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Touchscreens, the dominant input type for mobile devices, require unique authentica-

tion solutions. Gesture passwords have been proposed as an alternative ubiquitous authen-

tication technique. Gesture authentication relies on recognition, wherein raw data is col-

lected from user input and recognized by measuring the similarity between gestures with

different algorithms. Our work analyzed the different aspects of gesture password security.

First, since preprocessing in gesture recognizers is implemented to improve recognition

accuracy, we examined the effects of three variables in preprocessing: location, rotation,

and scale. We found that an authentication-optimal combination (location invariant, scale

variant, and rotation variant) reduced the error rate by 45% on average compared to the

recognition-optimal combination (all invariant). Secondly, we designed, implemented and

evaluated a novel secure, robust and usable multi-expert recognizer for gesture passwords:

Garda. Compared to 12 alternative approaches for building a recognizer, Garda achieved

the lowest error rate (0.015) in authentication accuracy, and the lowest error rate (0.040) un-

der imitation attacks; Garda also resisted all brute-force attacks. Furthermore, we proposed

the first approach for measuring the security of gesture that includes guessing attacks that
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model real-world attacker behavior. Our dictionary of guessing attacks achieves a cracking

rate of 48% after 109 guesses, which is a difference of 36 percentage points compared to

the 12% cracking rate of the brute-force attack. Lastly, we quantified the security of various

recognition passwords, including gestures and signatures, based on the passwords’ distri-

bution, modeling and enumerating the unseen passwords across a dataset. We compared

the security of these recognition passwords to text passwords and Android unlock patterns

with a partial guessing metric, a password security metric based on datasets of user-chosen

passwords. We found that the baseline security of gestures and signatures is much higher

than the security of Android unlock patterns.

iii



ACKNOWLEDGEMENTS

I want to express my sincere appreciation for my Ph.D. advisor, thesis committee mem-

bers, colleagues, collaborators, friends, and family. I could not have completed my Ph.D.

research without their guidance, advice, and support.

First of all, I would like to express my gratitude to my advisor, Prof. Janne Lindqvist.

When I joined Janne’s research team, I had little experience conducting academic research

in the field of human-computer interaction. Janne guided me on how to form and approach a

research problem, write a paper, and present work to the general public. My knowledge and

research skills increased tremendously with his guidance. I am indebted to his dedication

while directing my research and to his support for my work and decisions.

I am fortunate to have collaborated with many talented colleagues. Gradeigh D. Clark

is one of the most reliable people and collaborators I have met; his insights on research

questions and his writing skills have helped our projects proceed smoothly and efficiently.

Shridatt Sugrim has helped me with most of the statistical and mathematical problems

in our different research projects. Thanks for help to: Xianyi Gao, Hua Deng, Meghan

McLean, and Christos Mitropoulos, who provided feedback and suggestions for the tech-

nical difficulties during my research. More thanks to Fengpeng Yuan, Yulong Yang, and

Huiqing Fu for providing me suggestions and help during my first year of research.

Furthermore, I want to sincerely thank Prof. Wade Trappe, Prof. Richard Howard, Prof.

iv



Saman Aliari Zonouz, Prof. Waheed Bajwa, Prof. Ivan Marsic, and Dr. Bernhard Firner

for serving as the committee members for my Ph.D. qualification exam, thesis proposal,

and thesis defense. They have provided me with valuable suggestions for improving my

research and papers. I would also like to extend a special thanks to Prof. Richard Howard

for providing insightful comments and bringing new angles to my research.

Additionally, I want to express my appreciation to my friends. They have made my

Ph.D. study colorful and productive; besides research, their friendship is one of the most

incredible achievements in my Ph.D. career! Special thanks to Yue Gu and Hua Shang.

They have helped me so much in different urgent situations, and I know they are friends

that I can always trust.

Finally, I would like to thank my wife, Yixi Zhang, and my family for always under-

standing and supporting my life and decisions. Without them, I cannot imagine how hard

it would have been to conquer the difficulties in my Ph.D. adventure. I would also give

special thanks to my kids, Henry and Flora, who bring infinite happiness to our lives.

v



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 ORGANIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 CONTRIBUTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

CHAPTER 2. BACKGROUND AND RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Gesture-based Authentication Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Password Guessability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Attacks Against Gesture Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Passwords Security Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

CHAPTER 3. GARDA: GESTURE AUTHENTICATION FOR MOBILE SYSTEMS 15
3.1 Overview of Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Brute-Force Attack Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.3 Imitation Attack Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Recognition Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Garda Authentication Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6.1 Invariances Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6.2 Performance of Different Recognition Methods . . . . . . . . . . . . . . . . . . . . . . 32
3.6.3 Mobile Device Implementation and Evaluation . . . . . . . . . . . . . . . . . . . . . . 37

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

vi



CHAPTER 4. GUESSING ATTACKS ON GESTURE PASSWORDS . . . . . . . . . . . . . 40

4.1 Overview of Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.1 Data Acquisition and Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.2 Gesture Recognition Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.3 Full Space Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.4 Weak Subspace Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.5 Guessability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.1 Sizes of Full Space and Weak Subspace of Gesture Passwords . . . . . . . . . . 65

4.3.2 Cracking Evaluation on Free-Form Gestures . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.3 Crack Evaluation on Free-Form Gestures with Symmetric Feature . . . . . . 69

4.3.4 Crack Evaluation on Weak Subspace Gestures . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

CHAPTER 5. SECURITY ANALYSIS OF GESTURE PASSWORDS . . . . . . . . . . . . 73

5.1 Overview of Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.1 Attacker Behavior: The Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.2 Baseline of Security Estimation of Recognition Password . . . . . . . . . . . . . 76

5.2.3 Generalizable Discretizing Approach for Recognition Passwords . . . . . . . 77

5.2.4 Enumerating and Assigning Probabilities to the Passwords . . . . . . . . . . . . . 78

5.2.5 Estimating the Security Based on Datasets Cannot Cover All Passwords . 79

5.3 Password Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4 Discretization of Recognition Passwords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4.1 Represent by 2-D SAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4.2 Determining Parameters in 2-D SAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4.3 Recognition Performance of SAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5 Recognition Password Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.5.1 Markov Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5.2 Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5.3 Optimizing Markov Chains for Recognition Passwords . . . . . . . . . . . . . . . . 90

5.6 Partial Guessing Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.7.1 Baseline of the Security of Recognition Passwords . . . . . . . . . . . . . . . . . . . 94

5.7.2 Comparison to Android Unlock Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

vii



CHAPTER 6. DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.1 Garda: Gesture Authentication for Mobile Systems . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.1.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2 Guessing Attacks on Gesture Passwords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3 Security Analysis of Gesture Passwords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

CHAPTER 7. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

viii



LIST OF TABLES

3.1 Summary of the seven datasets used in our analysis. The template set of

each dataset is always the first ten trials (# 1 to #10) of every type of gesture.

The screen size refers to the screen size of device on which the gesture

samples were collected for that dataset. SUSig and MCYT-100 datasets

also included attacks, which were used in our attack evaluations. . . . . . . . . . . 27

3.2 EER values against estimated authentication time. Each recognition method

is implemented in MATLAB and tested on five gesture datasets in terms of

EER and authentication time (t) in milliseconds. Since the authentication

time is based on MATLAB computations, it can be only used for a relative

comparison among different recognizers. In each dataset, the lowest EER

is shown in bold and italic, while the highest EER is only bold. Generally,

the ME group always has the lowest EER among different datasets and

authentication methods. Between the two ME methods, their EER perfor-

mances are dependent on the different datasets. However, since Garda has

much lower EER than SVMGarda in Freeform (set 2) and the computation

cost of Garda is always lower than SVMGarda, we conclude that Garda is

the best among the 13 methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 The EER of the 13 authentication methods in MCYT-100 and SUSig datasets

under skilled forgery attacks. Only Garda has considerable advantages in

EER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Summary of free-form gestures in the Test dataset (General). “Weak Sub-

space Feature” are the free-form gestures that fall into the weak subspace

groups in Dictionary dataset. “Symmetric Feature” are the gestures that

have horizontal or vertical symmetry. “Weak & Symmetric” are the ges-

tures that have both of the two features. The “Weak Subspace Feature” size

(128 gestures) is larger than “Symmetric Feature” size (83 gestures). It

verifies the analysis of the Dictionary dataset, where the coverage of weak

subspace features in gestures are wider than symmetric features. . . . . . . . . . . 44

ix



4.2 Relative frequencies of seven groups of weak gestures in Dictionary dataset
and Test dataset (General). It shows that the relative frequencies in two
independent datasets are very similar. It means that the two datasets are
similar to each other and that the size of each dataset is not significantly
affecting how often each group appears. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 The sizes of the weak subspaces for free-form gestures. “Weak Gesture #”
is the number of gestures that people selected as passwords. Compared to
the size of the full gesture space (about 109 bits), the weak subspace (about
82 bits) is much smaller. Furthermore, the Geometric Shape group occu-
pies the largest part of the total weak subspace size while Digits group has
the smallest weak subspace size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1 Summary of analyzed gesture and signature datasets. The top three datasets
are gestures, the following three datasets are signatures. Yahoo! is a text
password dataset and the rest two are Android datasets. . . . . . . . . . . . . . . . . . . 81

5.2 MINDIST function and an example of lookup table for dist() in the func-
tion. In the MINDIST function, n is the length of the original time sequence
and ω is the length of the time sequence represented by SAX. dist() is
used to measure the distance between two symbols of SAX. β is the set of
boundaries of the symbols in SAX. The right lookup table is an example of
dist() when there are six possible symbols in SAX (i.e. β = 6) . . . . . . . . . . . . 83

x



LIST OF FIGURES

1.1 Example of matching password versus a recognition password. A matching

password can only have two discrete outcomes in all cases. A recognition

password outputs a real-valued number that must be compared to an au-

thentication threshold in order to be recognized. This is typically done

with algorithms like Dynamic Time Warping, as depicted in (b). . . . . . . . . . . 5

3.1 Examples of three alignment methods: DTW, LCS, and EDR. In DTW, all

points in the two sequences must be matched with each other; In LCS, only

the same subsequences are matched; In EDR, only the difference between

two sequences are counted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 7 States Left-to-Right No Jump HMM structure. Every state of the HMM

has a self transition loop and only can move forward to next neighbour state. 23

3.3 (a) Example of gesture after RDP algorithm and (b) Clustered basic ges-

ture parts. In figure (a), the solid trajectory shows the trajectory of the

original gesture, and the dashed line shows the trajectory of the remaining

samples after the first round of RDP. The red cross markers (′×′) are the

samples after the second round of RDP. We find that the gesture samples

after the first RDP are still dense and, after a second RDP, are ready to be

used as splitting points. (b) Basic gestures all start from (0,0) in different

directions and can be regarded as 14 observations in HMM. . . . . . . . . . . . . . . 23

xi



3.4 SVMGarda and Garda authentication system. SVMGarda system uses the

Protractor kernel SVM method in the top left part of authentication sec-

tion. Garda system uses the Protractor method. The similarity of Garda be-

tween the recall and template gesture is measured by Protractor and GMM

separately. The similarity output of Protractor is Psimi. It is modified by

different factors based on the comparison result of Gaussian probability of

GMM PGMM , and two thresholds Tupper and Tlower. If PGMM > Tupper,

it means that GMM recognizer is confident that two gestures are similar,

so the final similarity score of Garda is 10 × Psimi. If PGMM < Tlower,

it means the GMM recognizer is confident that two gestures are not simi-

lar at all and the final result is −Psimi. Otherwise, GMM cannot make a

confident judgment, so the final similarity of Garda is the same as Psimi. . . . 25

3.5 EER values under combinations (SLR), (SLR), (SLR), and (SLR). S, L,

and R mean the gesture’s scale, location, are rotation are invariants. S, L,

and R mean the these three are variants. The whiskers show the maximum

and minimum EER of each group. We can see that rotation alone as vari-

ant (SLR) has obvious positive effect authentication accuracy; scale alone

as variant (SLR) has no obvious effect authentication accuracy; location

alone as variant (SLR) has obvious negative effect on the authentication

accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 The average ROC curves of the five gesture datasets with two to ten tem-

plate gestures for the eight combinations of the three variants (Scale, Loca-

tion, Rotation). S, L, and R mean the gesture’s scale, location, are rotation

are invariants. S, L, and R mean the these are variant. We can see that the

combination (SLR) has the lowest EER (=0.041) across the five datasets.

While the recognition-optimal case (SLR) can only achieve EER=0.075.

We conclude that combination (SLR) is the optimal authentication selec-

tion of three variants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.7 The average ROC curves for the 13 recognition methods over the five ges-

ture datasets. We found that Garda has the lowest EER (0.015). Since the

ROC curve of Garda is closest to the up-left corner, it should be the most

tolerant of the change of authentication threshold. We conclude that Garda

is the best among the 13 methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

xii



3.8 Guessing success rates of brute-force attacks of the 13 authentication sys-

tems on different datasets. The ”Others” includes Garda, EDR, LCS, DTW,

dHMM, and cHMM. From the cracking rates, Garda, EDR, LCS, DTW,

dHMM, and cHMM have the best ability on resisting brute force attacks

since the success cracking rates of them are 0% through the 6 datasets. . . . . . 36

3.9 The processing time for training and authentication under different number

of gesture passwords. The upper figure shows the time for training, the

lower shows the time for authentication. Along with the increasing number

of gesture passwords, the training time is gradually increasing while the

authentication time stays stable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 The preprocessing procedures are generic steps in gesture recognition. First,

user has inputted a gesture on the touchscreen (Raw Gesture). Stroke Con-

nection: a multistroke gesture’s strokes are connected to one sequence by

time order. Resampling: the gesture is resampled to a fixed number of sam-

ple points. Location Invariance: the gesture is translated to the origin point.

Orientation Invariance: the gesture is rotated to the same direction. Scale

Invariance: the gesture is scaled to the normal size. . . . . . . . . . . . . . . . . . . . . . 47

4.2 An illustration of the DTW algorithm and the Sakoe-Chiba band based

on one dimension of our gesture data. The left figure shows how to dy-

namically search along the matching path in the grid. The top right figure

displays how, according to the left matching path, the points in Q map to

points in C. The bottom right figure displays the Sakoe-Chiba band using

the broken line; U ′ and L′ refer to the upper and lower envelopes, respec-

tively. The envelope is wider when sequence changes and narrower when

it plateaus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Example of gesture discretization. (a) In “Before discretization” above the

axis, the round points are several values of gesture samples. It can be any

value between the range [-1,1]. In “After discretization” under the axis, the

values of gesture samples are rounded to the closest discrete values shown

as square points. (b) shows an example of a gesture under discretization.

The Discretization Level is 15 units, since the range [-1,1] is divided to

15 units. The Jump Limit is 5 units, since the maximum gap between the

adjacent points is 5 units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

xiii



4.4 The procedure to estimate sizes of the weak subspace based on data from

Dictionary dataset. Step 1 is Extract Representative Gestures, which uses

K-means and Silhouette value to extract representatives for gestures of

each symbol; Step 2 is Restrict Search Region, which finds Sakoe-Chiba

bands for each representative gesture; Step 3 is Weak Subspace Estimation,

which is accomplished by Monte-Carlo simulation; Step 4 is Check Over-

lapping Regions, which removes potential overlaps between representative

gestures’ Sakoe-Chiba bands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Examples of two types of overlaps in weak subspace enumeration. The left

is partial overlap and the right is full overlap. The grey area is the overlap

area where double-counting can happen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6 Different cases for a symmetric axis. (a) A gesture symmetric by an axis

in the middle of screen. It shows the two global symmetric axis in our

analysis. (b) Two different locations of a symmetric axis in symmetric

gestures. They illustrate that the symmetric axis does not need to be located

at the center of gesture sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.7 Cracking results for the dictionary and brute force attacks against free-

form gestures (Test (General)) and specifically collected weak subspace

gestures (Test (Weak)). For Test (General), by comparing the cracking

rates, we find that our dictionary attack is more efficient cracking gestures

compared to a brute force attack. The orientation invariance method I is

more vulnerable to attacks than method II. For Test (Weak), a compari-

son between our dictionary and brute force attacks is meaningless since the

dataset is specifically targeted for testing the dictionary set of weak sub-

space gestures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.8 Ratio of cracked symmetric gestures with different orientation invariance

methods in Test dataset (General). The cracked gestures with symmetric

feature occupied about half of the cracked gestures in the Test dataset . . . . . . 69

4.9 Categories of cracked gestures with different orientation invariance meth-

ods in Test dataset (Weak). The Special character group is the strongest

and Digit group is the weakest on resisting the dictionary attacks. . . . . . . . . . 71

xiv



5.1 Password distributions that are affected by different factors. The left fig-

ure (a) shows the distributions that affected by user selections. The ideal

password distribution is uniform, in which all passwords are equally prob-

able. A weak password distribution usually has a narrow peak, meaning

most user passwords fall in a small set: the weak set. An informed attacker

would use the most probable passwords in the weak set when guessing.

We can improve the passwords security by broadening the set that people

are more likely to select from. The right figure (b) shows the distributions

with different methods for addressing the unseen passwords issue. The ac-

tual passwords distribution represents the real passwords distribution. The

distributions with and without smoothing methods represent the passwords

distribution with the two methods for addressing the unseen passwords issue. 76

5.2 Illustration of representing a recognition password symbolically with 2-D

SAX. First, the password is decomposed into X and Y 1-D coordinate time

sequences. In Step 2, each time sequence is normalized to have its mean

set to zero and the standard deviation equal to one. The time sequence

is then evenly segmented using Piecewise Aggregate Approximation into

eight subsequences. SAX then maps the means of the eight subsequences

into the six symbols: a,b,c,d,e,f. The boundaries of the six symbols are

calculated using the normal distribution on the left, where each symbol is

defined to have equal probability. In Step 3, we combine the SAX sequence

of X and Y to form a 2-D SAX sequence. The 2-D SAX sequence can be

represented as a 2-D map as seen in the rightmost figure. . . . . . . . . . . . . . . . . 82

5.3 Grid search for the optimal parameters of SAX and ROC curves based on

the optimal parameters of SAX. (a) Shows a contour plot showing isolines

of AUROC for signature and gesture datasets based on different values of

ω and β. When ω ≥ 8 and β ≥ 6, the AUROC of SAX of gestures and

signatures do not change by more than 0.001 and 0.015, respectively. The

isolines are erratic since the AUROC is highly dependent on the combina-

tion of β and ω; these two parameters are not orthogonal. We observed the

that AUROC gradually decreases when ω and β increase. (b) shows the

ROC curves and corresponding AUROC of the four recognizers for ges-

tures and signatures. We see SAX is only slightly worse than the other

three recognizers and gets comparable values of AUROC to the other rec-

ognizers. The takeaway is there is no large difference between the four

recognizers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

xv



5.4 Guessing entropy of recognition passwords under six configurations of
Markov chain: 2-gram Additive, 2-gram Good-Turing, 2-gram without
smoothing, 3-gram Additive, 3-gram Good-Turing, and 3-gram without
smoothing. Generally, 3-gram Markov chains for gestures and signatures
are better than 2-gram models. There is no obvious difference between
with and without smoothing methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5 Partial guessing metric of gestures and signatures that estimated based on
different sizes of passwords datasets. We found the partial guessing metric
curves with Good-Turing smoothing method decreases when the password
datasets size increase. Similarly, we found the curves without smoothing
methods increases when the password datasets size increase. . . . . . . . . . . . . . 94

5.6 Partial guessing metric for different passwords. The baselines of security of
gestures and signatures are considerably higher than Android unlock patterns. 94

xvi



- 1 -

CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

The number of threats to personal information stored on mobile devices has increased as

these devices grow more important in day-to-day life. Current authentication methods

present their own set of concerns: text-based passwords involve manifold problems, rang-

ing from password reuse (Jain, Ross, & Pankanti, 2006; Florencio & Herley, 2007) to

weak password selection (Bonneau, 2012b). Meanwhile, biometric methods have difficul-

ties from revoking the authentication token (Uludag, Pankanti, Prabhakar, & Jain, 2004) to

misidentification (Uludag et al., 2004) – for example, a fingerprint scanner fails to recog-

nize a scarred finger.

Gesture passwords are a recently proposed authentication method for mobile devices,

attracting interest due to their ability to overcome these usability problems (Sae-Bae, Ahmed,

Isbister, & Memon, 2012; Aslan, Uhl, Meschtscherjakov, & Tscheligi, 2014; De Luca et

al., 2013; Sherman et al., 2014; Y. Yang, Clark, Lindqvist, & Oulasvirta, 2016; Tian, Qu,

Xu, & Wang, 2013; J. Yang, Li, & Xie, 2015; Aumi & Kratz, 2014; Wu, Konrad, & Ishwar,

2013). A gesture, in the context of this work, as well as previous work (Y. Yang et al.,

2016; Sherman et al., 2014), is defined as a series of two-dimensional lines drawn on the

surface of a touchscreen with one or more fingers. This gesture is then encoded as a set of
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X and Y coordinates and compared to a template for authentication.

Studies of this emerging method have found it to have multiple advantages. Prior

work has shown that gestures can be performed quickly – 22% faster than text pass-

words (Y. Yang et al., 2016), and that their memorability is unique under multi-account

interference (Y. Yang et al., 2016). They possess a high amount of information content

and complexity (Sherman et al., 2014), and biometric features are distinct enough between

users that even users of the same gesture can be uniquely identified (Tian et al., 2013;

Shahzad, Liu, & Samuel, 2013; Sae-Bae et al., 2012). Users have expressed preferences

towards using gesture passwords when presented with the option over other methods (Sae-

Bae et al., 2012; Y. Yang et al., 2016).

Any gesture-based authentication system needs to have an algorithm to interpret the

users’ gestures – a gesture recognizer (Clark & Lindqvist, 2015). Gesture recognition

involves two important stages: preprocessing, and the recognizer itself. The preprocessing

step is used to strip information from a gesture by controlling variables, making it easier to

perform the recognition task. The recognizer is used to determine if a gesture is drawn by

a particular user. The recognizers that used in prior work including from Support Vector

Machine (Bo, Zhang, Li, Huang, & Wang, 2013; Hayashi, Maas, & Hong, 2014; Frank,

Biedert, Ma, Martinovic, & Song, 2013) to Dynamic Time Warping (Sae-Bae et al., 2012;

Aslan et al., 2014; J. Yang et al., 2015). However, the selection of these methods are

mostly depend on the theoretical advantages or popularly used in previous work. Therefore,

we developed a robust gesture recognizer, Garda, based on analysis and comparison of

preprocessing and recognition methods among the different recognizers.

The most essential evaluation metric for an authentication system is its security. Most
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research on security in gesture passwords tends to focus on procedural changes to authenti-

cation systems, for example, increasing security by increasing the number of features used

in authentication. Direct studies of gesture security have used information theory (Sherman

et al., 2014; Y. Yang et al., 2016), shoulder surfing (Sherman et al., 2014; Aumi & Kratz,

2014; Shahzad et al., 2013; De Luca et al., 2013), or equal error rates rates between legit-

imate users and attackers trying to emulate the gesture (Sae-Bae et al., 2012; Aslan et al.,

2014; De Luca et al., 2013; Sherman et al., 2014; Y. Yang et al., 2016; J. Yang et al., 2015;

Wu et al., 2013; Aumi & Kratz, 2014). In these scenarios, the threat model is an attacker

performing an observation of the gesture and trying to repeat it.

No published work on gesture security has discussed how resistant these passwords are

to automated guessing attacks. This is because gesture passwords pose unique difficulties

for researchers studying a key part of automated attacks: password guessability. Guessabil-

ity has been the best method for modeling the guessing behavior, and refers to a metric that

quantifies a given passwords security by counting how many guesses it takes an attacker

to crack it (Kelley et al., 2012; Weir, Aggarwal, Collins, & Stern, 2010; Weir, Aggarwal,

Medeiros, & Glodek, 2009a; Uellenbeck, Dürmuth, Wolf, & Holz, 2013). Guessability has

been popularly employed to measure the security of text passwords, in studies wherein at-

tackers use leaked dictionaries to perform attacks (Morris & Thompson, 1979; Florencio &

Herley, 2007; Bonneau, 2012a, 2012b). Guessability is easier to determine, since authenti-

cation with text-based passwords is a matching problem that allows for the password to be

exactly reproduced. But unlike text passwords, gesture passwords are defined as a recogni-

tion problem (Sherman et al., 2014; Clark & Lindqvist, 2015). A gesture password cannot

be exactly matched: it must be identified despite slight differences in the user’s input each
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time the password is entered. This is the main reason that automated guessing attacks have

not been simulated for gestures. In our work, we conducted the first study analyzing the

guessability of gesture passwords.

Once we evaluate the security of gesture passwords against automated guessing attacks,

the next question is: how can we quantitatively compare the security of gesture passwords

to the that of other dominant passwords, like text passwords, PIN, and Android pattern

unlock? Gesture passwords, after all, differ significantly from these latter methods in how

they operate. While classical methods of user-chosen passwords vary among themselves

– patterns are graphical, while PINs use a limited 0-9 character set – each method is an

example of a matching password, defined to be a password that can be compared directly

to determine a correct entry. Mobile computing, however, has enabled the rise of a new

type of password: recognition passwords, which derive security from time-series data and

require a recognition algorithm to output a numeric measure of how correct a password

attempt is. Figure 1.1 demonstrates the differences.

There are two methods often used for evaluating password security: 1) resistance

against guessing attacks (Weir, Aggarwal, Medeiros, & Glodek, 2009b; Ma, Yang, Luo,

& Li, 2014; Peslyak, 2017; Steube, 2017; INSIDEPRO, n.d.) and 2) evaluation of the

password distribution (Uellenbeck et al., 2013; Bonneau, 2012c). The first method aligns

with attacker behavior, but the efficiency depends on several factors that weaken general-

ization of results: attacking strategy, dictionary choices, target passwords, and size of the

dictionaries and other datasets.

The second method is based on an analysis of the practical password distribution, which

provides an entropic measure of password security along with an estimation of the proba-
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Figure 1.1: Example of matching password versus a recognition password. A match-
ing password can only have two discrete outcomes in all cases. A recognition password
outputs a real-valued number that must be compared to an authentication threshold
in order to be recognized. This is typically done with algorithms like Dynamic Time
Warping, as depicted in (b).

bilities of passwords not observed in the dataset. Partial guessing metric (Bonneau, 2012c),

which evaluates password strength based on the user-chosen distribution, has been used to

evaluate the security of Android pattern unlock (Uellenbeck et al., 2013; Song, Cho, Oh,

Kim, & Huh, 2015) and text passwords (Bonneau, 2012c). These evaluations have yielded

results about the size of the password space under attacker scrutiny, which allows for com-

parison of the security of two different authentication methods.

The challenge with adapting password distribution for recognition passwords is how to

enumerate the password space. The time-series data needs to be discretized into a character

set that can be used to enumerate the size of the full space, and to allowing for modeling

passwords not yet seen in the dataset (Bonneau, 2012c; Uellenbeck et al., 2013). Dis-

cretization allows us to ”translate” a recognition password into matching password. This

method enabled us to conduct quantitatively evaluating the security of gesture passwords

against matching passwords based on the same criterion: partial guessing metric.



- 6 -

1.2 ORGANIZATION

The research in this thesis is organized as follows: Chapter 2 describes the related work on

gesture authentication systems, password guessability, and attacks against gesture authenti-

cation. Chapter 3 introduces our study on designing a robust gesture authentication method.

Chapter 4 presents our study analyzing the weak subspace and the guessability of gesture

passwords. Chapter 5 presents a study on the challenges and methods on quantitatively

evaluating gesture passwords based on partial guessing metric. Chapter 6 offers discussion

of the presented three studies. Chapter 7 summarizes the takeaways of this thesis.

1.3 CONTRIBUTION

Our current work presents the following contributions:

1. We are the first to present the effects of preprocessing invariances on the security and

usability of gesture-based authentication systems.

2. We present a comprehensive study of different approaches to implementing gesture-

based authentication systems and designed a novel multi-expert recognizer: Garda.

3. We have evaluated 13 different recognizers on three criteria: 1) authentication perfor-

mance (i.e. equal error rate) with five datasets; 2) imitation attacks with two datasets;

3) brute force attacks.

4. Based on the largest set of gesture passwords ever assembled in research, we present

a comprehensive analysis on the weak subspace for gesture passwords.

5. We have used the weak subspace to build a novel dictionary attack method against
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gesture passwords.

6. We have developed a novel method to analyze the full theoretical password space of

gesture passwords and estimate the size of the weak subspace for gesture passwords.

7. We present the first attempt to quantify the security of user-chosen secrets for recog-

nition passwords, and we compare their security to that of matching passwords based

on a realistic model of attacker behavior: a partial guessing metric.

8. We discretized recognition passwords to solve their many-to-one mapping problem.

9. We estimate the baseline of the security of recognition password based on the largest

available datasets.
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CHAPTER 2

BACKGROUND AND RELATED WORK

We summarize previous work and discuss the relevant background of gesture-based au-

thentication methods, password guessability, and attacks against gesture authentications.

2.1 Gesture-based Authentication Methods

There are several approaches and analyses related to gesture authentication methods. Sher-

man et al. (Sherman et al., 2014) introduced a novel information theoretical metric to quan-

tify the security of free-form gestures and demonstrated a way to authenticate multi-touch

gestures with Protractor (Li, 2010). They do not examine the influence of gesture variants

on authentication performance. Clark and Lindqvist (Clark & Lindqvist, 2015) presented a

systematic rendition of how to evaluate gesture recognition methods. Yang et al. (Y. Yang et

al., 2016) studied free-form gestures and text passwords in the field and demonstrated how

gestures outperform text passwords in mobile authentication. De Luca and Lindqvist (Luca

& Lindqvist, 2015) gave an overview of several usability and security issues with smart-

phone authentication and different approaches to solve them.

Although gesture-based authentication systems can be implemented in various ways (Clark

& Lindqvist, 2015), the research community (Tian et al., 2013; Aslan et al., 2014; J. Yang

et al., 2015; Aumi & Kratz, 2014; Wu et al., 2013) has mostly focused on implementing

recognizers with Dynamic Time Warping (DTW) (Myers & Rabiner, 1981). Most of these
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works omit the details of how gestures are preprocessed, which became an important point

in our work, since preprocessing methods change the size of the password space for ges-

tures. Free-form gestures are also used in a system based on cosine similarity (Sherman et

al., 2014; Y. Yang et al., 2016).

Biometric features of human hands have been leveraged as pre-defined gestures to per-

form gesture-based authentication (Sae-Bae et al., 2012). This method has high error rates

(about 10%), except with user-defined gestures. BoD shapes (De Luca et al., 2013) are

2D gestures collected on the back of a device using two phones connected back to back.

Similarly, GEAT (Shahzad et al., 2013), used biometric features of a user’s gesture, such as

finger velocity and stroke time to distinguish different users. XSide (De Luca et al., 2014)

is a stroke-based authentication mechanism that uses the front or back of smartphones.

Zheng et al. (Zheng, Bai, Huang, & Wang, 2014) designed an authentication system by

recognizing a user’s tapping password behavior based on a list of features including accel-

eration, pressure, size, and time – collected during authentication. De Luca et al. (De Luca,

Hang, Brudy, Lindner, & Hussmann, 2012) also introduced an authentication scheme based

on a user’s touch pattern. Burgbacher et al. (Burgbacher & Hinrichs, 2014) introduced

an authentication scheme based on gesture keyboards. Shirazi et al. (Sahami Shirazi,

Moghadam, Ketabdar, & Schmidt, 2012) introduced a 3D magnetic gesture recognition

system. Schaub (Schaub, Walch, Könings, & Weber, 2013) examined five existing graphi-

cal password schemes and found that the design space is expressive enough to capture all

aspects of a graphical password.

Multi-expert systems have been applied to authentication in other contexts before. For

example, Czyz (Czyz, Sadeghi, Kittler, & Vandendorpe, 2004) present a multi-expert sys-
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tem for face authentication with sequential fusion of scores of faces’ successive video

frames. The systems final decision is strengthened by several face authentication schemes.

Dimauro et al. (Dimauro, Impedovo, Pirlo, & Salzo, 1997) presented a multi-expert verifi-

cation system for processing bank checks. It combines three algorithms: structure-based,

component-oriented approach, and a highly-adaptive neural network based method.

Finally, the HCI community has also studied free-form and user-defined gestures from

different angles. Oh et al. (Oh & Findlater, 2013) found that user-defined gestures may

be ambiguous so they implemented a mixed-initiative approach to improving gestures’

quality. Nacenta et al. (Nacenta, Kamber, Qiang, & Kristensson, 2013) found that user-

defined gestures are easier to remember than pre-designed gestures.

In summary, there has been no prior work on systematically comparing different ap-

proaches for implementing gesture recognizers for authentication. Our work contributes

by implementing thirteen different approaches, comparing them with multiple datasets,

and subjecting them to different attack scenarios. Similarly, we sought to address previous

lack of analysis regarding the effects of preprocessing methods on the size of the gesture

password space. Our work ex- plains the effects of preprocessing steps on the size of the

password space, and we provide a method to evaluate the security of gesture passwords

through enumerating the theoretical password space.

2.2 Password Guessability

Text-based password guessability is a well-studied problem that involves biases in the user-

chosen distribution of passwords. One example of early work (Morris & Thompson, 1979)

examined 3289 text passwords and found that 86% of the passwords had structural com-
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monalities: short in length, only contained lowercase letters or digits, and were common

dictionary words. More recently, a large-scale study on web passwords judged the average

user password to be of poor quality and revealed overlap in user passwords across multi-

ple accounts (Florencio & Herley, 2007). To combat the weakness of entropy, guessing

entropy has been proposed to model the practical attacker behavior and quantify password

security (Bonneau, 2012b). An analysis of 70 million passwords shows a clear bias in user-

chosen distribution of text passwords (Bonneau, 2012b). An analysis of popular text pass-

word cracking methods reveals that quantifying password strength with a single cracking

algorithm is not reliable (Ur et al., 2015). Recently, a neural network model of human-

chosen passwords was proposed, which resulted in an efficient and highly compressed

password guessing method (Melicher et al., 2016a). An password strength estimator - zx-

cvbn - can estimate the current best-known attacks with 1.5 MB compressed data and up to

105 guesses (Wheeler, 2016).

Outside the realm of textual passwords, researchers have also probed the guessability

of graphical passwords. With Draw-A-Secret (DAS) (Jermyn, Mayer, Monrose, Reiter, &

Rubin, 1999), people were found more likely to select symmetric graphics as passwords,

reducing the size of the effective password space (Thorpe & van Oorschot, 2004). This

was the first work to push forward the idea that the size of the graphical password space

can be demonstrably reduced. Almost a decade later, Androids Pattern Unlock, itself a

special case of DAS, was shown to skew the user-chosen distribution based on starting

points and crossing patterns (Uellenbeck et al., 2013). Instead of grid cells, Pass-Go (Tao

& Adams, 2008) used intersections on a grid as anchors, with a study showing that 49% of

the passwords are alphanumeric or well-known symbols (Tao & Adams, 2008).
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Besides recall-based schemes, graphical passwords based on human ability to recognize

images also have weak subspaces based on user choice. Passfaces (Brostoff & Sasse, 2000)

presents a panel of human faces and a user creates a password by clicking a sequence of im-

ages. A field study of Passfaces showed that users tend to select the faces of their own race

and the weakest 25% of user passwords were cracked within 13 attempts (Davis, Monrose,

& Reiter, 2004). Instead of using human faces, Story (Davis et al., 2004) offers the user

a panel of generic images to select as their password. Although Storys user choice issue

proved less severe than that of Passfaces, research revealed that it still allowed for selec-

tion preference between genders, and the weakest 25% passwords were guessed in 112 at-

tempts (Davis et al., 2004). PassPoints (Wiedenbeck, Waters, Birget, Brodskiy, & Memon,

2005) is a cued-recall graphical password or click-based graphical password (Biddle, Chi-

asson, & Van Oorschot, 2012), with the major weaknesses being hotspots (van Oorschot

& Thorpe, 2011) and patterns (Chiasson, Forget, Biddle, & van Oorschot, 2009). Hotspots

are the image areas or points that users are more likely to choose and the latest attacks

based on them using Markov models can crack 36% of the PassPoints passwords by 231

guesses. (van Oorschot & Thorpe, 2011). Patterns are simple shapes that are likely to be

chosen as PassPoints passwords: around 80% of PassPoints passwords fall into primarily

defined simple shapes (Chiasson et al., 2009).

In summary, considerable work has shown weak subspaces for text and graphical pass-

words. We sought to expand this research to demonstrate and examine the weak subspace

for gesture passwords.
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2.3 Attacks Against Gesture Authentication

So far in the literature, attacks against gesture authentication have been performed by par-

ticipants trying to emulate gestures based on a variable amount of knowledge about the

gesture provided by researchers (Tian et al., 2013; Aslan et al., 2014; J. Yang et al., 2015;

Aumi & Kratz, 2014; Wu et al., 2013; Sherman et al., 2014). These types of attacks are

generally referred to as shoulder surfing attacks. Smudge attacks (Aviv, Gibson, Mossop,

Blaze, & Smith, 2010) were used on touchscreens to identify user passwords based on

oil patterns left by their fingers. Even a robot-based attack (Serwadda & Phoha, 2013) has

been deployed against an touchscreen pattern authentication scheme (De Luca et al., 2012),

where the robot is able to emulate human patterns of use on touchscreens. However, this

robot attack does not provide guessing attacks against human-chosen secrets.

In summary: security of gesture passwords has been measured with mutual information

and equal error rates. We provide a method more closely aligned with real world attacker

behavior through guessing attacks. We present an efficient dictionary attack method as well

as a brute-force method for attacking.

2.4 Passwords Security Evaluation

Morris and Thompson (Morris & Thompson, 1979) were the first researchers to docu-

ment how user-chosen text passwords are vulnerable to dictionary attacks due to users’

choice of overlapping patterns with specific meanings rather than random text strings. Dic-

tionary attack efficiency was improved by the development of probabilistic context-free

grammar (Weir et al., 2009b), John the Ripper (Peslyak, 2017), Hashcat (Steube, 2017),

Markov chains (Ma et al., 2014), and neural networks (Melicher et al., 2016b). The key
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difference in these techniques is how the guessing attack is generated, but the idea remains

the same: humans are more likely to choose from a weak subspace instead of the full space

of available passwords.

Partial guessing metric has become an established metric for security analysis. Bon-

neau (Bonneau, 2012c) proposed partial guessing metrics to model real-world attacks,

wherein attackers only crack a portion of weak passwords and give up on guessing more

difficult accounts. Uellenbeck et al. (Uellenbeck et al., 2013) applied partial guessing met-

ric to evaluate the security of Android unlock patterns and PINs. EmojiAuth (Golla, Deter-

ing, & Dürmuth, 2017) performed guessing attack based on Markov chain model to crack

the Emoji-based authentication. However, they measured the guessing metric by cracking

subsets of their collected data rather than through an estimation of the user-chosen distribu-

tion. Song et al. (Song et al., 2015) proposed a strength meter for Android unlock patterns

and evaluated it using partial guessing metric. Aviv et al. (Aviv, Budzitowski, & Kuber,

2015) studied the impact on the security of Android unlock pattern when the grid size was

increased from 3 × 3 to 4 × 4 and found that this change does not improve the security

of the Android unlock patterns. Kiesel et al. (Kiesel, Stein, & Lucks, 2017) evaluated text

password security using partial guessing metric for secure and mnemonic passwords.

Many studies examine the guessability and security of matching passwords. However,

to the best of our knowledge, there is no existing work on analyzing the security of recog-

nition passwords, because of their many-to-one problem for passwords. Here, we present

the first attempt to quantitatively analyze recognition passwords with partial guessing met-

ric. With partial guessing metric, we estimated the baseline of the security of recognition

passwords and the recognition passwords is more secure than Android unlock patterns.
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CHAPTER 3

GARDA: GESTURE AUTHENTICATION FOR MOBILE SYSTEMS

3.1 Overview of Chapter

This chapter details how we proposed and evaluated a novel multi-expert gesture recognizer

for authentication: Garda. Its development allowed us to analyze how preprocessing the

variables for gesture recognizers can impact their authentication performance.

First, we introduce three recognition performance metrics for evaluating the per- for-

mance of recognizers: Equal Error Rate, brute-force attack, and imitation attack.

Next, we introduce the theoretical details of Garda and the other recognizers, as well

as the datasets that we used for our analysis. The other recognizers include: Protractor,

Edit Distance on Real sequence (EDR), Longest Common Subsequences (LCS), Dynamic

Time Warping (DTW); Protractor-, EDR-, LCS-, DTW- kernel based SVM; discrete HMM,

segment HMM, continuous HMM; and Gaussian Mixture Models.

Finally, we describe how we explored the individual and combined effects of the three

invariants of preprocessing methods. We also show the result of our comparison between

the 13 recognizers based on the three metrics.
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3.2 Method

3.2.1 Feature Extraction

The gestures in our datasets are collected by mobile devices. Although the sampling rates

and dimensions differ, gestures are consistent across their datasets, in that multiple mea-

surements exist for each gesture, and (x, y) coordinates and timestamps appear in every

dataset. These are the only features that were compared.

Recognition Performance Metrics

We use Equal Error Rate (EER) and a Receiver Operating Characteristic (ROC) curve to

evaluate the performance of gesture recognizers for authentication. The EER is a point

on the ROC curve at which the False Acceptance Rate (FAR), the ratio of accepted false

attempts to the total number of attempts, is equivalent to the False Reject Rate (FRR), the

ratio of rejected true user attempts over the total number of attempts (Fawcett, 2006). This

represents a usability-security trade-off point, at which the number of rejected true attempts

equals the number of attackers permitted. The ROC curve and the corresponding FAR and

FRR values reflect the behavior of an authentication method with varying thresholds.

Sugrim et al. (Sugrim, Liu, McLean, & Lindqvist, 2019) proposed Frequency Count of

Scores (FCS) as a complementary metric of ROC for better understanding the performance

authentication systems. However, the main purpose of our work is comparing the different

recognizers, FCS can not be used for directly comparison.

We performed two types of attacks to evaluate the security of the recognizers: brute-

force and imitation attacks. Resistance to brute-force attacks characterizes a recognizer’s

resistance to random guessing while resistance to imitation attacks characterizes a recog-
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nizer’s resistance to shoulder surfing type of attacks. These features correlate with the

EER value of the recognizer: the lower the EER is, the stronger the method will be when

distinguishing genuine and imitation gestures.

We note that previous works on free-form gestures for authentication such as Sherman

et al. (Sherman et al., 2014) and Yang et al. (Y. Yang et al., 2016), have provided data on

the usability and memorability of these types of gestures in the lab and the field. However,

our work is focused on recognition performance in an authentication system, thus, other

usability evaluations presented in the previous work are beyond our scope and we refer to

Sherman et al. (Sherman et al., 2014) and Yang et al. (Y. Yang et al., 2016) for details.

Invariance Benchmark: Recognition-Optimal Combination

$-family gesture recognition schemes such as $1 (Wobbrock, Wilson, & Li, 2007), Protrac-

tor (Li, 2010), $P (Vatavu, Anthony, & Wobbrock, 2012), and $N (Anthony & Wobbrock,

2010) implement preprocessing steps for removing a gesture’s rotation, scale, and location.

This is done to minimize the variations in performance of the same gestures by different

people and to correspondingly increase recognition accuracy. We define the choice to make

these three gesture variables invariant as the recognition-optimal combination.

Previous free-form gesture authentication systems based on Protractor (Sherman et al.,

2014; Y. Yang et al., 2016) used this recognition-optimal combination in their implementa-

tions. They demonstrated the effectiveness of distinguishing gestures from different people,

and showed great ability resisting shoulder surfing attacks (Sherman et al., 2014). How-

ever, this past work does not show whether this is optimal for authentication purposes. In

our analysis, we use the recognition-optimal combination as a benchmark.
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3.2.2 Brute-Force Attack Method

We generated a brute-force attacks with the following steps: 1) Randomly generate two

sequences for x and y. 2) Filter the two sequences using a low pass filter with a cutoff

frequency at 10 Hz. Remove the first few points that are distorted by the time delay of the

filter. 3) Resample the generated gesture by the sampling rate.

The choice for the 10 Hz cutoff is not arbitrary. In our analysis, gestures are resampled

to the same length (256). We assume the time to perform a gesture is one second, since

we focus on guessing the gesture’s shape. By examining the distribution of frequencies for

each gesture, we found the majority of gesture frequencies are concentrated under 10 Hz.

3.2.3 Imitation Attack Method

We used the imitation attack samples from two public datasets: SUSig (Kholmatov &

Yanikoglu, 2009) and MCTY-100 (Ortega-Garcia et al., 2003). The attackers were asked

to observe legitimate authentication attempts. They were also asked to practice the attacks

as many times they wanted. After the attackers were confident of their imitations, they

performed the attacks.

3.3 Recognition Algorithms

We examined and implemented 13 specific algorithms: Protractor, Edit Distance on Real

sequence (EDR), Longest Common Subsequences (LCS), Dynamic Time Warping (DTW);

Protractor-, EDR-, LCS-, DTW- kernel based SVM; discrete HMM (dHMM), segment

HMM (sHMM), continuous HMM (cHMM); and Gaussian Mixture Models. The knowl-

edge obtained with testing and evaluating these algorithms led us to implement two novel
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Figure 3.1: Examples of three alignment methods: DTW, LCS, and EDR. In DTW, all
points in the two sequences must be matched with each other; In LCS, only the same
subsequences are matched; In EDR, only the difference between two sequences are
counted.

multi-expert approaches: SVMGarda and Garda.

Protractor Algorithm

Protractor (Li, 2010) is a common method used in free-form gesture authentication sys-

tems (Sherman et al., 2014; Y. Yang et al., 2016). It is one of the $-family algorithms (Wobbrock

et al., 2007; Li, 2010; Vatavu et al., 2012) that uses geometric similarity between two ges-

ture trials. Recall that there are three types of invariance in a gesture: location, scale and

rotation invariance. The procedure of Protractor is: resampling a gesture to fixed points,

removing the three variants (location, scale and rotation), and finding the maximum value

of cosine distances between recall gesture and template gestures.

Time Series Sequence Matching

Several gesture authentication systems use DTW (Sae-Bae et al., 2012; Aslan et al., 2014;

De Luca et al., 2013; J. Yang et al., 2015; Aumi & Kratz, 2014). LCS (Bergroth., Hakonen.,

& Raita, 2000) and EDR (Chen, Özsu, & Oria, 2005) are also similar time series sequence

methods, also discussed in more detail below. Although LCS and EDR have not been used
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in published gesture authentication before, we incorporated them in the event that they

performed with higher authentication Accuracy than DTW. Figure 3.1 gives examples of

these three methods.

Dynamic Time Warping (DTW) is a dynamic programming method for aligning time

sequences. Figure 3.1 shows how DTW seeks the minimum total distance between ele-

ments in sequences Q and S by finding the non-decreasing matching pairs of elements.

The crucial point is that no elements are discarded through the DTW matching, despite

how large the distance between a pair of the elements could be.

Longest Common Subsequences (LCS) (Bergroth. et al., 2000) is another similarity

measurement approach for sequences. The LCS method (Bergroth. et al., 2000; Morse &

Patel, 2007) is used to find the longest common subsequence of two sequences by elastic

matching. As shown in the middle of Figure 3.1, sequence S and Q find the longest subse-

quence by connecting all small continuous subsequences together. This differs from DTW,

which counts the distances of matched sequence points. LCS counts the percentage of

matched points in the two sequences – for example, if the length of S and Q is LS and the

number of matched points between the two sequences is Lm, the LCS distance is Lm/LS .

Edit Distance on Real sequence (EDR) (Chen et al., 2005) is a method that measures

the difference between two sequences by counting the number of insert, delete, and replace

operations that are needed to transform one sequence into the other. As shown in the bottom

of Figure 3.1, the EDR distance of the two sequences S and Q is the number of operations

that delete the four points with ’×’ markers and four insert points with ’5’. Unlike LCS

or DTW, EDR is a method that does not reward matches; rather, it penalizes gaps and

mismatches.
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Support Vector Machine

Support Vector Machine (SVM) (Cortes & Vapnik, 1995) is another technique used in

gesture authentication systems (Bo et al., 2013; Hayashi et al., 2014; Frank et al., 2013).

We used a non-linear SVM classification algorithm with a kernel function to transform the

input data into a higher-dimensional feature space. The essential property of Protractor and

time series sequence matching algorithms (i.e. LCS, DTW, EDR) is that they measure the

similarity between gestures, meaning we can use them as kernel functions for SVM.

Gaussian Mixture Model

Gaussian Mixture Models (GMM) have been used in voice recognition (Campbell, Camp-

bell, Reynolds, Singer, & Torres-Carrasquillo, 2006) (Campbell, Sturim, & Reynolds, 2006) (Reynolds,

Quatieri, & Dunn, 2000). GMM is used to estimate any probability density function. A key

feature of GMM is that it only considers the distribution of sample values of a sequence

and does not consider the order of a sequence. Assume X = {x1, ..., xN} is a set of sample

points of gesture sequences with D-dimensional features. The Gaussian Mixture Model of

X is a weighted sum of M component Gaussian densities below:

p(X|λ) =
∑M

i=1 ωipi(X)

where ωi is the mixture weight with the constraint
∑M

i=1 ωi = 1. λ is the GMM param-

eter, pi(X) is the component Gaussian densities, which is calculated by a mean vector µi,

and a covariance matrix, Σi:

pi(X) = 1
(2π)D/2|Σi|1/2

e−
1
2

(X−µi)′(Σi)−1(X−µi)
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Since the p(X|λ) is parameterized by ωi, µi,Σi, we represent the GMM parameter as

λ = {ωi, µi,Σi}, i = 1, ...,M .

For one user’s gesture password, we use expectation-maximization (EM) algorithm (Reynolds

et al., 2000) to iteratively train the GMM with the template gestures, and obtain the maxi-

mum likelihood estimation of the template gesture model λtmp for the specific user.

We then calculate the similarity score between two gestures by doing:

Similarity(Xq) = logp(Xq|λtmp)

Xq is the recall gesture and λtmp is the template gesture model.

Hidden Markov Model

Hidden Markov Model (HMM) is a stochastic model used in many types of gesture recog-

nition systems (Lee & Kim, 1999; Elmezain, Al-Hamadi, & Michaelis, 2009; Deng & tat

Tsui, 2000). There are two main directions to build an HMM for gestures.

One way is by using the directions between adjacent gesture points as observations of

a HMM, and training the model accordingly (Lee & Kim, 1999). We call this a discrete

HMM (dHMM), wherein we divide the directions into 16 equally-spaced arcs. The number

of observations for a single gesture part is, therefore, 16. We found the seven states left-

to-right no jump HMM can output the lowest EER out of many other HMM models. The

transition matrix is restricted to what is seen in Figure 3.2.

The other way one can develop an HMM is by segmenting the gesture to identify the

critical points as observations of HMM (Deng & tat Tsui, 2000). We label this as seg-

mentation HMM (sHMM), wherein we segment and classify the gestures into basic parts.

Afterwards, we train the HMM based on those basic gesture parts in each gesture.
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Figure 3.2: 7 States Left-to-Right No Jump HMM structure. Every state of the HMM
has a self transition loop and only can move forward to next neighbour state.

Figure 3.3: (a) Example of gesture after RDP algorithm and (b) Clustered basic ges-
ture parts. In figure (a), the solid trajectory shows the trajectory of the original ges-
ture, and the dashed line shows the trajectory of the remaining samples after the first
round of RDP. The red cross markers (′×′) are the samples after the second round of
RDP. We find that the gesture samples after the first RDP are still dense and, after a
second RDP, are ready to be used as splitting points. (b) Basic gestures all start from
(0,0) in different directions and can be regarded as 14 observations in HMM.

Three steps constitute the building of the sHMM. 1) Segmentation: we use the Ramer-

Douglas-Peucker (RDP) (Heckbert & Garland, 1997) algorithm for two rounds to reduce

the number of points in the gesture. RDP is an approximation method for finding a similar

curve to the original sequence using fewer points. The dashed line and ’×’ in Figure 3.3(a)

shows the approximation gesture after the first and second round of RDP, respectively. With

the approximation points ’×’, we segmented the gestures to several basic gesture parts. 2)

Clustering. We cluster the segmented gestures into a few basic parts. We first normalize the

gesture segments to the same size, then implement K-means as an unsupervised learning
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method to classify the basic gesture parts into several classes. We found, through observa-

tion, that K=14 was the optimal number for basic gesture types. Figure 3.3(b) shows the 14

basic gesture parts. Consequently, the gestures can be represented as combinations of these

14 basic gesture parts. 3) Train HMM. We follow the steps in dHMM to build the HMM

for each gesture password from these 14 parts.

In addition to the above, we implemented a continuous HMM (cHMM). Specifically,

we divided a gesture evenly into N basic gesture parts. For each basic gesture part, there

are several gesture points – we modeled the probability density function of these points

with GMMs. Each basic gesture part can be represented by a combination of M Gaussian

distributions. By training the HMM with the Baum-Welch algorithm (Jelinek, Bahl, &

Mercer, 2006) we obtain HMM verifiers for each gesture type. The Baum-Welch algorithm

is a special case of the Expectation-Maximization (EM) algorithm (Arthur P. Dempster,

1977) and is used to find a locally optimal solution to the HMM training problem.

3.4 Garda Authentication Systems

In this section, we describe our novel gesture authentication system. We developed two dif-

ferent types of multi-expert systems. The first one, called Garda, combines Protractor and

GMM. The other one, called SVMGarda, combines the Protractor kernel SVM and GMM.

Figure 3.4 gives an overview of our Garda and SVMGarda authentication systems. Unlike

other recognizers, which are based on one feature of recognition, Garda and SVMGarda

are better because they recognize gestures in two features: the gesture shape feature (by

GMM) and adjacent points feature (by Protractor or by Protractor kernel SVM).

Multi-expert (ME) classification systems work by combining the results of different
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Figure 3.4: SVMGarda and Garda authentication system. SVMGarda system uses
the Protractor kernel SVM method in the top left part of authentication section.
Garda system uses the Protractor method. The similarity of Garda between the recall
and template gesture is measured by Protractor and GMM separately. The similarity
output of Protractor is Psimi. It is modified by different factors based on the com-
parison result of Gaussian probability of GMM PGMM , and two thresholds Tupper and
Tlower. If PGMM > Tupper, it means that GMM recognizer is confident that two ges-
tures are similar, so the final similarity score of Garda is 10×Psimi. If PGMM < Tlower,
it means the GMM recognizer is confident that two gestures are not similar at all and
the final result is −Psimi. Otherwise, GMM cannot make a confident judgment, so the
final similarity of Garda is the same as Psimi.

classifiers to make the final classification decision (Rutkowska, 2004). Since the different

classifiers independently measure the similarities of gestures with different features, the
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multi-expert systems combine those results to achieve a lower EER than other recognizers.

The rationale for selecting Protractor instead of the other time sequence matching

method in Garda is that the Protractor has a lower EER compared to LCS, EDR, and DTW.

We combined GMM and Protracto, because the two methods focus on different features of

gestures. GMM does not take into account the order of gesture points, focusing exclusively

on the shape of a gesture. Conversely, Protractor concentrates on the trajectory of a gesture,

especially the connections between adjacent gesture points. Together, they account for a

gesture performed in a certain shape and according to a certain trajectory.

Three steps compose both Garda and SVMGarda. First, the recall gesture is sent to

the GMM authentication verifier. We set two thresholds Tupper and Tlower for the Gaussian

Probability PGMM . If PGMM > Tupper, we can make the decision that this recall gesture

belongs to a certain gesture typeGi. If PGMM < Tlower, we can decide that this gesture does

not belong to gesture type Gi. Otherwise, we cannot decide the gesture’s type. Second, the

recall gesture is sent to a time-series authentication recognizer. For the Garda system,

we use Protractor to measure the similarity. For SVMGarda system, we use the Protractor

kernel SVM to measure the similarity Psimi that a recall gesture belongs to a certain gesture

typeGi. In the last step, we combine the two probabilities together by modifying Psimi with

a modification factor am, which is determined by the GMM verifier.

3.5 Datasets

Small participants number in a dataset may not reflects the real performance of authenti-

cation systems (Sugrim, Liu, & Lindqvist, 2019). To mitigate the limitation of the gesture

datasets, we tested the recognizers in seven different datasets.
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Dataset Recall Set
(Trial #)

Gesture
(Types #)

Screen Size
(Inches) Samples

Freeform
(Set 1) 11-12 56 10.1

Freeform
(Set 2) 13-17 54 10.1

$1
Demo 11-30 16 3.8
Vatavu
(Set 1) 11-20 18 6.1
Vatavu
(Set 2) 11-20 20 6.1
MMG
corput 11-30 16 13.3

HHReco 11-30 13 6.2

SUSig 11-30 94 3.7
MCYT

-100 11-50 100 6.3

Table 3.1: Summary of the seven datasets used in our analysis. The template set of
each dataset is always the first ten trials (# 1 to #10) of every type of gesture. The
screen size refers to the screen size of device on which the gesture samples were col-
lected for that dataset. SUSig and MCYT-100 datasets also included attacks, which
were used in our attack evaluations.

Table 3.1 shows a summary of the datasets we used in our analysis: (i) Freeform ges-

ture dataset (Sherman et al., 2014), (ii) $1 Demo dataset (Wobbrock et al., 2007), (iii)

Vatavu’s gesture datasets (Vatavu, Vogel, Casiez, & Grisoni, 2011), (iv) MMG corpus

dataset (Anthony, Vatavu, & Wobbrock, 2013), (v) HHReco dataset (Hse & Newton, 2004),

(vi) SUSig (Kholmatov & Yanikoglu, 2009), and (vii) MCTY-100 (Ortega-Garcia et al.,

2003). For consistency, we opted to use the first 10 trials from each dataset as Template

sets. The remaining trials are called the Recall set. We use the first five datasets to test the

authentication accuracy of different recognizers, and use the last two datasets to examine

the ability of the recognizers to resist imitation attacks.
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3.6 Results

In this section, we first present the results of our analysis of the invariances (rotation, scale,

location) and their effect on authentication performance. We follow up with results on

the performance of the different recognizers and results of the brute-force and imitation

attacks. Finally, we present the implementation and evaluation of Garda as it operates on a

mobile device.

We used two-way ANOVA for testing the statistical significance between the authen-

tication performances of individual gesture invariances and the benchmark, since both the

invariance combination types and the template numbers can affect the authentication result.

We used repeated measures one-way ANOVA to test the statistical significance between the

authentication performances of the 13 recognizers on different datasets. We used Bonfer-

roni corrected p-values for the post-hoc test for controlling the familywise error.

3.6.1 Invariances Analysis

Figure 3.5 shows the individual effects of rotation, location and scaling on authentication

performance. In this analysis, we used the EER of the recognition-optimal combination as

the benchmark.

A two-way ANOVA test indicated a statistically significant difference between individ-

ual gesture invariance authentication performance and the benchmark (χ2(251) = 11.6,

p < 0.001), while the interaction effect between the two factors is not statistically signifi-

cant (χ2(251) = 0.17, p = 1). Thus, we did not consider the interaction effect between the

the invariance combination types and the template numbers.
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Figure 3.5: EER values under combinations (SLR), (SLR), (SLR), and (SLR). S,
L, and R mean the gesture’s scale, location, are rotation are invariants. S, L, and R
mean the these three are variants. The whiskers show the maximum and minimum
EER of each group. We can see that rotation alone as variant (SLR) has obvious
positive effect authentication accuracy; scale alone as variant (SLR) has no obvious
effect authentication accuracy; location alone as variant (SLR) has obvious negative
effect on the authentication accuracy.

Rotation Invariance

Figure 3.5 demonstrates that designating the gesture rotation as variant can improve the

recognition performance (i.e. reduce the EER). This result holds true even with a different

number of template gestures across different gesture datasets. This can be explained by the

reliability a users’ drawing habit – people will tend to input their gesture into the tablet the

same way every time. Very rarely, however, do gestures in the same dataset have the same

rotation angle as other gestures.

The statistical test between SLR and SLR with template number (2 to 10) shows there

is no statistically significant difference between the two (p = 0.373, d = 0.42). The lack of

significance stems from the fact that the EER values become relatively close as the number
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of templates becomes larger (8, 9, 10). A recognizer is more likely to identify a genuine

trial when there are more genuine templates to test against. This reduces, overall, the

effect of invariance combinations on EER. If we do not consider EERs with large template

number (8, 9, 10), then there is statistically significant difference between SLR and SLR

(p = 0.013, d = 0.56). As such, allowing for rotation variance can reduce the possibility

of accepting false gestures.

Scale Invariance

Figure 3.5 shows that the scale variable has a slight, positive influence on recognition per-

formance. The primary reason is that Protractor is based on the cosine distance between

two gesture sequences. The cosine distance measures the directional difference between

two vectors and ignores the Euclidean distance. Thus, the difference among the size drawn

gestures will not affect the relative similarity scores. The statistical test between SLR and

SLR shows no statistically significant difference (p = 1, d = 0.14). Treating scale as

variant does not have a statistically significant influence on authentication performance.

Location Invariance

Figure 3.5shows that taking location as variant has a negative influence on recognition ac-

curacy; this is because it is hard for users to draw at the same location on the screen when

repeating their gestures. The recognition performance in Garda, therefore, is not based

on the absolute similarity among trials of the same person; it depends on the relative dif-

ference of similarities between genuine trials and imitations. Taking gesture location as

variant would reduce the similarity of genuine gestures and increase the similarity of imi-

tation gestures. This would make it more difficult to distinguish the genuine and imitation
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Figure 3.6: The average ROC curves of the five gesture datasets with two to ten tem-
plate gestures for the eight combinations of the three variants (Scale, Location, Ro-
tation). S, L, and R mean the gesture’s scale, location, are rotation are invariants.
S, L, and R mean the these are variant. We can see that the combination (SLR)
has the lowest EER (=0.041) across the five datasets. While the recognition-optimal
case (SLR) can only achieve EER=0.075. We conclude that combination (SLR) is the
optimal authentication selection of three variants.

gestures, to the detriment of the authentication performance. The statistical test between

SLR and SLR shows a statistically significant difference (p = 9.788× 10−4, d = 0.61).

Variants Combinations Effects on Recognition

Figure 3.6 shows that the combination (SLR) achieves the lowest EER (0.041) on average.

It can be explained by the individual effects of the three variables: rotation variant has

statistically significant positive effect on EER, location variant has statistically significant

negative effect on EER, and scale variant has slightly positive effect on the EER. Compared
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to the common case of the three combinations (SLR), where the EER = 0.075, the SLR

reduces the EER by 45.3%.

Additionally, the ROC curves of SLR and SLR are very close. It verifies our analysis

that the gesture scale variable has no statistically significant effect on EER.

We also can observe that the four combinations that take location as variant (SLR,

SLR, SLR, and SLR) are the lowest four ROC curves. This means that, with the same

conditions for gesture scale and rotation, taking gesture location as variant will always have

a negative effect on authentication accuracy. Generally, the reason is that people cannot

keep their gesture’s location at a relative fixed place on the touch screen. This means that a

system differentiating between different gesture locations can distort the similarities among

the genuine and fake gestures.

3.6.2 Performance of Different Recognition Methods

To select the optimal recognition method for gestures, we tried 13 different methods in

four groups: sequence matching group (Protractor, EDR, LCS, DTW), One-class SVM

group (Protractor-, EDR-,LCS-,DTW-kernels), HMM group (dHMM, sHMM, cHMM),

and multi-expert group (SVMGarda, Garda). Since our analysis of gesture invariances is

based on Protractor, we also used Protractor as the baseline for the comparison of these

13 methods. We evaluated the above methods with regard to EER values, authentication

times, brute-force and forgery attacks.

We used 10 gesture trials as the template gesture set to minimize the bias from the

template selection. The reason is that the selection of template gestures may effect the

recognition performance. As a result, more gesture templates used ensure that less bias



- 33 -

Figure 3.7: The average ROC curves for the 13 recognition methods over the five
gesture datasets. We found that Garda has the lowest EER (0.015). Since the ROC
curve of Garda is closest to the up-left corner, it should be the most tolerant of the
change of authentication threshold. We conclude that Garda is the best among the 13
methods.

that exists in the selected templates.

Figure 3.7 shows that Garda is the best among the 13 recognizers. We averaged the ROC

curves of the five gesture datasets for the 13 recognizers. We found that Garda achieves

lowest EER (0.015) in the averaged ROC. The ROC curve of Garda is the closest to the

up-left corner, meaning that Garda can recognize the most genuine gestures correctly while

rejecting attacks as well as other recognizers.

Table 3.2 shows that Garda has most of the lowest EERs among the 13 recognition

methods through the five datasets. The authentication time for Garda is around 2 millisec-

onds, which is also among the lowest authentication times. Specifically, both of the two
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Freeform
(Set 1)

Freeform
(Set 2)

MMG $1 Demo HHReco
Vatavu
(Set 1)

Vatavu
(Set 2)

Protractor 0.027 0.105 0.032 0.021 0.015 0.008 0.005
EDR 0.062 0.137 0.185 0.044 0.032 0.031 0.010
LCS 0.036 0.121 0.056 0.020 0.013 0.011 0.002
DTW 0.062 0.142 0.204 0.049 0.026 0.011 0.002

Protractor-K 0.035 0.141 0.046 0.032 0.047 0.004 0.011
EDR-K 0.048 0.055 0.119 0.034 0.037 0.009 0.003
LCS-K 0.036 0.118 0.141 0.058 0.040 0.006 0.006
DTW-K 0.053 0.113 0.063 0.092 0.028 0.001 0.013

SVMGarda 0.026 0.116 0.032 0.014 0.012 0.011 0
d-HMM 0.036 0.113 0.065 0.045 0.038 0.023 0.011
s-HMM 0.109 0.130 0.198 0.165 0.144 0.140 0.104
c-HMM 0.044 0.104 0.052 0.015 0.034 0.005 0
Garda 0.019 0.047 0.033 0.012 0.007 0 0

Table 3.2: EER values against estimated authentication time. Each recognition
method is implemented in MATLAB and tested on five gesture datasets in terms
of EER and authentication time (t) in milliseconds. Since the authentication time
is based on MATLAB computations, it can be only used for a relative comparison
among different recognizers. In each dataset, the lowest EER is shown in bold and
italic, while the highest EER is only bold. Generally, the ME group always has the
lowest EER among different datasets and authentication methods. Between the two
ME methods, their EER performances are dependent on the different datasets. How-
ever, since Garda has much lower EER than SVMGarda in Freeform (set 2) and the
computation cost of Garda is always lower than SVMGarda, we conclude that Garda
is the best among the 13 methods.

multi-expert methods, Garda and SVMGarda outperform the other recognizers. Garda is

also more stable than SVMGarda. For example, in Freeform (Set 2), Garda achieved the

lowest EER (0.047), while SVMGarda achieved a relatively higher EER (0.116).

Based on repeated measures ANOVA analysis on the 13 recognizers, there is a statisti-

cally significant difference between EERs when choosing different recognizers (χ2(90) =

9.71, p < 0.001). From our post-hoc analysis, we found there are no statistically signif-

icant differences between Garda and Protractor (p = 0.121, d = 0.52), Garda and LCS

(p = 0.0749, d = 0.68), Garda and DTW (p = 0.0545, d = 1.17), Garda and Protractor

kernel SVM (p = 0.0528, d = 0.89), and Garda and SVMGarda (p = 0.208, d = 0.47).
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Similarity in EER, however, does not necessarily bear on the effectiveness of an authenti-

cator; for instance, Protractor cannot prevent brute-force and imitation attacks as well as

Garda, irrespective of whether its EER is statistically significantly different. Figure 3.7 also

shows that the ROC curve of Garda is much more ideal than the other recognizers.

We found that the authentication times of the one-class SVM group are much longer

than the sequence matching group while the EER values are relatively similar. The reason

for the longer authentication time is that, with the similarity matrix, SVM methods require

an extra step to examine the similarity scores with training gesture trials and converting

the similarity to probabilities. Since one-class SVM group distinguishes the gestures based

on the sequence matching kernel functions, its ability to distinguish gestures should be the

same as sequence matching group methods. Thus, the one-class SVM group has similar

EER as sequence matching group methods.

The sHMM method consistently performs with the worst EER, due to its process of

segmenting a gesture into several parts based on sharp turns and then classifying those

parts into 14 observations. sHMM tends to lose a lot of useful information through this

segmentation, and this makes the gestures more likely to be misclassified.

Performance Under Brute-Force Attacks

Figure 3.8 shows how the authentication methods resist brute-force attacks. We found that

the recognizers’ performance are polarized. On the one hand, EDR, LCS, DTW, dHMM,

sHMM and Garda resisted all of the brute-force attacks. On the other hand, the brute-force

attack cracked most of the gestures of the other recognizers. Specifically, we found that the

features of recognizers that can resist attacks are distance based (such as EDR, LCS, and
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Figure 3.8: Guessing success rates of brute-force attacks of the 13 authentication sys-
tems on different datasets. The ”Others” includes Garda, EDR, LCS, DTW, dHMM,
and cHMM. From the cracking rates, Garda, EDR, LCS, DTW, dHMM, and cHMM
have the best ability on resisting brute force attacks since the success cracking rates
of them are 0% through the 6 datasets.

DTW) and time series HMM-based (dHMM, sHMM). SVM was generally weak against

these attacks.

Performance Under Imitation Attacks

We used the datasets MCYT-100 and SUSig to examine the 13 methods’ performance un-

der imitation attacks. These datasets have samples from both legitimate users and imitation

attacks from skilled attackers. We used the first ten legitimate trials for each user as tem-

plates and the rest as legitimate authentication attempts. The skilled attackers observed the

genuine trials and practiced them until they felt confident with attacks.
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Method MCYT-100 SUSig
Garda 0.045 0.035

Protractor 0.151 0.350
EDR 0.155 0.366
LCS 0.101 0.420
DTW 0.189 0.371

Protractor-K 0.163 0.335
EDR-K 0.103 0.402
LCS-K 0.084 0.344
DTW-K 0.093 0.397

SVMGarda 0.096 0.479
d-HMM 0.233 0.333
s-HMM 0.338 0.445
c-HMM 0.125 0.202

Table 3.3: The EER of the 13 authentication methods in MCYT-100 and SUSig
datasets under skilled forgery attacks. Only Garda has considerable advantages in
EER.

Table 3.3 shows that only Garda outperforms the rest 12 methods on resisting forgery

attacks. EER values of Garda are 0.045 and 0.035 in MCYT-100 and SUSig, respectively.

In contrast, the lowest EER values for the other methods are 0.084 (LCS Kernel) and 0.202

(c-HMM). In summary, Garda outperforms all of the other approaches against imitation

attacks, and none of the other approaches perform well against both of the datasets.

3.6.3 Mobile Device Implementation and Evaluation

We implemented Garda, described in Figure 3.4, on an Android platform. Our test device

was a Samsung Galaxy Note 10.1, which had a 1.9 GHz Quad CPU and 3 GB of RAM.

For our evaluation, we created 20 new gesture passwords (two templates per gesture) on

the mobile device and recorded the processing time for training and authentication with a

different number of gesture passwords.

Figure 3.9 shows our mobile device evaluation results. With the number of gestures

(users) increasing, we see that the training time increases while the authentication time
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Figure 3.9: The processing time for training and authentication under different num-
ber of gesture passwords. The upper figure shows the time for training, the lower
shows the time for authentication. Along with the increasing number of gesture pass-
words, the training time is gradually increasing while the authentication time stays
stable.

stabilizes around 150 ms. The training time increases because Garda uses the Expectation-

Maximum algorithm to train the UBM based on all the gesture trials in the dataset and

re-train the Gaussian Mixture Model (GMM) for all gesture types based on this new UBM.

More gestures lead to more time spent training models. In the authentication phase, we

only need one GMM for a given gesture, so the authentication time remains stable. Training

time is unlikely to pose a usability problem: there are typically not multiple passwords on

a mobile device, and our training time, even with 20 different gestures, amounted to only

30 seconds and could be run in-background over other tasks. Efficiency of implementation

is another feature recommending Garda as a gesture recognizer.

3.7 Summary

After developing Garda as a multi-expert gesture recognizer, we also implemented and

evaluated Garda on a mobile device. Our results show that our implementation can largely

improve the performance of gesture-based au- thentication systems. Garda was the final

result of a rigorous evaluation of 13 different methods to implement gesture recognizers.
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We applied several datasets and two different attacks against the recognizers. Finally, we

conducted the first analysis determining how tuning the variables of preprocessing meth-

ods in gesture recognizers can impact their authentication performance. The presented

authentication-optimal combination can reduce up to 45.3% of EER on average compared

to recognition-optimal configuration used in previous work.
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CHAPTER 4

GUESSING ATTACKS ON GESTURE PASSWORDS

4.1 Overview of Chapter

Analyzing the guessability of gesture passwords involved four key stages:

First, we introduced two types of datasets for our analysis: dictionary dataset and test

dataset. We used a dictionary dataset to analyze the most common gesture passwords that

users selected as passwords. The test dataset is used to test the attack algorithms of our

guessing methods.

Second, we introduced the preprocessing steps and dynamic time warping method for

gesture recognition. Based on the analysis, we proposed an enumeration method for full

space analysis of gestures.

Third, we introduced the steps for estimating the size of weak subspace of gestures

based on the common selected gestures by people.

Finally, based on the weak subspace, we developed an effective dictionary of attacks for

gestures. We implemented brute-force attacks based on previous study on graphical pass-

word’s symmetric features, and used it as the benchmark of our guessing attack analysis.
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4.2 Method

In this section, we introduce gesture datasets used in our analysis. Then, we present a

generalized procedure for gesture recognition based on DTW. We propose a method for

estimating the sizes of full and weak subspaces of gesture passwords. Finally, we present

our algorithms for performing dictionary and brute force attacks.

4.2.1 Data Acquisition and Classification

Effective guessing attacks require data about user choices; the best options for guessing

attacks on gesture would be drawn from the most common gesture passwords that users

select. Before building the machinery required to perform guessing attacks, we needed a

set of data to inform attacks and to evaluate the efficiency of our attack algorithms.

For these purposes, we aggregated two sets of data. We labeled the sample set from

which we derive our dictionary as the Dictionary dataset: it is composed of three gesture

datasets, obtained from previous work on gesture passwords (Sherman et al., 2014; Y. Yang

et al., 2016) and collected from 232 users. The testing set, from which we ran our attack

algorithms, was called the Test dataset. Test dataset is composed of two datasets of gestures

that we have newly obtained from 109 volunteer participants.

Dictionary Dataset

Previous work on user-generated gesture passwords classified created gestures into six rudi-

mentary groups: Digit, Shape, Lines, Letter, Symbol, and Words (Y. Yang et al., 2016). We

differed from this precedent, defining our groups as:

• Digit: 0,1,2,3,4,5,6,7,8,9;
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• Geometric Shape: triangles, circles, cylinders, etc.;

• Letter: upper and lower case of 26 letters;

• Mathematical Function: basic signal functions;

• Mathematical Symbol: characters used in mathematics;

• Music Symbol: treble clef, simple notes, etc;

• Special character: keyboard special characters.

In our analysis, we merged the Lines and Shape groups from previous research into the

Geometric Shape group. We then expanded the Symbol group by breaking it into specific

meanings for four new groups: Math function, Math symbol, Music symbol, and Special

character. We opted to remove the Word group; after aggregating the sum of datasets, we

concluded that words do not appear as frequently as posited in prior work (Y. Yang et al.,

2016).

In the Dictionary dataset, we found that 407 out of 529 gestures were created by par-

ticipants because the gestures carried some semantic meaning. These gestures, that we

hypothesize are chosen because of their meaning, are what we define to be the weak sub-

space of gestures. In addition to the gestures with semantic meaning, 122 gestures in the

Dictionary dataset and 90 gestures in Test dataset (General) carried no semantic meaning

with regard to any of the seven groups. Since these gestures do not have obvious meanings,

and it is not obvious whether they would be reused by other people ta, these gestures did

not receive any specific treatment.
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Test Dataset

We conducted a user study to collect the Test dataset. The study was approved by the Insti-

tutional Review Board (IRB) of Rutgers University. The experiment consisted of collecting

two datasets: Test dataset (General) and Test dataset (Weak).

Data Collection. The Test dataset (General) was used to test the efficiency of the guess-

ing attack. We asked participants to create gesture passwords for a user account without any

instruction as to what to choose. We asked each participant to create one unistroke gesture

and one multistroke gesture. Table 4.1 shows that we collected 109 unistroke and 109 mul-

tistroke gestures from the participants. 136 of the user-generated passwords (78 unistroke

and 58 multistroke) fall into the weak subspace groups identified in Section 4.2.1.

The Test dataset (Weak) was used to tune the performance of the attacking algorithm,

as our guessing attacks required information about the most common variations a human

might add when performing a gesture password. This would enable it to create N trials of

a single gesture with only slight differences between subsequent attempts – for example,

creating a rectangle of slightly longer width each time for 100 tries. The attacking algorithm

needs an idea of when to stop making adjustments to a gesture beyond a point that humans

tend not to do – in the rectangle example, this might entail adjusting the rectangle to the

full width of the screen. This means we need a large number of samples to determine

parameters for the variable ways people draw a given gesture in each one of the groups in

Section 4.2.1. We collected Test dataset (Weak) to meet this purpose. The weak subspace

contains 84 specific gestures, we asked participants to give us trials of 30 out of the 84

gestures. Totally, we collected 3270 gestures in Test dataset (Weak).
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Gesture Type Unistroke Multistroke subtotal
Weak Subspace Feature 78 50 128

Symmetric Feature 36 47 83
Weak & Symmetric 34 29 63

Any Feature 109 109 218

Table 4.1: Summary of free-form gestures in the Test dataset (General). “Weak Sub-
space Feature” are the free-form gestures that fall into the weak subspace groups in
Dictionary dataset. “Symmetric Feature” are the gestures that have horizontal or
vertical symmetry. “Weak & Symmetric” are the gestures that have both of the two
features. The “Weak Subspace Feature” size (128 gestures) is larger than “Symmetric
Feature” size (83 gestures). It verifies the analysis of the Dictionary dataset, where the
coverage of weak subspace features in gestures are wider than symmetric features.

To mimic typical password creation tasks, we asked participants to first create a gesture

password and then recreate it to confirm it.

Participants. We recruited participants with flyers on our university campus. We re-

quired the participants to be 18 years old or over and familiar with touchscreen devices.

We recruited 109 participants with ages ranging from 18 to 45 (Mean=20.67, SD=3.46).

50 were male and 59 were female. 88 individuals were pursuing an undergraduate degree,

6 were pursuing graduate degrees, and the remaining 15 had a graduate degree.

Apparatus. The gestures were collected on a Nexus 10 tablet with Android 4.4.2.

External Validity

One concern was that the different sizes of the Dictionary dataset and the Test dataset

(General) might affect how commonly a weak subspace group appears; if true, this effect

would pose a problem, because it would impact the generalizability of our analysis. It is

possible that, at very different sizes of datasets, one or more of the seven groups could be

over- or underrepresented in our data. At the very least, it could affect the ability to draw

valid comparisons between the Dictionary and Test (General) datasets. We computed the
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relative frequencies of the seven groups of weak subspace gestures in both the Dictionary

dataset and Test dataset (General). The relative frequencies of one group of weak subspace

gestures are calculated as in Eq.(4.1).

Relative frequency of group =
# of weak group

# of entire weak subspace
(4.1)

Table 4.2 shows that the relative frequencies of the Test dataset (General) are close

to that of the Dictionary dataset, despite a different sample size and different participants

across separate studies. We can conclude, therefore, that we are targeting similar distribu-

tions of gesture groups here, and that they are suitable dictionary and attack targets, sepa-

rately. We can also conclude that the Test dataset (General) is a suitable attack candidate

for the Dictionary dataset.

We are careful to note that the demographic breakdown of the Dictionary set and the

Training set is preferential to people who work on campuses and college students. This af-

fects our ability to make strong statements about how representative these group categories

are when applied to the general population. It is possible that age, education, or nation-

ality could be factors that affect the size of each gesture group. This potential variation

would have to be considered in the future, and could be easily performed using the attack

methodologies outlined by our work.

4.2.2 Gesture Recognition Approach

In this section, we present the gesture recognition approach used in our analysis. First, we

introduce the preprocessing procedures and their respective effects on the full space. Then,

we will introduce Dynamic Time Warping (DTW) as the recognition method.



- 46 -

Group Name Dictionary Dataset Test Dataset (General)
Digit 9.1% 9.4%

Geometric Shape 44.5% 45.3%
Letter 28.0% 28.9%

Math Function 9.1% 10.2%
Math Symbol 4.4% 5.5%
Music Symbol 2.7% 0.8%

Special Character 2.2% 0%

Table 4.2: Relative frequencies of seven groups of weak gestures in Dictionary dataset
and Test dataset (General). It shows that the relative frequencies in two independent
datasets are very similar. It means that the two datasets are similar to each other
and that the size of each dataset is not significantly affecting how often each group
appears.

Preprocessing

Human users cannot exactly repeat the same gestures on a touchscreen. To improve recog-

nition accuracy, various preprocessing methods are often used to prevent relative (minor)

differences between two gestures from obfuscating the underlying similarity of a single

users gesture-making. The purpose of our work is to analyze the independent effect of

preprocessing steps on a systems ability to make these measurements and comparisons.

Therefore, we sought to analyze as many processing steps as possible. These independent

preprocessing steps could then be added or removed based on design requirements. In sum-

mary, our analysis on preprocessing methods is applicable to approaches that measure the

similarity between time series. Figure 4.1 shows a generic preprocessing procedure. There

are five steps: 1) Stroke connection; 2) Resampling; 3) Location invariance; 4) Rotation

invariance; 5) Scale invariance.

Stroke Connection. Unistroke gestures, which consist of a single continuous stroke

to draw (for example, the number ’8’), are easy for recognition algorithms to handle –

it is a single sequence of (x,y) data coordinates. Most, if not all recognition algorithms,
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Figure 4.1: The preprocessing procedures are generic steps in gesture recognition.
First, user has inputted a gesture on the touchscreen (Raw Gesture). Stroke Con-
nection: a multistroke gesture’s strokes are connected to one sequence by time order.
Resampling: the gesture is resampled to a fixed number of sample points. Location
Invariance: the gesture is translated to the origin point. Orientation Invariance: the
gesture is rotated to the same direction. Scale Invariance: the gesture is scaled to the
normal size.

work best on this type of data. Multistroke gestures, which require more than one stroke to

draw (for example, a # symbol), can complicate the recognition problem. These gestures

are represented as multiple, separate pairs of coordinates in the Dictionary dataset. Using

most recognition algorithms on these multistroke gestures would require matching every

sequence exactly, which can lead to increased computation: where M is the number of

strokes, there areM ! combinations for a recognition algorithm to consider. To simplify this

problem, we connect gesture strokes end-to-end as displayed in Figure 4.1. This transforms

a multistroke gesture into a single stroke gesture and now only requires a single run of the

recognition algorithm, reducing M ! combinations down to 1. However, if a user draws the

multistroke gesture in the wrong order, this is considered to be incorrect. The effect of

stroke connection is that the gestures can only have one continuous trace.

Resampling. Gestures that are sampled from the touchscreen have coordinate se-
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quences that are of variable length, sequence length being a function of the sampling rate

and the speed by which the user enters the gesture. Resampling gestures to a constant value,

however, removes variation and simplifies analysis. The question is, then, what is the best

resampling rate to use in our analysis? The Resampling step of Figure 4.1 shows an illus-

trative example of this process. By examining the effect of different resampling rates (R=2,

4, 8, 16, 32, 64, 128) on the Equal Error Rate (EER) in the Dictionary dataset, we found

that afterR = 16, the EER values are both low and stable. We use EER to evaluate whether

the parameter values have an impact on recognition accuracy. We do not use it to determine

or optimize the best values based on specific datasets. The selection of suitable parameter

values can significantly influence recognition performance. For example, if R is too small,

information contained in a circle gesture will be lost and may become indistinguishable

from that of a square. The effect of resampling is that the number of sample points is fixed

to 16 and sequences with other lengths will not be considered.

Location Invariance. When a user draws a gesture on the screen, they rarely draw it

at exactly the same position every time. The solution to this is to make the gesture location

invariant by translating the centroid of each gesture to the origin (0,0) point of a Cartesian

coordinate system. The Location invariance step in Figure 4.1 demonstrates an example of

this. The effect of location invariance is that the centroid is kept constant at the origin.

Orientation Invariance. Users do not draw their gestures at the same orientation ev-

ery time – the centroid of the gesture may be rotated slightly off center. The solution to

this problem is to make the orientation invariant. Two methods are currently used in liter-

ature for removing orientation variance, and the upper and lower diagrams for Orientation

Invariance in Figure 4.1 show examples of these two methods, which are summarized as:
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1. Rotate the gesture until the direction vector, directed from the first point to the last

point, is parallel with the x-axis.

2. Rotate the gesture until the direction vector, directed from the centroid to the first

point, is parallel with the x-axis (Wobbrock et al., 2007).

The two methods differ slightly: in Method I, only the first and last points of gesture

are involved in rotating the gesture, whereas all the gesture points are involved in rotating

the gesture in Method II. This could lead to a difference when it comes to resisting attacks,

and therefore needs to be studied in detail.

Scale Invariance. Users rarely draw their gestures in the same size every time. As in

prior steps, the solution is invariance, this time with regards to scale. As shown in Fig-

ure 4.1, scale invariance divides the gesture sequence by the range (the difference between

minimum and maximum) of the gestures X and Y coordinates for each respective coordi-

nate pair (Sherman et al., 2014; Y. Yang et al., 2016). The effect of scale invariance is that

the gesture is bounded in a square (−0.5, 0.5).

Recognition Method: Dynamic Time Warping

This section briefly introduces Dynamic Time Warping (DTW) (Myers & Rabiner, 1981),

which is used as our gesture recognition algorithm. We then describe the Sakoe-Chiba

Band (Sakoe & Chiba, 1978) for speeding up DTW calculations. We note again that

we chose to use DTW as the recognizer, since it is already utilizedin several extant sys-

tems (Sae-Bae et al., 2012; Tian et al., 2013; Aslan et al., 2014; De Luca et al., 2012;

J. Yang et al., 2015; Aumi & Kratz, 2014; Wu et al., 2013).

Implementation of DTW. Dynamic Time Warping (Myers & Rabiner, 1981) is used to
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Figure 4.2: An illustration of the DTW algorithm and the Sakoe-Chiba band based on
one dimension of our gesture data. The left figure shows how to dynamically search
along the matching path in the grid. The top right figure displays how, according to
the left matching path, the points in Q map to points in C. The bottom right figure
displays the Sakoe-Chiba band using the broken line; U ′ and L′ refer to the upper
and lower envelopes, respectively. The envelope is wider when sequence changes and
narrower when it plateaus.

measure the similarity between the 1-D sequences of two gestures: Q = q1, q2, ..., qi, ..., qn

and C = c1, c2, ..., ci, ..., cm. In our case, we construct a n − by − m distance matrix D

with an element dij = ||qi − cj||. DTW finds the non-decreasing path in D, starting from

d11 and ending at dmn, which has the minimum total value along this path. The left part of

Figure 4.2 shows an example of the dynamic matching path between Q and C. Since the

classic DTW algorithm dynamically searches the target matching path in the n − by −m

matrix, its computation cost is O(nm).

Sakoe-Chiba Band. DTW requires considerable computation. We can improve on

this with the Sakoe-Chiba band (Sakoe & Chiba, 1978). This is a known global constraint

region for calculating the DTW similarity between two sequences. The aim of the band

is to generate an envelope boundary for the underlying sequence. When the underlying

candidate sequence is changing rapidly, the envelope is wider; it becomes narrower when
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the query sequence plateaus (E. Keogh & Ratanamahatana, 2005). Specifically, the upper

and lower bands are Ui = max(ci−r : ci+r);Li = min(ci−r : ci+r). Ui, Li, ci is the ith

point of the upper, lower and candidate sequences. The lower part of Figure 4.2 shows an

illustration of this. If another sequence Q does not fall into the Sakoe-Chiba band of C,

the system determines Q is not similar to C. This allows us to shrink the search space to

a more manageable size. A key issue is the proper selection of r, the number of points

looked forward and backward of a given point. We set r equal to 10% of the sequence

length, based on a review (Ratanamahatana & Keogh, 2004) of more than 500 papers.

4.2.3 Full Space Analysis

The full space refers to the total number of distinguishable gesture possibilities that can be

differentiated by a gesture recognizer. Computing the full space for matching problems is

easy, for example, there are 104 possible combinations of 4-digit PINs. This represents all

the PINs from 0000 to 9999. However, with gestures, counting a full space of passwords is

more difficult. Two gestures, for instance, can be technically different if even one coordi-

nate pair is not the same. The coordinate values of a gesture drawing are real numbers with

decimal places, which means that there is an extremely large, near uncountable amount of

gestures that are different if one modifies even one coordinate point slightly. In this sec-

tion, we present the additional processing steps on raw gestures to estimate the number of

all possible gestures.

Gesture Discretization

The key to solving this issue is to ensure that a gesture recognizer does not consider two

gestures that have almost all the same points to be different. For example, the difference
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could be that just one x-coordinate pair differs by 0.1. A recognizer will state that the

similarity of those two gestures is high; therefore, it is likely they are the same gesture. The

question now becomes: what is the largest difference between two coordinate pairs before

two gestures might be considered to be different?

A gesture coordinate pair can take on a continuous value between two sample points.

This is displayed in Figure 4.3(a), wherein the red line represents a continuous connection

between the points. Gesture discretization imposes a rule on the gesture values: gesture

values cannot vary continuously, but must vary by a fixed amount. If gestures vary by a

fixed amount between points, then they become countable. The first step is to figure out the

Discretization Level, N , which is the number of discrete values that are possible between

two gesture points.

Discretization Level. We need a discrete, countable number of values between two

gesture points to be able to enumerate the space. To do this, we can subdivide the range be-

tween two coordinate points into N units. This means there are N possible values between

two gesture points when counting all possible gestures as opposed to the large, near-infinite

number of points when the gesture remains continuous. N should be the smallest possible

value while still keeping two distinct gestures – like a circle and a square – from being

counted as the same gesture. To achieve a reference for N , we examine the values of N

(from 5 to 40 in steps of 5) based on the EER in Dictionary dataset, as we did when de-

termining the resampling rate R. We chose N = 15 units since it is a local minima for

error rates. We note that N = 15 units is not the optimal value for any particular gesture

but optimal for the dataset as a whole. Figure 4.3(a) shows an example of this, imposing

countable units.
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Figure 4.3: Example of gesture discretization. (a) In “Before discretization” above
the axis, the round points are several values of gesture samples. It can be any value
between the range [-1,1]. In “After discretization” under the axis, the values of gesture
samples are rounded to the closest discrete values shown as square points. (b) shows
an example of a gesture under discretization. The Discretization Level is 15 units,
since the range [-1,1] is divided to 15 units. The Jump Limit is 5 units, since the
maximum gap between the adjacent points is 5 units.

Jump Limit.

We have imposed a set number of values a gesture can take between sampled points

when counting. However, a question remains: how large can a gesture value change?

Figure 4.3 shows that, after gesture discretization, the adjacent discretized gesture points

should not be too large. We require, after all, a semblance of continuity in order to preserve

the shape of the gesture; otherwise a circle turns into a square. For example, if one sample

point exists at the maximum end of the value range, its adjacent sample points is unlikely

to be at the minimum end of the value range. If this is not controlled, then many details

between the two points may be lost, and the gesture cannot be distinguished.

The Jump Limit, J defines the maximum possible difference between two adjacent

gesture points. With resampling rate R = 16 and discretization level N = 15 units, we

examined all the gaps between adjacent points in all the gestures in the Dictionary dataset.

We found the largest gap is 12 units. Therefore, we set J = 12 units. The Jump Limit

restricts that adjacent points of gesture variations must be less than the Jump Limit.
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In summary, the size of the full gesture space is preprocessing-dependent and recognizer-

independent. In the whole procedure to convert a raw gesture to a processed gesture in the

full password space, the DTW recognizer is used to find reasonable reference values for

the resampling rate and the discretization level. The resulting reference values cannot be

optimized based on any particular recognizers or databases; this ensures that those refer-

ence values can also be applied to other recognizers that measure the similarity between

time sequences, such as, Longest Common Subsequences (LCS), Edit Distance, Cosine

Distance, and Euclidean Distance.

Enumeration of Full Space

We introduced the procedures to transform a raw gesture to a preprocessed gesture that

can be used in the recognizer and consequently as part of an authentication system. In this

section, we apply the effects introduced in the preprocessing and discretization steps to a

function for enumerating the full space shown in Algorithm 1.

Algorithm 1 GNume() is used to enumerate the full space with a specific resampling

rate, discretization level, jump limit and orientation invariance method. We enumerate

gesture sequences from the last point to the first point. First, we initialize the size of the

full space FS = 0, the length of gesture L = R and the sum of visited points in X and Y,

Xsum = Ysum = 0. Then, we find all of the possible values for the gesture’s last points,

Xe and Ye. Since the gesture is discretized, the value of a gesture sample point can only

be a number from 1 to N . By combining Xe and Ye with different values, we obtain the

EndPointSet with size N2, composed of (Xi, Yi).

For each value in the EndPointSet, we check the orientation invariance method. If it
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Require: The length of gestures in the full space, Resampling rate R. The Discretization
level N , the size of discretization values. The maximum gap between two adjacent
sample points in a discrete gesture, Jump limit J . The method to remove a gesture’s
orientation variant, method I or method II.

Ensure: FS = Full gesture space size.
1: FS ← 0;
2: L← R;

// length of gesture
3: Xsum, Ysum ← 0;

// X, Y sums of visited points
4: Xe, Ye ← 1, 2, ..., N ;

// Xe,Ye are the coordinates of a gesture’s end point.
5: EndPointSet← (Xe, Ye);

// Combinations of Xe,Ye.
6: for (Xi, Yi) ∈ EndPointSet do
7: if Using Orientation Invariance Method I then
8: yc = Yi;

// Method I
9: else

10: yc = R×N/2;
// Method II

11: end if
12: FS ← GRecur(L,Xi, Yi, Xsum, Ysum, yc, N, J) + FS;
13: end for
14: return FS

Algorithm 1: Pseudocode for full space enumeration function GEnum(R, N, J, Ori-
entationMethod). Starting with the gesture length and specific parameters, this code
can enumerate all possible gestures in the full space with a given length.

uses method I, the Y-coordinate of a gesture’s first and last points should be equal. Thus,

the first value of the Y-coordinate, yc, should be Yi, the Y-coordinate of the last point. If it

uses method II, the Y-coordinate of a gesture’s first point should equal to the mean of all of

the gesture’s Y-coordinates, which is R×N/2. Then, we use recursive function GRecur()

to enumerate all possible gestures with the given end point. Finally, the sum of FS is the

size of the full gesture space.

Algorithm 2 GRecur() is the the core recursive function in GNume(). The inputs of

GRecur() keep the same meanings as in GNume(). When L > 1, it means the whole
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1: if L > 1 then
2: S ← 0; //Initial gesture space size
3: Xrange ← [max(1, Xi − J),min(N,Xi + J)];
4: Yrange ← [max(1, Yi − J),min(N, Yi + J)];
5: for Xj ∈ Xrange and Yj ∈ Yrange do
6: L = L− 1;
7: Xsum = Xsum +Xj;
8: Ysum = Ysum +Xj;
9: S ← GRecur(L,Xj, Yj, Xsum, Ysum, yc, N, J) + S;

10: end for
11: return S;
12: else
13: Flag1 ← Y == yc; // If Orientation is Invariant?
14: Flag2 ← Xsum/R == N/2; // If Location is Invariant in X?
15: Flag3 ← Ysum/R == N/2; // If Location is Invariant in Y?
16: if Flag1 and Flag2 and Flag3 then
17: return 1; // Is a preprocessed gesture
18: else
19: return 0; // Not a preprocessed gesture
20: end if
21: end if

Algorithm 2: Pseudocode for the recursive function GRecur(L, Xi, Yi, Xsum, Ysum,
yc, N, J) in Algorithm 1. This code enumerates the gesture in reverse order of the
sequence until the first point is reached. Then, it will examine if the enumerated
sequence is a preprocessed gesture by checking the rotation and location invariance.

gesture sequence is not generated yet, so we need to keep recurring the function. When

L reaches 1, it means the full gesture sequences are generated. We need to check if the

generated sequence is a preprocessed gesture. Based on the restriction from the orientation

invariance step, the Y coordinate of the gesture’s first point should be equal to either its last

point (Yi) or the mean of the gesture points (R ×N/2). From the location invariance step,

the mean of the gesture’s X- and Y-coordinates, which is Xsum/R and Ysum/R, must stay

constant and equivalent to the center of a gesture’s value range (N/2). Only if the sequence

fulfills the above criteria, the sequence can be regarded as a preprocessed gesture.
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4.2.4 Weak Subspace Analysis

The weak subspace is a subset of passwords that people are more likely to choose. If

an attacker has knowledge about people’s password preferences, the attacker will perform

more efficient dictionary attacks compared to simple brute force attacks.

In this section, with the full space of gesture passwords as the reference point, we study

the weak subspace for gesture passwords. First, we discuss how to determine the “The

Authentication Similarity Threshold” in our analysis. Then, we show the procedure for

“Weak Subspace Size Estimation”. We find different variations of gestures in “Extract

Representative Gesture”. To estimate the similarities of representative gestures, we need

to “Restrict Gesture Searching Region” to improve the search efficiency, and use Monte

Carlo method to “Estimate Weak Subspace Size”. Finally, we remove the potential double-

counting issue by “Check Overlapping Regions”.

Authentication Similarity Threshold

In gesture-based authentication systems, a robust threshold is crucial for recognition per-

formance. For example, if the threshold is set too low, illegitimate users may be able to

mimic authorized users. Similarly, if the threshold is set too high, authorized users may

be rejected due to slight variations in repeating their gesture. Since the optimal thresh-

old varies for each dataset, we did not select the threshold by examining the EER of our

datasets as we did when determining the resampling rate and related parameters. Instead,

we examined the distribution of the DTW similarity scores among gestures throughout the

Dictionary dataset and selected a reasonable value which can authenticate a majority of the

legitimate users.
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Weak Subspace Size Estimation

We estimate the size of the weak subspace as follows. First, we manually classify all of

the weak subspace gestures by their symbols. Then, we extract several gestures of different

drawing styles for each particular symbol. For each gesture of a particular drawing style

under a specific symbol, we estimate the total number of similar gestures of it that have

similarities less than the authentication threshold. The sum of all total numbers of the

similar gestures of each drawing style for each particular symbol will form the size of the

weak subspace. Figure 4.4 shows the procedure. Generally, there are four steps: 1) Extract

representative gestures; 2) Restrict gesture searching region; 3) Estimate weak subspace

size; and 4) Check overlapping regions.

Extract Representative Gestures

The reason for extracting representative gestures is that gestures for one symbol are not

evenly distributed. For example, given a symbolic gesture, there could be ten gestures of

one user’s drawing style and twenty gestures of another user’s style. In our weak subspace

analysis, we should treat the two drawing styles from two people equally. Thus, we merge

the gestures where the DTW distance is close and extract representative gestures.

First, we manually classify the gestures in Dictionary dataset by the different symbols.

Then, for gestures from a specific symbol, we cluster the gestures by K-means (MacQueen

et al., 1967; Lloyd, 2006) and evaluate the clustering result through the Silhouette value (Rousseeuw,

1987). Specifically, we start K-means at K = 2 and send the clustering result to be evalu-

ated by the Silhouette. Silhouette value measures how similar a gesture is to its own cluster

compared to the other clusters (Rousseeuw, 1987). Thus, we can find the optimal value
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Figure 4.4: The procedure to estimate sizes of the weak subspace based on data from
Dictionary dataset. Step 1 is Extract Representative Gestures, which uses K-means and
Silhouette value to extract representatives for gestures of each symbol; Step 2 is Re-
strict Search Region, which finds Sakoe-Chiba bands for each representative gesture;
Step 3 is Weak Subspace Estimation, which is accomplished by Monte-Carlo simula-
tion; Step 4 is Check Overlapping Regions, which removes potential overlaps between
representative gestures’ Sakoe-Chiba bands.
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of K for gestures within a specific symbol. Finally, Silhouette outputs the centroids of K

gesture clusters of all gestures under one symbol as the K representative gestures.

Restrict Gesture Searching Region

To estimate the size of weak subspace based on representative gestures for a specific sym-

bol, we need to find the number of similar gestures for each representative gesture.

We use the Sakoe-Chiba band of one representative gesture to restrict the searching

region and find out similar gestures for the representative. With the Sakoe-Chiba band,

which restricts the upper and lower band of the search region, we can calculate the size of

theoretically possible gestures, Sth.

Estimate Weak Subspace Size

Even with the Sakoe-Chiba band restriction, there are still millions of possible gestures

that can compose one representative gesture. As it is too expensive to compute the simi-

larities of all of the representative gestures, we use a Monte Carlo method as an alternative

estimation approach for this situation. First, we randomly generate N gestures within the

Sakoe-Chiba band of a specific representative gesture. Specifically, we randomly generate

the first gesture sample point and randomly generate the following points under the upper

and lower bounds of Sakoe-Chiba band. Then, we measure the DTW distance, D, between

the generated gestures and the representative gesture, and compare D to the authentication

threshold T . If D > T , it means the gesture is not similar to the representative. If D < T ,

the gesture could be regarded as a similar gesture to the representative. We count the num-

ber M of similar gestures for the representative. Finally, we estimate the size of the weak

subspace for one representative gesture by combining the ratio M/N and the theoretical
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Figure 4.5: Examples of two types of overlaps in weak subspace enumeration. The
left is partial overlap and the right is full overlap. The grey area is the overlap area
where double-counting can happen.

size Sth of possible gestures within the Sakoe-Chiba band; this is M/N × Sth.

By summation of the K representative gestures’ weak subspace sizes for one specific

symbol, we get the weak subspace size for a gesture symbol, Si. Lastly, by adding the P

classes of weak subspace sizes of different symbols, we calculate the final size of weak

subspace Sfinal for gesture passwords.

Check Overlapping Regions

We use the Sakoe-Chiba band, which is an area around one gesture, to restrict the searching

region for similar gestures for a single representative gesture. If the Sakoe-Chiba bands

of two extracted representative gestures overlap, there is a possibility that the gestures in

the overlap region could be double-counted by the two representative gestures as weak

subspace gestures.

There are two types of overlaps between two representative gestures’ bounds: (1) Partial

Overlap, shown in the left of Figure 4.5, is when the bounds of Rep.1 and Rep.2 partially

cross over; (2) Full Overlap, shown in the right of Figure 4.5, means that the bounds of

Rep.1, fully fall into the area of the bounds of Rep.2.

We pairwise checked the representatives gestures’ bands to examine whether there are

any overlaps between them. We found that even among the representative gestures of the
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same symbol, there are no overlaps among the representative’s bounds.

In summary, we have the estimated the size of the weak subspace for each gesture

group and the total size of the weak subspace following the four steps above. Although

we used DTW to measure the similarity between gestures, DTW can be easily extended

to other time sequence similarity measurements, the only two differences are the similarity

measurement in K-means and the authentication threshold T .

4.2.5 Guessability Analysis

We present our attack method based on the dictionary of the gestures in the weak subspace.

We also present a baseline brute-force attack method, which we will use for comparison.

Dictionary Attack Method

The order of our attack is based on the order of total weak subspace gestures in each group.

The more weak subspace gestures present in a group, the more likely it is that this gesture

group will be selected. We select a number of weak gestures in the gesture groups instead

of the number in a particular gesture pattern as the index for the attack order. The reason is

that, since the size of the Dictionary dataset is relatively small, there is a limited number of

gestures of a specific symbol meaning.

Dictionary Attack Gesture Generation Method. Generating a dictionary attack ges-

ture uses the same process shown in Figure 4.4. The specific steps are:

1. The attacker selects a representative gesture in a gesture group and calculates its

Sakoe-Chiba band. As a reminder, a representative gesture is extracted using K-

means with a Silhouette value.
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2. The attacker randomly generates an attack gesture under the representative gestures

Sakoe-Chiba band.

3. Attacker measures the similarity between the attack gesture and all of the target ges-

tures under attack. If the similarity falls under the authentication threshold, the cor-

responding gesture password is guessed correctly (cracked).

4. Attacker repeats the above steps for another guess.

Benchmark: Brute Force Attack Method

Previous work has shown how, for Draw-A-Secret (DAS) graphical passwords, the weak

subspace can be enumerated by using symmetric features and a small number of distinct

strokes (Jermyn et al., 1999). Based on prior findings from DAS (Thorpe & van Oorschot,

2004) and Pass-Go (Tao & Adams, 2008) graphical passwords, we extended these ideas

for our baseline brute force cracking attack. We define the following heuristics: (1) users

are more likely to create symmetric horizontal or vertical axes at or near the middle of a

screen; (2) users tend to choose small number of distinct strokes. The small number of

distinct strokes assumed for graphical passwords is not applicable to the multistroke case

for gesture passwords since we connect a multistroke gesture end-to-end in the preprocess-

ing procedure. As a result, both unistroke and multistroke symmetric gestures should be

globally symmetric. Figure 4.6 (a) shows an example of central symmetric axis.

Brute Force Attack Gesture Generation Method.

The specific steps for the attack are as follows:

1. Randomly generate the eight X- and Y- coordinates of the first half of the gesture in



- 64 -

Figure 4.6: Different cases for a symmetric axis. (a) A gesture symmetric by an axis in
the middle of screen. It shows the two global symmetric axis in our analysis. (b) Two
different locations of a symmetric axis in symmetric gestures. They illustrate that the
symmetric axis does not need to be located at the center of gesture sequence.

the entire space.

2. Randomly select the gesture’s symmetric axis: vertical or horizontal.

3. With the half gesture and symmetric axis, generate the attack gesture sequence.

4. Relocate the symmetric axis along the gesture sequence. Randomly select a starting

point in the gesture, then cut the gesture at the new starting point and concatenate the

gesture’s old end points.

5. Measure the similarity between the attacking gestures and all of the gestures under

attack. If the similarity is under the authentication threshold, the corresponding ges-

ture password is cracked.

Figure 4.6(b) shows that the symmetric axis does not need to be located exactly at

the middle point of the gesture sequence. Although a symmetric axis in the rightmost of

Figure 4.6 is not located at the midpoint of the gesture sequence, its gesture shape is still

symmetric and it still should be considered as a symmetric gesture. As a reminder, we
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resampled all gestures to 16 points in preprocessing so the attacking method only needs to

generate 16 points.

4.3 Results

In this section, we first present the sizes of full gesture space and weak subspaces. Then,

we show the cracking results of the dictionary attack and the brute force attack on Test

dataset (General) and Test dataset (Weak).

4.3.1 Sizes of Full Space and Weak Subspace of Gesture Passwords

By running Algorithm 1, we computed the size of the full theoretical gesture password

spaces: 109.0 bits for orientation method I and 109.1 bits for orientation method II. Since

the difference between the full space sizes for the two orientation methods is small, 109.0

bits vs. 109.1 bits, we conclude the variability in choosing either orientation method in

gesture has little effect on the size of the space.

Table 4.3 shows the size of the weak subspace for two different orientation invariance

methods based on our group clustering. The sizes of the weak subspace (both about 82

bits) are much smaller than the full space (both about 109 bits).

We found that the Geometric Shape group has the largest weak subspace and the Digit

group has the smallest weak subspace. The larger the size of the subspace, the harder it

is to crack it. We can predict that passwords in the Digits group are the easiest to crack

while the passwords in the Geometric Shape group are the most difficult to crack among

the seven groups.

By comparing the weak subspace sizes between the two orientation invariance methods,

we found the difference between the methods on the weak subspace size is neglectable.



- 66 -

Group
Name

Weak
Gesture #

Orientation Invariant (Bits)
Method I Method II

Digit 37 67.1 67.7
Geometric Shape 181 82.0 81.4

Letter 114 75.3 77.3
Math Function 37 77.0 76.8
Math Symbol 18 71.6 74.6
Music Symbol 11 77.1 78.4
Special Char. 9 75.4 72.4

Total 407 82.1 81.7

Table 4.3: The sizes of the weak subspaces for free-form gestures. “Weak Gesture #”
is the number of gestures that people selected as passwords. Compared to the size
of the full gesture space (about 109 bits), the weak subspace (about 82 bits) is much
smaller. Furthermore, the Geometric Shape group occupies the largest part of the
total weak subspace size while Digits group has the smallest weak subspace size.

Figure 4.7: Cracking results for the dictionary and brute force attacks against free-
form gestures (Test (General)) and specifically collected weak subspace gestures (Test
(Weak)). For Test (General), by comparing the cracking rates, we find that our dictio-
nary attack is more efficient cracking gestures compared to a brute force attack. The
orientation invariance method I is more vulnerable to attacks than method II. For
Test (Weak), a comparison between our dictionary and brute force attacks is mean-
ingless since the dataset is specifically targeted for testing the dictionary set of weak
subspace gestures.

4.3.2 Cracking Evaluation on Free-Form Gestures

To examine the performance of the dictionary attack and the brute force attack, we perform

both attacks on gestures in Test dataset (General), which consists of free-form unistroke and
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multistroke gestures that users selected as their passwords. Figure 4.7 shows the cracking

results of the two attacks based on the two orientation invariance methods.

Between Different Attacking Methods

Figure 4.7 shows that our dictionary attack is more efficient than the brute force attack.

With both orientation methods, the dictionary attack cracked 35.78 percentage points more

unistroke gestures and 19.27 percentage points more multistroke gestures than the brute-

force attack. It is interesting that the difference between the two orientation methods does

not influence different cracking rates between the attacking methods. By inspection, there

does not appear to be a correlation between the gestures cracked under either orientation

method and the the type of attack method.

The dictionary attack targets gestures inside the weak subspace, while the brute-force

attack targets gestures with symmetric features. By checking the gestures with the partic-

ularly targeted features alone, the dictionary attack is more efficient at cracking weak sub-

space gestures compared to the brute-force attack cracking symmetric gestures. Figure 4.7

shows that the dictionary attack cracked 47.71% of unistroke gestures, which means 52 out

of 109 gestures were cracked. Table 4.1 shows there are totally 78 weak subspace unistroke

gestures in the Test dataset (General), so we find that 66.67% of weak subspace unistroke

gestures were cracked. Similarly, the brute-force attack cracked 11.93% of unistroke ges-

tures, that is 13 out of 109 unistroke gestures. Since there are 36 unistroke symmetric

gestures in Test dataset (General), it means 36.11% of unistroke symmetric gestures were

cracked. Therefore, the dictionary attack is more efficient at cracking weak subspace ges-

tures than the brute force attack at cracking symmetric gestures.
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Between Different Orientation Invariance Methods

Figure 4.7 shows that gestures with orientation invariance method II resists attacks better

than method I. Both dictionary and brute force attacks cracked 11.01 percentage points

more unistroke gestures and 7.34 percentage points more multistroke gestures with ori-

entation method I than method II. It happens again that the difference between the two

attacking methods does not influence the cracking rates between two orientation methods.

By checking the cracked gestures, we still did not find any relationships between the orien-

tation methods and attack methods. To conclude, the selection of the orientation invariance

method has an effect on the gesture’s ability to resist attacks.

Between Different Gesture Types

As Figure 4.7 shows, multistroke gestures resist dictionary attacks better than unistroke ges-

tures. With both orientation methods, there are more than 10 percentage points of unistroke

gestures that were cracked than multistroke gestures.

Under brute-force attack, there is no obvious difference between cracking rates for

unistroke and multistroke gestures. Additionally, the absolute numbers of cracked unistroke

and multistroke gestures are small. We cannot conclude that multistroke gestures are

weaker than unistroke gesture on resisting brute-force attacks.

Note on Computational Limitations

The computational cost of measuring the similarity between gestures is a crucial limiting

factor in our test. Unlike text passwords presented in previous work (Florencio & Herley,

2007; Bonneau, 2012b; Ur et al., 2015), where checking if a password is right or wrong is

near instant, gesture passwords requires dynamically searching for the DTW distance. The
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Figure 4.8: Ratio of cracked symmetric gestures with different orientation invariance
methods in Test dataset (General). The cracked gestures with symmetric feature oc-
cupied about half of the cracked gestures in the Test dataset

computational complexity for text password matching is O(N) and for gesture matching

is O(N2), with N being the password length. We spent two weeks performing 109 attacks

against 3488 gestures, that is 218 gestures in Test dataset 1 and 3270 gestures in Test

dataset 2. Assuming we want to attack the same amount of text and gesture password with

the same length, the gesture password attack needs to spend 3488N2/N ≈ 103N times

more computation than text passwords. However, text based password systems can use

approaches such as scrypt (Percival, 2009) to slow down the verification process.

4.3.3 Crack Evaluation on Free-Form Gestures with Symmetric Feature

We learned the brute force guessing attack is less effective than the dictionary guessing

attack. We also know the brute force attack method is based on the symmetric features of

gestures. So we want to examine the ratio of cracked gestures with symmetric features to

see if the low cracking efficiency of the brute force attack came from the ratio of gestures

with symmetric features.

Figure 4.8 shows that around half of the cracked gestures in the Test dataset (General)

have symmetric feature. It means that the low guessing attack efficiency of brute force

attack does not come from the low ratio of symmetric gestures in the dataset.
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4.3.4 Crack Evaluation on Weak Subspace Gestures

The above results show the dictionary attack outperforms the brute force attack. To ex-

amine the effectiveness of our dictionary attacks on cracking specifically weak subspace

gestures, we perform the dictionary attack on Test dataset (Weak), which contains only

weak subspace gestures that were intentionally covered by our gesture dictionary.

Figure 4.7 shows the cracking result for dictionary and brute force attacks on weak

subspace gestures in Test dataset (Weak). The dictionary attack had a 55.9% cracking rate

with orientation method I and 37.19% cracking rate with method II. The brute force attack

had 1.28% and 0.76% cracking rate for the two orientation methods.

We observe the cracking rates using dictionary attacks in Test dataset (Weak) (55.9%

and 37.19%) is higher than that rates in Test dataset (General) (47.71% and 36.70%). The

reason is that Test dataset (Weak) intentionally contains only the weak subspace gestures,

while Test dataset (General) contains both weak subspace gestures and other freely created

gestures. This means Test dataset (Weak) performance is by default biased towards favoring

the dictionary attack. Therefore, conclusions about the performance of the brute-force

attack compared to the dictionary attack should be limited to the Test dataset (General).

Figure 4.9 shows the details of cracked gestures in Test dataset (Weak). The Digit

gesture group is the most easily cracked while the Special Character gesture group is the

most resistant. As Figure 4.9 shows, only 21.37% of Digit gestures can resist dictionary

attacks. A possible reason is that Digit group has the smallest weak subspace (about 67 bits)

in Table 4.3. The principal reason, however, is that there is not much observed variation

in the way people perform gestures in the Digit group. In contrast, 52.99% of special
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Figure 4.9: Categories of cracked gestures with different orientation invariance meth-
ods in Test dataset (Weak). The Special character group is the strongest and Digit
group is the weakest on resisting the dictionary attacks.

character group gestures are not cracked by dictionary attacks. This can be explained by

its large weak subspace size (about 75 bits) and smallest number in Table 4.3. The larger

weak subspace size makes gestures more difficult to be cracked and the smaller number

of weak gestures prevents the attack dictionary from covering all possible variations of the

way people draw certain gestures.

4.4 Summary

Here, we have presented the first work on realistic guessing attacks against free-form ges-

ture passwords. We developed a methodology for performing guessing attacks, showed

how to enumerate the size of both the full and weak subspaces for gesture passwords,

identified and categorized a list of most commonly used gestures from published work

on gesture passwords, and recruited participants to obtain additional data for testing our

method. We positioned guessing attacks against gesture passwords by creating a generaliz-

able method based on how gestures are recognized. We extended this attack method for a

dictionary attack based on common gestures, and we contributed a brute force attack, based
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on symmetric features, to use as a benchmark measurement.
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CHAPTER 5

SECURITY ANALYSIS OF GESTURE PASSWORDS

5.1 Overview of Chapter

In this chapter, we demonstrate the challenges of evaluating the security of gesture pass-

words, and proceed to explain approaches to address those challenges step-by-step.

First, we present the challenges on quantitatively measure gesture passwords’ security.

Then, we introduce the passwords dataset for our analysis, including gesture passwords,

signature passwords, Android pattern unlocks, and text passwords.

Third, we present the details of discretizing the gesture passwords using SAX to repre-

sent the time series values by discrete symbols.

Fourth, we describe how to estimate the passwords distribution based on Markov Chain

and especially how to estimate the upper bound of lower bound of passwords distribution.

Lastly, we introduce the partial guessing metric to measure the password security based

on its distribution.

5.2 Challenges

This section contains descriptions of the logic involved in the later parts of the paper, so as

to help the reader better understand the presentation order of the paper and the meaning be-

hind certain choices that were made. The technical details of our work follow immediately
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after this section. We will present our discussion of challenges in the following order:

(1) How does an attacker behave to crack passwords?

(2) How to estimate the baseline for the security of recognition passwords?

(3) How to show the security estimation of recognition passwords is generalizable?

(4) How to assign the probability of a given password?

(5) How to deal with the recognition passwords that are not covered by current available

datasets?

5.2.1 Attacker Behavior: The Threat Model

There are multiple ways an attacker can behave when targeting passwords. Attacker be-

havior can change based on the amount of information the attacker has and his/her overall

objective in trying to crack a specific password. An attacker, for instance, may concentrate

effort on trying to crack a single password without a thought to the many other passwords in

the set. In this vein, an attacker could use observations to gain information about the pass-

word, data mine a particular user to obtain ideas about what the password might contain,

or attempt to steal the password through other means.

This targeting behavior is not useful for trying to evaluate the general security of an

authentication method, since it is not feasible for an attacker to exert this same level of

effort for a massive group of users. In light of this, Bonneau (Bonneau, 2012c) outlines a

framework for evaluating the security of text passwords based instead on the entire pass-

word distribution. In this framework, an attacker has access to a large number of accounts

and is interested in maximizing the benefit of cracking a given account while minimizing

the cost of cracking the same account. Bonneaus attacker does not have any prior informa-
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tion about the target user. One might imagine that this situation is akin to obtaining a large

list of email addresses and trying to crack the password for each one of those emails. The

attacker applies a number of guesses to each password, while also trying to crack some per-

centage of the entire account set. By stopping after a fixed number of guesses, the attacker

does not waste resources on accounts with difficult passwords. By stopping after cracking

some percentage of the targeted accounts, they will have achieved some minimal benefit.

Secret selection by humans is usually biased, creating a subset of more likely pass-

words in the distribution that we refer to as the weak set of passwords. An attacker who

is informed about the password distribution is capable of ordering their guesses from most

likely to least likely. Therefore, password systems with a more concentrated distribution

are more likely to be cracked and thus are less secure. Figure 5.1 (a) illustrates three types

of password systems with different distributions. An ideal password system would have a

uniform distribution, with all passwords being equally likely, to prevent an attacker from

gaining an advantage by ordering attacks. The security of a password system is tied to the

distribution of user choice.

Given this attacker behavior, the security metrics of biometric systems like True Posi-

tive Rates and False Positive Rates across a dataset are misleading for assessing the secu-

rity of recognition passwords. Unlike passwords, typical biometric systems do not involve

a component of user choice. They are based instead on immutable human characteristics

that are highly differentiable – fingerprints, for example – and cannot be changed at will.

The primary security mechanism for biometrics is the high degree of separation among

thousands of people. Therefore, it makes sense to discuss security with TPR and FPR

for biometric systems. However, for a recognition password, security is primarily derived
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Figure 5.1: Password distributions that are affected by different factors. The left fig-
ure (a) shows the distributions that affected by user selections. The ideal password
distribution is uniform, in which all passwords are equally probable. A weak pass-
word distribution usually has a narrow peak, meaning most user passwords fall in a
small set: the weak set. An informed attacker would use the most probable passwords
in the weak set when guessing. We can improve the passwords security by broadening
the set that people are more likely to select from. The right figure (b) shows the distri-
butions with different methods for addressing the unseen passwords issue. The actual
passwords distribution represents the real passwords distribution. The distributions
with and without smoothing methods represent the passwords distribution with the
two methods for addressing the unseen passwords issue.

from the choice of the secret– that is, how likely it is that an attacker will select the same

password. TPR and FPR measure the accuracy of a recognizer in separating out obviously

different passwords; they are not a statement of security. The important metric here is the

distribution of the user choice of passwords, and we therefore need an efficient recognizer

to estimate that distribution.

5.2.2 Baseline of Security Estimation of Recognition Password

We now know how an intelligent attacker will behave towards a large number of accounts:

attackers order their attacks efficiently so as not to waste effort on accounts that are too

difficult to crack. Specifically, the attacker should select the most likely passwords and

move from there, and then should try different users’ passwords instead of trying different

variations of the same user’s password. Both of these needs lead to one question: how can

one transform all variations of a given password into a simple representation?

The main challenge here is that recognition passwords are a many-to-one mapping.
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Since discretizing the recognition passwords maps one users many password variations to

one representation, it essentially simplified the password space by decreasing the number

of possible passwords. In other words, security analysis based on the discretized password

space provides a baseline of the password security in the original recognition passwords.

In our paper, we perform the discretization transformation using Symbolic Aggregate

ApproXimation (SAX), which transforms time-series data into a symbolic set. After SAX

transformation, passwords that are similar to each other become the same character string.

In this way, it is easy to group the passwords together.

5.2.3 Generalizable Discretizing Approach for Recognition Passwords

SAX is a generalizable discretizing approach for recognition passwords since (1) it uses the

time series data to recognize the different users’ passwords and (2) it maintains the same

distinguishability of recognition passwords as the other commonly used recognizers. First,

the time series similarity data matching is widely used in recognition passwords (Sherman

et al., 2014; Y. Yang et al., 2016; Clark, Lindqvist, & Oulasvirta, 2017; Liu, Clark, &

Lindqvist, 2017a; Tian et al., 2013; Aslan et al., 2014; Aumi & Kratz, 2014; Liu, Clark,

& Lindqvist, 2017b). Since SAX represents the time series data of recognition passwords

via a series of disretized symbols and matches the similarity based on the sequences of dis-

cretized symbols, it also can be used to estimate the baseline of security for all recognizers

that also utilize time series data similarity matching. Second, distinguishability between

recognition passwords should be the crucial measurement to evaluate the recognition per-

formance of the discretizing approach. We used Area Under ROC curve (AUROC) to show

that SAX achieves the comparable ability at distinguishing the genuine users as the other
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commonly used recognizers, such as Protractor (Sherman et al., 2014; Y. Yang et al., 2016;

Clark et al., 2017), DTW (Liu et al., 2017a; Tian et al., 2013; Aslan et al., 2014; Aumi &

Kratz, 2014), Garda (Liu et al., 2017b).

5.2.4 Enumerating and Assigning Probabilities to the Passwords

As we represent the long time series data of recognition passwords with short discrete

SAX symbols, we are capable of enumerating the distribution of the entire password set

by listing all possible combinations of strings together. However, assigning probabilities to

these newly generated passwords remains an issue.

The representation of a password as a string has benefits besides solving the counting

problem: it can be used in combination with Markov chains. The guiding principle behind

a Markov chain is that the next symbol in a human-chosen string depends on some number

of the previously chosen symbols. This logic comes from the intuition that, when given a

partial text string like gestu..., it is highly likely the whole string is gesture.

To crack a password or multiple passwords in this way, an attacker transforms every

recognition password in a prior dataset into a text string. Then, the attacker trains the

Markov chain using these text strings to estimate the probabilities for every possible string.

This estimation method has been used in the past with text passwords (Ma et al., 2014;

Narayanan & Shmatikov, 2005) and Android unlock patterns (Uellenbeck et al., 2013;

Song et al., 2015). Thus, the attacker can estimate the probabilities of all passwords and

deploy guessing attacks based on the estimated probabilities.
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5.2.5 Estimating the Security Based on Datasets Cannot Cover All Passwords

One of the key difficulties in generating Markov chain estimates of a password space distri-

bution is completeness. A model is complete when it assigns a non-zero probability to all

possible passwords. If a model is incomplete, then some passwords have zero probability –

we call these unseen passwords. When the completeness of a model is poor, the estimated

password distribution will skip over passwords that are likely to be selected by people but

are not covered by the trained Markov chain model.

There are two factors that may lead passwords to remain unseen. First, the passwords

may be very unlikely to be selected by people. Second, the passwords may be likely to be

selected by people, but the dataset may not cover them. Based on these two reasons, we

used two strategies to deal with the covered passwords: (1) leaving the unseen passwords as

zero probability, and (2) assigning small fixed probabilities to the unseen passwords. The

first method eliminates impossible passwords, and the second method avoids a situation in

which potential passwords are skipped. Figure 5.1(b) illustrates the password distribution

that results after each of these two methods is applied. The password distribution that re-

sults from the application of a smoothing method has a peak wider than the actual password

while the distribution that appears without smoothing has a peak narrower than the actual

password. This means that the model of password distribution without a smoothing method

underestimates password security, while the model that does use a smoothing method over-

estimates security. For matching passwords, we can directly apply Markov model on the

passwords. The two approaches of dealing with the unseen passwords are able to provide

both the upper bound and lower bound estimation of the matching passwords security.
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For recognition passwords, the lower bound estimation of the security of recognition

passwords by regarding the unseen passwords as zero probability provides another baseline

of the security of recognition passwords. To summarize, the baseline of the security of

recognition password is formed by two steps: (1) Discritizing the recognition password by

SAX; (2) Leaving the unseen passwords in password space with zero probability.

5.3 Password Datasets

We did not conduct new studies to collect data. Instead, we aggregated the largest avail-

able gesture dataset and a large signature dataset to analyze recognition passwords. We

requested and used gesture datasets from the following studies: FreeForm (Sherman et al.,

2014), Wild (Y. Yang et al., 2016), and GuessAttack (Liu et al., 2017a). In each study,

the participants are asked to create accounts with gestures as passwords. The gesture pass-

words for each account need are replicated at least once. In total, the datasets contain 2656

gesture password samples from 655 types of gesture passwords. The signatures dataset in-

cludes three publicly available datasets: SUSig (Kholmatov & Yanikoglu, 2009), MCYT-

100 (Ortega-Garcia et al., 2003), and SVC2004 (Yeung et al., 2004). Signature contains

5180 signature samples from 234 participants. Table 5.1 summarizes the datasets.

To analyze Android unlock patterns as a reference for matching passwords, we re-

quested and obtained 113 defensive Android unlock patterns and 573 offensive Android

unlock patterns from prior study with 113 participants (Uellenbeck et al., 2013). Partici-

pants were asked to create Android unlock patterns that are difficult for other to crack as

defensive patterns. Similarly, the participants created Android unlock patterns they felt

were most likely to crack other users’ patterns as offensive patterns.
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Dataset Participant # Password #
FreeForm (Sherman et al., 2014) 57 57

Wild (Y. Yang et al., 2016) 47 380
GuessAttack (Liu et al., 2017a) 109 218

SUSig (Kholmatov & Yanikoglu, 2009) 94 94
MCYT-100 (Ortega-Garcia et al., 2003) 100 100

SVC2004 (Kholmatov & Yanikoglu, 2005) 40 40
Android (Defensive) (Uellenbeck et al., 2013) 113 113
Android (Offensive) (Uellenbeck et al., 2013) 113 573

Yahoo! (Blocki, Datta, & Bonneau, 2016) - 69301337

Table 5.1: Summary of analyzed gesture and signature datasets. The top three
datasets are gestures, the following three datasets are signatures. Yahoo! is a text
password dataset and the rest two are Android datasets.

5.4 Discretization of Recognition Passwords

In this section, we describe the process of representing recognition passwords with SAX.

We discuss the many-to-one mapping of gestures to SAX symbol sequences. Then, we

discuss the how to use distinguishability between recognition passwords to determine the

parameters used in 2-D SAX.

5.4.1 Represent by 2-D SAX

We used Symbolic Aggregate approXimation (SAX) (Lin, Keogh, Lonardi, & Chiu, 2003)

to normalize and discretize the time sequence data of a recognition password so that it can

be represented as short sequence of symbols. SAX uses a sequence of symbols with a

fixed length ω to represent a time series data of length n, where ω � n (Lin et al., 2003).

Figure 5.2 shows the steps for approximating a recognition password with 2-D SAX.

1. Decompose and normalize password. We decomposed a gesture into two 1-D time

sequences: X time series and Y time series. The time series of X and Y are normal-

ized to be zero mean and unit standard deviation.
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Figure 5.2: Illustration of representing a recognition password symbolically with 2-D
SAX. First, the password is decomposed into X and Y 1-D coordinate time sequences.
In Step 2, each time sequence is normalized to have its mean set to zero and the stan-
dard deviation equal to one. The time sequence is then evenly segmented using Piece-
wise Aggregate Approximation into eight subsequences. SAX then maps the means
of the eight subsequences into the six symbols: a,b,c,d,e,f. The boundaries of the six
symbols are calculated using the normal distribution on the left, where each symbol is
defined to have equal probability. In Step 3, we combine the SAX sequence of X and
Y to form a 2-D SAX sequence. The 2-D SAX sequence can be represented as a 2-D
map as seen in the rightmost figure.

2. PAA representation. We approximate a password’s 1-D time sequences by Piecewise

Aggregate Approximation (PAA) (E. J. Keogh & Pazzani, 2000). PAA approximates

a time series by segmenting it into ω equal-length subsequences and representing

each subsequence by its mean.

3. 1-D SAX representation, we use SAX (Lin et al., 2003) to map the value of PAA

representation into different symbols based on the partitioned ranges. Each value

range is chosen to have the same probability according to the normalized distribution,

which is an important step to guarantee that each symbols are chosen with the same

probability. In our example in Step 3 of Figure 5.2, the normal distribution is divided

into six equal probabilities ranges with five boundaries, {-0.97, -0.43, 0, 0.43, 0.97}

and the six ranges are represented by six symbols, {a,b,c,d,e,f}. The five boundary
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a b c d e f

MINDIST (Q̂, Ĉ) = n/ω
√∑ω

i=1(dist(q̂i, ĉi))
a 0 0 0.54 0.97 1.4 1.94
b 0 0 0 0.43 0.86 1.4

dist(q̂, ĉ) =

{
0, if |q̂ − ĉ| ≤ 1

βmax(q̂,ĉ) − βmin(q̂,ĉ), otherwise

c 0.54 0 0 0 0.43 0.97
d 0.97 0.43 0 0 0 0.54
e 1.4 0.86 0.43 0 0 0
f 1.94 1.4 0.97 0.54 0 0

Table 5.2: MINDIST function and an example of lookup table for dist() in the function.
In the MINDIST function, n is the length of the original time sequence and ω is the
length of the time sequence represented by SAX. dist() is used to measure the distance
between two symbols of SAX. β is the set of boundaries of the symbols in SAX. The
right lookup table is an example of dist() when there are six possible symbols in SAX
(i.e. β = 6)

values are obtained by using the inverse-CDF of the standard normal distribution,

which outputs the point at which a certain amount of probability is contained. If

there are six equiprobable regions, then CDF−1(1
6
) = −0.97, CDF−1(2

6
) = −0.43,

and so on. The point at which zero probability is contained is −∞ and the point of

all probability is∞.

4. 2-D SAX representation. 2-D SAX is simply a combination of SAX sequences of X

and Y. It also can be represented by a 2-D matrix on the rightmost graph in Figure 5.2

following the order of the cells. The rightmost graph shows the area of a gesture

represented by 36 cells with different value combinations in X and Y coordinates

and the gesture is chopped into eight pieces based on PAA. For each gesture piece,

SAX used its means in X and Y coordinates to assign the 36 SAX cells.

We used and extended MINDIST function, which is defined for 1-D SAX (Lin, Keogh,

Wei, & Lonardi, 2007), to measure the similarity of 2-D SAX representations of recogni-

tion passwords. With the original MINDIST, we measure the similarity of two 1-D SAX

sequences Q̂ = q̂1, ..., q̂ω and Ĉ = ĉ1, ..., ĉω as shown in the left function in Table 5.2.
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According to MINDIST function, the distance is straightforward to calculate once the

boundaries are known. Assume there are six symbols: a, b, c, d, e, f as seen in Figure 5.2.

The five boundaries separating the six equiprobable ranges in the normalized distribution

are {0.97, 0.43, 0, -0.43, -0.97}, according to the inverse-CDF of the normal distribution.

Since |a − b| = 1, dist(a, b) = 0 and |a − c| = 2, dist(a, c) = βmax(a,c) − βmin(a,c) =

βa− βc = 0.97− (0.43) = 0.54. The dist() function can be implemented by a lookup table

as shown in Table 5.2.

In our 2-D SAX, we define Q̂ and Ĉ represent time sequences ofD dimensions, instead

of one dimension sequences in 1-D SAX. The distance between sequences is the sum of

1-D SAX distance in each dimension.

5.4.2 Determining Parameters in 2-D SAX

We have described how 1-D and 2-D symbols can be transformed into a symbolic sequence

using SAX. However, there are important parameters that need to be determined rigorously

in order to obtain the tightest bound possible on the password distribution. In order to dis-

cretize recognition passwords with 2-D SAX, we need to determine two parameters: the

length of a symbolic sequence, ω, and the alphabet of symbols, β. Increasing the values

of the parameters increases the overall size of the password space – by analogy, creating

a new character for the Roman alphabet increases the space size for text passwords. The

larger the parameters, the larger the difference between the different variations of the same

password. Increasing the size of the parameters conflicts with the main goal of discretiza-

tion, which is to narrow the difference between the variations of the same password. Thus

we would like to minimize ω and β. However, if we make the parameters too small, we
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will reach a point where no passwords are distinguishable. Thus we need to choose the

smallest possible parameters that meet some minimum criteria of distinguish-ability (e.g.

circles and squares are still seen to be different). In this section, we will introduce Receiver

Operating Characteristic (ROC) curve and the Area Under Receiver Operating Character-

istic curve (AUROC) as evaluation metrics for ω and β. Then, we will present the optimal

parameters for 2-D SAX.

Receiver Operating Characteristic (ROC)

The ROC curve measures the recognition performance of recognition password systems. It

plots the true positive rate and false positive rate by tuning the recognition threshold from

minimum to maximum.

Area Under ROC (AUROC)

Because the different recognizers are evaluated on the same datasets, we can evaluate their

distinguishability by the Area Under ROC curve. AUROC reflects the probability that a

randomly chosen true password is ranked higher than a false password (Fawcett, 2006). It

measures the distinguishability between the positive and negative samples. The higher of

the AUROC, the more distinguishable between the samples.

Optimal Values of Parameters ω and β

Based on our analysis, we found that the length of a symbolic sequence, ω = 8, and the

alphabet of symbols, β = 6 balances the AUROC. Figure 5.3 (a) shows that when ω ≥ 8

and β ≥ 6, the AUROC of the SAX recognizer for both gestures and signatures does not

change significantly. This implies that when ω ≥ 8 and β ≥ 6, the passwords from different

users are only slightly more distinguishable.
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Figure 5.3: Grid search for the optimal parameters of SAX and ROC curves based on
the optimal parameters of SAX. (a) Shows a contour plot showing isolines of AUROC
for signature and gesture datasets based on different values of ω and β. When ω ≥ 8
and β ≥ 6, the AUROC of SAX of gestures and signatures do not change by more
than 0.001 and 0.015, respectively. The isolines are erratic since the AUROC is highly
dependent on the combination of β and ω; these two parameters are not orthogonal.
We observed the that AUROC gradually decreases when ω and β increase. (b) shows
the ROC curves and corresponding AUROC of the four recognizers for gestures and
signatures. We see SAX is only slightly worse than the other three recognizers and
gets comparable values of AUROC to the other recognizers. The takeaway is there is
no large difference between the four recognizers.

5.4.3 Recognition Performance of SAX

SAX strips information away from recognition passwords through discretization. The

rightmost side of Figure 6 also shows that gestures are significantly distorted by SAX. The



- 87 -

distinguishability of recognition passwords is a metric that shows whether SAX accurately

models user behavior in drawing recognition passwords. We used the recognition perfor-

mance of those discretized passwords with ROC and AUROC to examine if the discretized

passwords still reliably distinguishable among users. If the recognition performance of

SAX is as good as that of other state-of-the-art recognizers, we can conclude SAX is a

valid discretizing method for recognition passwords.

The ROC curves for SAX have results comparable to those of other three recognizers.

Figure 5.3 (b) shows signature and gesture ROC curves for the four recognizers: SAX,

Protractor (Sherman et al., 2014; Y. Yang et al., 2016; Clark et al., 2017), DTW (Liu et al.,

2017a; Tian et al., 2013; Aslan et al., 2014; J. Yang et al., 2015; Aumi & Kratz, 2014), and

Garda (Liu et al., 2017b). Note that SAX is not meant to be the best recognizer – our goal

is to demonstrate that the symbolic representation maintains enough detail to distinguish

gestures well enough. In this regard, the fact that it has performance that is comparable to

other recognition methods allows us to consider SAX a success in this case. Additionally,

the AUROC values of SAX are close to those of the other three recognizers. It means SAX

has an ability to distinguish positive samples from negative ones that is comparable to those

of the other recognizers.

In summary, representing recognition passwords with SAX can reduce the password

space while maintaining the distinguishability of passwords.

5.5 Recognition Password Distributions

We have mapped the recognition passwords to a countable password space using SAX. We

now need to estimate the user-chosen password distribution. Collecting data is not enough
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to do this, as it is very difficult to collect millions of passwords to represent the distribution.

With SAX, we can enumerate all possible string in the entire password space. A Markov

chain will be trained with prior data to assign probabilities to the generated passwords.

5.5.1 Markov Chain

Markov chains have been used to estimate the distribution for both text passwords (Ma

et al., 2014; Narayanan & Shmatikov, 2005) and Android unlock patterns (Uellenbeck et

al., 2013; Song et al., 2015). The probability is computed as the product of conditional

probabilities which represent the likelihood of transitioning from one symbol to the next

in a sequence. These transition probabilities are estimated by their relative frequency of

occurrence in a known data set. The guiding principle behind in a Markov chain is that the

next symbol in a human-chosen string depends on some number of the previously chosen

symbols.

An n-gram Markov chain predicts the next observation in a string based on the previous

n−1 observations. To build Markov chains, there are two types of conditional probabilities

that need to be estimated: 1) the probability of the starting symbol; 2) the probability of the

transition to the next symbol given the previous n− 1 symbols. For example, to build a 2-

gram Markov chain for a sequence s = {s1, s2, ..., s8}, we need to estimate: 1) the starting

symbol probability p(s1); 2) the transition probability p(si+1|si) i 6= 0. Then, we can

calculate the probability of the sequence s as P (s) = P (s1)P (s2|s1)...P (s7|s6)P (s8|s7).

5.5.2 Parameter Selection

To model the passwords based on an n-gram Markov chain, we need to determine n and

the smoothing methods.
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Selecting n

The value of n defines both the number of previous symbols on which a transition depends

as well as the length of the start sequence. A larger value of n can yield more accurate

predictions of the sequence by accounting for longer historical correlations. However, this

gain in accuracy can also lead to over-fitting as many transitions may be assigned zero

probability because the preceding sequence is never observed.

To determine a practical value of n for the amount of data we have available, we can

estimate the how large the zero probability blocks are by computing the expected number of

times a given start sequence will be observed as a function of n. To simplify this problem,

we assume that each start sequence is equally likely. Therefore, the expected number of

observations of any particular starting sequence is as E(observation) = T
(β2)n−1 = T

(36)n−1 .

T is the total number of passwords in the data set. For the gesture dataset, T = 3245, and

for the signature dataset, T = 5026. When n = 2, a given start sequence is expected to

be observed 90.14 and 139.6 times for the gestures and signatures respectively. When

n = 3, the expected numbers for gestures and signatures drop to 2.50 and 3.88. When

n = 4, they drop to 0.07 and 0.11. Since there are fewer than one observations for each

start symbol when n = 4, it is clear that models with this depth or greater will assign zero

probability to almost all passwords and are thus unusable. Thus, we only consider n-gram

models with n = 2 and n = 3.

Smoothing

Aside from assigning a small value for n to deal with unseen passwords, a more common

approach involves estimating the probabilities of the unseen passwords using smoothing
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methods. We tested two smoothing methods: 1) additive smoothing, and 2) Good-Turing

smoothing (Gale & Sampson, 1995). Additive smoothing adds a constant small value λ to

the counts of the Markov chain transition matrix. We assign λ to the unseen data, which are

originally valued at zero, to make sure all theoretical possible data have some probability

of occurring. Based on our tests, we selected λ = 0.01. Good-Turing smoothing uses the

observed total probability of class r + 1 to estimate the total probability of class r. The

total probability of class r is a class of probability of transitions from a symbol to another

symbol that has occurred r times in total.

5.5.3 Optimizing Markov Chains for Recognition Passwords

We have proposed SAX to represent recognition passwords with discrete symbols, and we

have used Markov chains to estimate the probability of recognition passwords. We cannot

judge a priori which configuration of Markov chains is most suitable for modeling recogni-

tion passwords. The optimal Markov chain should be most efficient at cracking passwords.

We will use guessing entropy (Cachin, 1997; Massey, 1994) to show the cracking efficiency

of the Markov chains.

Guessing Entropy

Guessing entropy (Cachin, 1997; Massey, 1994) measures the average number of guesses

required to crack an entire set of passwords X = {x1, x2, ..., xN} in the optimal guessing

order. Specifically, a guessing entropy curve represents the percentage of a dataset that is

cracked as the number of guesses increases. It reflects the strength of the target passwords.

Generally, a given guessing entropy means that it takes an average of so many guesses to

crack some proportion of the data (see Figure 5.4).
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Figure 5.4: Guessing entropy of recognition passwords under six configurations of
Markov chain: 2-gram Additive, 2-gram Good-Turing, 2-gram without smoothing,
3-gram Additive, 3-gram Good-Turing, and 3-gram without smoothing. Generally,
3-gram Markov chains for gestures and signatures are better than 2-gram models.
There is no obvious difference between with and without smoothing methods.

Markov Chain Implementation

In order to estimate the guessing entropy with the Markov chain, we performed a 10-fold

cross validation. We first combined the three gesture datasets (FreeForm (Sherman et al.,

2014), Wild (Y. Yang et al., 2016), and GuessAttack (Liu et al., 2017a)) into one dataset.

Then, we split it into ten subsets with roughly the same number of accounts. For each

training process, we selected one subset as a testing set and used the other nine subsets as

a training set.

Comparison of Markov Chains

For gesture and signature passwords, we tested both 2-gram and 3-gram Markov chains

with and without the two smoothing methods, Good-Turing and additive, as Figure 5.4
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shows. We needed to find Markov models to estimate both the upper- and lower-bound for

the security of passwords.

The 3-gram Markov chain with Good-Turing smoothing achieves the highest cracking

rates with the same average number of guesses for both gesture and signature passwords.

We found the 3-gram Markov chains to be more efficient than the 2-gram models. Taking

gestures as an example, the 3-gram Markov chain with the Good-Turing smoothing method

is at least ten percentage points higher in efficiency than the 2-gram Markov chain with the

Good-Turing smoothing method. However, the choice of smoothing method does not have

a significant impact on guessing entropy. For example, we found that the 2-gram Markov

chains with additive and Good-Turing smoothing nearly overlap for both gestures and sig-

natures. The difference between Markov chains with and without smoothing is also not

obvious with the exception of cases in which the target passwords have zero probabilities

in the Markov chain. For example, we found that the guessing entropy of gestures based on

a 3-gram model with and without Good-Turing smoothing are close to each other before

226 guesses. Then, the guessing entropy of the Markov chain without smoothing is stable

since the rest of the target passwords have zero probability. Therefore, we selected the 3-

gram Markov model with Good-Turing smoothing and the 3-gram Markov model without

smoothing to model the upper and lower bounds of the security of recognition passwords.

5.6 Partial Guessing Metric

Since guessing entropy, discussed above in Section 5.5.3, is based on the cracking rate of

a specific password dataset, the security of the passwords will be over-or-under-estimated

depending on the quality of that dataset.
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Bonneau (Bonneau, 2012c) proposed a partial guessing metric (or α − guesswork)

for user-chosen passwords based on the password distribution to overcome the problems

inherent in guessing entropy. The partial guessing metric models a practical attack situation

in which the attacker has knowledge of the general password distribution χ = {x1, x2, · · · }

with the goal of cracking a certain percentage of the passwords.

We define µα(χ) = min(j|Σj
i=1p(xi) ≥ α) as the minimal number of needed guesses

to crack a α proportion of passwords, and define λµα(χ)(χ) = λµα(χ) = Σµα
i=1p(xi) as the

the actual cracked proportion of passwords with µα(χ) guesses. Then, the partial guessing

metric is defined as

Gα(χ) = (1− λµα) · µα + Σµα
i=1p(xi) · i (5.1)

where the first term reflects a fraction of passwords that are not cracked within a given

number of guesses while the second term reflects the minimum expected number of guesses

needed to crack the fraction α of possible passwords selected by people.

It is important to emphasize the key difference between guessing entropy and a partial

guessing metric. Guessing entropy analyzes the cracking rate of a particular password set.

In contrast, a partial guessing metric analyzes a fraction of the distributions of user-chosen

passwords. The estimation would vary when the set is non-representative of the population

or if there is skew introduced by participants. Imagine a set with ten passwords, nine of

which are cracked within 100 guesses while the last one is cracked after 109 guesses. This

leads to an extreme overestimation of guessing entropy higher than 108. The system is not

secure since 90% of the passwords were cracked within 100 guesses1.

1Partial guessing metric is not used to adjust the parameters of the Markov chain. Guessing entropy is
used to adjust the model because we measure performance by successfully cracking as many passwords in
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Figure 5.5: Partial guessing metric of gestures and sig-
natures that estimated based on different sizes of pass-
words datasets. We found the partial guessing metric
curves with Good-Turing smoothing method decreases
when the password datasets size increase. Similarly, we
found the curves without smoothing methods increases
when the password datasets size increase.

Figure 5.6: Partial guess-
ing metric for different
passwords. The baselines
of security of gestures and
signatures are consider-
ably higher than Android
unlock patterns.

5.7 Results

We first present the major result that was made possible by this present work: a quantitative

evaluation of the security of recognition passwords by the partial guessing metric. Then,

we compare the security between recognition passwords and Android unlock patterns.

5.7.1 Baseline of the Security of Recognition Passwords

Figure 5.5 shows that when the sizes of password datasets increase, the partial guessing

metric estimation based on a Markov model with Good-Turing smoothing will decrease

and the partial guessing metric based on a Markov model without smoothing will increase.

This observation matches our analysis of the influence of the unseen passwords on the

password distribution, as Figure 5.1 (b) shows.

Based on the observations of Figure 5.5, if we keep increasing the size of the datasets,

the partial guessing metric curve of Good-Turing method will keep decreasing and the

the training set as possible without consideration to how much work is required to crack those passwords. A
Markov chain cannot be trained with partial guessing metric since it requires probabilities to be assigned to
an entire distribution, whereas we need the Markov chain to assign those probabilities.
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curve without smoothing method will keep increasing. Eventually, they will converge to

the partial guessing metric of the actual password distribution.

To summarize, with the current size of our recognition password dataset, we are able to

provide the baseline of the partial guessing metric of gestures and signatures based on the

Markov model without smoothing method.

5.7.2 Comparison to Android Unlock Patterns

Figure 5.6 shows that recognition passwords, gestures, and signatures have a higher par-

tial guessing metric than Android unlock patterns. For gestures, the baseline of the partial

guessing metric is 45 bits when the cracking rate α = 0.2. This is 37 bits higher than the

upper bound of defense-oriented Android unlock patterns with α = 0.2. The password dis-

tribution of Android unlock patterns is modeled on the 3-gram Markov model with additive

smoothing (Uellenbeck et al., 2013). Similarly, for signatures, the baseline of the partial

guessing metric is 52 bits when the cracking rate α = 0.2, which is also much higher than

the corresponding metric for Android unlock patterns.
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CHAPTER 6

DISCUSSION

6.1 Garda: Gesture Authentication for Mobile Systems

Our evaluation showed that our novel gesture authentication method – Garda – had the best

authentication EER (0.015) and shortest authentication time among other sytems; Garda

also resisted all of the brute-force attacks and most of the forgery attacks (EER = 0.040).

Garda achieves this by combining the individual advantages of the Protractor and GMM-

UBM recognition schemes. Protractor identifies gestures temporally, while GMM-UBM

identifies the temporal-independent distributions of the coordinate points, so combining

these two methods resulted in a more harmonious, effective authentication system.

sHMM performs the worst with an EER of 0.157. Following up gesture segmentation

with a classification of the segmented parts removed crucial details from the genuine ges-

tures. This had the side-effect of making them harder to distinguish. Of course, this is a

function of the number of gesture segments: if we increase the segments, we can preserve

more detail of the gesture. If we continue to increase segments, sHMM performs similarly

to dHMM. This improves the EER from 0.157 to 0.056.

Six recognizers (EDR, LCS, DTW, dHMM, sHMM, and Garda) were capable of resist-

ing all brute-force attacks, but for different reasons. EDR, LCS, and DTW use recognition

methods based on the Euclidean distance between genuine and fake gestures. If the gesture
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points are randomly generated, as they are in the brute-force method, then the matching

problem is almost impossible: a randomly generated collection of a hundred-or-so coor-

dinate points need to fall close to a continuous sequence of gesture points clustered very

closely together out of thousands of positions on the screen. Viewed this way, the success-

ful results of these recognizers are not surprising . For dHMM and sHMM: the randomly

generated gesture contains many sudden, random turns that can be used as segmentation

points when compared to a user-generated gesture.

There are seven recognizers that were unable to resist brute-force attacks. Authentica-

tion thresholds in each scheme are trained to distinguish different users’ gestures, and these

thresholds are quite loose since they only need to recognize a single genuine gesture from

entirely different gestures. There are three reasons for these three groups: Protractor-based

methods (Protractor, Protractor-Kernel SVM, SVMGarda), SVM-based methods (Protrac-

tor, LCS, DTW, and EDR kernel SVM and SVMGarda), and cHMM. For Protractor-based

methods: it depends on cosine distance, which only cares about the directions between two

adjacent points. This is easier than matching gestures based on Euclidean distance. For

SVM-based methods, it is the same reason as why the EER values are so high: the method

transforms a large range of scores [0,inf] to a limited range of probabilities [0,1], increasing

the opportunity for mis-classification. cHMM used the distribution of gesture points loca-

tions without considering the temporal order, making the brute-force attack more likely to

crack cHMM since the attacks are based on randomly generated gestures.

For the imitation attacks, Garda achieved the lowest EER out of all the other methods.

The reason that other methods cannot resist imitation attacks is that single time sequence

authentication methods are unable to distinguish the variations in genuine gestures and the
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difference between the genuine and skilled attack gestures.

We can see that the Garda method is robust and practical for mobile authentication.

First, Gardas authentication time is short (200 ms) and remains relatively stable as the

number of gestures increases. Although we tested 20 gestures (20 different users) in the

system to judge its viability, we note that it is unlikely a personal device would have so

many different accounts. Even with 20 gestures, 30 seconds is affordable for a one-time

training process. The mobile device only needs to store the trials, and GMM models;

therefore, our system can have a short and stable authentication time and still be scalable

for large numbers of gestures.

To best of our knowledge, we have presented the first analysis of how the invariances

of gesture preprocessing impact the performance of gesture-based authentication systems.

We found that an optimal combination (scale variant, location invariant, rotation variant)

achieves the lowest EER (0.041) on average. This derives from the combination of indi-

vidual effects of the three variables: rotation variant has a statistically significant, positive

effect on EER; location variant has a statistically significant negative effect on EER; scale

variant does not have a statistically significant effect on the EER.

The gesture variable combinations with EERs higher than SLR can be explained by the

individual effects of the three variables. First, since users are unable to draw their gestures

at the same place every time, taking a gesture’s location as variant always has a negative

effect on authentication accuracy. Second, these three variables interact with each other.

The binary state of one variable can influence other variables, and thus, influence the final

recognition accuracy.
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6.1.1 Limitations

We only evaluated the recognizers by authentication performance, brute-force attack, and

imitation attack. Future investigations may evaluate the recognizers in regards to other as-

pects, like usability and other types of attacks. For example, the automated guessing attack

can be used to examine the recognizers’ performance under attacks that model real attack-

ers. In addition to this open area of inquiry, we would like to address another limitation in

that the public gesture datasets we used were not specifically created for authentication pur-

poses. As the datasets’ gestures may not follow the same distribution as gesture passwords,

our results may not reflect user-selected passwords to the fullest extent.

6.2 Guessing Attacks on Gesture Passwords

Our dictionary attack method, when tested on a newly collected dataset from 109 par-

ticipants, vastly outperformed the brute force attack. For unistroke gestures, this was a

difference of 35.78 percentage points with Orientation Method I and a difference of 22.94

percentage points with Orientation Method II. Figure 4.7 shows that these types of gaps

persist not matter whether unistroke, multistroke, or Orientation Method is considered:

dictionary attacks are consistently better and always by double-digit percentages.

The takeaway from this is similarly clear, can be learned in research on cracking text

passwords as well: dictionary attacks informed by using the most common passwords

inside of a weak subspace generates more successful attacks than a random brute-force

guesses. The disadvantage of the dictionary attack is also its strength: by targeting on the

most common gestures it cannot crack gestures that are not covered by the weak subspace

dictionary. Thus, the attacking system needs a large variety of free-form gestures to expand
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coverage of the weak subspace dictionary. In contrast, the brute force attack method does

not need gesture samples in advance.

The size of the full space for gesture passwords is very large, despite the restrictions on

the space imposed by our methodology. Table 4.3 shows that, given the propensity of users

to select gesture passwords from the groupings we identified, the size of the full space is

reduced down to 82.1 bits for Orientation Method I and 81.7 bits for Orientation Method

II. Although there is a decline of over 20 bits from the full space size (109 bits) to the weak

subspace size (82 bits), both the full space and weak subspace are of an impressive size. In

spite of the degree of available gestures to choose from, even in an 80-bit large subspace,

participants are still being routinely cracked at rates over 45%.

There is a sense that the more gestures that appear in Dictionary dataset, the larger the

weak subspace size might be. As Table 4.2 shows, the distribution of weak set groups

of Dictionary dataset and Test dataset are similar – independent of the size of each set.

Currently, we computed an 82 bits weak subspace based on 407 weak gestures. Assuming

we collected 100 times more gestures (40700 gestures), the 88.6 bit size would not change

since we would need to assume a linear rise in the number of weak gestures that appear as

well. The sizes of the weak subspaces are still much smaller than the full space size (about

109 bits), irrespective of the number of gestures. Therefore, we conclude that the larger

size of Dictionary dataset may increase the size of weak subspace, but size does not have

a significant influence on the relationship among the gesture groups in the weak set. The

reason for this is that since the relative distribution of weak set groups are constant, the

analysis of the weak subspace is also constant. Even with 100 times more gestures, the size

of the weak subspace cannot enlarge 100 times because the weak subspace gestures are
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obtained by analyzing symbols with shared meanings (Shapes, Letters). Thus, the size of

our Dictionary dataset is large enough to estimate the size of the weak subspace and output

reliable results.

One possibility is that the sample size is skewing the results. However, this should

work in the opposite direction: since we only have low numbers of gesture passwords, and

given the space is so large, it should take many more examples of gesture passwords before

(ideally) seeing a collision between two users independently sampling the password dis-

tribution. Instead, given the large space, we see frequent repetitions and overlap between

independently and separately collected works of published gesture passwords, with our

newly-collected data being cracked at a rate of 47.71%. Users are selecting gestures with

meaning behind them likely because they are easier to remember and choose on-the-spot

as a password. This selection bias has led to weak subspaces, however. One way to resist

dictionary attacks for gesture passwords would be to advise participants to use combina-

tions of symbols rather than singular symbols and signs. Unlike in text passwords, even

simple combinations of symbols as a gesture password should make cracking far more dif-

ficult given the large increase in computational expense. The need to address user choice

for creating gestures is clear. An alternative is to encourage, perhaps through policies, a

methodology for generating gesture passwords that make them more random-appearing.

Each preprocessing step reduces the size of the password space. By design, that is their

purpose – by reducing the total number of possibilities the intention is to make it easier for

recognizers to distinguish similar gestures. This increases the likelihood of misinterpreting

two gestures intended to be different as being the same. However, without preprocessing

the space is much larger but the effect is that matching two gestures that are meant to be
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similar is far more difficult. It is easy to see why the size of the password space would be

larger, though. A recognizer that does not allow location to change, for example, would

likely determine two circles, drawn at different corners of the screen, to be different, despite

the user’s intentions. As a result, gestures drawn too far away are considered distinct. For

example, a circle that would be worth only one gesture in our preprocessed space could be

worth as much as four gestures (one for each corner of the screen) in an unprocessed space.

The downside of location invariance is that a system’s failure to accept the same gestures

made in different locations will likely increase user frustrations. All of these points are

in tension: the size of the password space, the recognizer efficiency, and usability of the

system. Care has to be taken to balance all three.

6.2.1 Limitations

Our experiment is conducted in the laboratory, which may affect the distribution of user-

chosen gesture passwords (Y. Yang et al., 2016). There has not been any evidence so

far of a clear difference between the distributions of laboratory and field gesture pass-

words (Y. Yang et al., 2016). As such, we cannot estimate its influence on the cracking

performance.

Multistroke gestures fared better than unistroke gestures at resisting cracking attempts,

with the highest multistroke dictionary attack succeeding at 33.03% of passwords. The rea-

son for this recognizer strength lies in the recognizer’s construction of multistroke gestures.

Multistroke gestures have disparate strokes connected together to form a single gesture, and

these variances in drawing multiple strokes followed by connections make a gesture more

difficult to account for or imitate.
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We do not examine guessing attacks or brute force attacks against gesture passwords

drawn with multiple fingers (multitouch). The datasets we obtained do not have a large

number of samples for these multitouch passwords. This limits our ability to make gener-

alizations about the weak subspace groups. Previous work (Sherman et al., 2014) showed

biases in the distribution towards repeating unitouch figures with multiple fingers in the

multitouch case. In this respect, an extension of research to analyze multitouch could be

relatively simple, albeit with more expensive calculations. Multitouch gestures would be

important further work to study.

6.3 Security Analysis of Gesture Passwords

Using the largest available password datasets, we estimated the baseline of recognition

pass- word security by (1) representing the passwords by SAX and (2) assuming all of the

unseen passwords to have zero probability of happening. For novel passwords, there are

always concerns that the dataset is not large enough to reflect the full password distribution;

however, it is still necessary to estimate the security of novel passwords before they are

widely employed. We found that there are two reasons by which unseen passwords may

occur: (1) the passwords are very unlikely to be selected by people, or (2) the passwords

are likely to be selected by people, but are not covered by the password dataset. Unable

to distinguish the two types of passwords, we dealt with all unseen passwords using the

same approach. We therefore used two strategies: (1) assign zero probability to the unseen

passwords, or (2) assign small probabilities to the unseen passwords based on Good-Turing

smoothing method. As Figure 5.1 (b) illustrates and verified in Figure 5.5, the first strategy

will narrow the password distribution, underestimate the security of the passwords, and
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provide the lower bound of the security of passwords. On the other hand, the second method

will make the password distribution wider, overestimate the security, and provide the upper

bound of the security. Through these analyses, we confirmed the baseline estimation of

the security of recognition passwords comes from two aspects, one is the discretization

of recognition passwords, one is the security estimation based on regarding the unseen

passwords with zero probability. Therefore, we are able to estimate the security baseline

of recognition passwords for a direct, numeric comparison to the security of matching

passwords as well as any other recognition password.

We quantitatively compared the security of recognition passwords to that of Android

unlock patterns. We have quantitatively shown that the security of gesture and signature

passwords has a higher partial guessing metric than the Android pattern unlock method (Sherman

et al., 2014; De Luca et al., 2014; Liu et al., 2017a). Prior work made arguments about secu-

rity in three different ways: (1) quantifying the amount of expressive information contained

in free-form gestures (Sherman et al., 2014), (2) calculating the size of the total password

space (Sherman et al., 2014), and (3) segmenting the grid into patterns and calculating ran-

dom entropy. However, these security measures are not as reliable as a partial guessing

metric because they do not address how users or attackers behave (Bonneau, 2012c). The

higher the partial guessing metric, the more secure the password system is. After assessing

the number of guesses per account necessary for an attackerto crack an α-sized portion of

all accounts on multiple different scales(Figure 5.4), we have shown with a rigorous ap-

proach and direct comparison that the lower bounds of gesture and signature passwords

have a higher partial guessing metric than the upper bounds of Android unlock patterns.

We used distinguishability between recognition passwords to confirm the validity of
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discretizing the recognition passwords by SAX. A reasonable concern that arises in the

discretization of recognition passwords asks whether the newly discretized passwords can

represent original passwords. As an authentication method, the primary purpose of the

recognition password feature is to distinguish various users’ passwords. In other words,

we had to keep both false positive errors and false negative errors low. Therefore, the

distinguishability of passwords can be measured by ROC and AUROC. To show that SAX

does not hurt the distinguishability of recognition passwords, we implemented state-of-the-

art recognition methods for passwords and examined their ROC and AUROC results. We

found that SAX achieves ROC and AUROC results comparable to other state-of-the-art

recognition methods.

6.3.1 Limitations

Two of the gesture datasets (FreeForm (Sherman et al., 2014) and GuessAttack (Liu et al.,

2017a)) and all of the signature datasets (Kholmatov & Yanikoglu, 2009; Ortega-Garcia et

al., 2003; Yeung et al., 2004) in our study were collected in the laboratory, which in princi-

ple could affect the participants’ selection of gestures and signatures as passwords (Y. Yang

et al., 2016). By comparing the gestures collected from the laboratory (Sherman et al.,

2014; Clark et al., 2017; Liu et al., 2017a) and in the wild (Y. Yang et al., 2016), we do

not find any evidence of a clear difference between the passwords generated under these

two environments. Thus, we cannot estimate the influence of experimental environments

on our results.

The three gesture datasets were collected across different studies, and we aggregated

them into one gesture dataset. Since all of the participants in the three datasets were asked



- 106 -

to create gestures as passwords, different experimental setups will enlarge the diversity and

coverage of the gesture passwords. Aggregating datasets from different studies does not

damage our analysis of the password distribution.

Concerns remain about dataset size when it comes to estimating the partial guessing

metric. The baseline estimation of partial guessing metric based on SAX and Markov

model solved this question with fixed parameter values of SAX. However, a larger size for

the dataset may also increase the parameter values of SAX since passwords that are clus-

tered together become separated out more easily. This reduces the overall size of the weak

set. Collecting additional passwords would not decrease the overall size of the alphabet. A

larger number of passwords would require a larger alphabet to represent it if there are new

attributes that need to be accounted for (see Figure 5.2 for a depiction of how the alphabet

maps to a password). As such, if we collect many more passwords, we expect the size of

the estimated password space to increase since the alphabet size will increase. This will

increase both the baseline of the security estimation by the partial guessing metric.

The evidence of database relative frequencies analysis in Liu et al. (Liu et al., 2017a)

shows that the distribution of our collected data are being sampled from a general distribu-

tion since we used exactly the same datasets as Liu et al. (Liu et al., 2017a). Basically,

Liu et al. (Liu et al., 2017a) examined the relative frequencies of different gesture pass-

word categories across several gesture datasets in their cracking paper and found that the

relative frequencies of groups (shapes, words, symbols) are equal despite being collected

at different times by different groups (see Table 2 in Liu et al. (Liu et al., 2017a)).
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CHAPTER 7

CONCLUSIONS

In this thesis, we conducted three stages of research to understand the use of gestures as

an authentication method for mobile devices: (1) designed a robust gesture recognizer for

authentication; (2) designed an automated guessing attack method against commonly used

gesture recognizers; (3) evaluated and compared the security between different types of

authentication methods.

We presented and evaluated a novel multi-expert gesture recognizer for authentication:

Garda. We conducted rigorous evaluation of 13 different methods to implement gesture

recognizers. We applied several datasets and two types of attacks against the recogniz-

ers. Finally, we conducted the first analysis of how tuning the variables of preprocessing

methods of gesture recognizers can impact their authentication performance. All results

show that Garda can largely improve the performance of gesture-based authentication sys-

tems. The presented authentication-optimal combination can reduce up to 45% of EER on

average compared to the recognition-optimal configuration used in previous work.

Furthermore, we present the first work on performing automated guessing attacks for

gesture passwords. We developed methodology for performing guessing attacks, showed

how to enumerate the size of both the full and weak subspaces for gesture passwords, and

identified and categorized a list of most commonly used gestures from published work on

gesture passwords. We showed guessing attacks against gesture passwords by creating
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a generalizable method based on how gestures are recognized. We extended this attack

method for a dictionary attack based on common gestures as well as contributed a brute

force attack based on symmetric features to use as a benchmark measurement.

Lastly, we present the first work on estimating the security of recognition passwords

through their distribution. We applied the analysis of passwords distribution with par-

tial guessing entropyin our comparisons between the security of matching passwords and

recognition passwords. We demonstrated a methodology for converting recognition pass-

words, based on time series data, into an equivalent alphabet set using Symbolic Aggregate

ApproXimation (SAX). We validated the efficacy of the alphabet by showing that it could

recreate the discretized passwords in such a way that they passed through multiple recog-

nition methods (DTW, Garda, Protractor). We found, overall, that recognition passwords

have better security than matching passwords.
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