
SECURING SAFETY-CRITICAL SYSTEMS USING PHYSICAL
AND CONTROL INVARIANTS

By

SRIHARSHA ETIGOWNI

A dissertation submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Saman Zonouz

and approved by

New Brunswick, New Jersey

January, 2020

ABSTRACT OF THE DISSERTATION

Securing Safety-Critical Systems using Physical and Control
Invariants

by Sriharsha Etigowni

Dissertation Director:

Saman Zonouz

The critical infrastructures such as electrical power systems, telecommunication, transporta-

tion systems, and safety systems in vehicles and avionics comprise some critical safety sys-

tems. Safety critical systems use real-time control, including the software used in the design

of physical systems and structures, whose failure can have a life-threatening impact. Failure or

malfunctioning of such systems will lead to damage to the equipment/property, cause serious

injuries or death to people. Since the safety-critical systems use embedded systems running

software on them, they are prone to kinetic cyber attacks. Kinetic cyber attacks are a class of

cyber attacks that can cause physical damage, injury or death solely through the exploitation

of vulnerabilities on the systems. Most of the safety-critical systems are cyber-physical sys-

tems. The main targets of kinetic cyber attacks are cyber-physical systems due to there tight

coordination between the computational and physical systems.

This thesis provides security solutions using both the cyber as well as physical space to-

gether which are tailored for cyber-physical systems. This thesis provides cyber-physical secu-

rity assessments and solutions by considering the interdependencies between cyber and phys-

ical worlds. We leverage the physical and control invariants for security assessment, control

ii

flow monitoring and verification purposes at different levels of abstraction in safety-critical

systems. The physical invariants of a cyber-physical system is the laws of physics which will

not change and the control invariants are the control algorithm which do not change during

there operations. Some of the physical and control invariants used in this thesis for securing

critical systems are electromagnetic emanation due to noise in digital circuits, flight dynamics

for UAV’s and power flow equations, swing equations for the electrical power system.

First, we introduce a novel approach to vulnerability assessment in critical infrastructures

by cyber-physical interdependency. We provide an attack synthesis method for power grids,

which is analogous to the penetration testing in cybersecurity. Second, to prevent attacks

against the control logic used in controllers, we provide a runtime verification solution by

leveraging the physical and control invariants of the system. Control logic is a part of a soft-

ware program that controls the operations of the program. The number of states that a system

can be is represented by state variables. The system state space is the set of possible configura-

tions of the system. The state space increases exponentially with the increase in state variables.

The proposed verification technique can solve problems such as state space explosion when

used on cyber-physical systems. The above-mentioned control logic verification technique has

short-come in detecting firmware level malware such as physics aware rootkits. Hence, we

provide a separate solution of contactless side channel control flow monitoring technique by

receiving the electromagnetic emanations from the PLC. Finally, we introduce cyber-physical

access control considering the cyber and physical interdependencies. Cyber-physical access

control makes decisions to grant or reject access to an authenticated subject based on what he

is authorized to access. Cyber-physical access control is proposed to prevent the system from

entering an unsafe state. Apart from these defensive solutions, we also provide the defensive

solution earlier in the pipeline, the manufacturing process of the physical system used in safety

critical systems.

iii

Acknowledgements

I would firstly like to thank my doctoral committee for there valuable suggestions and helping

me to improve and produce my thesis.

I am thankful to Prof Saman Zonouz my adviser, who was by my side supporting, having

confidence in me and guiding me during the highs and lows in my research.

I would also like to thank people from my lab Gabriel, Luis, Pengfei, Mingbo and my

collaborators Shamina, Maryam, Kate, Kevin, Sizhuang, Zhenqi with who I worked, enjoyed

after work and during conferences.

My friends who made me feel like family Nesar, Amogh, Dileep, Spoorti, Harsh, Dhruval,

Chethan, Prashant, Sandhya, Ajoy, Anish, Aarti, Ashika, Varad for there support and making

my life easier and fun during my PhD. I have not listed everyone’s name since the list is huge,

but you all are on my mind.

Finally, I am greatly thankful to US National Science Foundation for the grant without

which this work would not be possible. This work is supported in part by the US National

Science Foundation under grant numbers CNS-1446471, CNS-1453046.

iv

Dedication

This thesis is dedicated to my parents and my brother.

For their endless love, support and encouragement

v

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . v

List of Tables . xi

List of Figures . xiii

1. Introduction . 1

2. ALGORITHMIC ATTACK SYNTHESIS USING HYBRID DYNAMICS OF POWER GRID

CRITICAL INFRASTRUCTURES . 10

1. Introduction . 10

2. Overview . 13

2.1. Electricity Grid Security . 13

2.2. Overview of Synthesized Attacks . 15

3. Transient Attacks on Power Networks . 18

3.1. Power Network Dynamics . 18

3.2. Attack Protection: Relays and Monitors 20

4. The Attack Synthesis Problem . 22

4.1. Formal Hybrid Model . 22

4.2. Attack Synthesis Problem . 26

4.3. Algorithm for Attack Synthesis . 27

4.4. Switched Transient Attack Parameter Space 30

5. Evaluations . 31

5.1. Application to 3-Bus Power Network 32

vi

5.2. Attack Generalization . 32

5.3. Robustness of Attacks . 35

6. Transient Attacks vs. NERC CIP-Compliance 36

7. Related Work . 40

8. Conclusions and Mitigations . 43

3. JUST-AHEAD-OF-TIME CONTROLLER RECOVERY 44

1. Introduction . 44

2. Background . 47

2.1. Drone Flight Dynamics . 47

2.2. Offline Controller Code Verification 48

2.3. Limitation of Existing Solutions . 49

3. Overview . 50

3.1. Threat Model . 50

3.2. Crystal Architecture . 51

3.3. Safety Requirement Definition . 51

3.4. Predictive Flight Modeling . 52

3.5. Just-Ahead-of-Time Verification . 52

4. Drone Physics Modeling . 53

4.1. Normal Operation Mode Physical Modeling 53

4.2. Failure Mode Data Driven Modeling 54

4.3. Full Flight Operation mode . 56

5. Cyber-Physical Security Modeling . 57

6. JAT Verification and Recovery . 60

7. Evaluations . 63

8. Related Work . 71

9. Conclusion . 72

4. CONTACTLESS CONTROL FLOW MONITORING VIA ELECTROMAGNETIC EMA-

NATIONS . 73

vii

1. Introduction . 73

2. Threat model . 75

3. Background . 76

4. PLC Program Emanation Analysis . 79

5. EM-Based Control Flow Monitoring . 81

5.1. Offline Model Construction and Training 82

5.2. Online PLC Execution Monitoring . 84

6. Implementation and Evaluation . 86

6.1. Experimental Setup . 86

6.2. PLC Electromagnetic Emanations . 89

6.3. Accuracy . 94

6.4. Performance . 100

7. Related Work . 101

8. Conclusions . 102

5. SECURING CRITICAL INFRASTRUCTURE WITH CYBERPHYSICAL ACCESS CON-

TROL . 104

1. Introduction . 104

2. Energy Management Systems . 107

2.1. Existing EMS Solutions . 108

2.2. Security Threats . 109

3. CPAC Architecture Overview . 110

3.1. Information tracking . 112

3.2. Defining policies . 113

3.3. Case Study: California 2011 Blackout Emulation 114

4. Physics-Based Information Flow Analysis . 117

5. Logical Policy Enforcement . 119

5.1. Context-Aware Policy Control . 120

5.2. Policy layers of CPAC . 121

viii

5.3. Formal description of CPAC . 123

5.4. Trade-offs . 126

6. Device Level Information Flow . 127

7. Evaluations . 129

7.1. Case Studies . 129

7.2. Performance . 133

7.3. Scalability: NERC-CIP N-x Compliance 134

8. Related Work . 136

9. Conclusions . 137

6. TRUSTED INTEGRITY VERIFIER FOR ADDITIVE MANUFACTURING 139

1. Introduction . 139

2. Background . 141

2.1. Format of STL Files . 142

2.2. Attributes of STL Files . 143

2.3. Attacks on STL Files . 144

3. Threat Model . 145

4. TIV Overview . 146

5. Object Classification . 148

6. Void Detection Module . 150

7. Safety Conditions Verification . 153

7.1. Geometric Analysis . 154

7.2. Structural Analysis . 155

7.3. Malicious Void Verification . 157

8. Evaluation . 158

8.1. Case Study: Analysis of a Vertebra 159

8.2. Large Scale Analysis on STL Files . 161

9. Related Work . 165

10. Conclusion . 167

ix

7. Conclusion . 169

Bibliography . 171

Appendices . 186

1. Second-order Taylor expansion . 187

2. Four bus power system case study . 187

3. Global safety conditions . 189

4. Normal Operation Mode Physical Modeling 189

x

List of Tables

3.1. Average mean absolute error (MAE) for extended Kalman filter (EKF) and

neural network (NN) model during minimal and heavy transitions 67

3.2. Latency in milliseconds for predicting sensor data with data points accumulat-

ing to 5 and 10 seconds . 70

4.1. Confusion matrix for the classification. 90

4.2. Evaluation programs and descriptions. 92

4.3. Classification accuracy of all evaluation programs over four evaluation settings. 96

4.4. Area under curve (AUC) of all evaluated programs over all four evaluation

settings. 97

5.1. Prolog Micro-Benchmark (us). 134

5.2. Domain 0 and instrumented taint (ms). 134

5.3. EMS Macro-Benchmark (ms). 134

5.4. Physics engine Macro-Benchmark (ms). 135

5.5. Prolog Macro-Benchmark (ms). 135

6.1. Evaluation of malicious feature detection using flood fill on a manually attacked

STL file dataset. 152

6.2. Material properties of PLA and ABS . 156

6.3. Evaluation of Malicious void detection using flood fill on a wild STL file dataset.161

6.4. Static structural analysis in eight different categories. 164

6.5. Percentage of design files containing voids are verified to be malicious based

on different mechanical stress thresholds. 164

6.6. Percentage change in mechanical stresses with and without voids. Warning is

determined by the threshold and the proximity to the yield stress (failure). . . . 166

1. Evaluation attacks and descriptions . 192

xi

2. Evaluation attacks and descriptions (continued) 193

xii

List of Figures

1.1. Overview of thesis . 2

2.1. High-Level architecture for an attack. 16

2.2. Attack on maximum input mechanical power. The lines capture the trajectories

of phase angle and output power with constant input PM = 7 p.u. 21

2.3. Attack on PID control. The solid lines capture the trajectories of phase angle

and current. The critical current of the relay is 5.5 p.u as illustrated by the

horizontal dashed line. 22

2.4. Two topologies of a 3-Bus power system . 24

2.5. Schematic diagram of the HA modeling power network with two topologies.

The four modes and their differential equations are shown in the circles. The

arrows show the discrete transitions. 25

2.6. An attack to a 3 bus system. The critical angle of machine 2 is 72°. 33

2.7. An attack to a 9-bus system . 34

2.8. Robustness of the attack. The bus voltage and phase angle have a±0.2 and±1°

uncertainty respectively. The reachable states of the phase angle and output

power with the same attack. The reachable states do not intersect with Detected

and are contained in Unsafe eventually. 37

2.9. Successful Transient Attack Analysis against a Power Generator 39

2.10. Unsuccessful Transient Attack Analysis against a Power Generator 41

3.1. Just-Ahead-Of-Time Verification . 46

3.2. Drone’s pitch, roll, and yaw . 47

3.3. Crystal’s High-Level Architecture . 50

3.4. Hybrid Cyber-Physical Symbolic Execution 57

3.5. Model Generation, Refinement, and Checking 60

xiii

3.6. Crystal predicting the crash before the actual crash occurred 65

3.7. Crystal predicting the attack on attitude and heading reference system (AHRS) 66

3.8. Two figures showing that extended Kalman filter (EKF) is better in estimating

with smoother transitions than neural network and during violent transitions,

neural network is better than EKF . 68

3.9. Mean Absolute Error vs time . 69

3.10. False positive rate due to sensor prediction . 70

4.1. A basic neural network unit architecture. 78

4.2. ZEUS’s control flow integrity monitoring. 79

4.3. Network architecture of proposed model. 85

4.4. Experimental setup including the PLC, external sensing probe, the amplifier,

and the sampling oscilloscope. 87

4.5. Experimentation test-bed configuration for electromagnetic (EM) side channel

analysis. 87

4.6. AKG P170 condenser microphone without transducer serving as an electro-

magnetic probe. 88

4.7. EM emanation by the PLC’s communication board. 91

4.8. Spectrogram patterns of PLC instructions. 92

4.9. Spectral patterns of PLC instructions. 93

4.10. Example likelihood score distributions of the evaluated programs produced by

the Freq+LSTM setting. 97

4.11. ROC curves of all evaluated programs. AUC of the four settings: Freq-LSTM

is 0.99, Freq-HMM is 0.83, Time-LSTM is 0.59, Time-HMM is 0.36. 98

4.12. Area under curve vs. sliding window size. 99

4.13. Average process time of all the programs for the four evaluation settings. 100

5.1. Existing Energy Management Systems . 108

5.2. CPAC’s High-Level Architecture . 111

5.3. Physics-Aware Access Control . 113

xiv

5.4. Case Study Four-bus Power System and the Operator’s Policy-Compliant Con-

trol Input Subspaces . 115

5.5. The CPAC EMS/PLC architecture. 120

5.6. Domain 0 along with instrumented control logic 128

5.7. The system capacity overload state in case E (Section 7.1). Note that one line

has been overloaded to 661% of it allowable current, a situation that CPAC

would prevent from reaching. 130

5.8. Southwest Blackout Prevention using CPAC. On evaluating the effects of line

current on bus 18 after opening the relay. CPAC determines line would be

overloaded and prevents the action. 131

5.9. Columbian Blackout Prevention via CPAC. On evaluating the effects of open-

ing the critical relays after few relays are opened. CPAC determines line would

be overloaded and prevents the action. 132

5.10. N-x Contingency Analysis Complexity . 136

6.1. Additive manufacturing process and location of STL files in the process. Com-

promised STL file leads to failure of printed object. 140

6.2. The format of an STL file with N triangles. 142

6.3. Threat model and application of the TIV framework. 145

6.4. Structure of the TIV framework. 146

6.5. Ray casting algorithm being used to determine the geometrical boundaries to

determine the size of the void that should be inserted. 152

6.6. Example of a manually attacked STL file. 152

6.7. Polygonal mesh, solid body, volumetric mesh, and structural property of a span-

ner. 154

6.8. Confusion matrix for classification of the objects into 44 different categories.

1 indicates all of the objects are classified correctly and 0 indicates none of

them are classified correctly. Diagonal 1’s indicates that most of the objects are

classified correctly. 159

xv

6.9. Malicious void verification on cervical vertebra (C6) from medical category.

The STL file with a void increases the stress from 2.53 kN to 3.39 kN (σDi f f erential

= 34%) for the same loads acting on the object. 160

6.10. Distribution of number of voids across STL files in each category. 162

6.11. Analysis of false positives by the flood fill algorithm. 163

6.12. Histogram of stresses of flagged with voids and after removal of voids. The

Histogram after removal of voids is moved to the left indicating the decrease in

the stress levels for the same loads acting on them 165

1. The four-bus system presented in Figure 1a after operator modification requests. 188

2. Prolog Policy Rule for Case B. 189

3. Physical-Side Sensitivity-Based Information Flow Analysis 190

4. Physical-Side Sensitivity-Based Information Flow Analysis (continued) 191

xvi

1

Chapter 1

Introduction

Department of Homeland Security has identified 16 critical infrastructure sectors which are

vital to the country and any destruction or attack on such systems will have drastic effects on

the security, economic, and public health [60] of a country. Since the attacks on these critical

infrastructures could cause massive destruction, they are targeted by the attackers. These cyber

attacks are the most dangerous weapons that a country has to protect against in the cyber-

connected world.

The discovery of the Stuxnet worm, a malicious software that replicates itself in order to

spread to other computers in 2010 proved that the cyber attacks on critical infrastructures are

one of the critical problems a country has to defend against. Stuxnet attacked Iran’s nuclear

enrichment facility to sabotage the program. These cyber worms could sabotage the techno-

logical growth of a country. After Stuxnet, there were many attacks on critical infrastructures

such water treatment plant and electrical grids. In 2015, attack on Kemuri Water Company as

referred by Verizon [207], the attackers modified the chemicals in the treated tap water which

demonstrated that attacks could sabotage the public health of a country. These attacks on criti-

cal infrastructure can be used as biological weapons. Ukraine’s power plant attack [191] from

a mutant of the blackenergy malware in December 2015 demonstrates that such attacks could

sabotage a country economically.

The critical infrastructure mainly consists of Supervisory control and data acquisition (SCADA)

systems [36], Distributed control systems (DCS) [39], and Programmable Logic Controllers

(PLC) [35]. SCADA systems are used for monitoring and controlling underlying applications.

DCS’s are used to collect inputs from sensors and send outputs to actuators such as motor

drives. PLC’s are industrial grade embedded systems for controlling physical systems. The use

of legacy systems with known vulnerabilities in safety-critical systems is one of the reasons for

2

Physical Systems Controllers

Control Logic

Firmware

Cyber Physical System

JAT - Defense on
Control Logic

(Chapter 3)

Zeus - Defense on
Rootkits

(Chapter 4)

CPAC – Cyber Physical
Access Control

(Chapter 5)

Synthesis – Attack
Generation

(Chapter 2)

Attack
Synthesis

Cyber
Physical

Defensive
Solutions

TIV – Trusted
Integrated verifier

(Chapter 6)

Figure 1.1: Overview of thesis

the attacks. The Kemuri Water Company was using 1980’s IBM Application System (AS/400)

server [96]. Most of the OT and IT operations were running on AS400 and the company was

using AS400 as its SCADA platform. This system was controlling hundred’s of PLC’s which

were controlling water district’s valve and flow control application. Since the company was

using a legacy system and the attacker had access to the vulnerabilities of that legacy system, it

was easier to perform the attack.

This thesis focuses on securing safety-critical systems such as electric power systems and

transportation system. The overview of the thesis is shown in Figure 1.1. The physical systems

in this thesis mainly focus on power grids, drones, and 3D printers. These physical systems

are controlled by either PLC’s or other microcontrollers/processors (cyber domain). This thesis

answers the following questions:

• Can an attacker drive the system into an unsafe state by sequentially changing the outputs

of actuators without being detected by the protection systems?

• Can an operator protect against controller attacks on control logic and firmware that

drives the system into an unsafe state?

• Can we limit the capabilities of remote and insider attacks, e.g., disgruntled employees,

3

by restricting their capabilities in a similar vein to cyber access control from cybersecu-

rity?

To assess the security of the critical infrastructure such as power grid, we wanted to de-

termine if an attacker sabotage the entire power system by gaining control over a subset of

controllers used. We introduce a novel approach to vulnerability assessment in safety-critical

systems by cyber-physical interdependency. We provide an attack synthesis method for power

grids that is analogous to the penetration testing in cybersecurity. Attacks were synthesized

algorithmically using hybrid dynamics of the power grid. The attacker can sequentially modify

the output to the actuators to drive the system into an unsafe state without being detected by

traditional protection systems such as circuit breakers. In the best case scenario, the attack can

bring down the complete power system leading to blackouts.

Since most of the safety-critical systems use embedded systems to control the physical

systems, the control logic running on those embedded systems are critical for the safety and

security of the systems. Control logic is a part of a software program that controls the op-

erations of the program. The control logic should be verified so that it does not violate any

safety requirements leading to damage of life and property. Hence, we provide a runtime con-

trol logic verification solution for the attack against control logic on a cyber-physical system.

Previous verification techniques proposed (e.g., TSV [128] and HACMS [149]) were limited to

verification against safety properties before uploading the control logic. Since the solution was

static verification, the runtime safety violations can be evaded. This control logic verification

also causes state space explosion for larger control logic’s due to exploring all the program

execution paths. On the other hand, existing dynamic execution monitoring solutions (e.g.,

Avatar [221] and WeaselBoard [137]) notify operators about incidents that have just occurred

or are about to occur, and hence do not leave enough of a time buffer for effective manual or

automated response and recovery. Hence, we provide just ahead of time verification solution

by predicting the future control paths of the control logic. Just ahead of time verification will

provide a time buffer for the solution or controlling operator to react ahead of time and prevent

the system entering into an unsafe state. Since the solution only verifies the control logic till a

certain time horizon (just a few steps ahead of time), it reduces the risk of state space explo-

sion of the control logic program’s execution paths. By leveraging the physical properties of

4

the systems, we propose verification techniques that can be used without state space explosion

when used on cyber-physical systems.

Although the verification technique provides protection against the attacks on control logic,

they are inadequate to protect against physics aware rootkits [79]. Traditional software-based

detection systems cause performance overhead and will affect the real-time of the systems. Ad-

ditionally, the addition of software probes will increase the attack surface. Hence, we provide

a contactless side channel control flow monitoring technique by receiving the electromagnetic

emanations from the PLC. During the PLC code execution, the processor clock frequency and

switching of the underlying CMOS devices along with the power regulation board result in the

change of electric current in the PLC circuitry. The current produces a time-varying magnetic

field that interacts with the electric field leading to an electromagnetic (EM) wave. The com-

ponents on the PLC’s printed circuit board (PCB) act as antennas to transmit the EM wave

generated. This EM waves received by the EM probe are compared with the legitimate control

flow of the program that was fingerprinted through a secure medium before the program was

deployed on the system. This provides control flow integrity of the program running on the

embedded controller. Since this solution does not require any changes to the current running

systems, it can be applied to legacy systems as well.

By the above solutions, we detect controllers against attacks on the control flow of the

running programs and protect against any violation of the safety requirements. However, these

solutions would not protect against insider attacks or remote attacks by spoofing. The insider

attacks could be due to lack of knowledge or disgruntle employees. The systems operators

are authenticated to change the control logic or the actuator values of a system if required.

However, a disgruntled employee or a remote attacker spoofing as an employee can upload a

malicious control logic or change the value of the actuators to drive the system into unsafe

states. Hence, to restrict the capabilities of the operators, we introduce cyber-physical access

control considering the cyber and physical interdependencies for safety-critical systems.

The above solutions focused on verifying the safety and security of the current and future

states of safety-critical systems. However, can we provide such guarantees at a much earlier

5

stage in the pipeline, i.e., at the time of manufacturing of such safety-critical systems? Espe-

cially since now such objects used in safety-critical systems can be 3D printed. In the manufac-

turing industry, to manufacture any components they employ either subtractive manufacturing

or additive manufacturing. In both, the scenario’s, the design files describe the manufactured

objects. Attacks on these design files will lead to a malicious manufactured object which could

cause serious damage to property and human life. Previous studies [28] have shown that by

attacking design file by adding voids to the critical locations of a propeller, they were able to

crash a drone flying mid-air. Therefore, it is equally important to protect against attacks on the

input files such as design files which are feed to the controllers. We introduce TIV framework

to detect such voids in the STL file before the manufacturing to reduce wastage to time and

resources. TIV focuses on security solution to detect attacks against the critical inputs to the

controllers such as designs used for describing the 3D printed objects. This security solution

will check the structural integrity of the designs before they are printed. Hence, only permitting

designs that are benign and will not fail during there normal operational conditions.

The preliminary results are as follows.

Algorithmic Attack Synthesis using Hybrid Dynamics of Power Grid Critical Infrastruc-

tures. Automated vulnerability assessment and exploit generation for computing systems

have been explored for decades. However, these approaches are incomplete in assessing indus-

trial control systems, where networks of computing devices and physical processes interact for

safety-critical missions. We present an attack synthesis algorithm against such cyber-physical

electricity grids in Chapter 2. The algorithm explores both discrete network configurations and

continuous dynamics of the plant’s embedded control system to search for attack strategies that

evade detection with conventional monitors. The algorithm enabling this exploration is rooted

in recent developments in the hybrid system verification research: it effectively approximates

the behavior of the system for a set of possible attacks by computing sensitivity of the system’s

response to variations in the attack parameters. For parts of the attack space, the proposed al-

gorithm can infer whether or not there exists a feasible attack that avoids triggering protection

measures such as relays and steady-state monitors. The algorithm can take into account con-

straints on the attack space such as the power system topology and the set of controllers across

the plant that can be compromised without detection. With a proof-of-concept prototype, we

6

demonstrate the synthesis of transient attacks in several typical electricity grids and analyze the

robustness of the synthesized attacks to perturbations in the network parameters.

Crystal (ball): I Look at Physics and Predict Control Flow! Just-Ahead-Of-Time Con-

troller Recovery. Recent major attacks against unmanned aerial vehicles (UAV) and their

controller software necessitate domain-specific cyber-physical security protection. Existing of-

fline formal methods for (untrusted) controller code verification usually face state-explosion.

On the other hand, runtime monitors for cyber-physical UAVs often lead to too-late notifica-

tions about unsafe states that makes timely safe operation recovery impossible.

In Chapter 3, we present Crystal, a just-ahead-of-time control flow predictor and proactive

recovery for UAVs. Crystal monitors the execution state of the flight controller and predicts

the future control flows ahead of time-based on the UAV’s physical dynamics. Crystal deploys

the operator’s countermeasures proactively in case of an upcoming unsafe state. Crystal’s just-

ahead-of-time model checking explores the future control flows in parallel ahead of the UAV’s

actual operation by some time margin. The introduced time margin enables Crystal to accom-

modate operator’s feedback latency by the time the actual execution reaches to the identified

unsafe state. Crystal periodically queries the controller’s execution state. It emulates the UAV

physical dynamical model and predicts future sensor measurements (controller inputs) and up-

coming feasible controller’s execution paths. This drives Crystal’s model-checking exploration

away from unreachable future states. Crystal’s selective model checking saves computational

time to stay ahead of execution by concentrating on relevant upcoming control flows only. This

eliminates the state-explosion problem in traditional offline formal methods. We evaluated a

multi-threaded prototype of Crystal between the control station server and the UAV. Crystal

was able to predict upcoming hazardous states caused by the third-party controller program

and proactively restored the safe states successfully with minimal overhead.

Watch Me, but Don’t Touch Me! Contactless Control Flow Monitoring via Electromag-

netic Emanations. Trustworthy operation of industrial control systems depends on secure

and real-time code execution on the embedded programmable logic controllers (PLCs). The

controllers monitor and control the critical infrastructures, such as electric power grids and

health-care platforms, and continuously report back the system status to human operators. In

Chapter 4 , we present Zeus, a contactless embedded controller security monitor to ensure its

7

execution control flow integrity. Zeus leverages the electromagnetic emission by the PLC cir-

cuitry during the execution of the controller programs. Zeus’s contactless execution tracking

enables non-intrusive monitoring of security-critical controllers with tight real-time constraints.

Those devices often cannot tolerate the cost and performance overhead that comes with addi-

tional traditional hardware or software monitoring modules. Furthermore, Zeus provides an

air-gap between the monitor (trusted computing base) and the target (potentially compromised)

PLC. This eliminates the possibility of the monitor infection by the same attack vectors.

Zeus monitors for control flow integrity of the PLC program execution. Zeus monitors the

communications between the human-machine interface and the PLC, and captures the control

logic binary uploads to the PLC. Zeus exercises its feasible execution paths, and fingerprints

their emissions using an external electromagnetic sensor. Zeus trains a neural network for

legitimate PLC executions, and uses it at runtime to identify the control flow based on PLC’s

electromagnetic emissions. We implemented Zeus on a commercial Allen Bradley PLC, which

is widely used in industry, and evaluated it on real-world control program executions. Zeus was

able to distinguish between different legitimate and malicious executions with 98.9% accuracy

and with zero overhead on PLC execution by design.

CPAC: Securing Critical Infrastructure with Cyber-Physical Access Control. Critical

infrastructure such as the power grid has become increasingly complex. The addition of com-

puting elements to traditional physical components increases complexity and hampers insight

into how elements in the system interact with each other. The result is an infrastructure where

operational mistakes, some of which cannot be distinguished from attacks, are more difficult to

prevent and have greater potential impact, such as leaking sensitive information to the operator

or attacker.

In Chapter 5, we present CPAC, a cyber-physical access control solution to manage com-

plexity and mitigate threats in cyber-physical environments, with a focus on the electrical smart

grid. CPAC uses information flow analysis based on mathematical models of the physical grid

to generate policies enforced through verifiable logic. At the device side, CPAC combines sym-

bolic execution with lightweight dynamic execution monitoring to allow non-intrusive taint

analysis on programmable logic controllers in realtime. These components work together to

provide a realtime view of all system elements, and allow for more robust and finer-grained

8

protections than any previous solution to securing the grid.

We implement a prototype of CPAC using Bachmann PLCs and evaluate several real-world

incidents that demonstrate its scalability and effectiveness. The policy checking for a nation-

wide grid is less than 150 ms, faster than existing solutions. We additionally show that CPAC

can analyze potential component failures for arbitrary component failures, far beyond the ca-

pabilities of currently deployed systems. CPAC thus provides a solution to secure the modern

smart grid from operator mistakes or insider attacks, maintain operational privacy, and support

N− x contingencies.

TIV: A Trusted Integrity Verifier for STL Files in Additive Manufacturing. STereoLithog-

raphy (STL) files describe the geometry of objects to be printed in additive manufacturing.

Previous studies have shown that the STL files that describe functional objects can be attacked

such that the objects appear normal during inspection, but fail during operation. Such attacks

lead to damage to systems that use the objects and possibly loss of life. The detection of any

defects caused due to the attacks nowadays is limited to the quality control process after the

objects are manufactured.

We present a Trusted Integrity Verifier (TIV) to detect such attacks on 3D printed objects

in the early stage of the manufacturing process. These type of new attacks cannot be detected

by traditional software security mechanisms since they only focus on the printers and do not

consider the inputs (STL design files) to the printer. Early detection of attacks prevents from

printing malicious objects resulting in saving time, resources and manufacturing efforts. TIV

detects malicious STL files using multidisciplinary approaches unlike the traditional integrity

verification techniques. TIV leverages computer vision techniques (flood fill) to identify the

internal defects such as voids. Some of these features could be from the design and some

could be due to the attack. To differentiate the malicious features from the design features, TIV

implements a numerical methods-based approach (Finite Element Analysis). TIV uses Finite

Element Analysis to differentiate the malicious features from the design features by calculating

the loading bearing mechanical stress on the objects. These mechanical stresses are compared

to the safety operational conditions to determine if the printed object will break or fail during

its normal operation.

To illustrate TIV’s generality and scalability, we conducted a large-scale analysis on 16,000

9

real-world 3D print STL files. TIV verified the STL files successfully as either safe or malicious

with high accuracy of 92% for object classification and 96.5% for void detection.

Chapter 7 discusses possible future research directions along with the conclusion of this

dissertation.

10

Chapter 2

ALGORITHMIC ATTACK SYNTHESIS USING HYBRID DYNAMICS

OF POWER GRID CRITICAL INFRASTRUCTURES

1 Introduction

Trustworthy operation of the nation’s critical infrastructure like the electricity grid requires ef-

fective cybersecurity and power system protections simultaneously. Ideas from cybersecurity

research have been extensively deployed to keep adversaries out of the critical plants and con-

trol systems. However, cybersecurity solutions alone are inadequate for safe-guarding cyber-

physical systems where software is used to monitor and control networks of complex physical

processes.

Recent security incidents presage this new class of vulnerabilities. One well-known exam-

ple is the Stuxnet worm, which targeted Siemens industrial software used to control nuclear

fuel processing plants. The worm exploited several complicated cyber attack vectors, including

four Windows zero-day vulnerabilities and logic controller exploits. It ultimately sabotaged

and destroyed an Iranian facility by introducing malicious control inputs to actuators control-

ling uranium centrifuges. Understanding the scale and sophistication of this attack has led to

mandatory governmental regulations embodied in the North American Electric Reliability Cor-

poration’s Critical Infrastructure Protection (NERC-CIP) regulations [145] that is now widely

adopted in the industry.

The most recent CIP (v5 - enforceable on April 1, 2016) has significantly increased strict

cybersecurity requirements in order to prevent adversarial power grid incidents by terrorists and

targeted nation-state intruders. One of the major CIP standards for electricity grid protection

is that the grid’s real-time operation should always comply with “N-1” contingency resilience

requirements. That is, given a power system with N components (for example transmission

lines), the system must be able to tolerate any single component failure such as an overflown

11

line outage possibly caused by malicious control inputs. Non-compliant utilities are required to

increase their system redundancy to improve tolerance, otherwise, they risk financial penalties

imposed by the government. To implement the requirements, power utilities across the nation

have been deploying various automation solutions such as protection relays to detect incidents,

e.g., line current overflows, and clear the faults through the opening of circuit breakers. The util-

ities have developed regular procedures such as contingency analyses to periodically validate

their system resilience against failures. The existing contingency analysis algorithms that are

used in practice nowadays leverage power system to perform steady-state analysis of potential

incidents and their potential consequences. Those solutions completely ignore non-steady-state

or transient dynamics of the system. Thus far, these protections are largely believed to provide

safety against the accidental component failures and malicious attacks such as Stuxnet that

target the steady-state system dynamics.

We show that NERC-CIP cyber security requirements can be vulnerable to a new class of

attacks, and hence inadequate for protecting the national electricity grid from dynamic transient

exploits. Not only do we show the existence of transient attacks in systems that are compliant

with NERC-CIP regulations, we present an algorithmic approach for effectively synthesizing

such attacks from reasonably available information about power networks. These synthesized

attacks against CIP compliant power networks can cause global system-level collapse or insta-

bility. As attackers are becoming more concerted and sophisticated, transient attacks should

be taken into consideration for the design of future protection mechanisms and our analysis

suggests conceptual methods for the security evaluation of power networks.

The synthesis procedure leverages hybrid models of the electricity grid that incorporate

not only the continuous, nonlinear dynamics of the electrical quantities like currents, voltages,

power, and phase angles, but also discrete dynamics of the changes in the network topology

brought about by opening and closing of relays and changes in power consumption (loads).

The synthesized attacks consist of a sequence of malicious control actions that ensure that all

possible behaviors of the system remain undetected by the conventional steady-state monitors

but ultimately destabilize the system.

Our goal is to automatically synthesize such destabilizing attack over a specified bounded

time horizon such that the deployed CIP compliant protection mechanisms are not triggered.

12

Owing to the capabilities of the adversary, it turns out that the space of possible attacks can be

naturally parameterized. The adversary can switch a few compromised relays (opening/closing

power lines) or she can inject power at a few of the compromised buses. These actions can be

stitched together to construct more complex attack sequences. Nevertheless, there are only a

finite (and in fact small) number of network topologies that the adversary can realize. Although

the set of possible power injection signals are infinite, they can also be parameterized via a fam-

ily of curves or proportional–integral–derivative (PID) control signals. With a parameterized

attack space, the proposed algorithm leverages state-of-the-art formal verification algorithms

to effectively search this space for successful attacks. The key to this approach is to be able

to quickly eliminate parts of the attack space that cannot produce successful attacks—either

because they are detected or because they are unsuccessful in making the system unstable. The

algorithm eliminates sets of unsuccessful attacks by first simulating one potential attack with

specific parameter values and checking many other similar potential attacks, by computing on-

the-fly the sensitivity of the system’s behavior to changes in the attack parameters. If all attacks

with a single topology are eliminated, then the algorithm proceeds to check attacks that string

together several topology switches with different power injections in each.

Contributions. The contributions of this chapter are as follows: i) we design and demonstrate

the first transient dynamics attack against critical electricity grid infrastructures, and show that

the current governmental regulatory protections are rendered insufficient in practice; ii) we in-

troduce an automatic attack synthesis framework that implements reachability-based synthesis

to generate transient attacks for a given network while meeting realistic constraints on the at-

tack space; and iii) we implemented a proof-of-concept prototype to demonstrate the feasibility

of transient attacks synthesis against NERC CIP-compliant topologies.

The remainder of this chapter is organized as follows: Section 2 describes and justifies the

threat model used in the chapter and gives an overview of the proposed approach. Section 3

describes the hybrid models of the power network, protections, and attacks. Section 4 presents

the attack synthesis problem formulation. Section 5 describes our results and demonstration of

transient attacks. Section 6 shows a case study transient attack against a power system that is

NERC CIP N-1 compliant. Section 7 reviews the past related work. Section 8 concludes the

chapter.

13

2 Overview

In this section, we justify the attack model and the architecture used throughout this chapter

based on the current state of the electricity grid, its operations, and its protection mechanisms.

Threat model. Like most of the past work on power grid attacks [122], we assume that the

attackers know the configuration of target power network. We also assume that the attackers

have access to necessary controllable actuation points to manipulate few system parameters

such as a power generator governor valve (input mechanical power to the generator) and circuit

breakers.

2.1 Electricity Grid Security

Electricity power grid consists of electric power generators, loads such as factories, where the

power gets consumed, and the transmission lines to transfer the generated power to the con-

sumption sites (loads). As an interconnected network, the power grid connects a variety of

electric generators together with a host of users across a large geographical area. Generally,

the power system transient dynamics originate from its power generators (synchronous ma-

chines). The generation AC power flows across the grid based on the Kirchhoff laws—power

system equations. Any change to the system parameters or its network topology will change

the equations and the power flow values will update accordingly. The changes to the grid are

performed through installed actuators and are normally used by the power operators to control

and ensure the safe operation of the grid. Examples of typical actuators on the power system

include (i) circuit breakers that are physical devices controlled by computer-enabled relays, and

could connect/disconnect a power system asset such as a generator to/from the rest of the grid

interconnect; (ii) generator governor steam valve controller that defines how much mechani-

cal torque should be fed to the generator and hence power to the rest of the grid. Hence in

case of load (power consumption) increase, the valve should open further to compensate for

the consumed power, and maintain the load-generation balance; (iii) the DC current value con-

troller that defines how much current should flow through the field windings within a generator.

Higher field currents increase the generator’s output voltage, and hence this actuator could be

used for power grid’s global voltage control and prevent a wide-area voltage collapse. In a

14

real-world power system, there are many actuators deployed, and they could be maliciously ac-

cessed remotely through cyber attacks, and leveraged to change the power system parameters

to cause a large-scale blackout.

For reliability purposes, redundant paths and lines are provided so that power can be routed

from any power plant to any customers, through a variety of routes that is resilient against fail-

ures such as a line outage. A SCADA network is usually used to monitor and control the power

system and devices in a geographical area. The SCADA network is connected to the physical

power system components through distributed sensors and actuators. The daily operation of the

power grid follows typical closed-loop monitoring and control paradigm. Sensors send noisy

measurements to the SCADA network, where the state estimation servers process the received

measurement data points. The state estimation’s objective is to filter out the noise and calculate

precise estimates of the various power system variables, i.e., power bus voltages. The power

operators look at these estimates and decide on proper control actions that are sent to the actu-

ators. For instance, if the calculated power system estimates indicate that there is more power

consumption than the generation in the grid, the operator increases the generation set-points

on one (or more) of the generators to maintain the load-generation balance. Traditional power

grids often have protection measures deployed to maintain reliable system operations against

accidental and natural events and failures such as a broken line.

Due to the close and constant interaction of the physical power system with the SCADA

network, the electricity grid is referred to as a cyber-physical infrastructure. The emerging

advanced SCADA equipment improves cyber interconnections among various points (e.g., ac-

tuators) of the system from remote sites. Although this simplifies the grid’s monitoring and

control significantly, improving SCADA technologies also vastly inflates the grid’s attack sur-

face. The adversaries launch the attack through cyber-side penetration to gain sufficient control

on the cyber assets such as actuators like power system relays that are often used to (dis)connect

a transmission line. The final and more important step of the attack is to leverage the compro-

mised actuators to cause a physical damage to the power system. For instance, disconnecting

a transmission line to a large neighborhood may result in a temporal power outage in the area.

There have been several successful security attacks against the electricity grid within the United

15

States [6]. In fact, the number of reported major security attacks against the critical infrastruc-

tures has increased from 9 incidents in 2009 to 257 incidents in 2013, 28X within 4 years.

Due to the rising number of attacks, both the industry and government have taken initiatives

to protect the electricity grid on both the cyber and the physical sides. Initial efforts involved

incorporation of traditional IT cyber security mechanisms into SCADA networks. The direct

adoption did not always result in suitable outcomes such as unacceptable packet transfer laten-

cies for control inputs, which often have strict end-to-end time requirements. Later endeavors

included more domain-specific mechanism deployments such as Digital Bond’s Snort signa-

tures for power control network DNP3 protocol. Following the cyber-side security protection

improvements, however, there has been little progress on power-side solutions against non-

accidental incidents and malicious adversaries that could lead to misoperation or instability.

NERC-CIP contingency requirements. Consequently, NERC developed 412-page CIP v5

requirements, and Federal energy regulation commission (FERC) approved the requirements

on November 22, 2013. The NERC website says “[the requirements] represent significant

progress in mitigating cyber risks to the bulk power system”. One of the key requirements is the

N− 1 contingency compliance. NERC defines a power system contingency as an unexpected

failure or outage of a system component, such as a generator, transmission line, circuit breaker,

switch or other electrical element [145]. NERC CIP N-1 contingency requirement mandates

that grid must operate safely given any single contingency. To enforce the requirements, power

utilities run contingency analysis algorithms on the grid’s current topology and state every few

minutes to ensure that it can tolerate any single contingency. All of the deployed real-world

algorithms make use of steady-state system models such as (rarely) non-linear AC power flow

models or (almost always) linearized approximate DC models for speed up. None of these

models consider the transient dynamics of the system. We answer the following question in

this chapter: is it possible that an electricity grid is reported NERC CIP-compliant after state-

of-the-art contingency analyses, while a (possibly sophisticated) attack still destabilizes it?

2.2 Overview of Synthesized Attacks

We show that the NERC-CIP compliant systems are vulnerable against a new class of attacks

that leverage the transient dynamics of the power system. These attacks can be launched with

16

Supervisory	 Data	 Acquisi2on	 and	 Control	 Network	 (SCADA)	

Electricity	 Grid	

…	 	 …	 	

compromised	 actuators	 non-‐compromised	 actuators	

CPxploit	
Formal	 Hybrid	 System	 (automaton)	 Transient	 Analysis	 	

verifica(on	 +	 synthesis	

Power	 System	 Con>nuous	
Logic	 Differen>al	 Dynamics	

Discrete	 Logic	 Power	
Topology	 Reconfigura>on	

Embedded	
Malware	
Genera>on	

executable	 distribu>on	

Figure 2.1: High-Level architecture for an attack.

the threat models discussed above. The attack’s core idea is to manipulate the system in such a

way that its fine-grained (fast) transient dynamics exceeds the safety zone, while the system’s

steady-state converged values resides within NERC CIP requirement limits. Our algorithm

achieves its objectives through a controlled violation of the synchrony condition [26] that refers

to the condition when both the AC current frequency and phase for all generators within the

electricity grid are aligned. Malicious loss of synchrony in the grid can lead to blackouts. The

frequency of a generator is directly related to the speed (angular velocity) of its internal rotor

that converts its input mechanical power (e.g., by steam turbines) to electrical power. The gen-

erated electrical power is then injected into the grid. The input mechanical power magnitude

can be adjusted by the generator’s governor valve controller. Consequently, a malicious gov-

ernor valve controller could manipulate the rotor speed, and hence the system frequency that

could possibly perturb the grid’s synchrony condition.

Figure 2.1 shows the high-level architecture of an attack and how its components are log-

ically interconnected. CIP requirements are based on the widely-used simplifying assumption

that the system transients die (fade) quickly and it is focused on detecting anomalies in the

17

steady-state values of the system. Normal transients are caused by abrupt discrete incidents,

such as a transmission line outage, and do indeed meet this assumption. As we show, ma-

liciously triggered transients, however, can be amplified significantly if one is followed by

another in a quick succession. The synthesis algorithm explores the space of such transient at-

tacks and (if possible) finds one that cannot be detected by CIP requirements that only consider

the steady state values.

The algorithm searches for attacks over all possible sequence of network topology changes

that the adversary can bring about. For each possible sequence, the algorithm explores the space

of possible attacks that can drive the system to an Unsafe state that violates the synchrony con-

dition and avoids the states Detected that can be detected by the conventional (CIP) monitors.

This exploration is performed by over-approximating the system’s behavior (reachable states)

under a set of attack injections. This computation of reachable states pushes the state-of-the-

art in formal verification for hybrid models (see Section 7 for an overview). A new class of

verification algorithms [61, 64] compute reachable sets of the system by simulating individual

behaviors and computing the local sensitivity of that execution to small perturbations to the

states and inputs to the system. In this chapter, we extend this approach to analyze the sensitiv-

ity with respect to the attack parameters. Since the algorithm is based on over-approximations,

it is sound in the sense that it can infer that certain range of parameter values and certain topolo-

gies cannot give rise to a successful attack. For example, for several networks, we show that

CIP regulations effectively protect against attacks on the system with no discrete topological

modifications. This enables the algorithm to move the search quickly to a different part of the

attack space or a different (possibly longer) sequence of topology switches.

Finally, we comment on the advantages of synthesizing attacks. Generally, one could use

simulation-based strategy to search for an attack. However, simulation-based approaches alone

are incomplete; they cannot guarantee the absence of an attack even for small (but compact)

sets of system parameters. Our formal approach using sensitivity computation enables us to

eliminate (possibly large) sets of potential attacks as infeasible and therefore helps focus the

search on interesting parts of the attack parameter space. Our choice was also influenced by

the finding that CIP compliance and its protection measures significantly reduce the attack

search space. It makes it significantly harder to realize an attack such that it can achieve its

18

adversarial objectives without triggering CIP’s mandatory protection measures. Therefore, the

proposed exploration for a feasible attack recipe includes the corner cases that are not often hit

by simulation methods quickly in practice.

3 Transient Attacks on Power Networks

We describe typical dynamical models for monitoring and control of power networks, and then

we proceed to develop the core technique for synthesizing transient attacks.

3.1 Power Network Dynamics

A power network consists of several buses. Each bus serves as an electrical interconnection

point for generators, loads, and transmission lines to other buses. A network with three buses

is illustrated as Figure 2.4a. The relationship among the currents and voltages in an N-bus

network is given by the Kirchoff’s law

~I = Y ·~V ,

where ~I = [I1, . . . , IN] and ~V = [I1, . . . , IN] are complex vectors corresponding to the currents

the voltages in the buses, and Y is the N ×N matrix of complex numbers called the Nodal

admittance matrix and it captures the electrical parameters of the network. The admittance

(reciprocal of the impedance) between the ith and the kth bus is the complex number Yik =

Gik + jBik. Its real part Gik is called the conductance and its imaginary part Bik is called the

susceptance. The second relationship is given by the power flow equation: Si =Vi · I∗i for each

bus i. By rewriting~I as Y.~V and comparing the real power Pi and the reactive or imaginary part

of power Qi at each bus, we get

Pi =
N

∑
k=1
|Vi||Vk|(Gik cos(δi−δk)+Bik sin(δi−δk)), (2.1)

Qi =
N

∑
k=1
|Vi||Vk|(Gik sin(δi−δk)−Bik cos(δi−δk)), (2.2)

where δi is the phase angle of the complex voltage Vi. For an N-bus network this gives 2N

equations with 4N unknowns, namely, |Vi|, Pi, Qi, and δi for each bus i. If we fix 2N of these

19

unknowns (e.g., based on real-time sensor measurements), we can solve these equations and

obtain the steady state values of power, reactive power, the voltage and the phase angle.

It is worth mentioning here that there are three different kinds of buses in a power system:

i) a generator bus connects power generation equipment which fixes the real power P and the

voltage |V |; ii) a load bus connects power consumers which fixes the real (P) and reactive power

(Q); and iii) a slack bus connects to a slack generator that balances the active and reactive power

in the system and it fixes the voltage |V | and the phase angle θ at the bus. In a real power system

with these three types of buses, each bus fixes two of the four unknowns, and therefore, we can

solve Equation 2.1 and Equation 2.2 to obtain the steady state values of all the quantities.

In Section 4, we will consider power networks subject to changes in the input/output power,

voltage, as well as in the network topology. When the topology of the network changes the

admittance matrix Y changes, which in turn changes the steady state values of voltage, power,

and phase of one or more buses as determined by Equations (2.1)-(2.2). Similarly, when the

power at a load bus changes suddenly, then the steady state values at all the other buses may

be affected. Between the time when the change occurs and the time when new steady state

values are reached (if at all), the network is said to be in transient state. The thesis of this

chapter is that currently implemented NERC-CIP monitoring approaches leave power systems

fundamentally vulnerable to attacks that exploit the transient dynamics of the system.

Finally, we describe the differential equations that govern the transient behavior of each

generator. Each generator k has two state variables, namely the synchronous phase angle θk

and the angular velocity ωk. Given the bus quantities δk and Vk from the above, the dynamics

of generator k is given by

θ̇k = ωk (2.3)

ω̇k = C1(PM−C2|Vk|sin(θk−δk)−C3ω), (2.4)

where C1, C2, and C3 are constant parameters of the generator and its circuitry; PM is the input

mechanical power to the generator (e.g., by a steam turbine). We denote the term

PE :=C2|Vk|sin(θk−δk)

20

as the output electrical power generated by the generator. Given a power system topology and

steady state values of the bus voltage and phase angle, the output power is a function of the

machine phase angle θk. The output current is derived by dividing the output power by the

voltage Ik = C2 sin(θk − δk). Equation 2.3 merely says that the rate of change of the phase

angle θk is the angular speed ωk. Equation 2.4 says that the rate of change of angular speed

depends (according to this nonlinear function) on the mechanical power input PM, the phase

angle θk, the angular velocity ω, and the steady state voltage |Vk| and rotor angle δk of the bus

it connects to.

To keep the power system stable, the phase angle has to satisfy the synchrony condition, i.e.,

keep θk ≤ acrit , where acrit = π/2+δk is the critical angle [113]. If the generator is operating

below the critical angle, it is dynamically stable, meaning it can tolerate the environmental

disturbance and maintain the power output. However, if the phase angle is above the critical

angle, the generator’s behavior goes out of synch with even little disturbances. We will further

justify this statement in Section 6 with experiments on a high-fidelity power system simulator.

Throughout this chapter, we study attackers that attempt to violate the synchrony condition and

drive the phase angle larger than the critical angle without violating the steady-state NERC-CIP

conditions.

3.2 Attack Protection: Relays and Monitors

The most widely deployed protections in power networks to enforce NERC-CIP requirements

and protect against attacks are relays and steady state monitors. A relay has two parts: a sensor

for detecting over-current conditions, and an actuator for electrically disconnecting power lines.

Each sensor detects over-current condition on the line between a generator and a specific bus.

A relay on the k-th bus registers an over-current event if Ik =C2 sin(θk−δk) exceeds a critical

current value Icrit (transmission line capacity) for at least a certain threshold duration coc of time.

In contrast, steady state monitors check whether the steady state power output of a generator

PE deviates significantly from a desired value Pref for some duration of time. These monitors

detect a deviation if PE(t) is not within ±Ptol of Pref over an interval of time of duration cpd

(here Ptol is a constant tolerance parameter).

Indeed, these protections are adequate against a broad class of attacks. One simple attack is

21

P
h

as
e

A
n

gl
e

(d
eg

)

Time (ms)

Po
w

er
 O

u
tp

u
t

(M
W

)

Figure 2.2: Attack on maximum input mechanical power. The lines capture the trajectories of
phase angle and output power with constant input PM = 7 p.u.

to set the input mechanical power PM to a constant high value (e.g., via opening the steam tur-

bine valves) such that the phase angle of the machine will increase and enter the asynchronous

region exceeding the critical threshold value. The corresponding trajectories of the phase an-

gle and the output power are illustrated in Figure 2.2. Since the phase angle is not stabilized,

the output power also oscillates wildly; therefore, this attack can be caught by an appropriate

steady state monitor. A more sophisticated attack would use a time-varying input power signal

PM. The attacker first computes a reference angle θr = π− sin−1 Pre f
C2|Vk|+δk, such that it violates

the synchrony condition (θr > acrit) and it produces the steady state power output equals Pre f .

Then, the attacker picks the PID constants kp,ki,kd ≥ 0 and computes the input mechanical

power at each time t ≥ 0 as

PM(t) = kpe(t)+ ki

∫ t

0
e(s)ds− kdω(t), (2.5)

where e(t) = θr − θk(t) is the difference of the current phase angle and the reference angle.

This attack can drive the phase angle to the asynchronous value θr while ensuring that the

output power PE to remains within the desired range. Hence it remains undetected by the

steady state monitors. An example of how such an insidious attack may proceed is shown in

Figure 2.3, where after the transient, the machine phase angle converges to θr = 133° and the

output current converges to 5 p.u. (per unit). If the generator is equipped with a relay with

critical current Icrit = 5.5 p.u., the relay will be triggered between the two vertical dashed lines

in the plot for around 200 ms. If the critical over-current duration coc ≤ 200ms, then the attack

22

P
h

as
e

A
n

gl
e

(d
eg

)

Time (ms)

C
u

rr
en

t
(p

.u
)

Figure 2.3: Attack on PID control. The solid lines capture the trajectories of phase angle and
current. The critical current of the relay is 5.5 p.u as illustrated by the horizontal dashed line.

will be detected.

We observed that the relays and steady state monitors are able to detect some simple attacks

such as maximum mechanical input attacks or PID attacks. In the following sections, we dis-

cuss how to synthesize a valid transient attack automatically that evades the deployed monitors

by carefully composing the simple attacks.

4 The Attack Synthesis Problem

We present a formal model1 for power networks as hybrid automata. We then use the model to

synthesize and generate transient attacks automatically.

4.1 Formal Hybrid Model

As we saw in the previous section, the transient behavior of a power network can be modeled by

several sets of differential equations—one for each configuration of the network topology and

the bus parameters. These differential equations define the trajectories of the physical state of

the system over time intervals. Together with these trajectories, the complete system description

requires a set of transitions that define the abrupt changes in the network configuration, e.g., a

relay opening. After every such transition, the power system transients evolve according to its

dynamic model of differential equations. It has now become standard to model such systems

1This work was completely done by Zhenqi Huang from University of Illinois and added in my thesis to under-
stand the complete picture of the solution.

23

combining differential equations and transitions as a hybrid automaton [111, 131]. A hybrid

automaton is a state machine with both discrete and continuous state variables. The discrete

state variable typically captures software (cyber) states and the system configurations and their

changes are specified by discrete transitions rules similar to if-then statements, e.g., a relay’s

open/close conditions. While the continuous variables capture physical variables (for example,

voltage and phase angles) and their evolution is specified by differential equations. For the sake

of precision, we give a formal definition of a hybrid automaton.

Definition 1. A hybrid automaton (HA) A is a 6-tuple 〈Var,Q,U,Θ,D,T 〉, where

1. Var is a variable set consisting of i) X, a set of real-valued continuous state variables;

ii) mode, a single discrete variable that takes value in the finite set denoted by L.

2. Q = R|X |×L is the state space of the system; it corresponds to all possible valuations of

the continuous variables in X and the discrete variable mode.

3. U is a set of real-valued continuous input variables.

4. Θ⊆ Q is the set of initial states,

5. D⊆ Q×Q is the set of possible discrete transitions.

6. T is the trajectory set. Each trajectory τ ∈ T is a function τ : [0, t1]→ Q mapping the

time interval [0, t1] to the states.

For a transition (q,q′) ∈ D, it is standard to write q→ q′; q is called the pre-state and q′ is

called the post-state of the transition. For a trajectory τ ∈ T and a time point t in the interval

[0, t1], τ(t) is the state of the system at time t. For a particular variable x ∈ X , the valuation of

that variable at τ(t) is denoted by τ(t).x. A hybrid automaton with no inputs, U = /0, is said to

be closed. Otherwise, it is open.

Next we instantiate the above definition to model a specific power network. There are soft-

ware tools [24, 124, 64] that automatically convert engineering models constructed in different

commercial tools like Simulink, LabView, and Mathematica to the hybrid automata. Consider

the 3-bus power network shown in Figure 2.4. For the sake of illustration, we consider two

different topologies of the network: topology 1 with the line between buses 2 and 3 closed and

24

(a) Topology 1. The line between bus 2 and 3 is closed. Less power on other two lines. The complex
voltage at bus 2 is 0.99∠−5° p.u.

(b) Topology 2. The line between bus 2 and 3 is open. More power on other two lines. The complex
voltage of bus 2 is 0.94∠−17° p.u.

Figure 2.4: Two topologies of a 3-Bus power system

25

Figure 2.5: Schematic diagram of the HA modeling power network with two topologies. The
four modes and their differential equations are shown in the circles. The arrows show the
discrete transitions.

topology 2 with the line open. These two topologies and their corresponding steady state values

for voltages, phase angles, etc., give rise to two configurations. With each topology i ∈ {1,2},

the steady state voltage |Vik| and phase angle δik at bus the kth bus are determined by the admit-

tance matrix of the ith topology. With those quantities fixed, the dynamics for the generator at

bus k, is given by Equations (2.3)-(2.4):

θ̇k = ωk

ω̇k = C1(PM−C2|Vik|sin(θk−δik)−C3ωk).

For bus 2, PM is the mechanical power input at the bus and for the other buses this quantity is

set to zero. These two sets of differential equations for the two topologies are represented by

two functions [θ̇, ω̇] = fi(θ,ω,PM), where i ∈ {1,2}.

A schematic representation of the corresponding hybrid automaton is shown in Figure 2.5.

Its components are specified as follows: (1) The set of continuous variables X consists of θk and

ωk for each of the N generators and a timer variable clk for the relay. The discrete mode variable

can take values from the set {on1,off1,on2,off2}; mode = on1 (respectively mode = off1) and

26

corresponds to the configuration where the topology 1 is active and the relay timer (clk) is on

(and off). (2) The set of states Q = R2N ×{on1,off1,on2,off2}. (3) The single continuous

input variable PM corresponds to the mechanical power input (4) The mode is switched from

offi to oni, with topology i ∈ {1,2}, if the current C2 sin(θ−δi) goes above a threshold Icrit and

switched back otherwise. The switch between the two topology is assumed to be controlled by

the attacker (5) The set of trajectories T is defined by the differential equations. Specifically,

a trajectory τ : [0,T]→ Q is a valid trajectory if and only if it is a trajectory for one of the

four modes. For example, if it is a trajectory of mode off1 then at each time t ∈ [0,T] along

the trajectory, (i) τ(t).mode = off1 remains constant, (ii) τ(t).clk = τ(0).clk, i.e., the relay

timer remains constant, and (iii) τ(t).θ and τ(t).ω are solutions of the differential equation

[θ̇, ω̇] = f1(θ,ω) for some input signal for the mechanical power PM. The trajectories for the

other modes are defined analogously. For the on1 and on2, at each time t ∈ [0,T] along any

trajectory τ(t).clk = τ(0).clk+ t, i.e., the relay timer measures time elapsed.

4.2 Attack Synthesis Problem

To present the attack synthesis problem precisely, we define the semantics of hybrid models.

The semantics of a hybrid automaton model is given in terms of its runs or execution. An

execution of a hybrid automaton A is a finite sequence of trajectories α = τ0,τ1, ...,τm, such

that each τi is a valid trajectory of the automaton. It is a solution of the differential equations

corresponding to one of the modes—which in power networks correspond to a particular con-

figuration. For any pair of consecutive trajectories τi : [0, t1]→ Q and τi+1 : [0, t2]→ Q in the

sequence α, there must be a valid transition from the last state of τi to the first state of τi+1, i.e.,

τi(t1)→ τi+1(0). Finally, a sequence of trajectories meeting the above two criterion is deemed

an execution only if the first state of τ0(0) is one of the initial states of the automaton.

A state q ∈Q of A is said to be reachable if there is some execution α that arrives at it. The

set of all the reachable states of the automaton A, written as ReachA, plays an important role in

analysis and verification of automata. For instance, for some specified set of bad states U ⊆ Q,

if ReachA∩U = /0, then it follows that the system is safe with respect to U . If we can find a set of

input signals for which ReachA ⊆U then it establishes that the system always ends up in a bad

state. An invariant for A is any over-approximation of ReachA. Thus, a fundamental problem

27

in the analysis of automaton models is to compute or approximate ReachA. In Section 4.3, we

give a brief overview of the related work in this area.

A hybrid automaton is non-deterministic in general. It may have multiple initial states,

more than one transition may occur from a given state, and even more than one trajectory

may emanate with different inputs (for example, the input power PM) from a given state (and

mode). On the one hand, these different sources of non-deterministic choice make the models

expressive. They enable us to capture uncertainties in the model parameters, measurements, and

the environment. On the other hand, non-determinism makes it difficult to design algorithms

for precise approximation of the set of reachable states ReachA.

We state the transient attack synthesis problem using reachability. First, suppose the at-

tacker’s input signal is generated as a PID control input as given in Equation (2.5) parameter-

ized by the constants kp,ki, and kd ranging over a parameter space P . This assumption makes

sense because (a) PID is the predominant method for generating control signals, and (b) a broad

class of continuous functions can be approximated as PID signals. To find a transient attack on

the hybrid automaton A, we would like to find PID parameters 〈kp,ki,kd〉 ∈ P such that there

exists a time t ≤ T when ReachA(t) ⊆ Unsafe while for all t ≤ T , ReachA(t)∩Detected = /0.

Here Unsafe is the unsafe ansynchronous state (θk > π/2+ δik), Detected is the set of states

that can be detected by either the relay or the steady state monitor, and ReachA(t) is the set of

states reached by the system at time t before the time horizon of analysis T .

If the search for the parameters is successful, then the system is guaranteed to enter the bad

state Unsafe within the time horizon T while evading detection. On the other hand, if the search

terminates without finding appropriate parameters, then we can conclude that there is no such

attack at least within the parameter space P .

4.3 Algorithm for Attack Synthesis

In this section, we sketch the main idea underlying the automatic attack synthesis algorithm.

The key is to parameterize the space of attacks and then search for successful attacks by elim-

inating parts of the parameter space that cannot yield attacks. This elimination procedure is at

the heart of our synthesis algorithm and it combines numerical simulations with formal static

analysis of the models. In what follows, we first discuss the synthesis of attacks consisting of

28

a single attack mode defined by a single configuration of the network and a single set of attack

parameters. In Section 5 we discuss how more complex attacks consisting of a sequence of

configurations and attack parameters can be synthesized using the same principle.

In the preceding example, for instance, we chose to define the space of parameters P as the

values of the PID gains kp,ki, and kd and also the timing of the topology switches. For a given

hybrid model A, let us fix the mode or configuration of the network to be i. Now if we also

fix a specific value of these parameters p ∈ P , arbitrarily, then that defines a unique trajectory

τp ∈ T that satisfies the differential equations of the hybrid automaton.

We can simulate this system to infer if this arbitrary trajectory τp, p ∈ P yields a suc-

cessful attack. If it does not, however, we learn very little as there are infinitely many other

choices in P . This is where we use sensitivity and simulation-based analysis technique from

the formal methods literature that has been quite successful in verifying industrial scale control

systems [61, 64]. For a time t ≥ 0, compact set P ⊆ P of parameter values, let us denote by

ReachA(P, t) the set of states that are reachable at time t with parameter values in chosen from

the set P.

The idea is to generalize from this one choice p ∈ P of parameter values, a much larger set

of values P⊆ P that is also guaranteed have no attack. We can then eliminate P from the search

and move on to a different part of P . We formalize this generalization using discrepancy used

in [63, 97]:

Definition 2. A function P 2×R≥0→ R≥0 is the discrepancy function of A if

1. for any pair of parameter values p, p′ ∈ P :

|τp(t)− τp′(t)| ≤ β(|p− p′|, t),and (2.6)

2. for any t ≥ 0, β(|p− p′|, t) converges to 0 as p→ p′. Here | · | is the standard ∞-norm of

Euclidean space

Discrepancy function β upper bounds the sensitivity of the trajectories τp and τp′ to the

changes in the parameters as a function of time. Several algorithms for computing the dis-

crepancy functions have been presented in literature [63, 61]. By computing (or simulating)

29

Algorithm 1: Transient attack synthesis.

1 input A,β,Unsafe,Detected,Tmax,P ;
2 S← Partition(P);
3 while S 6= /0, for 〈pi,εi〉 ∈ S do
4 α← Simulate(A,pi,Tmax);
5 R← Bloat(α, pi,εi,β);
6 if ∃ t ≤ Tmax R(t)⊆ Unsafe and ∀ t ≤ Tmax R(t)∩Detected = /0 then
7 return (Success, p)
8 else if ∀ t ≤ Tmax R(t)∩U = /0 or ∃ t ≤ Tmax R(t)⊆ Detected then
9 S← S\ 〈pi,εi〉;

10 else
11 S← S∪ Refine(pi,εi);
12 end
13 end
14 return (Fail,⊥)

one of the trajectories τp(t) and enlarging it by the factor β(ε1, t), we can compute all the

trajectories—and the states they reach—resulting from changes in parameters. In summary,

discrepancy functions can be used to compute over-approximations of ReachA(P, t) just from

simulations of the system.

The algorithm for attack synthesis using this principle is shown in algorithm 1. The input

to the algorithm is the automaton model A, the discrepancy function(s) for the different modes,

the unsafe set Unsafe (in power networks this is the asynchronous state), the detectable set

Detected, the time horizon Tmax, and the set of parameters P . The algorithm maintains a data

structure S which is a cover of the parameter space P . Concretely, S is a collection of pairs

{〈pi,εi〉}i, such that the compact parameter space P is contained in ∪iB(pi,εi), the union of the

εi-balls2 around the pi’s. More generally, the cover S could have balls of different sizes.

For each parameter value 〈pi,εi〉 ∈ S, the algorithm first simulates the system with param-

eter pi to generate one execution αpi of duration Tmax (line 4). It then uses the discrepancy

functions to compute the set of states R by bloating α (line 5). From the property of discrep-

ancy functions and the argument presented above we know that R is an over-approximation of

the set of reachable state ReachA(B(pi,εi),Tmax).

Next in line 7 the algorithm checks if there exists a time t at which the reach set R(t)

2The set B(x,ε) is the ball of radius ε centered at x, i.e., {y | |y− x| ≤ ε}.

30

from the parameter range B(pi,εi) is contained in the unsafe set Unsafe and for each t ≤ Tmax,

R(t)∩Detected = /0. If this condition holds, then the parameter pi yields a successful attack—

one that reaches Unsafe while avoiding Detected. Having found an attack with pi then the

algorithm terminates. If there is no proof of successful attack from B(pi,εi) then the algorithm

checks (line 9) if (a) for all t ≤ Tmax R(t) is disjoint from Unsafe, i.e., it does not make the

system unsafe or (b) there is a time t ≤ Tmax at which the system is detected, i.e., R(t) ⊆

Detected. In either case, we can infer that none of the parameter values in B(pi,εi) gives a

successful attack, and therefore, it eliminates 〈pi,εi〉 from the set S. Finally if none of the above

conditions hold, i.e., the algorithm is not able to infer conclusively if the set B(pi,εi) gives a

successful attack or not, then this set is partitioned more finely for future consideration using

the Refine function. Once all the elements in the set S are removed (in line 9), the algorithm

concludes that there is no attack for U possible from the set of parameters that is P .

In the above, we discussed the attack synthesis algorithm using discrepancy functions, and

we did not delve into the details of how Bloat works with discrete transitions or switches be-

tween different topologies and configurations. Our implementation of attack synthesis for this

chapter does handle the transitions and it uses hybrid models [64].

4.4 Switched Transient Attack Parameter Space

A switched attack (attack with transitions) consists of a sequence of attack modes A0,A1, . . . ,An−1

and a sequence of time points t0, t1, . . . , tn. Attack Ai is active over the time interval [ti, ti+1).

Each attack mode Ai records, as before, a network topology and the mechanical input signal PM

over the interval. Thus, synthesizing a switched attack of length n is the same as identifying

the n topologies, the switching times, and the parameters defining the input signal (PM) in each

of the attack modes. In each attack mode i, the input signal PM can either be some constant

(constPMi) or follow a PID law as before:

PM(t) = kpie(t)+ kii
∫ t

0
e(s)ds− kdiω(t), (2.7)

where e(t) is the difference between the reference phase angle and current phase angle. In sum-

mary, a program for executing the switched attack would look like the pseudocode in Figure 2

31

Algorithm 2: template of attack mode Ai

1 if Time ∈ [ti, ti+1] then
2 Topology← topi;
3 if usePIDi = 1 then
4 PM ← PID(kpi,kii,kdi,State);
5 else
6 PM ← constPMi;
7 end
8 end

with all the parameters are synthesized from our algorithm.

Otherwise, the mechanical input PM is set to a constant constPMi. The attack synthesis

problem is reduced to assigning proper values to parameters ti, topi, usePIDi, kpi, kii, kdi, and

constPMi.

To synthesize all the parameters in an attack sequence, we use Algorithm 1 as a subroutine.

Notice that the there are only a finite (typically small) number of choices for the topology topi

depending on the number of relays and lines the adversary can have access to. Thus, we use a

brute force search for all possible choices of topi. Then for each sequence of choices for the

topologies, we run Algorithm 1 to check if there exists a valuation of the other parameters that

produce an undetectable attack.

5 Evaluations

In Section 3.2, we discussed two attacks by which the mechanical input (PM) to one of the

generators in the network were controlled to make the system unstable and we showed how

these attacks are detected by the conventional protection mechanisms. Now, equipped with the

attack synthesis algorithm of Section 4.3, we present synthesized attacks that evade detection

with relays and steady state monitors. In addition to the mechanical input, now we endow the

attacker with limited capability in changing the topology of the network by opening or closing

one of the lines in the network.

32

5.1 Application to 3-Bus Power Network

As the first illustration of a synthesized transient attack that is undetected by the relays and

the steady state monitors, we revisit the 3 bus System of Figure 2.4. We consider the scenario

where the attacker can control the mechanical input to the generator at bus 2 and also switch

the topology between 1 and 2. The machine is equipped with a relay and a steady state monitor.

The critical current of the relay is Icrit = 3.5 p.u. and the over-current duration is coc = 175 ms.

The steady state monitor uses a reference power Pre f = 250 MW with tolerance Ptol = 20 MW.

The mechanical input has to take values in [0,700] MW.

The attack can be made arbitrarily complicated by having more attack modes. Here, we

study switched attacks with two attack modes. Our experiments show that the class of attack is

rich enough for finding valid transient attacks on the power system.

One such attack is shown in Figure 2.6a. A constant input of PM = 700 MW for 154

ms is applied to topology 1 in the first attack mode, and then in the second attack mode, PM is

generated as a PID input with parameters kp = 6,ki = 0.1,kd = 0.2 for topology 2. The resulting

transient behaviors of the phase angle and the output power are illustrated in Figure 2.6b. The

asynchronous states Unsafe are those with phase angle greater than the critical angle 72°. It is

clear that the attack drives the system to Unsafe.

Since the output power is derived by multiplying the output current by the bus voltage |Vi|,

the relay will be on if the output power is above |Vi| · Icrit . The thresholds for both topologies

are plotted as red dashed line segments in Figure 2.6b. We observe that the relay is on for 167

ms. Thus the attack is not detected by the relay. Moreover, after around 600 ms, the output

power stabilized within the range [230,270] MW, such that the attack is not detected by the

steady state monitor.

5.2 Attack Generalization

We applied the same analysis to a couple of different power systems including the Western

system coordinating council (WSCC) 9-bus power system3.

The relay parameters are Icrit = 2.25 p.u. and coc = 175 ms. Pre f = 163 MW, Ptol = 20

3Available at http://publish.illinois.edu/smartergrid/wscc-9-bus-system/

http://publish.illinois.edu/smartergrid/wscc-9-bus-system/

33

M
ec

h
an

ic
al

 In
p

u
t

(M
W

)

Time (ms)

To
p

o
lo

gy

(a) First apply a constant input power 700 MW on topology 1 for 154 ms and then
switch to topology 2 with PID control parameters kp = 6,ki = 0.1,kd = 0.2.

Relay on

Time (ms)

P
h

as
e

A
n

gl
e

(d
eg

)

Po
w

er
 O

u
tp

u
t

(M
W

)

(b) The phase angle converges to 145° and the power output converges to 250MW.
The power output has a discrete jump at time 154ms because of the topology
change.

Figure 2.6: An attack to a 3 bus system. The critical angle of machine 2 is 72°.

34

Time (ms)

M
ec

h
an

ic
al

 In
p

u
t

(M
W

)

(a) First apply a constant input 400 MW for 154 ms. Then switched to a PID
controller with kp = 7,ki = 1.2,kd = 0.

Time (ms)

P
h

as
e

A
n

gl
e

(d
eg

)

Po
w

er
 O

u
tp

u
t

(M
W

)

(b) The phase angle converges to 152° and the power output converges to 163 MW.

Figure 2.7: An attack to a 9-bus system

35

MW. We successfully synthesize an attack as illustrated in Figure 2.7. The input mechanical

power is plotted in Figure 2.7a: In the first 237 ms, the mechanical input is set to 400 MW,

and afterwards the attacker use a PID control with kp = 7,ki = 1.2,kd = 0. The resulting phase

angle and power out are illustrated in Figure 2.7b, where the relay is on for 159 ms and the

power output converges to 163 MW.

The experiments suggest that the proposed algorithm can be applied to general power net-

works and produce sound attacks. Even though there is a dramatic difference between the work

topologies, power flow conditions, sensor parameters and input constraints of the 3 bus and 9

bus systems, the attacks follow the same pattern. That is, first attack mode applies a large me-

chanical power and the second mode is a PID control law. This pattern makes intuitive sense.

A maximum mechanical input drives the phase angle to Unsafe with minimized duration of the

relay on. Then a PID law guarantees the output power to stabilize without triggering the steady

state monitor. This observation suggests that by applying our algorithm we could recognize

attack patterns to the system.

5.3 Robustness of Attacks

So far our attack synthesis approach assumed perfect knowledge about the model of the sys-

tem. In reality, however, detailed models may not be available to the attacker and the network

parameters like loads, line admittances, and generator inputs fluctuate over time. Since our

synthesis approach not only computes a single attack (with a single set of parameters) but it

computes a set of parameter values B(pi,εi) that produce a successful attack, we expect that

these attacks enjoy some degree of robustness. That is, even if the network parameters change

to some degree, the same attack will continue to produce similar qualitative results, i.e., evade

detection and drive the system to an unsafe asynchronous state. In this section, we put this

hypothesis to test by perturbing several of the network parameters and subjecting it to the same

attack as the one synthesized in Section 5.1.

As we discussed in Section 3, the change in the load parameters and the admittance matrix

results in different bus voltages and phase angles. These are obtained by solving the power

flow equations (2.1)-(2.2). The bus voltages and phase angles directly affect the dynamics of

the generator (2.4).

36

For example, consider the same system topology as illustrated in Figure 2.4b. If we perturb

the power demand at bus 2 from 500 MW to 550 MW and the line admittances from 5.5-j18.3

p.u. to 5-15j p.u., then the voltage of bus 2 will change from 0.99∠−5° p.u. to 0.98∠−5.8°

p.u., which alters the differential equation of machine 2.

In this section, we allow the voltage of bus 2 has a ±0.2 p.u. perturbation, phase angle has

a ±1° perturbation. With this level of uncertainty in the parameters, we compute the reachable

states of the system under the same attack. The computation uses a similar reachability algo-

rithm as presented in Section 4.3 and the result is that the reach set satisfies the same properties

as a successful attack: it avoids Detected and eventually reaches the Unsafe set. The reach set

of the phase angle and power output of generator 2 are plotted in Figure 2.8a. We observed

that the set of the reachable phase angle is eventually contained by the Unsafe (72° or above).

By examining the reachable states, we observe that the relay is on for at most 172 ms and the

power output converges to 250 MW in all cases. That is, the reach set does not intersect with

the detectable states Detected. A similar robustness property is proved for the attack to the 9

bus system as shown in Figure 2.8b. These experimental results suggest that the attacker can

synthesize an attack without knowing the precise model of the system.

6 Transient Attacks vs. NERC CIP-Compliance

Following the attacks synthesized automatically in the previous section, we implemented tran-

sient attacks against a realistic version of the 9-bus system with NERC-CIP mandated protec-

tion in the PowerWorld simulator [148]. PowerWorld is the de facto simulator for power system

operation and control. Its models are much more detailed, higher dimensional, and complicated

with many more parameters than the ones used in models of Section 3.1. For example, these

models allow the modeler to choose various IEEE standard wiring configurations for the stators

and rotors in the electrical machines. Our goal for this section is to study the mechanics of the

progression of transient attacks, despite the NERC-CIP protections, in these realistic models. In

the future, we hope to undertake the considerably harder problem of automatically synthesizing

attacks for PowerWorld models.

37

P
h

as
e

A
n

gl
e

(d
eg

)

Time (ms)

Po
w

er
 O

u
tp

u
t

(M
W

)

(a) Robustness of attack to 3 bus system.

P
h

as
e

A
n

gl
e

(d
eg

)

Time (ms)

Po
w

er
 O

u
tp

u
t

(M
W

)

(b) Robustness of attack to 9 bus system

Figure 2.8: Robustness of the attack. The bus voltage and phase angle have a ±0.2 and ±1°
uncertainty respectively. The reachable states of the phase angle and output power with the
same attack. The reachable states do not intersect with Detected and are contained in Unsafe
eventually.

38

The attacks caused global instability against power systems that comply with the NERC-

CIP N-1 contingency requirements. PowerWorld reported no violation as the result of NERC-

CIP steady-state contingency that includes transmission line outages, transformer outages, and

the power generator outages. The transient attack involved a sequence of discrete switches

(transitions) changing the network topology, which in turn altered the system’s continuous

dynamics.

Each successful attack is a sequence of relay switches changing the topology of the power

network. One attack, for example, starts at second 5 and opens the breaker on the bus 2, and

waits for 1.18 seconds before re-closing it. Figure 2.9a shows the generators’ rotor angles that

fall out of step once the line gets re-closed. Intuitively speaking, the attack is successful because

of how the generators operate. While the relay is open, the generator on bus 2 is isolated, that

is, its output electrical power becomes zero. This is while its input mechanical power from the

governor steam valve stays the same as before and is positive. This turns the power generator

into an energy buffer, where its input mechanical power is a constant positive value while its

output electrical power is zero. The buffered energy gets stored by the generator through its

accelerated rotor, and hence its rotor’s angular velocity increases. The rotor’s angular velocity

is directly related to the generator’s generated electrical power frequency if it is connected to

the rest of the grid (when its electrical power is not zero).

When the attacker connects the generator back to the grid by re-closing the line, its acceler-

ated rotor will cause a frequency disturbance to the rest of the grid. Other adjacent generators

attempt4 to absorb the target generator’s high frequency by increasing their rotor’s angular

velocity. Given the power system’s transient swing equations [20], there is a limit to every

generator’s rotor angle beyond which the generator cannot re-stabilize itself whatsoever, which

is the critical angle introduced in Section 3.1. In the attack above, the wait caused the generator

on bus 2 to gain so much acceleration and angular velocity that it was not able to recover the

system stability by absorbing its increased frequency while at the same time not triggering the

over-current relays upon reconnection. Figure 2.9b shows the electrical power output of the

generators. As the graph shows, the generators’ output power oscillate out of control due to

4This is due to the physics of the system and there is no explicit controller involved.

39

(a) Generator rotor angle falls out of step (destabilizes).

(b) Generator’s output electrical power becomes unstable.

(c) Bus frequency cannot regain stability.

Figure 2.9: Successful Transient Attack Analysis against a Power Generator

40

the system’s raised frequency. The system is unable to stabilize itself and the grid experiences

a global collapse leading to a blackout. Figure 2.9c shows the system frequency for individ-

ual power generators, and how the system loses its synchrony (as discussed in Section 2.2)

as the result of subsequent discrete state transitions that even return to its original continuous

dynamics.

In Section 5.3, we discussed that synthesized attacks have a certain degree of robustness

with respect to system parameters due to the continuity of the dynamics. Next, we show with

a typical example that how there are limits to this robustness. For example, if we change the

timing of the above attack sequence so that then the relay on bus 2 closes after 1.17 seconds of

waiting (0.01 seconds earlier) then the critical angle is reached and the attack is unsuccessful.

First, in Figure 2.10a we show the evolution of the rotor angles for the power system generators

under this benign sequence of switches (unsuccessful attack). The power system stabilizes and

converges a safe steady-state value. Figure 2.10b and Figure 2.10c show the electrical power

outputs for the power generators (MW) and the transient frequency dynamics of the power

system buses, both stabilizing approximately 11 seconds after the switches.

Practical implications. In summary, these experiments suggest that switched transient attacks

that evade NERC-CIP protection are indeed feasible in realistic power systems, and there-

fore, transient attacks and their protection should be considered by the governmental regulatory

agencies, power system operators, and security researchers in the field. Secondly, it is possible

to quantitative estimate robustness of synthesized attacks with respect to different network and

attack parameters, and these measures may be used as metrics for evaluating the security of

power networks.

7 Related Work

Since the past real-world critical infrastructure attacks, there has been an increasing number of

security protection solutions proposed. We review the most related work.

As a fundamental power system monitoring tool, state estimation is the process of fitting

power sensor data to a system model and determining the current system state , e.g., using

weighted least squares [174]. The estimated state is then used in stability analysis [85] through

41

(a) Generator rotor angle stabilizes safely after a sequence of relay
switches.

(b) Generator’s output electrical power stabilizes.

(c) Power bus frequency stabilizes safely.

Figure 2.10: Unsuccessful Transient Attack Analysis against a Power Generator

42

solving nonlinear AC or linear DC power flow equations for a series of “what if” scenarios,

or contingency analysis [209, 85] that investigate the potential power system state in the case

of an event, e.g., a generator outage. Almost all the current solutions, e.g., contingency analy-

ses, do not consider the cyber-side controllers and/or take into account adversarial settings, and

hence those solutions miss maliciously induced topological errors in modern cyber-physical

infrastructures. Additionally, power system stability analysis concentrates on continuous dy-

namics only, and does not fully consider the possibility of subsequent discrete logic events in

the system.

Recently, cyber security solutions have been proposed to harden critical infrastructures.

These include practical best-effort techniques such as regulatory compliance such as attack tree

analysis , NIST guidelines [187], and perimeter protection recommendations [117]. These ap-

proaches have been confirmed to be insufficient by the past major security incidents [6], and

recently discovered fundamental security flaws in power grid control devices [204] and popular

human machine interfaces (HMIs) from major vendors. From an adversarial viewpoint, the

past cyber attacks are mostly not physics-aware and do not complete the attack path by sending

malicious control inputs to the underlying physical plant components. The very few real-world

security incidents with physical impact [72], however, use manually crafted malicious control

parameters such as setting them to an unsafe high value like in Stuxnet. Those trivial strate-

gies are to be addressed by NERC-CIP regulations [145] that mandate local safety measure

deployment to protect unsafe component operational points.

One specific related line of research is false data injection (FDI) attacks [122] that have

been explored over the past few years. FDI assumes compromised set of sensors and make

them send corrupted measurements to electricity grid control centers to mislead the state es-

timation procedures. The authors propose a system observability [122] analysis to determine

the required minimal subset of compromised sensors to evade the electricity grid’s bad data

detection algorithms [123]. FDI’s focus domain differs completely from our objective. Rather

than sensor measurement corruption, we concentrate on malicious control inputs to the plant

and by performing formal controllability analysis of the electricity grid for attack feasibility as-

sessment. Additionally, [122] leverage a linear DC model of the grid for designing attacks, and

hence ignores all the system non-linearities. The attack also ignores the discrete logic-based

43

incidents, such as relay openings/closings that occur frequently in the grid. Using steady-state

models, FDI [122] cannot evade NERC-CIP compliant protection schemes.

Automatic verification and specifically reachability analysis of hybrid models has enjoyed

sustained attention from researchers in computer science and control theory for over three

decades. The latest generation of tools from this research include Flow* [48], C2E2 [64],

and Breach [61] that can approximate bounded time reach sets of nonlinear hybrid models. We

refer the interested reader to the proceedings of the hybrid systems conference for recent de-

velopments [65]. The approach used in this chapter in the transient attack synthesis algorithm

is comparable to the analytical approaches used in Breach and C2E2 that use static analysis

methods for computing sensitivity or discrepancy measures of the model.

Algorithmic control synthesis, in contrast, is still in its infancy (see, for example, [91, 55]).

Inductive synthesis is considered in [98, 108]. For the synthesis of a provably correct controller,

the community adopts reachability-based approach [62, 59]. Particularly, a reachability-based

approach similar to ours for parameter synthesis has been presented in [62].

8 Conclusions and Mitigations

In this chapter, we presented an automated cyber-physical attack synthesis algorithm. Unlike

previous work on electricity grid security analysis, the algorithm makes a complete use of both

discrete and continuous dynamics of the system simultaneously. Through its formal hybrid sys-

tem analyses, the algorithm demonstrates that the most recent governmental electricity grid cy-

bersecurity NERC-CIP requirements can fall short in protecting our national grid against mali-

cious adversarial parties. Our experimental results show that the use of non-steady-state system

transient dynamics enables attackers design recipes that are not feasible using existing state-of-

the-art attacks, which NERC-CIP is designed to prevent. The solution to mitigate the proposed

transient attacks would be: (i) NERC-CIP should have transient-aware contingency analysis

enforcement along with the N-1 steady-state contingencies; (ii) more fine-grained monitoring

of system transients using more advanced sensors such as phasor measurement units (PMU) is

required; (iii) using algorithmic attack tool as a contingency analysis technique would guaran-

tee the system security against transient attacks.

44

Chapter 3

JUST-AHEAD-OF-TIME CONTROLLER RECOVERY

1 Introduction

The use of unmanned aerial vehicles (UAVs) has been increasing in many mission-critical set-

tings such as surveillance, delivery systems and military applications [25]. Consequently, they

are becoming attractive targets for malicious penetrations leading to physical damage. Recent

attacks took control of the drones remotely [161, 110, 169] and hacked RQ-170 Sentinel built

by Lockheed Martin [170]. AnonSec team [3] obtained partial control over the global hawk

used by NASA in 2016.

Secure operation of next-generation cyber-physical systems, specifically unmanned aerial

vehicles will require effective scalable formal verification capabilities. Current static formal

verification methods (e.g., TSV [128] and HACMS [149]) analyze the system model in an

offline manner, often facing state space explosion, and hence do not scale up to large-scale

cyber-physical systems. On the other hand, existing dynamic execution monitoring solutions

(e.g., Avatar [221]) notify operators about incidents that have just occurred or are about to occur,

and hence do not leave enough of a time buffer for effective manual or automated response and

recovery.

To take best of both worlds, we present Crystal that leverages Just-Ahead-of-Time (JAT)

verification (Figure 3.1). Crystal stays ahead of the actual system state by an arbitrary time

buffer. Crystal is a nonintrusive formal verifier for drone controller programs. It speculatively

checks in real-time whether the program execution may drive the drone towards any unsafe

state. Drone’s get there controller program inputs from the sensors, e.g., inertial measurement

unit (IMU) or GPS and sent the output commands to drone’s actuators, e.g., propeller motors.

Crystal executes the control logic symbolically and calculates possible input-to-output mapping

(sensor measurements to actuation commands) of the controller program. Crystal closes the

45

loop on the physical channel by calculating how sensor measurements are determined based

on the previous actuation commands and physical drone’s dynamic evolution (i.e., actuation

commands to sensor measurements). Crystal estimates drone’s state (e.g., location and orien-

tation) and deploys a new symbolic execution of the drone’s physical dynamics to calculate its

input-to-output mappings.

Given the flight control unit and physical system coupling, Crystal pipes its findings of IO

mappings of the cyber controller and physical dynamics together to create a full closed-loop

model of the cyber-physical system. The model captures all the interdependencies between

cyber and physical components and is used for Crystal’s just-ahead-of-time formal verifica-

tion. Crystal does not generate the complete system model one-time due to its (very) large size

and instead relies on local exploration and model checking of the upcoming future symbolic

states up to a finite horizon based on the current system state. This enables Crystal to stay

just a few steps ahead of native execution and avoids exhaustively considering all states. Crys-

tal periodically synchronizes the model exploration process with the native execution through

communication with the drone’s processor and obtaining concrete values of flight controller

program variables. The synchronization step allows Crystal to refine the model exploration

and not explore the states that will definitely not be reached through the native execution. The

model generation process continues to stay ahead of native execution and explore’s the states

that have not yet been reached.

Crystal inspects each upcoming state and checks its symbolic variable values to determine

whether the state could be unsafe under a specific concretization. If the drone’s native execution

is about to enter the unsafe state according to its upcoming concrete input values Crystal will

notify the operator about potentially upcoming unsafe state’s and requests for recommended

recovery response. Crystal expects to receive the operator’s response before the native execu-

tion catches up. This waiting time denotes how far Crystal’s JAT exploration leads the native

execution and could be adjusted initially. Crystal deploys the recommended countermeasure if

the unsafe state is actually realized, and caches it to not involve the operator again for future

similar situations.

The contributions of this chapter are as follows:

• We present a scalable formal verification technique, just-ahead-of-time verification, for

46

X

Shallow TEG

Current
System
State

Possible
Next
States

Time

Start

As time passes,
the physical system
follows a path through
the shallow TEG.

The actual states visited
become the roots of
subsequent shallow TEGs

At each step, possible bad future
states are checked for, ahead of
actual system execution.

Shallow	 model	

As	 -me	 passes,	
the	 physical	 system	
follows	 a	 path	 through	 	
the	 shallow	 model	

The	 actual	 states	 visited	
become	 the	 roots	 of	 	
subsequent	 shallow	 models	

At	 each	 step,	 possible	 bad	 future	
states	 are	 checked	 for,	 ahead	 of	
actual	 system	 execu-on	

Current	
System	
State	

Possible	
Next	
State	

Start	

Time	

Figure 3.1: Just-Ahead-Of-Time Verification

complex UAV platforms that eliminates state explosion problem and leaves time for the

operator to select an appropriate countermeasure strategy.

• We present a cyber-physical symbolic execution framework that leverages program-

ming language analysis and enhanced drone state estimation techniques to create cyber-

physical models for formal verification purposes.

• We present a predictive hybrid model with data-driven and system knowledge model

of the drone’s physical dynamics using a neural network and extended Kalman filter

(EKF) that takes actuation commands (flight controller outputs) as inputs and outputs the

predicted sensor data (controller’s next input).

This chapter is organized as follows. Section 2 gives an introduction to drones dynamics

and a previous related work [128]. Section 3 lays out our assumed threat model and gives an

overview of CRYSTAL’s architecture. Section 4 explains the predictive model based on a hy-

brid approach of a neural network and EKF model to formulate the drone physical dynamics.

Section 5 describes how the drone’s controller code and physical dynamical formulations are

integrated into a unified cyber-physical model. Section 6 explains the real-time formal verifi-

cation and recovery using the cyber-physical models. Section 7 describes our prototype imple-

mentation and evaluation results. Section 8 covers the related work, and Section 9 concludes

47

Figure 3.2: Drone’s pitch, roll, and yaw

the chapter.

2 Background

2.1 Drone Flight Dynamics

Since the motion of UAV is in three-dimensional space, it can be controlled along three axes.

The altitude of the drone is proportional to and controlled by the thrust produced by the pro-

pellers from the four motors. For instance, the thrust on all the motors should be the same

to move the drone just in the z-axis. In order for the drone to hover (stay at a fixed location

in air), all the motors should produce a thrust to neutralize gravity. To balance the rotational

torque produced by the motors and to increase the stability of the drone, motors on the opposite

direction rotate in the clockwise direction and the ones adjacent to these rotate in the counter-

clockwise direction. The rotation of the drone along the x-axis is called roll, along the y-axis is

called pitch, and along the z-axis is called yaw (Figure 3.2).

The drone’s left-right motion can be controlled by changing its roll. If the drone has to move

towards left (right), the thrust on the right (left) motors is increased. Similarly, the drone’s front-

back motion can be controlled by changing the pitch and changing the thrust on front or back

motors. Drone’s direction along the z-axis is controlled by changing the yaw. If the drone has

to rotate clockwise, the thrust on the motors rotating counterclockwise has to be reduced. The

aforementioned parameters allow defining the drone’s state notion as a six-entry vector of its

48

location (x,y,z), and orientation (roll, pitch, yaw). Given the drone’s current state and the latest

issued actuation commands to the motors, the drone’s next state can be calculated based on its

physical dynamic models. In this chapter, we used a combination of extended Kalman filter

and data-driven model of the drone’s physical dynamics to predict its future states.

2.2 Offline Controller Code Verification

Due to model error and random disturbances, drones obtain the aid of flight control unit to

constantly monitor and regulate the flight operations. The controller repeatedly takes mea-

surements of the process state and feeds these to its software control logic to determine what

changes need to be made to keep the process on course. This sense-execute-actuate loop is

called the scan cycle and may occur many times per second.

In most commercial-grade flight control units, the control logic can be modified remotely,

exposing the threat of malicious logic injection. Authentication required for modifying flight

control logic is often weak or does not exist, e.g., no authentication for Bitcraze [33]. Hard-

coded backdoors are a common industry practice [165]. Modification of a flight control logic

grants the attacker complete control of the physical drone operation. As demonstrated by the

well-known Stuxnet attack [72], the malicious control logic can also forge sensor data reported

to human operators, thus hiding the first signals of malicious behavior.

We review the most related recent work on offline controller code verification [128]. The

trusted safety verifier (TSV) [128] is interposed between controllers (i.e., programmable logic

controllers - PLCs) and the control network (i.e., supervisory control and data acquisition -

SCADA). Any controller-bound code must be formally verified against a set of safety prop-

erties. The safety properties are stated in linear temporal logic (LTL) that allows for the

description of temporal properties such as causal relationships, and guarantees of eventual

progress [83]. An LTL property contains a set of atomic propositions that are non-temporal

property typically stated in propositional logic, e.g., landed=(altitude= 0)∧(drone_velocity=

0). The LTL property then combines these atomic propositions using temporal connectors to

describe relationships over time, e.g., safe_landing= ¬motors_off until landed.

Cyber-physical system controllers typically follow synchronous execution paradigm as a

sequence of fixed-time sense-process-actuate epochs called scan cycles. TSV performs a mixed

49

concrete and symbolic execution of an ILIL program to produce a symbolic scan cycle. A sym-

bolic scan cycle represents every possible execution of a single scan cycle of the controller

program. It is a mapping from path constraints over controller input variables (sensor measure-

ments) to symbolic values for PLC output variables (actuation commands). For a single entry

in the mapping, if the input variables satisfy the path constraint, then the output variables will

have the corresponding symbolic value.

To model the PLC execution’s subsequent scan cycles, TSV combines successive symbolic

scan cycles into the Temporal Execution Graph (TEG). The TEG is a tree that represents a

nondeterministic execution of a controller program for some fixed number of scan cycles. For

example, a TEG of depth three would represent all possible executions of the program for three

successive scan cycles. The TEG is later checked against the safety requirements to determine

if the controller code could ever produce unsafe outputs.

2.3 Limitation of Existing Solutions

By design, offline verification solutions [128, 155, 112] should complete before the code is

allowed to run on the controller. Due to the exhaustive exploration of all possible states and too

many possibilities, existing formal solutions face state-space explosion and do not scale up to

real-world complex cyber-physical systems [128].

Additionally, TSV’s analysis of subsequence scan cycles consider all controller inputs (sen-

sor measurements) as free variables that can take on any value. This results in too-pessimistic

outcomes (i.e., the code rarely satisfies all safety properties) and deteriorates the solution scal-

ability. The physical dynamics of the drone determines the sensor values given its recent actu-

ation commands. For instance, the actuation command "increase the propellers rotation speed"

results in an increase in altitude sensor value. As discussed later, the models of the physical dy-

namics along with the controller code models can be used to predict and investigate the drone’s

future behavior.

50

Physical SystemPhysical System

…

Flight Control UnitFlight Control Unit

Sensors Actuators

M
ea

su
re

m
en

ts

Control Com
m

andsGPS
sensor

IMU
sensor …

propellers
controller

…

I 0.0

I 0.1

I 4.7

Inputs

…

O 0.0

O 0.1

O 4.7

Outputs

Ground Control
Station (HMI)

Ground Control
Station (HMI)

Main Processor
Just-Ahead-Of-Time
Controller Recovery

Main Processor
Just-Ahead-Of-Time
Controller Recovery

Controller Executable

Executable

Execution
State

Malicious
controller
program?

Figure 3.3: Crystal’s High-Level Architecture

3 Overview

3.1 Threat Model

The threat to the UAVs can be from one or more of the following attack vectors [139]: physical

(attack on sensors, actuators), cyber (firmware, controller software, guidance and navigation

algorithms) and communication (radio link to ground control station). One of the most promi-

nent causes for recent drone security failures is remote cyber attacks [161, 110] that Crystal

aims to protect against. We assume that the underlying software stack (e.g., operating system

or firmware) and hardware are trusted, while the control logic, guidance and navigation algo-

rithms on the drone’s flight control processor can be malicious. By ahead-of-time verifying

that control logic will not violate safety properties, Crystal protects against arbitrary control

logic injection on the controller. Crystal does not defend against physical attacks since they

are arbitrary. Crystal does not defend against sensor channel attacks, where sensor data is

forged [122, 179]. In such a case, the control logic may behave exactly as intended, but on

false sensor data. Such attacks are outside the scope of this chapter and must be addressed by

improved state estimation techniques [122].

51

3.2 Crystal Architecture

Figure 5.2 shows Crystal’s context and its interactions with other control assets. Drones typ-

ically follow a dual processor architecture. The flight control unit processor takes care of the

real-time sense-process-actuate executions; it receives sensor measurements, runs its control

logic, and sends the output values to the motors. The main processor interacts with other pe-

ripheral devices, e.g., to communicate with the ground control station. All the control logic

updates to flight control unit from the external world go through the main processor. Crystal

runs on the main processor to monitor each control logic update and its execution on the flight

control unit processor.

3.3 Safety Requirement Definition

Before Crystal’s setup, the drone operator needs to define a set of high-level safety properties

for the underlying physical dynamics. The safety requirements do not have to correspond to

specific actuator outputs and could be defined for global system parameters. For instance, if the

controller has to maintain the propeller speeds around a fixed set-point, the safety requirements

can be defined to limit the whole drone’s acceleration. Crystal’s consideration of the physi-

cal system dynamics enables automated correlation of global system parameters to individual

actuation commands.

Previous protection solutions (e.g., TSV [128]) fully ignore the physical dynamics of the

underlying system, and hence pose strong requirements for the operators: i) flight dynamics

expertise: all safety requirements should be defined for only the target flight control unit’s

output values; hence, in the example above, the operators have to analyze the flight dynamics

to determine what flight control unit’s output values (propeller set-points) would cause unac-

ceptable accelerations of the quadcopter; ii) tedious human involvement: the operators should

redefine/update the safety requirements every time the parameters of the components change

due to external environmental factors, which occurs often in practice.

52

3.4 Predictive Flight Modeling

Crystal enables hybrid cyber-physical symbolic execution by complementing flight control

code analysis [128] through its predictive modeling of the underlying flight physical dynamics.

The drone’s physical state (i.e., location and orientation) is estimated and predicted using a

hybrid approach of neural network and EKF that is already trained and configured to formulate

the flight dynamics. The predictive trained hybrid model will estimate the values of the sensors

in the future given the upcoming actuation commands. The upcoming actuation commands are

calculated by Crystal’s analysis of the drone’s controller code. During the drone’s operation,

the hybrid predictive model adaptively corrects itself using a sliding window on the most re-

cent sensor values. Later in the chapter, we extend to multiple parallel actuation commands

(e.g., power control of the drone’s four propeller motors), where the actuation is modeled as a

symbolic vector (Section 4).

3.5 Just-Ahead-of-Time Verification

Crystal is deployed on the drone’s main processor and intercepts every control logic updates

bound to the flight control unit processor. Crystal disassembles the binary and starts the dy-

namic conversion of the resulting source to its corresponding finite state automaton. During

the conversion (model exploration), Crystal implements on-the-fly formal model checking in

parallel to ensure that the reachable states are safe and do not violate the safety requirements.

In practical situations, the conversion does not complete within a reasonable time due to

the state explosion problem. After a predefined waiting time (so-called time margin tm which

could be varied) and most likely before it completes its formal verification, Crystal uploads the

control logic on the flight control unit. The control logic starts its native on-device execution,

while Crystal, in parallel, is exploring and verifying its future states, called just-ahead-of-time

(JAT) verification. The future states being explored are initially ahead of the native execution

by tm. Higher the value of tm lower is the accuracy.

Assuming that JAT’s speed is not lower than the flight control unit’s native execution, Crys-

tal maintains the time margin. That is any state S visited by JAT at time T will not be visited

53

by the native execution sooner than T + tm. Otherwise, if Crystal gets behind the actual exe-

cution, Crystal’s outputs would be useless, because the operators would get notified about the

actual adversarial consequences of the malicious control logic before Crystal could analyze

them symbolically. It is noteworthy that JAT exercises all the paths, while the native execution

goes through a single path only. Therefore, the native execution may never visit that specific

state S , because it may take a different execution trace.

The time margin between the symbolic model exploration and the flight control unit’s ac-

tual execution enables the operators or automated response systems to take the time deciding

upon an appropriate recovery strategy in case an unsafe state is visited during the future state

speculations. We will not focus on the automated response selection, and consider it outside

the scope of this chapter.

4 Drone Physics Modeling

To ensure effective JAT drone safety monitoring, Crystal must be able to quickly model and

reason about its flight’s physical dynamics, it’s current and future behaviors when the upcoming

actuation command sequences are given. The model outcomes are later merged with flight

control code analysis to analyze the controller code execution impact on the flight dynamical

operation and drone safety. Crystal uses the hybrid model for its formal JAT verification to

determine if the controller execution can drive the drone towards unsafe situations.

4.1 Normal Operation Mode Physical Modeling

The estimation of the future sensor values during normal operation mode is computed using

an extended Kalman filter (EKF). The extended Kalman filter is a nonlinear state estimation

algorithm that uses data containing noise and inaccuracies collected from a series of observa-

tions over time and estimates the unknown states. The states of the system are the physical

parameters(acceleration, altitude, pitch, roll, yaw) which are obtained by inertial measurement

unit sensors on the drone. The observations are the values given to the actuators like the PWM

signal to the motors of the drones. The EKF is one the popular technique used for future sensor

data estimation for a nonlinear system like drones. The EKF linearizes the flight dynamics

54

equations at each step and applies Kalman filter technique on the linear system. The system

equations which are required for the algorithm are derived from the physical dynamics hence

in order to use the EKF algorithm for state estimation, the system dynamics (flight dynamics)

has to be known. Detailed equations of the model are described in Section 4. The estimation

of sensor data K steps ahead of time is given by Equation 11

x̂(n+ k|n+ k−1) = f (x̂(n+ k−1|n+ k−1)),u(n+ k−1)) (3.1)

The values for (K - m) step are evaluated based on (K - m - 2) estimation. The EKF predicts

the sensor values K steps ahead of time and then updates it if the error is large after every scan

of the sensor data and updates equations to minimize the error from the actual sensor data.

4.2 Failure Mode Data Driven Modeling

Crystal leverages a data-driven physical flight dynamics modeling using neural networks for

the estimation of sensor values during abnormal conditions such as failure modes. The trained

model’s inputs are the drone’s current state (sensor measurements) and upcoming sequence

of actuation commands calculated by the flight controller code analysis. The neural network

outputs the next sequence of drone’s flight dynamical state (location and orientation), and hence

the upcoming sequence of sensor measurements.

Since the sensor data is collected from the physical system, the data is continuous and has

some fixed slew rate with respect to the actuator actions. The sensor data varies continuously

and does not change abruptly although it is collected in a discrete manner. For instance, during

the takeoff, the drone’s altitude increases from 0 to some H � 0 gradually and does not jump

0→H instantaneously. The change rate (e.g., T per second) is limited by the drone’s physical

limitations, e.g., maximum thrust by its motors. Since the sensor data is continuous, Crystal

leverages the spatial features of the measurements by using convolutional neural networks.

The model uses convolutional layer, pooling layer, flattening layer and a dense layer. The

applications of different layers are explained below.

55

Convolutional layer. It is the core of the neural network. Crystal obtains the sensor data from

the flight controller memory and uses them as inputs to the convolutional layer through an input

layer. Each convolutional layer has four learnable filters and the window size is fifty. In our

experiments, we empirically found these numbers to optimize the trade-off between hard-to-

train accurate huge networks and inaccurate easy-to-train small models. Each filter performs a

convolution (dot product) between the drone input sensor data and the values of the filter data.

The filters are learned to activate when they observe specific features on input sensor data

such as increasing, decreasing or fluctuating between values based on the time and state of

the drone dynamics. These dot product from a filter and input data produces outputs called

activation map. Since Crystal uses four filters, it produces four activation maps. These maps

are stacked to produce output volume that feeds the next layer. The rectifier linear units are

used along with the convolutional layers as the activation function.

Pooling layer. It is periodically inserted in between the convolutional layers reduce the over-

fitting by control reduction of the spatial size. In convolutional layers, the window slides

through all the drone sensor data in the strides of one. So, it has a lot of spatial data which

leads to large spatial size and high computation apart from the overfitting. Crystal uses pooling

layers to reduce the spatial size and hence over-fitting. It makes use of one-dimensional pooling

layer after each convolutional layers.

Flatten layer. Crystal uses this later to flatten the activation maps and get a single dimen-

sional data. Flatten layer is used to merge all the four activation maps to a single dimensional

activation map.

Dense layer. These layers are connected to all the activations from the flattening layer to the

output layer. The dense layer is a conventional neural network with weights and biases.

The drone sensor data has a lot of spatial locality in nature due to the continuity of the under-

lying flight physical dynamics and how the drone’s physical state evolves over time. Therefore,

the neural network just uses previous finite N sensor data samples to predict the future sensor

data i.e it does not depend on the whole flight history. Similar to the EKF even the neural

network model predicts K steps ahead of time, based on the (K - 1) prediction. During the

56

runtime, the predicted (K - 1) steps are continuously compared against the actual values from

the sensors and updates the values.

4.3 Full Flight Operation mode

The system knowledge is essential for the prediction of sensor data by using EKF. In most of

the scenario’s the system model is not complete due to missing few modeling parameters due

to lack of complete knowledge, approximating few parameters during modeling or due extreme

nonlinearities. The system model parameters will also not hold true over the lifetime of a

system due to the changes caused to the parameters by wear and tear or damage, replacement

of old or damaged part with newer once. Apart from the difficulties of modeling of the system,

EKF also takes few iterations to converge from the initial estimated state values by correcting

itself based on the noise parameters. If the change on sensor values are random and sporadic

then EKF takes many iterations to correct itself whereas the neural network takes only a single

pass. Due to the linearization of the system equations in each step, if the system is modeled

incorrectly or if the initial state estimation is wrong then the algorithm quickly diverges. On

the other hand, the neural network does not know the system dynamics initially and has to be

trained and re-designed using a large set of data considering different scenarios. The neural

network’s model performs well if the scenario’s which are trained but not so well on a newer

strange scenario. Since the neural networks lack the physical system knowledge, they are

weaker in self-adaptability compared to the EKF. Hence a hybrid approach is used leveraging

the advantages [173] of both the models depending on the sensor data.

The hybrid estimation model is used at runtime for Crystal’s JAT verification to predict

future drone states (location, orientation) over next several scan cycles and sensor data that feed

the controller’s future executions. The time margin between the current concrete execution and

the predicted sensor data allows for Crystal’s ahead-of-time analysis and timely notification of

the operators about potentially upcoming unsafe states. Crystal collects upcoming actual sensor

measurements (coming from actual execution) and use them to correct the predicted data. This

feedback loop enables Crystal to update the hybrid model about the drone’s actual physical

dynamical evolution, and improve the next predicted sensor measurements.

57

Flight Controller
Symbolic Execution

Predictive Model

Model Piping

Flight controller-
SE results

Predictive model
results

controller logic
symbolic outputs

physical system
symbolic inputs
(actuation points)

controller logic
symbolic inputs

physical system
symbolic outputs
(sensor measurements)

lin
ke

d
 tolin

ke
d

 t
o

Figure 3.4: Hybrid Cyber-Physical Symbolic Execution

5 Cyber-Physical Security Modeling

Crystal combines the outcomes of the controller code symbolic execution and the flight physics

models (i.e., neural network). The resulting hybrid symbolic model captures the dynamics of

both the cyber flight controller and the underlying physical flight dynamics. This allows Crystal

to analyze how the (malicious) controller code execution affects the drone’s physical operation

and safety status.

The flight controller and physical dynamics are interconnected through sensing and actu-

ation channels (Figure 3.4). The flight control unit’s outputs feed actuators on the drone, and

the flight control unit’s inputs are fed by the drone’s sensors. Our calculated symbolic hybrid

model formulates how the flight control unit’s outputs and inputs are interdependent based on

the flight dynamics. The flight controller code models encode how actuation commands are

calculated based on sensor measurements. On the other hand, physics models (EKF and neural

network) close the loop and determine the next sensor measurements based on the actuation

commands.

Crystal generates the hybrid models through the following four phases. First, Crystal trans-

lates the drone global safety requirements to the flight control unit’s actuation output constraints

automatically. Second, Crystal analyzes the flight control unit’s code to determine the primary

constraints on its inputs that guarantee the above-mentioned output constraints if the code ex-

ecutes. Third, Crystal emulates the flight dynamics symbolically using the above-mentioned

flight control unit’s output constraints and calculates a secondary set of constraints on the flight

58

control unit’s inputs. Finally, Crystal uses formal theorem provers to prove the drone safety;

Crystal verifies that the flight control unit’s input value space defined by the secondary con-

straints is a subset of the input space defined by the primary constraints. Otherwise, there will

be flight control unit’s inputs that violate its output constraints and hence the drone’s safety

requirements. In this section, we explain these four steps in more details using a running ex-

ample.

drone requirements→controller output constraints. Crystal requires the global safety re-

quirements for the drone’s physical dynamics. The global requirements impose constraints

on the parameters that are often different from those directly controlled by the flight control

unit’s outputs. For instance, the global requirements may state “the drone should not accelerate

on z-axis by more than X ms−2 ” while the flight control unit’s output controls the amount of

power fed to the propeller motors. The z-axis acceleration depends on the propellers power

feed according to the flight dynamics of the drone. Crystal uses its drone physics models (Sec-

tion 4) to calculate the flight control unit’s output constraints given the drone’s global safety

requirements. Crystal uses the predictive model along with the hybrid symbolic execution to

calculate the range of the flight control unit’s output values that ensure the global requirements

are satisfied.

Flight controller output constraints→controller’s primary input constraints. Flight con-

troller code produces actuation outputs given its sensor data inputs. Crystal calculates the

ranges of the controller inputs that ensure output values satisfying the constraints calculated

in step a. Crystal executes the control logic symbolically and computes the corresponding in-

put constraints and symbolic output values for feasible execution paths. Crystal calculates the

controller input constraints as the logical conjunction of the path condition predicates and the

calculated controller output constraints (step a). Consequently, Crystal obtains input predicates

for feasible control logic execution. The calculated input constraints represent the permissible

drone sensor value ranges to ensure that the controller’s actuation outputs will not cause the

drone’s global safety property violations.

59

Controller output constraints→secondary input constraints. In step b, we discussed how

Crystal transforms the controller output constraints to its input constraints by analyzing the

cyber channel (i.e., the controller code). In this step, Crystal performs the same transforma-

tion (the controller output to input constraints) but considering the physical channel (i.e., flight

dynamics). The controller’s actuation outputs lead to the drone’s physical state change (dy-

namical evolution) indicated later by the updated sensor measurements back to the controller.

Crystal assumes the controller outputs comply with the constraints (calculated in step a) and

emulates the flight dynamics and its evolution over time using the trained neural networks.

Crystal calculates the resulting constraints on the upcoming sensor measurements. We call

the calculated controller input constraints secondary constraints to differentiate them from the

constraints calculated in step b.

Formal proof of the drone safety. So far, we have calculated two sets of flight controller

input constraints: i) the primary constraints for the controller code that ensure the flight con-

troller execution (cyber dynamics) will generate outputs that do not violate the drone safety,

and ii) the secondary constraints that, if violated, indicate the controller outputs must have

taken on values (based on the flight dynamics) that do not satisfy the global safety require-

ments. To guarantee the compliance with the global requirements, the value space defined by

the secondary constraints should be a subset of the space defined by the primary constraints;

otherwise, the controller code execution could possibly result in outputs that violate the global

safety requirements. Consequently, Crystal checks for the above-mentioned relationship. Crys-

tal negates the primary constraint for each execution path and calculates it’s conjunction with

the secondary constraint predicate. Crystal checks whether the ultimate predicate is satisfiable.

If not, the plant is marked as verified. Otherwise, the global requirements could be violated, be-

cause there would be a concrete value set that satisfies the negated primary constraint (violates

the primary constraint) and satisfies the secondary constraint. This would be equivalent to the

primary constraint being a subset of the second constraint; therefore, the cyber-physical flight

control unit is not verified (is either buggy or malicious) and its execution can lead to unsafe

drone states such as a physical ground crash.

60

…

…

Flight Control Unit (Actual Execution)

Real-Time Model Generation Synchronization

Continue
Model
Generation

Terminate
Further
Recursion

Generated Model So Far: Current Concrete
Execution State

Figure 3.5: Model Generation, Refinement, and Checking

6 JAT Verification and Recovery

In the previous section, we described how Crystal develops a hybrid verification of the drone

operation. However, the above-mentioned analysis does not consider the drone operation across

subsequent sense-process-actuate scan cycles (Section 2.2). The flight control code symbolic

execution (Section 5: step 2) goes through individual execution paths of the control logic just

once, whereas the flight controller’s actual execution immediately starts the next scan cycle

based on the updated sensor inputs right after the current one finishes. The control logic often

leverages stateful variables such as timers and counters that retain their values across successive

cycles; this causes inter-cycle output value dependencies.

Just-ahead-of-time analysis. To address subsequent cycles, Crystal explores possible sym-

bolic hybrid states of the drone and creates the corresponding state-based finite state automaton.

Each symbolic hybrid state captures the symbolic values of the controller code as well as the

flight dynamics parameters. Each state transition in the automaton represents a new cycle. The

first state represents the drone right after it is turned on. The increasing depths within the au-

tomaton represent subsequent scan cycles, and the number of outgoing transitions from each

61

state (branching factor) represents the number of feasible execution paths in the flight controller

code. As the result, Crystal considers individual control logic executions and the corresponding

flight dynamical evolution and creating the corresponding automaton state. Crystal performs

the formal verification steps (Section 5: step 4) for that state specifically to ensure the drone

safety in that state.

The main problem with the algorithm above is scalability due to the exponential growth

of the automaton size on each depth. The traditional alternative to offline formal analysis is

the runtime methods to detect the unsafe states as the system enters those states dynamically.

In cyber-physical real-time drone operations, runtime solutions are not sufficient generally,

because they often report safety violations too late for a timely response and recovery coun-

termeasure. For instance, a runtime monitor for a drone may report “the drone is about to hit

a pedestrian”. That is too late for the operator or automated decision maker to spend time for

picking a response and carrying it out while the drone (physical world) has inertia and hence

will keep moving. Crystal implements just-ahead-of-time (JAT) verification.

Crystal starts symbolic exploration and safety verification of the automaton states as dis-

cussed above. After a predefined time margin tm, Crystal launches the flight control unit’s

actual execution in parallel, while the depth exploration is maintained at (at least) the same

speed as the concrete execution, and hence it stays tm time units ahead of the actual execution

permanently. Figure 3.5 shows JAT in operation, where the automaton has been explored and

created two depths ahead of the current system state. Crystal avoids exploration of the states

that are not reachable from the system’s current concrete state.

Human-assisted drone safety recovery. Crystal enables human-assisted system recovery

through its fast enough JAT verification to maintain the time margin tm between JAT and the

flight controller native execution. If JAT encounters a potentially unsafe future state, Crystal

asks for the operator’s recommendation. A potentially unsafe state represents the existence of

a feasible execution path from the flight controller’s current native execution state to a future

point where the drone safety requirements are violated. The violation would be caused by the

flight controller actuation outputs that change the critical flight parameters.

The violation may be because of a malicious or buggy flight controller program. Crystal

62

facilitates such a hybrid cyber-physical reasoning about the drone operation through its model

piping (Figure 3.4). Due to the model’s symbolic state variable values, Crystal uses a formal

SMT solver to determine the possibility of safety requirement violation in every encountered

future state through one of its concretizations. Crystal expects the operator’s feedback within tm,

otherwise, the native execution catches up and may enter the same unsafe state, while Crystal

is not yet given with the optimal response action. In those cases, the controller takes a default

non-optimal safe response action that is set initially before the controller program execution

launch time.

The operator’s recommendation within tm could be any sequence of the following: i) to

modify or read any control logic variable value on the flight control unit dynamically; ii) to in-

ject an instruction (e.g., call a recovery subroutine) on the running control logic; iii) to upload a

new control logic (possibly a safe controller following the Simplex paradigm [168]); and iv) to

halt the flight controller’s dynamic maneuvers so that the drone enters the hover mode. Crystal

implements the operator’s recommendation immediately if the native execution enters the tar-

get symbolic state and the state’s current concrete variable values actually violates the safety

requirements. Regardless, Crystal stores the operator’s recommendation to avoid inquiring the

operator again later for similar scenarios, where JAT encounters the same or a symbolically

equivalent state.

Optimization for practical feasibility. To ensure that JAT will keep up with the native ex-

ecution speed, we leverage various drone architectural features and implement several opti-

mization techniques: i) symbolic execution. Before the runtime setup, Crystal implements an

offline symbolic execution of the flight controller code to avoid exploring individual concrete

traces with similar outcomes in terms of the compliance with the safety requirements. Addi-

tionally, the offline symbolic execution enables Crystal runtime model exploration to consider

only feasible control logic execution paths and not waste its online analysis time on unreach-

able (infeasible) states. The use of symbolic execution significantly reduces JAT’s search space

and improves its runtime performance. Crystal then pipes the cyber- and flight physics-side

analysis results (input-to-output mappings) to use a full cyber-physical system model for JAT

verification (Figure 3.4). ii) runtime model pruning. Any time the native execution takes (or

63

does not take) a branch at time t, a subset of the future states at time t + tm that JAT is about to

explore may become unreachable. To maximize its time utilization, Crystal periodically inves-

tigates the native execution state and prunes the unreachable model states accordingly. Crystal’s

runtime model pruning gives an exponential speedup and eliminates the exponential recursive

branching of the model states during the exploration. Such exponential branching leads to the

impracticality of the previous formal method solutions [128]. It leads to a finite state sub-space

within JAT’s forward-sliding tm window over the complete model’s state space (Figure 3.1).

iii) parallel JAT. Given the exponential speed up using the runtime model pruning, Crystal’s

exploration is accelerated further through its multi-threaded implementation theoretically up to

the point that JAT can complete verification of every model depth within an execution-cycle

interval. In our implementations, Crystal achieves this objective for complex controller pro-

grams using a quad-core machine. iv) physics-aware flight dynamics prediction. The neural

network created is trained offline and the model is used for the prediction purposes to improve

the analysis performed. Crystal predicts the drone’s physical state and hence limits the upcom-

ing possible sensor input values to the control logic. The introduced input constraints mark

many originally-feasible control logic execution paths as infeasible saving analysis time.

7 Evaluations

We have implemented and evaluated Crystal on two commercial products i) 3DR Solo Quad-

copter [1] and ii) advanced Siemens S7-300 PLC controller [72]. We designed the experiments

to evaluate the following questions: i) How accurately and fast can Crystal intercept and re-

verse engineer the flight controller-bound machine codes between the ground base station and

the drone’s flight control unit processor? ii) How efficiently do the proposed symbolic hybrid

cyber-physical system analysis techniques calculate the formal sensing/actuation constraints?

and iii) Can Crystal perform JAT verification efficiently for real controller programs?

We have taken three steps to optimize our implementations to ensure Crystal maintains

its exploration ahead of the native execution: i) symbolic execution enables Crystal to consider

similar multiple concrete states through a single symbolic state analysis; ii) periodic acquisition

of native execution state and the predictive modeling of the drone’s physical dynamics using

64

a hybrid approach of convolutional neural network and EKF enables Crystal to avoid wasting

verification time on unreachable future states; iii) multi-threaded future state exploration and

verification gives Crystal’s performance a linear boost. Our experimental results are promis-

ing and show that Crystal can detect violation of drone safety properties and recover the safe

operation successfully.

Evaluation on 3DR Solo Quadcopter

Implementation We implemented Crystal on a Raspberry Pi 3 embedded computer running

Linux kernel 4.4. We used Keras with TensorFlow as a back end to implement the predictive

neural network. The extended Kalman filter was implemented in C/C++ code. The Z3 theorem

prover is used by Crystal for checking the feasibility of paths and simplifying the symbolic

outputs obtained during symbolic execution. The sensor data consists of flight data collected in

stabilize, acro, drift, altitude hold, position hold and loiter modes in various scenario’s including

a couple of crash scenarios.

We implemented Crystal on a 3DR Solo quadcopter. The 3DR Solo has a flight control

unit which is isolated from the external world for programming and an i.MX6 solo processor

from Freescale which runs Linux based operating system 3DR Poky (based on Yocto project

reference Distro) and has connections with the external world as well as the flight control unit.

The Raspberry Pi can communicate to flight control unit through UDP. The Raspberry Pi sends

MAVLink [130] packets to request the sensor data from the quadcopter. This sensor data is

feed to the predictive model to obtain the predicted sensor data. This predicted sensor data is

used to prune the TEG and determine if there is any unsafe state in the near future and inform

the operator about it. The flight control unit has a relatively less powerful processor (168

MHz / 252 MIPS Cortex-M4F) compared to i.MX6 Solo (ARM Cortex A9 1Ghz, 1 CPU core

with VPU and GPU) and Raspberry Pi 3 (1.2GHz 64-bit quad-core ARMv8 CPU), Hence the

implementation for JAT verification will not lag behind the flight control unit’s actual execution.

Case Studies: 3DR Solo Quadcopter Control Attack

• Control attack on Motor and servo control

65

5 seconds

Actual
Drone crash

Predicted
Drone crash

Hovering

Gradual descentHovering

Sudden descent

due to malware

Figure 3.6: Crystal predicting the crash before the actual crash occurred

Safety requirements: The angular velocity of motors on the quadcopter should be

within safety limits. {P}C{Q < γ} where P is the current angular velocity, C is the next

command and Q is the resulting angular velocity which must be less than γ boundary

condition for safe operation. This limit changes with respect to the mode of operation.

eg.., the rate will be a bit relaxed when the quadcopter is in acro mode compared to

stabilize mode.

Safety violation: We implemented a malware (Maldrone) to crash the quadcopter

while landing. The Maldrone we developed will decrease the thrust on the quadcopter

significantly while landing leading to crashing the quadcopter. These kind of attacks

are difficult to detect by humans if the quadcopter is flying at a distance away from the

operator.

Violation detection: The predictive model predicts the significant reduction of the

thrust on the quadcopter ahead of time, based on the current and past reduction rate of

the thrust. Crystal estimates the possible unsafe state in future and informs the operator

about the unsafe state. We were able to receive the information about the unsafe state

well in advance by using Crystal. Figure 3.6 shows the predicted value before the crash

which could not be detected until the crash had occurred without Crystal.

• Control attack on AHRS

Safety requirements: The prediction value on the flight control should not deviate

from the actual sensor value by more than γ (The safe operation range).

66

Figure 3.7: Crystal predicting the attack on attitude and heading reference system (AHRS)

Safety violation: The synthetic malware which disrupts the estimation of the EKF

was introduced into the control algorithm. This malware modifies the EKF algorithm so

that the estimation values do not follow the safety requirements.

Violation detection: Crystal predicts the upcoming unsafe conditions and informs

the operator about the situation. Figure 3.7 shows that the Crystal could predict and

inform the operator.

• Drifting due control attack on PID control

Safety requirements: The quadcopter should not drift more than certain tolerance

which depends on the accuracy of the sensors and the external environmental factors.

The drift considered over a cycle as well as over an accumulated period of time.

Safety violation: The PID parameters of the motor are changed due to which the

adaption of the change in the motor speed was not accurate. Hence a lot of drift was

introduced into the system.

Violation detection: The predictive model detects this drift caused due to change in

PID parameters and informs the operator about the violation.

• Control Attack on altitude control

Safety requirements: The quadcopter should not change its altitude by more than the

tolerance range. The tolerance is due to external environment factors like wind and/or

67

Table 3.1: Average mean absolute error (MAE) for extended Kalman filter (EKF) and neural
network (NN) model during minimal and heavy transitions

Sensor Data NN MAE EKF MAE
Roll during minimal transition 1.3242 0.1136
Roll during heavy transition 0.1713 0.8268
Yaw during minimal transition 1.9644 1.6359
Yaw during heavy transition 3.5643 18.5647

due to the accuracy of the sensors.

Safety violation: The synthetic malware was introduced into the system which changes

the speed of rotation of the motors (angular velocity) and changes the altitude of the

quadcopter. The malware injects false data into the control algorithm.

Violation detection: The predictive model detects this change in altitude by more

than the tolerance value in altitude hold mode and informs the operator about the unsafe

conditions. Since the firmware is trusted Crystal gets its sensor values from the firmware,

hence false data injection on the control algorithm could be easily detectable by the

Crystal.

• Control Attack on position control

Safety requirements: The quadcopter should hold its position and not change the

position by more than tolerance. Again the tolerance might be due to external environ-

mental factors such as wind.

Safety violation: The synthetic malware was introduced to change the position of

the drone by more than the tolerance range. The malware can inject false data of either

GPS and /or IMU of the sensor data to the control algorithm.

Violation detection: The predictive model detects the change in the position greater

than the tolerance range and informs the operator about the unsafe condition.

Accuracy In Figure 3.8a and Figure 3.8b the estimation of sensor data is better by using

EKF for gradual and smooth transitions of the sensor data since EKF is aware of the physical

dynamics much more accurately than neural network. However, in case of heavy and violent

transitions, the neural network is better than EKF as it just takes one pass whereas EKF takes

68

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Time in 0.1 seconds (da a sample ra e)

−200

−150

−100

−50

0

50

100

150

200

A
l i

 u
de

 in
 m

e
er

s

Ac ual sensor Da a
Train sensor da a predic ed
EKF

(a) Roll sensor data

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Time in 0.1 seconds (da a sample ra e)

−100

0

100

200

300

400

500

A
l i

 u
de

 in
 m

e
er

s

Ac ual sensor Da a
Train sensor da a predic ed
EKF

(b) Yaw sensor data

Figure 3.8: Two figures showing that extended Kalman filter (EKF) is better in estimating with
smoother transitions than neural network and during violent transitions, neural network is better
than EKF

69

0

2

4

6

8

10

12

0 5 10 15 20

M
A

E
in

 d
eg

re
e

Time

Roll

Pitch

Yaw

Magnetometer X axis

Magnetometer Y axis

Magnetometer Z axis

Gyroscope X axis

Gyroscope Y axis

Gyroscope Z axis

Figure 3.9: Mean Absolute Error vs time

few iterations to converge to the actual data based on the noise parameters used. Table 3.1

shows the results for the accuracy during smooth transitions and violent transitions. The error

is represented using mean absolute error. Mean absolute error (MAE) is the average error

between the predicted value and the absolute value.

Mean Absolute Error(MAE) =
1
n

n

∑
t=1
|et | (3.2)

Figure 3.9 shows the MAE for different iterations (epochs) of learning the sensor data. The

learning data converges between 10 to 15 iterations (epochs). Hence Crystal’s neural network

uses 12 epochs for the experiments. The false positive rates due to the predicted sensor data are

shown in Figure 3.10.

Performance The performance of the EKF and predictive neural network running on a Rasp-

berry Pi 3 is shown in Table 3.2. The analysis is performed for predicting the sensor data for

five seconds and ten seconds ahead of time. The time taken for EKF prediction is almost equal

to the scan rate of the sensor data, while the time for NN is around four times of it. The per-

formance of the neural network can be further improved by using minimal lightweight tools

written in native code compared to heavy tools like Keras and TensorFlow.

70

9.67299E-05

6.96719E-05

0.000319911

0.002269202

0.014454907

0.125989751

0.045104962

0.052366998

0.411604087

0.007484607

0 0.1 0.2 0.3 0.4 0.5

Gyroscope x axis

Gyroscope y axis

Gyroscope z axis

Magnetometer x axis

Magnetometer y axis

Magnetometer z axis

Pitch

Roll

Yaw

Altitude

False positive rate in %

Se
n

so
r

d
at

a

Figure 3.10: False positive rate due to sensor prediction

Table 3.2: Latency in milliseconds for predicting sensor data with data points accumulating to
5 and 10 seconds

Estimation methods Min Avg Max Mdev
EKF (5 seconds) 10 56 120 26.64
EKF (10 seconds) 60 104.5 140 23.5
NN (5 seconds) 290 389.5 480 54.72
NN (10 seconds) 330 417.5 530 59.9

71

8 Related Work

Control system security. The related work to protect the control systems’ trusted comput-

ing base (TCB) are insufficient as software patches are often applied only months after re-

lease [156], and new vulnerabilities are discovered on a regular basis [30, 153]. The traditional

perimeter-security tries to keep adversaries out of the protected control system entirely. At-

tempts include regulatory compliance approaches such as the NERC CIP requirements [145]

and access control [74]. Despite the promise of information-security approaches, thirty years

of precedence have shown the near impossibility of keeping adversaries out of critical sys-

tems [101] and less than promising results for the prospect of addressing the security problem

from the perimeter [117, 114, 135]. Embedded controllers from most major vendors [114, 204]

and popular HMIs [135] have been shown to have fundamental security flaws.

Controller program analysis. Basic static program analysis approaches use SAT-based model

checking through Boolean logic [152, 90, 126] that could analyze sequence-based control sys-

tems with timers, but those are only narrowly applicable. Unlike [43], the two theorem-proving

based approaches [99, 147] handle numerical instructions but do not implement rules for over-

flow checks or mixed bit vector and integer arithmetic. Almost all static analysis techniques

[128] fall short in either checking for all program details or scaling up to large-scale criti-

cal infrastructures. To improve dynamic SCADA infrastructure monitoring techniques [188],

PLC-based approaches have been suggested [31, 104] for dynamic physical plant monitoring.

Dynamic plant behavior safety monitors [133] and mathematical intrusion detectors [49] are

also related. In addition to being intrusive and causing performance overhead, dynamic moni-

toring solutions such as WeaselBoard [146] focus mainly on accidental failures, ignoring mali-

cious actions, and/or leave an insufficient time buffer for an effective response and recovery in

case of an attack or failure.

Drone security and safety. There have been several recent efforts on offline and runtime

formal verification of drone platforms [162]. Javaid et al. [107] investigates potential threats

against UAV platforms and how existing cybersecurity techniques fall short in defense due to

the lack of consideration of the physical dynamics. Chan et al. [46] present an overview of

72

formalizing stability properties of cyber-physical systems and drone platforms using the Coq

proof assistant. The proof procedures introduced require fairly tedious human involvement.

R2U2 [166] proposes a runtime formal verification for monitoring of security properties and

diagnosing of security incidents. R2U2 continuously monitors inputs from various sources

such as the GPS and the ground control station and identifies anomalous behaviors once they

occur. R2U2 relies on the models of the controller code that are assumed given by the operators.

Additionally, as discussed earlier, R2U2’s runtime verification failure alerts often result in too-

late notifications for a timely recovery strategy selection and deployment.

9 Conclusion

We presented Crystal, a just-ahead-of-time formal verification and controller recovery solution

for cyber-physical system and evaluated our solution over 3DR Solo quadcopter and com-

mercial Siemens logic controllers. Crystal’s just-ahead-of-time analysis eliminates the state

explosion problem and gives the operators a time gap to choose recovery actions. Additionally,

unlike traditional online monitoring solutions, Crystal leaves the operators with an arbitrarily-

adjustable time gap to decide upon how to recover the system normal operation mode in case of

an unsafe state. Our experimental results show that Crystal can proactively detect unsafe states,

and recover the system with a negligible performance overhead.

73

Chapter 4

CONTACTLESS CONTROL FLOW MONITORING VIA

ELECTROMAGNETIC EMANATIONS

1 Introduction

Industrial control systems (ICS) are fundamental parts of modern society as they control and

monitor critical infrastructures such as electricity grids, health-care, chemical production, oil

and gas refinery, transportation and water treatment. Due to their importance and large attack

surfaces, they are becoming attractive targets for malicious penetrations leading to catastrophic

failures with substantive impact [176, 118] including the recent BlackEnergy worm against

Ukranian electricity grid [71]. Recently, the Stuxnet malware uploaded malicious code to pro-

grammable logic controllers (PLCs), and physically damaged 20% of Iranian PLC-controlled

centrifuges [72]. The discovery of Duqu [50] and Havex [163] show that such attacks are not

isolated cases as they infected ICS in more than eight countries. Some of these vulnerable con-

trollers are Internet-connected [70] and exposed by computer search engines like Shodan [34].

There have been an increasing number of reports on malicious attempts of PLC port scanning,

automated PLC malware generation, modifying control system-specific protocols and access

to system diagnostics [40, 126]. Nevertheless, the ICS market is expected to grow to $10.33

billion by 2018 [194].

There has been an increasing number of past works on embedded systems and PLC pro-

tection. Offline formal control logic analysis have been investigated by solutions such as

TSV [128], through symbolic execution and model checking mechanisms. Solutions such as

WeaselBoard [137] and CPAC [69] perform runtime PLC execution monitoring using control

logic and firmware-level reference monitor implementations. Most related to our chapter, there

74

have been attack and defense solutions that employ side-channel analyses to either disclose se-

cret information (e.g., cryptographic keys [81]), or detect anomalous misbehavior (e.g., execu-

tion tracking [121]). Side channel-based attacks require selective monitoring of only execution

points of interest, such as the encryption subroutines. On the other hand, side channel-based

defenses have to monitor throughout the execution looking for anomalies.

In this chapter, we present ZEUS, a contactless PLC control flow integrity monitor that mon-

itors the program execution by analyzing the PLC’s runtime electromagnetic (EM) emanation

side channel. Given a PLC controller program, ZEUS profiles the PLC’s electromagnetic em-

anation during the execution of feasible paths of the legitimate program. ZEUS pre-processes

the signal traces and uses them offline to train a neural network model. The model is later used

during the runtime operation to either determine the fine-grained control flow of the execution

based on the real-time EM emanations or declare unknown (malicious) code execution.

Contactless monitoring enables ZEUS to ensure security of crucial controllers in mission-

critical applications with tight real-time constraints. The operators are often very reluctant

to instrument those controllers’ software stack with additional security probes that cause per-

formance overhead and hurt the underlying real-time guarantees. Additionally, from security

viewpoint, contactless monitoring keeps ZEUS away from the attack vectors that target the con-

trollers because of the introduced air gap between the monitor and the victim controller. Other

side channel-based techniques such as power signal analyses draw and monitor current from

controllers’ circuitry. In contrast, ZEUS is completely non-intrusive and passive; it does not

require any instrumentation of the controller and does not affect its electronics.

ZEUS monitors all the network links bound to the PLC, and captures the control logic up-

loads by the human-machine interface (HMI) servers that are sent for execution on the PLC.

ZEUS exercises various code segments of the binary while capturing the electromagnetic ema-

nations. ZEUS profiles the control logic on the PLC with deactivated output modules to ensure

the underlying physical process (actuators) are not affected during the training phase. The

training is implemented in two stages. First, ZEUS executes control logic symbolically1 and

removes infeasible paths. Through counterexample guided inductive synthesis [178], ZEUS

1Complete symbolic execution of embedded PLC control logic programs is often feasible as they are mostly not
branch-heavy in practice.

75

generates different test inputs for each execution path, and trains a neural network based on the

corresponding electromagnetic emanation. The trained neural network allows ZEUS to detect

the execution of an illegitimate control flow and/or malicious code injection.

The contributions of this chapter are as follows:

• We present a new execution control flow tracking solution for embedded PLC controllers

that enables security monitoring with air-gapped electromagnetic sensors.

• We develop an online signal processing framework to analyze the electromagnetic signals

and extract minimal feature set necessary for execution integrity monitoring.

• We evaluated ZEUS using an inexpensive sensor against widely-used control programs,

e.g., proportional-integral-derivative (PID) controllers, on commercial Allen Bradley

PLC devices (most popular in North America) with ARM Cortex-M3 processors. ZEUS

detects malicious code injections with 98.9% accuracy in real-world settings.

Overview and Organization. In Section 2, we explain our assumptions about the adver-

saries and their capabilities. In Section 3, we provide a brief background on programmable

logic controllers and their typical configurations as well as neural networks that ZEUS employs

for program behavioral modeling. In Section 4, we discuss about the electromagnetic signals

emitted by the PLCs and how they characterize the program execution. We discuss how ZEUS

generates training data points for program behavioral modeling and transforms the signal traces

into spectrum sequences. In Section 5, we present our fine-grained emanation analysis model,

where a neural network model of the legitimate program control flows is constructed and trained

using electromagnetic emanation signals. In Section 6, we present our empirical evaluations

of ZEUS’s various components on ten real-world PLC programs and attack scenarios similar to

Stuxnet [72]. In Section 7, we review the recent most related work in the literature, and finally,

we conclude the chapter in Section 8.

2 Threat model

One of the most prominent security failure causes in control systems using PLCs is the failure

to guard PLCs against remote programming [216]. PLC programmer machines are most often

76

based on commodity operating systems, and often lag security update releases by months [196].

In the following, we state the assumptions made on the security measures that must be success-

fully in place for ZEUS to function correctly.

We assume there is some trusted path from ZEUS to system operators to alert them of any

malicious executions. Unlike software-based solutions, ZEUS’s contactless monitoring enables

secure monitoring even if the software stack below the PLC’s control logic (e.g., firmware or

operating system) is compromised. The PLC-bound network link used to transfer the control

logic programs for execution is assumed to be trusted. This allows ZEUS to obtain a legitimate

copy of the control logic to compare with the runtime PLC executions for control flow integrity

checks. ZEUS does not assume source code availability and works with binaries.

ZEUS defends against control channel attacks (e.g., Stuxnet [72]), where the adversaries

upload arbitrary and potentially malicious control logic on the PLC for execution. More specif-

ically, the types of control logic attacks that ZEUS can protect against are i) modified control

logic such as injection, removal, and replacement of code segments in the legitimate control

logic program; and ii) hijacked control flow of the legitimate control logic execution through

network exploits (e.g., code reuse attacks2 such as return-oriented programming). ZEUS does

not defend against sensor channel attacks, where sensor data is forged by compromised sensors.

In such a case, the control logic may behave exactly as intended, but on false sensor data [122].

Additionally, Zeus itself may be attacked by external signal jammers leading to false positives.

However, this would not affect the integrity of the control logic execution on the PLC.

3 Background

Programmable Logic Controllers. Programmable logic controllers are multiple-input-multiple-

output computers. They have input and output modules to interact with the physical world

(plant) to monitor and control critical infrastructures such as manufacturing, robotics, and

avionics. The PLC’s input modules are connected to sensors within the plant and receive mea-

surements about the plant’s status continuously. The PLC’s output modules are connected to

2Protection against control flow and code reuse attacks are simpler in PLCs compared to conventional computers,
because the PLCs’ restrictive and more primitive programming languages (e.g., type safe and no indirect call sites)
allows deterministic modeling of the legitimate control flows.

77

plant actuators and convey the commands to control it. The PLC converts sensor readings into

digital values, process the readings with the built-in computing unit, and forward the outputs

to the physical world. The logical behavior of PLCs (i.e., the processing of the input data) is

programmable. The control logic programs are developed by the control system operators on

human-machine-interface (HMI) servers that are connected to the PLCs through network links.

Once developed, the control logic is compiled and sent to the PLC for execution. The program

is executed repeatedly in fixed intervals, called scan cycles. During each scan cycle, the control

logic program reads input values from memory and stores the output values to memory. The

PLC firmware is responsible for the interchange of these updated values to and from the PLC’s

input/output ports to interface the physical world. The firmware also implements the reporting

mechanisms such as the LED display on the device and real-time data transfers to the HMI

about the plant’s current status.

Deep Neural Networks. Neural network is a class of supervised learning models that tries to

learn the complex nonlinear mapping between input data and their targets (e.g. class labels). A

basic neural network unit architecture consists of a linear mapping followed by an activation:

y = σ(Wx+b), (4.1)

where x is the input feature vector, and W represents the weight matrix. σ is the activation

function. It is a nonlinear function that models the complex relation between input x and output

y. Common activation functions include sigmoid [102], rectified linear unit (ReLU) [224],

tanh, etc. Figure 4.1 shows a graphical illustration of Equation 4.1. The edges between the

Input layer and the hidden layer represents the weights W,b. Since each node in the input layer

is fully connected with all nodes in the hidden layer, such unit is also called a dense layer.

A neural network can go large, which is increasing number of nodes in the hidden layer,

or go deep, which is stacking multiple network units together (increasing number of hidden

layers), such that more complex nonlinear mappings between data and targets can be learned.

All forms of artificial neural networks essentially follow the aforementioned basic architecture.

ZEUS utilizes recurrent neural network (RNN) [159] to model the execution behavior of PLC

programs (Section 5).

78

… … …

Input x Hidden layer Onput y

Figure 4.1: A basic neural network unit architecture.

For training, the data samples, each with a corresponding label, are fed to the network’s

input layer. The network is trained to learn discriminative features from samples by itself. This

completely data driven approach, compared to traditional hand crafted feature extraction meth-

ods, leads to much simpler-to-use and more reliable outcomes in practice. In our experiments

(Section 6), we empirically show that RNNs overcome traditional techniques such as hidden

Markov models (HMMs) in terms of PLC execution monitoring accuracy and performance.

Neural networks can be trained in an iterative manner using the gradient descent algo-

rithm [220]. At each iteration, all input data are passed through the network. The output are

compared with their corresponding targets t. A loss function l is defined between the network

output y and the expected target on each data sample:

li = loss(yi, ti), (4.2)

The loss function measures the difference between the current and target outputs. ZEUS uses

mean square error (MSE) as the loss function. The total loss is the sum over individual losses

of all the data samples:

l =
N

∑
i=1

li, (4.3)

where N represents the total number of data samples. Computing the total loss is called the

forward pass. To update weights or parameters of the network, partial derivatives of the total

loss with respect to all weights are calculated to identify their maximal descending direction

using back propagation. All weights are updated accordingly (the backward pass). Forward

79

…

…

Pr
ob

ab
ili

ty

Execution path

…

𝐻" 𝐻#

Fr
eq

ue
nc

y

Likelihood score

Deployment stage

Training stage

Execution tracking

Program behavior model Query spectrum sequence Query signal trace

Abnormal execution detection

Training signal traces spectrum sequences

Deviation point Localization

T

t

Figure 4.2: ZEUS’s control flow integrity monitoring.

and backward passes are repeated iteratively until the values converge. The resulting network

is able to produce outputs close to the expected targets.

4 PLC Program Emanation Analysis

During the PLC code execution, the processor clock frequency and switching of the underlying

CMOS devices along with the power regulation board result in change of electric current in the

PLC circuitry. The current produces time-varying magnetic field that interacts with the electric

field leading to an electromagnetic (EM) wave. The EM wave propagates perpendicular to

electric and magnetic fields [19]. In order to radiate this EM emanation, an antenna is required.

The components on the PLC’s printed circuit board (PCB) act as antennas. The transmission

range of these waves increases with the increase in the surface area of the antenna. These

emanations from the PLC boards can be captured by an external electromagnetic sensor placed

near the emanation source.

ZEUS uses these near-field EM waves as the PLC side channel, because they leak infor-

mation about the program running on the device [80]. Different instructions usually expose

different emanation patterns. Thus, the collected electromagnetic signal traces during program

executions have unique local characteristics depending on the runtime control flows. This ob-

servation is utilized by ZEUS to fingerprint the side-channels of legitimate program executions

and identify unknown (malicious) code injections and/or control flow hijacking attempts.

Recent attempts have been made to monitor micro-controllers such as STC89C52 [121] and

PIC16F687 [66] based on power signal analysis [121, 66] that require physical manipulation of

80

the circuits for sensor placement. The data acquisition draws current from the controller boards

potentially affecting its functionalities that triggers a red flag for practical deployment in con-

trollers for mission-critical real-time operations. In comparison, ZEUS’s contactless, passive

and non-intrusive monitoring of commercial PLC ARM processors using an inexpensive EM

sensor for control flow integrity is a more challenging endeavor.

Due to the PLC architecture, the execution times of individual instructions are not fixed to

the processor’s clock cycle. A list of estimated completion times for instructions is provided in

the user manual. However, in practice based on our observations, even the execution time of

a single instruction varies across different execution runs of the same PLC code. This makes

the signal analysis using time-based truncation infeasible. Being contactless, ZEUS has to deal

with a large amount of signal noise. Our collected electromagnetic signal traces have very

low signal to noise ratio (SNR) such that repeatable local patterns along the execution paths

(leveraged by [121]) cannot be observed in the time domain.

To deal with these problems, ZEUS borrows ideas from speech recognition research [157].

ZEUS looks at frequency representations of signal sections within a local sliding window. ZEUS

extracts signal segments via a sliding window on the collected signal. Each segment consist

of several consecutive instructions. ZEUS then computes the power spectral density of each

segment.

Unlike time domain signals, we observed that the patterns in the frequency representa-

tions are much more stable and robust to noise. This is because the local spectra (spectrum

sequence) are computed through weighted summation of all time signal points within the win-

dow. Hence, the white noise is not cumulated, while the underlying desired deterministic signal

is. Therefore, a sequence of local spectra extracted from the PLC code execution EM signal

trace includes repeatable patterns to characterize individual execution paths. ZEUS deploys the

aforementioned analysis to model the execution behavior of target PLC programs.

For completeness of the results, signal traces of all feasible control flows of the program are

collected. ZEUS monitors the network link between the HMI servers and the PLC controllers,

and intercepts the control logic uploads to the PLC. Through symbolic execution [128], the

execution path predicates are aggregated and checked by an SMT solver for satisfiability. Con-

sequently, infeasible executable paths are eliminated.

81

For each remaining feasible path, ZEUS calculates several concrete test cases through

counterexample-guided inductive synthesis [178]. More specifically, to calculate the first test

case for a path, its aggregated path condition expressed as a conjunctive logical expression

ϕp = (ϕ1∧ϕ2∧·· ·∧ϕn)) is fed to the SMT solver. The solvers produces a concrete input value

set (e.g., i = 20). Calculating the second concrete input for the same path involves feeding

ϕp ∧¬ϕi to the SMT solver, where ϕi := (I == 20) and ¬ represents logical negation. The

next concrete inputs are calculated similarly.

ZEUS runs the program on the PLC using the generated test cases for each execution path,

and collects the electromagnetic emanations using an external sensor. The collected signal

traces along with their labels (corresponding control flows) are fed to a sequence neural net-

work classifier for training. All these steps are performed offline. During the runtime, ZEUS’s

external sensor collects the PLC’s emanations and employs the classifier to determine whether

the signal trace belongs to the feasible legitimate execution paths. A modified execution path

(e.g., a maliciously injected PLC program) will lead to a change in electromagnetic emana-

tions away from the samples observed by the classifier during the training phase. The deviation

triggers a red flag by the classifier, and the execution is marked as malicious.

5 EM-Based Control Flow Monitoring

There3 have been works utilizing electromagnetic side channel signals to detect abnormal ex-

ecutions [185]. They follow a template matching scheme, where the query signal is com-

pared with all constructed templates of the execution paths. Based on our experiments, such

time domain-based signal matching techniques cannot distinguish fine-grained characteristics

of complex program control flows accurately. To address this, ZEUS constructs a sequential

neural network classification model of pre-processed frequency domain data samples. The

model therefore learns from control flow transitions from the training frequency data and en-

codes them in its network weights. This model describes the behavior of the program.

ZEUS maps the control flow transitions of any new legitimate data sequence with the learned

3This work was completely done by Yi Han from Rutgers University and added in my thesis to understand the
complete picture of the solution.

82

transitions, modeled by the neural network, and determines a specific control flow that the ob-

servations correspond to. A data sequence with abnormal components such as unseen segments

(due to code injection attacks) or invalid transitions between segments (due to control flow hi-

jacking) will cause mismatches. Such mismatches accumulate along the sequence, cause the

neural network states and thus the output of the model to deviate from expected values.

Figure 4.2 shows ZEUS’s work flow. During the offline training stage, each collected signal

trace is transformed into a spectrum sequence (Section 4). The sequence neural network model

is trained using spectrum sequences of all classes (legitimate control flows). After deployment,

ZEUS feeds the online spectrum sequences of collected query signal traces into the trained

model. This results in a probability distribution computed by the model over all the classes.

The class with the highest score is compared to a predefined threshold. If the score exceeds the

threshold, ZEUS assigns it to the query signal trace as the execution path that the program is

taking currently. If the threshold check fails, it indicates a mismatch between the query signal

trace and the trained model. Consequently, ZEUS triggers an alert about an illegitimate control

flow. ZEUS provides more fine-grained reports about the mismatch regarding the execution

point that the real-time control flow deviated from the legitimate expected flows. This infor-

mation can be used later for detailed vulnerability discovery, e.g., how the control flow was

hijacked. We consider the vulnerability analysis phase outside the scope of this chapter.

5.1 Offline Model Construction and Training

To construct the classification model with sequential inputs, we use a long term short memory

(LSTM) network layer [82]. LSTM is a variation of the recurrent neural network (RNN) used

for modeling sequential data. LSTM takes a sequence of inputs and maintains a hidden state

vector along the sequence. This fits ZEUS’s use-case, where the observables are EM signals,

while the hidden states represent the underlying unobserved code segments and basic blocks.

At each time step of the input sequence, current hidden state vector is computed based on

both the previous hidden state vector and the current input. The hidden state carries long term

dependency between time steps. This enables ZEUS to capture contextual information in the

sequential control flow transitions.

Let [x1,x2, ...,xN] be a spectrum sequence computed for a collected EM signal trace. xt

83

indicates the input in the sequence at time t. The vector size N depends on the execution time

of the control flow. The current hidden state ht can be computed as:

ht = ot ∗ tanh(ct), (4.4)

where tanh is the hyperbolic tangent activation function; ∗ denotes the entry-wise product; ot

is the output gate vector; and ct is the cell state vector. The two vectors can be computed as:

ot = sigmoid(Woxt +Uoht−1 +bo)

ct = ft ∗ ct−1 + it ∗ tanh(Wcxt +Ucht−1 +bc).

(4.5)

In Equation 4.5, Wo,Uo,bo,Wc,Uc,bc are the weights of the neural network units. Note that

the design extends the basic network architecture described in Section 3. ct−1 and ht−1 are state

vectors passed from the previous time step. ft and it represent the forget and input gate vectors,

respectively. These vectors are designed to keep only useful contextual information and acquire

new information:

ft = sigmoid(Wf xt +U f ht−1 +b f)

it = sigmoid(Wixt +Uixt +bi),

(4.6)

where Wf ,U f ,b f ,Wi,Ui,bi are the unit weights. We add a dense layer followed by a softmax

function after the output of the LSTM layer at the last time step hN . This maps the network to

a probability distribution over all legitimate control flows in the PLC code.

p = softmax(WhN +b), (4.7)

where the height the weight matrix W is the same as number of legitimate control flows.

Intuitively, the neural network model output is a one-hot [202] vector q. It has a 1 on its

entry that corresponds to the identified control flow and 0s on all its other entries. q can also

be viewed as a probability distribution. We define the loss function of our model as the cross

84

entropy between the model’s actual output p and the target vector q. The resulting cross entropy

measures the difference between two probability distributions:

l =−∑
i

pi logqi, (4.8)

where i is the index of the legitimate control flows. The total loss of our model is the sum

of losses over all the training EM spectrum sequences and their corresponding class labels

(control flows). During the training, weights of the model are tuned iteratively as described

in Section 2. A well-trained model will have its output probability distribution very close to

its corresponding one-hot vector, and the output distribution will bias remarkably towards the

corresponding control flow.

The overall architecture of ZEUS’s network model is shown in Figure 4.3. The size of the

hidden state vector ht can be increased to carry more information along the sequence. More-

over, multiple LSTM can be stacked to be more capable of characterizing the EM spectrum

sequences for PLC execution classification. However both adjustments increase the compu-

tational complexity. To ensure efficient online classification, we kept the network model size

minimal as long as it did not affect ZEUS’s accuracy of malicious execution detection.

The collected electromagnetic signals suffer from random perturbations caused by EM in-

terference of other components on the PLC device. To reduce the noise effect, ZEUS provides

the neural network model training with many EM signal traces for each control flow. This is

possible through ZEUS’s PLC code analysis and generation of several test-cases for each fea-

sible execution path. Consequently, the neural network training algorithm receive many traces

with the same label (control flow) each incorporating random noise. This enables the neural

network’s data-driven feature extractions procedures to train its unit weights based on the main

signal ignoring the noise margins.

5.2 Online PLC Execution Monitoring

ZEUS uses the trained model at runtime to detect anomalous executions. EM spectrum se-

quences from legitimate executions will have their network outputs distribution heavily biased

towards the corresponding class label. The class with the highest probability will be reported

85

…

…

… … … …

…Spectrum sequence

LSTM layer

Stacked LSTM layer

Dense layer

Softmax layer

Figure 4.3: Network architecture of proposed model.

as the identified control flow I:

I = argmax
i

pi, (4.9)

and its likelihood score can be calculated as L = maxi pi. L represents how likely this signal

trace belongs to the legitimate PLC code. In the case of correct classification outcome, the

network’s input transitions match with the corresponding control flow transitions of the PLC

control logic and the desired network state is maintained as the most likely state along the input

EM trace.

Malicious control flows constitute either execution of a maliciously injected new code or

code reuse attacks that execute the available instructions while deviating from legitimate control

flows at some point. The introduced new instructions or the control flow deviation cause a

mismatch between the observed EM signals and the neural network’s learned transitions. This

reduces the bias in the neural network model’s calculated probability distribution increasing its

entropy. Therefore, by setting a threshold on the likelihood score L, abnormal executions can

be identified as they match none of the known legitimate control flows.

Let H0(H1) indicate the legitimate (malicious) execution, the detection problem can be

expressed as:

L
[

H0]H1≶ε, (4.10)

86

where ε is the preset threshold.

For malicious executions, ZEUS can also locate the point, where PLC execution deviated

from the legitimate flows. Let h = [hn1,hn2, · · · ,hnN] be the hidden state sequence of the n-th

LSTM layer of our model for a query EM spectrum sequence input for a malicious execution.

Let’s also assume ZEUS identifies the hidden state sequence hI = [hI
n1,h

I
n2, · · · ,hI

nM] as the most

likely legitimate control flow that corresponds to a given query EM trace. The deviation point

can be located by computing the distance dt between the two sequences at each time step t:

dt =
√
(hnt −hI

nt)2. (4.11)

The deviation of the PLC execution from the legitimate control flows is reflected in the

sudden change of signal traces and thus the neural network inputs. A changed spectrum input

will cause its corresponding hidden state vector to move away from its expected vector in the

state space. Therefore, a sudden step increase in the distance sequence [d1,d2, · · ·] indicates the

point, where the deviation happens.

6 Implementation and Evaluation

We evaluated ZEUS on real-world settings with commercial PLC devices and using legitimate

and malicious control logics. We first describe our experimental setup including the signal

acquisition system and the target PLC model. We will discuss the results on the electromagnetic

emanations of the target PLC and their discriminative spectrum characteristics. We measure

ZEUS’s accuracy in classifying legitimate control flows, and detecting malicious executions.

We compare ZEUS’s data-driven approach with traditional model-based solutions using hidden

Markov models [121] We finally test the performance of ZEUS on several real applications. An

Intel i7-6800K CPU was used to compute frequency representations, and HMM training and

testing. Our LSTM neural network model was trained on an NVIDIA GTX1080 GPU.

6.1 Experimental Setup

Figure 4.4 shows our signal recording setup that consists of a recording probe and an am-

plifier. The corresponding test-bed configuration and component interconnection is shown in

87

Figure 4.4: Experimental setup including the PLC, external sensing probe, the amplifier, and
the sampling oscilloscope.

Target
PLC

model

EM
sensor Amplifier Signal

acquisition

Figure 4.5: Experimentation test-bed configuration for electromagnetic (EM) side channel anal-
ysis.

88

Figure 4.6: AKG P170 condenser microphone without transducer serving as an electromagnetic
probe.

Figure 4.5. In our experiments, we used the Allen Bradley 1769-L18ER-BB1B CompactLogix

PLC (with ARM Cortex-M3 processor). Allen Bradley PLCs are the most popular and widely

used controllers in many industrial control systems in North America. We used an AKG-P170

condenser microphone without the acoustic capsule or transducer (Figure 4.6) as an antenna

to receive the electromagnetic emanation4. We also tried a Langer LF-R 400 passive antenna.

However, we achieved the best signal sensitivity from the AKG-P170 microphone. This is be-

cause the AKG-P170 microphone together with the phantom power supply can be viewed as

an active antenna. Active antennas have better sensitivities than passive antennas, since signals

are pre-amplified.

We used an HP-461A amplifier to increase the signal strength. We observed that most of the

informative frequency variations appear below 5 MHz. Accordingly, we set our sampling rate

to preserve most frequency information while maintaining a moderate computation complexity

for online malicious code detection performance.

4When the acoustic capsule is detached from the microphone, the remaining part of the microphone serves as an
antenna since the coil in the microphone is sufficiently long to receive the signals emitted from the board.

89

6.2 PLC Electromagnetic Emanations

We performed numerous tests and inspected various regions of the three PLC PCB boards to

identify the point that emits the most distinguishable EM signals. Once that point was iden-

tified, we adjusted our directional EM probe to focus on the point while collecting the EM

emanations for our experiments.

Figure 4.7a shows the components that we mainly investigated. The main sources of ema-

nation were the proprietary Allen Bradley chip, the field-programmable gate array (FPGA) and

the surface mount device (SMD) capacitors on PLC’s communication PCB board. The SMD

capacitors are involved in the voltage regulation for the chips. Figure 4.7b shows the strength of

the corresponding emanation from each point. Since the surface area of the SMD capacitors is

very small, the corresponding emission was rather weak. The surface area of the Allan Bradley

chip is relatively larger, and hence the corresponding emission was stronger. We proceeded by

focusing on that chip for our following experiments. Figure 4.7c shows how the captured signal

appears with as the probe-chip distance increases. The EM signals were collected by the probe

located 0.1 cm away from the proprietary chip.

We investigated the differences among the EM emanations from the PLC execution of dif-

ferent instruction types. Different PLC instructions have different execution times and compu-

tation complexities thus different power consumptions that is reflected in the emanation signals

as discriminative spectral patterns. Figure 4.8 shows the results. These spectral pattern types

are the core basis for ZEUS’s design.

Figure 4.8 visualizes the discriminative spectral patterns of different PLC instructions.

PLC’s (ARM) ISA include 22 different types of instructions. We show the results for only

the 16 types that are commonly used in PLC programs5. Modules involving complicated com-

putations, such as PID6 were also tested. Figure 4.8 shows that different instructions give rise

to EM signals with different intensities at different frequencies. ZEUS exploits these finger-

prints to estimate the PLC’s internal runtime execution state and dynamic control flow using

5The instructions include arithmetic instructions (ADD, MUL, DIV, DEG), advanced math instructions (LN,
SIN, XPY, STD), comparing instructions (XOR, GRT), array manipulation instructions (BSL, AVE, FLL) and
control instructions (TON, JMP).

6This PLC programming module implements the proportional-integral-derivative (PID) control algorithm [23].

90

Table 4.1: Confusion matrix for the classification.

ADD SIN XOR BSL JMP PID
ADD 78.63% (747) 5.26% (50) 8.21% (78) 1.58% (15) 4.95% (47) 1.37% (13)
SIN 5.36% (56) 83.54% (873) 5.65% (59) 1.05% (11) 2.39% (25) 2.01% (21)

XOR 8.13% (75) 7.48% (69) 69.31% (639) 0.11% (1) 12.47% (115) 2.49% (23)
BSL 1.24% (12) 1.65% (16) 0.10% (1) 95.24% (921) 0.21% (2) 1.55% (15)
JMP 5.44% (53) 3.29% (32) 12.32% (120) 0.21% (2) 76.49% (745) 2.26% (22)
PID 0.32% (3) 2.11% (20) 2.64% (25) 0.21% (2) 1.27% (12) 93.46% (886)

the collected EM emanations.

We further verify our visual observations by performing a classification validation on spec-

tra of emanation signals of these instructions using the random decision forests algorithm [94].

We used Weka [92] to implement the classifier. One instruction of each instruction type (Fig-

ure 4.8) was tested. An emanation signal of 200 µs was collected under sampling rate of 50

MHz and transformed into spectrum representation. 1000 such signal traces were collected for

each instruction type to train the classifier, and the same number of traces were collected for

validation testing.

Table 4.1 shows the classification confusion matrix. Most signals are correctly classified

correctly as their actual instruction type. This shows that the spectral patterns of different types

of instructions are indeed discriminative and can be used for control flow integrity monitoring.

ZEUS applies a sliding window to the collected emanation signals. Because of various

instruction execution times, sliding windows of the same length at different points of the sig-

nal cover different combinations and number of instructions. This helps for spectral patterns

of the signal segments within different windows across the signal trace to be distinguishable.

Therefore, the spectra of these local signal segments characterize the emanation signals, the

execution paths. ZEUS utilizes this to construct the program behavior model.

Figure 4.9a shows the EM emanation (between seconds 6 and 12) while a control logic

program is installed for execution on the PLC. The visible EM emanation pattern can be used

to detect runtime (malicious) control logic uploads similar to Stuxnet [72]. Figure 4.9b shows

the electromagnetic emanation patterns during the PLC’s boot-up process. These patterns can

be used to detect when the PLC is remotely rebooted by an adversary.

91

SMD	cpacitor 1

Proprietary	chip

SMD	capacitor	2

FPGA	chip	1

FPGA	chip	2

(a) One of the PLC’s three PCB boards: surface area of the
propitiatory chip is larger compared to other chips.

Propiretary chip

FPGA	chip	1

FPGA	chip	2

SMD	capacitor	1

SMD	capacitor	2

Frequency /MHz
2512.50

(b) Spectrogram for different locations.

12.50 25
Frequency /MHz

0.1	cm

2 cm

5	cm

20	cm

(c) Spectrogram for different distances.

Figure 4.7: EM emanation by the PLC’s communication board.

92

XOR

TON

BSL

AVE

STD

FND

PID

JMP

2512.50
Frequency /MHz

(a) Pattern for PLC instructions.

ADD

MUL

DIV

DEG

LN

SIN

XPY
GRT

Frequency /MHz
2512.50

(b) Pattern for PLC instructions.

Figure 4.8: Spectrogram patterns of PLC instructions.

Table 4.2: Evaluation programs and descriptions.

Class Name Description Example applications Average
length
(msec)

Vector arithmetic Matrix Matrix multiplication Sensor array data processing 3.3
Q-sort Quick sort Value searching, element uniqueness 2.1

Numerical methods GD Gradient descent Power flow optimization 5
Newton Newton’s method Vehicle trajectory estimation 3.5

Signal processing Conv Convolution Signal filtering 9.2
DCT Discrete cosine transform Audio lossy compression 17.3

Communications Dijkstra Dijkstra’s algorithm Routing optimization in smart grid 11.3
Cryptography AES AES-128 encryption Data protection, access control 18.1
Control systems PID PID control Vehicle cruise control 6.5

Patfilt particle filter Object Tracking, localization estimation 2.5

93

12.50 25
Frequency /MHz

Ti
m

e
/s

ec
on

d

0

5

10

15

20

25

(a) Spectrogram during uploading of PLC program.

12.50 25
Frequency /MHz

Ti
m

e
/s

ec
on

d

0

5

10

15

20

25

(b) Spectrogram during the booting phase of the PLC.

Figure 4.9: Spectral patterns of PLC instructions.

94

6.3 Accuracy

We evaluated ZEUS for PLC execution monitoring, control flow classification of ten real ap-

plications, and detection of malicious code executions. We computed spectrum sequences and

estimated the power spectral density of signal segments. The segments were extracted using

sliding windows of size 200µs, with 90% overlap between successive windows.

A stacked two-layer LSTM network with 100 nodes on both layers was employed to finger-

print the execution behavior of each program. We trained the network using stochastic gradient

descent (SGD). An average of 50 epochs (iterations) were required for the network to converge

on the tested programs. We obtained 100 traces for every feasible control flow of each program

for training the model. For each program, a 2-fold cross validation was performed 10 times to

stabilize the result.

We chose ten real PLC programs from different application domains for evaluation pur-

poses. Table 4.2 lists the control logics along with their functionalities. These programs fall in

the classes of vector arithmetic, numerical methods, control algorithms, cryptography, signal

processing and communications.

Comparison with HMM solutions. We compared our LSTM network model with a tradi-

tional hidden Markov model (HMM) based program behavior modeling approach [121]. For

the HMM, the observations were defined as the signal segment or its frequency representation.

HMM state was defined as unique samples in the observation set. The number of HMM states

was defined as a adjustable parameter. We set the HMM number of symbols to be 100. We

fit the observations of each state with a multivariate Gaussian distribution. The parameter set

(HMM’s transition probabilities, observation models and initial probabilities) was estimated

using Baum-Welch algorithm [134]. We used the forward algorithm [157] to calculate the ob-

servation sequence likelihoods. We will present the accuracy results for both ZEUS and HMM

solutions below.

We evaluated ZEUS accuracy from two aspects: i) execution monitoring - to determine the

control flow of a running legitimate PLC code, and ii) malicious execution detection - to detect

the control flows that are not a part of the legitimate program. Table 4.3 shows the execution

monitoring accuracy results. We evaluated ZEUS (LSTM) with both pre-processed spectrum

95

traces (Freq) and raw time domain signals (Time) and compared the results with HMM-based

solutions. LSTM using the frequency representation (Freq-LSTM) achieves almost perfect

results on all the evaluated programs.

LSTM’s better results in comparison with HMM-based solutions can be explained by the

following two observations. First, the ZEUS’s LSTM network architecture is able to capture

long-term dependency in the input sequence. This contextual information corresponds to the

control flows of the program, and hence is essential in distinguishing different execution paths.

HMM models, on the other hand, assume only 1st order data dependency in the sequence, and

hence miss a lot of useful information.

Second, ZEUS’s model is able to extract discriminative features from the input due to its

stacked multi layer architecture. This contributes to the classification performance. For HMM,

however, the input data is directly used for parameter estimation without any feature extraction.

When raw signal segments are used as inputs, both LSTM and HMM are not able to achieve

good performance (Table 4.3). This is because raw time signals contain lots of noise, so the

underlying signal characteristics cannot be recognized and hence learned by the two models.

The frequency representation, however, reveals the signal characteristics as the noise (low fre-

quency) stays far from the main signal (high frequency).

For detection of malicious executions, Figure 4.10 shows the likelihood scores L (Sec-

tion 5.2) of positive (abnormal) and negative (normal) samples for two example applications,

namely Newton-Raphson numerical method and AES encryption algorithm. Note the negative

samples tend to concentrate within a small range, while the positive samples are more spread

out. This is because the number of control flows with each program is finite, and each control

flow is well recognized by our network through training. Thus, the signal traces of the legiti-

mate control flows match closely with the LSTM model. The malicious programs can take any

arbitrary control flow especially in the case of malicious code injection attacks; therefore, their

matching degree vary a lot.

Figure 4.11 shows the ROC curve for the frequency and time domain data using ZEUS’s

LSTM and HMM solutions. The numbers are average over all the ten applications. ZEUS

(LSTM) using the frequency traces achieves almost perfect detection performance. Steeper

96

Table 4.3: Classification accuracy of all evaluation programs over four evaluation settings.

Program Time_HMM Time_LSTM Freq_HMM Freq_LSTM
Matrix 55% 52% 60% 100%
Q-sort 49% 60% 41% 100%
GD 40% 64% 40% 98%
Newton 48% 51% 63% 100%
Conv 57% 69% 56% 100%
DCT 53% 45% 51% 94%
Dijkstra 62% 72% 65% 100%
AES 50% 50% 67% 98%
PID 40% 62% 71% 99%
Patfilt 51% 45% 67% 100%

ROC curve indicates better separation of positive and negative samples, and thus better perfor-

mance. This is usually measured by the area under the curve (AUC). AUC is usually between

0.5 (random guess) and 1 (perfect separation). Table 4.4 shows the AUC for each target PLC

program and each evaluation setup. The stacked multi-layer architecture of ZEUS’s network

model captures important information both from the hidden states and the inputs, and carries

it along the sequence. This results in better learning of the program behavior from the signal

traces.

Note the HMM using the raw time domain signal performs worse than random guessing

(diagonal line on ROC - Figure 4.11). This is because HMM, due to its limited first order

dependency assumption, is not able to characterize the temporal behavior of the signal traces

well. Additionally, noisy raw time domain signal traces further contribute to its randomness

and poor accuracy.

We intentionally reduced the convergence threshold for the neural network’s training that

led to larger number of training iterations. The main reason is ZEUS’s goal to detect malicious

executions and not only to classify (previously seen) legitimate control flows. The increased

number of iterations resulted in more discriminatory classification outcomes, i.e., more biased

probability distribution over the classes (legitimate control flows) and larger likelihood score

L. Hence, we were able to increase the classification threshold ε as well (Equation 4.10).

Consequently, in the presence of malicious control flows, ZEUS’s likelihood score L did not

exceed ε. Hence, the flows were classified as malicious correctly. This reduced ZEUS’s false

negative and positive rates.

97

Table 4.4: Area under curve (AUC) of all evaluated programs over all four evaluation settings.

Program Time_HMM Time_LSTM Freq_HMM Freq_LSTM
Matrix 0.34 0.52 0.90 0.99
Q-sort 0.52 0.48 0.76 1.00
GD 0.24 0.55 0.86 0.98
Newton 0.25 0.62 0.86 0.99
Conv 0.62 0.65 0.81 0.99
DCT 0.14 0.61 0.81 0.99
Dijkstra 0.44 0.51 0.85 1.00
AES 0.56 0.57 0.82 0.96
PID 0.34 0.66 0.79 1.00
Patfilt 0.22 0.73 0.87 0.99

0.5 0.6 0.7 0.8 0.9 1
Likelihood Score

0

2

4

6

8

Fr
eq

ue
nc

y

Anomaly
Legitimate execution

(a) Newton’s method

0.5 0.6 0.7 0.8 0.9 1
Likelihood Score

0

2

4

Fr
eq

ue
nc

y

Anomaly
Legitimate execution

(b) AES-128 algorithm

Figure 4.10: Example likelihood score distributions of the evaluated programs produced by the
Freq+LSTM setting.

98

0 0.2 0.4 0.6 0.8 1
False Positive Rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
Po

si
tiv

e
R

at
e

Freq-LSTM
Freq-HMM
Time-HMM
Time-LSTM

Figure 4.11: ROC curves of all evaluated programs. AUC of the four settings: Freq-LSTM is
0.99, Freq-HMM is 0.83, Time-LSTM is 0.59, Time-HMM is 0.36.

Sliding window size. We investigated the influence of various sliding window sizes on ZEUS

accuracy. By using window of different sizes, ZEUS essentially looks into the program exe-

cution at different granularities. A smaller window can capture finer grained transitions in the

signal trace, but the frequency resolution of the spectra will be lower. This results in a less dis-

criminative representation of the signal segments. Smaller windows also result in longer data

sequence, therefore more recurrences of ZEUS’s neural network model. This makes the model

less robust to random perturbations, since biases on the network states accumulate through the

recurrences. A larger window size, on the other hand, will have spectra of better frequency

resolution and better robustness, but some small transitions in the signal trace will be ignored.

Figure 4.12 shows how sliding window size affects ZEUS accuracy (Figure 4.12a) and AUC

(Figure 4.12b) both averaged on all ten applications. Using frequency data with a LSTM classi-

fier outperforms all the other settings for all the window sizes. When the size of sliding window

increases, both the classification and detection accuracy degrade because of the ignored useful

transient information (as discussed above). Too small windows also cause accuracy degradation

because of the resulting lower frequency resolution and less discriminative spectra.

99

50 100 200 500 1000
Sliding Window Size (7s)

40

50

60

70

80

90

100

C
la

ss
if

ic
at

io
n

A
cc

ur
ac

y
(%

) Freq-LSTM
Freq-HMM
Time-LSTM
Time-HMM

(a) Classification accuracy vs. sliding window size.

50 100 200 500 1000
Sliding Window Size (7s)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
re

a
U

nd
er

 C
ur

ve

Freq-LSTM
Freq-HMM
Time-LSTM
Time-HMM

(b) Runtime vs. query trace length.

Figure 4.12: Area under curve vs. sliding window size.

100

50 100 200 500 1000
Sliding Window Size (7s)

0

10

20

30

40

50

60

70

Pr
oc

es
s

T
im

e
(m

s)

Freq-LSTM
Freq-HMM
Time-LSTM
Time-HMM

Figure 4.13: Average process time of all the programs for the four evaluation settings.

6.4 Performance

We measured the time requirements to complete ZEUS’s classification of the collected EM

traces. The required time includes the time of computing the spectrum sequence from the raw

time domain EM signal trace if frequency representation is employed, and the time of passing

the data sequence through the trained neural network model to get the prediction.

Figure 4.13 shows the average processing time for one input signal trace and various sliding

window sizes. The numbers are averaged over all the ten applications. All the four evaluation

settings are able to process the query signal within tens of milliseconds. LSTM-based ap-

proaches are overall slower than HMM-based solutions, because passing the input sequences

through the network involves more time-consuming array computations. HMM’s faster speed

comes at the cost of its remarkably lower classification and detection accuracy.

The figure also shows that the larger sliding window sizes lead to reduced time require-

ments. This is expected as the larger sliding window produce shorter data sequences for a

given EM signal trace. Consequently, there are fewer recurrences in the neural network.

101

7 Related Work

We discuss related work on controller and critical infrastructure security in terms of defense

mechanisms and possible attacks.

Side channel analysis. There have been several recent works on analyzing side channels of

various modalities for the purpose of inspecting runtime execution. On contactless monitoring,

Eisenbarth et al. [66] determine the instruction types (not instances) by modeling individual

instructions as HMM states. Msgna et al. [136] perform similar analyses by modeling CFGs

as HMMs. The authors assume equal-length basic blocks that is not often the case in practical

settings. Other similar HMM-based program behavior modeling have also been studied [219,

211, 78, 217]. On monitoring with contact requirements, cross correlation between the side

channels (power [87] and RF traces [185, 184, 186]) and the program’s single golden execution

have been investigated for anomaly detection. However, obtaining a single golden execution

is not feasible in practice. A complex PLC program may go through different execution paths

depending on the inputs (sensor measurements). Vermon et al. [208] uses power signal side

channels to reverse engineer the bytecode running on a Java smart card. Attacks to disclose

substitution tables of the A3/A8 algorithm execution [144, 52] have been proposed. These

methods focus on recovering the lookup table only. ZEUS increases the accuracy of passive

side-channel analysis of complete execution profiles using inexpensive contactless EM sensors.

The most related work [121] provides code execution tracking based on the power signal,

which requires connections to an 11 MHz 8-bit AVR microcontroller. The microprocessor

is directly connected to the power supply using a single resistor. The sensor is a Tektronix

MDO3034 oscilloscope with sampling rate of 1.25 GHz. ZEUS provides contactless execution

monitoring of commercial PLC processors (120 MHz ARM Cortex M3 with three separate

PCB boards for I/O, logic processing, and power supply) through a different modality (electro-

magnetic emanations) and using lower-frequency sensing sampling rates (10 MHz) with more

than two orders of magnitude saving on the sensor cost.

Another related work [141] also performs execution monitoring and anomaly detection on

IoT devices via the electromagnetic side channel. They looks at the prominent frequency peaks

in the spectra of the signal segments as feature representations and models program executions

102

with statistical distributions. ZEUS uses the sequential neural network model to both extract

discriminative features from signal segments and model the control flow transitions in a end

to end manner. Moreover, they puts instrumentations at all the loop nests and examines them

separately while ZEUS looks at full executions without any instrumentation.

Controller program analysis. Although a few processors contain a dedicated hardware unit

for execution monitoring, e.g., embedded trace macrocell [41], many embedded controllers

lack such hardware support. To analyze the software, offline control command verification

solutions [128, 152, 90] implement formal methods to verify the safety of the control code

immediately before it is executed on the PLC. They face scalability problem, caused by state-

space explosion [128, 126, 99, 147]. Consequently, every control logic upload request by the

operators, including the emergency cases, should wait for possibly minutes, hours, or more

before the code is fully verified for PLC execution. Such delays are often unacceptable for

real-time safety-critical control system operations.

Information security approaches. The related work to protect the control networks’ trusted

computing base (TCB) are insufficient as software patches are often applied only months af-

ter their release [156], while new vulnerabilities are discovered on a regular basis [30, 153].

The traditional perimeter-security tries to keep adversaries out of the protected control system

entirely. Attempts include regulatory compliance approaches such as the NERC CIP require-

ments [145] and access control [74]. Despite the promise of information-security approaches,

thirty years of precedence have shown the near impossibility of keeping adversaries out of

critical systems [101] and less than promising results for the prospect of addressing the se-

curity problem from the perimeter [117, 114, 135]. Embedded controllers from most major

vendors [114, 204] and popular Human Machine Interfaces (HMIs) [135] have been shown to

have fundamental security flaws.

8 Conclusions

We presented ZEUS, a contactless, passive, and non-intrusive control flow integrity monitoring

solution for PLCs. ZEUS identifies malicious code execution through side channel analyses of

103

the controller’s electromagnetic emanation signals. ZEUS’s data acquisition is done by an elec-

tromagnetic sensor, which provides an air gap between the trusted computing bases of the target

PLC and ZEUS’s monitoring engine. Our empirical studies with commercial PLC controllers

and several real application binaries show ZEUS can monitor high frequency commercial pro-

cessors with low frequency sensor sampling. ZEUS can detect malicious code executions on

popular Allen Bradley PLCs with %98.9 accuracy and with zero runtime overhead by its de-

sign.

104

Chapter 5

SECURING CRITICAL INFRASTRUCTURE WITH CYBERPHYSICAL

ACCESS CONTROL

1 Introduction

Critical national infrastructure has become increasingly complex. For decades, systems such as

the power grid were comprised solely of physical, mechanical components that could be rea-

soned about using classical physics. However, as computing has become increasingly miniatur-

ized and ubiquitous, adding computational resources into these environments becomes not just

feasible, but practical and beneficial. In the case of the power grid, adding computing elements

allows for essential capabilities such as state estimation (i.e., understanding where the power

in a grid is flowing at any given time) and contingency analysis (i.e., determining whether the

grid is resilient to the failure of components within it). The grid exemplifies a cyber-physical

infrastructure, with data collected from its physical components and processed by algorithms

running on computers to provide for accurate and safe monitoring and control. To realize this,

modern smart grids make heavy use of programmable logic controllers (PLCs) which act as

dedicated embedded systems that change actuators based off of sensor values in a continuous

feedback loop.

Malware-based attacks against these infrastructures, such as Stuxnet [72], Havex [163], and

Dragonfly [5], have been well studied, and different solutions have been proposed [51, 142].

However, erroneous activity by human operators, whether intentionally or by mistake can have

even more due consequences than existing malware attacks.

The lack of protections against system misconfigurations can lead to severe consequences.

In 2011, a lack of real-time situational awareness and limit protections on transmission lines

resulted in a cascading series of power outages, affecting large portions of Arizona, southern

California, and northern Mexico, causing 1.5 million customers in these areas to lose power for

105

up to 12 hours [4]. Even worse, malicious activities can also seem to be operation mistakes,

such as the coordinated attack on the Ukranian power grid [22]. Moreover, an operator once

logged in, usually has a complete view of the whole system, even if the operator is only in

charge of a sub area of the system. This unlimited access to system variables and the simple

static policy controls for operators demonstrate that cyber-physical infrastructures are unpre-

pared to maintain their safe and secure operation in the face of human mistakes, leaving alone

malicious adversaries.

The key takeaway from these episodes is that insufficient access control coupled with an

insufficient understanding of the relationship between the control infrastructure and the un-

derlying physical system leads to vulnerabilities, which can be turned into attacks either by

careless operators or malicious adversaries. While past approaches attempt to use information

flow analysis for system modeling, have tended to ignore the physical world and miss im-

portant inter-dependencies. Moreover, traditional discretionary and mandatory access control

mechanisms are often based on manually-generated policy rule sets that do not consider the

underlying physics of the grid, and its complexity precludes attempts at formal analysis.

In this chapter, we present CPAC, a cyber-physical access control framework that enables

fine-grained enforcement of context-aware policies in a real-time control system environment.

CPAC takes a comprehensive view of both the computing and physical elements comprising

the control system, and simultaneously incorporates both continuous physical dynamics i.e

mathematical models and discrete computing i.e administrator specified policies into its secu-

rity monitoring and control calculations. In doing so, we can accept high-level requirements

such as "Alice should not [directly or indirectly] manipulate the [power output] for the genera-

tor Gi" or "Bob should not know about power transformer Tj’s failure", and have them enforced

as low-level policies that ensure control system constraints are maintained. To generate secure

policies for access requests, CPAC implements a layered ensemble of lightweight informa-

tion flow analysis mechanisms. On the device side, we mark variables within PLC devices to

determine data flow, and we infer information flows through the grid using physics-based, inter-

component dependencies. Information is visible to operators whose access to read and modify

variables is tailored to their particular roles (static polices) and depending on the information

flow analysis (dynamic polices). Combining the physics model, information flow analysis on

106

PLCs, and logic-based policy control, we are able to provide finer-grained access control and

better situational awareness of the power grid than previous solutions, securing the grid from

human mistakes (or insider attacks), maintaining the operation privacy, and supporting N-x

contingencies.

Our contributions can be summarized as follows:

• Physics-based engine: We demonstrate that by leveraging the underlying mathematical

model within a power system, we can analyze information flow by the physics equations

and restrict operations that would violate system safety.

• Information flow analysis: We introduce a lightweight taint-tracking mechanism into

PLCs. The lightweight code instrumentation reports the dynamic control flow used in

conjunction with symbolic execution of the PLC code to determine variable taints. This

symbolic execution is performed offline ensure minimal performance overhead during

PLC code execution.

• Logic-based policy control: We introduce a new context-aware policy control using

Prolog, where policies are written in logic statements and the querying the permissibility

of an operation in the Prolog engine. Combined with the physics engine and information

flow analysis, a context-aware policy is able to guarantee the safety and privacy of an

operation.

• Scalability and performance in real-world scenarios: We model the Polish power

grid, consisting of over 2,700 buses, and model three past blackout events within this

real-world system setting, demonstrating that CPAC would detect and mitigate all of

these problems. CPAC’s analysis and policy evaluation can be performed in under 150

ms, fast enough that large-scale outages can be prevented. Because CPAC maintains

system context, it can manage not only N−2 contingency analysis (simultaneous failure

of two nodes), but N− x analysis, which is infeasible with existing energy management

system (EMS) solutions. CPAC thus provides an effective new means of maintaining

robust operation in the face of coordinated cyber attacks.

Section 2 reviews existing EMS solutions and how they fail to withstand operation mis-

takes or even attacks. Section 3 overviews CPAC’s high-level architecture and components,

107

describing its operation within a simple control system. Section 4 explains the physical side

information flow analysis. Section 5 describes policy enforcement and Section 6 describes

device-level information flow tracking in CPAC. Section 7 describes CPAC’s real-world im-

plementations and extensive experimental results. Section 8 reviews related work and Section 9

concludes.

2 Energy Management Systems

An EMS1 is a collection of computer-aided tools used by operators of electric utility grids

to monitor, control, and optimize the performance of generation and transmission systems.

As shown in Figure 5.1, an EMS contains supervisory control and data acquisition (SCADA)

functionality, comprising a suite of applications. These include:

1. A power system topology processor [16] that continuously retains and updates electrical

system topology such as branch impedance, loading, connectivity, and circuit breaker

status information, with topology details used as input to the state estimation process

(detailed below);

2. A data historian (database) [76] that stores sensor measurements and system asset con-

figuration information for later grid analysis and billing;

3. A state estimation system [16] that receives plant sensor measurements and the power

system’s current topology, and dynamically calculates accurate state of the power system,

i.e., voltage, magnitude, and phase angle on each power system bus;

4. Contingency analysis software [88] that performs what-if risk analysis of potential com-

ponent failures given the power system’s current state;

5. Optimal power flow control analysis [88] to calculate optimal feasible power system

configuration and actuation parameters for load generation balance (i.e., the generated

power should equal the end-users’ electricity consumption); and

6. A human-machine interface (HMI) that includes visualization of system parameters for

the operators to monitor and modify.

1We discuss the configuration of existing energy management systems (EMS) used to control the power grid
infrastructure. We also discuss their corresponding limitations and vulnerabilities (Section 2.1). Our discussion is
necessarily abbreviated; a comprehensive overview of these issues is presented by Sridhar et al. [182].

108

Physical	 Plant	 (Power	 System)	

Energy	 Management	 System	

Actuators	
Sensors	

se
ns
or
	 m

ea
su
re
m
en

ts
	 control	 com

m
ands	

State	
Es6ma6on	

Con6ngency	
Analysis	

Op6mal	
Power	 Flow	

Data	
Historian	 	

Human-‐Machine	 Interface	

Topology	
Processor	

Load	 (consumers)	

generator	

transmission	 	
power	 line	

power	 bus	

Figure 5.1: Existing Energy Management Systems

2.1 Existing EMS Solutions

Current EMS solutions [198, 21, 32] are designed to protect smart power grids against ac-

cidental component failures, but are limited in the protections they offer. For example, data

historians enable local data storage and coarse-grained sharing of bulk system information and

sensor measurements, but lack the ability to determine where data entries originate and the

understanding of plant physics necessary to capture inter-data entry correlation. As a result,

simple mistakes from operators can bring down the whole grid, causing millions of dollars of

damage [4, 54]. Similarly, while state estimation modules provide a global view of the power

system’s state and parameters such as line current and bus voltages, they cannot restrict unpriv-

ileged operators from observing sensitive system information, which compromises operation

privacy [119, 127]. Furthermore, while power flow solutions [85] have functionality to drive

109

the system away from unsafe states, they do not distinguish among operators with different

privilege levels. In general, current EMS solutions solely count on correct actions from opera-

tors, who usually only need a password to log in the system and are governed by simple policies

(if even these exist), and ignore the risk of operational errors or insiders attacks.

Another significant shortcoming in existing EMS solutions is the limited ability to perform

contingency analysis. Within North America, power utilities must implement N − 1 contin-

gency analyses to comply with the North American Electric Reliability Corporation Critical In-

frastructure Protection (NERC-CIP) requirements [115]. An N−1 analysis determines whether

a power system with N components (e.g., generators) can maintain its operation despite any sin-

gle component failure. However, a coordinated attack against more than one element within the

grid or multiple involuntary components failures renders N−1 analysis ineffective as occurred

in the southwest blackout incident [4]. The state space explosion associated with performing

N−2 analysis and for larger numbers of component failures makes these analyses infeasible as

shown in Section 1.

2.2 Security Threats

The threats we consider are mistakes from careless operators and intentional system manipula-

tion from malicious adversaries, who could be operators or anyone having access to the EMS.

Instead of focusing on the authentication of EMS operators, CPAC tries to authorize each op-

eration request from legal users. Note that the whole EMS is trusted, and we assume operators

do not have physical access to these machines except through the GUI/CLI terminal provided

by the EMS.

Why don’t existing access control mechanisms suffice? Existing host and network-based

mechanisms that rely strictly on access control have proven to be insufficient in ICS environ-

ments, where cyber and physical components interact as a part of the system operation. A

shortcoming of existing access control solutions, such as host-based policy enforcement (e.g.,

110

SELinux) and network firewalls, are that they ignore the underlying physics of the control sys-

tems that they protect2. Consequently, implementation of privilege separation and least priv-

ilege principles in highly dynamic control system environments become infeasible as access

control policies for individual subjects and roles depend on the dynamically changing physical

state of the plant. The state of the system may change due to actions by other subjects, e.g.,

a legitimate power operator on a remote substation computer increases the amount of power

generation, or external malicious adversaries, e.g., malware on a remote substation computer

opens a power transmission line leaving it out of service. Such incidents change the state of the

underlying power system and affect access control policy rules for operators. This increases the

risk that subsequent operations (either mistakes or attacks), permitted by a static policy, could

compromise system dynamics thus cause damages.

Why do control system safety mechanisms fail to stop operational errors or even attacks?

Traditional control system safety mechanisms have been designed to maintain safety only for

physical system operations. For example, safety mechanisms in power systems include pro-

tection relays and circuit breakers to isolate transmission lines with over-capacity high current

flow. Moreover, these mechanisms only consider the physical component involved in the op-

eration rather than a complete system impact of the operation. They are designed to provide

reliability and robustness in the case of accidents or harsh environments. They do not, however,

take into account a careless operator’s mistake, which may crash the whole system, let alone a

malicious insider who analyzes the operational changes in a system as it responds to problems,

and exploits this behavior to further force the system into an unsafe state [44]. While research

into secure control estimation [73, 150, 132] can aid in developing more robust control algo-

rithms, these approaches are largely theoretical and do not consider mistakes from operators or

attacks from insiders.

3 CPAC Architecture Overview

We provide a high-level overview of CPAC and describe how it addresses the issues raised

above. We further detail in Section 3.3 the factors resulting in the 2011 California outage

2E.g., SELinux is not able to limit the CPU temperature.

111

Physical	 Plant	 (con%nuous	 differen%al	 dynamics)	

Energy	 Management	 System	 (Windows	 machine)	

control	 logic	 (execute)	 read	 controller	 variable	

Programmable	 Logic	 Controllers	 (discrete	 sequen%al	 logic)	

write	 controller	 variable	

sensor	 measurements	 (sensing	 points)	 control	 commands	 (actua%on	 points)	

Lightweight	 On-‐Device	 Taint-‐Analysis	 Engine	

Control	 logic	 n	 Control	 logic	 1	 Control	 logic	 2	 …	 User	 level	

Firmware	

Physics-‐Aware	 Low-‐Level	 Policy	 Genera%on	

High-‐Level	 Context-‐Based	 Policy	

security/safety	 admin	

Control	 Logic	 Symbolic	 Execu%on	

Offline	 Online	

Formal	 Policy	 Enforcement	

PLCs’	 Taint	 Info.	 Collec%on	 	

rwx	 access	 requests	

operators	

Figure 5.2: CPAC’s High-Level Architecture

discussed in the introduction [4], and how CPAC could have prevented this failure.

While the guarantees that CPAC provides could be applicable to any cyber-physical infras-

tructure, we focus on its use as a security protection and access control solution for the smart

power grid, with multiple PLCs receiving information and sending data back to an EMS. This

setup is illustrated in Figure 5.2. In practice, each PLC often ships with proprietary engineering

software running within the EMS. This is used both offline, for control logic development and

execution on the PLC, and online within the EMS, for run-time monitoring and modification of

a deployed PLC’s variables. The PLC is also connected to the physical plant through lines from

sensors within the plant that serve as input, and outgoing wires to actuators within the plant for

process control.

112

3.1 Information tracking

CPAC facilitates security access control in cyber-physical power grid infrastructures and con-

sists of two major components, one residing within the EMS and the other within the PLCs. As

the PLC has limited computational resources and hard real-time requirements for processing

data, any security solution must minimize performance overhead. To meet these requirements,

CPAC offloads most computation from the PLC to a server at the EMS, which communicates

with individual PLCs to obtain fine-grained information about device execution. We use of-

fline pre-processing techniques to minimize run-time requirements. Given a new PLC control

logic, CPAC symbolically executes the code and determines the source of incoming data for

every output variable over all feasible execution paths. This information is stored in a lookup

table. Consequently, rather than typical heavyweight run-time taint analysis, CPAC calcu-

lates the taint information through lightweight execution path profiling to minimize run-time

overhead. CPAC’s PLC-based dynamic analysis engine only tracks the execution path of the

running control logic (Figure 5.2). Dynamic tracking of the execution path merely requires

run-time monitoring for branch instructions on the PLC, a significant computational reduction

compared to dynamic on-device byte-level taint analysis. CPAC uses lightweight control logic

instrumentation before every control logic download on the PLC. The PLC-based agent sends

collected execution path information to CPAC’s EMS-side agent, which consults the symbolic

execution lookup table for taint information regarding the affected sensing points.

Apart from the EMS, the device side must also be controlled. For example, Tom (Fig-

ure 5.3) could violate policy by downloading malicious or buggy control logic onto a PLC, or

modifying its internal variables through the EMS interface. In either case, enforcing the policy

requires analysis at the granularity of individual PLCs to calculate how Tom’s actions would

affect sensors and actuators throughout the plant. Therefore, before every control logic down-

load to the PLC, CPAC performs an offline symbolic execution of the control logic (Figure 5.2)

and fills out a lookup table where each entry represents an execution path of the control logic,

and includes the corresponding path condition along with the symbolic values of the control

logic variables at the end of the execution (scan cycle). Upon Tom’s variable write or control

logic download request, CPAC consults the lookup table for taint information, to determine

113

Safety-‐context	 policy:	
Operator	 Tom	 should	 not	 increase	 the	 New	 York	 bus	 voltage	 above	 100KV	 	 	

2.	 Generated	 enforceable	 policy	 rule	 	
à	 “0	 <	 Tom’s	 input	 (Boston	 Generator	 Set-‐Point)	 <	 10MW”	
[because	 higher	 set-‐point	 will	 cause	 high	 NY	 bus	 voltage]	 	

5.	 No!	

6.	
Tom	 Actua7on	 Points	 (what	 Tom	 can	 change	 on	 the	 plant):	 	
Power	 GeneraTon	 Set-‐Point	 for	 Boston	 Generator	 	

Tom	

1.	 The	 security	 admin	 defines	 the	 high-‐level	 policies:	

Physics	 Engine	

EMS	

Logic-‐Based	 Policy	
Enforcement	

3.	 Tom:	 Set	 Boston	 Generator	 (B.G)	 Set-‐Point	 to	 12	 MW	

4.	 Is	 he	 allowed	 to	 set	 B.G	 to	 12MW?	

Figure 5.3: Physics-Aware Access Control

which actuation points may be affected by Tom’s request. Such analysis considers changes

throughout the entire power system, relying on information generated based on an information

flow analysis performed after every topology server update.

3.2 Defining policies

Consider the workflow shown in Figure 5.3. An administrator defines a high-level safety-

context plant policy, e.g., “Tom [a power operator] should not be able to cause the bus voltage

on the New York power transmission line past its capacity 100kV.” The policy is defined based

on the transmission line’s physical limitations, and exceeding the line capacity could potentially

cause a line outage, redistributing the downed line’s power through its adjacent lines [175]

followed by a catastrophic blackout.3 Intentionally or otherwise, Tom sets the Boston Generator

set-point to 12 MW. In doing so, the physical model calculates that the New York transmission

line would exceed 110 kV. The model is based on fundamental circuit laws that are dependent

on the power system’s topology, dynamically updated by the EMS topology processing server.

Now the policy enforcement engine evaluates the new set point request and upon determining

3This situation is exactly what occurred during the Aug. 2003 Northeast blackout, which caused $6 billion in
damage [54].

114

that granting this request would cause an unsafe state, denies the request, an result that is

returned to Tom.

To be practical, CPAC must automatically enforce policies without requiring the adminis-

trator to redefine them on every system topology update. CPAC eliminates the need for this

involvement through differential equation-based analysis of the EMS plant model, such that the

safety policy described above is automatically enforced based on the current system topology.

CPAC’s architecture enables policy enforcement to satisfy privacy, safety and regulatory

requirements. For instance, a privacy policy may require that some system parameters or sensor

measurements about a particular power system incident not be visible to certain operators.

Privacy is not only important for preventing the data leaks from certain operators but also to

prevent external attacker from knowing additional information which can lead to more effective

attack;as an example, the web attack against a Ukraine power plant was caused by the attackers

sending commands to open circuit breakers, creating power outage [2]. A safety policy may

forbid increasing a line’s current beyond capacity. By considering interdependencies between

policies from different contexts, CPAC evaluates the whole system to determine the allowed

actions.

3.3 Case Study: California 2011 Blackout Emulation

As a demonstration of how the multi-layered design of CPAC allows it to maintain a secure

environment, we demonstrate how CPAC could protect against a simplified emulation of the

California 2011 blackout. For simplicity, we consider an EMS with an underlying four-bus

power system (Figure 5.4a). We assume that the high-level safety and regulation-context policy

rules for CPAC’s enforcement are defined as follows:

Safety policy: Il ≤ 0.9 ·C(l) ∀l ∈ L

Regulation policy: 59Hz≤ fb ≤ 60.5Hz ∀b ∈ B

which requires current I on every transmission line l ∈ L to be below 90% of the line’s physical

capacity C, and the AC power frequency f on each bus b ∈ B to be within the government’s

mandatory NERC-CIP margins. A security administrator defining high-level policy does not

need to define low-level technical details of allowable actions for individual operators, e.g.,

115

(a) Four-Bus Power System: Normal Opera-
tion

(b) California 2011 Incident Emulation

-‐300	

-‐200	

-‐100	

0	

100	

200	

300	

400	

-‐600	 -‐400	 -‐200	 0	 200	 400	 600	

Al
ic
e'
s	 C

on
tr
ol
	 In

pu
t	

Bob's	 Control	 Input	

Policy-‐compliant	 zone	 Policy	 viola7on	 zone	

Bob’s	 policy-‐allowed	 access	 (input)	 range	

(c) Policy Region for when Relay is Closed

-‐300	

-‐200	

-‐100	

0	

100	

200	

300	

400	

-‐500	 -‐400	 -‐300	 -‐200	 -‐100	 0	 100	 200	 300	 400	 500	

Al
iic
e'
s	 C

on
tr
ol
	 In

pu
t	

Bob's	 Control	 Input	

Policy-‐compliant	 zone	 Policy	 viola7on	 zone	

Bob’s	 allowed	 ac7on	 set	 becomes	 a	 singleton	

(d) Policy Region for when Relay is Open

Figure 5.4: Case Study Four-bus Power System and the Operator’s Policy-Compliant Control
Input Subspaces

116

whether an operator should be allowed to open a particular circuit breaker given the above pol-

icy, which is also dependent on the power system’s topology and current state. CPAC extracts

EMS-enforceable low-level policy rules automatically given the defined high-level policies and

the plant topology. Were CPAC deployed, the California incident would not have occurred.

Importantly, CPAC denies the operator’s mistaken circuit breaker opening, which sparked the

blackout. By preventing this action, we prevent a large power system frequency drop in the

grid, which would violate the regulation policy. Additionally, opening the circuit breaker would

cause line current overflows (Figure 5.4b), violating the safety policy.

To further clarify CPAC’s range-based EMS-enforceable policy generation, consider the

safety policy assuming two operators, Alice and Bob, who are in charge of controlling the

power generation set-points on buses 2 and 3 respectively in Figure 5.4a. To apply their control,

the operators could either directly change the variables on EMS screens or upload controller

programs on the corresponding PLCs. CPAC receives the policy regarding the line currents,

and calculates the allowed generation set-point ranges for Alice and Bob’s access requests using

Kirchhoff’s laws shown in

Figure 5.4c, create a calculated policy-compliant region in Alice’s and Bob’s control input

sub-space (the policy compliance zone extends to the edges of the left and right lines). The

horizontal and vertical axes represent Bob’s and Alice’s one-dimensional action space, respec-

tively. Note that the policy-compliant control input range for each operator depends on the

system state caused by the other operator’s control input value. For instance, if Alice requests

a −150 write access to her control input variable on bus 2, Bob’s allowed range will be limited

to approximately [−300,300] illustrated by the bidirectional horizontal arrow in Figure 5.4c.

CPAC calculates the plant’s policy-compliant region every time the system’s state changes

since it changes for different plant states. Figure 5.4d shows the region for a different plant

topology when the circuit breaker between buses 2 and 3 is open. In Figure 5.4d, Bob’s al-

lowed input value is constrained to a single value rather than a range if Alice’s control input

falls between [280,350], i.e., Bob’s actions are constrained by Alice’s inputs. It takes approxi-

mately 150 ms to calculate the region for large-scale plants (e.g., the Polish power grid; which

we evaluate in Section 7).

117

4 Physics-Based Information Flow Analysis

CPAC leverages the underlying power system plant’s mathematical model to perform physical-

side information flow analysis. The power system is a nonlinear electric circuit, where sys-

tem parameters are correlated according to corresponding equations that represent the physics

model. Any perturbation of a particular system parameter causes updates across other parame-

ters such that all values will comply with the equations. We define the physical-side information

flow based on such inter-parameter value dependencies. For instance, changing the voltage dif-

ference on the two ends of a line with fixed resistance will cause its current update to satisfy

the V = I ·R relation. CPAC considers this to be an information flow between V and I, because

measurement of the line current reveals information about the changes in voltage difference of

the two ends.

An n-bus power system’s dynamic behavior can be represented by parameterized differen-

tial equations [89]:

ẋ = f (x,u,λ) (5.1)

where f is a continuously differentiable function representing the physical plant’s dynamic

behavior; x ∈ R 2n−1 represents the system state vector that includes the voltage magnitude and

phase angles for each bus; u ∈ R m represents the plant’s control input vector that could be

manipulated by the operators, such as generator set points; λ represents a vector of discrete

events that change the plant’s topology, and hence its continuous differential equations.

The sensor measurements are correlated with the plant state and the operator’s control in-

puts through

w = h(x,u) (5.2)

where w is the sensor measurement vector, and h is called the measurement function. CPAC’s

physical-side information flow analysis leverages the sensitivity investigation of the plant’s dif-

ferential equations given any stable point x0 and calculates the margin by which each system

parameter changes due to physical dependencies if a particular control input is applied to the

118

system. CPAC marks control input actuation points as sources, and every sensing point (mea-

sured system parameter) with change margins larger than a predefined threshold ε as the corre-

sponding information flow sinks, ignoring negligible change margins that cannot be practically

recognized due to sensor noise. CPAC uses the calculated information about sink parameters

to later enforce access control policies. For instance, an operator may be denied applying a par-

ticular control input value because she should not be allowed to impact a remote sink parameter

beyond a limit or at all based on the safety or confidentiality/privacy context policies.

CPAC determines the allowed value ranges for individual actuation points of the plant that

do not violate physics-based policy rules or sensitive parameter changes, e.g., an overloaded

transmission line (safety-context policy violation) or a confidential load disclosure (privacy-

context policy violation [127]). We call the control input values, beyond which the system

enters the policy-violating states, the boundary points. The policy boundary margin M is de-

fined as

M = |u∗−u0| (5.3)

where u∗ ∈ Rm represents a policy boundary point (vector) and u0 ∈ Rm is plant’s input at

equilibrium or stable state. CPAC uses the difference M to either allow or deny an operator’s

request for an actuation point change, i.e., requests that exceed the calculated range are denied.

CPAC performs this analysis for individual operators separately to calculate their correspond-

ing allowed actuation point value ranges.

CPAC implements the physical information flow analysis through dynamic behavior in-

spection and sensitivity analysis of the plant around Equation 5.1’s equilibrium state:

f (x0 +∆x,u0 +∆u,λ0 +∆λ)≈ f (x0,u0,λ0)+

+ fx∆x+ fu∆u+ fλ∆λ

(5.4)

First-order Taylor series expansion of Equation 5.1 around its equilibrium state is given

by Equation 5.4 which uses the power plant’s vector-valued function partial derivatives fx =

∂ f
∂x (x0,u0,λ0), fu =

∂ f
∂u (x0,u0,λ0), and fλ =

∂ f
∂λ
(x0,u0,λ0) which are nonlinear Jacobian matrices

given in Figure 4 of Section 1. x0, u0 and λ0 are values at stable or equilibrium state. Assuming

119

that fx is non-singular, we can reorder Equation 5.4 as follows

∆x =− f−1
x fu∆u− f−1

x fλ∆λ (5.5)

which formulates how the power plant’s state changes every time an operator modifies an ac-

tuation point. Equation 5.5 shows the physical-side information flow between the actuation

points and the state variables. This is useful for an operator’s write access control, where the

operator request to apply a control input and the policies are defined to prevent the system from

entering unauthorized (e.g., unsafe) states. However, actuation point-to-state vector informa-

tion flow analysis is not sufficient for read access requests, where the operator requests to see

a particular sensor measurement, e.g., transmission line current, that is often not the same as

a state variable, i.e., power bus voltage magnitude and phase angles. To support read access

requests, CPAC implements actuation point-to-sensor measurement information flow analysis

to determine how each sensor measurement is affected as the result of a control input applica-

tion anywhere in the system. Following Equation 5.2’s first-order Taylor expansion around its

equlibrium (x0,u0), gives us

∆w = [wu−wx f−1
x fu]∆u (5.6)

where the changes in measurements ∆w that the operators could have read access request for

are calculated as the result of any change in the system ∆u. The Jacobian matrices wu, wx and

fx are in Figure 4 of Section 1. For more accuracy, second-order Taylor expansion is given in

Section 1. These Taylor series expansions around the equilibrium points are used by the system

to determine boundary points after perturbing around its equilibrium points and the physics

equations are used to determine the information flow between different objects or parameters.

5 Logical Policy Enforcement

A4 key of the EMS is the HMI used by operators to facilitate checking process states, system

variables, and control system settings within the physical plant devices. Most software still

relies on user name and password input as the sole method of authentication and authorization.

4This work was completely done by Dave (Jing) Tian from University of Florida and added in my thesis to
understand the complete picture of the solution.

120

Control logic
instrumented

Dom0

Symbolic
Execution Unit

CPAC PLC

CPAC EMS

Physical
Engine

(Matpower)

Policy Engine
(Prolog)

Policy
DB

Access Control
CPAC HMI

Figure 5.5: The CPAC EMS/PLC architecture.

Some systems contain elements of role based access control (RBAC) [164], where certain roles

are limited to certain operations through the EMS. However, RBAC requires administrators to

examine all available operations provided by the EMS, assuming a static policy. Consider a

trivial case where Alice cannot view the voltage or current value of a generator Gi, based on

a policy that Alice should not know the working status of that generator. Alice can still learn

this information by checking the temperature of Gi. These policies become more complicated

when the interaction of different operations cannot be detected until run-time. Additionally,

support for storing detailed provenance [38] of applications is lacking. Most EMS software

provides some logging abilities to record user activity, however, these logs are mainly designed

for postmortem analysis rather than policy enforcement, where incorporating provenance could

allow additional fine-grained policy controls. For instance, we may want to add restrictions

dynamically to operators who tried and failed certain operations over a time window.

5.1 Context-Aware Policy Control

Policy-based access control has been well studied and solutions including MAC, RBAC and

capabilities have been applied into commodity computer systems [214, 172, 12]. There are

also policy specification languages, such as SPL (Security Policy Language) [160] and RDL

(Role Definition Language) [125]. Unfortunately, as we have mentioned above, none of these

fits perfectly into the requirements and setting of cyber-physical systems (CPS), which requires,

121

we argue:

• Information flow control: Unlike normal policy control systems, whose target are pro-

cesses, CPS also need to control the information flow of a task/process, guaranteeing no

sensitive information leakage5.

• Context awareness: Not only user names, but also time epochs, locations (e.g., IP ad-

dresses) and detection of events (e.g., voltage outages) are needed to make policies more

useful and practical.

• Provenance-awareness: All operations should be logged to allow the use of provenance

data to support policies based on user historical behaviors.

To support finer-grained policy, the CPAC EMS consists of a general Modbus [9] transport

layer from pvbrowser [11], a HMI access control terminal, the physics engine, the symbolic

execution unit, and the policy engine to enforce the policy control and provide provenance sup-

port as shown in Figure 5.5. The transport layer (not shown in the figure) communicates with

the PLC via the Modbus protocol (widely supported by most PLCs) over TCP, since we aim for

the EMS to be independent of the PLC hardware, while the PLC is running instrumented con-

trol logic. The HMI within the EMS provides basic user authentication and accepts operation

requests. Both the physical engine and symbolic execution unit provide input for the policy en-

gine, which attempts to authorize operational requests based on policies and adds provenance

meta data to these requests for future decision making.

5.2 Policy layers of CPAC

We define three further requirements for a policy control implementation: simplicity of writing

policies, correct and potentially formally verifiable policy control logic, and low operational

overhead. Under such considerations, we implemented our policy engine using Prolog6, trans-

forming a policy enforcement query into a logic reasoning process. There are four layers in the

5Thanks to the symbolic execution unit on the EMS side, and the nature of PLC control logic (less branches
comparing to normal x86 binary), taint tracking per task is possible. However, this does not mean the adversary
could not learn anything from the running program, e.g., via timing side channels.

6Prolog code can be compiled with the native C/C++ code to generate the binary executable, which runs much
faster than its interpretive mode.

122

policy engine, each in charge of a different policy enforcement task. Each layer is evaluated in

order until a layer results in a check failure or there are no more layers to check.

1. Physical Layer When CPAC EMS receives an operation permission request from an

EMS, it determines whether an operation is physically possible using the analysis de-

scribed in the previous section. For example, the temperature of CPU should be only

readable but not writable.

2. MAC Layer This acts as a capability system enforcing which users can do what oper-

ations on which variables on a PLC. For instance, Alice is able to read the voltage, the

current and the temperature of generator 1, but only to write/change the voltage value.

This and the physical layer implement the security features most EMS software share.

However, unlike traditional implementations, CPAC counts on logic rules as policies and

reasoning as permission checking.

3. Taint Analysis Layer This layer uses taint tracking information from the PLC to find

information leakage missed by the two previous layers. A trivial example may be that

since Bob is not allowed to read the voltage value, he should not be allowed to read the

current or temperature either. The taint analysis layer supports both the predefined static

taint information (which can be derived from physical modeling), and dynamic tainting

provided by the symbolic execution unit and the taint tracking enabled PLC (Section 6

gives more details).

4. Context/Provenance-Aware Layer This layer leverages the time, locations, events and

provenance to check for permissions (e.g., operations are only allowed during the day

from certain IP address for Alice; Bob is not allowed to access variables if a generator

fails). As with the above layers, all policies are written in logic rules and facts, and the

permissions check is a matter of querying or reasoning.

Both the physical and MAC layers generate static policies, which check for the legitimacy

of operations. Passing these two layers proves the validity of an operation request from the

traditional access control point of view. The next two layers then try to refute the request using

the dynamic tainting information and current running context. Note that CPAC does not try

123

to blacklist all possible illegal operations, number of which may be infinite. Instead, CPAC

enables system administrators to retrospect a legitimate operation request in a rich context.

5.3 Formal description of CPAC

To grant permission for an operation, the EMS submits a query to the logic rule cpac_granted,

which is defined with seven arguments {T ,L ,U,I ,N ,W ,V }, representing timestamps, loca-

tions, users, operations, PLC variable names, new values (if written) and the current value of

all the PLC variables respectively, as shown below. Note that V could be viewed as a global

variable, whose value is visible to all rules in the Prolog engine, even though it may not appear

in each logic rule. It represents values of all variables available on the PLC when the query is

submitted.

cpac_granted(T ,L ,U,I ,N ,W ,V)← physical_granted(N ,I ,W)∧

mac_granted(U,I ,N)∧ taint_granted(U,I ,N)∧ context_granted(T ,L ,U,I ,N ,W).

physical_granted grants the permission if the I/O operation is read. Otherwise, it checks if

the variable in PLC is writable and if the new value to be written is in the legal range. Note

that this layer tries to check the permission from the point of PLC’s constrains without con-

sidering any other policies. The system administrator is responsible for providing legal ranges

for all variables based on specifications, and writing them in the format of Prolog facts (e.g.,

svi(voltage,0,10,rw) shows the name of the variable, the minimum value, the maximum value,

and the possible I/O operations), which can be used by the in_range rule (and other rules) di-

rectly.

physical_granted(N ,I ,W)← read(I)∨ (write(I)∧writable(N)∧ in_range(W)).

mac_granted grants the I/O operation based on the user’s capabilities. For all the variables

exported by the PLC, the system administrator should assign different permissions to different

users. This layer implements the general access control applied by most EMS systems. Within

the layered access control structure in CPAC, physical_granted comes first. This means even

if the operation would be allowed by mac_granted through the user access control policy, it

may be denied based on rules defined by the physics layer. The layered approach in CPAC

124

thus provides more modular access policies. To add a new user or modify existing policies, the

system administrator only needs to create or modify the corresponding Prolog facts, such as

cap_read(bob,[current]) (giving bob the permission to read variable current (only)).

mac_granted(U,I ,N)← (read(I)∧ cap_read(U,N))∨ (write(I)∧ cap_write(U,N)).

taint_granted determines whether the target variable could be tainted by some other variables

not visible to this user, and rejects the operation accordingly to avoid data leakage. CPAC sup-

ports both taint analysis by writing the static taint rules directly and the dynamic taint tracking

provided by the symbolic execution unit and PLC during the run time. This layer uncovers

missing policies not easily found in the traditional access control implementations. Z stands

for all the variables visible to the EMS side (same as the N used in cpac_granted, such as the

temperature and current). Both the static and dynamic rules share similar Prolog construction,

taint_X(z1, z2), meaning variable z1 tainted by variable z2. As shown below, if variable z2

cannot be accessed by this user, the request for accessing variable z1 would be rejected.

taint_granted(U,I ,N)←∀z ∈ Z :

((¬taint_static(N ,I ,z))∨ (taint_static(N ,I ,z)∧ cap_read(U,z)))∧

((¬taint_dynamic(N ,I ,z))∨ (taint_dynamic(N ,I ,z)∧ cap_read(U,z))).

context_granted leverages contextual information to help system administrators write polices

fitting into their specific domains, (e.g., the power grid). To simplify the rule/policy writings,

we introduce an event-driven reasoning framework and fix the default action of policies to be

operation blocking. The final permission granting is then the conjunction of negations of all

the blocking rules, which are context_denied_X, where X is an integer used to differentiate all

these Prolog rules.

context_granted(T ,L ,U,I ,N ,W)←

(¬context_denied_0(T ,L ,U,I ,N ,W))∧ (¬context_denied_1(T ,L ,U,I ,N ,W))∧ (...).

All blocking rules are event-driven and follow the same construction. Note that all events

should be predefined by the system administrator based on domain knowledge. One simple

125

example is event_g0_failure(V) :- g0_power=<0.7. With event E defined, the blocking rule

is defined as below. Given user U’s access request on variable N, if event E happens, and the

corresponding rule context_policy_block contains N in its blocking list B, the context layer will

deny the request.

context_denied_X(T ,L ,U,I ,N ,W)←

event_E ∧ contex_policy_block(T ,L ,E ,U,B)∧member(N,B).

Below we demonstrate a real code snippet within CPAC. We choose a complicated policy

to demonstrate the ease of policy writing once the corresponding event is predefined by the

system administrator. This rule states that for any condition, once generator 0 (g0) fails, the

temperature value of that generator should not be visible to the operator ‘dave’8.

context_policy_block(_,_,g0_failure,dave,[temp0]).

context_denied_0(T,L,U,I,N,W) :-

event_g0_failure(_),

context_policy_block(_,_,g0_failure,U,B),

member(N,B).

To support provenance both for forensic analysis and run-time provenance-based policy

enforcement (e.g., an event related with user’s previous operation history), CPAC records each

operation request from the EMS side, either granted or denied, both in a standalone provenance

logging file and the Prolog engine as a ’fact’, using the unified format:

provenance(T ,L ,U,I ,N ,W ,R ,V).

Here R stands for the final result for this operation request (granted (g) or denied (d)) and W is

reused to hold the return value for read operations, as well as the new value for write operations.

Other variables are the same as the ones in the rule cpac_granted. A concrete example is shown

below, where user dave’s request to read variable temp0 from IP address 10.10.10.10 at time

2015071411550 was granted, with all other variable values at that time dumped in the list.

7Note that in this Prolog rule, argument V is not used at all, since this event call be determined solely by checking
the power of the generator. Complex events can have multiple arguments and take full usage of them.

8In Prolog, ‘_’ is wildcard, meaning that the value of that variable does not matter.

126

provenance(20150714115507, 10-10-10-10, dave, r,

temp0, 3000, g, [3000,4000,5,40,38,17,15]).

With more provenance added into the CPAC EMS Prolog engine, making provenance-aware

polices is possible. For example, users with more than 10 denials within an hour could be

blocked, as the user account may have been compromised. Also any unseen IP address used by

a certain user could be blocked, which actually implements a naive intrusion detection mecha-

nism. Since all provenance is also saved into a standalone logging file, this file can be loaded

into the Prolog engine every time the EMS is restarted. With the help of the Prolog inter-

preter, one could submit queries, such as “who read the variable temp0 in the past but was

denied” (provenance(_,_,X,r,temp0,_,d,_).), and Prolog would find all users satisfying

the query.

5.4 Trade-offs

Besides all the desired requirements of implementing a policy enforcement component men-

tioned before, one of the biggest concerns using a logic programming language to write policies

is how easy it would be for system administrators to use. As shown before, the logic reasoning

framework is already provided, as well as some sample constructions. Other than the definition

of events, which gets complicated when the event itself is complex, CPAC EMS expects only

simple inputs from users, such as the range of certain variable, and permissions for certain user.

In general, we believe the advantages of using Prolog to implement the policy control outweigh

the impediment of writing simple Prolog facts.

Another concern comes from the scalability issue when writing policies for real-world com-

plex systems, e.g., a nation-wide power grid system. As we will show in Section 7, the final

Prolog policy file used to simulate the Polish power grid containing more than 2700 buses

is almost 1 MB, with 25K lines, among which, more than 24K lines are simple Prolog facts

mentioned before and generated by a Python script. While most policies can be generated au-

tomatically given the system specification, the definitions of events used by the context-aware

policies need human intervention with specific domain knowledge. As shown in Figure 2, writ-

ing in Prolog is straightforward and does not provide extra obstacles comparing to writing in

127

other policy languages9.

6 Device Level Information Flow

CPAC deploys its dynamic information flow analysis through a lightweight instrumentation

of the VxWorks real-time operating system, which is widely used within industrial control

systems (40% of the market share [14]) and mission-critical settings, such as the Mars Curiosity

rover [116]. To support such an environment, CPAC must meet two requirements: i) very low

run-time performance overhead to prevent missed real-time deadlines for PLC-level workflows;

and ii) very high taint analysis accuracy to prevent possibly fatal safety hazards.

Traditional information flow techniques for x86 architectures using byte-by-byte data flow

tracking solutions cannot be applied due to their unacceptable run-time execution slowdown

(e.g., 6X by BitBlaze [181]). Several proposals considered how to speed up dynamic taint

analysis on resource-constrained devices [67] and how to extract semantic information [8].

While useful for desktop and smartphone applications, these solutions will not meet real-time

deadlines (e.g., 15% overhead by [67]). As an alternative to dynamic taint analysis, static tech-

niques remove the run-time performance problem. However, the strict accuracy requirements

for control system applications limit their practicality significantly due to their well-known

high false positive rates. A false positive taint analysis outcome in CPAC could potentially

lead to denying an operator’s legitimate access request to take care of an emergency situa-

tion. Consequently, neither dynamic nor static techniques by themselves can address both the

above-mentioned control system requirements completely.

We use a hybrid approach with CPAC, leveraging specific features of the PLC execution

logic and VxWorks architecture to ensure high taint analysis accuracy and minimize opera-

tional intrusiveness. In practice, PLC controller programs include far fewer branch instructions

than x86 binaries. This facilitates comprehensive offline analysis of the controller before its

launch time due to less path explosion. CPAC implements the PLC code symbolic execution

as discussed in [128] on its EMS-side modules. CPAC uses the symbolic values to obtain the

9In reality, such a large-scale system is usually divided into multiple sub- areas, which are maintained by differ-
ent system administrators. A global policy can be defined using predefined local events from sub areas rather than
dealing with thousands of variables directly.

128

C/C++ IEC 61131IEC 61131 IEC 61131

SVI
V

xW
o

rk
s

Ta
sk

s

V
xW

o
rk

s
Ta

sk
s

V
xW

o
rk

s
Ta

sk
s

V
xW

o
rk

s
Ta

sk
s

Domain 0 SW 1 SW 2 SW N

Instrumented control logic

Standard
Variable
Interface

VxWorks

Figure 5.6: Domain 0 along with instrumented control logic

taint information for all program variables including the outputs, depending on which input

values every program variable is tainted by. It creates a taint look-up table and uses it to speed

up its run-time performance remarkably. Moreover, CPAC’s run-time modules on the PLC do

not have to implement full dynamic taint analysis, but instead just profile only the execution

paths taken by the control logic. The small number of branch instructions in typical control

logic that need profiling further motivates CPAC’s approach. The EMS receives the execution

path profiles and consults the look-up table to determine the taint information needed for the

access policy enforcement.

Figure 5.6 shows CPAC’s device-level module on a Bachmann MX231 controller running

VxWorks. The main module (so-called Domain 0) is written in C/C++ and inserted into the

PLC’s kernel as a .m binary file. VxWorks allows several control logic modules to run simulta-

neously on the PLC. Before every control logic is uploaded into the PLC by the EMS, CPAC

instruments the program with a lightweight inline reference monitor using the PLC instructions

(IEC61131 [109]) to profile the control flow. Domain 0 dynamically collects control flow in-

formation from the running controller programs through the VxWorks standard variable and

module interfaces that enable on-device remote procedure calls [109]. It then transfers the in-

formation to EMS modules over Modbus to perform taint analysis and policy enforcement. To

minimize overhead, we only collect control flow information on demand, i.e., only if there is a

corresponding access request from the EMS.

129

7 Evaluations

We evaluated CPAC on two power plants, the four-bus system (Figure 5.4a) and Poland’s

publicly available power grid with over 2,700 buses (>2,800 transmission lines) since other

networks are not publicly available. We extended the open source pvbrowser v4.7.9 [11] EMS

(2-core Intel 2.40GHz; 4GB memory) with our logic-based access control engine. CPAC’s

power system analysis module uses MatPower [225]. The PLC-based taint analysis and the

symbolic execution implementations in CPAC are specifically deployed for the Wind River

VxWorks operating system v5.5 running on a Bachmann MX231-Controller PLC with a GIO

212 IO modules. We then designed a set of experiments to verify whether CPAC can be useful

and practical in real-world scenarios by answering the following questions empirically:

1. How accurately would CPAC prevent past real-world control system and power grid

severe incidents?

2. How efficiently does CPAC perform the PLC-based taint-analysis, physical-side infor-

mation flow analysis, and EMS-side logic-based policy enforcement?

3. How well does CPAC scale up for large-scale real-world control systems and power grid

infrastructures?

7.1 Case Studies

To answer these questions, we validated CPAC’s functionality and performance across six

use cases. The first three scenarios are based on the four-bus power system; they are derived

based on our practical experience and interactions with power utilities to highlight CPAC’s

capabilities in a typical power grid infrastructure. We assume there are two operators: Bob, a

control operator on Bus 2, and Alice, a maintenance operator for the home area on the grid.

Figure 5.4a shows the power system and its two areas separated by a line (the left area is the

home area). The following scenarios list the policies for Alice and Bob in different contexts.

Case A is below for intuition and the other two scenarios on four-bus power systems (case B

and case C) are described in Section 1, while we directly discuss the real world scenarios which

occurred in the past.

Case A: Read access control for crucial plant values. Alice, as the maintenance operator,

130

0	

200	

400	

600	

0	 200	 400	 600	 800	 1000	 1200	 1400	 1600	 1800	 2000	 2200	 2400	 2600	 2800	

Li
ne

	 F
lo
w
s	 (
%
)	

Poland	 Power	 Grid	 Transmission	 Line	

physics-‐aware	 analysis	 of	 the	 error	 	 Before	 the	 human	 error	

Figure 5.7: The system capacity overload state in case E (Section 7.1). Note that one line has
been overloaded to 661% of it allowable current, a situation that CPAC would prevent from
reaching.

requests to see the real-time transient power output of the generator on Bus 2. The value

represents a PLC variable within a droop control logic [57] that controls the generator’s power

output through its governor.

Source of incident: A lack of enforcing confidentiality over sensitive control data.

Required access control policy: Only control operators are allowed to see sensitive plant control

values (defined as generators’ real-time frequencies).

Effects of CPAC deployment: CPAC denies Alice’s request due to the potential for sensitive

data disclosure. CPAC’s PLC-based information flow analysis marks the target variable tainted

by the incoming frequency measurements, which is not readable by Alice. The droop control

correlates generator frequency and output power such that knowledge of one value could be

used to infer the other.

The next three scenarios are based on real-world power grid incidents that had large-scale

effects on millions of power grid customers, some of which were international in scope. Though

N-1 contingency was enforced, due to cascading failures these events occurred. We evaluate

how CPAC could have prevented these incidents by simulating their effects on the real-world

model of Poland’s entire power grid interconnect, consisting of over 2,700 buses. This will

demonstrate CPAC’s scalability to national-scale grid environments.

Case D: Southwest 2011 blackout. The Southwest (California) blackout affected 7M people in

California, Arizona, and Mexico, which we describe in detail in Section 3.3. The reports from

Federal energy regulatory commission (FERC) showed that “the system was not in an NERC-

CIP N-1 compliant state. Utilities are required to operate the system so that the malfunction of

one component can not cause instability, separation, or cascading” [4].

Source of incident: Human error from an operator violating compliance with NERC-CIP N-1

131

80	
90	
100	
110	
120	
130	

Normal	 Opera1on	 A4er	 the	 Operator's	 Ac1on	
(Bus	 18	 Relay	 Open)	

Li
ne

	 C
ur
en

t	 (
%
)	

System	 State	

Figure 5.8: Southwest Blackout Prevention using CPAC. On evaluating the effects of line
current on bus 18 after opening the relay. CPAC determines line would be overloaded and
prevents the action.

contingency regulations.

Required access control policy: No operator may issue a control command that puts the grid in

a state that violates the CIP N-1 requirements.

Effects of CPAC deployment: Figure 5.8 shows the line current on bus 18 before and after the

operator opened a relay on a different line. CPAC speculatively calculates the potential global

impact of the operator’s action and denies the action, as it would lead to an unacceptable current

flow on the line that violates the NERC-CIP N-1 requirements.

Case E: Florida 2008 grid blackout. The Florida Power and Light (FPL) Company reported

a widespread grid blackout occurring at the Flagami substation in west Miami as a field en-

gineer was diagnosing a switch that had malfunctioned. Contrary to standard procedures, the

engineer disabled two levels of relay protection. Because both levels of protection had been

removed, the arc that resulted from the fault caused an outage that spread through the grid as

power plants and transmission lines tripped off-line to protect themselves. “Standard proce-

dures [unenforced] do not permit the simultaneous removal of both levels of protection,” the

utility wrote [7].

Source of incident: Human error from an operator disabling internal redundancy protections,

causing a maintenance operation to disrupt the grid’s real-time operation.

Required access control policy: Operators must not remove both levels of relay protection si-

multaneously.

Effects of CPAC deployment: CPAC denied the operator’s second protection removal request

132

Opened Operator may open Operator may not open

Figure 5.9: Columbian Blackout Prevention via CPAC. On evaluating the effects of opening
the critical relays after few relays are opened. CPAC determines line would be overloaded and
prevents the action.

due to the policy. Additionally, it overloads the most of the power components (Figure 5.7).

Bus #2,392 is overloaded to 661%, which would quickly cause a line outage and damage neigh-

boring assets due to the extremely high current.

Case F: Colombia 2008 total blackout. Colombia suffered a total blackout affecting 25 mil-

lion people due to human error at the 230 KV Torca substation. An operator at the substation

did not follow the correct (but unenforced) sequence of maneuvers when transferring circuits

from one busbar to another within a substation before a scheduled maintenance task. The wrong

maneuver overloaded the inter-bus breaker, and the breaker malfunction de-energized the whole

Torca substation, igniting a cascade of events that brought down the entire Colombian electric

power system.

Source of incident: Human error from an operator not correctly following substation inter-

locking procedures, and lack of enforcement to ensure these procedures are followed.

Required access control policy: The maintenance operator’s sequence of busbar interlocking

actions must not overload any inter-bus breaker.

Effects of CPAC deployment: CPAC denied the operator’s action request as it violates the

interlocking requirements. Figure 5.9 shows the substation-level busbar configuration where

133

the top and bottom busbars are connected to neighboring substations, and should never be dis-

connected from each other. The figures shows the set of already opened breakers, the ones

that the operators could open, and the breakers that are prevented from opening, resulting in an

operator deny action by CPAC as they separate the two main busbars affecting the electricity

grid globally.

7.2 Performance

We measured CPAC’s performance for all six scenarios. Table 5.1 shows the Prolog engine’s

execution time for scenarios a-c averaged over 20 runs. CPAC takes under 0.3 ms to process

the access request and render a policy decision. This quick processing time is due in large part

to our optimized implementation, where we compiled the logic into assembly using the gplc

compiler. Table 5.2 shows the corresponding overhead for the domain 0 to launch taint tracking

within the PLC. Most taint information collection could be done within 100 ms. As domain 0

is implemented as a standalone kernel module with the lowest priority, we have minimized

the impact of domain 0 on other PLC tasks. On the EMS side, there are 30 power system

variables in scenarios a-c that an operator may be able to see based on policy. As Table 5.3

shows, CPAC’s EMS modules completes all these scenarios within 40 ms. Given the general

EMS OS overhead and transmission delays (e.g., the 5 minute time requirements by NERC for

EMS-side contingency analyses [143]), CPAC’s overhead will be minimal to operators. Note

that CPAC’s EMS modules include the physics engine, the Modbus transport library and the

Prolog policy engine.

We measured scenarios d-f using the topology of the entire Polish power system, compris-

ing over 2,700 buses. Table 5.4 shows the general overhead of CPAC’s physics engine with

these real-world cases. The physics engine is able to finish the forward analysis within approx-

imately 100 ms. The result was computed using MATLAB and will likely be even faster if the

engine is developed in C/C++. Table 5.5 shows the overhead of the Prolog policy engine, rea-

soning about 1,000 simultaneous variables. For the three cases, the Prolog engine completed

policy analysis in approximately 15 ms, due to our compilation of logic into native assembly.

The overhead of the full analysis (without the overhead of user operations and network trans-

mission delay) is within 150 ms (100 ms from physics engine using MATLAB, 15 ms from

134

Table 5.1: Prolog Micro-Benchmark (us).

Scenario Min Avg Max Mdev
(a) 125.0 154.9 205.0 21.1
(b) 147.0 186.5 235.0 21.9
(c) 176.0 214.2 280.0 29.8

Table 5.2: Domain 0 and instrumented taint (ms).

Scenario Min Avg Max Mdev
(a) 90.909 96.871 100.200 3.974
(b) 94.787 97.711 99.338 1.949
(c) 90.909 96.693 99.668 3.856

Table 5.3: EMS Macro-Benchmark (ms).

Scenario Min Avg Max Mdev
(a) 30.961 31.376 33.991 0.600
(b) 30.933 31.571 32.976 0.601
(c) 29.979 30.442 32.994 0.601

Prolog policy engine, 30 ms from EMS).

7.3 Scalability: NERC-CIP N-x Compliance

The state-of-the-art NERC-CIP v5 standards10 protect the power grids against single compo-

nent malfunctions. However, extensive research [47] has shown the insufficiency of single

failure consideration because of increasing complexity of existing smart grids, and more impor-

tantly, the possibility of cyber attacks with (automated) subsequent component exploitations.

Up to now, guaranteed N−x compliance has not been scalable or feasible in practice. The main

reason is that, to fully support N− x contingencies, existing systems must analyze

x

∑
i=1

(
N
i

)
= N +

N(N−1)
2

+ · · ·+ N!
x!(N− x)!

(5.7)

different contingencies that each require independent full solution of the power system. Con-

tinuing along these lines, one could show that for k simultaneous outages, O(Nx+1) power flow

10Available at http://www.nerc.com/pa/CI/Pages/Transition-Program.aspx

http://www.nerc.com/pa/CI/Pages/Transition-Program.aspx

135

Table 5.4: Physics engine Macro-Benchmark (ms).

Scenario Min Avg Max Mdev
(d) 102.048 102.945 104.413 0.653
(e) 100.982 101.571 102.4825 0.644
(f) 97.626 98.116 98.886 0.285

Table 5.5: Prolog Macro-Benchmark (ms).

Scenario Min Avg Max Mdev
(d) 8.000 14.750 19.000 2.175
(e) 8.000 14.600 17.000 2.080
(f) 8.000 15.250 20.000 1.600

solutions11 are required to process the contingency list. For practical power systems, the num-

ber of lines tends to scale linearly with the number of buses B in the system (N ∈ [B,1.5 ·B]).

N − x compliance thus requires O(Bx+1) power flow solutions. In the Polish system, where

B = 2,746, N − 2 and N − 3 compliance require > 3.7M and > 3.4B contingency consid-

erations, respectively. Figure 5.10 shows the results for different number of contingencies.

Each contingency takes approximately 2.4 seconds to complete, and power utilities mostly run

contingency analysis procedures every 5 minutes. Consequently, traditional methods do not

scale up to existing strict requirements and complex grid infrastructures. Several recent efforts

attempt to provide N − 2 contingency analysis support [56, 226]; however, they are not ex-

haustive, and instead selectively choose and analyze particular contingencies. Consequently,

the previous work may miss a contingency that may occur in practice, resulting in incorrect

NERC-CIP compliance assurance. Additionally, they do not consider multiple (more than two)

subsets of contingencies, i.e., they miss a combination of small contingencies that collectively

contribute to a large-scale power grid blackout. None of the traditional solutions can handle this

intractable search space. CPAC takes an alternative approach that enables N− x contingency

analysis even in large-scale systems. Traditional contingency analysis techniques are offline,

and need to complete their analysis before any incident occurs or is about to happen. CPAC’s

policy enforcement framework instead takes a run-time approach analyzing any sequence of

incidents before it determines whether they violate requirements. In case of a violation, CPAC

11Intuitively, the time complexity of
(N

i
)

is O(Ni), and the geometric series as the result of Equation 5.7 grows
with the order to O(Nx+1).

136

1	
1000	

1000000	
1E+09	
1E+12	
1E+15	
1E+18	
1E+21	

1	 2	 3	 4	 5	 6	 7	

#C
om

bi
na

)o
ns
	 to

	 A
na

ly
ze
	

#Con)ngencies	

Figure 5.10: N-x Contingency Analysis Complexity

denies the request and prevents the system from entering an unsafe state.

8 Related Work

Control system safety. Stouffer et al. [187] present a series of NIST guideline security archi-

tectures for the industrial control systems that cover supervisory control and data acquisition

systems, distributed control systems, and PLCs. Such guidelines are also used in the energy

industry [203, 140]. It has, however, been argued that compliance with these standards can

lead to a false sense of security [212, 154]. There have also been efforts to build novel security

mechanisms for control systems. Mohan et al. [133] introduced a monitor that dynamically

checks plant behavior safety. A similar approach using model based intrusion detection was

proposed in [49]. Goble [86] introduce mathematical analysis techniques to quantitatively eval-

uate aspects of a control system such as safety and reliability, including PLC devices. However,

the proposed solution focuses mainly on accidental failures and does not investigate malicious

actions.

Access control. Most of the control systems, nowadays, rely on network access control [13],

and host-based user authentication to protect against unauthorized plant monitoring and control

activities. Additionally, PLC and HMI vendors themselves have included some rudimentary

security measures into their solutions. Based on market data by Schwartz et al.[167], we stud-

ied the security measures used by PLCs accounting for 74% of market share. This included

137

PLCs from Siemens (31%), Rockwell (22%), Mitsubishi Electric (13%), and Schneider Elec-

tric (8%). We found that all four vendors use only password authorization, typically with a

single privilege level. Furthermore, password authentication measure can be disabled in all

four systems. Recently, more access control capabilities have been added to HMI engineering

software. For instance, certain Siemens systems, e.g., SIMATIC STEP 7 TIA Portal [31] use

client-side authentication for individual IDE projects. Additionally, recent device fingerprint-

ing mechanisms (e.g., [74]) facilitate deployment of higher level access control functionalities

such as CPAC in control systems. Almost none of the existing control system access control

solutions take into consideration the physical dynamics of the plant while defining or enforc-

ing the policies. This allows the attacker to completely bypass authentication by exploiting

the physical system’s dynamics and inter-component interdependencies to disclose sensitive

measurements and manipulate critical plant actuation points.

Information flow analysis. Many existing solutions have proposed information flow con-

trol [222, 205] and dynamic taint analyzers [37] for general-purpose computing systems, smart-

phones [67] and embedded devices [221]. However, they have almost never been used in real-

world control systems, because of i) their high run-time performance overheads limiting their

deployability for safety-critical real-time settings and ii) insufficient accuracy due to fully ig-

noring the physical-side information flows. Existing control system data historians [76] within

energy management systems [10] provide a bulk databases-level offline information flow con-

trol between large power system areas (control centers). Such coarse-grained solutions i) do not

support dynamic and/or fine-grained information flow control; ii) often result in inflexible ar-

chitectures, i.e., too permissive (allow data exchange between two control centers) or restrictive

(no database exchange allowed); and iv) completely miss the physical dependencies between

various database entries within and across the control centers.

9 Conclusions

We present CPAC, a cyber-physical access control solution to protect industrial control systems

against operation mistakes and insider attacks. CPAC implements lightweight on-device and

mathematically sound physical-side information flow analyses to maintain a complete system

138

view. It uses physical system model, information flow tracking, and logic-based context-aware

policies to stop operations which could harm the whole system or leak sensitive information

to malicious insiders. Our experimental results with CPAC’s working prototype on Bachmann

PLCs and EMS servers show that CPAC can terminate several past real control system incidents

and perform N− x contingency analysis with run-time performance overhead of only 150 ms.

139

Chapter 6

TRUSTED INTEGRITY VERIFIER FOR ADDITIVE

MANUFACTURING

1 Introduction

Additive Manufacturing (AM) is gaining popularity in critical manufacturing such as aerospace

and medical industries. General Electrical (GE), SpaceX, Airbus, and Naval Air Systems Com-

mand (NAVAIR) are all manufacturing some of the critical components used in aircraft by AM

[53, 75, 138, 93]. Oak Ridge National Laboratory’s Manufacturing Demonstration Facility cre-

ated submersible hull manufactured using AM for defense sector [106]. Along with aerospace

and submarines, medical industries is also using AM for manufacturing human tissue, organs,

implants, customized prosthetics, and anatomical models [206].

STL files describe the geometry of objects to be printed and are the standard geometry

exchange files in AM. As shown in Figure 6.1, the geometry of an object to be printed can be

designed by a variety of 3D modeling software packages and the object can be printed by a

variety of 3D printing techniques, such as Fused Deposition Modeling (FDM), Selective Laser

Sintering (SLS), PolyJet, StereoLithography (SLA), Digital Light Processing (DLP), and Direct

Ink Write (DIW). STL files are the common link between 3D modeling software packages and

AM systems, and hence are the most critical elements in AM. Since STL files are one of the

most critical elements in AM pipeline, we focus on defending against attacks on structural

integrity by detecting the malicious features or defects in the STL files before they are printed.

As with any cyber-physical system, AM systems are subject to cyber-attacks [95, 180, 218,

151]. The most significant attacks attempt to compromise the structural integrity of functional

objects. The compromise of structural integrity refers to the inability of functional objects

to maintain their structural attributes during their normal operation whereas appearing normal

during inspection or quality control. The attacks compromising the structural integrity could

140

Solid

3D Modeling
Software Packages

AM Techniques
Compromised

Object

AutoCAD

CATIA

Solidworks

NX

Solid Edge

STLSTL

Damage &
Loss of Life

FDM

SLS

PolyJet

SLA/DLP

DIW

Compromised
STL File

Inspection

Figure 6.1: Additive manufacturing process and location of STL files in the process. Compro-
mised STL file leads to failure of printed object.

damage the systems that uses these printed objects physically and be catastrophic. Due to the

serious consequences and potential risks of such attacks, it is necessary to develop techniques

to defend against such attacks.

Strum et al. showed that inserted voids could evade the inspection of unsuspicious AM op-

erators [190], and Zeltmann et al. showed that sub-millimeter scale defects were undetectable

by ultrasonic inspection [223]. Belikovetsky et al. demonstrated attacks could be accomplished

by just inserting defective voids into STL files [29]. By adding voids to the critical locations of

a propeller, they were able to crash a drone flying mid-air.

There are recently proposed mechanisms to protect 3D printers and their controllers [27].

Most of the 3D printing service providers such as Shapeways [171], 3D Systems [15], and

i.materialise [103] have analysis process to determine the printability of the objects. The tra-

ditional software and network security mechanisms focuses on protecting against any cyber

attacks on the printer’s operating system, firmware and inputs of the printer (STL design) that

lead to exploits in the printer.

However, these kind of security mechanisms fail to detect new types of structural integrity

attacks[190, 223, 29] on the design files that impact the system where the printed objects are

being used. Also, there has been no comprehensive automated solution to detect such attacks

other than educating AM operators on potential risks of cyber-attacks in AM systems.

141

To address the problem, we present a framework called Trusted Integrity Verifier (TIV) in

this paper. First, TIV verifies the design’s shape. Second, TIV searches the design for malicious

features and finally verifies if the design printed when being used in critical systems will violate

the safety operating conditions. In the final step, the numerical method can verify if the size

of the object matches the desired system and if the printed object can withstand the required

loading conditions to operate normally during its functional state.

Our contributions in this paper are as follows:

• We developed a classifier to verify the STL file’s geometry for object printed to be the

intended object.

• We leverage a computer vision technique (flood filling) to localize and detect any mali-

cious features present that compromise the structural integrity of the STL files.

• We used numerical analysis methods (Finite Element Analysis) to distinguish between

the malicious features and the legitimate design features through calculating the mechan-

ical stress acting on the object during its normal operation.

• We performed an extensive empirical study to validate TIV’s performance and scalability

on a large real-world STL design file dataset (16,000 designs).

Organization. In Section 2, we briefly explain background information that is necessary to

understand technical details of TIV, structural integrity, and attacks on STL files. In Section 4,

we present an overview of the TIV framework and the threat model. We present the threat

model in Section 3 and overview of the system in Section 4. We present the object classifier

to verify the geometrical shape of the object in Section 5, details of the suspicious feature

detection module in Section 6 and malicious feature verification in Section 7. In Section 8, we

provide verification results on 16,000 STL files. In Section 9, we review related work in the

literature. Finally, we conclude the paper in Section 10.

2 Background

In this section, we briefly present background information to help understand the structural

integrity and attacks on STL files. In this paper, we refer to the geometry of an object as a solid

142

solid name
facet normal n1,x n1,y n1,z

outer loop
vertex v1,1x v1,1y v1,1z

vertex v1,2x v1,2y v1,2z

vertex v1,3x v1,3y v1,3z

endloop
endfacet
· · ·
facet normal nN,x nN,y nN,z

outer loop
vertex vN,1x vN,1y vN,1z

vertex vN,2x vN,2y vN,2z

vertex vN,3x vN,3y vN,3z

endloop
endfacet

endsolid name

Figure 6.2: The format of an STL file with N triangles.

body (or simply a solid) or a design model (or simply a design). When a solid is manufactured

by an AM system, the result is an object (or a part).

2.1 Format of STL Files

Many attacks on STL files leverage the format of STL files because STL files lack the con-

nectivity of geometry primitives, and as a result, it is relatively easy to modify features in STL

files.

In STL files, a solid is represented by its boundary surfaces. The surfaces are represented

by triangular facets. Each triangular facet is described by an outward normal vector and three

ordered points. An STL file is obtained by stacking the components of the normal vectors and

the coordinates of the points in a hierarchical manner. Figure 6.2 shows the structure of an STL

file with N facets, where ni,x ni,y ni,z are the x, y, and z components of the normal vector for

facet i, whereas vi, jx, vi, jy, and vi, jz are the coordinates of vertex j in facet i. In STL files, facets

are always triangular and we can simply refer a triangular facet as a facet. Due to this structure

of the STL file, it is relatively easy to weaken the design by just addition of facets. Negative

volume shell injection attack can be performed by addition of just four facets to STL files.

143

2.2 Attributes of STL Files

This section describes the attributes of the STL files. These attributes can be leveraged to attack

STL files.

Mesh Complexity The complexity of a mesh refers to the number of facets in the mesh. With

limited computational resources, a very complex STL file cannot be sliced or analyzed.

Mesh Quality The quality of a mesh is determined by the number of spikes (or sharps) and

facets with high aspect ratios. An STL file with lots of sharps and facets with high aspect ratios

are hard to be sliced or analyzed.

STL Format Integrity The files those obey the STL file format are said to have STL format

integrity and those that do not obey are deemed to be corrupted.

Geometric Integrity A collection of facets forms a polygonal mesh (or simply a mesh in the

following discussion) if the facets are connected together without holes (or gaps), intersections

(or overlaps), and over-connection. If the mesh encloses a solid, the mesh defines the solid. An

STL file has geometric integrity if the file can describe a solid.

Structural Integrity The structural integrity refers to the ability of functional objects to

maintain their structural attributes such as physical shape and mechanical strength during there

normal operation. The attacks such as unintentional voids, cracks or holes at critical locations

of the objects to compromise there structural attributes leads to the violation of structural in-

tegrity of the STL files. Depending on the type of loads, structural integrity can be classified

into i) static structural integrity and ii) operational structural integrity. Static structural integrity

refers to the ability of an object to maintain its structural attributes under its own weight. Op-

erational structural integrity refers to the ability of a functional object to maintain its structural

attributes under operational loads eg., the operational structural integrity of a propeller refers

to its ability to maintain its structural attributes when the propeller is in operation and subject

to centrifugal forces and thrust.

144

2.3 Attacks on STL Files

This section summarizes attacks on STL files which are found in the literature [213, 29, 223,

190].

Scaling An attacker can multiply coordinates of all points (excluding components of normal

vectors) in an STL file by a positive number to scale the solid described by the STL file. For

a scaling factor that the solid remains printable, the structural integrity is usually affected as a

result. It is hard for scaling attack to succeed for functional objects because these objects are

subject to inspections. When the size of a functional object is changed, it is almost impossible

to pass an inspection on dimensions.

Orientation Orientation with respect to the building bed affects structural integrity because

3D printed objects are anisotropic [17]. An STL file comes with a coordinate system, and the

building bed is located on the XY plane by default. An attacker can carefully select a default

orientation in an STL file such that the strength of the printed object is weakest.

Vertex Movement One or more vertices in an STL file can be moved to locally change the

geometry and the structural integrity can be affected as a result. The vertex movement must

remain hidden under inspection. One way to do this is to move vertices located at areas that are

hard to be inspected.

Void Injection Because an STL file is simply a collection of facets, extra facets can be di-

rectly inserted into the STL file to create unwanted voids in the solid described by the STL file.

Research has shown that if the size and location of voids are properly chosen, the voids can

significantly reduce the structural strength and remain hidden from AM operators [29, 190].

Research has also shown that if the size of voids is reduced below sub-millimeters, ultrasonic

inspection cannot detect the presence of the voids in PolyJet 3D printing [223].

Complex Modification Complex modification results in multiple vertices being moved, deleted,

and/or created. An example of complex modification to compromise structural integrity is to

145

STL
Trusted
Integrity
Verifier

Trusted
Integrity
Verifier STLSTL STL STLSTL

STLSTL
Sources of STL Files

STLSTLSTLSTL
STLSTLSTL

3D Printer

Reject

Alert
Sa
fe Su

sp
ici
ou
s

Figure 6.3: Threat model and application of the TIV framework.

change the gage width of a tensile test specimen, which reduces the strength of the specimen

and remains unnoticeable by operators [213].

Some attacks are easy to detect and are currently detected by tools such as tweaker and

mesh labs, but existing techniques fail to detect more stealthy attacks such as vertex movement,

void insertion, and complex modification during inspection. We focus on the aforementioned

stealthy attacks that cannot be detected by current techniques.

3 Threat Model

We assume that AM operators are different from designers. This assumption is valid when

printing tasks are outsourced to 3D printing service providers, such as Shapeways [171], 3D

Systems [15], and i.materialise [103] or when the designs are outsourced to 3D modeling ser-

vice providers, such as Cad Crowd[42].

In the scenario where the design is outsourced, most of these workstations are internet

facing. Hence, workstations become an easy target for attackers compared to printers which is

located behind demilitarized zone (DMZ) and have limited access to internet. Phishing attacks

are one of the common ways of cyber attack and studies shows that 91% of cyberattacks are

due to phishing [227]. The first step in the attack of Ukraine power plant was through sending

Blackenergy malware through phishing emails[45].

Design toolchains used by designers on workstations could be compromised by such at-

tacks even though the designers do not have any malicious intent. Acad.vlx virus [193] and

ACAD/Medre.A worm [68] are examples of malware that have attacked design toolchains. Al-

though there are traditional software mechanisms and techniques to protect against attacks on

toolchain, they fail to be effective in protecting against zero day vulnerabilities.

146

Safety functional conditions
based on category detected

TIV

Object Classifier Void Detection

Safety Conditions Verifier

STL design
scheduled to print

CNN classifier used to
determine the design

scheduled to print

Flood fill algorithm used
to detect stealthy voids

present in the design

Numerical method
(FEA) used for safety

conditions verification

Designs that pass safety operational
conditions are printed

Designs that fail safety operational
conditions are alerted to the am operator

Design category
classified

Figure 6.4: Structure of the TIV framework.

Existing security methods, such as secure hash, end to end encryption, securing important

supply chain data using secure channels [100], and using blockchains to protect the integrity

of supply chain data [58], do not protect against such attacks on design toolchains as the work-

station is not trusted. The design file is one of the inputs to printers apart from raw materials

for manufacturing. The design files generated by such compromised workstations could be

malicious and cannot be trusted for using in critical applications.

We assume that the value chain after TIV are trusted such as AM operators, 3D printers and

their controllers (firmware and slicers), and material supplies.

4 TIV Overview

We take inspiration from trusted safety verifier (TSV) [128] which is a bump in the wire so-

lution that sits between workstations and programmable logic controllers to verify the safety

properties of any program being uploaded to the controller. Analogous to TSV, we developed

TIV which sits before printers to verify the structural integrity of objects to be printed. TIV

does not require any software or hardware modifications on the existing systems.

TIV is composed of a neural network based object classifier, computer vision based void

detection module and numerical based malicious void verification module to determine if a void

is from the design or malicious. The modules are used in tandem, as shown in Figure 6.4. TIV

answers questions such as i) can we automatically detect attacks such as any major changes to

the design, ii) can we detect any detect any minor stealthy attacks such as voids that are not

visible after the object is printed, and iii) can we verify if the object printed

147

Object Classifier The object classifier module is used in TIV to detect any geometrical shape

changes in the STL file. Since the workstation is compromised the attacker can replace the

intended design with an alternative design. Object classification module will detect such attacks

that change the entire shape of the design file. This classified category is feed to a data base

consisting of safety functional conditions defined by category.

Object classifier uses convolutional neural networks (CNN) to classify the objects based on

their shapes. CNN’s are popular for 2D images but the STL files are 3D objects. We convert

the 3D objects into octree data structure and feed the octree data structure as the feature for

CNN.

Void Detection Module Any changes to geometrical shape is detected by the object classifier,

but any malicious features added that will weaken the structure of the printed object will not be

detected by the object classifier. The void detection module detects such suspicious features in

the design described by the STL file. The suspicious features are voids in critical parts of the

design to weaken the structure of the object. The void detection module takes an STL file as

input and localizes the voids in the object using the flood fill algorithm.

The flood fill algorithm scans the voxels in depth first search to find the voids present in

the 3D design files. If the void detection module detects any suspicious features, they are fed

to malicious void verification module to determine if the feature is due to design or due to an

attack compromising the structural integrity of the printed object.

Voids are a special type of suspicious features in AM systems. Most attacks on STL files

present in the literature are malicious insertion of voids [29, 190]. Voids can take various

shapes, such as cubic, rectangular, pyramid, cone, etc. Void detection module detects the voids

irrespective of there size and shape.

Safety Conditions Verification Module If the void detection module detects any potentially

malicious voids, they have to be verified to determine if the voids are legitimately a part of the

design or due to an attack against the structural integrity of the object.

The strength to weight ratio is a popular matrix to consider while designing. The best

design will have higher strength with less material used. Hence the designers tend to remove

148

material in the places that do not affect the strength of the printed object. Legitimate voids

created in the design process are inserted by the designer to reduce the material and weight of

the object without compromising the mechanical strength of the object. Voids of this nature are

considered benign.

On the other hand, malicious voids tend to reduce the strength of the printed object sig-

nificantly. Hence the benign design features can be easily differentiated from the malicious

features. We use a numerical methods based finite element analysis to calculate the strength

of the printed object. The safety functional conditions are feed from a database to the safety

condition verifier. The verification is performed based on this safety functional conditions.

Section 8 shows the designs with malicious features and without malicious features to show the

effectiveness of our verification module.

5 Object Classification

The object classification module is used to detect any changes to the intended object to an

alternative shape. The object classification module uses CNN to detect the object to be printed

and verifies if the shape of the object is an intended object shape. Since the printing operator

knows the object to be printed, they can give the command to the object classifier to verify if

the object is the intended object to be printed. This section describes the methodology used for

classification of the 3D objects using CNN.

Database The database was constructed from the combination of the modelnet database[215]

with well annotated labels and the design files downloaded from popular website thingiverse

[195] with no annotation labels. The database consists of 298,056 design files from 44 different

categories. The categories range from critical parts from aerospace, medical, power tools,

sports equipment’s. 237,864 files were used for training and 60,192 were used for testing. The

design files from modelnet are in object file format. Hence, for uniformity of the design file

format, the STL files from thingiverse were converted into the object file format while building

the database.

149

Octree In the field of computer vision, convolutional neural networks (CNN) are often used

to classify 2D images. However this method cannot be directly used for design files because of

their 3D shape and irregular triangle meshes. Hence the 3D design files have to be converted

into an appropriate format to use traditional convolutional neural networks.

We convert the 3D design files to octree [129] and use the octree as the inputs to the CNN.

An octree is a tree data structure most often used to partition a three-dimensional space by

recursively subdividing it into eight octants. Octrees are popularly used in 3D graphics and

3D game engines for rendering, modeling and collision detection. We generate a sparse octree

occupied by the boundary surface of the 3D shapes.

Since the design files have irregular triangular meshes such as flipped normals, non-manifolds

and overlapped triangles, we convert them into point cloud that consists of just points. We use

the ray shooting algorithm [18] to sample dense points from the 3D shapes. We then divide this

dense point cloud into a unit 3D bounding cube and recursively subdivide the bounding cube of

3D shape until the required octree depth is reached. TIV uses octree depth of six. We traverse

all the non-empty octants occupied by the 3D shape bounding cube in the current depth and

subdivide them into eight child octants for the next depth. We use this octree data structure as

input for the CNN to classify the 3D design into appropriate category.

Convolutional Neural Network We used the octree data structure as input for the CNN (O-

CNN) [210]. The CNN has a basic layer block which consists of a convolutional layer, batch

normalization, ReLu output activation function and pooling layer. Batch normalization is used

to reduce the internal-covariate-shift [105]. We used 3 basic layer blocks in sequence followed

by two fully connected layers, a softmax layer and two dropout layers. Dropout layers are used

to avoid overfitting and softmax is used to categorize.

Safety Functional Conditions The safety conditions are determined by the finite element anal-

ysis experts. The experts determine the safety conditions based on the category of the design.

The conventional analysis on the design end is intensive and have to be defined for every de-

sign. We just categorize the objects and create a template of safety conditions for the entire

category from the experts and maintain a database. Once the category of object is determined

the safety conditions are extracted from the database and used of verification in Section 7.

150

6 Void Detection Module

The void detection module 1 is designed to detect and locate malicious voids in an STL file.

A malicious void is potentially a malicious geometric structure that can lead to the structural

failure of a printed object if the structure is present in the design of the printed object.

TIV’s void detection module leverages ideas from the flood fill algorithm that is widely used

in image processing to change the color in a continuous region of an image to another color.

The conventional flood fill algorithm is mainly used for 2D pixels in images. We extended the

flood fill algorithm for 3D voxels in 3D print design files.

Since the STL files just describe the geometry, it is difficult to directly apply flood fill

algorithm. Hence, we first convert the STL files into voxels. The process of converting STL

files to voxels is analogous to rasterizing a vector image to an array of pixels. STL files are

converted to voxels by the following steps i) TIV slices the STL files to get a series of perimeter

paths that are vector images. ii) TIV then transform these vector images to pixels using standard

rasterizing techniques. iii) TIV stacks these pixels up to form an array with different layers to

form voxels.

TIV implements the steps above to scan the 3D design file for voids. Specifically, TIV fills

in the object using the same material of the object. The spaces corresponding to the unfilled

voxels are the voids. TIV leverages a depth first search to scan and find the voids in the object.

The number of unfilled voxels corresponds to the number of voids in the object. The informa-

tion of the unfilled voxels is collected for later analysis to verify if the identified void(s) is/are

malicious.

Automated Attack on Design Since it is hard to find STL files with voids in the wild, We

developed a methodology to insert voids with random shapes, sizes and random locations in

the design. The insertion of voids will make sure that the attack is stealthy and not visible after it

is being printed. We took the inspiration from past works on attacking STL files [190, 223, 29]

and improvised them to automatically attack STL files.

Our algorithm is inspired by the ray-casting algorithm [84]. The ray-casting algorithm is a

1This work was completely done by Sizhuang Liang from Georgia Tech and added in my thesis to understand
the complete picture of the solution.

151

computer graphics algorithm used to determine the intersections of ray-surfaces. We first find

the maximum and minimum coordinates of an object in all three directions. These are achieved

by using ray casting algorithm. The results are denoted by Xmin, Xmax, Ymin, Ymax, Zmin, Zmax.

These coordinates define the geometrical boundaries of the object.

We use a random number generator to pick the number of voids, shapes of voids and loca-

tions in the object where the voids should be inserted. We then apply the ray-casting algorithm

around the randomly picked location (Xstress,Ystress,Zstress) in the object.

Using the following matrices, we determine the boundaries of the void that can be inserted

without being detected visually after printing. This determines the size of the object. The inputs

for the ray casting algorithm are i) first row of φmax and φmin for x-axis ii) second row of φmax

and φmin for y-axis, and iii) third row of φmax and φmin for z-axis, where ε is a small parameter

that leads the coordinates slightly go outside the geometrical boundaries.

φmax =

Xmax + ε Ystress Zstress

Xstress Ymax + ε Zstress

Xstress Ystress Zmax + ε

 (6.1)

φmin =

Xmin− ε Ystress Zstress

Xstress Ymin− ε Zstress

Xstress Ystress Zmin− ε

 (6.2)

Figure 6.5 shows the coordinates used by automated attack to determine the boundaries

along all the axes at the randomly selected location. Some designs might be so irregular that

the voids inserted by previous procedures might be visible on the outer surface. When this

happens, we use boolean operations to subtract that part of the void that is outside of the outer

surface (visible). The placement of void by this method will go unnoticed leading to a stealthy

attack on STL files.

Accuracy of Flood Fill Algorithm Figure 6.6 shows an example of an attacked STL file with

a rectangular void and a spherical void. The locations of voids are highlighted using red rect-

angles. The results of the flood fill algorithm to detect voids are shown in Table 6.1. As we can

see from the result, the flood fill algorithm can accurately detect the number of voids in all the

152

[(Xmax+ ɛ), Ystress, Zstress]

Maximum stress point
[Xstress Ystress Zstress]

[(Xmax- ɛ), Ystress,] Zstress

[Xstress, (Ymax + ɛ), Zstress]

[Xstress, (Ymax - ɛ), Zstress]

[(Xstress , Ystress, (Zmax - ɛ)]

[(Xstress , Ystress, (Zmax + ɛ)]

Figure 6.5: Ray casting algorithm being used to determine the geometrical boundaries to deter-
mine the size of the void that should be inserted.

(a) Normal View. (b) X-Ray View.

Figure 6.6: Example of a manually attacked STL file.

File Detected voids Actual voids Detection Rate
Aerospace 6 6 100%

Automotive 3 3 100%
Engineering 2 2 100%
Handtools 4 4 100%

Table 6.1: Evaluation of malicious feature detection using flood fill on a manually attacked
STL file dataset.

153

Algorithm 3: Geometric analysis

1 input STL file;
2 output Solid Model;
3 α← read(ST L f ile);
4 if corrupt(α) then
5 return (Failed)
6 else
7 α← FixGeometricIrregularities(α);
8 if FixSucess f ul then
9 [β,γ,δ,ε,ζ]← GeometricStatistics(α);

10 if ζ == 1 then
11 η← ConvertToSolid(α);
12 else
13 return (Failed)
14 return (η, Success)

manually attacked STL files. The detailed large scale evaluations is performed by automated

attack and is shown in Section 8.

7 Safety Conditions Verification

All the voids present in the object are detected by the void detection module in the previous

section. However, we do not know if these all these detected voids are malicious or just used by

the designer to reduce the weight without compromising the structural integrity. If the object

to be printed satisfies the safety operational conditions, then they are deemed to be innocuous

to print. If the object to be printed violates the safety operational conditions, then it is deemed

to be malicious and dangerous to be used in critical systems.

The safety operational conditions for the objects printed are the mechanical loads or me-

chanical stresses that the object can bare without failing or breaking. In this section we use

FEA to determine the mechanical stresses acting on the printed object. The process of FEA is

explained in this section in detail with geometrical analysis, structural analysis and calculating

the stresses acting on the object.

154

(a) Polygonal Mesh (STL) (b) Solid Body

(c) Volumetric Mesh (d) Structural Property

Figure 6.7: Polygonal mesh, solid body, volumetric mesh, and structural property of a spanner.

7.1 Geometric Analysis

The geometric analysis routine takes as input an STL file and outputs a solid model, as shown in

algorithm 3. An STL file describes a polygonal mesh, as shown in Figure 6.7a. The polygonal

mesh only represents the surface of the solid, whereas FEA requires a volumetric mesh, as

shown in Figure 6.7c. Apart from this, the pattern of a polygonal mesh in an STL file is very

different the pattern of a volumetric mesh that is suitable for FEA, because a polygonal mesh

in an STL file tends to be dense at areas where the geometry is complex whereas a volumetric

mesh for FEA tends to be dense at areas where stresses concentrate [120]. In order to convert

the polygonal mesh to a volumetric mesh, we first of all convert the facets into a solid, as shown

in Figure 6.7b.

Check File Integrity The first step is to check the validity of the STL file. line 4 of algo-

rithm 3 shows this step. We proceed if the STL is an STL file and is not corrupted. We also

limit the size of the file to prevent over consumption of computational resources.

Fix Geometric Integrity We attempt to fix holes, intersections, and over-connected edges, if

there are any. If the geometric integrity does not exist and cannot be restored, the analysis is

aborted. line 7 of algorithm 3 shows this step.

155

Algorithm 4: Structural analysis

1 input Solid Model;
2 output Structural Properties;
3 α← read(SolidModel);
4 VolumetricMesh←Mesh(α);
5 if MeshSuccess f ul then
6 AssignMaterial(VolumetricMesh);
7 AssignBoundaryConditions(VolumetricMesh);
8 ApplyLoads(VolumetricMesh);
9 StructuralProperties← Solve();

10 else
11 return (Failed)
12 return (StructuralProperties, Success)

Get Geometric Statistics We extract the number of vertices, faces, edges, sharps, and pieces

after the STL is fixed. line 9 of algorithm 3 shows this step. The number of vertices, faces,

edges, sharps, and pieces are represented by β, γ, δ, ε, and ζ. If there are more than one piece,

we either abort the analysis or separate the pieces, put them into different STL files, and do

analysis for each separated STL file.

Convert to Solids We attempt to convert the polygonal mesh to a solid. Conversion may still

fail due to the quality of the polygonal mesh being low. line 11 of algorithm 3 shows this step

and η is the solid model as the output.

7.2 Structural Analysis

The structural analysis routine takes as input a solid body from the geometric analysis routine

and outputs the stresses of the solid body under loads in operation, as shown in algorithm 4.

A printed object can have various infill patterns and densities depending on the AM tech-

nique. However, we assume that the infill pattern of a printed object is solid because many

functional objects are printed using SLS, and the infill pattern is usually solid.

Generate Meshes When the solid to be analyzed has a solid infill pattern, the volumetric

mesh can be directly obtained. line 4 of algorithm 4 shows this step.

156

Properties PLA ABS Unit
Density 1.24 1.05 g·cm−3

Young’s Modulus 3.5 2.6 GPa
Poisson’s Ratio 0.36 0.35 -
Yield Strength 60 45 MPa

Table 6.2: Material properties of PLA and ABS

Assign Material The material used for printing must be specified before a solid is analyzed.

Since the printing operator is trusted and know the material used for manufacturing, he can

input those information to the TIV. The relevant properties of material for our analysis are

density, Young’s modulus, Poisson’s ratio, and Yield Strength. Table 6.2 shows properties of

Polylactic acid (PLA) and Acrylonitrile butadiene styrene (ABS) [197]. line 6 of algorithm 4

shows this step.

The 3D printed objects have anisotropic properties due to the techniques of AM [17]. For

fused deposition modeling (FDM), the strength of a 3D printed object is less along the building

direction because the bonding between layers is weaker than the bonding within a layer. We

consider this property in our system by using anisotropic material properties.

Assign Safety Operational Conditions Safety operational conditions refer to motion con-

straints of objects to be analyzed. The motions constraints are the mechanical loads and stresses

that the printed object can bare during the normal operation without breaking or failure.

For static structural integrity analysis, the bottom surface of the object to be analyzed is

fixed. These resembles that the object is placed on a flat surface and the forces acting on them

are gravity and the forces due to its own weight. For operational structural integrity analysis,

safety operational conditions depend on the object and operation conditions. line 7 and line 8

of algorithm 4 show this step.

The safety operational conditions depends on the type of object and it application. We

used different safety operational conditions for different object categories depending on the

applications where we intend to use. The object category is obtained from the classifier and

corresponding safety operational conditions are picked from the database for verification.

The safety operational conditions includes the property of material used for printing, amount

of infill, infill pattern, gravity acting on the object, and the kind of mechanical loads acting on

157

the object during there normal operation. Objects such as propellers, gears, wheels have ro-

tational actions resulting in centripetal forces acting on them. Objects such as a wrench, and

a hammer have shear forces acting on them. Objects such as suspensions have compressive

forces acting on them. Objects such as hooks have tensile forces acting on them. TIV uses

object classifier to classify the type of category.

Export Stresses The Cauchy’s stress tensor can be used to represent stresses at any point

inside an object. The Cauchy’s tensor matrix is as follow

σ =

σxx τxy τxz

τyx σyy τyz

τzx τzy σzz

=

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 (6.3)

where σxx, σyy, and σzz are normal stresses and τxy, τxz, τyx, τyz, τzx, and τzy are shear stresses.

Normal stresses are stresses acting perpendicular to the surface of the object and shear stresses

are stresses acting parallel to the surface of the object. At equilibrium, the matrix is a symmetric

matrix. Hence the stress tensor can be represented in the Voigt notation as

σ = (σxx,σyy,σzz,τxy,τxz,τyz) (6.4)

FEA exports σ when analysis successfully completes. Line line 9 of algorithm 4 shows this

step.

7.3 Malicious Void Verification

The void detection module determines the shape, size and position of the void present in the

design. To verify that a void is malicious or benign, we use FEA to calculate the stress acting

on the objects.

Microlattice Structures Recent development is pushing the designers to design more effi-

cient objects with higher strength to weight ratios. The material and time to print can be re-

duced significantly by designing effectively. Hence, the popularity of the micro lattice structure

[158] based designs are increasing.

158

The micro lattice structure have a repeated lattice structure. The microlattice structures

can provide similar strength to a solid infill but with less material and print time. Due to the

nature of the design the microlattice structure based designs have air voids in there designs. The

microlattice structure are used as both structural and functional objects. Most of the structural

objects are solids, whereas the functional objects could be with the microlattice structure.

The void detection module predicts these voids as malicious although they are due to design.

We use FEA to determine the mechanical stresses acting on the objects that has to be printed.

The FEA is performed on the object which was flagged to have voids by void detection module.

The mechanical stresses from the safety operational conditions are used for FEA. If the printed

object withstands the mechanical loads applied during FEA, then we deem it to be innocuous

and signal for printing. If the object cannot withstand, then they are deemed to be malicious

and dangerous to be used on critical systems.

8 Evaluation

To show the generality and scalability of our solution, we picked 16,000 files randomly from

wild for evaluation. We demonstrate a detailed step by step analysis of a vertebra from the

medical category as a case study to demonstrate the application of each module in TIV and

later provide empirical results for 16,000 STL files from eight different categories.

Experimental Setup The conversion of the STL file format to OBJ file format was done us-

ing stl2obj tool written in C++. A virtual scanner written in C++ was used to scan the triangular

meshes and convert them into dense point cloud. The virtual scanner uses ray shooting algo-

rithms to calculate intersecting points and oriented normals. These point cloud was converted

to octree data structure and the lmdb database of octree data structure was constructed. These

lmdb databases were feed into the Caffe tool, which was used for the convolutional neural

network.

We used two popular FEA tools for the computation of stresses on designs, ANSYS which

is popular in industry and COMSOL which is popular in academia. We used IronPython for

automating ANSYS and MATLAB for automating COMSOL.

159

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

1 0
0 0.96 0.04 0 0 0 0 0 0 0 0 0
0 0 1 0
0 0 0 0.05 0 0 0 0 0 0 0 0 0.5 0.45 0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0.05 0 0 0 0 0 0 0 0.95 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.56 0 0 0 0 0 0 0 0 0 0 0 0.44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0.29 0 0.120.59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0.07 0 0 0 0 0 0 0 0 0 0 0.93 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.73 0 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0.14 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0
0 1 0 0
0 1 0
0 1 0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.8: Confusion matrix for classification of the objects into 44 different categories. 1
indicates all of the objects are classified correctly and 0 indicates none of them are classified
correctly. Diagonal 1’s indicates that most of the objects are classified correctly.

Object Classification The database created was used for training and classification of the

objects. The depth of the octree fed into the neural network was six. The kernel size for

convolutional neural network was three with stride length of one. The base learning rate, mo-

mentum and weight decay of the neural network training were 0.1, 0.9, 0.0005 respectively.

The database was trained for 40 epochs.

The confusion matrix of the classifier is shown in Figure 6.8. The confusion matrix shows

that the classifier can accurately predict most of the category of the objects. The classifier

accuracy was 92% in classifying the objects into its categories.

8.1 Case Study: Analysis of a Vertebra

Object classification The object classification module accurately classified the object as ver-

tebra.

Void Detection The void present in Figure 6.9a was successfully detected by the flood fill

algorithm. The algorithm not only allows for the detection of attacks that are difficult to detect

with the naked eye, but also provides a less expensive method compared to other traditional

160

void placement

(a) Void at the maximum stress
point.

(b) FEA with gravity, normal
loads and shear loads for STL
file with void.

maximum
stress point

(c) FEA with gravity, normal
loads and shear loads for STL
file after removing the void.

Figure 6.9: Malicious void verification on cervical vertebra (C6) from medical category. The
STL file with a void increases the stress from 2.53 kN to 3.39 kN (σDi f f erential = 34%) for the
same loads acting on the object.

methods such as destructive and non-destructive testing techniques.

Malicious Void Verification Figure 6.9 shows the effect of malicious void detection on the

vertebra. Figure 6.9a shows voids detected by void detection module. This detected void is

examined by the malicious void detection module to determine if the void detected is malicious.

The malicious void detection module calculates the mechanical strength of the object as shown

in Figure 6.9b.

To determine if the voids are malicious, stress analysis is performed on the vertebra with

static structural analysis and operational structural analysis. The safety operational conditions

for the operational structural analysis are dynamic loads on the vertebra due to physical activ-

ities such as jumping and squatting. The acceptable limits of the spine to shear load is 1 kN

for 90% of the working age population for infrequent loading [77]. But this increase for ac-

tive population who are into sports and weight training. So we estimate the safety operational

condition to be 3 kN.

Figure 6.9c shows the result of stresses acting on the vertebra. The vertebra with voids

has stress more than the safety operational conditions (3.39 kN). Hence, we determine that

161

Category Pass Rate False Positive Rate False Negative Rate
Aerospace 96.6 3.4% 0%
Automotive 96.4% 3.6% 0%
Engineering 97.7% 2.3% 0%
Hand tools 97.4% 2.6% 0%
Machine tools 98.1% 1.9% 0%
Medical 91.3% 8.7% 0%
Robotics 96.6% 3.4% 0%
Sports 97.7% 2.3% 0%
Average 96.5% 3.5% 0%

Table 6.3: Evaluation of Malicious void detection using flood fill on a wild STL file dataset.

this feature is a malicious feature and not a feature in the design to reduce the material used

or to decrease the weight of the object. To better understand the verification and show that

the verification is efficiency and accurate in detecting the malicious designs, we remove the

voids and evaluate the mechanical stresses acting on the objects. The maximum von Mises

stress (σvonMises) from the analysis is 2.5 kN for vertebra without voids and the maximum stress

location is at (15.69 67.78 13.29).

8.2 Large Scale Analysis on STL Files

Void Detection Flood fill algorithm was used to detect voids in the STL files. If the algorithm

does not detect any void in an STL file, the STL file passes the test. For each test, the pass rate

is listed in Table 6.3. On average, 96.3% STL files passed the flood fill algorithm test. The

medical category has the lowest pass rate. This is due to the fact that objects in the medical

category are complex. The flood fill algorithm reports the number of voids detected in each

STL file. For STL files with detected voids, most STL files only have one void. Some STL

files do have multiple voids. Figure 6.10 shows the histogram of the number of voids for all

categories. The horizontal axis at 102+ actually indicates 100 voids or more.

To test the accuracy of the flood fill algorithm for false positive rates, we manually inspected

the STL files that were determined to contain voids by the flood fill algorithm. We loaded each

STL file and displayed the STL file in an X-Ray view, as shown in Figure 6.6. If an STL file

contains voids, the voids should be visible in the X-Ray view. We found that most STL files

that were determined to contain voids actually did not contain voids at all. These STL files are

162

Figure 6.10: Distribution of number of voids across STL files in each category.

163

(a) Layer 1 (b) Layer 2 (c) Layer 3

Figure 6.11: Analysis of false positives by the flood fill algorithm.

false positives by the flood fill algorithm. The false positve rates were calculated and recorded

in Table 6.3.

To analyze the accuracy of the flood fill algorithm in terms of false negative rates, we

manually analyzed the STL files that passed the flood fill algorithm. The inspection showed

that no STL file has any void inside and the false negative rates for all categories are zero.

We analyzed the false positives and determined that the false positives were due to a slicing

problem. Three consecutive layers of an STL file with detected voids are shown in Figure 6.11.

The red rectangle highlights the problematic area. When the slicer slices the STL file, it has

to rasterize each layer. However, for curves, the results are not very consistent across layers.

For layer 2, one pixel can be filled in or not since it is located at the tip of the curve. In this

situation, the pixel is filled in. Also notice that this pixel is surrounded by filled pixels to the

left, right, top, and bottom. For layer 1 and 3, the pixels at the same locations are filled in. As a

result, the pixel in layer 2 mentioned above is considered a void. To mitigate this problem, we

can apply a variant of the flood fill algorithm where pixels can propagate diagonally as well.

Another possible solution is to require each void to be large enough to be considered a valid

void.

Static Structural Analysis The material used in this analysis is ABS and the tensile yield

strength is 45 MPa. Stresses above this value leads to failure. Our solution successfully detected

stresses on the objects leading to failure. Table 6.4 shows the time to analyze objects in failure

stage and the number of files that were successfully analyzed from the database. Pre-analysis

success rate is the success rate to import an STL file, get its geometrical features (such as

number of vertices, number of holes or defects), and convert it into a volumetric mesh. The

stress analysis rate is the success rate of conducting stress analysis.

164

Category Pre-analysis
success rate

Stress analysis
success rate

Average time
for analysis
(seconds)

Objects that
break

Aerospace 83.43% 84.38% 207.38 2.42%
Automotive 86.7% 85.67% 98.73 3.03%
Engineering 89.52% 88.03% 213.48 1.65%
Handtools 88.05% 89.52% 90.91 1.45%
Machinetools 91.3% 87.83% 188.38 1.25%
Medical 78.5% 73.99% 194.37 6.12%
Robotics 88.84% 88.94% 128.8 3.36%
Sports 89.44% 82.2% 139.86 2.04%

Table 6.4: Static structural analysis in eight different categories.

Category λ = 0.1 λ = 0.25 λ = 0.5
Aerospace 79.79% 62.77% 27.66%
Automotive 81.33% 68% 30.67%
Engineering 75.61% 59.76% 14.63%
Handtools 71.05% 53.95% 19.74%
Machinetools 75% 60.53% 30.26%
Medical 71.91% 56.18% 15.73%
Robotics 78.2% 56.41% 17.95%
Sports 71.05% 51.32% 13.16%

Table 6.5: Percentage of design files containing voids are verified to be malicious based on
different mechanical stress thresholds.

Malicious Voids Verification The detected voids have to be verified if they are malicious.

The FEA is used to determine the stresses on the objects.

To evaluate the mechanical stress of the STL file, the voids were removed from the files.

The histogram of stresses with and without voids in eight categories are shown in Figure 6.12.

As seen from Figure 6.12 not all the voids lead to failure. Only certain voids with increases

the stress on the objects significantly break. Table 6.5 shows the number of files that had voids

were detected as malicious based on different thresholds of λ for 0.1,0.25, and 0.5.

Table 6.6 shows the mechanical stresses for design files with and without 1mm3, 5mm3,

and 10mm3 voids. The mechanical stress increases with the increase in the size of the void.

The assessment was performed for different sizes of voids. The mechanical stresses are higher

in critical applications such as robotics, aerospace, and automotive, and lower in engineering,

medical, and sport. To evaluate the mechanical stresses of the STL files, the files were analyzed

165

45 MPa
45 MPa 45 MPa

45 MPa

Safe stage Safe stage Safe stage

Safe stage Safe stage

Failure

stage

Failure

stage

45 MPa
45 MPa

Safe stageSafe stage

Safe stage Safe stage Safe stageSafe stage

Failure

stage

Safe stageSafe stage Failure

stage

Safe stage

45 MPa

Safe stageFailure

stage

Safe stageFailure

stage

Failure

stage

45 MPa

Failure

stage

Figure 6.12: Histogram of stresses of flagged with voids and after removal of voids. The
Histogram after removal of voids is moved to the left indicating the decrease in the stress levels
for the same loads acting on them

with and without suspicious features to check the increase in stress levels.

9 Related Work

Attacks on Designs Turner et al. conducted a study on security of designs in additive manu-

facturing and mentioned that there are no physical or common cyber-security mechanisms that

are used on manufacturing machines. They also mentioned that most of the transfers of design

files are through insecure e-mails or USB drives. Furthermore, they noted that there are no

design integrity checks and the quality control process is expensive yet not tailored to detect

cyber attacks [200].

Yampolskiy et al. proposed using 3D printers as weapons, or attacks on structural integrity

of printed objects. They pointed out that by attacking on additive manufacturing systems,

printed objects can be structurally compromised and fail during operation to cause physical

damage and loss of lives [218]. Pan et al. presented a detailed taxonomy of attacks on AM

systems, including attacks on structural integrity by maliciously modifying geometry, and they

also presented a detailed taxonomy of defenses against attacks on AM [151]. Wells et al.

demonstrated that in a subtractive manufacturing process, a change of design model can reduce

166

Category Differential
stresses for
10mm3 void

Differential
stresses for
5mm3 void

Differential
stresses for
1mm3 void

Aerospace 98.05% 98.08% 26.07%
Automotive 80.085% 80.91% 26.78%
Engineering 56.45% 56.45% 8.43%
Handtools 52.5% 52.16% 20.39%
Machinetools 82.87% 82.40% 22.36%
Medical 58.98% 59.1% 15.51%
Robotics 79.05% 77.73% 26.03%
Sports 45.28% 45.71% 12.54%

Table 6.6: Percentage change in mechanical stresses with and without voids. Warning is deter-
mined by the threshold and the proximity to the yield stress (failure).

the strength of manufactured object without being noticed by machine operators [213]. The

same principle can be applied to additive manufacturing.

Strum et al. developed an algorithm to automatically insert voids into STL files to reduce

the strength of printed objects[190]. They carried out an experiment with human subjects and

demonstrated that the insertion of voids was not noticed by additive manufacturing operators.

Belikovetsky et al. demonstrated that it is possible to inject voids into an STL file to compro-

mise the printed object, and the printed object fails in operation, causing damage to the whole

system [29].

Defensive Solutions Strum et al. proposed a system with a piezoelectrical sensor to deter-

mine the defects in the printed object [189]. Bayens et al. developed a three layer framework

of acoustic, spectroscopic, and gyroscopic to verify the printing in additive manufacturing sys-

tems [27]. However, these techniques are during the printing or after printing, where as our

framework verifies before printing saving the time and resources used for printing. Zeltmann

et al. studied effects of sub-millimeter defects and orientation on printed objects by PolyJet 3D

Printing [223]. They found that ultrasonic inspection could not detect sub-millimeter defects in

a printed object, but the defects did not decrease the strength of the object. Nevertheless, they

pointed out that the work could be extended to SLS 3D printing.

Smykla wrote an algorithm to automatically carry out finite element analysis on STL files

of femurs [177]. Stave et al. presented a system to automatically analyze and improve the

167

static structural integrity of 3D printed objects [183]. The method they used was standard FEA.

Umetani et al. proposed an cross-sectional structural analysis method to analyze structural

properties of 3D printed objects based on the fact that printed objects fracture more easily

along the building direction [201].

Liu et al. combined an octree based polyhedral mesh generation method with the scaled

boundary finite element method to perform automatic stress analyses of STL models [120].

The method accepts any valid STL file and can recover sharp features. It can be expected that

Liu’s method can be employed in TIV to improve the success rate and analysis speed of stress

analysis. Past studies have shown using FEA [199] to detect the structural attacks on the design.

We perform an automated analysis on a large number of designs and also localize the structural

attacks in the design. We also consider the residual stress build up in the printed object due to

layer by layer fabrication.

Pure Cyber Solutions Past studies have shown securing important supply chain data using

secure channels [100] and others have shown using the block chain to protect the integrity of the

supply chain [58]. However, their solutions are based on the assumption that all tools and ma-

chines used to create designs are trusted. In other words, the solutions do not consider attacks

on design tool chains. In addition, these solutions are targeted towards industrial manufacturing

and will be very expensive for people who want to print on their desktop printers at home. We

provide a simple to use and less expensive solution for industry as well as home users.

10 Conclusion

STL is a popular design file format for additive manufacturing. Since most of the designs are

outsourced and the workstations used by designers are internet facing, they are easy targets

for attacks on the additive manufacturing process. Although the traditional software security

mechanisms present to detect any malicious activities on the printer, they fail to detect any

errors in the STL design file which is one of the inputs to the printer.

Any malicious STL files used for design could lead to devastating effects when used in

critical systems. We provided a comprehensive automated solution to detect any malicious

designs before they are printed to save the resources used for printing such as raw materials,

168

energy and time.

We successfully verified 16,000 STL files from wild for structural integrity and was suc-

cessful in detecting the malicious features present in the STL files. The complete framework is

available for verification as a service so that users can submit STL files and get reports of the

STL files.

169

Chapter 7

Conclusion

This dissertation provided security assessment and security solutions to protect against attacks

on safety-critical systems. The security solutions protect against attacks on different levels of

abstractions in the systems such as physical system, control logic, firmware, modification of

actuator values by authenticated operators at vulnerable timings. This dissertation leverages

the physical and control invariants properties of the cyber-physical systems in safety-critical

systems to provide control flow monitoring, verifying inputs and outputs against safety re-

quirements of the critical systems. The physical and control invariant properties used in this

dissertation are EM emanation and system dynamics such as flight dynamics, power flow equa-

tions, and swing equations. This dissertation also provided cyber and physical combined ac-

cess control to protect against changes to the actuators by authenticated users either by remote

spoofing attacks or disgruntle employees.

First, we introduce a novel approach to vulnerability assessment in safety-critical systems

by cyber-physical interdependency. We provided an attack synthesis method for power grids

that is analogous to the penetration testing in cybersecurity. We showed that an attacks can

synthesize attack algorithmically using hybrid dynamics of the power grid. We also showed

that, the attacker can sequentially modify the output to the actuators to drive the system into an

unsafe state without being detected by traditional protection systems such as circuit breakers.

In the best case scenario, the attacker can bring down the complete power system leading to

blackouts.

Second, we provided a runtime control logic verification solution for the attack against

control logic on a cyber-physical system. We provided just ahead of time verification solution

by predicting the future control paths of the control logic. Just ahead of time verification will

provide a time buffer for the solution or controlling operator to react ahead of time and prevent

170

the system entering into an unsafe state. Since the solution only verifies the control logic

till a certain time horizon (just a few steps ahead of time), it reduces the risk of state space

explosion of the control logic program’s execution paths. By leveraging the physical invariant

properties of the systems, we proposed verification techniques that can be used without state

space explosion when used on cyber-physical systems.

Third, we provided a contactless side channel control flow monitoring technique by re-

ceiving the electromagnetic emanations from the PLC. The EM waves generated when the

controller is running is received by the EM probe and was compared with the legitimate control

flow of the program that was fingerprinted through a secure medium before the program was

deployed on the system. This provides control flow integrity of the program running on the

embedded controller. Since this solution does not require any changes to the current running

systems, it can be applied to legacy systems as well.

Fourth, we introduce cyber-physical access control to restrict the capabilities of the oper-

ators considering the cyber and physical interdependencies for safety-critical systems. By the

solution provided we can protect the system from any disgruntle employee, less knowledgable

employee and external attacker trying to cause physical damage to the cyber physical system.

Finally, to provide such safety guarantees at a much earlier stage in the pipeline at the

time of manufacturing of such safety-critical systems, we provided a safety verification system.

Attacks on these design files will lead to a malicious manufactured object which could cause

serious damage to property and human life. We introduce TIV framework to detect voids in

the STL file before the manufacturing to reduce wastage to time and resources. TIV focuses on

security solution to detect attacks against the critical inputs to the controllers such as designs

used for describing the 3D printed objects. This security solution will check the structural

integrity of the designs before they are printed. Hence, only permitting designs that are benign

and will not fail during there normal operational conditions.

With the security solutions for control logic, firmware, inputs to the controllers, and the raw

materials, this dissertation is intended to provide a step forward towards a more comprehensive

understanding of cyber-physical systems security.

171

Bibliography

[1] “3dr solo quadcopter, available at https://3dr.com/solo-drone/,” 2017.

[2] “Analysis of the Cyber Attack on the Ukrainian Power Grid http://www.nerc.com/pa/CI/
ESISAC/Documents/E-ISAC_SANS_Ukraine_DUC_18Mar2016.pdf,” 2016.

[3] “Nasa drone hack revealed,” http://www.uasvision.com/2016/02/02/nasa-drone-hack-
revealed/.

[4] “Arizona-Southern California Outages; available at http://www.ferc.gov/legal/
staff-reports/04-27-2012-ferc-nerc-report.pdf,” 2012.

[5] “Dragonfly: Cyberespionage Attacks Against Energy Suppliers https://www.symantec.
com/content/en/us/enterprise/media/security_response/whitepapers/Dragonfly_Threat_
Against_Western_Energy_Suppliers.pdf,” July 2014.

[6] “The industrial control systems cyber emergency response team (ics-cert); available at
https://ics-cert.us-cert.gov/,” 2015.

[7] “Human error cited as cause of Florida blackout; available at http://appanet.files.
cms-plus.com/PDFs/March10PPW.pdf,” 2008.

[8] “Dynamic taint propagation for Java, author=Haldar, Vivek and Chandra, Deepak and
Franz, Michael,” in ACSAC, 2005.

[9] "Modbus" ; available at http://www.modbus.org/.

[10] "OSIsoft" Real-Time Intelligence; available at https://www.osisoft.com/, 2015.

[11] “PV-Browser: Process Visualization Browser; available at http://pvbrowser.de,” 2015.

[12] "NIST Role-Based Access Controls" ; available at http://csrc.nist.gov/rbac/
ferraiolo-kuhn-92.pdf.

[13] "ViaSat" Critical Infrastructure Protection; available at https://www.viasat.com/services/
critical-infrastructure-protection, 2015.

[14] “Wind River Recognized as Global Embedded Leader: Process Visualization
Browser; available at http://www.windriver.com/news/press/pr.html?ID=10681#sthash.
PPtTnAIX.dpuf,” 2012.

[15] “3d systems,” 2018. [Online]. Available: https://www.3dsystems.com/

[16] A. Abur and A. G. Exposito, Power system state estimation: theory and implementation.
CRC Press, 2004.

[17] B. Adhikari et al., “Strength and failure mechanisms in 3d printed parts,” Master’s thesis,
Aalto University, School of Engineering, 2016.

https://3dr.com/solo-drone/
http://www.nerc.com/pa/CI/ESISAC/Documents/E-ISAC_SANS_Ukraine_DUC_18Mar2016.pdf
http://www.nerc.com/pa/CI/ESISAC/Documents/E-ISAC_SANS_Ukraine_DUC_18Mar2016.pdf
http://www.ferc.gov/legal/staff-reports/04-27-2012-ferc-nerc-report.pdf
http://www.ferc.gov/legal/staff-reports/04-27-2012-ferc-nerc-report.pdf
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/Dragonfly_Threat_Against_Western_Energy_Suppliers.pdf
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/Dragonfly_Threat_Against_Western_Energy_Suppliers.pdf
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/Dragonfly_Threat_Against_Western_Energy_Suppliers.pdf
https://ics-cert.us-cert.gov/
http://appanet.files.cms-plus.com/PDFs/March10PPW.pdf
http://appanet.files.cms-plus.com/PDFs/March10PPW.pdf
http://www.modbus.org/
https://www.osisoft.com/
http://pvbrowser.de
http://csrc.nist.gov/rbac/ferraiolo-kuhn-92.pdf
http://csrc.nist.gov/rbac/ferraiolo-kuhn-92.pdf
https://www.viasat.com/services/critical-infrastructure-protection
https://www.viasat.com/services/critical-infrastructure-protection
http://www.windriver.com/news/press/pr.html?ID=10681#sthash.PPtTnAIX.dpuf
http://www.windriver.com/news/press/pr.html?ID=10681#sthash.PPtTnAIX.dpuf
https://www.3dsystems.com/

172

[18] P. K. Agarwal and J. Matoušek, “Ray shooting and parametric search,” SIAM Journal on
Computing, vol. 22, no. 4, pp. 794–806, 1993.

[19] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, The EM Side—Channel(s).
Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 29–45. [Online]. Available:
http://dx.doi.org/10.1007/3-540-36400-5_4

[20] P. M. Anderson and A. A. Fouad, Power system control and stability. John Wiley &
Sons, 2008.

[21] D. T. Askounis and E. Kalfaoglou, “The Greek EMS-SCADA: from the contractor to the
user,” Power Systems, IEEE Transactions on, vol. 15, no. 4, pp. 1423–1427, 2000.

[22] M. J. Assante, “Confirmation of a Coordinated Attack on the Ukrainian
Power Grid,” SANS Industrial Control Systems Security Blog; available at
https://ics.sans.org/blog/2016/01/09/confirmation-of-a-coordinated-attack-on-the-
ukrainian-power-grid, Jan. 2015.

[23] K. J. Åström and T. Hägglund, Advanced PID control. ISA-The Instrumentation, Sys-
tems and Automation Society, 2006.

[24] S. Bak, S. Bogomolov, and T. T. Johnson, “Hyst: A source transformation and translation
tool for hybrid automaton models,” in Proceedings of the 18th International Conference
on Hybrid Systems: Computation and Control. ACM, 2015, pp. 128–133.

[25] D. Bamburry, “Drones: Designed for product delivery,” Design Management Review,
vol. 26, no. 1, pp. 40–48, 2015.

[26] B. Bamieh and D. F. Gayme, “The price of synchrony: Resistive losses due to phase syn-
chronization in power networks,” in American Control Conference (ACC), 2013. IEEE,
2013, pp. 5815–5820.

[27] C. Bayens, T. Le, L. Garcia, R. Beyah, M. Javanmard, and S. Zonouz, “See no
evil, hear no evil, feel no evil, print no evil? malicious fill patterns detection in
additive manufacturing,” in 26th USENIX Security Symposium (USENIX Security 17).
Vancouver, BC: USENIX Association, 2017, pp. 1181–1198. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/bayens

[28] S. Belikovetsky, M. Yampolskiy, J. Toh, and Y. Elovici, “dr0wned-cyber-physical attack
with additive manufacturing,” ArXiv e-prints, 2016.

[29] S. Belikovetsky, M. Yampolskiy, J. Toh, J. Gatlin, and Y. Elovici, “dr0wned – cyber-
physical attack with additive manufacturing,” in 11th USENIX Workshop on Offensive
Technologies (WOOT 17). Vancouver, BC: USENIX Association, 2017. [Online].
Available: https://www.usenix.org/conference/woot17/workshop-program/presentation/
belikovetsky

[30] D. Beresford, “Exploiting Siemens Simatic S7 PLCs,” in Black Hat USA, 2011.

[31] H. Berger, “Automating with simatic s7-1200: Configuring, programming and testing
with step 7 basic,” vol. 11. John Wiley Sons, 2013.

http://dx.doi.org/10.1007/3-540-36400-5_4
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/bayens
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/bayens
https://www.usenix.org/conference/woot17/workshop-program/presentation/belikovetsky
https://www.usenix.org/conference/woot17/workshop-program/presentation/belikovetsky

173

[32] S. Bi and Y. J. Zhang, “Defending mechanisms against false-data injection attacks in the
power system state estimation,” in GLOBECOM Workshops (GC Wkshps), 2011 IEEE.
IEEE, 2011, pp. 1162–1167.

[33] A. Bitcraze, “Crazyflie 2.0,” 2016.

[34] R. Bodenheim, J. Butts, S. Dunlap, and B. Mullins, “Evaluation of the ability of the
shodan search engine to identify internet-facing industrial control devices,” International
Journal of Critical Infrastructure Protection, vol. 7, no. 2, pp. 114–123, 2014.

[35] W. Bolton, Programmable logic controllers. Newnes, 2015.

[36] S. A. Boyer, SCADA: supervisory control and data acquisition. International Society
of Automation, 2009.

[37] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “BAP: a binary analysis plat-
form,” in CAV, 2011.

[38] P. Buneman, S. Khanna, and W.-C. Tan, “Data provenance: Some basic issues,” in
FST TCS 2000: Foundations of software technology and theoretical computer science.
Springer, 2000, pp. 87–93.

[39] A. G. Butkovskii, Distributed control systems. Elsevier Publishing Company, 1969.

[40] D. I. Buza, F. Juhász, G. Miru, M. Félegyházi, and T. Holczer, “Cryplh: Protecting
smart energy systems from targeted attacks with a plc honeypot,” in Smart Grid Security.
Springer, 2014, pp. 181–192.

[41] D. A. Byrne and J. J. Holm, “Shared embedded trace macrocell,” Feb. 28 2006, uS Patent
7,007,201.

[42] “Cad crowd,” 2018. [Online]. Available: https://www.cadcrowd.com/

[43] G. Canet, S. Couffin, J.-J. Lesage, A. Petit, and P. Schnoebelen, “Towards the Auto-
matic Verification of PLC Programs Written in Instruction List,” in IEEE International
Conference on Systems, Man, and Cybernetics, vol. 4, 2000, pp. 2449–2454.

[44] A. A. Cárdenas, S. Amin, B. Sinopoli, A. Giani, A. Perrig, and others, “Challenges for
Securing Cyber Physical Systems,” in DHS Workshop on Future Directions in Cyber-
physical Systems Security, 2009.

[45] D. U. Case, “Analysis of the cyber attack on the ukrainian power grid,” Electricity Infor-
mation Sharing and Analysis Center (E-ISAC), 2016.

[46] M. Chan, D. Ricketts, S. Lerner, and G. Malecha, “Formal verification of stability prop-
erties of cyber-physical systems,” 2016.

[47] D. Chatterjee, J. Webb, Q. Gao, M. Vaiman, M. Vaiman, and M. Povolotskiy, “N-1-1
AC contingency analysis as a part of NERC compliance studies at midwest ISO,” in
Transmission and Distribution Conference and Exposition, 2010 IEEE PES. IEEE,
2010, pp. 1–7.

[48] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Flow*: An analyzer for non-linear
hybrid systems,” in Computer Aided Verification. Springer, 2013, pp. 258–263.

https://www.cadcrowd.com/

174

[49] S. Cheung, B. Dutertre, M. Fong, U. Lindqvist, K. Skinner, and A. Valdes, “Using
Model-based Intrusion Detection for SCADA Networks,” in Proc. SCADA Security Sci-
entific Symposium, 2007.

[50] E. Chien, L. OMurchu, and N. Falliere, “W32.Duqu - The precursor to the next Stuxnet,”
Symantic Security Response, Tech. Rep., nov 2011.

[51] A. Clark, Q. Zhu, R. Poovendran, and T. Basar, “An impact-aware defense against
Stuxnet,” in American Control Conference (ACC), 2013. IEEE, 2013, pp. 4140–4147.

[52] C. Clavier, “Side channel analysis for reverse engineering (scare)-an improved attack
against a secret a3/a8 gsm algorithm,” 2004.

[53] B. P. Conner, G. P. Manogharan, A. N. Martof, L. M. Rodomsky, C. M. Rodomsky, D. C.
Jordan, and J. W. Limperos, “Making sense of 3-d printing: Creating a map of additive
manufacturing products and services,” Additive Manufacturing, vol. 1, pp. 64–76, 2014.

[54] E. C. R. Council, “The economic impacts of the August 2003 blackout,” Washington,
DC, 2004.

[55] J. Daafouz, P. Riedinger, and C. Iung, “Stability analysis and control synthesis for
switched systems: a switched lyapunov function approach,” Automatic Control, IEEE
Transactions on, vol. 47, no. 11, pp. 1883–1887, 2002.

[56] C. M. Davis and T. J. Overbye, “Multiple element contingency screening,” Power Sys-
tems, IEEE Transactions on, vol. 26, no. 3, pp. 1294–1301, 2011.

[57] K. De Brabandere, B. Bolsens, J. Van den Keybus, A. Woyte, J. Driesen, and R. Bel-
mans, “A voltage and frequency droop control method for parallel inverters,” IEEE
Trans. Power Elec., vol. 22, no. 4, pp. 1107–1115, 2007.

[58] deloitte, “Using blockchain to drive supply chain innovation,” 2017.
[Online]. Available: https://www2.deloitte.com/content/dam/Deloitte/us/Documents/
process-and-operations/us-blockchain-to-drive-supply-chain-innovation.pdf

[59] J. Ding, E. Li, H. Huang, and C. Tomlin, “Reachability-based synthesis of feedback
policies for motion planning under bounded disturbances,” in Robotics and Automation
(ICRA), 2011 IEEE International Conference on, May 2011, pp. 2160–2165.

[60] P. P. Directive, “Presidential policy directive—critical infrastructure security and re-
silience,” 2013.

[61] A. Donzé, “Breach, a toolbox for verification and parameter synthesis of hybrid sys-
tems,” in Computer Aided Verification. Springer, 2010, pp. 167–170.

[62] A. Donzé, B. Krogh, and A. Rajhans, “Parameter synthesis for hybrid systems with
an application to simulink models,” in Hybrid Systems: Computation and Control.
Springer, 2009, pp. 165–179.

[63] P. S. Duggirala, S. Mitra, and M. Viswanathan, “Verification of annotated models from
executions,” in Proceedings of the Eleventh ACM International Conference on Embed-
ded Software. IEEE Press, 2013, p. 26.

https://www2.deloitte.com/content/dam/Deloitte/us/Documents/process-and-operations/us-blockchain-to-drive-supply-chain-innovation.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/process-and-operations/us-blockchain-to-drive-supply-chain-innovation.pdf

175

[64] P. S. Duggirala, S. Mitra, M. Viswanathan, and M. Potok, “C2e2: A verification tool for
stateflow models,” in Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 2015, pp. 68–82.

[65] M. Egerstedt and B. Mishra, Eds., Hybrid Systems: Computation and Control, 11th In-
ternational Workshop, HSCC 2008, St. Louis, MO, USA, April 22-24, 2008. Proceedings,
ser. Lecture Notes in Computer Science, vol. 4981. Springer, 2008.

[66] T. Eisenbarth, C. Paar, and B. Weghenkel, “Building a side channel based disassembler,”
in Transactions on computational science X. Springer, 2010, pp. 78–99.

[67] W. Enck, P. Gilbert, S. Han et al., “TaintDroid: an information-flow tracking system for
realtime privacy monitoring on smartphones,” ACM Trans. Comp. Sys., vol. 32, no. 2,
p. 5, 2014.

[68] ESET, “Acad/medre.a 10000’s of autocad designs leaked in suspected industrial
espionage,” 2014. [Online]. Available: https://www.welivesecurity.com/media_files/
white-papers/ESET_ACAD_Medre_A_whitepaper.pdf

[69] s. Etigowni, D. Tian, G. Hernandez, K. Butler, and S. Zonouz, “Cpac: Mitigating attacks
against critical infrastructure with cyber-physical access control,” in to appear in Annual
Computer Security Applications Conference (ACSAC); available at http://dx.doi.org/10.
1145/2991079.2991126, 2016.

[70] European Network and Information Security Agency (ENISA). (2011) Protecting in-
dustrial control systems - recommendations for Europe and Member States. https:
//www.enisa.europa.eu/.

[71] F-Secure Labs, “BLACKENERGY and QUEDAGH: The convergence of crimeware and
APT attacks,” 2016.

[72] N. Falliere, L. O. Murchu, and E. Chien, “W32.Stuxnet Dossier,” Symantic Security
Response, Tech. Rep., Oct. 2010.

[73] H. Fawzi, P. Tabuada, and S. Diggavi, “Secure Estimation and Control for Cyber-
Physical Systems Under Adversarial Attacks,” IEEE Trans. Automat. Contr., vol. 59,
no. 6, pp. 1454–1467, Jun. 2014.

[74] D. Formby, P. Srinivasan, A. Leonard, J. Rogers, and R. Beyah, “Who’s in Control of
Your Control System? Device Fingerprinting for Cyber-Physical Systems,” in NDSS,
2016.

[75] J. Foust, “Spacex unveils its 21st century spaceship,” NewSpace Jour-
nal, 2014. [Online]. Available: http://www.newspacejournal.com/2014/05/30/
spacex-unveils-its-21st-century-spaceship/

[76] A. Fras and T. Dang, “Improving industrial application’s performances with an Histo-
rian,” in IEEE Intl. Conf. on Industrl Tech., 2004.

[77] S. Gallagher and W. S. Marras, “Tolerance of the lumbar spine to shear: a review and
recommended exposure limits,” Clinical Biomechanics, vol. 27, no. 10, pp. 973–978,
2012.

https://www.welivesecurity.com/media_files/white-papers/ESET_ACAD_Medre_A_whitepaper.pdf
https://www.welivesecurity.com/media_files/white-papers/ESET_ACAD_Medre_A_whitepaper.pdf
http://dx.doi.org/10.1145/2991079.2991126
http://dx.doi.org/10.1145/2991079.2991126
https://www.enisa.europa.eu/
https://www.enisa.europa.eu/
http://www.newspacejournal.com/2014/05/30/spacex-unveils-its-21st-century-spaceship/
http://www.newspacejournal.com/2014/05/30/spacex-unveils-its-21st-century-spaceship/

176

[78] D. Gao, M. K. Reiter, and D. Song, “Beyond output voting: Detecting compromised
replicas using hmm-based behavioral distance,” IEEE Transactions on Dependable and
Secure Computing, vol. 6, no. 2, pp. 96–110, 2009.

[79] L. Garcia, F. Brasser, M. H. Cintuglu, A.-R. Sadeghi, O. Mohammed, and S. A. Zonouz,
“Hey, my malware knows physics! attacking plcs with physical model aware rootkit,” in
24th Annual Network & Distributed System Security Symposium (NDSS), 2017.

[80] D. Genkin, L. Pachmanov, I. Pipman, A. Shamir, and E. Tromer, “Physical key extraction
attacks on pcs,” Communications of the ACM, vol. 59, no. 6, pp. 70–79, 2016.

[81] D. Genkin, L. Pachmanov, I. Pipman, E. Tromer, and Y. Yarom, “Ecdsa key extraction
from mobile devices via nonintrusive physical side channels,” Tech. Rep., 2016.

[82] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: Continual prediction
with lstm,” Neural computation, vol. 12, no. 10, pp. 2451–2471, 2000.

[83] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper, “Simple on-the-fly automatic verification
of linear temporal logic,” in International Symposium on Protocol Specification, Testing
and Verification. IFIP, 1995.

[84] A. S. Glassner, An introduction to ray tracing. Elsevier, 1989.

[85] J. Glover, M. Sarma, and T. Overbye, Power System Analysis and Design. Cengage
Learning, 2011.

[86] W. M. Goble, Control Systems Safety Evaluation and Reliability. International Society
of Automation, 2010.

[87] C. R. A. Gonzalez and J. H. Reed, “Power fingerprinting in sdr & cr integrity assess-
ment,” in MILCOM 2009-2009 IEEE Military Communications Conference. IEEE,
2009, pp. 1–7.

[88] J. J. Grainger and W. D. Stevenson, Power system analysis. McGraw-Hill New York,
1994, vol. 31.

[89] S. Greene, “Margin and sensitivity methods for security analysis of electric power sys-
tems,” Ph.D. dissertation, University of Wisconsin–Madison, 1998.

[90] J. Groote, S. van Vlijmen, and J. Koorn, “The Safety Guaranteeing System at Sta-
tion Hoorn-Kersenboogerd,” in Tenth Annual Conference on Systems Integrity, Software
Safety and Process Security, June 1995, pp. 57–68.

[91] L. Habets, P. J. Collins, and J. H. van Schuppen, “Reachability and control synthesis for
piecewise-affine hybrid systems on simplices,” Automatic Control, IEEE Transactions
on, vol. 51, no. 6, pp. 938–948, 2006.

[92] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The weka
data mining software: an update,” ACM SIGKDD explorations newsletter, vol. 11, no. 1,
pp. 10–18, 2009.

[93] N. Headquarters, “Navair marks first flight with 3-d printed, safety-critical parts,”
NAVAIR News, 2016. [Online]. Available: http://www.navair.navy.mil/index.cfm?
fuseaction=home.NAVAIRNewsStory&id=6323

http://www.navair.navy.mil/index.cfm?fuseaction=home.NAVAIRNewsStory&id=6323
http://www.navair.navy.mil/index.cfm?fuseaction=home.NAVAIRNewsStory&id=6323

177

[94] T. K. Ho, “Random decision forests,” in Document Analysis and Recognition, 1995.,
Proceedings of the Third International Conference on, vol. 1. IEEE, 1995, pp. 278–
282.

[95] A. Hojjati, A. Adhikari, K. Struckmann, E. Chou, T. N. Tho Nguyen, K. Madan, M. S.
Winslett, C. A. Gunter, and W. P. King, “Leave your phone at the door: Side channels
that reveal factory floor secrets,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’16. New York, NY, USA: ACM,
2016, pp. 883–894. [Online]. Available: http://doi.acm.org/10.1145/2976749.2978323

[96] J. Hoskins, IBM AS/400: a business perspective. Wiley, 1991.

[97] Z. Huang and S. Mitra, “Proofs from simulations and modular annotations,” in Proceed-
ings of the 17th international conference on Hybrid systems: computation and control.
ACM, 2014, pp. 183–192.

[98] Z. Huang, Y. Wang, S. Mitra, G. E. Dullerud, and S. Chaudhuri, “Controller synthe-
sis with inductive proofs for piecewise linear systems: an smt-based algorithm,” arXiv
preprint arXiv:1509.04623, 2015.

[99] R. Huuck, “Semantics and Analysis of Instruction List Programs,” Electronic Notes in
Theoretical Computer Science, vol. 115, pp. 3–18, 2005.

[100] “Identify3d,” 2018. [Online]. Available: https://identify3d.com/

[101] V. M. Igure, S. A. Laughter, and R. D. Williams, “Security issues in SCADA networks,”
Computers & Security, vol. 25, no. 7, pp. 498–506, 2006.

[102] A. Iliev, N. Kyurkchiev, and S. Markov, “On the approximation of the step function
by some sigmoid functions,” Mathematics and Computers in Simulation, vol. 133, pp.
223–234, 2017.

[103] “i.materialise,” 2018. [Online]. Available: https://i.materialise.com

[104] M. G. Ioannides, “Design and implementation of plc-based monitoring control system
for induction motor,” Energy Conversion, IEEE Transactions on, vol. 19, no. 3, pp. 469–
476, 2004.

[105] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

[106] T. Jackson, “Navy partnership goes to new depths with first 3d-printed submersible,” Of-
fice of Energy Efficiency & Renewable Energy, 2017. [Online]. Available: https://energy.
gov/eere/articles/navy-partnership-goes-new-depths-first-3d-printed-submersible

[107] A. Y. Javaid, W. Sun, V. K. Devabhaktuni, and M. Alam, “Cyber security threat analysis
and modeling of an unmanned aerial vehicle system,” in Homeland Security (HST), 2012
IEEE Conference on Technologies for. IEEE, 2012, pp. 585–590.

[108] S. Jha and S. A. Seshia, “A Theory of Formal Synthesis via Inductive Learning,” ArXiv
e-prints, May 2015.

[109] K.-H. John and M. Tiegelkamp, IEC 61131-3: programming industrial automation sys-
tems. Springer Science & Business Media, 2010.

http://doi.acm.org/10.1145/2976749.2978323
https://identify3d.com/
https://i.materialise.com
https://energy.gov/eere/articles/navy-partnership-goes-new-depths-first-3d-printed-submersible
https://energy.gov/eere/articles/navy-partnership-goes-new-depths-first-3d-printed-submersible

178

[110] S. Kamkar, “Skyjack: autonomous drone hacking,” Online, 2013. [Online]. Available:
http://samy.pl/skyjack

[111] D. K. Kaynar, N. Lynch, R. Segala, and F. Vaandrager, The Theory of Timed I/O Au-
tomata, ser. Synthesis Lectures on Computer Science. Morgan Claypool, November
2005, also available as Technical Report MIT-LCS-TR-917.

[112] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish et al., “sel4: Formal verification of an os kernel,”
in Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles.
ACM, 2009, pp. 207–220.

[113] P. Kundur, N. J. Balu, and M. G. Lauby, Power system stability and control. McGraw-
hill New York, 1994, vol. 7.

[114] E. V. Kuz’min and V. A. Sokolov, “On construction and verification of PLC-programs,”
Modelirovanie i Analiz Informatsionnykh Sistem [Modeling and Analysis of Information
Systems], vol. 19, no. 4, pp. 25–36, 2012.

[115] R. Lepofsky, “North american energy council security standard for critical infrastructure
protection (nerc cip),” in The Manager’s Guide to Web Application Security:. Springer,
2014, pp. 165–176.

[116] L. Leshin, P. Mahaffy, C. Webster, M. Cabane, P. Coll, P. Conrad, P. Archer, S. Atreya,
A. Brunner, A. Buch et al., “Volatile, isotope, and organic analysis of martian fines with
the Mars Curiosity rover,” Science, vol. 341, no. 6153, p. 1238937, 2013.

[117] T. G. Lewis, Critical infrastructure protection in homeland security: defending a net-
worked nation. John Wiley & Sons, 2006.

[118] J. Leyden, “Polish Teen Derails Tram after Hacking Train Network,” http://www.
theregister.co.uk/2008/01/11/tram_hack/, 2008.

[119] X. Liao, D. Formby, C. Day et al., “Towards secure metering data analysis via distributed
differential privacy,” in IEEE DSN, 2014.

[120] Y. Liu, A. A. Saputra, J. Wang, F. Tin-Loi, and C. Song, “Automatic polyhedral
mesh generation and scaled boundary finite element analysis of stl models,” Computer
Methods in Applied Mechanics and Engineering, vol. 313, pp. 106 – 132, 2017. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0045782516306326

[121] Y. Liu, L. Wei, Z. Zhou, K. Zhang, W. Xu, and Q. Xu, “On code execution tracking via
power side-channel,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2016, pp. 1019–1031.

[122] Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against state estimation in
electric power grids,” ACM Transactions on Information and System Security (TISSEC),
vol. 14, no. 1, p. 13, 2011.

[123] Z. Lu and Z. Zhang, “Bad data identification based on measurement replace and standard
residual detection,” Automation of Electric Power Systems, vol. 13, p. 011, 2007.

http://samy. pl/skyjack
http://www.theregister.co.uk/2008/01/11/tram_hack/
http://www.theregister.co.uk/2008/01/11/tram_hack/
http://www.sciencedirect.com/science/article/pii/S0045782516306326

179

[124] K. Manamcheri, S. Mitra, S. Bak, and M. Caccamo, “A step towards verification and
synthesis from simulink/stateflow models,” in Proceedings of the 14th international con-
ference on Hybrid systems: computation and control. ACM, 2011, pp. 317–318.

[125] C. Masone et al., “Role Definition Language (RDL): A language to describe context-
aware roles,” 2002.

[126] S. McLaughlin and P. McDaniel, “SABOT: specification-based payload generation for
programmable logic controllers,” in ACM CCS, 2012.

[127] S. McLaughlin, P. McDaniel, and W. Aiello, “Protecting consumer privacy from electric
load monitoring,” in ACM CCS, 2011.

[128] S. McLaughlin, S. Zonouz, D. Pohly, and P. McDaniel, “A trusted safety verifier for
process controller code,” in NDSS, 2014.

[129] D. J. Meagher, Octree encoding: A new technique for the representation, manipulation
and display of arbitrary 3-d objects by computer. Electrical and Systems Engineering
Department Rensseiaer Polytechnic Institute Image Processing Laboratory, 1980.

[130] L. Meier, J. Camacho, B. Godbolt, J. Goppert, L. Heng, M. Lizarraga et al., “Mavlink:
Micro air vehicle communication protocol,” Online]. Tillgänglig: http://qgroundcontrol.
org/mavlink/start.[Hämtad 2014-05-22], 2013.

[131] S. Mitra, “A verification framework for hybrid systems,” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, 2007.

[132] Y. Mo and R. M. Murray, “Multi-dimensional state estimation in adversarial environ-
ment,” in 34th Chinese Control Conference (CCC). IEEE, 2015, pp. 4761–4766.

[133] S. Mohan, S. Bak, E. Betti, H. Yun, L. Sha, and M. Caccamo, “S3A: Secure System
Simplex Architecture for Enhanced Security of Cyber-Physical Systems,” http://arxiv.
org, 2012.

[134] T. K. Moon, “The expectation-maximization algorithm,” IEEE Signal processing maga-
zine, vol. 13, no. 6, pp. 47–60, 1996.

[135] T. H. Morris, A. K. Srivastava, B. Reaves, K. Pavurapu, S. Abdelwahed, R. Vaughn,
W. McGrew, and Y. Dandass, “Engineering future cyber-physical energy systems: Chal-
lenges, research needs, and roadmap,” in IEEE North American Power Symposium
(NAPS), 2009, 2009, pp. 1–6.

[136] M. Msgna, K. Markantonakis, and K. Mayes, The B-Side of Side Channel Leakage:
Control Flow Security in Embedded Systems. Cham: Springer International Publishing,
2013, pp. 288–304. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-04283-1_
18

[137] J. Mulder, M. Schwartz, M. Berg, J. R. Van Houten, J. Mario, M. A. K. Urrea, A. A.
Clements, and J. Jacob, “Weaselboard: Zero-day exploit detection for programmable
logic controllers,” tech. report SAND2013-8274, Sandia National Laboratories, Tech.
Rep., 2013.

http://arxiv.org
http://arxiv.org
http://dx.doi.org/10.1007/978-3-319-04283-1_18
http://dx.doi.org/10.1007/978-3-319-04283-1_18

180

[138] A. Muller and S. Karevska, “How will 3d printing make your company the strongest link
in the value chain,” EY’s Global 3D Printing Report, 2016.

[139] D. Muniraj and M. Farhood, “A framework for detection of sensor attacks on small
unmanned aircraft systems,” in Unmanned Aircraft Systems (ICUAS), 2017 International
Conference on. IEEE, 2017, pp. 1189–1198.

[140] National Energy Regulatory Comission, “NERC CIP 002 1 - Critical Cyber Asset Iden-
tification,” 2006.

[141] A. Nazari, N. Sehatbakhsh, M. Alam, A. Zajic, and M. Prvulovic, “Eddie: Em-based
detection of deviations in program execution,” in Proceedings of the 44th Annual Inter-
national Symposium on Computer Architecture. ACM, 2017, pp. 333–346.

[142] Nell Nelson,Rob VandenBrink, “The Impact of Dragonfly Malware on In-
dustrial Control Systems https://www.sans.org/reading-room/whitepapers/ICS/
impact-dragonfly-malware-industrial-control-systems-36672,” 2016.

[143] North American Electric Reliability Corporation, 2011, stuxnet attackers used 4
Windows zero-day exploits, available at http://www.nerc.com/pa/Stand/Project%
20200902%20Realtime%20Reliability%20Monitoring%20and/Project_2009-02_
rmacsdt_white_paper_021611.pdf.

[144] R. Novak, “Side-channel attack on substitution blocks,” in International Conference on
Applied Cryptography and Network Security. Springer, 2003, pp. 307–318.

[145] D. of Energy Office of Electricity Delivery and E. Reliability, “North american electric
reliability corporation critical infrastructure protection (nerc-cip) standards; available at
http://www.nerc.com/pa/Stand/Pages/CIPStandards.aspx,” 2015.

[146] D. of Homeland Security, “Cyber security division transition to practice technology
guide,” 2014.

[147] S. Ould Biha, “A Formal Semantics of PLC Programs in Coq,” in IEEE COMPSAC,
2011.

[148] T. J. Overbye and J. D. Weber, “Visualization of power system data,” in System Sciences,
2000. Proceedings of the 33rd Annual Hawaii International Conference on. IEEE,
2000, pp. 7–pp.

[149] P. Paganini, “Hack-proof drones possible with hacms technology,” http://resources. in-
fosecinstitute. com/hack-proof-drones-possiblehacms-technology, 2014.

[150] M. Pajic, J. Weimer, N. Bezzo, P. Tabuada, O. Sokolsky, I. Lee, and G. J. Pappas, “Ro-
bustness of attack-resilient state estimators,” in ICCPS’14: ACM/IEEE 5th International
Conference on Cyber-Physical Systems (with CPS Week 2014). IEEE Computer Soci-
ety, 2014, pp. 163–174.

[151] Y. Pan, J. White, D. C. Schmidt, A. Elhabashy, L. Sturm, J. A. Camelio, and C. Williams,
“Taxonomies for reasoning about cyber-physical attacks in iot-based manufacturing sys-
tems,” International Journal of Interactive Multimedia & Artificial Intelligence, vol. 4,
pp. 45–54, 2017.

https://www.sans.org/reading-room/whitepapers/ICS/impact-dragonfly-malware-industrial-control-systems-36672
https://www.sans.org/reading-room/whitepapers/ICS/impact-dragonfly-malware-industrial-control-systems-36672
http://www.nerc.com/pa/Stand/Project%20200902%20Realtime%20Reliability%20Monitoring%20and/Project_2009-02_rmacsdt_white_paper_021611.pdf
http://www.nerc.com/pa/Stand/Project%20200902%20Realtime%20Reliability%20Monitoring%20and/Project_2009-02_rmacsdt_white_paper_021611.pdf
http://www.nerc.com/pa/Stand/Project%20200902%20Realtime%20Reliability%20Monitoring%20and/Project_2009-02_rmacsdt_white_paper_021611.pdf
http://www.nerc.com/pa/Stand/Pages/CIPStandards.aspx

181

[152] T. Park and P. I. Barton, “Formal Verification of Sequence Controllers,” Computers &
Chemical Engineering, vol. 23, no. 11, pp. 1783–1793, 2000.

[153] D. G. Peterson, “Project Basecamp at S4,” http://www.digitalbond.com/2012/01/19/
project-basecamp-at-s4/, January 2012.

[154] L. Pietre-Cambacédes, M. Tritschler, and G. N. Ericsson, “Cybersecurity myths on
power control systems: 21 misconceptions and false beliefs,” IEEE Transactions on
Power Delivery, vol. 26, no. 1, pp. 161–172, 2011.

[155] A. Platzer, “Logic and compositional verification of hybrid systems,” in Computer Aided
Verification. Springer, 2011, pp. 28–43.

[156] J. Pollet, “Electricity for Free? The Dirty Underbelly of SCADA and Smart Meters,” in
Proceedings of Black Hat USA 2010, July 2010.

[157] L. R. Rabiner, “A tutorial on hidden markov models and selected applications in speech
recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, 1989.

[158] M. Rashed, M. Ashraf, R. Mines, and P. J. Hazell, “Metallic microlattice materials:
A current state of the art on manufacturing, mechanical properties and applications,”
Materials & Design, vol. 95, pp. 518–533, 2016.

[159] S. Ravuri and A. Stolcke, “A comparative study of recurrent neural network models for
lexical domain classification,” in Acoustics, Speech and Signal Processing (ICASSP),
2016 IEEE International Conference on. IEEE, 2016, pp. 6075–6079.

[160] C. Ribeiro, A. Zuquete, P. Ferreira, and P. Guedes, “SPL: An Access Control Language
for Security Policies and Complex Constraints.” in NDSS, vol. 1, 2001.

[161] M. Robinson, “Knocking my neighbor’s kid’s cruddy drone offline,” in Defcon, 2015.

[162] A. Rogers and J. Hill, Unmanned: Drone warfare and global security. Between the
Lines, 2014.

[163] J. Rrushi, H. Farhangi, C. Howey, K. Carmichael, and J. Dabell, “A Quantitative Evalu-
ation of the Target Selection of Havex ICS Malware Plugin,” Industrial Control System
Security (ICSS) Workshop, 2015.

[164] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-based access
control models,” Computer, vol. 29, no. 2, pp. 38–47, 1996.

[165] R. Santamarta, “Here be backdoors: A journey into the secrets of industrial firmware,”
Black Hat USA, 2012.

[166] J. Schumann, P. Moosbrugger, and K. Y. Rozier, “R2u2: monitoring and diagnosis of
security threats for unmanned aerial systems,” in Runtime Verification. Springer, 2015,
pp. 233–249.

[167] M. D. Schwartz, J. Mulder, J. Trent, and W. D. Atkins, “Control system devices: Ar-
chitectures and supply channels overview,” Sandia Report SAND2010-5183, Sandia Na-
tional Laboratories, Albuquerque, New Mexico, 2010.

[168] L. Sha, “Using simplicity to control complexity,” IEEE Software, no. 4, pp. 20–28, 2001.

http://www.digitalbond.com/2012/01/19/project-basecamp-at-s4/
http://www.digitalbond.com/2012/01/19/project-basecamp-at-s4/

182

[169] N. Shachtman, “Computer virus hits us drone fleet,” CNN. com, 2011.

[170] S. Shane and D. E. Sanger, “Drone crash in iran reveals secret us surveillance effort,”
The New York Times, vol. 7, 2011.

[171] “Shapeways,” 2018. [Online]. Available: https://www.shapeways.com/

[172] J. S. Shapiro, J. M. Smith, and D. J. Farber, “EROS: a fast capability system,” in ACM
SOSP, 1999.

[173] A. Shareef, Y. Zhu, M. Musavi, and B. Shen, “Comparison of mlp neural network and
kalman filter for localization in wireless sensor networks,” in Proceedings of the 19th
IASTED International conference on parallel and distributed computing and systems.
ACTA Press, 2007, pp. 323–330.

[174] S. J. Sheather, “Weighted least squares,” in A Modern Approach to Regression with R,
ser. Springer Texts in Statistics. Springer New York, 2009, pp. 115–123.

[175] S. Singh and S. Srivastava, “Improved voltage and reactive power distribution factors for
outage studies,” IEEE Trans. Power Systems, vol. 12, no. 3, pp. 1085–1093, 1997.

[176] J. Slay and M. Miller, “Lessons Learned from the Maroochy Water Breach,” in Critical
Infrastructure Protection. Springer, 2007, pp. 73–82.

[177] A. SMYKLA, “Developing fem models for difficult to describe 3d structures by
using stl files - the case study of the human femur modelling,” Archives of Civil
and Mechanical Engineering, vol. 6, no. 2, pp. 5 – 20, 2006. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1644966512602490

[178] A. Solar-Lezama, Program synthesis by sketching. ProQuest, 2008.

[179] Y. Son, H. Shin, D. Kim, Y.-S. Park, J. Noh, K. Choi, J. Choi, Y. Kim et al., “Rocking
drones with intentional sound noise on gyroscopic sensors.” in USENIX Security, 2015,
pp. 881–896.

[180] C. Song, F. Lin, Z. Ba, K. Ren, C. Zhou, and W. Xu, “My smartphone knows what
you print: Exploring smartphone-based side-channel attacks against 3d printers,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’16. New York, NY, USA: ACM, 2016, pp. 895–907. [Online].
Available: http://doi.acm.org/10.1145/2976749.2978300

[181] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang, J. Newsome,
P. Poosankam, and P. Saxena, “BitBlaze: A new approach to computer security via bi-
nary analysis,” in International Conference on Information Systems Security. Springer,
2008, pp. 1–25.

[182] S. Sridhar, A. Hahn, and M. Govindarasu, “Cyber-Physical System Security for the Elec-
tric Power Grid,” Proc. IEEE, vol. 100, no. 1, pp. 210–224, Jan. 2012.

[183] O. Stava, J. Vanek, B. Benes, N. Carr, and R. Měch, “Stress relief: Improving structural
strength of 3d printable objects,” ACM Transactions on Graphics, vol. 31, no. 4,
pp. 48:1–48:11, Jul. 2012. [Online]. Available: http://doi.acm.org/10.1145/2185520.
2185544

https://www.shapeways.com/
http://www.sciencedirect.com/science/article/pii/S1644966512602490
http://doi.acm.org/10.1145/2976749.2978300
http://doi.acm.org/10.1145/2185520.2185544
http://doi.acm.org/10.1145/2185520.2185544

183

[184] S. Stone and M. Temple, “Radio-frequency-based anomaly detection for programmable
logic controllers in the critical infrastructure,” International Journal of Critical Infras-
tructure Protection, vol. 5, no. 2, pp. 66–73, 2012.

[185] S. J. Stone, “Radio frequency based programmable logic controller anomaly detection,”
DTIC Document, Tech. Rep., 2013.

[186] S. J. Stone, M. A. Temple, and R. O. Baldwin, “Detecting anomalous programmable
logic controller behavior using rf-based hilbert transform features and a correlation-
based verification process,” International Journal of Critical Infrastructure Protection,
vol. 9, pp. 41–51, 2015.

[187] K. Stouffer, J. Falco, and K. Scarfone, “Guide to industrial control systems (ICS) secu-
rity,” NIST special publication, pp. 800–82, 2011.

[188] K. A. Stouffer, J. A. Falco, and K. A. Scarfone, “Sp 800-82. guide to industrial con-
trol systems (ics) security: Supervisory control and data acquisition (scada) systems,
distributed control systems (dcs), and other control system configurations such as pro-
grammable logic controllers (plc),” 2011.

[189] L. Sturm, M. Albakri, C. B. Williams, and P. Tarazaga, “In-situ detection of build de-
fects in additive manufacturing via impedance-based monitoring,” in International Solid
Freeform Fabrication Symposium, 2016.

[190] L. D. Sturm, C. B. Williams, J. A. Camelio, J. White, and R. Parker, “Cyber-physical
vulnerabilities in additive manufacturing systems: A case study attack on the .stl file
with human subjects,” Journal of Manufacturing Systems, vol. 44, no. Part 1, pp.
154 – 164, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0278612517300961

[191] J. E. Sullivan and D. Kamensky, “How cyber-attacks in ukraine show the vulnerability
of the us power grid,” The Electricity Journal, vol. 30, no. 3, pp. 30–35, 2017.

[192] P. Sun, X. J. Tang, H. H. Wang, W. Z. Zhong, J. Wang, and H. M. Luo, “Review of AGC
and Primary Frequency Regulation,” vol. 986, pp. 1263–1267, 2014.

[193] A. Support, “How to detect and remove the acad.vlx virus,” 2015. [Online]. Avail-
able: https://knowledge.autodesk.com/support/autocad/learn-explore/caas/sfdcarticles/
sfdcarticles/How-to-detect-and-remove-the-Acad-vlx-virus-s.html

[194] TechNavio. (2014) Global Industrial Control Systems (ICS)
Security Market 2014-2018. http://www.technavio.com/report/
global-industrial-control-systems-ics-security-market%C2%A02014-2018.

[195] “Thingiverse,” 2018. [Online]. Available: https://www.thingiverse.com/

[196] S. Tom, D. Christiansen, and D. Berrett, “Recommended pratice for patch management
of control systems,” DHS control system security program (CSSP) Recommended Prac-
tice, 2008.

[197] J. Torres, J. Cotelo, J. Karl, and A. P. Gordon, “Mechanical property optimization of fdm
pla in shear with multiple objectives,” Jom, vol. 67, no. 5, pp. 1183–1193, 2015.

http://www.sciencedirect.com/science/article/pii/S0278612517300961
http://www.sciencedirect.com/science/article/pii/S0278612517300961
https://knowledge.autodesk.com/support/autocad/learn-explore/caas/sfdcarticles/sfdcarticles/How-to-detect-and-remove-the-Acad-vlx-virus-s.html
https://knowledge.autodesk.com/support/autocad/learn-explore/caas/sfdcarticles/sfdcarticles/How-to-detect-and-remove-the-Acad-vlx-virus-s.html
http://www.technavio.com/report/global-industrial-control-systems-ics-security-market%C2%A02014-2018
http://www.technavio.com/report/global-industrial-control-systems-ics-security-market%C2%A02014-2018
https://www.thingiverse.com/

184

[198] N. Toshida, M. Uesugi, Y. Nakata, M. Nomoto, and T. Uchida, “Open distributed EM-
S/SCADA system,” Hitachi Review, vol. 47, no. 5, pp. 208–213, 1998.

[199] N. G. Tsoutsos, H. Gamil, and M. Maniatakos, “Secure 3d printing: reconstructing and
validating solid geometries using toolpath reverse engineering,” in Proceedings of the
3rd ACM Workshop on Cyber-Physical System Security. ACM, 2017, pp. 15–20.

[200] H. Turner, J. White, J. A. Camelio, C. Williams, B. Amos, and R. Parker, “Bad parts:
Are our manufacturing systems at risk of silent cyberattacks?” IEEE Security & Privacy,
vol. 13, no. 3, pp. 40–47, 2015.

[201] N. Umetani and R. Schmidt, “Cross-sectional structural analysis for 3d printing
optimization,” in SIGGRAPH Asia 2013 Technical Briefs, ser. SA ’13. New York,
NY, USA: ACM, 2013, pp. 5:1–5:4. [Online]. Available: http://doi.acm.org/10.1145/
2542355.2542361

[202] A. V. Uriarte-Arcia, I. López-Yáñez, and C. Yáñez-Márquez, “One-hot vector hybrid
associative classifier for medical data classification,” PloS one, vol. 9, no. 4, p. e95715,
2014.

[203] U.S. Department of Energy Office of Electricity Delivery and Energy Reliability, “A
Summary of Control System Security Standards Activities in the Energy Sector,” Octo-
ber 2005.

[204] S. E. Valentine, “PLC code vulnerabilities through SCADA systems,” Ph.D. dissertation,
University of South Carolina, 2013.

[205] S. VanDeBogart, P. Efstathopoulos, E. Kohler et al., “Labels and Event Processes in the
Asbestos Operating System,” ACM Trans. Comput. Sys., vol. 25, no. 4, 2007.

[206] C. L. Ventola, “Medical applications for 3d printing: current and projected uses,” Phar-
macy and Therapeutics, vol. 39, no. 10, p. 704, 2014.

[207] Verizon, “Data breach digest. scenarios from the field,” 2016. [Online]. Available:
http://www.verizonenterprise.com/resources/reports/rp_data-breach-digest_xg_en.pdf

[208] D. Vermoen, M. Witteman, and G. N. Gaydadjiev, “Reverse engineering java card ap-
plets using power analysis,” in IFIP International Workshop on Information Security
Theory and Practices. Springer, 2007, pp. 138–149.

[209] M. Vutsinas, “Contingency analysis using synchrophasor measurements,” Ph.D. disser-
tation, Clemson University, 2008.

[210] P.-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong, “O-cnn: Octree-based convo-
lutional neural networks for 3d shape analysis,” ACM Transactions on Graphics (TOG),
vol. 36, no. 4, p. 72, 2017.

[211] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting intrusions using system calls:
Alternative data models,” in Security and Privacy, 1999. Proceedings of the 1999 IEEE
Symposium on. IEEE, 1999, pp. 133–145.

[212] J. Weiss, “Are the NERC CIPS making the grid less reliable,” Control Global, 2009.

http://doi.acm.org/10.1145/2542355.2542361
http://doi.acm.org/10.1145/2542355.2542361
http://www.verizonenterprise.com/resources/reports/rp_data-breach-digest_xg_en.pdf

185

[213] L. J. Wells, J. A. Camelio, C. B. Williams, and J. White, “Cyber-physical security
challenges in manufacturing systems,” Manufacturing Letters, vol. 2, no. 2, pp.
74 – 77, 2014. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S2213846314000066

[214] C. Wright, C. Cowan, J. Morris, S. Smalley, and G. Kroah-Hartman, “Linux security
module framework,” in Ottawa Linux Symposium, vol. 8032, 2002, pp. 6–16.

[215] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d shapenets: A
deep representation for volumetric shapes,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 1912–1920.

[216] C. Wueest, “Targeted attacks against the energy sector,” Symantec Security Response,
Mountain View, CA, 2014.

[217] K. Xu, D. D. Yao, B. G. Ryder, and K. Tian, “Probabilistic program modeling for high-
precision anomaly classification,” in 2015 IEEE 28th Computer Security Foundations
Symposium. IEEE, 2015, pp. 497–511.

[218] M. Yampolskiy, A. Skjellum, M. Kretzschmar, R. A. Overfelt, K. R. Sloan,
and A. Yasinsac, “Using 3d printers as weapons,” International Journal of
Critical Infrastructure Protection, vol. 14, pp. 58 – 71, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1874548215300330

[219] D.-Y. Yeung and Y. Ding, “Host-based intrusion detection using dynamic and static be-
havioral models,” Pattern recognition, vol. 36, no. 1, pp. 229–243, 2003.

[220] K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized gradient descent,”
SIAM Journal on Optimization, vol. 26, no. 3, pp. 1835–1854, 2016.

[221] J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti, “AVATAR: A framework to
support dynamic security analysis of embedded systems firmwares,” in NDSS, 2014.

[222] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières, “Making information flow
explicit in HiStar,” in OSDI, 2006.

[223] S. E. Zeltmann, N. Gupta, N. G. Tsoutsos, M. Maniatakos, J. Rajendran, and R. Karri,
“Manufacturing and security challenges in 3d printing,” Jom, vol. 68, no. 7, pp. 1872–
1881, 2016.

[224] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a gaussian denoiser:
Residual learning of deep cnn for image denoising,” IEEE Transactions on Image Pro-
cessing, 2017.

[225] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “MATPOWER: Steady-
state operations, planning, and analysis tools for power systems research and education,”
Power Systems, IEEE Transactions on, vol. 26, no. 1, pp. 12–19, 2011.

[226] S. Zonouz, C. M. Davis, K. R. Davis, R. Berthier, R. B. Bobba, and W. H. Sanders,
“SOCCA: A security-oriented cyber-physical contingency analysis in power infrastruc-
tures,” Smart Grid, IEEE Transactions on, vol. 5, no. 1, pp. 3–13, 2014.

[227] S. Zurier, “91% of cyberattacks start with a phishing email,” Dark Reading, 2016.

http://www.sciencedirect.com/science/article/pii/S2213846314000066
http://www.sciencedirect.com/science/article/pii/S2213846314000066
http://www.sciencedirect.com/science/article/pii/S1874548215300330

Appendices

186

187

1 Second-order Taylor expansion

CPAC implements the physical information flow analysis through dynamic behavior inspec-
tion of the plant around Equation 5.1’s (Section 4) equilibrium state using the plant’s Taylor
approximate equivalent Equation 5.5 which uses the first-order partial derivatives (Jacobian
matrix) of the power plant’s vector-valued function fx =

∂ f
∂x (x0,u0,λ0), fu =

∂ f
∂u (x0,u0,λ0), and

fλ =
∂ f
∂λ
(x0,u0,λ0). Assuming that fx is non-singular, we can reorder Equation 5.4 as

∆w = (wu−wx f−1
x fu)∆u+

+∆uT (
1
2
(f−1

x fu)
T wxx f−1

x fu−wux f−1
x fu +

1
2

wuu)∆u,
(1)

The sensor measurements are correlated with the plant state and the operator’s control in-
puts through (5.2) at nominal operating point

The first order taylor series expansion of (5.2) is given in (5.6). For line flow analysis, w
is line flow vector and u is the vector of series capacitor reactances. fx is the jacobian matrix
know from Newton-Raphson and the jacobin matrices wu,wx and fu are shown in Figure 4.

For higher policy enforcement accuracy via considering higher order dynamics of the plant,
CPAC makes use of second order approximation as in (1). wxx,wux and wuu are second order
jacobian matrices for line flow analysis are shown in Figure 4.

2 Four bus power system case study

Case B: Ensuring safe power grid control. The power system is already in an unsafe state
(shown in Figure 1a), where two transmission lines experience high currents. Bob, as the
control operator, asks to increase the generation set-point on power bus 2. Based on the power
system flow equations, this would increase line flows across the system.
Source of incident: No enforcement of control system integrity.
Required access control policy: In the case of unsafe states, control operators must not take
actions that further worsens the situation (i.e., increases the overflows).
Effects of CPAC deployment: CPAC denies Bob’s request since his action would violate the
policy (Figure 2), because the action’s execution drives the system further into less safe states
while the system is already not safe.
Case C: Inter-area power transfer regulation. Alice requests to open the generator on Bus 2
from the rest of the grid so that she can perform follow-up maintenance tasks on the generator.
In real-world practice, the inter-area power transfers should be maintained based on the sched-
uled values Sun et al. (2014). Source of incident: No regulation of actions that can affect remote
power systems. Required access control policy: Maintenance operators’ action impact should
be limited to the home area; their action must not affect the away area’s operation. Effects of
CPAC deployment: CPAC denies Alice’s action request once it completes its physics-based
analysis. Figure 1b shows the state that the system would enter following Alice’s action. The
line on inter-area tie-line (the line that connects home and away areas together) is indirectly
affected if Alice’s action occurs, and hence her action is denied.

188

(a) Bob’s Action Request in Case B.

(b) Alice’s Action Request in Case C.

Figure 1: The four-bus system presented in Figure 1a after operator modification requests.

189

curr_low(0).
curr_high(100).
event_curr_inrange_alice(U,I,N,W) :-
U==Alice,I==w,N==currReq,
curr_low(L),curr_high(H),W>=L,W=<H.

Figure 2: Prolog Policy Rule for Case B.

3 Global safety conditions

The class of attacks and the relevant global safety requirements for the attacks on the quadcopter
are shown in Table 2

4 Normal Operation Mode Physical Modeling

The nonlinear discrete-time system obtained from the flight dynamics equations can be written
by the state equations as

x(n+1) = f (x(n),u(n))+w(n) (2)

y(n) = h(x(n))+ v(n) (3)

where x is the (i * 1) state vector of sensor data, y is the (j * 1) observation vector of actuator
data, f is the state transition model, h is the observation model. Both f and h are nonlinear
functions. w and v are the processes and observation noises which are zero-mean Gaussian
noises with known covariance q and r respectively. u is the control vector. n is the current
sample of the sensor data and n + 1 is the future sample of the sensor data. For the system
equations in Equation 2 and Equation 3 the EKF solution for state estimation of one step ahead
of time are given by Equations 3-9

x̂(n+1|n) = f (x̂(n|n)),u(n)) (4)

Equation 4 is the predicted sensor data values for one step ahead of time.

x̂(n|n) = x̂(n|n−1)+K(n)[y(n)−h(x̂(n|n−1))] (5)

Equation 5 is the sensor values estimation update.

K(n) = P(n|n−1)H(n)T [H(n)P(n|n−1)H(n)T +R(n)]−1 (6)

K(n) is (i * j) Kalman gain matrix

P(n+1|n) = F(n)P(n|n)F(t)T +Q(n) (7)

Equation 7 is the predicted covariance estimate.

P(n|n) = P(n|n−1)−K(n)H(n)P(n|n−1) (8)

Equation 8 is the update of the covariance estimate

190

Jacobian matrix wu =
[
wuc

]
∂wl

∂Zcl′
=

{
γl(V 2

i −ViVj cosθi j)−βlViVjsinθi j l = l′

0 l 6= l′

Jacobian matrix Fu =

[
Pzc

Qzc

]
∂Pi

∂ZCl
=

{
γl(V 2

i −ViVj cosθi j)−βlViVjsinθi j i 6= SLK, l ∈ SL(i)

0 otherwise

∂Qi

∂ZCl
=

{
βl(−V 2

i +ViVj cosθi j)− γlViVjsinθi j i ∈ SPQ, l ∈ SL(i)

0 otherwise

Jacobian matrix wux =
[
wZcθ wZcV

]
∂wZc

∂θi
=

{
γViVjsinθi j−βlViVj cosθi j i 6= SLK, i, j ∈ l
0 otherwise

∂wZc

∂θ j
=

{
−γlViVj sinθi j +βlViVj cosθi j i 6= SLK, i, j ∈ l
0 otherwise

∂wZc

∂Vi
=

{
2γlVi− γlVj cosθi j−βlVj sinθi j i ∈ SPQ, i, j ∈ l
0 otherwise

∂wZc

∂Vj
=

{
−γlVi cosθi j−βlVi sinθi j i ∈ SPQ, i, j ∈ l
0 otherwise

Jacobian matrix wxx =
[
wθθ wvv

]
∂2wl

∂θ2
i
=

{
glViVj cosθi j +blViVj sinθi j i 6= SLK, i, j ∈ l
0 otherwise

∂2wl

∂θ2
j
=

{
glViVj cosθi j +blViVj sinθi j i 6= SLK, i, j ∈ l
0 otherwise

∂2wl

∂V 2
i

=

{
2gl

0 otherwise

∂2wl

∂V 2
j
=

{
0 i ∈ SPQ, i, j ∈ l
0 otherwise

Jacobian matrix wuu =
[
w′zc

]
∂wl

∂ZCl′
=

{
γ′l(V

2
i −ViVj cosθi j)−β′lViVjsinθi j l = l′

0 l 6= l′

Figure 3: Physical-Side Sensitivity-Based Information Flow Analysis

191

Jacobian matrix wx =
[
wθ wv

]
∂wl

∂θi
=

{
glViVj sinθi j−blViVj cosθi j i 6= SLK, i, j ∈ l
o otherwise

∂wl

∂θ j
=

{
−glViVj sinθi j +blViVj cosθi j i 6= SLK, i, j ∈ l
o otherwise

∂wl

∂Vi
=

{
2glVi−glVj cosθi j−blVj sinθi j i ∈ SPQ, i, j ∈ l
o otherwise

∂wl

∂Vj
=

{
−glVi cosθi j−blVi sinθi j i ∈ SPQ, i, j ∈ l
o otherwise

Notations:

nl number of transmission lines
l, l′ indices for transmission lines
zl series impedance of line l
yl series admittance of line l
Zc series capacitive resistances
P active power injections at all nodes except slack node
Q reactive power injections at PQ-nodes
w active power line flows
SL(i) set of lines connected to bus i
SPV set of PV-nodes
SPQ set of PQ-nodes
SLK slack node

Definitions:

zl rl + j(xl− xcl)
yl gl + jbl
Zc xcl

nl

θi j θi−θ j

γl
∂gl
∂xcl

=
2rl(xl− xcl)

(r2
l +(xl− xcl)2)2

βl
∂bl
∂xcl

=
−(xl− xcl)

2 + r2
l

(r2
l +(xl− xcl)2)2

γ′l
−2rl(r2

l +(xl− xcl)
2)+6rl(xl− xcl)

2

(r2
l +(xl− xcl)2)3

β′l
2(xl− xcl)(r2

l +(xl− xcl)
2)2 +4(r4

l − (xl− xcl)
4)(xl− xcl)

(r2
l +(xl− xcl)2)4

Figure 4: Physical-Side Sensitivity-Based Information Flow Analysis (continued)

192

Table 1: Evaluation attacks and descriptions

Class Description Example
attack

Attack conse-
quence

Example safety re-
quirements

Motor and
server
control

Motors or the
servo control,
controls the
movement of
the quadcopter

Switching off
the motor

Crash to the
ground due
to the lack of
thrust

T hrust ≥ γ,

∀altitude > 0

Increasing the
speed of a
motor

Fly high due
to increase in
thrust

T hrust
dt

< |γ|,

∀altitude > 0

Increasing the
adjacent motors

Move towards
the direction
away from the
motors

T hrust_on_ad jacent_Motors
dt

< |γ|,

∀altitude > 0

Increasing
the opposite
motors

Rotates along
its axis T hrust_on_opposite_Motors

dt
< |γ|,

∀altitude > 0

AHRD
Attitude and
heading
reference
systems
(AHRS)
provides
heading and
attitude
information
based on
magnetometer,
accelerometer
and gyroscope

IMU sensor
data modifica-
tion on control
algorithm

Heading
towards unde-
sired directions IMU_Data_on_Drone−

IMU_data_predicted < |γ|

Timing attack
by delaying the
sensor data

Delays the
control re-
sponse leading
to undesired
motion of the
quadcopter

Time_on_Drone = Time_on_Crystal

Modified con-
trol algorithm

Inaccurate con-
trol commands
given to quad-
copter

State_on_Drone = State_on_Crystal

193

Table 2: Evaluation attacks and descriptions (continued)

Class Description Example
attack

Attack conse-
quence

Example safety re-
quirements

Position
hold

Holds the
quadcopter in a
position by
using GPS data

IMU sensor
data modifica-
tion on control
algorithm

Movement of
the quadcopter

IMU_Data_on_Drone−
IMU_data_predicted < |γ|

GPS sensor
data modifica-
tion on control
algorithm

Change in po-
sition of quad-
copter GPS_Data_on_Drone−

GPS_data_on_Crystal < |γ|

Modified con-
trol algorithm

Inaccurate con-
trol commands
given to quad-
copter

State_on_Drone = State_on_Crystal

Altitude
hold

Holds the
altitude of the
quadcopter by
using
barometer

Barometer sen-
sor data modi-
fication on con-
trol algorithm

Change of alti-
tude

Barometer_Data_on_Drone−
Barometer_data_predicted < |γ|

Modified con-
trol algorithm

Inaccurate con-
trol commands
given to quad-
copter

State_on_Drone = State_on_Crystal

Drift
Drifts due to
external
environment or
sensor accuracy

Sensor data
modification
on control
algorithm

Slight drifting
motions of the
quadcopter SensorData_on_Drone−

Sensordata_predicted < |γ|

Modified con-
trol algorithm

Inaccurate con-
trol commands
given to quad-
copter

State_on_Drone = State_on_Crystal

194

F(n) =
∂ f
∂x x=x̂(n|n)

(9)

H(n) =
∂h
∂x x=x̂(n|n−1)

(10)

Equation 9 and Equation 10 are Jacobian matrices.
Crystal predicts K steps ahead of time instead of estimating one step at a time. The estima-

tion of sensor data K steps ahead of time is given by Equation 11

x̂(n+ k|n+ k−1) = f (x̂(n+ k−1|n+ k−1)),u(n+ k−1)) (11)

	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	Introduction
	Algorithmic Attack Synthesis using Hybrid Dynamics of Power Grid Critical Infrastructures
	Introduction
	Overview
	Electricity Grid Security
	Overview of Synthesized Attacks

	Transient Attacks on Power Networks
	Power Network Dynamics
	Attack Protection: Relays and Monitors

	The Attack Synthesis Problem
	Formal Hybrid Model
	Attack Synthesis Problem
	Algorithm for Attack Synthesis
	Switched Transient Attack Parameter Space

	Evaluations
	Application to 3-Bus Power Network
	Attack Generalization
	Robustness of Attacks

	Transient Attacks vs. NERC CIP-Compliance
	Related Work
	Conclusions and Mitigations

	Just-Ahead-Of-Time Controller Recovery
	Introduction
	Background
	Drone Flight Dynamics
	Offline Controller Code Verification
	Limitation of Existing Solutions

	Overview
	Threat Model
	Crystal Architecture
	Safety Requirement Definition
	Predictive Flight Modeling
	Just-Ahead-of-Time Verification

	Drone Physics Modeling
	Normal Operation Mode Physical Modeling
	Failure Mode Data Driven Modeling
	Full Flight Operation mode

	Cyber-Physical Security Modeling
	JAT Verification and Recovery
	Evaluations
	Related Work
	Conclusion

	Contactless Control Flow Monitoring via Electromagnetic Emanations
	Introduction
	Threat model
	Background
	PLC Program Emanation Analysis
	EM-Based Control Flow Monitoring
	Offline Model Construction and Training
	Online PLC Execution Monitoring

	Implementation and Evaluation
	Experimental Setup
	PLC Electromagnetic Emanations
	Accuracy
	Performance

	Related Work
	Conclusions

	Securing Critical Infrastructure with Cyberphysical Access Control
	Introduction
	Energy Management Systems
	Existing EMS Solutions
	Security Threats

	CPAC Architecture Overview
	Information tracking
	Defining policies
	Case Study: California 2011 Blackout Emulation

	Physics-Based Information Flow Analysis
	Logical Policy Enforcement
	Context-Aware Policy Control
	Policy layers of CPAC
	Formal description of CPAC
	Trade-offs

	Device Level Information Flow
	Evaluations
	Case Studies
	Performance
	Scalability: NERC-CIP N-x Compliance

	Related Work
	Conclusions

	Trusted Integrity Verifier for Additive Manufacturing
	Introduction
	Background
	Format of STL Files
	Attributes of STL Files
	Attacks on STL Files

	Threat Model
	TIV Overview
	Object Classification
	Void Detection Module
	Safety Conditions Verification
	Geometric Analysis
	Structural Analysis
	Malicious Void Verification

	Evaluation
	Case Study: Analysis of a Vertebra
	Large Scale Analysis on STL Files

	Related Work
	Conclusion

	Conclusion
	Bibliography
	Appendices
	Second-order Taylor expansion
	Four bus power system case study
	Global safety conditions
	Normal Operation Mode Physical Modeling

