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When datasets are distributed over a network and a central server is infeasible, machine

learning has to be performed in a decentralized fashion. The dissertation introduces

new methods that solve decentralized machine learning problems in the presence of

Byzantine failures. Classic decentralized learning methods require nodes communicate

with each other by communicating over the network. When a node engages in arbitrary

or malicious behavior, it is termed as having Byzantine failure. Without any Byzantine-

resilient modification, classic learning methods cannot complete machine learning tasks

as intended in the presence of Byzantine failure. Byzantine-resilient decentralized learn-

ing methods are discussed in this dissertation. Both theoretical guarantees and exper-

iments are given to justify the usefulness of the methods under Byzantine settings.
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Chapter 1

Introduction

In the view of machine learning, data has some probability distribution. Machine learn-

ing techniques complete tasks by applying a risk function on the data and statistically

minimizing the risk function. What makes the machine learning problem challenging is

that the data distribution is usually unknown. One of the ways to tackle this issue is to

employ empirical risk minimization (ERM). ERM usually requires a dataset drawn from

the data distribution. Then, instead of directly minimizing the statistical risk function,

ERM minimizes the empirical risk function on the dataset. It is shown that, as the size

of dataset increases, both the minimum and minimizer of the empirical risk function

converge to the minimum and minimizer of the statistical risk, respectively [1–4].

In real applications, how the dataset is stored and processed makes a difference both

in the design and performance of algorithms. When the dataset is available and can

be processed at a single location, we call this machine learning problem centralized

learning. In some applications, multiple datasets may be distributed over a network

that is constructed by connecting nodes with edges. Datasets in this case are usually

stored at each node. More often than not, it is inefficient to gather all the datasets to

a centralized location and perform centralized learning. To overcome this difficulty, we

need help from distributed learning and decentralized learning. In the scenario

when there is a central server directly connected to all the nodes, we call this network

structure a distributed network. On the contrary, when there is no central server in

the network and each node can only communicate with a subset of nodes, we call this

network structure a decentralized network. With the advanced development of data

science, communication, computing, and machine learning techniques, distributed and

decentralized learning have been extensively studied in recent years [5–8].
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Since learning over a network requires nodes to cooperate with each other, most of

the existing works on learning over the network are developed under the assumption

that all the nodes are cooperative. However, in the real world, an individual node is

vulnerable to failures and attacks. Without proper compensation of such threats, the

existence of non-functional or malicious nodes can easily jeopardize the functionality

of the whole network. One good model of the failures and malicious attacks is called

Byzantine failure [9, 10]. Byzantine failure, meaning a node can arbitrarily deviates

from its intended behavior, is generally considered the type of failure that is hardest

to safeguard against. A Byzantine node can potentially inject false information into

the network, collaborate with other Byzantine nodes, and pretend to behave normally

in order not to get caught. While Byzantine-resilient distributed learning algorithms

have been attracting attention recently [11–16], the area of decentralized Byzantine-

resilient machine learning is relatively open. Our study in this dissertation is focused

on Byzantine-resilient machine learning.

1.1 Machine learning over networks

While the dissertation is focusing on decentralized machine learning, the first question

we need to address is: why not use centralized learning? Or in other words, when is

learning over networks preferred over centralized learning? One argument in favor of

centralized learning could be that dealing with all the data at a centralized location is

simpler: no need to worry about the communications; easier to design algorithms; better

privacy in the sense that no information needs to be shared with others. However, with

fast development of technologies, more parameters need to be considered to deal with

more complicated situations. One example could be dealing with big data. It is claimed

that over 2.5 quintillion bytes of data are created every single day [17]. In the big data

scenario, the huge amount of data cannot be processed by a single computing unit. It

is much more efficient if one can distribute the data onto multiple nodes and improve

the computing capability by letting the computing units cooperate over a network. In

some other cases, data is generated in a distributed nature. For applications like the

Internet of Things (IoT), data-generating devices are connected over a network. Instead
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of transferring raw data to a centralized location, processing data on multiple devices

in a distributed or decentralized fashion brings the advantage of high efficiency, low

communication cost and real-time response. Another aspect could be privacy concerns.

Sensitive data such as personal data on a smart phone should not be shared with others.

Learning over the network is a privacy-preserving way to learn from the private data

without actually having access to such data.

While a number of Byzantine-resilient learning algorithms will be discussed in this

dissertation, none of these method requires any node to transfer any data or gain access

to datasets other than the dataset on the node itself. Since there are multiple nodes

in the network, the dataset stored and processed on each node is considerably smaller

than the total size of the data within the network. So learning over the network can

potentially require less storage capacity and computing power on each node, achieve

faster processing speed, and preserve privacy. Additionally, as we are going to show in

the dissertation both theoretically and numerically, competitive models can be learned

over the network without having more data than centralized learning methods.

1.2 Byzantine failure

While learning over the network brings advantages in applications, it is also generally a

more complicated problem than centralized learning. One of the difficulties lies in the

robustness of the learning algorithms. When having a large number of nodes in the net-

work, it is hard to guarantee that all nodes are working as intended. Therefore, dealing

with failures in the network becomes one of the necessary and practical consideration

for machine learning tasks. In the literature, failures that happen during learning over

the network can be modeled and categorized into crash failure, omission failure, timing

failure and Byzantine failure.

Byzantine failure model, meaning that a node can arbitrarily deviate from its in-

tended behavior, was originally brought up in [9] and abstracted as the Byzantine

Generals Problem. The article [9] describes the scenario where a number of Byzantine
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generals are surrounding a city and trying to reach an agreement on the attacking strat-

egy. When there are traitors among the generals, but the traitors cannot be identified

based on their proposed strategy, a good decision rule has to be enforced to guarantee

that an agreement can be achieved and that a small number of traitors cannot overturn

the intended strategy. This is also why the failure model is called Byzantine failure.

Among the aforementioned failure types, Byzantine failure is the hardest to safeguard

against in the sense that we do not put any assumption on its behavior pattern. A

Byzantine node can potentially be aware of the network structure, collude with other

Byzantine nodes, acquire knowledge of messages transmitting in the network, inject

harmful information into the network, pretend to cooperate to avoid being caught and

so on and so forth.

In this dissertation, we discuss machine learning algorithms that are Byzantine-

resilient, meaning that the algorithms can accomplish machine learning tasks despite

the existence of Byzantine failures. In the introduced methods, instead of trying to

identify Byzantine nodes, the algorithms are designed to tolerate a certain number

of Byzantine nodes in the network. We then show that the proposed algorithms can

successfully learn a good model if there are not too many Byzantine nodes in the

network.

1.3 Decentralized learning

As mentioned previously, machine learning methods can be categorized as distributed

learning (with central server) and decentralized learning (without central server). In

this dissertation, we mainly focus on the discussion of Byzantine-resilient decentralized

learning methods.

Although the datasets are distributed on the nodes over a network in a similar

fashion for both distributed and decentralized settings, the nature of the two types

methods are fundamentally different. Because the central server is directly connected

to all the nodes, it is possible to broadcast the model to all the nodes so that all nodes

can share the same model during each iteration. Distributed learning algorithms take
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this advantage and perform gradient aggregation as the following: each node computes

the gradient with respect to the same model; then the server collects all the gradients

and updates the model according to some aggregation rule.

The case for decentralized learning is more complicated. Without a central server,

all nodes have to rely on the algorithm to iteratively achieve consensus, meaning that all

nodes eventually agree on the same model. Unfortunately, before consensus is reached,

gradient aggregation cannot be applied since the gradient computed at one node cannot

be used to update the different model on another node. Thus existing decentralized

learning works mostly focus on model aggregation, meaning that each node shares its

local model with other nodes. Then each node updates its local model based on both

the computation on local dataset and the models received from other nodes. As a

result, the strategy to safeguard against Byzantine failures in the two settings are also

fundamentally different.

In most decentralized applications, each node can only directly communicate with a

fraction of nodes, which are called neighbors. The connectivity of the nodes and their

neighbors can be modeled as an incomplete graph. Intuitively, the connectivity of the

graph should also have impact on both the convergence rate and the robustness of the

algorithms. Thus, different from distributed algorithms, decentralized algorithms also

need to address the influence on different network topology. In other words, in order

for certain algorithms to work, the network needs to satisfy some topology constraints.

It is then easy to see that the strategy of rejecting Byzantine failures will also consider

the network topology. Generally speaking, if the total number of nodes stays the same,

a decentralized network can tolerate fewer Byzantine nodes than a distributed network.

Although learning over a decentralized network is more complicated than under

distributed settings, it also has advantages over distributed learning. One limitation of

distributed network is the requirement of having a central server that is connected to

all other nodes. In applications, connecting to all nodes is not always feasible or can

be too costly. If there are a large number of nodes in the network, the communication

load on the server is heavy and likely to become the bottleneck [18]. Since decentralized

algorithms only require each node to be able to communicate with its neighbors, the
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number of nodes can scale well without requiring more communication capability. In

terms of Byzantine failure, it usually takes a large enough fraction of nodes to become

Byzantine nodes to successfully crash the whole decentralized network, while in the

distributed network, if the central server is taken over, the whole network is paralyzed.

1.4 Problem formulation

Given a network in which each node has access to some local training data, the main

goal of this dissertation is to develop algorithms that learn models from these data in

a decentralized fashion when there are Byzantine failures in the network. We are also

interested in both the statistical and algorithmic convergence rate.

1.4.1 Learning model

We consider a network of M nodes, expressed as a directed, static graph G(J , E).

Here, the set J := {1, . . . ,M} represents nodes in the network, while the set of edges

E represents communication links between different nodes. Specifically, (j, i) ∈ E if

and only if node i can receive information from node j and vice versa. Each node

j has access only to a local training set Zj = {zjn}
|Zj |
n=1. Training samples z, are

assumed independent and identically distributed (i.i.d.) and drawn from an unknown

distribution P, i.e., zjn ∼ P. For simplicity, we assume cardinalities of local training

sets are the same, i.e., |Zj | = N . The generalization to the case when Zj ’s are not

equal sized is trivial.

Machine learning tasks are usually accomplished by defining and statistically mini-

mizing a risk function Ez∼P [f(w, z)] with respect to a variable w ∈ Rd. For simplicity,

we use E[f(w)] in the following to denote the statistical risk function and ∇f(w) to

denote the gradient of f(w, z) with respect to w in this dissertation. We denote the

true minimizer of the risk function as w∗, i.e.,

w∗ = arg min
w∈Rd

E[f(w)]. (1.1)

In learning problems, the distribution P is usually unknown. Therefore w∗ cannot be

solved for directly. One way of completing the task in this (decentralized) setting is to
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employ (decentralized) empirical risk minimization (ERM), i.e.,

min
w∈Rd

1

MN

M∑
j=1

N∑
n=1

f(w, zjn)
4
= min

w∈Rd
1

M

M∑
j=1

fj(w). (1.2)

It is shown that the minimizer of (1.2) converges to w∗ with high probability as MN

increases [19].

In decentralized learning, each node j maintains a local variable wj . The ERM

problem can be solved in the decentralized fashion [20], i.e.,

min
{w1,...,wM}

1

M

M∑
j=1

fj(wj) subject to wi = wj ∀i, j. (1.3)

To accomplish the decentralized ERM task, all nodes need to cooperate with each

other by communicating with neighbors over edges. We define the neighborhood of

node j as Nj := {i ∈ J : (i, j) ∈ E}. If i ∈ Nj , then i is a neighbor of node j. Classic

decentralized learning algorithms proceed iteratively. A node is expected to accomplish

two tasks during each iteration: update the local variable wj according to some rule

gj(·) and broadcast a message to all its neighbors. Note that node j can receive values

from node i only if i ∈ Nj .

1.4.2 Byzantine failure model

When there is no failure in the network, decentralized learning is well understood

[21, 22]. The main assumption in this dissertation is that some of the nodes in the

network can arbitrarily deviate from intended behavior. We model this behavior as

Byzantine failure, formally defined as follows.

Definition 1. A node j ∈ J is said to be Byzantine if during any iteration, it either

updates its local variable using an update function g̃j(·) 6= gj(·) or it broadcasts a value

other than the intended update to its neighbors.

We use J ′ to denote the set of nonfaulty nodes and we assume that there are at

most b Byzantine nodes in the network. We label the nonfaulty nodes from 1 to |J ′|

without loss of generality. Here we emphasize that we do not need to know the exact

number of Byzantine nodes. A Byzantine-resilient learning algorithms should be able
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to tolerate at most b Byzantine nodes and the algorithm should still have a competitive

performance even if there is actually no failure in the network.

In this dissertation, we will introduce Byzantine fault-tolerant algorithms for decen-

tralized learning. A valid algorithm is expected to accomplish the following tasks: (i)

achieve consensus, i.e., wj = wi ∀i, j ∈ J ′ as the number of iterations t→∞; and (ii)

learn a wj → w∗ ∀j ∈ J ′ as sample size N →∞.

The rest of this dissertation is organized as the following. We first introduce a

Byzantine-resilient algorithm that is specifically designed for decentralized support vec-

tor machine (SVM) in Chapter 2. We then show the possibility for probably and ap-

proximately correct (PAC) learning for a wide class of learning problems in the presence

of Byzantine failures along with an implementable algorithm in Chapter 3. Next, we

present and analyze a general framework for Byzantine-resilient decentralized machine

learning in Chapter 4. At last, we provide some discussion on open research problems

and conclude the dissertation in Chapter 5.
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Chapter 2

Byzantine-resilient Decentralized SVM

One commonly adopted idea of rejecting Byzantine failures is to combine screening

methods from robust statistics with decentralized learning methods. Different algo-

rithms can be developed with different combinations of optimization methods and

screening methods. In this chapter, we introduce our first work that focuses on a partic-

ular type of vector-valued decentralized learning problem in the presence of Byzantine

failures, i.e., training of a support vector machine (SVM) [23].

2.1 Byzantine-resilient support vector machine (RD-SVM)

An SVM is a popular tool to solve binary classification problems. In this setting,

training sample z = (x, y), where x ∈ RP is the data and y ∈ {1,−1} is its label. The

variable w in this case takes the form w = [aT , c]T where a ∈ RP and c ∈ R. It is

desired to learn a mapping y = aTx + c that correctly maps each data sample to its

label. The loss function of SVM is hinge loss `(w, z) = max{0, 1− y(aTx+ c)} and the

regularizer R(a) = λ
2‖a‖

2. Thus the risk function f(w, z) = R(a) + `(w, z) is strongly

convex.

In the decentralized setting, each node j has access to a local training set (Xj ,Yj)

where Xj is a P ×N matrix whose columns are training samples xjn and Yj is a N×N

diagonal matrix diag({yjn}). Every node j also keeps a local wj = [aTj , cj ]
T and can

exchange the latest wj over the edges. All nodes are expected to agree on the same

ŵ = [âT , ĉ]T that minimizes the global empirical risk function, i.e.,

(â, ĉ) = arg min
{aj ,cj}

λ

2

M∑
j=1

‖aj‖2 +

M∑
j=1

N∑
n=1

max{0, 1− yjn(aTj xjn + cj)}

s.t. aj = ai, cj = ci, ∀i, j ∈ J. (2.1)
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Without any failure, the problem can be solved by iteratively proceeding with the

following updates [21]:

Λj(t+ 1) = arg max
0�Λj(t)�1/λ

−1

2
Λj(t)

TYjXjU
−1
j XT

j YjΛj(t) + (1 + YjXjU
−1ξj(t))

TΛj(t)

(2.2)

wj(t+ 1) = U−1
j (XT

j YjΛj(t+ 1)− ξj(t)) (2.3)

ζj(t+ 1) = ζj(t) +
ρ

2

∑
i∈Nj

(wj(t+ 1)−wi(t+ 1)), (2.4)

Where � denotes element-wise comparison. Here, ρ is a pre-selected stepsize, Uj =

(1+2ρ|Nj |)I−Π and ξj(t) = 2ζj(t)−ρ
∑

i∈Nj (wj(t)+wi(t)), where Π is a (P+1)×(P+1)

matrix with zeros everywhere except for [Π](P+1)(P+1) = 1. However, when there are

Byzantine failures in the network, the given algorithm will fail. For example, if one

of the nodes holds its local value invariant for all iterations, because of the equality

constraint in (2.1), all nonfaulty nodes will iteratively converge to the same value that

the Byzantine node holds.

The key idea to make the algorithm Byzantine resilient is to add a screening step

before using the information received from a node’s neighbors in (2.4). After node j

receives the classifiers from all neighbors in Nj , it computes the loss of these classifiers

on its local training set Sj and uses this information to perform the screening. First,

separate the local set Sj into a positive set Spj = {(x, y) ∈ Sj : y = 1} and a negative

set Snj = {(x, y) ∈ Sj : y = −1}. Compute `pj =
∑

(x,y)∈Spj

max{0, 1 − y(aTj x + cj)}

and `sj =
∑

(x,y)∈Ssj
max{0, 1 − y(aTj x + cj)}. Then for each i ∈ Nj , compute `pi =∑

(x,y)∈Spj

max{0, 1−y(aTi x+ci)} and `si =
∑

(x,y)∈Ssj
max{0, 1−y(aTi x+ci)}. Next, formulate

a new neighborhood N ∗j (t) by eliminating a group of nodes in the following way: (1) if

there are less than b nodes that satisfy `si ≥ `sj , eliminate all theses nodes; (2) if there

are no less than b nodes that satisfy `si ≥ `sj , eliminate b nodes that have the b greatest

`sj ; (3) if there are less than b nodes that satisfy `pi ≥ `
p
j , eliminate all theses nodes; (4)

if there are no less than b nodes that satisfy `pi ≥ `pj , eliminate b nodes that have the

b greatest `pj ; (5) collect all the nodes that are not eliminated into N ∗j . The algorithm
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then can be modified as

Λj(t+ 1) = arg max
0�Λj(t)�1/λ

−1

2
Λj(t)

TYjXjU
−1
j XT

j YjΛj(t) + (1 + YjXjU
−1ξj(t))

TΛj(t)

(2.5)

wj(t+ 1) = U−1
j (XT

j YjΛj(t+ 1)− ξj(t)) (2.6)

ζj(t+ 1) = ζj(t) +
ρ

2

∑
i∈N ∗j

(wj(t+ 1)−wi(t+ 1)). (2.7)

Since each node eliminates some values from its neighborhood in each iteration, the

network needs some redundancy to guarantee success. One way of describing the re-

dundancy of the network topology is the following.

Definition 2. Let J denote a subset of J and Dµ
J denote the set DµJ = {j ∈ J :

|Nj \ J | ≥ µ}. Graph G = (J , E) of M ≥ 2 nodes is µ, ν-robust for r ≥ 0 and

1 ≤ ν ≤ M if for every pair of nonempty, disjoint subsets J̄1, J̄2 of J , at least one of

the following holds: (i) |Dµ
J̄1
| = |J̄1|; (ii) |Dµ

J̄2
| = |J̄2|; and |Dµ

J̄1
|+ |Dµ

J̄2
| ≥ ν.

The basic idea of this topology assumption is that if the graph is separated into

two sets, both sets need to have at least some (ν) nodes that have some (µ) neighbors

in the other set. It is obvious that the condition becomes more restrictive as µ or ν

increases. For the algorithm to work, it requires that the graph of the network is at

least (b + 1, b + 1)-robust. This constraint can be interpreted in a simpler way: no

matter how the nodes are divided into two sets, after the screening with respect to b,

some nodes from one set will still be able to communicate with some nodes in the other

set.

2.2 Experimental results

Next, we show the effectiveness of RD-SVM with numerical experiments. Since SVM is

a popular tool for binary classification, the experiment is done on a well-understood bi-

nary classification problem, i.e., distinguishing between hand-written digits using SVM.

The MNIST dataset [24] is chosen to perform the experiment. First, we generate a graph

with 25 nodes, where each pair of nodes has a 0.5 probability to be connected. Then
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Table 2.1: Results on MNIST8M dataset

Algorithm Byzantine nodes Accuracy Consensus

DSVM 0 97.76% YES

DSVM 4 25% NO

RD-SVM 4 97.75% YES

4 nodes are randomly picked to be Byzantine nodes. In this experiment, a Byzantine

node will broadcast a random vector during each iteration. The training set is made

up of digits ‘0’, ‘1’, ‘6’, ‘7’ and every node has access to 200 of each digit. The 4-class

classification can be done by 3 rounds of binary classifications: separate ‘0’, ‘1’ and

‘6’, ‘7’; separate ‘0’ and ‘1’; separate ‘6’ and ‘7’. The performance of RD-SVM is com-

pared with the performance of DSVM [21]. Three rounds of experiments are performed:

(1) DSVM without failure; (2) DSVM under failure; (3) RD-SVM under failure. The

performance is evaluated by the classification accuracy.

The results of the experiments are shown in Table 2.1. It can be shown that DSVM

has good performance in the faultless setting but it fails in the presence of Byzantine

failures. As apposed to DSVM, RD-SVM maintains good performance when there

are Byzantine failures in the network. The comparison indicates the fact that while

classic decentralized learning algorithms are not Byzantine resilient, RD-SVM is indeed

resilient to Byzantine failures.

2.3 Concluding remarks

RD-SVM is the first algorithm that solves vector-valued decentralized learning problems

in the presence of Byzantine failures. We introduce this method to give the reader a

demonstration of what Byzantine failure is and how to improve robustness against it.

The basic idea is to add a screening stage before each local updating. However, since

the screening for RD-SVM is by comparing the hinge loss, it is specifically designed for

SVM and cannot be generalized to other learning techniques. Starting from the next

chapter, we are going to provide algorithms that can be applied to a general class of

learning problems.
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Chapter 3

PAC Learnability and the ByRDiE Algorithm

One classic way of solving machine learning problem is to solve the ERM problem (1.2)

by using optimization techniques to find the minimizer. It then can be shown that the

minimizer of the ERM problem converges to the minimizer of the statistical risk function

as the sample size increases. Note that this is valid independent of the optimization

techniques. However, it is shown in previous work [25] that the empirical minimization

problem (1.2) cannot be exactly solved when there are Byzantine failures in the network,

which brings up an obvious but important question: is learning problem solvable under

decentralized settings in the presence of Byzantine failures?

In this chapter, we will show that decentralized Byzantine-resilient learning is possi-

ble by proposing and analyzing an algorithm named Byzantine-Resilient Decentralized

coordinate dEscent (ByRDiE). We are going to show that the minimizer learned by

ByRDiE is probably and approximately correct (PAC). Instead of solving the ERM

problem, we are going to show that ByRDiE statistically solves the learning problem

without achieving the empirical minimum.

3.1 PAC learnability over decentralized networks in the presence of

Byzantine failures

In order to show that the learning problem is solvable, we first define PAC learnability. If

all nonfaulty nodes can find a w̄ such that, for arbitrarily small ε and δ, P(‖E[f(w̄, z)]−

E[f(w∗, z)]‖2 < ε) ≥ 1 − δ as a function of N , then w̄ is probably and approximately

correct. In words, the model w∗ is PAC learnable if we can learn, at each nonfaulty

node, a w̄ that converges to w∗ with high probability.

Before going to the main result, we provide a set of assumptions and definitions
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that are critical for the analysis in the rest of the dissertation.

Assumption 1. The risk function f(w, z) is bounded almost surely over all training

samples, i.e.,

f(w, z) ≤ C <∞,∀z ∈
⋃
j∈J
Zj . (3.1)

Assumption 2. The risk function f(w, z) is strictly convex, i.e.,

f(w1, z) > f(w2, z) + 〈∇f(w2, z),w2 −w1〉. (3.2)

Assumption 3. The gradient of f(w, z) is L-Lipschitz, i.e.,

‖∇f(w1, z)−∇f(w2, z)‖ ≤ L‖w1 −w2‖. (3.3)

Note that Assumption 3 implies the risk function itself is also Lipschitz, i.e., ‖f(w1, z)−

f(w2, z)‖ ≤ L′‖w1 −w2‖ for some L [26]. In this dissertation, we focus our analysis

on convex functions and give the statistical and algorithmic convergence rate of algo-

rithms on such functions. Although the convergence rate is not given for non-convex

functions, later we will numerically show that the algorithms can also work for non-

convex functions. Next, we give an assumption on the network topology which is the

main difference between distributed setting and decentralized setting.

Definition 3. A subgraph Gr of G is called a reduced graph if it is generated from

graph G by (i) removing all Byzantine nodes along with all their incoming and outgoing

edges, and (ii) removing additionally up to b incoming edges from each nonfaulty node.

A source component of graph Gr is a collection of nodes such that each node in the

source component has a directed path to every other node in Gr.

Assumption 4. All reduced graphs Gr generated from G(J , E) contain a source com-

ponent of cardinality at least b+ 1.

Assumption 4 describes the redundancy of a graph. What it ensures is that after

removing a certain number of edges from nonfaulty nodes, each normal node can still

receive information from a few other nonfaulty nodes. We emphasize that this topology
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assumption is sufficient but not necessary in terms of PAC learnability. More specifi-

cally, the assumption is required for our Byzantine-resilient algorithms which later will

be shown to deliver a PAC learning result. However, other Byzantine-resilient learning

techniques may also be able to perform PAC learning with different topology require-

ments. Nevertheless, consensus-based Byzantine-resilient decentralized algorithms must

have some topology requirements to guarantee convergence; see, e.g., [27]. Here is a

simple example to explain why. Suppose we have a chain-shaped directed network:

node 1 can only receive information from node 2, node 2 can only receive information

from node 3, and so on. Without Byzantine nodes, the network can achieve consensus

on the local value of node 1 with a trivial algorithm. However, when there is a Byzan-

tine node that is not at either end of the chain, the network will be cut into two groups

where nodes from one group cannot receive any information from the other group. In

this case, it is theoretically impossible to achieve consensus among all nodes without

changing the topology.

Next, we present our main result: the PAC learning problem is solvable for a general

class of risk functions.

Theorem 1. Let Assumptions 1, 2, 3, and 4 be satisfied. There exists an algorithm

that can learn a hypothesis w̄ at each nonfaulty node that is probably approximately

correct in the presence of Byzantine failures. Specifically, with probability at least 1 −

O(exp(−Nε2)),

‖E[f(w̄, z)]− E[f(w∗, z)]‖2 < ε. (3.4)

To the best of our knowledge, Theorem 1 is the first result that shows the PAC

learnability of decentralized learning problems in the presence of Byzantine failures.

The proof of the theorem and the discussion of the sample complexity are done by

giving and analyzing a Byzantine-resilient algorithm called ByRDiE. In the rest of

this chapter, we first describe ByRDiE algorithm in detail. We then theoretically and

numerically analyze the algorithm to show both the PAC result and the performance

of the algorithm.
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3.2 Byzantine-resilient decentralized coordinate descent

In the literature, researchers have made progress in solving the scalar-valued Byzantine-

resilient decentralized optimization problems [28]. The existing work improves dis-

tributed gradient descent (DGD) by adding a screening process before the local update

on each node. As a trade-off for robustness, the scalar-valued optimization problem can

only be solved inexactly. Our ByRDiE algorithm extends the scalar-valued method to

vector-valued cases by adopting coordinate descent to break the vector-cased problem

into a series of scalar-valued problems. However, the inexactness in the solution for

scalar-valued problems makes it highly non-trivial for both designing and analyzing the

algorithm.

3.2.1 Algorithmic details

ByRDiE involves splitting the vector-valued problem into d one-dimensional subprob-

lems using coordinate descent and then solving each scalar-valued subproblem using

the Byzantine-resilient approach described in [28]. The exact implementation is de-

tailed in Algorithm 1. The algorithm can be broken into an outer loop (Step 2) and an

inner loop (Step 4). The outer loop is the coordinate descent loop, which breaks the

vector-valued optimization problem in each iteration r into d scalar-valued subprob-

lems. The inner loop solves a scalar-valued optimization problem in each iteration t

and ensures resilience to Byzantine failures. We assume the total number of iterations

r̄ for coordinate descent are specified during initialization. We use [wr
j (t)]k to denote

the k-th element of wj at the r-th iteration of the coordinate descent loop and the t-th

iteration of the k-th subproblem (coordinate). Without loss of generality, we initialize

[w1
j (1)]k = 0,∀k = 1, . . . , d.

We now fix some r and k, and focus on the implementation of the inner loop (Step 4).

Every node has some [wr
j (1)]k at the start of the inner loop (t = 1). During each iter-

ation t of this loop, all (nonfaulty) nodes engage in the following: broadcast, screening,

and update. In the broadcast step (Step 6), all nodes i ∈ J broadcast [wr
i (t)]k’s and

each node j ∈ J receives [wr
i (t)]k, ∀i ∈ Nj . During this step, a node can receive values
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Algorithm 1 Byzantine-resilient decentralized coordinate descent

Input: Z1,Z2, . . . ,ZM , {ρ(τ)}∞τ=1, b ∈ N, r̄ ∈ N, T ∈ N
1: Initialize: r ← 1, t← 1, and ∀j ∈ J ′,wr

j (t)← 0
2: for r = 1, 2, . . . , r̄ do
3: for k = 1, 2, . . . , d do
4: for t = 1, 2, . . . , T do
5: for j = 1, 2, . . . , |J ′| do (in parallel)
6: Receive [wr

i (t)]k from all i ∈ Nj
7: Find N s

j (r, k, t), N l
j (r, k, t), N ∗j (r, k, t) according to (3.5), (3.6), and

(3.7)
8: Update [wr

j (t+ 1)]k as in (3.8)
9: end for

10: end for
11: end for
12: wr,T

j ← wr
j (T + 1),∀j ∈ J ′

13: wr+1
j (1)← wr,T

j , ∀j ∈ J ′
14: end for
Output:

{
wr̄,T
j

}
j∈J ′

from both nonfaulty and Byzantine neighbors. The main idea of the screening step

(Step 7) is to reject values at node j that are either “too large” or “too small” so that

the values being used for update by node j in each iteration will be upper and lower

bounded by a set of values generated by nonfaulty nodes. To this end, we partition Nj

into 3 subsets N ∗j (r, k, t), N s
j (r, k, t) and N l

j (r, k, t), which are defined as following:

N s
j (r, k, t) = arg min

X:X⊂Nj ,|X|=b

∑
i∈X

[wr
i (t)]k, (3.5)

N l
j (r, k, t) = arg max

X:X⊂Nj ,|X|=b

∑
i∈X

[wr
i (t)]k, (3.6)

N ∗j (r, k, t) = Nj \ N s
j (r, k, t) \ N l

j (r, k, t). (3.7)

The step is called screening because node j only uses [wr
i (t)]k’s from N ∗j (r, k, t) to up-

date its local variable. Note that there might still be [wr
i (t)]k’s received from Byzantine

nodes in N ∗j (r, k, t). We will see later, however, that this does not effect the workings

of the overall algorithm.

The final step of the inner loop in ByRDiE is the update step (Step 8). Using

[∇f̂j(wr
j (t))]k to denote the k-th element of ∇f̂j(wr

j (t)), we can write this update step
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as follows:

[wr
j (t+ 1)]k =

1

|Nj | − 2b+ 1

∑
i∈N ∗j (r,k,t)∪{j}

[wr
i (t)]k

− ρ(r + t− 1)[∇f̂j(wr
j (t))]k, (3.8)

where {ρ(τ)}∞τ=1 are square-summable (but not summable), diminishing stepsizes: 0 <

ρ(τ+1) ≤ ρ(τ),
∑

τ ρ(τ) =∞, and
∑

τ ρ
2(τ) <∞. Notice that [wr

j (T +1)]k is updated

after the k-th subproblem of coordinate descent in iteration r finishes and it stays

fixed until the start of the k-th subproblem in the (r + 1)-th iteration of coordinate

descent. An iteration r of the coordinate descent loop is considered complete once all

d subproblems within the loop are solved. The local variable at each node j at the end

of this iteration is then denoted by wr,T
j (Step 12). We also express the output of the

whole algorithm as {wr̄,T
j }j∈J ′ . Finally, note that while Algorithm 1 cycles through the

d coordinates of the optimization variables in each iteration r in the natural order, one

can use any permutation of {1, . . . , d} in place of this order.

We conclude this discussion by noting that the parameter T in ByRDiE, which can

take any value between 1 and ∞, trades off consensus among the nonfaulty nodes and

the convergence rate as a function of the number of communication iterations tc(r, k, t),

defined as

tc := (r − 1)Td+ [(k − 1)T + t]. (3.9)

In particular, given a fixed T , each iteration r of ByRDiE involves Td (scalar-valued)

communication exchanges among the neighboring nodes. As will be shown next, we

will provide theoretical guarantees for the two extreme cases of T → ∞ and T = 1.

In the limit of large r̄, our results can establish that both extremes result in consensus

and convergence to the statistical risk minimizer. In practice, however, different choices

of T result in different behaviors as a function of tc(≡ tc(r, k, t)), as discussed in the

following and as illustrated in our numerical experiments.

When T is large, the two time-scale nature of ByRDiE ensures the disagreement be-

tween nonfaulty nodes does not become too large in the initial stages of the algorithm;

in particular, the larger the number of iterations T in the inner loop, the smaller the
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disagreement among the nonfaulty nodes at the beginning of the algorithm. Nonethe-

less, this comes at the expense of slower convergence to the desired minimizer as a

function of the number of communication iterations tc.

On the other hand, while choosing T = 1 also guarantees consensus among nonfaulty

nodes, it only does so asymptotically (cf. Theorem 2). Stated differently, ByRDiE

cannot guarantee in this case that the disagreement between nonfaulty nodes will be

small in the initial stages of the algorithm. This tradeoff between small consensus

error and slower convergence (as a function of communication iterations tc) should be

considered by a practitioner when deciding the value of T . The different nature of

the two extreme cases requires markedly different proof techniques, which should be of

independent interest to researchers. Our discussion so far has focused on the use of a

static parameter T within ByRDiE. Nonetheless, it is plausible that one could achieve

somewhat better tradeoffs between consensus and convergence through the use of an

adaptive parameter Tr in lieu of T that starts with a large value and gradually decreases

as r increases. Careful analysis and investigation of such an adaptive two-time scale

variant of ByRDiE, however, is beyond the scope of this dissertation.

3.2.2 Theoretical guarantees: Consensus

Our theoretical analysis of ByRDiE focuses on the two extreme cases of T →∞ and T =

1. In both cases, we establish in the following that the output of ByRDiE at nonfaulty

nodes converges in probability to the minimum of the statistical risk. Convergence

guarantees for a finite-valued T > 1 can be obtained from straightforward modifications

of the analytical techniques used in the following.

We now turn our attention to theoretical guarantees for ByRDiE. We first show that

it leads to consensus among nonfaulty nodes in the network, i.e., all nonfaulty nodes

agree on the same variable, in the limit of large r̄ and/or T . Then we show in the next

sections that the output of ByRDiE converges to the statistical optimum in the limit

of large r̄ for the two extreme choices of T : T →∞ and T = 1.

Let us begin by establishing the claim of consensus. To this end, focusing exclusively

on dimension k in ByRDiE, we see that the k-th dimension of each local variable is
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updated r̄T times. Fixing any k, we can use an index m := (r − 1)T + t to denote the

sequence generated for the k-th dimension up to iteration (r, t) in ByRDiE. We define

a vector Ω(m) ∈ R|J ′| such that [Ω(m)]j := [wr
j (t)]k and let ωj(m) denote [Ω(m)]j .

Similarly, we define a vector G(m) ∈ R|J ′| such that [G(m)]j := [∇f̂j(wr
j (t))]k. Next,

let ρ̄(m) := ρ(r + t− 1) and note that ρ̄(m) also satisfies ρ̄(m) → 0,
∑∞

m=1 ρ̄(m) = ∞

and
∑∞

m=1 ρ̄
2(m) <∞. We can now express the update of the sequence corresponding

to the k-th dimension at nonfaulty nodes in a matrix form as follows:

Ω(m+ 1) = Y(m)Ω(m)− ρ̄(m)G(m), (3.10)

where Y(m) is a matrix that is fully specified in the following.

Let N ′j and N b
j denote the nonfaulty nodes and the Byzantine nodes, respectively,

in the neighborhood of j ∈ J ′, i.e., N ′j = J ′ ∩ Nj and N b
j = Nj \ N ′j . Notice that one

of two cases can happen during each iteration at node j ∈ J ′:

N ∗j (m) ∩N b
j 6= ∅, or (3.11(a))

N ∗j (m) ∩N b
j = ∅. (3.11(b))

For case (3.11(a)), since |N b
j | ≤ b and |N s

j (m)| = |N l
j (m)| = b, we must have N s

j (m) ∩

N ′j 6= ∅ and N l
j (m) ∩ N ′j 6= ∅. Then for each i ∈ N ∗j (m) ∩ N b

j , ∃sij ∈ N s
j (m) ∩ N ′j and

lij ∈ N l
j (m) ∩ N ′j satisfying ωsij

(m) ≤ ωi(m) ≤ ωlij (m). Therefore, we have for each

i ∈ N ∗j (m) ∩N b
j that ∃θji (m) ∈ [0, 1] such that the following holds:

ωi(m) = θji (m)ωsij
(m) + (1− θji (m))ωlij

(m). (3.12)

We can now rewrite the update at node j ∈ J ′ as follows:

ωj(m+ 1) =
1

|Nj | − 2b+ 1

(
ωj(m) +

∑
i∈N ′∩N ∗j (m)

ωi(m)

+
∑

i∈N b∩N ∗j (m)

(
θji (m)ωsij

(m) + (1− θji (m))ωlij
(m)]k

))
+ ρ̄(m)[G(m)]j . (3.13)

It can be seen from (3.13) that the screening rule in ByRDiE effectively enables

nonfaulty nodes to replace data received from Byzantine nodes with convex combina-

tions of data received from nonfaulty nodes in their neighborhoods. This enables us to
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express the updates at nonfaulty nodes in the form (3.10), with the entries of Y (m)

given by

[Y(m)]ji =



1
|Nj |−2b+1 , i = j,

1
|Nj |−2b+1 , i ∈ N ′ ∩N ∗j (m),∑
n∈N b∩N ∗j (m)

θjn(m)
|Nj |−2b+1 , i ∈ N ′ ∩N s

j (m),

∑
n∈N b∩N ∗j (m)

1−θjn(m)
|Nj |−2b+1 , i ∈ N ′ ∩N l

j (m),

0, otherwise.

(3.14)

Notice further that, since N ∗j (m)∩N b
j = ∅ (cf. (3.13)), case (3.11(b)) corresponds to a

special case of case (3.11(a)) in which we keep only the first, second, and last rows of

(3.14). It is worth noting here that our forthcoming proof does not require knowledge

of Y(m); in particular, since the choices of sij and lij are generally not unique, Y(m)

itself is also generally not unique. The main thing that matters here is that Y(m) will

always be a row stochastic matrix; we refer the reader to [29] for further properties of

Y(m).

In order to complete our claim that nonfaulty nodes achieve consensus under ByRDiE,

even in the presence of Byzantine failures in the network, fix an arbitrary m0 ≥ 0 and

consider m > m0. It then follows from (3.10) that

Ω(m+ 1) = Y(m)Ω(m)− ρ̄(m)G(m)

= Y(m)Y(m− 1) · · ·Y(m0)Ω(m0)− ρ̄(m)G(m)

−
m−1∑
τ=m0

Y(m)Y(m− 1) · · ·Y(τ + 1)ρ̄(τ)G(τ). (3.15)

We now define matrices

Φ(m,m0) := Y(m)Y(m− 1) · · ·Y(m0),

Φ(m,m) := Y(m), and Φ(m,m+ 1) := I. Notice that Φ(m,m0) is also row stochastic

since it is a product of row-stochastic matrices. We can then express (3.15) as

Ω(m+ 1) = Φ(m,m0)Ω(m0)−
m∑

τ=m0

Φ(m, τ + 1)ρ̄(τ)G(τ). (3.16)

Next, we need two key properties of Φ(m,m0) from [25].
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Lemma 1 ( [25]). Suppose Assumption 4 holds. Then for any m0 ≥ 0, there exists a

stochastic vector π(m0) such that

lim
m→∞

Φ(m,m0) = 1πT (m0). (3.17)

In words, Lemma 1 states that the product of the row-stochastic matrices Y(m)

converges to a steady-state matrix whose rows are identical and stochastic. We can also

characterize the rate of this convergence; to this end, let ψ denote the total number of

reduced graphs that can be generated from G, and define ν := ψ|J ′|, Nmax := max
j∈J ′
|Nj |,

and

µ := 1− 1

(2Nmax − 2b+ 1)ν
.

Lemma 2 ( [25]). Suppose Assumption 4 holds. We then have that ∀m0 ≥ 0 ,∣∣∣[Φ(m,m0)]ji − [π(m0)]i

∣∣∣ ≤ µ(
m−m0+1

ν
). (3.18)

Lemma 2 describes the rate at which the rows of Φ(m,m0) converge to π(m0). We

now leverage this result and show that the nonfaulty nodes achieve consensus under

ByRDiE in the limit of large m, which translates into r̄ →∞ and/or T →∞. To this

end, under the assumption of m0 = 1, we have from (3.16) the following expression:

Ω(m+ 1) = Φ(m, 1)Ω(1)−
m∑
τ=1

Φ(m, τ + 1)ρ̄(τ)G(τ). (3.19)

Next, suppose the nonfaulty nodes stop computing local gradients at time step m and

use G(m + m′) = 0 for m′ ≥ 0. Then, defining V(m) := lim
m′→∞

Ω(m + m′ + 1), we

obtain:

V(m) = lim
m′→∞

Φ(m+m′, 1)Ω(1)− lim
m′→∞

m+m′∑
τ=1

Φ(m+m′, τ)ρ̄(τ)G(τ)

= 1πT (1)Ω(1)−
m−1∑
τ=1

1πT (τ)ρ̄(τ)G(τ). (3.20)

Notice from (3.20) that all elements in the vector V(m) ∈ R|J ′| are identical. Recall

that V(m) is obtained by looking at only one dimension k of the optimization variable

in ByRDiE; in the following, we use vk(m) to denote the identical elements of V(m)

corresponding to dimension k. We then have the following result concerning nonfaulty

nodes.
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Theorem 2 (Consensus Behavior of ByRDiE). Let Assumptions 3 and 4 hold and fix

m̄ = r̄T + 1. Then,

∀j ∈ J ′,∀k ∈ {1, . . . , d},
[
wr̄,T
j

]
k
→ vk(m̄) (3.21)

as r̄ →∞ and/or T →∞.

First, let us prove the theorem. Fix any dimension k ∈ {1, . . . , P} and recall from

(3.20) that

V(m+ 1) = 1πT (1)Ω(1)

−
m−1∑
τ=1

1πT (τ + 1)ρ̄(τ)G(τ)− 1πT (m+ 1)ρ̄(m)G(m). (3.22)

Since m := (r − 1)T + t and [Ω(m)]j := [wr
j (t)]k, we get

vk(m+ 1)

=

|J ′|∑
i=1

[π(1)]i[w
1
i (1)]k −

m−1∑
τ=1

ρ̄(τ)

|J ′|∑
i=1

[π(τ + 1)]i[G(τ)]i

− ρ̄(m)

|J ′|∑
i=1

[π(r + 1)]i[G(m)]i. (3.23)

We also get from (3.19) that

[wr
j (t+ 1)]k =

|J ′|∑
i=1

[Φ(m, 1)]ji[w
1
i (1)]k

−
m−1∑
τ=1

ρ̄(τ)

|J ′|∑
i=1

[Φ(m, τ + 1)]ji[G(τ)]i − ρ̄(m)[G(m)]j , (3.24)

where we have used the fact that Φ(m,m+ 1) = I. Thus,∣∣∣[wr
j (t+ 1)]k − vk(m+ 1)

∣∣∣ =

∣∣∣ |J ′|∑
i=1

([Φ(m, 1)]ji − [π(1)]i)[w
1
i (1)]k

−
m−1∑
τ=1

ρ̄(τ)

|J ′|∑
i=1

([Φ(m, τ + 1)]ji − [π(τ + 1)]i)[G(τ)]i

− ρ̄(m)

|J ′|∑
i=1

[π(m+ 1)]i([G(m)]j − [G(m)]i)
∣∣∣, (3.25)



24

where the last summation follows from the observation that
∑|J ′|

i=1[π(m + 1)]i = 1.

Further, Assumption 3 implies there exists a coordinate-wise bound L∇ ≤ L′ such that

∀i,m, |[G(m)]i| ≤ L∇. Using this and Lemma 2, we obtain∣∣∣[wr
j (t+ 1)]k − vk(m+ 1)

∣∣∣
≤
|J ′|∑
i=1

∣∣∣[Φ(m, 1)]ji − [π(1)]i

∣∣∣ ∣∣[w1
i (1)]k

∣∣
+
m−1∑
τ=1

ρ̄(τ)

|J ′|∑
i=1

∣∣∣[Φ(m, τ + 1)]ji − [π(τ + 1)]i

∣∣∣∣∣[G(τ)]i
∣∣

+ ρ̄(m)

|J ′|∑
i=1

[π(m+ 1)]i

∣∣∣[G(m)]j − [G(m)]i

∣∣∣
≤ |J ′|L∇

m−1∑
τ=1

ρ̄(τ)µ
m−τ
ν + 2ρ̄(m)L∇. (3.26)

Note that the last inequality in the above expression exploits the fact that [w1
i (1)]k ≡ 0.

In the case of an arbitrary initialization of ByRDiE, however, we could have bounded

the first term in the second inequality in (3.26) as |J ′|Γµ
m+1
ν , which still goes to zero

as m→∞.

We now expand the term
∑m−1

τ=1 ρ̄(τ)µ
m−τ
ν in (3.26) as1

m−1∑
τ=1

ρ̄(τ)µ
m−τ
ν =

m
2
−1∑

τ=1

ρ̄(τ)µ
m−τ
ν +

m−1∑
τ=m

2

ρ̄(τ)µ
m−τ
ν


≤ ρ̄(1)

m
2
−1∑

τ=1

µ
m−τ
ν + ρ̄( r2)

m−1∑
τ=m

2

µ
m−τ
ν

=
ρ̄(1)µ

m
2 +1

ν (1− µ
m
2ν )

µ1− 1
ν

+
ρ̄(m2 )µ

1
ν (1− µ

m
2ν )

µ1− 1
ν

.

It can be seen from the above expression that limm→∞
∑m−1

τ=1 ρ̄(τ)µ
m−τ
ν ≤ 0. Since∑m−1

τ=1 ρ̄(τ)µ
m−τ
ν ≥ 0, it follows that limm→∞

∑m−1
τ=1 ρ̄(τ)µ

m−τ
ν = 0. This fact in concert

with (3.26) and the diminishing nature of ρ̄(m) give

lim
m→∞

∣∣∣[wr
j (t+ 1)]k − vk(m+ 1)

∣∣∣ = 0. (3.27)

1We focus here only on the case of an even m for the sake of brevity; the expansion for an odd m
follows in a similar fashion.
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Next, take r = r̄, t = T , and note that wr
j (t + 1) = wr̄,T

j and m̄ = r̄T + 1 = [(r −

1)T + T ] + 1 = m + 1 in this case. Further, m̄ → ∞ when r̄ → ∞ and/or T → ∞. It

therefore follows from (3.27) that [wr̄,T
j ]k → vk(m̄) as r̄ →∞ and/or T →∞. Finally,

since k in our analysis was arbitrary, the same holds for all k = 1, 2, . . . , P . The proof

of Theorem 2 is complete.

Theorem 2 establishes consensus at the nonfaulty nodes under ByRDiE when r̄ →∞

and/or T → ∞. We conclude this discussion by also stating the rate at which the

iterates of ByRDiE achieve consensus. To this end, we define the consensus vector

V̄ (r) ∈ RP in iteration r as [V̄ (r)]k := vk(r). To keep the notation simple, we limit

ourselves to T = 1 and use wrj to denote wr,1j . Nonetheless, a similar result holds for

other values of T .

Theorem 3 (Consensus Rate for ByRDiE). Let Assumptions 3 and 4 hold. Then,

fixing T = 1, the iterates of ByRDiE satisfy:

∀j ∈ J ′, ‖wr
j − V̄(r)‖ = O

(√
dρ(r)

)
, (3.28)

where V̄(r) denotes the consensus vector in iteration r.

Theorem 3, which is a straightforward consequence of the proof of Theorem 2

(cf. (3.26)), guarantees a sublinear rate for consensus; indeed, choosing the stepsize

evolution to be ρ(r) = O (1/r) gives us ‖wr
j − V̄(r)‖ = O

(√
d/r
)

.

3.2.3 Theoretical guarantee: Convergence for T →∞

We now move to the second part of the guarantee. This involves showing that the

output of ByRDiE converges in probability to the minimizer (and minimum) of the

statistical risk for two extreme cases: Case I: T →∞ and Case II: T = 1. We start our

discussion with the case of T → ∞, in which case an auxiliary lemma simply follows

from [30, Theorem 2] (also, see [29]).

Lemma 3. Let Assumptions 3 and 4 hold, and let the k-th subproblem of the coordinate

descent loop in iteration r of ByRDiE be initialized with some {wj}j∈J ′. Then, as
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T →∞,

∀j ∈ J ′,
[
wr,T
j

]
k
→ arg min

w′∈R

∑
j∈J ′

αj(r, k)f̂j(wj |[wj ]k=w′) (3.29)

for some αj(r, k) ≥ 0 such that
∑

j∈J ′ αj(r, k) = 1.

Lemma 3 shows that each subproblem of the coordinate descent loop in ByRDiE

under Case I converges to the minimizer of some convex combination of local empirical

risk functions of the nonfaulty nodes with respect to each coordinate. In addition,

Lemma 3 guarantees that consensus is achieved among the nonfaulty nodes at the

end of each coordinate descent loop under Case I. Note that while this fact is already

known from Theorems 2 and 3, Lemma 3 helps characterize the consensus point. In

summary, when nonfaulty nodes begin a coordinate descent subproblem with identical

local estimates and T → ∞, they are guaranteed to begin the next subproblem with

identical local estimates.

We now fix (r, k) and use w̃r
k to denote the identical initial local estimates at non-

faulty nodes at the beginning of k-th subproblem of the coordinate descent loop in the

r-th iteration of ByRDiE under Case I. Next, we define hrk(w
′) and Hr

k(w′) for w′ ∈ R

as

hrk(w
′) := E[f(w̃rk|[w̃r

k]k=w′)], and (3.30)

Hr
k(w′) :=

∑
j∈J ′

αj(r, k)f̂j(w̃
r
k|[w̃r

k]k=w′) (3.31)

for some αj(r, k) ≥ 0 such that
∑

j∈J ′ αj(r, k) = 1. Note that hrk(·) is strictly convex

and Lipschitz continuous. Now for fixed r and k, define

w? := arg min
w′∈R

hrk(w
′), and (3.32)

ŵ := arg min
w′∈R

Hr
k(w′). (3.33)

It should be evident to the reader from (3.30) and (3.32) that the univariate stochas-

tic function hrk(w
′) depends on w̃rk and its (scalar-valued) minimizer w?, which should

not be confused with the vector-valued statistical minimizer w∗, is a function of r and

k. Similarly, it should be obvious from (3.31) and (3.33) that Hr
k(w′) depends on w̃rk
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and {αj(r, k)}j∈J ′ , while its minimizer ŵ is also a function of r and k. We are dropping

these explicit dependencies here for ease of notation.

In words, if one were to solve the statistical risk minimization problem using (cen-

tralized) coordinate descent then w? will be the k-th component of the output of co-

ordinate descent after update of each coordinate k in every iteration r. In contrast, ŵ

is the k-th component of the outputs of ByRDiE after update of each coordinate k in

every iteration r (cf. Lemma 3). While there exist works that relate the empirical risk

minimizers to the statistical risk minimizers (see, e.g., [31]), such works are not directly

applicable here because of the fact that Hr
k(w′) in this paper changes from one pair

(r, k) of indices to the next. Nonetheless, we can provide the following uniform statis-

tical convergence result for ByRDiE under Case I that relates the empirical minimizers

{ŵ} to the statistical minimizers {w?}.

Theorem 4 (Statistical Convergence Rate for ByRDiE). Let d and |J ′| be fixed, r̄ be

any (arbitrarily large) positive integer, and {αj(r, k) ≥ 0, j ∈ J ′}r̄,dr,k=1 be any arbitrary

collection satisfying
∑

j∈J ′ αj(r, k) = 1. Let |ŵ| ≤ Γ, |w?| ≤ Γ, and {w̃rk}r,k ⊂ W , and

define ā := max(r,k)

√∑
j∈J ′ α

2
j (r, k). Then, as long as Assumptions 1 and 3 hold, we

have ∀ε > 0

sup
r,k

[hrk(ŵ)− hrk(w?)] < ε (3.34)

with probability exceeding

1− 2 exp

(
− 4|J ′|Nε2

c2
1|J ′|ā2 + ε2

+ |J ′| log
(c2

ε

)
+ d log

(c3

ε

))
, (3.35)

where c1 := 8C, c2 := 24C|J ′|, and c3 := 24L′Γd.

We begin our proof by fixing w′ ∈ R such that |w′| ≤ Γ and defining αrk ∈ R|J ′| as

αrk := [αj(r, k) : j ∈ J ′] and F̃ rk (w′) ∈ R|J ′| as F̃ rk (w′) := [f̂(w̃rk|[w̃rk]k=w′ , Sj) : j ∈ J ′].

We can then write

Hr
k(w′) = αrk

T F̃ rk (w′). (3.36)

Next, notice from (3.30), and (3.31) that

∀(r, k), E[Hr
k(w′)] = hrk(w

′). (3.37)
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We now fix indices (r, k) and note that the random variables αj(r, k)`(w̃rk|[w̃rk]k=w′ , (xjn, yjn))

involved in the definition of the univariate function Hr
k(w′) are (i) independent due to

the independence of the training samples, and (ii) bounded as 0 ≤ αj`(w, (xjn, yjn)) ≤

αjC due to Assumption 1. Therefore, the following holds ∀ε′ > 0 due to Hoeffding’s

inequality [32]:

P
(∣∣∣αrkT F̃ rk (w′)− hrk(w′)

∣∣∣ ≥ ε′) ≡
P
(∣∣Hr

k(w′)− hrk(w′)
∣∣ ≥ ε′) ≤ 2 exp

(
− 2Nε′2

C2‖αrk‖2

)
. (3.38)

Further, since the |J ′|-dimensional vector αrk is an arbitrary element of the standard

simplex, defined as

∆ := {v ∈ R|J
′| :

|J ′|∑
j=1

[v]j = 1 and ∀j, [v]j ≥ 0}, (3.39)

the probability bound in (3.38) also holds for any v ∈ ∆, i.e.,

P
(∣∣∣vT F̃ rk (w′)− hrk(w′)

∣∣∣ ≥ ε′) ≤ 2 exp

(
− 2Nε′2

C2‖v‖2

)
. (3.40)

We now define the set Sα := {αrk}
r̄,P
r,k=1. Our next goal is to leverage (3.40) and

derive a probability bound similar to (3.38) that uniformly holds for all v ∈ Sα. To

this end, let

Cξ := {c1, . . . , cdξ} ⊂ ∆ s.t. Sα ⊆
dξ⋃
q=1

B(cq, ξ) (3.41)

denote an ξ-covering of Sα in terms of the `2 norm and define c̄ := arg maxc∈Cξ ‖c‖. It

then follows from (3.40) and the union bound that

P

(
sup
c∈Cξ

∣∣∣cT F̃ rk (w′)− hrk(w′)
∣∣∣ ≥ ε′)

≤ 2dξ exp

(
− 2Nε′2

C2‖c̄‖2

)
. (3.42)

In addition, we have

sup
v∈Sα

∣∣∣vT F̃ rk (w′)− hrk(w′)
∣∣∣ (a)

≤ sup
c∈Cξ

∣∣∣cT F̃ rk (w′)− hrk(w′)
∣∣∣+

sup
v∈Sα,c∈Cξ

‖v − c‖‖F̃ rk (w′)‖, (3.43)
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where (a) is due to triangle and Cauchy–Schwarz inequalities. Trivially, supv∈Sα,c∈Cξ ‖v−

c‖ ≤ ξ from the definition of Cξ, while ‖F̃ rk (w′)‖ ≤
√
|J ′|C from the definition of F̃ rk (w′)

and Assumption 1. Combining (4.35) and (4.36), we get

P
(

sup
v∈Sα

∣∣∣vT F̃ rk (w′)− hrk(w′)
∣∣∣ ≥ ε′ +√|J ′|ξC)
≤ 2dξ exp

(
− 2Nε′2

C2‖c̄‖2

)
. (3.44)

We now define ᾱ := arg maxv∈Sα ‖v‖. It can then be shown from the definitions of

Cξ and c̄ that

‖c̄‖2 ≤ 2(‖ᾱ‖2 + ξ2). (3.45)

Therefore, picking any ε′′ > 0, and defining ε′ := ε′′/2 and ξ := ε′′/(2C
√
|J ′|), we have

from (4.37) and (4.38) that

P
(

sup
v∈Sα

∣∣∣vT F̃ rk (w′)− hrk(w′)
∣∣∣ ≥ ε′′)

≤ 2dξ exp

(
− 4|J ′|Nε′′2

4C2|J ′|‖ᾱ‖2 + ε′′2

)
. (3.46)

In order to obtain the desired uniform bound, we next need to remove the depen-

dence on w̃rk and w′ in (4.39). To this end, we write F̃ rk (w′) and hrk(w
′) as F̃ rk (w̃rk, w

′)

and hrk(w̃
r
k, w

′), respectively, to highlight their dependence on w̃rk and w′. Next, we

define

Uζ := {u1, . . . , umζ} ⊂W s.t. W ⊆
mζ⋃
q=1

B(uq, ζ) (3.47)

to be a ζ-covering of W in terms of the `2 norm. It then follows from (4.39) that

P

(
sup

v∈Sα,u∈Uζ

∣∣∣vT F̃ rk (u, [u]k)− hrk(u, [u]k)
∣∣∣ ≥ ε′′)

≤ 2dξmζ exp

(
− 4|J ′|Nε′′2

4C2|J ′|‖ᾱ‖2 + ε′′2

)
. (3.48)
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Similar to (4.36), and using notation L := {w′ ∈ R : |w′| ≤ Γ}, we can also write

sup
v∈Sα,w∈W,w′∈L

∣∣∣vT F̃ rk (w,w′)− hrk(w,w′)
∣∣∣

≤ sup
u∈Uζ ,v∈Sα

∣∣∣vT F̃ rk (u, [u]k)− hrk(u, [u]k)
∣∣∣+

sup
u∈Uζ ,v∈Sα,w∈W,w′∈L

[ ∣∣∣vT F̃ rk (w,w′)− vT F̃ rk (u, [u]k)
∣∣∣+

∣∣hrk(u, [u]k)− hrk(w,w′)
∣∣ ]. (3.49)

Further, since w|[w]k=w′ ∈W for any (w,w′) ∈W ×L, we have from Assumption 3 and

definition of the set Uζ that

sup
u,v,w,w′

∣∣∣vT F̃ rk (w,w′)− vT F̃ rk (u, [u]k)
∣∣∣ ≤ L′ζ, and (3.50)

sup
u,v,w,w′

∣∣hrk(u, [u]k)− hrk(w,w′)
∣∣ ≤ L′ζ. (3.51)

We now fix ε′′′ > 0, and define ε′′ := ε′′′/2 and ζ := ε′′′/4L′. We then obtain the

following from (4.39)–(3.51):

P

(
sup

v∈Sα,{w̃rk},w′

∣∣Hr
k(w′)− hrk(w′)

∣∣ ≥ ε′′′)

≤ 2dξmζ exp

(
− 4|J ′|Nε′′′2

16C2|J ′|‖ᾱ‖2 + ε′′′2

)
. (3.52)

To conclude, let us define the event

Aε :=

{
sup

v∈Sα,{w̃rk},w′

∣∣Hr
k(w′)− hrk(w′)

∣∣ < ε

2

}
(3.53)

for any ε > 0. Conditioned on this event, we have

∀(r, k), hrk(ŵ)− hrk(w?) = hrk(ŵ)−Hr
k(ŵ)︸ ︷︷ ︸

<ε/2

+Hr
k(w?)− hrk(w?)︸ ︷︷ ︸

<ε/2

+Hr
k(ŵ)−Hr

k(w?)︸ ︷︷ ︸
≤0

< ε. (3.54)

Therefore, given any ε > 0, we have from (4.45)–(3.54) that

P

(
sup
r,k

[hrk(ŵ)− hrk(w?)] ≥ ε

)

≤ 2dξmζ exp

(
− 4|J ′|Nε2

64C2|J ′|‖ᾱ‖2 + ε2

)
, (3.55)
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where ξ = ε
8C|J ′| and ζ = ε

8L′ . The proof now follows from (3.55) and the following

facts about the covering numbers of the sets Sα and W : (1) Since Sα is a subset of

∆, which can be circumscribed by a sphere in R|J ′|−1 of radius
√
|J ′|−1
|J ′| < 1, we can

upper bound dξ by
(

24C|J ′|
ε

)|J ′|
[33]; and (2) Since W ⊂ RP can be circumscribed by

a sphere in RP of radius Γ
√
P , we can upper bound mζ by

(
24L′Γ

√
P

ε

)P
. The proof of

Theorem 4 is complete.

In words, ignoring minor technicalities that are resolved in Theorem 5 in the follow-

ing, Theorem 4 states that the coordinate-wise outputs {ŵ} of ByRDiE for all (r, k)

under Case I achieve, with high probability, almost the same statistical risk as that

obtained using the corresponding coordinate-wise statistical risk minimizers {w?}. We

now leverage this result to prove that the iterates of ByRDiE at individual nodes achieve

statistical risk that converges to the minimum statistical risk achieved by the statistical

risk minimizer (vector) w∗.

Theorem 5 (Convergence Behavior of ByRDiE). Let Assumptions 3–4 hold. Then,

∀j ∈ J ′,∀ε > 0, and T →∞, we have

lim
r̄→∞

[
E[f(wr̄,T

j , (x, y))]− E[f(w∗, (x, y))]
]
< ε (3.56)

with probability exceeding

1− 2 exp

(
− 4|J ′|Nε2

c′1
2|J ′|ā2 + ε2

+ |J ′| log

(
c′2
ε

)
+ d log

(
c′3
ε

))
, (3.57)

where c′1 := c1c4, c′2 := c2c4, and c′3 := c3c4 for c4 := 2dLΓ, and (ā, c1, c2, c3) are as

defined in Theorem 4.

Let us begin with any coordinate descent iteration r and dimension k, which starts

with some w̃r
k ∈ RP (recall that w̃1

1 ≡ 0). In order to facilitate the proof, we ex-

plicitly write w? ∈ R, defined in (3.32), and ŵ ∈ R, defined in (3.33), as w?rk and

ŵrk, respectively, to bring out their dependence on the indices (r, k). We now define

ŵr ∈ RP as [ŵr]k := ŵrk and recall from Lemma 3 and the subsequent definitions that

∀r ∈ N, ∀j ∈ J ′, limT→∞wr,T
j = ŵr. It therefore suffices to show that, in the limit of

large r̄, the statistical risk of ŵr̄ approaches the minimum statistical risk.



32

We now fix an arbitrary ε′ ∈ (0, 1) and note that

sup
r,k

[hrk(ŵ
r
k)− hrk(w?

r
k)] < ε′ (3.58)

with high probability due to Theorem 4. Note that invoking Theorem 4 requires the

conditions |ŵrk| ≤ Γ, |w?rk| ≤ Γ, and {w̃rk}r,k ⊂ W . We will return to these conditions

in the latter part of the proof. Going forward, we condition on the event described by

(3.58) and notice that ∀w′ ∈ R, we have

hrk(w
?r
k)

(a)

≤ hrk(w
′)

(b)

≤ hrk(ŵ
r−1
k )] +

L

2
|w′ − ŵr−1

k |2

+ [∇hrk(ŵr−1
k )]k(w

′ − ŵr−1
k ), (3.59)

where (a) follows from the definition of w?rk and (b) follows from Assumption 3. Plugging

w′ = ŵr−1
k − 1

L [∇hrk(ŵ
r−1
k )]k in (3.59), we obtain

hrk(ŵ
r−1
k )− hrk(w?

r
k) ≥

1

2L
[∇hrk(ŵr−1

k )]2k (3.60)

⇔ hrk(ŵ
r−1
k )− hrk(ŵrk) >

1

2L
[∇hrk(ŵr−1

k )]2k − ε′ (3.61)

where (3.60) follows from (3.58). We have from (3.61) that hrk(ŵ
r
k) is a strict mono-

tonically decreasing function of r for all k as long as [∇hrk(ŵ
r−1
k )]2k ≥ 2Lε′. It therefore

follows that there exists some r0 ∈ N such that

∀k, ∀r ≥ r0, [∇hrk(ŵrk)]2k < 4Lε′ (3.62)

⇒ ∀r ≥ r0, ‖∇E[f(ŵr, (x, y)]‖ < 2
√
PLε′. (3.63)

In addition, convexity of E[f(·, (x, y))] dictates

E[f(w∗, (x, y))] ≥ E[f(ŵr, (x, y))]

+∇E[f(ŵr, (x, y)]T (w∗ − ŵr). (3.64)

Using (3.63), (3.64), and the Cauchy–Schwarz inequality yields

∀r ≥ r0, E[f(ŵr, (x, y))]− E[f(w∗, (x, y))]

≤ ‖∇E[f(ŵr, (x, y)]‖‖ŵr − w∗‖ < 2PLΓε′. (3.65)
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Setting ε′ = ε/c4 in (3.64) and removing conditioning on (3.58) using Theorem 4 give

us the desired bound.

We conclude by commenting on the validity of |ŵrk| ≤ Γ, |w?rk| ≤ Γ, and {w̃r
k}r,k ⊂

W needed for Theorem 4. The condition holds for w̃1
1 and w?1

1 from the definition of the

set W . The proof of Theorem 4 and a union bound argument also tells us that we can

augment the bound in Theorem 4 with
[
h1

1(ŵ1
1)− h1

1(w?1
1)
]
< ε′ without either requiring

|ŵ1
1| ≤ Γ or exploding the probability of failure. This however leads to the condition

h1
1(ŵ1

1) < h1
1(0) due to (3.61), which implies |ŵ1

1| ≤ Γ, w̃1
2 ∈ W , and |w?1

2| ≤ Γ. We

can therefore revert to the original probability bound of Theorem 4 and start over the

same argument with the knowledge that w̃1
2 ∈ W , |ŵ1

1| ≤ Γ, and |w?1
2| ≤ Γ. The rest

of the claim follows by induction.

We now make a couple of remarks concerning Theorem 5. First, note that the

uniqueness of the minimum of strictly convex functions coupled with the statement of

Theorem 5 guarantee that ∀j ∈ J ′,wr̄,T
j → w∗ with high probability.

Second, Theorem 5 helps crystallize the advantages of decentralized learning over

local learning, in which nodes individually solve the empirical risk minimization problem

using only their local data samples. Prior work on stochastic convex optimization (see,

e.g., [31, Theorem 5 and (11)]) tells us that, with high probability and ignoring the log

terms, the gap between the statistical risk achieved by the empirical risk minimizer and

the statistical risk minimizer scales as O
(
1/
√

# of samples
)

in the centralized setting.

This learning rate translates into O(1/
√
N) for local learning and O(1/

√
MN) for the

idealized centralized learning. In contrast, Theorem 5 can be interpreted as resulting

in the following decentralized learning rate (with high probability):2

E[f(wr̄,T
j )]− E[f(w∗) = O

(
1/
√
Neff

)
, (3.66)

where Neff := N/ā2 denotes the effective number of training samples available during

decentralized learning.

2We are once again ignoring the log terms in our discussion; it can be checked, however, that the
log terms resulting from Theorem 5 match the ones in prior works such as [31] on centralized learning.
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In order to understand the significance of (3.66), notice that

1

M
≤ 1

|J ′|
≤ ā2 ≤ 1 ⇒ N ≤ Neff ≤ |J ′|N ≤ NM. (3.67)

In particular, ā2 = 1/M if and only if there are no Byzantine failures in the network,

resulting in the coordinate descent-based decentralized learning of O
(

1/
√
NM

)
, which

matches the centralized learning rate. (This, to the best of our knowledge, is the first

result on the explicit learning rate of coordinate descent-based decentralized learning.)

In the presence of Byzantine nodes, however, the maximum number of trustworthy

samples in the network is |J ′|N , and (3.66) and (3.67) tell us that the learning rate

of ByRDiE in this scenario will be somewhere between the idealized learning rate of

O
(

1/
√
|J ′|N

)
and the local learning rate of O

(
1/
√
N
)

.

Note that Theorem 5 is of identical form of Theorem 1. By proving Theorem 5,

we have also completed the proof of Theorem 1, which means that, under our previous

assumptions, a general class of the decentralized learning problems are PAC solvable

in the presence of Byzantine failures. Although the ByRDiE algorithm may not be the

optimal method, it does apply to all the functions to this class so that, for the first time

in the literature, the PAC learnability is shown under Byzantine decentralized settings.

Our discussion so far has focused on the rate of statistical convergence (i.e., learning

rate) of ByRDiE. The proof of Theorem 5, however, also contains within itself the

algorithmic rate of convergence for ByRDiE. We state this convergence rate in terms

of the following theorem, which uses the notation f̄0 to denote the starting statistical

risk E[f(0)], f̄∗ to denote the minimum statistical risk E[f(w∗)] and 1 − δ(ε,N, ā) to

express the probability expression in (3.57).

Theorem 6 (Algorithmic Convergence Rate for ByRDiE). Let Assumptions 3–4 hold.

Then, ∀j ∈ J ′, ∀r ∈ N, ∀ε > 0, and T → ∞, we get with probability exceeding 1 −

δ(ε,N, ā) that

E
[
f(wr,T

j )
]
− f̄∗ < max

{(
f̄0 − f̄∗

)(
1− rε

c5

)
, ε

}
, (3.68)

where the parameter δ(ε,N, ā) is given by

2 exp

(
− 4|J ′|Nε2

c′1
2|J ′|ā2 + ε2

+ |J ′| log

(
c′2
ε

)
+ d log

(
c′3
ε

))
, (3.69)
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while c5 := c4L
′√dγ∗, and the constants c′1, c

′
2, c
′
3, and c4 are as defined in Theorem 5.

We begin by defining the notation f̄(w) := E[f(w, (x, y))] for w ∈ RP . Next, we

borrow the notation of ŵr ∈ RP and some facts from the proof of Theorem 5. These

facts include the following. First, ŵr is the output of ByRDiE after each iteration

r at all nonfaulty nodes, i.e., ∀r ∈ N, ∀j ∈ J ′, limT→∞wr,T
j = ŵr. Second, defining

ε′ := ε/c4, we have

∀(r, k), hrk(ŵ
r
k)− hrk(ŵr−1

k ) < −ε′ (3.70)

with probability ≥ 1 − δ(ε,N, ā) as long as f̄(ŵr) − f̄∗ > ε (see, e.g., (3.61) and the

discussion around it). Conditioning on the probability event described by (3.70), the

definition of hrk(·) and (3.70) then give us the following recursion in r:

∀r, f̄(ŵr)− f̄(ŵr−1) < −ε′ (3.71)

as long as f̄(ŵr) − f̄∗ > ε. Note here that ŵ0 = w̃1
1 ≡ 0. Therefore, (3.71) and the

telescoping sum argument give us

f̄(ŵr) < f̄0 − rε′ ⇔ f̄(ŵr)− f̄∗ < f̄0 − f̄∗ − rε′ (3.72)

⇔ f̄(ŵr)− f̄∗ <
(
f̄0 − f̄∗

)(
1− rε′

f̄0 − f̄∗

)
. (3.73)

Plugging the inequality f̄0 − f̄∗ ≤ L′‖w∗‖ ≤ L′
√
Pγ∗ in (3.72) completes the proof.

It can be seen from Theorem 6 that, with high probability, ByRDiE requires r =

O (1/ε) iterations to bring the excess risk E[f(wr,T
j )] − f̄∗ down to ε. In terms of

minimization of the statistical risk, therefore, ByRDiE achieves a sublinear rate of

algorithmic convergence with high probability, even in the presence of Byzantine failures

in the network.

3.2.4 Theoretical guarantees: Convergence for T = 1

Case I for ByRDiE, in which T → ∞, is akin to doing exact line search during mini-

mization of each coordinate, which is one of the classic ways of implementing coordinate

descent. Another well-adopted way of performing coordinate descent is to take only
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one step in the direction of descent in a dimension and then switch to another dimen-

sion [34]. Within the context of ByRDiE, this is equivalent to setting T = 1 (Case II);

our goal here is to provide convergence guarantees for ByRDiE in this case. Our anal-

ysis in this section uses the compact notation wr
j := wr,1

j ≡ wr+1
j (1). In the interest

of space, and since the probabilistic analysis of this section is similar to that of the

previous section, our probability results are stated asymptotically here, rather than in

terms of precise bounds.

The starting point of our discussion is Theorem 2. Recall from Sec. 3.2.2 the def-

inition of the index m := (r − 1)T + t. When T = 1, we have r = m and therefore

[wr
j ]k → vk(r) as r →∞ according to Theorem 2. In order to provide convergence guar-

antee, we only need to show that vk(r)
r,N−−→ [w∗]k in probability. To this end, we define a

sequence Q(q) ∈ Rd as follows: ∀k, [Q(1)]k := vk(1), while for the parameterized index

q = (r− 1)d+ k 6= 1, Q(q) is obtained by replacing [Q(q− 1)]k with vk(r) and keeping

the other dimensions fixed. Similarly, we define a sequence η(q) satisfying η(q) = ρ(r)

for dr ≤ q < (d+1)r. Notice that 0 < η(q+1) ≤ η(q),
∑

q η(q) =∞ and
∑

q η
2(q) <∞.

Since we have from (3.20) that vk(r + 1) = vk(r) − ρ(r)
∑|J ′|

i=1[π(r + 1)]i[∇f̂(wri , Si)]k,

we can write the following iteration:

Q(q + 1) = Q(q)− η(q)

|J ′|∑
i=1

[π(r + 1)]i[∇f̂i(wr
i )]kek, (3.74)

where ek denotes the standard basis vector (i.e., it is zero in every dimension except

k and [ek]k = 1) and the relationship between r, k, and q is as defined earlier. The

sequence Q(q) effectively helps capture update of the optimization variable after each

coordinate-wise update of ByRDiE. In particular, we have the following result concern-

ing the sequence Q(q).

Lemma 4. Let Assumptions 1, 3, and 4 hold for ByRDiE and choose T = 1. We then

have that Q(q)
q,N−−→ w∗ in probability.

Similar to the proof of Theorem 6, we once again use the notation f̄(Q(q)) :=

E[f(Q(q), (x, y))] to denote the statistical risk incurred by Q(q) and show f̄(Q(q))
q,N−−→

f̄(w∗) in probability. It then follows from [35, Theorem 4.4] and our assumptions that

w∗ is a strong minimizer of f̄(·) and, therefore, Q(q)
q,N−−→ w∗ in probability.



37

In order to prove the aforementioned claim, we fix any ε > 0 and show that f̄(Q(q))−

f̄(w∗) ≤ ε for all large enough q with probability that approaches 1 as N → ∞.

To this end, we claim that f̄(Q(q)) for all q greater than some q0 ∈ N is a strictly

monotonically decreasing function with probability 1, which is also lower bounded by

f̄(w∗). By the monotone convergence theorem, therefore, f̄(Q(q)) converges. We claim

this convergence only takes place when |[∇f̄(Q(q))]k| ≤ ε∇. Relegating the validity

of this claim to the latter part of this proof, this means that |[∇f̄(Q(q))]k| eventually

becomes smaller than ε∇ with probability 1 for large enough q, which implies

f̄(Q(q))− f̄(w∗) ≤ −∇f̄(Q(q))T (w∗ −Q(q))

≤ ‖∇f̄(Q(q))‖2(‖w∗‖2 + ‖Q(q)‖2)

≤ (
√
Pε∇) · (2

√
PΓ) < ε (3.75)

because of convexity of f̄(·), the Cauchy–Schwarz inequality, and our assumptions.

Since this is the desired result, we need now focus on the claim of strict monotonicity

of f̄(Q(q)) for this lemma. To prove this claim, note from Assumption 3 that

f̄(Q(q + 1)) ≤ f̄(Q(q)) +∇f̄(Q(q))T (Q(q + 1)−Q(q))

+
L

2
‖Q(q + 1)−Q(q)‖22

(a)
= f̄(Q(q)) + [∇f̄(Q(q))]k[(Q(q + 1)−Q(q))]k

+
L

2

∣∣[Q(q + 1)−Q(q)]k
∣∣2, (3.76)

where (a) follows from the fact that Q(q + 1)−Q(q) is only nonzero in dimension k.

Next, we rewrite (3.74) as follows:

Q(q + 1) = Q(q)− η(q)

|J ′|∑
i=1

[π(r + 1)]i

(
[∇f̂(Q(q), Si)]k−

[∇f̂(Q(q), Si)]k + [∇f̂(wr
i , Si)]k

)
ek

= Q(q)− η(q)

|J ′|∑
i=1

[π(r + 1)]i[∇f̂(Q(q), Si)]kek + E(q), (3.77)

where E(q) := η(q)
∑|J ′|

i=1[π(r + 1)]i
(
[∇f̂(Q(q), Si)]k − [∇f̂(wr

i , Si)]k
)
ek. Plugging this
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into (4.55) results in

f̄(Q(q))− f̄(Q(q + 1)) ≥ −[E(q)]k[∇f̄(Q(q))]k

+ η(q)

|J ′|∑
i=1

[π(r + 1)]i[∇f̂(Q(q), Si)]k[∇f̄(Q(q))]k

− L

2

∣∣∣[E(q)]k − η(q)

|J ′|∑
i=1

[π(r + 1)]i[∇f̂(Q(q), Si)]k

∣∣∣2. (3.78)

The right-hand side of (4.56) strictly lower bounded by 0 implies strict monotonicity of

f̄(Q(q)). Simple algebraic manipulations show that this is equivalent to the condition

Lη(q)2

2

( |J ′|∑
i=1

[π(r + 1)]i[∇f̂(Q(q), Si)]k

)2

< η(q)

|J ′|∑
i=1

[π(r + 1)]i[∇f̂(Q(q), Si)]k[∇f̄(Q(q))]k

+ Lη(q)[E(q)]k

|J ′|∑
i=1

[π(r + 1)]i[∇f̂(Q(q), Si)]k

− [E(q)]k[∇f̄(Q(q))]k −
L

2
[E(q)]2k. (3.79)

Next, notice E[
∑|J ′|

i=1[π(r + 1)]i[∇f̂(Q(q), Si)]k] = E[∇f(Q(q), (x, y))]k. We now

make an assumption whose validity is also discussed at the end of the proof. We

assume ∃q′0 ∈ N : ∀q ≥ q′0,Q(q) ∈ W , in which case we can show using arguments

similar to the ones in the proof of Theorem 4 that

P
(
|
∑
i∈J ′

[π(r + 1)]i[∇f̂(Q(q), Si)]k − [∇f̄(Q(q))]k| ≤ ε′
)

(3.80)

converges to 1 uniformly for all (r, k) (equivalently, all q) for any ε′ > 0. We therefore

have with probability 1 (as N →∞)

( |J ′|∑
i=1

[π(r + 1)]i[∇f̂(Q(q), Si)]k

)2
≤ [∇f̄(Q(q))]2k + ε′2

+ 2ε′
∣∣∣[∇f̄(Q(q))]k

∣∣∣. (3.81)

Next, we consider two cases: (i) [∇f̄(Q(q))]k > 0, and (ii) [∇f̄(Q(q))]k < 0. When

[∇f̄(Q(q))]k > 0, we have in probability
∑

i∈J ′ [π(r+1)]i[∇f̂(Q(q), Si)]k ≥ [∇f̄(Q(q))]k−

ε′. This fact along with (4.58), the realization that Lη(q)2

2 − η(q) < 0 for large enough
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q since η(q) → 0, and some tedious but straightforward algebraic manipulations show

that the following condition is sufficient for (4.57) to hold in probability:∣∣∣[∇f̄(Q(q))]k

∣∣∣ >(
2ε′
∣∣[∇f̄(Q(q))]k

∣∣
2− Lη(q)

+
2
∣∣[E(q)]k

∣∣∣∣[∇f̄(Q(q))]k
∣∣

2η(q)− Lη(q)2

+
2L
∣∣[E(q)]k

∣∣∣∣∑
i∈J ′ [π(r + 1)]i[∇f̂(Q(q), Si)]k

∣∣
2− Lη(q)

+
L
∣∣[E(q)]k

∣∣2
2η(q)− Lη(q)2

+
2Lη(q)ε′

∣∣[∇f̄(Q(q))]k
∣∣

2− Lη(q)
+

Lη(q)ε′2

2− Lη(q)

) 1
2

. (3.82)

Using similar arguments, one can also show that the case [∇f̄(Q(q))]k < 0 also

results in (3.82) as a sufficient condition for (4.57) to hold in probability. We now note

that |[∇f̄(·)]k| and |[∇f̂(·, ·)]k| in (3.82) can be upper bounded by some constants L∇̄

and L∇ by virtue of Assumption 3 and the definition of W . This results in the following

sufficient condition for (4.57):∣∣∣[∇f̄(Q(q))]k

∣∣∣ > (2L∇̄ε
′ + 2LL∇̄η(q)ε′ + Lη(q)ε′2

2− Lη(q)

+
2LL∇

∣∣[E(q)]k
∣∣

2− Lη(q)
+

2L∇̄
∣∣[E(q)]k

∣∣+ L
∣∣[E(q)]k

∣∣2
2η(q)− Lη(q)2

) 1
2

. (3.83)

The right-hand side of (4.62) can be made arbitrarily small (and, in particular, equal

to ε∇) through appropriate choice of ε′ and large enough q; indeed, we have from our

assumptions, and the definitions of η(q) and E(q) that both [E(q)]k and [E(q)]k/η(q)

converge to 0 as q →∞.

This completes the proof, except that we need to validate one remaining claim and

discuss one assumption. The claim is that f̄(Q(q)) cannot converge when |[∇f̄(Q(q))]k| >

ε∇. We prove this by contradiction. Suppose ∃k ∈ {1, . . . , P} and ε0 > 0 such that

|[∇f̄(Q(q))]k| − ε∇ > ε0 for all q. We know ∃q0 ∈ N such that the right hand side of

(4.62) becomes smaller than ε∇ for all q ≥ q0. Therefore, adding ε0 to the right hand

side of (4.62) and combining with (4.56) gives ∀q ≥ q0:

f̄(Q(q))− f̄(Q(q + 1)) ≥ (2η(q)− Lη(q)2)(ε20 + 2ε∇ε0). (3.84)

Taking summation on both sides of (4.63) from q = q0 to∞, and noting that
∑∞

q=q0
η(q) =
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∞ and
∑∞

q=q0
η(q)2 < ∞, gives us f̄(Q(q0)) − limq→∞ f̄(Q(q)) = ∞. This contradicts

the fact that f̄(·) is lower bounded, thereby validating our claim.

Finally, the assumption ∃q′0 ∈ N : ∀q ≥ q′0,Q(q) ∈ W is true with probability 1

(as N → ∞) by virtue of the facts that W is defined in terms of the sublevel set of

f̄(·), (3.80) holds ∀q < q′0 without requiring the assumption, ∃q0 ∈ N such that f̄(Q(q))

is monotonic in q for all q ≥ q0 due to (3.80), and the probabilistic “onion peeling”

induction argument at the end of the proof of Theorem 5 is applicable in this case also

(except that one will have to start the argument from some index q = q′0 ≥ q0).

We are now ready to state the convergence result for ByRDiE under Case II (i.e,

T = 1).

Theorem 7 (Asymptotic Convergence of ByRDiE). Let Assumptions 1, 3, and 4 hold

for ByRDiE and choose T = 1. Then, ∀j ∈ J ′, wr̄
j
r̄,N−−→ w∗ in probability.

Proof. We have from Theorem 2 that ∀j ∈ J ′, [wr̄
j ]k

r̄−→ vk(r̄) for all k ∈ {1, 2, . . . , d}.

The definition of Q(q) along with Lemma 4 also implies that vk(r̄)
r̄,N−−→ [w∗]k in prob-

ability. This completes the proof of the theorem.

3.3 Numerical analysis

In this section, we validate our theoretical results and make various observations about

the performance of ByRDiE using two sets of numerical experiments. The first set of

experiments involves learning of a binary classification model from the infinite MNIST

dataset3 that is distributed across a network of nodes. This set of experiments fully

satisfies all the assumptions in the theoretical analysis of ByRDiE. The second set

of experiments involves training of a small-scale neural network for classification of

the Iris dataset [36] distributed across a network. The learning problem in this case

corresponds to a nonconvex one, which means this set of experiments does not satisfy

the main assumptions of our theorems. Nonetheless, we show in the following that

ByRDiE continues to perform well in such decentralized nonconvex learning problems.

3https://leon.bottou.org/projects/infimnist
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3.3.1 Decentralized SVM using Infinite MNIST dataset

We consider a decentralized linear binary classification problem involving MNIST hand-

written digits dataset. The (infinite) MNIST dataset comprises images of handwritten

digits from ‘0’ to ‘9’. Since our goal is the demonstration of the usefulness of ByRDiE

in the presence of Byzantine failures, we focus only on decentralized training of a lin-

ear support vector machine (SVM) for classification between digits ‘5’ and ‘8’, which

tend to be the two most inseparable digits. In addition to highlighting the robustness of

ByRDiE against Byzantine failures in this problem setting, we evaluate its performance

for different choices of the parameters T , N , and b.

In terms of the experimental setup, we generate Erdős–Rényi networks (p = 0.5) of

M nodes, b of which are randomly chosen to be Byzantine nodes. All nonfaulty nodes

are allocated N samples—equally divided between the two classes—from the dataset,

while a Byzantine node broadcasts random data uniformly distributed between 0 and

1 to its neighbors in each iteration. When running the ByRDiE algorithm, each node

updates one dimension T times before proceeding to the next dimension. All tests are

performed on the same test set with 1000 samples of digits ‘5’ and ‘8’ each.

We first report results that confirm the idea that ByRDiE can take advantage of

cooperation among different nodes to achieve better performance even when there are

Byzantine failures in the network. This involves varying the local sample size N and

comparing the classification accuracy on the test data. We generate a network of M =

50 nodes, randomly pick b = 10 nodes within the network to be Byzantine nodes (20%

failures), vary N from 10 to 30, and average the final set of results over 10 independent

(over network, Byzantine nodes, and data allocation) Monte Carlo trials of ByRDiE.

The performance of ByRDiE is compared with two approaches: (i) coordinate descent-

based training using only local data (local CD); and (ii) decentralized gradient descent-

based [20] training involving network data (DGD). To achieve the best convergence

rate for ByRDiE, T is chosen to be 1 in these experiments. The final set of results

are shown in Fig 3.1, in which the average classification accuracy is plotted against

the number of algorithmic iterations, corresponding to the number of (scalar-valued)
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communication iterations for ByRDiE, the number of per-dimension updates for local

CD, and the number of (vector-valued) communication iterations for DGD. It can be

seen that the performance of local CD is not good enough due to the small local sample

size. On the other hand, when trying to improve performance by cooperating among

different nodes, DGD fails for lack of robustness against Byzantine failures. In contrast,

the higher accuracy of ByRDiE shows that ByRDiE can take advantage of the larger

distributed dataset while being Byzantine resilient.
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Figure 3.1: Average classification accuracy of ByRDiE, local CD, and DGD (on test

data) for different values of N as a function of the number of algorithmic iterations for

decentralized training of a linear SVM on (infinite) MNIST dataset.

Next, we investigate the impact of different values of T in ByRDiE on the tradeoff

between consensus and convergence rate. This involves generating a network of M = 50

nodes that includes randomly placed b = 5 Byzantine nodes within the network (10%

failures), randomly allocating N = 60 training samples to each nonfaulty node, and

averaging the final set of results over 10 independent trials. The corresponding results

are reported in Fig. 3.2 for four different values of T as a function of the number of

communication iterations tc in terms of (i) average classification accuracy (Fig. 3.2a)

and (ii) average pairwise distances between local classifiers (Fig. 3.2b). It can be seen

from these figures that T = 1 leads to the fastest convergence in the initial stages of
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the algorithm, but this fast convergence comes at the expense of the largest differences

among local classifiers, especially in the beginning of the algorithm. In contrast, while

T = 4 results in the slowest convergence, it ensures the closeness of the local classifiers

at all stages of the algorithm.
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Figure 3.2: Convergence and consensus behavior of ByRDiE as a function of the num-

ber of communication iterations tc for different values of the parameter T . All plots

correspond to decentralized training of a linear SVM using the MNIST dataset.
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Finally, we investigate the impact of different values of b (the actual number of

Byzantine nodes) on the performance of ByRDiE. In order to amplify this impact, we

focus on a smaller network of M = 20 nodes with a small number of N = 10 samples

per node and T = 3. Assuming resilience against the worst-case Byzantine scenario,

ByRDiE requires the neighborhood of each node to have at least (2b+ 1) nodes. Under

this constraint, we find that b ≥ 5 in this setting, which translates into 25% or more

of the nodes as being Byzantine, often renders ByRDiE unusable. We therefore report

our results in terms of both consensus and convergence behavior by varying b from 1

to 4. The final results, averaged over 10 independent trials, are shown in Fig. 3.3. It

can be seen from these figures that both the classification accuracy (Fig. 3.3a) and the

consensus performance (Fig. 3.3b) of ByRDiE suffer as b increases from 1 to 4. Such

behavior, however, is in line with our theoretical developments. First, as b increases,

the post-screening graph becomes sparser, which slows down information diffusion and

consensus. Second, as b increases, fewer samples are incorporated into decentralized

learning, which limits the final classification accuracy of decentralized SVM.
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Figure 3.3: Convergence and consensus behavior of ByRDiE within a small network

(M = 20) as a function of the number of communication iterations tc for different

number b of Byzantine nodes in the network. All plots correspond to decentralized

training of a linear SVM using the MNIST dataset.

3.3.2 Decentralized neural network using Iris dataset

While the theoretical guarantees for ByRDiE have been developed for convex learning

problems, we now demonstrate the usefulness of ByRDiE in decentralized nonconvex
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learning problems. Our setup in this regard involves decentralized training of a small-

scale neural network using the three-class Iris dataset. This dataset consists of 50

samples each from three species of irises, with each sample being a four-dimensional

feature vector. While one of the species in this data is known to be linearly separable

from the other two, the remaining two species cannot be linearly separated. We employ

a fully connected three-layer neural network for classification of this dataset, with a

four-neuron input layer, a three-neuron hidden layer utilizing the rectified linear unit

(ReLU) activation function and a three-neuron output layer using the softmax function

for classification. The decentralized setup corresponds to a random network of M = 10

nodes with one Byzantine node (b = 1), in which each nonfaulty node is allocated

N = 15 samples that are equally divided between the three classes.

Algorithm Iterations to achieve 95% accuracy Consensus

DGD ∞ No

ByRDiE 19 Yes

Centralized CD 17 N/A

Table 3.1: Decentralized training of a neural network in the presence of Byzantine
failures using ByRDiE and DGD.

Since decentralized training of this neural network requires solving a decentralized

nonconvex problem, our theoretical guarantees for ByRDiE do not hold in this setting.

Still, we use ByRDiE with T = 1 to train the neural network for a total of 200 indepen-

dent trials with independent random initializations. Simultaneously, we use DGD for

decentralized training and also train the neural network in a centralized setting using

CD for comparison purposes. The final results are reported in Table 3.1, which lists the

average number of outer iterations needed by each training algorithm to achieve 95%

classification accuracy. It can be seen from these results that while DGD completely

breaks down in the presence of a single Byzantine node, ByRDiE continues to be re-

silient to Byzantine failures in decentralized nonconvex learning problems and comes

close to matching the performance of centralized CD in this case.
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3.4 Concluding remarks

In this chapter, we have explicitly answered the question: is PAC learning possible

in a decentralized fashion when there are Byzantine failures in the network? We have

verified the possibility for PAC learning by providing a Byzantine-resilient decentralized

learning algorithm, i.e., ByRDiE. Although ByRDiE is the first valid solution for a

general class of vector-valued Byzantine-resilient decentralized learning problems, we

believe that the algorithmic performance of ByRDiE is not optimal and thus can be

improved. In the next chapter, we are going to investigate the possibility to improve

the performance of Byzantine-resilient decentralized learning.
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Chapter 4

Byzantine-resilient Decentralized Gradient Descent

(BRIDGE)

Although ByRDiE can be used to learn a PAC result for a general class of the risk

functions, it is not the optimal solution to all these learning problems. The main

idea of ByRDiE is to break the vector-valued problem into a series of scalar-valued

subproblems by employing coordinate descent. Then the scalar-valued problems can

be approximately solved using one-dimensional algorithms similar to [27,28]. Since the

(model) aggregation rules in these works require a scalar sorting process, the algorithms

cannot be applied to models in unordered spaces, e.g., vectors and matrices. On the

other hand, if the vector-input risk function does not separate into independent scalar-

input functions, optimizing the function separately along each coordinate usually does

not guarantee the minimum of the vector-valued problem. ByRDiE strictly enforces

one-coordinate-a-time updates because it also requires scalar sorting process, which

prevents block coordinate descent from being used. Since consensus is required, every

coordinate has to be updated often enough, which prevents random coordinate descent

being used. Therefore, when the learning model, such as in deep neural networks, lies

in a high-dimensional space, it is in general too costly to calculate separate gradients

with respect to each dimension at each node, which makes ByRDiE not feasible for

large-scale learning problems.

To overcome the drawbacks of one-coordinate-a-time update pattern of ByRDiE,

in this chapter, we introduce a gradient-descent-based Byzantine-resilient decentral-

ized learning framework termed Byzantine-resilient decentralized gradient descent

(BRIDGE). The main difference between BRIDGE and ByRDiE is that BRIDGE ex-

changes and updates a whole vector at each iteration as opposed to the multiple scalar
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exchanges and updates for ByRDiE. Therefore, BRIDGE has less local computation cost

at each node (due to gradient computation) and carries fewer communication overheads

associated with package transmissions. We are going to show, later in the numerical

experiments, that BRIDGE can be applied to learning models such as deep neural net-

works for which existing algorithms are not feasible. We also provide different variants

of BRIDGE based on different aggregation rules and we give algorithmic and statistical

convergence rates for one of the variants, which matches the rate of ByRDiE. To the

best of our knowledge, BRIDGE is the first Byzantine-resilient decentralized learning

algorithm that can be applied to high-dimensional learning models such as deep neural

networks.

4.1 Algorithmic details

Algorithm 2 Byzantine-resilient decentralized gradient descent (BRIDGE)

Input: b ∈ N, Zj , and {ρ(t)}∞t=1 at node j ∈ J ′
1: t← 0, wj(0)← 0
2: for t = 0, 1, 2, ... do
3: Broadcast wj(t)
4: Receive wi(t) from i ∈ Nj
5: yj(t)← screen({wi(t)}i∈Nj∪{j})
6: wj(t+ 1)← yj(t)− ρ(t)Ofj(wj(t))
7: end for

Output: wj(t)

When there is no Byzantine failures in the network, one way of solving decentralized

learning problems is to let each node update its local variable wj(t) as

wj(t+ 1) =
∑

i∈Nj∪{j}

ajiwi(t)− ρ(t)∇fj(wj(t)), (4.1)

where aji is the weight and {ρ(t)} is a positive sequence satisfying ρ(t + 1) ≤ ρ(t),
∞∑
t=0

ρ(t) → ∞ and
∞∑
t=0

ρ(t)2 < ∞. This is known as decentralized gradient descent

(DGD) [20]. The main difference between the proposed algorithm and the classic DGD

method is that there is a screening step before each update, which is the key to make

BRIDGE Byzantine resilient. The process at each node j ∈ J ′ is as shown in Algo-

rithm 2. When initializing the algorithm, it is necessary to specify b, the maximum
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number of Byzantine nodes that the algorithm should be able to tolerate. Each node

j ∈ J ′ initializes at wj(0) = 0 or some arbitrary vector. During each iteration t, node

j first broadcasts wj(t) and then receives wi(t) from all i ∈ Nj . Next, node j performs

a screening among all wi(t)’s. Here we introduce several variants of BRIDGE based on

different screening methods. The main motivation for these screening rules come from

the literature on robust statistics [37] and all these rules have appeared in some form

in robust averaging consensus [38,39] and robust distributed learning [12,15,40,41].

BRIDGE-T uses coordinate-wise trimmed mean as screening. Similar screening

idea is employed in distributed frameworks [15] and decentralized frameworks [27, 28].

The idea of trimmed mean is to remove the b largest and the b smallest values in

each coordinate from the neighborhood and use the average of the rest for update.

Specifically, at each iteration t, for each coordinate k in parallel, BRIDGE-T finds

three sets:

N k
j (t) = arg min

X:{X∈Nj ,|X|=b}

∑
i∈X

[wi(t)]k, (4.2)

N k
j (t) = arg max

X:{X∈Nj ,|X|=b}

∑
i∈X

[wi(t)]k, (4.3)

and

N k
j (t) = Nj \ N

k
j (t) \ N k

j (t). (4.4)

The k-th element of the screening function output is

[yj(t)]k =
1

|Nj | − 2b+ 1

∑
i∈N kj (t)∪{j}

[wi(t)]k. (4.5)

BRIDGE-T requires each node having at least 2b + 1 neighbors. Note that elements

from different neighbors may survive the screening at different coordinates. The average

is not taken over vectors. Therefore the calculation of y(t) has to be coordinate-wise

separated.

BRIDGE-M uses coordinate-wise median as screening. Similar screening idea is

employed in distributed frameworks [15] and decentralized frameworks [38]. Similar to
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BRIDGE-T, BRIDGE-M is also a coordinate-wise separated process where

[yj(t)]k = median({[wi(t)]k}i∈Nj∪{j}). (4.6)

The process needs to be applied to vectors in a coordinate-wise manner because median

for vectors is not well-defined.

BRIDGE-K uses the Krum function as screening. Similar screening idea is em-

ployed in the distributed frameworks [12]. The Krum function is described as the

following. We denote h ∼ i for i, h ∈ Nj ∪ {j} if wh is one of the |Nj | − b − 2 vectors

with least ‖wh −wi‖. Then we find the neighbor index i∗ by

i∗j (t) = arg min
i∈Nj

∑
h∼i
‖wh(t)−wi(t)‖. (4.7)

The screening output then will be yj(t) = wi∗(t). Unlike BRIDGE-T and BRIDGE-M,

BRIDGE-K is a vector-valued operation so that the surviving vector will be entirely

from one neighbor. BRIDGE-K requires the neighborhood of all nodes being larger

than 2b+ 2.

BRIDGE-B uses a combination of Krum and trimmed mean as screening. Simi-

lar screening idea has been employed in distributed frameworks [41]. BRIDGE-B first

selects |Nj | − 2b neighbors by recursively applying Krum function and removing the

selected vector from the candidate list. Then coordinate-wise trimmed mean is applied

on the selected |Nj |−2b neighbors as described in BRIDGE-T. Intuitively, Krum guar-

antees the surviving neighbors are close to most of the neighbors as whole vectors and

trimmed mean guarantees that the output of screening is close to surviving neighbors

in each coordinate. The cost of this strict screening is that BRIDGE-B requires each

node having more than 4b+ 3 neighbors.

4.2 Theoretical analysis of BRIDGE-T

In this section, we provide the statistical and algorithmic convergence rates of BRIDGE-

T. Before going to the main theorem, we provide one more assumption for the class of

learning problems.
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Assumption 5. The risk function f(w, z) is λ-strongly convex, i.e.,

f(w1, z) ≥ f(w2, z) + 〈∇f(w2, z),w2 −w1〉+
λ

2
‖w1 −w2‖2.

In order to show derive the convergence rate of BRIDGE-T, we require strong con-

vexity for the risk function and later we will show that the convergence depends on the

convexity parameter λ. Next, we give our main theoretical result on BRIDGE-T.

Theorem 8. If Assumption 1, 3, 4, and 5 are satisfied, BRIDGE-T can achieve con-

sensus on all nonfaulty nodes, i.e., wj(t) = wi(t) ∀i, j ∈ J ′, as t → ∞. Further, as

N → ∞, the output of BRIDGE-T converges sublinearly in t to the minimum of the

global statistical risk at each nonfaulty node. Specifically, given an ε > 0, ∀i, j ∈ J ′,

with probability exceeding

1− 2 exp

(
− 4|J ′|Nε2

16L2|J ′|d‖ᾱ‖2 + ε2
+ |J ′| log

(
12L

√
|J ′|d
ε

)
+ d log

(
12L′Γ

√
d

ε

))
,

(4.8)

‖wj(t+ 1)−w∗‖ ≤
√

1− λρ(t)‖wj(t)−w∗‖+O
(√

dρ(t)
)

+ ε, (4.9)

where Γ is a finite constant depending on the starting point and ᾱ is a problem-

dependent (unknown) vector whose elements are non-negative and sum up to 1.

The probability bound in (4.8) indicates that with probability at least 1 − δ, ε =

O
(√

‖ᾱ‖2 log 2
δ

N

)
. When N →∞ and choosing ρ(t) as an O(1/t) sequence, (4.9) leads

to a sublinear convergence rate. Both the algorithmic and statistical convergence rate

match ByRDiE. If there is no failure in the network, the non-resilient algorithms such as

DGD usually have statistical learning rate O
(√

1/MN
)

. If each node runs centralized

algorithm with the given N samples, the learning rate is O
(√

1/N
)

. Since ᾱ is a

stochastic vector, 1/MN ≤ ‖ᾱ‖2/N ≤ 1/N . The theorem shows that BRIDGE-T

reduces the sample complexity by a factor of ‖ᾱ‖2 for each node by cooperating over

a network but it cannot beat DGD in the fault-free case. This is the trade-off between

sample complexity and robustness.

Among all the variants, BRIDGE-T is the closest to ByRDiE. Here we make some

comparisons between the two algorithms. In terms of theoretical convergence rate, both
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ByRDiE and BRIDGE-T have a sublinear convergence rate. This is due to the fact that

the consensus process is of order O(ρ(t)), which is the main bottleneck in consensus-

based decentralized learning algorithms. To achieve consensus, every coordinate has to

be updated frequent enough. However, because ByRDiE is coordinate-descent-based,

to update all the d coordinates, ByRDiE requires each node calculating local gradients d

times. Without any separability assumption, the calculation cannot be done in parallel.

When d is large, the local computation overhead is very obvious. For example, in

applications such as deep neural networks, d can easily be in millions. One iteration

of ByRDiE requires running forward propagation millions of times, which makes it

unfeasible. BRIDGE-T, on the other hand, is a gradient-descent-based algorithm, which

only requires one round of forward and backward propagation to update all coordinates

of the model. Therefore, although BRIDGE-T and ByRDiE have similar convergence

rate in t, BRIDGE-T is roughly d times cheaper in terms of local computational costs.

Besides computational cost, in decentralized applications, communication efficiency is

also an important consideration. To transmit the whole vector, ByRDiE transfers

d scalar messages while BRIDGE-T transfers one d-dimensional vector. In terms of

quantization, transmitting one d-dimensional vector which with vector quantization

will always outperform transmitting d scalars. In terms of communications overhead,

transmitting d scalars requires d headers while transmitting one d-dimensional vector

requires only one.

4.2.1 Convergence analysis

While gradient descent is well understood in the literature, we observe that BRIDGE

does not take a regular gradient step at each iteration. The main idea of proving

Theorem 8 is to take advantage of the convergence property of gradient descent and try

to bound the distance between one gradient descent step and one BRIDGE step. The

proof can be briefly described as the following. The update of wj(t) can be described

as, for each k in parallel,

[wj(t+ 1)]k =
1

|Nj | − 2b+ 1

∑
i∈N kj (t)∪{j}

[wi(t)]k − ρ(t)[∇fj(wj(t))]k. (4.10)
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We first define a vector sequence v(t) and show that wj(t) → v(t) as t → ∞, which

is the proof for consensus. We then consider three sequences x(t), u(t), and v(t)

that will be defined later. We define the following distances: ‖x(t + 1) − w∗‖ = a1,

‖u(t+ 1)− x(t+ 1)‖ = a2, ‖v(t+ 1)−u(t+ 1)‖ = a3, and ‖wj(t+ 1)− v(t+ 1)‖ = a4.

Observe that ‖wj(t+ 1)−w∗‖ ≤ a1 + a2 + a3 + a4, we then show that a1, a2, a3 and

a4 all go to 0. This is the proof for optimality.

We first show the consensus result. As t→∞, for some v(t),

a4 = ‖wj(t)− v(t)‖ ≤
√
d|J ′|Cwµ

t
ν +
√
d|J ′|L

t∑
τ=0

ρ(τ)µ
t−τ+1
ν → 0. (4.11)

The convergence in (4.11) can also be interpreted as wj(t)→ v(t) as t→∞. The proof

is as the following.

Recall that the update is done in parallel for all coordinates. So we pick one co-

ordinate k and prove that all nodes achieve consensus in this coordinate. Since k is

arbitrarily picked, we then conclude that consensus is achieved for all coordinates. In

this section, we drop the index k for all variables for simplicity. It should be straight

forward that the variables are k-dependent.

Define a vector Ω(t) ∈ R|J ′| whose elements are the k-th elements of wj(t) from

nonfaulty nodes only, i.e., [Ω(t)]j = [wj(t)]k ∀j ∈ J ′. We first show that the update

can be written in a matrix form which only involves nonfaulty nodes, i.e.,

Ω(t+ 1) = Y(t)Ω(t)− ρ(t)g(t), (4.12)

where g(t) is formed as [g(t)]j = [∇fj(wj(t))]k. The formulation of matrix Y(t) can

be described as following. Let N ′j denote the nonfaulty nodes in the neighborhood

of node j, i.e., N ′j = J ′ ∩ Nj . The set of Byzantine neighbors can be defined as

N b
j = Nj \ N ′j . One of two cases can happen during each iteration, (i) N k

j (t) ∩N b
j 6= ∅

or (ii) N k
j (t) ∩ N b

j = ∅. To make the expression clear, we drop the iteration indicator

t for the rest of this discussion. It should be straightforward that the variables are

t-dependent. For case (i), since |N b
j | ≤ b and |N k′

j | = b, we know that N k′
j ∩ N ′j 6= ∅.

Similarly, N k′′
j ∩ N ′j 6= ∅. Then ∃m′j ∈ N k′

j ∩ N ′j and m′′j ∈ N k′′
j ∩ N ′j satisfying

[wm′j
]k < [wi]k < [wm′′j

]k for any i ∈ N k
j . So that for each i ∈ N k

j ∩ N b
j , ∃θi ∈ (0, 1)
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satisfying [wi]k = θi[wm′j
]k + (1 − θi)[wm′′j

]k. In this way, we can express the update

with only messages from nonfaulty nodes. The elements of matrix Y can be written as

[Y]ji =



1
|Nj |−2b+1 , i ∈ N ′ ∩N k

j ,

1
|Nj |−2b+1 , i = j,∑
i′∈N b∩N kj

θi′
|Nj |−2b+1 , i = m′j ,

∑
i′∈N b∩N kj

1−θi′
|Nj |−2b+1, i = m′′j ,

0, else.

(4.13)

For case (ii), since all nodes in N k
j are already nonfaulty, we keep only the first, second

and last rows of (4.13). Note that since the choices of m′j and m′′j are generally not

unique, the formulation of matrix Y is also not unique. So far, we have expressed the

update of nonfaulty nodes in matrix form involving only nonfaulty nodes.

Next, define a transition matrix to represent the product of Y(t),

Φ(t, t0) = Y(t)Y(t− 1)...Y(t0). (4.14)

Let ψ be the total number of reduced graphs we can generate from G. Let ν = ψ|J ′|.

Denote max
j∈J ′
|Nj | by Nmax. Let µ = 1− 1

(2Nmax−2b+1)ν . Then it is know from previous

work [25,29] that

[Φ(t, t0)]ji − [α(t0)]i ≤ µ(
t−t0+1

ν
), (4.15)

where α(t0) satisfies [α(t0)]j ≥ 0 and
|J ′|∑
j=1

[α(t0)]j = 1. It can also be expressed as

lim
t→∞

Φ(t, t0) = 1αT (t0). (4.16)
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Taking t = 0 as the starting point, we can express the iterations as

Ω(1) = Y(0)Ω(0)− ρ(0)g(0)

Ω(2) = Y(1)Ω(1)− ρ(1)g(1)

= Y(1)Y(0)Ω(0)−Y(1)ρ(0)g(0)− ρ(1)g(1)

. . .

Ω(t) = Y(t− 1)Ω(t− 1)− ρ(t− 1)g(t− 1)

= Y(t− 1)Y(t− 2) · · ·Y(0)Ω(0)−
t−1∑
τ=0

Y(t− 1)Y(t− 2) . . .Y(τ + 1)ρ(τ)g(τ)

= Φ(t, 0)Ω(0)−
t−1∑
τ=0

Φ(t− 1, τ + 1)ρ(τ)g(τ). (4.17)

Let us create a scenario that all nodes stop computing local gradients after iteration t

so that g(τ) = 0 when τ > t. Define a vector v̄(t) under this scenario, i.e.,

v̄(t) = lim
T→∞

Ω(t+ T + 1)

= lim
T→∞

Φ(t+ T, 0)Ω(0)− lim
T→∞

t+T∑
τ=0

Φ(t+ T, τ)ρ(τ)g(τ)

= 1αT (0)Ω(0)−
t+T∑
τ=0

1αT (τ)ρ(τ)g(τ)

= 1αT (0)Ω(0)−
t−1∑
τ=0

1αT (τ)ρ(τ)g(τ). (4.18)

Observe that v̄ has identical elements in all dimensions. Let scalar sequence v(t) denote

one element of v̄. Next, we show that [wj(t)]k → v(t) as t→∞. From (4.18),

v(t) =

|J ′|∑
i=1

[α(0)]i[wi(0)]k −
t−1∑
τ=0

ρ(τ)

|J ′|∑
i=1

[α(τ)]i[∇fi(wi(τ))]k (4.19)

Then recall from the update of [wj(t)]k that

[wj(t)]k =

|J ′|∑
i=1

[Φ(t− 1, 0)]ji[wi(0)]k −
t−1∑
τ=0

ρ(τ)

|J ′|∑
i=1

[Φ(t− 1, τ)]ji[∇fi(wi(τ))]k (4.20)

If Assumption 3 holds and we initiate the algorithm from some vector with finite norm,

we can always find two scalars Cw and L satisfying that ∀j ∈ J ′, |[wj(0)]k| ≤ Cw and
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|[∇fj(wj)]k| ≤ L. Then we have

|[wj(t)]k − v(t)| ≤ |
|J ′|∑
i=1

([Φ(t− 1, 0)]ji − [α(0)]i)[wi(0)]k|+

|
t−1∑
τ=0

ρ(τ)

|J ′|∑
i=1

([Φk(t− 1, τ)]ji − [α(τ)]i)[∇fi(wi(τ))]k|

≤ |J ′|Cwµ
t
ν + |J ′|L

t∑
τ=0

ρ(τ)µ
t−τ+1
ν → 0 (4.21)

as t→ 0. Since k is arbitrarily picked, the convergence is true for all dimensions. Define

a vector v(t) satisfying [v(t)]k = v(t) for 1 ≤ k ≤ d. This then implies (4.11).

It follows from (4.11) that the rate of consensus convergence is O(
√
dρ(t)). Specifi-

cally, if choosing ρ(t) to be O(1/t) gives us ‖wj(t)− v(t)‖ = O(
√
d/t).

From (4.11), we have an upper bound for d4. We then bound the other distances

to show wj(t)→ w∗. Note that the sequence v(t) is not truly kept at any node, so we

first describe the “update” of v(t). The update for the full vector can be written in the

form

v(t+ 1) = v(t)− ρ(t)g1(t) (4.22)

where g1(t) satisfies [g1(t)]k =
|J ′|∑
i=1

[αk(t)]i[∇fi(wi)]k for 1 ≤ k ≤ P . Define another

vector g2(t) satisfying [g2(t)]k =
|J ′|∑
i=1

[αk(t)]i[∇fi(v(t))]k. We define a new sequence

u(t+ 1) as

u(t+ 1) = v(t)− ρ(t)g2(t). (4.23)

Recalling that

a3 = ‖v(t+ 1)− u(t+ 1)‖ = ‖g2(t)− g1(t)‖, (4.24)

from (4.21) and Assumption 3 we have

a3 ≤
√
P |J ′|L′Cwµ

t
ν +
√
P |J ′|LL′

t∑
τ=0

ρ(τ)µ
t−τ+1
ν . (4.25)

Next, defining a new sequence X(t) as

x(t+ 1) = v(t)− ρ(t)∇E[f(v(t))], (4.26)
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we have

a2 = ‖u(t+ 1)− x(t+ 1)‖ = ‖g2(t)− E[∇f(v(t))]‖. (4.27)

Here we give a lemma to show the relationship between g2(t) and the gradient of the

statistical risk.

Lemma 5. If Assumption 1 and 3 are satisfied, with probability at least 1− δ,

a2 ≤ sup
t
|g2(v(t))− E[∇f(v(t))]| = O

√‖ᾱ‖2 log 2
δ

N

 (4.28)

where ᾱ ∈ R|J ′| satisfies [α]j ≥ 0 and
|J ′|∑
j=1

[α]j = 1.

To prove the Lemma, we first observe at some dimension k,

E[g2(t)]k = E
|J ′|∑
i=1

[αk(t)]i[∇fi(v(t))]k = E[∇f(v(t))]k. (4.29)

Since k is arbitrarily picked, it is also true that

E[g2(t)] = E[∇f(v(t))] (4.30)

Note that v(t) depends on t and αk(t) depends on both t and k. We need to show that

the convergence is simultaneously true for all v(t) and αk(t). We fix one coordinate k

and drop the index k for simplicity. We define a vector h(t) as h(t) := [∇fj(v(t)) : j ∈

J ′]. Then g2(t) = 〈α(t),h(t)〉. We know from Hoeffding’s inequality [32]:

P
(
|〈α(t),h(t)〉 − E[∇f(v(t))]| ≥ ε

)
≤ 2 exp

(
− 2Nε2

L2‖α(t)‖2

)
(4.31)

Further, since the |J ′|-dimensional vector α(t) is an arbitrary element of the stan-

dard simplex, defined as

∆ := {q ∈ R|J
′| :

|J ′|∑
j=1

[q]j = 1 and ∀j, [q]j ≥ 0}, (4.32)

the probability bound in (4.31) also holds for any u ∈ ∆, i.e.,

P (|〈q,h(t)〉 − E[∇f(v(t))]| ≥ ε) ≤ 2 exp

(
− 2Nε2

L2‖q‖2

)
. (4.33)
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We now define the set Sα := {αk(t)}∞,dt,k=1. Our next goal is to leverage (4.33) and

derive a probability bound similar to (4.31) that uniformly holds for all q ∈ Sα. To

this end, let

Cξ := {c1, . . . , cdξ} ⊂ ∆ s.t. Sα ⊆
dξ⋃
q=1

B(cq, ξ) (4.34)

denote an ξ-covering of Sα in terms of the `2 norm and define c̄ := arg maxc∈Cξ ‖c‖. It

then follows from (4.33) and the union bound that

P

(
sup
c∈Cξ
|〈c,h(t)〉 − E[∇f(v(t))]| ≥ ε

)
≤ 2dξ exp

(
− 2Nε2

L2‖c̄‖2

)
. (4.35)

In addition, we have

sup
q∈Sα

|〈q,h(t)〉 − E[∇f(v(t))]|
(a)

≤ sup
c∈Cξ
|〈c,h(t)〉 − E[∇f(v(t))]|+ sup

q∈Sα,c∈Cξ
‖q− c‖‖h(t)‖,

(4.36)

where (a) is due to triangle and Cauchy–Schwarz inequalities. Trivially, supq∈Sα,c∈Cξ ‖q−

c‖ ≤ ξ from the definition of Cξ, while ‖h(t)‖ ≤
√
|J ′|L from the definition of h(t)

and Assumption 3. Combining (4.35) and (4.36), we get

P

(
sup
q∈Sα

|〈q,h(t)〉 − E[∇f(v(t))]| ≥ ε+
√
|J ′|ξL

)
≤ 2dξ exp

(
− 2Nε2

L2‖c̄‖2

)
. (4.37)

We now define ᾱ := arg maxq∈Sα ‖q‖. It can then be shown from the definitions of

Cξ and c̄ that

‖c̄‖2 ≤ 2(‖ᾱ‖2 + ξ2). (4.38)

Therefore, picking any ε′ > 0, and defining ε := ε′/2 and ξ := ε′/(2L
√
|J ′|), we have

from (4.37) and (4.38) that

P

(
sup
q∈Sα

|〈q,h(t)〉 − E[∇f(v(t))]| ≥ ε′
)
≤ 2dξ exp

(
− 4|J ′|Nε′2

4L2|J ′|‖ᾱ‖2 + ε′2

)
. (4.39)

Note that (4.39) is derived for one dimension. We then have for all dimensions that

fixing any v(t),

P
(
‖g2(t)− E[∇f(v(t))]‖ ≥

√
dε′
)
≤ 2dξ exp

(
− 4|J ′|Nε′2

4L2|J ′|‖ᾱ‖2 + ε′2

)
. (4.40)
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In order to obtain the desired uniform bound, we next need to remove the depen-

dence on v(t) in (4.40). Here we write g2(t) as g2(v(t)) to show the dependency of g2

on v(t). We first claim that v(t) ∈W := {v : ‖v‖∞ ≤ Γ} for some Γ and all t. We will

verify this claim later in the analysis. We then define Eζ := {e1, . . . , emζ} ⊂ W to be

a ζ-covering of W in terms of the `2 norm. It then follows from (4.40) that

P

(
sup
e∈Eζ
‖g2(e)− E[∇f(e)]‖ ≥

√
dε′

)
≤ 2dξmζ exp

(
− 4|J ′|Nε′2

4L2|J ′|‖ᾱ‖2 + ε′2

)
. (4.41)

Similar to (4.36),we can also write

sup
v∈W
‖g2(v)− E[∇f(v)]| ≤ sup

e∈Eζ
‖g2(e)− E[∇f(e)]‖

+ sup
e∈Eζ ,v∈W

[
‖g2(v)− g2(e)‖+ ‖E[∇f(e)]− E[∇f(v)]‖

]
. (4.42)

Further, we have from Assumption 3 and definition of the set Eζ that

sup
e,v
‖g2(v)− g2(e)‖ ≤ L′ζ, and (4.43)

sup
e,v
‖E[∇f(e)]− E[∇f(v)]| ≤ L′ζ. (4.44)

We now fix ε′′ > 0, and define ε′ := ε′′/2
√
d and ζ := ε′′/4L′. We then obtain the

following from (4.40)–(4.44):

P
(

sup
v∈W
|g2(v)− E[∇f(v)]| ≥ ε′′

)
≤ 2dξmζ exp

(
− 4|J ′|Nε′′2

16L2|J ′|d‖ᾱ‖2 + ε′′2

)
. (4.45)

Since v(t) ∈W for all t, we then have

P
(

sup
t
|g2(v(t))− E[∇f(v(t))]| ≥ ε′′

)
≤ 2dξmζ exp

(
− 4|J ′|Nε′′2

16L2|J ′|d‖ᾱ‖2 + ε′′2

)
.

(4.46)

The proof now follows from (4.46) and the following facts about the covering num-

bers of the sets Sα and W: (1) Since Sα is a subset of ∆, which can be circumscribed by a

sphere in R|J ′|−1 of radius
√
|J ′|−1
|J ′| < 1, we can upper bound dξ by

(
12L
√
|J ′|d

ε′′

)|J ′|
[33];

and (2) Since W ⊂ Rd can be circumscribed by a sphere in Rd of radius Γ
√
d, we can

upper bound mζ by
(

12L′Γ
√
d

ε′′

)d
. We then conclude that

sup
t
|g2(v(t))− E[∇f(v(t))]| < ε′′ (4.47)
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with probability exceeding

1− 2 exp

(
− 4|J ′|Nε′′2

16L2|J ′|d‖ᾱ‖2 + ε′′2
+ |J ′| log

(
12L

√
|J ′|d

ε′′

)
+ d log

(
12L′Γ

√
d

ε′′

))
.

(4.48)

Equivalently, by ignoring the log terms, we have with probability at least 1− δ,

sup
t
|g2(v(t))− E[∇f(v(t))]| < O

√4L2d‖ᾱ‖2 log 2
δ

N

 (4.49)

Lemma 5 shows that g2(t) converges to the gradient of statistical risk in probability.

Now we focus on a1 = ‖x(t+ 1)−w∗‖. Note that x(t+ 1) is obtained by v(t) taking a

regular gradient descent step of E[f(v(t))] with step size ρ(t). When Assumption 5 and

3 are satisfied, it is well understood [42, Ch.9] that the gradient descent step satisfies

‖x(t+ 1)−w∗‖ ≤
√

1− λρ(t)‖v(t)− w∗‖. (4.50)

Then we have

a1(t+ 1) = ‖x(t+ 1)−w∗‖ ≤
√

1− λρ(t)‖v(t)− w∗‖ ≤ a4(t) +
√

1− λρ(t)‖wj(t)−w∗‖.

(4.51)

Now we can write the property of sequence wj for some j ∈ J ′ as

‖wj(t+ 1)−w∗‖ ≤
√

1− λρ(t)‖wj(t)−w∗‖+ a2(t) + a3(t) + 2a4(t). (4.52)

It follows from (4.11), (4.25), and Lemma 5 that with probability at least δ,

‖wj(t+ 1)−w∗‖ ≤
√

1− λρ(t)‖wj(t)−w∗‖+O
(√

dρ(t)
)

+O

√‖ᾱ‖2 log 2
δ

N

 .

(4.53)

When choosing ρ(t) to be O(1/t), the second term on the right hand side of (4.53)

is O(
√
d/t). Note that the right hand side of (4.53) converges to 1 as t→ 0 and N → 0.

We have shown wj(t)
t→ v(t) in the consensus analysis. We then show that v(t)

N,t→ w∗.

We define f̄(v(t)) := E[f(v(t)] and establish f̄(v(t))
t,N−−→ f̄(w∗) in probability. It

then follows from [35, Theorem 4.4] and our assumptions that w∗ is a strong minimizer

of f̄(·) and, therefore, v(t)
t,N−−→ w∗ in probability.
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In order to prove the aforementioned claim, we fix any ε > 0 and show that f̄(v(t))−

f̄(w∗) ≤ ε for all large enough t with probability that approaches 1 as N →∞. To this

end, we claim that f̄(v(t)) for all t greater than some t′ ∈ N is a strictly monotonically

decreasing function with probability 1 as long as ‖∇f̄(v(t))‖ > ε∇ for ε∇ := ε
3Γ . This

claim means that ‖∇f̄(v(t))‖ eventually becomes smaller than ε∇ with probability 1

for large enough t, which implies

f̄(v(t))− f̄(w∗) ≤ −〈∇f̄(v(t)), (w∗ − v(t))〉

≤ ‖∇f̄(v(t))‖(‖w∗‖2 + ‖v(t)‖)

≤ 2ε∇Γ < ε (4.54)

because of convexity of f̄(·), the Cauchy–Schwarz inequality, and our assumptions.

Since this is the desired result, we need only focus on the claim of strict monotonicity

of f̄(v(t)) for this lemma. To prove this claim, note from Assumption 3 that

f̄(v(t+ 1)) ≤ f̄(v(t)) + 〈∇f̄(v(t)), (v(t+ 1)− v(t))〉+
L

2
‖v(t+ 1)− v(t)‖2. (4.55)

Next, we can write the update of v(t) as follows:

v(t+ 1) = v(t)− ρ(t)g2(t) + d(t).

where d(t) = ρ(t)g1(t)− ρ(t)g2(t). Plugging this into (4.55) results in

f̄(v(t))− f̄(v(t+ 1)) ≥ −〈∇f̄(v(t)),d(t)〉+ ρ(t)〈g2(t),∇f̄(v(t))〉 − L

2
‖d(t)− ρ(t)g2(t)‖2.

(4.56)

The right-hand side of (4.56) strictly lower bounded by 0 implies strict monotonicity of

f̄(v(t)). Simple algebraic manipulations show that this is equivalent to the condition

Lρ(t)2

2
‖g2(t)‖2 < −〈∇f̄(v(t)),d(t)〉+ ρ(t)〈g2(t),∇f̄(v(t))〉+ Lρ(t)〈d(t),g2(t)〉 − L

2
‖d(t)‖2.

(4.57)

Next, from Lemma 5 that P(‖g2(t)−∇f̄(v(t))‖ ≤ ε′) converges to 1 simultaneously

for all t for any ε′ > 0. We therefore have with probability 1 (as N →∞) that

‖g2(t)‖2 ≤ ‖∇f̄(v(t))‖2 + ε′2 + 2ε′‖[∇f̄(v(t))‖ (4.58)
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and

〈g2(t),∇f̄(v(t))〉 ≥ ‖∇f̄(v(t))‖2 − ε′‖∇f̄(v(t))‖. (4.59)

The inequalities (4.58) and (4.59) make the following condition sufficient for (4.57) to

hold with high probability:

Lρ(t)2

2
‖∇f̄(v(t))‖2 +

Lρ(t)2

2
ε′2 + Lρ(t)2ε′‖∇f̄(v(t))‖ < ρ(t)‖∇f̄(v(t))‖2 − ρ(t)ε′‖∇f̄(v(t))‖

+Lρ(t)〈d(t),g2(t)〉 − 〈∇f̄(v(t)),d(t)〉 − L

2
‖d(t)‖2.

(4.60)

Noting that Lρ(t)2

2 − ρ(t) < 0, we can rewrite (4.60) as

‖∇f̄(v(t))‖ >
(

2ε′‖∇f̄(v(t))‖
2− Lρ(t)

+
2〈∇f̄(v(t)),d(t)〉

2ρ(t)− Lρ(t)2
− 2L〈d(t),g2(t)〉

2− Lρ(t)

+
L‖d(t)‖2

2ρ(t)− Lρ(t)2
+

2Lρ(t)ε′‖∇f̄(v(t))‖
2− Lρ(t)

+
Lρ(t)ε′2

2− Lρ(t)

) 1
2

. (4.61)

Condition (4.61) is sufficient for (4.57) to hold in probability. We now note that

‖∇f̄(·)‖ and ‖g2(·)‖ in (4.61) can be upper bounded by some constants L∇̄ and L∇

by virtue of Assumption 3 and the definition of W. Together with Cauchy–Schwarz

inequality, we have the following sufficient condition for (4.57):

‖∇f̄(v(t))‖ >
(

2L∇̄ε
′ + 2LL∇̄ρ(t)ε′ + Lρ(t)ε′2

2− Lρ(t)
+

2LL∇‖d(t)‖
2− Lρ(t)

+
2L∇̄‖d(t)‖+ L‖d(t)‖2

2ρ(t)− Lρ(t)2

) 1
2

.

(4.62)

The right-hand side of (4.62) can be made arbitrarily small (and, in particular, equal

to ε∇) through appropriate choice of ε′ and large enough t; indeed, we have from our

assumptions, Lemma 5, and the definitions of ρ(t) and d(t) that both d(t) and d(t)/ρ(t)

converge to 0 as t→∞.

This completes the proof, except that we need to validate one remaining claim.

The claim is that f̄(v(t)) cannot converge when ‖∇f̄(v(t))‖ > ε∇. We prove this by

contradiction. Suppose ∃ε0 > 0 such that ‖∇f̄(v(t))‖ − ε∇ > ε0 for all t. We know

∃t′ ∈ N such that the right hand side of (4.62) becomes smaller than ε∇ for all t ≥ t′.

Therefore, adding ε0 to the right hand side of (4.62) and combining with (4.56) gives
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∀t ≥ t′:

f̄(v(t))− f̄(v(t+ 1)) ≥ (2ρ(t)− Lρ(t)2)(ε20 + 2ε∇ε0). (4.63)

Taking summation on both sides of (4.63) from t = t′ to∞, and noting that
∑∞

t=t′ ρ(t) =

∞ and
∑∞

t=t′ ρ(t)2 <∞, gives us f̄(v(t′))− limt→∞ f̄(v(t)) ≥ ∞. This contradicts the

fact that f̄(·) is lower bounded, thereby validating our claim.

Now we take advantage of the monotone result to prove the claim we made earlier

that v(t) ∈W for all t. Since (4.62) can be satisfied after some t′, we define a constant

C0 = max
t≤t′

f̄(v(t)) and a set W0 := {v : f̄(v) ≤ C0}. Then define a set W := {v :

‖v‖∞ ≤ Γ} where we can always find a Γ satisfying W0 ⊂ W. We then show that

v(t) ∈ W for all t. It follows trivially that v(t) ∈ W0 ⊂ W for t ≤ t′. Since (4.62) is

satisfied and v(t′) ∈W, with probability 1, f̄(v(t′+1)) < f̄(v(t′)). Thus, v(t′+1) ∈W.

Then the claim can be proven by induction.

Given that wj(t)→ w∗, inequality (4.53) shows a sublinear convergence rate. The

analysis of Theorem 8 is complete.

4.3 Numerical analysis

The decentralized system in our experimental setup involves a total of M = 20 nodes

in the network, with a communications link (edge) between two nodes decided by a

random coin flip. Once a random topology is generated, we ensure each node has

at least 4b + 1 nodes in its neighborhood (a condition imposed due to BRIDGE-B

screening). The training data at each node corresponds to N = 2, 000 samples randomly

selected from the MNIST dataset. The performance of each method is reported in terms

of classification accuracy, averaged over (M − b) nodes and a total of 10 independent

Monte Carlo trials, as a function of the number of scalars broadcast per node. The final

results, shown in Figure 4.1, correspond to two sets of experiments: (i) the faultless

setting in which none of the nodes actually behaves maliciously; and (ii) the setting

in which two of the 20 nodes are Byzantine, with each Byzantine node broadcasting

every coordinate of the iterate as a uniform random variable between −1 and 0. Note

that this Byzantine attack strategy is by no means the most potent in all decentralized
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settings. However, this particular strategy has been selected after careful evaluation of

the impact of different strategies proposed in works such as [43–45] on our particular

experimental setup. Finally, with the exception of DGD, all methods are initialized

with parameter b = 2 in both faultless and faulty scenarios.

It can be seen from Figure 4.1 that, other than ByRDiE and BRIDGE-K, all methods

perform almost as well as DGD in the faultless case. In the presence of Byzantine nodes,

however, DGD completely falls apart, whereas the performances of all resilient algo-

rithms are still comparable with a minor decrease. In both cases, however, BRIDGE-B

is quite effective, except that it has stringent topology requirements. We conclude by

pointing out that the algorithms under BRIDGE framework are mostly (except for

BRIDGE-K) more efficient than ByRDiE because of its gradient-descent-based nature.
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Figure 4.1: Performance comparison of different decentralized learning methods in both

faultless and Byzantine settings. Byzantine-resilient algorithms in both settings operate

under the assumption of b = 2.
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4.4 Concluding remarks

In this chapter, we have introduced a Byzantine-resilient decentralized algorithm named

BRIDGE. The gradient-descent-based nature makes the algorithm suitable for learning

tasks in high dimension spaces. Based on the general idea of adding a screening step

before each node updates its local variable, a number of different screening methods

can be adopted by the framework. In the future, there is a great interest to combine

more screening methods with the framework to improve its robustness or efficiency.
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Chapter 5

Conclusion

In this dissertation, we have discussed different methods to complete decentralized

machine learning tasks in the presence of Byzantine failures. The robustness against

Byzantine failure is a relatively new topic, in both distributed and decentralized set-

tings. Despite recent advances, Byzantine-resilient inference and learning remain an

active area of research with several open problems. Much of the focus in distributed

inference has been on the somewhat restrictive model in which Byzantine nodes do not

collude. Collaborative Byzantine attacks, on the other hand, can be much more potent

than independent ones. A fundamental understanding of mechanisms for safeguard-

ing against such attacks remains a relatively open problem in distributed inference.

Byzantine-resilient distributed estimation under nonlinear models is another problem

that has been relatively unexplored. In the case of Byzantine-resilient distributed learn-

ing, existing works have only scratched the surface. Convergence and/or learning rates

of many of the proposed methods remain unknown. In addition, while stochastic gra-

dient descent [46] is a workhorse of machine learning, approaches such as accelerated

first-order methods (e.g., accelerated gradient descent), first-order dual methods (e.g.,

ADMM), and second-order methods (e.g., Newton’s method) do play important roles

in machine learning. However, the resilience of distributed variants of such methods to

Byzantine attacks has not been investigated in the literature.

The lack of a central server, the need for consensus, and an ad-hoc topology make

it even more challenging to develop and analyze Byzantine-resilient methods for decen-

tralized inference and learning. Much of the work in this regard is based on screen-

ing methods such as trimmed mean and median that originated in the literature on

Byzantine-resilient scalar-valued consensus. This has left open the question of how
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other screening methods, such as the ones explored within distributed learning, might

handle Byzantine attacks—both in theory and in practice—in various decentralized

problems. Unlike distributed learning, any such efforts will also have to characterize

the interplay between the network topology and the effectiveness of the screening proce-

dure. The fundamental tradeoffs between the robustness and the (faultless) performance

of Byzantine-resilient methods also remain largely unknown for decentralized setups.

Finally, existing works on decentralized learning only guarantee sublinear convergence

for strictly/strongly convex and smooth functions. Whether this can be improved by

taking advantage of faster decentralized optimization frameworks or different screening

methods also remains an open question.
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