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ABSTRACT OF THE THESIS 

Estimating Cell-Type Specific Gene Expression in Mouse Spinal Cord Injury through 

Deconvolution of Bulk RNA-Seq Data 

by DYLAN FORENZO 

 

Thesis Director: 

Li Ca 

Advancements in single-cell RNA-Sequencing (scRNA-Seq) have allowed for the 

characterization of individual cell-type gene expression profiles. However, adult nerve cells 

exposed to a traumatic injury, such as cells in the spinal cord, are difficult to keep alive and viable 

for scRNA-Seq after isolation, making it difficult to study individual cell-type response to injury. 

Here, we use computational methods to deconvolve bulk RNA-Seq data obtained from mixtures 

of cells in the injured mouse spinal cord into individual cell types using healthy mouse scRNA-

Seq Data. Through this deconvolution, we deduce that the mixtures mainly consist of neurons, 

oligodendrocytes, and astrocytes which make up approximately 54%, 24%, and 16% of the total 

cell population, respectively. These cell proportions and the differential gene expression between 

mixtures are then used to estimate the changes in cell-type specific gene expression between 

experimental conditions. The resulting gene expression profiles are then compared in a 

differential gene expression analysis (DGE) to provide evidence of the biological effects of gene 

therapies on neuron, oligodendrocyte, and microglia cell populations. Through the DGE analysis, 

we identified an average of 650 differentially expressed genes in neurons, 147 in 

oligodendrocytes, and 40 in microglia across experimental conditions. This approach provides an 

accessible and useful method for identifying the gene expression profiles of various cell-types 

after injury. 
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Chapter 1. Introduction 

RNA-Sequencing (RNA-Seq) is a method for quantifying gene expression levels in a 

sample of cells. These gene expression counts can be used to identify the biological pathways and 

functions taking place within the sample of cells. RNA-Seq has been shown to have a higher 

degree of accuracy and specificity than other quantitative gene expression assays, and continues 

to become more accessible over time.1 This high-precision and accessibility have made RNA-Seq 

a powerful tool with applications in many different areas of biomedical research.  

One major application of RNA-Seq data is differential gene expression analysis (DGE). 

This technique uses RNA-Seq to quantify gene expression in samples of cells under different 

experimental conditions, such as conditional knockout vs. wild type cells. The gene expression 

counts can then be compared between the samples to identify the biological pathways and 

functions that have different activity between the conditions, if any. Due to high variations in 

gene expression levels across a genome and inherent noise in the sequencing process, determining 

which genes are significantly differentially expressed requires statistical modelling techniques.2 

Several popular bioinformatics tools have been developed for this purpose such as DESeq23 and 

edgeR4.  

Single cell RNA-Sequencing (scRNA-Seq) is a relatively new technique that evolved 

from traditional bulk RNA-Seq. In this method, each cell in the sample is isolated and sequenced 

individually to provide quantitative gene expression information at the cellular level instead of at 

the sample level. This superior resolution of scRNA-Seq represents a major improvement over 

traditional RNA-Seq, however scRNA-Seq has its own drawbacks. Isolating cells for individual 

sequencing can be a difficult task, especially when studying certain types of cell populations and 

experimental conditions. Drop-seq is one popular procedure for isolation that encapsulates the 

cells into nanoliter droplets of oil and water.5 Though Drop-Seq and similar techniques can make 

scRNA-Seq easier to perform, its relative inaccessibility remains a significant weakness 
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compared to bulk RNA-Seq. Single nucleus RNA-Seq (snRNA-Seq) is a variant of scRNA-Seq 

where individual nuclei are sequenced instead of cells. This technique has been shown to produce 

similar results compared to scRNA-Seq while being easier to implement in some cases.6 scRNA-

Seq and snRNA-Seq are used interchangeably throughout this report. 

 In this study, we would like to determine the effects of two gene therapies on various cell 

types in mice after a spinal cord hemi-section injury (SCI). Since this goal requires cell-specific 

gene expression information, scRNA-Seq would be the preferred analysis method. However, 

spinal cord cells such as neurons are difficult to isolate for sequencing and existing techniques 

often result in lower cell yield and viability.7 The SCI conditions also make scRNA-Seq difficult 

to implement as the injured cells are more susceptible to damage or cell death. Stress or cell death 

due to aggressive sorting methods can cause unintended gene expression responses in the cell 

samples compromising the gene expression data.8 Since scRNA-Seq is not accessible for SCI 

cell-studies, an alternative method is needed to produce cell-type specific gene expression 

information.  

  One upcoming technique that addresses this need is bulk RNA-Seq deconvolution. In 

this procedure, scRNA-Seq is performed on a control group (ex. Healthy adult mice) and the 

resulting counts are then used to create a gene expression profile (GEP) for the cell types in the 

sample. This GEP is a model that contains information about which genes are expressed by a cell 

type and quantifies the gene expression levels under the control conditions. In bulk RNA-Seq 

deconvolution, these GEPs are used as references to estimate cell-type specific information from 

bulk RNA-Seq mixture samples. Several RNA-Seq deconvolution algorithms such as 

CIBERSORT9 and MuSiC10 have been developed that use scRNA-Seq GEPs to estimate the 

proportions of different cell populations in a bulk RNA-Seq mixture. These methods seek to 

model the bulk RNA-Seq samples as linear combinations of the cell-type GEPs that are present in 

the tissue of interest and compute the cell-type proportions as the linear coefficients. While these 
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methods are useful for some applications, the models do not account for potential changes in cell-

type GEPs across experimental conditions, such as those induced by SCI. 

 Recently, Newman et. Al., the group developing the CIBEROSRT algorithm, improved 

upon their original design and added a feature to estimate changes in GEPs across bulk RNA-Seq 

samples.11 This new algorithm, CIBERSORTx, attempts to identify the changes in cell type GEPs 

that in gene expression due to experimental conditions among the bulk RNA-Seq samples. Using 

this novel method of bulk RNA-Seq deconvolution, quantitative cell-type specific gene 

expression information can be obtained without the need for scRNA-Seq of the SCI condition 

samples. 

Here, we present an analysis pipeline for estimating cell-type specific gene expression in 

bulk RNA-Seq mixtures using healthy scRNA-Seq counts as reference. This method incorporates 

single-cell clustering, CIBERSORTx GEP estimation, and differential gene expression analysis to 

identify affected pathways and functions between experimental conditions. We then apply this 

pipeline to a mouse SCI dataset to identify DEGs in neuron, oligodendrocyte, and microglia 

populations between injured mice given SCI gene therapies and injured mice without treatment. 
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Chapter 2. Materials and Methods 

2.1 Overview of Analysis Pipeline 

 

Figure 2.1.1 Flowchart of Analysis Pipeline 

To produce cell-type GEPs for each injury condition, two sets of raw data are required: 

scRNA-Seq counts from a mixture of healthy mouse spinal cord cell populations and bulk RNA-

Seq counts from mixtures of mouse spinal cord cell populations among each condition of interest. 

These raw data sets are displayed on the left-most side of the flowchart of Figure 2.1. The single-

cell counts are first clustered using an unbiased clustering method and are assigned cell-type 

labels using known cell-type marker genes. Cell-type GEPs for healthy mice can then be inferred 

from these clusters by averaging gene expression across cluster members.  

Next, these cell type GEPs are used in the CIBERSORT algorithm along with the bulk 

RNA-Seq mixtures to estimate the proportions of each cell population in each condition. This 

step of the analysis is shown in the second column of Figure 2.1 as the joining of two other 

blocks. The rest of the analysis follows a linear path. 

The cell proportion estimates, single cell clusters, and bulk RNA-Seq mixtures are then 

used to estimate GEPs for each cell type in each SCI sample. Only genes that are significantly 

expressed and are found to have sufficient evidence of cell-type specific differential expression 

between experimental conditions are included in the estimated GEP for that cell type. 
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The estimated cell-type specific gene expressions can then be used in a DGE analysis to 

identify the significantly differentially expressed genes between experimental conditions. Lastly, 

a pathway analysis is performed on the genes found through DGE analysis and the biological 

pathways and functions that are affected by the experimental conditions are identified. 

All statistical tests and computations were performed using the R software environment 

for statistical computing12 unless noted otherwise. The various libraries and packages used for 

data analysis are listed throughout this chapter. 

2.2 Bulk RNA-Seq Data 

The motivation for this project was to apply the analysis pipeline outlined in Section 2.1 

to a dataset of RNA-Seq counts generated from a mouse SCI and gene therapy study. This dataset 

consists of RNA-Seq counts of cells from the spinal cords of mice subjected to the following 

conditions: Sham (no injury), Control (hemi-section injury only), Treatment1 (hemi-section 

injury with gene therapy 1), and Treatment2 (hemi-section injury with gene therapy 2) taken at 3 

and 35 days after a hemi-section injury as well as Control and Treatment1 taken 14 days after 

injury. Three replicates of each condition were sequenced except for Control and Treatment1 at 

35 DPI which consisted of four replicates for a total of 32 samples. All RNA-Seq samples were 

used in the GEP estimation to improve statistical power, but only the Control, Treatment1, and 

Treatment2 samples at 3 and 35DPI were analyzed in the DGE and pathway analyis.  

Condition Number of Replicates 

Sham 3 DPI 3 

Control 3 DPI 3 

Treatment1 3 DPI 3 

Treatment2 3 DPI 3 

Control 14 DPI 3 
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Treatment1 14 DPI 3 

Sham 35 DPI 3 

Control 35 DPI 4 

Treatment1 35 DPI 4 

Treatmen2 35 DPI 3 

Total 32 

Table 2.2.1 Bulk RNA-Seq Samples 

 

2.3 Single Cell RNA-Seq Data 

Single-nucleus RNA-Seq counts were obtained from the published mouse spinal cord 

atlas dataset by Sathyamurthy et. al.13 This dataset is publicly available for academic use at the 

NCBI Gene Expression Omnibus14 under GEO accession number GSE103892. The single-

nucleus RNA-Seq counts present in this dataset were produced using a modified protocol of the 

Drop-Seq method5 outlined in Sathyamurthy et. al. These counts are representative of a mixture 

of cell populations in a healthy adult mouse spinal cord. In the original study, several of the mice 

were subjected to acute pain to study potential effects on the expression of early-immediate 

genes. To be sure these effects were not present in this analysis, only the 6,750 nuclei from the 

control mice in the study were used out of the original 18,000 nuclei present in the dataset. 

2.4 Clustering Analysis of scRNA-Seq Data 

The remaining sequenced nuclei were clustered using the Seurat15 package for R. The 

raw counts were first filtered to only pass through nuclei that expressed at least 200 unique genes 

and genes that were expressed by at least 3 unique nuclei. Next, the percentage of reads for each 

nucleus that corresponded to mitochondrial genes were computed. The remaining nuclei were 

then filtered again to only pass through if less than 20 percent of their reads mapped to 

mitochondrial genes and they expressed less than 5000 unique genes. Cells that express a high 
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proportion of mitochondrial genes are considered to have compromised cell or nuclear 

membranes and are discarded from the analysis. Similarly, nuclei that express a very large 

number of genes are most likely doublets of nuclei captured in a single drop for sequencing and 

are also removed from the analysis. These preprocessing steps and cutoff values follow from the 

methods described in the original analysis of the snRNA-Seq data.13 After this preprocessing, 

6,556 nuclei were used for clustering. The counts from these nuclei are then normalized by the 

total expression per each nucleus, multiplied by 10,000, then log transformed. 

Next, the top 2000 most variable genes across the nuclei were identified and used to 

perform a principal component analysis: a procedure that assigns orthogonal dimensions to the 

dataset. Jackstraw and Elbow plots were then constructed to determine the minimum number of 

principal components (PCs) that sufficiently describe the dataset. This number was chosen by 

looking for the flattening (elbow) of the curve between PCs on both plots as described by the 

Seurat tutorial.15 The minimal number of PCs were then used to cluster the remaining nuclei 

using an unbiased clustering method based on the K nearest neighbors and Louvain16 algorithms. 

The recommended resolution for clustering is between 0.4 and 1.2, with a higher resolution 

resulting in more clusters.15 A resolution of 1.2 was chosen due to the large number of nuclei in 

the dataset and a larger number of desired clusters to identify small cell populations in the 

mixture. The resulting clusters were plotted in a two-dimensional plane using the UMAP 

dimension reduction algorithm.17 The unbiased nature of this clustering means that Seurat clusters 

the nuclei without any cell phenotype data and relies only on the observed differences between 

the nuclei’s expression. Therefore, the resulting clusters initially lack biological phenotypes and 

must be labelled as specific cell types using known marker genes. 

Cluster labelling was performed using the Seurat package to report the descriptive genes 

for each resultant cluster and matching these genes to known cell-type marker genes. The 

descriptive genes for a cluster were found through Seurat using the Wilcoxon rank sum test18 
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under the constraints that the gene was a positive marker for the cluster and was expressed by at 

least 50 percent of the nuclei in that cluster. These descriptive genes were then matched with cell-

type marker genes for each major cell type outlined in the original mouse spinal cord atlas. 13 

Marker genes for neurons, oligodendrocytes, astrocytes, vascular cells, meningeal cells, 

microglia, Schwann cells, and a mixture of precursor cells were taken from the original single 

nucleus RNA-Sequencing study and an online database of cell-type gene markers at 

CellMarker19. Each cluster was compared against marker genes from each cell-type of interest 

following equation 2.4.1 and the cell type with the highest percent match was taken to be the 

label for that cluster. 

 %𝑀𝑎𝑡𝑐ℎ =  100 ∗
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑒𝑙𝑙 𝑇𝑦𝑝𝑒 𝑀𝑎𝑟𝑘𝑒𝑟𝑠  𝐴𝑙𝑠𝑜 𝑃𝑟𝑒𝑠𝑒𝑛𝑡  𝑖𝑛 𝑡ℎ𝑒  𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑣𝑒 𝐺𝑒𝑛𝑒𝑠  𝑓𝑜𝑟 𝑡ℎ𝑎𝑡 𝐶𝑙𝑢𝑠𝑡𝑒𝑟

𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓 𝐶𝑒𝑙𝑙 𝑇𝑦𝑝𝑒  𝑀𝑎𝑟𝑘𝑒𝑟𝑠
  

Equation 2.4.1 Percent Match Calculation 

For example, if there are 10 known Schwann cell marker genes and 2 of them are also descriptive 

genes for Cluster 1 then Cluster 1 has a 20% match with the Schwann cell-type: 

%𝑀𝑎𝑡𝑐ℎ = 100 ∗
2

10
= 20% 

Equation 2.4.2 Example Percent Match Calculation 

Several clusters were found to have no significant matches to known cell types or to have 

a high percent of mitochondrial genes as descriptive genes. These clusters were assumed to not be 

representative of a cell phenotype and were removed from further analysis. The remaining nuclei 

were then labelled with their corresponding cell phenotypes and the proportions of each cell-type 

in the dataset are calculated. The average gene expression across nuclei in a cluster is interpreted 

as a GEP for the cell-type associated with that cluster. 
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2.5 Cell Proportion Estimation 

Cell proportion and GEP estimations were performed using the CIBERSORT and 

CIBERSORTx web-based tools available online at cibersortx.stanford.edu.11 To estimate cell 

proportions in the bulk RNA-Seq mixtures, the mixture samples and healthy mouse GEPs derived 

from single cell clustering are used in a linear system model. This model is shown in Equation 

2.5.1 where G is an i by j matrix containing the GEPs of i genes in j cell types as column vectors. 

F is a j by k vector containing the j cell type proportions in the k sample mixtures provided by the 

bulk RNA-Seq data. B is an i by k matrix containing the bulk RNA-Seq counts of i genes for each 

mixture sample as k column vectors. The CIBERSORT algorithm seeks to solve for the cell 

fractions matrix F given the GEP and bulk data matrices G and B using a machine learning 

approach called nu-support vector regression20.  

𝑮 ∗ 𝑭 = 𝑩 

Equation 2.5.1 Cell Proportions Systems of Linear Equations Model 

The bulk RNA-Seq counts described in Section 2.2 and the GEP matrix constructed in 

Section 2.4 were passed to CIBERSORT to impute the proportions of each cell-type in each 

spinal cord mixture. The quantile normalization option was disabled (as recommended for RNA-

Sequencing data)11 and 100 permutations were performed. These results were used both for 

quality control and downstream analysis.  

2.6 Cell Type GEP Estimation 

CIBERSORTx is an improvement upon the original CIBERSORT tool that allows for the 

estimation of GEPs in mixture samples in addition to cell-type proportion estimates. This method 

attempts to decompose the B matrix featured in Equation 2.5.1 into a modified G matrix for each 

cell type. These modified G matrices are the estimated GEPs for each cell type in each bulk 

mixture. This matrix decomposition is accomplished by identifying differences in the bulk sample 
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gene expression levels and modifying the reference cell-type GEPs (G matrix) to account for 

these differences. The CIBERSORTx algorithm is described in detail under the Supplemental 

Information section of the original publication.11 

At this time, the high-resolution tool used for GEP estimation is limited by 

CIBERSORTx to process only up to 1000 genes at a time due to high computational loads for the 

web-based application. To further reduce computation time and unnecessary complexity, genes in 

the bulk RNA-Seq samples with total counts of less than 0.5% of the number of clustered nuclei 

were filtered out. This number was chosen so that genes with very low expression would be 

excluded from further analysis, but significant genes expressed only by the smaller cell-type 

clusters would not be lost. Since the least common cell type was microglia with a proportion of 

1%, 0.5% was chosen so that genes expressed in at least half of microglia cells would be 

included. 

After filtering, 15,013 genes remained for analysis. To analyze the full transcriptome of 

the bulk RNA-Seq mixtures, the remaining genes were split into 16 groups based on alphabetical 

order with each group having a maximum of 1000 genes. The resulting GEPs were then 

concatenated to display the full transcriptome of each cell-type. The CIBERSORTx tool was run 

in high-resolution mode with the GEP matrix constructed in Section 2.4, and the bulk samples 

matrix developed in Section 2.2. No batch correction was enabled for any of the runs and quantile 

normalization was disabled as recommended for RNA-Seq data.11 

2.7 Differential Gene Expression Analysis (DGE Analysis) 

DGE analysis was performed using the DESeq2 R package.3 Chosen cell-types of interest 

were analyzed individually, and comparisons were made between the gene therapies and control 

mice at 3 and 35 DPI. DGE results were obtained using a standard alpha value of 0.05, and only 

genes that were found to be significantly differentially expressed with a p-value of less than 0.05 

were kept for pathway analysis. Each comparison between conditions was performed individually 
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between two conditions at a time (i.e. Treatment1 at 35DPI vs. Control at 35 DPI). The resulting 

differentially expressed genes were written out as a table containing the expression, log2 fold 

change, and p-value for each remaining gene.  

2.8 Ingenuity Pathway Analysis 

Pathway analysis was performed using Qiagen’s IPA application (QIAGEN Inc., 

https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis). Each DGE contrast 

was uploaded and analyzed individually. The expression values, log2 fold change, and 

significance values were all used to generate an IPA dataset. Core analysis was run on each 

dataset individually with all included genes to identify the pathways and directionality associated 

with the differentially expressed genes found in Section 2.7. 
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Chapter 3. Results 

3.1 Clustering Analysis of Single-Nucleus RNA-Seq Data 

After the preprocessing described in Sections 2.3 and 2.4, 6,556 nuclei were analyzed for 

clustering. A principal component analysis (PCA) was run on the dataset to fit orthogonal 

dimensions to the nuclei. JackStraw and Elbow plots were generated for 30 PCs to visualize the 

significance of each PC in the dataset. These plots are shown in Figure 3.1.1 and Figure 3.1.2 

respectively. 
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Figure 3.1.1 JackStraw Plot of Principal Components 
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Figure 3.1.2 Elbow Plot of Principal Components 

Both Figure 3.1.1 and Figure 3.1.2 plot the principal components of the single cell dataset 

(horizontal axis) vs. imputed statistical significance (vertical axis). The information in these plots 

is used to choose the number of minimum number of dimensions to describe the dataset in down-

stream analysis. Using more dimensions could potentially improve clustering accuracy, but with 

diminishing returns and at the cost of computational burden. Here, the top 25 dimensions were 
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chosen for further analysis as the 25th PC marks where the significance of the PC’s start to level 

out. In the JackStraw plot, this point can be seen as the PCs after PC 25 have a much lower p-

value than those before PC 25. The same point is also visualized in the Elbow Plot where PC 25 

appears to be in the middle of the plateau. 

 

Figure 3.1.3 Raw Clusters in UMAP Plot 
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The Seurat clustering algorithm was run with the top 25 dimensions and a resolution of 

1.2. The resulting 21 clusters are displayed in Figure 3.1.3 using the UMAP dimensional 

reduction. The clusters were then labelled using known cell-type gene markers as described in 

Section 2.4 (Clustering Analysis of scRNA-Seq Data). Figure 3.1.4 shows the percent matches 

between clusters and known cell-type gene markers.  

 

Figure 3.1.4 Raw Gene Marker Heatmap (values given as % of Matching Marker Genes) 
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There were many more known marker genes available for neuron and precursor cells, as 

these cell groups are well-studied and contain various known cell type sub-populations. The large 

number and variation of neuron and precursor marker genes resulted in at least several matching 

genes for nearly all clusters. To account for this, a cluster was labelled as a neuron population 

only if no other cell types were significantly matched to the cluster and a relatively large number 

of neuron marker genes were matched. Similarly, a cluster was labelled as a precursor cell 

population only if no other cell types were matched and the ratio between precursor and neuron 

matches was relatively large (defined as >2.5). In addition, cluster-9 was labelled as a group of 

meningeal cell-types due to its low matching with other cell types, proximity to an identified 

meningeal cluster on the UMAP plot, and the expression of some precursor cell markers which 

have been shown to be also be expressed in mammalian meningeal cells.21 A table of the final 

identified cluster labels is shown in Table 3.1.2. 

Cluster Number Cell-Type Label 

0 Neuron 

1 Oligodendrocyte 

2 Neuron 

3 Astrocyte 

4 Oligodendrocyte 

5 Oligodendrocyte 

6 Neuron 

7 Neuron 

8 Oligodendrocyte 

9 Meningeal 

10 Neuron 

11 Vascular 
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12 Schwann 

13 Neuron 

14 Precursor 

15 Meningeal 

16 Neuron 

17 Precursor 

18 Schwann 

19 Precursor 

20 Microglia 

21 N/A 

Table 3.1.2 Cluster Cell-Type Labels 

 

As shown in Figure 3.1.4 and Table 3.1.2, Cluster 21 had no matches to any of the known 

cell-type marker genes. Similarly, Cluster 19, although fitting the requirements to be labelled as a 

precursor group, had low matches to all known cell-type markers, including precursor cells. For 

these reasons, Clusters 19 and 21 were removed from further analysis. An updated map of all the 

original clusters with labels is shown in Figure 3.1.5. Here, clusters 19 and 21 are labelled “NA” 

and are shown in magenta. 
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Figure 3.1.5 Labelled Clusters UMAP Plot 

Further study of each cluster’s descriptive genes showed that clusters 1 and 9 were 

characterized mostly by mitochondrial genes and genes highly expressed across all cell types. 

These clusters were originally labelled as “Oligo1” because they contained some of the 

oligodendrocyte marker genes but had different expression profiles from the other group of 

oligodendrocyte cells. Clusters 1 and 9 were removed from further analysis since the 



20 
 

 

mitochondrial and universally expressed descriptive genes indicate clusters that do not accurately 

portray a biological phenotype. The criteria for removing clusters from further analysis was also 

taken from the methods of the original snRNA-Seq dataset study.13 Figure 3.2.6 shows a map of 

the final cluster used in downstream analysis with Clusters 1, 9, 19, and 21 removed. Tables 3.1.3 

and 3.1.4 show the proportions of each cluster and cell type in the dataset respectively. 
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Figure 3.1.6 Final Clusters UMAP Plot 

 

Cluster (Renumbered) Percentage of Population Cell Type 

0 14.618 Neuron 

1 11.024 Neuron 

2 9.423 Astrocyte 

3 9.199 Oligodendrocyte 

4 7.11 Oligodendrocyte 

5 6.87 Neuron 

6 6.79 Neuron 

7 5.400 Meningeal 

8 4.749 Neuron 

9 4.060 Vascular 

10 3.799 Schwann 

11 3.147 Neuron 

12 3.110 Precursor 

13 2.868 Meningeal 

14 2.775 Neuron 

15 2.402 Precursor 

16 1.862 Vascular 

17 0.782 Microglia 

Table 3.1.3 Proportions of Each Final Cluster in snRNA-Seq Dataset 

 

Cell Type Percentage of Population 
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Neuron 49.981 

Oligodendrocyte 16.313 

Astrocyte 9.423 

Meningeal 8.268 

Vascular 5.922 

Precursor 5.512 

Schwann 3.799 

Microglia 0.782 

Table 3.1.4 Proportions of each Cell Type in Single Nucleus Dataset 

3.2 Estimation of Cell Type Proportions in Bulk RNA-Seq Data 

Sample Neuron Precursor Menin Oligo Schwann Vasc Astro Microglia 

ShamT3.1 51.5 0 0.6 24.3 3.2 4.6 15.4 0.3 

ShamT3.2 55.2 0 0.1 23.2 2.1 4.2 15 0.2 

ShamT3.3 55.8 0 0.6 23.1 1.8 4.5 13.8 0.4 

ShamT35.1 52.5 0 0 26.1 0.2 3.3 17.6 0.3 

ShamT35.2 54.2 0 0 25 0 3 17.5 0.3 

ShamT35.3 57.2 0 0 23.8 0 2.5 16.4 0.2 

Table 3.2.1 Sham Cell Type Proportion Estimates (Percent of Sample) 

The cell-type GEPs produced from snRNA-Seq clustering were then fed analyzed using 

CIBERSORT to estimate the cell type proportions in each bulk RNA-Seq mixture as discussed in 

Section 2.5. Table 3.2.1 shows the estimated cell type proportions as the percent of cells that 

belong to that cell group out of the entire sample. Each row represents a Sham bulk RNA-Seq 

mixture and each column describes a single cell type. 
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3.3 Bulk Sample GEP Estimation 

Next, CIBERSORTx was used to estimate the gene expression profiles of each cell type 

among each mixture sample. The CIBERSORTx high resolution tool used for this step is 

currently only able to run up to 1000 genes at a time. To comply with this requirement, the genes 

present in the bulk mixtures were split alphabetically into 16 groups of genes so that groups 1-15 

contained 1000 genes each and group 16 contained the remaining 14 genes. The results of each 

run of CIBERSORTx produced a 1000 row by 32 column matrix for each cell type (14x32 for 

group 16) where each entry I,J contains the estimated expression of gene I in sample J. Table 

3.3.1 shows a cropped portion of the resulting matrix for gene group 5 expressed by neurons to 

illustrate the format. 

Gene Symbol ShamT3 ShamT3.1 ShamT3.2 
Ganc 945.405 945.405 945.405 

Gm26899 1.459 1.459 1.459 

Gatm 13534.573 13534.573 13534.573 
Gm14004 53.065 35.898 47.138 

Galk2 631.896 663.281 810.669 
 

Table 3.3.1 Example Portion of Estimated Neuron Gene Expression Matrix  

Figure 3.3.1 provides another visualization of estimated GEP matrices. Here, the 

estimated expression of group 5 genes by neurons as a heatmap where blue indicates less 

expression, black neutral expression, and yellow greater expression. The rows containing all 

black entries correspond to genes that were either found to similar expression levels across all the 

samples or did not have enough statistical power to be estimated reliably. This lack of statistical 

power could be either that the gene was not sufficiently expressed by that cell type in the single-

cell derived GEP, or that the gene was not differentially expressed among the bulk RNA-Seq 

mixtures. 

All 16 expression matrices for each cell-type were concatenated into one cumulative table 

containing all the gene expression information for that cell-type. These concatenated cell type 
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tables have the same format as a bulk RNA-Seq dataset but are composed of cell-type specific 

information. This format allows for DGE analysis to be performed in the same procedure as in a 

traditional bulk RNA-Seq study. 

 

 

Figure 3.3.1 Heatmap of the Expression of 1000 genes in Neurons 
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Figure 3.3.2 Color Legend for Figure 3.3.1. Values Given as Log2 of Fold Change 

 

3.4 Differential Gene Expression and Pathway Analysis 

To determine which genes were significantly differentially expressed between samples, 

we used DESeq2 to analyze the estimated gene expression counts in a DGE analysis. Six of the 

bulk mixture samples were analyzed in four contrasts which are shown in the first column of 

Table 3.4.1. The rest of Table 3.4.1 shows the number of DEGs found in each cell type for each 

contrast. Only neurons, oligodendrocytes, and microglia were found to have significantly DEGs 

among the estimated gene counts. 

Contrast Neuron Oligodendrocyte Microglia 

Treatment1 vs Control at 3DPI 679 70 14 
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Treatment2 vs Control at 3DPI 544 69 68 

Treatment1 vs Control at 35DPI 694 337 43 

Treatment2 vs Control at 35DPI 682 113 33 

Table 3.4.1 Number of DEGs by Cell Type 

Next, each set of genes was analyzed using Qiagen’s Ingenuity Pathway Analysis (IPA) 

software. This software matches a list of genes to related biological pathways and functions using 

a proprietary knowledge base. When also given the corresponding gene expression fold changes, 

IPA can report whether the pathway or function was upregulated or downregulated in the 

contrast. Selected canonical pathways and biological functions found by IPA are shown for 

neurons, oligodendrocytes, and microglia in Tables 3.4.2, 3.4.3, and 3.4.4 respectively. In these 

tables, a (+) indicates the pathway or function was upregulated or expressed more by the first 

sample in the contrast, while a (-) indicates the function was downregulated or expressed more by 

the second sample in the contrast. If genes related to the pathway or function appear in both 

samples of a contrast, that pathway was considered neutrally related and is not labelled with 

either a (+) or (-). 

Contrast Canonical Pathways Top Biological Functions 

Treatment1 vs Control 

3 DPI 

Sirtuin Signaling 

Oxidative Phosphorylation 

Sumolyation Pathway 

Viral Infection (+) 

Astrocytosis (-) 

Gliosis (-) 

Treatment2 vs Control 

3 DPI 

Synaptogenesis Signaling (-) 

Neuregulin Signaling (+) 

Neuroinflammation (+) 

Nervous System Development (-) 

Degeneration of Neurons (+) 

Treatment1 vs Control 

35 DPI 

Synaptogenesis Signaling (+) 

GABA Receptor Signaling 

Nestin Signaling (+) 

Glutamate Signaling (+) 

Nervous System Development (+) 

Degeneration of Neurons (-) 

 

Treatment2 vs Control 

35 DPI 

Synaptogenesis Signaling (+) 

Endocannabinoid Synapse (+) 

Motor Dysfunction (-) 

Degeneration of Neurons (-) 
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GABA Receptor Signaling 

Melatonin Signaling (-) 

Nervous System Development (-) 

Table 3.4.2 Selected Neuron Pathways and Biological Functions 

 

Comparison Canonical Pathways Top Biological Functions 

Treatment1 vs Control 

3 DPI 

P70s6k Signaling (-) 

Neuroinflammation (-) 

Neuropathic Pain Signaling (-) 

Damage of Nervous System (-) 

Molecular Transport (+) 

Treatment2 vs Control 

3 DPI 

nNos Signaling 

Endocytosis Signaling 

Nervous System Development (-) 

Treatment1 vs Control 

35 DPI 

Gai Signaling (+) 

Melatonin Signaling (+) 

Neuropathic Pain Signaling (+) 

Endocannabinoid Synapse (-) 

Nervous System Development (+) 

Cell-To-Cell Signaling (+) 

Treatment2 vs Control 

35 DPI 

Neuropathic Pain Signaling (-) 

Endocytosis Signaling 

Synaptogenesis Signaling (+) 

Nervous System Development (+) 

Neurodegeneration (+) 

            Table 3.4.3 Selected Oligodendrocyte Pathways and Biological Functions 

   

Comparison Canonical Pathways Top Biological Functions 

Treatment1 vs Control 

3 DPI 

Adenine and Adenosine Salvage 

P53 Signaling 

Inflammation (-)  

Treatment2 vs Control 

3 DPI 

Leukocyte Signaling (-) 

Phagosome Maturation 

IL-8 Signaling (-) 

Inflammation (-) 

Immune Response (-) 

Infection of Cells (+/-) 

Treatment1 vs Control 

35 DPI 

Lymphocyte Apoptosis 

Th17 Activation 

Immune Cell Migation (+) 

Inflammation (-) 

Treatment2 vs Control 

35 DPI 

IL-8 Signaling Immune Cell Proliferation (-) 

Inflammation (+/-) 

Table 3.4.4 Selected Microglia Pathways and Biological Functions 
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Chapter 4. Discussion 

The statistical power available using the CIBERSORTx high resolution tool is related to 

both the number of samples and cell types being analyzed. A higher number of samples increases 

the accuracy and precision of the tool, while trying to deconvolve the bulk mixtures into more 

cell types lowers the statistical power. Since this analysis was limited by the maximum number of 

samples available for analysis, we grouped the finely differentiated clusters into more generalized 

cell-types during clustering in order to analyze less groups. This step allowed us to analyze the 

main spinal cord cell types (neurons, oligodendrocytes, etc.) with the available statistical power 

provided by our dataset. Analyzing more clusters, such as including cell sub-populations, is 

possible with this analysis pipeline, but is limited by the available number of bulk RNA-Seq 

samples. 

When estimating the cell type proportions in the bulk mixtures, only the Sham sample 

results were analyzed for quality control. The injury and treatment conditions were expected to 

cause differences in gene expression among the cell-type populations, leading to changes in the 

respective GEPs. After these changes, the injury condition GEPs would be incompatible with the 

reference GEPs generated by single-cell clustering, which could lead to unreliable cell-type 

proportion estimates, hence the need for the high-resolution tool. Conversely, since the Sham 

condition samples and single-cell dataset were both taken from healthy adult mice, CIBERSORT 

should be able to estimate the cell-type proportions reliably.  

The Sham sample proportion estimates shown in Table 3.3.1 are similar to the known cell 

type proportions found in the single-cell dataset for neurons, vascular cells and microglia shown 

in Table 3.2.3. The precursor cell group was found to not be significantly present in the estimated 

cell-type proportions. Since this generalized group is composed of a wide mixture of cell-type 

sub-populations, the resulting GEP may not accurately represent a uniform cell phenotype. This 
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could explain one potential reason for the reported absence of precursor cells in the estimated cell 

type proportions.  

Both Schwann and meningeal cells were also underreported in the cell type proportions 

estimates compared to the known proportions of cell types from clustering. Schwann cells have 

important functions in the peripheral nervous system and are not usually found in the adult spinal 

cord outside of injury.22 Therefore, one explanation for the presence of Schwann cells in the 

single-cell dataset could be differences in harvesting procedures between the single-cell 

sequencing and SCI studies. Since meningeal cells make up the outer layer of the spinal cord, this 

same explanation could also account for the differences in meningeal cell proportions.  

Estimated proportions of oligodendrocyte and astrocytes populations were larger than the 

known single-cell clustering proportions. This indicates either that differences in cell harvesting 

procedures resulted in more glial cells in the SCI dataset, or that the gene expression from 

precursor, Schwann, and meningeal cells was attributed to glial cells instead during the 

proportion estimation step.  

After GEPs were estimated for each cell-type in each bulk mixture sample, only neurons, 

oligodendrocytes, Schwann cells, meningeal cells, and microglia were found to have 

differentially expressed genes between conditions. Among these cell populations, only neurons, 

oligodendrocytes, and microglia were considered relevant to the SCI treatment study and 

analyzed further. The lack of differentially expressed genes among cell types such as astrocytes 

implies that the CIBERSORTx algorithm was not able to attribute the changes in gene expression 

between conditions to that cell type. This evidence primarily supports these cells did not have 

significant changes in gene expression between conditions. However, another explanation for the 

lack of differentially expressed genes for some cell types could be that the “true” cell-type GEP in 

the injury condition is different enough from the reference GEP that CIBERSORTx was not able 

to attribute gene expression changes across the bulk samples to these cells. This case would cause 
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some cell types such as astrocytes to have been reported with no differentially expressed genes 

when there may in fact have been large changes in gene expression after injury. 

When analyzing the identified canonical pathways and functions, it should be noted that 

although the IPA knowledge base contains many relevant pathways and gene functions, it is not 

an exhaustive source of information on genes. In addition, much of the information available 

through IPA is based on user studies and submitted datasets. This could potentially create a bias 

where more of the results are linked to areas where RNA-Seq is commonly employed and 

reported, such as cancer research. Only the pathways and functions found that are relevant to SCI 

are analyzed in this report. The full IPA results are available upon request from the Cai Lab. 

 Among the biological pathways and functions associated with the neuron DEGs, nervous 

system development and signaling were the primary results. As shown by Table 3.4.2, Treatment 

1 did not show much effect on neural signaling at day 3 but produced upregulation of several 

types of signaling and nervous system development at day 35. Treatment 2 caused an 

upregulation of inflammation signaling and downregulation of synapse formation at day 3 

implying that the treatment may have undesirable effects early on. However, by day 35 Treatment 

2 also showed evidence of increased nervous system development and signaling. This implies that 

both treatments have beneficial effects on nervous system rehabilitation after a few weeks.  

 Many of the oligodendrocyte DEGs were linked to the same pathways as the neuron 

DEGs, as shown in Table 3.4.3. The downregulation of neuroinflammation and pain signaling by 

Treatment 1 at 3 days implies that the treatment may being to have beneficial effects early on. 

Treatment 2 shows a downregulation of nervous system development at day 3 which is consistent 

with the results from the neuron DEGs. Both treatments have mixed signaling results among 

oligodendrocytes at day 35 but produce an upregulation of nervous system development.  
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 The microglia DEGs in Table 3.4.4 show a downregulation of inflammation for both 

Treatments at days 3 and 35. Treatment 2 also produced a downregulation of immune response at 

day 3 and a downregulation of immune cell proliferation of day 35. The lowered immune 

response and inflammation provide evidence of beneficial effects of the treatments after SCI. 

We have demonstrated an analysis pipeline for estimating cell-type specific gene 

expression in bulk RNA-Seq mixtures using scRNA-Seq data as a reference. This pipeline was 

then applied to our mouse SCI dataset to discern differentially expressed genes and their related 

biological pathways and functions for neurons, oligodendrocytes, and microglia. We believe the 

analysis presented in this paper has a broader application as a guide for estimating the cell-type 

DEGs and related pathways in any bulk RNA-Seq mixtures where scRNA-Seq references can be 

made available.  
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Appendices 

Appendix A. R Scripts 

Please note that these scripts contain hard coded file names and paths. To run the scripts 

successfully, each file path and/or name must be edited in the script to match the corresponding 

file location on the local machine. 

Script 1: Single cell clustering and GEP formation 

 

#This script is to run the Seurat algorithm to cluster the single cell RNA-Seq data from 
Sathyamurthy et. Al. 
 

#Libraries 
library(dplyr) 
library(Seurat) 
library(ggplot2) 
library(reshape2) 
 
##Load raw scRNA-Seq counts 
rawCounts<-
read.table("../rawData/GSE103892_Expression_Count_Matrix.txt",header=T,row.names=1,str
ingsAsFactors=F,sep="\t") 
 
##Create Seurat Object 
main<-CreateSeuratObject(counts=rawCounts, project = "sci", min.cells=3, min.features= 
200) 
 
##Quality Control 
main[["percent.mt"]] <- PercentageFeatureSet(main, pattern = "^mt-") 
#VlnPlot(main, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3) 
main<-subset(main, subset = nFeature_RNA < 5000 & percent.mt <= 20) 
#Keep only control nuclei 
controlNames<-c('f1','F3','F4','m1','M4','M5','facx','fbcx','Macx') 
main<-subset(main, subset = orig.ident %in% controlNames) 
 
##Normalize using "LogNormalie" 
main <- NormalizeData(main, normaliztion.method ="LogNormalize", scale.factor = 10000) 
 
##Calculate Highly Variable Features 
main <- FindVariableFeatures(main, selection.method = "vst", nfeatures = 2000) 
 
##Scale Data 
allGenes <- rownames(main) 
main <-ScaleData(main, features = allGenes) 
 
##Run PCA dimensional reduction 
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main <- RunPCA(main, features = VariableFeatures(object = main)) 
#Use the following for visualization of dimensions 
#print(main[["pca"]], dims = 1:5, nfeatures = 5) 
#VizDimLoadings(main, dims = 1:2, reduction = "pca") 
#DimPlot(main, reduction = "pca") 
#DimHeatmap(main, dims = 1, cells = 500, balanced = TRUE) 
 
##Determine number of significant PCs 
#Jaskstraw plot 
main <-JackStraw(main, num.replicate = 100,dims=30) 
main <- ScoreJackStraw(main, dims = 1:30) 
JackStrawPlot(main, dims = 1:30) 
ElbowPlot(main,ndims=30,reduction = "pca") 
 
##Cluster cells (use 20 PCs) (resolution for 3k cells ~ 0.4:1.2) 
main <- FindNeighbors(main, dims = 1:25) 
main <- FindClusters(main, resolution = 1.2) 
 
##Plot Clusters using UMAP 
main <- RunUMAP(main, dims = 1:25) 
DimPlot(main, reduction = "umap") 
 
##Get Cluser Proportions 
clusterProp <- 
data.frame(matrix(0,nrow(unique(main[["seurat_clusters"]]))),stringsAsFactors=F) 
rownames(clusterProp)<-seq(1:nrow(clusterProp)) 
for (i in seq(1:nrow(clusterProp))) { 
clusterProp[i,1]<-100*length(which(main[["seurat_clusters"]] == (i-1)))/ncol(main) 
rownames(clusterProp)[i]<-paste0("Cluster-",as.character(i-1)) 
} 
 
##Marker Genes for each Cluster 
markers<-list() 
for (i in seq(1:nrow(clusterProp))) { 
markers[[i]] <- FindMarkers(main, ident.1 = i-1, min.pct = 0.50, thresh.test = 0.5, only.pos=T) 
} 
 
#Label clusters (manual) 
newClusterID<-
c("Neuron","Olig1","Neuron","Astro","Olig","Olig","Neuron","Neuron","Olig1","Menin","Neur
on","Vascular","Schwann","Neuron","Precursor","Menin","Neuron","Precursor","Vascular","N
A","Microglia","NA") 
names(newClusterID)<-levels(main) 
main<-RenameIdents(main,newClusterID) 
DimPlot(main, reduction = "umap", label = TRUE, pt.size = 0.5) + NoLegend() 
clusterProp[,2]<-newClusterID 
colnames(clusterProp)<-c("Percentage","Label") 
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#Read in cell-type markers 
neuroMarks<-
read.table("../markers/neuronMarkers.csv",sep=",",stringsAsFactors=F,row.names=1,header=
T) 
oligMarks<-
read.table("../markers/OligMarkers.csv",sep=",",stringsAsFactors=F,row.names=1,header=T) 
astroMarks<-
read.table("../markers/astroMarkers.csv",sep=",",stringsAsFactors=F,row.names=1,header=T) 
microMarks<-
read.table("../markers/microMarkers.csv",sep=",",stringsAsFactors=F,row.names=1,header=T
) 
schwannMarks<-
read.table("../markers/schwannMarkers.csv",sep=",",stringsAsFactors=F,row.names=1,heade
r=T) 
vascMarks<-
read.table("../markers/vascMarkers.csv",sep=",",stringsAsFactors=F,row.names=1,header=T) 
meninMarks<-
read.table("../markers/meninMarkers.csv",sep=",",stringsAsFactors=F,row.names=1,header=
T) 
opcMarks<-
read.table("../markers/opcMarkers.csv",sep=",",stringsAsFactors=F,row.names=1,header=T) 
preMarks<-
read.table("../markers/preMarkers.csv",sep=",",stringsAsFactors=F,row.names=1,header=T) 
 
#Marker Proportions 
fProp<-data.frame() 
for (i in 1:length(unique(main@meta.data[["seurat_clusters"]]))) { 
fProp[i,1]<-100*length(which(rownames(neuroMarks) %in% rownames(markers[[i]]))) 
/nrow(neuroMarks) 
fProp[i,2]<-100*length(which(rownames(oligMarks) %in% 
rownames(markers[[i]])))/nrow(oligMarks) 
fProp[i,3]<-100*length(which(rownames(astroMarks) %in% 
rownames(markers[[i]])))/nrow(astroMarks) 
fProp[i,4]<-100*length(which(rownames(microMarks) %in% 
rownames(markers[[i]])))/nrow(microMarks) 
fProp[i,5]<-100*length(which(rownames(schwannMarks) %in% 
rownames(markers[[i]])))/nrow(schwannMarks) 
fProp[i,6]<-100*length(which(rownames(vascMarks) %in% 
rownames(markers[[i]])))/nrow(vascMarks) 
fProp[i,7]<-100*length(which(rownames(meninMarks) %in% 
rownames(markers[[i]])))/nrow(meninMarks) 
fProp[i,8]<-100*length(which(rownames(preMarks) %in% 
rownames(markers[[i]])))/nrow(preMarks) 
} 
colnames(fProp)<-
c("Neuron","Oligo","Astro","Micro","Schwann","Vascular","Meningeal","Precursor") 
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#Marker heatmap 
all<-fProp 
all$Cluster<-rownames(clusterProp) 
allMelt<-melt(all,variable.name='Cell') 
allMelt$Cluster<-factor(allMelt$Cluters,levels=rownames(clusterProp) 
ggplot(data=allMelt,aes(x=Cell,y=Cluster,fill=value)) + geom_tile() + 
geom_text(aes(label=round(value,digits=3)),color='white') +theme_bw() + labs(x=”Cell Type”) 
 
h<-fProp[,1:7] 
for (i in 1:nrow(h)) { 
for (j in 1:7) { 
if(fProp[i,j]==max(fProp[i,1:7])) { 
h[i,j]=100 
} 
}} 
image(t(as.matrix(h)),xlab=colnames(fProp),ylab=rownames(clusterProp)) 
 
#Cut bad clusters 
trim<-subset(main, subset = seurat_clusters %in% c(0,2:7,9:18,20)) 
DimPlot(trim, reduction = "umap",label=TRUE, pt.size = 0.5) + NoLegend() 
 
#Relevel cluster numbers 
for (i in 0:(max(as.numeric(trim[["seurat_clusters"]][,1]))-1)) { 
if (i %in% 2:7) { 
trim[["seurat_clusters"]][which(trim[["seurat_clusters"]][,1]==i),1]<-(i-1) 
} else if (i %in% 9:18) { 
trim[["seurat_clusters"]][which(trim[["seurat_clusters"]][,1]==i),1]<-(i-2) 
} else if (i==20) { 
trim[["seurat_clusters"]][which(trim[["seurat_clusters"]][,1]==i),1]<-(i-3) 
} 
} 
trimProp <- data.frame(matrix(0,nrow(unique(trim[["seurat_clusters"]]))),stringsAsFactors=F) 
rownames(trimProp)<-seq(1:nrow(trimProp)) 
for (i in seq(1:nrow(trimProp))) { 
trimProp[i,1]<-100*length(which(trim[["seurat_clusters"]] == (i-1)))/ncol(trim) 
rownames(trimProp)[i]<-paste0("Cluster-",as.character(i-1)) 
} 
trimClusterID<-
c("Neuron","Neuron","Astro","Olig","Olig","Neuron","Neuron","Menin","Neuron","Vascular","
Schwann","Neuron","Precursor","Menin","Neuron","Precursor","Vascular","Microglia") 
trimProp[,2]<-trimClusterID 
colnames(trimProp)<-c("Percentage","Cell Type") 
 
#Extract single cell counts data 
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Script 2: Cut bulk RNA-Seq samples to match the genes in the single cell dataset 

Script 3: Separate the GEP genes into groups of 1000 or less for CIBERSORTx high resolution 

scData<-data.frame(rownames(trim),GetAssayData(object = trim, slot = 
'counts'),stringsAsFactors=F) 
trimNames<-data.frame(matrix(0,(nrow(trim@meta.data)+1)),stringsAsFactors=F) 
trimNames[1,1]<-"GeneNames" 
for (i in 1:nrow(trim@meta.data)) { 
trimNames[(i+1),1]<-trimClusterID[as.numeric(trim[["seurat_clusters"]][i,1])] 
} 
colnames(scData)<-trimNames[,1] 
write.table(scData,file="../singleCellMatrix.txt",row.names=F,sep="\t",quote=F) 
 
#This script is to cut the bulk SCI RNA-Seq counts to match the genes in the finished single cell 
matrix 
 
#Libraries 
 
#Load in single cell matrix and bulk counts 
sc<-read.table("../singleCellMatrix.txt",sep="\t",header=T,stringsAsFactors=F) 
bulk<-read.table("../rawData/bulkCounts.txt",sep="\t",header=T,stringsAsFactors=F) 
colnames(bulk)[1]<-"GeneNames" 
 
#Match the gene names and cut bulk Counts 
bulkCut<-bulk[which(bulk[,1] %in% sc[,1]),] 
 
#Write out 
write.table(bulkCut,file="../results/bulkCounts.txt",row.names=F,quote=F,sep="\t") 

#This script is for selecting up to 1000 genes to run the CIBERSORTx high resolution mode 
 
#Libraries 
 
#Load in single cell data 
sc<-read.table("../singleCellMatrix.txt",row.names=1,header=T,stringsAsFactors=F,sep="\t") 
 
#Cut genes that are counted less than 0.5% of number of nuclei (27 counts) 
geneCount<-rowSums(sc) 
scCut<-sc[which(geneCount>=27),] 
 
#Split genes into groups of 1000 
numGroups<-ceiling(nrow(scCut)/1000) 
for (i in 1:(numGroups-1)) { 
toDo<-rownames(scCut)[(1000*(i-1)):(1000*i)] 
write.table(toDo,file=paste0("../results/geneGroups/group",as.character(1000*(i-
1)),".txt"),row.names=F,col.names=F,sep="\t",quote=F) 
} 
toDo<-rownames(scCut)[(1000*(numGroups-1)):nrow(scCut)] 
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Script 4: Concatenate the CIBERSORTx output tables 

 

write.table(toDo,file=paste0("../results/geneGroups/group",as.character(1000*(numGroups-
1)),".txt"),row.names=F,col.names=F,sep="\t",quote=F) 

#This script is to concatenate all of the cibersort cell type tables into one master table for 
each cell type 
 
#Master list 
results<-list() 
 
#Loop through each cell type 
for (cellType in c("Neuron", "Olig", "Vascular", "Astro", "Precursor", "Schwann", "Menin", 
"Microglia")) { 
index<-length(results)+1 
 
##Load each gene group table 
#Initialize Dataframe 
first<-
read.table(paste0("~/dtf32/seurat/results/cibersortx/group0/",list.files(path=paste0("~/dtf32
/seurat/results/cibersortx/group0/"),pattern=paste0(cellType,"_Window15.txt"))),header=T,s
ep="\t",stringsAsFactors=F) 
results[[index]]<-first 
names(results)[index]<-cellType 
#Loop through other groups 
for (group in as.character(seq(1000,15000,1000))) { 
toDo<-
read.table(paste0("~/dtf32/seurat/results/cibersortx/group",group,"/",list.files(path=paste0("
~/dtf32/seurat/results/cibersortx/group",group,"/"),pattern=paste0(cellType,"_Window15.txt
"))),header=T,sep="\t",stringsAsFactors=F) 
results[[index]]<-rbind(results[[index]],toDo) 
} 
} 
 
#Remove NA rows 
resultsCut<-list() 
for (i in seq(1:length(results))) { 
resultsCut[[i]]<-results[[i]][which(is.finite(results[[i]][,2]) & results[[i]][,2] != 1),] 
resultsCut[[i]]<-resultsCut[[i]][!duplicated(resultsCut[[i]][,1]),] 
} 
names(resultsCut)<-names(results) 
 
save.image("../varsR/concatenateCibersortTables") 
geps<-resultsCut 
save("geps",file="../varsR/geps") 
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Script 5: Differential Gene Expression Analysis 

This script is to run DGE analysis on the GEP produced by cibersort 
 
#Libraries 
library(DESeq2) 
 
#Load in GEPs 
load("../varsR/geps") #Loaded in as: geps 
 
#Isolate cell type data: Neuron 
cellType<-"Neuron" #Change this to string of cell type name ex: cellType <-"Neuron" 
index<-which(names(geps)==cellType) 
cts<-ceiling(geps[[index]][,-1]) 
rownames(cts)<-geps[[index]][,1] 
 
#DESeq dataset 
Design<-data.frame(row.names = colnames(cts), condition = gsub(pattern="\\.[0-
9]","",colnames(cts))) 
DESeq.ds<-DESeqDataSetFromMatrix(countData = cts, colData = Design, design = ~ condition, 
tidy = FALSE) 
 
dds<- DESeq(DESeq.ds) 
 
#Compare Results 
#Treatment 1 
c3t1Results<-results(dds, independentFiltering = TRUE, alpha = 0.05, contrast = c("condition", 
"Treatment1T3","ControlT3")) 
 
filteredNA<-c3t1Results[complete.cases(c3t1Results[,5]),] 
filtered<-filteredNA[filteredNA[,5]<=0.05,] 
sortedFC<-filtered[order(filtered$log2FoldChange,decreasing=TRUE),] 
 
write.table(sortedFC, 
file=paste0("../results/DESeq/",cellType,"/c3t1.txt"),sep="\t",row.names=T,col.names=NA,quo
te=F) 
 
c35t1Results<-results(dds, independentFiltering = TRUE, alpha = 0.05, contrast = 
c("condition", "Treatment1T35","ControlT35")) 
 
filteredNA<-c35t1Results[complete.cases(c35t1Results[,5]),] 
filtered<-filteredNA[filteredNA[,5]<=0.05,] 
sortedFC<-filtered[order(filtered$log2FoldChange,decreasing=TRUE),] 
 
write.table(sortedFC, 
file=paste0("../results/DESeq/",cellType,"/c35t1.txt"),sep="\t",row.names=T,col.names=NA,qu
ote=F) 
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Appendix B. Top Differentially Expressed Genes 

The following tables contain the differentially expressed genes found through DGE analysis. 

Where more than 20 genes were found to be differentially expressed in a contrast, only the top 

20 most differentially expressed genes (in either direction) are shown. The full lists of genes are 

available upon request from the Cai Lab. In the tables, a positive fold change indicates higher 

expression in the preceding sample, and a negative fold change indicates higher expression 

among the latter sample. 

Neuron Treatment 1 vs Control 3DPI 

GeneID log2FoldChange pvalue 

Nek11 0.894665 0.000474 

Gm44618 0.7942 0.033498 

Tmc1 0.7468 0.044726 

Igsf9 0.720185 0.003211 

Arrdc2 0.701915 0.017479 

Scn7a -0.70165 0.031447 

Fgd2 0.662474 0.005648 

Pipox 0.616289 0.001199 

Mri1 0.604942 0.008821 

Ccdc146 0.602459 0.036859 

#Treatment 2 
c3t2Results<-results(dds, independentFiltering = TRUE, alpha = 0.05, contrast = c("condition", 
"Treatment2T3","ControlT3")) 
 
filteredNA<-c3t2Results[complete.cases(c3t2Results[,5]),] 
filtered<-filteredNA[filteredNA[,5]<=0.05,] 
sortedFC<-filtered[order(filtered$log2FoldChange,decreasing=TRUE),] 
 
write.table(sortedFC, 
file=paste0("../results/DESeq/",cellType,"/c3t2.txt"),sep="\t",row.names=T,col.names=NA,quo
te=F) 
 
c35t2Results<-results(dds, independentFiltering = TRUE, alpha = 0.05, contrast = 
c("condition", "Treatment2T35","ControlT35")) 
 
filteredNA<-c35t2Results[complete.cases(c35t2Results[,5]),] 
filtered<-filteredNA[filteredNA[,5]<=0.05,] 
sortedFC<-filtered[order(filtered$log2FoldChange,decreasing=TRUE),] 
 
write.table(sortedFC, 
file=paste0("../results/DESeq/",cellType,"/c35t2.txt"),sep="\t",row.names=T,col.names=NA,qu
ote=F) 
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Rubcnl 0.588275 0.006133 

Gm30340 0.586487 0.032727 

Rab26os 0.583781 0.020101 

Gm20751 0.573152 0.010425 

Dusp12 0.554898 0.016009 

Spa17 0.519206 0.029648 

Atp8b5 0.508598 0.008874 

Lrrc23 0.508293 0.009372 

Gm29480 0.507135 0.013197 

Gm20457 0.505578 0.002475 

 

Neuron Treatment 2 vs Control 3DPI 

GeneID log2FoldChange pvalue 

Scn7a -1.0488 0.001356 

Slc2a5 0.947609 0.005064 

Pzp -0.88677 0.02042 

Lrrc43 -0.87633 0.022168 

Arrdc2 0.860157 0.003575 

Mri1 0.842108 0.00026 

Mfsd7a 0.802249 0.00099 

Nmnat3 0.799916 0.004501 

Hpgds 0.72902 0.011916 

Tigd2 0.719878 0.000121 

Gm16201 0.705069 0.014125 

Sema5a -0.70337 0.000203 

Fgd2 0.691645 0.003854 

Tmco4 0.666988 0.00179 

Cfap54 -0.65967 0.018335 

Dcdc5 -0.64495 0.017252 

Ephx1 0.634312 0.000599 

Trim71 -0.61196 0.034123 

Calhm2 0.600861 0.000692 

Adamts2 -0.60058 0.009157 

 

Neuron Treatment1 vs Control 35DPI 

GeneID log2FoldChange pvalue 

Il1rapl2 1.265442 0.002502 

AU023762 0.849022 0.006797 

Ube4bos1 0.841985 0.007932 

Slc26a4 0.834547 0.020324 
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Gm44618 0.754096 0.017681 

Scn4b 0.696987 0.015588 

Gm14342 0.667785 0.036371 

Gm45470 0.656535 3.49E-05 

Aanat 0.620659 0.006726 

Gm30003 0.611846 0.046491 

Adam21 0.591897 0.000219 

A830073O21Rik 0.570991 0.001085 

Acp7 0.56916 0.02261 

Vsnl1 0.548759 0.002157 

Psg16 0.546818 0.003296 

Cdh12 0.537286 0.039777 

Fgf5 0.530894 0.008166 

Tacr3 0.527774 0.000412 

Gm14164 0.524307 0.006722 

Gm2824 0.518113 0.002759 
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Neuron Treatment2 vs Control 35 DPI 

GeneID log2FoldChange pvalue 

Gm5084 1.135992 0.000514 

Ube4bos1 0.961619 0.004264 

Abcc2 0.789894 0.010074 

Pirt 0.78492 0.015404 

Gm18406 0.697655 0.011983 

Spata32 0.689171 0.021419 

Adamtsl3 -0.67944 1.26E-05 

Calhm2 -0.67838 5.20E-05 

Glra2 0.667384 0.001865 

Gm37593 0.663476 0.019525 

Fgf5 0.653513 0.002216 

Gm11839 0.632431 0.005511 

Onecut3 0.627803 0.031444 

Cntnap3 0.595453 0.021278 

Aanat 0.567788 0.021725 

Atp8b5 -0.55633 0.002502 

Gm45881 0.555707 0.005542 

Gm26582 0.541855 0.039726 

Gm9947 0.539222 0.047594 

Ttc34 0.524872 0.015683 
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Oligodendroctye Treatment 1 vs Control 

3DPI 

GeneID log2FoldChange pvalue 

Dolk -3.15764 0.000127 

Gm34821 -2.26303 0.020099 

P2rx3 1.757429 0.048984 

Il4 -1.20051 0.000461 

Spsb4 -1.18319 0.011789 

Nbas 1.139813 0.045237 

Pcsk6 -1.09406 0.041594 

Map3k21 0.965991 0.025454 

Hlcs 0.875986 0.040629 

Gramd1b 0.844254 0.017872 

Zfp994 -0.83137 0.002073 

Pik3c3 -0.76605 0.023653 

Enpp2 -0.70643 0.014049 

Vgll3 -0.69583 0.019444 

Mgat4c 0.654473 0.040948 

Zswim1 0.617203 0.015098 

Azin1 -0.5731 0.047093 

Pomk -0.57015 0.014575 

Gnb5 0.527452 0.042454 

Abce1 -0.5055 0.040811 

 

Oligodendrocyte Treatment2 vs Control 

3DPI 

GeneID log2FoldChange pvalue 

Tcte2 -2.86027 0.037261 

P2rx3 2.050625 0.021388 

Rint1 -1.14499 0.037551 

Hsph1 -0.99891 0.008046 

Gm14403 0.869692 0.030952 

Etnppl 0.758278 0.017169 

Vgll3 -0.67855 0.022649 

Alox8 0.642263 0.045043 

Cntn4 -0.60837 0.011059 

Cdh10 0.578933 0.027189 

Npr3 -0.55336 0.016403 

Zfp994 -0.54036 0.04372 

Hrh1 -0.53153 0.035781 

Gm15991 0.51929 0.010437 

Gm816 -0.4622 0.018195 
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Dgke -0.4516 0.019744 

Cadps -0.44118 0.032492 

Sv2c 0.438789 0.027705 

Prss12 0.40658 0.037003 

Sacs -0.39594 0.037848 

 

Oligodendrocyte Treatment1 vs Control 

35DPI 

GeneID log2FoldChange pvalue 

Tmem245 1.331267 0.031131 

Cntn6 -1.30252 0.007048 

Il1rapl2 -1.16033 0.001774 

Isca1 1.141669 0.005442 

Disp3 1.138967 0.034337 

Itfg1 1.101933 0.011085 

Map3k21 1.089851 0.003246 

Dync2h1 1.053654 0.014184 

Pax8 -1.05009 0.018792 

Tshz3 1.014598 0.016627 

Tmem229b -0.99297 0.008694 

Nap1l5 -0.97177 0.006892 

Xrcc2 -0.94864 0.015474 

Mest -0.92291 0.012592 

Zfp354c 0.909058 0.010417 

Dlg3 0.896972 0.00787 

Cdh12 -0.89158 0.01466 

Nkiras1 -0.89102 0.000253 

Podxl2 -0.87789 0.029713 

Pcmtd1 0.874745 0.025557 

 

Oligodendrocyte Treatment2 vs Control 

35DPI 

GeneID log2FoldChange pvalue 

Glra2 -1.53782 0.004725 

Susd2 -1.30809 0.038271 

Pax8 -1.14069 0.018223 

Isca1 0.890487 0.044729 

Slc7a14 -0.85384 0.028521 

Pafah1b2 0.840196 0.003834 

Kcnip4 -0.77719 0.000403 

Pdha1 0.76448 0.012864 
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Grm7 -0.72264 0.019488 

Mum1l1 0.700355 0.001034 

Grm3 -0.6883 0.039155 

Prss12 -0.66947 0.000279 

Nefh -0.66862 0.006544 

Usp22 0.655989 0.038979 

Hgsnat -0.65455 0.010751 

Slc27a2 -0.6241 0.000192 

Plekha6 0.606053 0.045269 

Cygb -0.59967 0.022427 

Zc2hc1a 0.594027 0.018922 

Carmil2 -0.5853 0.03789 

 

Microglia Treatment1 vs Control 3DPI 

GeneID log2FoldChange pvalue 

Hdac1 0.286477 8.78E-05 

Ncapg2 0.15881 0.039637 

Selplg -0.85205 0.043079 

Ikzf1 -0.43719 0.004605 

Rack1 -0.40433 0.003914 

Eef1a1 -0.37114 0.001807 

Apbb1ip -0.34366 0.02393 

Fmnl3 -0.30741 0.011745 

Coro1a -0.29832 0.016813 

Aprt -0.27238 0.031718 

Npc2 -0.26866 0.026254 

Prdx6 -0.25843 0.021235 

Gadd45g -0.22192 0.036959 

Plekha2 -0.17599 0.048038 

 

Microglia Treatment2 vs Control 3DPI 

GeneID log2FoldChange pvalue 

Selplg -1.2575 0.002831 

Tspan4 -0.95956 0.000708 

Abca1 -0.93595 0.014636 

Rnf128 0.893164 0.025694 

Cald1 -0.86722 0.024698 

Stom -0.82764 0.00808 

Lima1 -0.78801 0.007874 

Nrp1 -0.70874 0.031455 
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Haus8 0.686692 0.028359 

Nfatc1 -0.65546 0.009583 

Antxr2 0.601351 0.038766 

Pik3cg -0.60011 0.043272 

Cotl1 -0.53127 0.019836 

Ccnd3 -0.53057 0.000181 

Stab1 0.525443 0.045011 

Rack1 -0.51697 0.000226 

Heatr1 0.431744 0.022475 

Ptpn1 -0.42891 0.02805 

Sdcbp 0.427876 0.048353 

Ikzf1 -0.42479 0.005902 

 

Microglia Treatment1 vs Control 
35DPI 

GeneID log2FoldChange pvalue 

Kntc1 0.799499 0.048651 

Rnf128 0.781142 0.024354 

Abca1 0.772069 0.020053 

Banf1 -0.72129 0.025613 

Stab1 -0.66603 0.00335 

Parpbp 0.655236 0.008306 

Gpr171 -0.40353 0.008659 

Sqor 0.399088 0.000533 

Tbxas1 0.385499 0.040584 

Tmem51 0.362405 0.006605 

Mdfic 0.346339 0.017789 

Hacd4 0.33431 0.027931 

Ecm1 -0.30158 0.000201 

Rbp1 0.297111 0.003164 

Runx1 0.2903 0.022347 

Ttc7 0.275763 0.000681 

Rack1 0.275566 0.023181 

Irf5 0.264094 0.030646 

Cmtm3 0.257758 0.037728 

Fmnl3 0.2452 0.020145 

 

Microglia Treatment2 vs Control 

35DPI 

GeneID log2FoldChange pvalue 

Thbs1 -1.54824 0.000755 
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E2f7 -0.7805 0.001924 

Cd93 -0.74905 0.011233 

Adam8 -0.69812 0.011485 

Stab1 -0.66647 0.006571 

Parpbp 0.664121 0.013204 

Spp1 -0.66062 0.020248 

Nrp1 0.637514 0.038539 

Tbxas1 0.510697 0.012012 

Pus7l 0.388115 0.024911 

Ccnd3 0.370619 0.005124 

Sqor 0.362329 0.003596 

Ptbp3 0.357058 0.042785 

Ddx11 0.32057 0.012577 

Hpgd -0.28374 0.028135 

Irak4 0.275311 0.013095 

Npc2 0.271122 0.016499 

Creg1 0.244437 0.020004 

Il4ra -0.23768 0.02761 

Rfc4 0.231363 0.011055 
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