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Storm surge represents a major threat for coastal communities in the United 

States, accounting for 50% of fatalities due to tropical cyclones (TCs) and causing 

significant economic losses. Cyclones along the Northeast United States have been some 

of the most destructive, partly due to their effect in regions with high population density. 

Hurricane Sandy was a high-impact event producing record-breaking storm surges around 

the Mid-Atlantic Bight region and causing billions of dollars in damages. Much of the 

impact from Hurricane Sandy is attributed to its atypical near-perpendicular angle of 

landfall. This event prompted the need to study a wide range of possible TC scenarios and 

to understand the role of atmospheric forcing in modulating storm surge. Motivated by 

the damages from TC-induced storm surge events, we seek to determine the sensitivity 

of storm surge to atmospheric forcing, in our attempt to contribute towards improved 

predictions and mitigation of storm surge impacts. Improvement of storm surge 

predictions can be accomplished by advancing and developing modeling systems, and by 

understanding the relation between storm surge and TC physical parameters. The work 



 iii 

in this dissertation seeks to determine the influence of different wind models on storm 

surge forecasts and to assess the sensitivity of storm surge to cyclone landfall angle.  

To address these goals, we perform simulations of TCs, and their associated storm 

surge, by coupling state-of-the-art atmospheric and hydrodynamic models, namely the 

Weather Research and Forecasting model and the Advanced Circulation Model. The 

modeling framework facilitates the use of different wind models and the creation of 

synthetic cyclones that provide the desired spread in TC characteristics, particularly the 

angle of landfall. The coupled simulations are also used to inform an artificial neural 

network (ANN) model on the relationship between various TC parameters and storm 

surge, in our attempt to make accurate storm surge predictions at various station 

locations around the Mid-Atlantic Bight. We show that a higher resolution atmospheric 

simulation is not necessary to accurately depict the storm surge magnitude and spatial 

extent. While the sensitivity of storm surge and inundation to the TC impact angle varies 

along the coast, cyclones perpendicular to the coast generally produce the largest 

impacts. Results also emphasize the dependency of the storm surge impact to cyclone 

landfall location. We successfully train the ANN model to formulate timely storm surge 

predictions with a mean squared error of 0.08 m, demonstrating the potential of ANNs as 

forecasting tools.  

We develop a modeling framework that can be employed to study the 

fundamental mechanisms modulating storm surge. Our results have important 

implications in how storm surge modeling can be improved, informing us on the current 
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limitations in storm surge assessment and on alternative methods for improved forecasts 

that will ultimately lead to a reduction of impacts from TC-induced storm surge.  
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CHAPTER 1. INTRODUCTION 

1.1 Motivation 

Tropical cyclones (TCs), which are associated with heavy rains, extreme winds and 

floods, represent a major threat for coastal communities in the United States. The overall 

damages from weather-related disaster events in the US is dominated by losses resulting 

from TCs (Smith, 2018). Specifically, in the Atlantic basin one out of every five to six TCs 

causes loss of life (Rappaport, 2014). Storm surge, defined as an abnormal rise of water 

generated by a storm, above and beyond the predicted astronomical tides, represents 

the most damaging aspect of a TC. Storm surge impacts often result in significant loss of 

life and property. Rappaport (2014) quantified the loss of life directly resulting from 

Atlantic TCs and reported that 50% of fatalities were attributed to storm surge. 

An example of a high-impact TC is Hurricane Katrina (2005), which drove a storm surge 

of about 7.6 m along the coast of Mississippi, causing a total of more than $125 billion in 

losses and multiple fatalities (Lin et al., 2010). Along the Northeast US, where cyclones 

are less frequent, the “Long Island Express” cyclone of 1983, produced flooding of up to 

3.5 m in New York (NY) (Lin et al., 2010). Another notable case is that of Hurricane Sandy 

which produced major floods in New York City and damages of at least $50 billion (Blake 

et al., 2013).  

Population expansions in coastal cities will only serve to increase the community’s 

exposure to these devastating TC and storm surge events. Climate change is expected to 

exacerbate storm surge and coastal flood impacts from TCs (Colle et al., 2008; Lin et al., 

2012). The combined effect of changes in cyclone climatology along with the expected 
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rise in sea level is projected to shorten storm surge flooding return periods (Garner et al., 

2017; Lin et al., 2012; Reed et al., 2015). For areas like New York City, this translates to a 

projected reduction in the return period of the 100-year surge flood to occur between 3-

20 years (Lin et al., 2012), and a decrease in the return period of the 500-year flood event 

to approximately a 25-year return period (Reed et al., 2015).   

The magnitude of the storm surge impacts is known to depend on TC characteristics 

such as the cyclone intensity (Weisberg & Zheng, 2006), size (Irish et al., 2008), and 

forward speed (Hussain et al., 2017; Rego & Li, 2009; Thomas et al., 2019), as well as on 

local geographic and bathymetric features (Bloemendaal et al., 2019). While the physics 

of storm surge are relatively well known (Kohno et al., 2018), uncertainties remain 

regarding the level of sensitivity to these TC parameters. These relationships and 

dependencies are difficult to assess due to the limited historical record. The limitation in 

the observed record, as well as the quality of the data, presents difficulties in our ability 

to assess and understand the expected storm surge impact from different TC scenarios 

(i.e. different combinations of cyclone features). 

A recent study by Needham et al. (2015), accounted for water level records for 389 

TCs in the western North Atlantic Basin. A total of 17 events affected islands in the 

Caribbean, while 242 events occurred along the U.S Gulf Coast. Out of a total of 110 

events that impacted the U.S. Atlantic Coast, 22% occurred along the coastline from 

Virginia to Maine (Needham et al., 2015). The Northeast US is characterized by low-

frequency and high-impact events. Cyclones affecting the Northeast US have been some 
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of the most destructive, partly due to their impact in densely populated areas in low laying 

coastal regions (Hallegatte et al., 2013; Klotzbach et al., 2018; Yin et al., 2016).  

A classic and historical example of a high-impact event in the Northeast US is that of 

Hurricane Sandy, which made landfall in Brigantine, New Jersey (NJ) on October 2012. 

Hurricane Sandy ranks as the fourth costliest TC to impact the US (NCEI, 2018)- most of 

the damages being attributed to the magnitude of the storm surge impacts (Neumann et 

al., 2015). Hurricane Sandy caused major disruptions in transportation and long-term 

damages to the housing market. It caused unprecedented storm surges in NJ and NY, 

between 3 and 4 m above mean sea level (Blake et al., 2013; Reed et al., 2015). While 

other factors were involved in generating such impacts (e.g. storm size), much of the 

damages are attributed to Hurricane Sandy’s rare near-perpendicular angle of landfall 

relative to the NJ coast. While the return period of a TC with a track similar to that of 

Hurricane Sandy’s is estimated to be more that 700 years (Hall & Sobel, 2013), the 

damages it produced reflected the magnitude of the impacts this type of track can have, 

emphasizing the need to study and assess a wider range of possible TC scenarios. 

Hurricane Sandy served as an example of how a combination of different factors, 

including TC characteristics and impact area, can amount to such extensive damages, 

prompting the need to further understand and quantify the sensitivity of storm surge to 

TC parameters and atmospheric forcing in general.  

This research is motivated by the impacts of extreme TC and storm surge events on 

communities, and our goal of mitigating the risk from these natural threats. Hazards 

associated with TCs, including but not limited to coastal flooding from storm surge, have 
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a virtually incalculable impact on people’s quality of life, that transcends the physical 

aspects of these natural phenomena. From a socio-economic perspective, in the 

aftermath of these events there is a general loss of essential services, with disruptions in 

the education, transportation, communication and health services. Additionally, these 

events have long-lasting impacts on people’s mental health. In the aftermath of major 

cyclones, there is an increased risk for posttraumatic stress disorder, anxiety and 

depression (Scaramutti et al., 2019), which challenges people’s ability to cope and adapt 

to other natural events. 

In this work, we focus on the physical aspects of TC-induced storm surge to contribute 

to the improvement of storm surge forecasting, as a step toward making coastal 

communities more resilient to TCs and the associated flood hazard.  

1.2 Background  

Atmospheric forcing is the primary driver of storm surge (Dietrich et al., 2017; Lakshmi 

et al., 2017), and it is one the main sources of uncertainties in storm surge modeling 

(Gonzalez et al., 2019; Mayo & Lin, 2019). Previous studies have examined the sensitivity 

of storm surge to cyclone intensity, size, forward speed and location (Hussain et al., 2017; 

Irish et al., 2008; Thomas et al., 2019). Weisberg and Zheng (2006) studied the impact of 

various storm parameters on storm surge in Tampa Bay and found that storm surge 

heights increased in proportion to the cyclone wind speed. Peak storm surge was found 

to increase proportionally with storm size (as given by the radius of maximum winds, Rmax) 

for a set of synthetic cyclones simulated in the Gulf of Mexico (Irish et al., 2008).  
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While the relationship between storm surge and some of the storm parameters are 

more straightforward to determine, others such as the effect of storm translational speed 

and angle of landfall on storm surge have proven to be more complicated and difficult to 

assess. Rego and Li (2009) conducted a case-study of Hurricane Rita in the Gulf of Mexico 

and found that increasing translational speed increased peak surge by about 7%, but 

decreased the flooding volume. Comparably, Thomas et al. (2019) found that faster 

cyclones were responsible for producing higher storm surge along the open coast but less 

flooding. Hussain et al. (2017) found different regimes when assessing the impact of 

storm translational speed on storm surge while relating to the radius of maximum winds. 

They found this relationship to differ depending on whether the location assessed is 

outside or within the Rmax, with increasing translation speed producing lower surge 

heights within the storm’s Rmax and higher surge heights beyond the Rmax.  

The sensitivity of storm surge to landfall angle around New York City has been 

assessed in various studies (Galarneau et al., 2013; Gurumurthy et al., 2019; Lin et al., 

2010). Their results indicate that for New York City, specifically at the Battery station, the 

optimal wind direction for maximum storm surge is generally southeasterly. Some of 

these studies were limited by the model capability and the neglect of spatial variations in 

storm surge and inland flood assessment, which are necessary to accurately account for 

the impact and risk from different TCs. 

These storm surge assessments and sensitivity studies are often conducted with 

numerical storm surge models. Atmospheric forcing in these models is provided in the 

form of surface pressure and surface wind fields from various sources and configurations. 
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These can include the use of cyclone track-based data implemented in parametric vortex 

models to represent TC winds, as well as the use 3D full-physics atmospheric models. Each 

model presents their own strengths and limitations. There is often a trade-off between 

model efficiency and their predictive skill and accuracy. Parametric vortex models use a 

simple set of TC parameters, including the cyclone location, maximum wind speed, 

minimum pressure, and translation speed, to derive the TC wind field. As such, the use of 

parametric models enables timely storm surge predictions at the expense of less accuracy 

in the TC wind field, in contrast to what can be achieved with numerical weather 

prediction models.  

More recently, data-driven methods, including machine learning methods such as 

artificial neural networks (ANNs), have been implemented for forecasting storm surge. 

ANNs rely on historical or simulated TC datasets to learn the relationships between the 

atmospheric forcing parameters and the resulting storm surge, enabling them to make 

predictions of storm surge outcomes based on a given set of input parameters.  

Sensitivity studies are further constraint by the limited TC and storm surge historical 

records. Due to the length limitations of the historical TC record, additional methods have 

been developed to simulate possible storm tracks or synthetic cyclones. The use of these 

models in simulating synthetic cyclones, linked with hydrodynamic models, facilitates the 

studies of different hurricane scenarios and their expected storm surge impact.  

1.3 Objectives 

Recent major TC-induced storm surge events have revolutionized storm surge studies 

and prompted the need for improved storm surge forecasts. Improvement of storm surge 
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forecasts can be achieved by consideration of: (i) the advancement and understanding of 

model coupling (e.g. atmospheric, hydrodynamics and hydrological components), (ii) a 

comprehensive understanding of the sensitivity of storm surge to different cyclone 

characteristics, and (iii) the availability of timely and accurate water level forecasts. This 

study is guided and motivated by these areas of improvement in storm surge assessment 

and forecasting. The overarching goal of this study is to contribute to the improvement 

of storm surge forecasts and risk reduction from this hazard by understanding the role of 

atmospheric forcing on storm surge, from a physical and modeling standpoint. From the 

modeling standpoint, the approach is to determine how different model configurations 

affect storm surge and identify optimal modeling practices for storm surge assessment. 

From the physical stance the objective is to gain a better intuition into the relation 

between the atmospheric drivers of storm surge and the resulting impact to determine 

how different TC parameters modulate storm surge.  

The field of storm surge studies is moving towards integrating multiple storm hazards 

by building a comprehensive model for storm surge assessment that includes fully-

coupled atmospheric, hydrodynamic, hydraulic and hydrological models. Model coupling 

presents a challenge as multiple processes run at different spatial and temporal scales 

(Elko et al., 2019). A step in this direction is to understand how each of these components 

interact with each other and the modeling limitations for each of the interactions. In 

Chapter 2, we addressed the need for improved understanding of model coupling 

between the atmospheric and hydrodynamic components. We compared the use of 

different wind field models as atmospheric forcing to the hydrodynamic model. 
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Additionally, we evaluated the sensitivity of the atmospheric model resolution in 

accurately depicting storm surge spatial patterns. Quantifying the spatial resolution 

needed for accurate and timely forecasts is identified as one of the top research priorities 

in improving storm surge forecasting methods (Elko et al., 2019). Our aim is to understand 

the model limitations and determine an accurate coupled-model configuration that can 

be employed for storm surge assessment. 

 The need for a comprehensive understanding of the underlying processes 

contributing to the storm surge impact is addressed in Chapter 3. We implemented a 

newly developed atmospheric model that allows us to simulate synthetic cyclones, 

addressing the limitations imposed by the historical record. Our approach is to simulate 

a wider range of TC scenarios that will allow us to assess variations of storm surge 

magnitude, spatial distribution and inland flooding as a function of cyclone landfall angle. 

We designed a modeling framework that can be applied for other physical problems and 

to other regions. For example, the regional atmospheric circulation during storm surge 

events has been shown to be linked to the magnitude of the surge impact (Catalano & 

Broccoli, 2018; Montreuil et al., 2016). Different environmental and climatic conditions 

lead to different magnitudes of storm surge impact. The framework presented can be 

applied to explore and test these mechanisms, including the expected changes due to 

projected climate conditions. 

Chapter 4 presents the implementation of an ANN in producing accurate and timely 

water level predictions. Data from the ensemble of synthetic cyclones generated in 

Chapter 3 was used to inform the neural network model of the relationship between 
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different TC characteristics and storm surge. Our aim in implementing an ANN is to build 

a model capable of producing timely and accurate results, that in addition can provide 

information on the degree of sensitivity of storm surge to various cyclone parameters. In 

Chapter 5, we present a summary of the methodologies implemented and the key 

findings of this work.  
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CHAPTER 2. SIMULATING STORM SURGE IMPACTS WITH A COUPLED ATMOSPHERE-

INUNDATION MODEL WITH VARYING METEOROLOGICAL FORCING 

2.1 Abstract 

Storm surge events have the potential to cause devastating damage to coastal 

communities. The magnitude of their impacts highlights the need for increased accuracy 

and real-time forecasting and predictability of storm surge. In this study, we assess two 

meteorological forcing configurations to hindcast the storm surge of Hurricane Sandy, and 

ultimately support the improvement of storm surge forecasts. The Weather Research and 

Forecasting (WRF) model is coupled to the Advanced CIRCulation Model (ADCIRC) to 

determine water elevations. We perform four coupled simulations and compare storm 

surge estimates resulting from the use of a parametric vortex model and a full-physics 

atmospheric model. One simulation is forced with track-based meteorological data 

calculated from WRF, while three simulations are forced with the full wind and pressure 

field outputs from WRF simulations of varying resolutions. Experiments were compared 

to an ADCIRC simulation forced by National Hurricane Center best track data, as well as 

to station observations. Our results indicated that given accurate meteorological best 

track data, a parametric vortex model can accurately forecast maximum water elevations, 

improving upon the use of a full-physics coupled atmospheric-surge model. In the 

absence of a best track, atmospheric forcing in the form of full wind and pressure field.  

2.2 Introduction  

Tropical cyclones (TCs), and their associated storm surge, are some of the most 

damaging natural phenomena (Smith & Katz, 2013). The magnitude of the resulting storm 
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surge is dependent on geographical and bathymetric features, as well as TC characteristics 

including intensity, size, translational speed, and the direction in which the TC approaches 

the coast at landfall. The lack of availability of observations and accuracy of these 

properties prior to landfall, and the limitations in the characterization of the TC wind 

structure prove a challenge for real-time forecasting of storm surge impacts. When trying 

to understand how storm surge impacts will affect coastal regions, it is imperative to have 

a clear understanding of the factors that have influenced storm surge estimates in the 

past. Yet, as is the case with TCs, historical data on storm surge events is limited (Resio & 

Westerink, 2008). 

Based on a recent review on TC induced storm surges, maximum water level data 

is available for 389 TCs in the western North Atlantic Basin, with 17 events on Caribbean 

Islands, 242 events along the U.S Gulf Coast and 110 events along the U.S. Atlantic Coast 

(Needham et al., 2015). Only 22% of the events observed along the U.S Atlantic Coast 

occurred along the coastline from Virginia to Maine (Needham et al., 2015). Some of these 

TC and extratropical cyclone (ETC) induced storm surge events have been highly 

destructive, partly because their landfall location has been around densely populated 

areas in states such as New York (NY) and New Jersey (NJ) (Klotzbach et al., 2018). In this 

study, we considered one of such events as a case study. Hurricane Sandy is a TC known 

for its unique development and track, as well as the magnitude of the damages it caused. 

Despite being a unique case, Hurricane Sandy is an example of the vast impact TCs can 

have, and how a combination of factors can amount to such extensive damages (Colle et 

al., 2015). As such, Hurricane Sandy is chosen as our case of interest. 
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Hurricane Sandy is now ranked as the fourth costliest storm to impact the US 

(NCEI, 2018). The damages produced were primarily caused by the large extent of the TC’s 

wind field (Blake et al., 2013), the near perpendicular landfall angle (Hall & Sobel, 2013), 

and the consequent storm surge produced by the combination of these factors. The storm 

surge observed reached up to 3.85 m above normal tide level at Kings Point, NY, USA 

(Barnes et al., 2013; Blake et al., 2013). Moreover, having reached unprecedented storm 

surge heights, Hurricane Sandy tested the resilience of the NJ and NY coastal 

infrastructure to storm surge. Events such as Hurricane Sandy highlight the importance of 

understanding the physical processes behind storm surge and improving modeling 

techniques, and as such, this remains an active topic of research. 

Atmospheric forcing is the principal driver of storm surge (Dietrich et al., 2017; 

Lakshmi et al., 2017). In storm surge models, atmospheric forcing is provided in the form 

of surface pressure and near-surface wind fields from various sources and configurations. 

These can include the use of cyclone track-based data implemented in parametric vortex 

models, as well as the use of wind reanalysis products and 3D atmospheric models.  

Parametric vortex models use a simple set of storm parameters to represent the 

wind and pressure fields. These models range in complexity in their representation of the 

TC wind field, which can be represented as a simple symmetric vortex (Holland, 1980) or 

can more accurately describe the wind field by accounting for wind asymmetries (Gao et 

al., 2013; Mattocks et al., 2006). Some storm surge models such as the Sea, Lake and 

Overland Surges from Hurricanes (SLOSH) allow for the use of symmetric vortex models, 

with spatially constant radius of maximum wind (Rmax), to characterize the TC wind field 
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for a given track dataset. However, a recent study comparing multiple meteorological 

forcing for the case of Hurricane Rita found that due to uncertainties in the wind field, an 

asymmetric model outperforms the symmetric model in forecasting storm surge (Akbar 

et al., 2017).  

The parameters needed for implementation in the parametric vortex model 

include the storm location, minimum central pressure, maximum wind velocity and radius 

of maximum winds (Dietrich et al., 2017; Lakshmi et al., 2017). These parameters are 

available as part of the National Hurricane Center (NHC) forecast advisories issued every 

6 h throughout the storm’s lifetime. The availability of these storm parameters and   the 

computational efficiency of parametric vortex models provide for timely storm surge 

forecasts. As such, the use of parametric vortex models is suitable for real-time 

forecasting of storm surge. However, these models are a simplification of the TC wind 

field and fail to capture important dynamic processes such as weakening and distortion 

of the TC wind field after interaction with topography. Full physics atmospheric models 

can more accurately represent these processes and interactions in the TC wind field and 

have been used for storm surge assessment. As storm surge modeling shifts into real-time 

coupling of inundation and full-physics atmospheric models, it becomes relevant to study 

and evaluate the coupled model performance in predicting storm surge. Understanding 

of the limitations of these coupled systems will contribute to further development in the 

field. 

Recent studies have researched the effect of using various meteorological forcing 

for storm surge or wave assessment. Akbar et al. (2017) performed a hindcast of 



 

 

16 

Hurricane Rita to study the effect of varying wind fields on storm surge estimates, 

including meteorological forcing from the National Oceanic and Atmospheric 

Administration (NOAA)/Hurricane Research Division’s (HRD) Real-time Hurricane Wind 

Analysis System (HWIND; Powell et al., 1998), the Dynamic Holland Model (Holland, 

1980), and the Asymmetric Holland Model (Mattocks et al., 2006). Results from the study 

indicate that HWIND performed better than both the Dynamic and Asymmetric Holland 

Models. The sensitivity of storm surge to different meteorological forcing types for the 

case of Hurricane Isaac (2012) in the Gulf of Mexico has also been studied. Dietrich et al. 

(2017) showed that provided availability of accurate forecast advisories, in a hindcast 

scenario, a parametric vortex model results in reasonable storm surge estimates. Bennett 

and Mulligan (2017) compared the effect of wind fields from two parametric models and 

a 3D atmospheric model on the generation of surface waves by Hurricane Sandy and 

concluded that the 3D atmospheric model, which has the best description of the storm 

wind field, is most suitable for their assessment. 

Studies comparing different atmospheric forcing make use of NHC forecast 

advisories or NHC-BT datasets in their parametric vortex model implementations, and 

compare them to storm surge forecasts forced by full-physics atmospheric models or 

wind reanalysis products (e.g., Akbar et al. (2017), Dietrich et al. (2017) and Bennett and 

Mulligan (2017)). That is, the comparisons are not exclusive of atmospheric forcing 

method but also account for accuracy of the data used. In this study, we perform similar 

comparisons but aim to isolate the effectiveness of using a parametric vortex model in 

contrast to a full-physics atmospheric model. To achieve this, we explore the use of a 
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single dataset produced by an atmospheric model and format the output according to the 

forcing method of interest. The surface pressure and near-surface wind fields from an 

atmospheric model are directly implemented as atmospheric forcing. In addition, we 

process the output of the atmospheric model to obtain a track file similar to the NHC-BT 

and implement it using the Generalized Asymmetric Holland Model (GAHM; Gao et al., 

2013) described in Section 2.3.2. This method allows us to perform a more direct 

comparison between both atmospheric forcing configurations. The methodology of 

extracting a track dataset from a full-physics atmospheric model highlights an alternative 

way of incorporating these models for hindcasting and real-time forecasting purposes. 

The model configurations, model coupling details and an overview of the 

simulations performed are described in Section 2.3. Results from the control simulation 

and the coupled model simulations are described in Section 2.4. The implications and 

limitations of the study are discussed in Section 2.5. Finally, conclusions are provided in 

Section 2.6. 

2.3 Material and Methods 

2.3.1 WRF Model Configuration 

Sixty-hour simulations of Hurricane Sandy, initialized at 0000 UTC on 28 October 

2012, were performed using the Weather Research and Forecasting (WRF) model 

(Skamarock et al., 2008) version 3.8. Simulations initialized prior to this time result in 

significant storm track error at landfall. Similar results were reported in Galarneau et al. 

(2013), where simulations of Hurricane Sandy initialized at 0000 UTC 23–27 October 

showed substantial track error at landfall. The spread of landfall locations extended 
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between the Maryland/Delaware coast to the northern NJ and NY coastal area. 

Simulations were made using (i) a 12-km horizontal resolution domain that covered the 

western North Atlantic Ocean basin and the eastern US, (ii) a 4-km horizontal resolution 

domain with the same outer extent, and (iii) a two-way nested configuration with a 12-

km horizontal resolution outer domain and a smaller, vortex following nest of 4 km. The 

simulations ran with 38 vertical levels and a model top at 50 mb. To allow for model 

stabilization and adjustment in the 12-4 km vortex-following simulation, the nested 

domain was prescribed to start tracking the vortex after 1 h of the simulation start time. 

Initial and boundary conditions were provided by the European Centre for 

Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis data (ECMWF, 2009) 

and were updated every 6 h. The physical parameterizations implemented were those 

used by the National Center for Atmospheric Research’s real-time hurricane simulations 

for domains comparable to the 12- and 4-km resolution used in this study. The 

parameterization schemes used include (Table 2-1): WRF Single-moment 6-class 

microphysics scheme (Hong & Lim, 2006), Yonsei University boundary layer scheme (Hong 

et al., 2006), Tiedke cumulus parameterization (Tiedtke, 1989), RRTMG for shortwave and 

longwave radiation parameterization (Iacono et al., 2008), and the NOAH land surface 

model (Chen & Dudhia, 2001). The simulation was initialized with sea surface 

temperature (SST) values from ERA-Interim for 28 October 2012 0000 UTC and was not 

updated throughout the simulation. The SST profile varied spatially but not temporally. 

Observed SST along the storm track remained approximately constant at around 25 C until 
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Sandy moved away from the Gulf Stream and towards the NJ coast and encountered 

cooler waters. 

Table 2-1. Model configuration for Hurricane Sandy WRF 12-4km, WRF 12km and WRF 
4km simulations. 

 

The simulated cyclone track data, including the location, maximum wind speed 

and minimum pressure of the storm were directly output from WRF and used for model 

evaluation. 

2.3.2 ADCIRC Model Description and Atmospheric Forcing Configuration 

To hindcast the storm surge from Hurricane Sandy, WRF output was used as 

forcing for the two-dimensional depth integrated (2DDI) implementation of the ADCIRC 

hydrodynamic model (Luettich & Westerink, 2004; Luettich et al., 1992). ADCIRC has been 

used for various storm surge impact studies for cases in the Gulf of Mexico (Dietrich et 

al., 2010; Dietrich et al., 2017; Forbes et al., 2010; Fossell et al., 2017), along the eastern 

US coast (Lin et al., 2010) and more specifically for the NJ and NY coastal region (Cialone 

et al., 2017; Colle et al., 2015; Colle et al., 2008; Lin et al., 2010; Yin et al., 2016). ADCIRC 

uses a finite element unstructured triangular grid allowing for higher resolution near the 

coast and coarser resolution in the deep ocean. In this study, simulations were performed 



 

 

20 

on a grid developed by the Federal Emergency Management Agency (FEMA) as part of 

the Region II Coastal Storm Surge Study (FEMA, 2014). The mesh domain of the FEMA grid 

is shown in Figure 2-1 and includes the U.S. Atlantic Coast, the Gulf of Mexico, and the 

Caribbean with higher resolution along the NJ and NY coastlines (inland spacing 80–500 

m; 30 m in limited areas). This mesh was originally used for the case of Hurricane Sandy 

and has since been implemented in storm surge modeling studies for this case as well as 

other tropical and extratropical systems (Orton et al., 2015; Yin et al., 2016). Details of 

the model configuration are described in Table 2-2. 

Tides-only simulations were performed and initialized 10 days prior to the first 

time-record in the NHC-BT (23 October 0000 UTC) for the control simulation, and prior to 

the WRF initialization time (28 October 0000 UTC) for the WRF-ADCIRC simulations. This 

time difference results from a delayed initialization of the WRF simulations. Recall that 

for our case study, WRF simulations initialized earlier than 28 October 0000 UTC resulted 

in large track errors at landfall (Section 2.3.1). All simulations were forced with 7 tidal 

constituents: M2, N2, K2, S2, K1, O1, Q1 along the open boundary. 

After the tides-only simulations, five 60 h simulations with meteorological forcing 

were carried out. The control ADCIRC simulation (CTL) was conducted with forcing 

provided from the 6-hourly NHC-BT data for Hurricane Sandy. Atmospheric forcing for CTL 

was implemented with the GAHM parametric model. Given that the NHC-BT dataset is a 

post-storm analysis, CTL estimates of water elevation are considered the closest to truth 

or observed values. 
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The CTL experiment was followed by four WRF-ADCIRC simulations. The four WRF-

ADCIRC simulations are characterized as follows (Table 2-3): (i) forcing with hourly 

Simulated Cyclone Track (SCT) data from the outer domain of the two-way nested WRF 

12-4 km simulation (SCT12-4), (ii) forcing with 3 h Full Wind and Pressure fields (FWP) 

from the WRF 12-4 km simulation (FWP12-4), (iii) forcing with 3 h full wind and pressure 

fields from the WRF 12 km simulation (FWP12), and (iv) forcing with 3 h full wind and 

pressure fields from the WRF 4-km simulation (FWP4). 

 

Figure 2-1. (a) Advanced Circulation Model (ADCIRC) finite element unstructured mesh 

used for the Federal Emergency Management Agency (FEMA) Region II Coastal Surge 

Study (FEMA, 2014). The mesh has been designed with higher resolution along the 

Hudson Bay, NJ, and NY coastal regions. The mesh has 604,790 nodes; (b) Zoom in for the 

white box in (a) of the NJ and NY coastline. Raritan Bay, Delaware Bay and Long Island 

Sound bays are identified. 
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Table 2-2. ADCIRC model configuration parameters. 

 

Table 2-3. Description of meteorological forcing for each coupled simulation.  

 

The SCT12-4 simulation is comparable to the CTL simulation but includes a 

different atmospheric forcing source. The SCT12-4 simulation is forced with cyclone track 

data obtained from the 12-4 km nested WRF simulation, for which the forcing is applied 

through a parametric vortex model. Prior to implementing the track-based 

meteorological forcing into ADCIRC, WRF data is processed to recalculate track data. In 

addition, wind structure information is calculated since the WRF model output does not 

explicitly contain this information. Wind structure data obtained from post-processing 

include the radius of maximum winds (Rmax) and the wind radii for the 34-, 50- and 64-

kt isotachs. Wind radii for each isotach is obtained by calculating the weighted average 

with respect to the diagonal in each of the quadrants. 
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Since TCs often exhibit asymmetries in their structure, in this study, we use the 

implementation of ADCIRC which allows the use of an asymmetric model to characterize 

the wind field in the CTL and SCT12-4 simulations. The model used is the GAHM, which is 

an adaptation from the asymmetric Holland model (Holland, 1980) but modified to use 

information from all available isotachs. Wind structure information includes the radius of 

maximum winds for the 34-, 50- and 64-kt isotachs. Gao et al. (2013) and Dietrich et al. 

(2017), provide a comprehensive description of the parametric vortex model 

implementation. In the following we provide an overview of the atmospheric forcing 

implementation. GAHM, built-in within ADCIRC, is used to model the TC wind and 

pressure fields. It calculates the wind velocity and surface pressure at each mesh node, 

directly coupling to ADCIRC. GAHM is designed to fit multiple isotachs in each of the four 

storm quadrants and as such produces a hurricane vortex with spatially varying Rmax 

(Gao et al., 2013). The use of multiple isotachs provides for a better representation of the 

full wind field and of the TC wind field asymmetries. 

The three remaining simulations (FWP12-4, FWP12, and FWP4) are forced with 

the 10 m wind and surface pressure field outputs from WRF simulations. The wind and 

atmospheric pressure fields are spatially interpolated onto the ADCIRC model domain and 

temporally interpolated to correspond with the model time step. 

2.4 Results 

The WRF-ADCIRC simulations were compared to CTL, and to water elevation 

observations at various stations. The FWP12-4 simulation was directly compared to 

SCT12-4 to determine differences arising from the use of varying meteorological forcing 
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methods. Finally, a sensitivity test based on model resolution was performed for the 

simulations forced with the full-physics atmospheric model. 

2.4.1 WRF Model Evaluation 

Prior to the WRF-ADCIRC coupling the accuracy of the simulated TC was evaluated. 

Evaluation of the WRF model simulations were performed by comparing the track and 

intensity of the simulated storms with data from the NHC-BT dataset. The discussion will 

be focused mainly on the WRF 12-4 km simulation, except in situations that warrant 

further analysis. 

The two-way nested WRF 12-4 km model simulation proved skillful in predicting 

the observed track and landfall location. At the time of initialization, the simulated storm 

track was located about 46 km to the right of the observed BT location (Figure 2-2). The 

track error increased to a maximum of about 110 km, with the simulated track shifting to 

the left of the observed location on 29 October 0600 UTC. The track then followed the 

same trend as the NHC-BT observations and took Hurricane Sandy’s characteristic 

Northwest turn towards the NJ coast. After 29 October 1600 UTC, the track error was 

reduced to about 32 km. The simulated storm remained to the left of the observed track 

and made landfall south of Brigantine, NJ, USA with a track error at the time of landfall at 

2330 UTC on 29 October of 21.5 km (Figure 2-2). 

In terms of the minimum sea level pressure at landfall, the simulated hurricane 

was only fractionally weaker (3.6 mb) than the observed. The lifetime minimum pressure 

obtained by our simulation was 948.5 mb at 0000 UTC 30 October, while the observed 

hurricane reached a minimum pressure of 940 mb at 1800 UTC 29 October. The slightly 
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weaker nature of the simulated storm is evident when comparing the maximum winds 

(Figure 2-3). The maximum wind of the simulated storm at landfall was 4.48 ms-1 less than 

observations, but the error is still within the range of NHC’s annual average intensity error 

for a 48 h forecast of about 5.45 ms-1 (10.6 kts per 2016 standards; Cangialosi & Franklin, 

2017). Despite the weaker maximum wind at landfall, our simulation reached the 

secondary intensity peak of 43.5 ms-1 which nearly matches the observed maximum of 44 

ms-1. The simulated storm reached its maximum early at 0600 UTC on 29 October, which 

is approximately 6 h prior to the observed peak for Hurricane Sandy. 

 

Figure 2-2. The Weather Research and Forecasting (WRF) model 12-4 km simulated 

hurricane Sandy track (black) initialized on 28 October 0000 UTC compared to National 

Hurricane Center (NHC) best track data (red). The simulated storm makes landfall on 30 

October at 0000 UTC about 20 km south of hurricane Sandy’s landfall location near 

Brigantine, NJ, USA. Track information is provided every 6 h. Insert: zoom in view of 

cyclone landfall location with track information provided every 3 h. 
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Figure 2-3. Cyclone wind speed from NHC best track (dashed black line); WRF 12 km 

simulation (blue); and WRF 12-4 km simulation (green). 

The single-nested WRF 12 km simulation on the other hand, followed the general 

observed track but showed signs of instability along the track, prior to recurving to the 

left (Figure 2-4). The track error is less than that of the WRF 12-4 km simulation in the 

hours prior to landfall but increases to about 37 km as it approaches the coast and makes 

landfall north of the observed location. The WRF 12 km simulated TC was in general 

weaker than the WRF 12-4 km. In this case, the lifetime minimum pressure occurring near 

landfall on 30 October 0100 UTC, was 949.8 mb. The storm also reached a maximum 

intensity of 43.1 ms-1 on 29 October at 0600 UTC. As shown in Figure 2-3, the storm starts 

with a lower intensity than the WRF 12-4 km simulated TC, remaining as such for the 

entire simulation until reaching peak intensity and weakening faster than the former after 

landfall. 
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Figure 2-4. Same as Figure 2-2 except track is presented for the WRF 12 km simulation. 

Wind patterns and minimum pressure estimates were further explored for the 

WRF 12-4 km simulation by comparing observations from the NOAA National Data Buoy 

Center buoys and weather stations along the coast of NJ and NY to the WRF simulations 

(http://www.ndbc.noaa.gov/). Nevertheless, the comparisons provide additional insight 

into the WRF 12-4 km simulated wind and pressure field patterns. Unlike many stations 

in the vicinity, the New York Harbor Entrance Station recorded wind and pressure data 

throughout the entire analysis period (Figure 2-5f). The simulated pressure pattern 

matched well with observations and accurately captured the pressure drop at the buoy, 

with a significant correlation coefficient of 0.995. The simulated wind patterns followed 

the same general behavior as the observed winds, although the simulated winds appear 

to be slightly overestimated at this station (correlation of 0.952). Other stations examined 

followed a similar pattern of significant correlation between pressure and wind estimates. 

Minimum pressure was well simulated in all stations (Figure 2-5). Wind speed time series 
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for the Cape May, NJ and Kings Point, NY stations (Figure 2-5d–e) showed more 

discrepancies. In these stations the simulated winds are overestimated, however the peak 

wind speed is accurately captured in the Cape May station. 

For storm surge assessment, it is important that the atmospheric simulations can 

reproduce the structure and location of maximum intensity observed for TCs, but more 

so it requires that the overall wind fields are accurately depicted (i.e., extent and 

asymmetries). We compared the wind field from the HWIND product for various forecast 

times before and during landfall to the WRF 12-4 km simulation. We determined that the 

WRF 12-4 km simulation could capture the main features in structure and intensity 

observed for Hurricane Sandy, with maximum wind intensities both on the left and right 

side of the track, characteristic of extratropical cyclones. Our comparison shows that at 

2100 UTC 29 October, 2 h prior to landfall, the model simulation reproduced the 

annular/semi-annular structure of the TC, as well as the location and intensity of the 

maximum winds in the lower TC quadrants (Figure 2-6). After landfall at 0000 UTC 30 

October, the model simulation was also able to capture the weakening and dissipation of 

the TC as it started losing definition of its structure when interacting with land and 

topography. 
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Figure 2-5. Comparison of WRF 12-4 km simulated minimum pressure (top) and maximum 

wind (bottom) estimates with station observations for (a) Atlantic City, NJ, (b) The Battery, 

NY, (c) Bergen Point, NY, (d) Cape May, NJ, (e) Kings Point, NY and (f) New York Harbor 

Entrance, NY stations. 
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Figure 2-6. Wind field analysis for 2100 UTC 29 October 2012 from (a) HWIND (source: 

NOAA/AOML/Hurricane Research Division); (b) WRF 12-4 km simulation. 

2.4.2 Control Storm Surge Simulation  

Figure 2-7 shows the maximum water elevation for the CTL run, where ADCIRC 

was forced with the NHC-BT data for Hurricane Sandy and implemented with the GAHM. 

The NHC-BT should have marginal track and intensity errors, and per ADCIRC model 

configuration, should be the closest representation to actual observations. In the WRF12-

4 km simulation of Hurricane Sandy strong winds prevail on both sides of the storm tracks, 

as discussed in Section 2.4.1. The maximum water elevation estimates reached the 

maximum observed storm tide (storm surge + tide) of about 4 m. High water elevations 

are observed in areas right of the storm track including the NY Harbor and Long Island 

Sound regions. Opposite results are seen to the left of the storm track, where storm surge 
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was lowest overall. Maximum water elevation estimates on the southern coast of NJ and 

in the Delaware Bay range between 1–2 m. Near Brigantine and Atlantic City water 

elevation estimates were moderate, ranging between 1.5 and 2.5 m. 

 

Figure 2-7. (a) Simulated maximum water levels above mean sea level (MSL) during the 

period of 23 October 0000 UTC through 30 October 1200 UTC for the CTL ADCIRC run 

forced with the NHC best track dataset. (b) Same as (a) except simulation is initialized on 

28 October 0000 UTC to correspond with initialization period of WRF simulations. The 

black line indicates the track of Hurricane Sandy as it made landfall in New Jersey north 

of Atlantic City. 

2.4.3 WRF Simulated Cyclone Track-Forced Storm Surge Simulation 

The WRF-ADCIRC SCT12-4 simulation results show maximum water elevation 

estimates that do not reach the maximum observed storm tide for Hurricane Sandy 

(Figure 2-8a). One of the causes to consider is the simulated TC size. On 28 October 0000 

UTC the NHC-BT data indicate that Hurricane Sandy’s 34-kt wind radii extent for the NE, 

SE, SW and NW quadrants are 480, 300, 300 and 280 nm, respectively. The 34-kt wind 
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radii calculated for SCT12-4 were generally smaller than observations, particularly in the 

NE quadrant, with a 241-, 276-, 298- and 326-nm extent for the NE, SE, SW, and NW 

quadrants, respectively. The simulated storm in SCT12-4 is smaller than was observed for 

Hurricane Sandy and is not expected to have that significant of an effect on maximum 

water elevations. 

Water elevation in the NY Harbor, Raritan Bay and Long Island Sound areas mainly 

ranged between 2 and 3 m, while estimates in the Delaware Bay were lower and ranged 

between 1 and 2 m. When compared to the CTL run, the simulated maximum elevation 

gradient resembles that of the CTL, with highest surge in the NY Harbor and Long Island 

Sound regions. However, the maximum water elevation estimate in the NY Harbor was 

largely underestimated by the SCT12-4 simulation with differences ranging between 

about 0.75 and 1.5 m (Figure 2-8b). SCT12-4 overestimates maximum water elevation in 

the Delaware Bay. Near the area of landfall in Brigantine, NJ the differences between the 

CTL and SCT12-4 are the lowest. Differences range between 0.0 and 0.5, owing to 

similarities in track and intensity between the WRF12-4 simulated storm and observations 

for Hurricane Sandy near landfall. 
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Figure 2-8. (a) Simulated maximum water levels above MSL during the period of 28 

October 0000 UTC through 30 October 1200 UTC for SCT12-4. The black line represents 

the track of the storm, which makes landfall closer to Atlantic City, south of the observed 

landfall location. (b) Difference between SCT12-4 and the control simulation. 

2.4.4 WRF Full Field-Forced Storm Surge Simulations 

One of the main features evident in the FWP12-4 simulation, is high maximum 

water elevation in Long Island Sound (Figure 2-9a), where maximum water elevations in 

this region reached up to 4 m, overestimating CTL by about 1 m. Compared to CTL, the 

FWP12-4 simulation underestimates the maximum water elevation along the NY Harbor 

and Raritan Bay areas by about 0.4–1.0 m (Figure 2-10a), as expected for a storm with 

winds between 5 and 8 m/s weaker than observations. Meanwhile it overestimates water 

elevations by about 0.4 m in the coastal region south of Atlantic City, NJ, USA. 
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Figure 2-9. Simulated maximum water levels during the period of 28 October 0000 UTC 

through 30 October 1200 UTC for (a) FWP12-4; (b) FWP12; and (c) FWP4. 

The area where the maximum water elevation ranged between 2 and 3 m is 

broader in this simulation, extending further east into the Atlantic Ocean than in the 

SCT12-4 simulation. This area of higher water elevation also extends further south along 

the NJ coastline in FWP12-4 than both the CTL and SCT12-4 simulations, pointing to a 

larger TC wind field representation in the full-physics model compared to the parametric 

wind model. Also, evident in this simulation are higher estimates along the Hudson River 

where the maximum water elevation reached above 2 m. The increased surge along the 

Hudson River is a feature that could not be captured in the previous track-forced 

simulation (SCT12-4) but is present in the CTL run. These discrepancies could point to 

significant differences in wind speed and direction along the narrow river. 
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Figure 2-10. Differences from the control simulation for the (a) FWP12-4; (b) FWP12; and 

(c) FWP4 simulations. 

The sensitivity of storm surge estimates to differences in horizontal resolution of 

the meteorological input data in the form of full wind and pressure fields were also 

explored. The FWP12 produces similar maximum water elevation estimates when 

compared to the FWP12-4. Maximum water elevation for FWP12 are generally lower than 

FWP12-4 in the New York Harbor and Long Island Sound region. When comparing FWP12 

to the CTL, differences are reduced in Long Island Sound (Figure 2-10b). A similar 

maximum elevation pattern is observed for FWP4, where maximum elevations in Long 

Island Sound compare closer to the CTL with differences around 0.3 m (Figure 2-10c). 

However, FWP4 underestimates water elevations in the NY Harbor region by 1.2–2.0 m. 

2.4.5 Inter-Comparison of Simulations with Varying Meteorological Forcing 

All simulations exhibit higher storm tide to the right of the TC track, and a lower 

storm tide estimate to the left of track. This result is expected for TCs with wind maxima 

on the right-hand side of the storm. The fact that ETCs can exhibit two regions of wind 

maximum on either side of the track has notable implications for this case. With strong 

offshore winds to the left of the track, more water is moved offshore, reducing storm 
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surge on the left side of the track. Observations, as well as all model simulations, show 

this pattern of higher storm tide along the northern NJ coast and Long Island (right of 

track), and lower estimates along the southern NJ coast (left of track). 

Figure 2-11 shows the difference in modeled maximum water elevation between 

SCT12-4 and FWP12-4. Results indicate that much of the difference observed between 

these simulations is within Long Island Sound. In this region, FWP12-4 estimates water 

elevations that are generally between 0.8 and 1.0 m above the SCT12-4 estimates. 

Meanwhile, the opposite is observed in the Delaware Bay, where SCT12-4 estimates a 

storm surge about 0.4 m higher than FWP12-4, pointing to possible differences in wind 

field extent. Overall, differences were within the 1 m range, with FWP12-4 overestimating 

maximum elevation in most of the area of study, when compared to SCT12-4. 

Nevertheless, the track-forced SCT12-4 simulation had higher correlation and lower RSME 

than the FWP12-4 simulation. 

We then compared all simulations to maximum water elevation hourly time series 

from various NOAA Tides and Currents (NOAA/NOS/CO-OPS) stations marked on Figure 

2-7. Results point to a reduction in the extent of the inundation area, as discussed in 

results from Akbar et al. (2017). Out of the seven stations considered, three stations are 

projected to be dry, one station is projected to dry after initial inundation, and 3 others 

are wet throughout the entire simulation. These three stations are discussed here and 

include Atlantic City, NJ station (ID: 8534720), The Battery, NY station (ID: 8518750) and 

Montauk, NY station (ID: 8510560). Results from the time series comparisons indicate a 

phase lag between modeled and observed data, with all WRF-ADCIRC simulations peaking 
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3–4 h prior to observations (Figure 2-12a–c). It was hypothesized that the lag in the peak 

water levels was caused by the difference in the length of the simulations. To test the 

effect of the differences in initialization time of the meteorological forcing for the case of 

Hurricane Sandy, an additional simulation was performed with the same configurations 

as CTL but beginning on 28 October 0000 UTC. The phase lag observed between the WRF-

ADCIRC simulations and the station observations of about 3–4 h, was also apparent for 

the shorter CTL simulation. However, time-series for this simulation indicate that the 

shorter time configuration causes overestimation of the maximum water elevation at all 

station locations. This overestimation is thought to be a product of abruptly adding a very 

large TC as meteorological forcing for ADCIRC (see Section 2.4.3). 

These results from the shorter CTL simulation therefore indicate sensitivity to the 

initialization time of the meteorological forcing and points to the cause of the observed 

phase shift in the WRF-ADCIRC simulations. The shorter CTL simulation was performed 

for purposes of testing, and henceforth we will only refer to the original CTL simulation 

initialized on 23 October 0000 UTC. Furthermore, hurricane Sandy was a slow-moving TC 

and the sensitivity to initialization time could be heightened by this factor, as the effect 

of the winds acting on the surface and generating surge are longer lasting for slower 

storms. It would prove interesting to examine other cases and explore this sensitivity of 

the simulated storm tracks to initialization time. 

To further understand the coupled model characteristics, we shifted all the WRF-

ADCIRC time series by 3 h (Figure 2-12d–f) so that the peak water levels would coincide 

with observations. This allowed for a better assessment of the magnitude of the water 
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level each simulation could capture. For evaluation purposes the Pearson correlation 

coefficient (p) and the root mean square error (RMSE) were calculated for each simulation 

(Table 2-4). The coefficients of correlation between shifted modeled and observed water 

level estimates ranged between 0.76 and 0.93. Although the CTL simulation 

underestimated the water elevation at all stations, the strongest correlations are 

observed for this simulation with an average across stations of 0.91. Following the CTL 

simulation, FWP12 had the highest correlation and lowest RMSE averaging to 0.82 and 

0.46 m, respectively, for all stations. Similarly, the FWP4 simulation had an average 

correlation of 0.78 and average RMSE of 0.49 m. The SCT12-4 simulation had an average 

correlation of 0.80 for all stations, and generally underestimated the water levels, 

specifically near the time of landfall. 

 

Figure 2-11. Difference in maximum water elevation between FWP12-4 and SCT12-4 (i.e., 

between track-forced simulation and the simulation forced with the full wind and 

pressure field output from WRF simulations of the same resolution). 
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Figure 2-12. Times series of all simulations including a short CTL simulation for (a) Atlantic 

City NJ station; (b) The Battery NY station; and (c) Montauk NY station. The WRF-ADCIRC 

simulation estimates have been shifted by 3 h ahead of time to correspond with the peak 

of the observed water level and are shown for (d) Atlantic City NJ station; (e) The Battery 

NY station; and (f) Montauk NY station. 
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Investigation of the wind field structure for SCT12-4 shows that the wind radii 

estimates for the 34-, 50-, and 64-kt winds in the WRF12-4 km simulation are 

underestimated in comparison to wind structure data from the NHC-BT. These results 

highlight modeled storm surge sensitivity to wind structure and radii of maximum winds. 

The use of a track dataset, such as in SCT12-4, would rely on having accurate and 

consistent wind radii estimates. We should keep in mind that the NHC-BT data set is a 

post-storm analysis that uses various observational methods for assessment and 

reanalysis. On the contrary, the tracking algorithm used in this study to obtain track and 

wind radii estimates from the WRF simulation is based solely on the WRF model output. 

The incorporation of observations, as in NHC-BT, is omitted in SCT12-4 and can thus 

contribute to the errors discussed. 

The FWP12-4 simulation usually estimated peaks that were lower in magnitude 

than both track-forced simulations: CTL and SCT12-4. However, near the time of landfall 

this pattern was altered. Although the water elevations for FWP12-4 remained lower than 

station observations, this simulation was able to capture the observed peak better than 

the SCT12-4 in all three stations (Figure 2-12d–f). Consideration should be given to the 

WRF 12-4 km simulation configuration. Near the time of landfall, the high-resolution 

vortex following nest (4 km) is positioned over the region where the stations are located. 

This pattern and the unexpected result of lower error in the SCT12-4 simulation implied 

that it may be a construct of including a moving nest in the WRF simulations, and of 

possible model grid interpolation problems. This hypothesis is further validated when we 
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consider that the effect is minimized in Montauk station, which is the farthest station 

from the center of the TC and of the high-resolution domain. 

Table 2-4. Statistics for water elevation of each simulation. 

 

Figure 2-13 shows the wind vector output from ADCIRC for the CTL, SCT12-4, 

FWP12-4, FWP12 and FWP4 simulations for 29 October 2300 UTC. At the time of landfall, 

the CTL simulation shows the highest water level estimates in the NY Harbor among all 

five simulations (Figure 2-13a). The WRF-ADCIRC simulations exhibit lower water 

elevation estimates at landfall. In the CTL simulation, strong winds are angled 

perpendicular to the coast in the direction of the New York Harbor area. This is not the 

case for the WRF-ADCIRC simulations, where a combination of weaker northeasterly 
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winds prevails in the New York Harbor coastal region. Results in Figure 2-13 also highlight 

the discrepancy in landfall timing, where the simulated TCs in the WRF-ADCIRC 

simulations make landfall after the observed time. This effect is more pronounced for the 

FWP4 simulation as observed in Figure 2-13e. Another important result illustrated in 

Figure 2-13 is the depiction of weaker winds over land for all the WRF-ADCIRC simulations. 

This difference in the wind field structure is not observed for CTL. 
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Figure 2-13. Maximum water elevation with ADCIRC wind vector output on 29 October 

2300 UTC for (a) CTL; (b) SCT12-4; (c) FWP12-4; (d) FWP12; and (e) FWP4. The length of 

the 30 ms-1 wind vector is provided as reference. 
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2.5 Discussion 

Accurate meteorological data is a critical factor in effectively capturing storm 

surge impacts. The simulated minimum pressure and winds from the WRF simulations 

corresponded well with station observations for Hurricane Sandy. However, discrepancies 

in wind speed were seen in some meteorological stations. The station time-series analysis 

however, presented some limitations. The corresponding station locations in WRF are 

given by the closest grid point to the station, and thus our results are not precise point-

to-point comparisons. Errors in distance between the WRF station location with respect 

to their actual location ranged between 3.3 and 6.4 km for the New York Harbor Entrance 

and the Bergen Point stations. 

Much of the error in the coupled WRF-ADCIRC simulations can be attributed to 

differences in the wind representation in each of the models. In terms of the maximum 

water elevation, generally, higher values are observed in areas right of the storm track, 

as is expected for TCs given their characteristic right-of-track wind maximum pushing 

water ashore. ETCs however, as is the case for Hurricane Sandy, can exhibit wind maxima 

on both sides of the track. Given the angle at which Hurricane Sandy approached the coast 

near landfall, wind maxima to the left of the track forces more water away from the coast 

reducing the observed storm surge in the region south of landfall. This was the case for 

the WRF simulated TCs. Moreover, in the CTL simulation, as it was observed for Hurricane 

Sandy, the perpendicular direction of the winds on the right of the track, is allowing more 

water to be pushed onshore. As illustrated in Figure 2-13, this is not the case for the WRF-

ADCIRC simulations. These results motivate the need to understand what the storm surge 
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response would have been if the winds were to be weaker or stronger and directed in 

alternative angles. The response of storm surge to varying TC characteristics is the subject 

of ongoing research. 

Results from our time-series comparisons indicate a phase lag between modeled 

and observed data, with all WRF-ADCIRC simulations peaking 3–4 h prior to observations 

(Figure 2-12a–c). This result is not uncommon, and it has been shown to occur in other 

studies. For example, Colle et al. (2015), showed that in their WRF ensemble experiment, 

some members predicted peak storm surge up to 12 h too soon. In our case, the WRF 

simulations have a lag of their own with maximum winds peaking about 6 h prior to 

observations (Section 2.4.1). Part of this error is expected to propagate into the ADCIRC 

storm surge estimates. Moreover, Akbar et al. (2017) discussed the effect of bottom 

friction as another potential source of error in storm surge simulations. Their results show 

early peak arrival for simulations with decreased bottom friction parameter and the 

opposite effect for increased bottom friction. Results from the CTL simulation, forced with 

NHC-BT data, do not exhibit the shift in peak arrival. It is worth highlighting the differences 

in initialization time of the meteorological forcing between the CTL simulation and the 

WRF-ADCIRC simulations. The CTL simulation was initialized on 23 October 0000 UTC, at 

the start of the NHC-BT record. To minimize errors in the simulated storm the WRF 

simulations were initialized 5 days after on 28 October 0000 UTC, and the atmospheric 

forcing in ADCIRC thus began at that time. Although the time evolution of the storm is 

important to capture the finer storm surge details at landfall, the track errors for 

simulations initialized prior to the chosen date had a left-of-track bias, as was also found 
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by Galarneau et al. (2013). Studies have shown that for tracks that make landfall within 

150 km of the observed landfall location, storm surge forecasts can be underestimated 

by 0.5–1.0 m (Colle et al., 2015). Thus, we selected the configuration that minimized this 

error at landfall and best depicted the characteristics of Hurricane Sandy. In our 

simulations, the choice of initialization time seems to be the biggest factor influencing the 

shift in peak surge arrival. 

Based on our results, we would rank (in decreasing order) the performance of our 

models as follows: CTL, FWP12, FWP4, SCT12-4 and FWP12-4. The time-series analysis 

showed that the CTL simulation forced with NHC-BT data compared well with 

observations, indicating a suitable ADCIRC model setup. This implies that we can 

reproduce accurate storm tide estimates with the best possible meteorological data 

available using a simplified parametric model. Yin et al. (2016), found similar results in 

their storm surge assessment of Hurricane Sandy. Results showed the effectiveness of 

their simulation in accurately predicting the timing and magnitude of the peak surge. 

However, some discrepancies were observed before and after the peak surge, which they 

have attributed to the use of a simplified parametric vortex model for their wind field 

representation. 

Time-series results from the WRF-ADCIRC simulations show discrepancies when 

compared to CTL. Discrepancies were more evident at The Battery, NY station where none 

of the WRF-ADCIRC simulations could accurately capture the magnitude of the peak storm 

surge (Figure 2-12e). Colle et al. (2015), showed similar results of underestimated water 

levels for various of their WRF ensemble simulations. However, their control simulation 
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which is most comparable in terms of configuration to our FWP12-4 simulation, captured 

the peak surge at The Battery. It overestimated the observed water elevations by 0.20 m. 

An important distinction between both studies is the implementation of wave coupling in 

their assessment, which has been neglected for the purposes of this study. 

Statistical results in Table 2-4 indicate that the track-forced SCT12-4 simulation 

has a higher average correlation coefficient and lower average RMSE than the FWP12-4 

simulation. However, simulations with meteorological forcing in the form of wind and 

pressure fields from full-physics atmospheric models are assumed to contribute less error 

than track-forced simulations that make use of parametric wind models. Parametric wind 

models can have between 10% and 20% higher random error (Resio & Westerink, 2008), 

an assumption based on the fact that these do not account for details in the wind 

structure as atmospheric models do. Parametric wind models also fail to capture 

interactions with topography and TC dynamics and feedbacks, which are important in 

storm surge modeling. The FWP12 and FWP4 simulations show improvement over the 

track-based simulations, which leads us to conclude that the improvement of SCT12-4 

over FWP12-4 is a construct of including a vortex-following nest in the WRF 12-4 km 

simulation. The sensitivity of storm surge simulations to atmospheric forcing resolution 

in the FWP simulations was also investigated. When comparing the FWP simulations, 

results indicate that for our case the coarser horizontal resolution simulation (WRF 12 km) 

is sufficient to forecast storm surge estimates and there is no need for increased 

resolution. 
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Although storm surge predictions from CTL can be considered as a standard for 

the real case, the values might be an overestimate, given the lack of interaction with 

topography acting to weaken the storm. In their study, Dietrich et al. (2017) found similar 

results for simulations forced with NHC advisories and implemented within GAHM. The 

maximum wind speed for their simulation remained relatively constant at landfall and 

retained a larger wind field extent when compared to HWIND. The larger wind field 

caused higher water elevations for the track-based simulation. The weakening of winds 

caused by the interaction with land and topography, is evident in the FWP12-4 simulation, 

as shown by decreased wind speed over land in Figure 2-13c–d compared to CTL (Figure 

2-13a). The methodology of directly extracting the TC properties used by the parametric 

models from the full-physics models can, to a certain degree, reduce this limitation by 

adding to the realism and complexity of the TC wind field. Moreover, these results point 

to the utility of using full physics models for forecasting storm surge. It implicitly accounts 

for weakening of winds and distortion of the wind field by the interaction with land. 

The results of this study are not uncommon. Bennett and Mulligan (2017) found 

that a 3D atmospheric model was more suitable for hindcasting the waves of Hurricane 

Sandy when compared to the Holland Model and the GAHM. However, one noticeable 

difference to our study is their use of an atmospheric model with data assimilation. A 

similar study by Dietrich et al. (2017) highlighted the value in using parametric vortex 

models for hindcasting purposes but encouraged the use of full-physics coupled models 

for storm surge forecasting of Hurricane Isaac. Although results have been similar for 

various cases and geographic regions, the studies performed are location-dependent, 
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thus prompting the need for a systematic study of the effect in the choice of atmospheric 

forcing. 

2.6 Conclusions 

In this study, we compare four WRF-ADCIRC simulations to determine the best 

choice in meteorological forcing for storm surge studies. For real-time forecasting of 

storm surge or in the absence of a best track data set, it is important to identify a suitable 

model configuration that can provide accurate atmospheric and surge forecasts. In this 

work, we explore ways of improving this modeling framework. 

One of the simulations consisted of using track data estimated from a full-physics 

WRF 12-4 km simulation as meteorological forcing for the ADCIRC model. The GAHM was 

then implemented within the ADCIRC model to determine the wind field in the domain. 

The remaining three simulations directly used the full wind and pressure field output from 

the full-physics WRF 12-4 km, WRF 12 km and WRF 4 km simulations as meteorological 

forcing. All simulations were compared to a control run using the NHC-BT data for 

Hurricane Sandy. 

Results indicate that our initial choice of meteorological forcing for estimating 

storm surge would depend on data availability. A best track data set appears to be the 

best meteorological forcing option for our configuration of the ADCIRC model. However, 

when a best track is not available, our results would indicate that we could primarily rely 

on using full wind and pressure field output from a 12 km resolution WRF simulation. 

The results of this study have encouraged the authors to further understand the 

sensitivity of storm surge impacts to atmospheric forcing and to varying storm 
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characteristics. Ongoing research focuses on the sensitivity of storm surge to the track, 

intensity, and size of tropical cyclones in a coupled atmosphere, storm surge and wave 

modeling framework. 
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CHAPTER 3. IMPACT OF TROPICAL CYCLONE LANDFALL ANGLE ON STORM SURGE 

ALONG THE MID-ATLANTIC BIGHT 

3.1 Abstract  

Storm surge impact depends on coastal geographical and bathymetric features as 

well as various tropical cyclone characteristics including the size, intensity, and impact 

angle of the storm. Although the factors contributing to storm surge are well studied, 

uncertainties remain regarding the level of sensitivity to these parameters. This work 

seeks to contribute to the current knowledge of storm surge by studying the sensitivity 

to tropical cyclone landfall angle. We perform an ensemble of synthetic tropical cyclones 

using a newly developed modeling capability derived from the Weather Research and 

Forecasting (WRF) model, the Hybrid WRF Cyclone Model. Wind and atmospheric 

pressure field outputs from 200 synthetic cyclones are used as atmospheric forcing for 

the Advance Circulation (ADCIRC) model. We study the sensitivity of storm surge offshore 

extent and inundation to tropical cyclone impact angle. The extent of the impact area 

around the landfall location is sensitive to the cyclone landfall angle. Cyclones with tracks 

perpendicular to the coast are shown to produce the highest water levels and broadest 

inland and offshore extent. Results also indicate a heterogeneity in the sensitivity to 

landfall angle along the coast, highlighting the importance of both cyclone impact angle 

and location.  

3.2 Introduction 

Tropical cyclones (TCs) represent the most destructive atmospheric events in the 

United States (Smith & Katz, 2013). Often, the resulting TC-induced storm surge has more 
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of a destructive impact than have precipitation and winds alone. The potential damages 

due to storm surge depends on local geographic and bathymetric features, as well as on 

TC characteristics such as intensity, size, speed, and angle of landfall with respect to the 

coast. The lack of accurate meteorological observations prior to landfall makes the 

understanding, assessment, and prediction of storm surge challenging. Previous hindcast 

storm surge modeling studies (Dietrich et al., 2011a, 2011b; FEMA, 2011, 2014; Mayo & 

Lin, 2019) have provided accounts of errors from the hydrodynamic models typically used 

such as the Sea, Lake and Overland Surges from Hurricanes (SLOSH) model (Jelesnianski 

et al., 1992) and the Advanced Circulation (ADCIRC) model (Luettich & Westerink, 2004; 

Luettich et al., 1992). Mayo and Lin (2019) found that on average the SLOSH model, used 

by the National Weather Service for operational storm surge forecasting, tends to 

underestimate peak storm surge levels by 22%. For the case of Hurricane Gustav, Dietrich 

et al. (2011a) used ADCIRC and found an overall error of 0.14 m. For the New Jersey-New 

York (NJ-NY) region, average ADCIRC model peak storm surge error is found to be 0.32 m 

(FEMA, 2011, 2014b).  

An added complicating factor in assessing storm surge impacts is the limited North 

Atlantic TC and water elevation record. A recent review on TC-induced storm surge 

accounts for availability of water level data for 110 cases along the entire U. S. Atlantic 

Coast since 1880 (Needham et al., 2015). Only 22% of the 110 events occurred along the 

coastline from Virginia to Maine (Needham et al., 2015). Despite their relatively 

infrequent occurrence along the northern portion of the U.S. Atlantic Coast, these surge 

events have produced substantial damages. In particular, the NJ-NY region is 
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characterized by these low-frequency and high-impact TC and extratropical (Booth et al., 

2016; Colle et al., 2008; Lin et al., 2019; Needham et al., 2015) cyclone-induced storm 

surge events. Most notable are the Long Island Express Hurricane (1983), which produced 

storm surge of 3.0-3.5 m in Long Island (Lin et al., 2010), and more recently Hurricane 

Sandy (2012), a transitioning extratropical cyclone that tested the resilience of the NJ-NY 

coastal region with typical storm surge heights of about 3-4 m (Blake et al., 2013).  

The vulnerability of such regions highlights the need for improved understanding 

of the underlying processes contributing to storm surge impacts. Atmospheric forcing is 

a primary driver of storm surge, and it represents one of the main sources of uncertainty 

in storm surge modeling (Gonzalez et al., 2019; Kohno et al., 2018; Lin & Chavas, 2012; 

Mayo & Lin, 2019). Therefore, determining the sensitivity of storm surge to different TC 

physical parameters is an important step in increasing forecasting accuracy. Previous 

studies examined the impact on storm surge from changes in TC intensity (Weisberg & 

Zheng, 2006), size (Irish et al., 2008), forward speed (Hussain et al., 2017; Rego & Li, 2009; 

Thomas et al., 2019; Weisberg & Zheng, 2006) and location (Fossell et al., 2017; Galarneau 

et al., 2013). The relationship between storm surge and some of the storm parameters 

are more straightforward to determine, but others such as the effect of storm 

translational speed and angle of landfall on storm surge have proven to be more 

complicated and difficult to assess.  

Historically, the behavior observed along the NJ region, and more broadly along 

the eastern United States, is for cyclones to move northward along the coast (Hall and 

Sobel, 2013). However, Hurricane Sandy was an example of the possibility of storms 
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impacting land from other directions. While various factors contributed to its record-

breaking storm surge, part of the impact is attributed to its rare near-perpendicular angle 

of landfall (Hall & Sobel, 2013). As such, Hurricane Sandy put into perspective the need to 

determine storm surge sensitivity to storm track and landfall angle in the NJ-NY coastal 

region. The impact of changing a TC’s landfall angle on storm surge has not been studied 

in as much detail as other cyclone parameters. Moreover, studies specific to the NJ-NY 

region are lacking in this respect. In this study, we seek to address the uncertainty in the 

impact of TC landfall angle on storm surge in the NJ-NY coastal region.  

The model specifications, coupling details and a summary of the simulations 

performed are provided in section 3.3. Results from the atmospheric and storm surge 

ensembles are presented in section 3.4, and their implications are discussed in section 

3.5. Finally, a summary and conclusions from the study are available in section 3.6.  

3.3 Materials and Methods  

Simulations of synthetic cyclones were performed with the Hybrid Weather 

Research and Forecasting (WRF) Cyclone Model (HWMC) and used as meteorological 

forcing for the Simulating Waves Nearshore (SWAN; Booij et al., 1999) and ADCIRC 

(SWAN+ADCIRC; Dietrich et al., 2011b) coupled surge-wave model (Ramos-Valle, 2019). 

A case study of three synthetic cyclones with different landfall angles was conducted to 

examine the impact of approach angle on storm surge. The case study was expanded to 

include the analysis of a large number of synthetic cyclones along the NJ coastline. The 

synthetic cyclones were grouped into three categories, as given by the general direction 

of their tracks. The average storm surge produced by these scenarios was analyzed and 
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vulnerable coastal locations were identified. Finally, a clustering algorithm was performed 

on the storm surge model simulations for a more detailed assessment of the factors 

influencing the different storm surge responses. In the following section, the model 

techniques used for the work presented are described.  

3.3.1 HWCM Configuration 

Simulations of TCs were conducted with the HWCM; an extension of the WRF 

(Skamarock et al., 2008) model that enables the simulation of synthetic cyclones in a real-

world domain. Bruyère et al. (2019) provide an in-depth description and evaluation of the 

HWCM model setup. Here an overview of the model and its configuration to simulate 

synthetic TCs is provided. The simulation process was split into two steps as the HWCM 

makes use of both the real and idealized components of WRF (for details on the 

configuration of idealized cyclones in WRF, see Rotunno et al., 2009). To set up the HWCM 

simulations, a cyclone was spun up in an idealized configuration. This cyclone was then 

placed in a real-world domain where it could dynamically develop and propagate. 

To achieve the first step, a weak initial vortex was placed within an idealized 

atmosphere, which was defined as the 10-year average September climatology for the 

Western North Atlantic region bounded within latitudes 33°N and 41°N and longitudes -

70.0°W and -75.5°W. The initial atmospheric conditions were spatially constant 

throughout the simulation domain. The atmospheric vertical profile was constructed with 

data from the National Centers for Environmental Prediction/National Center for 

Atmospheric Research Reanalysis 1 (Kalnay et al., 1996). Low-level instabilities in the 

vertical profile (Figure 3-1) were smoothed out to ensure that the resulting environment 
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was supportive of cyclone formation and development. In practice, the background 

environment can be provided by any profile-based data set. Using a 10-year September 

climatological mean ensures a realistic environment able to sustain TC development 

throughout the length of the simulation.  

 

Figure 3-1. Atmospheric vertical profile used to characterize the environment in the ideal 

and real simulations. Values were interpolated to account for missing data at various 

pressure levels. The atmospheric temperature and dewpoint are shown in the red and 

green lines, respectively.  

The initial vortex was set up to represent a TC-like axisymmetric vortex with 

tropical depression strength (maximum wind speed of 15 m/s), outer radius of 412.5 km 

and radius of maximum winds of 150 km, based on the vortex derived by Rotunno and 

Emanuel (1987). The extent of the radius of maximum winds was increased from the 
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default value of 82.5 km to account for larger cyclones. The simulation uses a spatially 

constant Coriolis parameter of 5.0E-5 s-1, corresponding to 20°N. The TC was positioned 

in the center of the domain and spun up for a period of 12 days in the idealized domain 

with constant sea surface temperatures (SSTs) of 28°C. The horizontal resolution was set 

to 12-km. No lateral boundary conditions were needed for this step as periodic 

boundaries were used.  

Once a mature TC was established in the idealized plane, the first step in the 

simulation process was completed. As a second step, the cyclone was then placed in a 

real-world domain. As described by Bruyére et al. (2019), the real-world domain is 

characterized as a b-plane with real coastlines and topography. The real-world domain 

contained all the characteristics inherent to real simulations in WRF such as prescribed 

land mask, terrain height, land use type, and albedo. 

As in typical real-case simulations, the TC was allowed to dynamically evolve in 

response to the imposed atmospheric and sea surface conditions. The initial 

environmental conditions were similar to those used in the idealized configuration. 

Additionally, in the real-world simulations, the background wind flow was prescribed and 

set up to provide a constant flow at the boundaries. The HWCM allows for adjustment of 

the placement of the TC in the real-world domain, and of the speed and direction of the 

background wind flow. The ability to vary these properties allow for a degree of control 

of the TC landfall location, angle of landfall, and TC translation speed, while still permitting 

the TC to dynamically evolve, propagate, and interact with the surrounding environment 

and topography (Bruyère et al., 2019).  
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Four-day simulations of synthetic TCs were performed using the real simulation 

capabilities of the WRF model v3.8. The simulations were performed on a 12-km 

horizontal resolution grid (same as in the idealized simulation) and ran with 38 vertical 

levels and model top at 50 mb. The horizontal resolution used, while somewhat coarser 

than suggested to accurately capture TC intensity (Lakshmi et al., 2017; Mori et al., 2014), 

was chosen to balance the need for sufficient accuracy with our ability to simulate a large 

number of cyclones (Bruyère et al., 2019). The physical parameterizations implemented 

were previously tested on a similar domain and model configuration for the case of 

Hurricane Sandy (Ramos-Valle et al., 2018) and were used by the National Center for 

Atmospheric Research for hurricane simulations for domains of comparable horizontal 

resolution to that of 12-km used in this study (Galarneau et al., 2013). The 

parameterization schemes used include the following: WRF single-moment 6-class 

microphysics scheme (Hong & Lim, 2006), Yonsei University boundary layer scheme (Hong 

et al., 2006), Tiedtke cumulus parameterization (Tiedtke, 1989), RRTMG for shortwave 

and longwave radiation parameterization (Iacono et al., 2008), and the Noah land surface 

model (Chen & Dudhia, 2001). The SST remained time invariant and spatially uniform at 

28°C (Bruyère et al., 2019; Kimball, 2008; Li et al., 2015). As reported by Bruyère et al. 

(2019), a constant SST does not negatively impact the development of cyclones, and on 

the contrary, its effect is that of sustaining a stronger TC throughout the simulation. The 

choice of a constant SST adds the benefit for less complexity by simplifying the differences 

between the simulated TCs and allowing for a more direct comparison between 

simulations. Since a cyclone was effectively transposed from one environment to another, 
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a 2-hr digital filter initialization (Peckham et al., 2016) scheme was implemented to 

reduce initial model instabilities and allow the simulations additional spin-up time.  

Alternative approaches are available to simulate synthetic cyclones for storm 

surge applications, including the use of parametric vortex models (e.g., Dynamic Holland 

Model; Holland, 1980) and statistical-deterministic TC models (Emanuel et al., 2006; Lin 

et al., 2012). Track-based data are implemented within parametric models, which allows 

for easy manipulation of storm characteristics to study the individual impact of storm 

parameters. Various studies have compared the use of parametric models with more 

realistic wind field representations (Akbar et al., 2017; Bennett & Mulligan, 2017; Ramos-

Valle et al., 2018; Torres et al., 2018), including the use of the WRF model. Full physics 

atmospheric models have proven to be more accurate, albeit at a larger computational 

cost (Ramos-Valle et al., 2018). The use of the HWCM ensures fidelity in generating 

physically plausible storms that dynamically interact and respond to their surroundings, 

with more accurate wind field representations. Not only does the HWCM present the 

advantage of allowing a high degree of control over cyclone parameters, but it also allows 

for sensitivity studies of climate change (by variation of SST or other environmental 

factors). The methodology is applicable to other regions, facilitating sensitivity studies in 

other areas. We present the first application of the HWCM for storm surge assessment. 

3.3.2 Description of Synthetic Cyclone Simulations With the HWCM 

The HWCM allows flexibility in adjusting various parameters when placing a TC in 

the real-world domain. By solely changing the speed and direction of the background 

steering flow, as well as the initial location of the TC in the real-world domain, a range of 
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possible evolution scenarios for the same initial TC can be simulated. In this study, three 

different initial cyclones with intensities representative of Category- 2, -3, and -4 storms 

were examined. For each case, one of three parameters were varied at a time: the initial 

location of the TC in the real-world domain, the speed of the background wind flow, and 

the direction of the wind flow (Table 1).  

Table 3-3. Description of Parameters Chosen to Initialize the Real-World Simulations. 

Initial TC 
category 

Initial TC 
intensity 

(m/s) 

Initial TC location 
 

Background 
wind speed 

(m/s) 
Category 2 46 Point A: 38.7358, -68.8555 8 
Category 3 54 Point B: 36.5861, -69.5870 10 
Category 4 61 Point C: 34.9458, -73.5707 12 
 

Three points were selected as initial locations for the placement of the TCs. The 

locations of these points were chosen to allow for coverage of a large portion of the 

domain in order to simulate probable TC tracks. While the average tracks of North Atlantic 

TCs are often north-northeastward (Hall & Sobel, 2013), the choice of the initial cyclone 

location in this study promotes the simulation of cyclones from various directions and 

landfall impact angle that may not be observed in the historical records but nevertheless 

are physically plausible. It is important to highlight that these points do not represent 

cyclogenesis locations, as the TCs were fully developed by the time they were placed at 

each point in the real-world domain. Additionally, the speed of the background wind flow 

was chosen to vary between 8-, 10- and 12 m/s. All directional wind angles in 45° intervals 

were tested. The directional angle frequency was increased by 5° intervals within the 

bounds that produced landfalling TCs. Since the focus of the study is primarily on storms 
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that have a direct impact on the coast, only the TCs that made landfall along the NJ-NY 

coastline were considered. This method produced between 2 and 12 tracks for each of 

the 27 configurations.  

3.3.3 SWAN+ADCIRC Model Description and Atmospheric Forcing Configuration 

Coastal impacts from the synthetic storms were assessed by using the two-

dimensional depth integrated (2DDI) implementation of the ADCIRC hydrodynamic model 

(Luettich & Westerink, 2004; Luettich et al., 1992), coupled with the SWAN wave model 

(SWAN+ADCIRC). The SWAN model includes processes such as wave growth due to wind 

and action loss due to white capping, surf breaking, and bottom friction.  

 

Figure 3-2. (a) Depiction of the FEMA Region II mesh spacing for the NJ-NY coastal region. 

(b) Bathymetric heights along the NJ-NY coast. The location of various points of interest 

are highlighted.  

ADCIRC has been implemented for various coastal studies in the region of interest 

along the NJ-NY coastal area (Cialone et al., 2017; Colle et al., 2015; Lin et al., 2010; 
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Ramos-Valle et al., 2018; Yin et al., 2016). The ADCIRC model uses a finite element 

unstructured triangular grid allowing for higher resolution near the coast and coarser 

resolution in the deep ocean. The ADCIRC mesh is made up of elements, each of which 

contains three nodes or vertices where water heights are computed. In this study, 

simulations were performed on a grid developed by the Federal Emergency Management 

Agency (FEMA) as part of the Region II Coastal Storm Surge Study (FEMA, 2014a). Various 

studies have validated and implemented the use of this mesh to study TCs and 

extratropical cyclones (Orton et al., 2015; Ramos-Valle et al., 2018; Yin et al., 2016). The 

mesh domain contains a total of 604,790 nodes and includes the U.S. Atlantic Coast, the 

Gulf of Mexico, and the Caribbean. Increased resolution is found in areas including the 

Delaware Bay, the Hudson River Valley, New York City, and Long Island Sound (LIS) (Figure 

3-2). The mesh inland extent was constructed based on the 25-ft NAVD88 contour (FEMA, 

2014a), resulting in a broader inland extent in southern NJ and a narrower extent in 

northern NJ. The inland extent of the mesh (Figure 3-2) can be interpreted as the potential 

or maximum inundation area.  

The hourly 10-m winds and surface pressure fields obtained from the HWCM-

simulated storms were used as atmospheric forcing to the hydrodynamic and wave 

models (i.e., one-way coupling between atmospheric and oceanic components). The wind 

and atmospheric pressure fields were spatially interpolated onto the SWAN+ADCIRC 

model domain and temporally interpolated to correspond with the SWAN+ADCIRC model 

time step of 1 s. SWAN+ADCIRC have been tightly coupled to run on the same 

unstructured grid, and information passes between the two every 10-min without the 
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need for further interpolation (Dietrich et al., 2011b, 2012). SWAN is driven by wind 

speeds, water levels, and currents computed by ADCIRC after the implementation of the 

atmospheric forcing. The coupled SWAN+ADCIRC model has been tested and validated 

and has been used extensively in storm surge studies (Akbar et al., 2017; Dietrich et al., 

2012; Marsooli & Lin, 2018). While the experimental design prevents the comparison of 

simulated storm surge to observed water level, both the computational mesh and the 

coupled model setup have been previously tested (FEMA, 2014a; Ramos-Valle et al., 

2018). Moreover, uncertainties in atmospheric forcing are addressed by performing the 

HWCM ensemble of synthetic tracks.  

The bottom friction in the model is parametrized using the quadratic bottom 

friction law. The Garratt (1977) wind drag formulation was used to calculate the wind drag 

coefficient with a cap at 0.0035. The density of air was set to the model default at 1.15 

kg/m3, and the Coriolis parameter was set to vary spatially throughout the domain. For 

simplicity, and with the purpose of isolating the effect of storm landfall angle on storm 

surge, tidal forcing was not included in this study. As the synthetic cyclones are not 

associated with a specified date/time, these would occur at a random stage of a chosen 

tidal cycle. Additionally, the influence of nonlinear tidal-surge effects, which have been 

found to be large in the NJ-NY Harbor (NYH) region (Lin et al., 2010), would have had to 

be considered in the attempt of isolating the effect of landfall angle on storm surge. Tidal 

effects must be considered for real cases and in the application of the results presented 

herein. 
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The storm surge scenarios produced by coupling the HWCM ensemble of synthetic 

cyclones with the SWAN+ADCIRC modeling system were assessed. The extent of the 

inland flooding produced by the storms was estimated over the region bounded within 

latitudes 38.9°N and 41.5°N and longitudes -72.0°W and -75.7°W. The potential 

inundation area was calculated by inspecting the dry nodes in the mesh, within the 

specified bound, prior to the start of the simulation. Elements with more than two nodes 

inundated at any point throughout the simulation were accounted for in the estimate of 

the inundation area. The estimates for inundation volume were calculated by multiplying 

the average maximum water elevation within each element by the area of the element. 

The volume estimates can then be interpreted as a volume potential.  

3.4 Results 

3.4.1 Evaluation of Simulated Synthetic Tracks  

The method presented relied on the effective implementation of the HWCM 

model in simulating synthetic storms. Although an extensive validation of the HWCM is 

beyond the scope of this paper, we evaluated the use of this methodology by assessing 

whether the behavior of the synthetic tracks was a response of model internal variability 

or if it was in fact a response to the external forcing imposed.  

Figure A-1 in appendix A shows the resulting tracks from the test case for two 

HWCM synthetic storms. Details of the simulations are provided in appendix A (text A-1). 

The cyclones are subjected to the effect of the model internal variability due to the 

nonlinear nature of the system. However, the behavior observed from the synthetic 

tracks is indicative of a response that is mainly due to the external forcing imposed at the 
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lateral boundaries, which dominates the overall movement and behavior of the cyclones. 

We used this feature to create an ensemble of storms, that provide the desired spread in 

landfall locations and impact angle, which would have not been generated by solely 

exploiting the internal variability of the model.  

3.4.2 HWCM+ADCIRC Ensemble  

We performed more than 300 simulations using the HWCM during the testing 

phase of the model configuration. A total of 198 simulated tracks were chosen as a subset 

to create the ensemble of synthetic tracks (shown in Figure 3-3a). The tracks selected 

included those cyclones that made landfall at any point along the NJ-NY coastline. Even 

though an equal number of simulations were tested for each of the three initial storm 

locations, the resulting ensemble produced fewer number of landfalling synthetic tracks 

originating from the southernmost point (Point C in Table 1). These tracks are categorized 

as parallel moving tracks relative to the NJ coast and have been known historically to be 

more common than tracks moving from offshore at more slanted angles. The combination 

of TC initial location and background wind flow resulted in fewer parallel landfalling 

cyclones. The simulation resulted in 97 tracks originating from point A, 73 from point B, 

and 28 from point C.  
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Figure 3-3. (a) Synthetic cyclone tracks for the 198 TCs resulting from the HWCM 

ensemble. Synthetic cyclone tracks are shown at 6-hr intervals for 60 hr after cyclone 

placement in the real-world domain. (b) The landfall location density map is shown.  

The density map in Figure 3-3b shows the extent and ample coverage of the 

ensemble members along the entire NJ-NY coastline. The average distance between 

adjacent landfall points is 12 km.  
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Figure 3-4. Distribution of (a) wind speed (m/s), (b) minimum pressure (mb), (c) 

translation speed (m/s), and (d) radius of maximum winds (km) for the 198 HWCM 

simulated synthetic cyclones.  

The distribution of storm parameters (Figure 3-4) were examined and compared 

to the historical record. Henceforth, we identify each track by the maximum wind speed, 

minimum pressure, radius of maximum wind (Rmax), and translation speed at the time 

step prior to landfall. 

The range of TC intensities, as given by the maximum wind speed at landfall, varies 

from 26 to 46 m/s (i.e., tropical storm to Category 2 intensity). About 85% of the cases in 

the ensemble fall within the range of 33-42 m/s (i.e., Category 1). Generally, the intensity 

of TCs that make landfall in the U.S. North Atlantic Coast is rarely higher than that of a 

Category 1 storm (Marsooli & Lin, 2018). Even though the initial vortices inserted in the 
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real-world domain ranged from Category 2 to 4 intensity, the environment did not sustain 

these intensities throughout the storm’s lifetime and by landfall the storms had 

weakened to mostly Category 1 cyclones. This is an expected outcome since in addition 

to weakening at landfall, the TCs weaken as they stabilize after being transposed to the 

real-world domain. The ensemble distribution of maximum wind speed falls within the 

probability density function of maximum intensity at landfall for North Atlantic TCs, which 

peaks at around 43 m/s (Landsea et al., 2015).  

The range of translation speed in the probability density function for North 

Atlantic TCs (1989-2000) varies from 0 to 18 m/s with a peak between 4 and 6 m/s (Kaplan 

& DeMaria, 2003). The translation speed for the HWCM ensemble members is consistent 

with the North Atlantic TC record as storm motion ranges between 3 and 19 m/s, with a 

similar peak in the distribution between 6 and 8 m/s. The mean Rmax of Atlantic Basin TCs 

from 1988 to 2008 is estimated to be around 64 km with a standard deviation of 39.6 km 

(Quiring et al., 2011). The radius of maximum winds for the HWCM ensemble has a 

narrower range in the distribution (20 - 60 km) and is generally characterized by smaller 

TCs, with the majority of the storms having an Rmax within the range 30-40 km.   
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Figure 3-5. (a) Ensemble average of maximum water level. (b) Zoom in of (a) along the 

New Jersey coast. (c) Maximum water elevation forecasted at each node. (d) Zoom in of 

(c) along the New Jersey coast.  

The ensemble average maximum storm surge (Figures 3-5a and 3-5b) is above 1.5 

m in various locations along the coast including regions of southern NJ and Raritan Bay, 

highlighting these areas’ vulnerability and sensitivity to different types of storms. Extreme 

scenarios are shown in Figure 3-5c and 3-5d, where the maximum elevation per node is 

contoured. In these scenarios, some areas such as the NYH (encompassing the Upper New 

York Bay, Lower New York Bay, and Raritan Bay), LIS, Peconic Bay, and the inlets along the 

south coast of NJ experienced a maximum storm surge of over 2.5 m for given cases. 
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These areas represent high vulnerability regions with an increased likelihood of 

experiencing substantial storm surge impact.  

3.4.3 The Effect of TC Landfall Angle on Storm Surge 

3.4.3.1 A Case Study Along the Coast of NJ 

The density map of landfall locations shown in Figure 3-3b allowed us to 

determine sites where multiple TCs made landfall. We examined various cases where 

cyclones approached the selected landfall locations from various directions. Henceforth, 

the tracks are categorized according to their general direction with respect to the NJ 

coast; thus, they are based on the initial storm placement in the real world (i.e., points A-

C in Table 1). To isolate the effect of landfall angle and allow for a more direct comparison 

between the cyclones, we minimized the differences among the TC’s physical parameters. 

The TC selection process began with identifying the tracks that crossed any given location 

within a 20-km radius centered on a point of reference near the coast. From this initial 

selection, we only included the TCs that had maximum wind, translational speed and Rmax 

within ± 0.5s of the mean of all storms crossing the 20-km radius. Various points along 

the NJ coastline were examined, and similar results were found among these test cases. 

Only one of the cases is presented here (Figure 3-6a).  

The tracks chosen for this reference point intersect along the coast as they make 

landfall, approximately 23 hr after the simulation was initialized. From Figures 3-6b - 3-6d 

the similarities among the wind field structures are shown. For all three cases, the lifetime 

maximum wind speed occurred on the right-hand side of the TCs during the first forecast 

hours of the simulation. The range of maximum wind speed at landfall for the three tracks 
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is narrow, ranging between 34.5 and 35 m/s. The difference with respect to the TC 

maximum wind speed parameter mean was calculated for each of the tracks per hourly 

time step. The average difference in maximum wind speed within the first 24 hr was 0.38, 

0.43, and -0.81 m/s for the perpendicular, diagonal, and parallel tracks, respectively, while 

the actual differences fluctuated to ± 3.0 m/s close to landfall time. The estimated 

difference in maximum wind speeds began to diverge after the storm had made landfall, 

ensuring similarities between the storms up to that point. Similarities in the TC size are 

also highlighted in Figures 3-6b - 3-6d. The TCs are characterized by Rmax within the range 

of 33-37 km. The diagonal track has the highest Rmax of 37 km, while the perpendicular 

and parallel tracks both have an Rmax estimated at 33 km at landfall. The variation in 

translation speed is also subtle varying between 6.47, 7.23, and 9.15 m/s for the parallel, 

perpendicular, and diagonal tracks, respectively.  
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Figure 3-6. (a) Case study to explore relationships between TC landfall angle and storm 

surge. Maximum wind speed fields for the (b) perpendicular, (c) diagonal, and (d) parallel 

cases.  

While the differences among the synthetic cyclone characteristics were 

minimized, the maximum storm surge patterns in Figure 3-7 highlights the differences in 

impact area as well as the differences in offshore surge extent. At the Battery, the peak 

storm surge ranged from 1.06, 1.09, and 0.72 m for the perpendicular, diagonal and 

parallel tracks, respectively. Most of the impacts from the parallel track (Figure 3-7c) were 

observed in the Delaware Bay and along the southern coast of NJ, coinciding with regions 

of intense winds. As the storm advanced along the coast, the strongest winds were often 

directed toward the coast. The parallel case also produced the highest inundation volume, 

estimated at about 0.6059 km3. For the diagonal track in Figure 3-7b, storm surge heights 

above 1.0 m are more localized and centered more closely to the landfall location than 

those for the other two cases. Due to its more oblique angle, as the storm moved towards 

the coast, the strongest winds in the right-hand side of the TC remained over open ocean 

for a longer period of time. Closer to landfall, NE winds directed toward the coast caused 

high storm surge in this area. As the storm continued its movement, easterly winds were 

directed into the NYH area. The inundation volume for the diagonal case was 0.2153 km3. 

The perpendicular case shows the extent of stronger winds over the LIS and NYH regions, 

corresponding with the locations where maximum storm surge was generated. As the TC 

approached land, a shift from N/NE winds to purely easterly winds along the fetch 

direction over the LIS caused a buildup of water as inferred from Figure 3-7a. Similarly to 
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the diagonal case, easterly winds are directed toward the NYH region. In both cases, the 

direction and magnitude of the winds force water into small areas, suggesting a larger 

potential for inland flooding. While the perpendicular track had a broader offshore impact 

and extent than had the other two tracks, it had the lowest estimated volume of 0.1574 

km3.  

 

Figure 3-7. Maximum storm surge levels for the (a) perpendicular, (b) diagonal and (c) 

parallel tracks in the case study. Tracks are plotted near landfall at 3-hr intervals. 

3.4.3.2 Ensemble Simulations to Assess the Effect of Cyclone Landfall on Storm Surge 

To generalize the conclusions drawn for the case study, we specifically examined 

the HWCM-simulated tracks that made landfall in NJ and their corresponding average 

maximum storm surge. The simulated tracks were also classified into the same three 

storm types, namely, perpendicular, diagonal, and parallel, based on their initial storm 

placement in the real-world domain (i.e., points A-C respectively in Figure 3-3a). The 

filtering resulted in 59 perpendicular, 43 diagonal, and 11 parallel cases (Figures 3-8a - 3-

8c). 
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Figure 3-8. The tracks that made landfall in NJ were considered to investigate the effect 

of TC landfall angle and location on storm surge. The clustering resulted in (a) 59 

perpendicular tracks, (b) 43 diagonal tracks, and (c) 11 parallel tracks with respect to the 

NJ coast. (d-f) The corresponding maximum storm surge levels, showing the differences 

in offshore extent.  

The distributions of TC parameters in Figure 3-9 show the variability and spread 

among the individual cases in each directional category. These distributions have been 

normalized by the number of cyclones per directional category to account for the 

differences in the number of cyclones. With mean wind speeds of 34, 37, and 37.5 m/s 

for the parallel, diagonal, and perpendicular tracks, respectively, on average, they are all 

characteristic of a Category 1 TC (Figure 3-9a). The distributions for translation speed and 

radius of maximum winds (Figures 3-9c and 3-9d) show less variability than the intensity 

parameters. The peak in the distribution of Rmax for each storm type cluster closely to each 
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other and have a large spread. The Rmax distribution peaks between 32 and 36 km for the 

perpendicular and diagonal tracks and between 36 and 40 km for the parallel tracks. The 

distribution of translation speed shows the tendency of parallel tracks toward slower 

motions (mean of 7.5 m/s) and the perpendicular tracks toward faster motions (mean of 

11.3 m/s).  

While the magnitude of the resulting mean maximum storm surge is similar 

among the three groups, these mostly reflect an impact on the storm surge location and 

extent, as was previously seen in the case study (Figure 3-7) in section 3.3.1. On average, 

the parallel tracks had a larger effect in the Delaware Bay and along the southern NJ coast 

(Figure 3-8f). Since all the parallel tracks directly interact with land before reaching the 

NYH and LIS regions, little impact was seen in these areas from this type of storm. The 

perpendicular and diagonal tracks in Figures 3-8d and 3-8e share some similarities in 

terms of the location where the highest storm surge was produced. Their difference 

mostly lies in the offshore extent of storm surge. For the perpendicular cases, the average 

maximum storm surge resulted in a broader surge extent affecting more areas in NY such 

as LIS and the NYH region. For the diagonal tracks, the offshore storm surge extent was 

narrower than the average pattern resulting from the perpendicular tracks.  

To assess inland flooding, we examined the inundated area and potential 

inundation volume. The inundation volume estimates consider both the extent of the 

area inundated, and the magnitude of the flooding. This metric provides a broader 

assessment of the impact associated with each storm direction. The mean inundation 

area for the parallel tracks is 469 km2, which accounts for about 16% of the potential 
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flooding area (2,940 km2). A larger sample of parallel cases would be useful to validate 

this result. The mechanisms behind this finding are likely due to two factors regarding the 

storm track itself and the region of impact. First, while the impact of parallel tracks on any 

specific region along the coast is of shorter duration, parallel tracks affect more of the 

coastline as they move alongshore and as such have a larger potential for inundation. In 

addition, the increase in inundation volume is due to the vulnerability of the area near 

landfall due to its low-lying topography. We have seen from the maximum water levels in 

Figure 3-8 that the region of inlets in southern NJ is particularly vulnerable to storm surge. 

The perpendicular and diagonal cases exhibited a wider range of inundation scenarios 

(Figure 3-9f), with most cases tending to inundate between 150 and 350 km2.  
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Figure 3-9. Distribution of (a) wind speed (m/s), (b) minimum pressure(mb), (c) radius of 

maximum winds (km), (d) translation speed, (e) inundation area (km2), and (f) inundation 

volume(km3). The distributions are normalized by the number of storms per category.  

 

Figure 3-10. Simplified tracks for the storms that produced the top 10 highest storm 

surges for each of the categories at (a) Atlantic City and (b) The Battery stations. The tracks 

are identified based on the magnitude of the peak storm surge.  

The parallel tracks produced the largest mean inundation volume of 0.57 ± 0.10 

km3. The mean volume estimates for the perpendicular tracks were lower (0.35 ± 0.22 

km3), albeit with a larger variability, than those for the diagonal cases (0.37 ± 0.21 km3). 

The results for inundation area and volume prove somewhat unexpected and 

counterintuitive to what the maximum storm surge patterns depict in Figures 3-8d - 3-8f. 

While the maximum surge level patterns point to the highest potential for inland flooding 

for perpendicular tracks, the mean inundation values suggest that these storms produced 

the least inundation in terms of both the extent and the flood volume. However, the 
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perpendicular cases were actually responsible for the largest inundation area produced 

by any of the storms in the ensemble.  

To address this further, we examined the top 10 surge-producing storms per 

directional category (Figure 3-10) and the corresponding inundation volume at two 

locations: The Battery and Atlantic City stations (NOAA/NOS/CO-OPS), chosen to 

correspond in the model with their actual placement as given by the NOAA Tides and 

Currents stations. At the Battery (Figure 3-10b), there is a clear distinction as to the effect 

of storm landfall angle on storm surge. Perpendicular tracks produced the highest storm 

surge impact, followed by the diagonal and parallel cases. At Atlantic City (Figure 3-10a), 

the sensitivity to landfall angle was not that apparent. While the perpendicular tracks did 

produce the highest peak storm surge at the Atlantic City station, all three storm types 

produced substantial and comparable peak surge heights relative to all the storms in the 

ensemble (between 0.84 and 1.71 m). When examining the top 10 storms producing peak 

levels at the Battery, the parallel cases caused the lowest peak surge (0.48m) but still 

exhibited a tendency to flood a larger volume than its counterparts. For Atlantic City the 

opposite was observed. Along the south coast of NJ, in the area of highest flooding 

potential, the perpendicular tracks had the highest flood volume estimates, while the 

parallel had the lowest. This result points to the relevance of landfall location in the 

assessment of storm surge sensitivity, which is explored in more detail in section 3.4.  

3.4.4. Clustering by Storm Surge Scenarios  

Initially, the HWCM ensemble of simulations were grouped in a subjective manner 

based on the general direction of the storm track. In this section, we present a different 
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approach by performing a K-means clustering on the spatial distribution of maximum 

storm surge levels rather than clustering by storm track direction. After the clustering, we 

examined the characteristics of the associated storms classified within each cluster. We 

were interested in using this tool to objectively examine the link between cyclone landfall 

angle and location with the resulting storm surge. The clustering was done for the 113 

cases that made landfall in NJ. The variance ratio criterion (Caliński & Harabasz, 1974) was 

employed to determine the optimal number of clusters, which resulted in the use of four 

clusters (C1-C4).  

The storm tracks associated with each cluster are shown in Figure A-2 of Appendix 

A. Two of the main features resulting from the cluster are (i) the fact that two out of the 

four groups are composed of tracks approaching the coast from different angles and (ii) 

the distinction between the TCs’ landfall locations. Cyclones in clusters C1 and C3 have a 

similar landfall location along the southern coast of NJ (Figures A-2a and A-2e), while 

cyclones in C2 and C4 have an impact further north along the coast (Figures A-2c and A-

2g). We further separated the clusters composed of different track categories such that 

for C3 we distinguish between C3 (diagonal) and C3 (parallel), and for C2 we distinguish 

between C2 (perpendicular) and C2 (diagonal) (Table 2). Upon inspection of the maximum 

storm surge levels for the individual categories, the patterns previously observed in the 

case study were repeated, as shown in Figures A-2b and A-2h for perpendicular cases. 

  While the cluster analysis was performed on the spatial distribution of the 

maximum water level, we were interested in examining how the characteristics of the 

storms producing such spatial patterns in each cluster are grouped. The characteristics of 
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the synthetic storms that generated the surge patterns in each of the clusters were 

examined. Table 2 presents the range and mean values for various TC parameters. 

Notable differences between the clusters and sub clusters are not immediately apparent. 

As shown for the maximum wind speed in Figure 3-11b, while some clusters (such as C4) 

tend to have slightly stronger storms, the resulting clusters do not appear to be primarily 

based on the maximum wind speed- or by any of the other physical characteristics 

inherent to the cyclones. Figure 3-11d also showed that clusters such as C2 and C3 have 

slower moving storms than have C1 and C4, which could point to the reason the 

perpendicular tracks of C2 and C4, with similar landfall location, are not clustered 

together.  

 

Figure 3-11. Tropical cyclone and storm surge properties identified by clusters. (a) Landfall 

location of storms, (b) maximum wind speed at landfall, (c) estimates of inundation 
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volume, and (d) translation speed. TC data in (b)-(d) have been sorted by increasing 

latitude coordinate at landfall.  

As expected, the results highlight how each of the clusters was classified by 

various water elevation metrics such as the maximum storm surge estimate of overall 

inland flooding. Figure 3-11a shows the distinction of clusters by landfall location, 

separating the tracks that make landfall further north and south along the NJ coastline. 

The tracks that make landfall along the southern coast of NJ (C1 and C3) show a larger 

flooding volume than do the tracks that make landfall along the northern portion of the 

NJ coast (C2 and C4). The range of inundation volumes for the southern cases was 0.5496 

- 0.6570 km3. For the northern cases, the range was 0.1859 - 0.2636 km3. On average, 

within each of the northern and southern cases, the perpendicular tracks were 

responsible for the highest inland flooding potential. Figure 3-11c highlights the pattern 

of decreasing flood volume with increasing latitude. The results from the clustering 

method highlight more directly the sensitivity of storm surge not only to the landfall 

impact angle but to landfall location.  
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Table 3-4. Range and Mean Values for Physical Parameters That Characterize the Cyclone 
Within Each Cluster. 

Cluster number Maximum 
wind speed 

(m/s) 

Minimum 
pressure 

(mb) 

Translation 
speed  
(m/s) 

Radius of 
maximum 
wind (nm) 

C1 (perpendicular) 
Range 
Mean 

 
35.18 - 41.46 

37.80 

 
969.5 - 979.2 

974.35 

 
9.71 - 14.48 

11.95 

 
13 - 27 
20.29 

C3 (parallel) 
Range 
Mean 

 
28.97 - 40.32 

34.02 

 
972.8 - 993.4 

982.45 

 
4.57 - 10.24 

7.47 

 
14 - 32 
21.27 

C3 (diagonal) 
Range 
Mean 

 
34.96 - 41.26 

37.99 

 
972.5 - 980.3 

976.39 

 
7.24 - 13.74 

9.06 

 
13 - 23 
18.05 

C2 (perpendicular) 
Range  
Mean 

 
31.66 - 40.42 

35.33 

 
974.3 - 980.8 

977.98 

 
6.47 - 13.35 

9.65 

 
14 - 29 
21.21 

C2 (diagonal) 
Range  
Mean 

 
28.32 - 39.33 

35.81 

 
973.7 - 988.4 

979.11 

 
4.57 - 11.67 

8.53 

 
14 - 23 
19.48 

C4 (perpendicular) 
Range 
Mean 

 
35.83 - 42.70 

38.89 

 
966.8 - 987.2 

972.47 

 
6.47 - 18.87 

12.24 

 
13 - 27 
18.57 

 

3.5 Discussion 

The use of the HWCM in simulating synthetic tracks allowed us to control the 

characteristics of the cyclones, as the tracks responded to the external forcing imposed 

at the boundaries. This feature in the HWCM, allowed us to generate the desired spread 

in the ensemble to assess the sensitivity of storm surge to cyclone landfall angle.  

We showed that the main difference between the TC directional groups 

manifested in the location and extent of the storm surge impacts. The parallel cases 

simulated in this study make landfall in south NJ, and the resulting storm surge mostly 
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impacts the Delaware Bay and southern NJ coast. If we considered parallel storms that 

moved along the coast without making landfall, we could expect these to have a higher 

and broader impact than would the parallel cases examined here. These tracks would 

likely continue their movement along the coast without the decrease in intensity they 

undergo after landfall. Given that the perpendicular and diagonal tracks do not interact 

with land prior to their landfall, we were able to compare them more directly. On average, 

the perpendicular tracks exhibited a more widespread extent of the storm surge signal, 

while the diagonal tracks were shown to impact a smaller region.  

The three storm categories exhibited similarities in terms of the upper limit of the 

inundation extent and volume. On average, the parallel tracks exhibited the tendency to 

flood a broader area than did the other two directional categories. Nevertheless, the 

perpendicular tracks, particularly those making landfall in southern NJ, were responsible 

for the peak inundation within the domain. This result brought into question the potential 

influence of the mesh extent into the interpretation of the flooding of each category. 

However, since the mesh extent follows the 25-ft elevation contour, it is inherently 

designed to account for actual potential flooding areas based on the region’s topographic 

features. Thus, the mesh represents the area that can be flooded in reality and does not 

bias the results presented. Storms impacting the southern NJ area have a higher flooding 

potential than those in other areas further north along the coast. The dependency of peak 

storm surge to the landfall angle in southern NJ was lower. Nevertheless, when comparing 

storms affecting the area of highest flooding potential, we found the perpendicular tracks 

have a greater effect, inundating a larger volume. More broadly, the flooding potential 
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along the NJ coast was not uniform and decreased with increasing latitude. The storm 

surge impact from TCs thus varied depending on its landfall location along the coast, 

pointing to the importance of geographical (e.g., coastal slope and complexity) and 

topographic features. The importance of these features in amplifying or reducing storm 

surge have been quantified in previous studies (Bilskie et al., 2014; Bloemendaal et al., 

2019). TCs with landfall in areas with complex coastlines and shallow bathymetry are 

associated with higher storm surges. (Bloemendaal et al., 2019; Mori et al., 2014).  

The cluster analysis provided further intuition as to the relationship between 

landfall angle and location and confirmed the conclusions previously drawn from the 

HWCM-ADCIRC ensemble. The cluster analysis raised the question of the factors 

contributing the most to the resulting storm surge. The clusters were not grouped by the 

TC physical parameters but by the direction of the storms and their general impact 

location. While it is beyond the scope of this paper, further study is needed to quantify 

the relative importance of each of the parameters to the resulting storm surge.  

The study presented can be enhanced by considering other factors relevant to 

cyclone-induced inundation and coastal flooding. Results presented here only included 

the surge and wave components and are thus independent of the tidal cycle and its local 

effects and of rainfall-runoff contributing to flooding. In reality, the overall inundation 

volume depends on other factors such as the cyclone-induced precipitation. Rainfall-

runoff can contribute to the already high inland flooding, pointing to the importance and 

need of including this process in storm surge and inundation assessment. While we do 

not delve into the mechanisms of flooding by both storm surge and rainfall-runoff, it is 
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interesting to note the differences among the cases. Rainfall totals calculated for the 

cyclones used in the case study (Figure A-3 in Appendix A) provide insight into the 

variations of the precipitation fields and the possible effects of the different storms on 

the overall flooding. More notable is the parallel case, which showed the highest rainfall 

totals along the entire coast of NJ and a vast area over Long Island and New York City. The 

parallel track seemed to have the most potential for inland flooding during the event due 

to its high precipitation totals along and in close proximity to the coastline. The 

perpendicular and diagonal cases might see a delay in the effect on flood heights due to 

precipitation runoff from distant regions.  

TC landfall location and angle play a significant role in modulating storm surge 

magnitude and inundation. Determining the storm surge sensitivity of the NJ-NY Harbor 

region to cyclone landfall angle, and generalizing the conclusions to other regions, is 

complicated due to this dependency and relation to the landfall location of the storms. 

The methodology presented has the ability of providing further insight into the complex 

dependencies of storm surge peak heights and inundation volume to landfall angle and 

impact area while providing a framework applicable to other regions. 

3.6 Concluding Remarks  

In this study, we assessed the effect of TC impact angle on the magnitude and 

extent of storm surge and coastal inundation along the NJ coastline. The use of the 

HWCM, a recently developed modeling framework based on the WRF model, was 

implemented to create an ensemble of cyclones approaching the NJ-NY Bight at different 

angles.  
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The results of maximum storm surge highlight the difference in surge offshore 

extent for each of the three directional categories studied. Results indicate a sensitivity 

to both cyclone approach angle and landfall location. Cyclones with a perpendicular 

approach angle produce more widespread offshore surge and higher peak surges and 

have a higher potential for inland flooding, among the categories studied. The level of 

storm surge sensitivity to landfall angle, however, is not uniform along the coast as some 

regions were shown to be vulnerable to any type of storm regardless of approach angle 

(e.g., southern coast of NJ).  

While the physical parameters of the storms are relevant, the approach angle and 

landfall location play a dominant role in the resultant storm surge. These results highlight 

the need to further quantify the contribution of each parameter to the overall storm 

surge. Ongoing research focuses on determining the importance of these parameters, at 

various lead times, in accurately forecasting storm surge.  
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CHAPTER 4: IMPLEMENTATION OF AN ARTIFICIAL NEURAL NETWORK FOR STORM 
SURGE FORECASTING 

 
4.1 Abstract  

Accurate and timely storm surge forecasts are essential during tropical cyclone 

events in order to assess the magnitude and location of the storm surge impacts. 

Numerical weather prediction models provide accurate input data to drive storm surges 

in hydrodynamic models but are too computationally expensive to be run for real-time 

forecasting purposes. Therefore, real-time forecasting of storm surge impacts is usually 

conducted by means of a parametric vortex model, implemented within a hydrodynamic 

model, which decreases computational time at the expense of increased uncertainty. 

Recently, data-driven artificial neural networks are being implemented as an alternative 

due to their efficiency and high accuracy. This work seeks to examine how an artificial 

neural network can be informed to make accurate storm surge predictions. This work is 

thus concerned with determining the parameters needed to successfully implement a 

neural network model for the Mid-Atlantic Bight region. The neural network model was 

trained with modeled data resulting from coupling of the Hybrid WRF cyclone model 

(HWCM) and the Advanced Circulation Model (ADCIRC). An ensemble of synthetic, but 

physically plausible, cyclones was simulated using the Hybrid WRF cyclone model, and 

used as input for the hydrodynamic model. Tests of the artificial neural network were 

conducted to investigate the optimal lead-time configuration of the input data and the 

neural network architecture needed to minimize storm surge forecast errors. Results 

highlight the efficiency and accuracy of the neural network in forecasting moderate storm 
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surge levels, while indicating a deficiency in capturing the magnitude of the peak-values. 

Analysis of the feature importance ranked the cyclone minimum pressure and location as 

the most relevant variables for storm surge assessment.  

4.2 Introduction 

Recent tropical cyclone (TC) events have highlighted that TCs continue to be one 

of the most impactful natural phenomena in terms of loss of life and property- with storm 

surge as the primary cause of the fatalities resulting from TCs (Rappaport, 2014). The 

devasting nature of these events calls for timely and accurate inundation forecasts to 

ensure public safety. Emergency managers require information on the expected 

magnitude and the potential inundation area to make decisions on evacuation and 

planning for emergency response before, during and in the aftermath of a TC event.  

Storm surge forecasting is challenging as it relies on the accuracy of the available 

meteorological data and can be a computationally intensive process (Elko et al., 2019; 

Mosavi et al., 2018). For real-time storm surge forecasting parametric wind models, such 

as the Holland model (Holland, 1980), are often used for their computational efficiency. 

These models use a set of track-based cyclone parameters to characterize the cyclone 

wind field. Despite the computational efficiency of parametric models, full-physics 

models have been shown to be more reliable than these in accurately forecasting a TC’s 

wind field extent (Bennett & Mulligan, 2017; Ramos-Valle et al., 2018).  

The use of machine learning (ML) methods applied to flood forecasting problems 

has been increasing in recent years (Mosavi et al., 2018). ML methods have been shown 

to be suitable for this type of application, achieving higher accuracy than the traditional 



 

 

97 

forecasting methods mentioned previously (Mosavi et al., 2018). Machine learning 

techniques, such as artificial neural networks (ANNs), provide a framework to obtain 

timely forecasts by training the network with a simulated or observed dataset. ANNs 

determine the non-linear and complex relationships between the parameters used for 

forecasting of a target variable. A more detailed description of ANNs is provided in section 

4.3.  

ANNs are commonly used for storm surge and flood forecasting, including 

forecasting of peak surges as well as time series (Kim et al., 2015; Mosavi et al., 2018). 

Hashemi et al. (2016) successfully developed an ANN model for Rhode Island based on a 

set of combined synthetic and historical cyclones with a root-mean-squared error of 35 

cm. A neural network was also developed and implemented to forecast storm surge time 

series at stations around the Louisiana coast based on data from over 400 synthetic 

cyclones (Kim et al., 2015). Similarly, Wang et al. (2016) trained an ANN with atmospheric 

data from 153 synthetic cyclones to forecast storm surge along the Louisiana coast.  

As a data-driven method, ANNs are able to produce forecasts without the need 

for knowledge of the underlying physical processes (Mosavi et al., 2018). However, after 

training, ANNs can shed light into the relationship between the variables used for training, 

often referred to as the input features, and the target variable. Commonly, for storm 

surge forecasting the input features are parameters that characterize the TCs including 

their intensity, size and location. Some studies also include atmospheric data recorded at 

the different stations in the training dataset (Tseng et al., 2007). These variables are used 
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to forecast the target variable, which for storm surge forecasting purposes is often the 

peak water levels or water level timeseries at a single or multiple locations.  

Storm surge magnitude has been shown to be a function of various TC 

characteristics and physical parameters, including the cyclone intensity (Weisberg & 

Zheng, 2006), size (Irish et al., 2008), and forward speed (Hussain et al., 2017; Rego & Li, 

2009; Thomas et al., 2019). Recent studies have also shown the dependency of storm 

surge on cyclone landfall angle and impact location (Bloemendaal et al., 2019; Ramos-

Valle et al., 2020). Results from Ramos-Valle et al. (2020) highlighted the sensitivity of 

storm surge to cyclone landfall location and prompted questions such as: (i) What 

variables contribute the most to the resulting storm surge? (ii) What is the relative 

importance of each cyclone parameter in determining storm surge?  

In this study, we determine the parameters and data needed to develop an ANN 

for the Mid-Atlantic Bight region. Furthermore, we implement an ANN that can 

successfully predict storm surge, on a testing dataset, with the goal of retrieving 

information that allows us to address the questions posed regarding the significance and 

relationships between the input variables.  

An overview of artificial neural networks and the data used for training is provided 

in section 4.3. Results on the optimal architecture required to develop an ANN model, the 

evaluation of the ANN model configuration and the analysis of the input features are 

presented in sections 4.4. A discussion of the results is provided in section 4.5, followed 

by a summary of the study in section 4.6.  

 



 

 

99 

4.3 Data and Methods 

An artificial neural network model is developed and used to accurately predict 

storm surge time series and understand the contribution of various TC parameters in 

forecasting storm surge. In this section, we briefly describe the atmospheric and 

hydrodynamic datasets used to train the ANN model. The datasets are publicly available 

through the DesignSafe-CI repository (Ramos, 2019). We also discuss the design of the 

ANN model, the metrics used to evaluate the storm surge predictions, and the methods 

used to analyze the individual contributions of the input variables in accurately 

forecasting storm surge.  

4.3.1 Data  

4.3.1.1 Synthetic Tropical Cyclones 

Data from a pre-computed set of synthetic cyclones is used as input to the ANN. 

Simulations of tropical cyclones were conducted with the HWCM; an extension of the 

WRF model which enables the simulation of synthetic cyclones in a real-world 

environment. This hybrid approach provides the benefit of modeling physically plausible 

storm scenarios that have not been observed previously. Bruyère et al. (2019) provides 

an in-depth description and evaluation of the HWCM model setup. A description of the 

simulation configuration is available in Chapter 3 and published in Ramos-Valle et al. 

(2020).  
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Figure 4-1. Tracks for the 198 synthetic cyclones used for training and testing of the ANN. 

These cyclones were simulated with the HWCM model (Ramos-Valle et al., 2020).  

The atmospheric dataset consists of 198 synthetic cyclones impacting the New 

Jersey (NJ) and New York (NY) coastlines as depicted in Figure 4-1. Data for the TC’s 

location, maximum wind speed, minimum pressure, radius of maximum wind and 

translation speed is available in a track-based format at an hourly-timestep for a length 

of four days. However, for the purposes of this study only 72 hours of data are used, since 

after the third day the cyclones are far inland, and no longer influence the water levels 

near the coast.  

4.3.1.2. Storm Surge Simulations 

In Ramos-Valle et al. (2020), storm surge impacts from the synthetic storms were 

assessed by using the two-dimensional depth integrated (2DDI) implementation of the 
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ADCIRC hydrodynamic model (Luettich & Westerink, 2004; Luettich et al., 1992), coupled 

with the Simulating Waves Nearshore (SWAN; Booij et al., 1999) wave model 

(SWAN+ADCIRC). The 10-m winds and surface pressure fields obtained from the HWCM 

simulated TC were used as atmospheric forcing to the hydrodynamic and wave models.  

The target data used in the ANN is provided in terms of storm surge time series at 

an hourly time step at multiple station locations (Figure 4-2): Atlantic City, Sandy Hook, 

The Battery, Orient Harbor and Montauk (NOAA/NOS/CO-OPS). 

 

Figure 4-2. Region of study. The location of the stations examined in this study are 

highlighted. The ANN model is trained with storm surge levels at these five stations. 
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4.3.2 ANN Model Architecture 

 ANNs are classified as a supervised machine learning technique, in which both 

input and outputs are provided allowing the model to learn and determine the 

relationships between them. The ANN architecture is comprised of multiple layers: an 

input layer, a variable number of intermediate layers, known as hidden layers, and an 

output layer. The ANN implemented is a feedforward model in which the flow of 

information is in one direction, from the input to the output layer (Figure 4-3), such that 

a given layer receives information from the preceding layer. The input layer consists of a 

set of neurons representing the input variables. The output layer receives the data from 

the previous hidden layer and transforms them into output values. Computations and 

learning are carried out in the neurons of the hidden layers, where each neuron 

transforms the values from the previous layers. Each layer in the ANN is expressed as: 

                 𝑁 = 𝑏$ +	∑ 𝑥)*+𝑤)+
)-.                                                  (1) 

               𝑥/01 = 𝑓(𝑁),             (2) 

where 𝑥*+ and 𝑥/01are the input and output data of the neurons, and N represents the 

input to the activation function. Each neuron calculates the weighted sum of its inputs 

and applies an activation function, 𝑓. The weights and the bias are given by 𝑤 and 𝑏$, 

respectively. The activation function is used to map the numerical value of a neuron, as it 

converts an input signal into an output. Common activation functions employed for ANNs 

are Sigmoid, Log-Sigmoid, Hyperbolic-Tangent, and Rectified Linear Units (ReLU). The 

activation function must be nonlinear for the ANN model to learn beyond linear 

relationships (McGovern et al., 2019).  



 

 

103 

 

 

Figure 4-3. (a) Schematic of the architecture of a simple ANN with a single hidden layer. 

The input and their associated weights are combined into a net input function, as 

represented in Equation 1, and passed through the activation function to produce an 

output (Equation 2). (b) Schematic of an ANN with two hidden layers and multi-

dimensional output as implemented in the current study. Source: Sahoo and Bhaskaran 

(2019).  

 

 Initially, the weights in the network are assigned a random value. The ANN model 

seeks to minimize the loss function between the model prediction and the observed 

values. The training process is then an optimization problem to determine the set of 
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weights that best describes the relationship between the input and output. The weights 

are updated by the process of backpropagation- which terminates when the loss is below 

a certain threshold or after a predefined number of iterations or epochs is reached. In the 

present study the number of epochs, or maximum training iterations, was set to 1000 and 

the tolerance for optimization was set to 0.0001. 

 The ANN presented in this study was implemented through the Scikit-Learn 

software in Python (Pedregosa et al., 2011). The input layer of the ANN model consisted 

of six input parameters related to the physical characteristics of the synthetic cyclones 

including the maximum wind speed, minimum pressure, radius of maximum winds, 

translation speed, and position as given by the latitude and longitude. The input 

parameters for each storm are provided as time series throughout the cyclone’s lifetime. 

Each synthetic cyclone simulation consisted of 72 timesteps at an interval of 1 hour. The 

ANN model implemented is defined as multi-output since the model is designed to 

provide predictions at multiple station locations. The ANN model outputs the predicted 

storm surge at five station locations along the NJ and NY coastlines (Figure 4-2): Atlantic 

City (NJ), Sandy Hook (NJ), The Battery (NY), Orient Harbor (NY) and Montauk (NY).  

 The input and output data were randomly divided into 75% for training and 25% 

for testing. Additionally, the ANN algorithm used sets aside 10% of the training data for 

validation purposes. The distribution of the input parameters for the TC cases used for 

the training process in the ANN are shown in Figure 4-4. The distributions show a broad 

range for each of the input variables related to TCs. This is an optimal configuration as the 

ANN model can only make skillful predictions for cases that fall within the distribution of 
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the training data. The spatial coverage is broad ranging from about 35.9°N to 45°N 

latitude and expanding as far as -65.8°W. The maximum wind speed for the cyclones in 

the training set corresponds to intensities of tropical storms to Category-2, with the 

majority corresponding to Category-1 intensities, consistent with the historical record of 

observed TCs in the region of study (Marsooli & Lin, 2018).  

 

Figure 4-4. Distribution of various TC parameters for the 149 TCs used for training.  

 A k-fold cross-validation analysis was performed to determine the best set of 

additional hyperparameters (i.e., ANN model properties that control the training process) 

needed for the ANN, including the number of hidden layers and the number of neurons 

within each of these, the type of activation function and the type of learning rate used. A 
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10-fold cross validation was implemented in this case. The process consisted of splitting 

the training data into k=10 smaller subsets. The ANN model was then trained with k-1 

folds and validated on the remaining set of the data. The cross-validation is an iterative 

process as it trains and validates models with a given set of hyperparameter settings. The 

model performance measure is then an average across all the k-fold trainings. The output 

from the cross-validation provides the best set of hyperparameters to use for the given 

dataset. In this study, we also tested the predictability of the data at various lead times 

including: no lag, 1-, 2-, 3-, 6- and 12-hr lead times. Six individual cross validations were 

carried out to test each of these configurations for the best hyperparameter settings.  

 Once the hyperparameters were selected, based on the error metrics, the best 

model from the six configurations was selected for further analysis. The ANN storm surge 

predictions for the test data were analyzed and compared to the hydrodynamic model 

predictions. Additionally, the importance and contribution of the individual input 

variables in accurately predicting storm surge was assessed.  

4.3.3 Performance Metrics  

 The model performance is evaluated with the test data according to the mean 

squared error (MSE) in equation (3) and the correlation coefficient (R) in equation (4).  

    𝑀𝑆𝐸 = 	 .
8
∑ (𝑦 −	𝑦;)<8
*-.                                      (3) 

                             𝑅 = 8(∑>>;)?(∑>)(∑>;)
@[8∑>B?(∑ >)B][8∑ >;B	?(∑>;)B]

                                   (4) 
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In equations (3) and (4), 𝑦 and 𝑦; represent the predicted and observed values, 

respectively. The optimal model will have MSE = 0 and R = 1. Additionally, the root-mean-

squared error (RMSE = √𝑀𝑆𝐸) is also used to describe the model performance.  

4.3.4 Metrics for ANN Model Interpretation 

 One of the purposes of this study in designing and implementing an ANN is to 

interpret the relation between the input and output variables, which in this case are the 

TC parameters and storm surge levels. There are various interpretation and analysis 

methods available that provide a better intuition of the model structure such as the 

partial dependence plots (Friedman, 2001) and permutation feature importance 

(Breiman, 2001), which are employed in this work and described below.  

4.3.4.1 Permutation Feature Importance  

A key question that can be addressed by interpreting machine learning methods 

is: which input variable has the largest impact on the model predictions? The permutation 

feature importance method is an approach to rank the importance of the predictors used 

as input to the machine learning model (McGovern et al., 2019). It provides insight into 

how the model relies on each input feature to make its predictions. The method consists 

of randomly permuting the values of an input variable and evaluating how the model 

performance deteriorates when new predictions are made based on the permuted data 

compared to the unpermuted data. Larger errors indicate a higher importance of the 

variable in question.  

An alternative to determining feature importance would be to remove a variable 

altogether, retrain the model with the remaining features and calculate the average loss. 
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However, by implementing this approach we would be creating individual ANN models 

and the loss comparison will not be made on the same model. An advantage of the 

permutation method is that it does not require the model to be retrained and it allows 

for comparison to be made on the same model estimator. 

4.3.4.2 Partial dependence plots  

The partial dependence indicates the average prediction for each possible value 

of the input variables. As such, it demonstrates the effect one or more input variables 

have on the machine learning model predictions. As their name suggests, PDPs depict 

how the predictions partially depend on the individual input features, showing whether 

the relation between them is linear or more complex.  

4.4 Results  

4.4.1 Test for Model Predictability at Various Lead Times 

The 10-fold cross-validation was performed to determine the best set of 

hyperparameters to use in the ANN. The cross-validation process was repeated for 

different configurations of lead-times to assess the ANN model predictability. Table 4-1 

presents the model hidden layer configuration that resulted in the lowest MSE for each 

of the lead-time configurations tested. Results from the cross-validation showed an 

agreement on three out of the four hyperparameters tested: the number of hidden layers, 

the activation function and the type of learning rate. The cross-validation results 

coincided on the use of a neural network with two hidden layers, on the use of the ReLU 

activation function and a constant learning rate set at 0.001. The hyperparameter that 

changed when testing for different lead times was the number of neurons in each of the 
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hidden layers, as shown in Table 4-1. Results do not indicate any clear pattern as to the 

change in number of neurons with increasing lead times.  

Table 4-1 shows the mean squared error and the correlation at the five stations 

for each of the model configurations. The error is comparable for up to 3-hour lead time 

and increase for 6- and 12-hour lead time, respectively. The correlations are significant at 

all the stations and for the six different configurations. Only model 6, with lead time of 12 

hours, has correlations below 0.90. There is not a notable difference in correlation 

between the different stations. On average, the Sandy Hook stations has the highest 

correlation of 0.95 for the configurations tested, while the Atlantic City station has the 

lowest of 0.94.  

Table 4-1. Performance of the ANN Models Including MSE and Pearson Correlation 

Coefficient.  

Model 
# 

(N1, N2) Lead 
Time 
(hr) 

MSE R 
Atlantic 

City 

R 
Sandy 
Hook 

R 

The 
Battery 

R 
Orient 
Harbor 

R 
Montauk 

1 (140, 120) 0 0.007 0.95 0.96 0.95 0.94 0.94 
2 (160, 100) 1 0.007 0.95 0.96 0.95 0.94 0.95 
3 (100, 200) 2 0.007 0.96 0.96 0.96 0.96 0.96 
4 (50, 200) 3 0.007 0.95 0.96 0.96 0.96 0.96 
5 (160, 80) 6 0.009 0.93 0.94 0.94 0.96 0.95 
6 (160, 140) 12 0.016 0.89 0.89 0.89 0.89 0.90 

 

The Taylor Diagram (Taylor, 2001) in Figure 4-5 is used to compare the 

performance of the six models and select the most accurate model configuration. In this 

case, the correlation is presented for all the data in the test set. The majority of the 

models cluster close to each other, except for model 6 with 12-hour lead time. Model 3, 
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with 2-hour lead time was chosen as the most accurate model, with the highest 

correlation, and used for further testing. This model had the lowest MSE when tested with 

100 and 200 neurons in the first and second hidden layers, respectively.  

 

Figure 4-5. Taylor diagram showing relative performance of each ANN models in  

Table 4-1. Point A denotes the target model.  

4.4.2 Storm Surge Forecast   

Model 3 exhibited the highest average performance among the lead-time 

configurations tested. Figure 4-6 depicts the model performance at the five stations 

studied, comparing the ADCIRC predicted storm surge values against the predictions 

made by the ANN model 3. The identity line and the best fit of the data are plotted for 

reference. Results highlight the ANN model accuracy in predicting the water levels, with 

low MSE values and a significant correlation between the datasets. The correlation 
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coefficient is 0.96 for all the stations. The MSE varies from 0.003 to 0.009 for Montauk 

and Sandy Hook stations, respectively. This is equivalent to a storm surge error of 0.05 to 

0.09 m.  

The best fit line and the identity line are in close approximation to each other, 

pointing to the ANN model accuracy. However, one noticeable aspect that appears at all 

five stations is the slight underestimation of the ANN predicted water levels for the 

highest observed values. This behavior is not exclusive of the ANN model 3, as the pattern 

was observed for the other models tested (not shown).  

 

Figure 4-6. Scatter plots showing the ADCIRC model predictions vs the ANN model 

predictions. The dataset presented included every time step of the 49 cases in the testing 

set (N = 3,528 data points). The best fit line (dashed gray line) and the identity line (solid 

gray line) are plotted for reference.  
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We further investigated the ANN model performance by evaluating the storm 

surge time series forecast for the TCs used in the testing phase of the ANN. Figure 4-7 

depicts the time series prediction by the ANN compared to the target ADCIRC simulated 

time series for one of the cases. As was observed in Figure 4-6, the ANN model 

underpredicts the peak values. In this case, the underprediction is about 0.10 to 0.15 m 

at the stations studied. However, the ANN predictions follow the general behavior and 

storm surge patterns. The ANN model can accurately capture the rise and consequent 

decline in water level as the storm moves through the area. It is also able to capture the 

behavior of double peaks observed at the Atlantic City station (Figure 4-7a).  
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Figure 4-7. Storm surge time series for one of the TC test cases. The ANN storm surge 

time series prediction is compared to the verification data, the ADCIRC model predication, 

at (a) Atlantic City, (b) Sandy Hook, (c) The Battery, and (d) Orient Harbor stations.  

4.4.3 Feature Importance  

The ANN model was also used to determine the importance of the input variables 

in forecasting storm surge. The feature permutation importance analysis provides 

information as to the input variables that are most relevant. A guiding question to 

interpret the results of the permutation test is: How does the MSE change if we shuffle 

or randomize a given input variable? Results indicate that randomly permuting the values 

of minimum pressure produces the largest error of approximately 0.45 m (Figure 4-8), 
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pointing to its importance in assessing storm surge. The position of the cyclone, as given 

by its latitude and longitude rank second and third positions, respectively. Randomly 

perturbing the translation speed produced the lowest error of 0.10 m.  

The permutation method does not account for correlations between the input 

variables, and as such can attribute a higher importance to one of the correlated features 

over the other. Figure 4-9 depicts a heatmap of the Pearson correlation coefficients 

between the input variables. The most significant correlation is between the cyclone 

minimum pressure and the maximum wind speed, which are negatively correlated, with 

a Pearson correlation coefficient of -0.98. This is an expected relation due to the known 

link between wind speed and minimum pressure. Another relevant relationship is the 

correlation between minimum pressure and the position of the cyclone as given by the 

latitude and longitude. For the input dataset this translates to weakening storms as they 

approach the coast and move northward.  
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Figure 4-8. Feature permutation importance as given by the MSE loss function. The input 

variables are sorted in decreasing order of importance.  

 

Figure 4-9. Correlation matrix between the input variables used in the ANN.  
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 Another important relation to consider in assessing the results of the ANN is how 

the model predictions depend on a single input variable. The partial dependence provides 

further intuition into how and why each variable is important. The partial dependence of 

each variable corresponds to the average response of the model for each possible value 

of the input feature. The partial dependence plots in Figure 4-10 and Figure 4-11 depict 

these relationships at The Battery and Montauk stations, respectively. Regions of the PDP 

with nonzero slopes indicate where the ANN model prediction of storm surge is sensitive 

to each input variable.  

A noticeable difference between the PDPs at the two stations is the dependence 

of storm surge on the storm’s position as given by its latitude. At The Battery, the average 

storm surge response is proportional to the latitude. Generally, the storm surge response 

increases with latitude except for the region between about 40°N and 41.25°N, where 

the variables are inversely related. However, this is not the case at Montauk station where 

the average storm surge is seen to increase as the cyclone position shifts northward, 

increasing in latitude. The PDPs for the TC longitude further highlights the dependence of 

storm surge on storm location relative to the stations studied. At the Battery (Figure 4-

10b), storm surge is expected to increase as the cyclone shifts westward closer to land. 

The peak storm surge is expected to occur when the cyclone is near -74°W, in close 

proximity to the station. As the position of the TC shifts further westward past the station, 

the storm surge values decrease. Similarly, at the Montauk station the peak storm surge 

is expected when the storm is near the station.  
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The partial dependence of storm surge on the cyclone’s pressure is the most 

straightforward. The water levels are inversely proportional to the cyclone’s minimum 

pressure. Above about 1000 mb the values of storm surge are negligible at both stations. 

It is noteworthy to point how the degree to which the storm surge depends on each of 

the input variables is lower at the Montauk station, possibly pointing to the influence of 

station location as Montauk is farther away from the paths of the cyclones.  

Results indicate less sensitivity of storm surge to the TC’s Rmax, translation speed 

and maximum wind speed. In general, at both stations, the dependence of storm surge 

on the Rmax is seen to slightly decrease with increasing storm size. The opposite pattern is 

seen at both stations for the cyclone translation speed and maximum wind speed. Storm 

surge values show a slight increase with increasing storm forward motion and intensity. 

 

Figure 4-10. Partial dependence plots for the input variables: (a) latitude, (b) longitude, 

(c) pressure (mb), (d) Rmax (km), (e) translation speed (m/s) and (f) maximum wind speed 

(m/s), examined at The Battery station.  
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Figure 4-11. Partial dependence plots for the input variables: (a) latitude, (b) longitude, 

(c) pressure (mb), (d) Rmax (km), (e) translation speed (m/s) and (f) maximum wind speed 

(m/s), examined at Montauk station. 

4.5 Discussion  

Data-driven ANNs are being used as a fast and accurate alternative for prediction 

of physical variables in storm surge assessment. ANNs are tuned to the dataset used for 

the training process. In this study, we determined the set of hyperparameters to use for 

the data given by a pre-computed set of synthetic tropical cyclones to forecast storm 

surge at multiple stations. A multi-output ANN is implemented to account for spatial 

correlations between five neighboring stations.  

We tested various lead-time configurations (0-, 1-, 2-, 3-, 6- and 12-hour lead 

times) via a 10-fold cross-validation method. The training and validating process was 

repeated 10 times for each of the six lead-time configurations tested to determine the 
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best set of hyperparameters to use and obtain the average model performance. The most 

accurate model tested was Model 3 (2-hr lead time), which consisted of two hidden layers 

with 100 and 200 neurons, in each layer. The comparison between the ANN predicted 

water levels against the target values (simulated by the ADCIRC model), highlighted the 

accuracy of the ANN model in predicting storm surge. However, results indicated an 

underestimation by the ANN model of the peak storm surge values. The underprediction 

of storm surge by ANNs has also been shown in other studies (Hashemi et al., 2016; Sahoo 

& Bhaskaran, 2019). Several reasons are proposed to explain this behavior.  

The data used for training might be skewed towards values that produce more 

moderate water levels. It is known that ANNs fail to make accurate predictions beyond 

the range of data used for training (Hashemi et al., 2016; Mosavi et al., 2018). The 

synthetic cyclones used as input for the ANN model were design to be constrained by the 

historical TC record. That is, the distributions of maximum wind speed, pressure, 

translation speed and radius of maximum winds are within the ranges observed for 

historical cyclones near the Mid-Atlantic Bight. The water levels simulated for these 

storms resulted in moderate levels. Specifically, the output data used for training has peak 

levels ranging between 1.56 and 2.24 m for the different stations. However, on average 

the output values used for training are much lower, mostly below 1.0 m. A broader 

distribution in the dataset used for training might result in more accurate predictions of 

the peak values evaluated here.  

Another explanation for the underprediction of peak values is that in the 

configuration implemented, the ANN model only forecasts based on the data given at 
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each time step, ti, and does not consider the relationship between predictions at ti and ti-

1. That is, the ANN has no memory of the values predicted in the prior time step. Long 

Short-Term Memory (LSTM; (Hochreiter & Schmidhuber, 1997) neural networks have the 

ability to learn long-term dependencies (Le et al., 2019), and as such it is an approach 

commonly implemented in time series forecasting to address this issue and account for 

correlations across timesteps. 

Throughout the process of developing an ANN model we have been able to 

determine the parameters and infrastructure needed for its successful implementation. 

We have also been able to identify some of the model limitations and potential areas of 

improvement. The results presented have demonstrated the utility of ANNs as a powerful 

forecasting tool due to their computational efficiency and skill. ANN models show great 

potential to be implemented as a real-time storm surge forecasting system. However, to 

achieve this, consideration must be given to the limitations identified in this study. The 

results presented are an indication that more data should be included to support the 

training process. For storm surge assessment this implies a larger number of TCs that 

portray a wider range of both TC and storm surge scenarios. Specifically, the ANN model 

should be trained with a large number of samples of extreme storm surge events. The 

optimal number of TC cases needed for training is another topic of research that must be 

targeted in the consideration of using ANNs as real-time forecasting systems. The HWCM 

model used to simulate the synthetic tracks that served as input during training of the 

ANN model, facilitates the creation of additional cyclone scenarios which can be 

seamlessly included in the ANN model training process.  
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The assessment of permutation variable importance identified the cyclone 

minimum pressure as the most important variable in accurately predicting storm surge. 

While the ANN has no understanding of the underlying physics, our knowledge on storm 

surge validates this result. This is not to say, however, that the other input variables are 

not physically relevant or important. The magnitude of storm surge is known to depend 

on the cyclone’s intensity as given by the minimum pressure, due to the inverse 

barometer effect (Pore, 1964). The maximum wind speed of the cyclone, which is known 

to be strongly correlated with storm surge, is ranked in fourth place. The fact that the 

maximum wind speed is ranked lower than the minimum pressure is somewhat 

unexpected. However, since these variables are highly correlated, the variable 

importance analysis may be giving a higher priority to one of the features, in this case the 

minimum pressure. While the permutation method provides useful insight, this is one of 

the drawbacks of the method when features are correlated. On the other hand, the 

calculated wind speeds have a higher variability than the pressure. Due to this inherent 

variability, the permutation of the maximum wind speed might not be exhibiting such a 

strong error response.  

The cyclone position, given by the latitude and longitude, are ranked as the second 

and third most important variables, respectively. This result is not surprising. Recent 

studies have highlighted the importance of accounting for the cyclone’s location, 

specifically their location at landfall, in assessing storm surge impacts. Based on the 

cyclone location, the cyclone will be affecting regions with different bathymetric and 

topographic features, which are important in accurately forecasting storm surge impacts. 
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The importance of the cyclone location is also highlighted in the results from the partial 

dependence analysis, which shows a high sensitivity of storm surge to the cyclones 

position, specifically the latitude. Results highlight the variation of storm surge from one 

station to the other. Results indicate a higher variability of the storm surge response 

relative to increasing latitude at The Battery station, compared to the Montauk station, 

which may point to the differences between the station locations. The Battery is an 

enclosed station near multiple channels and rivers, whereas the Montauk station is in a 

less geographically complex area (Figure 4-2). Generally, these results point to the 

importance of striving to obtain the most accurate atmospheric data available when 

assessing storm surge impacts. 

The implementation of an ANN model for storm surge assessment proved to be a 

fast and reliable alternative to process-based methods. While we were able to develop 

and implement a skillful ANN model, the study and the methods presented are not 

without their limitations. As discussed, the study can be improved by including a broader 

range of TC scenarios that account for higher storm surge estimates, as well as 

implementing the LSTM method to improve the time series forecasts. Analysis of the ANN 

model input and output provided useful insight into the physics of storm surges and the 

variables needed for forecasting. The work presented thus alluded to the issues that need 

to be addressed in order to eventually rely on ANNs as real-time storm surge forecasting 

systems.  
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4.6 Conclusions 

The goal of this study was to design an ANN model for the Mid-Atlantic Bight 

region, in order to understand the parameters needed for its successful implementation. 

We performed a cross-validation method to assess the ideal hyperparameters to use in 

configuring the ANN model and determine the most accurate lead-time configuration. 

The ANN was shown to be able to accurately forecast storm surge time series at multiple 

station locations. Results from the ANN were used to understand how each of the input 

variables relating to the cyclone physical parameters contributed to the overall storm 

surge forecast.  

Results indicate that for out dataset, an ANN model used to forecast storm surge 

at a 2-hr lead time required the use of two hidden layers with 100 and 200 neurons in 

each layer, respectively. Assessment of the model performance in predicting storm surge 

levels, pointed to the skill of the model in accurately predicting moderate values of storm 

surge. The model, however, exhibited limitations in peak-value predictions. The cyclone 

minimum pressure and its position were identified as the top three most important 

variables for forecasting storm surge, supporting results from recent studies highlighting 

the dominant role of cyclone impact location in storm surge assessment. 

ANNs show promise in their use for rapid and accurate storm surge predictions. 

The work presented highlighted the limitations and areas of improvement that must be 

addressed in order to implement ANNs as real-time forecasting systems.  
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CHAPTER 5. SUMMARY 

5.1 Summary and Implications 
 

Atmospheric forcing is the main driver of storm surge (Dietrich et al., 2017; 

Lakshmi et al., 2017). In this study we examined the role of atmospheric forcing in driving 

storm surge, both from a physical and a modeling standpoint. The work presented was 

motivated by the need for improved storm surge forecasting methods that can help 

mitigate the damages and impacts from tropical cyclones (TCs).  

First, we compared the use of different wind field models as atmospheric forcing 

for storm surge forecasting (discussed in Chapter 2). We coupled the Weather Research 

and Forecasting model (WRF; Skamarock et al., 2008) and the Advanced Circulation 

(ADCIRC; Luettich & Westerink, 2004; Luettich et al., 1992) models to perform a hindcast 

of Hurricane Sandy’s storm surge for two meteorological forcing configurations. One 

simulation directly used the full wind and pressure field output from the WRF simulation. 

The other consisted of using track data derived from the WRF simulation, implemented 

within a parametric vortex model, such that the differences between the storm surge 

forecasts can be attributed to the differences in the wind field representations. Results 

indicate the effectiveness of using full wind and pressure fields derived from WRF over 

the implementation of the WRF-derived track within the parametric model. This has 

important implications for the future of storm surge forecasting since parametric models 

are most often implemented due to their computational efficiency. The higher accuracy 

achieved with fully-physics models prompts the need to optimize these for storm surge 

forecasting and quantify their limitations. We also show that a higher resolution 
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atmospheric simulation (i.e. 4 km against 12 km resolution), which has a much higher 

computational cost, is not necessary to accurately depict the storm surge magnitude and 

spatial extent. This is an important consideration for real-time storm surge forecasting, 

where timely predictions are needed.  

We then used our findings to support the implementation of a novel method for 

simulating synthetic cyclones, the Hybrid WRF Cyclone Model (HWCM; Bruyère et al., 

2019). We presented this approach to aid in the understanding of how different processes 

contribute to storm surge and inundation and by extension, improve storm surge 

predictability. We showed the first application of this advanced and novel model to study 

storm surge sensitivity to TC landfall angle, by coupling it with the ADCIRC hydrodynamic 

model. Our results indicate that cyclones with tracks perpendicular to the New Jersey 

coast produce the highest storm surge, the broadest offshore surge extent and cause 

more widespread inland flooding than cyclones approaching the coast at more oblique 

angles or parallel to the coast. This is also indicative of the sensitivity of storm surge to 

cyclone landfall location. The storm surge impact is not homogenous along the coast and 

strongly depends on the cyclone landfall location and the geographical characteristics of 

the impact region. Some regions are more vulnerable than others, exhibiting less 

sensitivity to changes in cyclone landfall angle. This result has implications for how 

mitigation efforts are carried out. Proposed solutions for planning and mitigation should 

begin at the local level as they must be tailored to the hazards and risks of each location 

(Helderop & Grubesic, 2019).  
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 Finally, an artificial neural network (ANN) was implemented which produced 

timely and accurate storm surge forecasts. The ANN was trained with the ensemble of 

TCs and storm surge generated in Chapter 4. The use of an ANN also facilitated our 

understanding of the degree to which storm surge depends on various TC characteristics 

(e.g. cyclone location, maximum wind speed, minimum pressure, translation speed and 

size). We show that cyclone intensity, as given by the minimum pressure, is ranked as the 

most important variable for accurately predicting storm surge with the ANN. We also 

highlight the importance of the cyclone’s position (as given by the latitude and longitude), 

in agreement with our previous findings on the dominant role of landfall location in the 

expected storm surge. The development of the ANN allowed us to determine the 

configuration needed to implement a successful model and determine its limitations. The 

ANN model had an average error of 0.08 m, considerably less than the error obtained 

with traditional process-based methods, which for the Mid-Atlantic Bight region can often 

be more than 0.5 m (FEMA, 2011). ANNs thus prove to be a useful method for rapid and 

accurate storm surge assessment and show promise in being implemented as a hazards 

assessment and forecasting tool in the future.  

 We developed a storm surge modeling framework that can be applied to other 

regions and extended to isolate and quantify the impact from other fundamental 

mechanisms that can impact surge (e.g. storm size, translation speed and intensity). 

Additionally, in the process of examining the response of storm surge to cyclone landfall 

angle, we created a set of 200 synthetic cyclones that can be used for other applications. 

The modeling framework and the data can be applied in numerous research areas 
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including, for example, studies of TC-induced precipitation events and studies on future 

climate scenarios. Understanding how storm surge is expected to respond to varying 

climate conditions is an important consideration for purposes of planning and 

construction of infrastructure along and near the coastline. Key areas of further research 

result from the development of this modeling framework, including: (i) the study of the 

effect of the projected climate change conditions on TC-induced storm surge in terms of 

changes to cyclone characteristics and the projected rise in sea level, (ii) the modification 

and development of the current modeling framework to include a hydrology model that 

can account for the compound effect of storm surge and precipitation.  

 The methodologies and results presented in this work, are a step towards a 

comprehensive assessment of storm surge that includes the evaluation of the physical 

and societal impacts. We developed a modeling framework, applicable to other regions, 

and demonstrated its utility in storm surge forecasting. The conclusions derived from this 

study will allow for more accurate assessment of storm surge, ultimately leading to better 

predictions in hopes of mitigating future damages from TC-induced storm surge.  
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APPENDIX A: SUPPORTING INFORMATION FOR CHAPTER 3 

Text A-1. The Hybrid WRF Cyclone Model (HWCM) was evaluated to determine whether 

the behavior or the tracks was a response to the internal variability in the model or a 

response to the external forcing imposed at the boundaries. This evaluation was done by 

using the digital filter initialization (DFI) scheme in the Weather Research and Forecasting 

model (WRF) with filtering window of 0.5, 1, 2 and 3 hours. Two test cases were 

conducted using the same background wind flow of 8 m/s but different wind directional 

forcing at the boundaries.  

 

Figure A-1. Depicts the cases used to test for model variability in the HWCM. The DFI 

scheme, with integration time of 0.5, 1, 2 and 3 hours, was implemented within the 

HWCM to removed initial model instabilities by reducing high-frequency features. TC 

intensity is shown per each 3-hr time step.  
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Figure A-2. K-means cluster analysis for the maximum storm surge distributions of the 

113 cyclones in the HWCM ensemble that make landfall along the NJ coastline. The 

analysis resulted in the use of the four clusters presented here. (Left) Tracks for the 
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associated storm in each cluster and (right) the average maximum storm surge 

distributions are shown for Cluster 1, Cluster 2, Cluster 3 and Cluster 4, respectively.  

 

 

Figure A-3. Rainfall totals for the (a) perpendicular, (b) diagonal and (c) parallel tracks in 

the case study presented in Chapter 3, section 3.5. 

 

 

 

 


