
c© 2020

Marta Sofia Pimentel Cavaleiro

ALL RIGHTS RESERVED

SIMPLEX-LIKE METHODS FOR SPHERICAL

ENCLOSURE OF POINTS AND SPHERES -

ALGORITHMS AND APPLICATIONS

BY

MARTA SOFIA PIMENTEL CAVALEIRO

A dissertation submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Operations Research

Written under the direction of

Farid Alizadeh

And approved by

—————————————–

—————————————–

—————————————–

—————————————–

—————————————–

—————————————–

New Brunswick, New Jersey

January, 2020

ABSTRACT OF THE DISSERTATION

Simplex-like Methods for Spherical

Enclosure of Points and Spheres -

Algorithms and Applications

By Marta Sofia Pimentel Cavaleiro

Dissertation Director: Farid Alizadeh

Given a set of m points in the Euclidean space Rn, the problem of the minimum

enclosing ball of points, “MB problem of points” for short, seeks the n-dimensional

Euclidean hypersphere (ball) of smallest radius that encloses all points in the set. A

generalization of this problem is the minimum enclosing ball of balls, also referred as the

“MB problem of balls”, where, instead of enclosing points, one wishes to enclose a set of

given balls. Both are important problems in computational geometry and optimization,

with applications in facility location, computer graphics, machine learning, etc.

The MB problem of points/balls shares some combinatorial properties with linear pro-

grams (LP), which makes it part of the class of LP-type problems. Methods that resemble

the simplex method for LP (simplex-like methods) have been proposed to solve the MB

problem of points. However, no simplex-like method has been developed for the case of

balls.

We start by considering one of such simplex-like methods for the MB problem of points,

the dual algorithm by Dearing and Zeck [33]. We modify its main step, the directional

search procedure, improving its computational complexity from O(n3) to O(n2). We

show that this modification yields in practice faster running times as we increase the

dimension.

ii

Next, we consider the problem of partial enclosure: instead of enclosing all m given

points, we want to enclose at least k with the smallest radius ball. This problem is

called the minimum k-enclosing ball problem, or “MBk problem” for short, and it is

NP-hard. We present a branch-and-bound (B&B) algorithm on the tree of the subsets

with size k to solve this problem. The nodes on the tree are ordered in a suitable way,

which, complemented with a last-in-first-out search strategy, allows for only a small

fraction of nodes to be explored. We use the dual simplex-like algorithm by Dearing

and Zeck to solve the subproblem at each node of the search tree. We show that our

B&B is able to solve the MBk problem exactly in a short amount of time for small and

medium sized datasets.

Finally, we address the MB problem of balls, a second-order cone program, and propose

a dual simplex-like algorithm to solve it. At each iteration of the algorithm, the next

iterate is found by performing an exact search on a well-defined curve. The algorithm

can be seen as an extension to the case of enclosing balls of the algorithm by Dearing

and Zeck. The algorithm’s implementation is based on the Cholesky factorization. Our

computational results show that the algorithm is very efficient in solving even large

instances.

iii

Acknowledgements

First and foremost, I would like to thank my research advisor and mentor, Prof. Farid

Alizadeh, for his persistent support and intellectual guidance. I am truly grateful for the

freedom he has given me to pursue my ideas, which he has always respected, at my own

pace. It has been a privilege working with him.

Next, I would like to express my appreciation and thanks to Prof. Adi Ben-Israel, Prof.

Endre Boros, Prof. Jonathan Eckstein, and Prof. Fatma Kılınç-Karzan, for kindly agreeing

to be in my defense committee and for their insightful feedback about my work.

I am immensely grateful for the opportunity to pursue my doctoral studies in Opera-

tions Research at Rutgers University. I am lucky to have learned with exceptional professors

at Rutgers, especially from RUTCOR. All of them have contributed somehow to this dis-

sertation.

Finally, a special thanks to those in my inner circle: to my family, in particular my

parents; to my partner Gianluca; and to all my friends, especially Tó-Zé. Thank you for

your encouragement and love.

iv

Dedication

To my parents, José and Lićınia.

v

Table of Contents

Abstract ii

Acknowledgements iv

Dedication v

Table of Contents vi

List of Notations ix

List of Tables x

List of Figures xiv

1 Introduction 1

1.1 Overview . 1

1.1.1 The minimum enclosing ball of points and balls 1

1.1.2 The minimum k-enclosing ball of points 11

1.2 Contributions and outline of the dissertation 13

2 The minimum enclosing ball of points 15

2.1 Properties of the MB problem . 16

2.2 The dual simplex-like algorithm by Dearing and Zeck 20

2.3 The primal simplex-like algorithm by Fischer et al. 26

2.4 An improvement to the dual simplex-like algorithm 28

2.5 Implementation details . 33

vi

2.5.1 The “Update Sj” procedure . 35

2.5.2 Calculating the direction d . 36

2.5.3 Calculating the next iterate . 37

2.5.4 Pseudo-code of the algorithm . 39

2.6 Computational results . 39

2.7 Conclusion . 41

3 The minimum k-enclosing ball of points 43

3.1 The proposed branch-and-bound framework 45

3.1.1 Preliminaries . 46

3.1.2 Solving the MB problem at each node 47

3.1.3 The tree design . 50

3.1.4 Search strategy . 53

3.1.5 Finding an initial solution . 55

3.2 Computational study . 55

3.2.1 Performance of the branch-and-bound algorithm 56

3.2.2 Comparison with other methodologies 61

3.3 Further computational studies . 63

3.3.1 The impact of using an initial solution 65

3.3.2 Additional lower bounds . 67

3.3.3 On the point-node assignment scheme 72

3.4 Conclusion . 75

4 The minimum enclosing ball of balls 77

4.1 Equivalent problems in computational geometry 78

4.2 Properties of the InfQ problem . 82

4.2.1 Duality and optimality conditions 82

4.2.2 Basis and dual feasible S-pair . 86

4.3 The dual simplex-like algorithm . 91

4.3.1 The curve search - S
j ∪ {p∗} is affinely independent 94

4.3.2 The case when S
j ∪ {p∗} is affinely dependent 104

vii

4.3.3 Pseudo-code . 106

4.3.4 Finiteness and correctness of the algorithm 107

4.3.5 A note on degeneracy . 111

4.4 Implementation details . 111

4.4.1 Updating the Cholesky factorization 112

4.4.2 Iteration complexity . 115

4.4.3 Discussion of other options . 116

4.5 Computational results . 118

4.5.1 Performance of the algorithm . 119

4.5.2 Comparison with other methods . 126

4.6 Conclusion . 130

Bibliography 131

viii

List of Notations

‖x‖ Euclidean norm of vector x ∈ Rn

〈x, y〉 inner product in Rn of vectors x, y ∈ Rn

[a, b] closed interval in R

]a, b[open interval in R

B(c, r) n-dimensional hypershpere {x ∈ Rn : ‖x− c‖ ≤ r}

In identity matrix in Rn×n

ej ∈ Rn j-th column of In

1n n-dimensional vector with all entries 1

Span(A) column range of matrix A

Null(A) null space of matrix A

∅ empty set

|S| cardinality of set S

2S set of all subsets of S

conv(S) convex hull of set S

aff(S) affine hull of set S

int S interior of set S

ri S relative interior of set S

∂S boundary of set S

Q Second-order cone {x := (x0; x) ∈ Rn : ‖x‖2 ≤ x0}

x �Q y x− y ∈ Q

x �Q y x− y ∈ int(Q)

ix

List of Tables

2.1 Running time (in seconds) of the two versions of the algorithm, for 1000-point

datasets with points uniformly distributed in a unit cube, for different dimen-

sions n. The reported numbers correspond to the averages corresponding to

25 runs for each n. 42

2.2 Running time (in seconds) of the two versions of the algorithm, for 10, 000-

point datasets with points uniformly distributed in a unit cube, for different

dimensions n. The reported numbers correspond to the averages correspond-

ing to 25 runs for each n. 42

3.1 Performance of the B&B for different 2-dimensional datasets with 1000 points.

The results correspond to the averages of 10 instances of each dataset. . . 58

3.2 Performance of the B&B for 10-dimensional normal datasets with 1000 points.

The results correspond to the averages of 10 instances of each dataset. . . . 58

3.3 Performance of the B&B for different 10-dimensional datasets with 100 points.

The results correspond to the averages of 10 instances of each dataset. . . . 59

3.4 Performance of the B&B for 10000-point b-outliers datasets for different

values of b and dimension n. The results correspond to the averages of 10

instances of each dataset. 59

3.5 Performance of the B&B for different 2-dimensional datasets corresponding

to Canada, Japan, and the U.S.A. 62

x

3.6 The ratio in percentage of the number of explored nodes when the optimum

solution is given as initial solution over the number of explored nodes when

no initial solution is given. The results report the averages for 10 instances

with 1000 points and dimension 2. 66

3.7 The ratio in percentage of the number of explored nodes when the optimum

solution is given as initial solution over the number of explored nodes when

no initial solution is given. The results report the averages for 10 instances

with 100 points and dimension 10. 66

3.8 The ratio in percentage of the number of explored nodes when the relaxations

(3.7) are used over the number of explored nodes when no such relaxation is

used, for different 2-dimensional datasets with 1000 points. 71

3.9 The ratio in percentage of the number of explored nodes when the relaxations

(3.7) are used over the number of explored nodes when no such relaxation is

used, for different 10-dimensional datasets with 100 points. 71

3.10 Comparison of explored nodes (nodes) and dual iterations (iters) from differ-

ent point-node assignment schemes for 2-dimensional normal datasets with

50 points. The results report the averages for 10 instances. 74

3.11 Comparison of explored nodes (nodes) and dual iterations (iters) from differ-

ent point-node assignment schemes for 10-dimensional normal and uniform

datasets with 100 points. The results report the averages for 10 instances. . 74

4.1 Average running times (in seconds) corresponding to 10 runs of Algorithm 4.4

implemented with a different matrix factorization. The input points are

standard normally distributed, with each coordinate chosen independently.

The average maximum size of a basis observed during the algorithm runs is

also reported. 117

xi

4.2 Average running times (in seconds) corresponding to 10 runs of Algorithm 4.4

implemented with a different matrix factorization. The input points are

uniformly distributed within the set {x ∈ Rn : ‖x‖ ≤ x0 ∧ x0 ≤ 1} (a portion

of a second-order cone). The average maximum size of a basis observed

during the algorithm runs is also reported. 117

4.3 Iteration log for a 100, 000-point dataset with n = 10 and points uniformly

distributed on a unit cube. “Max Infeas Gap” is the maximum infeasibility

gap at xj, and “Infeas Constr Count” is the number of infeasible constraints

at iteration j (considering an infeasibility tolerance of 10−8). 122

4.4 Iteration log for a 100, 000-point dataset with n = 10 and points uniformly

distributed on a portion of a s.o.c. “Max Infeas Gap” is the maximum in-

feasibility gap at xj, and “Infeas Constr Count” is the number of infeasible

constraints at iteration j (considering an infeasibility tolerance of 10−8). . . 123

4.5 Running time (in seconds) of the algorithm as a function of the dimension n,

for different 1000-point datasets: standard normally distributed, uniformly

distributed on a unit cube, and uniformly distributed on a portion of a s.o.c.

The reported numbers correspond to the averages corresponding to 10 runs

of the algorithm for each dataset type. 124

4.6 Running time (in seconds) of the algorithm as a function of the dimension

n, for different 10, 000-point and 100, 000-point datasets: standard normally

distributed, uniformly distributed on a unit cube, and uniformly distributed

on a portion of a s.o.c. The reported numbers correspond to the averages

corresponding to 10 runs of the algorithm for each dataset type. 124

4.7 Running time (in seconds) of Algorithm 4.4, MOSEK and SDPT3 solvers, for

datasets with points standard normally distributed, with different dimension

n and number of pointsm. The reported numbers correspond to the averages

corresponding to 10 runs for each m and n combination. 128

xii

4.8 Running time (in seconds) of Algorithm 4.4, MOSEK and SDPT3 solvers,

for datasets with points uniformly distributed in a unit cube, with different

dimension n and number of points m. The reported numbers correspond to

the averages corresponding to 10 runs for each m and n combination. . . . 128

4.9 Running time (in seconds) of Algorithm 4.4, MOSEK and SDPT3 solvers, for

datasets with points uniformly distributed in a portion of a s.o.c., with differ-

ent dimension n and number of points m. The reported numbers correspond

to the averages corresponding to 10 runs for each m and n combination. . . 129

xiii

List of Figures

2.1 Illustration of the minimum enclosing ball problem in R2. 16

2.2 Illustration in R2 of the unique ball with center in the affine space of a set of

affinely independent points on its boundary. The lines represent the bisectors. 18

2.3 Illustration of a basis in R2. 20

2.4 Illustration of the Update Sj step: Initially Sj = {p1, p2, p3} and p is the

infeasible point chosen. After this step, p1 is dropped and Sj = {p2, p3, p}. . 22

2.5 Illustration of the directional search procedure in R2. 25

3.1 Illustration of the minimum 20-enclosing ball for a 25-point dataset in R2. . 43

3.2 Search tree for m = 5 and k = 3. 45

3.3 Minimum solution search tree for m = 5 and k = 3. 52

3.4 Illustration of the different randomly generated datasets with 1000 points in

R2. 57

3.5 Illustration of the optimal k-enclosing balls for different levels of coverage. . 62

3.6 Gurobi vs. B&B for different 10-dimensional normal and uniform datasets

with 100 points. The results correspond to the averages of 10 instances of

each dataset. 64

4.1 A geometric interpretation of the InfQ problem: its solution is the point x∗

with maximum x0 such that pi ∈ x∗ + Q, for all given points pi. 79

4.2 The smallest enclosing ball of a set of balls. 81

4.3 The smallest intersecting ball of a set of balls. 81

4.4 The largest enclosed ball in a set of balls. 81

xiv

4.5 The smallest radius ball that simultaneously intersects a set of balls and

encloses another set of balls. 81

4.6 Different bases in R3 with different cardinality. 87

4.7 Illustration of the curve when Sj = {p1} ⊂ R3. 97

4.8 Illustration of the curve when Sj = {p1, p2} ⊂ R3 and c = 0. 97

4.9 Illustration of the curve when Sj = {p1, p2} ⊂ R3 and c 6= 0. 97

4.10 Illustration of the affinely dependent case in R3. 104

4.11 Flowchart of the algorithm. 110

4.12 Number of points on the optimal basis and number of basis updates as a

function of the dimension, for 1000-point standard normally distributed and

uniformly distributed un a unit cube datasets. The reported numbers corre-

spond to the averages over 10 runs. 120

4.13 Number of points on the optimal basis and number of basis updates as a

function of the dimension, for 10, 000-point and 100, 000-point standard nor-

mally distributed and uniformly distributed on a unit cube datasets. The

reported numbers correspond to the averages over 10 runs. 120

4.14 Number of points on the optimal basis, number of basis updates, and num-

ber of iterations as a function of the dimension, for 1000-point uniformly

distributed on a portion of a s.o.c. datasets. The reported numbers corre-

spond to the averages over 10 runs. 121

4.15 Number of points on the optimal basis, number of basis updates, and number

of iterations as a function of the dimension, for 10, 000-point and 100, 000-

point uniformly distributed on a portion of a s.o.c. datasets. The reported

numbers correspond to the averages over to 10 runs. 121

xv

1

Chapter 1

Introduction

This dissertation revolves around the analysis, development, and application of simplex-like

methods for spherical enclosure problems of points and spheres (informally referred to as

balls). This introductory chapter presents some background concepts, reviews relevant work

on the topic, and outlines the novel contributions of this dissertation.

1.1 Overview

1.1.1 The minimum enclosing ball of points and balls

The minimum enclosing ball (MB) problem can be formulated as follows: given a set of

m objects in the Euclidean space Rn, find the n-dimensional hypersphere (ball) with the

smallest radius that encloses all objects in the set. The scope of this dissertation is concerned

with the case when the objects are either points or balls. The minimum enclosing ball of

points can be seen as a particular case of the minimum enclosing ball of balls where all

given balls have a radius equal to zero.

The problem of enclosing a given set of points/balls with a minimum radius ball is an

important and active problem in computational geometry and optimization. The problem

is also referred in the literature as minimum covering ball, smallest enclosing disk, min-

imum spanning ball, minmax location, Euclidean 1-center, optimal bounding sphere, etc.

2

Applications include facility location [54, 75, 87]; computer graphics [59, 66]; and industrial

manufacturing [39, 58]. Further typically high-dimensional applications arise in machine

learning, and involve, e.g., support vector machines [22, 85, 102], clustering [12, 18], and

farthest-neighbor approximation [49]. In all of these applications, when the data are not

spherically-shaped, one may apply a linear transformation to it in an attempt to make it

spherically-shaped, and then enclose it with a sphere. That can be accomplished by calcu-

lating the spectral decomposition of the covariance matrix of the data, and use it to rotate

and rescale the data.

Combinatorial nature

It is well known that the minimum enclosing ball of a set of points is unique and defined

by at least 2 and at most n + 1 points lying on the ball’s boundary. Thus, a brute-force

computation of the optimal ball can be performed by considering all possible subsets of

2, 3,..., and n + 1 points, and computing the smallest radius ball that passes through the

points of each subset, when it exists. Finding such ball boils down to a linear system of

equations which is inconsistent when such ball does not exist. Of course, such a brute-force

method is prohibitively slow.

Similarly, the minimum enclosing ball of balls is defined by at least 1 and at most n+1

balls tangent to the boundary of the optimal enclosing ball. The problem of finding the

smallest ball that is tangent to and encloses k ≤ n balls, instead, boils down to a relatively

simple nonlinear system of equations.

Early work

The minimum enclosing ball problem of points has been studied since as early as 1857 when

Sylvester studied the planar case [98]. An interesting account of the work that followed

Sylvester is presented in a paper from 1941 by Blumenthal and Wahlin [14].

Much of the early work on the MB problem of points focused on the two or three-

dimensional case [68, 11, 37, 93, 60, 13, 96]. A breakthrough occurred in 1983 when Megiddo

gave the first deterministic algorithm based on a prune-and-search technique that solves

the MB problem in O(m) time when the dimension n is fixed [73]. This result has more

3

of a theoretical meaning since the actual implementation of the method is impractical.

Dyer [34] further improved Megiddo’s technique, and later, Megiddo extended it to the case

of enclosing balls instead of points [74].

In 1991, Welzl proposed a simple randomized algorithm for the minimum enclosing

ball of points with expected running time O(nn!m) [104]. Gärtner later improved Welzl’s

algorithm [44], but it remained practical only for small dimensions (n < 30). Fischer and

Gärtner proved that Welzl’s algorithm cannot be generalized to the case of the minimum en-

closing ball of balls, except when the centers of the given balls are affinely independent [41].

After Welzl’s paper, some of the subsequent advances on the MB problem were accom-

plished under the umbrella of a more general abstract framework of optimization problems

called LP-type problems.

LP - type problems

Introduced by Sharir and Welzl in [94], the abstract framework of LP-type problems is a class

of problems that captures some combinatorial properties of linear programing. An LP-type

problem is given by a pair (H, w), where H is the finite set representing the constraints, and

w is a function, w : 2H →W, for a totally ordered1 set (W,≤) with minimal element −∞.

For every subset G ⊆ H, w(G) is denoted by the value of G and corresponds to the minimum

value of the objective function when subject to the constraints in G. Such a pair (H, w) is

an LP-type problem if it satisfies the monotonicity and locality axioms:

Monotonicity axiom: For any F,G with F ⊆ G ⊆ H, we have w(F) ≤ w(G).

Locality axiom: For any F ⊆ G ⊆ H with −∞ 6= w(F) = w(G) and any h ∈ H, w(G) <

w(G ∪ {h}) implies w(F) < w(F ∪ {h}).

The goal of an LP-type problem is to compute an inclusion-minimal2 subset B ⊆ H such

that w(B) = w(H), that is, B is a basis of H. In other words, B is a basis in the LP-type

sense if it contains no elements that are redundant for determining the optimum solution of

1A binary relation ≤ is a total order (or linear order) on W if the following three properties hold for any
elements u, v,w ∈ W: if u ≤ v and v ≤ u then u = v (antisymmetry); if u ≤ v and v ≤ w then u ≤ w

(transitivity); either u ≤ v or v ≤ u (connexity).
2A set is inclusion-minimal with respect to some property if it fulfills the property but none of its subsets

does.

4

minimizing the objective function subject to B. The combinatorial dimension of an LP-type

problem is the maximum cardinality of a basis of any subset of H.

It turns out that the MB problem of balls (and thus of points) is an LP-type prob-

lem [41, 69]. It is easy to see that both axioms hold for (H, w), with H the set of balls

to be enclosed, and w(F) the radius of the smallest ball that encloses F ⊆ H assuming

w(∅) = −∞ (thus W = R+
0 ∪ {−∞}). The combinatorial dimension of the MB problem is

n+ 1 for both the case of points and balls.

Other examples of LP-type problems are finding the minimum distance between two

closed polytopes, computing the ellipsoid with the smallest volume containing a given set of

points, or computing the ball with the smallest radius that intersects a given set of closed

convex objects. For more examples, see [46, 69]. As the name suggests, linear programs

can be formulated as an LP-type problem [35].

The algorithms for LP-type problems rely on the following two primitive operations:

Violation test: Given a basis B ⊆ H and a constraint h ∈ H, determine whether w(B) <

w(B ∪ {h}).

Basis computation: Given a basis B ⊆ H and a constraint h ∈ H, find a basis of B ∪ {h}.

Once an optimization problem is known to be an LP-type problem and an implementation

of the two primitive operations is available, several algorithms can be applied to solve

the problem. Examples of such algorithms are the randomized algorithms by Sharir and

Welzl [94], Clarkson [26], and Matoušek et al. [69, 71], or the derandomized version of

Clarkson’s algorithm by Chazelle and Matoušek [23]. Of theoretical relevance is the result

that any LP-type of combinatorial dimension δ with size m = |H| can be solved with an

expected number of O(δm) + eO(
√
δ log δ) primitive operations, provided some initial basis is

available [46]. Thus, if the primitive operations can be implemented in polynomial time (or

subexponential) in δ and m, then the problem can be solved in an expected subexponential

time.

In terms of the MB problem, the violation test is an easy task. However, the basis

computation is not trivial. An exhaustive search is always an (undesirable) possibility.

5

Gärtner showed in [43] how the basis computation can be done in subexponential time for

the case of the MB problem of points. A more practical approach was given in [47], by

presenting a randomized algorithm with expected complexity O(1.5n). This bound could

be further improved by transforming the problem into a unique sink orientation (USO)3,

which can be solved in an expected O(1.47n) time [99].

For the case of the MB of balls, Fischer and Gärtner showed in 2004 that Welzl’s

algorithm [104] could be used to solve the basis computation operation by embedding the

balls in Rn+1 and perturbing the centers so they are affinely independent [41]. This option,

however, requires an exponential amount of time. In the same paper, they also show how

one can reduce the basis computation to a USO problem.

In 2009, in the context of a dual simplex-like algorithm for the MB of points, Dearing

and Zeck presented a polynomial method to perform the basis computation [33]. We discuss

this algorithm in Chapter 2, where we also present an improvement of the method. In

Chapter 4 we present an algorithm that can be seen as a generalization of Dearing and

Zeck’s for the case of the MB of balls, which as a byproduct also yields a polynomial-time

basis computation for this problem.

For a comprehensive survey and historic account on LP-type problems we refer the

interested reader to [35].

Convex programming approach

The MB problem for points can easily be converted to a quadratic program (QP) that

is convex. Quadratic programs are typically solved by interior-point methods or active

set methods. If the Hessian of the objective function and/or the constraint matrix of the

QP is large and sparse, then an interior-point method is usually the method of choice.

For small to medium-sized problems with dense matrices, active set methods are usually

preferable.

3A unique sink orientation (USO) is an orientation of the edges of a hypercube such that every face of
the cube has in its induced subgraph a unique vertex with no outgoing edges (sink). The USO problem
consists of finding the sink of the induced graph.

6

Active-set methods are iterative methods that solve a sequence of equality-constrained

quadratic subproblems, with the goal of predicting the active set, that is, the set of active

constraints at the optimal solution. Active-set methods generally require a large number

of iterations in which each search direction is relatively inexpensive to compute since it

involves only a subset of the variables of the problem. The most famous active set method

in the optimization literature is the Simplex method for linear programs (LP), introduced in

1947 by Dantzig [29]. There are several extensions of the Simplex method to solve QPs, see

for instance [105, 103, 51, 45]. In particular, the method of [45] was developed for solving

QPs that arise from problems in computational geometry, such as the MB of points. The

methods that Chapters 2 and 4 revolve around can also be considered to belong to the class

of active set methods.

The MB problem for balls is not known to be a QP, but it is a second-order cone pro-

gram (SOCP). Thus its solution usually relies on interior-point methods, such as the primal-

dual path following algorithms, [82, 83, 84]. Interior-point algorithms generate interior-

points for the primal and dual problems that follow the so-called central path, which con-

verges to a primal-dual optimal solution in the limit. Each interior-point iteration consists

of solving a linear system resulting from the application of Newton’s method to the KKT

conditions of the modified problem with a logarithmic barrier function. In terms of the MB

problem, each interior-point iteration has O(mn2+n3) computational complexity [65, 110],

and an interior point method would be guaranteed to get an approximate solution with

an error of at most ε in O(
√
n log 1

ε) iterations. In practice, the number of iterations in

interior-point methods is often very small and independent of the problem dimension.

Simplex-like methods

Consider a linear program in standard form

min
x∈Rn

cTx

s.t. Ax = b

x ≥ 0,

7

such that A ∈ Rm×n, and its dual

min
y∈Rm

bTy

s.t. ATy ≤ c.

A basis, in the context of linear programming, is a subset of m linearly independent columns

of A. Let B be the indexes of the columns of a basis and B a matrix containing those

columns. A basic solution is a vector x such that xj = (B−1b)j, for j ∈ B (these are the

basic variables), and xj = 0 for j 6∈ B (the non-basic variables). A basic solution that is

(primal) feasible (x ≥ 0), is called a basic feasible solution (b.f.s.). A dual basic solution

(d.b.s.) is a vector y such that BTy = c. If y is feasible for the dual problem (ATy ≤ c),

then it is called a dual basic feasible solution (d.b.f.s.).

Now, we briefly explain how a linear program can be solved by the Simplex method,

focusing on an interpretation of the algorithm’s mechanics that easily allow it to be extended

to other problems. For the sake of simplicity, we disregard issues such as unboundedness or

degeneracy. For a detailed discussion on the Simplex method for LP, see e.g., [25].

At each iteration, called pivot, the Simplex method moves from one basic solution to

another basic solution, by replacing a basic variable by a non-basic variable. The primal

variant of the Simplex method does so while maintaining primal feasibility and decreasing

the value of the objective function at each iteration. An iteration of the primal Simplex

method is composed of two main parts: pricing, which either certifies that the current

b.f.s. is optimal by checking whether the corresponding d.b.s. is dual feasible, or selects a

non-basic variable corresponding to an infeasible dual constraint to become basic; and the

ratio test, which basically consists in solving the problem of moving as far as possible in the

direction that maintains primal feasibility, keeps the non-basic variables zero, and decreases

the value of the objective function. When we consider moving in that direction, the search

stops when one of the basic variables becomes zero. Such a variable becomes non-basic,

and a new iteration starts with the new b.f.s..

The dual Simplex method works analogously. It starts with a d.b.f.s. and keeps dual

feasibility throughout the iterations. Each iteration starts with the dual pricing phase,

8

which either certifies optimality by checking primal feasibility of the primal basic solution

corresponding to the current d.b.f.s., or selects a basic (primal) variable that has negative

value to become non-basic. The ratio test solves the following problem: how to move and

how far in the direction that keeps all dual constraints feasible, in particular, keeps the dual

constraints corresponding to basic variables active, and increases the value of the objective

function (of the primal). The non-basic variable that corresponds to the dual constraint

that first becomes active as we move in that direction is the one to become basic. After the

ratio test, a new iteration starts.

A simplex-like algorithm is an algorithm that in its essence behaves like the Simplex

methods described above. As we have mentioned, there are several simplex-like methods for

QP, e.g., [105, 103, 51, 45]. Contrarily to LP, where there is always an exchange in the basis

at each iteration, in QP, that may not be the case: it can happen that a variable enters the

basis, but there is no leaving variable; and it can happen that even if some leaving variable

is found, the solution at that point is not basic. In this case, the pivot step continues, and

more variables may leave the basis until another basic solution is discovered.

Simplex-like algorithms have been proposed for the minimum enclosing ball of points

problem. First, Fischer and Gärtner proposed in 2003, [42], a primal algorithm for the

MB problem of points based on previous ideas from [58]. Their algorithm starts with a

ball that encloses all points, and at each iteration, a pivot-like procedure deflates the ball

until it cannot shrink any more without losing coverage of a point. To avoid cycling, they

adapt Bland’s rule for the Simplex method for LP. In practice, the algorithm is shown to

be able to solve large instances (n ≤ 10000) in a practical amount of time. In Section 2.3,

we present a brief overview of this algorithm. Later, in 2009, Dearing and Zeck proposed

a dual simplex-like algorithm for the same problem [33]. Their algorithm starts with the

smallest ball that encloses a subset of the points. At each iteration, a point that is not yet

enclosed is selected, and a pivot-like procedure inflates the ball until the selected point is

enclosed. The radius of the ball strictly increases at each iteration, so cycling cannot occur.

This algorithm is the subject of Chapter 2, and as we will show, it can also deal with large

dimensions efficiently. The algorithms in [42] and [33] have been extended to the problem of

9

solving the weighted minimum enclosing ball of points in [31] and [32], respectively.

To the best of our knowledge, no simplex-like algorithm, other than the one introduced

in this dissertation (Chapter 4), has been proposed to solve the problem of the minimum

enclosing ball of balls.

Besides providing an exact solution, an advantage of simplex-like methods over interior-

point methods is that the former generates basic solutions. In the case of the MB problem,

that means knowing which input points (or balls) determine the optimal enclosing ball,

which can be of importance for some applications. Additionally, if, after solving the problem,

the problem undergoes small changes (e.g., a new constraint is added), a simplex-like method

will often require a small number of iterations to calculate the new solution when it starts

from a solution to the original problem. One situation of this type is, for instance, branch-

and-bound algorithms for solving integer programs, where each node in the branch-and-

bound tree requires the solution of a linear program that differs only slightly from the one

already solved in the parent node. However, we do not have any polynomial complexity

guarantees for simplex-like algorithms as we have for interior-point methods.

Approximation algorithms

So far, we have only mentioned exact algorithms to solve the MB problem of points/balls (we

will restrict ourselves to such methods in this dissertation). However, several approximation

algorithms have also been proposed in the literature. As an example, we have the algorithms

for the MB of points of Ritter [89] and of Wu [106]. In particular, approximation algorithms

based on the concept of ε-core-sets have received much attention. A ε-core-set is a subset

of the input points whose minimum enclosing ball, when scaled by a factor of 1 + ε, is

guaranteed to enclose the entire input point set [17]. A remarkable property is the fact

that any point set admits a ε-core-set of size d 1εe (independent of the dimension) [15, 16].

Several (1+ε)-approximation algorithms focused on finding ε-core-sets have been proposed,

e.g. [17, 65, 1, 107, 67], being in general able to deal with large dimensions in a practical

amount of time. The algorithms in this family with the best theoretical complexity take

O(mnε) time [86, 107]. The results and algorithms involving ε-core-sets are also valid for the

10

case of enclosing balls.

Approximation algorithms based on the SOCP formulation of the minimum enclosing

ball of points/balls have also been considered. In [65], Kumar et al. use ε-core-sets on top

of the SOCP formulation to obtain an approximation algorithm. In [110] instead, Zhou et

al. propose an interior-point algorithm that exploits the particular structure of the matrix

necessary to calculate the search direction at each iteration. In both cases, large-dimensional

problems can be handled. In [110], the authors present another method based on a smooth

approximation of the non-differentiable minimax formulation4 of the MB problem.

More recently, (1+ε)-approximation algorithms were proposed by Saha et al. [92] and

Allen-Zhu et al. [9] which achieve time complexity of O(Cmn√
ε
) (C is an upper bound on the

norm of the input points) and O(mn+ m
√
n√
ε
), respectively.

Finally, streaming algorithms, that is, algorithms that only allow one pass over the

input data, have also been studied for the MB of points. Zarrabi-Zadeh and Chan [109]

gave a 1.5-approximation streaming algorithm, and later an algorithm by Agarwal and

Sharathkumar [3] was able to improve the approximation factor to 1.22 [21].

Filtering heuristics

Heuristics that identify points on the interior of the optimal enclosing ball of points have

been proposed in the literature, using various techniques [5, 63, 88]. With these heuristics,

one can discard some points from the input set, possibly allowing a faster solution of the

MB problem of points.

The minimum-volume enclosing ellipsoid

A generalization of the MB problem of points is the problem of enclosing the points with

a minimum-volume ellipsoid instead of a minimum-radius ball. Minimum-volume enclosing

ellipsoids play an important role in several applications such as optimal design, computa-

tional geometry, statistics, etc. For a comprehensive study of this problem, we refer the

reader to [100].

4See Chapter 2.

11

1.1.2 The minimum k-enclosing ball of points

Consider a dataset P of m points in Rn. In real-world applications we often need to assume

the presence of outliers in the given dataset. In such cases, we may be given a fraction of the

points that we either want to enclose or to leave out. The minimum k-enclosing ball problem,

MBk problem in short, is a natural generalization of the MB problem, where one seeks to

enclose at least k of the m points with a ball with the smallest radius. The requirement to

enclose only a fraction of the points with a minimum enclosing ball makes the problem not

only non-convex but also highly combinatorial. The MBk problem is NP-hard and admits

no fully polynomial-time approximation scheme (FPTAS)5 (assuming P 6= NP) [95].

Most of the applications of the MBk problem are variants of the applications of the

MB problem (previously described in Section 1.1.1) that are robust to outliers. Another

application arises in robust regression in statistics, with the problem of minimum volume

ball estimator (MVBE) [90, 28]. The MVBE is a least-median-squares-location estimator,

corresponding to finding a point that minimizes the median of its Euclidean distances to

points in a dataset. Thus, it consists of finding the minimum volume hypersphere that

covers at least half of the data points (k = d 12me). This estimator has a high breakdown

point (it can detect a large number of outliers) and can be used in the covariance estimator

of multivariate data. The MVBE can be generalized to quantiles 0 < q < 1 other than the

median, yielding an MBk problem with k = dqme. The MVBE is a particular case of the

minimum volume ellipsoid estimator.

Previous work

The initial approaches to solving the MBk focused on the exact solution of the planar

case. One approach is based on the construction of high-order Voronoi diagrams6 and

a search in some or all of its cells [4]. Efrat et al. [36] gave two algorithms that make

use of the parametric search technique (due to Megiddo [72]) and that solve the problem in

5An (1+ ε)-approximation algorithm is an FPTAS if its running time is polynomial in both the problem
size and 1/ε.

6Given a set of points P in the plane, a k-th order Voronoi diagram is a division of the plane in regions
(cells). Each cell is associated with a k-subset of P and corresponds to the points in the plane that are closer
to the points of that k-subset than to any other points.

12

O(mk log2m); Matoušek developed a simple randomized search algorithm that has expected

running time O(m logm+mk) [70].

Eppstein and Erickson [38] developed an algorithm that works for any dimension, and

that reduces the problem to O(m/k) subproblems of O(k) points each, by finding O(k)

nearest neighbors for each point. Later, Datta et al. [30] proposes the same reduction but

using techniques for closest pair problems instead of nearest neighbors. Both algorithms in

[38, 30] solve the problem in O(m logm+mkn−1 log2 k) time.

Approximation algorithms started to be developed more recently. Mount et al. [78]

proposed a (1 + ε)-approximation algorithm that runs in O(m logm + (1ε)
O(n)), and that

can be applied to other k-enclosing problems. Har-Peled and Mazumdar [55] focused on

the planar case and presented a linear 2-approximation algorithm by dividing the plane in

grids, based on which they developed both a randomized exact algorithm and a (1 + ε)-

approximation algorithm for the MBk problem. The same ideas were further explored in [56]

for large dimensions, where an (1 + ε)-algorithm with expected O(m/εn) time was shown

as an application of a more general framework to solve several computational geometry

problems. Other approximation algorithms have been developed based on the computa-

tion of a (robust) core-set (subset of the input point-set whose MBk solution is a (1+ε)-

approximation of the solution of MBk(P)) [2, 57]. These algorithms find such a subset of

size O((n− k)/εO(d)) in O(n+ (n− k)/εO(d)) time. Another approximation algorithm with

O(m1/ε2+1n) time is discussed in [95].

Variations of the MBk problem have also been studied, such as the MBk problem in

the plane with center restricted to a given line [64], or the case when each point has a

color associated and we want to find the MBk ball that encloses at least k points of a given

color [10].

Branch-and-bound methods

The branch-and-bound (B&B) paradigm is a widely used tool in combinatorial optimization.

Hence it is a natural choice to obtain an exact solution of the MBk problem. A B&B

algorithm searches the feasible set by dividing it into disjoint subsets organized in a tree

13

structure. The use of bounds for the function to be optimized combined with the value of

the current best solution enables the algorithm to discard parts of the feasible set, meaning

only a portion of the nodes of the tree is visited. An important question in B&B is how

to specify the order in which nodes are visited. An effective node ordering strategy guides

the search to promising areas in the tree and improves the chance of quickly finding a good

incumbent solution, which can be used to rule out other nodes.

There are several ways one could employ a B&B framework for the MBk problem. One

possibility is a B&B algorithm on the tree of all k-subsets of the input point set (subsets of

size k). Chapter 3 focuses on the study of such an algorithm.

1.2 Contributions and outline of the dissertation

This dissertation focuses on the study, development, and application of simplex-like methods

for the minimum enclosing ball of points and of balls.

Chapter 2 addresses the dual simplex-like algorithm proposed by Dearing and Zeck to

solve the MB problem of points [33]. The main contribution of Chapter 2 is a modification

of the algorithm’s directional search that makes it computationally more efficient. This

modification, together with an implementation that uses efficient updates of the QR fac-

torization of a particular matrix, yields a directional search with O(n2) complexity, where

n is the dimension of the points from the input set. This is an improvement with respect

to the original algorithm’s directional search procedure, which could not achieve a com-

plexity better than O(n3). We conclude with some computational results that show that

the modification we propose decreases the running time considerably when we increase the

dimension. The novel contributions presented in this chapter are published in [20].

Chapter 3 covers an application of the algorithm studied in Chapter 2. In this chapter,

we consider the problem of the minimum k-enclosing ball of points. Our main contribution

consists in a branch-and-bound algorithm that builds the tree of all k-subsets of the input

point set, that is, subsets of size k, and that uses the algorithm by Dearing and Zeck [33]

to solve the MB problem of points in each node. The nodes on the tree are ordered in a

14

suitable way, which, complemented with a last-in-first-out search strategy, allows for only

a small fraction of nodes to be explored. We study several aspects of the algorithm and

present a thorough analysis of its computational performance for different datasets.

Chapter 4 covers the most significant contribution of this dissertation. In this chapter,

we address the MB problem of balls and present a dual simplex-like algorithm to solve it.

To the best of our knowledge, this is the first simplex-like algorithm to be developed for

this problem. We consider the SOCP formulation of the MB problem of balls and, since

other geometric problems, like the smallest intersecting ball of a set of balls, also share the

same formulation, we refer to it as the problem of finding the infimum with respect to the

Second-Order cone Q, or InfQ problem for short. We start by studying the InfQ problem

in depth, presenting many of its properties and laying the groundwork for the algorithm.

Then, we introduce a dual simplex-like algorithm to solve the InfQ problem, whose main

feature is a pivot-like step that consists of an exact curve search. We also describe how

the algorithm can be efficiently implemented by keeping the Cholesky factorization of a

particular matrix, and present computational results that show that our algorithm can

handle even large datasets in practical time.

15

Chapter 2

The minimum enclosing ball of

points

Given a set P = {p1, . . . , pm} of distinct points in Rn, the problem of the minimum enclosing

ball of points (MB problem for short or simply MB(P)), consists on determining the ball

of smallest radius that encloses all points in P. Figure 2.1 illustrates the problem in R2.

Considering x and r, the center and radius, respectively, the MB problem of points can be

formulated as

MB(P) :
min

x∈Rn, r∈R
r

s.t. ‖pi − x‖ ≤ r, ∀pi ∈ P.

(2.1)

One can also use the equivalent min-max formulation:

MB(P) : min
x∈Rn

max
pi∈P

‖pi − x‖.

This chapter’s main contribution is a modification of the dual simplex-like algorithm pro-

posed by Dearing and Zeck [33] to solve the MB problem of points. Each iteration of the

original algorithm performs a sequence of directional searches. Each one of these directional

searches consists, among other things, in finding the intersection of a line with O(n) hy-

perplanes. This results in a directional search procedure with computational complexity no

better than O(n3). We modify the directional search procedure in such a way that, together

16

Figure 2.1: Illustration of the minimum enclosing ball problem in R2.

with an implementation using QR updates, allows it to be done in O(n2) time. The results

shown in this chapter are published in [20].

This chapter is organized as follows. Section 2.1 presents some essential background

about the problem such as optimality conditions and duality. Section 2.2 summarizes the

algorithm that is the subject of our work, the dual simplex-like algorithm by Dearing and

Zeck [33]. For the sake of completeness, we briefly describe the primal simplex-like method

for the MB problem proposed by Fischer, Gärtner, and Kutz [42], in Section 2.3. Section 2.4

introduces a modification to the algorithm by Dearing and Zeck that improves its running

time, and Section 2.5 presents the details of how one can implement the new algorithm. Fi-

nally, Section 2.6 gives some computational results and concludes with the practical impact

of our work.

In this chapter, whenever we refer to the minimum enclosing ball problem or the MB

problem, we are always referring to the case of enclosing points.

2.1 Properties of the MB problem

This section briefly presents some properties of the MB problem of points that are relevant

to the subsequent sections. We omit many details since an extensive study of the same prop-

erties for the more general case of the MB problem of balls is presented in Section 4.2.

Problem (2.1) can easily be transformed into a quadratic program (QP), by squaring

17

the objective function and both sides of the constraints, and considering w = r2−xTx:

min
x∈Rn,w∈R

xTx+w

s.t. 2pTi x+w ≥ pTi pi, ∀pi ∈ P.

The Hessian of the objective function is positive semi-definite, we have a convex problem.

Although the MB problem is not strictly convex, its solution is unique. For proof of this

claim, we refer the reader to Theorem 4.3 from Chapter 4, where the uniqueness of the

solution of a more general problem is proved.

Optimality conditions and geometric interpretation

It is easy to see that Slater’s constraint qualification condition is satisfied. To obtain

a strictly feasible solution for (2.1) simply consider x = pk for any pk ∈ P, and r =

maxj=1,...,m ‖pj − pk‖+ ε, for any ε > 0. This, together with the fact that problem (2.1) is

convex, implies that the the optimal solution satisfies the Karush-Kuhn-Tucker conditions

and these are also sufficient (see for example [91, §3]).

Theorem 2.1 (Karush-Kuhn-Tucker conditions for the MB problem). Let x∗ and r∗ be

feasible for problem (2.1). Then x∗ and r∗ constitute the optimal solution to (2.1) if and

only if there exists Lagrange multipliers λ∗ ∈ Rm such that

x∗ =

m∑
i=1

λ∗ipi,

m∑
i=1

λ∗i = 1, λ∗i ≥ 0, i = 1, ...,m,

and the complementary slackness conditions are satisfied

λ∗i

(
(r∗)2 − ‖pi − x∗‖2

)
= 0, i = 1, ...,m.

The complementary slackness conditions imply that the Lagrange multipliers corre-

sponding to points that are not on the boundary of the optimal ball must be zero. Therefore,

we can conclude that the center of the optimal ball is a convex combination of the points on

the boundary of the optimal ball. Theorem 2.1 can then be rephrased in geometric terms

(Corollary 2.2).

18

Figure 2.2: Illustration in R2 of the unique ball with center in the affine space of a set of
affinely independent points on its boundary. The lines represent the bisectors.

Corollary 2.2 (Geometric interpretation of the KKT conditions). Consider a ball B(x∗, r∗)

with center at x∗ and radius r∗ that encloses all points in P. Let S ⊆ P be the set of points

on the boundary of B(x∗, r∗). The ball B(x∗, r∗) is the minimum enclosing ball of P if and

only if x∗ ∈ conv(S).

Let S := {p1, ..., ps} be the set of points on the boundary of ball B(x, r). Then, the

center x must satisfy

‖x− pi‖2 = ‖x− p1‖2 , ∀pi ∈ S \ {p1}. (2.2)

These conditions are easily transformed in linear equations that define hyperplanes often

denoted as bisectors. Given, pi and pj, a pair of points in Rn, we define the bisector Bi,j as

the hyperplane that bisects and is orthogonal to line segment pipj, that is,

Bi,j :=

{
x ∈ Rn : (pi − pj)

Tx =
1

2
(pi − pj)

T (pi + pj)

}
.

Thus, conditions (2.2) are equivalent to x ∈ Bi,1, for i ≥ 2.

Given a set of points S, there may be many balls that have S on the boundary and

satisfy (2.2). However, if S is affinely independent then there is a unique ball with center

at aff(S) that passes through the points of S (Figure 2.2). This claim is easy to prove from

a linear algebra argument.

For a comprehensive study on the geometric properties of minimum enclosing balls,

we refer the reader to [40].

19

Duality

The dual problem of (2.1) can be formulated as:

max
λ∈Rm

m∑
i=1

λi ‖pi‖2 −

∥∥∥∥∥
m∑
i=1

λipi

∥∥∥∥∥
2

s.t.
m∑
i=1

λi = 1

λi ≥ 0, i = 1, . . . ,m.

The optimal solution λ∗ to the dual problem gives the coefficients of the convex combina-

tion of the center of the optimal ball in terms of the points on its boundary. Given this

interpretation, it becomes clear that the dual problem may not have a unique solution.As

a consequence of the convexity of (2.1) and the satisfaction of Slater’s condition, strong

duality holds.

The definition of basis

As mentioned in Section 1.1.1 the minimum enclosing ball problem is an LP-type problem.

If we adopt the LP-type definition of basis, we obtain Definition 2.3.

Definition 2.3 (Basis for the MB problem). A subset S ⊆ P is called a basis if no proper

subset S ′ of S is such that MB(S ′) =MB(S). A subset S ⊆ P is said to be an optimal basis

if S is a basis and MB(S) =MB(P).

From Corollary 2.2, we conclude that the points of an optimal basis must be on the boundary

of the optimal ball. Moreover, the inclusion-minimal property implies that a basis must be

an affinely independent set. That is easy to see: if a ball has an affinely dependent set S on

its boundary then there is at least one point p ∈ S such that MB(S) =MB(S\ {p}). A basis

has therefore at most n+ 1 points. However, not all affinely independent sets of points on

the boundary of a ball are bases, as Figure 2.3 illustrates.

The following result follows trivially.

20

(a) {a, b} is a basis (b) {a, b, c} is a basis (c) {a, b, c} is not a basis

Figure 2.3: Illustration of a basis in R2.

Theorem 2.4. Let S ⊆ P be a set of affinely independent points on the boundary of the

minimum enclosing ball of P, B(x∗, r∗). Then S is a basis if and only if x∗ ∈ ri conv(S) and

‖x∗ − pi‖ = r∗, for all pi ∈ S.

2.2 The dual simplex-like algorithm by Dearing and Zeck

Dearing and Zeck proposed in 2009 a dual simplex-like algorithm to solve the MB problem

in [33]. We will refer to this algorithm by ”DZ algorithm”. Their algorithm is a generaliza-

tion of the one by Elzinga and Hearn [37] to dimensions larger than 2.

The DZ algorithm works as follows. At the beginning of each main iteration j =

0, 1, 2, ..., we have xj and rj the solution of MB(Sj), where Sj ⊆ P is a basis. Hence, the

points in Sj are affinely independent. If the current solution corresponds to a ball that

encloses all points in P, then it solves MB(P). Otherwise, a point p that is not yet enclosed

is chosen to enter Sj. In the next step, Sj is updated: either p is added to Sj or an existing

point in Sj is replaced by p. In either case, the algorithm guarantees that points in Sj remain

affinely independent. The next and main step of the algorithm consists of finding the next

iterate. That will be accomplished in several sub-iterations, where an exact directional

search is performed in each one, and a point is removed from Sj, until the point p becomes

enclosed and the remaining Sj constitutes a basis.

The algorithm is finite since the radius strictly increases at each main iteration, and

the algorithm stops when all points have been enclosed. Though the concept of basis is

21

never mentioned in the original paper, as we will observe, at the end of each main iteration,

we always have that Sj ⊆ P is a basis. At the end, when all points of P are enclosed, the

algorithm returns an optimal basis of MB(P).

Before we present the algorithm in detail, let us introduce some definitions and nota-

tions. Let S = {p1, ..., ps} ∈ Rn be an affinely independent set (s ≤ n+ 1). We define:

• Sub(S), the (s−1)-dimensional linear space parallel to aff(S), that is, the column space

of matrix S = [p2 − p1 . . . ps − p1] (note that S is full column rank, as a consequence

of the affine independence of S);

• Null(S), the null space of matrix S, that is, the set of orthogonal vectors to Sub(S);

• Fj := conv(S \ {pj}), the facet of conv(S) opposed to point pj ∈ S, j = 1, ..., s (that is,

the facet that does not contain pj).

The DZ algorithm maintains the following invariants throughout each iteration:

• Sj is affinely independent,

• xj ∈ conv(Sj).

Moreover, with the exception of the point p that is selected to be enclosed, the primal

constraints corresponding to Sj are kept active. So, the algorithm maintains dual feasibility

and the complementary slackness conditions. The goal is to make all primal constraints

feasible, that is, enclose all points in P.

Initialization:

The routine starts with a basis S0 ⊆ P, and x0 and r0, the solution to MB(S0). If such data

is not available, the algorithm picks any two points p01 , p02 ∈ P, and considers

S0 = {p01 , p02}, x0 = 1
2(p01 + p02), and r0 = ‖x0 − p01‖.

Main iteration j:

At the beginning of each main iteration, we have the minimum enclosing ball of a basis

Sj = {pj1 , ..., pjs} ⊆ P. Thus, xj ∈ ri conv(Sj).

22

Figure 2.4: Illustration of the Update Sj step: Initially Sj = {p1, p2, p3} and p is the infeasible
point chosen. After this step, p1 is dropped and Sj = {p2, p3, p}.

Step 1. Optimality check : If all points of P are enclosed by B(xj, rj) then the

current solution is optimal to MB(P) and Sj is an optimal basis of MB(P). Otherwise, the

algorithm picks a point p ∈ P that is not yet enclosed.

Step 2. Update Sj: If Sj ∪ {p} is affinely independent, then Sj = Sj ∪ {p}, and

the invariants are maintained for the current Sj and xj. Otherwise, if Sj ∪ {p} is affinely

dependent, then Sj = Sj \ {pjk} ∪ {p} for a point pjk ∈ Sj such that Sj \ {pjk} ∪ {p} is affinely

independent and xj ∈ conv(Sj \ {pjk} ∪ {p}) (see Figure 2.4). Such a point pjk can be found

by considering

τk
−σk

= min
i=1,...,s

{
τi
−σi

: σi < 0

}
,

for τ1, ..., τs, and σ1, ..., σs, the respective solutions of

s∑
i=1

τipji = x
j,

s∑
i=1

τi = 1, and
s∑
i=1

σipji = −p,

s∑
i=1

σi = −1.

Step 3. Finding the new iterate and basis (sub-iteration): This step consists

itself of an iterative process. To find the next iterate, the algorithm uses a directional search

procedure that starts at the current center xj, and proceeds along a direction d. Thus, the

search is done on the ray `+ defined by

`+ := {xj + αd : α ≥ 0}.

As the algorithm moves on `+, it stops when the first of the following events happen:

23

Case 1. It hits a facet of conv(Sj). In this case, a point from Sj is dropped, and a new

directional search is performed next.

Case 2. It finds the optimal solution to MB(Sj) (the intersection of the bisectors

of the edges of conv(Sj) with aff(Sj)), and it is in ri conv(Sj). In this case Sj is a basis

(Theorem 2.4), and the center of MB(Sj) is the next iterate.

The details of this directional search are described below.

i. The direction d: The direction d along which the line search is performed satisfies:

(a) d is parallel to the intersection of the bisectors of the edges of the polytope

conv(Sj \ {p}), or, equivalently, it is orthogonal to Sub(Sj \ {p}). So given any point

pjk ∈ Sj \ {p}, we have

(pji − pjk)
Td = 0, ∀pji ∈ Sj \ {pjk , p}; (2.3a)

(b) d “points towards” p, in the sense that the distance to p from any point on `+

decreases as α increases, that is, given any point pjk ∈ Sj \ {p}, we have

(p− pjk)
Td = 1; (2.3b)

(c) d ∈ Sub(Sj), that is, given {ui}i a basis for Null(Sj), we have

uTi d = 0, i = 1, ..., n− |Sj|+ 1. (2.3c)

To find the direction d, the algorithm solves the linear system defined by condi-

tions (2.3) (note that it is always determined).

ii. The directional search: The ray `+ intersects both the intersection of the bisectors

of the edges of conv(Sj) and one (or the intersection of several) facet(s) of conv(Sj).

Let αb the point on `+ that corresponds to the former. It can be calculated by:

αb =
(p− pjk)

T (1
2(p+ pjk) − x

j
)

(p− pjk)
T d

, (2.4)

24

where pjk is any point of Sj \ {p}.

Let αf correspond to the intersection of `+ with the boundary of conv(Sj). To find

αf, first, the algorithm determines the intersection of `, defined as

` := {xj + αd : α ∈ R},

with the supporting hyperplanes of all the facets of conv(Sj). Note that only the

facets that contain p are relevant. Denote by αk, k = 0, . . . , |Sj| − 1, the value of α

corresponding to the intersection of ` with Fk, the facet opposed to pjk ∈ Sj \ {p}. Let

{wi}i be a basis for the null space of Null(Sj \ {pjk}). Then

αk =
(p− xj)Twi
dTwi

, for any i s.t. dTwi 6= 0. (2.5)

The value αf can be found by choosing the smallest non-negative αi, that is, αf = αl

for l given by

l = arg min
k=0,...,|Sj|−1

{αk : αi ≥ 0}. (2.6)

And the facet (or one of the facets) that is intersected by ` is the one opposed to

point pjl .

Two cases are now possible (see Figure 2.5):

Case 1: αb < αf, that is, the intersection with the bisectors occurs first. If this is the

case, the solution to MB(Sj) is the point xj + αbd, and the algorithm goes back to

Step 1 with xj+1 = xj + αbd and Sj+1 = Sj.

Case 2: αb ≥ αf. In this case the opposite point pjl ∈ Sj to the (or one of the)

intersected facet(s) is removed from Sj: Sj = Sj \ {pjl}. Note that pjl can never

be p. The algorithm now returns to the beginning of Step 3 with the new Sj and

xj = xj + αfd.

Since the algorithm only goes to the beginning of a new iteration when αb < αf,

we have xj+1 ∈ ri conv(Sj+1). Thus, at the end of this procedure, we have that Sj+1 is a

basis.

25

(a) Case 1: Sj = {p1, p2, p}. Since xb =
xj +αbd happens before xf = x

j +αfd,
xb is the center of the ball that encloses
Sj. The algorithm goes back to Step 1
with Sj+1 = {p1, p2, p}.

(b) Case 2: In the first picture: Sj = {p1, p2, p}, x
j = xi is

the current center. After the line search, the next iterate is
xf and p2 is dropped from Sj. The algorithm then goes back
to Step 3, illustrated in the second picture, with Sj = {p1, p}

and xj = xi+1 = xf. After the line search, the ball encloses
Sj. The algorithm then goes back to Step 1 with Sj+1 = Sj and
xj+1 = xi+2.

Figure 2.5: Illustration of the directional search procedure in R2.

It is possible to prove that the radius strictly increases at each main iteration [33],

thus the algorithm is finite. Note that the algorithm does not suffer from degeneracy. A

degenerate situation would occur when we have a step size 0 in the directional search. That

is, ` intersects one or more facets simultaneously at the current iterate. In that event, the

opposite point(s) to those facets are dropped from Sj at as many sub-iterations as necessary

without xj ever moving. Eventually, the center will finally be allowed to move, and a strictly

positive step size will happen, and the ball will inflate. Thus, cycling cannot occur.

26

2.3 The primal simplex-like algorithm by Fischer et al.

Before we proceed to a modification of Dearing and Zeck’s algorithm, for the sake of com-

pleteness, we briefly present a primal version of their algorithm. A primal simplex-like al-

gorithm for the minimum enclosing ball problem was proposed in 2003 by Fischer, Gärtner

and Kutz [42]. We will refer to this algorithm by the FGK algorithm. Their algorithm is

based on an idea first proposed by Hopp & Reeve in [58], and it basically starts with a ball

that encloses all the points and then deflates it, until it cannot shrink anymore without

losing a point.

Consider the unique ball that passes through the points of the affinely independent

set S, and that has center in aff(S). Let cc(S) denote the center of such ball.

Now, we introduce the main ideas behind the algorithm. Let xj, and rj be the center

and radius of the ball, respectively, at iteration j = 0, 1, 2, ..., and let Sj ⊆ P the set of points

that lie on the boundary of the ball B(xj, rj). At each iteration, the algorithm maintains

the following invariants:

• Sj is affinely independent;

• all points of P are enclosed by the current ball.

Primal feasibility and complementary slackness are kept throughout the algorithm. The

goal is to achieve xj ∈ conv(Sj), that is, dual feasibility.

Initialization:

To get S0 and x0, the algorithm picks any point p ∈ P, and makes x0 = p and S0 = {q},

where q ∈ P is a point at maximal distance from x0.

Iteration:

At the beginning of the j-th iteration, we have Sj := {pj1 , ..., pjs} affinely independent and xj,

the center of a ball that goes through Sj and encloses all points of P.

Step 1. Optimality check : The first step of the iteration is to check dual feasibility,

that is, whether xj ∈ conv(Sj). If so, xj is the center of the minimum enclosing ball of P.

27

Otherwise the algorithm goes to the Walking phase possibly preceded by a Dropping phase

in case xj ∈ aff(Sj).

Step 2. Dropping phase: If xj ∈ aff(Sj), then the algorithm enters this phase, where

a point is dropped from Sj. If xj ∈ aff(Sj), then xj = cc(Sj). Since xj 6∈ conv(Sj) there must

be at least one point pjk ∈ Sj whose coefficient in the affine combination in terms of Sj is

negative. Such a point is removed from Sj: Sj = Sj \ {pjk}, and the algorithm enters the

Walking phase next.

Step 3. Walking phase: At this stage, xj 6∈ aff(Sj), and the algorithm moves xj

orthogonally to aff(Sj) in direction of cc(Sj) in such a way that all points of Sj remain on

the boundary of the ball. As the center “walks”, the ball decreases its radius, and the

movement stops when the first of the following happens:

Case 1. A point p ∈ P hits the boundary. In this case, the algorithm goes back to the

beginning of a new iteration with Sj+1 = Sj∪{p} and xj+1 the point where the center stopped.

For this case, the algorithm has to check for new points to hit the shrinking boundary. It is

possible to prove that the points “behind” aff(Sj), that is, points q ∈ P that satisfy

(q− x)T (cc(Sj) − xj) ≥
∥∥∥cc(Sj) − xj

∥∥∥2 ,
cannot hit the boundary of the ball with center x ′ ∈ [xj, cc(Sj)]. Thus, such points do not

need to be checked. Moreover, if a point was dropped in the Dropping phase that preceded

the Walking phase, then it can also be ignored.

Case 2. The center reaches aff(Sj): If no point stops the “walk”, the center cc(Sj) of

the unique ball that goes through Sj and has center in aff(Sj) is reached. A new iteration

then starts with the same set Sj+1 = Sj and xj+1 = cc(Sj).

The algorithm is not guaranteed to terminate for an arbitrary set P. The algorithm

may encounter a situation where it is not possible to move the center because a point is

on the boundary of the current ball. In principle, such situation may happen in several

consecutive iterations, where points are added and dropped from Sj but xj does not change,

and eventually, the algorithm finds itself with a Sj that had been considered in the past. That

28

is, cycling occurs. To prevent the cycling phenomenon, the authors of the FGK algorithm

adopt a rule similar to Bland’s rule for the simplex method in linear programming.

Finally, we mention that, in order to obtain an optimal basis at the end of the FGK

algorithm, one has to remove from the final Sj the points corresponding to a zero coefficient

in the convex combination of the optimal center in terms of the points in Sj.

2.4 An improvement to the dual simplex-like algorithm

In this section, we propose a modification of the algorithm by Dearing and Zeck with the

goal of improving its running time.

As described in Section 2.2, during the directional phase, the dual algorithm by Dearing

and Zeck finds αf, corresponding to the point where the ray `+ intersects the boundary

of conv(Sj), by calculating the intersection of ` with each one of the facets of conv(Sj)

except the one opposed to p (equation (2.6)). These facets are as many as the number of

points in Sj \{p}, which can be as many as n. This fact is the central reason why, even using

O(n2) updates to some factorization of some suitable matrix, the directional search step

(and thus each sub-iteration) of the original algorithm could not have a better complexity

than O(n3), since such updates would need to be done O(n) times. In this section, we show

how one can find αf without having to check each facet, which will ultimately result in a

O(n2) sub-iteration, as shown in Section 2.5.

The idea consists of projecting the polytope conv(Sj) and the line ` orthogonally onto

aff(Sj \ {p}). Recall that ` is perpendicular to aff(Sj \ {p}), so its projection will be a single

point that coincides with the projection of xj. In order to find the intersected facet, first,

we find in which at most two projected facets of conv(Sj) the projection of xj falls into. We

then calculate the intersection of t`+ with those two facets to find which facet of conv(Sj)

is intersected first by the ray `+.

For simplicity, and since the operations described in this section all happen within the

same iteration, we drop the iteration index from Sj and xj, and simply consider S and x.

29

Before we proceed into the details, consider the following notation, some of which has been

introduced before:

• S = {p1, . . . , ps, p}, current basis, and S ′ = S \ {p}, so |S ′| = s;

• C = conv(S) and ∂C its boundary;

• Fj := conv(S \ {pj}), the facet of C opposed to point pj ∈ S, j = 1, ..., s;

• F0 := conv(S \ {p}), the facet of C opposed to p;

• αj, j = 0, . . . , s, value of α corresponding to the intersection of ` with Fj.

Recall that, at the beginning of Step 3ii, the directional search, we have:

• S, an affinely independent set, consequently p 6∈ aff(S ′);

• d is a direction in Sub(S), orthogonal to aff(S ′), that points towards p, and passes

through the intersection of the bisectors of the facets of conv(S);

• x, the current solution, is such that x ∈ conv(S).

Let x ′ and p ′ be the orthogonal projections of x and p onto aff(S ′), respectively. Let

x ′ =

s∑
j=1

πjpj s.t.

s∑
j=1

πj = 1, and p ′ =

s∑
j=1

ωjpj s.t.

s∑
j=1

ωj = 1, (2.7)

be their unique representations as affine combinations in terms of the points in S ′. An

important observation is that the projection of ` onto aff(S ′) coincides with x ′.

We now introduce two useful lemmas.

Lemma 2.5. x ′ ∈ conv(S ′ ∪ {p ′}).

Proof. This is a consequence of x ∈ conv(S) and the linearity of the projection operator.

Lemma 2.6. Consider the representations (2.7). We have that πj < 0 implies ωj < 0.

Proof. From Lemma 2.5 we know that there exists β ≥ 0 and β ′ ≥ 0 such that

x ′ =

s∑
j=1

βjpj + β
′p ′, with

s∑
j=1

βj + β
′ = 1.

30

Therefore,

x ′ =

s∑
j=1

βjpj + β
′
s∑
j=1

ωjpj =

s∑
j=1

(βj + β
′ωj)pj.

Let δj = βj + β
′ωj. Note that

∑s
j=1 δj = 1. Since S is an affinely independent set, the

representation of x ′ as an affine combination of the points in S is unique, therefore we must

have πj = δj = βj +β
′ωj, for all j = 1, ..., s. Thus, if πj < 0, then ωj < 0. Note that πj = 0

does not imply ωj ≤ 0.

Consider the general case where the intersection of the line ` with ∂C is two points z1

and z2. Let Fk1 be one of the facets containing z1 and Fk2 be one containing z2. Point z1

or z2 may be on the intersection of several facets, but knowing one of them suffices. The

projection of both z1 and z2 onto aff(S ′) is x ′, therefore x ′ will be written as a unique

convex combination of the projections of the points that form Fk1 and also as a unique

convex combination of the projections of the points that form Fk2 , and only of those and no

other projected facets. In the particular cases when ` intersects ∂C on a single point or an

infinite number of points, x ′ will still be written as a convex combination of the projected

points of one of the intersected facets. Lemma 2.7 states this fact. Note that the intersection

always exists since x ∈ ` ∩ C.

Lemma 2.7. Line ` intersects facet Fk if and only if x ′ ∈ conv(S ′ \ {pk} ∪ {p ′}).

Proof. We only need to prove that, if x ′ ∈ conv(S ′ \ {pk} ∪ {p ′}), then ` intersects Fk, since

the opposite is trivial as a consequence of the linearity of the projection operator. Let

A = [p2−p1, . . . , ps−p1]. Then p ′ = A(ATA)−1AT (p−p1)+p1. First, we prove that there

exists a γ > 0 such that d = γ(p − p ′). Clearly, p − p ′ ∈ Sub(S), and p − p ′ is orthogonal

to Sub(S ′) since

AT (p− p ′) = AT (p− p1) −A
T (p− p1) = 0

(recall that (p− ps)
Td > 0). Moreover, d and p− p ′ have the same direction since

(p− ps)
T (p− p ′) =

∥∥p− p ′∥∥2 + (p ′ − ps)
T (p− p ′) =

∥∥p− p ′∥∥2 > 0.

31

Thus we conclude that there exists a γ > 0 such that d = γ(p− p ′).

Now, suppose x ′ ∈ conv(S ′ \ {pk} ∪ {p ′}), that is,

x ′ =

s∑
j=1
j6=k

βjpj + β
′p ′ with

s∑
j=1
j 6=k

βj + β
′ = 1 and β ′ ≥ 0, βj ≥ 0, j = 1, ..., s.

Observe that for any α we have

x ′ + αd =

s∑
j=1
j6=k

βjpj + β
′p ′ + αγ(p− p ′) =

s∑
j=1
j 6=k

βjpj + (β ′ − αγ)p ′ + αγp.

Let α ′ = β ′

γ . We have that x ′ + α ′d ∈ conv(S ′ \ {pk} ∪ {p}) since
∑
j6=k βj + α

′γ = 1. This

implies that there exists an α such that x+ αd ∈ Fk, that is, ` intersects Fk.

Finally, Theorem 2.8 shows how to calculate the intersection of `+ with ∂C.

Theorem 2.8. Consider the representations (2.7) of x ′ and p ′. Suppose Fl is the facet that

is first intersected by `+, and let αf be the value of α at which the intersection occurs. To

find the point opposed to Fl and αf, there are two possible cases:

• Case 1. If there is a k = 1, ..., s such that πk = ωk = 0, then pk is the point opposed

to the facet intersected first, and αf = 0.

• Case 2. Suppose case 1 does not hold. First, find k1 such that

πk1
ωk1

= min
j=1,...,s

{
πj

ωj
: πj ≥ 0,ωj > 0

}
. (2.8a)

Then, find αk1 as in (2.5). Let J := {j : πj ≤ 0,ωj < 0}. If J 6= ∅, find k2 such that

πk2
ωk2

= max
j=1,...,s

{
πj

ωj
: πj ≤ 0,ωj < 0

}
, (2.8b)

and find αk2 as in (2.5). Otherwise, if J = ∅ simply consider αk2 = −∞. The facet

first intersected by `+, Fl, is such that l = arg minj=k1,k2{αj : αj ≥ 0}, and αf = αl.

Proof. Case 1. Suppose there is a k ∈ {1, . . . , s} such that ωk = πk = 0. Then, since

32

x = x ′ + δd, for some δ ≥ 0, and that there is a γ > 0 such that d = γ(p − p ′) (see the

proof of Lemma 2.7) we have:

x = x ′ + δγ(p− p ′) =

s∑
j=1
j 6=k

πjpj + δγ

p− s∑
j=1
j 6=k

ωjpj

 =

s∑
j=1
j6=k

(πj − δγωj)pj + δγp.

This representation of x as a convex combination of S is unique, since S is affinely indepen-

dent. Consequently, πj−δγωj ≥ 0 and δγ ≥ 0, concluding that x ∈ conv(S ′\{pk}∪{p}) ≡ Fk.

Therefore `+ intersects Fk at αf = αk = 0.

Case 2. Since x ′ ∈ conv(S ′ ∪ {p ′}), from the proof of Lemma 2.6, there exists β ′ ≥ 0

such that

x ′ =

s∑
j=1

βjpj + β
′p ′ =

s∑
j=1

(πj − β
′ωj)pj + β

′p ′. (2.9)

Formula (2.9) gives all possible ways to represent x ′ as a convex combination of S ′ ∪ {p ′} as

a function of β ′. We are now interested in knowing the minimum and maximum values of

β ′, β ′min and β ′max, respectively.

Suppose πj ≥ 0, for all j = 1, ..., s, that is, x ′ ∈ conv(S ′ ∪ {p ′}). Then βmin = 0. It is

easy to see that, in such case, βmax =
πk1
ωk1

as in (2.8a), and that any β ∈ [0, βmax] yields

πj − βωj ≥ 0. We conclude that x ′ ∈ conv(S ′ \ {pik1 } ∪ {p ′}), and so, from Lemma 2.7,

` intersects Fk1 . Note that βmax may be 0. When βmax > 0, observe that there is no other

β ∈]0, βmax[such that πj − βωj = 0, so there is no other way to write x ′ as a convex

combination of p ′ and s− 1 points of S ′.

Now suppose that there exists πj < 0. Then x ′ 6∈ conv(S ′) and therefore βmin > 0.

Since β ′ must be positive, in order to have a convex combination in (2.9), β ′ must satisfy

simultaneously the following conditions:

β ′ ≥
πj

ωj
, ∀j : ωj < 0, πj ≤ 0 ⇒ β ′ ≥ πk2

ωk2
,

β ′ ≤
πj

ωj
, ∀j : ωj > 0, πj ≥ 0 ⇒ β ′ ≤ πk1

ωk1
,

33

Algorithm 2.1 Find αf, the intersection of `+ with ∂C.

input: S ′, p, x.
output: αf, and pl, the point opposed to the intersected facet.

1: Calculate x ′ and p ′, the orthogonal projections of x and p, respectively, onto aff(S ′);
2: Find π and ω as in (2.7);
3: if ∃k = 1, ..., s s.t. πk = ωk = 0 then
4: αf = 0 and pl = pk.
5: else
6: Find k1 as in (2.8a), and calculate αk1 ;
7: if {j : πj ≤ 0,ωj < 0} 6= ∅ then
8: Find k2 as in (2.8b), and calculate αk2 ;
9: else

10: αk2 = −∞;
11: end if
12: l = argminj=k1,k2{αj : αj ≥ 0};
13: αf = αl and pf = pl.
14: end if

for k1 and k2 as in (2.8a) and (2.8b), respectively. The conditions above are feasible since

there must be such a β ′, and because of Lemma 2.6. Thus,
πk2
ωk2

≤ πk1
ωk1

, so βmin =
πk2
ωk2

and

βmax =
πk1
ωk1

. Finally, we conclude that x ′ ∈ conv(S ′ \ {pk1}∪ {p ′}) and x ′ ∈ conv(S ′ \ {pk2}∪

{p ′}), with k1 6= k2, meaning ` intersects both facets Fk1 and Fk2 .

The procedure to find αf is summarized in Algorithm 2.4.

2.5 Implementation details

Recall the QR factorization of a matrix A ∈ Rn×m into the product of matrices Q and R,

where Q ∈ Rn×n is an orthogonal matrix and R ∈ Rn×m is upper triangular. For our

purposes, we will consider the case when n ≥ m. If A is full column rank, then the diagonal

of R is non-zero, and Q can be partitioned in [V U], for V ∈ Rn×m and U ∈ Rn×(n−m), such

that the columns of V form a basis of Span(A), the column range of A, and the columns

of U form a basis of Null(A), the null space of A. Different algorithms are available to

find a QR factorization of a matrix, but in terms of computational work, and for a general

(n × n)-matrix, they all need O(n3) steps [52, §5.2]. However, the QR factorization of A

can be “recycled” and used to calculate the QR factorization of a matrix obtained from A

34

by either rank-one changes, appending a row or column to A, or deleting a row or column

from A [52, §12.5]. These factorization updates are accomplished by using Givens rotations

(e.g. [52, §5.1.8]), and, in the case when m = n, need O(n2) steps.

We now describe in detail how one can implement the algorithm taking advantage of

the efficient updates of a QR factorization. At the beginning of each iteration, we have the

QR factorization of the (n× s)-matrix S, whose columns are the points in the current basis

Sj = {pj1 , ..., pjs}:

S =
[
pj1 pj2 . . . pjs

]
.

Let QS and RS be the matrices of the QR factorization of S

S = QSRS.

The first iteration is the only time a QR factorization of a matrix S is calculated from

scratch. After that, the QR factorization of S is updated every time a point is added or

removed from Sj, that is, a column is added or removed from S, respectively.

In the next sections we will be presenting some pseudo-code for different parts of

the algorithm. In this pseudo-code we will refer to procedures QRinsert, QRdelete, and

QRupdate defined below:

• QRinsert: Receives as input the QR factors of some matrix A and either a column

vector or a row vector, and outputs the QR factorization of the matrix resulting from

appending the column vector or the row vector to A;

• QRdelete: Receives as input the QR factors of some matrix A and the index of

a column or a row, and outputs the QR factorization of the matrix resulting from

deleting that column or row from A;

• QRupdate: Receives as input the QR factors of some matrix A and two vectors u, v,

and outputs the QR factorization of matrix A+ uvT .

35

2.5.1 The “Update Sj” procedure

The first step of this procedure is to check whether Sj ∪ {p} is affinely independent. If it is

not, the next step is to find pjk ∈ Sj, such that Sj \ {pjk} ∪ {p} is affinely independent and

xj ∈ conv(Sj \ {pjk} ∪ {p}). In order to do this, consider matrices B and B̄ as follows:

B =

 pj1 . . . pjs

1 . . . 1

 , B̄ =

 pj1 . . . pjs p

1 . . . 1 1

 . (2.10)

Matrix B is full column rank since Sj is affinely independent. When Sj has n+ 1 points we

automatically know that Sj ∪ {p} is affinely dependent. Consider then s ≤ n, which implies

that B̄ has at least as many columns as rows. Sj ∪ {p} is affinely independent if and only if

B̄ is full column rank, which can be found out by looking at the (s + 1, s + 1)-entry of RB̄,

where B̄ = QB̄RB̄. If that entry is zero or close to zero (to account for precision errors) then

Sj ∪ {p} is affinely dependent, otherwise it is affinely independent.

Matrix B can be obtained by inserting a row of ones in S, and B̄ can then be obtained

by inserting the column
(
p
1

)
in B. Thus, the respective QR factorizations can be efficiently

computed from the QR factorization of S and of B, respectively.

If Sj ∪ {p} is affinely independent, we add p to Sj: Sj = Sj ∪ {p} (but we leave matrix S

as is). Otherwise, the following linear systems need to be solved

Bτ =

(
xj

1

)
, and Bσ =

(
−p

−1

)
. (2.11)

These linear systems can be reduced to linear systems with upper triangular matrices, using

the QR factorization of B

RBτ = Q
T
B

(
xj

1

)
, RBσ = QTB

(
−p

−1

)
,

which can be solved using Back Substitution (performed in O(n2) [52, §3.1]). After finding

the point to be removed from Sj, we get the new QS and RS, the QR factorization of the

new matrix S, obtained from the previous one by removing the column corresponding to

36

Algorithm 2.2 Update Sj

input: QS, RS, p, Sj, xj

output: QS, RS, S
j

1: QB, RB ← QRinsert(QS, RS, row 1s)
2: QB̄, RB̄ ← QRinsert(QB, RB, column

(
p
1

)
)

3: if (s+ 1, s+ 1)-entry of RB̄ is positive then
4: Sj = Sj ∪ {p}.
5: else
6: Get τ and σ by solving RBτ = Q

T
B

(
xj

1

)
and RBσ = QTB

(
−p
−1

)
;

7: Find pjk , such that πk
−ωk

= minj=1,...,s

{
πj
−ωj

: ωj < 0
}

;

8: Sj = Sj \ {pjk} ∪ {p};
9: QS, RS ← QRdelete(QS, RS, column (pjk)).

10: end if

that point. We do not add p yet to S; we leave that to the very end of the iteration when

p is finally covered.

Algorithm 2.2 summarizes these ideas.

2.5.2 Calculating the direction d

Recall that, at this stage, QS and RS are the QR factors of matrix S = [pj1 . . . pjs] that

contains the points of Sj \ {p}. Define matrix C as

C =
[
pj1 − pjs . . . pjs−1

− pjs p− pjs

]
.

Let C = QCRC be the QR factorization of C, obtained by updating the QR factorization of

S twice, since C can be obtained from S by adding two rank one matrices;

C = S+ (p− pjs)e
T
n − pjs1

T
n.

Matrix C is full column rank since Sj ∪ {p} is affinely independent, so we can partition

QC = [VC UC], where VC is a (n × s)-matrix whose columns are a basis to Span(C), and

UC is a (n × (n − s))-matrix whose columns are a basis to Null(C). Finally, to find d we

37

Algorithm 2.3 Calculate d

input: QS, RS, p, Sj

output: d, QC, RC

1: QC, RC ← QRupdate(QS, RS, p− pjs , en);
2: QC, RC ← QRupdate(QC, RC,−pjs , 1n);
3: Build Ĉ and solve Ĉg = es;
4: d = QCg.

need to solve the linear system resulting from conditions (2.3):

 CT

UTC

d = es ⇐⇒ ĈQTCd = es, with Ĉ =

 RTC

0(n−s)×s In−s

 .
Note that Ĉ is a lower triangular matrix.

Algorithm 2.3 summarizes the procedure to calculate d.

2.5.3 Calculating the next iterate

The first step now is to calculate x ′ and p ′, the orthogonal projection of xj and p respectively

onto aff(S ′), where S ′ = Sj \ {p}. Define matrix D,

D =
[
pj1 − pjs . . . pjs−1

− pjs

]
,

and let QD and RD be the matrices of its QR factorization. The QR factorization of D

can be obtained easily from the QR factorization of matrix C, since D can be obtained

from C by removing the last column. Let VD be the matrix with the first s − 1 columns

of QD, which form an orthogonal basis to Sub(S ′). Consider aff(S ′) = pj1 + Sub(S ′). The

projections x ′ and p ′ can be calculated as

x ′ = VDV
T
D(x

j − pj1) + pj1 , and p ′ = VDV
T
D(p− pj1) + pj1 .

38

Algorithm 2.4 Calculate π ω

input: QC, RC, p, xj

output: π, ω

1: QD, RD ← QRdelete(QC, RC, column p− pjs);
2: Get VD, the matrix with the first s− 1 columns of QD;
3: x ′ = VDV

T
D(x

j − pj1) + pj1 ; p ′ = VDV
T
D(p− pj1) + pj1 ;

4: QE, RE ← QRinsert(QS, RS, row 1s);

5: Get π and ω by solving REπ = QTE
(
x ′

1

)
and REω = QTE

(
p ′

1

)
.

Now, the linear systems corresponding to (2.7) need to be solved:

Eπ =

(
x ′

1

)
and Eω =

(
p ′

1

)
, with E =

 pj1 . . . pjs

1 . . . 1

 . (2.12)

These linear systems are similar to (2.11) so they are solved following similar steps (Algo-

rithm 2.4). Note that E may not be the same as B from the Update S procedure.

After using π andω to find k1 and possibly k2, as in (2.8), we need to calculate αk1 and

αk2 . To calculate αk1 , we need a basis for Null(Sj \ {pjk1 }), in order to apply formula (2.5).

If k1 < s then Sub(Sj \ {pjk1 }) ≡ Span(F) with

F =
[
pj1 − pjs . . . pjk1−1

− pjs pjk1+1
− pjs . . . pjs−1

− pjs p− pjs

]
.

Matrix F can be obtained from C by deleting its k1-th column. On the other hand, if k1 = s

then Sub(Sj \ {pjs}) ≡ Span(F) with

F =
[
pj1 − p . . . pjs−1

− p

]
,

and F can be obtained from C by deleting the last column and then adding the rank one

matrix (pjs − p)1
T
n. Therefore, in both cases, the QR factorization of F can be obtained by

updating the QR factorization of C. A basis for Null(Sj \ {pk1}) is then formed by the last

n − s + 1 columns of QF. The value αk2 is calculated in an analogous way. Algorithm 2.5

summarizes these ideas.

39

Algorithm 2.5 Calculate αki

input: QC, RC, p, d, Sj, xj, ki
output: αki

1: QF, RF ← QRdelete(QC, RC, ki−th column);
2: if ki = s then
3: QF, RF ← QRupdate(QF, RF, (pjs − p), 1n);
4: end if
5: Get WF, the matrix with the last n− s+ 1 columns of QF;

6: αki =
(p−xj)Twj

dTwj
for any column wj of WF such that dTwj 6= 0.

2.5.4 Pseudo-code of the algorithm

The only time a QR factorization of a matrix is calculated from scratch is at the beginning

of the algorithm. From the discussion of the previous sections, we conclude that each sub-

iteration requires a constant number of “QR updates” that are performed to matrices with

n rows and at most n columns, so such updates take O(n2) steps. This results in a sub-

iteration that is done in quadratic time. Since the optimality check is O(mn) and each main

iteration may need as many as n sub-iterations, we conclude that each (main) iteration of

the algorithm has complexity of at most O(mn + n3). Recall that there is no polynomial

bound on the number of iterations of the algorithm.

We now aggregate the results/discussion of the previous sections in Algorithm 2.6.

2.6 Computational results

We implemented the original algorithm by Dearing and Zeck, as presented in Section 2.2,

using efficient updates of the QR factorization of a certain matrix. We denote this version

by “DZ original”. We also implemented the algorithm with the modification presented

in Section 2.4 and following the implementation directions of Section 2.5. We denote this

version by “DZ new”. The goal is to study the practical impact of the modification presented

in Section 2.4.

Our experiments were conducted using MATLAB R2014a (version 8.3) on a PC with

an Intel Core i5 2.30 GHz processor, with 4 GB RAM. We considered datasets generated

40

Algorithm 2.6 Faster dual algorithm for the minimum enclosing ball of points

input: P

output: x, r, S, the optimal solution and a basis, respectively.

Initialization:
1: Choose any two points {p01 , p02} ∈ P;

2: Set S0 = {p01 , p02}, x
0 =

p01+p02
2 , r = ‖x0 − p01‖;

3: Get QS, RS the QR factorization of [p01 p02];

Loop:
4: for j = 1, 2, do

Optimality check :
5: if

∥∥xj − pi∥∥ ≤ r for all pi ∈ P then
6: (xj, rj) is the optimal solution and Sj is an optimal basis. Stop.
7: else
8: Get p ∈ P s.t.

∥∥xj − p∥∥ > r;
9: end if

10: QS, RS, S
j ← Update S (QS, RS, p, S

j, xj);

Finding the new iterate and basis (sub-iteration):
11: d,QC, RC ← Calculate d (QS, RS, p, S

j);
12: Calculate αb as in (2.4);

13: π,ω ← Calculate π ω (QC, RC, p, x
j);

14: if ∃ k = 1, ..., s s.t. πk = ωk = 0 then
15: αf = 0 and pf = pjk ;
16: else
17: Find k1 as in (2.8a);
18: αk1 ← Calculate αki (QC, RC, p, d, S

j, xj, k1);
19: if {j : πj ≤ 0,ωj < 0} 6= ∅ then
20: Find k2 as in (2.8b);
21: αk2 ← Calculate αki (QC, RC, p, d, S

j, xj, k2);
22: else
23: αk2 = −∞;
24: end if
25: Find k s.t. k = arg minj=k1,k2{αj : αj ≥ 0};
26: αf = αk and pf = pk.
27: end if

28: if αb < αf then
29: xj+1 = xj + αbd; rj+1 =

∥∥xj+1 − p∥∥;
30: QS, RS ← QRinsert(QS, RS, p);
31: Start a new iteration: Got to line 5.
32: else
33: xj = xj + αfd; Sj = Sj \ {pf};
34: QS, RS ← QRdelete(QS, RS, k−th column);
35: Start a new sub-iteration: Go to line 11.
36: end if
37: end for

41

randomly from a uniform distribution at the unit cube. Tables 2.1 and 2.2 show the average

running times for different dimensions of the two versions of the algorithm on instances with

1000 and 10, 000 points, respectively.

We observed that for smaller dimensions, the original algorithm is slightly faster. But,

as the dimension increases, we observe that the new version of the algorithm with the

changes we proposed in Section 2.4 is considerably faster, for example, for n = 5000 we

observe a 10-fold improvement in the running times.

2.7 Conclusion

In this chapter, we studied the dual simplex-like algorithm proposed by Dearing and Zeck

for the problem of enclosing a set of points with a ball of smallest radius. We realized

that the directional search of the original algorithm was inefficient due to the fact that it

requires finding the intersection of a line with O(n) hyperplanes. This fact, yields slow

running times for large dimensions, since each directional search (and consequently, each

sub-iteration) could not be done in time better than O(n3).

In order to improve the running times of the algorithm, we proposed a modification

of the directional search procedure, which together with using efficient updates of the QR

factorization of a certain matrix, allows each sub-iteration to be performed in O(n2) time.

We observe that this modification improved considerably the running times of the algorithm,

especially for large values of the dimension n.

42

Problem Time in seconds

n m DZ original DZ new

50 1000 0.15 0.32
100 1000 0.42 0.96
500 1000 32.52 20.13

1000 1000 140.45 57.50
5000 1000 8852.20 887.15

Table 2.1: Running time (in seconds) of the two versions of the algorithm, for 1000-point
datasets with points uniformly distributed in a unit cube, for different dimensions n. The
reported numbers correspond to the averages corresponding to 25 runs for each n.

Problem Time in seconds

n m DZ original DZ new

50 10,000 2.48 2.95
100 10,000 5.03 5.97
500 10,000 70.04 42.55

1000 10,000 267.68 114.88
5000 10,000 17044.10 1463.20

Table 2.2: Running time (in seconds) of the two versions of the algorithm, for 10, 000-point
datasets with points uniformly distributed in a unit cube, for different dimensions n. The
reported numbers correspond to the averages corresponding to 25 runs for each n.

43

Chapter 3

The minimum k-enclosing ball of

points

Let P be a set of m points, p1, . . . , pm, in Rn. We define a k-enclosing ball of P as an

n-dimensional Euclidean hypersphere that covers at least k points of P. The minimum

k-enclosing ball of points problem, or MBk problem in short, aims at finding the k-enclosing

ball of P with smallest radius. The MBk problem can be formulated as:

MBk(P) :
min

x∈Rn, r∈R
r

s.t. |{pj ∈ P : ‖x− pj‖ ≤ r}| ≥ k.
(3.1)

Figure 3.1 illustrates the problem in R2.

Figure 3.1: Illustration of the minimum 20-enclosing ball for a 25-point dataset in R2.

44

In this chapter we study the use of the DZ algorithm from Section 2.2 in a branch-and-

bound (B&B) scheme to find an exact solution to the minimum k-enclosing ball problem.

The search tree is the tree of all k-subsets1 of P, where each node corresponds to a subset

of at most k points. Our B&B shares similarities with the branch-and-bound algorithm

proposed by Candela in [19], and also considered by Ahipaşaoǧlu in [6], for the problem of

enclosing k points of P with the smallest volume ellipsoid.

Similarly to Candela, we use a depth-first search strategy for selecting the next node to

explore and combine it with a method that aims at placing nodes with large bounds at the

root of large subtrees. This combination results in a behavior that shares the advantages

of both depth-first-search and best-first-search techniques, and is able to prune very large

subtrees early on. Ahipaşaoǧlu, instead, uses first-in-first-out and builds the tree following

the lexicographic order of points. Contrarily to Candela, every time a node is created,

we solve the subproblem associated with that node which consists of enclosing the subset

corresponding to that node with the smallest enclosing ball. As we will see, that is often

done in a small number of iterations (often only 1) by the DZ algorithm. Before solving

each node’s subproblem, we make use of lower bounds to check if the node can be pruned

immediately and avoid calling the DZ algorithm.

Our results show that the B&B algorithm can handle in practical time small and

medium-sized instances of the MBk problem. However, it is not suitable to solve large

instances. Exactly solving large instances requires tighter bounds and a B&B developed for

multiple processors.

This chapter is organized as follows. We start by presenting the details of the B&B

algorithm in Section 3.1. In Section 3.2, we show the computational performance of the

algorithm and derive conclusions on its behavior for different dataset features. Section 3.3

presents some empirical studies on further aspects of the algorithm, such as the effect of pro-

viding an initial solution and the application of lower bounds based on relaxing the mixed-

integer formulations of problem (3.1). Finally, Section 3.4 draws some conclusions.

1A k-subset is a subset with cardinality k.

45

3.1 The proposed branch-and-bound framework

We can think as the MBk problem as the problem of finding the k-subset of P whose

minimum enclosing ball is the one with the smallest radius among all k-enclosing balls.

Then, the search space is the set of all k-subsets of P, which can be represented as a tree,

as Figure 3.2 shows for the case of m = 5 and k = 3.

Figure 3.2: Search tree for m = 5 and k = 3.

The root of the tree represents the empty set. Each node on the tree is assigned one

point of P. The set of nodes on the path from the root to a node corresponds to a subset

of P with at most k points. Thus, each path from the root to a leaf represents a different

k-subset of P.

One way to assign points to nodes of the tree is as Figure 3.2 shows, that is, the

shape is static and points are assigned to nodes in lexicographic order. Instead, in our

branch-and-bound algorithm the tree is dynamic, meaning that which points are assigned

to which nodes is decided as we search the tree in a way that aims at decreasing the number

of explored nodes. Still, each path from the root to the leaf corresponds to a different

k-subset.

Besides having been considered in [19, 6] as mentioned before, branch-and-bound meth-

ods using the same search tree have also been used in [81, 108, 24] to address the feature

selection problem.

46

3.1.1 Preliminaries

Before proceeding, we introduce some notations about the search tree.

• N0: root node;

• l(N), level of node N: number of nodes on the path from N to the root (without

counting the root); by definition the level of the root is 0;

• p(N): point of P assigned to node N;

• Pt(N): set of points assigned to nodes on the path from N0 to N (including N);

• ST(N): set of points assigned to nodes on the subtree of N (excluding N);

• r(N), x(N): radius and center of MB(Pt(N)) respectively;

• C(N): list of child nodes of N, that is, successor nodes of N at level l(N) + 1;

• r∗, x∗: radius and center, respectively, of the best solution found at any stage (also

called incumbent or upper bound).

One possible way to assign points to nodes is lexicographically, as it was shown in

Figure 3.2. That is, the m− k+ 1 child nodes of the root are assigned to points p1, p2, ...,

pm−k+1, in this order from left to right; and, every time a node at level l assigned to pj is

branched, its child nodes are assigned to points pj+1, pj+2, ..., pm−k+l+1, in this order from

left to right. We introduce one last useful notation:

• i(N), index of node N: index of the point from P assigned to N, assuming the nodes

on the tree are organized lexicographically; by definition, the index of the root is 0.

The tree corresponding to m points and k ≤ m, has the following properties:

i. The number of nodes at level l is
(
m−k+l
l

)
, for l = 1, . . . , k; the tree has

(
m
k

)
leaves;

ii. The number of different points of P assigned to successor nodes of N is m− i(N);

iii. |C(N)| = m− k+ l(N) − i(N) + 1;

iv. The indexes of the child nodes of N are i(N)+1, i(N)+2, ..., m−k+ l(N)+1, assigned

in this order from left to right.

The branch-and-bound algorithm starts with an initial solution x∗, r∗, corresponding

to the center and radius of a k-enclosing ball. The search begins at level 0, when the root

47

node is created and added to the pool of live nodes L. A live node is a node that has

been explored, that is, whose associated problem has been solved, but whose immediate

successors (child nodes) have not been generated yet. The problem associated with a node

N is the following: find x(N) and r(N), the center and radius, respectively, of the minimum

enclosing ball that encloses the points assigned to nodes on the path from the root to N,

that is,

MB(Pt(N)) :
min

x∈Rn, r∈R
r

s.t. ‖pi − x‖ ≤ r, ∀pi ∈ Pt(N).

(3.2)

At each iteration, and following some selection rule, a node N is removed from L to be

branched. If, for that node, r(N) ≥ r∗, then N’s successor nodes can be pruned since r(N)

is a lower bound on the best solution that can be found in its subtree. On the other hand,

if r(N) < r∗, each child node is created and the subproblem (3.2) corresponding to each

child is solved. If the radius r corresponding to a child node is such that r ≥ r∗, then

that child node can be immediately disregarded. Otherwise, if the ball corresponding to

that child encloses k points of P, then its radius becomes the new incumbent. If neither of

these situations occurs, the child node is added to L to be branched later. The algorithm

terminates when L is empty, meaning that all nodes were either analyzed or cut off from the

tree. The solution of (3.1) is the radius r∗ and center x∗ as defined at termination.

These considerations are summarized formally in Algorithm 3.1.

3.1.2 Solving the MB problem at each node

At each node of the search tree, we propose using the DZ dual algorithm (see Section 2.2)

to solve the MB problem corresponding to that node. Suppose node N was selected to be

branched from the pool of live nodes. Let C1, ..., C|C(N)| denote its child nodes. Once N is

branched, we need to solve problem MB(Pt(Cj)) for each child node Cj, where Pt(Cj) =

Pt(N) ∪ {p(Cj)}, with p(Cj) the point assigned to Cj. If p(Cj) is covered by B(x(N), r(N)),

then the solution of MB(Pt(Cj)) is the same as of MB(Pt(N)). Otherwise, we apply the DZ

algorithm to solve MB(Pt(Cj)), starting from r(N) and x(N), and considering p(Cj) as the

point to enter the basis. Note that, r(N) and x(N) is a dual feasible solution to MB(Pt(Cj)).

48

Algorithm 3.1 A branch-and-bound algorithm for the MBk problem

input: P, and an initial solution x∗, r∗;
output: x∗, r∗;

1: L = {N0}.

2: while L 6= ∅ do
3: Select a node N from L.
4: if r(N) ≥ r∗ then
5: Prune N; Go to line 3;
6: end if

7: Get C(N) = {C1, C2 . . . , C|C(N)|}. . Branch node N.

8: for each node Cj in C(N) do
9: Get r(Cj) and x(Cj) by solving MB(Pt(Cj)); . Explore each child node.

10: if r(Cj) ≥ r∗ then
11: Prune Cj;
12: else
13: if l(Cj) = k or B(x(Cj), r(Cj)) encloses at least k points of P then
14: r∗ = r(Cj); x

∗ = x(Cj); . Update incumbent.
15: Prune Cj;
16: else
17: Add Cj to L;
18: end if
19: end if
20: end for
21: end while

Typically, solving MB(Pt(N) ∪ {p(Cj)}) starting from the solution of MB(Pt(N) requires a

modest number of iterations (often 1 iteration suffices). Moreover, since at each DZ iteration

the radius increases, if it ever becomes larger than the incumbent, we can immediately prune

that child node and its successors.

A lower bound on the solution of MB(Pt(Cj))

Before solving MB(Pt(Cj)), we can obtain a quick lower bound on its optimal radius, and

use it to prune Cj without having to call the DZ algorithm. If p(Cj), the point corresponding

to Cj, is not covered by MB(Pt(N)), then it is known to be part of the optimal basis of

MB(Pt(Cj)) (see e.g. [33] or Theorem 4.14). Since p(Cj) is on the boundary of the optimal

ball from MB(Pt(Cj)), from the triangle inequality, we conclude that

‖p(Cj) − p‖ ≤ ‖p− x(Cj)‖+ ‖p(Cj) − x(Cj)‖ ≤ 2r(Cj), ∀p ∈ Pt(N).

49

Using the same observation, we can conclude that the diameter of the optimal ball obtained

from MB(Pt(Cj)) is smaller than the distance between p(Cj) and the farthest point on the

boundary of B(x(N), r(N)), that is ‖p(Cj) − x(N)‖+ r(N). Thus, we obtain:

max
p∈Pt(N)

1
2 ‖p(Cj) − p‖ ≤ r(Cj) ≤

1
2 (‖p(Cj) − x(N)‖+ r(N)) . (3.3)

We calculate the pairwise distances between points of P in a preprocessing phase, in order

to be able to apply the lower bound above in every node. Note that it is not necessary to

scan the distances corresponding to all the points of Pt(N) to find (3.3). Only the points

p ∈ Pt(N) that satisfy 〈p − x(N), p(Cj) − x(N)〉 ≤ 0 need to be considered [42]. However,

since the pairwise distances are always available, calculating such inner products at every

node for all points in Pt(N) offers no advantage.

The next lemma gives us a weaker lower bound that can be used to avoid calculating

the lower bound in (3.3). This can be advantageous, especially when the number of points

in Pt(N) is large. A proof can be found, for instance, in [49].

Lemma 3.1. Let P ⊂ Rn be a set of points. Any closed halfspace that passes through the

center of the optimal ball of MB(P) contains at least one point on the boundary of the ball.

Consider the hyperplane perpendicular to p(Cj) − x(N) that passes through x(N). The

distance between p(Cj) and v, any point on the intersection of the hyperplane with the

boundary of B(x(N), r(N)), is a lower bound on the maximum distance between p(Cj) and

any point covered by B(x(N), r(N)). Thus,

1
2

√
‖p(Cj) − x(N)‖2 + r(N)2 = 1

2 ‖p(Cj) − v‖ ≤ max
p∈Pt(N)

1
2 ‖p(Cj) − p‖ . (3.4)

Note that, this lower bound is only useful when ‖p(Cj) − x(N)‖ >
√
3r(N), otherwise it

yields a value smaller or equal to r(N).

Algorithm 3.2 summarizes how to solve MB(Pt(Cj)) employing the lower bounds in

this discussion above.

50

Algorithm 3.2 Solving MB(Pt(Cj)) for each child node of N

input: x(N), r(N), p(Cj), r
∗

output: r(Cj), x(Cj)

1: Calculate t = ‖p(Cj) − x(N)‖.
2: if t ≤ r(N) then
3: r(Cj) = r(N); x(Cj) = x(N); return . p(Cj) is enclosed by B(x(N), r(N))
4: end if
5: if r∗ ≤ 1

2(t+ r(N)) then

6: if t
r(N) >

√
3 and r∗ ≤ 1

2

√
t2 + r(N)2 then

7: r(Cj) = +∞; x(Cj) = []; return . Cj is pruned
8: else
9: if r∗ ≤ maxp∈Pt(N)

1
2 ‖p(Cj) − p‖ then

10: r(Cj) = +∞; x(Cj) = []; return . Cj is pruned
11: end if
12: end if
13: end if
14: Get r(Cj) and x(Cj), by solving MB(Pt(Cj)) starting from x(N) and r(N).
15: return

3.1.3 The tree design

Given a tree topology, different point-node assignments may be defined. A straightforward

way would be to simply design the tree using the lexicographic order of the points (as shown

in Figure 3.2), or to assign points to nodes randomly. Though simple, these strategies are

not efficient for general inputs since they do not exploit the geometrical aspects of the

problem nor the particular structure of the search tree.

A dynamic point-node assignment scheme

The tree of all k-subsets of a set is not symmetric, in the sense that different nodes have

different subtree sizes and shapes, depending on their position on the tree. We aim at

assigning points to nodes on the denser part of the tree (left side of the tree whose nodes

have a large number of successors) that yield large radii; and the opposite for the less dense

part of the tree (right side, whose nodes have few successors). As a consequence, provided

we have an incumbent that is good enough, nodes on the denser part are more likely to be

pruned.

We propose the following node-point assignment scheme. When a live node N is

51

Algorithm 3.3 Branch node N

input: Node N
output: The sorted list of child nodes {C1, C2 . . . , C|C(N)|}

1: for each qi ∈ ST(N) do
2: Calculate ti = ‖qi − x(N)‖.
3: end for
4: Get t̂, the vector of the |C(N)| largest values of vector t sorted in descending order.

5: for j = 1, ..., |C(N)| do
6: Create node Cj.
7: Get q̂j ∈ ST(N) s.t. t̂j = ‖q̂j − x(N)‖.
8: p(Cj) = q̂j;
9: Pt(Cj) = Pt(N) ∪ {q̂j};

10: ST(Cj) = ST(N) \ {q̂1, . . . , q̂j}.
11: end for

selected to be branched, first, the distances between x(N) and each of the points of ST(N)

are calculated and sorted in descending order; then the points are assigned to nodes such

that the j-th child of N corresponds to the point with the j-th largest distance from x(N).

This in-level node-point assignment scheme is expected to be effective because, for a general

point-set Q and a point q, the distance from q to the optimal center of MB(Q) is a good

predictor of the magnitude of the optimal radius ofMB(Q∪{q}). Additionally, the rightmost

child has the closest points to the parent’s ball in its subtree (a path), which may result in

finding a new (and good) incumbent.

This node-point assignment procedure is formalized in Algorithm 3.3. Every time a

node is created, the distances between x(N) and each of the m − i(N) points assigned to

nodes on N’s subtree need to be calculated. Then, the |C(N)| largest distances need to be

found and sorted. This procedure can be accomplished in O (m− i(N) + |C(N)| log(|C(N)|))

for each node N 2.

Children of the root node

Now, we consider the problem of which points to assign to the m− k+ 1 child nodes of the

root. One option would be to select the first m− k+ 1 points of P or simply randomly. We

2Finding the k-th largest element in a set of n numbers, corresponds to the selection problem (finding
the (n− k+ 1)th-order statistic) which can be solved in O(n) time. After finding the k-the largest element,
finding the k − 1 elements larger than it, can be done in O(n) time. Finally, sorting of those k − 1 largest
elements can be accomplished in O(k log k) time. See [27, §9] for details.

52

propose an approach that performed well in practice, and that consists of first calculating

the minimum enclosing ball of all points in P, and then selecting them−k+1 farthest points

from its center as the children of the root. The intuition behind this heuristic is that each

subtree of a child of the root will be assigned to explore feasible solutions of diametrically

opposite areas of the input set, which will hopefully result in less redundant work.

The minimum solution tree

Take any node N from the tree. The “last” child of N, the rightmost successor node, has

a path as a subtree. Instead of evaluating each node on such path one at a time, we can

jump directly to the leaf and solve the corresponding MB problem. The path below such

one-degree nodes can, therefore, be merged into a special single node, yielding a modified

topology of the search tree called the minimum solution tree3, as shown in Figure 3.3.

Figure 3.3: Minimum solution search tree for m = 5 and k = 3.

Using the minimum solution tree yields a decrease in the total number of DZ iterations

performed, because the number of iterations necessary to solve the subproblem at a special

node is always less or equal than the total number of iterations corresponding to solve all

the subproblems from the path corresponding to that node.

3The concept of minimum solution tree was first introduced by Yu and Yuan in [108] for a branch-and-
bound algorithm for solving feature selection problems.

53

3.1.4 Search strategy

There are many ways one can choose which live node is going to be explored next. Choos-

ing a successful strategy for a general input is highly intertwined with the design of the

tree.

A depth-oriented search strategy seems to be the most advantageous in this case, as

it allows reaching leaves faster and keeps the size of L relatively small. Additionally, given

the shape of the tree, it seems best to search the tree in a right-to-left manner, that is, a

strategy that explores the less dense part of the tree early in an attempt to find a good

bound before the dense part of the tree is explored.

Whenever a node is branched, assume that its child nodes are generated in left-to-right

order. We propose using a pure depth-first-search (DFS) strategy. In this strategy, L is

maintained as a stack; that is, the last node added is the first one to be removed (last-in-

first-out (LIFO)). As a consequence, when a node is branched, its child nodes are added to

L as they are created, that is, in a left-to-right manner. Given the point-node assignment

scheme proposed in Section 3.1.3, that implies that the less dense part of a node’s subtree,

which is also the most promising in finding a good lower bound, is searched first. Thus,

unless a leaf is reached or a node is pruned, at every iteration the B&B descends one level,

therefore (good) feasible solutions are expected to be found early on. Note that the point-

node assignment combined with DFS can be seen as a combination of depth-first-search and

best-first-search (DFS is the overall principle, and when the choice is to be made between

nodes at the same level of the tree, the most promising one is selected).

Finally, when DFS is adopted, the maximum size of L for a given k can be determined,

as Theorem 3.2 states, allowing the required memory to be allocated beforehand.

Theorem 3.2 (Maximum length of L). When DFS is used and the minimum solution tree

is adopted, the maximum length of L is m− k. This upper bound is always attained.

Proof. Suppose the worst case scenario: no subtree is ever pruned, that is, every node will

be added to L at some point, with the exception of the leaves (which are disregarded after

being evaluated). Consider any stage of the algorithm when a node N was removed from L

54

to be branched. Note that N cannot be a leaf, therefore l(N) ≤ k−1. Let N0, N1, . . . ,Nl(N)

be the nodes on the path from the root N0 to N ≡ Nl(N). Recall the definition of index

of N, i(N). Together, i(N) and l(N) uniquely define the shape of N’s subtree. As mentioned

before, the number of immediate successors of any nodeN is |C(N)| = m−k+l(N)−i(N)+1.

Moreover, i(N) ≤ m− k+ l(N) always holds.

If l(N) = 0, then N is the root, N0, and L is empty. By definition i(N0) = 0, so

b(N0) = m− k+ 1. Each child of N0 will be added to L with the exception of the last one

(since it is a leaf). After N0 is branched, L has size m− k.

Consider now the case l(N) ≥ 1. Since N was removed from L, it means all nodes on

the path from the root to N cannot be in L. Additionally, L cannot contain any nodes of

higher level than l(N). Let j be any level between 1 and l(N). The indexes of the nodes at

level j that are still in L are i(Nj−1) + 1, . . . , i(Nj) − 1. Thus, the number of nodes in L is:

l(N)∑
j=1

(i(Nj) − i(Nj−1) − 1) = i(N) − l(N).

Once N is branched, its m−k+ l(N)− i(N)+ 1 immediate successor nodes are created and

evaluated, and with the exception of the last one, they are all added to L. The size of L

then becomes m− k.

Remark 3.3. In Section 3.1.1 we mentioned that the algorithm explores the child nodes

first and only then adds them to the pool of live nodes, that is, it follows an eager strategy.

Given that DFS is used, this is a natural choice over the lazy strategy (where the child

nodes are generated and added to the pool with their parent’s lower bound instead, and

only explored after selected out of the pool). The lazy strategy makes sense if a better

incumbent than the parent’s node is expected to be found before its children are selected

out of the pool, avoiding the need to solve the children’s subproblems. However, that cannot

happen when DFS is used, because the nodes that will be explored after a node N is taken

out of the pool are going to be its successors, whose radius will always be worse than N’s

radius. Thus, an incumbent with radius better than the parent’s radius is not possible to

be found before N’s child nodes are selected out of the tree.

55

3.1.5 Finding an initial solution

An initial solution, that is, a k-enclosing ball of P, can be used to initialize r∗ in order to

speed up pruning. There are many possible approaches to get such an upper bound for the

optimal radius of the MBk problem. Some quick approaches include randomly selecting a

k-subset of P and find its minimum enclosing ball, or picking a random point in P, find

the (k−1)-closest points to it, and find the minimum enclosing ball of the resulting set.

Two other options are called spherical ordering and spherical peeling4. Spherical or-

dering starts by finding the minimum enclosing ball of P, then it picks the k closest points to

the center of that ball and finds the minimum enclosing ball of those k points. In spherical

peeling, we also start by finding the minimum enclosing ball of the whole set P, and then,

iteratively we discard one of the points lying on the boundary of the ball and find the mini-

mum enclosing ball of the remaining points, until only k points remain on the set to enclose.

This method is more suitable for the case when k is large, and it can be done efficiently

using the FSW algorithm for the MB problem (see Section 2.3). Instead of starting with

the minimum enclosing ball of P, spherical ordering and spherical peeling may also start

with the minimum enclosing ball of a subset of P with k points randomly picked.

One can also use more elaborate methods such as some of the approximation algorithms

discussed in Section 1.1.2. However, the amount of effort in finding a good initial solution

should be in line with how much of an advantage it can offer in reducing the computational

work of the B&B algorithm. In Section 3.3.1, we provide some studies on that aspect.

3.2 Computational study

In this section, we present some computational results of the B&B algorithm. We start

by showing results for randomly sampled datasets corresponding to different distributions,

number of points, dimension, and values of k. Then, we consider the application of facility

location with outliers and show some results using real datasets. Finally, we compare the

4 Spherical ordering and spherical peeling were also suggested in [7] for the more general problem of the
minimum volume ellipsoid with partial inclusion.

56

B&B against the general purpose solver Gurobi.

Our experiments were conducted on MATLAB R2018b (version 9.5.0) on a Mac with an

Intel Core i5 1.6 GHz processor, 8GB RAM, and running Mac OS X version 10.11.6.

Since we learned in Section 2.6 that our implementation of the original DZ algorithm is

often faster for small dimensions than the implementation with the modification we propose

in Section 2.4, we used the former in our computational experiments of the B&B.

3.2.1 Performance of the branch-and-bound algorithm

With the goal of studying the behavior of the B&B in sets with different properties, we

considered the following randomly generated datasets:

Uniform: points uniformly sampled on a unit ball;

Normal : points sampled from a multivariate standard normal distribution;

Exponential : each coordinate of the points independently sampled from an exponential

distribution with mean equal to 1;

b-outliers: points uniformly sampled on a unit ball and b artificial outliers uniformly

sampled from the ring with same center and radius between 1 and 3.

Figure 3.4 illustrates 2-dimensional instances of each of these datasets.

The methods used to obtain an initial solution were the following: for the datasets

normal, ball, and b-outliers, we used the spherical ordering method; and for the exponential

dataset, we used spherical peeling. Based on the characteristics of the datasets, we expect

these methods to provide good upper bounds.

Tables 3.1, 3.2, and 3.3 report different parameters observed when we run the BB algo-

rithm for the datasets normal, uniform, and exponential, for different dimensions, number

of points, and values of k. The results from Table 3.4 concern the b-outliers datasets with

10, 000 points. Tables 3.1-3.4 report the average and relative standard deviation5 of the

following parameters:

5Labeled as “dev”, the relative standard deviation is the standard deviation divided by the mean and
multiplied by 100.

57

(a) uniform (b) normal

(c) exponential (d) 10-outliers

Figure 3.4: Illustration of the different randomly generated datasets with 1000 points in R2.

• nodes: number of explored nodes;

• iters: number of DZ algorithm’s iterations;

• iters/node: ratio between the number of DZ iterations and explored nodes;

• time: total elapsed CPU time in seconds.

A first look at the tables reveals that the algorithm explores a very small fraction of

the nodes of the tree. For instance, in the case of 1000 points, the total number of nodes of

the tree is 9.96E+84 when k = 50, and 6.43E+242 when k = 250. In Table 3.1, we observe

that the number of explored nodes is in the order of 1E+ 4 for k = 50, and less than 1E+ 7

for k = 250, for all the studied datasets.

In general, we observe that the algorithm performs best when k is close to m. In this

case, the tree nodes have subtrees that are “tall and skinny”, and each node has a small

number of children (when we compare to the case when k is small). This fact, combined

58

nodes iters iters/node time
k mean dev mean dev mean mean dev

n
o
rm

a
l

50 8.41E+03 53% 9.12E+03 53% 1.086 7.60 14%
100 4.39E+04 60% 4.58E+04 60% 1.045 14.44 39%
250 3.40E+05 26% 3.46E+05 26% 1.018 83.54 30%
750 2.28E+05 25% 2.31E+05 25% 1.013 53.22 25%
900 2.45E+04 34% 2.52E+04 34% 1.029 5.59 43%
990 9.49E+01 80% 1.18E+02 77% 1.295 0.03 73%

u
n

if
o
rm

50 2.07E+04 31% 2.23E+04 30% 1.081 10.12 15%
100 1.40E+05 16% 1.46E+05 16% 1.039 36.31 16%
250 1.36E+06 32% 1.38E+06 32% 1.016 362.93 34%
750 3.24E+06 16% 3.25E+06 16% 1.004 609.59 15%
900 5.28E+05 14% 5.32E+05 14% 1.006 90.86 13%
990 7.77E+02 25% 8.75E+02 25% 1.128 0.28 45%

ex
po

n
en

ti
a
l

50 2.22E+04 22% 2.38E+04 22% 1.073 11.98 14%
100 4.34E+04 14% 4.51E+04 14% 1.040 17.57 10%
250 8.86E+04 37% 9.05E+04 36% 1.022 33.14 36%
750 1.72E+05 34% 1.75E+05 34% 1.016 50.04 35%
900 2.53E+04 30% 2.62E+04 30% 1.032 7.69 34%
990 1.19E+02 24% 1.50E+02 21% 1.265 0.08 37%

Table 3.1: Performance of the B&B for different 2-dimensional datasets with 1000 points.
The results correspond to the averages of 10 instances of each dataset.

nodes iters iters/node time
k mean dev mean dev mean mean dev

n
o
rm

.

50 4.37E+07 55% 4.52E+07 55% 1.034 9508.72 53%
990 4.08E+03 52% 5.70E+03 53% 1.381 2.26 56%

Table 3.2: Performance of the B&B for 10-dimensional normal datasets with 1000 points.
The results correspond to the averages of 10 instances of each dataset.

59

nodes iters iters/node time
k mean dev mean dev mean mean dev

n
o
rm

a
l

10 3.18E+03 58% 3.51E+03 57% 1.112 0.73 53%
30 3.94E+04 38% 4.37E+04 39% 1.109 9.01 41%
55 3.98E+04 48% 4.54E+04 48% 1.139 9.56 53%
75 1.30E+04 35% 1.56E+04 37% 1.193 3.54 44%
90 9.15E+02 35% 1.24E+03 35% 1.353 0.32 57%

u
n

if
o
rm

10 1.34E+04 26% 1.45E+04 27% 1.079 2.66 23%
30 6.54E+05 37% 7.06E+05 37% 1.079 144.69 39%
55 3.06E+06 69% 3.39E+06 69% 1.109 837.38 73%
75 1.20E+06 41% 1.42E+06 40% 1.183 392.83 42%
90 3.76E+04 64% 5.36E+04 66% 1.416 15.98 72%

ex
po

n
en

ti
a
l 10 2.51E+03 37% 2.93E+03 35% 1.174 0.68 33%

30 1.63E+04 42% 1.84E+04 41% 1.130 4.01 43%
55 1.33E+04 51% 1.55E+04 49% 1.182 3.80 46%
75 3.96E+03 32% 4.82E+03 32% 1.217 1.07 36%
90 2.54E+02 67% 3.75E+02 62% 1.510 0.08 58%

Table 3.3: Performance of the B&B for different 10-dimensional datasets with 100 points.
The results correspond to the averages of 10 instances of each dataset.

nodes iters iters/node time
b n k mean dev mean dev node mean dev

10 10 9990 6.83E+01 71% 2.70E+02 94% 3.75 0.31 99%
50 10 9950 3.59E+03 106% 1.17E+04 116% 2.84 14.85 115%

100 10 9900 4.30E+04 173% 1.29E+05 194% 2.44 178.83 208%

10 100 9990 5.56E+01 101% 6.23E+02 64% 16.02 10.29 52%
50 100 9950 7.85E+02 76% 2.31E+03 68% 3.29 28.27 62%

100 100 9900 9.55E+03 131% 1.50E+04 120% 1.81 166.60 120%
250 100 9750 1.38E+05 111% 1.77E+05 112% 1.25 1814.38 119%

Table 3.4: Performance of the B&B for 10000-point b-outliers datasets for different values of
b and dimension n. The results correspond to the averages of 10 instances of each dataset.

60

with the point-node assignment scheme we use, tends to create large radii at nodes from

the upper levels of the tree, resulting in a large number of nodes pruned in the early stages

of the run. In general, the hardest situations for the B&B are when k is close to m
2 , which is

natural since that is when the number of total nodes of the tree attains its maximum.

The algorithm is affected by the curse of dimensionality. This is easily seen when we

compare Tables 3.1 and 3.2 for the normal datasets with k = 990. Just by increasing the

dimension from 2 to 10 causes the number of explored nodes to increase dramatically. No

other values of k were possible to be tested in Table 3.2 as they were not possible to run in

a practical amount of time (the case k = 50 took on average about 3 hours to run). This

increase in complexity is explained by the following. Consider a node that is branched,

and its minimum ball is inflated in order to cover a point corresponding to one of its child

nodes. When the dimension is small, this inflated ball has a good chance of covering many

other points in the vicinity. This is true, especially if the point to cover is far from the

current center. When the dimension is large, however, the inflated ball has less chance to

cover many other points unless the number of points also increases (exponentially) with

the dimension. In other words, by increasing the dimension, we have a lot more room to

disperse the points and so the chance of an inflating ball to capture many other points

decreases.

Another issue with increasing the dimension is that the number of dual iterations

per node increases. When a ball is inflated and translated to enclose a new point, as

the dimension increases, the chance that a previously enclosed point becomes unenclosed

also increases (this is also more frequent when k is large). However, the number of dual

iterations per node remains small for small dimensions. This validates the choice of the

DZ algorithm for solving minimum enclosing ball subproblems for each node. One can

also consider modifying the algorithm and, instead of solving up to optimality each node’s

subproblem, only doing one, or another fixed number of, DZ iterations at each node, and

then solve up to optimality when a leaf is reached. This may reduce the number of DZ

iterations for larger dimensions. However the bounds produced at each node will not be as

strong, so the number of explored nodes will likely increase.

61

The most challenging datasets for the B&B seem to be those that contain many k-

subsets whose minimum enclosing ball radii are close to the radius of the optimal k-enclosing

ball. This is the case of the uniform datasets. In these instances, a large portion of the tree

has to be scanned until the optimal solution is found, and its optimality is proved. On the

other hand, when the data has many outlying points, like in the normal or the exponential

cases, the B&B tends to place many of the outlying points on the left side of the tree, and,

since these points generate large radii, the corresponding nodes are quickly pruned together

with their large subtrees. This behavior is observed in the b-outliers datasets (Table 3.4)

where instances with 10, 000 points and dimensions 10 and 100 were possible to be solved

in a practical amount of time.

Finally, we present some results with real data. Considering the application in facility

location, we tested our B&B algorithm in datasets6 whose points correspond to cities in

Canada, Japan, and the U.S.A. Table 3.5 contains the number of points in the dataset (m),

the percentage of points to be enclosed, the number of explored nodes, DZ iterations, and

CPU time in seconds for these datasets. Figures 3.5 show the optimal k-enclosing balls.

We observe that, despite the large number of points in these datasets, the B&B algorithm

managed to solve these instances in a short amount of time.

3.2.2 Comparison with other methodologies

Considered the following mixed-integer quadratic programming (MIQP) formulation of the

minimum k-enclosing ball problem:

min
r,x,βj

r2

s.t. ‖pj − x‖2 ≤ r2 + (1− βj)M, pj ∈ P
m∑
j=1

βj ≥ k

βj ∈ {0, 1}, j = 1, ...,m,

with M = (diam(P))2.

6These datasets are available in http://www.math.uwaterloo.ca/tsp/world/countries.html.

http://www.math.uwaterloo.ca/tsp/world/countries.html

62

(a) Canada (b) Japan

(c) U.S.A.

Figure 3.5: Illustration of the optimal k-enclosing balls for different levels of coverage.

Country m %coverage k nodes iters time

Canada 4663
75% 3498 1.51E+05 1.56E+05 71.31
90% 4197 1.54E+04 1.66E+04 8.38
95% 4430 4.16E+03 4.64E+03 3.16

Japan 9847
75% 7385 1.65E+05 1.69E+05 161.85
90% 8862 5.76E+04 5.91E+04 86.57
95% 9354 2.19E+04 2.26E+04 17.52

U.S.A. 13509
90% 12159 3.53E+05 3.59E+05 1060.60
95% 12834 2.18E+06 2.22E+06 2026.80

Table 3.5: Performance of the B&B for different 2-dimensional datasets corresponding to
Canada, Japan, and the U.S.A.

63

In this section, we compare the results of Table 3.3 with those of applying the general-

purpose MIQP solver of Gurobi [53]. We used Gurobi version 8.0.0 with its MATLAB

interface. We run Gurobi’s solver on the instances of the same dataset that generated the

results of Table 3.3. Additionally, the same initial solutions were given to Gurobi as a warm

start. All Gurobi parameters were kept at their default values7, with only the following

exception: the dual simplex method was the algorithm chosen for solving the relaxation at

each node, and the maximum running time allowed was 5000 seconds.

Figure 3.6 (a) reports the average number of Gurobi’s dual simplex iterations in its

Branch-and-Cut algorithm and the average number of Dearing and Zeck’s iterations in our

B&B, and Fig. 3.6 (b) reports the average CPU time of Gurobi and our B&B. We observe

that our method was faster for all the datasets studied, except for the case of the uniform

datasets when k = 90, in which we observe Gurobi to perform about twice as fast. The data

corresponding to the uniform datasets for k = 30 and k = 55 is missing since Gurobi was not

able to solve these problems to optimality in the allowed time. It is, of course, not surprising

that a dedicated algorithm is superior to a general-purpose code. Still, the comparison is

necessary in order to argue that off-the-shelf methods cannot successfully compete with our

approach. Our comparison is based on the 100-point instances since Gurobi was not able to

solve the instances with 1000 points within the allocated time (except for k = 990).

3.3 Further computational studies

In this section, we empirically study several aspects of the B&B algorithm presented in

Section 3.1. We start by studying the effect of providing an initial solution as a warm

start. Then, we introduce lower bounds resulting from relaxing the problem corresponding

to finding the best solution on a node’s subtree, and study how much of a reduction in the

number of explored nodes these lower bounds produce. Finally, we compare the point-node

assignment heuristic introduced in Section 3.1.3 with two other alternatives: assigning the

7We realize that by fine-tuning these parameters Gurobi may have a much better performance, but the
idea here is to show that our special-purpose algorithm works better than a generic and default branch-and-
bound method using the dual QP Simplex algorithm.

64

(a) Average total number of iterations as a function of k

(b) Average CPU time in seconds as a function of k

Figure 3.6: Gurobi vs. B&B for different 10-dimensional normal and uniform datasets with
100 points. The results correspond to the averages of 10 instances of each dataset.

65

points to nodes in a lexicographic order; and using the radius of each node as criterion to

assign points to nodes.

3.3.1 The impact of using an initial solution

Starting the B&B algorithm with the knowledge of a good upper bound on the optimal

solution can potentially result in a decrease in the number of explored nodes. To draw

some conclusions of how advantageous a good initial solution can be, we performed two dia-

metrically opposite experiments: for each dataset, we first ran our B&B algorithm without

any initial solution, and recorded the optimal solution; next, we gave the optimal solution

as initial solution to the B&B and ran it on the same dataset. The results are presented

in Tables 3.6 and 3.7 show the average over 10 instances of the ratio (in %) corresponding

to the number of explored nodes when the optimum solution was given as initial solution

over the number of explored nodes when no initial solution was given. A value close to

100% means that giving an initial solution had little effect reducing the number of explored

nodes.

In Tables 3.6 and 3.7, we observe that it is not unusual for the average ratios to be

above 80%. This means that the existence of a good initial solution is observed to not cause

a considerable reduction in the number of explored nodes. This is explained by either, when

no initial solution is given, a good upper bound on the optimal radius is found early; or,

a similar number of nodes needs to be scanned to prove optimality independently of the

knowledge of a good upper bound. For instance, when there are many k-subsets with an

enclosing ball with a radius close to the optimal k-enclosing ball radius, the latter case is

likely to happen. This happens, for example, in the case of uniform datasets that are dense,

like when m = 1000 and n = 2,

However, we have also observed some cases where the average ratio is small, meaning,

unless a good initial solution is given, a good upper bound is found in a later stage of the

algorithm’s run. This is visible in the exponential datasets, in particular, when n = 2 and

m = 1000. In this case, the knowledge of a good initial solution can make a notorious

difference.

66

k nodes ratio (%)

n
o
rm

a
l

50 96.4%
100 94.3%
250 90.2%
750 93.8%
900 93.7%
990 93.1%

u
n

if
o
rm

50 90.4%
100 81.4%
250 86.3%
750 93.8%
900 95.7%
990 93.9%

ex
po

n
en

ti
a
l

50 63.6%
100 49.5%
250 70.7%
750 35.5%
900 34.4%
990 65.9%

Table 3.6: The ratio in percentage of the number of explored nodes when the optimum
solution is given as initial solution over the number of explored nodes when no initial
solution is given. The results report the averages for 10 instances with 1000 points and
dimension 2.

k nodes ratio (%)

n
o
rm

a
l

10 86.4%
30 87.7%
55 84.6%
75 83.3%
90 85.6%

u
n

if
o
rm

10 69.3%
30 66.6%
55 68.0%
75 76.2%
90 77.7%

ex
po

n
en

ti
a
l 10 67.5%

30 57.7%
55 64.5%
75 76.6%
90 89.2%

Table 3.7: The ratio in percentage of the number of explored nodes when the optimum
solution is given as initial solution over the number of explored nodes when no initial
solution is given. The results report the averages for 10 instances with 100 points and
dimension 10.

67

The main conclusion, therefore, is that although an initial solution can sometimes

reduce the number of explored nodes considerably, there is a good chance it may not.

Therefore, spending too much effort at the outset of the algorithm to find a good upper

bound can often be wasteful.

3.3.2 Additional lower bounds

Obtaining a lower bound for the radius of the optimal solution of the MBk problem can be

useful for cases where we are satisfied with suboptimal solutions, or cases where there is a

limit on the number of iterations or in the running time of the algorithm. Having a good

lower bound will indicate approximately how good our current best solution is.

A simple way to obtain such lower bound comes from the observation that the diameter

of the minimum enclosing ball of any set of points, say Q, is larger than or equal to diam(Q),

the diameter of set Q (the maximum Euclidean distance between any two points of Q).

Suppose the solution of the MBk problem corresponds to a ball that encloses subset Q ⊆ P,

such that |Q| ≥ k, and with radius r∗. We then have

2r∗ ≥ diam(Q)

=
(
|Q|(|Q|−1)

2

)
-th smallest pairwise distance of Q

≥
(
|Q|(|Q|−1)

2

)
-th smallest pairwise distance of P

≥
(
k(k−1)
2

)
-th smallest pairwise distance of P.

(3.5)

A lower bound for the solution of the MBk problem can also be obtained based on

the relaxations of mixed-integer formulations of (3.1). It is possible to formulate (3.1) as a

mixed-integer-quadratic problem as follows:

min
r,x,βj

r2

s.t. ‖pj − x‖2 ≤ r2 + (1− βj)M, pj ∈ P
m∑
j=1

βj ≥ k

βj ∈ {0, 1}, j = 1, ...,m,

(3.6a)

68

where M is a constant that is “large enough”. Relaxing the integrality constraints (the

binary constraints are replaced by 0 ≤ βj ≤ 1) yields a lower bound for r∗. However, the

value of the constant M needs to be very large to not jeopardize feasibility. Without any

knowledge about the location of the minimum k-enclosing ball of P, all we can conclude is

that M ≤ (diam(P))2, which could be quite large. As a result, the relaxation (3.6a) tends

to not be very useful, except when k is very close to |P|.

Problem (3.1) can also be formulated as a mixed-integer-second-order-cone program:

min
r,x,βj

r

s.t. ‖βjpj + (1− βj)s− x‖ ≤ r, pj ∈ P
m∑
j=1

βj ≥ k

βj ∈ {0, 1}, j = 1, ...,m,

(3.6b)

with s being any point known to be enclosed by the optimal k-enclosing ball of P. A lower

bound for the solution of (3.1) can be found using a relaxation of (3.6b) as follows . First,

select a subset Q of P with m − k + 1 points; then, solve the relaxation m − k + 1 times,

each time considering s a different point from Q. Since, at least one of the points from Q

is known to be covered by the optimal k-enclosing ball, we can obtain a lower bound for r∗

by selecting the minimum radius among all the obtained solutions of the relaxations.

Lower bounds on the best solution on a subtree

The formulations (3.6) can be adapted to calculate the best solution that can be found on

a node’s subtree.

Consider node N of the search tree. Recall that l(N) = |Pt(N)|) and |ST(N)| =

m− i(N). The smallest radius of a k-enclosing ball that can be found in any of N’s subtree

nodes is given by the problem of finding the minimum radius k-enclosing ball that covers

Pt(N) and at least k − l(N) points of ST(N). That problem can be formulated based on

69

(3.6a) as

min
r,x,βj

r2

s.t. ‖pi − x‖2 ≤ r2, pi ∈ Pt(N)

‖qj − x‖2 ≤ r2 + (1− βj)M, qj ∈ ST(N)
|ST(N)|∑
j=1

βj ≥ k− l(N)

βj ∈ {0, 1}, j = 1, ...,m− i(N).

(3.7a)

Similarly, based on (3.6b), we have

min
r,x,βj

r

s.t. ‖pi − x‖ ≤ r, pi ∈ Pt(N)

‖βjqj + (1− βj)sj − x‖ ≤ r, qj ∈ ST(N)
|ST(N)|∑
j=1

βj ≥ k− l(N)

βj ∈ {0, 1}, j = 1, ...,m− i(N),

(3.7b)

where sj are points that are guaranteed to be covered by the smallest k-enclosing ball found

on N’s subtree. Point sj can be the same for all the constraints, for instance, any point

of Pt(N) would do. However, picking sj such that the distance between sj and qj is small

gives better bounds. A simple option is, for instance, choosing sj to be the closest point of

Pt(N) to qj.

Relaxing the integrality constraints in (3.7) yields formulations that can be used to

calculate, at each node, a lower bound on the best solution on that node’s subtree. These

can be applied to some or all nodes of the search tree in order to prune parts of the tree

more aggressively. Applying these lower bounds at every node is not practical as solving

each formulation many times is very time-consuming, especially (3.7b). For nodes whose

subtrees contain a small number of points, that is m− i(N) is small, it may even be faster

to explore all nodes on the subtree instead of solving any of the problems above.

As observed before, due to the large magnitude of the M constant in (3.7a), we expect

that the SOCP relaxation (3.7b) yields better lower bounds than the QP relaxation (3.7a).

70

Moreover, both relaxations are not expected to provide useful lower bounds when k− l(N)

is small (unless m − i(N) is small, in which case, as discussed, we might as well scan all

nodes on the subtree). When k− l(N) is small, the constraint
∑
βj ≥ k− l(N) is likely to

allow very small values for βj causing the solution of either relaxation to be only slightly

larger than r(N).

Remark 3.4. A lower bound on the best solution of a node’s subtree can be obtained

based on (3.5). However, this lower bound is not useful, given the point-node assignment

method we adopt. The points of Pt(N) are among the ones with higher pairwise distances

of the set Pt(N) ∪ ST(N), given how they were selected. Therefore, in most cases, half the

(k(k − 1)/2)-smallest distance between the points in Pt(N) ∪ ST(N) will be smaller than

r(N) (the radius of the minimum enclosing ball of Pt(N)).

We carried out some experiments to understand how much the relaxations (3.7) can

reduce the number of explored nodes. Both relaxations were applied separately for each

dataset. We did not compute these lower bounds on every single node, as that would have

been unnecessarily time consuming, but only when all the following conditions were met:

the number of points involved in the relaxation was larger than k (otherwise, the relaxation

is simply an MB problem, also, this excludes leaves); and the number of points on the

subtree of a node was at least 0.1 of the total number of nodes. Note that these rules

still imply that the relaxations are applied in a vast number of the nodes, which is still

impractical. We tested this strategy just for the sake of studying the maximum impact we

can expect from using such relaxations in the B&B.

In our tests, we gave the algorithm initial solutions. As we did before, we used the

Spherical Ordering method for the datasets normal and uniform; and for the exponential

dataset we used Spherical Peeling.

The results are presented in Tables 3.8 and 3.9, where the percent ratios of the number

of explored nodes when each relaxation was used under the conditions described above,

over the number of explored nodes when no such relaxation was used, are presented. These

experiments required a significant amount of time to run, and it was not possible to run such

71

nodes ratios (%)

k SOCP QP

n
o
rm

a
l

50 96.1% 99.9%
100 85.3% 99.6%
250 84.2% 99.4%
750 89.1% 99.6%
900 85.4% 99.2%
990 91.3% 96.4%

u
n

if
o
rm

50 88.3% 99.6%
100 65.3% 99.4%
990 98.6% 99.7%

ex
po

n
en

ti
a
l

50 79.8% 98.8%
100 60.8% 97.2%
250 48.6% 98.0%
750 74.0% 98.6%
900 86.0% 98.7%
990 93.5% 95.3%

Table 3.8: The ratio in percentage of the number of explored nodes when the relaxations
(3.7) are used over the number of explored nodes when no such relaxation is used, for
different 2-dimensional datasets with 1000 points.

nodes ratios (%)

k SOCP QP

n
o
rm

a
l

10 98.6% 99.4%
30 91.3% 99.3%
55 89.5% 99.2%
75 90.5% 99.3%
90 93.1% 98.9%

u
n

if
. 10 99.0% 99.4%

90 98.6% 100.0%

ex
po

n
en

ti
a
l 10 94.8% 97.0%

30 87.3% 98.3%
55 85.3% 98.1%
75 86.1% 97.7%
90 88.8% 95.6%

Table 3.9: The ratio in percentage of the number of explored nodes when the relaxations
(3.7) are used over the number of explored nodes when no such relaxation is used, for
different 10-dimensional datasets with 100 points.

72

experiments for the uniform datasets and k = 100, 250, 750, due to the excessive running

times.

In Tables 3.8 and 3.9, we observe that the QP relaxation had almost no impact in

decreasing the number of explored nodes. This occurs because the value of M is usually

very large, which causes the lower bound given by the relaxation to be little better than

the one we already have, that is, the radius of MB(Pt(N)). However, a small reduction

was observed in some cases when k is very large. In this case, since the value of most of

the βj will be close to 1, the effect of M is neutralized for most of the constraints. The

SOCP relaxation performs better than the QP one. However, its application is much more

time-consuming, and our tests show that, when k is either small or very large, the SOCP

relaxation (3.7b) is often not very helpful. As observed previously, when k is small, that fact

is a consequence of the formulation. When k is large, since the optimal radius is very large,

these relaxations would only be able to decrease the number of explored nodes considerably

if they could produce a large value as a lower bound, which is not the case. So, it makes

sense that our results show that these relaxations have an impact mostly for middle values

of k.

As a final comment, the (usually low) impact of using these relaxations cannot be

only justified by formulation features. We must also consider the fact that, because of the

node-point assignment scheme, at each node N, the value of r(N) is already a very good

lower bound, undermining the effect of these relaxations. These relaxations, when applied

to a B&B based on the lexicographic point-node assignment, had a much more significant

impact.

3.3.3 On the point-node assignment scheme

In Section 3.1.3 we introduced a point-node assignment scheme that, every time a node

N is branched, assigns points to N’s children in descending order of distance to x(N). To

observe empirically the effect of adopting this scheme, in addition to implementing a B&B

that employs it (which will be denoted by BBdist), we have also implemented a B&B that

uses the lexicographical order to assign points to nodes (BBlexic), and a B&B that orders

73

the children nodes according to their radius in decreasing order as we explain next (referred

to as BBrad).

A B&B that orders the children nodes according to their radius would work as follows:

pick the points to be assigned to the children nodes, say q1, ..., qb(N), to be the ones with

largest distance from x(N) (like in the scheme we propose); get rj by solving the subproblem

MB(ST(N)∪qj) corresponding to each point qj; and assign the points to nodes in descending

order by radius rj instead of by distance. When we do this, on one hand, the left-most

children will have a lower bound that is at least as good as the one resulting from the

distance-based order. This, may result in a reduction in the number of explored nodes. On

the other hand, note that all child nodes need to be explored in order to be sorted, including

the one that would be the last child. Only after knowing which node is the last child, its

path can be compressed into a single node, and solved. This may in fact increase the total

number of dual iterations.

For each dataset, we run the three B&B algorithms with the same initial solution. The

results of our experiments are reported in Tables 3.10 and 3.11, and contain the following

measures:

• total tree nodes: the total number of nodes of the search tree;

• nodes: the average number of explored nodes of the corresponding B&B;

• iters: the average total number of dual iterations from Dearing and Zeck’s algorithm

from the corresponding B&B.

Table 3.10 shows how the lexicographic scheme is inefficient even for relatively easy

problems such as the case of 50-point datasets. Increasing the number of points from 50

to 100 makes the lexicographical order an inviable option, due to the very large number of

explored nodes and consequent impractical running times. In Table 3.10, we barely observe

a difference in using the distance versus the radius. That difference is better shown when

we increase the number of points, see Table 3.11. In general, we see that, as expected, when

the nodes are ordered based on the radius value, the number of explored nodes is smaller in

general, though not significantly. However, this reduction is not enough to make up for the

extra dual iterations resulting from exploring the last child of each node of the minimum

74

total BBdist BBrad BBlexic

k tree nodes nodes iters nodes iters nodes iters

n
o
rm

a
l

5 2.35E+06 65 65 65 65 149 149
10 1.28E+10 91 91 91 91 1.72E+03 1.87E+03
15 3.19E+12 108 108 107 107 1.83E+04 2.07E+04
30 1.14E+14 98 98 97 97 1.12E+06 1.31E+06
45 1.80E+07 23 23 22 23 2.33E+04 2.67E+04

Table 3.10: Comparison of explored nodes (nodes) and dual iterations (iters) from different
point-node assignment schemes for 2-dimensional normal datasets with 50 points. The
results report the averages for 10 instances.

total BBdist BBrad ratios (%)

k tree nodes nodes(n1) iters (i1) nodes(n2) iters (i2) n2/n1 i2/i1

n
o
rm

a
l

10 1.92E+13 3.43E+03 3.65E+03 3.41E+03 3.75E+03 99% 103%
30 4.19E+25 4.28E+04 4.75E+04 4.15E+04 4.98E+04 97% 105%
55 1.35E+29 4.32E+04 4.90E+04 4.11E+04 5.43E+04 95% 111%
75 9.42E+23 1.35E+04 1.62E+04 1.29E+04 1.71E+04 96% 106%
90 1.59E+14 1.32E+03 1.79E+03 1.26E+03 1.89E+03 96% 106%

u
n

if
o
rm

10 1.92E+13 2.00E+04 2.10E+04 1.98E+04 2.23E+04 99% 106%
30 4.19E+25 6.62E+05 7.14E+05 6.21E+05 7.40E+05 94% 104%
55 1.35E+29 2.78E+06 3.09E+06 2.42E+06 3.05E+06 87% 99%
75 9.42E+23 9.73E+05 1.16E+06 8.42E+05 1.15E+06 87% 99%
90 1.59E+14 3.27E+04 4.63E+04 2.87E+04 4.58E+04 88% 99%

Table 3.11: Comparison of explored nodes (nodes) and dual iterations (iters) from different
point-node assignment schemes for 10-dimensional normal and uniform datasets with 100
points. The results report the averages for 10 instances.

75

solution tree. We observe that the total number of dual iterations is usually larger for the

B&B using the radius, yielding higher computational times when compared to the B&B

that uses the distance.

3.4 Conclusion

In this chapter we proposed a branch-and-bound algorithm to solve the NP-hard problem

of finding the ball of minimum radius that encloses at least k points from a given set. Our

algorithm makes a correspondence between the subsets of points and the tree nodes. It

uses a heuristic that aims at placing subsets of points enclosed in larger balls at the root of

large subtrees. As a result, it has the ability to prune very large subsets of points from the

search tree early on. This heuristic, combined with a last-in-first-out strategy for selecting

the next node to explore, results in a combination of depth-first-search and best-first-search

techniques. The algorithm retains the advantages of both these methods without the typical

disadvantages. In fact, an important consequence of our LIFO approach is that the memory

required to hold the set of live nodes is bounded by m− k.

Our experimental results show that, in general, only a small fraction of the nodes of

the search tree need to be explored. They also support our choice of the DZ dual algorithm

to solve the subproblems at each node, since in general we need a very small number of

iterations per node.

In general, the algorithm does quite well on datasets of small to medium size, inde-

pendently of k. If we consider situations where the goal is to discard outliers, then we will

be interested in large values of k. We observe that, when k is large, the algorithm performs

very well in general. We even managed to solve 10, 000-point instances with artificial out-

liers in dimensions up to 100 in a practical amount of time. The most difficult datasets for

the algorithm seem to be those with a uniform distribution of the points drawn from a ball.

However, a dataset with such characteristics would be unlikely to arise from an application

of the MBk problem.

Finally, we observed that the use of an initial good solution is not very consequential

76

in reducing the number of explored nodes. We also studied two relaxations of the MBk

problem in order to find better lower bounds at each node. One was based on a SOCP

while another was based on a QP. Our study revealed that the lower bounds given by these

relaxations are not very effective given our node/point attribution rule.

77

Chapter 4

The minimum enclosing ball of

balls

In this chapter, we investigate the problem of the minimum enclosing ball of balls. We

consider its second-order cone formulation, and conclude that other problems can also be

solved using the same formulation. We will denote this general formulation as the problem

of finding the infimum with respect to Q. We start by defining this problem.

Let Q denote the second-order cone {x := (x0; x) ∈ Rn : ‖x‖2 ≤ x0}. Consider the gen-

eralized inequalities1

x �Q y iff y− x ∈ Q and x ≺Q y iff y− x ∈ intQ.

Given a set of distinct points P = {p1, ..., pm} ⊂ Rn, consider the following problem

InfQ(P) := max
x∈Rn

〈e0, x〉

s.t. x �Q pi, i = 1, ...,m

(4.1)

where e0 = (1, 0, ..., 0) ∈ Rn. We call this problem the infimum of P with respect to Q or

the InfQ problem in short, due to its resemblance with the linear programming formulation

1The relation �Q defines a partial order on Rn, that is, the following holds for any elements u, v,w ∈ Rn:
if u �Q v and v �Q u then u = v (antisymmetry); if u �Q v and v �Q w then u �Q w (transitivity); u �Q u

(reflexivity).

78

of finding the minimum of a given set of numbers.

In this chapter, we introduce a dual simplex-like algorithm to solve the InfQ prob-

lem. Our algorithm shares similarities with the dual active-set algorithm for strictly convex

quadratic programs by Goldfarb and Idnani [51], and with the dual algorithm for the min-

imum enclosing ball of points by Dearing and Zeck [33] (studied in Chapter 2).

This chapter is organized as follows. In Section 4.1, we show that the minimum enclos-

ing ball of balls problem, as well as other related problems, are InfQ instances. Section 4.2

presents important theoretical background about the InfQ problem that provide a founda-

tion to the algorithm. The dual simplex-like algorithm for the InfQ problem is introduced

in detail in Section 4.3, and Section 4.4 explains how the algorithm can be efficiently im-

plemented using the Cholesky factorization. Finally, computational results are presented in

Section 4.5, and conclusions are drawn in Section 4.6.

4.1 Equivalent problems in computational geometry

Let x∗ be the optimal solution to (4.1). First note that, a straightforward geometric inter-

pretation for problem (4.1) is as follows: x∗ is the “highest” point (considering x0 as the

height of point x) such that x∗ + Q covers all points of set P (see Figure 4.1).

Denote by B(c, r) the Euclidean ball with center at c ∈ Rn−1 and radius r ≥ 0.

Proposition 4.1. B(ci, ri) ⊆ B(c, r) if and only if ‖c− ci‖ ≤ r− ri.

Proof. Suppose B(ci, ri) ⊆ B(c, r). Consider

w = c− γ(c− ci) with γ =
‖c− ci‖+ ri
‖c− ci‖

.

We have that ‖w− ci‖ = |1− γ| ‖c− ci‖ = ri. Therefore, w ∈ B(c, r) which implies

‖w− c‖ = ‖−γ(c− ci)‖ ≤ r ⇔ ‖c− ci‖+ ri ≤ r.

The other implication is a direct consequence of the triangle inequality.

79

Figure 4.1: A geometric interpretation of the InfQ problem: its solution is the point x∗ with
maximum x0 such that pi ∈ x∗ + Q, for all given points pi.

As a consequence of Proposition 4.1, the smallest enclosing ball of balls, defined as the

problem of enclosing a given set of balls B(ci, ri), i = 1, ...,m, with a ball B(c, r) of smallest

radius, can be reduced to an InfQ instance by considering P = {(−ri; ci), i = 1, ...,m}:

max
x∈Rn

x0

s.t.
(
x0
x

)
�Q

(
−ri
ci

)
, i = 1, ...,m.

(4.2)

The solution x∗ to (4.2) is such that x∗0 ≤ 0. The optimal ball, B(c, r), has center c = x∗ and

radius r = −x∗0. Figure 4.2 illustrates this situation: the minimum radius enclosing ball of

a set of balls is the intersection of the cone x∗ + Q with the plane x0 = 0. When ri = 0, for

all i = 1, ...,m, problem (4.2) corresponds to the smallest enclosing ball of points problem

studied in Chapter 2.

Consider now the problem of finding the ball B(c, r) with smallest radius that intersects

all balls B(ci, ri), i = 1, ...,m, that is, the smallest intersecting ball problem. This problem

also reduces to an InfQ instance as a consequence of the following proposition:

Proposition 4.2. B(c1, r1) ∩ B(c2, r2) 6= ∅ if and only if ‖c2 − c1‖ ≤ r2 + r1.

Proof. Suppose ‖c2 − c1‖ ≤ r2 + r1. Consider the following point

x =
r2c1 + r1c2
r1 + r2

.

We have that x ∈ B(c1, r1) since

‖x− c1‖ =
∥∥∥∥r1c2 − r1c1r1 + r2

∥∥∥∥ =
r1

r1 + r2
‖c1 − c2‖ ≤ r1.

80

Similarly, one has x ∈ B(c2, r2), so the intersection of the two balls is non-empty. The other

implication is a direct consequence of the triangle inequality.

Thus, to find B(c, r) we simply consider P = {(ri; ci), i = 1, ...,m} in (4.1), obtaining:

max
x∈Rn

x0

s.t.
(
x0
x

)
�Q

(
ri
ci

)
, i = 1, ...,m.

(4.3)

The smallest ball that intersects all given balls has center c = x∗ and radius r = −x∗0, where

x∗ is the optimal solution to (4.3). Figure 4.3 illustrates this case. For previous work on the

smallest intersecting ball problem see [76, 80] and the references therein. An application of

this problem can be found in [61].

When the intersection of balls B(ci, ri), i = 1, ...,m, is non-empty, the smallest inter-

secting ball could be considered any point of the intersection. In this case, it turns out the

solution to (4.3) has a different meaning: the solution is such that x∗0 > 0, and the ball

B(x, x∗0) is the largest radius ball that is enclosed in the intersection of all given balls. We

shall refer to this problem as the largest enclosed ball problem (see Figure 4.4).

From the previous analysis, we conclude that the problem of finding a ball with smallest

radius that simultaneously encloses balls B(ci, ri), i = 1, ...,m1, and intersects balls B(cj, rj),

j = 1, ...,m2, can also be solved by considering P = {(−ri; ci), i = 1, ...,m1} ∪ {(rj; cj), j =

1, ...,m2} in (4.1), resulting in

max
x∈Rn

x0

s.t.
(
x0
x

)
�Q

(
−ri
ci

)
, i = 1, ...,m1(

x0
x

)
�Q

(
rj
cj

)
, j = 1, ...,m2.

The optimal ball has center x∗ and radius −x∗0. The problem is illustrated in Figure 4.5.

Previous work on this problem includes [79].

81

(a) Cone view (b) Cross-section x0 = 0

Figure 4.2: The smallest enclosing ball of a set of balls.

(a) Cone view (b) Cross-section x0 = 0

Figure 4.3: The smallest intersecting ball of a set of balls.

(a) Cone view (b) Cross-section x0 = 0

Figure 4.4: The largest enclosed ball in a set of balls.

(a) Cone view (b) Cross-section x0 = 0

Figure 4.5: The smallest radius ball that simultaneously intersects a set of balls and encloses
another set of balls.

82

4.2 Properties of the InfQ problem

Recall that P = {p1, ..., pm}, and let pi = (pi0;pi) ∈ Rn with pi ∈ Rn−1. We now present

two theorems about the solution of the problem InfQ(P).

Theorem 4.3. The solution to InfQ(P) exists and is unique.

It is easy to see that the solution to InfQ(P) exists since the feasible set is always non-empty.

For a proof of the uniqueness of the solution, we refer the reader to [40, §3.1].

Theorem 4.4. The solution to InfQ(P) is pk ∈ P, for some k = 1, ...,m, if and only if

pk �Q pi, for all i = 1, ...,m.

Proof. First, note that, the optimal solution of InfQ(P), x
∗, always satisfies x∗0 ≤ pi0, i =

1, ...,m. Assume there exists pk ∈ P, for some k = 1, ...,m, that is feasible for InfQ(P).

Then, x∗0 ≥ pk0 since the problem is a maximization. Thus, we conclude that x∗0 = pk0, and

so x∗ = pk. The opposite implication is trivial.

4.2.1 Duality and optimality conditions

Before we proceed, let us introduce some notation.

• P := {pi : pi ∈ P} ⊂ Rn−1;

• x = (x0; x) is the (primal) variable of (4.1), and its x∗ = (x∗0 ; x
∗) optimal solution;

• yi = (yi0;yi), i = 1, ...,m, are the dual variables, and y∗i = (y∗i0;y
∗
i), i = 1, ...,m, an

optimal dual solution.

The dual problem of InfQ(P) is

min
y

m∑
i=1

〈pi, yi〉

s.t.

m∑
i=1

yi = e0

yi �Q 0, i = 1, ...,m.

(4.4)

83

Whereas the solution of the primal problem is unique, the solution of (4.4) may not be.

Example 4.5 shows an example.

Example 4.5. Consider P ⊂ R3 the set of points p1 = (0, 0, 0), p2 = (0, 1, 0), p3 = (0, 0, 1),

and p4 = (0, 1, 1). The optimal solution to InfQ(P) is x∗ =
(
−
√
2
2 ,

1
2 ,
1
2

)
. The following three

sets of dual solutions are all optimal for the corresponding dual problem:

i. y∗1 =
(
1
4 ,
√
2
8 ,
√
2
8

)
, y∗2 =

(
1
4 ,−

√
2
8 ,
√
2
8

)
, y∗3 =

(
1
4 ,
√
2
8 ,−

√
2
8

)
, y∗4 =

(
1
4 ,−

√
2
8 ,−

√
2
8

)
;

ii. y∗1 =
(
1
2 ,
√
2
4 ,
√
2
4

)
, y∗2 = y

∗
3 = (0, 0, 0) , y∗4 =

(
1
2 ,−

√
2
4 ,−

√
2
4

)
;

iii. y∗1 = y
∗
4 = (0, 0, 0) , y∗2 =

(
1
2 ,
√
2
4 ,
√
2
4

)
, y∗3 =

(
1
2 ,−

√
2
4 ,−

√
2
4

)
.

Lemma 4.6 (Strict feasibility). Both primal (4.1) and dual (4.4) problems are strictly

feasible; i.e. there exists a primal feasible vector x such that x ≺Q pi, for all i = 1, ...,m,

and there exist dual feasible y1, ..., ym such that yi �Q 0, for all i = 1, ...,m.

Proof. It is possible to construct a strictly primal feasible solution as follows. Consider

x = pj for some j = 1, ...,m, and x0 = mini=1,...,m{pi0 −
∥∥pi − pj∥∥}− ε, for some ε > 0. It is

easy to see that

‖pi − x‖ =
∥∥pi − pj∥∥ ≤ pi0 − x0 − ε < pi0 − x0, i = 1, ...,m.

Note that pi0 − x0 ≥ ‖pi − pk‖ + ε > 0. Finally, a trivial strictly dual feasible solution is

yi = (1m , 0, ..., 0), for all i = 1, ...,m.

Since both primal and dual problems are strictly feasible, the duality gap is zero, that is,

strong duality holds and the Karush-Kuhn-Tucker conditions are also sufficient, e.g. [8,

pp. 25]. This is stated in Theorems 4.7 and 4.8.

Theorem 4.7 (Strong duality). Both primal (4.1) and dual (4.4) problems have optimal

solutions, x∗ and y∗1, ..., y
∗
m, respectively, and

〈e0, x∗〉 =
m∑
i=1

〈pi, y∗i 〉.

84

Theorem 4.8 (Optimality conditions). Let x∗ and y∗i , i = 1, ...,m be any vectors in Rn.

The pair (x∗, {y∗i }i=1,...,m) is primal-dual optimal if and only if

• primal feasibility: x∗ �Q pi, i = 1, ...,m;

• dual feasibility:
∑m
i=1 y

∗
i = e0 and y∗i �Q 0, i = 1, ...,m;

• complementary slackness: 〈pi − x∗, y∗i 〉 = 0, i = 1, ...,m.

The next corollary follows from the complementary slackness conditions.

Corollary 4.9. Let x∗ and {y∗i }i=1,...,m) be primal and dual optimal, respectively. Then,

• if y∗i �Q 0, then x∗ = pi (which can happen for a single i, and, in that case, y∗i = e0

and y∗j = 0, for all j 6= i);

• if x∗ �Q pi, then y∗i = 0;

• if pi − x
∗ ∈ ∂Q and y∗i ∈ ∂Q, then

y∗i = −
y∗i0

pi0 − x
∗
0

(pi − x
∗) = −y∗i0

pi − x
∗

‖pi − x∗‖
. (4.5)

As illustrated in Example 4.5, we may have pi − x
∗ ∈ ∂Q and y∗i = 0 for some i. Thus,

strict complementarity, that is, pi − x
∗ + y∗i �Q 0 for all i = 1, ...,m, may not hold.

The following characterization of optimality is a consequence of Theorem 4.8:

Theorem 4.10. The optimal solution to InfQ(P) is x∗, iff x∗ is primal feasible, and

x∗ ∈ conv
(
{pi ∈ P : ‖pi − x∗‖ = pi0 − x∗0}

)
. (4.6)

Proof. If x∗ = pk, for some pk ∈ P, the theorem follows trivially from the optimality

conditions. For the remainder of the proof, assume that x∗ 6= pk, pk ∈ P.

First, consider x∗ is optimal for InfQ(P). Let I = {i : ‖pi − x∗‖ = pi0 − x
∗
0}, and

y∗i , i = 1, ...,m, be an optimal dual solution. From complementary slackness and dual

85

feasibility, y∗i = 0, for i 6∈ I, and

0 =
∑
i∈I
y∗i =

∑
i∈I

y∗i0
pi0 − x

∗
0

(pi − x
∗) .

As a consequence, we get

x∗ =
∑
i∈I
αipi, with αi =

y∗i0/ (pi0 − x
∗
0)∑

i∈I y
∗
i0/
(
pi0 − x

∗
0

) .
Since

∑
i y
∗
i0 = 1, we have that

∑
i∈I αi = 1, and there must be at least one αi 6= 0. Finally,

y∗i �Q 0 implies αi ≥ 0, for all i. Thus,
∑m
i=1 αi = 1, so (4.6) holds.

Conversely, suppose x∗ is primal feasible and satisfies (4.6):

x∗ =
∑
i∈I
αipi, with αi ≥ 0, for i ∈ I, and

∑
i∈I
αi = 1.

We will now build a dual solution that is feasible and, together with x∗, satisfies comple-

mentary slackness. Consider yi0, i = 1, ...,m, such that zi = yi0/(pi0 − x
∗
0) and

αi =
zi∑m
j=1 zj

, (4.7)

Let σj = pi0 − x
∗
0. Equations (4.7) together with

∑
i yi0 = 1 result in the following systems

of equations

αi(z1 + . . .+ zm) = zi, i = 1, ...,m,

σ1z1 + . . .+ σmzm = 1.

In order to solve the system of equations for yi0, first note that

σ1α1(z1 + . . .+ zm) + . . .+ σmαm(z1 + . . .+ zm) = 1,

which yields

(z1 + . . .+ zm) =
1

σ1α1 + . . .+ σmαm
.

86

Therefore

zi =
αi

σ1α1 + . . .+ σmαm
⇒ yi0 =

αi(pi0 − x
∗
0)∑m

j=1 αj(pj0 − x
∗
0)
.

Note that yi0 ≥ 0, for i ∈ I, and yi0 = 0, for i 6∈ I. Finally, if we consider

yi = −
yi0

pi0 − x
∗
0

(pi − x) , i = 1, ...,m,

we have that (yi0; yi) is feasible for the dual problem (4.4). It is easy to see that x∗ and

yi, i = 1, ...,m, satisfy complementary slackness. Thus, they are optimal for the respective

problems.

Observation 4.11. From the proof of Theorem 4.10 we can conclude that the optimal

solution of InfQ(P) is such that x∗ = ri conv({pi : y
∗
i0 > 0}). Note that y∗i0 > 0 could not be

substituted by y∗i ∈ ∂Q, because when x∗ = pk ∈ P we have y∗k = e0 6∈ ∂Q.

A conclusion from Theorem 4.10, which will be important for of the algorithm pre-

sented in Section 4.3, is the corollary below.

Corollary 4.12. Consider vector x, not necessarily primal feasible, that satisfies

x ∈ aff({pi : i ∈ I}), (4.8)

for I = {i : ‖pi − x‖ = pi0 − x0}. Let α1, ..., αm be the coefficients of the affine combina-

tion (4.8). Then there exists a dual solution given by

yi = 0, for i 6∈ I, and yi0 =
αi(pi0 − x0)∑m
j=1 αj(pj0 − x0)

, yi = −
yi0

pi0 − x0
(pi − x) , for i ∈ I,

that satisfies the dual constraint
∑m
i=1 yi = e0, and, together with x, the complementary

slackness conditions.

4.2.2 Basis and dual feasible S-pair

We now define basis for the InfQ(P) problem the same way a basis is defined for an LP-type

problem (Section 1.1.1).

87

(a) Basis {p1}. (b) Basis {p1, p2}.

(c) Basis {p1, p2, p3}.

Figure 4.6: Different bases in R3 with different cardinality.

Definition 4.13 (Basis). A set S ⊆ P is a basis if no proper subset S ′ of S is such that

InfQ(S
′) = InfQ(S). A basis S ⊆ P is optimal if InfQ(S) = InfQ(P).

Figure 4.6 illustrates the concept of basis in R3. An optimal basis may not be unique as

shown in Example 4.5, in which we have two optimal bases: {p1, p4} and {p2, p3}.

Theorem 4.14. Let S ⊂ P be a basis. If the constraint corresponding to p∗ ∈ P is infeasible

at the solution of InfQ(S), then p∗ belongs to an optimal basis of InfQ(S ∪ {p∗}).

Proof. Let x solve InfQ(S). Let S∗ and x∗ be an optimal basis and solution of InfQ(S∪ {p∗}),

respectively. Suppose, by contradiction, that p∗ 6∈ S∗. The fact that S∗ ⊆ S ⊆ S ∪ {p∗}

implies x∗0 ≥ x0 ≥ x∗0. Since x∗ is feasible for InfQ(S) and x∗0 = x0, then x∗ = x. This

contradicts the fact that the constraint corresponding to p∗ is infeasible at x.

88

Definition 4.15 (Dual feasible S-pair). Let S ⊆ P and x ∈ Rn. We say (S, x) is a dual

feasible (solution) S-pair if

(a) S is affinely independent;

(b) ‖pi − x‖ = pi0 − x0, ∀pi ∈ S;

(c) x ∈ ri conv(S).

The next theorem presents an alternative characterization of a dual feasible S-pair.

Theorem 4.16. (S, x) is a dual feasible S-pair iff S is a basis and x solves InfQ(S).

Proof. The case |Sj| = 1 is trivial. Consider a basis S = {p1, . . . , ps}, s ≥ 2, and x the

solution to InfQ(S). Let S ′ = {pi ∈ S : ‖pi − x‖ = pi0 − x0}. From Theorem 4.10, we know

that x ∈ conv(S
′
), thus x also solves InfQ(S

′). Since S is minimal with respect to inclusion,

we conclude that S = S ′, proving property (b) of the dual feasible S-pair definition. Since

no coefficient of the convex combination of x in terms of S can be 0 (otherwise, x would be

optimal for a proper subset of S), we conclude that x ∈ ri conv(S), proving property (c). Let

αi > 0 be the coefficients of x written as a convex combination of S. To prove property (a),

assume, for the sake of contradiction, that S is affinely dependent. Then, the set of vectors

{pi − p1}i≥2 is linearly dependent, that is, there exists coefficients βi, not all equal to zero,

such that 0 =
∑s
i=1 βipi and

∑s
i=1 βi = 0. Thus,

x =

s∑
i=1

αipi + δ

s∑
i=1

βipi, with

s∑
i=1

αi = 1,

for any δ ∈ R. Note that
∑s
i=1(αi + δβi) = 1. Consider δ = mini{−

αi
βi

: βi < 0}. Then x

becomes a convex combination of a proper subset S ′ of S. By Theorem 4.10, x is optimal

for InfQ(S
′), contradicting the hypothesis that S is inclusion-minimal, proving property (a).

Let (S, x) be a dual feasible S-pair, and x =
∑s
i=1 αipi, with αi > 0, and

∑s
1=1 αi = 1.

From Theorem 4.10, we know that properties (b) and (c) of the dual feasible S-pair definition

imply that x is the solution to InfQ(S). So, it only remains to prove that S is inclusion-

minimal. Suppose it is not, that is, there exists a proper subset S ′ of S such that x solves

InfQ(S
′). From Theorem 4.10, x can be written as a convex combination of S ′. Let βi be

89

the corresponding coefficients and let pk ∈ S \ S ′. Then,

pk =
∑
i: pi∈S ′

βi − αi
αk

pi +
∑

i6=k: pi∈S\S ′

αi
αk
pi,

contradicting the fact that S is affinely independent, since the sum of the coefficients of the

linear combination above is 1. Hence, S is inclusion-minimal.

Observation 4.17. As a consequence of the previous theorem, a basis has at least 1 point

and at most n points.

Observation 4.18. If (S, x) is a dual feasible S-pair, then x is a dual feasible solution to

InfQ(P). If (S, x) is a dual feasible S-pair and x is primal feasible, then x solves InfQ(P) and

S is an optimal basis.

Now, we present a Lemma about dual feasible S-pairs that will be useful later.

Lemma 4.19. If (S, x) is a dual feasible S-pair such that |S| > 1, then

∥∥pj − pi∥∥ > pj0 − pi0, ∀pi, pj ∈ S.

Proof. First, suppose by contradiction that ∃pi ∈ S s.t.
∥∥pj − pi∥∥ < pj0 − pi0, for some

pj ∈ S, and pj0 − pi0 ≥ 0. By the triangle inequality,

∥∥pj − x∥∥ ≤ ∥∥pj − pi∥∥+ ‖pi − x‖ < pj0 − x0,
contradicting the fact that (S, x) is a dual feasible S-pair.

Without loss of generality, now suppose by contradiction that p1, p2 ∈ S are s.t.

‖p2 − p1‖ = p20 − p10 ≥ 0. Let Ci = {z ∈ Rn : ‖pi − z̄‖ = pi0 − z0}, i = 1, 2. The in-

tersection of C1 and C2 is a line segment that passes through p1 and p2. As a consequence

of (S, x) being a dual feasible S-pair, x ∈ C1 ∩ C2. Thus, there exists β ∈ R such that

x = p1 + β(p2 − p1). From x0 ≤ p10 and x0 = p10 + β(p20 − p10), we conclude that β ≤ 0.

90

From x =
∑s
i=1 αipi, for αi > 0, and

∑s
i=1 αi = 1, we obtain

p2 =
α1 − 1+ β

β− α2
p1 +

s∑
i≥3

αi
β− α2

pi,

which contradicts the fact that S is affinely independent.

Finally, we can use the result from Theorem 4.10 to calculate algebraically the solution

to InfQ(P) and find the optimal basis, when P has only two points.

Theorem 4.20. The solution to InfQ({p1, p2}) is given by

x∗0 = min
(
p10, p20,

1
2 (p10 + p20 − ‖p1 − p2‖)

)
, and x∗ =

(p10 − x
∗
0)p2 + (p20 − x

∗
0)p1

(p10 − x
∗
0) + (p20 − x

∗
0)

.

If x∗ is either p1 or p2, then the optimal basis is S∗ = {x∗}. Otherwise, S∗ = {p1, p2}.

Proof. Let t = 1
2 (p10 + p20 − ‖p1 − p2‖). Case 1: x∗ = p1. Recall from Theorem 4.4 that

x∗ = p1 iff ‖p2 − p1‖ ≤ p20 − p10. Thus, p10 ≤ p20 and t = p20. The case when x∗ = p2 is

proved the same way.

Case 2: x∗ ∈ ri conv(p1, p2), that is, x∗ = αp1+(1−α)p2, for 0 < α < 1. Without loss

of generality consider p10 ≤ p20. From the primal constraints binding at x∗:

‖p1 − x∗‖ = (1− α) ‖p1 − p2‖ = p10 − x∗0, ‖p2 − x∗‖ = α ‖p2 − p1‖ = p20 − x∗0,

we can find α:

α =
‖p1 − p2‖− (p10 − p20)

2 ‖p1 − p2‖
.

As a consequence of Theorem 4.4, we have ‖p2 − p1‖ > p20 − p10 ≥ 0, thus the value of α

given by the formula above satisfies 0 < α < 1. We conclude that x∗0 = t < p10 ≤ p20.

91

4.3 The dual simplex-like algorithm

In this section we introduce a dual simplex-like algorithm to solve the InfQ problem. The

algorithm may be outlined as follows:

Input: A set of points P ∈ Rn.

Initialization: A dual feasible S-pair (S, x).

Loop: While x is primal infeasible:

(i) Get a p∗ ∈ P corresponding to a violated constraint at x;

(ii) Obtain a dual feasible S-pair (S ′ ∪ {p∗}, x ′), with S ′ ⊆ S and x ′0 < x0.

Output: x, the optimal solution to InfQ(P) and S an optimal basis.

The initialization step can be easily done by picking any point p ∈ P and considering

({p}, p) as a dual feasible S-pair.

Step (ii) of the outline above is the core of the algorithm, and consists on a sequence

of curve searches after which p∗ becomes feasible and the value of the objective function

strictly decreases.

Consider (Sj, xj) the dual feasible S-pair at the beginning of iteration j. Let Sj :=

{pj1 , pj2 , ..., pjs}, with s = |Sj|, and S
j
:= {pji : pji ∈ Sj}. In order to maintain complementary

slackness and dual feasibility, the algorithm restricts the search for the next iterate to the

set of points that satisfy (4.9) and (4.10a):

∥∥pji − x∥∥ = pji0 − x0, ∀pji ∈ Sj, (4.9)

x ∈ conv(S
j ∪ {p∗}). (4.10a)

Let us relax condition (4.10a), and simply consider

x ∈ aff(S
j ∪ {p∗}). (4.10b)

In Section 4.3.1 we show that, if S
j ∪ {p∗} is affinely independent, conditions (4.9, 4.10b)

define a curve in Rn. A curve search consists on the following: starting at xj, we “move” on

92

the curve in the direction of decrease of x0 until either dual feasibility is lost or p∗ becomes

feasible, whichever happens first. As we will see, the points where either dual feasibility

is lost or p∗ becomes feasible can be both calculated exactly, so the curve search is exact.

If dual feasibility is lost first, a new curve search is performed next. Otherwise, when p∗

becomes feasible first, a new loop iteration starts.

If S
j∪ {p∗} is affinely dependent then (4.9, 4.10b) define a single point. In Section 4.3.2,

we address this case explaining how to proceed in order to be able to perform a curve search

afterward.

Before we proceed to the details of the algorithm, we first define some matrices and

vectors that will be used throughout this discussion.

If |Sj| > 1, we define the following matrices and vectors:

M =
[
pj2 − pj1 pj3 − pj1 ... pjs − pj1

]
, M+ = (MTM)−1MT ,

c =


pj20 − pj10

...

pjs0 − pj10

 , b =
1

2


∥∥pj2∥∥2 − p2j20 − ∥∥pj1∥∥2 + p2j10

...∥∥pjs∥∥2 − p2js0 − ∥∥pj1∥∥2 + p2j10

 ,
u = (MTM)−1(b−MTpj1), v = (MTM)−1c,

w = −M+(p∗ − pj1), z = (I−MM+)(p∗ − pj1) = p
∗ − pj1 +Mw.

M+ is the Moore-Penrose inverse, or pseudo-inverse, of M. If S
j

is affinely independent,

then M is full column rank and M+ is a left inverse in the sense that M+M = I.

If |Sj| = 1, then M = [], b = [], c = [], u = v = w = [], and z = p∗ − pj1 .

Lemma 4.21. Conditions (4.9) are equivalent to:

MTx = b+ x0c, (4.11a)∥∥pj1 − x∥∥2 = (pj10 − x0)
2 , (4.11b)

x0 ≤ min
pji∈S

j
{pji0}. (4.11c)

93

Proof. If we square equations (4.9), we obtain

∥∥pji − x∥∥2 − (pji0 − x0)
2 = 0, pji − x0 ≥ 0, ∀pji ∈ Sj,

which are equivalent to the following system of equations and one inequality:

x0 ≤ min
pji∈S

j
{pji0},∥∥pj1 − x∥∥2 = (pj10 − x0)

2,∥∥pji − x∥∥2 − (pji0 − x0)
2 =

∥∥pj1 − x∥∥2 − (pj10 − x0)
2 , ∀pji ∈ Sj \ {pj1}.

After several simplifications the last conditions are equivalent to

−(pji0 − pj10)x0 + (pji − pj1)
Tx =

1

2

(∥∥pji∥∥2 − p2ji0 − ∥∥pj1∥∥2 + p2j10) , ∀pji ∈ Sj,

that is, −x0c+M
Tx = b.

Theorem 4.22. Let S
j

be affinely independent. Conditions (4.9, 4.10b) are equivalent to

x = pj1 +M(u+ x0v) + α
∗z, (4.12a)

for x0 ≤ minpji∈S
j{pji0} and α∗ ∈ R such that

(α∗)2 ‖z‖2 + ‖M(u+ x0v)‖2 − (p10 − x0)
2 = 0. (4.12b)

Proof. From (4.10b) we know that there exist scalars α1, . . . , αs, α
∗, such that

∑s
i=1 αi +

α∗ = 1 and x =
∑s
i=1 αipji + α

∗p∗, which implies

x =Mα2:s + α
∗(p∗ − pj1) + pj1 (4.13)

with α2:s the vector with α2, . . . , αs. Substituting (4.13) in (4.11a) we have

MTMα2:s + α
∗MT (p∗ − pj1) +M

Tpj1 = b+ x0c.

94

Since MTM is invertible, this yields

α2:s = u+ x0v+ α
∗w, (4.14)

with u, v, and w as defined before. Combining (4.13) and (4.14) we obtain (4.12a). Finally,

by plugging (4.12a) in (4.11b) and observing that MTz = 0, we obtain (4.12b).

Note that the results of Lemma 4.21 and Theorem 4.22 are independent on xj, and

make no assumption on the affine dependence of S
j ∪ {p∗}.

4.3.1 The curve search - S
j ∪ {p∗} is affinely independent

At the beginning of a curve search, we always have that the pair (Sj, xj) satisfies:

• S
j ∪ {p∗} is affinely independent;

•
∥∥pji − xj∥∥ = pji0 − x

j
0, ∀pi ∈ Sj;

• xj ∈ conv(S
j ∪ {p∗}), with p∗ ∈ P corresponding to the chosen violated constraint.

The fact that these assumptions hold at the beginning of a curve search will be proved in

Section 4.3.4. Note that, (Sj, xj) may or may note be a dual feasible S-pair. Set Sj may not

be a basis, but it always is a subset of a basis.

In this section we shall see that, provided S
j ∪ {p∗} is affinely independent, the set of

points that satisfy equations (4.9, 4.10b) topologically define a curve, that is, they are the

image of a continuous function Γ : I ⊆ R→ Rn. Moreover, Γ can be written parametrically

in terms of x0.

The curve

If S
j ∪ {p∗} is affinely independent, then z 6= 0. Thus, the quadratic equation (4.12b)

can be solved for α∗ (the coefficient of the affine combination associated with p∗) and we

obtain:

α∗(x0) = ±
1

‖z‖

√
(pj10 − x0)

2 − ‖M(u+ x0v)‖2. (4.15)

95

Now, it is possible to write the points that satisfy (4.9, 4.10b) as a function of the single

variable x0, as Theorem 4.22 shows.

Theorem 4.23. Consider S
j ∪ {p∗} affinely independent. Conditions (4.9, 4.10b) define

a curve Γ :
[
−∞,minpji∈S

j{pji0}
] → Rn parameterized by x0, such that Γ(x0) = (x0; Γ(x0))

with

Γ(x0) := pj1 +M(u+ x0v)±
z

‖z‖

√
(pj10 − x0)

2 − ‖M(u+ x0v)‖2.

We are not interested in the whole curve defined by Γ , but only on the portion that

intersects conv(S
j ∪ {p∗}), condition (4.10a), that is, that corresponds to a nonnegative α∗.

Corollary 4.24 shows how the points on the curve that are also in conv(S
j ∪ {p∗}) can be

written as an affine combination of S
j ∪ {p∗}. This result will allow the algorithm to control

dual feasibility during the curve search.

Corollary 4.24. Consider S
j ∪ {p∗} affinely independent. Conditions (4.9, 4.10a) define

a curve Γ+ :
[
−∞,minpji∈S

j{pji0}
]→ Rn parameterized by x0: Γ

+(x0) = (x0; Γ
+
(x0)) with

Γ
+
(x0) := pj1 +M(u+ x0v) +

z

‖z‖

√
(pj10 − x0)

2 − ‖M(u+ x0v)‖2.

Moreover,

Γ
+
(x0) =

s∑
i=1

αi(x0)pji + α
∗(x0)p

∗, (4.16)

with

α∗(x0) =
1

‖z‖

√
(pj10 − x0)

2 − ‖M(u+ x0v)‖2, (4.17a)

α1(x0) = 1− 1
T
s−1(u+ x0v) − α

∗(x0)
(
1Ts−1w+ 1

)
, (4.17b)

α2:s(x0) = u+ x0v+ α
∗(x0)w, (4.17c)

where 1s−1 ∈ Rs−1 with entries all 1, and α2:s the vector (α2, α3, ..., αs).

Note that the assumptions on xj at the beginning of a curve search imply that xj is on

the curve defined by Γ+, that is, xj = Γ+(xj0).

Observation 4.25. It is now possible to write explicitly the dual variables that correspond

96

to (x0; Γ
+
(x0)) as functions of x0:

yji0(x0) =
αi(x0)(pji0 − x0)∑s

k=1 αk(x0)(pjk0 − x0) + α
∗(x0)(p

∗
0 − x0)

, for pji ∈ Sj,

yji(x0) = −
yji0(x0)

pji0 − x0

(
pji − Γ

+
(x0)

)
, for pji ∈ Sj,

y∗0(x0) =
αi(x0)(p

∗
0 − x0)∑s

k=1 αk(x0)(pjk0 − x0) + α
∗(x0)(p

∗
0 − x0)

, for p∗,

y∗(x0) = −
y∗0(x0)

p∗0 − x0

(
p∗ − Γ

+
(x0)

)
, for p∗,

yk = 0, for pk 6∈ Sj ∪ {p∗}.

We only need to satisfy αi(x0) ≥ 0 and α∗(x0) ≥ 0, in order to ensure that (x0, Γ
+
(x0))

corresponds to a dual feasible solution.

We now show some properties of the curve. LetN be a matrix whose columns constitute

a basis to the nullspace of the linear space parallel to aff(S
j∪{p∗}). Define H and C1 as

H :=

x ∈ Rn : ATx =

 b

NTpj1

 with A =

 −cT 0

M N

 ,
C1 :=

{
x ∈ Rn :

∥∥pj1 − x∥∥2 = (pj10 − x0)
2
}
.

From Lemma 4.21 and condition (4.10b) we conclude that Γ corresponds to the intersection

of H with C1, for x0 satisfying the inequality (4.11c). When S
j∪ {p∗} is affinely independent,

N has n− 1− s columns, and [M|N] has n− 2 columns and is full column rank. Thus, AT

is full row rank, meaning H is a 2−dimensional affine space in Rn (a plane). The curve Γ

is then the intersection of a plane with the lower nappe of C1, that is, a conic section. Note

that Γ(x0) is the projection of Γ(x0) onto the hyperplane {x ∈ Rn : x0 = 0}.

Proposition 4.26 (Curve shape). Consider S
j ∪ {p∗} affinely independent.

i. If |Sj| = 1, then Γ(x0) is two line segments that intersect at pj1, and Γ(x0) is a line;

ii. If |Sj| > 1, then Γ(x0) is a branch of a hyperbola. In particular, if c = 0, Γ(x0) is a line.

iii. Γ(x0) is symmetric with respect to a reflection through {x ∈ Rn : x ∈ aff(S
j
)}.

97

(a) Γ(x0), x0 ≤ p10 (b) Γ(x0), x0 ≤ p10 (c) Γ
+
(x0), x0 ≤ p10

Figure 4.7: Illustration of the curve when Sj = {p1} ⊂ R3.

(a) Γ(x0), x0 ≤ p10 (b) Γ(x0), x0 ≤ p10 (c) Γ
+
(x0), x0 ≤ p10

Figure 4.8: Illustration of the curve when Sj = {p1, p2} ⊂ R3 and c = 0.

(a) Γ(x0), x0 ≤ p10 (b) Γ(x0), x0 ≤ p10 (c) Γ
+
(x0), x0 ≤ p10

Figure 4.9: Illustration of the curve when Sj = {p1, p2} ⊂ R3 and c 6= 0.

98

Proof. i. Assume Sj has a single point pj1 . Then M = [] and b = c = 0, and Γ becomes:

Γ(x0) =
(
x0; Γ(x0)

)
=

(
x0, pj1 ±

z

‖z‖
|pj10 − x0|

)
, x0 ≤ p10.

Another way to see that the curve corresponds to two line segments, is to note that H =

{(x0; x) ∈ Rn : NT (x − pj1) = 0}. Thus, H is parallel to the axis of the cone C1 since the

linear space corresponding to H contains the vector (1, 0, ..., 0). Since H contains the vertex

of C1, the intersection of H with C1 is two opposite rays of the cone (Figure 4.7).

ii. Assume |Sj| > 1 and c = 0. Then pji0 = pj10, for all i = 2, ..., s, and H = {(x0; x) ∈

Rn : NT (x − pj1) = 0, MTx = b}. Consequently, H is parallel to the axis of the cone, but

this time pj1 6∈ H since MTpj1 − b 6= 0. The intersection of a double cone and a plane

parallel to its axis that does not pass through its vertex is a hyperbola. In this case,

Γ(x0) =
(
x0; Γ(x0)

)
=

(
x0, pj1 +Mu±

z

‖z‖

√
(pj10 − x0)

2 − ‖Mu‖2
)
.

Since we only care about the lower nappe of C1, we only have one of the branches (Fig-

ure 4.8). Note that Mu 6= 0, and the image of Γ(x0) in Rn−1 is a line.

Now, assume |Sj| > 1 and c 6= 0. To prove that the image of Γ is a hyperbola, we

prove that H intersects both nappes of C1. Consider the intersection of Γ with aff(S
j
),

obtained by solving α∗(x0) = 0. The solution(s) are such that x0 = pj10 ± ‖M(u+ x0v)‖,

thus x0 ≤ p10 and x0 ≥ p10. Note that M(u + pj10v) = 0 iff b −MTpj1 + pj10c = 0 iff∥∥pji − pj1∥∥2 = (pji0 − pj10)
2 for all pji ∈ Sj \ {pj1}. The latter equality is not true due to

the fact that Sj is a subset of a basis (Lemma 4.19). As a result, x0 = p10 is not a solution.

Therefore, α∗(x0) = 0 has two solutions, one such that x0 < p10 and the other such that

x0 > p10, that is, each one corresponding to one of the nappes of C1 (Figure 4.9).

iii. Let x be a point on the curve. We know that x ∈ aff(S
j ∪ {p∗}). In particular,

x ∈ aff(S
j
) iff zT (x− pj1) = 0. The reflection operator with respect to the affine hyperplane

aff(S
j
) for points in aff(S

j ∪ {p∗}) is R(x) = x − 2zT (x− pj1)
‖z‖2
z . It is easy to prove that,

99

since MTz = 0, it holds that R(Γ
+
(x0)) = Γ

−
(x0) and vice-versa, for

Γ
−
(x0) := pj1 +M(u+ x0v) −

z

‖z‖

√
(pj10 − x0)

2 − ‖M(u+ x0v)‖2.

The curve search procedure

The curve search consists on moving on the curve defined by Γ+(x0) in the direction of

decrease of x0, starting at xj. This movement stops either right before dual feasibility is lost

or on the point where the violated constraint becomes feasible. Using the conclusions from

the previous section, finding the point on the curve where to stop can be formally described

by the following problem:

min x0

s.t. x = Γ
+
(x0)

‖p∗ − x‖ ≥ p∗0 − x0

αi(x0) ≥ 0, i = 1, ..., s

α∗(x0) ≥ 0

x0 ≤ xj0.

Note that in the problem above we do not have x0 ≤ minpji∈S
j{pji0}, since xj0 already satisfies

the same inequality.

We define partial step and full step as:

Partial step: the largest step on the curve without violating dual feasibility, when we

move in the direction of decrease of x0 starting at xj. Equivalently, this is the largest step

on the curve until one of the dual variables, which vary non-linearly as we move on the

curve, becomes zero. We denote the point where this happens by

xP := Γ+
(
xP0
)
=
(
xP0 ; Γ

+ (
xP0
))
.

100

Full step: the smallest step on the curve that makes the constraint corresponding to p∗

feasible (active), when we move in the direction of decrease of x0 starting at xj. When it

exists, we denote that point by

xF := Γ+
(
xF0
)
=
(
xF0 ; Γ

+ (
xF0
))
.

If xF0 > x
P
0 , then the constraint corresponding to p∗ becomes feasible while all dual variables

associated with Sj are kept feasible and non-zero. That implies that xF is the solution to

InfQ(S
j ∪ {p∗}). The algorithm then goes to the beginning of a new iteration with a new

dual feasible S-pair (Sj+1, xj+1) := (Sj ∪ {p∗}, xF).

On the other hand, if xF0 ≤ xP0 , then at least a dual variable becomes 0 before, or

exactly at the same time that, p∗ becomes primal feasible. When this is the case, the

algorithm drops a point pjk from Sj that corresponds to a dual variable that became zero.

The algorithm then performs a new curve search with the new Sj starting at xP .

More than one dual variable may become zero simultaneously at xP . In this case, the

algorithm chooses any pjk corresponding to one of such zero dual variables to be deleted

from Sj. The following curve search will be a degenerate case where x will not change, and

simply another point whose dual variable is zero at xP is dropped. Cycling will not occur

since at each degenerate curve search one point is deleted from Sj. Eventually, after some

number of points are deleted from Sj, xP ∈ ri conv(S
j
), and in the next curve search x will

change (a movement on the curve occurs).

For the remainder of this section, unless mentioned otherwise, assume |Sj| > 1. The

particular case of |Sj| = 1 will be addressed separately.

The full step - calculating xF0

Since
∥∥p∗ − xj∥∥ ≥ p∗0 − xj0, then xF is the first point on the curve that satisfies

‖p∗ − x‖ = p∗0 − x0. (4.18a)

101

Such point can be obtained using conditions (4.11) and (4.18b):

(p∗ − pj1)
Tx = b∗ + x0c

∗, (4.18b)

with c∗ = p∗0 − pj10, b
∗ = 1

2

(
‖p∗‖2 − (p∗0)

2 −
∥∥pj1∥∥2 + p2j10), and x0 ≤ p∗0. Therefore, xF0 is

the solution to the following problem:

max x0

s.t. x = Γ
+
(x0)

(p∗ − pj1)
Tx = b∗ + x0c

∗

x0 ≤ min{p∗0, x
j
0}.

(4.19)

It is easy to see that the solution to (4.19) may not exist: equations (4.9,4.18a) seek the

position of the vertex of a second-order cone that has points Sj ∪ {p∗} on its boundary,

which is not guaranteed to exist. To solve (4.19), we could plug the equation of Γ
+
(x0) in

(4.18b), and solve for x0. However, we realized this approach would result in rather intricate

calculations involving square roots. So, instead, we go back to the results of Lemma 4.21

and Theorem 4.22 and proceed as follows. We start by plugging (4.12a) in (4.18b), solve

for α∗, obtaining α∗ as a function of x0:

α∗(x0) =
1

(p∗ − pj1)
Tz

(b∗ + x0c
∗ − (p∗ − pj1)

T (M(u+ x0v) + pj1)), (4.20)

Now, if we plug (4.20) back in (4.12a), we get x = q+ x0r+ pj1 , with

q =Mu+
b∗ − (p∗ − pj1)

T (Mu+ pj1)

(p∗ − pj1)
Tz

and r =Mv+
c∗ − (p∗ − pj1)

T (Mv)

(p∗ − pj1)
Tz

.

Finally, we plug x = q+ x0r+ pj1 in (4.11b), which becomes ‖q+ x0r‖2 = (pj10 − x0)
2, and

solve it for x0.

Note that, in this process, we never imposed that α∗(x0) ≥ 0 (recall that α∗(x0) is given

by (4.20)). If the solution(s) to the quadratic equation are real, we only keep the one(s)

that satisfy both conditions α∗(x0) ≥ 0 and x0 ≤ min
{
x
j
0, p
∗
0

}
. If there are more than one

102

Algorithm 4.1 Full step procedure

input: Matrix M, vectors u, v, w, z, points xj, p∗, and set Sj

output: xF0
1: Define vectors c∗, b∗, q, and r;
2: X̂∗ ← {x0 : ‖q+ x0r‖2 = (pj10 − x0)

2};

3: X∗ ← {x0 ∈ X̂∗ : α∗(x0) ≥ 0 ∧ x0 ≤ p∗0 ∧ x0 ≤ xj0}, for α∗(x0) defined in (4.20);
4: if X∗ = ∅ then
5: xF0 ← −∞.
6: else
7: xF0 ← max{X∗}.
8: end if

such solution, xF0 is the largest one. If we are left with no solutions or the solutions of the

quadratic equation are not real, then the solution to (4.19) does not exist. In this case, we

shall consider xF0 = −∞. The details of calculating xF0 are described in Algorithm 4.1.

The partial step - calculating xP0

When S
j ∪ {p∗} is affinely independent, Corollary 4.24 gives all the ingredients necessary to

control the dual variables as we move on the curve. As a consequence, xP0 is the solution

to

min x0

s.t. αi(x0) ≥ 0, i = 1, ..., s

α∗(x0) ≥ 0

x0 ≤ xj0.

(4.21)

Note that, if we consider the definitions of αi(x0), i = 1, ...,m, given by (4.17), the constraint

α∗(x0) ≥ 0 is already implied.

Since xj ∈ conv(S
j ∪ {p∗}), we know that α∗(xj0) ≥ 0 and αi(x

j
0) ≥ 0, for all i = 1, ..., s.

So, the solution to (4.21) can be found by solving the s equations αi(x0) = 0, i = 1, ..., s,

and picking the largest of the solutions that satisfy x0 ≤ xj0. These equations are radical

equations that can be easily solved by isolating the square root term in one side, squaring

both sides, solving the resulting quadratic equation, and finally discarding any extraneous

solutions.

Geometrically, the solution to (4.21) corresponds to the largest step on the curve where

103

Algorithm 4.2 Partial step procedure

input: Matrix M, vectors u, v, w, z, points xj, p∗, and set Sj

output: xP0 and index k.

1: for i = 1, ..., s do
2: Define αi(x0) as in (4.17);
3: X̂i ← {x0 : αi(x0) = 0};

4: Xi ← {x0 ∈ X̂i : x0 is real ∧ x0 ≤ xj0
}

;

5: end for
6: xP0 ← max {∪i=1,...,sXi};
7: k← i such that xP0 ∈ Xi.

the boundary of conv(S
j∪{p∗}) is found. The point or points of Sj opposed to the intersected

facet(s) of conv(S
j∪{p∗}) correspond to the dual variable(s) that became zero. Note that, for

some i the equation αi(x0) = 0 may not have a solution, since the curve may not intersect

the supporting hyperplane of the corresponding facet of conv(S
j ∪ {p∗}).

The procedure of calculating xP0 is summarized in Algorithm 4.2. Note that this

procedure will only be performed when |Sj| > 1.

The special case of |Sj| = 1

The curve search procedure always imposes the next iterate to satisfy conditions (4.9) for

a subset of Sj. When p∗ solves InfQ(S
j ∪ {p∗}), after a series of partial steps where a point

from Sj is dropped each time, the algorithm gets to a curve search where Sj has a single

point, Sj = {pj1}. The next iterate should be p∗, the solution of InfQ({pj1 , p
∗}), which does

not satisfy (4.9) for pj1 . Therefore, when |Sj| = 1, the curve search procedure explained

previously may fail to return the correct iterate. To avoid that, when |Sj| = 1, we use

the result of Theorem 4.20 to find the next iterate in replacement of a curve search. If

the formulas of Theorem 4.20 return p∗, then the algorithm goes to the beginning of a

new iteration with dual feasible S-pair (Sj+1, xj+1) = ({p∗}, p∗). Otherwise, the formulas of

Theorem 4.20 will return a solution xj+1 ∈ ri conv({pj1 , p
∗}), and the algorithm goes to the

beginning of a new iteration with dual feasible S-pair (Sj+1, xj+1) such that Sj+1 = {pj1 , p
∗}.

Note that Theorem 4.20 can never return pj1 as the solution, otherwise p∗ would be feasible

for the current iterate.

104

(a) Case |Sj| = 2 and p∗ ∈ aff(S
j
) (b) Case |Sj| = 3

Figure 4.10: Illustration of the affinely dependent case in R3.

4.3.2 The case when S
j ∪ {p∗} is affinely dependent

Consider (Sj, xj) a dual feasible S-pair and p∗ corresponding to the selected violated con-

straint. If S
j∪{p∗} is affinely dependent, then z = 0, and equations (4.12) from Theorem 4.22

become:

x =M(u+ x0v) + pj1 , (4.22a)

‖M(u+ x0v)‖2 = (pj10 − x0)
2, (4.22b)

respectively, for x0 ≤ minpji∈S
j{pji0}. The current dual feasible solution, xj, is the unique

solution that satisfies (4.22) and the inequality. The other solution of (4.22b) is such that

x0 > pj10 ≥ minpji∈S
j{pji0}, since ‖M(u+ x0v)‖ > 0 (otherwise x = pj1 , Sj = {pj1}, and we

could not possibly have affinely dependence). Thus, when S
j ∪ {p∗} is affinely dependent

equations (4.9, 4.10a) do not define a piece of a curve, but the single point xj. Figure 4.10

illustrates this situation.

Recall that equations (4.14) from the proof of Theorem 4.22 still hold for xj0, when

S
j ∪ {p∗} is affinely dependent. They yield

α2:s(α
∗) = u+ xj0v+ α

∗w, (4.23a)

α1(α
∗) = 1− α∗ − 1T (u+ xj0v+ α

∗w). (4.23b)

105

Algorithm 4.3 Update Sj procedure

input: Vectors u, v,w, point xj.
output: Index k.

1: Define vectors ρ and σ:

ρ =

(
1− 1T (u+ xj0v)

u+ xj0v

)
and σ =

(
−1− 1Tw

w

)
.

2: Get k such that

−
ρk
σk

:= min
i=1,...,s

{
−
ρi
σi

: σi < 0

}
. (4.25)

Formulas (4.23) give all possible ways of writing xj as an affine combination of S
j ∪ {p∗}, as

a function of the scalar α∗. We can use them to obtain xj written as a convex combination

of p∗ and a proper subset of S
j
. To do that, consider the following problem

max α∗

s.t. αi(α
∗) ≥ 0, i = 1, ..., s

α∗ ≥ 0,

(4.24)

which can easily be solved using a minimum ratio rule, as explained in Algorithm 4.3.

Note that, in Algorithm 4.3, ρ is the vector of the coefficients of xj written as an affine

combination of S
j
, thus ρ ≥ 0 by assumption. Similarly, from z = p∗ + p1 +Mw = 0, −σ is

the vector of the coefficients of p∗ written as an affine combination of S
j
.

Let pjk ∈ Sj correspond to the index obtained in (4.25) from Algorithm 4.3. In Sec-

tion 4.3.4 it is proved that S
j
\{pjk}∪{p

∗} is affinely independent and xj ∈ conv(S
j
\{pjk}∪{p

∗}).

If we drop pjk from Sj, the assumptions we made at the beginning of a curve search hold,

and a curve can then be defined.

We can think of the procedure explained in this section as a degenerate curve search

with a partial step of zero length. In fact, if we imagine p∗ suffering a small perturbation

such that S
j ∪ {p∗} becomes affinely independent, the point pjk to be dropped would be the

one selected by the partial step procedure too.

106

4.3.3 Pseudo-code

We now aggregate the results/discussion of the previous sections on Algorithm 4.4.

Algorithm 4.4 Dual algorithm for the infimum of P with respect to Q

input: P; dual feasible S-pair (S0, x0) (optional).
output: x, S, the optimal solution and basis, respectively.

Initialization:
1: if (S0, x0) not given in input then
2: Choose any point p ∈ P; x0 ← p; S0 ← {p}.
3: end if

Loop:
4: for j = 0, 1, do

5: if xj �Q pi for all pi ∈ P then . Optimality check
6: xj is the optimal solution and Sj an optimal basis. Stop.
7: else
8: Get p∗ ∈ P s.t. xj �Q p

∗.
9: end if

10: Define matrix M and vectors b, c, u, v, w, and z.

11: if ‖z‖ = 0 then . S
j ∪ {p∗} affinely dependent

12: Get k from Algorithm 4.3; Sj ← Sj \ {pjk}.
13: end if

Curve search:
14: if |Sj| = 1 then
15: Get xj+1 and Sj+1, the solution to InfQ(S

j ∪ {p∗}), from Theorem 4.20;
16: Go to line 5.
17: else
18: Get xF0 from Algorithm 4.1.
19: Get xP0 from Algorithm 4.2.

20: if xF0 ≤ xP0 then . Partial step is taken.

21: xj ← (xP0 ; Γ
+
(xP0)); S

j ← Sj \ {pjk}; Go to line 14.
22: else . Full step is taken.
23: xj+1 ← (xF0 ; Γ

+
(xF0)); S

j+1 ← Sj ∪ {p∗}; Go to line 5.
24: end if
25: end if
26: end for

107

4.3.4 Finiteness and correctness of the algorithm

For the proof of the correctness of Algorithm 4.4, we will follow a similar approach as in [51].

We first introduce the following definition:

Definition 4.27. The triple (x, S, p) is said to be a (violated) V-triple if the following four

conditions hold:

(a) S ∪ {p} is affinely independent,

(b) ‖p− x‖ ≥ (p0 − x0),

(c) ‖pi − x‖ = (pi0 − x0), for all pi ∈ S,

(d) x ∈ conv(S ∪ {p}).

The correctness of the algorithm relies on a series of lemmas that are proved next.

Lemma 4.28. When |Sj| = 1, (Sj+1, xj+1), obtained from applying Theorem 4.20, is a dual

feasible S-pair.

Proof. This is a trivial consequence of Theorem 4.20.

Lemma 4.29. Assume that, at the beginning of a curve search, we have a V-triple (xj, Sj, p∗)

such that |Sj| > 1. Suppose a full step is taken, that is, the solution given by the full step

procedure (Algorithm 4.1) exists and xF0 > x
P
0 . Then,

i. (Sj ∪ {p∗}, xF) is a dual feasible S-pair,

ii. xF solves InfQ(S
j ∪ {p∗}),

iii. xF0 ≤ x
j
0.

Proof. It is easy to see that (Sj∪ {p∗}, xF) is a dual feasible S-pair. First, S
j∪ {p∗} is affinely

independent by assumption. Additionally, xF ∈ ri conv(S
j
), because otherwise there would

exist an αi(x
F
0) = 0, meaning a partial step would have been taken instead, contradicting

108

the assumption that xF0 > x
P
0 . Finally, recall that the full step finds a point xF such that

∥∥p∗ − xF∥∥ = p∗0 − x
F
0 ,∥∥pi − xF∥∥ = pi0 − x
F
0 , ∀pi ∈ Sj

x ∈ aff(S ∪ {p∗}),

whenever these conditions are feasible. Finally, the fact that xF solves InfQ(S
j ∪ {p∗}) is a

consequence of Theorem 4.16. Lastly, xF0 ≤ x
j
0 follows from the definition of the full step

procedure.

Lemma 4.30. Assume that, at the beginning of a curve search, we have a V-triple (xj, Sj, p∗)

such that |Sj| > 1. Suppose a partial step was taken, that is, xF0 ≤ xP0 . Let pk ∈ Sj be the

point selected to be dropped by the partial step procedure (Algorithm 4.2). Then,

i. (xP , Sj \ {pk}, p
∗) is a V-triple,

ii. xP0 ≤ x
j
0.

Proof. Let us prove properties (a-d) from Definition 4.27 for (xP , Sj \ {pk}, p
∗). Property

(a) follows from the assumption that (xj, Sj, p∗) is a V-triple. Property (b) is proved by a

continuity argument: since the curve search starts at xj such that
∥∥p∗ − xj∥∥ ≥ p∗0 − xj0 and

it ends at xP such that xP0 ≤ xF0 , then
∥∥p∗ − xP∥∥ ≥ p∗0 − xP0 (recall that xF corresponds

to the point of smallest value x0 ≤ xj0 for which
∥∥∥p∗ − Γ+(x0)∥∥∥ ≥ p∗0 − x0). Property (c) is

maintained at any point of the curve so it holds for xP , and property (d) also holds since

at xP we have αi(x
P
0) ≥ 0 and α∗(xP0) ≥ 0. Finally, the fact that xP0 ≤ x

j
0 is a direct

consequence of the definition of the partial step procedure.

Lemma 4.31. Let (Sj, xj) be a dual feasible S-pair and p∗ ∈ P be a point corresponding to

an infeasible constraint at xj. Suppose S
j ∪ {p∗} is affinely dependent and let pk ∈ Sj be the

point whose index was returned by Algorithm 4.3. Then, (xj, Sj \ {pk}, p
∗) is a V-triple.

Proof. First note that the affine dependence assumption implies that |Sj| > 1. To prove that

(xj, Sj \ {pk}, p
∗) is a V-triple, we need to prove the four properties from Definition 4.27.

109

Property (b) is trivial, and property (c) follows directly from (Sj, xj) being a dual feasible

S-pair. Now, in order to prove (a), suppose, by contradiction, that S
j
\ {pk}∪ {p∗} is affinely

dependent. Since S
j
\ {pk} is affinely independent, there exists βi, i 6= k, such that

p∗ =

s∑
i=1
i6=k

βipi, with

s∑
i=1
i 6=k

βi = 1.

On the other hand, the affine dependence of S
j ∪ {p∗} causes z = p∗ − p1 +Mw = 0. Thus,

we can write p∗ as:

p∗ = −

s∑
i=1

σipi,

for σi, i = 1, ..., s, defined in Algorithm 4.3. Then,

s∑
i=1
i6=k

βipi = −

s∑
i=1

σipi → pk =

s∑
i=1
i 6=k

βi + σi
−σk

pi, with

s∑
i=1
i 6=k

βi + σi
−σk

= 1.

Recall from (4.25) that σk < 0. We conclude that, pk is an affine combination of S
j
\ {pk},

which is a contradiction.

Now consider ρ as defined in Algorithm 4.3. Let δ = ρ − ρk
σk
σ and δ∗ = ρk

σk
. It is easy

to see that δ ≥ 0 and, in particular, δk = 0. Since z = 0, we have

Mδ2:s + δ
∗(p∗ − p1) + p1 =M

(
u+ x0v−

ρk
σk
w

)
−
ρk
σk

(p∗ − p1) + p1

=M(u+ x0v) + p1 −
ρk
σk

(p∗ − p1 +Mw)

=M(u+ x0v) + p1 −
ρk
σk
z

= xj,

which proves that property (d) holds.

Recall that the algorithm is initialized with a dual feasible S-pair. From the previous

lemmas, we conclude that we always have a V-triple before a curve search, and that at

the beginning of a new iteration, when an infeasible point p∗ is selected, we always have a

110

Figure 4.11: Flowchart of the algorithm.

dual feasible S-pair. The diagram from Figure 4.11 clarifies these statements statements.

The main consequence of the lemmas is that, starting from a V-triple (xj, Sj, p∗) for which∥∥p∗ − xj∥∥ > (p∗0 − x
j
0), one can obtain a new dual feasible S-pair, (Sj+1, xj+1), in at most

|Sj|−|Sj+1| ≤ n partial steps and one full step. This new feasible S-pair is such that Sj+1 ⊆ Sj,

and xj+10 < x
j
0, since, even though the value of x0 may be maintained when taking a partial

step or a full step, we know that the value of x0 must decrease either in one of the partial

steps or in the full step. That is because, otherwise, we would have xj+1 = xj, contradicting

the fact that p∗ is infeasible at xj. Therefore, since the value of x0 strictly decreases at each

loop iteration, the same dual feasible S-pair can never reoccur. Since the number of dual

feasible S-pairs is finite, we conclude the main result of this section:

Theorem 4.32. The proposed dual algorithm solves problem InfQ(P) in a finite number of

iterations.

111

4.3.5 A note on degeneracy

As mentioned previously, as far as degeneracy is concerned, no special procedure is required

to prevent cycling, since, at each major iteration, the value of the objective function strictly

improves, so a basis cannot occur twice.

However, in a primal algorithm cycling could occur. As a consequence of the lack of

strict complementarity, the current primal feasible solution may be active for constraints

corresponding to points other than the ones on the current basis. That is, there may be

multiple dual solutions that correspond to the same primal feasible solution. Thus, it can

happen that, after a sequence of adding/dropping points from the basis, the algorithm does

not move in the primal space and ends up in a basis that had been previously visited. That

is due to the fact that a primal algorithm cannot choose which point to enter the basis: it

has to be one corresponding to a primal constraint that becomes active. Instead, in the

dual algorithm, the equivalent situation of when a movement is not possible because a dual

variable is zero at the current iterate is easily dealt by removing the point corresponding to

that dual variable from Sj (either at a partial step or when S
j ∪ {p∗} is affinely dependent).

This is done as many times as the number of dual variables that are zero, after which a

movement will then be possible in the next iteration.

4.4 Implementation details

The main computational work that is required by the algorithm happens before each curve

search when three linear systems need to be solved to get vectors u, v, and w:

(MTM)u = b−MTpj1

(MTM)v = c

(MTM)w = −M(p∗ − pj1)

Our implementation is based on the Cholesky factorization of matrix MTM.

Let Sj = {pj1 , pj2 , ..., pjs} be the current basis at iteration j, and let |Sj| = s. Recall that

112

Sj may change throughout the iteration but S
j

is always kept affinely independent. Thus,

matrix M ∈ R(n−1)×(s−1), given by

M =
[
pj2 − pj1 pj3 − pj1 ... pjs − pj1

]

is always full column rank, and MTM symmetric positive definite. Let LLT be the Cholesky

factorization of MTM, with L ∈ R(s−1)×(s−1) lower triangular. Recall that the Cholesky

factor L is unique since MTM is symmetric, e.g. [52, §4]. Knowing the Cholesky factor-

ization of MTM allows the linear systems on u, v, and w, to, each, be reduced to a linear

system with an upper triangular matrix and another with a lower triangular matrix. These

linear systems can be solved using back and forward substitution, respectively, requiring

O(s2) flops each [52, §3.1]. Together with the matrix-vector products, finding u, v, and w

requires O(ns+ s2) basic operations.

4.4.1 Updating the Cholesky factorization

We now show how the Cholesky factorization MTM can be updated whenever Sj changes,

using O(s2) basic operations and in a numerically stable way. Note that a Cholesky factor-

ization is never calculated from scratch at any time of the algorithm unless a dual feasible

S-pair with more than one point is given as input, in which case a Cholesky factorization is

calculated only once during the initialization phase.

A point is added to Sj

After a full step is taken, point p∗ is added to Sj to get Sj+1. That corresponds to appending

column p∗ − pj1 to matrix M, creating M̂. Since

M̂TM̂ =

 MTM MT (p∗ − pj1)

(p∗ − pj1)
TM (p∗ − pj1)

T (p∗ − pj1)

 ,

113

the Cholesky factor, L̂, of M̂TM̂ is such that

L̂ =

 L 0

aT
√
(p∗ − pj1)

Tz

 ,

for a ∈ Rs−1 such that La = MT (p∗ − pj1) and z = (I −MM+)(p∗ − pj1) (z is already

available since it is calculated during the curve search). In conclusion, when a new point

is added to Sj, updating the Cholesky factor of MTM boils down to the solution of a lower

triangular linear system involving a (s− 1)× (s− 1) matrix.

A point is removed from Sj

Whenever a partial step is taken or S
j ∪ {p∗} is affinely dependent, a point pjk from Sj

is removed. That corresponds to removing a column from M. Let M̂ denote the matrix

corresponding to Sj \ {pjk} and L̂ the Cholesky factor of M̂TM̂.

Case 1: pj1 is the point to be removed. This is the trickiest case, as it involves a rank-2

update of matrix MTM. Define M̂, the matrix corresponding to Sj \ {pj1}, as:

M̂ =
[
pj2 − pjs pj3 − pjs ... pjs−1

− pjs

]
.

Basically, we now think of the points of Sj ordered as {pjs , pj2 , ..., pjs−1
}. To obtain the

Cholesky factor L̂ of M̂TM̂, first note that,

N :=M+ (pjs − pj1)1
T
s−1 =

[
M̂ 0

]
,

with 1s−1 ∈ Rs−1 a vector with entries all 1. Let LN be the Cholesky factor of NTN. It is

easy to see that

LN =

 L̂ 0

0 0

 .
Now we explain how to calculate LN. Consider Is−1 ∈ R(s−1)×(s−1) the identity matrix, and

114

es−1 ∈ Rs−1 the (s− 1)-th column of Is−1. We have that

NTN = (M−Mes−11
T
s−1)

T (M−Mes−11
T
s−1)

= (Is−1 − es−11
T
s−1)

TMTM(Is−1 − es−11
T
s−1). (4.26)

In [50], it is shown how one can solve the following problem: given the Cholesky factor

LA of the positive definite matrix A ∈ Rn×n and given vectors x, y ∈ Rn, find the Cholesky

factor LB of matrix

B = (I+ yxT)TA(I+ yxT) ∈ Rn×n. (4.27)

The method solves the problem in a numerically stable way using O(n2) operations. It con-

sists on finding a lower triangular matrix L̃ for which there exists an orthonormal matrix

Q that satisfies (Id + zw
T)Q = L̃, with vectors z and w given by Lz = v and w = LTu. It

is easy to see that B = LAL̃Q
TQL̃TLTA, and so LB = LAL̃. The author proposes two differ-

ent methods to calculate L̃, one using Givens’ plane rotations and the other Householder

transformations. Since (4.26) has the same form as (4.27), we can use one of the methods

mentioned above to calculate LN, which yields L̂ after removing its last row and column.

The total amount of computational work to calculate LN is O(s2).

Case 2: pjk, k = 2, ..., s− 1, is the point to be removed.

In this case M̂TM̂ is obtained from MTM by deleting the (k − 1)-th row and column.

Updating the Cholesky factor in this case is rather simple. Let

L =


L11 0 0

lTk−1,1 lk−1,k−1 0

L13 l3,k−1 L33


where lk−1,k−1 is the (k− 1, k− 1)-entry of L. It is easy to see that L̂ is such that

L̂ =

 L11 0

L13 L̂33



115

where L̂33 ∈ R(s−k)×(s−k) is the Cholesky factor of matrix L33L
T
33 + l3,k−1l

T
3,k−1. This cor-

responds to the updating problem of a Cholesky factorization and can be accomplished in

O((s− k)2) computational time. There are several methods to do so [48], in particular this

problem is analogous to updating the QR factorization after appending a row [97, pp. 340].

In our implementation we use the cholupdate function Matlab provides for the updating

and downdating problems.

Case 3: pjs is the point to be removed.

In this case, the last column of M needs to be deleted. That corresponds to deleting the

last row and last column of MTM. Thus, L̂ can be obtained from L by simply deleting the

last row and the last column of L.

4.4.2 Iteration complexity

Each iteration of the algorithm, that is, each time an infeasible point p∗ is selected to enter

the basis, consists on the following work:

• the optimality check (O(mn) computational work);

• at most ŝ curve searches, where ŝ is the size of the basis corresponding to the dual

feasible S-pair at the beginning of an iteration.

From the analysis made in the previous section, it is possible to conclude that each curve

search has a computational complexity of O(ns + s2), where s = |Sj| at the beginning of

the curve search. Within an iteration, every time a curve search is performed a point is

removed from the set Sj, and at most ŝ curve searches can be performed. Therefore, we

conclude that each iteration of the algorithm has complexity O(mn+nŝ2+ ŝ3). In the worst

case scenario, ŝ = n in which case the iteration has complexity O(mn + n3). However, as

we will see in Section 4.5, in practice, we often observe that the size of Sj is much smaller

than n.

Finally, we stress that there is no polynomial number of iterations guarantee.

116

4.4.3 Discussion of other options

The nature of the matrix MTM makes the usage of the Cholesky factorization a natu-

ral choice. However, other factorizations that would yield an analogous computational

work could also be considered. One possibility would be to keep the QR factorization

of M ∈ R(n−1)×(s−1), that is M = QR, such that Q ∈ R(s−1)×(s−1) is orthogonal and

R ∈ R(n−1)×(s−1) upper triangular. Updating such QR factorization, however, is done in

O(n2 + ns) computational time, which becomes much slower than updating the Cholesky

factorization, specially when s � n. In particular, when a point p∗ is added to the basis,

meaning a new column c is appended to M, we need n− s− 2 Givens’ rotation matrices to

zero the n− s− 2 non-zero entries of the new column QTc of R.

Another option would be to keep the QR factorization of MTM, which can be updated

in O(s2) time, similarly to the Cholesky factorization. An immediate advantage of this

option over the Cholesky factorization is that only three triangular systems are required

to be solved to calculate vectors u, v, and w, instead of six. However, maintaining the

factorization whenever a point is added/removed from Sj requires a larger constant number

operations. For instance, every time a point is deleted, that corresponds to deleting a row

and a column from MTM, so the factorization needs two updates.

With the goal of seeing in practice the impact of the above observations, besides

implementing the algorithm using the Cholesky factorization of MTM, we have also created

an implementation using the QR factorization of M and another using the QR factorization

of MTM. We ran a few tests to compare them, and the running times are presented in

Tables 4.1 and 4.2. The average of the maximum sizes of a basis observed in each run is

also reported. Our experiments were conducted using MATLAB R2018b (version 9.5.0)

on a Mac with an Intel Core i5 1.6 GHz processor, with 8GB RAM, running Mac OS X

version 10.11.6.

We observe that the implementation using the Cholesky factorization is consistently

faster than the other two studied alternatives. As observed above, when the maximum

size of a basis is much smaller than the dimension, the implementation with M = QR is

117

n 100 500 1000 1000 2500 5000
m 1000 1000 1000 5000 5000 10000

Max size basis 19.4 56.2 71.8 105.3 52.9 81

Running MTM = LLT 0.01 0.16 0.41 1.29 0.28 0.80
time MTM = QR 0.02 0.18 0.46 1.44 0.31 0.92

(secs.) M = QR 0.04 1.26 1.71 10.51 0.67 2.34

Table 4.1: Average running times (in seconds) corresponding to 10 runs of Algorithm 4.4
implemented with a different matrix factorization. The input points are standard normally
distributed, with each coordinate chosen independently. The average maximum size of a
basis observed during the algorithm runs is also reported.

n 100 500 1000 1000 2500 5000
m 1000 1000 1000 5000 5000 10000

Max size basis 97.1 597.1 924.0 1943.9 494.2 966.4

Running MTM = LLT 0.29 7.83 48.38 235.92 19.55 86.20
time MTM = QR 0.63 15.34 100.47 494.54 42.92 177.32

(secs.) M = QR 0.43 25.99 111.14 935.30 35.19 183.28

Table 4.2: Average running times (in seconds) corresponding to 10 runs of Algorithm 4.4
implemented with a different matrix factorization. The input points are uniformly dis-
tributed within the set {x ∈ Rn : ‖x‖ ≤ x0 ∧ x0 ≤ 1} (a portion of a second-order cone).
The average maximum size of a basis observed during the algorithm runs is also reported.

slower than the other two. However, when the bases sizes are closer to n, (Table 4.2, e.g.

m = 10000) we can see that the running times of M = QR and MTM = QR become

closer.

In Table 4.1, we can see that, when the bases sizes are much smaller than n, the

implementation that uses MTM = QR, though slightly slower, has comparable running

times to the implementation with the Cholesky factorization. When the bases sizes are

larger, since the algorithm starts with a single point on the basis and adds a point at each

iteration, the number of iterations is at least as large as the maximum size of a basis. It is

in this case, that we see the effect of the extra work required by the implementation with

MTM = QR resulting in running times about twice as large as the implementation using

the Cholesky factorization.

118

4.5 Computational results

Our computational experiments were conducted using MATLAB R2018b (version 9.5.0)

on a Mac with an Intel Core i5 1.6 GHz processor, with 8GB RAM, running Mac OS X

version 10.11.6. All of our experiments were conducted on randomly generated data sets,

according to various distributions. Specifically, we considered the following three classes of

point datasets:

• normally distributed, with each coordinate chosen independently according to a nor-

mal distribution with mean 0 and standard deviation 1;

• uniformly distributed within a unit cube;

• uniformly distributed within a within the set {x ∈ Rn : ‖x‖ ≤ x0 ∧ x0 ≤ 1}, that is, a

portion of a second-order cone (s.o.c.).

We have also considered datasets with points uniformly distributed within a hyper-

sphere with radius 1. However, since the studied performance parameters corresponding to

this dataset, such as time and number of iterations, were comparable in magnitude to the

ones of the uniformly distributed within a unit cube and normally distributed, we decided

to omit this dataset for succinctness.

There are several ways to choose which point p∗, corresponding to an infeasible con-

straint, enters the basis at each iteration. In our experiments, the point p∗ is chosen to be

the one corresponding to the largest infeasibility gap at the current iterate xj, that is,

p∗ = arg max
pi∈P

{∥∥∥pi − xj∥∥∥− (pi0 − xj0)} .
This approach showed to result in fewer iterations and shorter running times over other

options such as the first infeasible point found. Unless mentioned otherwise, in our experi-

ments, we consider a feasibility tolerance of 10−8.

In all our experiments, the algorithm was initialized with a dual feasible S-pair con-

taining a single point from the input dataset.

119

4.5.1 Performance of the algorithm

We begin by showing how the algorithm performs for different datasets. Figures 4.12 and

4.13 show the number of basis updates - number of times a point is added or removed

from the basis, that is, number of dual feasible S-pair updates, and the maximum size of a

basis, for datasets with points normally distributed and uniformly distributed in a cube and

variable dimension n. Figure 4.12 shows the results for 1000-point datasets, and Figure 4.13

shows the results for 10, 000-point datasets and 100, 000-point datasets side by side. From

these two figures we can observe that, for the datasets considered, the number of points

on the optimal bases is much smaller than the dimension (the maximum possible size of a

basis). An exception is the datasets with n = 10, which is to be expected since n � m.

Consider, for instance, the 1000-point normal datasets in Table 4.12: for n = 100, the

optimal basis size is about 1
5n, and for n = 1000 it is about 6

100n. This phenomenon does

not seem to change considerably when the number of input points increases. For instance,

considering n = 1000 and the normal datasets, we can see that the average number of points

on the basis only slightly increases with the number of input points, being observed to be

always between 50 and 100 for the values of m studied.

The number of iterations - whenever a point is selected to enter the basis, is always

bounded below by the optimal basis size, since the algorithm is initialized with a basis having

a single point. Additionally, it is bounded above by the number of basis updates, since, in

an iteration, there is at least one curve search, that is, a basis update. Figures 4.12 and 4.13

show that, for the normally distributed and uniformly distributed on a cube datasets, the

number of basis updates is just slightly larger than the size of the optimal bases (we observe

that the difference is usually no more than 5). This means that most of the time when a

point is selected to enter the basis, it will end up being in the optimal basis returned by

the algorithm. As a consequence, for each instance, the number of iterations is only slightly

larger than the lower bound for that instance. This behavior does not seem to change when

the number of points increases, as we see when we compare the data for m = 10, 000 with

m = 100, 000 in Figure 4.13.

120

Figure 4.12: Number of points on the optimal basis and number of basis updates as a
function of the dimension, for 1000-point standard normally distributed and uniformly
distributed un a unit cube datasets. The reported numbers correspond to the averages over
10 runs.

Figure 4.13: Number of points on the optimal basis and number of basis updates as a func-
tion of the dimension, for 10, 000-point and 100, 000-point standard normally distributed
and uniformly distributed on a unit cube datasets. The reported numbers correspond to
the averages over 10 runs.

121

Figure 4.14: Number of points on the optimal basis, number of basis updates, and number of
iterations as a function of the dimension, for 1000-point uniformly distributed on a portion
of a s.o.c. datasets. The reported numbers correspond to the averages over 10 runs.

Figure 4.15: Number of points on the optimal basis, number of basis updates, and number
of iterations as a function of the dimension, for 10, 000-point and 100, 000-point uniformly
distributed on a portion of a s.o.c. datasets. The reported numbers correspond to the
averages over to 10 runs.

122

Max Infeas Infeas Constr
Iter j Gap Count

∥∥xj − xj−1
∥∥ |S|j

1 2.54781806 99999 1.80157942 2
2 0.90380296 30592 0.75659132 2
3 0.68942045 11868 0.59988039 3
4 0.23478991 462 0.22469704 4
5 0.09796021 89 0.09835393 5
6 0.10740123 61 0.13783676 6
7 0.09703347 28 0.13499837 6
8 0.12438402 30 0.14568556 6
9 0.05559249 8 0.06385760 7

10 0.03883349 11 0.06015916 8
11 0.03273477 6 0.04292090 9
12 0.03867943 4 0.06186058 8
13 0.00539842 2 0.01093005 9
14 0.00000000 0 0.00000000 9

Table 4.3: Iteration log for a 100, 000-point dataset with n = 10 and points uniformly
distributed on a unit cube. “Max Infeas Gap” is the maximum infeasibility gap at xj, and
“Infeas Constr Count” is the number of infeasible constraints at iteration j (considering an
infeasibility tolerance of 10−8).

123

Max Infeas Infeas Constr
Iter j Gap Count

∥∥xj − xj−1
∥∥ |S|j

1 1.79518774 99999 1.26938943 2
2 0.13388237 41567 0.12610273 3
3 0.04240208 26781 0.04162795 4
4 0.02192067 26127 0.04519436 5
5 0.04996865 25121 0.06077760 5
6 0.04628315 18728 0.04790556 6
7 0.01817180 10542 0.01896393 7
8 0.01022663 7951 0.02670843 8
9 0.02520613 11957 0.02658685 8

10 0.01203876 7067 0.01332468 9
11 0.00428870 3866 0.01531832 9
12 0.01337036 7058 0.01460064 10
13 0.00082727 1494 0.00206432 10
14 0.00190522 1947 0.00292080 10
15 0.00179799 1832 0.00257150 10
16 0.00153712 1621 0.00180644 10
17 0.00079142 931 0.00095881 10
18 0.00014300 446 0.00021238 10
19 0.00019104 317 0.00031522 10
20 0.00017591 301 0.00020607 10
21 0.00006997 201 0.00008872 10
22 0.00006014 164 0.00007220 10
23 0.00006983 158 0.00012879 10
24 0.00007081 137 0.00013906 10
25 0.00005353 96 0.00007079 10
26 0.00002374 64 0.00004787 10
27 0.00002558 55 0.00003901 10
28 0.00002422 47 0.00004088 10
29 0.00001287 32 0.00003600 10
30 0.00002371 37 0.00002757 10
31 0.00000688 22 0.00002178 10
32 0.00001344 25 0.00002155 10
33 0.00000391 13 0.00002252 10
34 0.00000937 24 0.00001859 10
35 0.00000378 9 0.00001058 10
36 0.00000336 11 0.00000600 10
37 0.00000553 12 0.00000985 10
38 0.00000217 8 0.00001028 10
39 0.00000528 13 0.00000743 10
40 0.00000156 5 0.00000409 10
41 0.00000125 4 0.00000314 10
42 0.00000046 2 0.00000095 10
43 0.00000026 1 0.00000047 10
44 0.00000000 0 0.00000000 10

Table 4.4: Iteration log for a 100, 000-point dataset with n = 10 and points uniformly
distributed on a portion of a s.o.c. “Max Infeas Gap” is the maximum infeasibility gap
at xj, and “Infeas Constr Count” is the number of infeasible constraints at iteration j

(considering an infeasibility tolerance of 10−8).

124

n
m Dataset 10 50 100 250 500 1000

Normal 0.005 0.01 0.02 0.04 0.10 0.16
1000 Uniform cube 0.01 0.02 0.03 0.07 0.10 0.23

Uniform cone 0.05 0.18 0.34 1.35 3.15 7.78

Table 4.5: Running time (in seconds) of the algorithm as a function of the dimension n,
for different 1000-point datasets: standard normally distributed, uniformly distributed on
a unit cube, and uniformly distributed on a portion of a s.o.c. The reported numbers
correspond to the averages corresponding to 10 runs of the algorithm for each dataset type.

n
m Dataset 100 500 1000 2500 5000

Normal 0.04 0.28 0.78 2.51 7.07
10, 000 Uniform cube 0.07 0.52 1.27 4.84 13.94

Uniform cone 1.62 21.66 85.56 501.50 2117.70
Normal 0.30 2.59 10.16 46.89 232.40

100, 000 Uniform cube 0.53 4.43 12.07 58.47 287.95
Uniform cone 6.27 116.24 494.86 3302.13 20015.40

Table 4.6: Running time (in seconds) of the algorithm as a function of the dimension
n, for different 10, 000-point and 100, 000-point datasets: standard normally distributed,
uniformly distributed on a unit cube, and uniformly distributed on a portion of a s.o.c. The
reported numbers correspond to the averages corresponding to 10 runs of the algorithm for
each dataset type.

125

Now, we turn our attention to datasets that cause the algorithm’s worst behavior:

datasets shaped like a second-order cone. Figures 4.14 and 4.15 show the computational

results corresponding to the datasets with points uniformly distributed on a portion of a

second-order cone. Like before, we consider 1000, 10, 000, and 100, 000 input points. These

figures show the number of basis updates, iterations, and size of the optimal bases, for

different dimensions n. The first thing we notice is that the sizes of the optimal bases are

larger than what we observe for other datasets, being often very close to or equal to n. This

fact is not surprising when we think of the geometric interpretation of the InfQ problem as

moving a second-order cone to enclose all the input points. So, it is expected that a large

number of points of the input set end up on the boundary of the cone translated to the

optimal solution, and are part of an optimal basis. We also observe that the number of

basis updates is larger than the number of iterations, meaning that, often some points are

dropped from the current basis during the curve search.

The larger sizes of the bases are only one of the factors that contribute to the larger

number of iterations. The other has to do with the fact that, when the input is shaped like a

cone, and especially when the points are distributed uniformly, when xj moves on the curve

to enclose p∗ at each iteration, several points that were feasible often lose their feasibility.

Tables 4.3 and 4.4 show the iteration logs outputted by the algorithm for a 10-dimensional

dataset with 100, 000 points distributed uniformly on a unit cube and distributed uniformly

on a portion of a s.o.c., respectively. In these tables “Max Infeas Gap” is the maximum

infeasibility gap at xj, and “Infeas Constr Count” is the number of infeasible constraints

at iteration j (considering an infeasibility tolerance of 10−8). We can observe how the

maximum infeasibility gap decreases more slowly for the dataset with points uniformly

drawn from a s.o.c. than for the dataset with points uniformly drawn from a unit cube. We

can also observe in Table 4.4 that there are many iterations where the number of infeasible

constraints increases considerably, and we can also see how xj suffers small changes in the

last iterations in order to get all constraints feasible. Recall that we are using a feasibility

tolerance of 10−8. Increasing this tolerance can result in a significant decrease of the number

of iterations for the datasets with points uniformly drawn from a portion of a s.o.c. For

instance, for the dataset corresponding to the log shown on Table 4.4, if we had chosen an

126

infeasibility tolerance of 10−5 instead of 10−8, optimality would have been declared after 31

iterations, instead of 44.

The running times corresponding to the experiments reported in Figures 4.12 to 4.15

are reported in Tables 4.5 and 4.6. We observe that the running times corresponding to

the normal and uniform on a cube datasets are quite small. For 1000-point datasets, the

average running times are consistently under 1 second; under 15 seconds for m = 10, 000;

and under 300 seconds (5 minutes) for m = 100, 000. On the other hand, the datasets with

points uniformly distributed on a s.o.c. are the ones where the algorithm shows the poorer

computational times, as expected.

When we look at the results of Figure 4.13 corresponding to the uniformly distributed

datasets with n = 5000, we see that the average number of basis updates is close to 300

for m = 10, 000, and close to 400 for m = 100, 000. So, we expect that the amount of time

spent on the curve searches on these cases does not differ by a large amount. However,

the average running times are very different: for m = 10, 000 we have 14 seconds, and for

m = 100, 000 we have 288. This is a reflection of the fact that the largest contributor to the

running times of the algorithm is the feasibility check performed at the beginning of each

iteration. It is possible to skip part of the required queries in this phase by employing some

distance filtering techniques, using, for instance, the triangle inequality or Cauchy-Schwarz.

See [62] for a discussion on this.

4.5.2 Comparison with other methods

For comparison purposes we chose two SOCP solvers based on interior-point-methods:

MOSEK version 8.1.0 [77], and SDPT3 version 4.0 [101]. We used their Matlab inter-

faces to solve the dual problem (4.4) since its size is smaller than the primal problem (4.1).

All MOSEK and SDPT3 parameters were kept at their default values. We also tried to

use Gurobi (version 8.0.0) [53], but experimentation showed that solving the dual problem

would often cause Matlab to freeze, and solving the primal would result in running out of

memory, even for small instances.

127

Tables 4.7, 4.8, and 4.9 show the average running times in seconds corresponding to

our dual simplex-like algorithm, MOSEK, and SDPT3 for different datasets. Table 4.7

reports the times corresponding to datasets with points normally distributed, Table 4.8 to

datasets with points uniformly distributed on a unit cube, and Table 4.9 to datasets with

points uniformly distributed on a portion of a second-order cone.

In general, these tables show that our algorithm performs very well when compared

to MOSEK and SDPT3. From Table 4.7, we can see that, for m = 1000, our algorithm is

between 15 to 50 times faster than MOSEK, and between 50 to 120 times faster than SDPT3.

These rates considerably increase for m = 10, 000, where, for instance, for n = 5000, our

algorithm is about 850 times faster than MOSEK and about 500 times faster than SDPT3.

Similar results are observed in Table 4.8 for datasets with points uniformly distributed on a

unit cube. For instance, for m = 10, 000, our algorithm is between 30 and 390 times faster

than MOSEK, and between 100 and 380 times faster than SDPT3. As mentioned before, our

algorithm shows its worst performance for the datasets with points uniformly distributed

on a portion of a s.o.c.. For these datasets, in Table 4.9, we can see an approximation of

the algorithm’s running times to the running times of MOSEK and SDPT3, though most

of the time our algorithm is about 2-times faster.

We omitted the number of interior-point iterations of both MOSEK and SDPT3, as

they are not relevant for our analysis. However, for completeness, we want to mention that

the number of iterations was somewhat independent on the point distribution, d, and m. In

our experiments, MOSEK usually took between 15 and 20 iterations, and SDPT3 usually

took between 20 and 25 iterations.

It is not surprising that our algorithm, built to solve a specific problem, has better run-

ning times than general-purpose solvers. Although the performance of MOSEK or SDPT3

may be improvable by adjusting their respective parameters, such a task is typically time

consuming and requires an in-depth understanding of the underlying methods.

Finally, we did not have the chance of comparing our algorithm with the ones of Kumar

et al. [65] and Zhou et al. [110]. The former is available online to the public, but we did not

manage to run it due to an error returned by Matlab, and the latter was not available.

128

n m Alg. 4.4 MOSEK SDPT3
10 1000 0.00 0.08 0.28
50 1000 0.01 0.28 0.70

100 1000 0.02 0.56 1.53
250 1000 0.04 1.43 4.16
500 1000 0.10 3.40 10.09

1000 1000 0.16 8.19 19.64
10 10,000 0.01 0.74 2.12

100 10,000 0.04 8.23 24.77
500 10,000 0.28 44.16 145.10

1000 10,000 0.78 93.93 312.61
2500 10,000 2.51 430.62 1134.25
5000 10,000 7.07 6082.79 3675.33

Table 4.7: Running time (in seconds) of Algorithm 4.4, MOSEK and SDPT3 solvers, for
datasets with points standard normally distributed, with different dimension n and number
of points m. The reported numbers correspond to the averages corresponding to 10 runs
for each m and n combination.

n m Alg. 4.4 MOSEK SDPT3
10 1000 0.01 0.06 0.20
50 1000 0.02 0.25 0.72

100 1000 0.03 0.55 1.33
250 1000 0.07 1.57 4.26
500 1000 0.10 3.38 9.39

1000 1000 0.23 7.27 18.44
10 10,000 0.02 0.69 1.84

100 10,000 0.07 7.52 24.82
500 10,000 0.52 43.71 146.21

1000 10,000 1.27 80.63 268.02
2500 10,000 4.84 415.26 1038.64
5000 10,000 13.94 5521.37 3855.16

Table 4.8: Running time (in seconds) of Algorithm 4.4, MOSEK and SDPT3 solvers, for
datasets with points uniformly distributed in a unit cube, with different dimension n and
number of points m. The reported numbers correspond to the averages corresponding to
10 runs for each m and n combination.

129

n m Alg. 4.4 MOSEK SDPT3
10 1000 0.05 0.08 0.35
50 1000 0.18 0.30 0.77

100 1000 0.34 0.57 1.36
250 1000 1.35 1.58 4.51
500 1000 3.15 3.21 9.88

1000 1000 7.78 6.70 17.05
10 10,000 0.02 0.55 1.53

100 10,000 1.62 7.95 26.36
500 10,000 21.66 47.86 149.44

1000 10,000 85.56 94.00 297.03
2500 10,000 501.50 421.46 999.27
5000 10,000 2035.77 5702.86 3390.80

Table 4.9: Running time (in seconds) of Algorithm 4.4, MOSEK and SDPT3 solvers, for
datasets with points uniformly distributed in a portion of a s.o.c., with different dimension
n and number of pointsm. The reported numbers correspond to the averages corresponding
to 10 runs for each m and n combination.

130

4.6 Conclusion

In this chapter, we proposed a dual simplex-like algorithm to solve the InfQ problem, and

consequently, the problem of enclosing a given set of balls with a ball of smallest radius.

Our method solves the problem exactly, contrarily to the latest approaches that focus on

calculating approximations, such as [65, 110].

Our algorithm employs a pivoting scheme resembling the simplex method for LP. Each

iteration of our algorithm starts with a dual feasible S-pair and a point corresponding to an

infeasible constraint. Then, it performs a sequence of exact curve searches until it arrives

at a new dual feasible S-pair with a strictly better objective function value. In each one of

those curve searches, a point is removed from the basis, and, at the end of the iteration, the

point corresponding to the infeasible constraint is added to the basis. When the algorithm

terminates, the basis will give which at most n constraints (balls) determine the solution

(the minimum enclosing ball). Our algorithm does not suffer from degeneracy and is not

susceptible to cycling.

The computational work of each curve search consists mostly on the solution of three

linear systems with a symmetric positive definite matrix. In our implementation, we use

the Cholesky factorization of such matrix, which is updated every time a point is added or

removed from the basis. This yields a curve search that has a O(ns + s2) computational

complexity, where s ≤ n is the size of the current basis. Though in the worst-case scenario

s = n, we observed that, in general, s� n.

Our experiments using Matlab show that the algorithm can efficiently handle datasets

with dimensions up to 5000, and it solves instances with 100,000 points within a few minutes,

with the only exception being when the dataset has a “conic shape”.

Given the work developed to produce the dual simplex-like algorithm presented in this

chapter, most of the ingredients necessary to develop a primal version of the algorithm

are now available. It would also be interesting to investigate, how far one can generalize

the formulation of the InfQ problem, such that a simplex-like algorithm following the same

mechanics of our algorithm would be possible to be applied to.

131

Bibliography

[1] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan, Geometric approxima-
tion via coresets, in Combinatorial and Computational Geometry, MSRI, University
Press, 2005, pp. 1–30.

[2] P. K. Agarwal, S. Har-peled, and H. Yu, Robust shape fitting via peeling and
grating coresets, in Proc. 17th Annual ACM-SIAM Symp. on Discrete Algorithms,
SODA ’06, Philadelphia, PA, USA, 2006, SIAM, pp. 182–191.

[3] P. K. Agarwal and R. Sharathkumar, Streaming algorithms for extent problems
in high dimensions, Algorithmica, 72 (2015), pp. 83–98.

[4] A. Aggarwal, H. Imai, N. Katoh, and S. Suri, Finding k points with minimum
diameter and related problems, J. Algorithms, 12 (1991), pp. 38 – 56.

[5] S. D. Ahipaşaoǧlu and E. A. Yildirim, Identification and elimination of interior
points for the minimum enclosing ball problem, SIAM J. Optim., 19 (2008), pp. 1392–
1396.

[6] S. D. Ahipaşaoğlu, Solving Ellipsoidal Inclusion and Optimal Experimental Design
Problems: Theory and Algorithms, PhD Thesis, Cornell University, 2009.

[7] , Fast algorithms for the minimum volume estimator, J. Global Optim., 62 (2015),
pp. 351–370.

[8] F. Alizadeh and D. Goldfarb, Second-order cone programming, Math. Program.,
95 (2003), pp. 3–51.

[9] Z. Allen-Zhu, Z. Liao, and Y. Yuan, Optimization algorithms for faster compu-
tational geometry, in Proc. 43rd International Colloquium on Automata, Languages,
and Programming, ICALP ’16, 2016.

[10] L. Barba, S. Durocher, R. Fraser, F. Hurtado, S. Mehrabi, D. Mondal,
J. Morrison, M. Skala, and M. A. Wahid, On k-enclosing objects in a coloured
point set, in Proc. 25th Canadian Conf. on Computational Geometry, CCCG2014,
2014, pp. 229–234.

[11] L. J. Bass and S. R. Schubert, On finding the disc of minimum radius containing
a given set of points, Math. Comp., 21 (1967), pp. 712–714.

[12] A. Ben-Hur, D. Horn, H. T. Siegelmann, and V. Vapnik, Support vector clus-
tering, J. Mach. Learn. Res., 2 (2002), pp. 125–137.

132

[13] B. K. Bhattacharya and G. T. Toussaint, On geometric algorithms that use the
furthest-point voronoi diagram, in Comput. Geom., vol. 2 of Machine Intelligence and
Pattern Recognition, North-Holland, 1985, pp. 43 – 61.

[14] L. M. Blumenthal and G. E. Wahlin, On the spherical surface of smallest radius
enclosing a bounded subset of n-dimensional euclidean space, Bull. Amer. Math. Soc.,
47 (1941), pp. 771–777.

[15] M. Bădoiu and K. L. Clarkson, Smaller core-sets for balls, in Proc. 14th Annual
ACM-SIAM Symp. on Discrete Algorithms, SODA ’03, Philadelphia, PA, USA, 2003,
SIAM, pp. 801–802.

[16] , Optimal core-sets for balls, Comput. Geom., 40 (2008), pp. 14 – 22.

[17] M. Bădoiu, S. Har-Peled, and P. Indyk, Approximate clustering via core-sets,
in Proc. 34th Annual ACM Symp. on Theory of Computing, STOC ’02, New York,
NY, USA, 2002, ACM, pp. 250–257.

[18] Y. Bulatov, S. Jambawalikar, P. Kumar, and S. Sethia, Hand recognition
using geometric classifiers, in Biometric Authentication, D. Zhang and A. K. Jain,
eds., Berlin, Heidelberg, 2004, Springer, pp. 753–759.

[19] J. A. Candela, Exact iterative computation of the multivariate minimum volume
ellipsoid estimator with a branch and bound algorithm, in Proc. 12th Symp. Compu-
tational Statistics, COMPSTAT 1996, Heidelberg, 1996, Physica-Verlag HD, pp. 175–
180.

[20] M. Cavaleiro and F. Alizadeh, A faster dual algorithm for the Euclidean mini-
mum covering ball problem, Ann. Oper. Res., (2018).

[21] T. M. Chan and V. Pathak, Streaming and Dynamic Algorithms for Minimum
Enclosing Balls in High Dimensions, WADS 2011, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2011, pp. 195–206.

[22] O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, Choosing multiple
parameters for support vector machines, Mach. Learn., 46 (2002), pp. 131–159.

[23] B. Chazelle and J. Matoušek, On linear-time deterministic algorithms for opti-
mization problems in fixed dimension, J. Algorithms, 21 (1996), pp. 579 – 597.

[24] X. W. Chen, An improved branch and bound algorithm for feature selection, Pattern
Recognit. Lett., 24 (2003), pp. 1925 – 1933.

[25] V. Chvátal, Linear Programming, W. H. Freeman, New York, NY, USA, 1983.

[26] K. L. Clarkson, Las vegas algorithms for linear and integer programming when the
dimension is small, J. ACM, 42 (1995), pp. 488–499.

[27] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, Third Edition, The MIT Press, Cambridge, MA, 3rd ed., 2009.

[28] C. Croux, G. Haesbroeck, and P. J. Rousseeuw, Location adjustment for the
minimum volume ellipsoid estimator, Stat. Comput., 12 (2002), pp. 191–200.

[29] G. Dantzig, Linear Programming and Extensions, Princeton University Press,
Princeton, NJ, USA, 1963.

133

[30] A. Datta, H. Lenhof, C. Schwarz, and M. Smid, Static and dynamic algorithms
for k-point clustering problems, J. Algorithms, 19 (1995), pp. 474 – 503.

[31] P. M. Dearing, P. Belotti, and A. M. Smith, A primal algorithm for the
weighted minimum covering ball problem in Rn, TOP, 24 (2016), pp. 466–492.

[32] P. M. Dearing and A. Smith, A dual algorithm for the minimum covering weighted
ball problem in Rn, J. Global Optim., 55 (2013), pp. 261–278.

[33] P. M. Dearing and C. R. Zeck, A dual algorithm for the minimum covering ball
problem in Rn, Oper. Res. Lett., 37 (2009), pp. 171–175.

[34] M. Dyer, On a multidimensional search technique and its application to the euclidean
one-centre problem, SIAM J. Comput., 15 (1986), pp. 725–738.

[35] M. Dyer, B. Gärtner, N. Megiddo, and E. Welzl, Linear programming, Chap-
man and Hall/CRC, Boca Raton, FL, 3rd ed., 2017, ch. 49.

[36] A. Efrat, M. Sharir, and A. Ziv, Computing the smallest k-enclosing circle and
related problems, in Algorithms and Data Structures, F. Dehne, J.-R. Sack, N. Santoro,
and S. Whitesides, eds., Berlin, Heidelberg, 1993, Springer, pp. 325–336.

[37] D. J. Elzinga and D. W. Hearn, The minimum covering sphere problem, Manag.
Sci., 19 (1972), pp. 96–104.

[38] D. Eppstein and J. G. Erickson, Iterated nearest neighbors and finding mini-
mal polytopes, in Proc. 4th ACM-SIAM Symp. on Discrete Algorithms, SODA ’13,
Philadelphia, PA, USA, 1993, SIAM, pp. 64–73.

[39] H.-Y. Feng, D. H. Endrias, M. A. Taher, and H. Song, An accurate and
efficient algorithm for determining minimum circumscribed circles and spheres from
discrete data points, Comput.-Aided Des., 45 (2013), pp. 105 – 112. Solid and Physical
Modeling 2012.

[40] K. Fischer, Smallest enclosing balls of balls, PhD Thesis, ETH Zürich, 2005.

[41] K. Fischer and B. Gärtner, The smallest enclosing ball of balls: Combinatorial
structure and algorithms, Internat. J. Comput. Geom. Appl., 14 (2004), pp. 341–387.

[42] K. Fischer, B. Gärtner, and M. Kutz, Fast smallest-enclosing-ball computation
in high dimensions, in Algorithms - ESA 2003. Lecture Notes in Computer Science,
G. Di Battista and U. Zwick, eds., vol. 2832, Springer, 2003, pp. 630–641.

[43] B. Gärtner, A subexponential algorithm for abstract optimization problems, SIAM
J. Comput., 24 (1995), pp. 1018–1035.

[44] , Fast and Robust Smallest Enclosing Balls, ESA ’99, Springer, Berlin, Heidel-
berg, 1999, pp. 325–338.

[45] B. Gärtner and S. Schönherr, An efficient, exact, and generic quadratic pro-
gramming solver for geometric optimization, in Proc. 16th annual ACM Symp. on
Computational Geometry, SCG, 2000, pp. 110–118.

[46] B. Gärtner and E. Welzl, Linear programming — randomization and abstract
frameworks, in STACS 96, C. Puech and R. Reischuk, eds., Berlin, Heidelberg, 1996,
Springer, pp. 667–687.

134

[47] , Explicit and Implicit Enforcing - Randomized Optimization, Springer, Berlin,
Heidelberg, 2001, pp. 25–46.

[48] P. E. Gill, G. H. Golub, W. Murray, and M. A. Saunders, Methods for
modifying matrix factorizations, Math. Comp., 28 (1974), pp. 505–535.

[49] A. Goel, P. Indyk, and K. Varadarajan, Reductions among high dimensional
proximity problems, in Proc. 12th ACM-SIAM Symp. Discrete Algorithms, SODA ’01,
Philadelphia, PA, USA, 2001, SIAM, pp. 769–778.

[50] D. Goldfarb, Factorized variable metric methods for unconstrained optimization,
Math. Comp., 30 (1976), pp. 796–811.

[51] D. Goldfarb and A. Idnani, A numerically stable dual method for solving strictly
convex quadratic programs, Math. Program., 27 (1983), pp. 1–33.

[52] G. H. Golub and C. Van Loan, Matrix Computations (3rd Ed.), Johns Hopkins
University Press, Baltimore, MD, USA, 1996.

[53] Gurobi Optimization Inc., Gurobi Optimizer Reference Manual, 2016.

[54] T. S. Hale and C. R. Moberg, Location science research: A review, Ann. Oper.
Res., 123 (2003), pp. 21–35.

[55] S. Har-Peled and S. Mazumdar, Fast algorithms for computing the smallest k-
enclosing circle, Algorithmica, 41 (2005), pp. 147–157.

[56] S. Har-Peled and B. Raichel, Net and prune: A linear time algorithm for eu-
clidean distance problems, J. ACM, 62 (2015), pp. 44:1–44:35.

[57] S. Har-Peled and Y. Wang, Shape fitting with outliers, SIAM J. Comput., 33
(2004), pp. 269–285.

[58] T. H. Hopp and C. P. Reeve, An algorithm for computing the minimum cover-
ing sphere in any dimension, Technical Report NISTIR 5831, National Institute of
Standards and Technology, Gaithersburg, MD, USA, (1996).

[59] P. M. Hubbard, Approximating polyhedra with spheres for time-critical collision
detection, ACM Trans. Graph., 15 (1996), pp. 179–210.

[60] S. K. Jacobsen, An algorithm for the minimax weber problem, European J. Oper.
Res., 6 (1981), pp. 144 – 148. Location Decisions.

[61] B. Kalantari, A characterization theorem and an algorithm for a convex hull prob-
lem, Ann. Oper. Res., 226 (2015), pp. 301–349.

[62] L. Källberg and T. Larsson, Faster approximation of minimum enclosing balls
by distance filtering and gpu parallelization, J. Graph. Tools, 17 (2013), pp. 67–84.

[63] , Improved pruning of large data sets for the minimum enclosing ball problem,
Graph. Models, 76 (2014), pp. 609 – 619.

[64] A. Karmakar, S. Das, S. C. Nandy, and B. K. Bhattacharya, Some variations
on constrained minimum enclosing circle problem, in Combinatorial Optimization and
Applications, W. Wu and O. Daescu, eds., Berlin, Heidelberg, 2010, Springer, pp. 354–
368.

135

[65] P. Kumar, J. S. B. Mitchell, and E. A. Yildirim, Approximate minimum
enclosing balls in high dimensions using core-sets, J. Exp. Algorithmics, 8 (2003).

[66] T. Larsson, G. Capannini, and L. Källberg, Parallel computation of optimal
enclosing balls by iterative orthant scan, Comput. & Graphics, 56 (2016), pp. 1 – 10.

[67] T. Larsson and L. Källberg, Fast and robust approximation of smallest enclosing
balls in arbitrary dimensions, in Proc. 11th Eurographics/ACMSIGGRAPH Symp.
on Geometry Processing, SGP ’13, Aire-la-Ville, Switzerland, 2013, Eurographics
Association, pp. 93–101.

[68] C. Lawson, The smallest covering cone or sphere (c. groenewod and l. eusanio),
SIAM Rev., 7 (1965), pp. 415–416.

[69] J. Matoušek, M. Sharir, and E. Welzl, A subexponential bound for linear pro-
gramming, Algorithmica, 16 (1996), pp. 498–516.

[70] J. Matoušek, On enclosing k points by a circle, Inform. Process. Lett., 53 (1995),
pp. 217 – 221.

[71] J. Matoušek, M. Sharir, and E. Welzl, A subexponential bound for linear pro-
gramming, in Proc. 8th Annual Symp. on Computational Geometry, SCG ’92, New
York, NY, USA, 1992, ACM, pp. 1–8.

[72] N. Megiddo, Applying parallel computation algorithms in the design of serial al-
gorithms, in Proc. 22nd Annual Symp. on Foundations of Computer Science, SFCS
1981, 1981, pp. 399–408.

[73] , Linear programming in linear time when the dimension is fixed, J. ACM, 31
(1984), pp. 114–127.

[74] , On the ball spanned by balls, Discrete Comput. Geom., 4 (1989), pp. 605–610.

[75] E. Moradi and M. Bidkhori, Single facility location problem, in Facility Loca-
tion: Concepts, Models, Algorithms and Case Studies, R. Zanjirani Farahani and
M. Hekmatfar, eds., Heidelberg, 2009, Physica-Verlag HD, pp. 37–68.

[76] B. Mordukhovich, N. M. Nam, and C. Villalobos, The smallest enclosing
ball problem and the smallest intersecting ball problem: existence and uniqueness of
solutions, Optim. Lett., 7 (2013), pp. 839–853.

[77] MOSEK ApS, The MOSEK optimization toolbox for MATLAB manual. Version 8.1,
2017.

[78] D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y.
Wu, Quantile approximation for robust statistical estimation and k-enclosing prob-
lems, Internat. J. Comput. Geom. Appli., 10 (2000), pp. 593–608.

[79] N. M. Nam, N. Hoang, and N. T. An, Constructions of solutions to generalized
sylvester and fermat–torricelli problems for euclidean balls, J. Optimi. Theory Appl.,
160 (2014), pp. 483–509.

[80] N. M. Nam, T. A. Nguyen, and J. Salinas, Applications of convex analysis to
the smallest intersecting ball problem, J. Convex Anal., 19 (2012), pp. 497–518.

136

[81] P. M. Narendra and K. Fukunaga, A branch and bound algorithm for feature
subset selection, IEEE Trans. Comput., 26 (1977), pp. 917–922.

[82] Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms in Con-
vex Programming, SIAM, Philadelphia, PA, USA, 1994.

[83] Y. Nesterov and M. Todd, Self-scaled barriers and interior-point methods for
convex programming, Math. Oper. Res., 22 (1997), pp. 1–42.

[84] , Primal-dual interior-point methods for self-scaled cones, SIAM J. Optim., 8
(1998), pp. 324–364.

[85] F. Nielsen and R. Nock, Approximating smallest enclosing balls with applications
to machine learning, Internat. J. Computat. Geom. Appl., 19 (2009), pp. 389–414.

[86] R. Panigrahy, Minimum enclosing polytope in high dimensions, CoRR,
cs.CG/0407020 (2004).

[87] F. Plastria, Continuous covering location problems, in Facility Location: Appli-
cations and Theory, Z. Drezner and H. W. Hamacher, eds., Berlin, 2002, Springer,
pp. 37–79.

[88] L. Pronzato, On the elimination of inessential points in the smallest enclosing ball
problem, Optim. Methods Softw., 34 (2019), pp. 225–247.

[89] J. Ritter, An efficient bounding sphere, in Graph. Gems Ser., A. S. Glassner, ed.,
Academic Press Professional, Inc., San Diego, CA, USA, 1990, pp. 301–303.

[90] P. J. Rousseeuw and A. M. Leroy, Robust Regression and Outlier Detection,
John Wiley & Sons, Inc., New York, NY, USA, 1987.

[91] A. Ruszczynski, Nonlinear Optimization, Princeton University Press, Princeton,
NJ, USA, 2006.

[92] A. Saha, S. V. N. Vishwanathan, and X. Zhang, New approximation algorithms
for minimum enclosing convex shapes, in Proc. 22nd Annual ACM-SIAM Symp. on
Discrete Algorithms, SODA ’11, Philadelphia, PA, USA, 2011, SIAM, pp. 1146–1160.

[93] M. I. Shamos and D. Hoey, Closest-point problems, in Proc. 16th Annual Symp.
on Foundations of Computer Science, SFCS 1975, 1975, pp. 151–162.

[94] M. Sharir and E. Welzl, A combinatorial bound for linear programming and re-
lated problems, in STACS 92, A. Finkel and M. Jantzen, eds., Berlin, Heidelberg,
1992, Springer, pp. 567–579.

[95] V. V. Shenmaier, The problem of a minimal ball enclosing k points, J. Appl. Ind.
Math., 7 (2013), pp. 444–448.

[96] S. Skyum, A simple algorithm for computing the smallest enclosing circle, Inform.
Process. Lett., 37 (1991), pp. 121 – 125.

[97] G. Stewart, Matrix Algorithms, SIAM, Philadelphia, PA, USA, 1998.

[98] J. J. Sylvester, A question in the geometry of situation, Quaterly J. Pure and
Applied Math., (1857), pp. 1–79.

137

[99] T. Szabo and E. Welzl, Unique sink orientations of cubes, in Proc. 42nd IEEE
Symp. on Foundations of Computer Science, SFCS 2001, 2001, pp. 547–555.

[100] M. Todd, Minimum-Volume Ellipsoids, SIAM, Philadelphia, PA, USA, 2016.

[101] K. C. Toh, M. Todd, and R. H. Tütüncü, Sdpt3 – a matlab software package
for semidefinite programming, Optim. Methods Softw., 11 (1999), pp. 545–581.

[102] I. W. Tsang, J. T. Kwok, and P.-M. Cheung, Core vector machines: Fast svm
training on very large data sets, J. Mach. Learn. Res., 6 (2005), pp. 363–392.

[103] C. Van de Panne and A. Whinston, Simplicial methods for quadratic program-
ming, Naval Res. Logist. Quart., 11 (1964), pp. 273–302.

[104] E. Welzl, Smallest enclosing disks (balls and ellipsoids), in New Results and New
Trends in Computer Science Proc., H. Maurer, ed., Berlin, Heidelberg, 1991, Springer,
pp. 359–370.

[105] P. Wolfe, The simplex method for quadratic programming, Econometrica, 27 (1959),
pp. 382–398.

[106] X. Wu, A linear-time simple bounding volume algorithm, in Graph. Gems Ser. III
(IBM Version), D. Kirk, ed., Morgan Kaufmann, San Francisco, CA, USA, 1992,
pp. 301 – 306.

[107] E. A. Yildirim, Two algorithms for the minimum enclosing ball problem, SIAM J.
Optim., 19 (2008), pp. 1368–1391.

[108] B. Yu and B. Yuan, A more efficient branch and bound algorithm for feature selec-
tion, Pattern Recognit., 26 (1993), pp. 883 – 889.

[109] H. Zarrabi-Zadeh and T. M. Chan, A simple streaming algorithm for mini-
mum enclosing balls, in Proc. 18th Canadian Conf. on Computational Geometry,
CCCG2006, 2006, pp. 139–142.

[110] G. Zhou, K.-C. Tohemail, and J. Sun, Efficient algorithms for the smallest en-
closing ball problem, Comput. Optim. Appl., 30 (2005), pp. 147–160.

	Abstract
	Acknowledgements
	Dedication
	Table of Contents
	List of Notations
	List of Tables
	List of Figures
	Introduction
	Overview
	The minimum enclosing ball of points and balls
	The minimum k-enclosing ball of points

	Contributions and outline of the dissertation

	The minimum enclosing ball of points
	Properties of the MB problem
	The dual simplex-like algorithm by Dearing and Zeck
	The primal simplex-like algorithm by Fischer et al.
	An improvement to the dual simplex-like algorithm
	Implementation details
	The ``Update Sj'' procedure
	Calculating the direction d
	Calculating the next iterate
	Pseudo-code of the algorithm

	Computational results
	Conclusion

	The minimum k-enclosing ball of points
	The proposed branch-and-bound framework
	Preliminaries
	Solving the MB problem at each node
	The tree design
	Search strategy
	Finding an initial solution

	Computational study
	Performance of the branch-and-bound algorithm
	Comparison with other methodologies

	Further computational studies
	The impact of using an initial solution
	Additional lower bounds
	On the point-node assignment scheme

	Conclusion

	The minimum enclosing ball of balls
	Equivalent problems in computational geometry
	Properties of the InfQ problem
	Duality and optimality conditions
	Basis and dual feasible S-pair

	The dual simplex-like algorithm
	The curve search - Sj{p*} is affinely independent
	The case when Sj{p*} is affinely dependent
	Pseudo-code
	Finiteness and correctness of the algorithm
	A note on degeneracy

	Implementation details
	Updating the Cholesky factorization
	Iteration complexity
	Discussion of other options

	Computational results
	Performance of the algorithm
	Comparison with other methods

	Conclusion

	Bibliography

