farshad, and D. Hutchison, “The extended cloud: Review
and analysis of mobile edge computing and fog from a security and resilience perspective,”
IEEE Journal on Selected Areas in Communications, vol. 35, no. 11, pp. 2586–2595, 2017.

[114] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge computing: A survey,”
IEEE Internet of Things Journal, vol. 5, no. 1, pp. 450–465, 2017.

[115] R. Roman, J. Lopez, and M. Mambo, “Mobile edge computing, fog et al.: A survey and
analysis of security threats and challenges,” Future Generation Computer Systems, vol. 78,
pp. 680–698, 2018.

[116] S. Lin and D. Costello, Error-Correcting Codes. Prentice-Hall, Inc, 1983.

[117] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes. Elsevier,
1977.

[118] G. A. Seber and A. J. Lee, Linear regression analysis. John Wiley & Sons, 2012, vol.
329.

[119] J. A. Suykens and J. Vandewalle, “Least squares support vector machine classifiers,” Neu-
ral processing letters, vol. 9, no. 3, pp. 293–300, 1999.

[120] J. Lacan, V. Roca, J. Peltotalo, and S. Peltotalo, “Reed-solomon forward error correction
(FEC) schemes,” Tech. Rep., 2009.

[121] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile cloud computing: archi-
tecture, applications, and approaches,” Wireless communications and mobile computing,
vol. 13, no. 18, pp. 1587–1611, 2013.

163

[122] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud computing: A survey,” Future
Generation Computer Systems, vol. 29, no. 1, pp. 84 – 106, 2013.

[123] Z. Sanaei, S. Abolfazli, A. Gani, and R. Buyya, “Heterogeneity in mobile cloud computing:
Taxonomy and open challenges,” IEEE Communications Surveys Tutorials, vol. 16, no. 1,
pp. 369–392, 2014.

[124] Y. Geng, W. Hu, Y. Yang, W. Gao, and G. Cao, “Energy-efficient computation offloading
in cellular networks,” in IEEE International Conference on Network Protocols (ICNP),
2015.

[125] R. K. Lomotey and R. Deters, “Architectural designs from mobile cloud computing to
ubiquitous cloud computing - survey,” in IEEE World Congress on Services, 2014.

[126] T. Penner, A. Johnson, B. V. Slyke, M. Guirguis, and Q. Gu, “Transient clouds: Assign-
ment and collaborative execution of tasks on mobile devices,” in IEEE Global Communi-
cations Conference, 2014.

[127] P. Peng and E. Soljanin, “On distributed storage allocations of large files for maximum
service rate,” in 56th Annual Allerton Conference on Communication, Control, and Com-
puting (Allerton), 2018, pp. 784–791.

[128] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation in distributed
matrix multiplication: Fundamental limits and optimal coding,” in IEEE International
Symposium on Information Theory (ISIT), 2018, pp. 2022–2026.

[129] L. Chen, Z. Charles, D. Papailiopoulos et al., “DRACO: Robust distributed training via
redundant gradients,” arXiv preprint arXiv:1803.09877, 2018.

[130] S. Kiani, N. Ferdinand, and S. C. Draper, “Exploitation of stragglers in coded com-
putation,” in IEEE International Symposium on Information Theory (ISIT), 2018, pp.
1988–1992.

[131] E. Ozfaturay, D. Gunduz, and S. Ulukus, “Speeding up distributed gradient descent by
utilizing non-persistent stragglers,” arXiv preprint arXiv:1808.02240, 2018.

[132] N. Ferdinand and S. Draper, “Anytime stochastic gradient descent: A time to hear from
all the workers,” in 56th Annual Allerton Conference on Communication, Control, and
Computing, 2018, pp. 552–559.

[133] S. Li, S. M. M. Kalan, A. S. Avestimehr, and M. Soltanolkotabi, “Near-optimal strag-
gler mitigation for distributed gradient methods,” in IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), 2018, pp. 857–866.

[134] U. Sheth, S. Dutta, M. Chaudhari, H. Jeong, Y. Yang, J. Kohonen, T. Roos, and P. Grover,
“An application of storage-optimal MatDot codes for coded matrix multiplication: Fast k-
nearest neighbors estimation,” in IEEE International Conference on Big Data (Big Data),
2018, pp. 1113–1120.

[135] Q. Yu, N. Raviv, J. So, and A. S. Avestimehr, “Lagrange coded computing: Optimal
design for resiliency, security and privacy,” arXiv preprint, arXiv:1806.00939, 2018.

[136] Y. Keshtkarjahromi, R. Bitar, V. Dasari, S. E. Rouayheb, and H. Seferoglu, “Secure coded
cooperative computation at the heterogeneous edge against byzantine attacks,” in IEEE
Global Communication Conference (GLOBECOM), 2019.

[137] G. Ananthanarayanan, S. Kandula, A. G. Greenberg, I. Stoica, Y. Lu, B. Saha, and
E. Harris, “Reining in the outliers in map-reduce clusters using mantri.” in OSDI, vol. 10,
no. 1, 2010, p. 24.

164

[138] L. Bottou, “Online learning and stochastic approximations,” On-line learning in neural
networks, vol. 17, no. 9, p. 142, 1998.

[139] S. Shalev-Shwartz and A. Tewari, “Stochastic methods for `1-regularized loss minimiza-
tion,” Journal of Machine Learning Research, vol. 12, no. Jun, pp. 1865–1892, 2011.

[140] K. Gimpel, D. Das, and N. A. Smith, “Distributed asynchronous online learning for natural
language processing,” in 40th Conference on Computational Natural Language Learning,
2010, pp. 213–222.

[141] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, “PEGASOS: Primal estimated
sub-gradient solver for SVM,” Mathematical programming, vol. 127, no. 1, pp. 3–30, 2011.

[142] M. Amiri and D. Gündüz, “Computation scheduling for distributed machine learning with
straggling workers,” in IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2019, pp. 8177–8181.

[143] S. El Rouayheb and K. Ramchandran, “Fractional repetition codes for repair in distributed
storage systems,” in 2010 48th Annual Allerton Conference on Communication, Control,
and Computing (Allerton). IEEE, 2010, pp. 1510–1517.

[144] T. Strohmer and R. Vershynin, “A randomized Kaczmarz algorithm with exponential
convergence,” Journal of Fourier Analysis and Applications, vol. 15, no. 2, p. 262, 2009.

[145] D. Needell, R. Ward, and N. Srebro, “Stochastic gradient descent, weighted sampling,
and the randomized Kaczmarz algorithm,” in Advances in Neural Information Processing
Systems (NIPS), 2014, pp. 1017–1025.

[146] D. Needell and R. Ward, “Batched stochastic gradient descent with weighted sampling,”
in International Conference Approximation Theory, 2016, pp. 279–306.

[147] “SGC GitHub repository,” https://github.com/RawadB01/SGC.

[148] H. Yang and J. Lee, “Secure distributed computing with straggling servers using polyno-
mial codes,” IEEE Transactions on Information Forensics and Security, vol. 14, no. 1,
pp. 141–150, 2019.

[149] S. Li, S. M. M. Kalan, Q. Yu, M. Soltanolkotabi, and A. S. Avestimehr, “Polynomi-
ally coded regression: Optimal straggler mitigation via data encoding,” arXiv preprint
arXiv:1805.09934, 2018.

[150] E. Ozfatura, S. Ulukus, and D. Gündüz, “Distributed gradient descent with coded par-
tial gradient computations,” in IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2019, pp. 3492–3496.

[151] S. Wang, J. Liu, and N. Shroff, “Coded sparse matrix multiplication,” arXiv preprint
arXiv:1802.03430, 2018.

[152] T. Baharav, K. Lee, O. Ocal, and K. Ramchandran, “Straggler-proofing massive-scale dis-
tributed matrix multiplication with d-dimensional product codes,” in IEEE International
Symposium on Information Theory (ISIT), 2018, pp. 1993–1997.

[153] M. Fahim, H. Jeong, F. Haddadpour, S. Dutta, V. Cadambe, and P. Grover, “On the
optimal recovery threshold of coded matrix multiplication,” in 55th Annual Allerton Con-
ference on Communication, Control, and Computing, 2017, pp. 1264–1270.

[154] A. Mallick, M. Chaudhari, and G. Joshi, “Rateless codes for near-perfect load balancing
in distributed matrix-vector multiplication,” arXiv preprint arXiv:1804.10331, 2018.

165

[155] S. Wang, J. Liu, N. Shroff, and P. Yang, “Fundamental limits of coded linear transform,”
arXiv preprint arXiv:1804.09791, 2018.

[156] M. F. Aktas, P. Peng, and E. Soljanin, “Effective straggler mitigation: Which clones
should attack and when?” ACM SIGMETRICS Performance Evaluation Review, vol. 45,
no. 2, pp. 12–14, 2017.

[157] D. Wang, G. Joshi, and G. Wornell, “Using straggler replication to reduce latency in large-
scale parallel computing,” ACM SIGMETRICS Performance Evaluation Review, vol. 43,
no. 3, pp. 7–11, 2015.

[158] K. Lee, N. B. Shah, L. Huang, and K. Ramchandran, “The MDS queue: Analysing the
latency performance of erasure codes,” IEEE Transactions on Information Theory, vol. 63,
no. 5, pp. 2822–2842, 2017.

[159] H. Robbins and S. Monro, “A stochastic approximation method,” The Annals of Mathe-
matical Statistics, vol. 22, no. 3, pp. 400–407, 1951.

[160] A. Cotter, O. Shamir, N. Srebro, and K. Sridharan, “Better mini-batch algorithms via
accelerated gradient methods,” in Advances in Neural Information Processing Systems
(NIPS), 2011, pp. 1647–1655.

[161] A. Agarwal and J. C. Duchi, “Distributed delayed stochastic optimization,” in Advances
in Neural Information Processing Systems (NIPS), 2011, pp. 873–881.

[162] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao, “Optimal distributed online pre-
diction using mini-batches,” Journal of Machine Learning Research, vol. 13, no. Jan, pp.
165–202, 2012.

[163] O. Shamir and N. Srebro, “Distributed stochastic optimization and learning,” in 52nd
Annual Allerton Conference on Communication, Control, and Computing, 2014, pp. 850–
857.

[164] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation: numerical
methods. Prentice hall Englewood Cliffs, NJ, 1989, vol. 23.

[165] S. Dutta, G. Joshi, S. Ghosh, P. Dube, and P. Nagpurkar, “Slow and stale gradients can win
the race: Error-runtime trade-offs in distributed SGD,” arXiv preprint arXiv:1803.01113,
2018.

[166] S. Chaturapruek, J. C. Duchi, and C. Ré, “Asynchronous stochastic convex optimiza-
tion: the noise is in the noise and SGD don’t care,” in Advances in Neural Information
Processing Systems (NIPS), 2015, pp. 1531–1539.

[167] D. Woodruff and S. Yekhanin, “A geometric approach to information-theoretic private in-
formation retrieval,” in Computational Complexity, 2005. Proceedings. Twentieth Annual
IEEE Conference on. IEEE, 2005, pp. 275–284.

[168] W. Gasarch, “A survey on private information retrieval,” in Bulletin of the EATCS. Cite-
seer, 2004.

[169] S. Yekhanin, “Private information retrieval,” Communications of the ACM, vol. 53, no. 4,
pp. 68–73, 2010.

[170] A. Beimel, Y. Ishai, . E. Kushilevitz, and J.-F. Raymond, “Breaking the o(n1/(2k−1)) bar-
rier for information-theoretic retrieval,” in The 43rd Annual IEEE Symposium on Foun-
dations of Computer Science, 2002. Proceedings. IEEE, 2002, pp. 261–270.

166

[171] N. Shah, K. Rashmi, and K. Ramchandran, “One extra bit of download ensures perfectly
private information retrieval,” in 2014 IEEE International Symposium on Information
Theory. IEEE, 2014, pp. 856–860.

[172] T. Chan, S.-W. Ho, and H. Yamamoto, “Private information retrieval for coded storage,”
in 2015 IEEE International Symposium on Information Theory (ISIT). IEEE, June
2015, pp. 2842–2846.

[173] R. Tajeddine and S. El Rouayheb, “Private information retrieval from mds coded data in
distributed storage systems,” in IEEE International Symposium on Information Theory
(ISIT), 2016, pp. 1411–1415.

[174] R. Freij-Hollanti, O. Gnilke, C. Hollanti, and D. Karpuk, “Private information retrieval
from coded databases with colluding servers,” arXiv preprint arXiv:1611.02062, 2016.

[175] S. Kumar, E. Rosnes, and A. G. i Amat, “Private information retrieval in distributed
storage systems using an arbitrary linear code,” in Information Theory (ISIT), 2017 IEEE
International Symposium on. IEEE, 2017, pp. 1421–1425.

[176] R. G. D’Oliveira and S. El Rouayheb, “Lifting private information retrieval from two to
any number of messages,” arXiv preprint arXiv:1802.06443, 2018.

[177] A. S. Rawat, O. O. Koyluoglu, and S. Vishwanath, “Centralized repair of multiple node
failures with applications to communication efficient secret sharing,” IEEE Transactions
on Information Theory, vol. 64, no. 12, pp. 7529–7550, 2018.

[178] Y. Keshtkarjahromi, Y. Xing, and H. Seferoglu, “Dynamic heterogeneity-aware coded
cooperative computation at the edge,” arXiv preprint, rXiv:1801.04357v3, 2018.

Appendices

167

168

Appendix A

Hiding the attribute vectors

Master

M

(n2, k2, z2)
Staircase code

Randomness

Wn1+2

Wn1+1

...

...

Wn

A

Data

S n
1
+
1

Sn1+2

S
n

R

Group 2

(n1, k1, z1)
Staircase code

Randomness

W2

...

...

W1

Wn1

A

Data

S
1

S2

S n
1

R

Group 1

(a) M encodes A using an (n1, k1, z1) and (n2, k2, z2) Staircase codes and distribute the obtained shares
to the workers.

M

Sn1+2

Wn1+2...

...

Sn1+1

Wn1+1

Sn

Wn

u

u

u

Sn1+1u

Sn1+2u

Snu

Group 2

S2

W2...

...

S1

W1

Sn1

Wn1

u + x

u + x

u + x

S1(u + x)

S2(u + x)

Sn1
(u + x)

Group 1

(b) M sends x + u and u to the workers of group 1 and 2, respectively. Wi computes Six and sends the
result to M.

Figure A.1: Secure distributed matrix-vector multiplication with n workers, where the master
needs to hide both the data A and the matrix x. M divides the workers intro two disjoint groups
of cardinality n1 and n2, respectively, such that n1 + n2 = n. Now M deals with the groups as
two separate (n1, k1, z1) and (n2, k2, z2) systems, where z1 < k1 < n1 and z2 < k2 < n2. To
hide x, M generates a random vector u and sends x + u to group 1 and u to group 2. Hence, M
decodes Ax after decoding Au and A(x + u).

169

Throughout Chapter 3 and Chapter 4 we assumed privacy over one iteration of the computation,

i.e., the Master needs to hide only the data matrix A. In the following we describe how our schemes

can be generalized to achieve privacy over the whole algorithm, i.e., the Master needs to hide A and

the attribute vectors x1,x2, Since the algorithms are iterative, we focus on one iteration and the

remaining follows in a similar manner. Let A be anm×`matrix and x be an `×1 vector that the Master

M wishes to distributively multiply. Let n be the number of workers Wi, i = 1, . . . , n, that volunteer to

help M. The idea is to divide the workers into disjoint groups and use classical linear sharing to send

the vector x to the workers. Therefore, the Master asks each group to securely multiply A by a vector

that is statistically independent of x. Then, the Master decodes Ax from the results of the received

multiplications. For simplicity, we explain this idea through an example. Assume the master wants

to divide the workers into only two groups. M divides the workers into two groups of cardinality n1

and n2 such that n1 + n2 = n. Afterwards, M chooses z1 < k1 < n1 and z2 < k2 < n2 and encodes A

into n shares using an (n1, k1, z1) and an (n2, k2, z2) Staircase codes (or classical secret sharing codes).

Thereafter, M distributes the shares to the workers such that the groups form two disjoint (n1, k1, z1)

and (n2, k2, z2) systems. To hide x, M generates a random vector u of same size as x and sends x + u

to the first group and u to the second group. According to our scheme, M decodes A(x + u) and

Au after receiving enough responses from the workers of each group. Hence, M can decode Ax. Note

that no information about x is revealed because it is one-time padded by u. We illustrate the idea in

Figure A.1. In the general case, M divides the workers into g groups of cardinality n1, n2, . . . ng such

that n1 + n2 + · · · + ng = n. The master decides on how many groups can collude zg and how many

straggling groups sg it wants to tolerate and therefore encodes x into a (g, g − sg, zg) linear classical

secret sharing and sends each share to a different group. The remaining follows as explained above for

both schemes explained in Chapter 3 and Chapter 4.

170

Appendix B

Additional Proofs for Chapter 3

B.1 Proof of Theorem 3.2

For the clarity of presentation, we restate Theorem 3.2.

Theorem (Exact expression of E[TSC] for systems with up to 2 stragglers). The mean waiting time of

the Master for (k + 1, k, z) and (k + 2, k, z) systems is given in (B.1) and (B.2), respectively.

E [TSC(k + 1, k, z)] =
c

k − z + 1
+

1

λ

k+1∑
i=1

(−1)i
(
k + 1

i

) i exp
(
−λc
k−z

)
(k − z)i+ 1

− 1

(k − z + 1)i

 . (B.1)

E[TSC(k + 2, k, z)] = E[TSC(k + 2, k + 1, z)]

+
1

λ

k+2∑
i=2

(−1)i
(
k + 2

i

)(
i

2

)exp
(
− 4λc
k−z

)
(k − z)i+ 4

−
2 exp

(
− 3λc
k−z

)
(k − z)i+ 3

 . (B.2)

We derive the expression of the Master’s mean waiting time for (n, k, z) = (k+1, k, z) and (n, k, z) =

(k + 2, k, z) systems. Applying Theorem 3.4 for the case of n = k + 1, we get

F̄TSC(k+1,k,z)(t) = 1− FT ′(tk+1)k+1 − FT ′(tk)kF̄T ′(tk+1)(k + 1), for t > 0.

Recall that tk and tk+1 are defined as tk = max
{
t− c

k−z , 0
}
and tk+1 = max

{
k+1−z
k−z

(
t− c

k+1−z

)
, 0
}
.

171

Since FT ′(0) = 0, we can compute the Master’s mean waiting time E [T (k + 1, k, z)] as

E [TSC(k + 1, k, z)] =

∫ ∞
0

(1− (1− F̄T ′(tk+1))k+1)dt−
∫ ∞
0

(1− F̄T ′(tk))kF̄T ′ (tk+1) (k + 1)dt,

=
c

k + 1− z +

∫ ∞
c

k+1−z

(1− (1− F̄T ′(tk+1))k+1)dt

−
∫ ∞

c
k−z

(1− F̄T ′(tk))kF̄T ′ (tk+1) (k + 1)dt.

Using the binomial expansion and integrating the exponential function F̄T ′(t) = exp(−λ(k − z)t), we

get

E [TSC(k + 1, k, z)] =
c

k − z + 1
+

1

λ

k+1∑
i=1

(−1)i
(
k + 1

i

) i exp
(
−λc
k−z

)
(k − z)i+ 1

− 1

(k − z + 1)i

 .
Similarly, we apply Theorem 3.4 for n = k + 2 and get

F̄TSC(k+2,k,z)(t) = 1− FT ′(tk+2)k+2

− (k + 2)F̄T ′(tk+2)
[
FT ′(tk+1)k+1 + (k + 1)FT ′(tk)k(F̄T ′(tk+1)− 1

2
F̄T ′(tk+2))

]
.

Recall that for i = k, k + 1, k + 2, we define ti as ti , max

{
i− z
k − z

(
t− c

i−z

)}
. Since FT ′(0) = 0, we

can compute the Master’s mean waiting time E [TSC(k + 2, k, z)] as

E [TSC(k + 2, k, z)] =

∫ ∞
0

(1− FT ′(tk+2)k+2)dt−
∫ ∞
0

(k + 2)F̄T ′(tk+2)FT ′(tk+1)k+1dt

−
∫ ∞
0

(k + 2)(k + 1)F̄T ′(tk+2)FT ′(tk)k
(
F̄T ′(tk+1)− 1

2
F̄T ′(tk+2)

)
dt

=
c

k + 2− z +

∫ ∞
c

k+2−z

(1− (1− F̄T ′(tk+2))k+2)dt

− (k + 2)

∫ ∞
c

k+1−z

(1− F̄T ′(tk+1))k+1F̄T ′ (tk+2) dt

−

(
k + 2

2

)∫ ∞
c

k−z

(1− F̄T ′(tk))kF̄T ′(tk+2)
(
2F̄ (T ′tk+1)− F̄T ′(tk+2)

)
dt.

Using the binomial expansion and integrating the exponential function F̄T ′(t) = exp(−λ(k − z)t), we

172

get

E [TSC(k + 2, k, z)] =
c

k − z + 2
+

k+2∑
i=1

(−1)i
(
k+2
i

)
λ

 i exp
(
− λc
k−z+1

)
(k − z + 1)i+ 1

− 1

(k − z + 2)i

+

k+2∑
i=2

(−1)i
(
k+2
i

)(
i
2

)
λ

exp
(
− 4λc
k−z

)
i(k − z) + 4

−
2 exp

(
− 3λc
k−z

)
i(k − z) + 3

 .

B.2 Proof of Theorem 3.4

For the clarity of presentation, we restate Theorem 3.4.

Theorem (Integral expression leading to FTSC(t)). The distribution of the master’s waiting time TSC

of an (n, k, z) system using Staircase codes is given by

FTSC (t) = 1− n!

∫
(yk,...,yn)∈A(t)

FT ′(yk)k−1

(k − 1)!
dFT ′(yk) . . . dFT ′(yn) for t > 0. (B.3)

We denote the residual service time at each worker Wi, i = 1, . . . , n, by the random variable T ′i = Ti −

c
k−z , and the associated distribution by F (yi) , FT ′(yi) = 1−exp(−λyi) for yi > 0. For i = k, . . . , n, we

define ti as ti , max
{(

i−z
k−z

)(
t− c

i−z

)
, 0
}
. We denote by A(t) the set of ordered variables (yk, . . . , yn)

such that

A(t) , {0 ≤ yk ≤ yk+1 ≤ · · · ≤ yn : tk < yk, . . . , tn < yn}.

Proof. Let T ′i denote the residual service time of worker i with the offset c
k−z . The sequence (T ′1, . . . , T

′
n)

of residual service times of n workers is assumed to be iid and distributed exponentially with rate λ(k−z)

with the tail-distribution function F̄T ′(t) , e−λ(k−z)t for t > 0.

Since the common distribution of residual service times is absolutely continuous with respect to the

Lebesgue measure, the corresponding probability density exists and is denoted by fT ′(t) = dFT ′(t)/dt =

λ(k− z)e−λ(k−z)t for t > 0. Further, we know that the order statistics (T ′(1), . . . , T
′
(n)) of residual times

(T ′1, . . . , T
′
n) is identical for all their n! permutations. Hence, for any 0 ≤ y1 ≤ . . . ≤ yn, we can write

fT ′
(1)
,...,T ′

(n)
(y1, . . . , yn) = n!fT ′1,...,T ′n(y1, . . . , yn) = n!

∏n
i=1 fT ′(yi). The product form of joint density

follows from the independence of the residual service times.

173

In terms of δj = k−z
j−z , the order statistics of residual times T ′(j), and the offset c

k−z , we can write

{TSC > t} =

n⋂
j=k

{
T ′(j) >

t

δj
− c

j − z

}
.

For each k ≤ j ≤ n, we define tj , max
{
t
δj
− c

j−z , 0
}
, yn+1 , ∞, and Â(t) , ∩n+1

j=k {tj < yj ≤

yj+1} ∩k−1
j=1 {0 ≤ yj ≤ yj+1}. In terms of tj , yn+1 and Â(t), we can write the tail distribution

Pr{TSC > t} =

∫
y∈Â(t)

dFT ′
(1)
,...,T ′

(n)
(y) = n!

∫ ∞
tn

· · ·
∫ yk+1

tk

n∏
i=k

dFT ′(yi)

(∫ yk

0

· · ·
∫ y2

0

k−1∏
i=1

dFT ′(yi)

)
.

First, we compute the integral with respect to ordered non-negative real variables (y1, . . . , yk−1)

over the region Bk−1 , ∩k−1
j=1{0 ≤ yj ≤ yj+1}, a projection of Â(t) on (k−1) dimensional space spanned

by (y1, . . . , yk−1).

Claim B.1. For each k > 1, we have

Ik ,
∫
Bk−1

dFT ′(yk−1) . . . dFT ′(y1) =

∫ yk

0

· · ·
∫ y2

0

k−1∏
i=1

dFT ′(yi) =
FT ′(yk)k−1

(k − 1)!
.

Proof of Claim B.1. We prove the claim by induction on the number of integration variables k. The

base case of k = 2 holds trivially true. We assume that the induction hypothesis holds true for some

k ≥ 2, and show that it holds true for k+ 1. This can be shown by writing the integral Ik+1 in (k+ 1)

integration variables y1, . . . , yk+1 in terms of the integral Ik, and evaluating the integral by substituting

the induction hypothesis for Ik as follows

Ik+1 =

∫ yk+1

0

IkdFT ′(yk) =

∫ yk+1

0

FT ′(yk)k−1

(k − 1)!
dFT ′(yk).

Since the projection of Â(t) on (n − k + 1) dimensional space spanned by (yk, . . . , yn) is equal to

A(t), it follows that the integration of the first part is equal to n!
∫
(yk,...,yn)∈A(t)

dFT ′(yn) . . . dFT ′(yk),

giving us the result.

174

Appendix C

Additional Proofs for Chapter 4

C.1 Extension of proof of Theorem 4.1

We prove that the secrecy condition for PRAC given by H(A|PZ) = H(A) is equivalent to proving that

H(R | PZ , A) = 0, where for any subset Z ⊂ {1, . . . , n}, |Z| = z, we denote by PZ the random variables

representing the collection of packets sent to workers indexed by Z. In other words, we need to prove

that the random matrices can be decoded given the collection of packets sent to any z workers and the

data matrix A. This is the main reason behind encoding the random matrices using an (n, z) MDS

code.

We formally prove that H(R | PZ , A) = 0 in the proof of Theorem 4.1. Since at each round we

generate new random matrices, it is enough to study the privacy condition at one round. Consider a

given round t of PRAC. The proof is standard [25,71,72] and is given in Lemma 2.4 but we reproduce

it here for completeness and to match the notation of PRAC. In what follows, the logarithms in the

entropy function are taken base q, where q is a power of prime for which all matrices can be defined in

175

a finite field Fq. We can write,

H(A | PZ) = H(A)−H(PZ) +H(PZ | A) (C.1)

= H(A)−H(PZ) +H(PZ | A)−H(PZ | A, R) (C.2)

= H(A)−H(PZ) + I(PZ ; R | A) (C.3)

= H(A)−H(PZ) +H(R | A)−H(R | PZ , A) (C.4)

= H(A)−H(PZ) +H(R)−H(R | PZ , A) (C.5)

= H(A)− z + z −H(R | PZ , A) (C.6)

= H(A)−H(R | PZ , A). (C.7)

Equation (C.2) follows from the fact that given the data A and the keys Rt,1, . . . , Rt,z all packets

generated by the master can be decoded, in particular the packets PZ received by any z workers can

be decoded, i.e., H(PZ | A, R) = 0. Equation (C.5) follows because the random matrices are chosen

independently from the data matrix A and equation (C.6) follows because PRAC uses z independent

random matrices that are chosen uniformly at random from the field Fq. Note from equation (C.5) that

for any code to be information theoretically private, H(R) cannot be less then H(PZ) = z. This means

that a secure code must use at least z independent random matrices.

C.2 Proof of Theorem 4.5

For clarity of representation we restate Theorem 4.5.

Theorem. Let b be the number of row blocks in A, let τt,i denote the computation time of the tth packet

at worker Wi and let RTTi denote the average round-trip time spent to send and receive a packet from

worker Wi. The task completion time of PRAC is approximated as

TPRAC ≈ max
i∈{1,...,n}

{RTTi}+
b+ ε∑n

i=z+1 1/E[τt,i]
, (C.8)

≈ b+ ε∑n
i=z+1 1/E[τt,i]

, (C.9)

176

where Wi’s are ordered indices of the workers from fastest to slowest, i.e., W1 = arg mini E[τt,i].

Proof. The total delay for receiving pi computed packets from worker Wi is equal to

Ti ≈ RTTi + piE[τt,i] ≈ piE[τt,i]

where RTTi is the average transmission delay for sending one packet to worker Wi and receiving one

computed packet from the worker, τt,i is the computation time spent on multiplying packet Pt,i by

x at worker Wi, and the average E[τt,i] is taken over all pi packets. The reason is that PRAC is a

dynamic algorithm that sends packets to each worker Wi with the interval of E[τt,i] between each two

consecutive packets and it utilizes the resources of workers fully [178]. The reason behind counting only

one round-trip time (RTT) in Ti is that in PRAC, the packets are being transmitted to the workers

while the previously transmitted packets are being computed at the worker. Therefore, in the overall

delay only one RTTi is required for sending the first packet P1,i to worker wi and receiving the last

computed packet Ppi,ix at the master. To approximate the total delay, we assume that the transmission

delay of one packet is negligible compared to the computing delay of all pi packets, which is a valid

assumption in practice for IoT-devices at the edge.

On the other hand, in PRAC, the master stops sending packets to workers as soon as it collectively

receives b + ε computed packets from the n − z slowest workers (note that b + ε is the number of

computed packets required for successful decoding, where ε is the overhead due to Fountain Coding),

i.e.,
∑n
i=z+1 pi = b+ε. Note that the z fastest workers are assigned for computing the keys as described

in the previous sections. Due to efficiently using the resources of workers by PRAC, all n−z workers will

finish computing pi packets approximately at the same time, i.e., TPRAC ≈ Ti ≈ piE[τt,i], i = z+1, ..., n.

By replacing pi with TPRAC
E[τt,i]

in
∑n
i=z+1 pi = b + ε, we can show that TPRAC ≈ b+ε∑n

i=z+1 1/E[τt,i]
. Note

that the approximated value approaches the exact value by increasing b. The reason is that the workers’

efficiency increases with increasing b.

C.3 Proof of Theorem 4.6

We restate Theorem 4.6 for the clarity of presentation.

Theorem. The gap between the completion time of PRAC and coded computation using staircase codes

177

is lower bounded by:

E[TSC]− E [TPRAC] ≥ bx− εy
y(x+ y)

, (C.10)

where x =
n− d∗

E[τt,n]
, y =

d∗ − z
E[τt,d∗]

and d∗ is the value of d that minimizes equation (4.6).

Proof. We express E[TSC] as a function of the computing time τt,i of worker Wi, i = 1, . . . , n, as

E[TSC] = min
d∈{k,...,n}

{
k − z
d− zE[T(d)]

}
(C.11)

= min
d∈{k,...,n}

{
b

d− zE[τt,d]

}
, (C.12)

where Wd is the dth fastest worker. Next, we find a lower bound on E[TSC]− E [TPRAC] as follows

E[TSC]− E [TPRAC] =
b
d−z

E[τt,d]
− b+ ε∑n

i=z+1
1

E[τt,i]
(C.13)

=
b
d−z

E[τt,d]
− b+ ε∑d

i=z+1
1

E[τt,i]
+
∑n
i=d+1

1
E[τt,i]

(C.14)

≥ b
d−z

E[τt,d]
− b+ ε

(d− z) 1
E[τt,d]

+ (n− d) 1
E[τt,n]

(C.15)

=

b(n−d)
E[τt,n]

− ε(d−z)
E[τt,d]

d−z
E[τt,d]

(d−z
E[τt,d]

+ n−d
E[τt,n]

)
(C.16)

=
bx− εy
y(x+ y)

, (C.17)

where x = n−d
E[τt,n]

and y = d−z
E[τt,d]

and the inequality (C.15) comes from the fact that z ≤ k ≤ d ≤ n and

the workers are ordered from the fastest to the slowest.

	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	Introduction
	Overview of the Thesis
	Communication Efficient Secret Sharing
	Private Coded Computing via Staircase Codes
	Adaptive Private Coded Computation
	Stochastic Gradient Coding for Straggler Mitigation in Distributed Learning
	Universally Robust Private Information Retrieval
	Publications

	Communication Efficient Secret Sharing
	Introduction
	Problem Formulation and Main Results
	Staircase Code Constructions
	Staircase code construction for given d
	Universal Staircase code construction

	Staircase Code for Given d
	Universal Staircase Codes
	Example
	Proof of Theorem 2.2

	-Universal Staircase Codes
	Conclusion

	Private Coded computation via Staircase Codes
	Introduction
	Contributions
	Organization

	System Model
	Computations model
	Workers model
	General scheme
	Encoding
	Delay model

	Main Results
	Bounds on the Master's Mean Waiting Time for all (n,k,z) Systems
	Proof of the upper bound on the mean waiting time
	Proof of the lower bound on the mean waiting time

	Distribution of the Master's Waiting Time for all (n,k,z) Systems
	Interplay Between Code Design and Latency
	Simulations
	Implementation and Validation of the Theoretical Model
	Implementation for systems with rate k/n=1/2
	Implementation on 4 worker instances at different times

	Related Work
	Conclusion and Open Problems

	Adaptive Private Coded Computation
	Introduction
	 System Model
	Design of PRAC
	Overview
	 Dynamic rate adaptation
	Coding

	Performance Analysis of PRAC
	Privacy
	Task completion delay

	Performance Evaluation
	Simulations
	Implementation on Android devices

	Related work
	Conclusion

	Stochastic Gradient Coding for Straggler Mitigation in Distributed Learning
	Introduction
	Contributions
	Relationship to previous work on approximate gradient coding
	Organization

	Setup
	Probabilistic model of stragglers
	Computational model

	Stochastic Gradient Coding
	Summary of our Main Results
	Theoretical results
	Numerical simulations

	Theoretical Results
	Special case: 2 loss function
	Beyond 2 loss function

	Simulation Results
	Simulation setup
	Convergence
	Dependency between stragglers across iterations

	Proofs
	Proof of Theorem 5.6
	Proof of Theorem 5.9

	Related Work

	Universally Robust Private Information Retrieval
	Introduction
	Problem formulation and main results
	Staircase-PIR scheme
	Staircase-PIR construction
	Examples of Staircase-PIR

	From secret sharing to PIR
	Conclusion

	Conclusion
	Summary of the Dissertation
	Theoretical study
	Simulations and implementations

	Future Directions

	References
	Appendices
	Appendix Hiding the attribute vectors
	Appendix Additional Proofs for Chapter 3
	Proof of Theorem 3.2
	Proof of Theorem 3.4

	Appendix Additional Proofs for Chapter 4
	Extension of proof of Theorem 4.1
	 Proof of Theorem 4.5
	 Proof of Theorem 4.6

