© 2020
DYLAN FORENZO
ALL RIGHTS RESERVED



ESTIMATING CELL-TYPE SPECIFIC GENE EXPRESSION IN INJURED MOUSE SPINAL

CORD THROUGH DECONVOLUTION OF BULK RNA-SEQ DATA

By

DYLAN FORENZO

A thesis submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Master of Science

Graduate Program in Biomedical Engineering

Written under the direction of

Li Cai

And approved by

New Brunswick, New Jersey

May 2020



ABSTRACT OF THE THESIS
Estimating Cell-Type Specific Gene Expression in Mouse Spinal Cord Injury through

Deconvolution of Bulk RNA-Seq Data

by DYLAN FORENZO

Thesis Director:

Li Ca

Advancements in single-cell RNA-Sequencing (ScCRNA-Seq) have allowed for the
characterization of individual cell-type gene expression profiles. However, adult nerve cells
exposed to a traumatic injury, such as cells in the spinal cord, are difficult to keep alive and viable
for scRNA-Seq after isolation, making it difficult to study individual cell-type response to injury.
Here, we use computational methods to deconvolve bulk RNA-Seq data obtained from mixtures
of cells in the injured mouse spinal cord into individual cell types using healthy mouse ScRNA-
Seq Data. Through this deconvolution, we deduce that the mixtures mainly consist of neurons,
oligodendrocytes, and astrocytes which make up approximately 54%, 24%, and 16% of the total
cell population, respectively. These cell proportions and the differential gene expression between
mixtures are then used to estimate the changes in cell-type specific gene expression between
experimental conditions. The resulting gene expression profiles are then compared in a
differential gene expression analysis (DGE) to provide evidence of the biological effects of gene
therapies on neuron, oligodendrocyte, and microglia cell populations. Through the DGE analysis,
we identified an average of 650 differentially expressed genes in neurons, 147 in
oligodendrocytes, and 40 in microglia across experimental conditions. This approach provides an
accessible and useful method for identifying the gene expression profiles of various cell-types

after injury.
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Chapter 1. Introduction
RNA-Sequencing (RNA-Seq) is a method for quantifying gene expression levelsin a
sample of cells. These gene expression counts can be used to identify the biological pathways and
functions taking place within the sample of cells. RNA-Seq has been shown to have a higher
degree of accuracy and specificity than other quantitative gene expression assays, and continues
to become more accessible over time.! This high-precision and accessibility have made RNA-Seq

a powerful tool with applications in many different areas of biomedical research.

One major application of RNA-Seq data is differential gene expression analysis (DGE).
This technique uses RNA-Seq to quantify gene expression in samples of cells under different
experimental conditions, such as conditional knockout vs. wild type cells. The gene expression
counts can then be compared between the samples to identify the biological pathways and
functions that have different activity between the conditions, if any. Due to high variations in
gene expression levels across a genome and inherent noise in the sequencing process, determining
which genes are significantly differentially expressed requires statistical modelling techniques.?
Several popular bioinformatics tools have been developed for this purpose such as DESeq22 and

edgeR*.

Single cell RNA-Sequencing (scCRNA-Seq) is a relatively new technique that evolved
from traditional bulk RNA-Seg. In this method, each cell in the sample is isolated and sequenced
individually to provide quantitative gene expression information at the cellular level instead of at
the sample level. This superior resolution of SCRNA-Seq represents a major improvement over
traditional RNA-Seq, however scRNA-Seq has its own drawbacks. Isolating cells for individual
sequencing can be a difficult task, especially when studying certain types of cell populations and
experimental conditions. Drop-seq is one popular procedure for isolation that encapsulates the
cells into nanoliter droplets of oil and water.> Though Drop-Seq and similar techniques can make

scRNA-Seq easier to perform, its relative inaccessibility remains a significant weakness



compared to bulk RNA-Seg. Single nucleus RNA-Seq (ShnRNA-Seq) is a variant of sScRNA-Seq
where individual nuclei are sequenced instead of cells. This technique has been shown to produce
similar results compared to SSCRNA-Seq while being easier to implement in some cases.® SCRNA-

Seq and snRNA-Seq are used interchangeably throughout this report.

In this study, we would like to determine the effects of two gene therapies on various cell
types in mice after a spinal cord hemi-section injury (SCI). Since this goal requires cell-specific
gene expression information, SCRNA-Seq would be the preferred analysis method. However,
spinal cord cells such as neurons are difficult to isolate for sequencing and existing techniques
often result in lower cell yield and viability.” The SCI conditions also make scRNA-Seq difficult
to implement as the injured cells are more susceptible to damage or cell death. Stress or cell death
due to aggressive sorting methods can cause unintended gene expression responses in the cell
samples compromising the gene expression data.® Since SCRNA-Seq is not accessible for SCI
cell-studies, an alternative method is needed to produce cell-type specific gene expression

information.

One upcoming technique that addresses this need is bulk RNA-Seq deconvolution. In
this procedure, sScCRNA-Seq is performed on a control group (ex. Healthy adult mice) and the
resulting counts are then used to create a gene expression profile (GEP) for the cell types in the
sample. This GEP is a model that contains information about which genes are expressed by a cell
type and quantifies the gene expression levels under the control conditions. In bulk RNA-Seq
deconvolution, these GEPs are used as references to estimate cell-type specific information from
bulk RNA-Seq mixture samples. Several RNA-Seq deconvolution algorithms such as
CIBERSORT?® and MuSiC!° have been developed that use SSRNA-Seq GEPs to estimate the
proportions of different cell populations in a bulk RNA-Seq mixture. These methods seek to
model the bulk RNA-Seq samples as linear combinations of the cell-type GEPs that are present in

the tissue of interest and compute the cell-type proportions as the linear coefficients. While these



methods are useful for some applications, the models do not account for potential changes in cell-

type GEPs across experimental conditions, such as those induced by SCI.

Recently, Newman et. Al., the group developing the CIBEROSRT algorithm, improved
upon their original design and added a feature to estimate changes in GEPs across bulk RNA-Seq
samples.t! This new algorithm, CIBERSORTX, attempts to identify the changes in cell type GEPs
that in gene expression due to experimental conditions among the bulk RNA-Seq samples. Using
this novel method of bulk RNA-Seq deconvolution, quantitative cell-type specific gene
expression information can be obtained without the need for sScRNA-Seq of the SCI condition

samples.

Here, we present an analysis pipeline for estimating cell-type specific gene expression in
bulk RNA-Seq mixtures using healthy scRNA-Seq counts as reference. This method incorporates
single-cell clustering, CIBERSORTXx GEP estimation, and differential gene expression analysis to
identify affected pathways and functions between experimental conditions. We then apply this
pipeline to a mouse SCI dataset to identify DEGs in neuron, oligodendrocyte, and microglia

populations between injured mice given SCI gene therapies and injured mice without treatment.



Chapter 2. Materials and Methods

2.1 Overview of Analysis Pipeline

‘ Bulk RNA-Seq Counts

Pathway
Analysis
(IPA)

Cell Proportion GEP Estimation DGE Analysis
Estimation (CIBERSORT) (CIBERSORTX) (DESeq2)

snRNA-Seq Counts H Clustering (Seurat) ‘

Figure 2.1.1 Flowchart of Analysis Pipeline
To produce cell-type GEPs for each injury condition, two sets of raw data are required:
SCRNA-Seq counts from a mixture of healthy mouse spinal cord cell populations and bulk RNA-
Seq counts from mixtures of mouse spinal cord cell populations among each condition of interest.
These raw data sets are displayed on the left-most side of the flowchart of Figure 2.1. The single-
cell counts are first clustered using an unbiased clustering method and are assigned cell-type
labels using known cell-type marker genes. Cell-type GEPs for healthy mice can then be inferred

from these clusters by averaging gene expression across cluster members.

Next, these cell type GEPs are used in the CIBERSORT algorithm along with the bulk
RNA-Seq mixtures to estimate the proportions of each cell population in each condition. This
step of the analysis is shown in the second column of Figure 2.1 as the joining of two other

blocks. The rest of the analysis follows a linear path.

The cell proportion estimates, single cell clusters, and bulk RNA-Seq mixtures are then
used to estimate GEPs for each cell type in each SCI sample. Only genes that are significantly
expressed and are found to have sufficient evidence of cell-type specific differential expression

between experimental conditions are included in the estimated GEP for that cell type.



The estimated cell-type specific gene expressions can then be used in a DGE analysis to
identify the significantly differentially expressed genes between experimental conditions. Lastly,
a pathway analysis is performed on the genes found through DGE analysis and the biological

pathways and functions that are affected by the experimental conditions are identified.

All statistical tests and computations were performed using the R software environment
for statistical computing®? unless noted otherwise. The various libraries and packages used for

data analysis are listed throughout this chapter.

2.2 Bulk RNA-Seq Data

The motivation for this project was to apply the analysis pipeline outlined in Section 2.1
to a dataset of RNA-Seq counts generated from a mouse SCI and gene therapy study. This dataset
consists of RNA-Seq counts of cells from the spinal cords of mice subjected to the following
conditions: Sham (no injury), Control (hemi-section injury only), Treatmentl (hemi-section
injury with gene therapy 1), and Treatment2 (hemi-section injury with gene therapy 2) taken at 3
and 35 days after a hemi-section injury as well as Control and Treatmentl taken 14 days after
injury. Three replicates of each condition were sequenced except for Control and Treatmentl at
35 DPI which consisted of four replicates for a total of 32 samples. All RNA-Seq samples were
used in the GEP estimation to improve statistical power, but only the Control, Treatment1, and

Treatment2 samples at 3 and 35DPI were analyzed in the DGE and pathway analyis.

Condition Number of Replicates
Sham 3 DPI 3
Control 3 DPI 3
Treatmentl 3 DPI 3
Treatment2 3 DPI 3
Control 14 DPI 3




Treatmentl 14 DPI 3
Sham 35 DPI 3
Control 35 DPI 4
Treatmentl 35 DPI 4
Treatmen2 35 DPI 3
Total 32

Table 2.2.1 Bulk RNA-Seq Samples

2.3 Single Cell RNA-Seq Data

Single-nucleus RNA-Seq counts were obtained from the published mouse spinal cord
atlas dataset by Sathyamurthy et. al.13 This dataset is publicly available for academic use at the
NCBI Gene Expression Omnibus!* under GEO accession number GSE103892. The single-
nucleus RNA-Seq counts present in this dataset were produced using a modified protocol of the
Drop-Seq method® outlined in Sathyamurthy et. al. These counts are representative of a mixture
of cell populations in a healthy adult mouse spinal cord. In the original study, several of the mice
were subjected to acute pain to study potential effects on the expression of early-immediate
genes. To be sure these effects were not present in this analysis, only the 6,750 nuclei from the

control mice in the study were used out of the original 18,000 nuclei present in the dataset.

2.4 Clustering Analysis of SCRNA-Seq Data

The remaining sequenced nuclei were clustered using the Seurat!® package for R. The
raw counts were first filtered to only pass through nuclei that expressed at least 200 unique genes
and genes that were expressed by at least 3 unique nuclei. Next, the percentage of reads for each
nucleus that corresponded to mitochondrial genes were computed. The remaining nuclei were
then filtered again to only pass through if less than 20 percent of their reads mapped to

mitochondrial genes and they expressed less than 5000 unique genes. Cells that express a high



proportion of mitochondrial genes are considered to have compromised cell or nuclear
membranes and are discarded from the analysis. Similarly, nuclei that express a very large
number of genes are most likely doublets of nuclei captured in a single drop for sequencing and
are also removed from the analysis. These preprocessing steps and cutoff values follow from the
methods described in the original analysis of the ShARNA-Seq data.'® After this preprocessing,
6,556 nuclei were used for clustering. The counts from these nuclei are then normalized by the

total expression per each nucleus, multiplied by 10,000, then log transformed.

Next, the top 2000 most variable genes across the nuclei were identified and used to
perform a principal component analysis: a procedure that assigns orthogonal dimensions to the
dataset. Jackstraw and Elbow plots were then constructed to determine the minimum number of
principal components (PCs) that sufficiently describe the dataset. This number was chosen by
looking for the flattening (elbow) of the curve between PCs on both plots as described by the
Seurat tutorial.*® The minimal number of PCs were then used to cluster the remaining nuclei
using an unbiased clustering method based on the K nearest neighbors and Louvain6 algorithms.
The recommended resolution for clustering is between 0.4 and 1.2, with a higher resolution
resulting in more clusters.1® A resolution of 1.2 was chosen due to the large number of nuclei in
the dataset and a larger number of desired clusters to identify small cell populations in the
mixture. The resulting clusters were plotted in a two-dimensional plane using the UMAP
dimension reduction algorithm.” The unbiased nature of this clustering means that Seurat clusters
the nuclei without any cell phenotype data and relies only on the observed differences between
the nuclei’s expression. Therefore, the resulting clusters initially lack biological phenotypes and

must be labelled as specific cell types using known marker genes.

Cluster labelling was performed using the Seurat package to report the descriptive genes
for each resultant cluster and matching these genes to known cell-type marker genes. The

descriptive genes for a cluster were found through Seurat using the Wilcoxon rank sum test!8



under the constraints that the gene was a positive marker for the cluster and was expressed by at
least 50 percent of the nuclei in that cluster. These descriptive genes were then matched with cell-
type marker genes for each major cell type outlined in the original mouse spinal cord atlas.*3
Marker genes for neurons, oligodendrocytes, astrocytes, vascular cells, meningeal cells,
microglia, Schwann cells, and a mixture of precursor cells were taken from the original single
nucleus RNA-Sequencing study and an online database of cell-type gene markers at
CellMarker?®. Each cluster was compared against marker genes from each cell-type of interest
following equation 2.4.1 and the cell type with the highest percent match was taken to be the

label for that cluster.

Number of Cell Type Markers Also Present inthe Descriptive Genes for that Cluster

%Match = 100 *

Number of Cell Type Markers
Equation 2.4.1 Percent Match Calculation

For example, if there are 10 known Schwann cell marker genes and 2 of them are also descriptive

genes for Cluster 1 then Cluster 1 has a 20% match with the Schwann cell-type:

2
%Match = 100 = 10 =20%

Equation 2.4.2 Example Percent Match Calculation

Several clusters were found to have no significant matches to known cell types or to have
a high percent of mitochondrial genes as descriptive genes. These clusters were assumed to not be
representative of a cell phenotype and were removed from further analysis. The remaining nuclei
were then labelled with their corresponding cell phenotypes and the proportions of each cell-type
in the dataset are calculated. The average gene expression across nuclei in a cluster is interpreted

as a GEP for the cell-type associated with that cluster.



2.5 Cell Proportion Estimation

Cell proportion and GEP estimations were performed using the CIBERSORT and
CIBERSORTX web-based tools available online at cibersortx.stanford.edu.** To estimate cell
proportions in the bulk RNA-Seq mixtures, the mixture samples and healthy mouse GEPs derived
from single cell clustering are used in a linear system model. This model is shown in Equation
2.5.1where G isan i by j matrix containing the GEPs of i genes in j cell types as column vectors.
F is aj by k vector containing the j cell type proportions in the k sample mixtures provided by the
bulk RNA-Seq data. B is an i by k matrix containing the bulk RNA-Seq counts of i genes for each
mixture sample as k column vectors. The CIBERSORT algorithm seeks to solve for the cell
fractions matrix F given the GEP and bulk data matrices G and B using a machine learning

approach called nu-support vector regression?°,
GxF=B
Equation 2.5.1 Cell Proportions Systems of Linear Equations Model

The bulk RNA-Seq counts described in Section 2.2 and the GEP matrix constructed in
Section 2.4 were passed to CIBERSORT to impute the proportions of each cell-type in each
spinal cord mixture. The quantile normalization option was disabled (as recommended for RNA-
Sequencing data)!! and 100 permutations were performed. These results were used both for

quality control and downstream analysis.

2.6 Cell Type GEP Estimation

CIBERSORTX is an improvement upon the original CIBERSORT tool that allows for the
estimation of GEPs in mixture samples in addition to cell-type proportion estimates. This method
attempts to decompose the B matrix featured in Equation 2.5.1 into a modified G matrix for each
cell type. These modified G matrices are the estimated GEPs for each cell type in each bulk

mixture. This matrix decomposition is accomplished by identifying differences in the bulk sample
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gene expression levels and modifying the reference cell-type GEPs (G matrix) to account for
these differences. The CIBERSORTX algorithm is described in detail under the Supplemental

Information section of the original publication.!?

At this time, the high-resolution tool used for GEP estimation is limited by
CIBERSORTX to process only up to 1000 genes at a time due to high computational loads for the
web-based application. To further reduce computation time and unnecessary complexity, genes in
the bulk RNA-Seq samples with total counts of less than 0.5% of the number of clustered nuclei
were filtered out. This number was chosen so that genes with very low expression would be
excluded from further analysis, but significant genes expressed only by the smaller cell-type
clusters would not be lost. Since the least common cell type was microglia with a proportion of
1%, 0.5% was chosen so that genes expressed in at least half of microglia cells would be

included.

After filtering, 15,013 genes remained for analysis. To analyze the full transcriptome of
the bulk RNA-Seq mixtures, the remaining genes were split into 16 groups based on alphabetical
order with each group having a maximum of 1000 genes. The resulting GEPs were then
concatenated to display the full transcriptome of each cell-type. The CIBERSORTX tool was run
in high-resolution mode with the GEP matrix constructed in Section 2.4, and the bulk samples
matrix developed in Section 2.2. No batch correction was enabled for any of the runs and quantile

normalization was disabled as recommended for RNA-Seq data. !

2.7 Differential Gene Expression Analysis (DGE Analysis)

DGE analysis was performed using the DESeg2 R package.® Chosen cell-types of interest
were analyzed individually, and comparisons were made between the gene therapies and control
mice at 3 and 35 DPI. DGE results were obtained using a standard alpha value of 0.05, and only
genes that were found to be significantly differentially expressed with a p-value of less than 0.05

were kept for pathway analysis. Each comparison between conditions was performed individually
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between two conditions at a time (i.e. Treatmentl at 35DPI vs. Control at 35 DPI). The resulting
differentially expressed genes were written out as a table containing the expression, log2 fold

change, and p-value for each remaining gene.

2.8 Ingenuity Pathway Analysis

Pathway analysis was performed using Qiagen’s IPA application (QIAGEN Inc.,
https://www.giagenbioinformatics.com/products/ingenuity-pathway-analysis). Each DGE contrast
was uploaded and analyzed individually. The expression values, log2 fold change, and
significance values were all used to generate an IPA dataset. Core analysis was run on each
dataset individually with all included genes to identify the pathways and directionality associated

with the differentially expressed genes found in Section 2.7.



12

Chapter 3. Results
3.1 Clustering Analysis of Single-Nucleus RNA-Seq Data
After the preprocessing described in Sections 2.3 and 2.4, 6,556 nuclei were analyzed for
clustering. A principal component analysis (PCA) was run on the dataset to fit orthogonal
dimensions to the nuclei. JackStraw and Elbow plots were generated for 30 PCs to visualize the
significance of each PC in the dataset. These plots are shown in Figure 3.1.1 and Figure 3.1.2

respectively.
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Standard Deviation

PC

Figure 3.1.2 Elbow Plot of Principal Components
Both Figure 3.1.1 and Figure 3.1.2 plot the principal components of the single cell dataset
(horizontal axis) vs. imputed statistical significance (vertical axis). The information in these plots
is used to choose the number of minimum number of dimensions to describe the dataset in down-
stream analysis. Using more dimensions could potentially improve clustering accuracy, but with

diminishing returns and at the cost of computational burden. Here, the top 25 dimensions were
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chosen for further analysis as the 25t PC marks where the significance of the PC’s start to level

out. In the JackStraw plot, this point can be seen as the PCs after PC 25 have a much lower p-

value than those before PC 25. The same point is also visualized in the Elbow Plot where PC 25

appears to be in the middle of the plateau.
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The Seurat clustering algorithm was run with the top 25 dimensions and a resolution of
1.2. The resulting 21 clusters are displayed in Figure 3.1.3 using the UMAP dimensional
reduction. The clusters were then labelled using known cell-type gene markers as described in
Section 2.4 (Clustering Analysis of SCRNA-Seq Data). Figure 3.1.4 shows the percent matches

between clusters and known cell-type gene markers.

Cluster-21+
Cluster-20+
Cluster-19+
Cluster-18+
Cluster-17+4
Cluster-16+
Cluster-15+
Cluster-14+
Cluster-13+
Cluster-12+4

Cluster-11+

Cluster

Cluster-10+

Cluster-9+4

Cluster-8+

Cluster-74

Cluster-6-

Cluster-54

Cluster-4+

Cluster-3+

Cluster-2+

Cluster-1+

Cluster-0+

Neuron Cligo Astro Micro Schwann Vascular Meningeal Precursor

Cell Type

Figure 3.1.4 Raw Gene Marker Heatmap (values given as % of Matching Marker Genes)
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There were many more known marker genes available for neuron and precursor cells, as
these cell groups are well-studied and contain various known cell type sub-populations. The large
number and variation of neuron and precursor marker genes resulted in at least several matching
genes for nearly all clusters. To account for this, a cluster was labelled as a neuron population
only if no other cell types were significantly matched to the cluster and a relatively large number
of neuron marker genes were matched. Similarly, a cluster was labelled as a precursor cell
population only if no other cell types were matched and the ratio between precursor and neuron
matches was relatively large (defined as >2.5). In addition, cluster-9 was labelled as a group of
meningeal cell-types due to its low matching with other cell types, proximity to an identified
meningeal cluster on the UMAP plot, and the expression of some precursor cell markers which
have been shown to be also be expressed in mammalian meningeal cells.?! A table of the final

identified cluster labels is shown in Table 3.1.2.

Cluster Number Cell-Type Label
0 Neuron
1 Oligodendrocyte
2 Neuron
3 Astrocyte
4 Oligodendrocyte
5 Oligodendrocyte
6 Neuron
7 Neuron
8 Oligodendrocyte
9 Meningeal
10 Neuron
11 Vascular
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12 Schwann
13 Neuron
14 Precursor
15 Meningeal
16 Neuron
17 Precursor
18 Schwann
19 Precursor
20 Microglia
21 N/A

Table 3.1.2 Cluster Cell-Type Labels

As shown in Figure 3.1.4 and Table 3.1.2, Cluster 21 had no matches to any of the known
cell-type marker genes. Similarly, Cluster 19, although fitting the requirements to be labelled as a
precursor group, had low matches to all known cell-type markers, including precursor cells. For
these reasons, Clusters 19 and 21 were removed from further analysis. An updated map of all the
original clusters with labels is shown in Figure 3.1.5. Here, clusters 19 and 21 are labelled “NA”

and are shown in magenta.
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Figure 3.1.5 Labelled Clusters UMAP Plot
Further study of each cluster’s descriptive genes showed that clusters 1 and 9 were
characterized mostly by mitochondrial genes and genes highly expressed across all cell types.
These clusters were originally labelled as “Oligo1” because they contained some of the
oligodendrocyte marker genes but had different expression profiles from the other group of

oligodendrocyte cells. Clusters 1 and 9 were removed from further analysis since the
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mitochondrial and universally expressed descriptive genes indicate clusters that do not accurately
portray a biological phenotype. The criteria for removing clusters from further analysis was also
taken from the methods of the original SNRNA-Seq dataset study.*3 Figure 3.2.6 shows a map of
the final cluster used in downstream analysis with Clusters 1, 9, 19, and 21 removed. Tables 3.1.3

and 3.1.4 show the proportions of each cluster and cell type in the dataset respectively.
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Figure 3.1.6 Final Clusters UMAP Plot
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Cluster (Renumbered) Percentage of Population Cell Type
0 14.618 Neuron
1 11.024 Neuron
2 9.423 Astrocyte
3 9.199 Oligodendrocyte
4 7.11 Oligodendrocyte
5 6.87 Neuron
6 6.79 Neuron
7 5.400 Meningeal
8 4.749 Neuron
9 4.060 Vascular
10 3.799 Schwann
11 3.147 Neuron
12 3.110 Precursor
13 2.868 Meningeal
14 2.775 Neuron
15 2.402 Precursor
16 1.862 Vascular
17 0.782 Microglia

Table 3.1.3 Proportions of Each Final Cluster in ShRNA-Seq Dataset

Cell Type

Percentage of Population
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Neuron 49.981
Oligodendrocyte 16.313
Astrocyte 9.423
Meningeal 8.268
Vascular 5.922
Precursor 5.512
Schwann 3.799
Microglia 0.782

Table 3.1.4 Proportions of each Cell Type in Single Nucleus Dataset

3.2 Estimation of Cell Type Proportions in Bulk 