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ABSTRACT OF THE THESIS

Multimodal Attention Network for Trauma Activity Recognition from Spoken

Language and Environmental Sound

by Ruiyu Zhang

Thesis Director: Prof. Ivan Marsic

Trauma activity recognition aims to detect, recognize, and predict the activities (or

tasks) during a trauma resuscitation. Previous work has mainly focused on using various

sensor data including image, RFID, and vital signals to generate the trauma event log.

However, spoken language and environmental sound, which contain rich communication

and contextual information necessary for trauma team cooperation, is still largely ignored.

In this paper, we propose a multimodal attention network (MAN) that uses both verbal

transcripts and environmental audio stream as input; the model extracts textual and acous-

tic features using a multi-level multi-head attention module, and forms a final shared rep-

resentation for trauma activity classification. We evaluated the proposed architecture on 75

actual trauma resuscitation cases collected from a hospital. We achieved 72.4% accuracy

with 0.705 F1 score, demonstrating that our proposed architecture is useful and efficient.

These results also show that using spoken language and environmental audio indeed helps

identify hard-to-recognize activities, compared to previous approaches. We also provide a

detailed analysis of the performance and generalization of the proposed multimodal atten-

tion network.
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CHAPTER 1

INTRODUCTION

Activity recognition in medical setting is challenging due to workflow complexity, fast

pace, and environmental interference. Trauma resuscitation provides initial treatment of

critically injured patients in an emergency, this particularly requires team dynamics and

collaboration [1]. There has been much existing work using cameras, passive RFID, and

medical equipment signals as input to detect and recognize clinical activity or phase [2–4].

but in this field, it is rare for human medical speech and environmental sounds to be used

as input. Compared to other types of sensor data, speech and environmental sound con-

tain extensive team cooperation information that indicates the performed tasks. For some

specific activities such as GCS calculation, the trauma staff mainly relies on speech for

communication. Ignoring this potentially important input source may complicate research

in activity recognition in medical setting.

In this paper, we propose a deep learning neural network to recognize trauma resusci-

tation activities from verbal communication transcripts and environmental audio streams.

Specifically, given a sentence-level verbal transcript and the corresponding audio stream

from the trauma room, the proposed network outputs a trauma activity (shown in Fig. 1.1).

There are two critical differences between our work and previous approaches: Firstly, in-

stead of using cameras [3] and passive RFID [5,6], we use speech and environmental sound

for activity prediction, to overcome the difficulty of recognizing speech-reliant activities.

To the best of our knowledge, this is the first research that introduces an architecture using

language information and context audio for trauma activity recognition. Secondly, other

study [7] uses language to identify trauma phases, which are high-level states opposed

to this paper’s focusing on specific low-level activities. We have also taken environmen-

tal sound into consideration and therefore have built a multimodal model, which is more
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Figure 1.1: Example of spoken language and environmental sound based trauma activity
recognition.

generalizable than a text-only model; the environmental sound can be seen as a comple-

mentary resource for the existing models. Our model accomplishes activity recognition

in three steps: First, we process the audio stream and verbal transcript into spectrograms

and text embeddings, respectively. Second, the model extracts feature representations from

this preprocessed data using two multi-layer multi-head attention modules. Finally, we set

up an attention-based fusion module to combine the modality-specific features, selecting

representative and informative features. We directly connected the first and second step in

the model and trained the system end-to-end.

We evaluate the proposed architecture on 75 actual trauma room resuscitation cases

with recorded audio and spoken language transcripts. Both the audio stream and transcripts

were segmented into sentence-level data; each sample contains one complete text sentence

with the corresponding audio stream. Trauma experts assigned one of eleven different

activity labels to each sample. We applied an 80%-20% training testing split with 5-cross
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validation and considered the cases independently. The results show that the proposed

multimodal attention network (MAN) achieves 71.8% accuracy with 0.702 F1-score in

average, outperforming baselines with a more parameter-efficient model. The results also

demonstrate the effectiveness of using speech and environmental sound as input sources

for trauma activity recognition. Our contributions are:

• A multimodal architecture that considers spoken language and environmental sound

to detect and recognize trauma resuscitation activities.

• An end-to-end multimodal attention network that automatically preprocesses raw

data, extracts sentence-level acoustic and textual representations, fuses the feature

vectors into a shared representation, and makes the final prediction.

The paper is organized as follows: chapter II describes the proposed structure in details.

We discuss data collection and application in chapter III. We provide result analysis in

chapter IV and limitation discussion in chapter V. We conclude in chapter VI.
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CHAPTER 2

METHOD

The multimodal attention network (MAN) consists of three major modules: preprocess-

ing, modality-specific feature extraction, and fusion (shown in Fig. 2.1).

2.1 Preprocessing

The input data includes both sentence-level verbal transcripts and audio stream. For

verbal transcripts, as suggested in [8], we embed each word into a 200-dimensional GloVe

vector [9], with unknown words randomly initialized. We allow embedding parameter tun-

ing during the training stage, so that medical words sharing similar contexts will be located

closely in the embedding space. All sentences are zero-padded with the max sentence

length of 35.

We represent the audio stream as a spectrogram using Mel-frequency spectral coeffi-

cients (MFSCs). As demonstrated in [10, 11], MFSCs maintain the locality of the audio

data and provide more detailed information compared to the Mel-frequency cepstrum co-

efficients. Following previous research [10], we use 40 filter banks to extract static from

MFSCs. Instead of applying delta and double delta coefficients as in [11, 12], we only

use the static coefficient set in chase of better performance of the static set under limited

computation resource. Considering the maximum length of our MFSC feature maps is

600, we zero-pad and set up a hierarchical structure for the audio preprocessing. Unlike

in [12], where attention weights are learned based on overall MFSCs, we believe the crit-

ical and relevant information in frame-level audio data only appear in the adjacent and

nearby frames. It is difficult and inefficient to find dependencies between two distant audio

frames; hence, we segment the MFSC feature maps into several 30-frame sub-maps. The

final shape of each audio sample is (30, 40, 30), where the first index represents the number
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Figure 2.1: Overall structure of multimodal transformer network (MTN)
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of the sub-maps, the second index indicates the energy frequency, and the last is the frame

number of each sub-map.

2.2 Attention

Before bringing modality-specific feature extraction or fusion process into the topic, we

briefly describe multi-head attention mechanism which is widely applied in our proposed

model.

Attention was first introduced to help learn informative word representations in machine

translation [13]. The function computes a weighted score to indicate the importance of each

word, and the word representations weighted by their scores to form the final sentence

representation. Multi-head attention [14] consists of several scaled dot-product attention

layers in parallel to perform multiple attention computations for the input vector. Unlike

general attention as in [15], multi-head attention applies scaled dot-product attention for

each head based on the individual query, key, and value. It forms the final attention score

by concatenating all the heads:

Qi, Ki, Vi = xWQ
i , xWK

i , xW V
i (2.1)

Headi(Qi, Ki, Vi) = softmax(
QiK

T
i√

dk
)Vi (2.2)

y = Concat(Head1, , Headi, , Headn)W (2.3)

Where x is the input vector, and WQ
i , WK

i , W V
i are the parameter matrices for the linear

layer. The Qi, Ki, Vi can be seen as the query, key, and value vector for the ith head. dk

is the dimension of the key. The final output is y. As mentioned in [14], the scaled dot-

product attention is much faster and more space efficient. Compared to the general attention

mechanism that learns the association based on the entire vector, the multi-head approach
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improves the model performance by acquiring the information from various heads, each a

sub-representation of the original vector.

Table 2.1: Modle parameters

∗input=input shape; output=output shape; n h=number of head;
h s=head size; d k=dimension of key.

Layer input output n h h size d k
attention v1 (50, 200) (50, 160) 4 36 36
attention v2 (50, 160) (50, 100) 4 36 36
attention v3 (50, 100) (50, 60) 4 16 16
attention v4 (50, 60) (50, 30) 4 16 16
attention a1 (30, 40, 30) (30, 40, 30) 4 16 16
attention a2 (30, 40, 30) (30, 40, 30) 4 16 16
attention a3 (30, 40, 30) (30, 40, 30) 4 16 16
attention a4 (30, 30) (30, 30) 4 9 9
attention a5 (30, 30) (30, 30) 4 9 9
concatenate (50|30, 30) (80, 30) - - -
attention f1 (80, 30) (80, 30) 4 9 9
attention f2 (80, 30) (80, 30) 4 9 9
sum (80, 30) (30) - - -

2.3 Modality-specific Feature Extraction

The modality-specific feature extraction module has two independent networks to pro-

cess the verbal transcript and audio stream, respectively.

Instead of using convolutional or recurrent neural networks (CNN/RNNs) [16, 17], we

apply a multi-head attention network to extract the textual representations because: Firstly,

sentence-level text classification requires focus on the most representative information, es-

pecially for short-sentence trauma speech. A single word can identify a specific class with-

out using the rest of the text. For example, “GCS“ means GCS Calculation and “O2“ means

Oxygen. Replacing the CNNs and RNNs with attention concentrates on informative word

vectors, rather than learning an entire sentence representation. Secondly, removing RNNs

removes expensive in-sequence temporal alignment from the computation. The multi-head
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attention model does not need the data fed in a specific order during the calculation. To

provide temporal information, the model puts a position embedding layer before the at-

tention function. In this research, we apply the same position embedding layer as in [14].

Considering the hardware performance tradeoff, we set four attention layers to extract rep-

resentations from verbal transcripts. As suggested in [14], each attention layer consists of

a multi-head attention module, a feedforward layer, and two batch normalization layers.

Table 2.1 shows detailed model parameter information. It is worth mentioning that we de-

signed a stepwise size reduction on the multi-head attention to improve model training and

ensure matching dimensions between the transcript and audio feature representations.

As we mentioned in the preprocessing section, it is inefficient and unreasonable to

compute dependencies across long-distance audio frames. Hence, we introduce a multi-

level multi-head attention structure to first learn the attention distribution over adjacent

audio frames, and then form the final feature vector over the entire MFSC map. We use

three attention layers over each MFSC sub-map and further apply two extra attention layers

to learn the consolidation of sub-map representations. The details of the parameters are

shown in Table 2.1.

2.4 Fusion

The generated verbal and audio stream feature representations are of different length, so

we concatenate them vertically to form the shared representation (shown in Table 2.1). We

set two attention layers over the shared vectors to further fuse the features, which can be

understood as weighing between verbal transcript and audio stream information together.

The fusion attention layers select important features based on shared representations. We

take the sum over the shared representations to form the final feature vector. A softmax

classifier is used for the final classification.



9

CHAPTER 3

DATA COLLECTION AND IMPLEMENTATION

We collected 75 actual trauma resuscitation cases using two fixed NTG2 Phantom Pow-

ered Condenser shotgun microphones. Both microphones cover the major parts of the

trauma room and have the ability to capture speech information and environmental sound

from the trauma team. All the data were collected with consent, and have been stripped

of private information manually by trauma experts (the medical team checked the data

and manually muted the audio streams and removed the words that may involve or indi-

cate privacy or personal information). We recorded the audio stream at a sampling rate of

16000Hz; the verbal transcripts were manually transcribed and segmented by the trauma

experts; the activity labels were also provided by the medical team. The ten trauma activity

labels are:

• Back (B)

• GCS Calculation (GCS)

• Oxygen (OX)

• Head (H)

• C-Spine (CS)

• Pulse Check (PC)

• Blood Pressure (BP)

• Extremity (E)

• Mouth (M)
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• Abdomen (A)

All the rest utterances that do not belong to the above ten activities were assigned to Other

(O) category. Table 3.1 provides detailed dataset statistics. We applied a 80%-20% training-

testing split with 5-cross validation in experiment. For each training set, we further used

15% of the samples as validation set to help tune the model.

The model is implemented using Keras with TensorFlow as backend [18]. We first pre-

train the audio branch for 50 epochs to facilitate model convergence, after which we trained

the entire model for another 150 epochs. In order to overcome sample imbalance during

training, we choose to uniformly sample across classes instead of directly feeding all the

training data. For the entire training process, we also adopt dropout layer to help overcome

model overfitting problem [19]. We first used Adam [20] optimization with 0.001 initial

learning rate and momentum parameters 0.99 and 0.999 for the first 50 epochs. Then, we

switched to SGD optimizer for further tuning.

Table 3.1: Dataset Statistics

Activity Type Number of Samples
Extremity 731
Head 384
C-Spine 293
Blood Pressure 371
Back 582
Abdomen 265
Pulse Check 281
Oxygen 410
GCS Calculation 416
Mouth 282
Activity Labels in Total 4,015
Other 8,877
Labels in Total 12,892
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CHAPTER 4

EXPERIMENT AND EVALUATION

We first made a quantitative analysis by comparing the performance of the modality-

specific models and the multimodal structure. As is listed in Table 4.1, the verbal tran-

script model achieved 69.1% accuracy with 0.672 F1-score in average, while the environ-

mental sound model only achieved 36.4% average accuracy with 0.342 average F1-score.

Using verbal transcripts outperforms audio by 32.7% accuracy, this indicates that verbal

communication from human speech contains information that is relatively more helpful

to determine activity. This also shows that it could be difficult to identify trauma activity

only based on environmental sound. Moreover, the multimodal structure outperforms the

transcript-only model by 2.7% accuracy. On observing this, we believe the activity-specific

medical machine sound or noise could possibly provide additional information to help im-

prove overall performance of the model. The difference in performance demonstrates the

necessity of multimodal architecture. Despite the limited performance of the audio-only

model, the model based on combination of verbal information and environmental sound

still shows the best performance.

Table 4.1: Comparison of modalities

Acc.=Accuracy (%).
Modality Data Type Average-Acc. Average-F1
Verbal Transcript Only Text 69.1 0.672
Audio Stream Only Audio 36.4 0.342
Multi-modality (MAN) Text+Audio 71.8 0.702

To further evaluate performance, we have studied the confusion matrices of our multi-

modal attention network with the best performance training-testing split. As is shown in

Fig. 4.1, Blood Pressure was classified most accurately, with an accuracy of 77.0%. Note
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that the activities together classified as Other only can reach an accuracy of 55.0%, this

result is lower than all the other classes. The explanation behind is that we only consider

ten most common verbal-heavy activities and all the other activities are classified into the

Other category, in this way we believe the internal diversity of the Other class makes it

difficult to discriminate from the rest. However, the overall accuracies of the remaining

activities are generally higher than 67.0%, this demonstrates the effectiveness of our MAN

model.

Figure 4.1: Confusion matrix of the MAN model.
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To compare the proposed MAN with previous models, we first re-implemented the

approaches in [7, 21]. Since the baseline approaches also used audio or text as input, we

retrained them on our trauma dataset with exactly the same training-testing split. The

result in Table 4.2 shows that the MAN model outperforms the baselines by 5.6% and

7.2% accuracy respectively. Because the distance between relevant sentences may vary

in different cases, it is hard to define a fixed window size as in [7]. Compared to the

hierarchical LSTM (H-LSTM) model that uses 20s as the context window size to predict the

present activity, our model achieves better performance using only present verbal sentence

without relying on any context information. Since text and audio data have less spatial

features, using an attention network for feature extraction appears to be more reasonable

than using convolution approaches. The result also indicates that our model significantly

outperforms the H-CNN models proposed in [21], which demonstrates the effectiveness of

MAN.

To better illustrate the necessity of using deep learning model, we also compared our

model with several shallow and conventional models such as SVM and Random Forest

Tree. We first concatenate the embedded textual word-level representations [9] and the low-

level handcrafted acoustic features [22] as the joint features, and then we use the shallow

SVM and Random Forest Tree classifiers to make the final decision. The result shows that

our proposed MAN significantly outperforms these shallow models, this demonstrates that

performing high-level feature extraction is much more effective than simply using low-

level features of given data. Even with the limited data provided here, deep learning based

models are still able to extract the representative features to improve the final classification

results.

Considering the lack of RFID-based data in the experiment, we directly compared

model performance on individual activities from [6] with our models in Table 4.3. The

result shows that our model achieves better performance in three shared activities, includ-

ing Oxygen, Blood Pressure, and Mouth. The MAN model gains a significant performance
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Table 4.2: Comparison of baselines

Model Data Type Accuracy (%) F1-Score
SVM Text+Audio 55.4 0.512
Random Forest Text+Audio 54.3 0.527
H-LSTM [7] Text 66.2 0.623
M-CNN [21] Text+Audio 64.6 0.642
Ours-MAN Text+Audio 71.8 0.702

Table 4.3: Comparison of activities

Activity RFID in [6] (%) Ours-MAN (%)
Blood Pressure 64.1 77.0
Oxygen 54.0 76.0
Mouth 63.0 68.0
Pulse 85.9 70.0
Cardiac 92.9 -
Temperature 80.6 -
Ear 97.5 -
Warm Sheet 56.8 -
Nose 76.4 -
Pupils 59.6 -
GCS Calculation - 70.0
Back - 68.0
Head - 71.0
C-Spine - 67.0
Extremity - 70.0
Abdome - 68.0
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improvement for the above activities, demonstrating the helpfulness of using verbal and

environmental sound. Also, as is shown in Table 4.3, our model technically can not detect

several types of activities such as Ear, Nose, Pupils etc. However, our model shows signifi-

cant effectiveness on detecting activities like GCS, Head, and Extremity, which are difficult

to detect using RFID. This result clearly indicates that spoken language and environmental

sound can be applied as a complementary resource to improve trauma activity recognition

as opposed to RFID-based data.
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CHAPTER 5

LIMITATIONS

Even though the result demonstrates the effectiveness of MAN model, there still exists

some limitations in terms of application. We listed three limitations below and treat them

as focus of our future work.

First of all, this proposed MAN model is based on manually transcribed text as part

of the input, which requires anticipation of human labor, or even trauma specialists, as we

do involve such a team in our research. The automatic speech recognition (ASR) technol-

ogy which allows speech-to-text without human transcripts could be a future option. Still,

the performance of the ASR result relies heavily on the sound quality of the input audio

stream. Considering that a trauma room or a surgery room could be noisy with various

medical machine sound and irrelevant sobbing or crying sound from patients, together with

“cocktail party problem”, the ASR generated transcripts can hardly achieve an error rate as

low as human transcription does. This strongly influences the performance of our model.

Our future work will involve lowering the error rate of ASR transcription process. With

that achieved, the time for data pre-processing could be lowered from days to minutes, and

human labor cost could be eradicated.

Furthermore, the audio-only branch shows limited contribution compared to the verbal

transcript branch does. Finding a more effective approach to extract the representative

acoustic features from trauma resuscitation would still be an open-end topic. With a more

detailed experiment design and analysis of the audio stream being achieved in the future,

we will be able to deliver a breakthrough in terms of improving model accuracy and F-1

score.

Lastly, to design an applicable and scalable trauma activity recognition system, a com-

bination of an effective RFID based model and this proposed MAN model is required. Our
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future work should take into consideration a bigger picture which involves designing a gen-

eralizable multimodal system consisting of speech transcripts, audio stream, together with

RFID signals. In this way, some certain types of activity that compatible better with RFID

sensors will help improve the coverage of the whole system and a system with much higher

overall effectiveness can be delivered.
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CHAPTER 6

CONCLUSION

In this paper, we presented a novel approach using verbal communication information

and environmental sound to recognize trauma resuscitation activities. We introduced a mul-

timodal network with multi-head attention to extract and fuse textual and acoustic features.

The proposed MAN achieved 72.4% accuracy with 0.705 F1 score. By outperforming the

baselines, we demonstrate the effectiveness of the network and the necessity for the multi-

modal structure.
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