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Smooth pursuit eye movements are used to maintain gaze on moving targets.  In 

order to overcome processing delays, smooth pursuit is capable of predicting future target 

motion.   While work over the years has characterized the nature of some of the cues 

(verbal, visual, probabilistic) to future motion, the integration of prediction with 

immediate sensory inputs is not well understood. 

The current study tested the extent to which prediction during pursuit can be 

modeled as a form of optimal Bayesian cue combination, with prior and likelihood cues 

trading off in proportion to their respective reliabilities.  Stimuli were random dot 

kinematograms (RDKs) consisting of 200 dots moving in a chosen mean direction with 

varying levels of directional variability (Gaussian, with SDs of 0, 30, 45, or 60 deg).  The 

variability of the prior distribution determining the mean directions of the dots on each 

trial was also varied (Gaussian, with SDs of 10 or 45 deg, or uniform distribution from 0-

360 deg).  Subjects were instructed to pursue (pay attention to) the RDK and report the 

perceived mean direction of the RDK at the end of each trial. 

The main experimental findings were: (1) The influence of the prior on pursuit 

persisted for ~250 to 600 ms after the onset of target motion.  (2) The influence of the 



 

iii 
 

prior decreased over time, with pursuit depending totally or near totally on the immediate 

stimulus motion (referred to as the “likelihood”) by about 200-500 ms after the onset of 

target motion.   (3) The influence of the immediate stimulus motion (likelihood) 

overcame that of the prior later in the trial when RDK directions were more variable. (4) 

Increasing the variability of the prior led to a greater influence of the likelihood on 

pursuit direction earlier in the trial. (5) When the variability of the prior direction 

increased, there were indications that the variability of the likelihood had a greater effect 

on the variability of pursuit directions.  (6) Perceptual tests using short duration intervals 

of motion (150 ms) also found a greater influence of the prior and more variable reports 

of target direction when the variability of the RDK directions increased.  

These findings suggest that basic principles of Bayesian cue combination can 

apply to smooth pursuit eye movements. These results can be useful for defining the 

quantitative characteristics of the cortical areas involved in both the representation of 

current sensory motion and the representation of the prior, as well as identifying the 

neural processes that are involved in the formation of the pursuit command via the 

combination of these two cues. 
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1. Introduction 

1.1. Background 

 Smooth pursuit eye movements are used to maintain gaze on smoothly moving 

objects.  Classical models of smooth pursuit posit that the response is driven by low-level 

visuomotor signals that combine retinal slip velocity (the difference in velocity between 

the target and eye) with an extraretinal representation of eye velocity (Robinson, 1986; 

Lisberger, 2010).  These two signals combined produce a representation of the target in 

craniotopic coordinates.  If the signal is followed faithfully, the eye will match velocity 

with the target.  However, a limiting factor is sensorimotor processing delay.  Due to this 

delay, if a target changes direction abruptly, the eye would not keep up with the motion in 

the new direction, causing increased retinal error in the intervening period. 

 A general solution to this limitation, one that is found in visuomotor systems in 

general, is prediction.  The concept of prediction is not unique to humans; even the 

salamander uses prediction to catch its prey.  In a study by Borghuis & Leonardo (2015), 

for example, salamanders were shown to extrapolate the motion of a fruit fly in order to 

program effective prey-catching visuomotor actions.  This leads the salamander to lash its 

tongue out to a position ahead of the current location of the fly.  If the salamander were 

not able to predict, it would always miss any non-stationary fly and ultimately starve. 

 Smooth pursuit eye movements also predict, and the predictive capabilities extend 

beyond simple motion extrapolation.  In classical studies, Westheimer (1954) and Dallos 

& Jones (1963) showed that the eye can change direction ahead of the target during 

pursuit of periodic (sinusoidal) motion. 
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 Studies over the past 40 years have produced evidence that extended the 

predictive capabilities of pursuit beyond simple extrapolation of a straight-line motion 

path, and beyond predictive tracking of periodic motion, potentially involving higher-

level representations of target motion.  One example of such findings is anticipatory 

smooth eye movements (ASEM). ASEM occur when pursuit of constant velocity target 

motion begins prior to the onset of motion or prior to a change in the direction of motion 

(Kowler & Steinman, 1979, Westheimer, 1954).  ASEM are also found when motion 

parameters are selected randomly, in which case ASEM are biased by recently seen or 

recently tracked target motions (Kowler & McKee, 1987; Kowler et al., 1984; Yang & 

Lisberger, 2012).  In addition, cues (verbal or visual) induce anticipatory eye movements 

in the cued direction before the onset of target motion (de Hemptinne, Lefèvre, & Missal, 

2006; Kowler, 1989, Santos & Kowler, 2017). Prediction during pursuit also occurs when 

moving targets are briefly blanked.  In these instances, the eye tends to decelerate during 

the blank, but when the reappearance of the target is expected, the eye starts to re-

accelerate prior to the reappearance (Becker & Fuchs, 1985), even when the target 

trajectory is curved (Orban de Xivry et al., 2008). Barnes & Collins (2008) showed that 

this acceleration occurs even when the target is blanked at the beginning of its motion.  In 

this case, pursuit appears to be influenced by the velocity of the prior trials, implying that 

memory of motions can initiate pursuit even in the absence of an immediate motion 

signal. 

 These many demonstrations of predictive smooth pursuit require new models, 

ones that allow pursuit to be driven by more than low level visuomotor signals.  In 

response to this need, some models of smooth pursuit, such as Barnes & Collins (2008), 
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proposed than an extraretinal signal containing information about prior target motions 

could be combined with the visuomotor signals to drive pursuit when purely visuomotor 

signals were not sufficient.  In Barnes & Collins (2008), the extraretinal signal was 

controlled via a switch that turned prediction on or off at certain moments (such as when 

the target is blanked).  However, others (eg. Orban de Xivry, 2013) have been critical of 

this approach and suggested instead that pursuit may depend on the relative weights of 

sensory and non-sensory cues, rather than an all-or-none “prediction switch”. 

More recent studies have attempted to test the idea that pursuit depends on a weighted 

combination of extraretinal information (including prediction) with current sensory 

signals. According to the principles of optimal cue combination (Ma, 2012; 

Trommershauser, Maloney, & Landy, 2003), greater uncertainty (and thus lower 

reliability) about the current sensory motion should result in a greater influence of the 

past history of motion (priors). 

The following section describes three articles from the past 6 years which attempt 

to develop models of smooth pursuit eye movements that combine sensory (retinal) 

information and non-sensory (extraretinal) signals to drive pursuit in an attempt to 

account for the predictive and anticipatory aspects of pursuit outlined above.  While these 

three studies involve discussion of Bayesian inference and weighted combinations of 

multiple cues, they vary in their approach and results, indicating there are still many gaps 

to fill in the understanding and modeling of anticipatory pursuit eye movements. 
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1.2. Bayesian models of pursuit 

Some support for the idea that pursuit can be modeled as a form of cue 

combination, weighting prior and likelihood information in accordance with their 

respective reliabilities, came from Darlington et al. (2017), who analyzed and attempted 

to model the effects of context on the velocity and direction of eye movements in 

monkeys.  Each pair of trials consisted of a prior-adapting trial, which varied on each 

trial, and a probe trial, which was always the same.  Given an optimal combination of 

sensory inputs the prior (the first in the pair of trials) and the probe, it was expected that 

the effect of the prior-adapting trial would be modulated by the strength of the sensory 

signal on the probe trial.  Based on findings that population responses in MT are weaker 

with lower contrast targets (Krekelberg et al., 2006), the strength of the sensory signal on 

the probe was manipulated by presenting the target in higher or lower contrast.  The first 

of two main experiments analyzed speed context effects and the results confirmed their 

expectations, with more of a bias toward the speed of the prior-adapting trial on the probe 

trial for the low-contrast targets than the high-contrast targets.  The second experiment 

found a similar effect of the prior-adapting trial on target direction, with the lower-

contrast probe trials resulting in pursuit with more bias in the direction of the prior-

adapting trial than the higher-contrast trials. 

The explanation of these effects of context is that a lower-contrast target provides 

a “weaker” or “less reliable” motion signal, due to a relative decrease of the population of 

neural responses in MT (Yang et al., 2012), which the authors assumed resulted in a 

greater influence of a prior for slow target speeds as previously documented (Weiss, 

Simoncelli, & Adelson, 2002).  If the brain is operating in a Bayesian way, this weaker 
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incoming sensory signal should result in greater weight for the prior trial more than a 

stronger, more reliable signal.  Their model for adaptation of the direction and speed 

priors takes into account the previous trial, weighted by the stimulus reliability (contrast 

in their model), in the calculation of the “strength” of the visuo-motor transmission, 

which they define as “gain”.  However, they make it clear that the while the models are 

an attempt to understand how Bayesian inference might manifest itself from the known 

neural circuits of pursuit, the models are not Bayesian models. This is because, while 

described as “a vehicle for instigating priors”, they state that the gain parameters in their 

model are explicitly not prior probability distributions. 

Their first of two models outlined a relatively simple weighted enhancement of 

gain based on the prior trial’s speed or direction and the current sensory likelihood. The 

current sensory likelihood was represented as a Gaussian centered on 0° with one of two 

values of σ, corresponding to the contrast of the motion signal and thus reliability: 

Sensory Likelihood = G(0, σlow/high contrast) 

Equation 1 

 The gain enhancement of the previous trial was similarly multiplied by a 

Gaussian centered on 0° with standard deviation σ.  This stage worked similarly for both 

the direction and speed prior experiments: 
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Gain Enhancement Direction = Ampdirection · G(0, σdirection) + 1 

Equation 2 

Gain Enhancement Speed = Ampspeed · G(0, σspeed) + 1 

Equation 3 

(1 was added to the speed and direction to enhance the gain along a specific direction 

without “affecting gain in other directions”) 

The resulting posterior distribution allowed eye speed and direction to be 

predicted: 

Posterior = Sensory Likelihood · Gain Enhancement 

The values of sigma and Ampspeed/direction were fitted using a least squares 

approach to estimate values that best replicated the size of the effects in the experimental 

data. 

Darlington et al. (2017) acknowledged that they were not the first to develop 

similar models of pursuit.  Models by Orban de Xivry et. al (2013) and Bogadhi et al. 

(2013) both involved sensory and extrasensory components that were combined in a 

weighted sum based on their reliability in a way that is explicitly Bayesian.  While 

Darlington et al.’s model of gain control resulted in a Bayesian-inference-like outcome, 

they made a point that it is distinctly not a Bayesian optimal model and that pursuit may 

not even be optimal.  In fact, they pointed out that, according to Ma (2012), optimality is 

not a requirement for Bayesian inference, which is simply defined as “Making a decision 

about a state of the world based on sensory observations by computing a posterior 

distribution.” Under Ma’s definition, Bayesian inference can be optimal (in the selection 

of the maximum a posteriori that will minimize cost), probabilistic (in that it includes a 
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representation of the likelihood and prior along with their uncertainty), or both. However, 

the goal of Darlington et al. was to simply model how the neural system implements the 

tradeoff between current sensory information and history of previous trials, with no 

particular claim that this neural integration was optimal or even completely probabilistic, 

since the experiment only took into account two levels of uncertainty and did not posit a 

representation of the entire distribution of the prior and likelihood. 

Thus, their main requirement for the system to exhibit Bayesian inference was to 

see an increased reliance (via direction or speed-selective gain modulation) on the prior 

when the likelihood (sensory info) becomes less reliable.  But, as described, this reliance 

does not need to be optimal.  Darlington et al.’s model is more concerned with capturing 

the gain control aspects underlying the pursuit system as previously evidenced in neural 

and behavioral findings than trying to demonstrate the optimality of the system.  This is 

clear when looking at their experiments; they make no claims about the weighting of the 

prior/likelihood other than that it is affected by a binary (low contrast vs high contrast) 

manipulation of the likelihood. 

However, other models of pursuit eye movements, such as Orban de Xivry (2013) 

and Bogadhi (2013), were concerned with the Bayesian-optimality of the pursuit system, 

with the reliability of their sensory and prior representations represented as distributions, 

rather than based on the presence of a high- or low-contrast stimulus. 

 Orban de Xivry et al. (2013) attempted to model both the predictive and sensory 

aspects of the pursuit system, integrating past history and incoming sensed information.  

Previous models, such as the one proposed in Barnes and Collins (2008), attempted to 

model pursuit by combining the predictive and visual aspects of the system using parallel 



8 
 

 
 

models with a mechanism that would switch to a memory-based pathway when there was 

an expectation of future target motion.  Orban de Xivry and colleagues, on the other 

hand, constructed a coherent model that incorporated a memory-based prediction system 

along with the classical visual-motor pathway of smooth pursuit, without any switching 

components or disparate mechanisms that would only apply when prediction is required.  

This was accomplished using two pathways: one for the sensory processes and one for 

the predictive process.  Each pathway used a Kalman filter to generate an estimate of the 

retinal error (retinal slip (RS) relative to the target motion) based on the difference 

between previous estimates and current observed value of RS.  The estimates of retinal 

error were then combined, weighted by their uncertainty and used in the motion 

integration step to generate a motor command, which drives the eye movement. 

At each time step, the section of the model prior to the “Motion integration” node 

aims to estimate the current retinal slip (the difference between the target motion and eye 

motion at the current time step k) using these two pathways, sensory and predictive.  The 

sensory pathway starts with the target velocity and the eye velocity to calculate the retinal 

slip (RSdet in Figure 1 of Orban de Xivry (2017)).  Additive and multiplicative noise is 

incorporated to simulate the noise present in the brain in areas such as MT and the signal.  

This results in the noisy estimate at time step k (RK#
$%&'(). From there, the model attempts 

to estimate the hidden variable RS*#+,
-./', the estimate of the sensory retinal slip on the next 

time step, given the noisy estimate of the RS and the previous estimate (RS*#
-./') using 

Kalman filtering (𝐾#) (Eq. 4). This estimate, along with the estimated variance, was used 

in the motion integration step.  This estimation procedure is depicted in the below 

equation and flowchart in Figure 2 of Orban de Xivry et al. (2013): 
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RS*#+,
-./' = RS*#

-./' + 𝐾# 3RS#
Noisy −	RS*#

Sens6 +	𝜂# 

Equation 4 

The goal of the predictive pathway is to output the retinal slip that is expected 150 

ms into the future.  Similar to the sensory pathway, the predictive pathway used Kalman 

filtering to estimate the retinal slip.  Rather than directly using the eye velocity at time k 

to calculate the RS, the predictive pathway uses an efference copy of the signal from the 

eye plant to estimate the velocity.  This was then subtracted from the estimate of target 

velocity at time k from the previous trial to calculate the predicted RS (RS*#
8.9): 

RS*#
Mem =	𝑇𝑉*#

Mem −	 �̇�#eff 

Equation 5 

 Each time step (k), the prediction (stored as an “Internal representation”, depicted 

in the blue portion of Fig 1 in Orban de Xivry (2013))) was updated using Kalman 

filtering once again to estimate target velocity from the brain’s noisy observation.  This 

was done similarly as in Equation 4 in that a Kalman filter is used to update the internal 

representation (TV*#
Pred) based on the difference between the current prediction of target 

velocity (TV*#
Pred ) and the current observation (TV#

Obs). 

TV*#+,
Pred = TV*#

Pred + 𝐵int𝑢# + 𝐾#Pred 	3TV#
Obs − TV*#

Pred6 +	𝜖# 

Equation 6 

The internal representation was used to update the representation of target motion 

stored in memory (with some noise).  This in turn was used for the anticipation of the 

motion of future trials, but not the current trial, where the two 𝛿 terms represent 

normally-distributed multiplicative and additive noise, respectively: 
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BTV	* #
MemC

Trial	D+,
= 3TV*#+,EF

Pred 6
GH&IJ	D

B1 + 𝛿9LJMNH.OC +	𝛿IOONH.O 

Equation 7 

This dynamically-updated representation in memory, along with the output of the 

sensory step, was used to drive pursuit in the motion integration step.  The inputs of this 

step were optimally combined, weighted by their estimated reliability.  This was done in 

a Bayesian way, such that the greater the variability of the input, the less of a role that 

component would play in the final estimate of retinal slip.  This optimal weighting of 

current information and past experience is a key aspect of the model’s ability to generate 

anticipatory smooth pursuit eye movements in testing, as it allows the system to 

increasingly rely on memory of previous trials’ motion in situations where the current 

sensory information is not as reliable.  After passing the optimally weighted estimate of 

retinal slip through the motion pathway, the signal is then sent to the motor system to 

initiate the eye movement. 

The results of their simulation show that the model was able to exhibit many of 

the predictive and anticipatory properties of smooth pursuit present in human subjects.  

For instance, tracking a target moving with a sinusoidal velocity, the simulation took 

advantage of the periodic nature of the stimulus similar to the way humans do, lagging 

behind the target at first but quickly using the dynamically updated representations of the 

motion from the previous half cycle to anticipate the future motion (Figure 3 in Orban de 

Xivry (2013)).  The model was also able to exhibit anticipatory smooth pursuit after 

repeating several trials of an identical motion, with the internal representation of the 

future target velocity building up.  The system then uses this representation to initiate 
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smooth pursuit prior to the target motion, resulting in a movement in the anticipated 

direction of the future motion. 

Their model also simulated the pattern of smooth eye movements also applied to 

instances of target blanking.  Simulated smooth pursuit movements matched the behavior 

of experimental data undergoing the same kind of blanking of a moving target, indicating 

a prediction of the future movement of the target (an increase in gain in accordance with 

the previous trial’s motion) based on the internal representation of the trajectory of the 

target. 

Overall, this model was able to generate pursuit movements consistent with 

previous studies across several tasks and suggests that memory of previous trials is 

dynamic and combines optimally with current perceptual information.  Orban de Xivry 

and colleagues argued the use of a Kalman filter allowed the model to update the memory 

dynamically using the noisy sensory inputs.  While the performance of their model 

clearly exhibits the predictive properties of eye movements present in human observers, it 

does so only in qualitative comparisons to past research.  The predictions clearly use 

information from previous trials in its “internal representation” of the target motion, 

integrated with the current sensory info, these predictions rely on parameters either 

obtained experimentally from previous studies or fit to the data. Other values, such as the 

gain of the pursuit system (Gint), were set a priori and either held constant or manipulated 

to demonstrate individual differences due to variability of residual pursuit in individuals. 

Additionally, most of the increase in “uncertainty” of the sensory information was in 

periods of target blanking; the sensory info was never granularly changed and tested.  It 

was either there or not.  
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To be able to truly test their model, future iterations the model should be tested on 

situations in which the both the uncertainty of sensory information (representation of 

likelihood distribution) and built-up internal representations of previous trials 

(representation of prior distribution) are controlled.  From there, it can be tested whether 

their model optimally combines information (weighted by uncertainty) in the same way 

the human system does.  Additionally, recent experimental results have confirmed 

aspects of their model suggesting a buildup of a short-term memory representation of 

target motion over time, which integrates with the sensory representation of target motion 

as a function of the reliability of the prior and current sensory motion (Deravet, Blohm, 

Orban de Xivry, & Lefèvre, 2018), but this finding has only shown an influence on target 

speed, not direction. 

Bogadhi et al. (2013) proposed a two-stage recurrent Bayesian model in the 

context of an experiment regarding the well-known aperture problem.  One of the central 

issues of the aperture problem results when the early motion processing stage results in 

the perception of a tilted bar moving through an aperture (usually a small circular 

“window”) as moving orthogonal to the orientation of the bar due to the ambiguity of 1-

dimensional motion signals.  Because of this, pursuit is biased to the direction orthogonal 

to the bar.  200 ms later, this bias is reduced once the 2-dimension motion signals come 

into play.  But, as described earlier, in most pursuit tasks with uncertain sensory stimuli, 

these two motion signals are not the only inputs to the pursuit system. Extraretinal 

internal representations of prior motions have previously been successfully modeled in a 

recurrent fashion (Montagnini et al., 2007).  The aperture problem paradigm is 

particularly suited for teasing out the underlying dynamics of prediction in pursuit due to 
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the well-known timecourse of the influence of the sensory information on the pursuit 

bias. 

In this paper, Bogadhi et al. describe two experiments, where the target of pursuit 

is blanked either in the early phases of pursuit (first 100 ms) or the later, steady state 

stage, theorizing that the interaction between the retinal (sensory) and extraretinal signals 

changes depending on the time of stimulus blanking. 

The integration of prior and likelihood during a pursuit task was previously shown 

in an open-loop smooth pursuit model (Bogadhi et al., 2011).  The 2013 model extends 

this to a closed-loop, dynamic two-stage model. Both models combine the perceptual 

inputs and memory of prior motion in an optimal way, where each input is weighted by 

an amount inversely proportional to its uncertainty.  They emphasize that the 2013 model 

captures the characteristic decrease in horizontal velocity during target blanking and the 

vertical eye velocity transient when the target reappears.  This phase-dependent change in 

pursuit velocity is predicted to be due to a domination of extraretinal signals during the 

early stage (high prediction) and of retinal signals during the steady state (low 

prediction).  

Bogadhi et al., 2013 discusses two experiments, each examining the interaction 

between retinal (sensory-based) and extraretinal.  For the first experiment, targets were 

blanked during the steady state phase of pursuit (600 ms after stimulus onset, blanked for 

either 200 ms or 400 ms).  In half of the blanked trials, the target appeared after blanking 

with a 90° shift in orientation, and in the other half the target’s orientation did not change 

after reappearing. In Experiment 2, the stimulus was blanked at either 100, 120, 140, 160, 
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or 180 ms after target onset in 5/6 trials, with the last 1/6 of trials involving no blanking 

(used as a control).  

The main results were that pursuit at the end of a blank during steady state pursuit 

(Experiment 1) show a clear directional bias (resulting from the aperture problem), and 

responses at the end of blanks occurring at the beginning (first 100 ms; Experiment 2) 

after the beginning of pursuit showed little or no bias in this regard.  Additionally, the 

drop in horizontal velocity of pursuit appeared to increase as the length of the blank 

period increased in the steady state, which was coherent with previous findings.  Finally, 

they found higher anticipatory velocity during early pursuit blanks (Experiment 1) 

compared to during steady state pursuit (Experiment 2). 

To further examine the results and the involvement of the different levels of 

prediction/reliance of extraretinal signals, they developed a hierarchical model for pursuit 

and simulated it in different contexts (prediction low/high and blanking during steady 

state/early stages).  The model is composed of two parts, retinal (sensory) and extraretinal 

(predictive), combined in a weighted fashion. Both parts of the model are “recurrent” in 

that the prior is initially set on 0 (in 2D velocity space) but continually updated every 

iteration of the model (at every instant) using the posterior distribution.  

The inputs to this model were 1D (edge related, usually playing a larger role in 

the beginning of the motion) and 2D (terminator related, taking over later in the motion) 

likelihood distributions for the target motion. These values are combined and then fed to 

the retinal recurrent Bayesian network (the lower left box in Figure 9 in Bogadhi et al. 

(2013)). Here, the prior and likelihood (from the combined 1D and 2D signals) are 

combined using Bayes’ rule to obtain the posterior distribution Q.  At every timestep, the 



15 
 

 
 

posterior distribution is used to dynamically update the prior, which is used at the next 

iteration of the Bayesian network.  A similar Bayesian network is used for the extraretinal 

block (Figure 9, top left in Bogadhi et al. (2013)).  Here, the prior is combined with not 

the sensory likelihood but PT, which is the probability of the target velocity in space. The 

sensory estimation Q and the prior of the extraretinal part Pext are combined, weighted by 

their reliability, resulting in Pout.  This is then combined with positive feedback to obtain 

PT, the input to the extrasensory module.  PT not only updates the extraretinal prior but 

also is sent to the oculomotor plant to drive the actual pursuit movement. 

This model is designed so that when the target is blanked, the likelihood is set to a 

Gaussian centered on zero with infinite variance.  Thus, when the likelihood is combined 

with the prior, the posterior will be equal to the prior, which, due to the dynamic 

recurrent updating, will be gradually reset to its default setting of a Gaussian centered on 

0.  The MAP of the resulting posterior will be 0, so the estimated retinal velocity during 

the blank is 0.  Therefore, the role of the extraretinal module is to have smooth pursuit 

continue, even when there is no sensory input. 

Simulations of the model showed qualitatively similar pursuit responses obtained 

during high and low prediction phases, depending on when the target was blanked.  In 

other words, the retinal variance appears to increase as the target is blanked and decrease 

when the target reappears.  Even though the model’s extraretinal variance remains 

relatively constant during the blank, the extraretinal weight is increased due to the 

relative difference in variance. The results of the model simulations led them to conclude 

that it was the level of prediction that determined the dynamics of pursuit during target 

blanking, irrespective of whether the blanking was during early pursuit or steady state.  
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Given the experimental data, this means that most of the subjects’ responses involved low 

prediction in the steady state blanking and high prediction in early pursuit blanking. 

The results show their model does offer a probabilistic cue combination 

framework integrating retinal and extraretinal representations of target information, 

weighted by their reliability, which qualitatively resembles the data from their aperture 

motion blanking experiments.  Chiefly, it shows there is a correlation between the 

decrease in horizontal velocity during a blank and the bias in the vertical direction when 

the target reappears.  However, as the authors admit, the model requires a lot of 

assumptions on parameters, namely the weight of the retinal signal, which is set to 1 at 

the initiation of pursuit and only changes during a blanking event.  A more realistic 

model would have these weights being constantly updated during pursuit and not only 

depend on the blanking of the target.  Additionally, the model, with only one free 

parameter (c, corresponding to the level of prediction), does not capture pursuit behavior 

for all subjects across the entire duration of pursuit, indicating a more flexible model may 

be necessary to account for the experimental data. 

 

1.3. Summary and assessment 

 The models described above attempt to explain smooth pursuit predictive eye 

movements as a form of Bayesian cue combination and apply the principles of optimal 

cue combination in ways similar to the application found for studies of many aspects of 

perception (e.g., Kording & Wolpert, 2004; Ernst & Banks, 2002; Tassinari, Hudson, & 

Landy, 2006; Sato & Kording, 2014).  This approach applied to smooth pursuit  has 

resulted in two main achievements:  (1) An experimentally-demonstrated influence of 
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context on smooth pursuit speed, with the effect of context becoming more prevalent on 

trials with lower target contrast (Darlington et al., 2017; Darlington, Beck, & Lisberger, 

2018), and (2) computational frameworks which lay the groundwork for modeling the 

contributions of the prior (prediction) and likelihood (sensory) as a function of the 

uncertainty about the stimulus motion, with the expectation that the contribution of each 

is weighted according to their respective reliabilities, lending at least qualitative support 

for Bayesian optimal combinations of the two (Bogadhi et al., 2013; Orban de Xivry et 

al., 2013; Darlington et al., 2017). 

 However, there are still several unresolved issues if such Bayesian approaches are 

to be seen as fundamental to the understanding of pursuit: 

(1) Costs: For observers to be considered to be “optimal” their actions need to minimize 

the expected cost of taking the action (Ma, 2012).  This entails a specific cost function for 

different pursuit task trajectories task and a goal the pursuit system is trying to achieve.  

The goal of smooth pursuit has often been assumed to be match eye motion to target 

motion as closely as possible (minimizing retinal slip), but is this the only or most 

important goal?  An analysis of costs and benefits of the particular might reveal that the 

best outcome might be something other than minimal (Rucci & Victor, 2015), or that a 

range of retinal motions would be acceptable.  The goal of pursuit, and the role of retinal 

motion, may also change depending on the task.   

(2) Implicit priors: The Bayesian models described in section 1.1 were based on priors 

derived from the past history of target motion.  Pursuit, however, is also influenced by 

perceptual cues or implicit prior beliefs about target motion.  Previous work has shown 

strong effects of perceptual cues on anticipatory pursuit, particularly cues that display the 
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path of motion of the target display consistent with geometry (Kowler, 1989; Santos & 

Kowler, 2017; Ladda, Eggert, Glasaur, & Straube, 2007).  Consideration of such cues and 

implicit priors is needed to get a full understanding of predictive pursuit. 

(3) Controlling of the uncertainty of the sensory motion: The work described in section 

1.1 manipulated the uncertainty of the likelihood (the motion of the displayed stimulus) 

by either changing the contrast (Darlington et al., 2017) or completely blanking the 

stimulus during various stages of pursuit (Bogadhi et al., 2013).  Contrast has been found 

to elicit weaker population responses in neural area MT (Krekelberg et al., 2006).  

However, contrast has been shown to affect the perceived speed of motion (Weiss, 

Simoncelli, & Adelson, 2002).  A study of the influence of contrast on perceived 

direction, has not, to my knowledge, been done.  An alternative way to manipulate 

directional uncertainty may be by using random-dot kinematograms, such as those used 

by Watamaniuk, Sekuler, & Williams (1989), Watamaniuk & Heinen (1999) and 

Mukherjee, et al., (2017).  Watamaniuk et al. (1989) and Watamaniuk et al (1999) also 

found that an increase in the both the standard deviation of a Gaussian defining the local 

stimulus direction and an increase of the range of possible directions increased directional 

discrimination thresholds for both smooth pursuit and perceptual reports.  The 

distribution of dot directions could thus be varied to control the level of uncertainty about 

the stimulus direction, which may be more transparent than manipulations of contrast.  

Alternatively, a “motion cloud” stimulus like the one used by Mukherjee, et al. (2015) 

could be used to vary the uncertainty of the stimulus motion without some of the 

idiosyncrasies of RDKs. 
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(4) Model parameters: The models of Orban de Xivry et al. (2013) and Bogadhi et al. 

(2013) estimated many parameters.  Bogadhi et al. (2013) noted that their model required 

many assumptions about model parameters.  The approach of Orban de Xivry et al. 

(2013) featured over a dozen parameters which were either estimated or taken from prior 

experimental findings.  The large number of parameters is troublesome because it 

weakens the strength of conclusions that can be drawn about the process. 

(5) Optimality: Assuming pursuit involves a Bayesian-optimal process of combining the 

prior and likelihood, the level of uncertainty of the sensory representation of the motion 

can be estimated using methods similar to Kording & Wolpert (2004) at each time 

interval of the motion.  Additionally, this parameter could be estimated for multiple 

levels of prior standard deviation, with the prediction being if the prior and likelihood 

were truly integrated optimally and independently, the measure of sensory uncertainty 

should be consistent when only the prior is changed and not the likelihood at a given time 

interval.  While prior work has suggested that pursuit may be operating optimally, none 

so far have tested for the independence of the optimal integration. 

 

1.4. Current study 

The present study, like the work reviewed in section 1.2, examined the extent to 

which a Bayesian cue combination of a memory-based prior and sensory likelihood, with 

each weighted according to their respective reliabilities, can account for the predictive 

aspects of smooth pursuit.  This study attempts to address some of the gaps of the 

previous work: 
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(1) Stimuli were random dot kinematograms (RDKs) of a given mean and standard 

deviation, with the direction of individual dots selected from a Gaussian distribution on 

each frame.  Thus, the relative variability of the stimuli was determined by the variability 

of the distribution of dot directions, not by contrast, or by the blanking of the target. 

In addition, the mean (global) direction of the RDK on a given trial was selected 

from a Gaussian-distributed prior rather than a prior based on other context-based 

manipulations, such as the direction of the preceding trial or the motion properties of 

targets within a block of trials (Darlington et al., 2017). 

(2) The relative roles of prior and likelihood (where “likelihood” refers to the distribution 

of dot directions of the RDK tested on any given trial) were examined over time to 

determine the timecourse of the influence of prior and likelihood on the direction of 

pursuit.  Prior work, such as Darlington et al. (2017), looked at only one selected time 

interval. 

(3) No procedures (e.g., randomized motion onset times as in Darlington et al., 2017) 

were employed to suppress anticipatory smooth eye movements (ASEM).  ASEM are 

ubiquitous in pursuit (Kowler & Steinman, 1979; Westheimer, 1954; Becker & Fuchs, 

1985; Kowler & McKee, 1987; Yang & Lisberger, 2012), and provide overt indication of 

the role of the prior.  Suppressing ASEM may distort the effect of the prior in unknown 

ways. 

(4) Perceptual estimates of the motion direction were obtained and compared with the 

properties of pursuit.  This allowed for an assessment of psychophysical interpretations of 

the stimulus direction as it compared to the oculomotor response. 
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The central objective of the current study is to investigate how the predictive 

aspects of the smooth pursuit system may be influenced by the uncertainty of the 

immediate sensory information, and how the tradeoff of prior and likelihood distributions 

falls in line with the Bayesian cue combination approach used to describe many other 

perceptual and motor processes in the brain. 

 

1.4.1. Motivation for the experimental design 

 The design of the present study was based on Kording & Wolpert (2004), who 

modeled the influence of prior history on motor localization as a function of the noise of 

visual feedback.  In their task, subjects reached to touch a target in a virtual environment 

where visible feedback of the location of the finger was limited to a brief glimpse.  This 

intermediate feedback was manipulated so that the position of a visible cursor 

representing the finger position was shifted relative to the actual position of the finger, 

and ample opportunity was given to learn the shift.  The amount of the shift on any trial 

was sampled from a Gaussian distribution (prior).  The noise of the intermediate visual 

feedback (likelihood) took on one of four values: infinite uncertainty (no feedback), clear 

(one small white sphere representing the cursor location), medium noise (25 small 

translucent spheres distributed around the cursor location with the standard deviation of 

positions set to 10 cm), or high uncertainty (25 small translucent spheres distributed 

around the cursor location with the standard deviation of positions set to 20 cm).  

Kording & Wolpert’s (2004) goal was to determine whether pointing depended on a 

combination of the prior distribution of lateral shifts with the sensory information from 

the noisy visual feedback.  Their main finding was that the noisier the visual feedback, 
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the more the endpoints of the reaches were biased to be closer to the mean of the prior 

distribution, a pattern of results consistent with a Bayesian strategy of weighting prior 

and likelihood in proportion to their respective reliabilities.  

 The current study also aimed to test the idea that Bayesian cue combination 

underlies the integration of sensory and extraretinal factors in smooth pursuit, involving a 

representation of the distribution of prior and likelihood along with their respective 

uncertainties.  However, rather than a brief glimpse of sensory feedback provided during 

a reaching task, we varied the directional noise of the pursuit target, with the target 

remaining visible through the entire 1.5 s duration of the motion.  Thus, the “feedback” 

was incorporated into the natural response of pursuit, where feedback is based on the 

sensed velocity or position of the retinal image.  Note that these “sensed” velocities or 

positions used to control smooth pursuit could be represented at different levels of 

processing of the signal, or determination of the motor response, thus this study makes no 

initial assumptions about the level of representation, nor am I assuming that the 

representation of the variability of the stimulus is equal (quantitatively) to the variability 

of the motion of the dots on the screen. 

 

1.4.2. Stimulus overview 

 The random dot kinematograms (RDKs) were generated using algorithms used in 

previous studies of RDKs (Watamaniuk & Heinen, 1999; Watamaniuk, Sekuler, & 

Williams, 1989; Mukherjee, et al., 2017) in that each dot’s direction on every frame was 

sampled from a Gaussian likelihood with a mean (µL) and standard deviation (σL), and all 

dots were displaced in the chosen direction by the same amount.  Using similar stimuli, 
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Watamaniuk, Sekuler, & Williams (1989) showed that the directional precision of pursuit 

of the motion decreased as the standard deviation of the directions composing the RDK 

increased.  Watamaniuk & Heinen (1999) similarly showed that the precision of direction 

discrimination of pursuit depended on the standard deviation of RDK directions. 

 

1.4.3. Analyses and expected results 

 On the basis of the previous studies described above, it was expected that: (1) 

before the onset of motion, the direction and speed of pursuit (ASEM) will be determined 

by the mean and standard deviation of the prior respectively; (2) the direction of later 

stages of pursuit will be determined more by the likelihood (the actual direction of the 

dots of the RDK); (3) the relative influence of the prior and likelihood on pursuit 

direction, including the timecourse of the transition of this influence, will depend on the 

relative variability of each (σP and σL). 

To determine the relative influence of prior and likelihood, the direction of pursuit 

was compared to the mean direction of the RDK stimulus on any given trial.  It was noted 

that the actual average direction of all the dots on each frame may differ from the 

nominal mean of the Gaussian which determined each dot’s directions, but this difference 

was very slight, especially when averaging these directions across frames.  Eye velocities 

were calculated during successive 100 ms windows (onsets separated by 1 ms) through 

the entirety of the 1500 ms trial.  Scatterplots were prepared to show the actual direction 

of motion (defined by μL) on each trial vs. the direction of pursuit during a given interval 

of time, with separate scatterplots for different intervals of time.  The influence of the 

likelihood on the direction of pursuit was then determined by the slope of the regression 
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line, where a slope close to 1 indicated close to full reliance on the likelihood, and a slope 

close to 0 indicated very little influence of the likelihood (and presumably high influence 

of the prior). 

Slopes were determined separately for each tested level of σL. The influence of 

the prior was confirmed by the mean value of the pursuit direction, so a slope of near 0 

and a mean value close to the prior would indicate full reliance on the prior.  The main 

predictions were that (1) early in pursuit the prior will dominate, (2) the influence of the 

likelihood will increase over time, (3) the influence of the likelihood will be greater or 

emerge sooner for the clear (σL = 0) than for the noisy (σL > 0) RDK, (4) by some point in 

pursuit (for example, when it reaches steady state), the slopes would all be close to 1, 

showing complete influence of the immediate motion on pursuit direction. 

After determining these slopes for different values of σL and time intervals, we 

will begin to investigate the plausibility of Bayesian cue combination using the method of 

Kording & Wolpert (2004).  An analysis will be done to estimate the uncertainty in the 

likelihood under the assumption that the combination of the prior and likelihood is in 

proportion to their respective reliabilities.  This will be achieved by adapting the 

approach used in Kording & Wolpert’s (2004) Bayesian model.  In my implementation of 

the model, the parameter representing the estimated uncertainty of the likelihood (σs)  is 

not an estimate of the directional variability of pursuit (Mukherjee, et al., 2015) and is not 

be the same as the nominal noise of the distribution of directions in the stimulus (σL).  

Rather, the parameter (σs) controls the relative weight (compared to σP)  assigned to the 

prior over the likelihood in the combination of the two cues, and presumably depends on 

both the noise of the distribution of dot directions (σL) as well as the time since the onset 
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of target motion.  The value of σs will be estimated (as in Kording & Wolpert, 2004, and 

Yin et al., 2019) from the regression of the observed directions of motion as a function of 

the actual direction on each trial according to the following:  

𝜃M,/ =
𝜎'S

𝜎'S + 𝜎NS
𝜇N +

𝜎NS

𝜎'S + 𝜎NS
𝜇' + 𝑏𝑖𝑎𝑠 

Equation 8 

where σP, μP, μs (the observed direction of the stimulus on a particular trial, μL), are based 

on the stimulus, and θt,n  is the observed direction of pursuit at time interval t and trial n. 

 The thesis consists of 6 experiments.  

1) Study of smooth pursuit with 3 levels of sensory noise: σL = 0, 30, or 45 deg, 

σP = 10 deg (Prior: N(µP, 10 deg), likelihood: N(µL, 0, 30 or 45 deg)) 

2) Study of smooth pursuit with 3 levels of sensory noise: σL = 0, 45 or 60 deg, 

σP = 10 deg. (Prior: N(µP, 10 deg), likelihood: N(µL, 0, 45 or 60 deg)) 

3) Study of smooth the variability of pursuit with 3 levels of sensory noise: σL = 

0, 45 or 60 deg and a uniform prior (U(0, 360 deg)) 

4) Study of smooth pursuit with 3 levels of sensory noise and two values for 

RDK noise (5.3 deg/s and 6.36 deg/s). 

5) Study of smooth pursuit with the low level of sensory noise (σL = 0) and two 

priors: σL = 0, 45 or 60 deg, σP = 10 or 45 deg. (Prior: N(µP, 10 or 45 deg), 

likelihood: N(µL, 0, 45 or 60 deg))  

6) Study of perceptual discrimination of motion durations under instructed to 

fixate, with short (150 ms) presentations and with a noise mask before and 

after critical motion. σL = 0, 45, or 60 deg, σP = 10 deg (Prior: N(µP, 10 or 45 

deg), likelihood: N(µL, 0, 45 or 60 deg))  
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2. Methods 

2.1. Stimulus  

 Stimuli were displayed on a Dell M992 CRT Monitor (refresh rate 60 Hz; Dell, 

Round Rock, TA) viewed from a distance of 65 cm. Monitor resolution was set to 1280 x 

1024 pixels (28.29 deg x 22.63 deg).  Stimuli were presented in a fully lighted room, 

allowing the boundaries of the display region to be seen.  Viewing was binocular and the 

head was stable in a chin rest. 

 

2.1.a. Random dot kinematograms 

 Displays consisted of random dot kinematograms composed of 200 dots, each 

made of a 5 x 5 pixel (0.11 x 0.11 deg) square with luminance of 144.1 cd/m2 on a 

background with a luminance of 3.55 cd/m2.  Dots were contained within a circular 

aperture with a radius of 450 pixels (10 deg).  Initial dot x and y positions were uniformly 

sampled across this circular region at the beginning of each trial and displayed along with 

a center fixation cross.  Extensive preliminary testing was done to confirm the selection 

of the number, speed, and luminance of the dots, and the radius of the display aperture, 

with choices largely dictated by practical considerations such as finding parameters so 

that at least 1.5 s of pursuit could be obtained without the eye reaching the edge of the 

screen. 

Each dot’s direction on each frame was sampled from a Gaussian distribution 

with a given mean (μL) and standard deviation (σP).  Different levels of σL were tested, 

effectively manipulating the noise of the sensory likelihood for each trial (see section 3).  

Figure 0.1 shows an illustration (using large dots for the purposes of illustration in the 
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figure) of one of frame with a clear (σL = 0°) and noisy (σL > 0°) stimulus, with the 

arrows indicating the mean direction of the dots on the frame. 

        

 

 

Figure 0.1: Sample RDK stimuli. Left: Illustration of a “clear” (σL = 0) stimulus, with all 
the dots moving in the same direction (μL). Right: Illustration of a “noisy” (σL > 0) 
stimulus, with dots moving in a wider range of local directions, but with the same mean 
(global) direction (μL). 
 

The value of μP and σP were constant for all experimental sessions for a given 

subject.  The value of μL was sampled from the prior distribution (N(μP, σP)) on each 

trial.  The value of σL for the noisy trials varied depending on the experimental session. 

On each frame, each dot was displaced in the selected direction (sampled from the prior 

distribution) an amount determined for each subject and each level of σL (see section 

2.1b).  The dots continued moving in this fashion for 1.5s (90 frames).  Dots had infinite 

lifetime and were displaced to the opposite end of the circular aperture when they reached 

the edge of the circle. 
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2.1.b. Choosing the directions of the prior 

 To select the direction of the prior (μP), a preliminary session was run in which 

the mean direction of dot motion (μL) on each trial was randomly selected from four 

different oblique directions (45, 135, 225, 315 deg).  This session only contained clear 

(σL = 0°) trials.  The direction that appeared to elicit the greatest mean speed of pursuit 

for each subject was chosen as the prior mean (μp).  In some cases, μp was shifted slightly 

(5-10°) away from the chosen direction since those were less salient than directions 45 

degrees from the cardinal directions. 

 

2.1.c. Speed scaling 

 The average speed of an RDK decreases with increased variance of the 

distribution of dot directions (Groh et al., 1997).  To equate speeds between clear and 

noisy RDKs, the amount of displacement per frame for the different levels of σL was 

determined empirically (Heinen and Watamaniuk, 1999; Mukherjee et al., 2015).  This 

was done in preliminary sessions where the prior standard deviation (σP) was set to be 0°, 

so that the mean direction of dots on each trial was always the same.  Different 

displacements per update were tested to find values in which the steady state eye speeds 

for each value of σL were approximately equivalent.  The chosen stimulus speeds which 

resulted in a match for the steady state speeds did not necessarily equate earlier in pursuit.  

A control experiment involving two different speeds for the clear (σL = 0°) stimulus was 

run to assess whether a change in solely the speed of pursuit would affect the timecourse 

of the relative influence of prior and likelihood on pursuit direction. 
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2.2. Procedure 

2.2.a Smooth pursuit 

 Each trial began with a fixation cross in the center of the display.  Subjects were 

instructed to blink a few times, fixate the center cross, start the trial by clicking the mouse 

button, and pay attention to the motion of the dots.  This instruction to pay attention to 

the motion is effective in eliciting brisk pursuit (e.g. Santos & Kowler, 2017).  After the 

mouse click the fixation cross disappeared, leaving the static array of randomly-

positioned dots.  After 1 s, the motion began (section 1a).  1.5 s later, after the motion 

ended, the dot display was extinguished and replaced by a display used to collect a 

perceptual report of motion direction (Figure 0.2).  This perceptual response was included 

to motivate attention to the RDKs.  The display used to report this direction (via Method 

of Adjustment) consisted of a 225 pixel (5 deg) radius circle (luminance: 144.1 cd/m2) 

with a white line extending from the center of the circle to the edge.  The direction of the 

line was initially set randomly, and the subject adjusted the direction using the mouse.  

The subject was told to choose the direction that the dots moved.  After selecting the 

direction, they clicked the mouse to record their selection.  On the clear (σL = 0°) trials, 

feedback (via a blue line) indicated the nominal mean direction of the RDK on that trial. 

After the feedback was briefly displayed, the next trial began. 

 

 



30 
 

 
 

 
Figure 0.2: Sequence of displays on each trial.  After fixating a central cross (displayed 
with a static dot field), participants clicked the mouse button.  The static dot field 
remained for 1 second, after which the critical frames of stimulus motion occur.  Finally, 
the participant used the mouse to move the pointer to the direction they saw the dots 
move and clicked the mouse, advancing to the next trial. 
 

2.2.b. Perceptual estimates of motion direction: brief displays 

 Separate sessions were used to determine perceptual estimates of RDK direction 

without the influences of sustained smooth pursuit eye movements. The duration of 

motion was reduced to .15 s, a value too brief to elicit smooth pursuit near target velocity 

(Kowler & McKee, 1987).  The very brief stimulus presentation not only decreased the 

available temporal information about the stimulus motion but also reduced the magnitude 

of any smooth pursuit that might result from the viewing (Pursuit velocities are low for 

brief stimulus durations; Kowler & McKee, 1987). The procedure was as follows. After 

clicking the mouse, a 1 s period of static dots were displayed as before. Next, a mask 

consisting of dots moving in uniformly random directions (0-360°) moved for 30 frames 

(.5 s).  During this mask period, half of the dots moved at the same local speed chosen for 

the noisy trials and the other half moved at the speed of the clear trials.  Then, the 

stimulus was blanked for 2 frames, followed by the critical period consisting of dot 

motion identical to the main experiment, lasting for .15 s.  After this, the stimulus was 

once again blanked for 2 frames, followed by the same noise mask as before for .5 s.  The 
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psychophysical response at the end of the trial was taken as described in 2.2.a.; however, 

no feedback to the actual mean direction of the RDK was provided. 

 
 
 
 
 
 
 
 
 
 
 
Figure 0.3: Sequence of displays on each trial for the perceptual condition. After fixating 
a central cross (displayed with a static dot field), participants clicked the mouse button. 
The static dot field remained for 1 second, after which a mask of random dots was 
displayed for .5 s.  Then, the dots disappeared for 2 frames. Next, the critical frames of 
stimulus motion occurred.  The dots were blanked for 2 frames again, followed by 
another .5 s mask.  Finally, the participant used the mouse to move the pointer to the 
direction they saw the dots move and clicked the mouse, advancing to the next trial.  
 

2.3. Design 

 There were 6 main experiments.  The parameters of the experiments were 

outlined as in Table 1. 

In the main experimental sessions (after the preliminary sessions described above 

and with the exception of Experiment 6, which only involved clear (σL = 0°) trials), each 

trial was randomly chosen to be either “noisy” (σL > 0°) or “clear” (σL = 0°) with a 50% 

probability of clear, and a 50% probability of noisy, which was set to a particular value of 

σL depending on the experimental session. 

 The table below indicates the various conditions that were run. “Pursuit” in the 

first column indicates the pursuit trials (1.5 s), whereas “Perceptual” indicates the shorter-

duration perceptual trials (described in Section 2.2.a). 

1 s .15 s 
.5 
s 

.5 
s 

Mask Mask 



32 
 

 
 

Table 1: Design of each experiment.  

Experiment 1: 

4 subjects 

Task σP   (deg) σL  (deg) Approximate number 
of trials 

Pursuit 10 30 ~750 trials 

Pursuit 10 45 ~750 trials 

 

Experiment 2: 

5 subjects 

Pursuit 10 45 ~750 trials 

Pursuit 10 60 ~750 trials 

 

Experiment 3:  

3 subjects 

Pursuit Uniform (0-360 deg) 45 ~750 trials 

Pursuit Uniform (0-360 deg) 60 ~750 trials 

 

Experiment 4: 

4 subjects 

Pursuit 45 45 ~750 trials 

Pursuit 45 60 ~750 trials 
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Experiment 5: 

3 Subjects 

Pursuit 10 0 (with RDK speed 
used in experiments 1-
4 (6.36 deg/s)) 

~750 trials 

Perceptual 10 0 (with slower RDK 
speed (~5.3 deg/s)) 

~750 trials 

 

Experiment 6: 

5 Subjects 

Perceptual 10 45 ~750 trials 

Perceptual 10 60 ~750 trials 

 

Table 2: Percentage of samples omitted from analysis due to saccades across the 

timecourse of analysis (from -50 to 700) for Experiments 1 and 2 

(number in parenthesis represents the total number of trials run in each condition). Note 

that a saccade lasts multiple time intervals, so multiple samples would be eliminated 

during a given saccade. 

Experiment 1 

Subject σL = 0° σL =30°  σL =45°  

EL 24.01 (875) 25.21 (425) 20.36 (450) 

JG 4.41 (700) 6.09 (275) 2.97 (425) 

KP 24.48 (675) 23.17 (250) 18.06 (425) 

BR 18.34 (300) 17.86 (150) 8.04 (150) 
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Experiment 2 

Subject σL =0° σL =45° σL =60° 

AP 7.67 (625) 3.06 (350) 3.63 (275) 

EL 23.11 (775) 21.07 (450) 7.74  (325) 

JG 4.29 (850) 2.97 (425) 1.79 (425) 

KP 21.3 (750) 18.06 (425) 12.39 (325) 

WW 19.55 (775) 16.95 (350) 15.79 (425) 

 
 
 
3. Results 

3.1. Experiment 1 

Experiment 1 compared pursuit of RDKs with three levels of directional noise (σL 

= 0, 30 or 45 deg).  Trials with the clear RDKs (σL = 0°) were randomly interleaved with 

the trials with the noisy RDKs.  Three subjects, (JG, EL, and KP) were tested in 10-17 

50-trial blocks for the 30° and 45° values of σL.   Subject BR was tested in 6 blocks for 

each value of σL.  Preliminary testing was done to select the mean direction of the prior 

(μP) and the speeds of the different values of σL (see also Section 2.1.b).  These results 

will be described first, followed by some basic properties of the observed smooth pursuit 

(mean eye speed, mean direction), and finally, the results of the analyses done to 

determine the relative influence of prior and likelihood on the direction of smooth pursuit 

over time. 
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3.1.1. Preliminary tests to select the mean direction of the prior 

A. B.  

C. D.  

Figure 1.1 A-D: Mean pursuit speed over time for the 4 oblique directions (45, 135, 225, 
315) for all 4 subjects. Time = 0 corresponds to the onset of stimulus motion. 
 

In order to determine the mean direction of the prior (μP) the speed of pursuit was 

examined for RDKs moving in four oblique directions (45, 135, 225, 315 deg) for each of 

the 4 subjects in a preliminary set of sessions using the clear RDK (σL = 0°).  The 

direction of motion was chosen randomly on each trial from the four oblique directions.  

The oblique direction that elicited the fastest pursuit at steady state was chosen to be that 

subject’s μP.  There was no important reason for choosing the direction that elicited faster 

speed, except perhaps to increase the signal/noise ratio.  If multiple directions elicited 

similar pursuit speeds, μP was chosen arbitrarily.  Figure 1.1 shows the mean speed of 

pursuit over time for each of the 4 subjects.  The chosen values of μP were 315° for BR, 

135° for EL, 315° for JG and 45° for KP.   

Given that direction was chosen randomly, there were no prominent anticipatory 

smooth eye movements (ASEM) prior to the onset of target motion in the average 

direction traces (Santos & Kowler, 2017; Kowler et al., 2014). 
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3.1.2. Pursuit of RDKs: Speed and direction 

 This section will summarize some basic properties of the smooth pursuit of the 

RDKs whose mean direction on each trial was chosen from a Gaussian-distributed prior 

(μP, σP). The parameter μP for each subject is noted in section 3.1.1 and σP was set to 10°.  

 
Figure 1.2 A-D: Mean pursuit speed (±SE) over time for each value of σL for each of the 
4 subjects. Time = 0 ms corresponds to the onset of stimulus motion. Each line 
corresponds a level of σL.  For all subjects, the speed of the dots on the clear trials was set 
to 6.4 deg/s. When σL = 30°, the speeds were as follows: BR, EL, JG: 8.0 deg/s. KP:  8.35 
deg/s. When σL = 45°, the speeds were: BR: 10.3 deg/s, EL: 11.1 deg/s, KP: 10.6 deg/s, 
JG: 10.6 deg/s. 
 

Fig 1.2 shows average eye speed over time for 𝜎L = 0°, 30°, and 45°.   Eye speed 

was computed for successive 100 ms intervals whose onsets were separated by 1 ms.  The 

speed of the RDK for each σL in pixels/display update (with update frequency 60 Hz) was 

varied in order to approximately equate eye speeds across the three levels of σL (Section 

2.3).  Fig. 1.2 confirms that eye speeds with the chosen number of pixels/update were 

approximately the same for all three values of σL. 
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Anticipatory smooth eye movements can be seen in Fig 1.2, as shown by the 

increase in eye speed prior to motion onset (Kowler et al., 2014).  Eye speed increased at 

a higher rate about 100 ms after the onset of motion, showing the influence of the sensory 

motion after the typical pursuit latency (Carl & Gellman, 1987).  Eye speed reached the 

approximate speed of the RDKs at about 200 ms after the onset of motion, a value 

expected from previous reports (Kowler & McKee, 1987; Robinson et al., 1986).  The 

eye speed at 200 ms or later will be referred to as steady-state pursuit in keeping with 

conventional language. 

 
Figure 1.3 A-D: Mean pursuit direction (±SE) over time for each value of σL for each of 
the 4 subjects. Time = 0 ms corresponds to the onset of stimulus motion. Each line 
corresponds to a level of σL. The horizontal dotted line on each plot denotes the mean of 
the prior (μP) for that subject.  
 

Mean pursuit direction over time is shown in Fig. 1.3.  Mean direction for each 

100 ms time interval was computed from the measured eye velocities using the circular 

mean functions from the CircStat MATLAB package (Berens, 2009).  Note that the 

average direction of ASEM prior to target motion onset was close to each subject’s 
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respective µP, confirming that that the direction of the prior mean, µP, had been learned.  

Mean direction later in pursuit, averaged over all trials regardless of the actual direction 

on that trial, remained close to μP.  The effect of the actual direction of RDK motions on 

a given trial is considered in 3.1.3. 

 

 
Figure 1.4 A-D: The standard deviation of pursuit direction over time for each value of σL 
for 3 subjects. Time = 0 ms corresponds to the onset of stimulus motion.  Each line 
corresponds to a level of σL. 

 

Figure 1.4 shows the SDs of pursuit directions.  SD was computed by first 

subtracting the observed direction of motion in each time interval from the actual 

direction of RDK target motion on that trial.  Figure 1.4 shows that SDs decreased over 

time, as eye speed increased (Fig 1.2) with SDs reaching lowest values about 200 ms 

after the onset of target motion, when steady state eye velocity was reached.  The high 

values of the directional standard deviation (prior to 200 ms) is associated with the slower 

pursuit speeds.  The SDs did not differ appreciably for the different levels of σL through 
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most of the trial.  This was confirmed via tests of homogeneity of variance (Bartlett’s 

test), with p values well above 0.05 throughout the trial (Fig 1.5). SDs of eye direction 

will be considered again in section 3.3 where SD’s will be presented for a situation where 

the direction of motion was selected from wider directional intervals. 

 
Figure 1.5 A-D: Resulting p value from Bartlett’s test of homogeneity of variance, 
computed for the 3 levels of σL over the timecourse of the trial. Time = 0 corresponds to 
the onset of stimulus motion. The horizontal line indicates a p value of 0.05. Each 
function is based on about 150-450 trials for the noisy (σL = 30° and σL = 45°) trials and 
about 300-900 trials for the clear (σL = 0°) trials. 
 

3.1.3. Influence of prior and likelihood over time 

The next set of analyses addresses the central objective of the project, namely, to 

determine the relative influence of two factors, the actual target motion (likelihood), and 

the direction conveyed by the prior (μP), on the observed direction of pursuit over time.  

Fig 1.6 shows examples of scatterplots of the observed direction of pursuit 

direction vs. the direction of target motion for three different time intervals: 150 ms, 300 

ms, and 415 ms after the onset of target motion.  Slopes of the best fitting straight lines 

are shown for each scatterplot.  Fig. 1.6 shows that the slopes increased over time.  In 
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addition, the mean direction of pursuit was close to the direction of the prior.  These 

results illustrate the change over time from pursuit depending mainly on the prior to 

pursuit depending more on the actual direction of target motion (likelihood).    The 

shallow slopes at earlier times were due to higher directional variability (Fig. 1.4).  High 

directional variability of pursuit direction influences the scatter of values around the best 

fitting straight line, rather than the slope (this was verified by simulations).  

A. T = 0, σL = 0. Slope = 0.0433.  B. T = 150, σL = 0. Slope = 0.472 

              

  C.  T = 300, σL = 0, Slope = 0.9463. 

 

Figure 1.6 A-C: 3 example scatter plots of μL vs. pursuit direction on each trial. Each dot 
represents one trial for the given time interval (Time = 0 ms corresponding to the onset of 
target motion). The horizontal dotted line shows the expected results if pursuit solely 
used info from prior (pursuing only μP).  The diagonal dotted line shows the expected 
results if pursuit solely used info from likelihood (pursuing only μL).  The solid blue line 
was obtained via linear regression from the data. The time displayed above each graph 
indicates the time after motion onset the scatterplot represents. 
 

 

 

 

280 290 300 310 320 330 340 350
Target direction (deg)

280

290

300

310

320

330

340

350

Ey
e 

di
re

ct
io

n 
(d

eg
)

280 290 300 310 320 330 340 350
Target direction (deg)

280

290

300

310

320

330

340

350

Ey
e 

di
re

ct
io

n 
(d

eg
)

280 290 300 310 320 330 340 350
Target direction (deg)

280

290

300

310

320

330

340

350

Ey
e 

di
re

ct
io

n 
(d

eg
)



41 
 

 
 

 
Figure 1.7A-D: Slope of regression line relating target (μL) and eye direction (± SE) on 
each trial over time. Time = 0 ms corresponds to the onset of stimulus motion. Each line 
represents a different level of	σL.  

 

Figure 1.7 shows slopes as a function of time (± standard error) for the different 

levels of σL.   Three trends are apparent.  First, as expected, slopes were initially shallow 

and quite variable until 100 ms following the onset the onset of the motion, when the 

influence of the immediate sensory motion began.  Second, slopes gradually increased to 

values close to 1 over time, showing that pursuit direction increasingly reflected the 

influence of the direction of the current trial’s stimulus motion over time.  Third, the rate 

of the increase of the slope, as well as the maximum value of the slope, depended on the 

level of σL.  For σL = 0 deg and σL = 30 deg, slopes reached values near 1 about 250-300 

ms after the onset of target motion. When σL = 45, slopes reached values near 1 later, 

about 350 to 600 ms after the onset of target motion.  Note that for all values of σL, slopes 

did not reach their highest values until well after pursuit reached steady state speeds (see 

Fig. 1.2), suggesting that the rapid acceleration of the eye during initial portions of 

pursuit was driven in part by the prior.   Figure 1.7 also shows that results were quite 



42 
 

 
 

similar for σL = 0° and 30°, suggesting the noise of the RDK when σL = 30° was not great 

enough to overcome the internal noise of the pursuit. (Analysis of the statistical 

significance of the difference in results for the different levels of σL will be considered in 

the following sections.) 

 

3.1.4. Estimating the relative role of prior and likelihood  

To investigate the plausibility of the relative role of prior and likelihood 

manifesting as a form of Bayesian cue combination, the optimal estimate may be 

expressed as a reliability-weighted combination of prior and likelihood (Kording & 

Wolpert, 2004) (Eq. 8), which was summarized in section 1.4.2. 

𝜃M,/ =
𝜎'S

𝜎'S + 𝜎NS
𝜇N +

𝜎NS

𝜎'S + 𝜎NS
𝜇' + 𝑏𝑖𝑎𝑠 

Eq. 8 

 θt represents the estimated direction of pursuit at time interval t and on trial n.  

The mean (μP) and standard deviation (σP) of the prior were assumed to be the same as 

the actual parameters used in the experiment, an assumption also made by Kording & 

Wolpert (2004) and supported in part by the closeness of the ASEM direction to the mean 

of the prior.  Eq. 8 also includes a parameter, σs, which, along with the nominal standard 

deviation of the prior (σP) represents the effective weight on the prior over the likelihood 

(
\]
^

\_^+\]
^).  The value of σs will be estimated by fitting the model (Eq. 8) to the observed 

direction of pursuit at each time interval.  An additional parameter to represent a net 

offset (bias) of pursuit direction was also included to capture possible directional biases 

of pursuit that would be internal to the system and unrelated to stimulus condition.  The 
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main predictions were that the level of σs obtained from fitting the model will decrease 

over time (as the slopes in Fig 1.7 increased) and will be larger for the noisier likelihoods.  

These predictions reflect (at least qualitatively) the key idea in Bayesian cue 

combination, which is that the relative weight of the contribution of prior and likelihood 

depends on their respective reliabilities.  The weight of the likelihood is expected to be 

smaller early (when pursuit is largely anticipatory) and is expected to be smaller for the 

noisier RDKs. 

The σs and bias parameters of the model were estimated by maximizing the 

likelihood of the data for each trial n at each time interval t according to the following 

expression: 

𝐿 3𝜎', 𝑏𝑖𝑎𝑠|b𝜃',M,/cde,
f 6 =g

1
√2𝜋𝜎

d

de,

× exp
−[𝜃M,/B𝜎',M,/, 𝑏𝑖𝑎𝑠C − 𝜃',/]

2𝜎S  

Equation 6 

where 𝜎 = q∑ Bst,uB\_,t,u,vwxyCzs_,uC
^{

|}~
fz,

, θs,t,n is the observed pursuit direction on trial n and 

at time t, θt,n(σ(s,t,n),bias) is the predicted pursuit direction at the given time interval and 

estimated parameters, and N is the number of trials. Fits were performed using 

fminsearch function provided by MATLAB. 
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Figure 1.8 A-D: Fit of σs parameter for each of the subjects, computed over the 
timecourse of the trial. Time = 0 corresponds to the onset of stimulus motion. The 
horizontal line indicates the standard deviation of the prior, σP.  
 

 Figure 1.8 shows the estimates of σs over time for different levels of σL.   

Although anticipatory time intervals are included, σs is only meaningful when time > 100 

ms following the motion onset time.  The results conform to the predictions described 

above in that the estimated values of σs decreased over time and were generally larger for 

the noisiest motion (σL = 45°).  The estimate of σs decreased at a slower rate and reached 

values close to 0 later when σL was highest (45°).  Estimates of σs reached values of zero 

for the clear (σL = 0°) or moderately noisy (σL = 30°) RDKs by about 300 ms, indicating 

near total reliance on the likelihood.  Estimates of σs for the noisiest likelihood remained 

above zero as late as 600 ms after the onset of target motion.  One subject (KP) 

performed differently in that KP showed smaller differences in σs as a function of the 

noise of the likelihood.  This suggests that the internal noise of KP’s pursuit system might 

be higher than that of the other three subjects.   
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 Note that σs often takes on values close to 0.  There cannot possibly be 0 

uncertainty in the sensory likelihood.  Thus, the parameter σs can be viewed as depending 

on the uncertainty in the stimulus (which depends on both σL and on time relative to 

motion onset).  The parameter σs serves to control the relative weight assigned to prior 

and likelihood (Yin et al., 2019).  In other words, a value of σs close to 0 will occur when 

the relative weight assigned to the likelihood is very low in comparison to the prior 

during the integration of prior and likelihood. 

The results (for all except KP) are consistent with the premise of statistically 

optimal Bayesian cue combination proposed by Kording & Wolpert (2004), at least in a 

qualitative sense.  Optimal cue combination will be subjected to a further test later 

(Experiment 4) which will focus on the following prediction:  If the optimal cue 

combination model holds and prior and likelihood are combined independently, and if σs 

only relates to uncertainty due to the immediate stimulus, σs should only depend on σL 

and not on σP.  This will be tested later. 

 

3.1.5. Tests of significance 

The trend in the estimates of σs between levels of σL mirror differences in the 

slopes in Fig 1.7.  To determine whether the apparent differences in estimates of the σs 

(and, analogously, the weights on prior and likelihood as determined by the slope in Fig 

1.7) for the different levels of σL were significant, a likelihood ratio test was performed 

comparing the results obtained for two levels of σL, 30° and 45°.  (The results obtained 

when σL= 30° were quite similar to those when σL = 0°, thus an additional test involving 

σL = 0° was not performed.)  The test compared two nested models.  In the constrained 
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model, the estimated parameters (both σs and the bias) for both levels of σL, 30° and 45°, 

were constrained to be the same.   In the unconstrained model, σs and bias parameters 

were estimated separately for each value of σL.  The ratio of the constrained and 

unconstrained likelihoods is distributed as X2, with df = 2 (see Cohen et al., 2007, for 

further description). If the fit of the unconstrained model is significantly better than that 

of the constrained model, it can be concluded that the noise of the likelihood had 

significant effects on the directional properties of pursuit. 

A. B.  

C. D.  

Figure 1.9 A-D: Resulting p value from the likelihood ratio test of the null hypothesis that 
the constrained model is correct, computed over the timecourse of the trial. Time = 0 
corresponds to the onset of stimulus motion. The horizontal line indicates a p value of 
0.05. 
 

 The p values corresponding to the null hypothesis that the fit of the constrained 

model is not reliably different from the fit of the unconstrained models are shown in Fig 

1.9.  For three subjects (EL, JG and BR) p values dropped below .05 about 100-250 ms 

after the onset of target motion and decreased to values close to zero for most of pursuit.  

This confirms that effects of the noise of the likelihood were significant.  KP does not 

show significant differences except for a few rare time intervals. 
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3.1.6. Summary of Experiment 1 

 The results of Experiment 1 showed a transition in pursuit of RDK’s between 

total reliance on the prior direction of motion to near total reliance on the likelihood (the 

actual direction of motion) over time.  The rate of the transition was slower for the 

noisiest RDK.  Fitting a model of optimal cue combination adapted from Kording & 

Wolpert (2004) (Eq. 8, Section 1.4.2) showed that the noise of the likelihood affected the 

estimated weight assigned to the likelihood (captured by parameter σs).  Specifically, 

weights decreased over time and were lowest for the noisiest target motions (the latter as 

predicted by optimal Bayesian cue combination).  The weight assigned to the likelihood 

reached a maximum level (σs ~ 0) only for the clear and moderately noisy RDK.  This 

result indicated that for the noisiest target motion an influence of the prior persisted for at 

least 500 ms after the onset of target motion.    

One subject (KP) showed no differences in pursuit for different levels of RDK 

noise and all subjects showed little difference between the results for the clear RDKs (σL 

= 0°) and moderately noisy RDK (σL = 30°).  These results suggest that in some cases the 

RDKs were not sufficiently noisy to overcome internal noise in the motion system (Dakin 

et al., 2005) or the internal noise of pursuit (Mukherjee et al., 2015).  Thus, Experiment 2 

was run, which included an even noisier RDK.   

 

3.2. Experiment 2: Noisier likelihood 

 Experiment 2 tested three levels of σL (0, 45 and 60 deg).  Five subjects were 

tested (JG, EL, KP, AP, and WW), including two (AP and WW) who did not run in 

Experiment 1.  For the three subjects who were tested in Experiment 1 data from two 



48 
 

 
 

levels of σL (0, 45) obtained in Experiment 1 will be included in the report of the results 

of Experiment 2.  Data will consist of 10-17 50-trial blocks for the 45° and for the 60° 

values of σL, interleaved with clear (σL = 0) trials: 

Table 3: n trials for each subject in Experiment 2. 

Subject n trials: σL = 45°  n trials: σL = 60° 

JG 17 17 

EL 18 13 

KP 17 13 

WW 14 17 

AP 14 11 

 

3.2.1. Preliminary tests to select the mean direction of the prior 

For the two subjects who did not participate in Experiment 1, AP and WW, the 

preliminary tests of pursuit of RDKs in oblique directions were performed to select a 

value of μP.  The direction that elicited the fastest eye speeds was selected as the μP for 

the remainder of that subject’s experimental sessions.  In addition, the value of μP was 

offset from the direction which elicited the fastest pursuit speed by 5-10 degrees to avoid 

testing a prior with a “salient” direction, such as any of the directions at a 45° angle from 

the cardinal directions.  The direction of μP was 35° for AP° and 40° for WW.  
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A. B.  

Fig 2.1A and B: Mean pursuit speed over time for the 4 oblique directions (45, 135, 225, 

315) for the subjects who did not participate in Experiment 1 (AP and WW). Time = 0 

corresponds to the onset of stimulus motion. 

 

3.2.2. Pursuit of RDKs: Speed and direction 

 
Figure 2.2 A-E: Mean pursuit speed (±SE) over time for each value of σL (45, 60) for 
each of the 5 subjects. Time = 0 ms corresponds to the onset of stimulus motion. Each 
line corresponds a level of σL and the speed of each dot that subject.  
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Figure 2.3 A-E: Mean pursuit direction over time for each value of σL (45, 60) for each of 
the 5 subjects.  Time = 0 ms corresponds to the onset of stimulus motion.  Each line 
corresponds a level of σL and the speed of each dot that subject. 
 

Fig 2.2 shows average eye speed over time for the three values of σL, 0°, 45°, and 

60°.  Recall that the speed of the RDK of each σL was varied in order to equate eye 

speeds across the three levels of σL (Section 2.3).  Fig 2.2 shows that mean eye speeds 

were approximately the same across all values of σL.  This confirms that the choice of dot 

speed for the different of σL was effective in equating the eye speeds. 

Anticipatory smooth eye movements were once again seen in Fig 2.2, as shown 

by the increase in eye speed prior to motion onset and by the mean direction before the 

motion (Fig 2.3), which was about equal to μP.  Fig 2.4 shows that SDs were once again 

similar across different levels of σL, though Bartlett’s test of homogeneity of variance 

showed that there were more periods of time with significant differences between the 

levels of σL in some subjects (Fig 2.5). 
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Figure 2.4 A-E. The standard deviation of pursuit direction over time for each value of σL 
for 3 subjects. Time = 0 ms corresponds to the onset of stimulus motion. Each line 
corresponds to a level of σL. 
 

 
Figure 2.5 A-E: Resulting p value from Bartlett’s test of homogeneity of variance, 
computed for the 3 levels of σL over the timecourse of the trial. Time = 0 corresponds to 
the onset of stimulus motion. The horizontal line indicates a p value of 0.05. 
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3.2.3. Influence of the prior and likelihood over time 

 
Figure 2.6 A-E: Slope of regression line relating target (μL) and eye direction (± SE) on 
each trial over time. Time = 0 ms corresponds to the onset of stimulus motion. Each line 
represents a different level of σL. 

 

Fig 2.6 shows the slope of the regression line relating target vs eye direction on 

each trial over time for each of the values of σL.  The slopes once again gradually 

increased to values close to 1 over time, showing that pursuit direction increasingly 

reflected the influence of the direction of the current trial’s stimulus motion. 

The rate of this increase of the slope of the regression line varied depending on 

the level of σL. When σL = 0 deg, slopes reached values near 1 about 200-250 ms after the 

onset of target motion. When σL = 45, slopes reached near 1 later, about 300 ms after 

target motion onset.  The new, noisier value of σL, 60, led to slopes of 1 even later, at 

around 500-600 ms after target motion onset, and in subject JG, never quite reaching 1 in 

the first 700 ms of the target motion.  For all values of σL, slopes did not reach 1 until 

after pursuit reached steady state speeds (see Fig 2.2 for speeds).   
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Analysis thus far included time intervals up through 700 ms because pursuit was 

not expected to change appreciably after several hundred ms of constant target motion.  

Examination of results over the entire duration of RDK motion (1.5 s) showed that for all 

subjects, the slopes of converged to values close to 1 by around 1 second after the onset 

of target motion. 

 

3.2.4. Estimating the relative role of prior and likelihood 

 As in section 3.1.3, Equation 8 outlined in section 1.4.2 was fit to each subject’s 

pursuit data for each of the level of the noise of the stimulus, σL, and was computed 

independently for each time interval in the trial. 

 
Figure 2.7 A-E: Fit of σs parameter for each of the subjects, computed over the 
timecourse of the trial. Time = 0 corresponds to the onset of stimulus motion. The 
horizontal line indicates the standard deviation of the prior, σP.  Arrows indicate the point 
in the timecourse at which the σL = 45° and σL = 60° conditions resulted in a significantly 
different fit (see Fig 14). 
 

 Once again, the estimated value of σs (Fig. 2.7) decreased over time reflecting the 

growing influence of the actual direction of motion of the RDK on that trial.  In addition, 
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as σL increased, the estimate of σs fell at a slower rate and reached minimum values later 

in the trial.  The likelihood ratio test (see 3.1.5) comparing the fit for σL = 45° and 60° 

confirmed that the noise of the RDK, σL, had a significant effect on the estimate of σs by 

about 150 ms after the onset of motion.  This includes KP, the subject who showed little 

differences among the less noisy RDK’s in Experiment 1. 

 

A. B.  

C. D.  

E.  

Figure 2.8 A-D: Resulting p value from the likelihood ratio test of the null hypothesis that 
the constrained model is correct, computed over the timecourse of the trial.  Time = 0 
corresponds to the onset of stimulus motion.  The horizontal line indicates a p value of 
0.05. 
 

3.2.5. Summary of Experiment 2 

 Experiment 2 extended the findings of Experiment 1 to an RDK with a higher 

level of directional noise.  Both Experiments, taken together, support the conclusion that 

over time pursuit exhibits a transition from total influence on the prior to near total (but 
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not necessarily complete) influence of the likelihood, and that the relative influence of 

prior and likelihood depended on their respective reliabilities, as predicted by Bayesian 

cue combination.   

 It might be expected that the influence of the prior would have vanished by about 

200 ms after the onset of target motion, when pursuit speed reached that of the target. The 

view that effects of prediction should be limited to intervals before or near the expected 

onset or change in direction of target motion has been conventional.  However, the 

present results call this conventional view into question.  The influence of the prior 

persisted for longer intervals with the noisier RDKs, as shown by slopes < 1 and by 

values of the fitted σs > 0 in Figs. 2.7 and 2.8. 

 

3.3. Experiment 3: Variability of pursuit with narrow and uniform priors 

The results of Experiments 1 and 2 showed that an increase in the directional 

noise of the RDK (σL) was associated with a greater influence of the prior both during the 

early portions of pursuit and extending to later, steady state pursuit.  Greater directional 

noise of the target motion might also be expected to lead to greater directional variability 

of pursuit, but this was not observed.  The directional variability (SD of direction) was 

about the same for all levels of RDK noise (Figs. 1.4, 1.5, 2.4 and 2.5).  One exception 

was WW in Experiment 2, who showed larger SDs for the σL of 60 deg. 

Experiment 3 examined how the directional variability of pursuit varies with the 

directional noise of the stimulus (σL) with maximal uncertainty about target direction by 

testing a prior that was uniform across all directions (0° - 360°). 
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Figure 3.1 A-C: Mean pursuit speed (±SE) over time for each value of σL for each of the 
3 subjects who participated in Experiment 3.  Time = 0 ms corresponds to the onset of 
stimulus motion.  Each line corresponds to a level of σL. 
 

 Although this section is concerned mainly with directional variability with the 

uniform prior, average eye speeds were also examined.  Fig. 3.1 shows the average speed 

of pursuit over time with the uniform prior for each subject and level of σL.  ASEMs were 

absent, as expected, due to the extremely high directional uncertainty.  Pursuit speed 

increased over time and reached steady state at about 200 ms.  Average eye speeds early 

in pursuit were slightly slower than in Experiments 1 and 2, indicating that the greater 

directional uncertainty was reflected in pursuit speed.  Average speed was also slower for 

the noisier RDKs, indicating that the “speed scaling” (Section 2.1.c.) did not hold under 

higher levels of directional uncertainty. 
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Figure 3.2 A-E: The standard deviation of pursuit direction over time for each value of σL 
for subjects participating in Experiment 2.  Time = 0 ms corresponds to the onset of 
stimulus motion.  Each line corresponds to a level of σL. 
 

 
Figure 3.3 A-E: The standard deviation of pursuit direction over time for each value of σL 
for subjects participating in Experiment 2, viewed at a finer scale to emphasize 
differences in SD between levels of σL.  Time = 0 ms corresponds to the onset of stimulus 
motion.  Each line corresponds to a level of σL. 
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 The standard deviation of the direction of pursuit was computed for each level of 

σL over time (Fig 3.2 and 3.3).  The standard deviation was calculated by once again 

subtracting the mean direction on the current trial (μL) from the observed direction of 

pursuit, leading to a distribution of “direction errors” with a mean of 0.  SDs of the 

resulting distribution were calculated using the CircStat MATLAB package (Berens, 

2009) for each level of σL.  

In contrast to the findings of Experiment 1 and to a greater extent than in 

experiment 2, Experiment 3 showed an effect of σL on the directional variability of 

pursuit when the prior was more variable (uniform).  The difference in directional 

variability was confirmed by Bartlett’s test for homogeneity of variance, which showed a 

significant difference in the directional variability of pursuit between the 3 levels of σL 

(Fig 3.4). 

 

Figure 3.4 A-D: Resulting p value from Bartlett’s test of homogeneity of variance, 
computed for the 3 levels of σL over the timecourse of the trial.  Time = 0 corresponds to 
the onset of stimulus motion.  The horizontal line indicates a p value of 0.05. 
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Could this result be due to lower speeds?  A faster RDK speed was tested on one 

subject (JG) and compared with the RDK speed used in the experiment.  The eye speed is 

shown in Fig 3.5, clearly yielding a faster eye speed for the faster RDK.  However, as 

shown in Fig 3.6, the pursuit variability was approximately the same between the two 

speeds of the RDK, meaning the eye speed by itself was not responsible for the greater 

directional variability of pursuit found with the uniform prior and the noisier RDKs. 

 

Figure 3.5: The speed of pursuit over time for each value of σL for subject JG, for the 
uniform prior condition.  Time = 0 ms corresponds to the onset of stimulus motion. Each 
line corresponds to a level of σL, with the black line representing the set of session 
sessions with the slightly faster RDK speed. 
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Figure 3.6: The standard deviation of pursuit direction over time for each value of σL for 
subject JG, for the uniform prior condition.  Time = 0 ms corresponds to the onset of 
stimulus motion.  Each line corresponds to a level of σL, with the black line representing 
the set of session sessions with the slightly faster RDK speed. 

 
Figure 3.7: The RMS error of pursuit direction around the linear regression line over time 
for each value of σL for the 3 subjects who participated in Experiments 2 and 3. Time = 0 
ms corresponds to the onset of stimulus motion. Each line corresponds to a level of σL, 
and σP, with the dashed line representing σP = 10° and the solid line representing the 
uniform prior. 
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 Another possible measure of the directional variability of pursuit was plotted by 

using the root mean squared (RMS) error around the regression lines plotted at each time 

interval.  In order for the uniform prior in Experiment 3 to be compared to the Gaussian 

prior in Experiment 2, the data analyzed for Experiment 3 was limited to trials where the 

directions were in the same quadrant as the μP used in Experiment 2 (μP ± 45°).  This also 

allowed linear regression to be performed on the circular data.  Figure 3.6 shows the 

RMS error for Experiments 2 and 3.  While the overall trend in RMS error as a function 

of σL is not perfectly clear, the RMS error for each value of σL are closer together when 

σP = 10° rather than when the prior is uniform.  These findings suggest that the amount of 

noise in both the likelihood and prior together affect the variability of pursuit itself. 

  

3.4. Experiment 4: Wider prior 

 Experiments 1 and 2 showed that with a narrow prior (σP =10°), changing the 

variability of the sensory likelihood (σL) affected the rate at and extent to which the 

direction of the likelihood affected the direction of pursuit (Sections 3.1.3 and 3.2.3).  

While Experiment 3 effectively abolished the prior (the mean of the likelihood was 

randomly chosen on each trial from a uniform distribution of directions), Experiment 4 

used a Gaussian prior that was wider than in Experiments 1 and 2.  It is expected that 

under the assumptions of Bayesian cue combination and Eq 8, the estimates of σs for a 

given time interval and level of σL should be reasonably consistent between the two 

experiments if σs is solely reflecting a property of the immediate sensory stimulus.  

Additionally, if it is found that the estimates of σs are consistent between the two levels of 

σP, a predicted result would be that the greater variability of the prior should increase the 
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reliance on the likelihood earlier in the trial since σP is increasing while σs remains 

constant between the two experiments.   

Four subjects were tested on a value of σP of 45°, rather than the 10° σP of 

Experiments 1 and 2.  Two of these subjects, JG and KP, had also run in Experiments 1-

3, whereas, so far, HM and VG only ran in Experiment 4.  HM and VG are currently 

being tested with a narrow prior (σP = 10°). 

 

3.4.1 Pursuit of RDKs: Speed and direction 

 

Figure 4.1 A-D: Mean pursuit speed (±SE) over time for each value of σL (45 and 60 deg 
(JG and KP only)) for each of the 4 subjects.  Time = 0 ms corresponds to the onset of 
stimulus motion.  Each line corresponds to a level of σL. 
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Figure 4.2 A-D: Mean pursuit direction (±SE) over time for each value of σL (45 and 60 
deg (JG and KP only)) for each of the 4 subjects. Time = 0 ms corresponds to the onset of 
stimulus motion. Each line corresponds a level of σL. 
 

 Fig 4.1 shows average eye speed over time for the three values of σL, 0°, 45°, and, 

in 60°.  Once again, the speed of the RDK of each σL was varied in order to equate eye 

speeds across the three levels of	σL (Section 2.3).  Fig 4.2 shows that mean eye speeds 

were approximately the same across all values of σL, with some small differences.  JG 

had the fastest pursuit for the σL = 45° condition.  HM, KP, and VG had faster pursuit in 

the clear (σL = 0°) condition during the ramping up of pursuit speed, but similar steady 

state speeds in both noise levels (except for HM, who had slightly faster steady state 

speeds). 

Anticipatory smooth pursuit was once again seen in Fig 4.1, as shown by the 

increase in eye speed prior to motion onset.  However, speed of this anticipatory pursuit 

was slower than with the narrower (σP = 10°) prior, about 1°/sec rather than 2°/s at the 

time of the onset of target motion, reflecting the greater uncertainty about direction.  
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Furthermore, the average pursuit direction at the onset of motion was further from μP for 

subjects JG and KP than with the narrower prior. 

 

 
Figure 4.3 A-D: Standard deviation of pursuit direction over time for each value of σL 
(45, 60 (JG only)) for each of the 4 subjects.  Time = 0 ms corresponds to the onset of 
stimulus motion. Each line corresponds a level of σL.  The bottom plot shows a finer view 
of the data to emphasize differences in SD between levels of σL. 

  

 Fig 4.3 shows, as expected, that the standard deviation of the direction of pursuit 

decreased over time, reaching lowest levels about 200 ms after the onset of target motion.  

There was an effect of σL on directional variability, with the noisier RDKs resulting in 

more directional variability of pursuit.  For 3 subjects, Bartlett’s test of homogeneity of 
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variance showed a significant difference in the directional variability of pursuit between 

the 3 levels of σL through most of the timecourse of the trial for all subjects except VG 

(Fig 4.4).  Additionally, for subjects JG and KP (who were tested in Experiments 1 and 2) 

pursuit direction was more variable at the onset of target motion than with the narrower 

prior. 

 
Figure 4.4 A-D: Resulting p value from Bartlett’s test of homogeneity of variance, 
computed for the 3 levels of σL over the timecourse of the trial. Time = 0 corresponds to 
the onset of stimulus motion. The horizontal line indicates a p value of 0.05. 
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3.4.2. Influence of the prior and likelihood over time 

 
Figure 4.5 A-D: Slope of regression line relating target (μL) and eye direction (± SE) on 
each trial over time. Time = 0 ms corresponds to the onset of stimulus motion. Each line 
represents a different level of σL. 
 

Fig 4.5 shows the slope of the regression line relating target vs eye direction on 

each trial over time for each of the values of σL.  The slopes once again gradually 

increased to values close to 1 over time, showing that pursuit direction increasingly 

reflected the influence of the direction of the current trial’s stimulus motion.  Again, there 

was an influence of σL on the slope over time.  However, compared to the results from 

the narrower (σP = 10°) prior, the slopes appear to reach near 1 earlier with the wider 

prior (~40 ms difference) than when the prior was narrow. (See Fig 4.6 and 4.7).  This 

result is consistent with the model of Bayesian cue combination in that adding 

uncertainty to the prior should lead to a greater influence of the likelihood, particularly 

early in pursuit, before the influence of the likelihood began to dominate. 

 

 



67 
 

 
 

 
Figure 4.6 A-C: Slope of regression line relating target (μL) and eye direction (± SE) on 
each trial over time.  Time = 0 ms corresponds to the onset of stimulus motion.  Each line 
represents a different level of σL, with the solid line representing the data from the wider 
prior (σP = 45°) and the dashed line representing the data from the narrow prior (σP = 10°) 
from Experiment 2. 

 

A. B. C.  

D. E. F.  

G. H.  

Figure 4.7 A-H: Resulting p value from the likelihood ratio test (between the narrow, σP 
= 10°, and wide, σP = 45°, priors from Experiments 2 and 4 respectively) of the null 
hypothesis that the constrained model is correct, computed over the timecourse of the 
trial for each subject and level of σL.  Time = 0 corresponds to the onset of stimulus 
motion.  The horizontal line indicates a p value of 0.05. 
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To attempt to quantify the differences in the progression of slope over time 

between the narrow prior (σP = 10°) of Experiment 2 and wide prior (σP = 45°) of 

Experiment 4, a likelihood ratio test was performed comparing the results obtained for 

two levels of σP for the 3 subjects who participated in both levels of σP.   While subjects 

JG and KP participated in both Experiments 2 and 4, HM did not participate in 

Experiment 2, so they were run on a few sessions of the σL = 45° condition for 

comparison.  Similarly to the likelihood ratio test comparing estimates of σs between the 

levels of σL, this test compared two nested models.  In the constrained model, the 

estimated parameters (both σs and the bias) for both levels of σP, 10° and 45°, were 

constrained to be the same.   In the unconstrained model, σs and bias parameters were 

estimated separately for each value of σP.  The ratio of the constrained and unconstrained 

likelihoods is distributed as X2, with df = 2 (see Cohen et al., 2007). If the fit of the 

unconstrained model is significantly better than that of the constrained model, it can be 

concluded that the noise of the prior had significant effects on the directional properties 

of pursuit (in the slope of the regression line). 

Fig 4.7 shows that the results of the likelihood ratio test indicate a significant 

effect of σP on the slope through most of the time for all 3 subjects, with the exception of 

the clear (σL = 0°) condition for subject KP. 

 

3.4.3. Estimating the relative role of prior and likelihood 

As in Experiments 1 and 2, the model (Eq 8) was fit to the pursuit directions for 

each level of the noise of the likelihood (σL).  The estimates of σs for Experiment 5 are 
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shown in Fig 4.8. σs decreased to 0 at a faster rate for the clear (σL = 0°) than the noisy 

(σL = 45°) RDK. 

 

 
Figure 4.8 A-C: Fit of σs parameter for each of the subjects in Experiment 4, computed 
over the timecourse of the trial.  Time = 0 corresponds to the onset of stimulus motion.  
The horizontal line indicates the standard deviation of the prior, σP. 
 

With the exception of the clear condition, the σs estimates for all subjects are 

different between Experiments 2 (σP = 10°) and 4 (σP = 45°).  Specifically, the estimates 

of σs when σL = 45° are about 10-15° with the wider prior during steady state pursuit, 

greater than the 5-10° found with the narrow prior.  This incompatibility of the estimates 

of σs between the levels of σP do not agree with the predictions under the model (Eq. 8), 

which would predict a similar estimate of σs across the different values of the prior 

uncertainty if the prior and likelihood contributed independently.  The higher estimated σs 

with the wider prior would tend to overestimate the weight assigned to the prior, perhaps 

indicating that the variability of the wider prior was underestimated. 
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Figure 4.9 A-C: The RMS error of pursuit direction around the linear regression line over 
time for each value of σL for the 3 subjects who participated in Experiments 2 and 4 (with 
the exception of HM, who did not participate in Experiment 2 but ran in some test 
sessions with the σP = 10° prior).  Time = 0 ms corresponds to the onset of stimulus 
motion.  Each line corresponds to a level of σL, and σP, with the dashed line representing 
σP = 10° and the solid line representing σP = 45°.  

 

As with the uniform prior (Experiment 3), the RMS error was computed around 

the linear regression line over time.  Figure 4.9 shows the RMS error for subjects who 

participated in Experiment 4 and Experiment 2 (HM participated in several sessions of 

the σP = 10° prior for comparison).  To reduce any differences in pursuit which may 

appear when targets move in different quadrants from the one analyzed in Experiment 2, 

the data for Experiment 4 was restricted so that only the target directions in the same 

quadrant of the prior were included in the analysis (μP ± 45°).  As with the uniform prior 

in Fig 3.7, the effect of the level of σL on RMS error appears to be greater when the prior 

was more variable. 
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3.5. Experiment 5: Effect of RDK speed 

 As noted earlier, stimulus speed was varied across levels of σL to equate speeds 

when pursuit speeds reached steady state.  This process was not perfect, and thus there 

were occasionally small discrepancies between the eye speeds across the different levels 

of σL.  To determine whether small differences in eye speed affect the relative role of 

prior and likelihood, 3 subjects (JG, EL, and KP) were tested on two stimulus speeds 

using clear RDKs.  

 

Figure 5.1 A-C: Mean pursuit speed (±SE) over time for speed of the RDK dots (4.0 or 
4.8 pixels/frame), for each of the 3 subjects.  Time = 0 ms corresponds to the onset of 
stimulus motion.  
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Figure 5.2 A-C: Mean pursuit direction (±SE) over time for speed of the RDK dots (4.0 
or 4.8 pixels/frame), for each of the 3 subjects.  Time = 0 ms corresponds to the onset of 
stimulus motion. 
 

 
Figure 5.3 A-D: Standard deviation of pursuit direction over time for speed of the RDK 
dots (4.0 or 4.8 pixels/frame), for each of the 3 subjects.  Time = 0 ms corresponds to the 
onset of stimulus motion. Each line represents a different speed of the RDK. 
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Figure 5.4 A-D: Slope of regression line relating target (μL) and eye direction (± SE) on 
each trial over time.  Time = 0 ms corresponds to the onset of stimulus motion.  Each line 
represents a different speed of the RDK. 
 
 

 
Figure 5.5A-C: Fit of σs parameter of the model for each of the subjects, computed over 
the timecourse of the trial, for the two speeds of the clear condition in Experiment 6. 
Time = 0 corresponds to the onset of stimulus motion. The horizontal line indicates the 
standard deviation of the prior, σP. 
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 Fig 5.1 shows average pursuit speeds for the two levels of RDK speeds tested.  

Mean direction over time was not affected by the speed of the target (Fig 5.2).  Standard 

deviations of the direction of pursuit were slightly higher for the slower speeds.  The 

slopes of the regression line relating target vs. eye direction on each trial (Fig 5.4) and the 

estimated values of σs were quite similar for both speeds.  Additional data will be 

collected to verify this result with a wider range of speed and with the noisy RDKs. 

 

3.6. Experiment 6: Perceptual reports 

 The perceptual reports of the direction of the RDK that were collected at the end 

of each trial in Experiments 1-5 were mainly used to motivate attention to the displays 

rather than assess the perceptual evaluation of the mean of the RDK.  The interpretation 

of these reports could have been affected by the sensed position of the eye at the end of 

the trial, when the eye reached the perimeter of the display.   

As outlined in section 2.2.b, a separate experiment was conducted to determine 

how the noise of the RDK (σL) affected perceptual reports.  This experiment used a short 

presentation of the motion stimulus (150 ms) to prevent sustained pursuit.   

This experiment also used as a mask consisting of dots moving in a direction 

chosen from a uniform distribution on each frame presented before and after the critical 

motion frames to prevent visual persistence of the motion and better control processing 

duration. Both pre- and post-masks have been used before to limit processing duration 

(Buhcall & Kowler, 1999).  In addition, there was no fixation point in order to minimize 

cues to relative motion.  The clear (σL = 0°) and noisy (σL = 45° and 60°) RDKs were 

tested.  Three subjects were tested in the σL = 60° condition, and 5 were tested in the 



75 
 

 
 

clear (σL = 0) and σL = 45° condition.  Note that subject EL often reported that the dots 

were moving 180° in the opposite direction, perhaps due to some type of wagon wheel 

illusion.  As such, any trials with outlier responses outside of a 90° range from μL were 

left out of the analysis. 

Figure 6.1A-E: Bar graphs depicting the slope of the regression line relating the mean 
direction of the dots on each trial (μL) and the response from the subject at the end of the 
trial for all 5 subjects and 3 levels of σL. 
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Figure 6.2 A-E: Bar graphs showing the circular correlation between the mean direction 
of the dots on each trial (μL) and the response from the subject at the end of the trial for 
all 5 subjects and 3 levels of σL. 
 

Figure 6.3 A-E: Bar graphs showing the circular standard deviation of subject responses 
at the end of the trial for all 5 subjects and 3 levels of σL. 
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Figure 6.4 A-E: Bar graphs showing the estimated σs parameter fit to the Bayesian model 
for all 5 subjects and 3 levels of σL. 
 

 Once again, linear regression was used this time to relate the direction of the 

stimulus motion on each trial (μL) with the reports of the perceived direction of motion.  

Fig 6.1 shows that the slope of the regression line decreased as the directional noise of 

the RDK (σL) increased for all subjects, with some subjects’ responses resulting in a 

slope greater than 1 (meaning the reports tended to be biased away from μP the further the 

value of μL on that trial).  

The correlation between the stimulus direction (μL) and the subjects’ responses 

also decreased, and the standard deviation of the responses around the regression line 

increased as σL increased (Fig 6.3), similar to what was found in pursuit of the wide and 

uniform priors. The value of the σs obtained from fitting the model introduced in Eq. 8 

increased as σL increased in all subjects except EL (Fig 6.4).   

 Taken together, the results for the short presentation condition in Experiment 6 

show that perception of motion direction may be similar to pursuit in that the influence of 

the actual direction decreased relative to the prior as directional noise  
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4. Discussion 

4.1. Overview  

Since the early days of smooth pursuit research, it has been observed that pursuit 

anticipates the future target motion.  Classical studies as far back as Westheimer (1954) 

and Dallos & Jones (1963) have shown patterns of predictive pursuit in response to 

periodic target motion, with the eye moving ahead of a change in direction of the target 

(Kowler & Steinman, 1979).  These findings were later extended beyond simple 

extrapolation of stimulus motion to reveal that pursuit involves a complex interaction 

between cognitive and sensory-based inputs.  These studies have shown anticipatory 

smooth eye movements (ASEM) manifesting as not only a bias in pursuit based on 

previous target motion (Kowler & McKee, 1987; Kowler et al., 1984; Yang & Lisberger, 

2012) but also in response to verbal or visual cues (de Hemptinne, Lefèvre, & Missal, 

2006; Kowler, 1989, Santos & Kowler, 2017). 

While ASEM has been observed in various forms for over 50 years, the role of 

anticipation has been less understood.  Prior work has suggested ASEM could be useful 

for overcoming processing delays which the system would incur if pursuit only relied on 

incoming sensory signals.  However, the findings of the current study suggest a new, 

additional role for anticipation: the overcoming of noise in the sensory motion signal or 

in the motor signal (or both).  When sensory inputs were more variable (specifically, 

random dot kinematograms with high levels of directional noise), the results showed an 

increased and longer lasting influence of the prior on pursuit, resulting in the eye moving 

with about the same level of directional variability across the noise levels of the RDK 

stimulus.  When the prior became less reliable, the influence of the immediate motion 
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appeared earlier in time.  In addition, there were suggestions that the directional 

variability of pursuit was affected more by changes in the directional noise of the 

stimulus with the less reliable prior.  This increased influence of the prior as sensory 

uncertainty increased, and the increased influence of the likelihood as the uncertainty of 

the prior is increased, is conventional in processes which are governed by the tenets of 

Bayesian cue combination, such as a variety of different perceptual judgements or motor 

behaviors (Kording & Wolpert, 2004). 

These new findings reveal insights into the process of integrating anticipation and 

sensory response in pursuit.  While there still appear to be clear stages of mostly 

anticipation-driven and mostly sensory-driven smooth pursuit, the present study shows 

evidence for a  combination and reweighting of the two signals in proportion to their 

respective reliabilities in a way that is at least qualitatively consistent with the principles 

of Bayesian cue combination.  This concept of the integration of an extraretinal signal 

with a sensory signal is not new, with previous models incorporating either a switching 

mechanism (Barnes & Collins, 2008) or a reliability-weighted sum (Orban de Xivry, 

2013), but is tested here more directly by explicit experimental manipulation of the 

reliability of the retinal and extraretinal components. 

 

4.2. Summary of results and main conclusions 

There were a number of main experimental results:  

1. The direction of smooth pursuit was affected by the directional variability of 

both the prior and the likelihood, where prior refers to the distribution of 
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means of the likelihood across trials, and likelihood refers to the distribution 

of the direction of the dots on the current trial. 

2. When the directional variability of the RDK was higher, the effect of the prior 

on the direction of pursuit persisted for a longer duration relative to the onset 

of target motion (Experiments 1 and 2).  This was reflected by two results. 

First, the mean direction of pursuit during the interval from -100 ms to ~100 

ms relative to the start of target motion was close to the mean direction of the 

prior.  Second, the slope of the function relating target and pursuit direction 

reached a value of 1 later in time for noisier levels of the likelihood (greater 

σL).  Slopes could require as long as ~600 ms to reach a value close to 1.  The 

more variable the likelihood, the longer it took for slopes to reach a value 

close to 1. 

3. When the directional variability of the prior was higher, the slopes reached a 

value near 1 earlier (Experiment 4) than with priors with less directional 

variability (Experiments 1 and 2).   

4. The perceptual responses (Experiment 5) showed similar trends as found for 

pursuit.  The slopes of the lines relating target direction and perceptual reports 

increased as directional variability of the RDK decreased.  Also, the 

variability of the perceptual reports increased with directional variability of 

the RDK.  

5. The extent to which the results conform to the premise of Bayesian cue 

combination was assessed by fitting by an expression relating prior and 

likelihood as a function of their respective reliabilities adapted from Kording 
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& Wolpert (2004).  Here, pursuit direction at any point in time was a weighted 

sum of the mean direction of the prior and the mean direction of the likelihood 

on a given trial, where the weights were proportional to the reliability of prior 

and likelihood.  Fitting the model required estimating two parameters, the 

parameter representing the processing noise (σs) of the likelihood and a bias 

parameter.  As expected, values of σs decreased over time and were higher for 

noisier likelihoods.  However, the estimated value of σs was different for 

different levels of the variability of the prior.  This suggests that additional 

features may need to be added to the model, such as a provision to allow 

misestimates of the mean or standard deviation of the prior, or non-

independence of prior and likelihood. 

 

These results show that basic principles of Bayesian cue combination can apply 

smooth pursuit eye movements. 

 

4.3. Comparison with previous work 

Orban de Xivry et al. (2013) implemented a model of pursuit with two major 

components, each with a Kalman filter.  One component of the model dealt with 

processing visual input, whereas the other maintained and updated memory about past 

target motion (where past in their model referred to target motions seen on previous 

trials).  The outputs of both Kalman filters were then statistically combined in proportion 

to their respective reliabilities.  The model was then able to exhibit classical examples of 

predictive and sensory-driven smooth pursuit without requiring a neural “switch” to take 
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prediction in or out of the control circuitry (Barnes & Collins, 2008).  However, the 

model was not fit to experimental data, but rather simulated phenomena qualitatively.  

The model also required many parameters (12) which were estimated statistically or from 

previous data and examined effects in which the level of uncertainty about target motion 

was varied by blanking the target briefly during its motion. The current work estimates 

two parameters and varied uncertainty by manipulating the directional variability of the 

prior and the motion stimulus directly.  The variability of the motion stimulus was 

manipulated by modifying the spread of the Gaussian distribution defining each signal, a 

manipulation that has been shown to affect direction discrimination of RDKs 

(Watamaniuk et al., 1989). 

Another recent model of predictive smooth pursuit, Bogadhi et al. (2013) was able 

to show a dynamic reweighting of retinal and extraretinal signals which combined in a 

Bayesian manner over the course of pursuit.  They made use of a novel experimental 

paradigm, with 1D and 2D motion signals signifying different stages of the timecourse of 

pursuit due to the known effects of the aperture problem phenomenon.  However, they, 

like Orban de Xivry (2013), blanked the target at certain time intervals to change the 

uncertainty of the motion.  While the current work also suggests a dynamic reweighting 

of prior and likelihood over the course of pursuit, it was able to show how the timecourse 

of this reweighting changed as a function of increased variability in both the prior and 

likelihood.  Additionally, the prior in Bogadhi et al. (2013) was initially set to 0, due to 

the belief of a prior favoring slow and smooth motion.  The current study assumes the 

prior was learned experimentally over the course of many trials. 
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More recently, the model of Darlington, Tokiyama, & Lisberger (2017) looked at 

the effect of speed and direction context on smooth pursuit.  They were able to show a 

strong bias in pursuit speed or direction due to the context of the properties of target 

motion on either the immediately preceding trial or the statistical properties of the block 

of trials.  The observed bias due to context depended on the contrast of the target, with 

the lower-contrast targets resulting in a greater influence of the context on pursuit.  

However, they only looked at one specific time interval of pursuit (50-100 ms after the 

onset of pursuit) rather than the entire timecourse.  Additionally, the decrease of contrast, 

while associated with a reduction of the firing rate of populations of neural responses in 

MT (Yang et al., 2012; Krekelberg et al., 2006) may not necessarily be the best measure 

of uncertainty in a moving target.  This is especially true for analyses of pursuit direction, 

in which there is little documented effect of contrast.  In contrast, the current study uses 

directional variability as a measure of uncertainty in the visual stimulus and analyzes 

pursuit across the entire timecourse of the trial. 

Another recent study that approached smooth pursuit as a process related to 

Bayesian cue combination was by Deravet et al. (2018).  The moving stimulus was either 

a disc or a 2D Gaussian blob.  They defined two types of trials, training and test.  

Training trials consisted of a sequence of 1-5 trials with same stimulus velocity.  Test 

trials had stimulus velocities which were higher or lower than those in the training trials.  

They found that increasing the number of repetitions of a given stimulus velocity in the 

training trials lead to a greater bias in eye velocity on test trials toward the velocity of the 

training trials.  The effect of the training trials was greater with the Gaussian blobs than 

with the disk.   
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The present study differs from the previous work described above in that the 

statistical properties of prior and likelihood were varied systematically using Gaussian 

distributions with a given mean and standard deviation, and in addition, the present study 

focused on pursuit direction.  Directional properties of pursuit are not often studied 

(De'Sperati & Viviani, 1997) and the effects of directional noise on pursuit has been 

studied very little (Watamaniuk & Heinen, 1999; Mukherjee et al., 2017).  

 

4.4. From Bayesian cue combination to a model of smooth pursuit 

The current study included a test of a model for smooth pursuit reflecting the 

basic principles of Bayesian cue combination which, at least qualitatively, may have 

accounted for the tradeoff between anticipatory and sensory-driven aspects of the 

direction of smooth pursuit.  However, the current work and model raise many more 

questions about the nature of the computational and neural integration of prior and 

likelihood signals. These issues would need to be addressed in future work before the 

current model can be evolved into a complete model of pursuit. 

First: the model does not account for the directional variability of pursuit.  For 

example, if the output of the model is interpreted to represent the direction of pursuit at a 

given time interval, then we would expect that the standard deviation of the posterior 

resulting from the weighted combination of prior and likelihood would be related to the 

directional variability of pursuit direction.  However, based on the estimates of the 

standard deviation of pursuit direction predicted by the posterior (based on the variance 

of the prior and the estimated variance of the likelihood, σs: 𝜎��y�S = 	 \�
^\�^

\�
^+\�^

) would 

predict a greater difference between the directional variability of pursuit for each value of 



85 
 

 
 

σL.  For instance, when σs was estimated to be 0 for subject JG in Experiment 2 (Fig. 2.7), 

the calculation of the standard deviation of the posterior would predict directional 

variability of 0° in pursuit, which is physically impossible.  There would realistically 

have to be some noise, whether it is in perception, the eye, or measurement, that is 

contributing to variability in pursuit. Thus, the current model cannot be accurately 

incorporating sources of variability in σs. Future models could adopt the approach of Yin 

et al. (2019) and include a parameter representing the baseline noise in the system.  A 

strong test of the model of Bayesian cue combination would involve (as in Yin et al., 

2019) an independent estimate of the noise parameter that would be able to accurately 

predict the standard deviation of the posterior. 

Second: how would the dynamics of pursuit fit into the current model?  The 

current model computes an estimate of pursuit direction at each time interval 

independently given a few parameters related to the nominal properties of the prior and 

stimulus.  In reality, once the target begins to move, the pursuit response is likely to be 

affected by processes at different neural levels (including low levels) that affect the 

kinematic properties of the response to the immediate retinal error.  Thus, as with both 

classical (Robinson, 1984; Krauzlis & Lisberger, 1994) and recent (Orban de Xivry et al., 

2013) attempts, a full model of pursuit would need to incorporate the dynamics and 

kinematics inherent in smooth pursuit.  These attempts also should include the dynamics 

of changes in direction (desperate & Viviani, 1997).  Future models could frame the 

output of Bayesian cue combination to be some belief about the direction of the target 

rather than eye velocity, with this belief being the input to some function which includes 

the dynamics and kinematics of smooth pursuit.  This function would then output the 
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direction of pursuit.  (For example: θe = f(θb), where e = eye, and b = belief).  Such 

models would also require a term for the representation of the target and eye velocity at 

each timestep to compute the retinal slip (the difference between the eye and target 

velocities).  Therefore, a full model of pursuit would require that each time interval not 

be treated separately.   

To develop a more realistic approach to pursuit over time, a model that 

incorporated the low-level factors along with Bayesian updating, where the prior of the 

current timestep would be based on the posterior from the previous timestep (e.g., 

Montagnini et al. 2007) would be a promising framework.  Eq. 9 below presents a 

possible restructuring of the Bayesian cue combination model adapted from Kording & 

Wolpert (2004).  The model only explicitly includes the prior on the first timestep and 

integrates the likelihood with the posterior from the last timestep on each subsequent 

timestep. 

Time = 0	ms: θ.,F =
𝜎y,FS

𝜎�S + 𝜎y,FS
𝜇� +

𝜎�S

𝜎�S + 𝜎y,FS
𝜇y 

Time > 0	ms	(t):	𝜃�,� =
𝜎y,�S

𝜎�,�z,S + 𝜎y,�S
𝜃�,�z, +

𝜎�,�z,S

𝜎�,�z,S + 𝜎y,�S
𝜇y 

For	any	t:		𝜎�,�z,S = 	
𝜎y,�z,S 𝜎�,�zSS

𝜎y,�z,S + 𝜎�,�zSS  

Equation 9 

Here, θe,t represents the direction of pursuit at time t, and 𝜎�,�z,S  is the variance of 

the estimate of the direction of pursuit from the previous timestep. All other parameters 

are the same as in Eq. 8. 
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Another important issue raised by the present results is where the “extraretinal” 

cues (priors) are represented in the brain.  There are plenty of neural candidates.  Area 

MT is home to the representation of image motion, making it an obvious place for 

information related to the sensory likelihood (motion of the target) to originate, with the 

population of neurons in MT corresponding to certain speeds (or possibly directions) 

responding with higher firing rates when the motion stimulus is more reliable 

(Krekelberg et al., 2006).  The location of the representation of the prior is a bit more 

ambiguous.  “Extraretinal” signals have long been a component of models of predictive 

pursuit (Barnes & Collins, 2008; Bogadhi et al., 2013; Orban de Xivry et al., 2013), but 

the term has generally been used as a catch-all for inputs to pursuit that are not reliant on 

incoming sensory information rather than any specific neural signal.  Possible origins of 

this extraretinal include prefrontal cortex (which sends signals to MT), FEF (specifically, 

the frontal pursuit area), or SEF (Lisberger, 2010; Kowler et al., 2019; Heinen & Liu, 

1997; de Hemptinne et al., 2008).  As mentioned before, pursuit is also suspected of 

being influenced by a corollary discharge signal representing the motor command 

executed in a previous timestep that is used as in input to pursuit.  In the present 

experiment this motor command, to some extent, may be seen as embodying the 

influence of the prior and thus a separate “memory” for the prior might not be needed.   

Where (and how) might the integration of the prior and likelihood cues actually 

take place?  The integration may occur at the sensory or motor level, effecting in addition 

to pursuit the perception of the direction of motion due to activity in MT or MST, or 

affecting the later stages of pursuit further downstream (perhaps the frontal pursuit area).  

On the other hand, the perceptual results of Experiment 6 in the current study show an 
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effect of the directional noise of the RDK on the weights of the prior and likelihood with 

similar trends to the pursuit results (Experiments 1-4 and 5), suggesting that the 

combination process may be occurring at the perceptual and not exclusively the 

oculomotor level.  Once combined, the relative strength of each cue may be determined 

by the difference in firing rates, with the likelihood taking some time to fully overtake the 

prior.  Alternatively, the graded transition from prior to likelihood could be related to the 

rotation of population vectors in MT, with it taking some time for the perception of 

motion or pursuit to change direction.  In the case of the wide prior (σP = 45°), the larger 

directional error earlier in pursuit may lead to a corrective pursuit response that starts 

earlier. 

In addition to the above issues, future models should also consider the 

independence of the prior and likelihood.   Since the mean of the likelihood on each trial 

is drawn from the prior, the likelihood is dependent on the mean of the prior.  

Traditionally, models of Bayesian cue combination have an underlying assumption that 

the two cues are independent.  Since this does not hold in the current experimental 

paradigm, the model will likely need to be modified to account for the dependence of 

likelihood on the prior.  Adding a discounting term for the correlation between the two 

cues may be sufficient for computing a combination of correlated cues (Oruc, Maloney, 

& Landy, 2003). Another source of non-independence is learning.  In the case of pursuit 

with the narrow prior, the pursuit of similar directions of motions in the same block of 

trials could lead to improved tuning of responses at the sensory or motor levels.  An 

experiment that used a perceptual cue on each trial to signal the likely direction of 
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upcoming motion (similar in some ways to Santos & Kowler, 2017) could preserve the 

benefits of the prior while reducing the role of repetition and learning.    

Finally, future models should be tested on different priors, including a bimodal 

prior to test the role of the overt ASEM found at the onset of target motion.  A bimodal 

prior is likely to suppress the ASEM.  At the same time, previous work in motor control 

has shown that participants are able to learn more complex priors, including bimodal 

priors, and still combine the prior with the likelihood in a Bayesian way (Kording & 

Wolpert, 2004).   A bimodal prior with each mode 180° apart would still provide higher-

level information about the possible directions of the sensory likelihood without the overt 

effects of ASEM at the onset of target motion. 

 

4.5. Clinical implications 

 Aside from the enhancing our understanding of the neural and computational 

properties of predictive smooth pursuit, the current work also has some potential clinical 

applications.  Predictive and anticipatory smooth pursuit has been found to be impaired in 

individuals with Parkinson’s disease (Fukushima et al., 2017; Helmchen, 2012).  

Additionally, difficulties in anticipatory pursuit has been suggested to be a marker for 

schizophrenia (Avila et al., 2006) and the psychotic components of some affective 

disorders such as bipolar disorder (Brakemeier et al., 2019).  While not specifically aimed 

at clinical populations, the current experimental paradigm could help develop in 

developing a computational framework to quantify the deficits in prediction during 

pursuit that may be present in these disorders. 
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Recent work in computational psychiatry proposes the framing psychiatric 

disorders as failures in one or more aspects of a Bayesian theoretic objective function 

used to make decisions (Huys, et al., 2015).  For instance, when making a decision, the 

terms of the observer’s objective function, mechanisms carrying out the function, or other 

inputs to the function may be at fault.  Framing the integration of prior and likelihood in 

pursuit described by this study as the objective function controlling the pursuit process 

could allow for a similar analysis in the current experimental setup. Specifically, isolating 

properties of the prior and likelihood related to the impairment of pursuit within the 

current study’s experimental paradigm and future iterations of the Bayesian model may 

be useful in quantifying aspects of the disorders (Parkinson’s or schizophrenia for 

example) that result in impaired pursuit. 

 

4.6. Final conclusions and implications 

 For over 50 years, smooth pursuit eye movements have been known to use non-

sensory information predict future target motion.  However, up until recently, the effects 

of higher-level extraretinal signals on pursuit over the timecourse of pursuit was rarely 

quantified statistically.  Recent work has made strides in modeling anticipatory smooth 

pursuit and has suggested that predictive pursuit may operates by means of optimal 

Bayesian combination of prior (extraretinal) and likelihood (sensory) cues, as has 

similarly been demonstrated for other perceptual and motor processes.  The current study 

opens doors for further experimentation and modeling by showing that the direction of 

pursuit may be determined by an optimal combination of sensory and extraretinal 

influences across the timecourse of pursuit, rather than at one specific, early stage of 
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pursuit.  This influence of prior and likelihood was shown to be modulated by changes in 

the directional variability of each.  There was also a dependence of the variability of 

pursuit direction on the directional variability of prior and likelihood.  As the more 

reliable prior and likelihood resulted in lower directional pursuit variability, a possible 

role of prediction in reducing the effects of stimulus noise on the variability of pursuit 

was proposed.  Future work will be needed to develop the proposed Bayesian cue 

combination model and hone in on the neural areas involved. 
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