
DECENTRALIZED DIFFERENTIALLY PRIVATE
ALGORITHMS FOR MATRIX AND TENSOR

FACTORIZATION

By

HAFIZ IMTIAZ

A dissertation submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Anand D. Sarwate

And approved by

New Brunswick, New Jersey

January, 2020

ABSTRACT OF THE DISSERTATION

Decentralized Differentially Private Algorithms for

Matrix and Tensor Factorization

by Hafiz Imtiaz

Dissertation Director:

Anand D. Sarwate

Many applications of machine learning, such as human health research, involve process-

ing private or sensitive information. Privacy concerns may impose significant hurdles

to collaboration in scenarios where there are multiple sites holding data and the goal

is to estimate properties jointly across all datasets. Conventional differentially private

decentralized algorithms can provide strong privacy guarantees. However, the utili-

ty/accuracy of the joint estimates may be poor when the datasets at each site are

small. In this work, we propose a new framework, Correlation Assisted Private Esti-

mation (CAPE), for designing privacy-preserving decentralized algorithms with much

better accuracy guarantees in an honest-but-curious model. We show that CAPE can

be employed in a range of decentralized computations common in machine learning

problems.

We note that matrix and tensor factorizations are key components of many de-

centralized processing pipelines that involve joint subspace learning. In this work,

we focus on principal component analysis, independent component analysis, canonical

correlation analysis and orthogonal tensor decomposition. Conventional decentralized

ii

differentially private factorization schemes suffer from excessive noise, which leads to

sub-optimal subspace/feature learning. We demonstrate that the CAPE framework fits

perfectly in these problems and can be employed to remedy the excessive noise is-

sue. More specifically, we develop decentralized algorithms for these matrix and tensor

factorization problems and show that, under certain conditions, these algorithms can

achieve the same utility as a centralized algorithm using all datasets across sites.

Finally, we employ our CAPE framework to propose an algorithm for solving gener-

alized optimization problems in decentralized settings. We provide a tighter character-

ization of the functional mechanism and propose modifications such that it can be in-

corporated in the CAPE framework. Our proposed decentralized functional mechanism

is specifically suited for privacy-preserving computation of virtually any differentialble

and continuous cost function in the decentralized setting.

For all of our proposed algorithms, we present empirical results to demonstrate

that our proposed algorithms outperform existing state-of-the-art algorithms and can

be competitive with non-private algorithms in many scenarios of interest. Our results

indicate that meaningful privacy can be attained without losing much performance by

the virtue of better algorithm design.

iii

Acknowledgements

I am immensely grateful to my adviser, Prof. Anand D. Sarwate, for his guidance,

support and encouragement throughout my journey as a graduate student at Rutgers

University. He continually trained me to approach and solve research problems through

perceptive discussions. He is a very knowledgeable and empathetic mentor. In several

occasions he went out of his way to help me overcome my doubts and taught me to be

persistent in research. I would like to thank him and the Department of Electrical and

Computer Engineering for the financial support during my time at Rutgers University.

I am grateful to my dissertation committee members, Prof. Kristin Dana, Prof.

Emina Soljanin, Prof. Roy Yates and Prof. Vince Calhoun for their valuable insights

and suggestions on my dissertation. Professors Dana, Soljanin and Yates have been

providing me with guidance and inspiration from the early stages of my PhD. Prof.

Calhoun has been a mentor and collaborator in all of my projects since 2015. Their

passion and deep knowledge of research problems has motivated me and helped me

grow as a researcher. I am grateful to Prof. Athina Petropulu, whom I deeply admire.

She has been very helpful to me and my wife in many occasions. I would also like to

thank Dr. Jafar Mohammadi and Mohsen Ghassemi for numerous helpful discussions.

Completing my PhD could not be possible without the support of my parents and

my sister. I can not thank them enough for their immense love and support. My parents

have made countless sacrifices for our betterment and I owe them everything I have.

Finally, I would like to thank my wife Tahsina and our son Tashreeq. My wife is my

closest friend for more than fourteen years and has constantly supported me through

all of my ups-and-downs. She has sacrificed a lot for me and our son and I am truly

grateful to her. Our son is our companion in every adventure, literally and figuratively.

I believe he has made me more responsible and a better person.

iv

Dedication

For my parents, my wife and my son.

v

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . v

List of Tables . x

List of Figures . xi

1. Introduction . 1

1.1. Motivation . 1

1.2. Major Contributions . 4

1.3. Organization of the Thesis . 5

2. Background and Preliminaries . 6

2.1. Related Works . 6

2.1.1. Principal Component Analysis 8

2.1.2. Orthogonal Tensor Decomposition 8

2.1.3. Decentralized Joint Independent Component Analysis 9

2.1.4. Canonical Correlation Analysis 10

2.1.5. General Function Computation 10

2.2. Notation and Definitions . 11

2.2.1. Privacy Definitions . 11

2.2.2. Tensor Preliminaries . 13

2.2.3. Orthogonal Tensor Decomposition 15

2.2.4. Miscellaneous Definitions . 16

vi

3. Correlated Noise Scheme . 17

3.1. Decentralized Data Setting . 17

3.2. Conventional Approach to Decentralized DP Computations 17

3.3. Proposed Scheme: CAPE . 20

3.3.1. Trust/Collusion Model . 20

3.3.2. Correlated Noise . 20

3.3.3. Detailed Description of CAPE Protocol 21

3.3.4. Utility Analysis . 25

3.3.5. Communication Overhead . 29

3.3.6. Scope of CAPE . 29

3.3.7. Unequal Sample Sizes at Sites . 31

3.4. Experimental Results . 36

4. Improved Decentralized Differentially Private Principal Component

Analysis . 40

4.1. Decentralized Principal Component Analysis 40

4.2. Proposed capePCA Algorithm . 42

4.2.1. Performance Gain with Correlated Noise 44

4.2.2. Theoretical Performance Guarantee 44

4.2.3. Communication Cost . 45

4.3. Experimental Results . 45

4.3.1. Dependence on privacy parameter 𝜖 47

4.3.2. Dependence on number of samples 𝑁𝑠 47

4.3.3. Dependence on privacy parameter 𝛿 48

5. Decentralized Differentially Private Orthogonal Tensor Decomposi-

tion . 49

5.1. Applications of Orthogonal Tensor Decomposition 49

5.1.1. Single Topic Model (STM) . 49

5.1.2. Mixture of Gaussians (MOG) . 51

vii

5.1.3. Orthogonal Decomposition of ℳ3 51

5.2. Differentially Private OTD . 52

5.3. Proposed capeAGN Algorithm . 55

5.3.1. Performance Gain with Correlated Noise 60

5.3.2. Theoretical Performance Guarantee 60

5.3.3. Communication Cost . 61

5.4. Experimental Results . 62

5.4.1. Performance variation in the MOG setup 64

5.4.2. Performance variation in the STM setup 65

6. Decentralized Differentially Private Joint Independent Component

Analysis . 67

6.1. The ICA Model . 67

6.2. Improved Differentially Private djICA 69

6.3. Privacy Analysis of capeDJICA . 73

6.3.1. Privacy Analysis using Rényi Differential Privacy 74

6.3.2. Privacy Accounting using Moments Accountant 75

6.4. Performance Analysis of capeDJICA . 79

6.4.1. Performance Gain with Correlated Noise 79

6.4.2. Convergence of capeDJICA Algorithm 79

6.4.3. Communication Cost . 79

6.5. Experimental Results . 80

6.5.1. Performance Variation with privacy parameter 𝜖 82

6.5.2. Performance Variation with number of subjects 𝑀 83

6.5.3. Performance Variation with privacy parameter 𝛿 84

6.5.4. Reconstructed Spatial Maps . 85

7. Decentralized Differentially Private Canonical Correlation Analysis 86

7.1. Decentralized Canonical Correlation Analysis 86

7.2. Proposed Decentralized Differentially Private CCA 88

viii

7.2.1. Performance gain with correlated noise 89

7.2.2. Communication cost . 90

7.3. Experimental Results . 91

7.3.1. Privacy-utility trade-offs . 92

7.3.2. Learning rates and impact of 𝛿 93

8. Decentralized Differentially Private Computation of Functions . . . 94

8.1. Functional Mechanism . 94

8.2. Improved Functional Mechanism . 96

8.2.1. Example – Linear Regression . 98

8.2.2. Example – Logistic Regression 101

8.3. Decentralized Functional Mechanism . 105

8.3.1. Conventional Approach . 106

8.3.2. Proposed capeFM Algorithm . 107

8.4. Experimental Results . 109

8.4.1. Dependence on Privacy Parameter 𝜖 110

8.4.2. Dependence on Total Sample Size 𝑁 111

8.4.3. Dependence on Privacy Parameter 𝛿 111

8.4.4. Variation of err𝑤 . 112

9. Conclusion and Future Directions . 114

Bibliography . 117

ix

List of Tables

3.1. Comparison of communication overhead 29

x

List of Figures

3.1. The structure of the network: (a) conventional, (b) CAPE 18

3.2. Variation of 𝛿 and 𝛿conv with 𝜏𝑠 for different values of 𝑆 and 𝜖 26

3.3. Variation of 𝛿 and 𝛿conv with 𝑆𝐶
𝑆 , for different values of 𝑆 and 𝜖 27

3.4. Structure of our neural network. 36

3.5. Variation of performance of NN based classifier on synthetic data: (a)–

(b) with 𝜖 per iteration; (c)–(d) with 𝑁 . Fixed parameter: 𝑆 = 4. 37

4.1. Variation of performance in distributed PCA for synthetic and real data:

(a) - (c) with privacy parameter 𝜖; (d) - (f) with sample size 𝑁𝑠 and (g)

- (i) with privacy parameter 𝛿 . 46

5.1. Variation of performance in the MOG setup: top-row – with privacy

parameter 𝜖; bottom-row – with sample size 𝑁𝑠 62

5.2. Variation of performance in the STM setup: top-row – with privacy

parameter 𝜖; bottom-row – with sample size 𝑁𝑠 62

5.3. Variation of performance with privacy parameter 𝛿: top-row – in MOG

setup; bottom-row – in STM setup . 63

6.1. Variation of total 𝜖 with number of iterations 𝐽*: 𝜎2
W = 𝜎2

b = 0.001 and

𝛿 = 1/𝑁 . Moments accountant method provides a much smaller total 𝜖

than the basic composition. 78

xi

6.2. Variation of 𝑞NGI and overall 𝜖 with privacy parameter 𝜖𝑖for: (a)-(b)

synthetic fMRI data, (c)-(d) real fMRI data. Fixed parameters: 𝑆 = 4,

𝛿 = 10−5. For a given privacy budget (performance requirement), the

user can use the overall 𝜖 plot on the right 𝑦-axis, shown with solid lines,

(𝑞NGI plot on the left 𝑦-axis, shown with dashed lines) to find the required

𝜖𝑖 on the 𝑥-axis and thereby, find the corresponding performance (overall

𝜖). For capeDJICA, higher 𝜖𝑖 results a smaller 𝑞NGI, but not necessarily a

small overall 𝜖, i.e., an optimal 𝜖𝑖 can be chosen based on 𝑞NGI or overall

𝜖 requirement. 80

6.3. Variation of 𝑞NGI and overall 𝜖 with total number of subjects 𝑀 for: (a)-

(b) synthetic fMRI data, (c)-(d) real fMRI data. Fixed parameters: 𝑆 =

4, 𝛿 = 10−5. For a given privacy budget (performance requirement), the

user can use the overall 𝜖 plot on the right 𝑦-axis, shown with solid lines,

(𝑞NGI plot on the left 𝑦-axis, shown with dashed lines) to find the required

𝑀 on the 𝑥-axis and thereby, find the corresponding performance (overall

𝜖). For capeDJICA, higher 𝑀 results a smaller 𝑞NGI and a smaller overall 𝜖. 80

6.4. Variation of 𝑞NGI and overall 𝜖 with privacy parameter 𝛿: (a) synthetic

and (b) real fMRI data. Fixed parameters: 𝑆 = 4, 𝜖𝑖 = 0.5. capeDJICA

achieves very close utility to the non-private djICA with small overall 𝜖. . 81

6.5. Spatial maps (synthetic data): true and resulting from djICA. 83

6.6. Spatial maps (synthetic data) resulting from capeDJICA for different pa-

rameters. capeDJICA estimates spatial maps that closely resemble the

true ones, even for strict privacy guarantee (small overall 𝜖). 84

7.1. Variation of performance with privacy parameter 𝜖 and total samples 𝑁 .

Fixed parameters: 𝛿 = 0.01, 𝑆 = 10. 90

7.2. Variation of performance with 𝛿. Fixed parameter: 𝑆 = 10. 90

8.1. Variation of loss 𝑓𝐷(w) at w* for synthetic datasets. (a)–(b): with 𝜖.

(c)–(d): with total samples 𝑁 . (e)–(f): with 𝛿. Fixed param.: 𝑆 = 5. . . 108

8.2. Variation of loss 𝑓𝐷(w) at w* for two real datasets. (a)–(b): with 𝜖.

(c)–(d): with total samples 𝑁 . (e)–(f): with 𝛿. Fixed param.: 𝑆 = 5. . . 108

xii

8.3. Variation of err𝑤 for synthetic datasets. Top-row: with 𝜖. Mid-row: with

total samples 𝑁 . Bottom-row: with 𝛿. Fixed parameter: 𝑆 = 5. 112

xiii

1

Chapter 1

Introduction

1.1 Motivation

Privacy-sensitive learning is important in many applications: examples include human

health research, business informatics, and location-based services among others. Re-

leasing any function of private data, even summary statistics and other aggregates, can

reveal information about the underlying data [109, 133]. Differential privacy (DP) [50]

is a cryptographically motivated and mathematically rigorous framework for measuring

the risk associated with performing computations on private data. More specifically,

it measures the privacy risk in terms of the probability of identifying the presence of

individual data points in a dataset from the results of computations performed on that

data. Additionally, it can be used to help manage the privacy loss of individual devices.

Pilot efforts in this direction have been made by Google [54], Apple [1, 134, 18, 47],

Uber [46], and the US Census [100, 3]. For event-based systems, differential privacy

has been used on count streams [90].

It is evident that differential privacy has emerged as a de-facto standard for privacy-

preserving technologies in research and practice. It is also useful when the private data

is distributed over multiple locations (sites) and each site has its own dataset of human

subjects [135, 119, 35, 59]. Data holders may be reluctant or unable to directly share

“raw” data to an aggregator due to ethical (e.g. privacy) and technical (e.g. bandwidth)

reasons. Some noteworthy examples include:

∙ medical research consortium of healthcare centers/research labs for fMRI analysis

∙ decentralized speech processing system to learn model parameters for speaker

recognition

2

∙ multi-party cyber-physical system for performing global state estimation from

sensor signals.

From a statistical standpoint, the number of samples held locally in such applications is

usually not large enough for meaningful parameter estimation. Decentralized informa-

tion processing allows data owners to maintain local control of the data while passing

messages to assist in a joint computation across many datasets. If these computations

are differentially private, data owners and algorithm developers can measure and control

privacy risks.

Differentially private algorithms introduce noise to guarantee privacy. Conventional

decentralized differentially private algorithms often have poor utility due to excess noise

compared to centralized analyses. The excessive noise problem is more prominent when

the local dataset size is small-to-moderate. In this work, we propose a Correlation

Assisted Private Estimation (CAPE) framework, which is a novel decentralized and

privacy-preserving protocol that provides utility close to centralized case. We achieve

this by inducing (anti) correlated noise in the differentially private messages. CAPE can

be applied to a wide range of computations, including computing loss functions that

are separable across sites. This class includes large-scale statistical signal processing

and machine learning methods formulated as convex optimization problems, such as

empirical risk minimization (ERM).

One of the most common problems in machine learning is that of matrix and tensor

factorization in decentralized setting. In this work, we particularly focus on the Singu-

lar Value Decomposition (SVD), or Principal Component Analysis (PCA), orthogonal

tensor decomposition (OTD), independent component analysis (ICA), and canonical

correlation analysis (CCA). Despite some limitations, PCA/SVD is one of the most

widely-used preprocessing stages in any machine learning algorithm: it projects data

onto a lower dimensional subspace spanned by the singular vectors of the sample second-

moment matrix. For example, training a classifier is much faster when the data is first

projected onto lower dimensions.

Tensor decomposition is a powerful tool for inference algorithms because it can be

used to infer complex dependencies (higher order moments) beyond second-moment

3

methods such as PCA. This is particularly useful in latent variable models [8] such as

mixtures of Gaussians and topic modeling. Tensor decomposition can be considered to

be higher-order generalizations of the matrix SVD and PCA. Although computing the

decomposition of arbitrary tensors is computationally intractable, efficient algorithms

exists for finding decomposition of structured tensors, such as those that appear in

several latent variable models [8].

ICA is a very popular blind source separation technique in neuroimaging studies. It

assumes that the observed signals are mixtures of statistically independent sources and

aims to decompose the mixed signals into those sources. It has been widely used to esti-

mate intrinsic connectivity networks from brain imaging data (e.g. functional magnetic

resonance imaging (fMRI)). Successful application of ICA on fMRI can be attributed to

both sparsity and statistical independence between the underlying sources [29]. Tem-

poral ICA is shown to be able to identify temporally independent components that

represent activation of different neurological regions over time [40].

CCA [71] is a tool for characterizing linear relationships between two (or more)

multidimensional variables (or “views”). The views are typically different measurements

or modalities of the same physical phenomena. It has been used as a pre-processing step

for dimensionality reduction in high-dimensional clustering, statistical analysis, medical

studies and recently in machine learning, neuro-science and signal processing [45, 93,

23, 76]. The advantage of CCA over PCA or random projections [44, 139, 4, 85] is that

CCA can jointly learn projection maps to improve clustering performance for multi-

view learning [9, 37]. CCA also has applications in blind source separation, such as in

fMRI analysis [94, 45, 42].

Finally, the functional mechanism [143] is an approach for addressing privacy-

preserving optimization problems. It uses functional approximation [121] and the

Laplace mechanism [48] to create differentially private approximations for any continu-

ous and differentiable function. In theory, this can address any generalized optimization

problem that appear commonly in machine learning and signal processing. The advan-

tage of functional mechanism is that any off-the-shelf optimizer can be used to minimize

the approximate loss function to find a privacy-preserving optimal parameter.

4

1.2 Major Contributions

The goal of our work is to develop privacy-preserving matrix and tensor factorization

algorithms that operate in decentralized settings – similar to those found in research

consortia. As conventional decentralized differentially private schemes suffer from too

much noise, we propose to reduce the amount of noise of conventional schemes while

guaranteeing differential privacy. We summarize our contributions here:

∙ We propose a novel decentralized differentially private computation protocol CAPE

in Chapter 3. We show that CAPE improves upon the conventional decentralized

differentially private schemes and achieves the same level of utility as the pooled

data scenario in certain regimes. Additionally, we show that CAPE can be em-

ployed in a wide range of computations that frequently appear in machine learning

problems. We analyze the privacy guarantee of the CAPE protocol in detail. We

note that the privacy analysis is non-trivial as we induce correlated noise for pre-

serving privacy and achieving the same utility level as the pooled-data scenario.

∙ We employ the CAPE scheme to a number of widely-used matrix and tensor fac-

torization algorithms, namely principal component analysis (Chapter 4), orthogo-

nal tensor decomposition (Chapter 5), independent component analysis (Chapter

6) and canonical correlation analysis (Chapter 7). The proposed decentralized

PCA (capePCA) and the decentralized joint ICA (capeDJICA) algorithms are im-

provements over our previous algorithms [78, 80]. To the best of our knowledge,

the proposed decentralized differentially private orthogonal tensor decomposition

(capeAGN) and canonical correlaton analysis (capeCCA) algorithms are the first

decentralized differentially private algorithms for their respective problems. For

all of the proposed algorithms, we show that we can achieve the same utility as

the pooled-data scenario in certain regimes.

∙ We propose an improved functional mechanism (FM) that builds on the work of

Zhang et al. [143] (Chapter 8). We use a tighter sensitivity analysis and show

analytically that it guarantees less noisy function computation for linear and

5

logistic regression problems at the expense of an approximate differential privacy

guarantee. Empirical validation on real and synthetic data validates our approach.

∙ We modify the FM such that it can be incorporated into decentralized settings.

We employ the CAPE scheme to propose the capeFM algorithm and show that

capeFM can achieve the same utility as the pooled data scenario in some regimes.

To the best of our knowledge, this work is the first decentralized FM.

∙ We demonstrate the effectiveness of our algorithms with varying privacy and

dataset parameters. Our privacy analysis and empirical results on real and syn-

thetic datasets show that the proposed algorithms can achieve much better utility

than the existing state of the art algorithms.

1.3 Organization of the Thesis

The rest of this dissertation is organized as follows. In Chapter 2, we review some of the

the relevant works and necessary definitions and notations. In Chapter 3, we describe

the proposed CAPE scheme in detail along with proofs and utility analyses. We also for-

malize the scope of the CAPE scheme. In Chapters 4–7, we show how the CAPE scheme

can be employed to develop efficient privacy-preserving decentralized matrix and tensor

factorization algorithms, namely the capePCA, the capeAGN, the capeDJICA and the

capeCCA algorithms. In Chapter 8, we present a generalized decentralized optimization

scheme that can be incorporated in many optimization scenarios that appear in machine

learning problems. Our capeFM algorithm employs the CAPE scheme and achieves the

same utility as the pooled data scenario. In all these chapters, we provide experimen-

tal results that demonstrate the effectiveness of the proposed algorithms on real and

synthetic data and compare against competing state-of-the-art algorithms. We focus

on investigating the privacy-utility trade-off: how the performance varies as a function

of the privacy parameters and the number of samples. In each case, we compare the

proposed algorithms with existing (if any) and non-private algorithms and a conven-

tional approach (no correlated noise). Finally, we make some concluding remarks in

Chapter 9.

6

Chapter 2

Background and Preliminaries

In this chapter, we first review some of the the relevant works in matrix and tensor

factorization and decentralized optimization problems. We then review some necessary

definitions, notations and tensor algebra preliminaries.

2.1 Related Works

There is a vast literature [27, 108, 138, 111, 136, 75, 66, 115, 144] on solving optimiza-

tion problems in decentralized settings, both with and without privacy concerns. In the

machine learning context, the most relevant ones to our current work are those using

ERM and stochastic gradient descent (SGD) [36, 38, 127, 2, 82, 92, 16, 97, 140]. Ad-

ditionally, several works studied decentralized differentially private learning for locally

trained classifiers [117, 120, 15]. One of the most common approaches for ensuring dif-

ferential privacy in optimization problems is to employ randomized gradient computa-

tions [127, 16, 2]. Another common approach is to employ the output perturbation [38],

which adds noise to the output of the optimization problem according to the sensitivity

of the optimization variable. Note that, both of these approaches involve computing

the sensitivity (of the gradient or the output variable) and then adding noise scaled to

the sensitivity [50]. The problem with output perturbation is that the relation between

the data and the parameter set is often hard to characterize. This is due to the com-

plex nature of the optimization: the sensitivity is very difficult to compute. However,

differentially private gradient descent methods can circumvent this by bounding the

gradients at the expense of slowing down the convergence process [2]. Finally, one can

employ objective perturbation [38, 115], where we need to perturb the objective func-

tion and find the minimizer of the perturbed objective function. However, the objective

7

function has to satisfy some strict conditions, which are not met in many practical op-

timization problems [143]. In addition to optimization problems, Smith [125] proposed

a general approach for computing summary statistics using the sample-and-aggregate

framework and both the Laplace and Exponential mechanisms [105]. Jing [83] proposed

a unique approach that uses perturbed histograms for releasing a class of 𝑀 -estimators

in a non-interactive way.

Differentially private algorithms provide different guarantees than Secure Multi-

party Computation (SMC) based methods (see [64, 123, 52, 84, 132, 21] for thor-

ough comparisons between SMC and differential privacy based methods). Gade and

Vaidya [58] applied a combination of SMC and differential privacy for decentralized

optimization in which each site adds and subtracts arbitrary functions to confuse the

adversary. Bonawitz et al. [22] proposed a communication-efficient method for federated

learning over a large number of mobile devices. The most recent work in this line is that

of Heikkilä et al. [69], who also studied the relationship of additive noise and sample

size in a decentralized setting. In their model, 𝑆 data holders communicate their data

to 𝑀 computation nodes to compute a function. Anandan and Clifton [7] proposed to

reduce the noise added for differential privacy.

In the conventional decentralized differentially private computation (i.e., where each

data owner randomizes the output function), a much higher level of noise is required

compared to that of a centralized (or pooled-data) analysis. Some recent works [14, 19]

explore the space in between the decentralized and centralized scenarios. Mechanisms

have been proposed that are easy to implement with limited accuracy loss with respect

to the centralized model. In this respect, Erlingsson et al. [55] recently showed that

shuffling provides a privacy amplification, whereas the Encode, Shuffle, Analyze (ESA)

model required a trusted shuffler that received messages from data owners and permuted

them before they are released [19]. However, these shuffling mechanisms require all

parties to follow the protocol exactly. Our work is inspired by the seminal work of

Dwork et al. [49] that proposed decentralized noise generation for preserving privacy.

8

2.1.1 Principal Component Analysis

Several decentralized PCA algorithms [95, 12, 24, 10, 101, 78] have been proposed. Liang

et al. [95] proposed a decentralized PCA scheme where it is necessary to send both the

left and right singular vectors along with corresponding singular values from each site to

the aggregator. Feldman et al. [57] proposed an improvement upon this, where each site

sends a 𝐷×𝑅 matrix to the aggregator. Balcan et al. [12] proposed a further improved

version using fast sparse subspace embedding [39] and randomized SVD [65]. However,

none of these algorithms satisfy any privacy guarantee. Prior to this work, we proposed

two differentially-private decentralized PCA algorithms. To our knowledge, these are

the only existing differentially-private decentralized PCA algorithms. The method by

Imtiaz et al. [80] proposed to send data from one site to another in a sequential manner,

which is less fault-tolerant. Additionally, the method by Imtiaz and Sarwate [78] suffers

from larger noise variance as it employs the conventional decentralized differentially

private scheme.

2.1.2 Orthogonal Tensor Decomposition

For a complete introduction to the history of tensor decompositions, see the comprehen-

sive survey of Kolda and Bader [87]. The CANDECOMP/PARAFAC, or CP decompo-

sition [34, 68] and the Tucker decomposition [137] are generalizations of the matrix SVD

to multi-way arrays. While finding the decomposition of arbitrary tensors is computa-

tionally intractable, specially structured tensors appear in some latent variable models.

Such tensors can be decomposed efficiently [8, 87] using a variety of approaches such as

generalizations of the power iteration [89]. Exploiting such structures in higher-order

moments to estimate the parameters of latent variable models has been studied exten-

sively using the so-called orthogonal tensor decomposition (OTD) [8, 73, 72, 86]. To

our knowledge, these decompositions have not been studied in the setting of distributed

data.

9

This work builds upon our earlier work on decentralized differentially private eigen-

vector calculations [78] and centralized differentially private OTD [79]. To our knowl-

edge, this is the first efficient and fault-tolerant algorithm for OTD in decentralized

settings. Wang and Anandkumar [141] recently proposed an algorithm for differentially

private tensor decomposition using a noisy version of the tensor power iteration [8, 89].

Their algorithm adds noise at each step of the iteration and the noise variance grows

with the predetermined number of iterations. They also make the restrictive assump-

tion that the input to their algorithm is orthogonally decomposable. Our centralized

OTD algorithms [79] avoid these assumptions and achieve better empirical performance

(although without sample complexity guarantees).

2.1.3 Decentralized Joint Independent Component Analysis

Several studies have shown that brain activation patterns can be used as biomarkers to

detect brain disorders such as Attention-deficit/hyperactivity disorder, Schizophrenia

and Alzheimer’s disease [30, 31]. Functional magnetic resonance imaging (fMRI) is one

of the most commonly employed approaches to obtain the brain activation patterns.

As mentioned before, we particularly focus on the decentralized joint ICA (djICA) al-

gorithm, which can perform temporal ICA of fMRI data. The goal of temporal ICA

is to identify temporally independent components that represent activation of differ-

ent neurological regions over time [40]. However, it requires more samples than are

typically available from a single study. This is because of computational complexity

and statistical sample size – the ratio of spatial to temporal dimensions often requires

the aggregate temporal dimension to be similar to the voxel dimension [11]. A num-

ber of modified ICA algorithms exist for joining various data sets [131] together and

performing simultaneous decomposition of data from a number of subjects and modali-

ties [99]. For instance, group spatial ICA (GICA) is a noteworthy one for multi-subject

analysis of task- and resting-state fMRI data [5, 32, 31]. It assumes that the spa-

tial map components are similar across subjects. On the other hand, the joint ICA

(jICA) [30] algorithm for multi-modal data fusion assumes that the mixing process is

similar over a group of subjects. However, group temporal ICA also assumes common

10

spatial maps but pursues statistical independence of timecourses. Consequently, like

jICA, the common spatial maps from temporal ICA describe a common mixing process

among subjects. While very interesting, temporal ICA of fMRI is typically not inves-

tigated because of the small number of time points in each data set, which leads to

unreliable estimates [11]. The djICA approach overcomes that limitation by leveraging

information from datasets of multiple sites.

2.1.4 Canonical Correlation Analysis

CCA operates with multiple views of the same physical phenomena and finds the bases

for each view such that the correlation matrix between the data projected onto the

bases is diagonal and the correlations on the diagonal are maximized [23]. As mentioned

before, it has been used in applications involving high-dimensional clustering, statistical

analysis, medical studies and recently in machine learning, neuro-science and signal

processing [45, 93, 23, 76]. CCA also has applications in blind source separation, such

as in fMRI analysis [94, 45, 42].

2.1.5 General Function Computation

Our application to decentralized differentially private function computation in this work

builds on the functional mechanism [143], which uses functional approximation [121]

and the Laplace mechanism [50] to create differentially private approximations for any

continuous and differentiable function. Zhang et al.’s [143] approach can be considered

as a more generalized variant of objective perturbation [38] because it can be applied

to any continuous and differentiable function. However, the approach results in a very

noisy objective function and thus, a poor estimate of the optimization variable. Addi-

tionally, it does not scale well to decentralized problems. We provide a better analysis

of the sensitivity of their approximation and adapt the approach to the decentralized

setting.

11

2.2 Notation and Definitions

We begin by specifying the notation convention used in the manuscript. We then review

the necessary definitions that will be used throughout this dissertation. Finally, we

present some preliminaries on tensors and tensor decomposition from Anandkumar [8].

Notation. We denote vectors with bold lower case letters (e.g., x), matrices with bold

upper case letters (e.g. X), tensors with calligraphic scripts (e.g. 𝒳), scalars with

regular letters (e.g., 𝑀) and indices with lower case letters (e.g., 𝑚). Indices typically

run from 1 to their upper-case versions (e.g., 𝑚 ∈ {1, 2, . . . ,𝑀} , [𝑀]). We denote the

𝑛-th column of the matrix X as x𝑛. We use ‖ · ‖2, ‖ · ‖𝐹 and tr(·) for the Euclidean (or

ℒ2) norm of a vector or spectral norm of a matrix, the Frobenius norm, and the trace

operation, respectively. We denote the inner-product between two arrays as ⟨·, ·⟩. For

example, if A and B are two matrices then ⟨A,B⟩ = tr
(︀
A⊤B

)︀
. Finally, the density of

the standard Normal random variable is given by

𝜑(𝑥) =
1√
2𝜋

exp

(︂
−𝑥2

2

)︂
.

2.2.1 Privacy Definitions

Definition 1 ((𝜖, 𝛿)-Differential Privacy [50]). An algorithm 𝒜(D) taking values in a

set T provides (𝜖, 𝛿)-differential privacy if

Pr[𝒜(D) ∈ S] ≤ exp(𝜖) Pr[𝒜(D′) ∈ S] + 𝛿

for all measurable S ⊆ T and all data sets D and D′ differing in a single entry (neigh-

boring datasets).

This definition essentially states that the probability of the output of an algorithm is

not changed significantly if the corresponding database input is changed by just one en-

try. Here, 𝜖 and 𝛿 are privacy parameters, where low 𝜖 and 𝛿 ensure more privacy. The

parameter 𝛿 can be interpreted as the probability that the algorithm fails to provide

12

privacy risk 𝜖. Several mechanisms can be employed to ensure that an algorithm sat-

isfies differential privacy. Additive noise mechanisms such as the Gaussian or Laplace

mechanisms [50, 48] and random sampling using the exponential mechanism [105] are

among the most common ones. For additive noise mechanisms, the standard deviation

of the noise is scaled to the sensitivity of the computation.

Definition 2 (ℒ𝑝-sensitivity [50]). The ℒ𝑝-sensitivity of a vector-valued function 𝑓(D)

is defined as

∆ := max
D,D′
‖𝑓(D)− 𝑓(D′)‖𝑝,

where D and D′ are neighboring datasets.

We will focus on 𝑝 = 1 and 2 in this work.

Definition 3 (Gaussian Mechanism [48]). Let 𝑓 : D ↦→ R𝐷 be an arbitrary 𝐷 dimen-

sional function with ℒ2-sensitivity ∆. The Gaussian Mechanism with parameter 𝜏 adds

noise scaled to 𝒩 (0, 𝜏2) to each of the 𝐷 components of the output and satisfies (𝜖, 𝛿)

differential privacy if

𝜏 ≥ ∆

𝜖

√︂
2 log

1.25

𝛿
. (2.1)

Note that, for any given (𝜖, 𝛿) pair, we can calculate a noise variance 𝜏2 such that ad-

dition of a noise term drawn from 𝒩 (0, 𝜏2) guarantees (𝜖, 𝛿)-differential privacy. Since

there are infinitely many (𝜖, 𝛿) pairs that yield the same 𝜏2, we parameterize our meth-

ods using 𝜏2 [77] in this work.

Definition 4 (Rényi Differential Privacy [107]). A randomized mechanism 𝒜 : D ↦→ T

is (𝛼, 𝜖𝑟)-Rényi differentially private if, for any adjacent 𝐷,𝐷′ ∈ D, the following holds:

𝐷𝛼 (𝒜(𝐷)‖𝒜(𝐷′)) ≤ 𝜖𝑟. Here, 𝐷𝛼 (𝑃 (𝑥)‖𝑄(𝑥)) = 1
𝛼−1 logE𝑥∼𝑄

(︁
𝑃 (𝑥)
𝑄(𝑥)

)︁𝛼
and 𝑃 (𝑥) and

𝑄(𝑥) are probability density functions defined on T.

It has been shown that conventional privacy analysis of multi-shot algorithms tend

to exaggerate the total privacy loss [2, 107]. RDP offers a much simpler composition

13

rule that is shown to be tight [107]. Therefore, we employ RDP to characterize and

analyze our multi-shot decentralized joint independent component analysis algorithm,

in addition to conventional privacy analysis.

2.2.2 Tensor Preliminaries

Tensors are multi-dimensional arrays, higher dimensional analogs of matrices. An

𝑀 -way or 𝑀 -th order tensor is an element of the tensor product of 𝑀 vector spaces.

Fibers are higher order analogs of rows and columns. A fiber is defined by fixing every

index but one. An 𝑀 -way tensor 𝒳 ∈ R𝐷1×...×𝐷𝑀 is rank-1 if it can be written as the

outer product of 𝑀 vectors:

𝒳 = x1 ⊗ x2 ⊗ . . .⊗ x𝑀 ,

where x𝑚 ∈ R𝐷𝑚 and ⊗ denotes the outer product. Matricization (or unfolding or

flattening) is the process of reordering the elements of an 𝑀 -way tensor into a matrix.

The mode-𝑚 matricization of 𝒳 ∈ R𝐷1×...×𝐷𝑀 is denoted as X(𝑚) and is found by

arranging the mode-𝑚 fibers of 𝒳 as the columns of X(𝑚). A mode-𝑚 product is

multiplying a tensor by a matrix in mode-𝑚. Let 𝒳 ∈ R𝐷1×...×𝐷𝑀 and U ∈ R𝐽×𝐷𝑚

then

[𝒳 ×𝑚 U]𝑑1...𝑑𝑚−1,𝑗,𝑑𝑚+1...𝑑𝑀
=

𝐷𝑚∑︁
𝑑𝑚=1

[𝒳]𝑑1...𝑑𝑀 [U]𝑗,𝑑𝑚 .

We can also represent the mode-𝑚 flattened tensor as

𝒴 = 𝒳 ×𝑚 U⇐⇒ Y(𝑚) = UX(𝑚).

The vectorization of the tensor 𝒳 is defined as [124, 116]

vec𝒳 =

𝐷1∑︁
𝑑1=1

· · ·
𝐷𝑀∑︁

𝑑𝑀=1

[𝒳]𝑑1,...,𝑑𝑀 e𝐷1
𝑑1
∘ · · · ∘ e𝐷𝑀

𝑑𝑀
,

14

where ∘ denotes the Kronecker product [87] and e𝐷𝑚 denotes the 𝐷𝑚-dimensional ele-

mentary (or unit basis) vector. We note that vec𝒳 is a (
∏︀𝑀

𝑚=1𝐷𝑚)-dimensional vector.

A tensor is called symmetric if the entries do not change under any permutation of

the indices. The rank of a tensor 𝒳 is the smallest number of rank-1 tensors that sums

to the original tensor [86]. The norm of a tensor 𝒳 ∈ R𝐷1×...×𝐷𝑀 [8] is

‖𝒳‖ =

⎯⎸⎸⎷ 𝐷1∑︁
𝑑1=1

· · ·
𝐷𝑀∑︁

𝑑𝑀=1

[𝒳]2𝑑1,...,𝑑𝑀 .

This is equivalent to the matrix Frobenius norm. We note that the norm ‖𝒳‖ of a

tensor 𝒳 is equal to the ℒ2-norm of the vectorized version of the same tensor, vec𝒳 .

That is, ‖𝒳‖ = ‖vec𝒳‖2. We also observe that for a vector x ∈ R𝐷, if the ℒ2-norm

‖x‖2 = 1 then

‖x⊗ · · · ⊗ x‖ = 1 because

[x⊗ · · · ⊗ x]𝑑1,...,𝑑𝑀 = [x]𝑑1 · · · [x]𝑑𝑀 .

The operator norm of an 𝑀 -way symmetric tensor 𝒳 ∈ R𝐷×...×𝐷 is defined [8] as

‖𝒳‖op = sup
‖x‖2=1

|𝒳 (x,x, . . . ,x)| .

Finally, a tensor 𝒳 ∈ R𝐷1×...×𝐷𝑀 can be considered to be a multi-linear map [8] in

the following sense: for a set of matrices {V𝑚 ∈ R𝐷𝑚×𝐾𝑚 : 𝑚 = 1, 2, . . . ,𝑀}, the

(𝑘1, 𝑘2, . . . , 𝑘𝑀)-th entry in the 𝑀 -way tensor representation of 𝒵 = 𝒳 (V1, . . . ,V𝑀) ∈

R𝐾1×...×𝐾𝑀 is

[𝒵]𝑘1...𝑘𝑀 =
∑︁

𝑑1...𝑑𝑀

[𝒳]𝑑1...𝑑𝑀 [V]𝑑1,𝑘1 · · · [V]𝑑𝑀 ,𝑘𝑀
.

Therefore, we have

𝒳 (V1 . . .V𝑀) = 𝒳 ×1 V
⊤
1 · · · ×𝑀 V⊤

𝑀 .

15

2.2.3 Orthogonal Tensor Decomposition

As mentioned before, we consider the decomposition of symmetric tensors in this work.

Let 𝒳 be an 𝑀 -way 𝐷 dimensional symmetric tensor. Given real valued vectors v𝑘 ∈

R𝐷, Comon et al. [41] showed that there exists a decomposition of the form

𝒳 =
𝐾∑︁
𝑘=1

𝜆𝑘v𝑘 ⊗ v𝑘 ⊗ · · · ⊗ v𝑘.

Without loss of generality, we can assume that ‖v𝑘‖2 = 1 ∀𝑘. If we can find a ma-

trix V = [v1 . . .v𝐾] ∈ R𝐷×𝐾 with orthogonal columns, then we say that 𝒳 has an

orthogonal symmetric tensor decomposition [86]. Such tensors are generated in several

applications involving latent variable models. We present two of the applications in

Section 5.1 from Anandkumar et al. [8]. There are a lot of other scenarios where this

model can be applied with little modification. We start with eigenvalue decomposition

of symmetric matrices. If M ∈ R𝐷×𝐷 is a symmetric rank-𝐾 matrix then we know that

the SVD of M is given by

M = VΛV⊤ =
𝐾∑︁
𝑘=1

𝜆𝑘v𝑘v
⊤
𝑘 =

𝐾∑︁
𝑘=1

𝜆𝑘v𝑘 ⊗ v𝑘,

where Λ = diag{𝜆1, 𝜆2, . . . , 𝜆𝐾} and v𝑘 is the 𝑘-th column of the orthogonal matrix

V. Now, as mentioned before, the orthogonal decomposition of a 3-rd order symmetric

tensor 𝒳 ∈ R𝐷×𝐷×𝐷 is a collection of orthonormal vectors {v𝑘} together with corre-

sponding positive scalars {𝜆𝑘} such that

𝒳 =
𝐾∑︁
𝑘=1

𝜆𝑘v𝑘 ⊗ v𝑘 ⊗ v𝑘.

A unit vector u ∈ R𝐷 is an eigenvector of 𝒳 with corresponding eigenvalue 𝜆 if

16

𝒳 (I,u,u) = 𝜆u, where I is the 𝐷×𝐷 identity matrix [8]. To see this, one can observe

𝒳 (I,u,u) =
𝐾∑︁
𝑘=1

𝜆𝑘

(︁
I⊤v𝑘

)︁
⊗
(︁
u⊤v𝑘

)︁
⊗
(︁
u⊤v𝑘

)︁
=

𝐾∑︁
𝑘=1

𝜆𝑘

(︁
u⊤v𝑘

)︁2
v𝑘.

By the orthogonality of the v𝑘, it is clear that 𝒳 (I,v𝑘,v𝑘) = 𝜆𝑘v𝑘 ∀𝑘. Now, the

orthogonal tensor decomposition proposed in [8] is based on the mapping

u ↦→ 𝒳 (I,u,u)

‖𝒳 (I,u,u)‖2
, (2.2)

which can be considered as the tensor equivalent of the well-known matrix power

method.

2.2.4 Miscellaneous Definitions

Definition 5 (Majorization). Consider two vectors a ∈ R𝑆 and b ∈ R𝑆 with non-

increasing entries (i.e., 𝑎𝑖 ≥ 𝑎𝑗 and 𝑏𝑖 ≥ 𝑏𝑗 for 𝑖 < 𝑗). Then a is majorized by b,

denoted a ≺ b, if and only if the following holds:

𝑆∑︁
𝑠=1

𝑎𝑠 =

𝑆∑︁
𝑠=1

𝑏𝑠 and

𝐽∑︁
𝑠=1

𝑎𝑠 ≤
𝐽∑︁

𝑠=1

𝑏𝑠 ∀𝐽 ∈ [𝑆].

Consider nsym , 𝑁
𝑆 [1, . . . , 1] ∈ R𝑆 for some positive 𝑁 . Then, any vector n =

[𝑁1, . . . , 𝑁𝑆] ∈ R𝑆 with non-increasing entries and
∑︀𝑆

𝑠=1 |𝑁𝑠| = 𝑁 majorizes nsym,

or nsym ≺ n.

Definition 6 (Schur-convex functions). The function 𝐾 : R𝑆 ↦→ R is Schur-convex if

for all a ≺ b ∈ R𝑆 we have 𝐾(a) ≤ 𝐾(b).

17

Chapter 3

Correlated Noise Scheme

In this chapter, we first demonstrate the problem with conventional decentralized dif-

ferentially private computations using a simple example. We then propose a Correla-

tion Assisted Private Estimation (CAPE) framework, which is a novel decentralized and

privacy-preserving protocol that provides utility close to centralized case. We propose

a scheme for incorporating the CAPE protocol in asymmetric network/privacy settings.

Finally, we present experimental results with synthetic data to demonstrate the effec-

tiveness of CAPE algorithm applied to a decentralized gradient descent problem.

3.1 Decentralized Data Setting

We consider a decentralized data setting with 𝑆 sites and a central aggregator node

(see Figure 3.1). Each site 𝑠 ∈ [𝑆] holds 𝑁𝑠 samples and the total number of samples

across all sites is given by 𝑁 =
∑︀𝑆

𝑠=1𝑁𝑠. We assume that all parties are “honest but

curious”. That is, the sites and the aggregator will follow the protocol but a subset

may collude to learn another site’s data/function output. Additionally, we assume that

the data samples in the local sites are disjoint. We use the terms “distributed” and

“decentralized” interchangeably in this work.

3.2 Conventional Approach to Decentralized DP Computations

We describe the problem with conventional decentralized differentially private computa-

tions [77]. Then we propose the CAPE approach to improve the performance. Suppose

we want to compute the average of 𝑁 data samples. Each sample 𝑥𝑛 is a scalar with

18

Figure 3.1: The structure of the network: (a) conventional, (b) CAPE

𝑥𝑛 ∈ [0, 1]. We denote the vector of 𝑁 data samples as

x = [𝑥1, . . . , 𝑥𝑁−1, 𝑥𝑁]⊤ .

We are interested in computing the (𝜖, 𝛿)-differentially private estimate of the mean

function:

𝑓(x) =
1

𝑁

𝑁∑︁
𝑛=1

𝑥𝑛.

To compute the sensitivity [50] of the scalar-valued function 𝑓(x), we consider a neigh-

boring data vector x′ = [𝑥1, . . . , 𝑥𝑁−1, 𝑥′𝑁]⊤. We observe

⃒⃒
𝑓(x)− 𝑓(x′)

⃒⃒
=

1

𝑁

⃒⃒
𝑥𝑁 − 𝑥′𝑁

⃒⃒
≤ 1

𝑁
,

which follows from the assumption 𝑥𝑛 ∈ [0, 1]. Therefore, to compute the (𝜖, 𝛿)-

differentially private estimate of the average 𝑎 = 𝑓(x), we can employ the Gaussian

mechanism [50, 48] to release 𝑎̂ = 𝑎 + 𝑒, where 𝑒 ∼ 𝒩
(︀
0, 𝜏2

)︀
and

𝜏 =
1

𝑁𝜖

√︂
2 log

1.25

𝛿
.

Now, in the decentralized setting, each site 𝑠 holds 𝑁𝑠 samples as the entries of x𝑠 ∈ R𝑁𝑠

(see Figure 3.1(a)). We assume 𝑁𝑠 = 𝑁
𝑆 for simplicity. To compute the global average

19

non-privately, the sites can send 𝑎𝑠 = 𝑓(x𝑠) to the aggregator and the average computed

by aggregator (𝑎conv = 1
𝑆

∑︀𝑆
𝑠=1 𝑎𝑠) is exactly equal to the average we would get if all the

data samples were available in the aggregator node. However, with the privacy concern

and considering that the aggregator is honest-but-curious, the sites can employ the

conventional decentralized differentially private computation technique. That is, the

sites will release (send to the aggregator node) an (𝜖, 𝛿)-differentially private estimate

of the function 𝑓(x𝑠) of their local data x𝑠. More specifically, each site will generate a

noise 𝑒𝑠 ∼ 𝒩
(︀
0, 𝜏2𝑠

)︀
and release/send 𝑎̂𝑠 = 𝑓(x𝑠) + 𝑒𝑠 to the aggregator, where

𝜏𝑠 =
1

𝑁𝑠𝜖

√︂
2 log

1.25

𝛿
=

𝑆

𝑁𝜖

√︂
2 log

1.25

𝛿
.

The aggregator can then compute the (𝜖, 𝛿) differentially private approximate average

as 𝑎conv = 1
𝑆

∑︀𝑆
𝑠=1 𝑎̂𝑠. We observe

𝑎conv =
1

𝑆

𝑆∑︁
𝑠=1

𝑎̂𝑠 =
1

𝑆

𝑆∑︁
𝑠=1

𝑎𝑠 +
1

𝑆

𝑆∑︁
𝑠=1

𝑒𝑠.

The variance of the estimator 𝑎conv is 𝑆 · 𝜏
2
𝑠

𝑆2
=

𝜏2𝑠
𝑆

, 𝜏2conv. However, if we had

all the data samples at the aggregator (pooled-data scenario), we could compute the

(𝜖, 𝛿)-differentially private estimate of the average as 𝑎pool = 1
𝑁

∑︀𝑁
𝑛=1 𝑥𝑛 + 𝑒pool, where

𝑒pool ∼ 𝒩
(︁

0, 𝜏2pool

)︁
and 𝜏pool = 1

𝑁𝜖

√︁
2 log 1.25

𝛿 = 𝜏𝑠
𝑆 . We observe the ratio

𝜏2pool
𝜏2conv

=

𝜏2𝑠
𝑆2

𝜏2𝑠
𝑆

=
1

𝑆
.

That is, the decentralized differentially private averaging scheme will always result in a

worse performance than the differentially private pooled data case. In the following, we

describe a protocol which exploits a correlated noise scheme to achieve the same noise

level as the pooled data case.

20

Algorithm 3.1 Generate zero-sum noise

Require: Local noise variances {𝜏2𝑠 }; security parameter 𝜆, threshold value 𝑡
1: Each site generate 𝑒𝑠 ∼ 𝒩 (0, 𝜏2𝑠)
2: Aggregator computes

∑︀𝑆
𝑠=1 𝑒𝑠 according to SecureAgg(𝜆, 𝑡) [22]

3: Aggregator broadcasts
∑︀𝑆

𝑠=1 𝑒𝑠 to all sites 𝑠 ∈ {1, . . . , 𝑆}
4: Each site computes 𝑒𝑠 = 𝑒𝑠 − 1

𝑆

∑︀𝑆
𝑠′=1 𝑒𝑠′

5: return 𝑒𝑠

Algorithm 3.2 Correlation Assisted Private Estimation (CAPE)

Require: Data samples {x𝑠}, local noise variances {𝜏2𝑠 }
1: for 𝑠 = 1, . . . , 𝑆 do ◁ at each site
2: Generate 𝑒𝑠 according to Algorithm 3.1

3: Generate 𝑔𝑠 ∼ 𝒩 (0, 𝜏2𝑔) with 𝜏2𝑔 = 𝜏2𝑠
𝑆

4: Compute and send 𝑎̂𝑠 ← 𝑓(x𝑠) + 𝑒𝑠 + 𝑔𝑠
5: end for
6: Compute 𝑎cape ← 1

𝑆

∑︀𝑆
𝑠=1 𝑎̂𝑠 ◁ at the aggregator

7: return 𝑎cape

3.3 Proposed Scheme: CAPE

3.3.1 Trust/Collusion Model

In our proposed CAPE scheme, we assume that all of the 𝑆 sites and the central node

follow the protocol honestly. However, up to 𝑆𝐶 =
⌈︀
𝑆
3

⌉︀
− 1 sites can collude with

an adversary to learn about some site’s data/function output. The central node is

also honest-but-curious (and therefore, can collude with an adversary). An adversary

can observe the outputs from each site, as well as the output from the aggregator.

Additionally, the adversary can know everything about the colluding sites (including

their private data). We denote the number of non-colluding sites with 𝑆𝐻 such that

𝑆 = 𝑆𝐶 + 𝑆𝐻 . Without loss of generality, we designate the non-colluding sites with

{1, . . . , 𝑆𝐻} (see Figure 3.1(b)).

3.3.2 Correlated Noise

We design the noise generation procedure such that: i) we can ensure (𝜖, 𝛿) differential

privacy of the algorithm output from each site and ii) achieve the noise level of the

pooled data scenario in the final output from the aggregator. We achieve that by

21

employing a correlated noise addition scheme. Considering the same decentralized

averaging problem as Section 3.2, we intend to release (and send to the aggregator)

𝑎̂𝑠 = 𝑓(x𝑠) + 𝑒𝑠 + 𝑔𝑠 from each site 𝑠, where 𝑒𝑠 and 𝑔𝑠 are two noise terms. The

variances of 𝑒𝑠 and 𝑔𝑠 are chosen to ensure that the noise 𝑒𝑠+𝑔𝑠 is sufficient to guarantee

(𝜖, 𝛿)-differential privacy to 𝑓(x𝑠). Here, each site generates the noise 𝑔𝑠 ∼ 𝒩 (0, 𝜏2𝑔)

locally and the noise 𝑒𝑠 ∼ 𝒩 (0, 𝜏2𝑒) jointly with all other sites such that
∑︀𝑆

𝑠=1 𝑒𝑠 = 0.

We employ the recently proposed secure aggregation protocol (SecureAgg) by Bonawitz

et al. [22] to generate 𝑒𝑠 that ensures
∑︀𝑆

𝑠=1 𝑒𝑠 = 0. The SecureAgg protocol utilizes

Shamir’s 𝑡-out-of-𝑛 secret sharing [122] and is communication-efficient.

3.3.3 Detailed Description of CAPE Protocol

In our proposed scheme, each site 𝑠 ∈ [𝑆] generates a noise term 𝑒𝑠 ∼ 𝒩 (0, 𝜏2𝑠) inde-

pendently. The aggregator computes
∑︀𝑆

𝑠=1 𝑒𝑠 according to the SecureAgg protocol and

broadcasts it to all the sites. Each site then sets

𝑒𝑠 = 𝑒𝑠 −
1

𝑆

𝑆∑︁
𝑠′=1

𝑒𝑠′

to achieve
∑︀𝑆

𝑠=1 𝑒𝑠 = 0. We show the complete noise generation procedure in Algorithm

3.1. Note that, the original SecureAgg protocol is intended for computing sum of 𝐷-

dimensional vectors in a finite field Z𝐷
𝜆 . However, we need to perform the summation

of Gaussian random variables over R or R𝐷. To accomplish this, each site can employ a

mapping map : R ↦→ Z𝜆 that performs a stochastic quantization [126] for large-enough

𝜆. The aggregator can compute the sum in the finite field according to SecureAgg and

then invoke a reverse mapping remap : Z𝜆 ↦→ R before broadcasting
∑︀𝑆

𝑠=1 𝑒𝑠 to the

sites. Algorithm 3.1 can be readily extended to generate array-valued zero-sum noise

terms. We observe that the variance of 𝑒𝑠 is given by

𝜏2𝑒 = E

⎡⎣(︃𝑒𝑠 − 1

𝑆

𝑆∑︁
𝑠′=1

𝑒𝑠′

)︃2
⎤⎦ =

(︂
1− 1

𝑆

)︂
𝜏2𝑠 . (3.1)

22

Additionally, we choose

𝜏2𝑔 =
𝜏2𝑠
𝑆
. (3.2)

Each site then generates the noise 𝑔𝑠 ∼ 𝒩 (0, 𝜏2𝑔) independently and sends 𝑎̂𝑠 = 𝑓(x𝑠) +

𝑒𝑠 + 𝑔𝑠 to the aggregator. Note that neither of the terms 𝑒𝑠 and 𝑔𝑠 has large enough

variance to provide (𝜖, 𝛿)-differential privacy guarantee to 𝑓(x𝑠). However, we chose

the variances of 𝑒𝑠 and 𝑔𝑠 to ensure that the 𝑒𝑠 + 𝑔𝑠 is sufficient to ensure a differential

privacy guarantee to 𝑓(x𝑠) at site 𝑠. The chosen variance of 𝑔𝑠 also ensures that the

output from the aggregator would have the same noise variance as the differentially

private pooled-data scenario. To see this, observe that we compute the following at the

aggregator (Step 6 of Algorithm 3.2):

𝑎cape =
1

𝑆

𝑆∑︁
𝑠=1

𝑎̂𝑠 =
1

𝑆

𝑆∑︁
𝑠=1

𝑓(x𝑠) +
1

𝑆

𝑆∑︁
𝑠=1

𝑔𝑠,

where we used
∑︀

𝑠 𝑒𝑠 = 0. The variance of the estimator 𝑎cape is 𝜏2cape = 𝑆 · 𝜏
2
𝑔

𝑆2 = 𝜏2pool,

which is the exactly the same as if all the data were present at the aggregator. This

claim is formalized in Lemma 3.1. We show the complete algorithm in Algorithm 3.2.

The privacy of Algorithm 3.2 is given by Theorem 3.1.

Theorem 3.1 (Privacy of CAPE Algorithm (Algorithm 3.2)). Consider Algorithm 3.2

in the decentralized data setting of Section 3.1 with 𝑁𝑠 = 𝑁
𝑆 and 𝜏2𝑠 = 𝜏2 for all sites

𝑠 ∈ [𝑆]. Suppose that at most 𝑆𝐶 =
⌈︀
𝑆
3

⌉︀
− 1 sites can collude after execution. Then

Algorithm 3.2 guarantees (𝜖, 𝛿)-differential privacy for each site, where (𝜖, 𝛿) satisfy the

relation 𝛿 = 2 𝜎𝑧
𝜖−𝜇𝑧

𝜑
(︁
𝜖−𝜇𝑧

𝜎𝑧

)︁
, 𝜑(·) is the density for standard Normal random variable

and (𝜇𝑧, 𝜎𝑧) are given by

𝜇𝑧 =
𝑆3

2𝜏2𝑁2(1 + 𝑆)

(︃
𝑆 − 𝑆𝐶 + 2

𝑆 − 𝑆𝐶
+

9
𝑆−𝑆𝐶

𝑆2
𝐶

𝑆(1 + 𝑆)− 3𝑆2
𝐶

)︃
, (3.3)

𝜎2
𝑧 =

𝑆3

𝜏2𝑁2(1 + 𝑆)

(︃
𝑆 − 𝑆𝐶 + 2

𝑆 − 𝑆𝐶
+

9
𝑆−𝑆𝐶

𝑆2
𝐶

𝑆(1 + 𝑆)− 3𝑆2
𝐶

)︃
. (3.4)

Remark 1. Theorem 3.1 is stated for the symmetric setting: 𝑁𝑠 = 𝑁
𝑆 and 𝜏2𝑠 = 𝜏2 ∀𝑠 ∈

23

[𝑆]. As with many algorithms using the approximate differential privacy, the guarantee

holds for a range of (𝜖, 𝛿) pairs subject to a tradeoff constraint between 𝜖 and 𝛿, as in

the simple case in (2.1).

Proof. We identify the 𝑆𝐻 non-colluding sites with 𝑠 ∈ {1, . . . , 𝑆𝐻} , S𝐻 and the

𝑆𝐶 colluding sites with 𝑠 ∈ {𝑆𝐻 + 1, . . . , 𝑆} , S𝐶 . The adversary can observe the

outputs from each site (including the aggregator). Additionally, the colluding sites can

share their private data and the noise terms, 𝑒𝑠 and 𝑔𝑠 for 𝑠 ∈ S𝐶 , with the adversary.

For simplicity, we assume that all sites have equal number of samples (i.e., 𝑁𝑠 = 𝑁
𝑆)

and 𝜏2𝑠 = 𝜏2. We present a scheme in Section 3.3.7 that incorporates unequal sample

size/privacy requirements at sites.

To infer the private data of the sites 𝑠 ∈ S𝐻 , the adversary can observe â =

[𝑎̂1, . . . , 𝑎̂𝑆𝐻
]⊤ ∈ R𝑆𝐻 and 𝑒 =

∑︀
𝑠∈S𝐻 𝑒𝑠. Note that the adversary can learn the partial

sum 𝑒 because they can get the sum
∑︀

𝑠 𝑒𝑠 from the aggregator and the noise terms

{𝑒𝑆𝐻+1, . . . , 𝑒𝑆} from the colluding sites. Therefore, the vector y =
[︀
â⊤, 𝑒

]︀⊤ ∈ R𝑆𝐻+1

is what the adversary can observe to make inference about the non-colluding sites. To

prove differential privacy guarantee, we must show that

⃒⃒⃒⃒
log

𝑔(y|a)

𝑔(y|a′)

⃒⃒⃒⃒
≤ 𝜖

holds with probability (over the randomness of the mechanism) at least 1 − 𝛿. Here,

a = [𝑓(x1), . . . , 𝑓(x𝑆𝐻
)]⊤ and 𝑔(·|a) and 𝑔(·|a′) are the probability density functions

of y under a and a′, respectively. The vectors a and a′ differ in only one coordinate

(neighboring). Without loss of generality, we assume that a and a′ differ in the first

coordinate. We note that the maximum difference is 1
𝑁𝑠

as the sensitivity of the function

𝑓(xs) is 1
𝑁𝑠

. Recall that we release 𝑎̂𝑠 = 𝑓(x𝑠) + 𝑒𝑠 + 𝑔𝑠 from each site. We observe

E(𝑎̂𝑠) = 𝑓(x𝑠), Var(𝑎̂𝑠) = 𝜏2, ∀𝑠 ∈ [𝑆]

E(𝑎̂𝑠1 𝑎̂𝑠2) = 𝑓(x𝑠1)𝑓(x𝑠2)− 𝜏2

𝑆
, ∀𝑠1 ̸= 𝑠2 ∈ [𝑆].

24

That is, the random variable â is 𝒩 (a,Σâ), where

Σâ = (1 +
1

𝑆
)𝜏2I− 11⊤

𝜏2

𝑆
∈ R𝑆𝐻×𝑆𝐻 ,

and 1 is a vector of all ones. Without loss of generality, we can assume [48] that a = 0

and a′ = a − v, where v =
[︁

1
𝑁𝑠

, 0, . . . , 0
]︁⊤

. Additionally, the random variable 𝑒 is

𝒩 (0, 𝜏2𝑒), where 𝜏2𝑒 = 𝑆𝐻𝜏2. Therefore, 𝑔(y|a) is the density of 𝒩 (0,Σ), where

Σ =

⎡⎢⎢⎢⎢⎣
Σâ Σâ𝑒

Σ⊤
â𝑒 𝜏2𝑒

⎤⎥⎥⎥⎥⎦ ∈ R(𝑆𝐻+1)×(𝑆𝐻+1).

With some simple algebra, we can find the expression for Σâ𝑒 as:

Σâ𝑒 =

(︂
1− 𝑆𝐻

𝑆

)︂
𝜏21 ∈ R𝑆𝐻 .

If we denote ṽ =
[︀
v⊤, 0

]︀⊤ ∈ R𝑆𝐻+1 then we observe

⃒⃒⃒⃒
log

𝑔(y|a)

𝑔(y|a′)

⃒⃒⃒⃒
=

⃒⃒⃒⃒
−1

2

(︁
y⊤Σ−1y − (y + ṽ)⊤ Σ−1 (y + ṽ)

)︁⃒⃒⃒⃒
=

⃒⃒⃒⃒
1

2

(︁
2y⊤Σ−1ṽ + ṽ⊤Σ−1ṽ

)︁⃒⃒⃒⃒
=

⃒⃒⃒⃒
y⊤Σ−1ṽ +

1

2
ṽ⊤Σ−1ṽ

⃒⃒⃒⃒
= |𝑧|,

where 𝑧 = y⊤Σ−1ṽ + 1
2 ṽ

⊤Σ−1ṽ. Using the matrix inversion lemma for block matri-

ces [70, Section 0.7.3] and some algebra, we have

Σ−1 =

⎡⎢⎢⎢⎢⎣
Σ−1
â + 1

𝐾 Σ−1
â Σâ𝑒Σ

⊤
â𝑒Σ

−1
â − 1

𝐾 Σ−1
â Σâ𝑒

− 1
𝐾 Σ⊤

â𝑒Σ
−1
â

1
𝐾

⎤⎥⎥⎥⎥⎦ ,

where Σ−1
â = 𝑆

(1+𝑆)𝜏2

(︁
I + 2

𝑆𝐻
11⊤

)︁
and 𝐾 = 𝜏2𝑒 −Σ⊤

â𝑒Σ
−1
â Σâ𝑒. Note that 𝑧 is a Gaussian

random variable 𝒩 (𝜇𝑧, 𝜎
2
𝑧) with parameters 𝜇𝑧 = 1

2 ṽ
⊤Σ−1ṽ and 𝜎2

𝑧 = ṽ⊤Σ−1ṽ given

25

by

𝜇𝑧 =
𝑆3

2𝜏2𝑁2(1 + 𝑆)

(︃
𝑆 − 𝑆𝐶 + 2

𝑆 − 𝑆𝐶
+

9
𝑆−𝑆𝐶

𝑆2
𝐶

𝑆(1 + 𝑆)− 3𝑆2
𝐶

)︃
,

𝜎2
𝑧 =

𝑆3

𝜏2𝑁2(1 + 𝑆)

(︃
𝑆 − 𝑆𝐶 + 2

𝑆 − 𝑆𝐶
+

9
𝑆−𝑆𝐶

𝑆2
𝐶

𝑆(1 + 𝑆)− 3𝑆2
𝐶

)︃
.

Now, we observe

Pr

[︂⃒⃒⃒⃒
log

𝑔(y|a)

𝑔(y|a′)

⃒⃒⃒⃒
≤ 𝜖

]︂
= Pr [|𝑧| ≤ 𝜖]

= 1− 2 Pr [𝑧 > 𝜖]

= 1− 2𝑄

(︂
𝜖− 𝜇𝑧

𝜎𝑧

)︂
> 1− 2

𝜎𝑧
𝜖− 𝜇𝑧

𝜑

(︂
𝜖− 𝜇𝑧

𝜎𝑧

)︂
,

where 𝑄(·) is the Q-function [102] and 𝜑(·) is the density for standard Normal random

variable. The last inequality follows from the bound 𝑄(𝑥) < 𝜑(𝑥)
𝑥 [102]. Therefore, the

proposed CAPE ensures (𝜖, 𝛿)-differential privacy with 𝛿 = 2 𝜎𝑧
𝜖−𝜇𝑧

𝜑
(︁
𝜖−𝜇𝑧

𝜎𝑧

)︁
for each site,

assuming that the number of colluding sites is at-most
⌈︀
𝑆
3

⌉︀
− 1. As the local datasets

are disjoint and differential privacy is invariant under post processing, the release of

𝑎cape also satisfies (𝜖, 𝛿)-differential privacy.

Remark 2. We use the SecureAgg protocol [22] to generate the zero-sum noise terms

by mapping floating point numbers to a finite field. Such mappings are shown to be

vulnerable to certain attacks [106]. However, the floating point implementation issues

are out of scope for this work. We refer the reader to the work of Balcer and Vadhan [13]

for possible remedies. We believe a very interesting direction of future work would be

to address the issue in our decentralized data setting.

3.3.4 Utility Analysis

Our goal is to ensure (𝜖, 𝛿)-differential privacy for each site and achieve 𝜏2cape = 𝜏2pool

at the aggregator (see Lemma 3.1). The CAPE protocol guarantees (𝜖, 𝛿)-differential

26

0 50 100
Local noise s

10-20

10-10

100

 a
nd

co

nv

N = 1000, S = 10, = 0.001

conv

0 5 10

10-200

100

 a
nd

co

nv

N = 5000, S = 30, = 0.1

Local noise s

Figure 3.2: Variation of 𝛿 and 𝛿conv with 𝜏𝑠 for different values of 𝑆 and 𝜖

privacy with 𝛿 = 2 𝜎𝑧
𝜖−𝜇𝑧

𝜑
(︁
𝜖−𝜇𝑧

𝜎𝑧

)︁
. We claim that this 𝛿 guarantee is much better than

the 𝛿 guarantee in the conventional decentralized differentially private scheme. We

empirically validate this claim by comparing 𝛿 with 𝛿conv in Figure 3.2. Here, 𝛿conv is

the smallest 𝛿 guarantee we can afford in the conventional decentralized differentially

private scheme to achieve the same noise variance as the pooled-data scenario for a

given 𝜖. We plot 𝛿 and 𝛿conv against different 𝜏𝑠 values for 𝑆𝐶 =
⌈︀
𝑆
3

⌉︀
− 1 and different

combinations of 𝜖 and 𝑆. We observe from the figure that 𝛿 is always smaller than 𝛿conv.

Additionally, we empirically compare 𝛿 and 𝛿conv for weaker collusion assumptions

(i.e., fewer colluding sites) in Figure 3.3. To that end, we vary the fraction 𝑆𝐶
𝑆 and plot

the resulting 𝛿 and 𝛿conv for different combinations of 𝜖, 𝑆 and 𝜏𝑠. Again, we observe

that 𝛿 is always smaller than 𝛿conv. That is, we are ensuring a much better privacy

guarantee by employing the CAPE scheme over the conventional approach for achieving

the same noise level at the aggregator output (and therefore the same utility) as the

pooled data scenario.

Lemma 3.1. Consider the symmetric setting: 𝑁𝑠 = 𝑁
𝑆 and 𝜏2𝑠 = 𝜏2 for all sites

𝑠 ∈ [𝑆]. Let the variances of the noise terms 𝑒𝑠 and 𝑔𝑠 (Step 4 of Algorithm 3.2) be

𝜏2𝑒 =
(︀
1− 1

𝑆

)︀
𝜏2 and 𝜏2𝑔 = 𝜏2

𝑆 , respectively. If we denote the variance of the additive

noise (for preserving privacy) in the pooled data scenario by 𝜏2pool and the variance of

the estimator 𝑎cape (Step 6 of Algorithm 3.2) by 𝜏2cape then Algorithm 3.2 achieves the

same expected error as the pooled-data scenario (i.e., 𝜏2pool = 𝜏2cape).

27

0.1 0.2 0.3 0.4
SC / S

10-6

10-4

10-2

100

 a
nd

co

nv

N = 1000, S = 10, = 0.001, s = 50

conv

0.1 0.2 0.3 0.4
SC / S

10-15

10-10

10-5

100

 a
nd

co

nv

N = 5000, S = 30, = 0.1, s = 0.5

Figure 3.3: Variation of 𝛿 and 𝛿conv with 𝑆𝐶
𝑆 , for different values of 𝑆 and 𝜖

Proof. We prove the lemma according to [77]. Recall that in the pooled data scenario,

the sensitivity of the function 𝑓(x) is 1
𝑁 , where x = [x1, . . . ,x𝑆]. Therefore, to approxi-

mate 𝑓(x) satisfying (𝜖, 𝛿) differential privacy, we need to have additive Gaussian noise

standard deviation at least 𝜏pool = 1
𝑁𝜖

√︁
2 log 1.25

𝛿 . Next, consider the decentralized data

setting with local noise standard deviation given by

𝜏𝑠 =
1

𝑁𝑠𝜖

√︂
2 log

1.25

𝛿
=

𝑆

𝑁𝜖

√︂
2 log

1.25

𝛿
= 𝜏

We observe 𝜏pool = 𝜏𝑠
𝑆 =⇒ 𝜏2pool = 𝜏2

𝑆2 . We will now show that the CAPE algorithm

will yield the same noise variance of the estimator at the aggregator. Recall that at the

aggregator we compute 𝑎cape = 1
𝑆

∑︀𝑆
𝑠=1 𝑎̂𝑠 = 1

𝑁

∑︀𝑁
𝑛=1 𝑥𝑛 + 1

𝑆

∑︀𝑆
𝑠=1 𝑔𝑠. The variance of

the estimator 𝑎cape is:

𝜏2cape , 𝑆 ·
𝜏2𝑔
𝑆2

=
𝜏2𝑔
𝑆

=
𝜏2

𝑆2
,

which is exactly the same as the pooled data scenario. Therefore, the CAPE algorithm

allows us to achieve the same additive noise variance as the pooled data scenario,

while satisfying (𝜖, 𝛿) differential privacy at the sites and for the final output from the

aggregator, where (𝜖, 𝛿) satisfy the relation 𝛿 = 2 𝜎𝑧
𝜖−𝜇𝑧

𝜑
(︁
𝜖−𝜇𝑧

𝜎𝑧

)︁
.

Proposition 3.1. (Performance gain) If the local noise variances are {𝜏2𝑠 } for 𝑠 ∈ [𝑆]

then the CAPE algorithm achieves a gain of 𝐺 = 𝜏2conv
𝜏2cape

= 𝑆, where 𝜏2conv and 𝜏2cape are the

28

noise variances of the final estimate at the aggregator in the conventional decentralized

differentially private scheme and the CAPE scheme, respectively.

Proof. The local noise variances are {𝜏2𝑠 } for 𝑠 ∈ [𝑆]. In the conventional decentralized

differentially private scheme, we compute the following at the aggregator:

𝑎conv =
1

𝑆

𝑆∑︁
𝑠=1

𝑎𝑠 +
1

𝑆

𝑆∑︁
𝑠=1

𝑒𝑠.

The variance of the estimator is:

𝜏2conv =
𝑠∑︁

𝑠=1

𝜏2𝑠
𝑆2

=
1

𝑆2

𝑠∑︁
𝑠=1

𝜏2𝑠 .

In the CAPE scheme, we compute the following quantity at the aggregator:

𝑎cape =
1

𝑆

𝑆∑︁
𝑠=1

𝑎𝑠 +
1

𝑆

𝑆∑︁
𝑠=1

𝑒𝑠 +
1

𝑆

𝑆∑︁
𝑠=1

𝑔𝑠.

The variance of the estimator is:

𝜏2cape =

𝑠∑︁
𝑠=1

𝜏2𝑔
𝑆2

=
1

𝑆3

𝑠∑︁
𝑠=1

𝜏2𝑠 .

Therefore, the gain of the CAPE scheme over conventional decentralized differentially

private approach is

𝐺 =
𝜏2conv
𝜏2cape

= 𝑆,

which completes the proof.

Note that, even in the case of site drop-out, we achieve
∑︀

𝑠 𝑒𝑠 = 0, as long as the

number of active sites is above some threshold (see Bonawitz et al. [22] for details).

Therefore, the performance gain of CAPE remains the same irrespective of the number

of dropped-out sites.

29

Table 3.1: Comparison of communication overhead

Algorithm Site Aggregator

CAPE 𝑂(𝑆 + 𝐷) 𝑂(𝑆2 + 𝑆𝐷)

Heikkilä et al. [69] Θ(𝐷𝑀) Θ(𝑆𝐷𝑀)

Bonawitz et al. [22] 𝑂(𝑆 + 𝐷) 𝑂(𝑆2 + 𝑆𝐷)

3.3.5 Communication Overhead

The conventional 𝐷-dimensional averaging needs only one message from each site,

thus 𝑆𝐷 or Θ(𝑆𝐷) is the communication complexity. Our CAPE scheme employs the

SecureAgg protocol to compute the zero-sum noise. The SecureAgg protocol [22] entails

an 𝑂(𝑆 + 𝐷) overhead for each site and 𝑂(𝑆2 + 𝑆𝐷) for the server/aggregator. The

rest of our scheme requires Θ(𝐷) and Θ(𝑆𝐷) communication overheads for the sites

and the aggregator, respectively. On the other hand, the scheme proposed in [69] has a

communication cost proportional to (𝑆 + 1)𝐷𝑀 or Θ(𝑆𝐷𝑀), where 𝑀 is the number

of compute nodes. Goryczka et al. [64] compared several secret sharing, homomorphic

encryption and perturbation-based secure sum aggregation and showed their commu-

nication complexities. Except for the secret sharing approach (which requires 𝑂(𝑆2)

overhead), the other approaches are 𝑂(𝑆) in communication complexity. A comparison

of communication overhead for different algorithms are shown in Table 3.1.

3.3.6 Scope of CAPE

CAPE is motivated by scientific research collaborations that are common in medicine

and biology. Privacy regulations prevent sites from sharing the local raw data. Addi-

tionally, the data is often high dimensional (e.g., in neuroimaging) and sites have small

sample sizes. Joint learning across datasets can yield discoveries that are impossible

to obtain from a single site. CAPE can benefit functions 𝑓 with sensitivities satisfying

some conditions (see Proposition 3.2). In addition to the averaging function, many

functions of interest have sensitivities that satisfy such conditions. Examples include

30

the empirical average loss functions used in machine learning and deep neural net-

works. Additionally, we can use the Stone-Weierstrass theorem [121] to approximate a

loss function 𝑓 and apply CAPE, as we show in Chapter 8. Furthermore, we can use the

nomographic representation of functions to approximate a desired function in a decen-

tralized manner [88, 129, 28, 128] (for applications in communications [110, 98, 61, 62]),

while keeping the data differentially private. More common applications include gra-

dient based optimization algorithms, 𝑘-means clustering and estimating probability

distributions.

Proposition 3.2. Consider a decentralized setting with 𝑆 > 1 sites in which site 𝑠 ∈ [𝑆]

has a dataset D𝑠 of 𝑁𝑠 samples and
∑︀𝑆

𝑠=1𝑁𝑠 = 𝑁 . Suppose the sites are computing

a function 𝑓(D) with ℒ𝑝 sensitivity ∆(𝑁) employing the CAPE scheme. Denote n =

[𝑁1, 𝑁2, . . . , 𝑁𝑆] and observe the ratio 𝐻(n) =
𝜏2cape
𝜏2pool

=
∑︀𝑆

𝑠=1 Δ
2(𝑁𝑠)

𝑆3Δ2(𝑁)
. Then the CAPE

protocol achieves 𝐻(n) = 1, if

∙ for convex ∆(𝑁) we have: ∆
(︀
𝑁
𝑆

)︀
= 𝑆∆(𝑁)

∙ for general ∆(𝑁) we have: 𝑆3∆2(𝑁) =
∑︀𝑆

𝑠=1 ∆2(𝑁𝑠).

Proof. We start with reviewing a lemma [103, Proposition C.2] necessary for the proof.

Lemma 3.2. If 𝐾 is symmetric and convex, then 𝐾 is Schur-convex. The converse

does not hold.

Now, as the sites are computing the function 𝑓 with ℒ𝑝 sensitivity ∆(𝑁), the local

noise standard deviation for preserving privacy is proportional to ∆(𝑁𝑠) by Gaussian

mechanism [50]. It can be written as: 𝜏𝑠 = ∆(𝑁𝑠)𝐶, where 𝐶 is a constant for a given

(𝜖, 𝛿) pair. Similarly, the noise standard deviation in the pooled data scenario can be

written as: 𝜏pool = ∆(𝑁)𝐶. Now, the final noise variance at the aggregator for CAPE

protocol is:

𝜏2cape =
𝑆∑︁

𝑠=1

𝜏2𝑔
𝑆2

=
1

𝑆3

𝑆∑︁
𝑠=1

∆2(𝑁𝑠)𝐶
2.

31

Now, we observe the ratio:

𝐻(n) =
𝜏2cape
𝜏2pool

=

∑︀𝑆
𝑠=1 ∆2(𝑁𝑠)

𝑆3∆2(𝑁)
.

As we want to achieve the same noise variance as the pooled-data scenario, we need

𝑆3∆2(𝑁) =
𝑆∑︁

𝑠=1

∆2(𝑁𝑠),

which proves the case for general sensitivity function ∆(𝑁). Now, if ∆2(𝑁) is convex

then the by Lemma 3.2 the function

𝐾(n) =

𝑆∑︁
𝑠=1

∆2(𝑁𝑠)

is Schur-convex. Thus, the minimum of 𝐾(n) is obtained when n = nsym (using

Definitions 5 and 6). We observe:

𝐾min(n) =

𝑆∑︁
𝑠=1

∆2

(︂
𝑁

𝑆

)︂
= 𝑆 ·∆2

(︂
𝑁

𝑆

)︂
.

Therefore, when ∆(𝑁) is convex, we achieve 𝐻(n) = 1 if ∆(𝑁𝑆) = 𝑆∆(𝑁).

3.3.7 Unequal Sample Sizes at Sites

Remark 3. Note that the CAPE algorithm achieves the same noise variance as the

pooled-data scenario (i.e., 𝜏2cape = 𝜏2pool) in the symmetric setting: 𝑁𝑠 = 𝑁
𝑆 and 𝜏2𝑠 = 𝜏2

for all sites 𝑠 ∈ [𝑆]. In general, the ratio 𝐻(n) =
𝜏2cape
𝜏2pool

, where n , [𝑁1, 𝑁2, . . . , 𝑁𝑆],

is a function of the sample sizes in the sites. For our decentralized averaging problem

of Section 3.2, we observe:

𝐻(n) =
𝑁2

𝑆3

𝑆∑︁
𝑠=1

1

𝑁2
𝑠

.

32

As 𝐻(n) is a Schur-convex function, it can be shown using majorization theory [103]

that

1 ≤ 𝐻(n) ≤ 𝑁2

𝑆3

(︂
1

(𝑁 − 𝑆 + 1)2
+ 𝑆 − 1

)︂
,

where the minimum is achieved for the symmetric setting. That is, CAPE achieves the

smallest noise variance at the aggregator in the symmetric setting.

We now propose a generalization of the CAPE scheme that can be applied to sce-

narios where different sites have different privacy requirements and/or sample sizes.

Additionally, sites may want the aggregator to use different weights for different sites

(possibly according to the quality of the output from a site). A scheme for doing so is

shown in [77]. In this work, we describe a more refined approach for the robust CAPE

scheme proposed here.

Let us assume that site 𝑠 requires 𝜏𝑠 local noise variance for ensuring (𝜖𝑠, 𝛿𝑠)-

differential privacy for its output, where

𝜏𝑠 =
1

𝑁𝑠𝜖𝑠

√︂
2 log

1.25

𝛿𝑠
,

according to the Gaussian mechanism [50]. As before, we intend to parameterize our

algorithm using {𝜏𝑠} to abstract away {(𝜖𝑠, 𝛿𝑠, 𝑁𝑠)}. To initiate the CAPE protocol,

each site will generate 𝑒𝑠 ∼ 𝒩 (0, 𝜎2
𝑠) and 𝑔𝑠 ∼ 𝒩 (0, 𝜏2𝑔𝑠). The aggregator intends to

compute a weighted average of each site’s data/output with weights selected according

to some quality measure. For example, if the aggregator knows that a particular site is

suffering from more noisy observations than other sites, it can choose to give the output

from that site less weight while combining the site results. Let us denote the weights

by {𝜇𝑠} such that
∑︀𝑆

𝑠=1 𝜇𝑠 = 1 and 𝜇𝑠 ≥ 0. First, the aggregator computes
∑︀𝑆

𝑠=1 𝜇𝑠𝑒𝑠

using the SecureAgg protocol and broadcasts it to all sites. Each site then sets

𝑒𝑠 = 𝑒𝑠 −
1

𝜇𝑠𝑆

𝑆∑︁
𝑖=1

𝜇𝑖𝑒𝑖,

33

to achieve
∑︀𝑆

𝑠=1 𝜇𝑠𝑒𝑠 = 0 and releases

𝑎̂𝑠 = 𝑎𝑠 + 𝑒𝑠 + 𝑔𝑠.

Now, the aggregator computes

𝑎cape =
𝑆∑︁

𝑠=1

𝜇𝑠𝑎̂𝑠

=
𝑆∑︁

𝑠=1

𝜇𝑠𝑎𝑠 +
𝑆∑︁

𝑠=1

𝜇𝑠𝑒𝑠 +
𝑆∑︁

𝑠=1

𝜇𝑠𝑔𝑠

=

𝑆∑︁
𝑠=1

𝜇𝑠𝑎𝑠 +

𝑆∑︁
𝑠=1

𝜇𝑠𝑔𝑠,

where we used
∑︀𝑆

𝑠=1 𝜇𝑠𝑒𝑠 = 0. Now, to achieve the same utility as the pooled data

scenario (i.e. 𝜏2pool = 𝜏2cape), we need to ensure

Var

[︃
𝑆∑︁

𝑠=1

𝜇𝑠𝑔𝑠

]︃
= 𝜏2pool =⇒

𝑆∑︁
𝑠=1

𝜇2
𝑠𝜏

2
𝑔𝑠 = 𝜏2pool.

Additionally, for guaranteeing privacy to the local sites, we need

𝜏2𝑒𝑠 + 𝜏2𝑔𝑠 ≥ 𝜏2𝑠 ,

where 𝜏2𝑒𝑠 is the variance of 𝑒𝑠 and is a function of 𝜎2
𝑠 . With these constraints, we can

formulate a feasibility problem to solve for the unknown noise variances {𝜎2
𝑠 , 𝜏

2
𝑔𝑠} as

minimize 0

subject to 𝜏2𝑒𝑠 + 𝜏2𝑔𝑠 ≥ 𝜏2𝑠 ,

𝑆∑︁
𝑠=1

𝜇2
𝑠𝜏

2
𝑔𝑠 = 𝜏2pool,

for all 𝑠 ∈ [𝑆], where {𝜇𝑠}, 𝜏pool and {𝜏𝑠} are known to the aggregator. For this problem,

multiple solutions are possible. We present one solution here.

Solution. We observe that the variance 𝜏2𝑒𝑠 of the zero-mean random variable 𝑒𝑠 =

34

𝑒𝑠 − 1
𝜇𝑠𝑆

∑︀𝑆
𝑖=1 𝜇𝑖𝑒𝑖 can be computed as

𝜏2𝑒𝑠 = Var

[︃
𝑒𝑠 −

1

𝜇𝑠𝑆

𝑆∑︁
𝑖=1

𝜇𝑖𝑒𝑖

]︃

= E

⎡⎣𝑒2𝑠 +
1

𝜇2
𝑠𝑆

2

(︃
𝑆∑︁

𝑖=1

𝜇𝑖𝑒𝑖

)︃2

− 2

𝜇𝑠𝑆
𝑒𝑠

𝑆∑︁
𝑖=1

𝜇𝑖𝑒𝑖

⎤⎦
= 𝜎2

𝑠 +
1

𝜇2
𝑠𝑆

2

𝑆∑︁
𝑖=1

𝜇2
𝑖𝜎

2
𝑖 −

2

𝜇𝑠𝑆
· 𝜇𝑠𝜎

2
𝑠

=

(︂
1− 2

𝑆

)︂
𝜎2
𝑠 +

1

𝜇2
𝑠𝑆

2

𝑆∑︁
𝑖=1

𝜇2
𝑖𝜎

2
𝑖 .

Note that we need
∑︀𝑆

𝑠=1 𝜇
2
𝑠𝜏

2
𝑔𝑠 = 𝜏2pool. One solution is to set

𝜏2𝑔𝑠 =
1

𝜇2
𝑠𝑆

𝜏2pool. (3.5)

Using the constraint and the expression for 𝜏2𝑔𝑠, we have

𝜏2𝑒𝑠 + 𝜏2𝑔𝑠 = 𝜏2𝑠

=⇒
(︂

1− 2

𝑆

)︂
𝜎2
𝑠 +

1

𝜇2
𝑠𝑆

2

𝑆∑︁
𝑖=1

𝜇2
𝑖𝜎

2
𝑖 +

1

𝜇2
𝑠𝑆

𝜏2pool = 𝜏2𝑠

=⇒
(︂

1− 2

𝑆

)︂
𝜎2
𝑠 +

1

𝜇2
𝑠𝑆

2
𝜇2
𝑠𝜎

2
𝑠 +

1

𝜇2
𝑠𝑆

2

∑︁
𝑖 ̸=𝑠

𝜇2
𝑖𝜎

2
𝑖 = 𝜏2𝑠 −

1

𝜇2
𝑠𝑆

𝜏2pool

=⇒
(︂

1− 1

𝑆

)︂2

𝜎2
𝑠 +

1

𝜇2
𝑠𝑆

2

∑︁
𝑖 ̸=𝑠

𝜇2
𝑖𝜎

2
𝑖 = 𝜏2𝑠 −

1

𝜇2
𝑠𝑆

𝜏2pool.

We can write this in matrix form and solve for {𝜎2
𝑠} as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(︀
1− 1

𝑆

)︀2 𝜇2
2

𝜇2
1𝑆

2

𝜇2
3

𝜇2
1𝑆

2 · · · 𝜇2
𝑆

𝜇2
1𝑆

2

𝜇2
1

𝜇2
2𝑆

2

(︀
1− 1

𝑆

)︀2 𝜇2
3

𝜇2
2𝑆

2 · · · 𝜇2
𝑆

𝜇2
2𝑆

2

...
...

...
. . .

...

𝜇2
1

𝜇2
𝑆𝑆

2

𝜇2
2

𝜇2
𝑆𝑆

2

𝜇2
3

𝜇2
𝑆𝑆

2 · · ·
(︀
1− 1

𝑆

)︀2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜎2
1

𝜎2
2

...

𝜎2
𝑆

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜏21 − 1
𝜇2
1𝑆

𝜏2pool

𝜏22 − 1
𝜇2
2𝑆

𝜏2pool

...

𝜏2𝑆 −
1

𝜇2
𝑆𝑆

𝜏2pool

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

35

Privacy Analysis in Asymmetric Setting. We present an analysis of privacy

for the aforementioned scheme in asymmetric setting. Recall that the adversary can

observe â = [𝑎̂1, . . . , 𝑎̂𝑆𝐻
]⊤ ∈ R𝑆𝐻 and 𝑒 =

∑︀
𝑠∈S𝐻 𝑒𝑠. In other words, the vector

y =
[︀
â⊤, 𝑒

]︀⊤ ∈ R𝑆𝐻+1 is what the adversary can observe to make inference about the

non-colluding sites. To prove differential privacy guarantee, we must show that

⃒⃒⃒⃒
log

𝑔(y|a)

𝑔(y|a′)

⃒⃒⃒⃒
≤ 𝜖

holds with probability (over the randomness of the mechanism) at least 1 − 𝛿. Here,

a = [𝑓(x1), . . . , 𝑓(x𝑆𝐻
)]⊤ and 𝑔(·|a) and 𝑔(·|a′) are the probability density functions

of y under a and a′, respectively. The vectors a and a′ differ in only one coordinate

(neighboring). Without loss of generality, we assume that a and a′ differ in the first

coordinate. We note that the maximum difference is 1
𝑁𝑠

as the sensitivity of the function

𝑓(xs) is 1
𝑁𝑠

. Recall that we release 𝑎̂𝑠 = 𝑓(x𝑠) + 𝑒𝑠 + 𝑔𝑠 from each site. We observe

E(𝑎̂𝑠) = 𝑓(x𝑠), var(𝑎̂𝑠) = 𝜏2𝑠 , ∀𝑠 ∈ [𝑆]

E(𝑎̂𝑠1 𝑎̂𝑠2) = 𝑓(x𝑠1)𝑓(x𝑠2)−
𝜇𝑠1𝜎

2
𝑠1

𝜇𝑠2𝑆
−

𝜇𝑠2𝜎
2
𝑠2

𝜇𝑠1𝑆
+

1

𝜇𝑠1𝜇𝑠2𝑆
2

𝑆∑︁
𝑖=1

𝜇2
𝑖𝜎

2
𝑖 , ∀𝑠1 ̸= 𝑠2 ∈ [𝑆].

Without loss of generality, we can assume [48] that a = 0 and a′ = a − v, where

v =
[︁

1
𝑁𝑠

, 0, . . . , 0
]︁⊤

. That is, the random variable â is 𝒩 (0,Σâ), where

Σâ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜏21 · · · − 1
𝑆

(︁
𝜇1𝜎2

1
𝜇𝑆

+
𝜇𝑆𝜎

2
𝑆

𝜇1

)︁
+

∑︀𝑆
𝑖=1 𝜇

2
𝑖 𝜎

2
𝑖

𝜇1𝜇𝑆𝑆2

− 1
𝑆

(︁
𝜇1𝜎2

1
𝜇2

+
𝜇2𝜎2

2
𝜇1

)︁
+

∑︀𝑆
𝑖=1 𝜇

2
𝑖 𝜎

2
𝑖

𝜇1𝜇2𝑆2 · · · − 1
𝑆

(︁
𝜇2𝜎2

2
𝜇𝑆

+
𝜇𝑆𝜎

2
𝑆

𝜇2

)︁
+

∑︀𝑆
𝑖=1 𝜇

2
𝑖 𝜎

2
𝑖

𝜇2𝜇𝑆𝑆2

...
. . .

...

− 1
𝑆

(︁
𝜇1𝜎2

1
𝜇𝑆

+
𝜇𝑆𝜎

2
𝑆

𝜇1

)︁
+

∑︀𝑆
𝑖=1 𝜇

2
𝑖 𝜎

2
𝑖

𝜇1𝜇𝑆𝑆2 · · · 𝜏2𝑆𝐻

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Additionally, the random variable 𝑒 is 𝒩 (0, 𝜏2𝑒), where 𝜏2𝑒 =
∑︀𝑆𝐻

𝑠=1 𝜎
2
𝑠 . Therefore, 𝑔(y|a)

36

Figure 3.4: Structure of our neural network.

is the density of 𝒩 (0,Σ), where

Σ =

⎡⎢⎢⎢⎢⎣
Σâ Σâ𝑒

Σ⊤
â𝑒 𝜏2𝑒

⎤⎥⎥⎥⎥⎦ ∈ R(𝑆𝐻+1)×(𝑆𝐻+1).

With some simple algebra, we can find the expression for Σâ𝑒 as:

Σâ𝑒 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜎2
1 − 1

𝜇1𝑆

∑︀𝑆𝐻
𝑖=1 𝜇

2
𝑖𝜎

2
𝑖

𝜎2
2 − 1

𝜇2𝑆

∑︀𝑆𝐻
𝑖=1 𝜇

2
𝑖𝜎

2
𝑖

...

𝜎2
𝑆𝐻
− 1

𝜇𝑆𝐻
𝑆

∑︀𝑆𝐻
𝑖=1 𝜇

2
𝑖𝜎

2
𝑖

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The rest of the proof proceeds as the proof of Theorem 3.1. Note that, due to the

complex nature of the expression of Σ, we do not have a closed form solution for 𝜇𝑧 and

𝜎𝑧. However, we can numerically evaluate their values and consequently, the resulting

𝛿 guarantee.

3.4 Experimental Results

We empirically show the effectiveness of the proposed CAPE algorithm with applications

in a neural network based classifier in decentralized settings. Our CAPE algorithm

37

10-4 10-2 100 102

(a) Privacy parameter ()

20

40

60

80

100

ac
c

(%
)

Train set (D = 50, N = 10k)

Non-priv
capeFM
conv

10-4 10-2 100 102

(b) Privacy parameter ()

20

40

60

80

100

ac
c

(%
)

Test set (D = 50, N = 10k)

103 104

(c) Total samples (N)

20

40

60

80

100

ac
c

(%
)

Train set (D = 50, = 0.01)

103 104

(d) Total samples (N)

20

40

60

80

100

ac
c

(%
)

Test set (D = 50, = 0.01)

Figure 3.5: Variation of performance of NN based classifier on synthetic data: (a)–(b)
with 𝜖 per iteration; (c)–(d) with 𝑁 . Fixed parameter: 𝑆 = 4.

can improve a decentralized differentially private computation if the target function

has sensitivity satisfying the conditions of Proposition 3.2. Note that, the proposed

capeFM algorithm (Chapter 8) is well-suited for virtually any decentralized optimization

problem, as we can compute the differentially private approximate 𝑓𝐷(w) of the loss

function and then use any off-the-shelf optimizer. More specifically, if the loss function

can be represented as (8.3), we can employ the capeFM algorithm for a much better

utility than existing schemes (see Chapter 8 for details). However, finding such a

representation may be challenging for neural networks. In such applications, our CAPE

scheme is still applicable, as long as the computation has sensitivity satisfying the

conditions of Proposition 3.2. We, therefore, demonstrate the effectiveness of the CAPE

algorithm for a neural network based classifier that employs a decentralized differentially

private gradient descent [2]. We vary 𝜖 and total sample size and compare against

the non-privacy-preserving pooled-data approach (Non− priv.) and the conventional

approach (conv) of decentralized differentially private gradient descent. For the neural

network based classifier, we consider the symmetric setting (i.e., 𝑁𝑠 = 𝑁
𝑆 and 𝜏𝑠 = 𝜏)

and show the average performance over 10 independent runs.

We evaluate the performance of the proposed CAPE scheme on a neural network

based classifier to classify between the two classes on a synthetic dataset. The samples

from the two classes are random Gaussian vectors with unit variance and the means

are separated by 1. We have the same decentralized setup as mentioned before: data

samples are distributed across 𝑆 sites. Let X𝑠 ∈ R𝐷×𝑁𝑠 be the sample matrix at site 𝑠

with 𝑁𝑠 samples in 𝐷 dimensions. Let y𝑠 ∈ {0, 1}𝑁𝑠 contain the labels for each sample.

The global sample matrix and labels vector are given as X = [X1, . . . ,X𝑆] ∈ R𝐷×𝑁

38

and y =
[︀
y⊤
1 , . . . ,y

⊤
𝑆

]︀⊤ ∈ R𝑁 , where 𝑁 =
∑︀𝑆

𝑠=1𝑁𝑠. We consider an 𝐿 = 2 layer

neural network and 𝐷 = 50, 𝑁 = 10𝑘, 𝑆 = 4. The number of units in layer 𝑙 ∈

{0, 1, . . . , 𝐿} is denoted by 𝐷[𝑙] with 𝐷[0] = 𝐷. We use Rectified Linear Unit (ReLU)

activation in the hidden layer and sigmoid activation in the output layer. Our goal is

to find the following parameters of the neural network: W[1] ∈ R𝐷[1]×𝐷[0]
, b[1] ∈ R𝐷[1]

,

W[2] ∈ R𝐷[2]×𝐷[1]
and b[2] ∈ R𝐷[2]

, such that round (ŷ) gives the labels of the samples

with minimum deviation from y, where ŷ = sigmoid
(︀
W[2]A[1] + b[2]

)︀
and A[1] =

ReLU
(︀
W[1]X + b[1]

)︀
. We use decentralized gradient descent to minimize the empirical

average cross-entropy loss. The cross-entropy loss for the 𝑛-th sample x𝑛 is:

𝑙(𝑦𝑛, 𝑦𝑛) = −𝑦𝑛 log 𝑦𝑛 − (1− 𝑦𝑛) log(1− 𝑦𝑛). (3.6)

Each site evaluates the gradients on the local data and sends privacy-preserving ap-

proximates of the gradients to the aggregator according to a Non− priv., CAPE or conv

schemes. The aggregator then combines the gradient contributions and updates the

parameters. For CAPE, we set 𝜏𝑠 = Δ
𝜖

√︁
2 log 1.25

0.01 for all experiments, where ∆ is the ℒ2

sensitivity of the corresponding gradient. To measure the utility of the estimated param-

eters, we use the percent accuracy acc = 1
𝑁𝑡𝑒𝑠𝑡

∑︀𝑁𝑡𝑒𝑠𝑡
𝑛=1 ℐ (round(ŷ𝑡𝑒𝑠𝑡,𝑛) = y𝑡𝑒𝑠𝑡,𝑛)×100,

where ℐ(·) is the indicator function and round (ŷ𝑡𝑒𝑠𝑡) ∈ R𝑁𝑡𝑒𝑠𝑡 contains the labels of

the test-set samples.

Performance Variation with 𝜖 and 𝑁 . We consider the privacy-utility tradeoff

first. In Figure 3.5(a)–(b), we show the variation of acc with 𝜖 per iteration on the

train and test sets for the synthetic dataset, while keeping 𝑁 and 𝑆 fixed. We observe

that both of the privacy preserving algorithms: CAPE and conv, perform better as we

increase 𝜖. The proposed CAPE algorithm performs better than conv and reaches the

performance of Non− priv. even for moderate 𝜖 values. Next, we consider the variation

of acc with total sample size 𝑁 , while keeping 𝜖 per iteration and 𝑆 fixed. In Figure

3.5(c)–(d), we show the variation of acc on the train and test sets. As in the case

of varying 𝜖, we observe that increasing 𝑁 (hence increasing 𝑁𝑠) improves acc for

the privacy-preserving algorithms. We recall that the variance of the noise added for

39

privacy is inversely proportional to 𝑁2 – therefore, availability of more samples results

in better accuracy for the same privacy level. Again, we observe that the proposed

CAPE algorithm outperforms the conv algorithm. However, when 𝑁 is quite small, the

performance gap between CAPE and conv is less pronounced. In practice, we observe

that the gradient descent converges much faster under CAPE than the conv, matching

the performance of Non− priv. This can be explained by recalling the fact that the

CAPE algorithm offers the benefit of much less additive noise at the aggregator. As

the parameters are updated at the aggregator, the gradient descent converges faster in

CAPE compared to the conv scheme.

40

Chapter 4

Improved Decentralized Differentially Private Principal

Component Analysis

We propose an improved decentralized differentially private PCA algorithm that takes

advantage of the CAPE protocol. We begin by introducing the problem of decentralized

PCA. We then describe the proposed capePCA algorithm and present experimental

results with real and synthetic data to compare against existing algorithms. We show

that our new method outperforms previously proposed approaches, even under strong

privacy constraints. For weaker privacy requirements, capePCA can achieve the same

performance as a pooled-data scenario.

4.1 Decentralized Principal Component Analysis

We consider the same decentralized data model as in Section 3.1. We assume that the

data is distributed in 𝑆 sites, where each site 𝑠 ∈ [𝑆] has a data matrix X𝑠 ∈ R𝐷×𝑁𝑠 .

The data samples in the local sites are assumed to be disjoint. There is a central node

that acts as an aggregator (see Figure 3.1). We denote 𝑁 =
∑︀𝑆

𝑠=1𝑁𝑠 as the total

number of samples over all sites. The data matrix

X𝑠 = [x𝑠,1 . . . x𝑠,𝑁𝑠]

at site 𝑠 is considered to contain the 𝐷-dimensional features of 𝑁𝑠 individuals. Without

loss of generality, we assume that ‖x𝑠,𝑛‖2 ≤ 1 ∀𝑠 ∈ [𝑆] and ∀𝑛 ∈ [𝑁𝑠]. If we had all the

data in the aggregator (pooled data scenario), then the data matrix would be

X = [X1 . . . X𝑆] ∈ R𝐷×𝑁 .

41

Our goal is to approximate the performance of the pooled data scenario using a decen-

tralized differentially private algorithm.

We now formulate the problem of decentralized PCA. For simplicity, we assume that

the observed samples are mean-centered. The 𝐷×𝐷 sample second-moment matrix at

site 𝑠 is

A𝑠 =
1

𝑁𝑠
X𝑠X

⊤
𝑠 .

In the pooled data scenario, the 𝐷×𝐷 positive semi-definite second-moment matrix is

A =
1

𝑁
XX⊤.

According to the Schmidt approximation theorem [130], the rank-𝐾 matrix A𝐾 that

minimizes the difference ‖A − A𝐾‖𝐹 can be found by taking the SVD of A as A =

VΛV⊤, where without loss of generality we assume Λ is a diagonal matrix with entries

{𝜆𝑑(A)} and 𝜆1(A) ≥ . . . ≥ 𝜆𝐷(A) ≥ 0. Additionally, V is a matrix of eigenvectors

corresponding to the eigenvalues. The top-𝐾 PCA subspace of A is the matrix

V𝐾(A) = [v1 . . .v𝐾] .

Given V𝐾(A) and the eigenvalue matrix Λ, we can form an approximation

A𝐾 = V𝐾(A)Λ𝐾V𝐾(A)⊤

to A, where Λ𝐾 contains the 𝐾 largest eigenvalues in Λ. For a 𝐷 ×𝐾 matrix V̂ with

orthonormal columns, the quality of V̂ in approximating V𝐾(A) can be measured by

the captured energy of A as

𝑞(V̂) = tr(V̂⊤AV̂). (4.1)

The V̂, which maximizes 𝑞(V̂) is the subspace V𝐾(A). We are interested in approxi-

mating V𝐾(A) in a decentralized setting while guaranteeing differential privacy. One

42

Algorithm 4.1 Improved Decentralized Differentially Private PCA (capePCA)

Require: Data matrix X𝑠 ∈ R𝐷×𝑁𝑠 with ‖x𝑠,𝑛‖2 ≤ 1, local noise variances {𝜏2𝑠 } for
𝑠 ∈ [𝑆]; reduced dimension 𝐾

1: for 𝑠 = 1, 2, . . . , 𝑆 do ◁ at the local sites
2: Generate E𝑠 ∈ R𝐷×𝐷 using Algorithm 3.1 (element-wise) (Chapter 3)
3: Compute A𝑠 ← 1

𝑁𝑠
X𝑠X

⊤
𝑠

4: Generate 𝐷 ×𝐷 symmetric G𝑠, as described in the text
5: Compute and send: Â𝑠 ← A𝑠 + E𝑠 + G𝑠

6: end for
7: Compute Â← 1

𝑆

∑︀𝑆
𝑠=1 Â𝑠 ◁ at the aggregator

8: Perform SVD: Â = VΛV⊤

9: Release / send to sites: V𝐾

10: return V𝐾

näıve approach (non-private) would be to send the data matrices from the sites to the

aggregator. When 𝐷 and/or 𝑁𝑠 are large, this entails a huge communication overhead.

In many scenarios the local data are also private or sensitive. As the aggregator is not

trusted, sending the data to the aggregator can result in a significant privacy violation.

Our goals are therefore to reduce the communication cost, ensure differential privacy,

and provide a close approximation to the true PCA subspace V𝐾(A). We previously

proposed a differentially private decentralized PCA scheme [78], but the performance

of the scheme is limited by the larger variance of the additive noise at the local sites due

to the smaller sample sizes. We intend to alleviate this problem using the correlated

noise scheme shown in Chapter 3. The improved decentralized differentially private

PCA algorithm (capePCA) we propose here achieves the same utility as the pooled

data scenario in the symmetric setting.

4.2 Proposed capePCA Algorithm

We consider the same network structure as in Section 3.1. Recall that in the pooled

data scenario, we have the data matrix X and the sample second-moment matrix A =

1
𝑁XX⊤. We refer to the top-𝐾 PCA subspace of this sample second-moment matrix as

the true (or optimal) subspace V𝐾(A). At each site, we compute the sample second-

moment matrix as A𝑠 = 1
𝑁𝑠

X𝑠X
⊤
𝑠 . The ℒ2 sensitivity [50] of the function 𝑓(X𝑠) = A𝑠

is ∆𝑠
2 = 1

𝑁𝑠
[51]. In order to approximate A𝑠 satisfying (𝜖, 𝛿) differential privacy, we

43

can employ the AG algorithm [51] to compute Â𝑠 = A𝑠 + G𝑠, where the symmetric

matrix G𝑠 is generated with entries i.i.d. ∼ 𝒩 (0, 𝜏2𝑠) and 𝜏𝑠 =
Δ𝑠

2
𝜖

√︁
2 log 1.25

𝛿 . Note

that, in the pooled data scenario, the ℒ2 sensitivity of the function 𝑓(X) = A is

∆pool
2 = 1

𝑁 . Therefore, the required additive noise standard deviation should satisfy

𝜏pool =
Δpool

2
𝜖

√︁
2 log 1.25

𝛿 = 𝜏𝑠
𝑆 , assuming equal number of samples in the sites. As we

want the same utility as the pooled data scenario, we compute the following at each

site 𝑠:

Â𝑠 = A𝑠 + E𝑠 + G𝑠.

Here, the sites generate the 𝐷×𝐷 matrix E𝑠 according to the scheme shown in Section

3.3. Additionally, the sites generate their own symmetric 𝐷×𝐷 matrix G𝑠, where [G𝑠]𝑖𝑗

are drawn i.i.d. ∼ 𝒩 (0, 𝜏2𝑔) and 𝜏2𝑔 = 1
𝑆 𝜏

2
𝑠 according to (3.2). Note that, these variance

assignments can be readily modified to fit the unequal privacy/sample size scenario

(see Section 3.3.7). However, for simplicity, we are considering the equal sample size

scenario. Now, the sites send their Â𝑠 to the aggregator and the aggregator computes

Â =
1

𝑆

𝑆∑︁
𝑠=1

Â𝑠

=
1

𝑆

𝑆∑︁
𝑠=1

(A𝑠 + G𝑠) +
1

𝑆

𝑆∑︁
𝑠=1

E𝑠

=
1

𝑆

𝑆∑︁
𝑠=1

(A𝑠 + G𝑠) ,

where we used the relation
∑︀𝑆

𝑠=1E𝑠 = 0. Note that at the aggregator, we achieve an

estimator with noise variance exactly the same as that of the pooled data scenario (by

Lemma 3.1). Next, we perform SVD on Â and release the top-𝐾 eigenvector matrix

V𝐾 , which is the (𝜖, 𝛿) differentially private approximate to the true subspace V𝐾(A).

To achieve the same utility level as the pooled data case, we send the full matrix

Â𝑠 from the sites to the aggregator instead of the partial square root of it [78]. This

increases the communication cost by 𝑆𝐷(𝐷−𝑅), where 𝑅 is the intermediate dimension

of the partial square root. We consider this as the cost of performance gain. Note that

44

capePCA can be readily extended to incorporate unequal privacy requirements/samples

sizes at each site (shown in Section 3.3.7).

Theorem 4.1 (Privacy of capePCA Algorithm). Consider Algorithm 4.1 in the decen-

tralized data setting of Section 3.1 with 𝑁𝑠 = 𝑁
𝑆 , 𝜏𝑠 = 𝜏 for all sites 𝑠 ∈ [𝑆]. Suppose

that at most 𝑆𝐶 =
⌈︀
𝑆
3

⌉︀
− 1 sites can collude after execution. Then Algorithm 4.1

computes an (𝜖, 𝛿)-differentially private approximation to the optimal subspace V𝐾(A),

where (𝜖, 𝛿) satisfy the relation 𝛿 = 2 𝜎𝑧
𝜖−𝜇𝑧

𝜑
(︁
𝜖−𝜇𝑧

𝜎𝑧

)︁
, 𝜑(·) is the density for standard

Normal random variable and (𝜇𝑧, 𝜎𝑧) are given by (3.3) and (3.4), respectively.

Proof. The proof of Theorem 4.1 follows from using the Gaussian mechanism [50], the

AG algorithm [51], the bound on ‖A𝑠 − A′
𝑠‖2 and the privacy of CAPE as in Theo-

rem 3.1. The computation of Â𝑠 at each site is (𝜖, 𝛿) differentially private. As differential

privacy is post-processing invariant, we can combine the noisy second-moment matrices

Â𝑠 at the aggregator. By the correlated noise generation at the random noise generator,

the noise E𝑠 cancels out. We perform the SVD on Â and release V𝐾 . The released

subspace V𝐾 is thus the (𝜖, 𝛿) differentially private approximate to the true subspace

V𝐾(A).

4.2.1 Performance Gain with Correlated Noise

The decentralized differentially private PCA algorithm of [78] essentially employs the

conventional averaging (when each site sends the full Â𝑠 to the aggregator). Therefore,

the gain in performance of the proposed capePCA algorithm over the one in [78] is the

same as shown in Proposition 3.1.

4.2.2 Theoretical Performance Guarantee

Due to the application of the correlated noise protocol, we achieve the same level of

noise at the aggregator in the decentralized setting as we would have in the pooled

data scenario. In essence, the proposed capePCA algorithm can achieve the same per-

formance as the AG algorithm [51] modified to account for all the samples across all

the sites. Here, we present three guarantees for the captured energy, closeness to the

45

true subspace and low-rank approximation. The guarantees are adopted from Dwork et

al. [51] and modified to fit our symmetric setup and notation. Let us assume that the

(𝜖, 𝛿) differentially private subspace output from Algorithm 4.1 and the true subspace

are denoted by V̂𝐾 and V𝐾 , respectively. We denote the singular values of X with

𝜎1 ≥ . . . ≥ 𝜎𝐷 and the un-normalized second-moment matrix with A = XX⊤. Let

A𝐾 and Â𝐾 be the true and the (𝜖, 𝛿) differentially private rank-𝐾 approximates to A,

respectively. If we assume that the gap 𝜎2
𝐾 − 𝜎2

𝐾+1 = 𝜔(𝜏pool
√
𝐷), then the following

holds

∙ tr
(︁
V̂⊤

𝐾AV̂𝐾

)︁
≥ tr

(︀
V⊤

𝐾AV𝐾

)︀
−𝑂(𝜏pool𝐾

√
𝐷)

∙
⃦⃦⃦
V𝐾V⊤

𝐾 − V̂𝐾V̂⊤
𝐾

⃦⃦⃦
2

= 𝑂
(︁

𝜏pool
√
𝐷

𝜎2
𝐾−𝜎2

𝐾+1

)︁
∙ ‖A− Â𝐾‖2 ≤ ‖A−A𝐾‖2 + 𝑂(𝜏pool

√
𝐷).

The detailed proofs can be found in Dwork et al. [51].

4.2.3 Communication Cost

We quantify the total communication cost associated with the proposed capePCA algo-

rithm. Recall that capePCA is an one-shot algorithm. For generating the zero-sum noise

terms, we encounter 𝑂(𝑆+𝐷2) communication complexity of the sites and 𝑂(𝑆2+𝑆𝐷2)

communication complexity of the aggregator [22]. Each site uses these to compute the

noisy estimate of the local second-moment matrix (𝐷 × 𝐷) and sends that back to

the aggregator. Therefore, the total communication cost is 𝑂(𝑆 +𝐷2) for the sites and

𝑂(𝑆2+𝑆𝐷2) for the aggregator. This is expected as we are computing the global 𝐷×𝐷

second-moment matrix in a decentralized setting before computing the PCA subspace.

4.3 Experimental Results

We empirically compared the proposed capePCA, the existing DPdisPCA [78] and non-

private PCA on pooled data (non− dp pool). We also included the performance of

differentially private PCA [51] on local data (local) (i.e. data of a single site) and

the conventional approach (conv) (i.e. without correlated noise). We designed the

46

0.001 0.01 0.1 1.0 10.0
(a) Privacy parameter ()

50

100

150

200

250

300

qC
E

Synthetic (=0.01, S = 10, Ns = 1k)

capePCA
DPdisPCA
conv
dp local
non-dp pool

0.001 0.01 0.1 1.0 10.0
(b) Privacy parameter ()

0

10

20

30

40

50

qC
E

MNIST (=0.01, S = 10, Ns = 1k)

0.001 0.01 0.1 1.0 10.0
(c) Privacy parameter ()

0

1

2

3

4

5

qC
E

106 COVTYPE (=0.01, S = 10,Ns = 0.5k)

0.1 1 4
(d) Local sample size in 1000 (Ns)

50

100

150

200

250

300

qC
E

Synthetic (= 0.5, =0.01, S = 10)

capePCA
DPdisPCA
conv
dp local
non-dp pool

0.1 1 4
(e) Local sample size in 1000 (Ns)

0

10

20

30

40

50

qC
E

MNIST (= 1, =0.01, S = 10)

0.1 1 4
(f) Local sample size in 1000 (Ns)

0

1

2

3

4

5

qC
E

106 COVTYPE (= 0.1, =0.01, S = 10)

0.0001 0.001 0.01
(g) Privacy parameter ()

50

100

150

200

250

300

qC
E

Synthetic (=1.0, S = 10, Ns = 1k)

capePCA
DPdisPCA
conv
dp local
non-dp pool

0.0001 0.001 0.01
(h) Privacy parameter ()

0

10

20

30

40

qC
E

MNIST (=2.0, S = 10, Ns = 1k)

0.0001 0.001 0.01
(i) Privacy parameter ()

0

1

2

3

4

5

qC
E

106 COVTYPE (=0.5, S = 10,Ns = 0.5k)

Figure 4.1: Variation of performance in distributed PCA for synthetic and real data:
(a) - (c) with privacy parameter 𝜖; (d) - (f) with sample size 𝑁𝑠 and (g) - (i) with
privacy parameter 𝛿

experiments according to Imtiaz and Sarwate [78] using three datasets: a synthetic

dataset (𝐷 = 200, 𝐾 = 50) generated with zero mean and a pre-determined covariance

matrix, the MNIST dataset (𝐷 = 784, 𝐾 = 50) [91] (MNIST) and the Covertype

dataset (𝐷 = 54, 𝐾 = 10) [96] (COVTYPE). The MNIST consists of handwritten digits

and has a training set of 60000 samples, each of size 28 × 28 pixels. The COVTYPE

contains the forest cover types for 30 × 30 𝑚2 cells obtained from US Forest Service

(USFS) Region 2 Resource Information System (RIS) data. We collected the dataset

from the UC Irvine KDD archive [96]. For our experiments, we randomly selected

60000 samples from the COVTYPE. We preprocessed the data by subtracting the mean

(centering) and normalizing the samples with the maximum ℒ2 norm in each dataset

to enforce the condition ‖x𝑛‖2 ≤ 1 ∀𝑛. We note that this preprocessing step is not

differentially private, although it can be modified to satisfy differential-privacy at the

cost of some utility. In all cases we show the average performance over 10 runs of the

algorithms. As a performance measure of the produced subspace from the algorithm,

we choose the captured energy: 𝑞CE = tr(V̂⊤AV̂), where V̂ is the subspace estimated

47

by an algorithm and A is the true second-moment matrix of the data. Note that, we

can approximate the the captured energy in the true subspace as tr(V𝐾(A)⊤AV𝐾(A)),

where A is achieved from the pooled-data sample second-moment matrix and V𝐾(A)

is achieved from the non-private PCA.

4.3.1 Dependence on privacy parameter 𝜖

First, we explore the trade-off between privacy and utility; i.e., between 𝜖 and 𝑞CE. We

note that the standard deviation of the added noise is inversely proportional to 𝜖 – bigger

𝜖 means higher privacy risk but less noise and thus, better utility. In Figure 4.1(a)-(c),

we show the variation of 𝑞CE of different algorithms for different values of 𝜖. For this

experiment, we kept the parameters 𝛿, 𝑁𝑠 and 𝑆 fixed. For all the datasets, we observe

that as 𝜖 increases (higher privacy risk), the captured energy increases. The proposed

capePCA reaches the optimal utility (non− dp pool) for some parameter choices and

clearly outperforms the existing DPdisPCA, the conv, and the local algorithms. One

of the reasons that capePCA outperforms conv is the smaller noise variance at the

aggregator, as described before. Moreover, capePCA outperforms DPdisPCA because

DPdisPCA suffers from a larger variance at the aggregator due to computation of the

partial square root of Â𝑠 [78]. However, DPdisPCA offers a much smaller communication

overhead than capePCA. Achieving better performance than local is intuitive because

including the information from multiple sites should always result in better estimates

of population parameters than using the data from a single site only. An interesting

observation is that for datasets with lower dimensional samples, we can use smaller 𝜖

(i.e., lower privacy risk) for the same utility.

4.3.2 Dependence on number of samples 𝑁𝑠

Next, we investigate the variation in performance with sample size 𝑁𝑠. Intuitively, it

should be easier to guarantee smaller privacy risk 𝜖 and higher utility 𝑞CE, when the

number of samples is large. Figures 4.1(d)-(f) show how 𝑞CE increases as a function of

𝑁𝑠. The variation with 𝑁𝑠 reinforces the results seen earlier with variation of 𝜖. For

a fixed 𝜖 and 𝛿, the utility increases as we increase 𝑁𝑠. For sufficiently large 𝑁𝑠, the

48

captured energy will reach that of non− dp pool. Again, we observe a sharper increase

in utility for lower-dimensional dataset.

4.3.3 Dependence on privacy parameter 𝛿

Finally, we explore the variation of performance with the other privacy parameter 𝛿.

Recall that 𝛿 can be considered as the probability that the algorithm releases the private

information without guaranteeing privacy. We, therefore, want this to be as small as

possible. However, lower 𝛿 results in larger noise variance. In Figure 4.1(g)-(i), we

show how 𝑞CE vary with varying 𝛿. We observe that if 𝛿 is not too small, the proposed

algorithm can achieve very good utility, easily outperforming the other algorithms.

49

Chapter 5

Decentralized Differentially Private Orthogonal Tensor

Decomposition

We propose an algorithm (capeAGN) for decentralized differentially private orthogonal

tensor decomposition. The proposed algorithm takes advantage of the correlated noise

scheme (Algorithm 3.2) [81]. To our knowledge, this is the first work on decentral-

ized differentially private OTD. We begin by reviewing two applications of OTD [8] on

centralized data, namely the single topic model (STM) and the mixture of Gaussian

(MOG). We then describe the problem of differentially private OTD. We refer the reader

to our previous work [79] for two differentially private OTD algorithms: AGN and AVN,

for centralized settings. We employ the CAPE scheme for proposing the decentralized

differentially private algorithm capeAGN. Finally, we present experimental results with

synthetic data and compare the performance of our capeAGN with that of other algo-

rithms. We show that capeAGN outperforms previously proposed approaches and can

achieve the same performance as a pooled-data scenario under certain conditions.

5.1 Applications of Orthogonal Tensor Decomposition

We review two examples from Anandkumar et al. [8], which involve estimation of latent

variables from observed samples. The lower-order moments obtained from the samples

can be written as low-rank symmetric tensors.

5.1.1 Single Topic Model (STM)

Let us consider an exchangeable bag-of-words model [8] for documents. Such exchange-

able models can be viewed as mixture models in which there is a latent variable ℎ such

50

that the 𝐿 words in the document t1, t2, . . . , t𝐿 are conditionally i.i.d. given ℎ. Addi-

tionally, the conditional distributions are identical at all the nodes [8]. Let us assume

that ℎ is the only topic of a given document, and it can take only 𝐾 distinct values.

Let 𝐷 be the number of distinct words in the vocabulary, and 𝐿 ≥ 3 be the number

of words in each document. The generative process for a document is as follows: the

document’s topic is drawn according to the discrete distribution specified by the prob-

ability vector w = [𝑤1, 𝑤2, . . . , 𝑤𝐾]⊤. This is modeled as a discrete random variable ℎ

such that Pr [ℎ = 𝑘] = 𝑤𝑘, for 𝑘 ∈ [𝐾]. Given the topic ℎ, the document’s 𝐿 words are

drawn independently according to the discrete distribution specified by the probability

vector aℎ ∈ R𝐷. We represent the 𝐿 words in the document by 𝐷-dimensional random

vectors t𝑙 ∈ R𝐷. Specifically, if the 𝑙-th word is 𝑑, we set t𝑙 = e𝑑 for 𝑙 ∈ [𝐿], where

e1, e2, . . . , e𝐷 are the standard coordinate basis vectors for R𝐷. We observe that for

any topic 𝑘

E [t1 ⊗ t2|ℎ = 𝑘] =
∑︁
𝑖,𝑗

Pr [t1 = 𝑖, t2 = 𝑗|ℎ = 𝑘] e𝑖 ⊗ e𝑗

= E [t1|ℎ = 𝑘]⊗ E [t2|ℎ = 𝑘]

= a𝑘 ⊗ a𝑘.

Now, we can define two moments in terms of the outer products of the probability

vectors a𝑘 and the distribution of the topics ℎ as

M2 =
𝐾∑︁
𝑘=1

𝑤𝑘a𝑘 ⊗ a𝑘, ℳ3 =
𝐾∑︁
𝑘=1

𝑤𝑘a𝑘 ⊗ a𝑘 ⊗ a𝑘. (5.1)

The method proposed in [8] to recover w and {a𝑘} proceeds as follows: we observe 𝑁

documents. Each of the documents has number of words 𝐿 ≥ 3. The way we record

what we observe is: we form an 𝐷 × 𝐷 × 𝐷 tensor whose (𝑑1, 𝑑2, 𝑑3)-th entry is the

proportion of times we see a document with first word 𝑑1, second word 𝑑2 and third

word 𝑑3. In this setting, we can estimate the moments M2 and ℳ3, defined in (5.1),

from the observed data as: M2 = E[t1 ⊗ t2] and ℳ3 = E[t1 ⊗ t2 ⊗ t3]. We then need

to perform orthogonal tensor decomposition on ℳ3 to recover w and {a𝑘}.

51

5.1.2 Mixture of Gaussians (MOG)

A similar example as the single topic model is the spherical mixture of Gaussians [8].

Let us assume that there are 𝐾 components and the component mean vectors are

given by the set {a1,a2, . . . ,a𝐾} ⊂ R𝐷. The probability of choosing component 𝑘 is

𝑤𝑘. We assume that the common covariance matrix is 𝜎2I𝐷. However, the model

can be extended to incorporate different covariance matrices for different component as

well [8, 73]. The 𝑛-th observation of the model can be written as t𝑛 = aℎ + z, where ℎ

is a discrete random variable with Pr[ℎ = 𝑘] = 𝑤𝑘 and z is an 𝐷-dimensional random

vector, independent from ℎ, drawn according to 𝒩 (0, 𝜎2I𝐷). Let us denote the total

number of observations by 𝑁 . Without loss of generality, we assume that ‖a𝑘‖2 ≤ 1.

Now, for 𝐷 ≥ 𝐾, it has been shown [73] that if we have estimates of the second and

third order moments from the observations t𝑛 as

M2 = E[t⊗ t]− 𝜎2I𝐷, and

ℳ3 = E[t⊗ t⊗ t]− 𝜎2
𝐷∑︁

𝑑=1

(E[t]⊗ e𝑑 ⊗ e𝑑 + e𝑑 ⊗ E[t]⊗ e𝑑 + e𝑑 ⊗ e𝑑 ⊗ E[t]) ,

then these moments are decomposable as:

M2 =
𝐾∑︁
𝑘=1

𝑤𝑘a𝑘 ⊗ a𝑘 and

ℳ3 =

𝐾∑︁
𝑘=1

𝑤𝑘a𝑘 ⊗ a𝑘 ⊗ a𝑘.

5.1.3 Orthogonal Decomposition of ℳ3

For both the STM and the MOG models, in order to decompose ℳ3 using the tensor

power method (2.2), we need the a𝑘’s to be orthogonal to each other. But, in general,

they are not. To employ the orthogonal tensor decomposition, we can project the tensor

onto some subspace W ∈ R𝐷×𝐾 to ensure W⊤a𝑘’s are orthogonal to each other. We

52

note that, according to the multi-linear notation (see Section 2.2.2), we have

ℳ3(V1,V2,V3) =
𝐾∑︁
𝑘=1

𝑤𝑘

(︁
V⊤

1 a𝑘

)︁
⊗
(︁
V⊤

2 a𝑘

)︁
⊗
(︁
V⊤

3 a𝑘

)︁
.

In order to find W, we can compute the SVD(𝐾) on the second-order moment M2 ∈

R𝐷×𝐷 as M2 = UDU⊤, where U ∈ R𝐷×𝐾 and D ∈ R𝐾×𝐾 . We define W = UD− 1
2 ∈

R𝐷×𝐾 and then compute the projection ℳ̃3 = ℳ3(W,W,W). We note that ℳ̃3 ∈

R𝐾×𝐾×𝐾 is now orthogonally decomposable. We use the tensor power iteration (2.2)

on ℳ̃3 to recover the weights {𝑤𝑘} and the component vectors {a𝑘}. The detail of the

tensor power method can be found in Anandkumar et al. [8].

5.2 Differentially Private OTD

We note that the key step in the orthogonal tensor decomposition algorithm is the

mapping given by (2.2). In order to ensure differential privacy for the orthogonal

decomposition, we may either add noise at each iteration step scaled to the ℒ2 sensi-

tivity [51] of the operation given by (2.2) or we can add noise to the tensor 𝒳 itself

just once. Adding noise in each iteration step might result in a poor utility/accuracy

of the recovered eigenvectors and eigenvalues. We intend to add noise to the tensor

itself prior to employing the tensor power method. In the following, we are showing

the sensitivity calculations for the pooled data scenario. Extension to the decentralized

case is straightforward (replacing 𝑁 with 𝑁𝑠).

First, we focus on the exchangeable single topic model setup that we described

in Section 5.1.1. We observe and record 𝑁 documents. Let us consider two sets of

documents, which differ in only one sample (e.g., the last one). Let the empirical

second-order moment matrices be M2 and M′
2 and the third-order moment tensors be

ℳ3 and ℳ′
3, respectively, for these two sets. We consider the two tensors, ℳ3 and

53

ℳ′
3, as neighboring. We observe that

M2 =
1

𝑁

𝑁∑︁
𝑛=1

t1,𝑛t
⊤
2,𝑛

=
1

𝑁

𝑁−1∑︁
𝑛=1

t1,𝑛t
⊤
2,𝑛 +

1

𝑁
t1,𝑁t⊤2,𝑁 ,

M′
2 =

1

𝑁

𝑁−1∑︁
𝑛=1

t1,𝑛t
⊤
2,𝑛 +

1

𝑁
t′1,𝑁t′

⊤
2,𝑁 ,

where t𝑙,𝑛 denotes the 𝑙-th word of the 𝑛-th document. Similarly, we observe

ℳ3 =
1

𝑁

𝐷∑︁
𝑑=1

t1,𝑛 ⊗ t2,𝑛 ⊗ t3,𝑛

=
1

𝑁

𝑁−1∑︁
𝑛=1

t1,𝑛 ⊗ t2,𝑛 ⊗ t3,𝑛 +
1

𝑁
t1,𝑁 ⊗ t2,𝑁 ⊗ t3,𝑁 ,

ℳ′
3 =

1

𝑁

𝑁−1∑︁
𝑛=1

t1,𝑛 ⊗ t2,𝑛 ⊗ t3,𝑛 +
1

𝑁
t′1,𝑁 ⊗ t′2,𝑁 ⊗ t′3,𝑁 .

As mentioned before, we perform the SVD on M2 first to compute W. We intend to

use the AG algorithm [51] to make this operation differentially private. We look at the

quantity:

‖M2 −M′
2‖2 =

1

𝑁
‖t1,𝑁t⊤2,𝑁 − t′1,𝑁t′

⊤
2,𝑁‖2

=
1

𝑁
sup

‖u‖2,‖v‖2=1

{︁
u⊤
(︁
t1,𝑁t⊤2,𝑁 − t′1,𝑁t′

⊤
2,𝑁

)︁
v
}︁

≤
√

2

𝑁
= ∆2,𝑆 ,

because of the encoding t𝑙,𝑛 = e𝑑. For the mixture of Gaussians model, we note that

we assumed ‖a𝑘‖2 ≤ 1 for all 𝑘 ∈ {1, 2, . . . ,𝐾}. To find a bound on ‖M2 −M′
2‖2, we

consider the following: for identifiability of the {a𝑘}, we have to assume that the a𝑘’s

are linearly independent. In other words, we are interested in finding the directions of

the components specified by {a𝑘}. In that sense, while obtaining the samples, we can

divide the samples by a constant 𝜁 such that ‖t𝑛‖2 ≤ 1 is satisfied. From the resulting

second- and third-order moments, we will be able to recover {a𝑘} up to a scale factor.

54

It is easy to show using the definition of largest eigenvalue of a symmetric matrix [26]

that

‖M2 −M′
2‖2 =

1

𝑁
sup

‖u‖2=1

{︁
u⊤
(︁
t𝑁t⊤𝑁 − t′𝑁t′

⊤
𝑁

)︁
u
}︁

=
1

𝑁
sup

‖u‖2=1

{︁ ⃒⃒⃒
u⊤t𝑁

⃒⃒⃒2
−
⃒⃒⃒
u⊤t′𝑁

⃒⃒⃒2 }︁
≤ 1

𝑁
= ∆2,𝑀 ,

where the inequality follows from the relation ‖t𝑛‖2 ≤ 1. We note that the largest

singular value of a matrix is the square root of the largest eigenvalue of that matrix.

For the decentralized case, as mentioned before, the sensitivity of M𝑠
2 depends only

on the local sample size. We can therefore use the AG algorithm [51] (i.e., adding

Gaussian noise with variance scaled to ∆2,𝑆 or ∆2,𝑆 to M2) to make the computation

of W (𝜖1, 𝛿1)-differentially private. Next, we focus on the tensor ℳ3. We need to

project ℳ3 on W before using the tensor power method. We can choose between

making the projection operation differentially private, or we can make the ℳ3 itself

differentially private before projection. We found that making the projection operation

differentially private involves addition of a large amount of noise and more importantly,

the variance of the noise to be added depends on the alphabet size (or feature dimension)

𝐷 and the singular values of M2. Therefore, we choose to make the tensor itself

differentially private. We are interested to find the sensitivity of the tensor valued

function 𝑓(ℳ3) =ℳ3, which is simply the identity map. That is, we need to find the

maximum quantity that this function can change if we replace the argument ℳ3 with

a neighboring ℳ′
3. For our exchangeable single topic model setup, we have

‖ℳ3 −ℳ′
3‖ =

⃦⃦⃦ 1

𝑁
t1,𝑁 ⊗ t2,𝑁 ⊗ t3,𝑁 −

1

𝑁
t′1,𝑁 ⊗ t′2,𝑁 ⊗ t′3,𝑁

⃦⃦⃦
≤
√

2

𝑁
= ∆3,𝑆 ,

because only one entry in the 𝐷×𝐷×𝐷 tensor t1,𝑁 ⊗ t2,𝑁 ⊗ t3,𝑁 is non-zero (in fact,

55

the only non-zero entry is 1). Now, for the mixture of Gaussians model, we define

𝒯 = 𝜎2
𝐷∑︁

𝑑=1

(E[t]⊗ e𝑑 ⊗ e𝑑 + e𝑑 ⊗ E[t]⊗ e𝑑 + e𝑑 ⊗ e𝑑 ⊗ E[t])

Therefore, we have

𝒯 − 𝒯 ′ =

𝜎2

𝑁

𝐷∑︁
𝑑=1

(︁ (︀
t𝑁 − t′𝑁

)︀
⊗ e𝑑 ⊗ e𝑑 + e𝑑 ⊗

(︀
t𝑁 − t′𝑁

)︀
⊗ e𝑑 + e𝑑 ⊗ e𝑑 ⊗

(︀
t𝑁 − t′𝑁

)︀)︁
=⇒ ‖𝒯 − 𝒯 ′‖ ≤ 3𝐷𝜎2

𝑁
‖t𝑁 − t′𝑁‖2 ≤

6𝐷𝜎2

𝑁
,

where the last inequality follows from ‖t𝑛‖2 ≤ 1. We have

‖ℳ3 −ℳ′
3‖ =

⃦⃦⃦ 1

𝑁
t𝑁 ⊗ t𝑁 ⊗ t𝑁 −

1

𝑁
t′𝑁 ⊗ t′𝑁 ⊗ t′𝑁 + 𝒯 − 𝒯 ′

⃦⃦⃦
≤ 2

𝑁
+

6𝐷𝜎2

𝑁
= ∆3,𝑀 ,

because ‖t𝑁 ⊗ t𝑁 ⊗ t𝑁‖ = 1 in our setup. Again, we note that in the decentralized

setting, the sensitivity of the localℳ𝑠
3 depends only on the local sample size. We refer

the reader to our previous work [79] where we proposed two algorithms for central-

ized differentially private OTD. The first one uses a symmetric tensor made with i.i.d.

entries from a Gaussian distribution, while the second proposed method uses a sym-

metric tensor made with entries taken from a sample vector drawn from an appropriate

distribution. Both of the algorithms guarantee (𝜖, 𝛿)-differential privacy.

5.3 Proposed capeAGN Algorithm

We assume the same decentralized data setting as in Section 3.1: each site 𝑠 ∈ [𝑆] has

a data matrix X𝑠 ∈ R𝐷×𝑁𝑠 . The data samples in the local sites are assumed to be

disjoint. Each site 𝑠 computes the sample second-order moment matrix M𝑠
2 ∈ R𝐷×𝐷

and the third-order moment tensorℳ𝑠
3 ∈ R𝐷×𝐷×𝐷 using the local data samples. There

is a central node that acts as an aggregator (see Figure 3.1). We denote 𝑁 =
∑︀𝑆

𝑠=1𝑁𝑠

56

Algorithm 5.1 Decentralized Differentially Private OTD (capeAGN)

Require: Sample second-order moment matrices M𝑠
2 ∈ R𝐷×𝐷 and third-order moment

tensors ℳ𝑠
3 ∈ R𝐷×𝐷×𝐷 ∀𝑠 ∈ [𝑆], local noise variances {𝜏 𝑠2 , 𝜏 𝑠3}, reduced dimension

𝐾
1: for 𝑠 = 1, . . . , 𝑆 do ◁ at the local sites
2: Generate E𝑠

2 ∈ R𝐷×𝐷, as described in the text
3: Generate G𝑠

2 ∈ R𝐷×𝐷, as described in the text
4: Compute and send M̂𝑠

2 ←M𝑠
2 + E𝑠

2 + G𝑠
2

5: end for
6: Compute M̂2 ← 1

𝑆

∑︀𝑆
𝑠=1 M̂

𝑠
2 and then SVD(𝐾) of M̂2 as M̂2 = UDU⊤ ◁ at the

aggregator
7: Compute and send to sites: W← UD− 1

2

8: for 𝑠 = 1, . . . , 𝑆 do ◁ at the local sites
9: Generate ℰ𝑠3 ∈ R𝐷×𝐷×𝐷, as described in the text

10: Generate symmetric 𝒢𝑠3 ∈ R𝐷×𝐷×𝐷 from the entries of b ∈ R𝐷sym , where [b]𝑑 ∼
𝒩 (0, 𝜏23𝑔) and 𝜏23𝑔 = 1

𝑆 𝜏
𝑠
3
2

11: Compute ℳ̂𝑠
3 ←ℳ𝑠

3 + ℰ𝑠3 + 𝒢𝑠3 and ℳ̃𝑠
3 ← ℳ̂𝑠

3 (W,W,W)
12: Send ℳ̃𝑠

3 to aggregator
13: end for
14: Compute ℳ̃3 ← 1

𝑆

∑︀𝑆
𝑠=1 ℳ̃𝑠

3 ◁ at the aggregator

15: return The differentially private orthogonally decomposable tensor ℳ̃3, projection
subspace W

as the total number of samples over all sites. We refer the reader to Section 2.2.2 and

the survey by Kolda and Bader [87] for related basic definitions.

As mentioned before, we consider the decomposition of symmetric tensors that ap-

pear in several latent variable models. Such tensors can be orthogonally decomposed

efficiently. We start with recalling that the orthogonal decomposition of a 3-rd or-

der symmetric tensor 𝒳 ∈ R𝐷×𝐷×𝐷 is a collection of orthonormal vectors {v𝑘} to-

gether with corresponding positive scalars {𝜆𝑘} such that 𝒳 =
∑︀𝐾

𝑘=1 𝜆𝑘v𝑘 ⊗ v𝑘 ⊗ v𝑘.

A unit vector u ∈ R𝐷 is an eigenvector of 𝒳 with corresponding eigenvalue 𝜆 if

𝒳 (I,u,u) = 𝜆u, where I is the 𝐷×𝐷 identity matrix [8]. To see this, one can observe

𝒳 (I,u,u) =
𝐾∑︁
𝑘=1

𝜆𝑘

(︁
I⊤v𝑘

)︁
⊗
(︁
u⊤v𝑘

)︁
⊗
(︁
u⊤v𝑘

)︁
=

𝐾∑︁
𝑘=1

𝜆𝑘

(︁
u⊤v𝑘

)︁2
v𝑘.

By the orthogonality of the v𝑘, it is clear that 𝒳 (I,v𝑘,v𝑘) = 𝜆𝑘v𝑘 ∀𝑘. Now, the

57

orthogonal tensor decomposition proposed in [8] is based on the mapping

u ↦→ 𝒳 (I,u,u)

‖𝒳 (I,u,u)‖2
, (5.2)

which can be considered as the tensor equivalent of the well-known matrix power

method. Obviously, all tensors are not orthogonally decomposable. As the tensor

power method requires the eigenvectors {v𝑘} to be orthonormal, we need to perform

whitening - that is, projecting the tensor on a subspace such that the eigenvectors

become orthogonal to each other.

We note that the proposed algorithm applies to both of the STM and MOG prob-

lems. As the correlated noise scheme only works with Gaussian noise, the proposed

capeAGN employs the AGN algorithm [79] at its core. In-line with our setup in Section

5.2, the sample second-order moment matrix and the third-order moment tensor at site

𝑠 are denoted as M𝑠
2 ∈ R𝐷×𝐷 and ℳ𝑠

3 ∈ R𝐷×𝐷×𝐷, respectively. The noise standard

deviation required for computing the (𝜖1, 𝛿1) differentially private approximate to M𝑠
2

is given by

𝜏 𝑠2 =
∆𝑠

2

𝜖1

√︃
2 log

(︂
1.25

𝛿1

)︂
, (5.3)

where the sensitivity ∆𝑠
2 is inversely proportional to the sample size 𝑁𝑠 and (𝜖1, 𝛿1) pair

corresponds to the noise variance 𝜏 𝑠2 . To be more specific, we can write ∆𝑠
2,𝑆 =

√
2

𝑁𝑠
for

STM and ∆𝑠
2,𝑀 = 1

𝑁𝑠
for MOG. The detailed derivation of the sensitivity of M𝑠

2 for both

STM and MOG are shown in Section 5.2. Additionally, at site 𝑠, the noise standard

deviation required for computing the (𝜖2, 𝛿2) differentially private approximate to ℳ𝑠
3

is given by

𝜏 𝑠3 =
∆𝑠

3

𝜖2

√︃
2 log

(︂
1.25

𝛿2

)︂
. (5.4)

Again, we can write ∆𝑠
3,𝑆 =

√
2

𝑁𝑠
for STM and ∆𝑠

3,𝑀 = 2
𝑁𝑠

+ 6𝐷𝜎2

𝑁𝑠
for MOG. Section

5.2 contains the detailed algebra for calculating the sensitivity of ℳ𝑠
3 for both STM

and MOG. We note that, as in the case of M𝑠
2, the sensitivity depends only on the

58

sample size 𝑁𝑠. Now, in the pooled-data scenario, the noise standard deviations would

be given by:

𝜏pool2 =
∆pool

2

𝜖1

√︃
2 log

(︂
1.25

𝛿1

)︂

𝜏pool3 =
∆pool

3

𝜖2

√︃
2 log

(︂
1.25

𝛿2

)︂
,

where ∆pool
2 =

Δ𝑠
2

𝑆 and ∆pool
3 =

Δ𝑠
3

𝑆 , assuming equal number of samples in the sites.

We need to compute the 𝐷 ×𝐾 whitening matrix W and the 𝐷 ×𝐷 ×𝐷 tensor ℳ̂3

in a decentralized way while satisfying differential privacy. Although we could employ

our previous differentially private decentralized PCA algorithm [78] to compute W, to

achieve the same level of accuracy as the pooled data scenario we compute the following

matrix at site 𝑠:

M̂𝑠
2 = M𝑠

2 + E𝑠
2 + G𝑠

2,

where E𝑠
2 ∈ R𝐷×𝐷 is generated following to Algorithm 3.1 element-wise, according to

Section 3.3. Additionally, G𝑠
2 ∈ R𝐷×𝐷 is a symmetric matrix generated at site 𝑠 where

{[G𝑠
2]𝑖𝑗 : 𝑖 ∈ [𝐷], 𝑗 ≤ 𝑖} are drawn i.i.d. ∼ 𝒩 (0, 𝜏22𝑔), [G𝑠

2]𝑖𝑗 = [G𝑠
2]𝑗𝑖 and 𝜏22𝑔 = 1

𝑆 𝜏
𝑠
2
2.

The aggregator computes

M̂2 =
1

𝑆

𝑆∑︁
𝑠=1

M̂𝑠
2 =

1

𝑆

𝑆∑︁
𝑠=1

(M𝑠
2 + G𝑠

2) ,

where we used the relation
∑︀𝑆

𝑠=1E
𝑠
2 = 0. Note that the variance of the additive noise

in M̂2 is exactly the same as the pooled data scenario (please see Lemma 3.1). At the

aggregator, we can then compute the SVD(𝐾) of M̂2 as M̂2 = UDU⊤. We compute

the matrix W = UD− 1
2 and send it to the sites.

Next, we focus on computing ℳ̂3 in the decentralized setting. For this purpose,

we can follow the same steps as computing M̂2. Each site generates ℰ𝑠3 ∈ R𝐷×𝐷×𝐷

following to Algorithm 3.1 element-wise, according to Section 3.3. Then, each site

generates their own 𝒢𝑠3 ∈ R𝐷×𝐷×𝐷 in the following way: site 𝑠 draws a vector b ∈ R𝐷sym

59

with 𝐷sym =
(︀
𝐷+2
3

)︀
and entries i.i.d. ∼ 𝒩 (0, 𝜏23𝑔), where 𝜏23𝑔 = 1

𝑆 𝜏
𝑠
3
2. The tensor 𝒢𝑠3 is

generated with the entries from b such that 𝒢𝑠3 is symmetric. Again, for both M̂𝑠
2 and

ℳ̂𝑠
3, we are considering the equal sample size scenario for simplicity. Our framework

requires only a small modification to incorporate the unequal privacy/sample size (see

Section 3.3.7). Now, site 𝑠 computes

ℳ̂𝑠
3 =ℳ𝑠

3 + ℰ𝑠3 + 𝒢𝑠3 and ℳ̃𝑠
3 = ℳ̂𝑠

3 (W,W,W) .

We note that ℳ̃𝑠
3 is a 𝐾 × 𝐾 × 𝐾 dimensional tensor. Each site sends this to the

aggregator. This saves a lot of communication overhead as typically 𝐾 ≪ 𝐷. To see

how this results in the same estimate of ℳ̃3 as the pooled data scenario, we observe

ℳ̃𝑠
3 = ℳ̂𝑠

3 (W,W,W)

=ℳ𝑠
3 (W,W,W) + ℰ𝑠3 (W,W,W) + 𝒢𝑠3 (W,W,W) .

Additionally, at the aggregator, we compute

ℳ̃3 =
1

𝑆

𝑆∑︁
𝑠=1

(︁
ℳ𝑠

3 (W,W,W) + ℰ𝑠3 (W,W,W) + 𝒢𝑠3 (W,W,W)
)︁

=
1

𝑆

𝑆∑︁
𝑠=1

(︁
ℳ𝑠

3

(︁
W,W,W

)︁
+ 𝒢𝑠3 (W,W,W)

)︁
+

(︃
1

𝑆

𝑆∑︁
𝑠=1

ℰ𝑠3

)︃
(W,W,W)

=
1

𝑆

𝑆∑︁
𝑠=1

(ℳ𝑠
3 (W,W,W) + 𝒢𝑠3 (W,W,W))

=

(︃
1

𝑆

𝑆∑︁
𝑠=1

ℳ𝑠
3 + 𝒢𝑠3

)︃
(W,W,W) .

We used the associativity of the multi-linear operation [8] and the relation
∑︀𝑆

𝑠=1 ℰ𝑠3 = 0.

Note that the ℳ̃3 we achieve in this scheme is exactly the same ℳ̃3 we would have

achieved if all the data samples were present in the aggregator. Moreover, this is also the

quantity that the aggregator would get if the sites send the full ℳ̂𝑠
3 to the aggregator

instead of ℳ̃𝑠
3. The complete capeAGN algorithm is shown in Algorithm 5.1. Note that,

capeAGN can be readily extended to incorporate unequal privacy requirements/samples

60

sizes at each site (shown in Section 3.3.7).

Theorem 5.1 (Privacy of capeAGN Algorithm). Consider Algorithm 5.1 in the decen-

tralized data setting of Section 3.1 with 𝑁𝑠 = 𝑁
𝑆 , 𝜏 𝑠2 = 𝜏2 and 𝜏 𝑠3 = 𝜏3 for all sites

𝑠 ∈ [𝑆]. Suppose that at most 𝑆𝐶 =
⌈︀
𝑆
3

⌉︀
− 1 sites can collude after execution. Then

Algorithm 5.1 computes an (𝜖1 + 𝜖2, 𝛿1 + 𝛿2)-DP orthogonally decomposable tensor ℳ̃3,

where 𝛿1 + 𝛿2 = 2 𝜎𝑧
𝜖1+𝜖2−𝜇𝑧

𝜑
(︁
𝜖1+𝜖2−𝜇𝑧

𝜎𝑧

)︁
, 𝜑(·) is the density for standard Normal ran-

dom variable and (𝜇𝑧, 𝜎𝑧) are given by (3.3) and (3.4), respectively. Additionally, the

computation of the projection subspace W is (𝜖1, 𝛿1) differentially private.

Proof. The proof of Theorem 5.1 follows from using the Gaussian mechanism [50], the

sensitivities of M𝑠
2 andℳ𝑠

3 and the privacy of CAPE algorithm as in Theorem 3.1. The

release of M̂𝑠
2 from each site 𝑠 is (𝜖1, 𝛿1) differentially private, where 𝜖1 and 𝛿1 satisfy the

relation 𝛿1 = 2 𝜎𝑧
𝜖1−𝜇𝑧

𝜑
(︁
𝜖1−𝜇𝑧

𝜎𝑧

)︁
. As differential privacy is closed under post-processing

and the samples in each site are disjoint, the computation of W at the aggregator

also satisfies (𝜖1, 𝛿1) differential privacy. We can similarly show by the composition

theorem [50], the computation ℳ̃𝑠
3 = ℳ̂𝑠

3 (W,W,W) at each site is (𝜖1 + 𝜖2, 𝛿1 + 𝛿2)

differentially private. By the post-processing invariability, the computation of ℳ̃3 at

the aggregator is (𝜖1 + 𝜖2, 𝛿1 + 𝛿2) differentially private.

5.3.1 Performance Gain with Correlated Noise

As we mentioned before, this is the first work that proposes an algorithm for decentral-

ized differentially private OTD. As we employ the CAPE scheme for our computations,

the gain in the performance over a conventional decentralized differentially private OTD

is therefore the same as in the case of decentralized differentially private averaging, as

described in Proposition 3.1.

5.3.2 Theoretical Performance Guarantee

Although our proposed capeAGN algorithm can reach the performance of the pooled

data scenario (that is, same as that of the AGN algorithm with all data samples from

all sites stored in the aggregator), it is hard to characterize how the estimated {â𝑘} and

61

{𝑤̂𝑘} would deviate from the true {a𝑘} and {𝑤𝑘}, respectively. We note that although

we are adding symmetric noise to the third-order moment tensor, an orthogonal de-

composition need not exist for the perturbed tensor, even though the perturbed tensor

is symmetric [8, 86]. Anandkumar et al. [8] provided a bound on the error of the recov-

ered decomposition in terms of the operator norm of the tensor perturbation. For our

proposed algorithm, the perturbation includes the effect of estimating the third-order

moment tensor from the samples as well as the noise added for differential-privacy. Even

without accounting for the error in estimating the moments from observable samples,

the operator norm of the effective noise at the aggregator: ‖𝒢‖op = 1
𝑆

⃦⃦⃦∑︀𝑆
𝑠=1 𝒢𝑠3

⃦⃦⃦
op

, is a

random quantity, and requires new measure concentration results to analyze. Relating

these bounds to the error in estimating recovering the {a𝑘} and {𝑤𝑘} is nontrivial.

However, very recently Esmaeili and Huang [56] proposed differentially private OTD-

based Latent Dirichlet Allocation (LDA) for topic modeling. The authors consider the

sensitivities of different functions at different points in the flow of the LDA algorithm

and propose to employ Gaussian mechanism [50] to the point with the smallest sensi-

tivity, conditioned on some constraints. This enables the DP-LDA algorithm to achieve

better utility bounds. The extension of the techniques introduced in [56] to STM and

MOG is nontrivial and we defer that for future work.

5.3.3 Communication Cost

We note that capeAGN is a two-step algorithm: it computes the projection subspace

W ∈ R𝐷×𝐾 and then the orthogonally decomposable tensor ℳ̃3. We need to two zero-

sum noise terms: E𝑠
2 ∈ R𝐷×𝐷 and ℰ𝑠3 ∈ R𝐷×𝐷×𝐷. For this, we encounter 𝑂(𝑆+𝐷2) and

𝑂(𝑆 + 𝐷3) communication complexity of the sites, respectively and 𝑂(𝑆2 + 𝑆𝐷2) and

𝑂(𝑆2+𝑆𝐷3) communication complexity of the aggregator [22], respectively. Therefore,

the total communication cost is 𝑂(𝑆 + 𝐷3) for the sites and 𝑂(𝑆2 + 𝑆𝐷3) for the

aggregator. This is expected as we are computing the global 𝐷 × 𝐷 × 𝐷 third-order

moment tensor in a decentralized setting.

62

0.001 0.01 0.1 1.0 10.0
Privacy parameter ()

0

0.5

1

qco
m

p

MOG (=0.01, Ns = 20k, D = 10, S = 5)

Non-priv.
capeAGN
conv
local
Rand. vect.

0.001 0.01 0.1 1.0 10.0
Privacy parameter ()

0

0.5

1

qco
m

p

MOG (=0.01, Ns = 160k, D = 10, S = 5)

0.001 0.01 0.1 1.0 10.0
Privacy parameter ()

0

0.5

1

qco
m

p

MOG (=0.01, Ns = 20k, D = 50, S = 5)

0.001 0.01 0.1 1.0 10.0
Privacy parameter ()

0

0.5

1

qco
m

p

MOG (=0.01, Ns = 160k, D = 50, S = 5)

10k 40k 160k
Sample size (Ns)

0

0.5

1

qco
m

p

MOG (=0.01, = 0.5, D = 10, S = 5)

Non-priv.
capeAGN
conv
local
Rand. vect.

10k 40k 160k
Sample size (Ns)

0

0.5

1

qco
m

p

MOG (=0.01, = 2.0, D = 10, S = 5)

10k 40k 160k
Sample size (Ns)

0

0.5

1

qco
m

p

MOG (=0.01, = 1.0, D = 50, S = 5)

10k 40k 160k
Sample size (Ns)

0

0.5

1

qco
m

p

MOG (=0.01, = 5.0, D = 50, S = 5)

Figure 5.1: Variation of performance in the MOG setup: top-row – with privacy pa-
rameter 𝜖; bottom-row – with sample size 𝑁𝑠

0.001 0.01 0.1 1.0 10.0
Privacy parameter ()

0

0.1

0.2

0.3

0.4

0.5

0.6

qco
m

p

STM (=0.01, Ns = 20k, D = 10, S = 5)

Non-priv.
capeAGN
conv
local
Rand. vect.

0.001 0.01 0.1 1.0 10.0
Privacy parameter ()

0

0.2

0.4

0.6

qco
m

p

STM (=0.01, Ns = 160k, D = 10, S = 5)

0.001 0.01 0.1 1.0 10.0
Privacy parameter ()

0

0.1

0.2

0.3

qco
m

p

STM (=0.01, Ns = 20k, D = 50, S = 5)

0.001 0.01 0.1 1.0 10.0
Privacy parameter ()

0

0.1

0.2

0.3

qco
m

p

STM (=0.01, Ns = 160k, D = 50, S = 5)

10k 40k 160k
Sample size (Ns)

0

0.2

0.4

0.6

qco
m

p

STM (=0.01, = 0.5, D = 10, S = 5)

Non-priv.
capeAGN
conv
local
Rand. vect.

10k 40k 160k
Sample size (Ns)

0

0.2

0.4

0.6

qco
m

p

STM (=0.01, = 2.0, D = 10, S = 5)

10k 40k 160k
Sample size (Ns)

0

0.1

0.2

0.3

qco
m

p

STM (=0.01, = 1.0, D = 50, S = 5)

10k 40k 160k
Sample size (Ns)

0

0.1

0.2

0.3

qco
m

p

STM (=0.01, = 5.0, D = 50, S = 5)

Figure 5.2: Variation of performance in the STM setup: top-row – with privacy param-
eter 𝜖; bottom-row – with sample size 𝑁𝑠

5.4 Experimental Results

For the capeAGN algorithm, we focus on measuring how well the output of the pro-

posed algorithm approximate the true components {a𝑘} and {𝑤𝑘}. Let the recovered

component vectors be {â𝑘}. We use the same error metric as our previous work [79],

𝑞comp, to capture the disparity between {a𝑘} and {â𝑘}:

𝑞comp =
1

𝐾

𝐾∑︁
𝑘=1

𝐸𝐷𝑘
min, where 𝐸𝐷𝑘

min = min
𝑘′∈[𝐾]

‖â𝑘 − a𝑘′‖2.

63

0.0001 0.001 0.01
Privacy parameter ()

0

0.2

0.4

0.6

0.8

qco
m

p

STM (=0.1, Ns = 20k, D = 10, S = 5)
Non-priv.
capeAGN
conv
local
Rand. vect.

0.0001 0.001 0.01
Privacy parameter ()

0

0.2

0.4

0.6

qco
m

p

STM (=0.1, Ns = 160k, D = 10, S = 5)

0.0001 0.001 0.01
Privacy parameter ()

0

0.1

0.2

0.3

0.4

qco
m

p

STM (=2.0, Ns = 20k, D = 50, S = 5)

0.0001 0.001 0.01
Privacy parameter ()

0

0.1

0.2

0.3

0.4

qco
m

p

STM (=2.0, Ns = 160k, D = 10, S = 5)

0.0001 0.001 0.01
Privacy parameter ()

0

0.5

1

qco
m

p

MOG (=0.1, Ns = 20k, D = 10, S = 5)

Non-priv.
capeAGN
conv
local
Rand. vect.

0.0001 0.001 0.01
Privacy parameter ()

0

0.5

1

qco
m

p

MOG (=0.1, Ns = 160k, D = 10, S = 5)

0.0001 0.001 0.01
Privacy parameter ()

0

0.5

1

qco
m

p

MOG (=2.0, Ns = 20k, D = 50, S = 5)

0.0001 0.001 0.01
Privacy parameter ()

0

0.5

1

qco
m

p

MOG (=2.0, Ns = 160k, D = 10, S = 5)

Figure 5.3: Variation of performance with privacy parameter 𝛿: top-row – in MOG
setup; bottom-row – in STM setup

For comparison, we show the error resulting from the â𝑘’s achieved from the proposed

capeAGN algorithm, a conventional (but never proposed anywhere to the best of our

knowledge) distributed differentially private OTD algorithm that does not employ cor-

related noise (conv), a differentially private OTD [79] on local data (local) and the non-

private tensor power method [8] on pooled data (Non− priv.). We also show the error

considering random vectors as â𝑘’s (Rand. vect.). The reason [79] to show (Rand. vect.)

is the following: this error corresponds to the worst possible results, as we are not taking

any information from data into account to estimate â𝑘’s. As recovering the component

vectors is closely related with recovering the selection probabilities {𝑤𝑘}, we only show

the error of recovering the component vectors. We studied the dependence of 𝑞comp on

the privacy parameters 𝜖, 𝛿 and the sample size 𝑁𝑠. In all cases we show the average

performance over 10 runs of each algorithm. We note that the capeAGN algorithm adds

noise in two stages for ensuring differential-privacy: one for estimating W and another

for estimating ℳ3. We equally divided 𝜖 and 𝛿 to set 𝜖1, 𝜖2 and 𝛿1, 𝛿2 for the two

stages. Optimal allocation of 𝜖 and 𝛿 in multi-stage differentially private algorithms is

still an open question.

64

5.4.1 Performance variation in the MOG setup

First, we present the performance of the aforementioned algorithms in the setting of the

mixture of Gaussians. We use two synthetic data sets of different feature dimensions

(𝐷 = 10, 𝐾 = 5 and 𝐷 = 50, 𝐾 = 10), where the common covariance is 𝜎2 = 0.05 and

the components {a𝑘} satisfy ‖a𝑘‖2 ≤ 1.

Performance Variation with 𝜖. We first explore the privacy-utility tradeoff between

𝜖 and 𝑞comp. For the capeAGN algorithm, the variance of the noise is inversely propor-

tional to 𝜖2 – smaller 𝜖 means more noise (lower utility) and lower privacy risk. In the

top-row of Figure 5.1, we show the variation of 𝑞comp with 𝜖 for a fixed 𝛿 = 0.01 and

𝑆 = 5 for two different feature dimensions, each with two different samples sizes. For

both of the feature dimensions, we observe that as 𝜖 increases (higher privacy risk), the

errors decrease and the proposed capeAGN algorithm outperforms the conv and local

methods. capeAGN matches the performance of Non− priv. method for larger 𝜖 values.

For a particular feature dimension, we notice that if we increase 𝑁𝑠, the performance

of capeAGN gets even better. This is expected as the variance of the noise for capeAGN

is inversely proportional to square of the sample size.

Performance Variation with 𝑁𝑠. Next, we consider the performance variation with

𝑁𝑠. Intuitively, it should be easier to guarantee a smaller privacy risk for the same 𝜖 and

a higher utility (lower error) when the number of samples is large. In the bottom row

of Figure 5.1, we show how the errors vary as a function of 𝑁𝑠 for the MOG model for

two different feature dimensions, while keeping 𝛿 = 0.01 and 𝑆 = 5 fixed. The variation

with the sample size reinforces the results seen earlier with variation in 𝜖: the proposed

capeAGN outperforms the other algorithms under investigation for both 𝐷 = 10 and

𝐷 = 50. In general, capeAGN approaches the performance of Non− priv. as the sample

size increases. When 𝜖 is large enough, the capeAGN algorithm achieves as much utility

as Non− priv. method.

Performance Variation with 𝛿. Finally, we show the variation of performance with

the other privacy parameter 𝛿. Recall that 𝛿 can be interpreted as the probability that

the privacy-preserving algorithm releases the private information “out in the wild”

65

without any additive noise. Therefore, we want to ensure that 𝛿 is small. However,

the smaller the 𝛿 is the larger the noise variance becomes. Thus smaller 𝛿 dictates

loss in utility. We observe this in our experiments as well. In the top-row of Figure

5.3, we show the variation of 𝑞comp with 𝛿 for two different feature dimensions and two

different sample sizes. We kept 𝑆 = 5 fixed. We observe that when 𝜖 is small, we need

larger 𝛿 to achieve meaningful performance. This can be explained in the following

way: for Gaussian mechanism, we need to ensure that the standard deviation of the

noise 𝜎 satisfies 𝜎 ≥ Δ
𝜖

√︁
2 log 1.25

𝛿 , where ∆ is the ℒ2 sensitivity of the function under

consideration. This inequality can be satisfied with infinitely many (𝜖, 𝛿) pairs and one

can keep the noise level the same for a smaller 𝜖 with a larger 𝛿. We observe from the

figure that when both 𝜖 and 𝑁𝑠 are larger, the proposed capeAGN can achieve very close

performance to the non-private one even for very small 𝛿 values.

5.4.2 Performance variation in the STM setup

We performed experiments on two synthetic datasets of different feature dimensions

(𝐷 = 10, 𝐾 = 5 and 𝐷 = 50, 𝐾 = 10) generated with pre-determined w and {a𝑘}.

It should be noted here that the recovery of {a𝑘} is difficult [79], because the recov-

ered word probabilities from the tensor decomposition, whether private or non-private,

may not always be valid probability vectors (i.e., no negative entries and sum to 1).

Therefore, prior to computing the 𝑞comp, we ran a post-processing step (0-out negative

entries and then normalize by summation) to ensure that the recovered vectors are valid

probability vectors. This process is non-linear and potentially makes the recovery error

worse. However, for practical STM, 𝐷 is not likely to be 10 or 50, rather it may be of

the order of thousands, simulating which is a huge computational burden. In general,

if we want the same privacy level for higher dimensional data, we need to increase

the sample size. We refer the reader to some efficient (but non-privacy-preserving)

implementations [74] for tensor factorization.

Performance Variation with 𝜖. As in the case of the MOG model, we first explore

the privacy-utility tradeoff between 𝜖 and 𝑞comp. In the top-row of Figure 5.2, we show

the variation of 𝑞comp with 𝜖 for a fixed 𝛿 = 0.01 and 𝑆 = 5 for two different feature

66

dimensions. For both of the feature dimensions, we observe that as 𝜖 increases (higher

privacy risk), the errors decrease. The proposed capeAGN outperforms conv and local

methods in all settings; and match the performance of Non− priv. for large enough 𝜖.

Increasing 𝑁𝑠 makes the proposed algorithm perform even better.

Performance Variation with 𝑁𝑠. Next, in the bottom-row of Figure 5.2, we show

how the errors vary as a function of 𝑁𝑠 for two different feature dimensions, while

keeping 𝛿 = 0.01 and 𝑆 = 5 fixed. The variation with 𝑁𝑠 reiterates the results seen ear-

lier. The proposed capeAGN outperforms all other algorithms (except the Non− priv.)

for both 𝐷 = 10 and 𝐷 = 50. For larger 𝑁𝑠, it achieves almost the same utility as

the Non− priv. algorithm. Even for smaller 𝜖 with a proper sample size, the error is

very low. For the 𝐷 = 10 case, the capeAGN always performs very closely with the

Non− priv. algorithm.

Performance Variation with 𝛿. Lastly, we show the variation of 𝑞comp with 𝛿 in

the bottom-row of Figure 5.3. We observe similar performance trend as in the MOG

setting. For smaller 𝜖 and sample size, we need to compensate with larger 𝛿 to achieve

a performance closer to Non− priv. one. However, when sample size is larger, we can

get away with a smaller 𝜖 and 𝛿. This is intuitive as hiding one individual among a

large group is easier – the additive noise variance need not be very large and hence the

performance does not take a large hit.

67

Chapter 6

Decentralized Differentially Private Joint Independent

Component Analysis

In this chapter, we first formulate the problem of ICA in the decentralized setting. We

then propose a new algorithm, capeDJICA, for (𝜖, 𝛿)-differentially private decentralized

joint ICA. The algorithm significantly improves upon our earlier work [80] by taking ad-

vantage of a recently proposed correlation assisted private estimation (CAPE) protocol.

We also analyze the privacy guarantees of the proposed algorithm using conventional

approach [48] and the moments accountant [2]. Finally, we present experimental results

to analyze the variation of utility with different privacy levels, number of samples and

some other key parameters. The results show that our algorithm achieves very good

utility on both synthetic and real datasets, while providing strong privacy guarantees.

6.1 The ICA Model

In this work we consider the generative ICA model as in [11]. In the centralized scenario,

the independent sources S ∈ R𝑅×𝑁 are composed of 𝑁 observations from 𝑅 statistically

independent components. We have a linear mixing process defined by a mixing matrix

A ∈ R𝐷×𝑅, which forms the observed data X ∈ R𝐷×𝑁 as a product X = AS. Many

ICA algorithms propose to recover the unmixing matrix W = A−1, assuming A is

invertible [11], by trying to maximize independence between rows of the product WX.

The maximal information transfer (infomax) [17] is a popular heuristic for estimating W

that maximizes an entropy functional related to WX. More specifically, the objective

of Infomax ICA can be expressed as

W* = argmax
W

ℎ(𝑔(WX)). (6.1)

68

Here, 𝑔(·) is the sigmoid function and is given by:

𝑔(𝑧) =
1

1 + exp(−𝑧)
.

Additionally, ℎ(z) is the differential entropy of a random vector z with joint density 𝑞:

ℎ(z) = −
∫︁

𝑞(z) log 𝑞(z)𝑑z.

Note that, we apply 𝑔(·) to a matrix Z element-wise, i.e., 𝑔(Z) is a matrix with the

same size as Z and [𝑔(Z)]𝑖𝑗 = 𝑔([Z]𝑖𝑗).

The Decentralized Data Problem. We consider a similar decentralized-data model

with 𝑆 sites as Section 3.1 (see Figure 3.1). There is a central node that acts as

an aggregator. We assume that all parties are “honest but curious”. That is, all

parties follow the protocol honestly but a subset can collude (maybe with an external

adversary) to learn other site’s data/function output. Each site 𝑠 has a collection of data

matrices {X𝑠,𝑚 ∈ R𝐷×𝑁𝑡 : 𝑚 = 1, . . . ,𝑀𝑠} consisting of a total time course of length

𝑁𝑡 time points over 𝐷 voxels for 𝑀𝑠 individuals. The data samples in the local sites are

assumed to be disjoint. Sites concatenate their local data matrices temporally to form

a 𝐷 × 𝑁𝑡𝑀𝑠 data matrix X𝑠 ∈ R𝐷×𝑁𝑠 , where 𝑁𝑠 = 𝑁𝑡𝑀𝑠. Let 𝑁 =
∑︀𝑆

𝑠=1𝑁𝑠 be the

total number of samples and 𝑀 =
∑︀𝑆

𝑠=1𝑀𝑠 be the total number of individuals (across

all sites). We assume a global mixing matrix A ∈ R𝐷×𝑅 generates the time courses in

X𝑠 from underlying sources S𝑠 ∈ R𝑅×𝑁𝑠 at each site. This yields the following model:

X = [AS1 . . .AS𝑆] = [X1 . . .X𝑆] ∈ R𝐷×𝑁 . (6.2)

We are interested to compute the global unmixing matrix W ∈ R𝑅×𝐷 corresponding to

the Moore-Penrose pseudo-inverse of A, denoted A+, in the decentralized setting. As

sharing raw data across sites is prohibited in most cases due to privacy concerns and

communication cost, we employ differential privacy [50]. More specifically, our goal

is to use differentially private estimates of the local gradients to compute the global

unmixing matrix W such that it closely approximates the true global unmixing matrix.

69

Algorithm 6.1 Improved Differentially Private Decentralized Joint ICA (capeDJICA)

Require: data {X𝑟
𝑠 ∈ R𝑅×𝑁𝑠 : 𝑠 ∈ [𝑆]}, tolerance level 𝑡 = 10−6, maximum iterations

𝐽 , ‖∆W(0)‖22 = 𝑡, initial learning rate 𝜌 = 0.015/ log(𝑅), local noise standard
deviations {𝜏 𝑠𝐺, 𝜏 𝑠ℎ}, gradient bounds {𝐵𝐺, 𝐵ℎ}

1: Initialize 𝑗 = 0, W ∈ R𝑅×𝑅 ◁ for example, W = I
2: while 𝑗 < 𝐽 , ‖∆W(𝑗)‖22 ≥ 𝑡 do
3: for all sites 𝑠 = 1, 2, . . . , 𝑆 do
4: Generate E𝐺

𝑠 ∈ R𝑅×𝑅 and eℎ𝑠 ∈ R𝑅 using Algorithm 3.1 (entrywise)
5: Generate K𝐺

𝑠 ∈ R𝑅×𝑅 and kℎ
𝑠 ∈ R𝑅, as described in the text

6: Compute Z𝑠(𝑗) = W(𝑗 − 1)X𝑠 + b(𝑗 − 1)1⊤

7: Compute Ŷ𝑠(𝑗) = 1− 2𝑔(Z𝑠(𝑗))

8: Compute G𝑠(𝑗) = 1
𝑁𝑠

∑︀𝑁𝑠
𝑛=1

(I+ŷ𝑠,𝑛z⊤𝑠,𝑛)W(𝑗−1)

max
(︁
1, 1

𝐵𝐺

⃦⃦
(I+ŷ𝑠,𝑛z⊤𝑠,𝑛)W(𝑗−1)

⃦⃦
𝐹

)︁
9: Compute h𝑠(𝑗) = 1

𝑁𝑠

∑︀𝑁𝑠
𝑛=1

ŷ𝑠,𝑛

max
(︁
1, 1

𝐵ℎ

⃦⃦
ŷ𝑠,𝑛

⃦⃦
2

)︁
10: Compute ĥ𝑠(𝑗) = h𝑠(𝑗) + eℎ𝑠 + kℎ

𝑠

11: Send Ĝ𝑠(𝑗) and ĥ𝑠(𝑗) to the aggregator
12: end for
13: Compute ∆W(𝑗) = 𝜌 1

𝑆

∑︀𝑆
𝑠=1 Ĝ𝑠(𝑗) ◁ at the aggregator, update global variables

14: Compute ∆b(𝑗) = 𝜌 1
𝑆

∑︀𝑆
𝑠=1 ĥ𝑠(𝑗)

15: Compute W(𝑗) = W(𝑗 − 1) + ∆W(𝑗)
16: Compute b(𝑗) = b(𝑗 − 1) + ∆b(𝑗)
17: Check upper bound and perform learning rate adjustment (if needed)
18: Send global W(𝑗) and b(𝑗) back to each site
19: 𝑗 ← 𝑗 + 1
20: end while
21: return The current W(𝑗)

6.2 Improved Differentially Private djICA

In this work, we focus on the djICA algorithm [11] for performing temporal ICA of fMRI

data. Our goal is to compute the privacy-preserving global spatial maps utilizing all

samples across all the sites. To that end, we need to perform a multi-round decentralized

gradient descent for solving (6.1). One option is to employ the conventional DP gradient

descent [16, 127]: computing the sensitivity [50] of the gradient and then adding noise

scaled to the sensitivity. However, this would lead to a significantly noisier estimate

of the spatial maps, as outlined in Section 3.2. For an efficient spatial map estimation

that can achieve the same level of noise as the pooled-data scenario, we can employ the

recently proposed CAPE scheme. CAPE can benefit a broad class of functions whose

sensitivities satisfy some conditions [81]. Examples include the empirical average loss

70

functions used in machine learning and deep neural networks. In the following, we

demonstrate that we can adapt the CAPE scheme to develope a DP djICA algorithm

that offers significant improvements over our previous method [80].

Recall our decentralized data setup: there are 𝑆 sites and a central aggregator (see

Figure 3.1(b)). Each site 𝑠 has data from 𝑀𝑠 individuals, which are concatenated to

form the data matrix X𝑠 ∈ R𝐷×𝑁𝑠 . The global mixing matrix A ∈ R𝐷×𝑅 is assumed

to generate the time courses in X𝑠 from underlying sources S𝑠 ∈ R𝑅×𝑁𝑠 at each site.

That is: X = [AS1 . . .AS𝑆] ∈ R𝐷×𝑁 . We estimate the DP global unmixing matrix

W ∈ R𝑅×𝐷 ≈ A+ in the decentralized setting with a multi-round gradient descent that

employs the CAPE protocol.

As mentioned before, we employ the capePCA algorithm [77] (Algorithm 4.1) to

estimate an efficient and privacy-preserving row-rank subspace and thereby reduce the

dimension of the samples before solving the optimization problem of (6.1). Let the

output of capePCA to be V𝑅 ∈ R𝐷×𝑅, which is sent to the sites from the aggregator.

Then the reduced dimensional (𝑅 × 𝑁𝑠) data matrix at site 𝑠 is denoted by: X𝑟
𝑠 =

V⊤
𝑅X𝑠. These projected samples are the inputs to the proposed capeDJICA algorithm

that estimates the unmixing matrix W. Note that, even though the preprocessing is

performed satisfying differential privacy, the maximization to solve (6.1) itself may leak

information about the local data since it relies on iterative message-passing with the

central aggregator. More specifically, the maximization is performed through a gradient

descent [6], where the gradient is to be computed in a decentralized fashion. That is, the

algorithm depends on the data samples through the gradients. Our proposed capeDJICA

algorithm employs the CAPE protocol to perform the privacy-preserving decentralized

gradient descent to solve for W.

The gradient of the empirical average loss function with respect to W at site 𝑠 is

given [80, 11] by

G𝑠 =
1

𝑁𝑠

(︁
𝑁𝑠I + (1− 2Y𝑠)Z

⊤
𝑠

)︁
W, (6.3)

where Z𝑠 = WX𝑟
𝑠 + b1⊤, Y𝑠 = 𝑔 (Z𝑠); b ∈ R𝑅 is the bias and 1 is a vector of ones. If

71

we denote 1− 2Y𝑠 with Ŷ𝑠 then we have

G𝑠 =
1

𝑁𝑠

(︁
𝑁𝑠I + Ŷ𝑠Z

⊤
𝑠

)︁
W =

1

𝑁𝑠

𝑁𝑠∑︁
𝑛=1

(︁
I + ŷ𝑠,𝑛z

⊤
𝑠,𝑛

)︁
W.

We can consider
(︀
I + ŷ𝑠,𝑛z

⊤
𝑠,𝑛

)︀
W to be the gradient of the loss function corresponding

to a single data sample. Therefore, the gradient of the average loss function at site

𝑠 is essentially the average of the gradient of the loss function corresponding to each

sample. Note that this gradient estimate is needed to be sent to the aggregator from

the site. Therefore, we need to approximate this gradient in a differentially private way.

To that end, let us consider that the gradient due to each sample satisfies

⃦⃦⃦(︁
I + ŷ𝑠,𝑛z

⊤
𝑠,𝑛

)︁
W
⃦⃦⃦
𝐹
≤ 𝐵𝐺, (6.4)

where 𝐵𝐺 is some constant. It is easy to see that by changing one data sample (i.e., for

a neighboring dataset), the gradient at site 𝑠 can change by at most 2𝐵𝐺
𝑁𝑠

. Therefore,

the ℒ2 sensitivity of the function 𝑓(X𝑠) = G𝑠 is

∆𝑠
𝐺 =

2𝐵𝐺

𝑁𝑠
. (6.5)

In addition to the unmixing matrix W, we update a bias term b using a gradient

descent [11]. The gradient of the empirical average loss function with respect to the

bias at site 𝑠 is given [11] by

h𝑠 =
1

𝑁𝑠

𝑁𝑠∑︁
𝑛=1

ŷ𝑠,𝑛. (6.6)

Similar to the case of G𝑠, we can find the ℒ2 sensitivity of the function 𝑓(X𝑠) = h𝑠 as

∆𝑠
ℎ =

2𝐵ℎ

𝑁𝑠
, (6.7)

72

where

‖ŷ𝑠,𝑛‖2 ≤ 𝐵ℎ. (6.8)

In order to approximate G𝑠 and h𝑠 satisfying (𝜖, 𝛿) differential-privacy, we can employ

Gaussian mechanism [50]: the standard deviations 𝜏 𝑠𝐺 and 𝜏 𝑠ℎ of the additive noise for

G𝑠 and h𝑠 should satisfy:

𝜏 𝑠𝐺 =
∆𝑠

𝐺

𝜖

√︂
2 log

1.25

𝛿
, 𝜏 𝑠ℎ =

∆𝑠
ℎ

𝜖

√︂
2 log

1.25

𝛿
. (6.9)

We employ the CAPE protocol to combine the gradients from the sites at the aggregator

to achieve the same utility level as that of the pooled data scenario. More specifically,

each site generates two noise terms: E𝐺
𝑠 ∈ R𝑅×𝑅 and eℎ𝑠 ∈ R𝑅, collectively among

all sites (entrywise, according to Algorithm 3.1) at each iteration round. Additionally,

each site 𝑠 generates the following two noise terms locally at each iteration:

∙ K𝐺
𝑠 ∈ R𝑅×𝑅 with [K𝐺

𝑠]𝑖𝑗 drawn i.i.d. ∼ 𝒩 (0, 𝜏2𝐺𝑘) and 𝜏2𝐺𝑘 = 1
𝑆 𝜏

𝑠
𝐺
2

∙ kℎ
𝑠 ∈ R𝑅 with [kℎ

𝑠]𝑖 drawn i.i.d. ∼ 𝒩 (0, 𝜏2ℎ𝑘) and 𝜏2ℎ𝑘 = 1
𝑆 𝜏

𝑠
ℎ
2.

At each iteration round, the sites compute the noisy estimates of the gradients of W

and b:

Ĝ𝑠 = G𝑠 + E𝐺
𝑠 + K𝐺

𝑠 , ĥ𝑠 = h𝑠 + eℎ𝑠 + kℎ
𝑠 .

These two terms are then sent to the aggregator and the aggregator computes

∆W = 𝜌
1

𝑆

𝑆∑︁
𝑠=1

Ĝ𝑠, ∆b = 𝜌
1

𝑆

𝑆∑︁
𝑠=1

ĥ𝑠,

where 𝜌 is the learning rate. These gradient estimates are then used to update the

variables W and b. The complete algorithm is shown in Algorithm 6.1. Note that, one

does not need to explicitly find the bounds in (6.4) and (6.8). Instead, the gradients

due to each sample can be clipped to some pre-determined 𝐵𝐺 or 𝐵ℎ in ℒ2 norm sense.

73

That is, we can replace G𝑠,𝑛 =
(︀
I + ŷ𝑠,𝑛z

⊤
𝑠,𝑛

)︀
W with

G𝑠,𝑛 =
G𝑠,𝑛

max
(︁

1,
‖G𝑠,𝑛‖𝐹

𝐵𝐺

)︁ .
Similarly, we can replace h𝑠,𝑛 = ŷ𝑠,𝑛 with

h𝑠,𝑛 =
h𝑠,𝑛

max
(︁

1,
‖h𝑠,𝑛‖2

𝐵ℎ

)︁ .
We note that this norm clipping has a few consequences [2]. It destroys the unbiasedness

of the gradient estimate. If we choose 𝐵𝐺 and 𝐵ℎ to be too small, the average clipped

gradient may be a poor estimate of the true gradient. Moreover, 𝐵𝐺 and 𝐵ℎ dictate

the additive noise level. In general, clipping prescribes taking a smaller step downhill

towards the optimal point [16] and may slow down the convergence.

6.3 Privacy Analysis of capeDJICA

In this section, we first present a theorem that provides the privacy guarantee of the

capeDJICA algorithm using the conventional composition theorem [48]. However, we

note that the capeDJICA algorithm involves a multi-round gradient descent and conven-

tional privacy analysis may exaggerate the privacy loss. For a better characterization

of the privacy guarantee, we analyze the capeDJICA algorithm with Rényi Differential

Privacy (RDP) [107]. Finally, we compute the overall privacy loss of the capeDJICA

algorithm using the moments accountant [2] to keep a better track of the privacy loss

at each iteration.

Theorem 6.1 (Privacy of capeDJICA Algorithm). Consider Algorithm 6.1 in the de-

centralized data setting of Chapter 3 Section 3.1 with 𝑁𝑠 = 𝑁
𝑆 , 𝜏

𝑠
𝐺 = 𝜏𝐺 and 𝜏 𝑠ℎ = 𝜏ℎ

for all sites 𝑠 ∈ [𝑆]. Suppose that at most 𝑆𝐶 =
⌈︀
𝑆
3

⌉︀
− 1 sites can collude after exe-

cution and the required number of iterations is 𝐽*. Then Algorithm 6.1 computes an

(2𝐽*𝜖, 2𝐽*𝛿)-DP approximation to the optimal unmixing matrix W*, where (𝜖, 𝛿) sat-

isfy the relation 𝛿 = 2 𝜎𝑧
𝜖−𝜇𝑧

𝜑
(︁
𝜖−𝜇𝑧

𝜎𝑧

)︁
, 𝜑(·) is the density for standard Normal random

variable and (𝜇𝑧, 𝜎𝑧) are given by (3.3) and (3.4), respectively.

74

Proof. The proof of Theorem 6.1 follows from using the Gaussian mechanism [50], the

decentralized Stochastic Gradient Descent algorithm [2, 16, 127], the ℒ2 sensitivities of

the functions 𝑓(X𝑠) = G𝑠 and 𝑓(X𝑠) = h𝑠 and the privacy of the CAPE scheme [81]. We

recall that the data samples in each site are disjoint. By the CAPE scheme (see Theorem

3.1), each iteration round is (2𝜖, 2𝛿)-DP. If the required total number of iterations is

𝐽* then by composition theorem of differential privacy [48], the capeDJICA algorithm

satisfies (2𝐽*𝜖, 2𝐽*𝛿)-DP, where (𝜖, 𝛿) satisfy the relation 𝛿 = 2 𝜎𝑧
𝜖−𝜇𝑧

𝜑
(︁
𝜖−𝜇𝑧

𝜎𝑧

)︁
.

6.3.1 Privacy Analysis using Rényi Differential Privacy

In this section, we analyze the capeDJICA algorithm with Rényi Differential Privacy

(RDP) [107]. Analyzing the total privacy loss of a multi-shot algorithm, each stage of

which is differentially private, is a challenging task. It has been shown [2, 107] that

the advanced composition theorem [48] for (𝜖, 𝛿)-differential privacy can be loose in the

sense that it may exaggerate the privacy loss. The main reason is that one can formulate

infinitely many (𝜖, 𝛿) differentially private algorithms for a given noise variance. RDP

offers a much simpler composition rule that is shown to be tight [107]. We start our

analysis of the capeDJICA algorithm by reviewing some properties of RDP [107].

Proposition 6.3 (From RDP to DP [107]). If 𝒜 is an (𝛼, 𝜖𝑟)-RDP mechanism, then

it also satisfies

(︂
𝜖𝑟 +

log 1
𝛿𝑟

𝛼−1 , 𝛿𝑟

)︂
-differential privacy for any 0 < 𝛿𝑟 < 1.

Proposition 6.4 (Composition of RDP [107]). Let 𝒜 : D ↦→ T1 be (𝛼, 𝜖𝑟1)-RDP and

ℬ : T1 × D ↦→ T2 be (𝛼, 𝜖𝑟2)-RDP, then the mechanism defined as (𝑋,𝑌), where 𝑋 ∼

𝒜(𝐷) and 𝑌 ∼ ℬ(𝑋,𝐷), satisfies (𝛼, 𝜖𝑟1 + 𝜖𝑟2)-RDP.

Proposition 6.5 (RDP and Gaussian Mechanism [107]). If 𝒜 has ℒ2 sensitivity 1, then

the Gaussian mechanism G𝜎𝒜(𝐷) = 𝒜(𝐷) +𝐸, where 𝐸 ∼ 𝒩 (0, 𝜎2) satisfies (𝛼, 𝛼
2𝜎2)-

RDP. Additionally, a composition of 𝐽 Gaussian mechanisms, each with parameter 𝜎

will have the RDP curve of a Gaussian mechanism with parameter 𝜎√
𝐽
.

The proofs of the Propositions 6.3, 6.4 and 6.5 are provided in [107]. Now, we are in

a position to analyze the proposed capeDJICA algorithm with the composition theorem

for RDP. Recall that, at each iteration 𝑗 of capeDJICA, we compute the noisy estimates

75

of the gradients: ∆W(𝑗) and ∆b(𝑗). Because of our correlated noise scheme in the

symmetric setting, the variance of noise at the aggregator for ∆W(𝑗) is:

𝜎2
W = 𝜌2𝜏pool𝐺

2
.

Similarly, the variance of noise at the aggregator for ∆b(𝑗) is:

𝜎2
b = 𝜌2𝜏poolℎ

2
.

From Proposition 6.5, we have that the computation of ∆W(𝑗) is (𝛼,
𝛼

2𝜎2
W

)-RDP. Sim-

ilarly, the computation of ∆b(𝑗) is (𝛼,
𝛼

2𝜎2
b

)-RDP. By Proposition 6.4, we have that

each iteration step of capeDJICA is
(︁
𝛼, 𝛼2

(︁
1

𝜎2
W

+ 1
𝜎2
b

)︁)︁
-RDP. If we denote the number

of required iterations for reaching convergence in capeDJICA by 𝐽* then, under 𝐽*-fold

composition of RDP, the overall capeDJICA algorithm is (𝛼, 𝛼𝐽*

2𝜎2
RDP

)-RDP, where

1

𝜎2
RDP

=

(︂
1

𝜎2
W

+
1

𝜎2
b

)︂
.

We conclude that the capeDJICA algorithm satisfies

(︂
𝛼𝐽*

2𝜎2
RDP

+
log 1

𝛿𝑟
𝛼−1 , 𝛿𝑟

)︂
differential-

privacy for any 0 < 𝛿𝑟 < 1 (from Proposition 6.3). For a given 𝛿𝑟, we find the optimal

𝛼opt as:

𝛼opt = 1 +

√︂
2

𝐽*𝜎
2
RDP log

1

𝛿𝑟
. (6.10)

Therefore, the capeDJICA algorithm is

(︂
𝛼opt𝐽*

2𝜎2
RDP

+
log 1

𝛿𝑟
𝛼opt−1 , 𝛿𝑟

)︂
-differentially private for

any 0 < 𝛿𝑟 < 1.

6.3.2 Privacy Accounting using Moments Accountant

In this section, we compute the overall privacy loss of the capeDJICA algorithm following

the moments accountant [2]. The moments accountant method keeps a better track of

the privacy loss at each iteration and can be used to achieve a much smaller total 𝜖

76

than the strong composition theorem [48]. As mentioned before, näıvely employing the

additive nature of the privacy loss results in the worst case analysis, i.e., assumes that

each iteration step exposes the worst privacy risk and this exaggerates the total privacy

loss. However, in practice, the privacy loss is a random variable that depends on the

dataset and is typically well-behaved (concentrated much closer to its expected value).

Let us consider the randomized mechanism 𝒜 : D ↦→ T. We denote the neighboring

datasets with 𝐷,𝐷′ ∈ D. For a particular outcome 𝑜 ∈ T of the mechanism, the privacy

loss random variable is defined [2] as

𝑍 = log
Pr[𝒜(𝐷) = 𝑜]

Pr[𝒜(𝐷′) = 𝑜]
w.p. Pr[𝒜(𝐷) = 𝑜]. (6.11)

Note that the basic idea of [2] for accounting for the total privacy loss is to compute the

moment generating function (MGF) of 𝑍 for each iteration, use composition to get the

MGF of the complete algorithm and then use that to compute final privacy parameters

(see Theorem 2 of [2]). The stepwise moment for any 𝑡 at iteration 𝑗 is defined [2] as

𝛼𝑗(𝑡) = sup
𝐷,𝐷′

logE [exp(𝑡𝑍)] . (6.12)

If total number of iterations is 𝐽* then the overall moment is upper bounded as

𝛼(𝑡) ≤
𝐽*∑︁
𝑗=1

𝛼𝑗(𝑡).

Finally, for any given 𝜖 > 0, the overall mechanism is (𝜖, 𝛿) differentially private for

𝛿 = min
𝑡

exp (𝛼(𝑡)− 𝑡𝜖) .

We now employ the framework to our capeDJICA algorithm and find the best 𝜖 for a

given 𝛿. For a Gaussian mechanism G𝜎𝒜(𝐷) = 𝒜(𝐷) + 𝐸, where 𝐸 ∼ 𝒩 (0, 𝜎2), the

77

privacy loss random variable defined in (6.11) can be written as

𝑍 = log
exp

(︁
− 1

2𝜎2 (𝑜− 𝑓𝐷)2
)︁

exp
(︁
− 1

2𝜎2

(︀
𝑜− 𝑓 ′

𝐷

)︀2)︁
=

1

2𝜎2

(︁
2𝑜(𝑓𝐷 − 𝑓 ′

𝐷)− (𝑓2
𝐷 − 𝑓 ′

𝐷
2
)
)︁
.

Now,

E[exp(𝑡𝑍)] =

∫︁
𝑜

exp

(︂
𝑡

2𝜎2

(︁
2𝑜(𝑓𝐷 − 𝑓 ′

𝐷)− (𝑓2
𝐷 − 𝑓 ′

𝐷
2
)
)︁)︂

· 1√
2𝜋𝜎2

exp

(︂
− 1

2𝜎2
(𝑜− 𝑓𝐷)2

)︂
𝑑𝑜

=
𝜎√︀

𝑓𝐷 − 𝑓 ′
𝐷

exp

(︂
(𝑓𝐷 − 𝑓 ′

𝐷)
𝑡2𝜎2 + 𝑡(𝑓𝐷 − 𝑓 ′

𝐷)

2𝜎2

)︂
,

where the last equality follows from the moment generating function of generalized

Gaussian and some simple algebra. If the ℒ2 sensitivity of the function 𝒜(𝐷) is ∆ then

𝛼𝑗(𝑡) = sup
𝐷,𝐷′

log
𝜎√︀

𝑓𝐷 − 𝑓 ′
𝐷

+
𝑓𝐷 − 𝑓 ′

𝐷

2𝜎2

(︀
𝑡2𝜎2 + 𝑡(𝑓𝐷 − 𝑓 ′

𝐷)
)︀

= log
𝜎√
∆

+
∆

2𝜎2

(︀
𝑡2𝜎2 + 𝑡∆

)︀
.

We can compute the upper bound of the overall moment

𝛼(𝑡) ≤
𝐽*∑︁
𝑗=1

𝛼𝑗(𝑡)

= 𝐽*
(︂

log
𝜎√
∆

+
∆

2𝜎2

(︀
𝑡2𝜎2 + 𝑡∆

)︀)︂
.

Now, for any given 𝜖 > 0, we have

𝛿 = min
𝑡

exp (𝛼(𝑡)− 𝑡𝜖)

= min
𝑡

exp

(︂
𝐽*
(︂

log
𝜎√
∆

+
∆

2𝜎2

(︀
𝑡2𝜎2 + 𝑡∆

)︀)︂
− 𝑡𝜖

)︂
.

78

10 100 500

Number of iterations (J*)

0

10

20

30

40

50

T
o

ta
l

Basic composition
Moments accountant

Figure 6.1: Variation of total 𝜖 with number of iterations 𝐽*: 𝜎2
W = 𝜎2

b = 0.001 and
𝛿 = 1/𝑁 . Moments accountant method provides a much smaller total 𝜖 than the basic
composition.

We compute the minimizing 𝑡 as

𝑡opt =
𝜖

𝐽*∆
− ∆

2𝜎2
.

Using this, we find 𝛿opt

𝛿opt = exp
(︁
𝐽* log

𝜎√
∆

+
𝐽*∆

2

(︂
𝜖

𝐽*∆
− ∆

2𝜎2

)︂2

+

(︂
𝐽*∆2

2𝜎2
− 𝜖

)︂(︂
𝜖

𝐽*∆
− ∆

2𝜎2

)︂)︁
.

As we are interested in finding the best 𝜖 for a given 𝛿, we rearrange the above equation

to solve for 𝜖 as

𝜖 =
1

2𝑎

(︁
−𝑏±

√︀
𝑏2 − 4𝑎𝑐

)︁
,

where 𝑎 = 1
2𝐽*Δ , 𝑏 = − Δ

2𝜎2 and 𝑐 = log 𝛿 − 𝐽* log 𝜎√
Δ

+ 𝐽*Δ3

8𝜎4 . For our proposed

capeDJICA algorithm, we release two noisy gradients: ∆W(𝑗) and ∆b(𝑗), at iteration

𝑗 with noise variances 𝜎2
W and 𝜎2

b, respectively. Adjusting for this, we plot the total 𝜖

against the total iterations 𝐽* for the basic composition and the moments accountant in

Figure 6.1. We observe that the moments accountant method provides a much smaller

total 𝜖 than the basic composition (which grows linearly with 𝐽*).

79

6.4 Performance Analysis of capeDJICA

6.4.1 Performance Gain with Correlated Noise

The existing differentially private djICA algorithm [80] achieved 𝐽*𝜖-differential privacy

(where 𝐽* is the total number of iterations required for convergence) by adding a noise

term to the local estimate of the source (i.e., Z𝑠(𝑗)). Although the algorithm offered a

“pure” differentially private djICA procedure, there are a few shortcomings. The cost of

achieving pure differential-privacy (i.e., employing the Laplace mechanism [50]) was that

the noise variance was dependent on 𝑅 and the norm of the most-recent W. Moreover,

the neighboring dataset condition was met by restricting the ℒ2-norm of the samples

to satisfy ‖x𝑛‖2 ≤ 1
2
√
𝐷

, which can be too limiting for datasets with large ambient

dimensions. Last but not the least, the differentially private PCA preprocessing step

was less fault tolerant than the one employed in this work. By employing the CAPE

protocol in the preprocessing stage and also in the optimization process, we expect

to gain a significant performance boost. We validate the performance gain in the

Experimental Results (Section 6.5).

6.4.2 Convergence of capeDJICA Algorithm

We note that the gradient estimate at the aggregator (Step 13 in Algorithm 6.1) essen-

tially contains the noise 𝜌
𝑆

∑︀𝑆
𝑠=1K

𝐺
𝑠 , which is zero mean. Therefore, the convergence

of Algorithm 6.1 is guaranteed [25]. Since the total additive noise variance is smaller

than the conventional case by a factor of 𝑆, the convergence rate is faster than the

conventional case.

6.4.3 Communication Cost

We analyze the total communication cost associated with the proposed capeDJICA

algorithm. At each iteration round, we need to generate two zero-sum noise terms,

which entails 𝑂(𝑆 + 𝑅2) communication complexity of the sites and 𝑂(𝑆2 + 𝑆𝑅2)

communication complexity of the aggregator [22]. Each site computes the noisy gradient

and sends one 𝑅×𝑅 matrix and one 𝑅 dimensional vector to the aggregator. And finally,

80

Figure 6.2: Variation of 𝑞NGI and overall 𝜖 with privacy parameter 𝜖𝑖for: (a)-(b) syn-
thetic fMRI data, (c)-(d) real fMRI data. Fixed parameters: 𝑆 = 4, 𝛿 = 10−5. For
a given privacy budget (performance requirement), the user can use the overall 𝜖 plot
on the right 𝑦-axis, shown with solid lines, (𝑞NGI plot on the left 𝑦-axis, shown with
dashed lines) to find the required 𝜖𝑖 on the 𝑥-axis and thereby, find the corresponding
performance (overall 𝜖). For capeDJICA, higher 𝜖𝑖 results a smaller 𝑞NGI, but not nec-
essarily a small overall 𝜖, i.e., an optimal 𝜖𝑖 can be chosen based on 𝑞NGI or overall 𝜖
requirement.

Figure 6.3: Variation of 𝑞NGI and overall 𝜖 with total number of subjects 𝑀 for: (a)-(b)
synthetic fMRI data, (c)-(d) real fMRI data. Fixed parameters: 𝑆 = 4, 𝛿 = 10−5. For
a given privacy budget (performance requirement), the user can use the overall 𝜖 plot
on the right 𝑦-axis, shown with solid lines, (𝑞NGI plot on the left 𝑦-axis, shown with
dashed lines) to find the required 𝑀 on the 𝑥-axis and thereby, find the corresponding
performance (overall 𝜖). For capeDJICA, higher 𝑀 results a smaller 𝑞NGI and a smaller
overall 𝜖.

the aggregator sends the 𝑅×𝑅 updated weight matrix and 𝑅 dimensional bias estimate

to the sites. If the number of iterations required to achieve convergence is denoted by 𝐽*

then the total communication cost is proportional to 4𝐽*(𝑆𝑅2 + 𝑆𝑅) or 𝑂(𝑆 +𝑅2) for

the sites and 𝑂(𝑆2 + 𝑆𝑅2) for the central node. This is expected as we are estimating

an 𝑅×𝑅 matrix in a decentralized setting.

6.5 Experimental Results

In this section, we empirically show the effectiveness of the proposed capeDJICA al-

gorithm. We note the intricate relationship between 𝜖 and 𝛿 (see Theorem 6.1) due

to the correlated noise scheme and the challenge of characterizing the overall privacy

loss in our multi-round capeDJICA algorithm. We designed the experiments to better

81

10-4 10-2

(a) Privacy parameter ()

0

0.1

0.2

q
N

G
I

0

1

2

3

O
ve

ra
ll

Synthetic data, M = 1024,
i
 = 0.5

djICA
capeDJICA
local DP-ICA

10-4 10-2

(b) Privacy parameter ()

0

0.05

0.1

q
N

G
I

0

1

2

3

O
ve

ra
ll

Real data, M = 1548,
i
 = 0.5

djICA
capeDJICA
local DP-ICA

Figure 6.4: Variation of 𝑞NGI and overall 𝜖 with privacy parameter 𝛿: (a) synthetic and
(b) real fMRI data. Fixed parameters: 𝑆 = 4, 𝜖𝑖 = 0.5. capeDJICA achieves very close
utility to the non-private djICA with small overall 𝜖.

demonstrate the trade-off between performance and several parameters: 𝜖, 𝛿 and 𝑀 .

We show the simulation results to compare the performance of our capeDJICA algo-

rithm with the existing DP djICA algorithm [80] (DP− djICA), the non-private djICA

algorithm [11] and a DP ICA algorithm operating on only local data (local). We mod-

ified the base non-private djICA algorithm to incorporate the gradient bounds 𝐵𝐺 and

𝐵ℎ. Although we are proposing an algorithm for decentralized setting, we included the

performance indices for the local setting to show the effect of smaller sample sizes on the

performance. We note that the DP− djICA algorithm [80] offers 𝜖-differential privacy

as opposed to (𝜖, 𝛿)-differential privacy offered by capeDJICA. For both synthetic and

real datasets, we consider the symmetric setting (i.e., 𝑁𝑠 = 𝑁
𝑆 , 𝜏 𝑠𝐺 = 𝜏𝐺 and 𝜏 𝑠ℎ = 𝜏ℎ)

and show the average performance over 10 runs of the algorithms.

Synthetic Data. We generated the synthetic data from the same model as [80, 11].

The source signals S were simulated using the generalized autoregressive (AR) condi-

tional heteroscedastic (GARCH) model [53, 20]. We have utilized 𝑀 = 1024 simulated

subjects in our experiments. For each subject, we generated 𝑅 = 20 time courses with

250 time points. The data samples are equally divided into 𝑆 = 4 sites. For each sub-

ject, the fMRI images are 30× 30 dimensional. We employ the capePCA algorithm [77]

as a preprocessing stage to reduce the sample dimension from 𝐷 = 900 to 𝑅 = 20. The

capeDJICA is carried out upon the 𝑅-dimensional samples.

Real Data. The data were collected using a 3-T Siemens Trio scanner with a 12-

channel radio frequency coil, according to the protocol in [5]. In the dataset, the

resting-state scan durations range from 2 min 8 sec to 10 min 2 sec, with an average

of 5 min 16 sec [11]. We used a total of 𝑀 = 1548 subjects from the dataset and

82

estimated 𝑅 = 50 independent components using the algorithms under consideration.

Pre-processing of the data was performed according to [11] – the data underwent rigid

body alignment for head motion, slice-timing correction, spatial normalization to MNI

space, regression of 6 motion parameters and their derivatives in addition to any trends

(up to cubic or quintic), and spatial smoothing using a 10𝑚𝑚3 full-width at half-

maximum Gaussian kernel. We also projected the data onto a 50-dimensional PCA

subspace estimated using pooled non-private PCA. As we do not have the ground truth

for the real data, we computed a pseudo ground truth [11] by performing a pooled non-

private analysis on the data and estimating the unmixing matrix. The performance of

capeDJICA, djICA, DP− djICA and local algorithms are evaluated against this pseudo

ground truth.

Performance Indices. We set 𝜏 𝑠𝐺 =
Δ𝑠

𝐺
𝜖𝑖

√︁
2 log 1.25

10−2 and 𝜏 𝑠ℎ =
Δ𝑠

ℎ
𝜖𝑖

√︁
2 log 1.25

10−2 for our

experiments, where 𝜖𝑖 is the privacy parameter per iteration, ∆𝑠
𝐺 and ∆𝑠

ℎ are the ℒ2

sensitivities of G𝑠 and h𝑠, respectively. To evaluate the performance of the algorithms,

we consider the quality of the estimated unmixing matrix W. More specifically, we

utilize the normalized gain index 𝑞NGI [11, 114] that quantizes the quality of W. The

normalized gain index 𝑞NGI varies from 0 to 1, with 0 indicating that the unmixing

matrix is an identity matrix [114].

Note that, in addition to a small 𝑞NGI, we want to attain a strict privacy guarantee,

i.e. small overall (𝜖, 𝛿). Recall from Section 6.3.2 that the overall 𝜖 is a function of the

number of iterations, the overall 𝛿 and {𝜏 𝑠𝐺, 𝜏 𝑠ℎ}. For all of our experimental analyses, we

plotted the overall 𝜖 (with solid lines on the right 𝑦-axis) along with 𝑞NGI (with dashed

lines on the left 𝑦-axis) as a means for visualizing how the privacy-utility trade-off varies

with different parameters.

6.5.1 Performance Variation with privacy parameter 𝜖

First, we explore how the privacy-utility tradeoff between 𝑞NGI and the overall “privacy

risk” 𝜖 varies with 𝜖𝑖. In Figs. 6.2(a) - (b), we show the variation of 𝑞NGI and overall 𝜖

for different algorithms with 𝜖𝑖 on synthetic data. We kept the number of sites 𝑆 = 4

and the target 𝛿 = 10−5 fixed. As mentioned before, we compare the performance of

83

True Spatial Map djICA (M = 1024)

Figure 6.5: Spatial maps (synthetic data): true and resulting from djICA.

capeDJICA with those of the djICA, the DP− djICA and local. We show the performance

indices for two different 𝑀 values, namely 𝑀 = 256 and 𝑀 = 1024. We observe from

the figures that the proposed capeDJICA outperforms the existing DP− djICA by a large

margin. This is expected as DP− djICA suffers from too much noise (see Section 6.4.1 for

the explanation). capeDJICA also guarantees the smallest overall 𝜖 among the privacy-

preserving methods. capeDJICA can reach the utility level of the non-private djICA for

some parameter choices and naturally outperforms local as estimation of the sources is

much accurate when more samples are available. For the same privacy loss (i.e., for a

fixed 𝜖), one can achieve better performance by increasing the number of subjects. In

Figs. 6.2(c) - (d), we show the variation of 𝑞NGI and overall 𝜖 for different algorithms

with 𝜖𝑖 on real data. We show the performance indices for 𝑀 = 256 and 𝑀 = 1024. We

observe that, similar to the synthetic data, the proposed capeDJICA outperforms the

existing DP− djICA by a large margin. The proposed capeDJICA can reach the utility

level of the non-private djICA even for small overall 𝜖 values and outperforms local.

Again we observe that, for a fixed 𝜖, we can achieve better performance by increasing

the number of subjects. For both synthetic and real data, we note that assigning a

higher 𝜖𝑖 may provide a good 𝑞NGI but does not guarantee a small overall 𝜖. The user

needs to choose the 𝜖𝑖 based on the “privacy budget” and the required performance.

6.5.2 Performance Variation with number of subjects 𝑀

Next, in Figure 6.3(a) - (b), we show the variation of 𝑞NGI and the overall 𝜖 with the

total number of subjects 𝑀 for two different 𝜖𝑖 values on synthetic data. We kept

the number of sites 𝑆 = 4 and target 𝛿 = 10−5 fixed. We observe similar trends in

84

i
 = 0.1, M = 128

Overall = 12.3136

i
 = 0.1, M = 256

Overall = 5.8759

i
 = 0.5, M = 128

Overall = 1.6310

i
 = 0.5, M = 256

Overall = 1.6569

i
 = 0.5, M = 512

Overall = 1.7604

i
 = 1.0, M = 128

Overall = 6.2133

i
 = 1.0, M = 256

Overall = 6.5240

i
 = 2.0, M = 128

Overall = 24.4392

i
 = 2.0, M = 256

Overall = 26.0961

i
 = 2.0, M = 512

Overall = 27.7530

i
 = 2.0, M = 1024

Overall = 29.8241

i
 = 0.1, M = 1024

Overall = 1.1191

i
 = 0.5, M = 1024

Overall = 1.8640

i
 = 1.0, M = 1024

Overall = 7.4560

i
 = 0.1, M = 512

Overall = 3.1246

i
 = 1.0, M = 512

Overall = 7.0418

Figure 6.6: Spatial maps (synthetic data) resulting from capeDJICA for different pa-
rameters. capeDJICA estimates spatial maps that closely resemble the true ones, even
for strict privacy guarantee (small overall 𝜖).

performance as in the case of varying 𝜖𝑖. The capeDJICA algorithm outperforms the

DP− djICA and the local: with respect to both 𝑞NGI and the overall 𝜖. For the 𝑞NGI,

the capeDJICA performs very closely to the non-private djICA. The performance gain

over DP− djICA is particularly noteworthy. For a fixed number of subjects, increasing

𝜖 results in a slightly better utility, albeit at the cost of greater privacy loss. In Figure

6.3(c) - (d), we show the variation of 𝑞NGI and overall 𝜖 with the total number of

subjects 𝑀 for 𝜖𝑖 = 0.1 and 𝜖𝑖 = 1.0 on real data. We observe a very similar trend as

the synthetic data simulations: the capeDJICA algorithm comfortably outperforms the

DP− djICA and the local and achieves utility close to the non-private djICA even for

moderate 𝑀 values, while guaranteeing the smallest overall 𝜖.

6.5.3 Performance Variation with privacy parameter 𝛿

Recall that, the proposed capeDJICA algorithm guarantees (𝜖, 𝛿) differential privacy,

where (𝜖, 𝛿) satisfy the relation 𝛿 = 2 𝜎𝑧
𝜖−𝜇𝑧

𝜑
(︁
𝜖−𝜇𝑧

𝜎𝑧

)︁
. In Figure 6.4, we show the variation

85

of 𝑞NGI with overall 𝛿 on synthetic and real data. Recall that 𝛿 is essentially the

probability of failure of a DP algorithm. Therefore, we want 𝛿 to be small. However,

a smaller 𝛿 also results in a larger noise variance, which affects the utility. From the

figure, we can observe how the performance of the proposed capeDJICA algorithm varies

with 𝛿. We demonstrate the performance indices keeping 𝜖𝑖 = 0.5 and 𝑆 = 4 fixed. We

set the number of colluding sites to be 𝑆𝐶 =
⌈︀
𝑆
3

⌉︀
− 1. The proposed algorithm achieves

very close utility to the non-private djICA for both synthetic and real data. For both

cases, the overall 𝜖 is also very small. However, we can opt for even smaller 𝛿 values at

the cost of performance.

6.5.4 Reconstructed Spatial Maps

Finally, we intend to demonstrate how the estimated spatial maps actually look like,

as interpretability is one of the most important concerns for fMRI applications. In

Figure 6.5, we show the true spatial map and the one estimated from the non-private

djICA [11] algorithm. In Figure 6.6, we show the estimated spatial maps resulting from

the proposed capeDJICA algorithm along with the overall 𝜖 for a variety of combinations

of 𝜖𝑖 and 𝑀 . We observe that when sufficiently large number of subjects are available,

the estimated spatial maps closely resemble the true one, even for strict privacy guar-

antee (small overall 𝜖). For smaller number of samples, we may need to compensate by

allowing larger 𝜖 values to achieve good utility. In general, we observe that capeDJICA

can achieve very good approximate to the true spatial map, almost indistinguishable

from the non-private spatial map. This emphasizes the effectiveness of the proposed

capeDJICA in the sense that very meaningful utility can be achieved even with strict

privacy guarantee.

86

Chapter 7

Decentralized Differentially Private Canonical Correlation

Analysis

In this chapter, we first formulate the problem of decentralized CCA. We then employ

the CAPE protocol to propose a decentralized version of our centralized differentially

private CCA [76]. To our knowledge, this work proposes the first differentially private

CCA algorithm for decentralized settings. Using synthetic and real datasets, we demon-

strate how the utility/performance is affected by the privacy risk, number of samples

and some other key parameters. Simulation results show that our capeCCA algorithm

can achieve the same utility as the pooled data scenario satisfying (𝜖, 𝛿)-differential

privacy. For some parameter choices, our algorithm can achieve almost as much utility

as the non-private algorithm, showing that meaningful privacy can (almost) come for

free.

7.1 Decentralized Canonical Correlation Analysis

Consider a system similar to the one shown in Section 3.1: 𝑆 different sites, each holding

disjoint data sets, and an untrusted central node or aggregator (see Fig. 3.1(a)). In

site 𝑠 ∈ [𝑆], the data is a pair of sample matrices X𝑠 ∈ R𝐷𝑥×𝑁𝑠 and Y𝑠 ∈ R𝐷𝑦×𝑁𝑠

corresponding to the two “views” of the same physical phenomena. The 𝑛-th column of

X𝑠 and Y𝑠, denoted x𝑠,𝑛 and y𝑠,𝑛, respectively, are the 𝑛-th samples from view 1 and

view 2. For simplicity, we assume that the observed samples are mean-centered. The

sample size in site 𝑠 is 𝑁𝑠 and we denote 𝑁 =
∑︀𝑆

𝑠=1𝑁𝑠 as the total number of samples

over all sites. If we had all the samples at the central aggregator (pooled data scenario),

then the data matrices would be X = [X1 . . .X𝑆] ∈ R𝐷𝑥×𝑁 and Y = [Y1 . . .Y𝑆] ∈

R𝐷𝑦×𝑁 . The CCA projection vectors are defined to be the columns of the matrices

87

U ∈ R𝐷𝑥×𝐾 and V ∈ R𝐷𝑦×𝐾 that solve the following problem [71, 63, 9]:

minimize
U,V

‖U⊤X−V⊤Y‖2𝐹

subject to
1

𝑁
U⊤XX⊤U = I,

1

𝑁
V⊤YY⊤V = I,

1

𝑁
U⊤XY⊤V = I,

where I is the 𝐾 × 𝐾 identity matrix with 𝐾 ≤ min{𝐷𝑥, 𝐷𝑦}. The solution to the

optimization problem [67] is given as follows: U* and V* contain the top-𝐾 eigenvectors

of the matrices C−1
𝑥𝑥C𝑥𝑦C

−1
𝑦𝑦 C𝑦𝑥 and C−1

𝑦𝑦 C𝑦𝑥C
−1
𝑥𝑥C𝑥𝑦, respectively. Here, the sample

covariance and cross-covariance matrices are given by C𝑥𝑥 = 1
𝑁XX⊤, C𝑦𝑦 = 1

𝑁YY⊤

and C𝑥𝑦 = 1
𝑁XY⊤ = C⊤

𝑦𝑥. We assume that we obtain samples as z𝑠,𝑛 =
[︀
x⊤
𝑠,𝑛 y⊤

𝑠,𝑛

]︀⊤ ∈
R𝐷, where 𝐷 = 𝐷𝑥 + 𝐷𝑦. We compute the 𝐷 × 𝐷 positive semi-definite sample

covariance matrix of Z = [Z1 . . .Z𝑆] ∈ R𝐷×𝑁 as

C =
1

𝑁
ZZ⊤ =

1

𝑁

𝑆∑︁
𝑠=1

𝑁𝑠∑︁
𝑛=1

z𝑠,𝑛z
⊤
𝑠,𝑛 and C =

⎡⎢⎢⎢⎢⎣
C𝑥𝑥 C𝑥𝑦

C𝑦𝑥 C𝑦𝑦

⎤⎥⎥⎥⎥⎦ .

Without loss of generality, we can ensure that ‖z𝑠,𝑛‖2 ≤ 1, because canonical correla-

tions are invariant with respect to affine transformations of the variables [23]. We are

interested in approximating U* and V* in a decentralized setting while guaranteeing

differential privacy. A näıve approach (non-privacy-preserving) would be to send the

data matrices X𝑠 and Y𝑠 from the sites to the aggregator. The aggregator can then

compute C and subsequently U* and V*. However, when 𝐷𝑥, 𝐷𝑦 and/or 𝑁𝑠 are large,

this results in a huge communication overhead. Additionally, in many scenarios, the

local data are private or sensitive. As the aggregator is not trusted, sending the data to

the aggregator can result in a significant privacy violation. Our goals are therefore to (i)

ensure differential privacy, (ii) achieve the same utility as the pooled data scenario in a

decentralized setting and (iii) provide close approximations to the true CCA subspaces

U*, V*.

88

Algorithm 7.1 Decentralized Differentially Private CCA (capeCCA)

Require: 0-centered samples X𝑠 ∈ R𝐷𝑥×𝑁𝑠 and Y𝑠 ∈ R𝐷𝑦×𝑁𝑠 as Z𝑠 =
[︀
X⊤

𝑠 Y⊤
𝑠

]︀⊤
with ‖z𝑠,𝑛‖2 ≤ 1 for 𝑠 ∈ [𝑆]; local noise variances {𝜏2𝑠 }; reduced dimension 𝐾

1: for 𝑠 = 1, 2, . . . , 𝑆 do ◁ at the local sites
2: Generate E𝑠 element-wise according to Algorithm 3.1
3: Generate 𝐷 ×𝐷 symmetric G𝑠, as described in text
4: Compute and send: Ĉ𝑠 ← 1

𝑁𝑠
Z𝑠Z

⊤
𝑠 + E𝑠 + G𝑠

5: end for
6: Compute Ĉ← 1

𝑆

∑︀𝑆
𝑠=1 Ĉ𝑠 ◁ at the aggregator

7: Extract sub-matrices from Ĉ to compute Û* and V̂*

8: return Û* and V̂*

7.2 Proposed Decentralized Differentially Private CCA

Our proposed method, capeCCA, is described in Algorithm 7.1 and exploits the CAPE

scheme (see Fig.3.1(b)). More specifically, our approach employs a correlated noise

design to achieve the same utility of the pooled data case (i.e., 𝜏ag = 𝜏𝑐) in the de-

centralized setting. We assume the same honest-but-curious setting as Section 3.1.

Recall that in the pooled data scenario with no privacy requirements, we have the

data matrices X and Y. The samples are assumed to be the columns of the matrix

Z =
[︀
X⊤ Y⊤]︀⊤. We can compute C = 1

𝑁ZZ⊤, extract the sub-matrices C𝑥𝑥, C𝑥𝑦,

C𝑦𝑥 and C𝑦𝑦 and compute the optimal CCA subspaces U* and V*. In our decentral-

ized setting, we need to add noise to preserve privacy. Recall that we designed the

noise addition procedure in such a way that we can ensure differential privacy for the

output from each site and achieve the noise level of the pooled data scenario in the

final output from the aggregator. Each site generates the 𝐷 ×𝐷 matrix E𝑠 following

Algorithm 3.1 according to Section 3.3. The sites also generate the symmetric 𝐷 ×𝐷

matrix G𝑠, where [G𝑠]𝑖𝑗 are drawn i.i.d. ∼ 𝒩 (0, 𝜏2𝑔). At each site 𝑠, we compute the

sample second-moment matrix C𝑠 = 1
𝑁𝑠

Z𝑠Z
⊤
𝑠 and release (or send to the central ag-

gregator): Ĉ𝑠 = C𝑠 + E𝑠 + G𝑠. The noise variances should ensure that the variance

of E𝑠 + G𝑠 is sufficient to guarantee (𝜖, 𝛿)-differential privacy to C𝑠. For our approach

of computing the noise E𝑠, we have 𝜏2𝑒 =
(︀
1− 1

𝑆

)︀
𝜏2𝑠 . We also set 𝜏2𝑔 = 1

𝑆 𝜏
2
𝑠 . Recall

that, for a given pair of (𝜖, 𝛿), we can calculate a noise variance 𝜏2𝑠 such that adding

Gaussian noise of variance 𝜏2𝑠 will guarantee (𝜖, 𝛿)-differential privacy. Since there are

89

many (𝜖, 𝛿) pairs that yield the same 𝜏2𝑠 , we parameterized our method using 𝜏2𝑠 [77].

Now, the aggregator computes

Ĉ =
1

𝑆

𝑆∑︁
𝑠=1

Ĉ𝑠 =
1

𝑆

𝑆∑︁
𝑠=1

(C𝑠 + G𝑠) , as
𝑆∑︁

𝑠=1

E𝑠 = 0.

At the aggregator, the variance of the estimator is exactly the same as if all the data

were present at the aggregator (see Lemma 3.1). Next, we extract the sub-matrices

Ĉ𝑥𝑥, Ĉ𝑥𝑦, Ĉ𝑦𝑥 and Ĉ𝑦𝑦 and compute the (𝜖, 𝛿)-differentially private CCA subspaces

Û* and V̂*. The privacy guarantee of capeCCA is given in Theorem 7.1. Note that

capeCCA can be readily extended to incorporate unequal privacy requirements/samples

sizes at each site (shown in Section 3.3.7).

Theorem 7.1 (Privacy of capeCCA). Consider Algorithm 7.1 in the decentralized data

setting of Section 3.1 with 𝑁𝑠 = 𝑁
𝑆 , 𝜏𝑠 = 𝜏 for all sites 𝑠 ∈ [𝑆]. Suppose that at most

𝑆𝐶 =
⌈︀
𝑆
3

⌉︀
− 1 sites can collude after execution. Then Algorithm 7.1 computes an (𝜖, 𝛿)-

differentially private approximation to the optimal subspaces U* and V*, where (𝜖, 𝛿)

satisfy the relation 𝛿 = 2 𝜎𝑧
𝜖−𝜇𝑧

𝜑
(︁
𝜖−𝜇𝑧

𝜎𝑧

)︁
, 𝜑(·) is the density for standard Normal random

variable and (𝜇𝑧, 𝜎𝑧) are given by (3.3) and (3.4), respectively.

Proof sketch. The proof of Theorem 7.1 follows from using the AG algorithm [51], the

bound on ‖C𝑠−C′
𝑠‖2 and the privacy of CAPE as in Theorem 3.1. The computation of

Ĉ𝑠 at each site is (𝜖, 𝛿)-differentially private. As differential privacy is invariant under

post-processing, we can combine the matrices {Ĉ𝑠} at the aggregator while subtracting

F𝑠 for each site. We extract the sub-matrices Ĉ𝑥𝑥, Ĉ𝑥𝑦, Ĉ𝑦𝑥 and Ĉ𝑦𝑦 and compute the

subspaces Û* and V̂*, which are (𝜖, 𝛿)-differentially private approximates to the true

CCA subspaces U* and V*.

7.2.1 Performance gain with correlated noise

This is the first work that proposes an algorithm for decentralized differentially private

CCA. It can be shown that as we employ the correlated noise scheme, the gain in the

performance over a conventional decentralized differentially private CCA is atleast 𝑆,

90

1e-31e-21e-1 10
(a) Privacy param ()

0.5

1

1.5

2

C
H

in
de

x

104 MNIST (N = 30k)

non-priv
local
conv
capeCCA

1e-31e-21e-1 10
(b) Privacy param ()

0.5

1

1.5

2

2.5

3

C
H

in
de

x

104 MNIST (N = 50k)

1e-31e-21e-1 10
(c) Privacy param ()

0.5

1

1.5

2

2.5

C
H

in
de

x

104 XRMB (p = 30)

1e-31e-21e-1 10
(d) Privacy param ()

1

2

3

4

C
H

in
de

x

104 XRMB (p = 50)

1e-31e-21e-1 10
(e) Privacy param ()

0.05

0.1

0.15

0.2

er
r co

rr

fMRI+EEG (N = 500)

1e-31e-21e-1 10
(f) Privacy param ()

0.05

0.1

0.15

0.2

er
r co

rr

fMRI+EEG (N = 1000)

10k 30k 50k
(g) Total samples (N)

0.5

1

1.5

2

2.5

3

C
H

in
de

x

104 MNIST (= 0.05)

non-priv
local
conv
capeCCA

10k 30k 50k
(h) Total samples (N)

0.5

1

1.5

2

2.5

3

C
H

in
de

x

104 MNIST (= 0.1)

10 20 30 50
(i) Replication param (p)

1

2

3

4

C
H

in
de

x

104 XRMB (= 0.1)

10 20 30 50
(j) Replication param (p)

1

2

3

4

C
H

in
de

x

104 XRMB (= 0.5)

102 103 104

(k) Total samples (N)

0

0.05

0.1

0.15

0.2

er
r co

rr

fMRI+EEG (= 0.5)

102 103 104

(l) Total samples (N)

0

0.05

0.1

0.15

0.2

er
r co

rr

fMRI+EEG (= 1.0)

Figure 7.1: Variation of performance with privacy parameter 𝜖 and total samples 𝑁 .
Fixed parameters: 𝛿 = 0.01, 𝑆 = 10.

1e-5 1e-4 1e-3 1e-25e-2

(a) Privacy param ()

0.5

1

1.5

2

2.5

3

C
H

in
de

x

104 MNIST (N = 50k, = 0.05)

non-priv
local
conv
capeCCA

1e-5 1e-4 1e-3 1e-25e-2

(b) Privacy param ()

1

2

3

4

5

C
H

in
de

x

104 XRMB (p = 30, = 0.2)

1e-5 1e-4 1e-3 1e-25e-2

(c) Privacy param ()

0.05

0.1

0.15

0.2

er
r co

rr

fMRI+EEG (N = 2000, = 0.5)

Figure 7.2: Variation of performance with 𝛿. Fixed parameter: 𝑆 = 10.

even when we do not know 𝑁𝑠 for 𝑠 ∈ [𝑆] (see Proposition 3.1). Moreover, in case of

site drop-out, the performance of capeCCA would fall back to that of the conventional

scheme [77]: the output from each site remains (𝜖, 𝛿)-differentially private, irrespective

of the number of dropped-out sites.

7.2.2 Communication cost

We note that capeCCA is an one-shot algorithm. For generating the zero-sum noise

terms, we encounter 𝑂(𝑆+𝐷2) communication complexity of the sites and 𝑂(𝑆2+𝑆𝐷2)

communication complexity of the aggregator [22]. Each site uses these to compute the

noisy estimate of the local second-moment matrix (𝐷 × 𝐷) and sends that back to

the aggregator. Therefore, the total communication cost is 𝑂(𝑆 +𝐷2) for the sites and

𝑂(𝑆2+𝑆𝐷2) for the aggregator. This is expected as we are computing the global 𝐷×𝐷

second-moment matrix in a decentralized setting for computing the CCA subspaces.

91

7.3 Experimental Results

We consider measuring how well the output subspaces of capeCCA algorithm, Û* and

V̂*, approximate the true subspaces U* and V* achieved from pooled non-private CCA

(non− dp pool). We have also compared the performance of capeCCA against a conven-

tional (but never proposed before) decentralized differentially private CCA algorithm

with no correlated noise (conv) and a centralized differentially private CCA [76] on local

data (local). We used three data sets for our experiments: the MNIST data set [91],

the University of Wisconsin X-ray Microbeam data set (XRMB) [142] and a simulated

fMRI and EEG data set (fMRI+EEG) [43]. For MNIST, we chose the two views to be the

top- and bottom-halves of the images, preprocessed by projecting each view onto 50-

dimensional subspaces using PCA. For XRMB, we chose two speakers, JW16 and JW18,

with the first view being the pellet coordinates and the second view containing acous-

tic features including the normalized 13-dimensional mel-frequency cepstral coefficients

(MFCCs) and their first and second derivatives [9]. Each view is projected onto a 25-

dimensional subspace using PCA [76]. We replicate the sample matrices 𝑝 times in our

experiments. For generating the fMRI+EEG data set we follow [43]. A simulated fMRI-

like set of components was generated following [80] using the simTB toolbox [113]. For

EEG features, an event-related potential (ERP)-like set of components was generated

using the EEGIFT toolbox [112]. We mixed each set with different sets of modulation

profiles to achieve the simulated fMRI and EEG signals. The modulation profiles are

orthogonal within each modality and correlated across different modalities. The rela-

tion between the fMRI and EEG signals are due to these correlations. We used 𝐾 = 5

simulated components for both fMRI and EEG signals. Each fMRI component is a

50× 50 pixel image, whereas each ERP component is a 6360 time-point segment.

For the real data sets, we evaluate the quality of the subspaces produced from the

algorithms by using one of the most common applications of CCA: clustering. We

employ the popular 𝐾-means clustering algorithm on the reduced-dimension samples

(achieved by projecting onto the CCA subspaces). We measure the performance of

clustering using [76] the Caliński-Harabasz (CH) index [33, 104] for 𝑁 data points and

92

𝐾 clusters:

CH =
1

𝐾−1

∑︀𝐾
𝑘=1𝑁𝑘‖z𝑘 − z‖22

1
𝑁−𝐾

∑︀𝐾
𝑘=1

∑︀
𝑛∈S𝑘 ‖z𝑛𝑘 − z𝑘‖22

,

where z𝑘 is the centroid of the 𝑘-th cluster, z is the centroid for all of the samples, 𝑁𝑘

denotes the size of cluster 𝑘, S𝑘 is the set of indices of the members of cluster 𝑘 and z𝑛𝑘

is the 𝑛-th point of the 𝑘-th cluster. For the fMRI+EEG data set, we are interested to see

how our algorithm can estimate the correlation between the two modalities. Therefore,

we use the following performance index:

errcorr =
1

𝐾
‖r* − r̂*‖2,

where r* ∈ R𝐾 and r̂* ∈ R𝐾 contain the true correlation scores and the estimated

correlation scores between the corresponding modulation profiles of the two modalities.

We refer the reader to Correa et al. [43] for more details. In all cases we show the

average performance over 10 independent runs of the algorithms.

7.3.1 Privacy-utility trade-offs

First, we explore the privacy-utility trade-off between the privacy risk 𝜖 and the afore-

mentioned performance indices. Recall that the standard deviation of the noise in

capeCCA is inversely proportional to both 𝜖 and 𝑁𝑠. Larger 𝜖 values indicate higher

privacy risk but smaller noise and therefore better utility. We observe this in our exper-

iments as well. In Figure 7.1(a)-(f), we show how the CH index and errcorr vary with 𝜖

for MNIST, XRMB and fMRI+EEG data sets, while keeping 𝛿 and 𝑆 fixed. For each data

set, we show the performance variation with 𝜖 for two different sample sizes. In all cases,

the proposed capeCCA approaches the performance of non− dp pool as we increase 𝜖,

outperforming the conv and local. One of the reasons that capeCCA outperforms conv

is the smaller noise variance at the aggregator that we can achieve due to the correlated

noise scheme. Achieving better performance than local is intuitive because including

the information from multiple sites to estimate a population parameter always results

in a better performance than using the data from a single site only. For a particular

93

data set, we notice that if we increase the total sample size 𝑁 (and hence the sample

size per site 𝑁𝑠), the performance of capeCCA gets even better. This is expected as the

variance of the noise for capeCCA is inversely proportional to square of 𝑁𝑠.

7.3.2 Learning rates and impact of 𝛿

To better understand the impact of sample size, we tested the algorithms on data sets

of increasing size. Intuitively, it should be easier to guarantee a smaller privacy risk for

the same 𝜖 and a higher utility (lower error) when the number of samples is large. In

Figure 7.1(g)-(l), we show the performance of capeCCA as a function of total sample

size 𝑁 for synthetic and real data sets with different values of 𝜖. Increasing sample size

improves the performance of all algorithms. Again, we observe that even for small 𝜖

values, capeCCA performs nearly as well as non− dp pool, comfortably outperforming

conv and local. For a particular data set, increasing 𝜖 dictates even better performance.

Note that for the XRMB data set, we plotted the CH index vs. sample size plot with

the replication parameter 𝑝.

Finally, we investigate the variation of performance with 𝛿. Recall that 𝛿 can be

interpreted as the probability that the privacy-preserving algorithm releases the private

information “out in the wild”. Therefore, we want 𝛿 to be small. However, the smaller

the 𝛿 is the larger the noise variance becomes, resulting in loss of utility. In Figure 7.2,

we show the performance indices as a function of 𝛿 for the synthetic and real data sets.

As expected, we observe that increasing 𝛿 results in improved performance. However,

choosing a 𝛿 ≤ 1
𝑁 may not provide meaningful utility without a sufficiently large 𝜖.

The proposed capeCCA algorithm achieves similar performance as non− dp pool for

moderate 𝛿 values (∼ 0.01).

94

Chapter 8

Decentralized Differentially Private Computation of

Functions

As mentioned in Chapter 3, the CAPE framework can benefit any decentralized differ-

entially private function computation, as long as the sensitivity of the function satisfies

the conditions outlined in Proposition 3.2. In this chapter, we propose an algorithm

that is specifically suited for privacy-preserving computation of cost functions in de-

centralized settings. We begin by reviewing the functional mechanism. We propose an

improved functional mechanism by invoking a tighter characterization of the sensitivi-

ties and demonstrate the advantages with two examples. We then describe our capeFM

algorithm in detail. Finally, we present experimental results to validate the effectiveness

of our proposed algorithm over existing methods on real and synthetic data.

8.1 Functional Mechanism

We first review the functional mechanism [143] in the pooled data case. Let us consider

a cost function 𝑓𝐷(w) : R𝐷 ↦→ R. Our goal is to find the minimizer w* of 𝑓𝐷(w). The

cost incurred by a w ∈ R𝐷 due to one data sample x𝑛 is 𝑓(x𝑛;w) : R𝐷 ×R𝐷 ↦→ R. We

need to minimize the average cost to find the optimal w*. The empirical average cost

for a particular w over all the samples is expressed as

𝑓𝐷(w) =
1

𝑁

𝑁∑︁
𝑛=1

𝑓(x𝑛;w). (8.1)

Therefore, we have

w* = arg min
w

𝑓𝐷(w) = arg min
w

1

𝑁

𝑁∑︁
𝑛=1

𝑓(x𝑛;w).

95

For centralized optimization, we can find a differentially private approximate to w*

using output perturbation [38] or objective perturbation [38, 115]. We propose using

the functional mechanism [143], which is a form of objective perturbation and is more

amenable to decentralized implementation. It uses a polynomial representation of the

cost function and can be used for any differentiable and continuous cost function. We

perturb each term in the polynomial representation of 𝑓𝐷(w) to get modified cost

function 𝑓𝐷(w). The minimizer ŵ* = arg minw 𝑓𝐷(w) guarantees differential privacy.

Suppose 𝜑(w) is a monomial function of the entries of w: 𝜑(w) = 𝑤𝑐1
1 𝑤𝑐2

2 . . . 𝑤𝑐𝐷
𝐷 ,

for some set of exponents {𝑐𝑑 : 𝑑 ∈ [𝐷]} ⊆ N. Let us define the set Φ𝑗 of all 𝜑(w) with

degree 𝑗 as

Φ𝑗 =

{︃
𝑤𝑐1
1 𝑤𝑐2

2 . . . 𝑤𝑐𝐷
𝐷 :

𝐷∑︁
𝑑=1

𝑐𝑑 = 𝑗

}︃
.

For example, Φ0 = {1}, Φ1 = {𝑤1, 𝑤2, . . . , 𝑤𝐷}, Φ2 = {𝑤𝑑1𝑤𝑑2 : 𝑑1, 𝑑2 ∈ [𝐷]}, etc.

Now, from the Stone-Weierstrass Theorem [121], any differentiable and continuous cost

function 𝑓(x𝑛;w) can be written as a (potentially infinite) sum of monomials of {𝑤𝑑}:

𝑓(x𝑛;w) =
𝐽∑︁

𝑗=0

∑︁
𝜑∈Φ𝑗

𝜆𝑛𝜑𝜑(w),

for some 𝐽 ∈ [0,∞]. Here, 𝜆𝑛𝜑 denotes the coefficient of 𝜑(w) in the polynomial and

is a function of the 𝑛-th data sample. Plugging the expression of 𝑓(x𝑛;w) in (8.1), we

can express the empirical average cost over all 𝑁 samples as

𝑓𝐷(w) =

𝐽∑︁
𝑗=0

∑︁
𝜑∈Φ𝑗

(︃
1

𝑁

𝑁∑︁
𝑛=1

𝜆𝑛𝜑

)︃
𝜑(w). (8.2)

The function 𝑓𝐷(w) depends on the data samples only through {𝜆𝑛𝜑}. As the goal

is to approximate 𝑓𝐷(w) in a differentially private way, one can compute these 𝜆𝑛𝜑

to satisfy differential privacy [143]. Let us consider two “neighboring” datasets: D =

{x1, . . . , x𝑁−1, x𝑁} and D′ = {x1, . . . , x𝑁−1, x′
𝑁}, differing in a single data point

96

Algorithm 8.1 Improved Functional Mechanism

Require: Data samples {x𝑛}; cost function 𝑓𝐷(w) as in (8.3); privacy parameters 𝜖, 𝛿
1: for 𝑗 = 0, 1, . . . , 𝐽 do
2: Compute Λ𝑗 as shown in Section 8.2
3: Compute ∆𝑗 ← maxD,D′ ‖ΛD

𝑗 − ΛD′
𝑗 ‖𝐹

4: Compute 𝜏𝑗 =
Δ𝑗

𝜖

√︁
2 log 1.25

𝛿

5: Compute Λ̂𝑗 ← Λ𝑗 + 𝑒𝑗 , where 𝑒𝑗 have same dimensions as Λ𝑗 and entries of 𝑒𝑗
are i.i.d. ∼ 𝒩 (0, 𝜏2𝑗)

6: end for
7: Compute 𝑓𝐷(w) =

∑︀𝐽
𝑗=0⟨Λ̂𝑗 , 𝜑𝑗⟩

8: return 𝑓𝐷(w)

(i.e., the last one). Zhang et al. [143] computed the ℒ1 sensitivity ∆dp−fm as

⃦⃦⃦⃦
⃦⃦ 𝐽∑︁
𝑗=0

∑︁
𝜑∈Φ𝑗

1

𝑁

(︃∑︁
D

𝜆𝑛𝜑 −
∑︁
D′

𝜆𝑛𝜑

)︃⃦⃦⃦⃦
⃦⃦
1

≤ 2

𝑁
max
𝑛

𝐽∑︁
𝑗=0

∑︁
𝜑∈Φ𝑗

‖𝜆𝑛𝜑‖1

, ∆dp−fm,

and proposed an 𝜖-differentially private method that adds Laplace noise with variance

2
(︁
Δdp−fm

𝜖

)︁2
to each

∑︀
D 𝜆𝑛𝜑 for all 𝜑 ∈ Φ𝑗 and for all 𝑗 ∈ {0, . . . , 𝐽}. In the following,

we propose an improved functional mechanism that employs a tighter characterization

of the sensitivities and can be extended to incorporate the CAPE protocol for the

decentralized settings.

8.2 Improved Functional Mechanism

Our method is an improved version of the functional mechanism [143]. We use the

Gaussian mechanism [48] for computing the (𝜖, 𝛿)-differentially private approximate of

𝑓𝐷(w). This gives a weaker privacy guarantee than the original functional mecha-

nism [143], which used Laplace noise for 𝜖-differential privacy. Our decentralized func-

tion computation method (described in Section 8.3.2) benefits from the fact that linear

combinations of Gaussians are Gaussian. In other words, the proposed CAPE and the

decentralized functional mechanism rely on the Gaussianity of the noise. Now, instead

of computing the ℒ2-sensitivity of 𝜆𝑛𝜑, we define an array Λ𝑗 that contains 1
𝑁

∑︀𝑁
𝑛=1 𝜆𝑛𝜑

97

as its entries for all 𝜑(w) ∈ Φ𝑗 . We used the term “array” instead of vector or matrix

or tensor because the dimension of Λ𝑗 depends on the cardinality |Φ𝑗 | of the set Φ𝑗 .

We can represent Λ𝑗 as a scalar for 𝑗 = 0 (because Φ0 = {1}), as a 𝐷-dimensional

vector for 𝑗 = 1 (because Φ1 = {𝑤𝑑 : 𝑑 ∈ [𝐷]}), and as a 𝐷 × 𝐷 matrix for 𝑗 = 2

(because Φ2 = {𝑤𝑑1𝑤𝑑2 : 𝑑1, 𝑑2 ∈ [𝐷]}). Additionally, we use 𝜑𝑗 to denote the array

containing all 𝜑(w) ∈ Φ𝑗 as its entries. The arrays 𝜑𝑗 and Λ𝑗 have the same dimensions

and number of elements. Rewriting the objective, we observe

𝑓𝐷(w) =
𝐽∑︁

𝑗=0

∑︁
𝜑∈Φ𝑗

(︃
1

𝑁

𝑁∑︁
𝑛=1

𝜆𝑛𝜑

)︃
𝜑(w) =

𝐽∑︁
𝑗=0

⟨Λ𝑗 , 𝜑𝑗⟩. (8.3)

We define the ℒ2-sensitivity of Λ𝑗 as

∆𝑗 = max
D,D′
‖ΛD

𝑗 − ΛD′
𝑗 ‖𝐹 , (8.4)

where ΛD
𝑗 and ΛD′

𝑗 are computed on neighboring datasets D and D′, respectively. Now,

we use the Gaussian mechanism to get an (𝜖, 𝛿)-differentially private approximation to

Λ𝑗 as: Λ̂𝑗 = Λ𝑗 + 𝑒𝑗 , where 𝑒𝑗 is a noise array with the same dimensions as Λ𝑗 and its

entries are drawn i.i.d. ∼ 𝒩 (0, 𝜏2𝑗). Here 𝜏𝑗 =
Δ𝑗

𝜖

√︁
2 log 1.25

𝛿 . As the function 𝑓𝐷(w)

depends on the data only through {Λ𝑗}, the computation

𝑓𝐷(w) =
𝐽∑︁

𝑗=0

⟨Λ̂𝑗 , 𝜑𝑗⟩ (8.5)

satisfies (𝜖, 𝛿) differential privacy. We show the proposed improved functional mecha-

nism in Algorithm 8.1.

Theorem 8.1. Consider Algorithm 8.1 with input parameters (𝜖, 𝛿) and the function

𝑓𝐷(w) represented as (8.3). Then Algorithm 8.1 computes an (𝜖, 𝛿) differentially private

approximation 𝑓𝐷(w) to 𝑓𝐷(w). Consequently, the minimizer ŵ* = arg minw 𝑓𝐷(w)

satisfies (𝜖, 𝛿)-differential privacy.

Proof. The proof of Theorem 8.1 follows from the fact that the function 𝑓𝐷(w) depends

on the data samples only through {Λ̂𝑗}. The computation of {Λ̂𝑗} is (𝜖, 𝛿)-differentially

98

private by the Gaussian mechanism [50, 48], so the release of 𝑓𝐷(w) satisfies (𝜖, 𝛿)-

differential privacy. One way to rationalize this is to consider that the probability of

the event of selecting a particular set of {Λ̂𝑗} is the same as the event of formulating a

function 𝑓𝐷(w) with that set of {Λ̂𝑗}. Therefore, it suffices to consider the joint density

of the {Λ̂𝑗} and find an upper bound on the ratio of the joint densities of the {Λ̂𝑗} under

D and D′. As we employ the Gaussian mechanism to compute {Λ̂𝑗}, the ratio is upper

bounded by exp(𝜖) with probability at least 1 − 𝛿. Therefore, the release of 𝑓𝐷(w)

satisfies (𝜖, 𝛿)-differential privacy. Furthermore, differential privacy is closed under post

processing. Therefore, the computation of the minimizer ŵ* = arg minw 𝑓𝐷(w) also

satisfies (𝜖, 𝛿)-differential privacy.

8.2.1 Example – Linear Regression

In this section, we demonstrate the proposed improved functional mechanism in the

centralized setting using a linear regression problem. We show that Algorithm 8.1

achieves much better utility at the price of a weaker privacy guarantee ((𝜖, 𝛿)-differential

privacy vs 𝜖-differential privacy). The main reason for this performance improvement is

due to defining the sensitivities of Λ𝑗 separately for each 𝑗, instead of using an uniform

conservative upper-bound ∆dp−fm (as in [143]).

We have a dataset D with 𝑁 samples of the form (x𝑛, 𝑦𝑛), where x𝑛 ∈ R𝐷 is the

feature vector and 𝑦𝑛 ∈ R is the response. Without loss of generality, we assume that

‖x𝑛‖2 ≤ 1 and 𝑦𝑛 ∈ [−1, 1]. We want to find a vector w ∈ R𝐷 such that x⊤
𝑛w ≈ 𝑦𝑛 for

all 𝑛 ∈ [𝑁]. The cost function 𝑓 : R𝐷 ×R𝐷 ↦→ R+ due to each sample and a particular

w is the squared loss: 𝑓(x𝑛,w) =
(︀
𝑦𝑛 − x⊤

𝑛w
)︀2

. The empirical average cost function is

defined as

𝑓𝐷(w) =
1

𝑁

𝑁∑︁
𝑛=1

𝑓(x𝑛,w) =
1

𝑁
‖y −Xw‖2𝐹 , (8.6)

where y ∈ R𝑁 contains all 𝑦𝑛 and X ∈ R𝑁×𝐷 contains x⊤
𝑛 as its rows. By simple

99

algebra, it can be shown that

𝑓𝐷(w) =

(︃
1

𝑁

𝑁∑︁
𝑛=1

𝑦2𝑛

)︃
+

𝐷∑︁
𝑑=1

(︃
− 2

𝑁

𝑁∑︁
𝑛=1

𝑦𝑛𝑥𝑛𝑑

)︃
𝑤𝑑

+

𝐷∑︁
𝑑1=1

𝐷∑︁
𝑑2=1

(︃
1

𝑁

𝑁∑︁
𝑛=1

𝑥𝑛𝑑1𝑥𝑛𝑑2

)︃
𝑤𝑑1𝑤𝑑2 ,

where 𝑥𝑝𝑞 is the 𝑞-th element of the 𝑝-th sample vector or 𝑥𝑝𝑞 = [X]𝑝𝑞. Now, we have

Λ0 =
1

𝑁

𝑁∑︁
𝑛=1

𝑦2𝑛 =
1

𝑁
‖y‖22

Λ1 = − 2

𝑁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑︀𝑁
𝑛=1 𝑦𝑛𝑥𝑛1

...

∑︀𝑁
𝑛=1 𝑦𝑛𝑥𝑛𝐷

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= − 2

𝑁

(︁
1⊤diag(y)X

)︁⊤

Λ2 =
1

𝑁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑︀𝑁
𝑛=1 𝑥

2
𝑛1 · · ·

∑︀𝑁
𝑛=1 𝑥𝑛1𝑥𝑛𝐷

...
. . .

...

∑︀𝑁
𝑛=1 𝑥𝑛𝐷𝑥𝑛1 · · ·

∑︀𝑁
𝑛=1 𝑥

2
𝑛𝐷

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

X⊤X

𝑁
,

where 1 is an 𝑁 -dimensional vector of all 1’s and diag(y) is an 𝑁 ×𝑁 diagonal matrix

with the elements of y as diagonal entries. Additionally, we write out the {𝜑𝑗} for

100

completeness

𝜑0 = 1,

𝜑1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑤1

...

𝑤𝐷

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, and

𝜑2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑤2
1 𝑤1𝑤2 · · · 𝑤1𝑤𝐷

...
...

. . .
...

𝑤𝐷𝑤1 𝑤𝐷𝑤2 · · · 𝑤2
𝐷

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Therefore, we can express 𝑓𝐷(w) as 𝑓𝐷(w) =
∑︀2

𝑗=0⟨Λ𝑗 , 𝜑𝑗⟩. Now, we focus on finding

the sensitivities of {Λ𝑗}. Let us consider a neighboring dataset D′ which contains the

same tuples as D, except for the last one, i.e. (x′
𝑁 , 𝑦′𝑁). We have

⃒⃒⃒
ΛD
0 − ΛD′

0

⃒⃒⃒
=

1

𝑁

(︁
𝑦2𝑁 − 𝑦′𝑁

2
)︁
≤ 1

𝑁
, ∆0,

where the inequality follows from the fact that 𝑦𝑛 ∈ [−1, 1]. Next, we observe

⃦⃦⃦
ΛD
1 − ΛD′

1

⃦⃦⃦
2

=
2

𝑁
‖a− a′‖2 ≤

4

𝑁
, ∆1,

where a = 𝑦𝑁x𝑁 and a′ = 𝑦′𝑁x′
𝑁 . Here, we used the inequality ‖a‖2 ≤ 1 as −1 ≤ 𝑦𝑛 ≤

1, ‖x𝑛‖2 ≤ 1. Similarly, ‖a′‖2 ≤ 1. Finally, we observe

⃦⃦⃦
ΛD
2 − ΛD′

2

⃦⃦⃦
𝐹

=
1

𝑁

⃦⃦⃦
X⊤X−X′⊤X′

⃦⃦⃦
𝐹

=
1

𝑁

⃦⃦⃦
x𝑁x⊤

𝑁 − x′
𝑁x′

𝑁
⊤
⃦⃦⃦
𝐹

≤
√

2

𝑁
, ∆2,

where the last inequality follows from realizing that the 𝐷 × 𝐷 symmetric matrix

101

x𝑁x⊤
𝑁 −x′

𝑁x′
𝑁

⊤ is at most rank-2. Therefore, we can write its eigen-decomposition as:

⃦⃦⃦
x𝑁x⊤

𝑁 − x′
𝑁x′

𝑁
⊤
⃦⃦⃦
𝐹

=
⃦⃦⃦
UΣU⊤

⃦⃦⃦
𝐹

≤ ‖U‖2𝐹 ‖Σ‖𝐹

= ‖Σ‖𝐹

≤
√

2.

Now that we have computed the ℒ2-sensitivities of {Λ𝑗}, we can compute {Λ̂𝑗} and thus,

the (𝜖, 𝛿)-differentially private approximation 𝑓𝐷(w) following Algorithm 8.1. Note

that if we employed the sensitivity computation technique as in [143], the sensitivity

for each entry of Λ𝑗 would be ∆dp−fm = 2(𝐷+1)2

𝑁 , which is orders of magnitude larger

than ∆𝑗 for any meaningful 𝐷 > 1 and for all 𝑗 ∈ {0, . . . , 𝐽}. Therefore, with the

sensitivity computation proposed in this work, we can achieve 𝑓𝐷(w) with much less

noise. This results in a more accurate privacy-preserving estimate of the optimal ŵ* =

arg minw 𝑓𝐷(w), which we demonstrate empirically in Section 8.4.

8.2.2 Example – Logistic Regression

In this section, we demonstrate the proposed improved functional mechanism for a lo-

gistic regression problem in the centralized setting. As in Section 8.2.1, we show that

Algorithm 8.1 achieves much better utility at the price of a weaker privacy guarantee

((𝜖, 𝛿)-differential privacy vs 𝜖-differential privacy). The main reason for this perfor-

mance improvement is due to defining the sensitivities of Λ𝑗 separately for each 𝑗,

instead of using an uniform conservative upper-bound ∆dp−fm (as in [143]).

We have a dataset D with 𝑁 samples. Each sample is a tuple (x𝑛, 𝑦𝑛), where

x𝑛 ∈ R𝐷 is the feature vector and 𝑦𝑛 ∈ {0, 1} is the label. Without loss of generality,

we assume that ‖x𝑛‖2 ≤ 1. We want to find a vector w ∈ R𝐷 such that ℐ(x⊤
𝑛w ≥ 0)

gives the label 𝑦𝑛 for all 𝑛 ∈ [𝑁], where ℐ(·) denotes the indicator function. The cost

function due to each sample and a particular w is 𝑓 : R𝐷 × R𝐷 ↦→ R and is defined as

102

the logistic loss:

𝑓(x𝑛,w) = log
(︁

1 + exp
(︁
x⊤
𝑛w
)︁)︁
− 𝑦𝑛x

⊤
𝑛w. (8.7)

The empirical average cost function is defined as

𝑓𝐷(w) =
1

𝑁

𝑁∑︁
𝑛=1

log
(︁

1 + exp
(︁
x⊤
𝑛w
)︁)︁
− 𝑦𝑛x

⊤
𝑛w. (8.8)

It is not readily apparent how to express this logistic loss function in the form of (8.2).

Zhang et al. [143] derived an approximate polynomial form of 𝑓𝐷(w), denoted by 𝑓𝐷(w),

using a Taylor series expansion. Each function 𝑓(x𝑛,w) can be represented as

𝑓(x𝑛,w) =
𝑀∑︁

𝑚=1

𝑓𝑚 (𝑔𝑚 (x𝑛,w))

for some functions 𝑓𝑚(·) and 𝑔𝑚(·), where each 𝑔𝑚(·) is a monomial of {𝑤𝑑}. Using the

Taylor expansion of 𝑓𝑚(·) around any real 𝑧𝑚, we have

𝑓(x𝑛,w) =
𝑀∑︁

𝑚=1

∞∑︁
𝑗=0

𝑓
(𝑗)
𝑚 (𝑧𝑚)

𝑗!
(𝑔𝑚 (x𝑛,w)− 𝑧𝑚)𝑗 ,

where 𝑓
(𝑗)
𝑚 (·) is the 𝑗-th derivative of 𝑓𝑚(·). Now, for the logistic loss given in (8.7), we

have [143] that

𝑔1(x𝑛,w) = x⊤
𝑛w

𝑓1(𝑧) = log(1 + exp(𝑧))

𝑔2(x𝑛,w) = 𝑦𝑛x
⊤
𝑛w

𝑓2(𝑧) = −𝑧.

Therefore, the empirical average cost can be written as

𝑓𝐷(w) =
1

𝑁

𝑁∑︁
𝑛=1

2∑︁
𝑚=1

∞∑︁
𝑗=0

𝑓
(𝑗)
𝑚 (𝑧𝑚)

𝑗!
(𝑔𝑚 (x𝑛,w)− 𝑧𝑚)𝑗 .

103

Zhang et al. [143] approximated this infinite sum for 𝑗 = 0, 1, 2 and showed analysis for

the excess error of the approximation. For 𝐽 = 2, the approximation error is a small

constant. Now, for 𝑚 = 1, 2 and 𝑗 = 0, 1, 2, the approximate empirical average cost

function can be written as

𝑓𝐷(w) =
1

𝑁

𝑁∑︁
𝑛=1

2∑︁
𝑚=1

2∑︁
𝑗=0

𝑓
(𝑗)
𝑚 (𝑧𝑚)

𝑗!
(𝑔𝑚 (x𝑛,w)− 𝑧𝑚)𝑗 .

Using the expressions of 𝑓
(𝑗)
𝑚 and some simple algebra, it can be shown that

𝑓𝐷(w) = log 2 +

𝐷∑︁
𝑑=1

(︃
1

𝑁

𝑁∑︁
𝑛=1

(︂
1

2
− 𝑦𝑛

)︂
𝑥𝑛𝑑

)︃
𝑤𝑑

+
𝐷∑︁

𝑑1=1

𝐷∑︁
𝑑2=1

(︃
1

8𝑁

𝑁∑︁
𝑛=1

𝑥𝑛𝑑1𝑥𝑛𝑑2

)︃
𝑤𝑑1𝑤𝑑2 ,

where 𝑥𝑝𝑞 is the 𝑞-th element of the 𝑝-th sample vector. Using our definitions of Λ𝑗 as

before, we have

Λ0 = log 2

Λ1 =
1

𝑁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑︀𝑁
𝑛=1

(︀
1
2 − 𝑦𝑛

)︀
𝑥𝑛1

...

∑︀𝑁
𝑛=1

(︀
1
2 − 𝑦𝑛

)︀
𝑥𝑛𝐷

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

(︀
1⊤diag

(︀
1
2 − y

)︀
X
)︀⊤

𝑁

Λ2 =
1

8𝑁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑︀𝑁
𝑛=1 𝑥

2
𝑛1 · · ·

∑︀𝑁
𝑛=1 𝑥𝑛1𝑥𝑛𝐷

...
. . .

...

∑︀𝑁
𝑛=1 𝑥𝑛𝐷𝑥𝑛1 · · ·

∑︀𝑁
𝑛=1 𝑥

2
𝑛𝐷

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

X⊤X

8𝑁
,

where 1 is an 𝑁 -dimensional vector of all 1’s and diag
(︀
1
2 − y

)︀
is an 𝑁 × 𝑁 diagonal

matrix with the elements of 1
2 − y as the diagonal entries. If we express the {𝜑𝑗} as in

104

the linear regression example (Section 8.2.1), we can write 𝑓𝐷(w) as

𝑓𝐷(w) =
2∑︁

𝑗=0

⟨Λ𝑗 , 𝜑𝑗⟩. (8.9)

Now, we focus on finding the sensitivities of {Λ𝑗}. Let us consider a neighboring dataset

D′ which contains the same tuples as D, except for the last one, i.e. (x′
𝑁 , 𝑦′𝑁). We have

⃒⃒⃒
ΛD
0 − ΛD′

0

⃒⃒⃒
= 0 , ∆0.

Next, we observe

⃦⃦⃦
ΛD
1 − ΛD′

1

⃦⃦⃦
2

=
1

𝑁

⃦⃦⃦⃦(︂
1

2
− 𝑦𝑁

)︂
x𝑁 −

(︂
1

2
− 𝑦′𝑁

)︂
x′
𝑁

⃦⃦⃦⃦
2

≤ 2

𝑁

⃦⃦⃦⃦(︂
1

2
− 𝑦𝑁

)︂
x𝑁

⃦⃦⃦⃦
2

≤ 2

𝑁

1

2
‖x𝑁‖2

≤ 1

𝑁
, ∆1,

where we used the inequality
⃦⃦(︀

1
2 − 𝑦𝑁

)︀
x𝑁

⃦⃦
2
≤ 1

2‖x𝑁‖2 ≤ 1
2 because, 𝑦𝑛 ∈ {0, 1} and

‖x𝑛‖2 ≤ 1. Finally, we observe

⃦⃦⃦
ΛD
2 − ΛD′

2

⃦⃦⃦
𝐹

=
1

8𝑁

⃦⃦⃦
X⊤X−X′⊤X′

⃦⃦⃦
𝐹

=
1

8𝑁

⃦⃦⃦
x𝑁x⊤

𝑁 − x′
𝑁x′

𝑁
⊤
⃦⃦⃦
𝐹

≤
√

2

8𝑁
, ∆2,

where the last inequality follows from realizing that the 𝐷 × 𝐷 symmetric matrix

x𝑁x⊤
𝑁 − x′

𝑁x′
𝑁

⊤ is at-most rank-2 and
⃦⃦⃦
x𝑁x⊤

𝑁 − x′
𝑁x′

𝑁
⊤
⃦⃦⃦
𝐹
≤
√

2, as shown before

(Section 8.2.1). Now that we have computed the ℒ2-sensitivities of {Λ𝑗}, we can com-

pute {Λ̂𝑗} and thus, the (𝜖, 𝛿)-differentially private approximation of 𝑓𝐷(w) following

Algorithm 8.1 (𝑓𝐷(w) is the input to Algorithm 8.1 for logistic regression). Note that

as with linear regression, the sensitivity computation technique for 𝜖-differential pri-

vacy [143] for each entry of Λ𝑗 would be ∆dp−fm = 1
𝑁

(︁
𝐷2

4 + 3𝐷
)︁

, which is orders of

105

magnitude larger than ∆𝑗 for any 𝐷 > 1 and for all 𝑗 ∈ {0, . . . , 𝐽}. Therefore, with

the sensitivity computation proposed in this work, we can achieve 𝑓𝐷(w) from 𝑓𝐷(w)

with much less noise. This would certainly result in a more accurate privacy-preserving

estimate of the optimal ŵ* = arg minw 𝑓𝐷(w). However, one cost of the performance

improvement, for both linear and logistic regression applications, is the weakening of

the privacy guarantee from 𝜖-differential privacy to (𝜖, 𝛿)-differential privacy.

8.3 Decentralized Functional Mechanism

In this section, we first we describe a conventional approach. We show that the con-

ventional approach would always result in sub-optimal performance due to larger noise

added to the cost function. Then we present the proposed algorithm (capeFM) in detail

(see Algorithm 8.2).

Let us consider a cost function 𝑓𝐷(w) : R𝐷 ↦→ R that depends on private data

distributed across 𝑆 sites. A central aggregator (see Figure 3.1) wishes to find the

minimizer w* of 𝑓𝐷(w). This is a common scenario in decentralized machine learning.

Now, the aggregator is not trusted and the sites may collude with an adversary to learn

information about the other sites. Since computing the w* by minimizing the expected

cost/loss involves the sensitive information of the local datasets, we need to ensure

that w* is computed in a privacy-preserving way. In particular, we want to develop an

algorithm to compute the (𝜖, 𝛿) differentially private approximate to w*, denoted ŵ*,

in a decentralized setting that produces a result as close as possible to the non-private

pooled w*.

Similar to the setting in Section 3.1, let us assume that each site 𝑠 ∈ [𝑆] holds a

dataset D𝑠 of 𝑁𝑠 samples x𝑠,𝑛 ∈ R𝐷. The total sample size across all sites is 𝑁 =∑︀𝑆
𝑠=1𝑁𝑠. The cost incurred by a w ∈ R𝐷 due to one data sample x𝑠,𝑛 is 𝑓(x𝑠,𝑛;w) :

R𝐷 × R𝐷 ↦→ R. We need to minimize the average cost to find the optimal w*. The

empirical average cost for a particular w over all the samples is expressed as (8.1).

106

Therefore, we have

w* = arg min
w

𝑓𝐷(w) = arg min
w

1

𝑁

𝑆∑︁
𝑠=1

𝑁𝑠∑︁
𝑛=1

𝑓(x𝑠,𝑛;w).

8.3.1 Conventional Approach

Recall the decentralized setting, where we have 𝑆 different sites and a central aggregator,

as depicted in Figure 3.1. The aggregator is not trusted. The goal is to compute the

differentially private minimizer ŵ* in this decentralized setting. We assume that the

datasets in the sites (D𝑠 for 𝑠 ∈ [𝑆]) are disjoint and 𝑁𝑠 = 𝑁
𝑆 . Recall that the cost

function 𝑓𝐷(w) depends on the data only through the {Λ𝑗} for 𝑗 ∈ {0, . . . , 𝐽}. One

näıve way to compute ŵ* at the aggregator is the following: the sites use local data to

compute and send the (𝜖, 𝛿) differentially private approximates of {Λ𝑠
𝑗}, denoted {Λ̂𝑠

𝑗},

to the aggregator. The aggregator combines these quantities to compute {Λ̂𝑗} and

hence 𝑓𝐷(w). The aggregator can then compute and release ŵ* = arg minw 𝑓𝐷(w).

More specifically, each site 𝑠 computes Λ̂𝑠
𝑗 = Λ𝑠

𝑗 +𝑒𝑠𝑗 , where 𝑒𝑠𝑗 is an array with the same

dimensions as Λ𝑠
𝑗 and the entries are drawn i.i.d. ∼ 𝒩 (0, 𝜏 𝑠𝑗

2). Here,

𝜏 𝑠𝑗 =
∆𝑠

𝑗

𝜖

√︂
2 log

1.25

𝛿
,

and ∆𝑠
𝑗 = maxD𝑠,D′

𝑠
‖Λ𝑠,D𝑠

𝑗 −Λ
𝑠,D′

𝑠
𝑗 ‖𝐹 , where Λ𝑠,D𝑠

𝑗 and Λ
𝑠,D′

𝑠
𝑗 are computed on neighbor-

ing datasets D𝑠 and D′
𝑠, respectively. Recall that Λ𝑠,D𝑠

𝑗 (and similarly Λ
𝑠,D′

𝑠
𝑗) is an array

of |Φ𝑗 | elements containing 1
𝑁𝑠

∑︀𝑁𝑠
𝑛=1 𝜆𝑛𝜑 as its entries for all 𝜑(w) ∈ Φ𝑗 . The sites send

these {Λ̂𝑠
𝑗} to the aggregator. The aggregator then computes

Λ̂conv
𝑗 =

1

𝑆

𝑆∑︁
𝑠=1

Λ̂𝑠
𝑗 =

1

𝑆

𝑆∑︁
𝑠=1

Λ𝑠
𝑗 +

1

𝑆

𝑆∑︁
𝑠=1

𝑒𝑠𝑗 .

The variance of the estimator Λ̂conv
𝑗 is 𝑆 · 𝜏

𝑠
𝑗
2

𝑆2 =
𝜏𝑠𝑗

2

𝑆 , 𝜏 conv𝑗
2. However, if we had all the

data samples at the aggregator (centralized/pooled data scenario), we could compute

the (𝜖, 𝛿)-differentially private approximates of {Λ𝑗} as Λ̂𝑗 = Λ𝑗 + 𝑒𝑗 , where 𝑒𝑗 is an

array with the same dimensions as Λ𝑗 and the entries are drawn i.i.d. ∼ 𝒩 (0, 𝜏pool𝑗

2
).

107

Algorithm 8.2 Proposed Decentralized Functional Mechanism (capeFM)

Require: Data samples {x𝑠,𝑛}; cost function 𝑓𝐷(w) as in (8.3); local noise variances
{𝜏 𝑠𝑗 } for all 𝑗 ∈ {0, . . . , 𝐽}

1: for 𝑠 = 1, . . . , 𝑆 do
2: for 𝑗 = 0, 1, . . . , 𝐽 do
3: Compute Λ𝑗 as described in Section 8.2
4: Generate 𝑒𝑠𝑗 according to Algorithm 3.1 (entrywise)

5: Compute 𝜏 𝑠𝑗𝑔
2 ← 𝜏𝑠𝑗

2

𝑆

6: Generate 𝑔𝑠𝑗 with entries i.i.d. ∼ 𝒩 (0, 𝜏 𝑠𝑗𝑔
2)

7: Compute Λ̂𝑠
𝑗 ← Λ𝑠

𝑗 + 𝑒𝑠𝑗 + 𝑔𝑠𝑗
8: end for
9: end for

10: At the central aggregator, compute for all 𝑗 ∈ {0, . . . , 𝐽}: Λ̂𝑗 ← 1
𝑆

∑︀𝑆
𝑠=1 Λ̂𝑠

𝑗

11: Compute 𝑓𝐷(w)←
∑︀𝐽

𝑗=0⟨Λ̂𝑗 , 𝜑𝑗⟩
12: return 𝑓𝐷(w)

The noise standard deviation 𝜏pool𝑗 is given by:

𝜏pool𝑗 =
∆pool

𝑗

𝜖

√︂
2 log

1.25

𝛿
,

where ∆pool
𝑗 = maxD,D′ ‖ΛD

𝑗 −ΛD′
𝑗 ‖𝐹 . Now, ΛD

𝑗 is an |Φ𝑗 |-dimensional array with entries

1
𝑁

∑︀𝑁
𝑛=1 𝜆𝑛𝜑 for all 𝜑(w) ∈ Φ𝑗 . Clearly

Δpool
𝑗

Δ𝑠
𝑗

= 1/𝑁
1/𝑁𝑠

= 1
𝑆 , which implies 𝜏pool𝑗 =

𝜏𝑠𝑗
𝑆 .

For this case, we observe the ratio
𝜏pool𝑗

2

𝜏conv𝑗
2 =

𝜏𝑠𝑗
2/𝑆2

𝜏𝑠𝑗
2/𝑆

= 1
𝑆 , which is exactly the same as

that of the decentralized averaging problem of Section 3.2.

8.3.2 Proposed capeFM Algorithm

Our proposed method, capeFM, is described in Algorithm 8.2 and is based on the CAPE

scheme described in Section 3.3. We exploit the correlated noise to achieve the same

performance of the pooled data case (Lemma 3.1) in the symmetric decentralized setting

under the honest-but-curious model for the sites. Recall our assumption that all parties

follow the protocol and the number of colluding sites is not more than ⌈𝑆/3⌉ − 1. The

sites collectively generate the noise 𝑒𝑠𝑗 with entries i.i.d. ∼ 𝒩 (0, 𝜏 𝑠𝑗𝑒
2), according to

Algorithm 3.1, such that
∑︀𝑆

𝑠=1 𝑒
𝑠
𝑗 = 0 holds for all 𝑗 ∈ {0, . . . , 𝐽}. The local sites also

generate noise 𝑔𝑠𝑗 with entries i.i.d. ∼ 𝒩 (0, 𝜏 𝑠𝑗𝑔
2). From each site 𝑠, we release (or send

108

10-4 10-2 100 102

(a) Privacy parameter ()

10-10

100

1010

Lo
ss

 f D
(w

)

Synth (D = 20, N = 5k)

Non-priv
capeFM
conv
local
dp-fm
objPert

10-4 10-2 100 102

(b) Privacy parameter ()

10-10

100

1010
Synth (D = 50, N = 20k)

1k 5k 20k

(c) Total samples (N)

10-10

100

1010
Synth (D = 20, = 0.5)

1k 5k 20k

(d) Total samples (N)

10-10

100

1010
Synth (D = 50, = 1.0)

10-5 10-3 10-1

(e) Privacy parameter ()

10-10

100

Synth (D = 20, N = 5k, = 0.5)

10-5 10-3 10-1

(f) Privacy parameter ()

10-10

100

Synth (D = 50, N = 20k, = 2.0)

Figure 8.1: Variation of loss 𝑓𝐷(w) at w* for synthetic datasets. (a)–(b): with 𝜖.
(c)–(d): with total samples 𝑁 . (e)–(f): with 𝛿. Fixed param.: 𝑆 = 5.

10-4 10-2 100 102

(a) Privacy parameter ()

100

1010

Lo
ss

 f D
(w

)

Crime (D = 101, N = 800)
Non-priv
capeFM
conv
local
dp-fm
objPert

10-4 10-2 100 102

(b) Privacy parameter ()

10-5

100

105

1010
Twitter (D = 77, N = 20k)

0.4k 1k 1.6k

(c) Total samples (N)

10-5

100

105

1010
Crime (D = 101, = 0.2)

1k 5k 20k

(d) Total samples (N)

10-5

100

105

1010
Twitter (D = 77, = 1.0)

10-4 10-3 10-2

(e) Privacy parameter ()

100

1010

Crime (D = 101, N = 800, = 0.5)

10-4 10-3 10-2

(f) Privacy parameter ()

10-5

100

105

1010
Twitter (D = 77, N = 20k, = 2.0)

Figure 8.2: Variation of loss 𝑓𝐷(w) at w* for two real datasets. (a)–(b): with 𝜖. (c)–(d):
with total samples 𝑁 . (e)–(f): with 𝛿. Fixed param.: 𝑆 = 5.

to the central aggregator): Λ̂𝑠
𝑗 = Λ𝑠

𝑗 + 𝑒𝑠𝑗 + 𝑔𝑠𝑗 for all 𝑗 ∈ {0, . . . , 𝐽}. Note that 𝑒𝑠𝑗 and

𝑔𝑠𝑗 are arrays of the same dimension as Λ𝑠
𝑗 . As described in Section 3.3, we have

𝜏 𝑠𝑗𝑒
2 =

(︂
1− 1

𝑆

)︂
𝜏 𝑠𝑗

2, and 𝜏 𝑠𝑗𝑔
2 =

𝜏 𝑠𝑗
2

𝑆
. (8.10)

Now, at the aggregator we compute the following quantity

Λ̂𝑗 =
1

𝑆

𝑆∑︁
𝑠=1

Λ̂𝑠
𝑗 =

1

𝑆

𝑆∑︁
𝑠=1

Λ𝑠
𝑗 +

1

𝑆

𝑆∑︁
𝑠=1

𝑔𝑠𝑗 ,

because
∑︀

𝑠 𝑒
𝑠
𝑗 = 0. The aggregator then uses these {Λ̂𝑗} to compute 𝑓𝐷(w) and

release ŵ* = arg minw 𝑓𝐷(w). Privacy of capeFM follows directly from Theorem 3.1.

In the symmetric setting (i.e., 𝑁𝑠 = 𝑁
𝑆 and 𝜏 𝑠𝑗 = 𝜏𝑗 for all sites 𝑠 ∈ [𝑆] and all

𝑗 ∈ {0, 1, . . . , 𝐽}), the noise variance at the aggregator is exactly the same as that

of the pooled data scenario (see Lemma 3.1 and Proposition 3.2). Additionally, the

performance gain of capeFM over any conventional decentralized functional mechanism

is given by Proposition 3.1.

109

8.4 Experimental Results

In this section, we empirically show the effectiveness of the proposed capeFM algorithm

with applications in a linear regression problem in decentralized settings. Our capeFM

algorithm is well-suited for decentralized optimization, as we can compute the differ-

entially private approximate 𝑓𝐷(w) of the loss function and then use any off-the-shelf

optimizer. If the function can be represented as (8.3), we can employ the capeFM al-

gorithm for an even better utility. We present experimental results to show empirical

comparison of performance of the proposed capeFM with the existing dp− fm [143],

objective perturbation (objPert) [38] and non-private linear regression (non− dp pool)

on pooled-data. Note that both dp− fm and objPert offer the stronger 𝜖-differential

privacy and are applied to the pooled-data scenario. We also included the performance

variation of a conventional differentially private distributed scheme with no correlated

noise (conv) and a differentially private linear regression on local (single site) data

(local). For both the neural network based classifier and the linear regression problem,

we consider the symmetric setting (i.e., 𝑁𝑠 = 𝑁
𝑆 and 𝜏𝑠 = 𝜏) and show the average

performance over 10 independent runs.

We performed experiments on 3 datasets: a synthetic dataset (𝐷 = 20 or 𝐷 = 50)

(Synth) generated with a random w* and random samples X, the Communities and

Crime dataset (𝐷 = 101) [96] (Crime) and the Buzz in social media dataset (𝐷 =

77) [96] (Twitter). We refer the reader to [96] for a detailed description of these real

datasets. Now, for each of the datasets, we normalized each feature across the samples

to ensure that each feature lies in the range [−1, 1]. We also normalized the samples

with the maximum ℒ2 norm in each dataset to ensure ‖x𝑛‖2 ≤ 1 ∀𝑛. This preprocessing

step is not differentially private but can be modified to satisfy privacy at the cost of

some utility. For capeFM, we set 𝜏 𝑠𝑗 =
Δ𝑠

𝑗

𝜖

√︁
2 log 1.25

10−5 for experiments on the synthetic

datasets and 𝜏 𝑠𝑗 =
Δ𝑠

𝑗

𝜖

√︁
2 log 1.25

10−3 for experiments on the real datasets, where ∆𝑠
𝑗 is

the ℒ2 sensitivity of the corresponding Λ𝑗 . We use two performance indices for the

110

synthetic dataset. The first one is the empirical loss

𝑓𝐷(w) =
1

𝑁
‖y −Xw‖22, (8.11)

where X and y contains all data tuples (X𝑠,y𝑠) from 𝑠 ∈ [𝑆]. We compute 𝑓𝐷(w) at

the final w, which is found from minimizing the output function of the algorithm. The

second one is closeness to the true w*. If the final w achieved by minimizing the output

function of the algorithm is denoted by ŵ* then we define: err𝑤 = 1
𝐷‖w

* − ŵ*‖2. As

the true w* is unknown for the real datasets, we only use 𝑓𝐷(w) as the performance

index for Crime and Twitter datasets.

8.4.1 Dependence on Privacy Parameter 𝜖

First, we explore the trade-off between privacy and utility. We note that, as we em-

ploy the Gaussian mechanism, the standard deviation of the added noise is inversely

proportional to 𝜖 – bigger 𝜖 means higher privacy risk but less noise and thus, better

utility. We observe this in our experiments as well. In Figure 8.1(a)–(b), we show the

variation of 𝑓𝐷(w) of different algorithms for different values of 𝜖 on synthetic data.

For this experiment, we kept the number of total samples 𝑁 and the number of sites 𝑆

fixed. We show the plots for two different feature dimensions: 𝐷 = 20 and 𝐷 = 50. For

both of the synthetic datasets, we observe that as 𝜖 increases (higher privacy risk), the

loss 𝑓𝐷(w) decreases. The proposed capeFM reaches very small 𝑓𝐷(w) for some param-

eter choices and clearly outperforms the dp− fm, objPert, conv and local. One of the

reasons that capeFM outperforms conv is the smaller noise variance at the aggregator

that we can achieve due to the correlated noise scheme. Moreover, capeFM outper-

forms dp− fm because dp− fm suffers from a much larger variance at the aggregator

(due to the conservative sensitivity computation of 𝜆𝑛𝜑). On the other hand, objPert

also entails addition of noise with large variance as the sensitivity of the optimal w*

is large (to be exact, the sensitivity is 2). Achieving better performance than local is

intuitive because including the information from multiple sites to estimate a population

parameter always results in better performance than using the data from a single site

111

only. Additionally, we observe that for datasets with lower dimensional samples, we

can use smaller 𝜖 (i.e., to guarantee lower privacy risk) for the same utility. In Fig-

ure 8.2(a)–(b), we show the variation of 𝑓𝐷(w) with 𝜖 for the Crime and the Twitter

datasets. We observe similar variation characteristic of 𝑓𝐷(w) for the real datasets as

we observed for the synthetic datasets. Note that, for real datasets, we chose larger 𝜏𝑠

values than synthetic datasets to achieve the similar utility.

8.4.2 Dependence on Total Sample Size 𝑁

Next, we investigate the variation in performance with the total sample size 𝑁 . Intu-

itively, it should be easier to guarantee smaller privacy risk 𝜖 and higher utility, when

𝑁 is large. Figure 8.1(c)–(d) show how 𝑓𝐷(w) decreases as a function of 𝑁 on synthetic

data. The variation with 𝑁 reinforces the results seen earlier with variation of 𝜖. For

a fixed 𝜖 and 𝑆, the 𝑓𝐷(w) decreases as we increase 𝑁 . For sufficiently large 𝑁 and

𝜖, 𝑓𝐷(w) will reach that of the non-private pooled case (non− dp pool). We observe

a sharper decrease in 𝑓𝐷(w) for lower-dimensional datasets. In Figure 8.2(c)–(d), we

show the variation of 𝑓𝐷(w) with 𝑁 for the Crime and the Twitter datasets. Again, we

observe similar variation of 𝑓𝐷(w) for the real datasets as we observed for the synthetic

datasets.

8.4.3 Dependence on Privacy Parameter 𝛿

Note that, the proposed capeFM algorithm guarantees (𝜖, 𝛿) differential privacy where

(𝜖, 𝛿) satisfy the relation 𝛿 = 2 𝜎𝑧
𝜖−𝜇𝑧

𝜑
(︁
𝜖−𝜇𝑧

𝜎𝑧

)︁
. Recall that 𝛿 can be considered as the

probability that the algorithm releases the private information without guaranteeing

privacy. Therefore, we want this to be as small as possible. However, smaller 𝛿 also

dictates larger noise variance. We explore the variation of performance with different

𝛿 with a fixed number of colluding sites 𝑆𝐶 =
⌈︀
𝑆
3

⌉︀
− 1. In Figure 8.1(e)–(f), we show

how 𝑓𝐷(w) varies with varying 𝛿 on synthetic data. We observe that if 𝑁 and 𝛿 are too

small, the proposed capeFM, conv and local algorithms perform poorly. However, our

capeFM algorithm can achieve very good utility for moderate 𝑁 and 𝛿 values, easily

112

10-4 10-2 100 102

Privacy parameter ()

0

0.05

0.1

0.15

0.2

0.25

er
r w

Synth (D = 20, N = 5k)

Non-priv
capeFM
conv
local
dp-fm
objPert

10-4 10-2 100 102

Privacy parameter ()

0

0.05

0.1

0.15

0.2

0.25

er
r w

Synth (D = 20, N = 20k)

10-4 10-2 100 102

Privacy parameter ()

0

0.05

0.1

0.15

0.2

0.25

er
r w

Synth (D = 50, N = 5k)

10-4 10-2 100 102

Privacy parameter ()

0

0.05

0.1

0.15

0.2

0.25

er
r w

Synth (D = 50, N = 20k)

1k 5k 20k
Total samples (N)

0

0.05

0.1

0.15

0.2

0.25

er
r w

Synth (D = 20, = 0.5)

1k 5k 20k
Total samples (N)

0

0.05

0.1

0.15

0.2

0.25

er
r w

Synth (D = 20, = 1.0)

1k 5k 20k
Total samples (N)

0

0.05

0.1

0.15

0.2

0.25

er
r w

Synth (D = 50, = 0.5)

1k 5k 20k
Total samples (N)

0

0.05

0.1

0.15

0.2

0.25

er
r w

Synth (D = 50, = 1.0)

10-5 10-3 10-1

Privacy parameter ()

0

0.05

0.1

0.15

0.2

0.25

er
r w

Synth (D = 20, N = 5k, = 0.5)

10-5 10-3 10-1

Privacy parameter ()

0

0.05

0.1

0.15

0.2

0.25

er
r w

Synth (D = 20, N = 20k, = 1.0)

10-5 10-3 10-1

Privacy parameter ()

0

0.05

0.1

0.15

0.2

0.25

er
r w

Synth (D = 50, N = 5k, = 0.5)

10-5 10-3 10-1

Privacy parameter ()

0

0.05

0.1

0.15

0.2

0.25

er
r w

Synth (D = 50, N = 20k, = 2.0)

Figure 8.3: Variation of err𝑤 for synthetic datasets. Top-row: with 𝜖. Mid-row: with
total samples 𝑁 . Bottom-row: with 𝛿. Fixed parameter: 𝑆 = 5.

outperforming the other differentially private algorithms. We observe in Figure 8.2(e)–

(f) similar characteristic for the two real datasets, although the variation of 𝑓𝐷(w) is

not as pronounced as for the synthetic datasets. Recall that the dp− fm and the objPert

algorithms offer pure 𝜖-differential privacy guarantee and, therefore, do not vary with

𝛿.

8.4.4 Variation of err𝑤

Dependence on Privacy Parameter 𝜖. In the top-row of Figure 8.3, we show the

variation of err𝑤 of different algorithms for different values of 𝜖 on synthetic data. For

this experiment, we kept the number of total samples 𝑁 and the number of sites 𝑆 fixed.

We show the plots for two different feature dimensions: 𝐷 = 20 and 𝐷 = 50, each with

two different sample sizes. For both of the synthetic datasets, we observe that as 𝜖

increases (higher privacy risk), the err𝑤 decreases. The proposed capeFM reaches very

small err𝑤 for some parameter choices and clearly outperforms the dp− fm, objPert, conv

and local. One of the reasons that capeFM outperforms conv is the smaller noise variance

at the aggregator that we can achieve due to the correlated noise scheme. Moreover,

113

capeFM outperforms dp− fm because dp− fm suffers from a much larger variance at

the aggregator (due to the conservative sensitivity computation of 𝜆𝑛𝜑). On the other

hand, objPert also entails addition of noise with large variance as the sensitivity of the

optimal w* is large (to be exact, the sensitivity is 2). Achieving better performance

than local is intuitive because including the information from multiple sites to estimate

a population parameter always results in better performance than using the data from

a single site only. Additionally, we observe that for datasets with lower dimensional

samples, we can use smaller 𝜖 (i.e., to guarantee lower privacy risk) for the same utility.

Dependence on Total Sample Size 𝑁 . Next, we investigate the variation in per-

formance with the total sample size 𝑁 . The middle-row of Figure 8.3 shows how err𝑤

decreases as a function of total sample size 𝑁 on synthetic data. The variation with

𝑁 reinforces the results seen earlier with variation of 𝜖. For a fixed 𝜖 and 𝑆, err𝑤

decreases as we increase 𝑁 . For sufficiently large 𝑁 and 𝜖, err𝑤 will reach that of the

non-private pooled case (non− dp pool). Again, we observe a sharper decrease in err𝑤

for lower-dimensional datasets. Note that, for the synthetic datasets, the error err𝑤 for

objPert is too large to show on the same scale as other algorithms. That is why the

err𝑤 curves for objPert do not appear in Figure 8.3 (middle-row).

Dependence on Privacy Parameter 𝛿. In the bottom-row of Figure 8.3, we show

how err𝑤 varies with varying 𝛿 on synthetic data. We observe that if 𝑁 and 𝛿 are too

small, the proposed capeFM, conv and local algorithms perform poorly. However, the

proposed capeFM algorithm can achieve very good utility for moderate 𝑁 and 𝛿 values,

easily outperforming the other differentially private algorithms. Recall that the dp− fm

and the objPert algorithms offer pure 𝜖-differential privacy and, therefore, do not vary

with 𝛿. Again we observe that, for the synthetic datasets, the error err𝑤 for objPert is

too large and do not appear in Figure 8.3 (bottom row).

114

Chapter 9

Conclusion and Future Directions

This work proposes a novel protocol, CAPE, for decentralized differentially private com-

putations. CAPE is best suited for applications in which private data must be held

locally, e.g. in health care research with legal and ethical limitations on the degree of

sharing the “raw” data. CAPE can greatly improve the privacy-utility tradeoff when (a)

all parties follow the protocol and (b) the number of colluding sites is not more than

⌈𝑆/3⌉ − 1. Our proposed CAPE protocol is based on an estimation-theoretic analy-

sis of the noise addition process for differential privacy and therefore, provides different

guarantees than cryptographic approaches such as SMC. We analyzed the privacy guar-

antees of CAPE in details and provided a scheme for extending CAPE to asymmetric

network/privacy-requirements scenarios. In addition to CAPE, we proposed several

new algorithms for differentially private matrix/tensor factorization and computation

of functions in decentralized settings.

Our capePCA, capeAGN and capeCCA algorithms are well suited for decentralized

subspace learning and achieving the same utility as the pooled-data scenario in certain

regimes. We empirically compared the performance of the proposed algorithms with

those of existing (if any) and conventional decentralized algorithms on synthetic and real

data sets. We varied privacy parameters and relevant dataset parameters. The proposed

algorithms outperformed the existing and conventional algorithms comfortably and

matched the performance of corresponding non-private algorithms for proper parameter

choices.

Our proposed capeDJICA algorithm can be applied to jointly learn spatial maps from

decentralized neuroimaging data. capeDJICA can offer significant improvement upon

our earlier work and achieves the same level of additive noise variance as the pooled

115

data scenario in the symmetric network setting. We analyzed our capeDJICA algorithm

using Rényi differential privacy and provided a better account of the privacy loss per

iteration using the moments accountant method. We presented empirical comparison

of the performance of capeDJICA with those of existing, pooled and local algorithms

on synthetic and real datasets. We varied privacy parameters and relevant dataset

parameters to show that the proposed algorithm outperformed the existing and local

algorithms comfortably and matched the performance of the non-private algorithm for

some parameter choices. By analyzing our proposed algorithm using the moments

accountant, we show that we can achieve performance very close to that of non-private

algorithm, even for strict privacy requirements.

Finally, our capeFM algorithm can be employed to compute any continuous and

differentiable function in the decentralized data scenario. As mentioned before, approx-

imation of the empirical average cost is required in many decentralized optimization

problems. We proposed an improved functional mechanism with a new way to compute

the associated sensitivities. We analytically showed that the proposed approach for

computing the sensitivities offers much less additive noise for two common regression

problems – linear regression and logistic regression. Our proposed capeFM can approx-

imate the privacy-preserving empirical average cost such that we can achieve the same

utility level as the pooled data scenario in certain regimes. We empirically compared

the performance of the proposed algorithms with those of existing and conventional

algorithms for a neural-network based classification problem and a decentralized linear

regression problem. We varied privacy parameters and relevant dataset (synthetic and

real) parameters and showed that the proposed algorithms outperformed the existing

and conventional algorithms comfortably – matching the performance of the non-private

algorithm for some parameter choices. In general, the proposed algorithms offered very

good utility indicating that meaningful privacy can be attained without losing much

performance by the virtue of algorithm design.

As for future directions, deployment of the capeDJICA and capeCCA algorithms

on existing neuroimaging analysis toolboxes (e.g. COINSTAC [119]) would be of great

116

practical value. The primary challenge in this task would be to implement the communi-

cation heavy zero-sum noise generation. We believe another very interesting future work

could be to extend the CAPE framework to fit the optimal Staircase Mechanism [60] or

the Podium mechanism [118] for differential privacy. Another possible direction is to

extend CAPE to be employable in arbitrary tree-structured networks. As mentioned in

Remark 2 (in Section 3.3), we generated the zero-sum noise terms by mapping floating

point numbers to a finite field. Another direction of future work would be to address

the floating point implementation issues to fit our protocol. Additionally, analyzing

the sample complexity bounds for the capeAGN and capeFM algorithms would also be

interesting.

117

Bibliography

[1] How One of Apple’s Key Privacy Safeguards Falls Short, 2017. [Online]. Available:
https://www.wired.com/story/apple-differential-privacy-shortcomings/

[2] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar,
and L. Zhang, “Deep Learning with Differential Privacy,” in Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, ser.
CCS ’16. New York, NY, USA: ACM, 2016, pp. 308–318. [Online]. Available:
http://doi.acm.org/10.1145/2976749.2978318

[3] J. M. Abowd, “The U.S. Census Bureau Adopts Differential Privacy,” in
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, London, UK, August 19–23 2018. [Online].
Available: https://doi.org/10.1145/3219819.3226070

[4] D. Achlioptas and F. McSherry, “On Spectral Learning of Mixtures of
Distributions,” in Int. Conf. on Computational Learning Theory. Springer,
2005, pp. 458–469. [Online]. Available: http://dx.doi.org/10.1007/11503415 31

[5] E. A. Allen, E. B. Erhardt, E. Damaraju, W. Gruner, J. M. Segall, R. F.
Silva, M. Havlicek, S. Rachakonda, J. Fries, R. Kalyanam, A. M. Michael,
A. Caprihan, J. A. Turner, R. Eichele, S. Adelsheim, A. D. Bryan, J. Bustillo,
V. P. Clark, S. W. Feldstein Ewing, F. Filbey, C. C. Ford, K. Hutchison,
R. E. Jung, K. A. Kiehl, P. Kodituwakku, Y. M. Komesu, A. R. Mayer, G. D.
Pearlson, J. P. Phillips, J. R. Sadek, M. Stevens, U. Teuscher, R. J. Thoma,
and V. D. Calhoun, “A Baseline for the Multivariate Comparison of Resting
State Networks,” Frontiers in Systems Neuroscience, vol. 5, no. 2, 2011. [Online].
Available: http://dx.doi.org/10.3389/fnsys.2011.00002

[6] S. Amari, A. Cichocki, and H. H. Yang, “A New Learning Algorithm for Blind
Signal Separation,” in Advances in Neural Information Processing Systems, 1996,
pp. 757–763. [Online]. Available: http://dl.acm.org/citation.cfm?id=2998828.
2998935

[7] B. Anandan and C. Clifton, “Laplace Noise Generation for Two-party
Computational Differential Privacy,” in 2015 13th Annual Conference on
Privacy, Security and Trust (PST), July 2015, pp. 54–61. [Online]. Available:
https://doi.org/10.1109/PST.2015.7232954

[8] A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky,
“Tensor Decompositions for Learning Latent Variable Models,” J. Mach.
Learn. Res., vol. 15, no. 1, pp. 2773–2832, Jan. 2014. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2627435.2697055

https://www.wired.com/story/apple-differential-privacy-shortcomings/
http://doi.acm.org/10.1145/2976749.2978318
https://doi.org/10.1145/3219819.3226070
http://dx.doi.org/10.1007/11503415_31
http://dx.doi.org/10.3389/fnsys.2011.00002
http://dl.acm.org/citation.cfm?id=2998828.2998935
http://dl.acm.org/citation.cfm?id=2998828.2998935
https://doi.org/10.1109/PST.2015.7232954
http://dl.acm.org/citation.cfm?id=2627435.2697055

118

[9] R. Arora and K. Livescu, “Multi-view Learning with Supervision for Transformed
Bottleneck Features,” in 2014 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), May 2014, pp. 2499–2503. [Online].
Available: https://doi.org/10.1109/ICASSP.2014.6854050

[10] Z.-J. Bai, R. H. Chan, and F. T. Luk, Principal Component Analysis for
Distributed Data Sets with Updating, Berlin, Heidelberg, 2005, pp. 471–483.
[Online]. Available: https://doi.org/10.1007/11573937 51

[11] B. T. Baker, A. Abrol, R. F. Silva, E. Damaraju, A. D. Sarwate, V. D. Calhoun,
and S. M. Plis, “Decentralized Temporal Independent Component Analysis:
Leveraging fMRI Data in Collaborative Settings,” NeuroImage, vol. 186, pp. 557 –
569, 2019. [Online]. Available: https://doi.org/10.1016/j.neuroimage.2018.10.072

[12] M.-F. Balcan, V. Kanchanapally, Y. Liang, and D. Woodruff, “Improved
Distributed Principal Component Analysis,” in Proceedings of the 27th
International Conference on Neural Information Processing Systems, ser.
NIPS’14, 2014, pp. 3113–3121. [Online]. Available: http://dl.acm.org/citation.
cfm?id=2969033.2969174

[13] V. Balcer and S. Vadhan, “Differential Privacy on Finite Computers,” in 9th
Innovations in Theoretical Computer Science Conference (ITCS 2018), ser.
Leibniz International Proceedings in Informatics (LIPIcs), vol. 94. Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018, pp.
43:1–43:21. [Online]. Available: https://doi.org/10.4230/LIPIcs.ITCS.2018.43

[14] B. Balle, J. Bell, A. Gascón, and K. Nissim, “The Privacy Blanket of the
Shuffle Model,” in Advances in Cryptology – CRYPTO 2019, A. Boldyreva
and D. Micciancio, Eds. Cham: Springer International Publishing, 2019, pp.
638–667. [Online]. Available: https://doi.org/10.1007/978-3-030-26951-7 22

[15] R. Bassily, K. Nissim, U. Stemmer, and A. Guha Thakurta, “Prac-
tical Locally Private Heavy Hitters,” in Advances in Neural Infor-
mation Processing Systems 30, I. Guyon, U. V. Luxburg, S. Ben-
gio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
Eds. Curran Associates, Inc., 2017, pp. 2288–2296. [Online]. Available:
http://papers.nips.cc/paper/6823-practical-locally-private-heavy-hitters.pdf

[16] R. Bassily, A. Smith, and A. Thakurta, “Private Empirical Risk Minimization:
Efficient Algorithms and Tight Error Bounds,” in Proceedings of the 2014 IEEE
55th Annual Symposium on Foundations of Computer Science, ser. FOCS ’14.
Washington, DC, USA: IEEE Computer Society, 2014, pp. 464–473. [Online].
Available: http://dx.doi.org/10.1109/FOCS.2014.56

[17] A. J. Bell and T. J. Sejnowski, “An Information-maximization Approach to
Blind Separation and Blind Deconvolution,” Neural Computation, vol. 7, no. 6,
pp. 1129–1159, 1995. [Online]. Available: http://dx.doi.org/10.1162/neco.1995.
7.6.1129

[18] A. Bhowmick, J. Duchi, J. Freudiger, G. Kapoor, , and R. Rogers., “Protection
Against Reconstruction and its Applications in Private Federated Learning,”

https://doi.org/10.1109/ICASSP.2014.6854050
https://doi.org/10.1007/11573937_51
https://doi.org/10.1016/j.neuroimage.2018.10.072
http://dl.acm.org/citation.cfm?id=2969033.2969174
http://dl.acm.org/citation.cfm?id=2969033.2969174
https://doi.org/10.4230/LIPIcs.ITCS.2018.43
https://doi.org/10.1007/978-3-030-26951-7_22
http://papers.nips.cc/paper/6823-practical-locally-private-heavy-hitters.pdf
http://dx.doi.org/10.1109/FOCS.2014.56
http://dx.doi.org/10.1162/neco.1995.7.6.1129
http://dx.doi.org/10.1162/neco.1995.7.6.1129

119

ArXiV, Tech. Rep. arXiv:1812.00984 [stat.ML], June 2018. [Online]. Available:
https://arxiv.org/abs/1812.00984

[19] A. Bittau, U. Erlingsson, P. Maniatis, I. Mironov, A. Raghunathan, D. Lie,
M. Rudominer, U. Kode, J. Tinnes, and B. Seefeld, “Prochlo: Strong Privacy
for Analytics in the Crowd,” in Proceedings of the 26th Symposium on Operating
Systems Principles, ser. SOSP ’17. New York, NY, USA: ACM, 2017, pp.
441–459. [Online]. Available: http://doi.acm.org/10.1145/3132747.3132769

[20] T. Bollerslev, “Generalized Autoregressive Conditional Heteroskedasticity,”
J Econometrics, vol. 31, pp. 307–327, 1986. [Online]. Available: http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.161.7380

[21] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel,
D. Ramage, A. Segal, and K. Seth, “Practical Secure Aggregation for Federated
Learning on User-Held Data,” CoRR, vol. abs/1611.04482, 2016. [Online].
Available: http://arxiv.org/abs/1611.04482

[22] ——, “Practical Secure Aggregation for Privacy-Preserving Machine Learning,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’17. New York, NY, USA: ACM, 2017, pp.
1175–1191. [Online]. Available: http://doi.acm.org/10.1145/3133956.3133982

[23] M. Borga, “Canonical Correlation A Tutorial,” 1999. [Online]. Available:
https://www.cs.cmu.edu/∼tom/10701 sp11/slides/CCA tutorial.pdf

[24] Y. L. Borgne, S. Raybaud, and G. Bontempi, “Distributed Principal Component
Analysis for Wireless Sensor Networks,” CoRR, vol. abs/1003.1967, 2010.
[Online]. Available: http://arxiv.org/abs/1003.1967

[25] L. Bottou, “On-line Learning in Neural Networks,” D. Saad, Ed. New York, NY,
USA: Cambridge University Press, 1998, ch. On-line Learning and Stochastic
Approximations, pp. 9–42. [Online]. Available: http://dl.acm.org/citation.cfm?
id=304710.304720

[26] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University
Press, 2004.

[27] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
Optimization and Statistical Learning via the Alternating Direction Method of
Multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122, Jan. 2011.
[Online]. Available: http://dx.doi.org/10.1561/2200000016

[28] R. C. Buck, “Nomographic Functions are Nowhere Dense,” Proceedings of the
American Mathematical Society, vol. 85, no. 2, pp. 195–199, June 1982. [Online].
Available: https://dx.doi.org/10.2307/2044280

[29] V. D. Calhoun, V. K. Potluru, R. Phlypo, R. F. Silva, B. A. Pearlmutter,
A. Caprihan, S. M. Plis, and T. Adalı, “Independent Component Analysis for
Brain fMRI Does Indeed Select for Maximal Independence,” PLoS ONE, vol. 8,
p. e73309, 2013. [Online]. Available: http://dx.doi.org/10.1371/journal.pone.
0073309

https://arxiv.org/abs/1812.00984
http://doi.acm.org/10.1145/3132747.3132769
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.161.7380
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.161.7380
http://arxiv.org/abs/1611.04482
http://doi.acm.org/10.1145/3133956.3133982
https://www.cs.cmu.edu/~tom/10701_sp11/slides/CCA_tutorial.pdf
http://arxiv.org/abs/1003.1967
http://dl.acm.org/citation.cfm?id=304710.304720
http://dl.acm.org/citation.cfm?id=304710.304720
http://dx.doi.org/10.1561/2200000016
https://dx.doi.org/10.2307/2044280
http://dx.doi.org/10.1371/journal.pone.0073309
http://dx.doi.org/10.1371/journal.pone.0073309

120

[30] V. Calhoun, T. Adali, N. Giuliani, J. Pekar, K. Kiehl, and G. Pearlson, “Method
for Multimodal Analysis of Independent Source Differences in Schizophrenia:
Combining Gray Matter Structural and Auditory Oddball Functional Data,”
Human Brain Mapping, vol. 27, no. 1, pp. 47 – 62, 2006. [Online]. Available:
http://dx.doi.org/10.1002/hbm.20166

[31] V. D. Calhoun and T. Adali, “Multisubject Independent Component Analysis
of fMRI: a Decade of Intrinsic Networks, Default Mode, and Neurodiagnostic
Discovery,” IEEE Reviews in Biomedical Engineering, vol. 5, pp. 60–73, 2012.
[Online]. Available: https://doi.org/10.1109/RBME.2012.2211076

[32] V. D. Calhoun, T. Adali, G. D. Pearlson, and J. Pekar, “A Method for Making
Group Inferences from Functional MRI Data Using Independent Component
Analysis,” Human Brain Mapping, vol. 14, no. 3, pp. 140–151, 2001. [Online].
Available: https://doi.org/10.1002/hbm.10044

[33] T. Caliński and J. Harabasz, “A Dendrite Method for Cluster Analysis,”
Communications in Statistics, vol. 3, no. 1, pp. 1–27, 1974. [Online]. Available:
https://doi.org/10.1080/03610927408827101

[34] J. D. Carroll and J.-J. Chang, “Analysis of Individual Differences in
Multidimensional Scaling via an n-way Generalization of “Eckart-Young”
Decomposition,” Psychometrika, vol. 35, no. 3, pp. 283–319, 1970. [Online].
Available: http://dx.doi.org/10.1007/BF02310791

[35] K. W. Carter, R. W. Francis, K. Carter, R. Francis, M. Bresnahan, M. Gissler,
T. Grønborg, R. Gross, N. Gunnes, G. Hammond et al., “ViPAR: a Software
Platform for the Virtual Pooling and Analysis of Research Data,” International
journal of epidemiology, vol. 45, no. 2, pp. 408–416, 2015. [Online]. Available:
https://doi.org/10.1093/ije/dyv193

[36] K. Chaudhuri and C. Monteleoni, “Privacy-Preserving Logistic Regression,” in
Advances in Neural Information Processing Systems 21, D. Koller, D. Schuur-
mans, Y. Bengio, and L. Bottou, Eds. Curran Associates, Inc., 2009, pp. 289–
296.

[37] K. Chaudhuri, S. M. Kakade, K. Livescu, and K. Sridharan, “Multi-view
Clustering via Canonical Correlation Analysis,” in Proc. of the 26th Annual Int.
Conf. on Machine Learning, ser. ICML ’09. ACM, 2009, pp. 129–136. [Online].
Available: https://doi.org/10.1145/1553374.1553391

[38] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate, “Differentially Private
Empirical Risk Minimization,” J. Mach. Learn. Res., vol. 12, pp. 1069–1109, Jul.
2011. [Online]. Available: http://dl.acm.org/citation.cfm?id=1953048.2021036

[39] K. L. Clarkson and D. P. Woodruff, “Low-Rank Approximation and Regression
in Input Sparsity Time,” J. ACM, vol. 63, no. 6, pp. 54:1–54:45, Jan. 2017.
[Online]. Available: http://doi.acm.org/10.1145/3019134

[40] P. Comon, “Independent Component Analysis, A New Concept?” Signal
Processing, vol. 36, no. 3, pp. 287 – 314, 1994. [Online]. Available:
http://dx.doi.org/10.1016/0165-1684(94)90029-9

http://dx.doi.org/10.1002/hbm.20166
https://doi.org/10.1109/RBME.2012.2211076
https://doi.org/10.1002/hbm.10044
https://doi.org/10.1080/03610927408827101
http://dx.doi.org/10.1007/BF02310791
https://doi.org/10.1093/ije/dyv193
https://doi.org/10.1145/1553374.1553391
http://dl.acm.org/citation.cfm?id=1953048.2021036
http://doi.acm.org/10.1145/3019134
http://dx.doi.org/10.1016/0165-1684(94)90029-9

121

[41] P. Comon, G. Golub, L.-H. Lim, and B. Mourrain, “Symmetric Tensors
and Symmetric Tensor Rank,” SIAM Journal on Matrix Analysis and
Applications, vol. 30, no. 3, pp. 1254–1279, 2008. [Online]. Available:
http://dx.doi.org/10.1137/060661569

[42] N. Correa, Y.-O. Li, T. Adali, and V. D. Calhoun, “Examining Associations
Between fMRI and EEG Data Using Canonical Correlation Analysis,” in
2008 5th IEEE International Symposium on Biomedical Imaging: From
Nano to Macro, May 2008, pp. 1251–1254. [Online]. Available: https:
//doi.org/10.1109/ISBI.2008.4541230

[43] N. M. Correa, Y. Li, T. Adali, and V. D. Calhoun, “Canonical Correlation
Analysis for Feature-Based Fusion of Biomedical Imaging Modalities and Its
Application to Detection of Associative Networks in Schizophrenia,” IEEE
Journal of Selected Topics in Signal Processing, vol. 2, no. 6, pp. 998–1007, Dec
2008. [Online]. Available: https://doi.org/10.1109/JSTSP.2008.2008265

[44] S. Dasgupta, “Learning Mixtures of Gaussians,” Found. of Comp. Sci., pp. 634 –
644, 1999. [Online]. Available: http://dl.acm.org/citation.cfm?id=795665.796496

[45] F. Deleus and M. M. V. Hulle, “Functional Connectivity Analysis of fMRI
Data Based on Regularized Multiset Canonical Correlation Analysis,” Journal of
Neuroscience Methods, vol. 197, no. 1, pp. 143 – 157, 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.jneumeth.2010.11.029

[46] B. Ding, J. Kulkarni, and S. Yekhanin, “Collecting Telemetry Data Privately,”
in Advances in Neural Information Processing Systems 30, I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
Eds. Curran Associates, Inc., 2017, pp. 3571–3580. [Online]. Available:
https://arxiv.org/abs/1712.01524

[47] J. Duchi and R. Rogers, “Lower Bounds for Locally Private Estimation via
Communication Complexity,” in Proceedings of the Thirty-Second Conference on
Learning Theory, ser. Proceedings of Machine Learning Research, A. Beygelzimer
and D. Hsu, Eds., vol. 99. PMLR, 25–28 Jun 2019, pp. 1161–1191. [Online].
Available: https://arxiv.org/abs/1902.00582

[48] C. Dwork and A. Roth, “The Algorithmic Foundations of Differential Privacy,”
Foundations and Trends in Theoretical Computer Science, vol. 9, no. 3-4, pp.
211–407, 2013. [Online]. Available: http://dx.doi.org/10.1561/0400000042

[49] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor, “Our Data,
Ourselves: Privacy Via Distributed Noise Generation,” in Advances in Cryptology
(EUROCRYPT 2006), vol. 4004. Saint Petersburg, Russia: Springer Verlag, May
2006, pp. 486–503. [Online]. Available: http://dx.doi.org/10.1007/11761679 29

[50] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating Noise
to Sensitivity in Private Data Analysis,” in Proc. of the Third Conf.
on Theory of Cryptography, 2006, pp. 265–284. [Online]. Available: http:
//dx.doi.org/10.1007/11681878 14

http://dx.doi.org/10.1137/060661569
https://doi.org/10.1109/ISBI.2008.4541230
https://doi.org/10.1109/ISBI.2008.4541230
https://doi.org/10.1109/JSTSP.2008.2008265
http://dl.acm.org/citation.cfm?id=795665.796496
http://dx.doi.org/10.1016/j.jneumeth.2010.11.029
https://arxiv.org/abs/1712.01524
https://arxiv.org/abs/1902.00582
http://dx.doi.org/10.1561/0400000042
http://dx.doi.org/10.1007/11761679_29
http://dx.doi.org/10.1007/11681878_14
http://dx.doi.org/10.1007/11681878_14

122

[51] C. Dwork, K. Talwar, A. Thakurta, and L. Zhang, “Analyze Gauss: Optimal
Bounds for Privacy-preserving Principal Component Analysis,” in Proceedings of
the 46th Annual ACM Symposium on Theory of Computing, 2014, pp. 11–20.
[Online]. Available: http://dx.doi.org/10.1145/2591796.2591883

[52] F. Eigner, A. Kate, M. Maffei, F. Pampaloni, and I. Pryvalov, “Differentially
Private Data Aggregation with Optimal Utility,” in Proceedings of the
30th Annual Computer Security Applications Conference, ser. ACSAC ’14.
New York, NY, USA: ACM, 2014, pp. 316–325. [Online]. Available:
https://doi.org/10.1145/2664243.2664263

[53] R. Engle, “Autoregressive Conditional Heteroscedasticity with Estimates of the
Variance of United Kingdom Inflation,” Econometrica, vol. 50, no. 4, pp.
987–1007, 1982. [Online]. Available: https://www.jstor.org/stable/1912773

[54] U. Erlingsson, V. Pihur, and A. Korolova, “RAPPOR: Randomized Aggregatable
Privacy-Preserving Ordinal Response,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, ser. CCS
’14. New York, NY, USA: ACM, 2014, pp. 1054–1067. [Online]. Available:
http://doi.acm.org/10.1145/2660267.2660348

[55] Ú. Erlingsson, V. Feldman, I. Mironov, A. Raghunathan, K. Talwar, and
A. Thakurta, “Amplification by Shuffling: From Local to Central Differential
Privacy via Anonymity,” in Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms. SIAM, 2019, pp. 2468–2479. [Online].
Available: https://doi.org/10.1137/1.9781611975482.151

[56] S. A. Esmaeili and F. Huang, “An end-to-end Differentially Private
Latent Dirichlet Allocation Using a Spectral Algorithm,” ArXiv e-prints,
May 2018. [Online]. Available: https://ui.adsabs.harvard.edu/link gateway/
2018arXiv180510341E/arxiv:1805.10341

[57] D. Feldman, M. Schmidt, and C. Sohler, “Turning Big Data into Tiny
Data: Constant-size Coresets for K-means, PCA and Projective Clustering,”
in Proceedings of the Twenty-fourth Annual ACM-SIAM Symposium on
Discrete Algorithms, ser. SODA ’13, 2013, pp. 1434–1453. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2627817.2627920

[58] S. Gade and N. H. Vaidya, “Private Learning on Networks,” CoRR, vol.
abs/1612.05236, 2016. [Online]. Available: http://arxiv.org/abs/1612.05236

[59] A. Gaye, Y. Marcon, J. Isaeva, P. LaFlamme, A. Turner, E. M. Jones,
J. Minion, A. W. Boyd, C. J. Newby, M.-L. Nuotio et al., “DataSHIELD:
Taking the Analysis to the Data, Not the Data to the Analysis,” International
Journal of Epidemiology, vol. 43, no. 6, pp. 1929–1944, 2014. [Online]. Available:
https://doi.org/10.1093/ije/dyu188

[60] Q. Geng, P. Kairouz, S. Oh, and P. Viswanath, “The Staircase Mechanism
in Differential Privacy,” IEEE Journal of Selected Topics in Signal
Processing, vol. 9, no. 7, pp. 1176–1184, 2015. [Online]. Available:
https://doi.org/10.1109/JSTSP.2015.2425831

http://dx.doi.org/10.1145/2591796.2591883
https://doi.org/10.1145/2664243.2664263
https://www.jstor.org/stable/1912773
http://doi.acm.org/10.1145/2660267.2660348
https://doi.org/10.1137/1.9781611975482.151
https://ui.adsabs.harvard.edu/link_gateway/2018arXiv180510341E/arxiv:1805.10341
https://ui.adsabs.harvard.edu/link_gateway/2018arXiv180510341E/arxiv:1805.10341
http://dl.acm.org/citation.cfm?id=2627817.2627920
http://arxiv.org/abs/1612.05236
https://doi.org/10.1093/ije/dyu188
https://doi.org/10.1109/JSTSP.2015.2425831

123

[61] M. Goldenbaum and S. Stanczak, “Robust Analog Function Computation via
Wireless Multiple-Access Channels,” IEEE Transactions on Communications,
vol. 61, no. 9, pp. 3863–3877, September 2013. [Online]. Available:
https://dx.doi.org/10.1109/TCOMM.2013.072913.120815

[62] M. Goldenbaum, H. Boche, and S. Stańczak, “Harnessing Interference for
Analog Function Computation in Wireless Sensor Networks,” IEEE Transactions
on Signal Processing, vol. 61, no. 20, pp. 4893–4906, October 2013. [Online].
Available: https://dx.doi.org/10.1109/TSP.2013.2272921

[63] G. H. Golub and H. Zha, “The Canonical Correlations of Matrix Pairs and
Their Numerical Computation,” Stanford, CA, USA, Tech. Rep., 1992. [Online].
Available: https://dl.acm.org/citation.cfm?id=891630

[64] S. Goryczka, L. Xiong, and V. Sunderam, “Secure Multiparty Aggregation
with Differential Privacy: A Comparative Study,” in Proceedings of the Joint
EDBT/ICDT 2013 Workshops, ser. EDBT ’13. New York, NY, USA: ACM, 2013,
pp. 155–163. [Online]. Available: http://doi.acm.org/10.1145/2457317.2457343

[65] N. Halko, P. G. Martinsson, and J. A. Tropp, “Finding Structure with
Randomness: Probabilistic Algorithms for Constructing Approximate Matrix
Decompositions,” SIAM Rev., vol. 53, no. 2, pp. 217–288, May 2011. [Online].
Available: http://dx.doi.org/10.1137/090771806

[66] S. Han, U. Topcu, and G. J. Pappas, “Differentially Private Distributed
Constrained Optimization,” IEEE Transactions on Automatic Control, vol. 62,
no. 1, pp. 50–64, Jan 2017. [Online]. Available: https://doi.org/10.1109/TAC.
2016.2541298

[67] D. R. Hardoon, S. R. Szedmak, and J. R. Shawe-taylor, “Canonical Correlation
Analysis: An Overview with Application to Learning Methods,” Neural
Comput., vol. 16, no. 12, pp. 2639–2664, Dec. 2004. [Online]. Available:
https://doi.org/10.1162/0899766042321814

[68] R. A. Harshman, “Foundations of the PARAFAC Procedure: Models
and Conditions for an ’Explanatory’ Multi-modal Factor Analysis,” UCLA
Working Papers in Phonetics, vol. 16, no. 1, 1970. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.144.5652

[69] M. Heikkilä, E. Lagerspetz, S. Kaski, K. Shimizu, S. Tarkoma, and A. Honkela,
“Differentially Private Bayesian Learning on Distributed Data,” in Advances
in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds.
Curran Associates, Inc., 2017, pp. 3229–3238. [Online]. Available: https:
//ui.adsabs.harvard.edu/link gateway/2017arXiv170301106H/arxiv:1703.01106

[70] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed. New York, NY, USA:
Cambridge University Press, 2012.

[71] H. Hotelling, “Relations Between Two Sets of Variates,” Biometrika, vol. 28,
no. 3/4, pp. 321–377, 1936. [Online]. Available: https://www.jstor.org/stable/
2333955

https://dx.doi.org/10.1109/TCOMM.2013.072913.120815
https://dx.doi.org/10.1109/TSP.2013.2272921
https://dl.acm.org/citation.cfm?id=891630
http://doi.acm.org/10.1145/2457317.2457343
http://dx.doi.org/10.1137/090771806
https://doi.org/10.1109/TAC.2016.2541298
https://doi.org/10.1109/TAC.2016.2541298
https://doi.org/10.1162/0899766042321814
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.144.5652
https://ui.adsabs.harvard.edu/link_gateway/2017arXiv170301106H/arxiv:1703.01106
https://ui.adsabs.harvard.edu/link_gateway/2017arXiv170301106H/arxiv:1703.01106
https://www.jstor.org/stable/2333955
https://www.jstor.org/stable/2333955

124

[72] D. Hsu, S. M. Kakade, and T. Zhang, “A Spectral Algorithm for
Learning Hidden Markov Models,” Journal of Computer and System
Sciences, vol. 78, no. 5, pp. 1460 – 1480, 2012. [Online]. Available:
http://dx.doi.org/10.1016/j.jcss.2011.12.025

[73] D. J. Hsu and S. M. Kakade, “Learning Mixtures of Spherical Gaussians:
Moment Methods and Spectral Decompositions,” Proceedings of the 4th
Conference on Innovations in Theoretical Computer Science, pp. 11–20, 2013.
[Online]. Available: http://doi.acm.org/10.1145/2422436.2422439

[74] F. Huang, S. Matusevych, A. Anandkumar, N. Karampatziakis, and P. Mineiro,
“Distributed Latent Dirichlet Allocation via Tensor Factorization,” in NIPS
Optimization Workshop, 2014. [Online]. Available: http://www.opt-ml.org/
papers/opt2014 submission 15.pdf

[75] Z. Huang, S. Mitra, and N. Vaidya, “Differentially Private Distributed
Optimization,” in Proceedings of the 2015 International Conference on Distributed
Computing and Networking, ser. ICDCN ’15. New York, NY, USA: ACM, 2015,
pp. 4:1–4:10. [Online]. Available: http://doi.acm.org/10.1145/2684464.2684480

[76] H. Imtiaz and A. D. Sarwate, “Differentially-Private Canonical Correlation
Analysis,” in 2017 IEEE Global Conference on Signal and Information
Processing (GlobalSIP), Nov 2017, pp. 283–287. [Online]. Available: https:
//doi.org/10.1109/GlobalSIP.2017.8308649

[77] ——, “Distributed Differentially-Private Algorithms for Matrix and Tensor
Factorization,” IEEE Journal of Selected Topics in Signal Processing,
vol. 12, no. 6, pp. 1449–1464, December 2018. [Online]. Available:
https://doi.org/10.1109/JSTSP.2018.2877842

[78] ——, “Differentially Private Distributed Principal Component Analysis,”
in 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), April 2018, pp. 2206–2210. [Online]. Available: https:
//doi.org/10.1109/ICASSP.2018.8462519

[79] ——, “Improved Algorithms for Differentially Private Orthogonal Tensor
Decomposition,” in 2018 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), April 2018, pp. 2201–2205. [Online]. Available:
https://doi.org/10.1109/ICASSP.2018.8461303

[80] H. Imtiaz, R. Silva, B. Baker, S. M. Plis, A. D. Sarwate, and
V. Calhoun, “Privacy-Preserving Source Separation for Distributed Data using
Independent Component Analysis,” in 2016 Annual Conference on Information
Science and Systems (CISS), March 2016, pp. 123–127. [Online]. Available:
https://dx.doi.org/10.1109/CISS.2016.7460488

[81] H. Imtiaz, J. Mohammadi, and A. D. Sarwate, “Distributed Differentially
Private Computation of Functions with Correlated Noise,” CoRR, 2019. [Online].
Available: http://arxiv.org/abs/1904.10059

http://dx.doi.org/10.1016/j.jcss.2011.12.025
http://doi.acm.org/10.1145/2422436.2422439
http://www.opt-ml.org/papers/opt2014_submission_15.pdf
http://www.opt-ml.org/papers/opt2014_submission_15.pdf
http://doi.acm.org/10.1145/2684464.2684480
https://doi.org/10.1109/GlobalSIP.2017.8308649
https://doi.org/10.1109/GlobalSIP.2017.8308649
https://doi.org/10.1109/JSTSP.2018.2877842
https://doi.org/10.1109/ICASSP.2018.8462519
https://doi.org/10.1109/ICASSP.2018.8462519
https://doi.org/10.1109/ICASSP.2018.8461303
https://dx.doi.org/10.1109/CISS.2016.7460488
http://arxiv.org/abs/1904.10059

125

[82] Z. Ji, Z. C. Lipton, and C. Elkan, “Differential Privacy and Machine Learning:
a Survey and Review,” CoRR, vol. abs/1412.7584, 2014. [Online]. Available:
http://arxiv.org/abs/1412.7584

[83] L. Jing, “Differentially Private M-estimators,” in Proceedings of the 24th
International Conference on Neural Information Processing Systems, ser.
NIPS’11. USA: Curran Associates Inc., 2011, pp. 361–369. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2986459.2986500

[84] P. Kairouz, S. Oh, and P. Viswanath, “Secure Multi-party Differential
Privacy,” in Advances in Neural Information Processing Systems 28,
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
Eds. Curran Associates, Inc., 2015, pp. 2008–2016. [Online]. Available:
https://papers.nips.cc/paper/6004-secure-multi-party-differential-privacy.pdf

[85] R. Kannan, H. Salmasian, and S. Vempala, “The Spectral Method for General
Mixture Models,” in Int. Conf. on Computational Learning Theory. Springer,
2005, pp. 444–457. [Online]. Available: https://doi.org/10.1007/11503415 3

[86] T. G. Kolda, “Symmetric Orthogonal Tensor Decomposition is Trivial,” in eprint
arXiv:1503.01375, 2015. [Online]. Available: https://arxiv.org/abs/1503.01375

[87] T. G. Kolda and B. W. Bader, “Tensor Decompositions and Applications,”
SIAM REVIEW, vol. 51, no. 3, pp. 455–500, 2009. [Online]. Available:
http://dx.doi.org/10.1137/07070111X

[88] A. Kolmogorov, “On the Representation of Continuous Functions of Many
Variables by Superposition of Continuous Functions of one Variable and Addition
(in Russian),” Doklady Akademii Nauk, vol. 114, no. 5, pp. 953–956, 1957.
[Online]. Available: http://mi.mathnet.ru/eng/dan22050

[89] L. Lathauwer, B. D. Moor, and J. Vandewalle, “On the Best Rank-1 and
Rank-(R1 ,R2 ,. . .,RN) Approximation of Higher-Order Tensors,” SIAM J.
Matrix Anal. Appl., vol. 21, no. 4, pp. 1324–1342, Mar. 2000. [Online]. Available:
http://dx.doi.org/10.1137/S0895479898346995

[90] J. Le Ny and M. Mohammady, “Differentially Private MIMO Filtering for Event
Streams,” IEEE Transactions on Automatic Control, vol. 63, no. 1, pp. 145–157,
Jan 2018. [Online]. Available: https://doi.org/10.1109/TAC.2017.2713643

[91] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based Learning
Applied to Document Recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp.
2278–2324, Nov 1998. [Online]. Available: http://dx.doi.org/10.1109/5.726791

[92] C. Li, P. Zhou, L. Xiong, Q. Wang, and T. Wang, “Differentially
Private Distributed Online Learning,” IEEE Transactions on Knowledge and
Data Engineering, vol. PP, no. 99, pp. 1–1, 2018. [Online]. Available:
https://doi.org/10.1109/TKDE.2018.2794384

[93] Y. O. Li, W. Wang, T. Adali, and V. D. Calhoun, “CCA for Joint
Blind Source Separation of Multiple Datasets with Application to Group
fMRI Analysis,” in 2008 IEEE International Conference on Acoustics, Speech

http://arxiv.org/abs/1412.7584
http://dl.acm.org/citation.cfm?id=2986459.2986500
https://papers.nips.cc/paper/6004-secure-multi-party-differential-privacy.pdf
https://doi.org/10.1007/11503415_3
https://arxiv.org/abs/1503.01375
http://dx.doi.org/10.1137/07070111X
http://mi.mathnet.ru/eng/dan22050
http://dx.doi.org/10.1137/S0895479898346995
https://doi.org/10.1109/TAC.2017.2713643
http://dx.doi.org/10.1109/5.726791
https://doi.org/10.1109/TKDE.2018.2794384

126

and Signal Processing, March 2008, pp. 1837–1840. [Online]. Available:
https://doi.org/10.1109/ICASSP.2008.4517990

[94] Y. O. Li, T. Adali, W. Wang, and V. D. Calhoun, “Joint Blind Source
Separation by Multiset Canonical Correlation Analysis,” IEEE Transactions on
Signal Processing, vol. 57, no. 10, pp. 3918–3929, Oct 2009. [Online]. Available:
https://doi.org/10.1109/TSP.2009.2021636

[95] Y. Liang, M.-F. Balcan, and V. Kanchanapally, “Distributed PCA and
k-Means Clustering.” [Online]. Available: http://www.cs.cmu.edu/∼ninamf/
papers/distributedPCAandCoresets.pdf

[96] M. Lichman, “UCI Machine Learning Repository,” 2013. [Online]. Available:
http://archive.ics.uci.edu/ml

[97] K. Ligett, S. Neel, A. Roth, B. Waggoner, and S. Z. Wu, “Accuracy First: Se-
lecting a Differential Privacy Level for Accuracy Constrained ERM,” in Advances
in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Ben-
gio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds. Curran
Associates, Inc., 2017, pp. 2563–2573.

[98] S. Limmer, J. Mohammadi, and S. Stańczak, “A Simple Algorithm
for Approximation by Nomographic Functions,” in Proceedings of the
Fifty-third Annual Allerton Conference on Communication, Control, and
Computation, September 25 – October 2 2015, pp. 453–458. [Online]. Available:
http://arxiv.org/abs/1504.05474

[99] J. Liu and V. Calhoun, “Parallel Independent Component Analysis for
Multimodal Analysis: Application to fMRI and EEG Data,” in 4th IEEE
International Symposium on Biomedical Imaging: From Nano to Macro, April
2007, pp. 1028–1031. [Online]. Available: http://dx.doi.org/10.1109/ISBI.2007.
357030

[100] A. Machanavajjhala, D. Kifer, J. Abowd, J. Gehrke, and L. Vilhuber,
“Privacy: Theory Meets Practice on the Map,” in 2008 IEEE 24th International
Conference on Data Engineering, April 2008, pp. 277–286. [Online]. Available:
https://doi.org/10.1109/ICDE.2008.4497436

[101] S. V. Macua, P. Belanovic, and S. Zazo, “Consensus-based Distributed
Principal Component Analysis in Wireless Sensor Networks,” in 2010
IEEE 11th International Workshop on Signal Processing Advances in
Wireless Communications (SPAWC), June 2010, pp. 1–5. [Online]. Available:
http://dx.doi.org/10.1109/SPAWC.2010.5671089

[102] S. Malluri and V. K. Pamula, “Gaussian Q-function and its Approximations,” in
Communication Systems and Network Technologies (CSNT), 2013 International
Conference on. IEEE, 2013, pp. 74–77.

[103] A. W. Marshall, l. Olkin, and B. C. Arnold, Inequalities: Theory of Majorization
and Its Applications. Springer-Verlag New York, 1979.

https://doi.org/10.1109/ICASSP.2008.4517990
https://doi.org/10.1109/TSP.2009.2021636
http://www.cs.cmu.edu/~ninamf/papers/distributedPCAandCoresets.pdf
http://www.cs.cmu.edu/~ninamf/papers/distributedPCAandCoresets.pdf
http://archive.ics.uci.edu/ml
http://arxiv.org/abs/1504.05474
http://dx.doi.org/10.1109/ISBI.2007.357030
http://dx.doi.org/10.1109/ISBI.2007.357030
https://doi.org/10.1109/ICDE.2008.4497436
http://dx.doi.org/10.1109/SPAWC.2010.5671089

127

[104] U. Maulik and S. Bandyopadhyay, “Performance Evaluation of Some Clustering
Algorithms and Validity Indices,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 24, no. 12, pp. 1650–1654, Dec 2002. [Online].
Available: https://doi.org/10.1109/TPAMI.2002.1114856

[105] F. McSherry and K. Talwar, “Mechanism Design via Differential Privacy,”
in Foundations of Computer Science, 2007. FOCS ’07. 48th Annual
IEEE Symposium on, Oct 2007, pp. 94–103. [Online]. Available: https:
//doi.org/10.1109/FOCS.2007.66

[106] I. Mironov, “On Significance of the Least Significant Bits for Differential
Privacy,” in Proceedings of the 2012 ACM Conference on Computer and
Communications Security, ser. CCS ’12. New York, NY, USA: ACM, 2012, pp.
650–661. [Online]. Available: http://doi.acm.org/10.1145/2382196.2382264

[107] ——, “Rényi Differential Privacy,” CoRR, vol. abs/1702.07476, 2017. [Online].
Available: http://arxiv.org/abs/1702.07476

[108] D. K. Molzahn, F. Dörfler, H. Sandberg, S. H. Low, S. Chakrabarti,
R. Baldick, and J. Lavaei, “A Survey of Distributed Optimization and
Control Algorithms for Electric Power Systems,” IEEE Transactions on
Smart Grid, vol. 8, no. 6, pp. 2941–2962, Nov 2017. [Online]. Available:
https://doi.org/10.1109/TSG.2017.2720471

[109] A. Narayanan and V. Shmatikov, “How To Break Anonymity of the
Netflix Prize Dataset,” CoRR, vol. abs/cs/0610105, 2006. [Online]. Available:
http://arxiv.org/abs/cs/0610105

[110] B. Nazer and M. Gastpar, “Computation Over Multiple-Access Channels,” IEEE
Transactions on Information Theory, vol. 53, no. 10, pp. 3498–3516, Oct 2007.
[Online]. Available: https://doi.org/10.1109/TIT.2007.904785

[111] A. Nedic and A. Ozdaglar, “Distributed Subgradient Methods for Multi-Agent
Optimization,” IEEE Transactions on Automatic Control, vol. 54, no. 1, pp.
48–61, Jan 2009. [Online]. Available: https://doi.org/10.1109/TAC.2008.2009515

[112] M. R. Network, “Group ICA of EEG Toolbox.” [Online]. Available:
http://mialab.mrn.org/software/eegift/index.html

[113] ——, “fMRI Simulation Toolbox.” [Online]. Available: http://mialab.mrn.org/
software/simtb/index.html

[114] K. Nordhausen, E. Ollila, and H. Oja, “On the Performance Indices of ICA
and Blind Source Separation,” in Proceedings of the 12th IEEE International
Workshop on Signal Processing Advances in Wireless Communications (SPAWC),
June 2011, pp. 486–490. [Online]. Available: http://dx.doi.org/10.1109/SPAWC.
2011.5990458

[115] E. Nozari, P. Tallapragada, and J. Cortés, “Differentially Private Distributed
Convex Optimization via Objective Perturbation,” in 2016 American Control
Conference (ACC), July 2016, pp. 2061–2066. [Online]. Available: https:
//doi.org/10.1109/ACC.2016.7525222

https://doi.org/10.1109/TPAMI.2002.1114856
https://doi.org/10.1109/FOCS.2007.66
https://doi.org/10.1109/FOCS.2007.66
http://doi.acm.org/10.1145/2382196.2382264
http://arxiv.org/abs/1702.07476
https://doi.org/10.1109/TSG.2017.2720471
http://arxiv.org/abs/cs/0610105
https://doi.org/10.1109/TIT.2007.904785
https://doi.org/10.1109/TAC.2008.2009515
http://mialab.mrn.org/software/eegift/index.html
http://mialab.mrn.org/software/simtb/index.html
http://mialab.mrn.org/software/simtb/index.html
http://dx.doi.org/10.1109/SPAWC.2011.5990458
http://dx.doi.org/10.1109/SPAWC.2011.5990458
https://doi.org/10.1109/ACC.2016.7525222
https://doi.org/10.1109/ACC.2016.7525222

128

[116] M. Ohlson, M. R. Ahmad, and D. von Rosen, “The Multilinear Normal
Distribution: Introduction and Some Basic Properties,” Journal of Multivariate
Analysis, vol. 113, pp. 37 – 47, 2013. [Online]. Available: http://dx.doi.org/10.
1016/j.jmva.2011.05.015

[117] M. Pathak, S. Rane, and B. Raj, “Multiparty Differential Privacy via Aggregation
of Locally Trained Classifiers,” in Advances in Neural Information Processing
Systems 23, J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and
A. Culotta, Eds. Curran Associates, Inc., 2010, pp. 1876–1884.

[118] V. Pihur, “The Podium Mechanism: Improving on the Laplace and
Staircase Mechanisms,” CoRR, vol. abs/1905.00191, 2019. [Online]. Available:
http://arxiv.org/abs/1905.00191

[119] S. M. Plis, A. D. Sarwate, D. Wood, C. Dieringer, D. Landis, C. Reed,
S. R. Panta, J. A. Turner, J. M. Shoemaker, K. W. Carter, P. Thompson,
K. Hutchison, and V. D. Calhoun, “COINSTAC: A Privacy Enabled Model
and Prototype for Leveraging and Processing Decentralized Brain Imaging
Data,” Frontiers in Neuroscience, vol. 10, p. 365, 2016. [Online]. Available:
https://doi.org/10.3389/fnins.2016.00365

[120] A. Rajkumar and S. Agarwal, “A Differentially Private Stochastic Gradient
Descent Algorithm for Multiparty Classification,” in Artificial Intelligence and
Statistics, 2012, pp. 933–941.

[121] W. Rudin, Principles of Mathematical Analysis. McGraw-Hill Higher
Education, 1976. [Online]. Available: https://www.mheducation.com/highered/
product/principles-mathematical-analysis-rudin/M007054235X.html

[122] A. Shamir, “How to Share a Secret,” Commun. ACM, vol. 22, no. 11, pp. 612–613,
Nov. 1979. [Online]. Available: http://doi.acm.org/10.1145/359168.359176

[123] Y. Shoukry, K. Gatsis, A. Alanwar, G. J. Pappas, S. A. Seshia,
M. Srivastava, and P. Tabuada, “Privacy-Aware Quadratic Optimization
using Partially Homomorphic Encryption,” in 2016 IEEE 55th Conference on
Decision and Control (CDC), Dec 2016, pp. 5053–5058. [Online]. Available:
https://doi.org/10.1109/CDC.2016.7799042

[124] M. Singulla, M. R. Ahmad, and D. von Rosen, “More on the Kronecker
Structured Covariance Matrix,” Communications in Statistics - Theory and
Methods, vol. 41, no. 13-14, pp. 2512–2523, 2012. [Online]. Available:
http://dx.doi.org/10.1080/03610926.2011.615971

[125] A. Smith, “Privacy-preserving Statistical Estimation with Optimal Convergence
Rates,” in Proceedings of the Forty-third Annual ACM Symposium on Theory of
Computing, ser. STOC ’11. New York, NY, USA: ACM, 2011, pp. 813–822.
[Online]. Available: http://doi.acm.org/10.1145/1993636.1993743

[126] J. So, B. Guler, A. Salman Avestimehr, and P. Mohassel, “CodedPrivateML:
A Fast and Privacy-Preserving Framework for Distributed Machine Learning,”
arXiv e-prints, Feb 2019. [Online]. Available: http://arxiv.org/abs/1902.00641

http://dx.doi.org/10.1016/j.jmva.2011.05.015
http://dx.doi.org/10.1016/j.jmva.2011.05.015
http://arxiv.org/abs/1905.00191
https://doi.org/10.3389/fnins.2016.00365
https://www.mheducation.com/highered/product/principles-mathematical-analysis-rudin/M007054235X.html
https://www.mheducation.com/highered/product/principles-mathematical-analysis-rudin/M007054235X.html
http://doi.acm.org/10.1145/359168.359176
https://doi.org/10.1109/CDC.2016.7799042
http://dx.doi.org/10.1080/03610926.2011.615971
http://doi.acm.org/10.1145/1993636.1993743
http://arxiv.org/abs/1902.00641

129

[127] S. Song, K. Chaudhuri, and A. D. Sarwate, “Stochastic Gradient Descent
with Differentially Private Updates,” in 2013 IEEE Global Conference on
Signal and Information Processing, Dec 2013, pp. 245–248. [Online]. Available:
https://doi.org/10.1109/GlobalSIP.2013.6736861

[128] D. A. Sprecher, “On Computational Algorithms for Real-valued Continuous
Functions of Several Variables,” Neural Networks, vol. 59, pp. 16–22, 2014.
[Online]. Available: https://doi.org/10.1016/j.neunet.2014.05.015

[129] ——, “A Representation Theorem for Continuous Functions of Several
Variables,” Proceedings of the American Mathematical Society, vol. 16, no. 2, pp.
200–203, April 1965. [Online]. Available: http://dx.doi.org/10.2307/2033845

[130] G. W. Stewart, “On the Early History of the Singular Value Decomposition,”
SIAM Rev., vol. 35, no. 4, pp. 551–566, Dec. 1993. [Online]. Available:
http://dx.doi.org/10.1137/1035134

[131] J. Sui, T. Adalı, G. D. Pearlson, and V. D. Calhoun, “An ICA-based Method for
the Identification of Optimal fMRI Features and Components using Combined
Group-discriminative Techniques,” NeuroImage, vol. 46, no. 1, pp. 73 – 86, 2009.
[Online]. Available: http://dx.doi.org/10.1016/j.neuroimage.2009.01.026

[132] A. T. Suresh, F. X. Yu, H. B. McMahan, and S. Kumar, “Distributed Mean
Estimation with Limited Communication,” CoRR, vol. abs/1611.00429, 2016.
[Online]. Available: http://arxiv.org/abs/1611.00429

[133] L. Sweeney, “Only You, Your Doctor, and Many Others May Know,”
Technology Science, vol. 2015092903, no. 9, p. 29, 2015. [Online]. Available:
https://techscience.org/a/2015092903

[134] J. Tang, A. Korolova, X. Bai, X. Wang, and X. Wang, “Privacy loss
in Apple’s implementation of differential privacy on MacOS 10.12,” ArXiV,
Tech. Rep. arXiv:1709.02753 [cs.CR], September 2017. [Online]. Available:
https://arxiv.org/abs/1709.02753

[135] P. M. Thompson, O. A. Andreassen, A. Arias-Vasquez, C. E. Bearden, P. S.
Boedhoe, R. M. Brouwer, R. L. Buckner, J. K. Buitelaar, K. B. Bulayeva, D. M.
Cannon et al., “ENIGMA and the Individual: Predicting Factors that Affect the
Brain in 35 Countries Worldwide,” Neuroimage, vol. 145, pp. 389–408, 2017.
[Online]. Available: https://doi.org/10.1016/j.neuroimage.2015.11.057

[136] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed Asynchronous
Deterministic and Stochastic Gradient Optimization Algorithms,” IEEE
Transactions on Automatic Control, vol. 31, no. 9, pp. 803–812, Sep 1986.
[Online]. Available: https://doi.org/10.1109/TAC.1986.1104412

[137] L. R. Tucker, “Some Mathematical Notes on Three-mode Factor Analysis,”
Psychometrika, vol. 31, no. 3, pp. 279–311, 1966. [Online]. Available:
http://dx.doi.org/10.1007/BF02289464

[138] C. A. Uribe, S. Lee, A. Gasnikov, and A. Nedić, “Optimal Algorithms for
Distributed Optimization,” arXiv preprint arXiv:1712.00232, 2017. [Online].

https://doi.org/10.1109/GlobalSIP.2013.6736861
https://doi.org/10.1016/j.neunet.2014.05.015
http://dx.doi.org/10.2307/2033845
http://dx.doi.org/10.1137/1035134
http://dx.doi.org/10.1016/j.neuroimage.2009.01.026
http://arxiv.org/abs/1611.00429
https://techscience.org/a/2015092903
https://arxiv.org/abs/1709.02753
https://doi.org/10.1016/j.neuroimage.2015.11.057
https://doi.org/10.1109/TAC.1986.1104412
http://dx.doi.org/10.1007/BF02289464

130

Available: https://ui.adsabs.harvard.edu/link gateway/2017arXiv171200232U/
arxiv:1712.00232

[139] S. Vempala and G. Wang, “Special Issue on FOCS 2002 A Spectral
Algorithm for Learning Mixture Models,” Journal of Computer and System
Sciences, vol. 68, no. 4, pp. 841 – 860, 2004. [Online]. Available:
http://dx.doi.org/10.1016/j.jcss.2003.11.008

[140] D. Wang, M. Ye, and J. Xu, “Differentially Private Empirical Risk Minimization
Revisited: Faster and More General,” in Advances in Neural Information
Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, Eds. Curran Associates, Inc.,
2017, pp. 2719–2728. [Online]. Available: http://arxiv.org/abs/1802.05251

[141] Y. Wang and A. Anandkumar, “Online and Differentially-Private Tensor
Decomposition,” in Proceedings of the 30th International Conference on Neural
Information Processing Systems, ser. NIPS’16. USA: Curran Associates Inc.,
2016, pp. 3539–3547. [Online]. Available: http://dl.acm.org/citation.cfm?id=
3157382.3157493

[142] J. R. Westbury, “X-ray Microbeam Speech Production Database User’s
Handbook: Madison,” WI: Waisman Center, University of Wisconsin,
1994. [Online]. Available: http://www.haskins.yale.edu/staff/gafos downloads/
ubdbman.pdf

[143] J. Zhang, Z. Zhang, X. Xiao, Y. Yang, and M. Winslett, “Functional
Mechanism: Regression Analysis Under Differential Privacy,” Proc. VLDB
Endow., vol. 5, no. 11, pp. 1364–1375, Jul. 2012. [Online]. Available:
http://dx.doi.org/10.14778/2350229.2350253

[144] J. Zhu, C. Xu, J. Guan, and D. O. Wu, “Differentially Private Distributed
Online Algorithms Over Time-Varying Directed Networks,” IEEE Transactions
on Signal and Information Processing over Networks, vol. 4, no. 1, pp. 4–17,
March 2018. [Online]. Available: https://doi.org/10.1109/TSIPN.2018.2797806

https://ui.adsabs.harvard.edu/link_gateway/2017arXiv171200232U/arxiv:1712.00232
https://ui.adsabs.harvard.edu/link_gateway/2017arXiv171200232U/arxiv:1712.00232
http://dx.doi.org/10.1016/j.jcss.2003.11.008
http://arxiv.org/abs/1802.05251
http://dl.acm.org/citation.cfm?id=3157382.3157493
http://dl.acm.org/citation.cfm?id=3157382.3157493
http://www.haskins.yale.edu/staff/gafos_downloads/ubdbman.pdf
http://www.haskins.yale.edu/staff/gafos_downloads/ubdbman.pdf
http://dx.doi.org/10.14778/2350229.2350253
https://doi.org/10.1109/TSIPN.2018.2797806

	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	Introduction
	Motivation
	Major Contributions
	Organization of the Thesis

	Background and Preliminaries
	Related Works
	Principal Component Analysis
	Orthogonal Tensor Decomposition
	Decentralized Joint Independent Component Analysis
	Canonical Correlation Analysis
	General Function Computation

	Notation and Definitions
	Privacy Definitions
	Tensor Preliminaries
	Orthogonal Tensor Decomposition
	Miscellaneous Definitions

	Correlated Noise Scheme
	Decentralized Data Setting
	Conventional Approach to Decentralized DP Computations
	Proposed Scheme: CAPE
	Trust/Collusion Model
	Correlated Noise
	Detailed Description of CAPE Protocol
	Utility Analysis
	Communication Overhead
	Scope of CAPE
	Unequal Sample Sizes at Sites

	Experimental Results

	Improved Decentralized Differentially Private Principal Component Analysis
	Decentralized Principal Component Analysis
	Proposed capePCA Algorithm
	Performance Gain with Correlated Noise
	Theoretical Performance Guarantee
	Communication Cost

	Experimental Results
	Dependence on privacy parameter
	Dependence on number of samples N_s
	Dependence on privacy parameter

	Decentralized Differentially Private Orthogonal Tensor Decomposition
	Applications of Orthogonal Tensor Decomposition
	Single Topic Model (STM)
	Mixture of Gaussians (MOG)
	Orthogonal Decomposition of M_3

	Differentially Private OTD
	Proposed capeAGN Algorithm
	Performance Gain with Correlated Noise
	Theoretical Performance Guarantee
	Communication Cost

	Experimental Results
	Performance variation in the MOG setup
	Performance variation in the STM setup

	Decentralized Differentially Private Joint Independent Component Analysis
	The ICA Model
	Improved Differentially Private djICA
	Privacy Analysis of capeDJICA
	Privacy Analysis using Rényi Differential Privacy
	Privacy Accounting using Moments Accountant

	Performance Analysis of capeDJICA
	Performance Gain with Correlated Noise
	Convergence of capeDJICA Algorithm
	Communication Cost

	Experimental Results
	Performance Variation with privacy parameter
	Performance Variation with number of subjects M
	Performance Variation with privacy parameter
	Reconstructed Spatial Maps

	Decentralized Differentially Private Canonical Correlation Analysis
	Decentralized Canonical Correlation Analysis
	Proposed Decentralized Differentially Private CCA
	Performance gain with correlated noise
	Communication cost

	Experimental Results
	Privacy-utility trade-offs
	Learning rates and impact of

	Decentralized Differentially Private Computation of Functions
	Functional Mechanism
	Improved Functional Mechanism
	Example – Linear Regression
	Example – Logistic Regression

	Decentralized Functional Mechanism
	Conventional Approach
	Proposed capeFM Algorithm

	Experimental Results
	Dependence on Privacy Parameter
	Dependence on Total Sample Size N
	Dependence on Privacy Parameter
	Variation of err_w

	Conclusion and Future Directions
	Bibliography

