Shelley's initial work
Reference of 5, 10, 10, 5, 1
Asking if 1 should be in front

Steph work ~17:30

Bobby's work ~20:44
Steph 25:58 now we know all the pizzas:
Cam asks 33:42 why $4 + 6 = 10$ in terms of pizza
Steph:

Bobby
41:55 – steph and bobby say if we apply to towers it might work to explain for pizza; then thye are unsure if it will help to explain i.t.o. pizza; they go back to pizza; pantozzi comes and helps them considerably

56:03 bobby shows how to add the rows of triangle
\[n! = \text{Number of combos} \]
\[\sum \text{n = number of toppings} \}

\[
\begin{align*}
1 & = 2^0 \\
1 & = 2^1 \\
2 & = 2^2 \\
3 & = 2^3 \\
4 & = 2^4 \\
5 & = 2^5
\end{align*}
\]

The "2" comes from when the numbers are brought down. The toppings can go 2 ways, they can remain unchanged from the previous row or they can add another topping.
Dear Dr. Shelly and Dr. Abbot,

The math problem was a fun one. We had to choose from 3 pizza toppings. We could use the toppings on half the pizza. The three toppings were: pepperoni, pineapple, and cheese. We got a mix of 10 different pizzas.

Our ideas:
- Cheese for cheese
- Pepperoni for pizza
- Sliced for sharing

It was unusual because it wouldn't fit anymore kinds of plates.

Your friend,

[Signature]