Staff View
Insect micro- and macroevolution through space and time

Descriptive

TitleInfo
Title
Insect micro- and macroevolution through space and time
Name (type = personal)
NamePart (type = family)
Kohli
NamePart (type = given)
Manpreet Kaur
NamePart (type = date)
1988-
DisplayForm
Manpreet Kaur Kohli
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Russell
NamePart (type = given)
Gareth
DisplayForm
Gareth Russell
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
Graduate School - Newark
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (encoding = w3cdtf); (keyDate = yes); (qualifier = exact)
2020
DateOther (encoding = w3cdtf); (qualifier = exact); (type = degree)
2020-01
CopyrightDate (encoding = w3cdtf); (qualifier = exact)
2020
Language
LanguageTerm (authority = ISO 639-3:2007); (type = text)
English
Abstract (type = abstract)
This dissertation uses computational molecular phylogenetic methods to study macro-and micro-evolutionary processes that give rise to biodiversity. Insects, the most diverse group of organisms on earth, are an excellent group for studying and testing various evolutionary hypothesis. I used molecular phylogenetic methods to study the population structure of the northern most Arctic dragonfly species Somatochlora sahlbergi. Our results show that this species doesn’t follow a common trend seen in evolutionary biology that is, large geographic distances and geographic barriers lead to increased genetic variation. Not only does S. sahlbergi appears to interbreed across its entire Holarctic range, there also seems to be almost no variation among European and North American populations in their COI gene fragment (the barcode gene), which is usually extremely variable. These findings seem to be unique to this particular species as none other Arctic dragonflies show such genetic patterns. Upon examining four other distantly related dragonfly species, Aeshan juncea, Aeshna subarctica, Sympetrum danae and Libellula quadrimaculata, that have similar Holacrtic distribution as S. sahlbergi, we find that these species indeed show a geographic structure across their range unlike S. sahlbergi. We find that North American and European populations show clear genetic distinction, and this split occurred ~ 400,000 ago, during the Quaternary Period.

Lastly, I use the popular divergence time estimation methodology to study the evolutionary past of the Insects and explore how our use of fossil record can influence the outcome of such methods. The results show that fossils can be extremely influential depending on the age of the node (i.e. origin to two lineages). Deep nodes, that represent very old relationships in the evolutionary history, tend to be heavily impacted by the fossil calibrations compared to younger nodes. Older nodes suffer more in their age estimates and the precision around these age estimates in the absence of a fossil. Further, we find that certain groups of insects like flies and butterflies evolve at a much faster rate than most of the other groups of insects.
Subject (authority = LCSH)
Topic
Insects -- Evolution
Subject (authority = RUETD)
Topic
Biology
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_10480
PhysicalDescription
Form (authority = gmd)
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
1 online resource (viii, 162 pages) : illustrations
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
RelatedItem (type = host)
TitleInfo
Title
Graduate School - Newark Electronic Theses and Dissertations
Identifier (type = local)
rucore10002600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/t3-9z9c-7t05
Genre (authority = ExL-Esploro)
ETD doctoral
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Kohli
GivenName
Manpreet
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2019-12-24 21:10:03
AssociatedEntity
Name
Manpreet Kohli
Role
Copyright holder
Affiliation
Rutgers University. Graduate School - Newark
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
RightsEvent
Type
Embargo
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2020-01-31
DateTime (encoding = w3cdtf); (qualifier = exact); (point = end)
2022-01-30
Detail
Access to this PDF has been restricted at the author's request. It will be publicly available after January 30th, 2022.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
CreatingApplication
DateCreated (point = start); (encoding = w3cdtf); (qualifier = exact)
2019-12-25T01:52:38
DateCreated (point = start); (encoding = w3cdtf); (qualifier = exact)
2019-12-25T01:52:38
Version
1.4
ApplicationName
macOS Version 10.14.5 (Build 18F132) Quartz PDFContext
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024