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ABSTRACT OF THE THESIS 

 

KNEE CARTILAGE SEGMENTATION OF ULTRASOUND IMAGES USING 

CONVOLUTIONAL NEURAL NETWORKS AND LOCAL PHASE ENHANCEMENT 

 

By Justin Heeralall Mohabir 

Thesis Director: Ilker Hacihaliloglu  

 

Osteoarthritis (OA) is a chronic disorder that results from the inflammation of body joints 

and the degradation of cartilage. The most prominent form of OA is knee OA, where the 

cartilage between the femur and tibia degrades from regular use. To measure the 

progression of knee OA in patients, clinicians use a metric of cartilage thickness known 

as Joint Space Width (JSW) to see how much cartilage is degraded over time. The most 

common method of measuring JSW is to perform a planar X-ray on the knee and 

manually measure the space between the joints from that image. This, however, gives 

patients a dose of ionizing radiation. Magnetic Resonance (MR) imaging and Ultrasound 

(US) have arisen as alternatives to imaging knee cartilage. MR imaging is reserved to 

research settings due to the expensive operation. This leaves US as the main alternative to 

show promise from clinical studies but has limitations such as noise and artifacts that 

make segmentation of the knee cartilage within images difficult to segment manually. A 

previous study has shown that enhancing images prior to segmentation can allow a more 

accurate segmentation. This thesis investigated the efficacy of using different 

Convolutional Neural Network (CNN) architectures to segment knee cartilage from US 

images, as well as the effect of enhancing the images prior to segmentation from the 

CNNs compared to a Random Walker (RW) algorithm.  

The CNN architectures used in this study are: U-Net, Stacked U-Net and W-Net. Each of 

these architectures were trained by either B-mode images, local phase enhanced images, 
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or an early-stage combination of both the B-mode and enhanced images. The 150-image 

training set of data used was augmented to artificially increase the amount of training 

images to improve the robustness and to prevent overfitting. 10-fold cross-validation was 

performed on each combination of CNN architecture and input type to prevent outliers.  

Validation was performed on each of the CNNs generated by comparison against a 

manual segmentation of the US images using the Dice Similarity Coefficient (DSC). 

Validation was performed on 50 images from a similar dataset used to train the CNNs 

and a second set of 50 images from a different US system. The average DSC for the U-

Net, Stacked U-Net and W-Net were: 0.8566, 0.8289 and 0.8675 in the similar dataset 

and 0.779, 0.7185 and 0.772 in the different dataset, respectively. The average DSC for 

the B-Mode, enhanced, and combined input types were: 0.8071, 0.8552 and 0.8908 in the 

similar dataset and 0.6869, 0.7756 and 0.807 in the different dataset, respectively. 

Compared to a RW algorithm, 53% of U-Nets, 67% of Stacked U-Nets, and 70% of W-

Nets had significantly (p>0.05) higher average DSCs. 30% of B-Mode networks, 77% of 

enhanced image networks and 83% combined image networks had significantly higher 

DSCs. This study presents an automated US cartilage segmentation method using CNNs. 

The results presented show significant improvements in segmentation using local phase 

enhancement instead of an unaltered B-Mode US image. Low segmentation time and 

processing requirement of CNNs show promise as a method of achieving accurate real-

time segmentation of knee cartilage and can make US a viable alternative to X-ray for 

diagnosis and progression measurement of knee OA. 
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Chapter 1 

 

Introduction 
 

 

1.1     Thesis Motivation 

Osteoarthritis (OA) is the degradation of bone joints as a result of frequent or heavy use 

over time. OA is most seen in hand, knee and spine joints and has a higher prevalence in 

the elderly. Over time, however, knee OA has seen a gradual increase in populations 

following the industrial revolution, skyrocketing from 6% to 16% in people over the age 

of 50 (Wallace, 2017). This is mostly accredited to the rise of obesity and decline of 

activity in developed populations. As a result of obesity as a result of knee OA, patients 

can develop coronary heart disease, hypertension and diabetes (Zanella, 2001). The 

effects of knee OA can be seen with the correlations between knee OA and depression, 

pain, and an overall lower of quality of life (Segal, 2015). 

 

The effects of knee OA are not only biological; OA has cost adult victims in the US an 

average of $3952 a year and elderly victims an average of $5704 a year in direct costs 

alone (Bitton, 2009). The indirect costs of knee OA averaged around $1700 and accounts 

for losses in wage and productivity. In severe late stages of OA, a Total Knee 

Replacement (TKR) is usually recommended for patients and can lead to costly surgery 

and revisions that continue the economic burden on the victims even further. Early 

diagnosis of knee OA can lead to better, more effective treatment for patients and can 

overall increase the quality of life of patients. 
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1.2    Knee Cartilage Anatomy 

 

Figure 1.1: An anatomical representation of a healthy knee joint (a) and a knee joint with 

osteoarthritis (b). The fibrous articular cartilage is shown in blue and caps over the femur and tibia 

bones in beige and is prone to degradation in those with osteoarthritis, possibly exposing bone and 

causing pain shown in red.  

 

The primary joint in the knee is located between the femur and tibia. This joint is covered 

by white fibrous tissue called articular cartilage. The main function of this tissue is to 

protect the two bones from the wear of rubbing along each other. This cartilage covers 

the distal end of the femur and the proximal end of the tibia. The patella, which lies on 

the ventral side of the joint, is also covered in articular cartilage on the dorsal side of the 

bone. The articular cartilage forms two structures on the tibia named the lateral and 

medial meniscus. These structures are visualized in Figure 1.1. These structures function 

to absorb the shock from impact on the joint.  
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Over time, the cartilage structures in the knee start to degrade as a result of fatigue and 

age on the articular surfaces, called osteoarthritis (OA). Cartilage degradation leads to 

pain from direct or near-direct contact of the bones on each other. The degradation also 

leads to clustering of chondrocytes and bone spur formation that can protrude into the 

joint. The combination of these effects can lead to limited range of motion and chronic 

pain in patients and an overall lower quality of life. There are many different treatments 

available for OA and include: surgical intervention, supportive intervention and 

pharmacological intervention. 

 

1.3.    Diagnosis 

In order to effectively treat OA, early detection of the underlying cause and degree of OA 

is key. The primary change in anatomy in cases of OA is the degradation of the articular 

cartilage. In order to quantify the degradation of cartilage, the joint space width (JSW) is 

measured. A smaller JSW would indicate there is less cartilage between the knee joint 

and a farther progressed OA. Traditionally JSW is measured with a planar X-ray and 

progression of OA is measured with annual JSW measurements (Lepuesne, 1994). This 

progression becomes more difficult to accurately measure as the JSW narrows in late 

stage OA. This makes X-ray less accurate in cases of late stage OA. The progression of 

OA is what is generally used for diagnosis, with many different metrics being used today 

(Kohn, 2016). In order to view the progression of OA, there is a need to perform multiple 

X-ray scans on each patient. The need for multiple scans introduces more radiation to 

patients, limiting the scan time to once a year to limit exposure to patients. The most 

common metric is the Kellegren-Lawrence (KL) scale which diagnoses based on the 
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presence of Joint Space Narrowing (JSN) and osteophyte development around cartilage 

(Kellgren, 1957; Schiphof, 2008). Other metrics include: the International Knee 

Documentation Committee metric which only looks for JSW measurements smaller than 

4 mm to be considered OA(Hefti, 1993; Irrgang, 2006), the Brandt and Fairbank metrics 

which look for bone deformities for lower OA and JSN for higher OA ratings (Fairbank, 

1948; Brandt, 1991), and the Jäger-Wirth metrics which only look for arthrosis, a 

classification for non-immune system degradation of cartilage and joints (Scheller, 2001; 

Schroeder-Boersch, 1998). Recent developments in various modalities have opened this 

measurement to Optical Coherence Tomography (OCT), Magnetic Resonance Imaging 

(MRI) and finally Ultrasound (US) to lower the exposure of patients to ionizing radiation 

from X-rays while allowing more accurate measurements. Although the former is only 

used in research because of the expense of the modalities, US exists as a less expensive 

method of measuring JSW while maintaining the lack of ionizing radiation. Reducing the 

price per image of the patient and removing the limiting factor of radiation can allow for 

more scans to be performed and can give a more detailed progression of OA. The ability 

to also produce multiple images per patient can also give a multi-planar view of the 

cartilage opposed to the current planar X-ray. 

 

1.4.     Literature Review 

Convolutional Neural Networks (CNNs) have recently gained popularity in medical 

image research as an efficient method of segmentation and classification. Multi-layer 

CNNs have proven to be useful in supervised training tasks to segment regions of interest 

(ROIs) out of medical scans. The most pervasive and widely used architecture is the U-



5 

 

Net (Ronnesberger, 2015). Despite the U-Net system being conceived of for some time, 

Ronneberger et.al popularized the system and prompted many different architectures to 

be created. These architectures include: 3-D U-net (Çiçek, 2016), V-Net (Milletari, 

2016), Stacked U-Nets (Shah, 2018), and W-Net (Chen, 2018) to list a few. The latter 

two were made to aid in 2-D image segmentation and attempt to overcome different 

problems in the base U-Net architecture. Much of the work in implementing these 

architectures are seen in imaging modalities utilizing 3D volumetric slices. In these cases, 

the benefit to using a CNN is the time saved by automatically scanning through the 

images compared to manual review for each slice from a person.  

 

1.4.1     X-Ray and MRI  

The current standard for collecting JSW measurements is to use an X-ray image and 

measure the distance between the high intensity bones. Many automated JSW 

measurement systems look for bone features in the image to trace the boundary of the 

bones as shown in the Figure 1.2 (Beattie, 2016; Duryea, 2000). Although X-ray is the 

most popular method of diagnosing knee OA in clinics, there are few studies looking to 

Figure 1.2: A picture showing an anterior X-ray of a knee joint space (left) and a picture generated 

from a posterior peripheral MR of a knee (right) (Beattie, 2008). Measurement of the JSW in the X-

ray is made by connecting the outlines of the bones in green and blue, and measuring that distance as 

seen in red. The measurement of the JSW in an MRI is done by measuring the soft tissue, shown in 

cyan. 
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automatically segment the joint space from X-ray scans. One study uses a CNN to give a 

grade on the KL OA scale from the X-ray scan itself (Antony, 2017). This study did not 

segment the joint space beforehand and used the network to give a numerical value to the 

X-ray to represent a position on the KL scale. Another similar study uses a Random 

Forest algorithm to accomplish a similar result (Gornale, 2016). These studies focused 

more on methods of diagnosis than that of measuring cartilage thickness in the knee.  

 

MR images of the knee measure cartilage by looking for the contrast between the lower 

intensity bone and higher intensity soft tissue around the bone (Beattie, 2008). An 

example of an MRI of the knee can be seen in Figure 1.2. MR imaging has emerged as a 

popular method of measuring JSW in research. The high accuracy and available datasets 

have provided a platform for automation that X-ray images do not. Proposed algorithms 

for segmenting knee cartilage include minimizing a locally weighted vote (Lee, 2014), a 

statistical shape model (Ambellan, 2019), fitting to a Gaussian model (Kashyap, 2016), 

Random Walkers and Random Forests (Kashyap, 2016; Swanson, 2010; Hong-Seng, 

2017; Gornale, 2016) and finally a CNN (Prasoon, 2013). These methods of 

segmentation are mostly developed to segment knee bone structures along with the joint 

spaces to reconstruct a 3D model of the cartilage in the knee. This information can give 

newer insights into the state of a patient’s OA especially for those that plan to receive 

surgery to alleviate symptoms. Both X-ray and MR have room for automation that can 

aid in diagnosis accuracy, but both have their disadvantages. X-ray imaging as a modality 

uses ionizing radiation as a method of imaging, which limits the amount of measurements 

that can be taken to track progression of OA. MR gets around the problem of radiation 
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but has a different problem in the cost of the imaging devices. X-ray is used in clinical 

settings and MR is used in research settings for these reasons. This allows Ultrasound to 

fill this gap by not having ionizing radiation while being relatively inexpensive. 

 

1.4.2     Ultrasound  

Ultrasound images of the knee are not typically used for clinically measuring knee 

cartilage and are instead used in trauma cases to measure damage to soft tissue such as 

ligaments and tendons (Razek, 2009). The ability of Ultrasound to give real-time 

feedback on images is crucial in these trauma cases. Ultrasound imaging of knee 

structures has given room for Neural Networks to lead as a method of segmenting regions 

of interests. Lower quality images along with noisy artifacts provides a challenge for 

many simpler segmentation methods such as Random Walker and Watershed (Desai, 

2018). Recent works in bone structure segmentations from ultrasound have used multi-

feature Convolutional Neural Networks as a method of finding features on the femur and 

tibia (Wang, 2018). Studies done on cartilage have used various methods of segmentation 

for different applications. One such example is a study which used a U-Net for 

segmentation of femoral cartilage to be used as a 3D model for robot-assisted surgeries 

(Antico, 2020). Another study investigated using an encoder-decoder pair of CNNs to 

track 3D volumes of cartilage from multiple slices of ultrasound in hopes of making a 

real-time segmentation algorithm (Dunnhofer, 2020). A final recent study used multiple 

Neural Networks to first find the location of the knee joint in an image, and then to 

segment out the femoral cartilage from that new cropped region (Kompella, 2019). This 

study is particularly interesting in that it uses two independent CNNs to accomplish the 
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segmentation. This allowed for a more robust network that performed well with various 

untrained datasets, but never reached a significantly high performance within those 

datasets, maximizing with a Dice Coefficient of 0.80 in images within the training set of 

images. This gap in Dice coefficient leaves room for improvement of algorithms to 

achieve low-latency segmentation of femoral cartilage. This can lead to increases in 

segmentation accuracy, the ability of real-time segmentation with low compute times and 

the ability to segment at different transducer angles.  

 

1.5.     Objective and Scope 

The main objective of this thesis is to evaluate the viability of using Convolutional 

Neural Networks to segment Joint Space Width from US knee cartilage images. Along 

with this, testing the effect of using image enhancement on the US images and inputs into 

different CNN structures.  

The specific aims are to:  

1. The separation and manual segmentation of knee cartilage from two unique datasets of 

knee ultrasound images. 

2. Local Phase filtering enhancement of all images with the same parameters across both 

datasets. 

3. Construction and optimization of three different Convolutional Neural Network 

architectures: U-Net, Stacked U-Net and W-Net, that are capable of extracting and 

presenting information about the Joint Space Width. 
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4. Training each of the three Convolutional Neural network architectures with three 

different input image types: B-mode images, Enhanced images and early stage fusion of 

B-mode and Enhanced images. 

5. Qualitative and quantitative evaluation of the performance of the trained networks 

using images reserved for validation compared to the previously established Random 

Walker algorithm. 

6. Investigating the effects of both using three different image types and three 

architectures. 
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Chapter 2 

Current Methods 

 2.1     Cartilage in Ultrasound  

 

Figure 2.1: An example of ultrasound of a knee with labelled landmarks. This study will focus on 

segmenting the hypoechoic cartilage band from the ultrasound, as that is what is used to measure the 

Joint Space Width, corresponding to the thickness of the cartilage. The cartilage is located between 

the distal edge of the femur and the proximal edge of the tibia. 

 

Ultrasound (US) has been successfully applied for imaging soft tissue for various 

diagnostic applications (Henderson, 2015). In the case of cartilage, the bone surrounding 

region of interests (ROI) act as a good contrast in the ultrasound images. Specifically, 

bone boundaries enable high intensity lighter pixels that show the cartilage as the 

separation between the bone boundaries as a layer of low intensity darker pixels. These 

are referred to as hyperechoic (lighter) and hypoechoic (darker) regions of the ultrasound 

image.  In the case of knee ultrasound images, the hyperechoic femur and tibia show the 

boundaries of the hypoechoic cartilage. The space between these hyperechoic lines on the 

Femur 

Soft Tissue 

Cartilage 
Joint Space Width 
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ultrasound is referred to as the Joint Space Width (JSW) as shown in Figure 2.1 and is the 

ROI for OA detection.  

2.2     Segmentation 

2.2.1  Manual Segmentation 

The most popular method of measuring the JSW in US knee images is to manually 

measure the width from the ultrasound image with or without enhancement. This method 

is cheap, fast and the easiest to integrate into clinical settings, being compatible with most 

US devices. In studies with large numbers of patients, however, this method can become 

inefficient. These measurements are usually taken by a US tech but can sometimes 

require feedback from physicians (Riecke, 2014).  This increased overhead in JSW 

measurement can drive up costs of getting an US scan. The method of measuring JSW 

manually is to take an image of the B-Mode US image of the knee at an angle of 

inflexion and to measure from the distal end of the femur to the proximal end of the tibia 

from multiple points along the joint in the image. The typical measurement points are on 

the medial and lateral femoral condyles, but the measurement methodology vary on 

purpose or goal (Beattie, 2008; Keen, 2009; Hayashi, 2016). Particularly, the angle at 

which the knee joint rests on patients develops with onset OA and can affect the 

ultrasound measurements (Nagao, 1998). Manual segmentation is seen as the “gold 

standard” when measuring JSW and serves as the metric of accuracy in research. There 

are many limitations with using manual data collection of US images. Deviations in 

transducer placement can introduce more noise in the US image and vary by patient. 

These deviations can drastically change the placement of the JSW in the image and can 
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interfere with some segmentation methods. Many assisted methods have arisen to combat 

these deviations. 

 

2.2.2    Assisted Segmentation 

Manual Segmentation has well defined limitations in accuracy and throughput of 

segmentation (Saba, 2018; Faisal, 2017). Determining an accurate segmentation of the 

joint space is hindered by noise present in the B-mode US image. The most impactful 

noise in US knee images is speckle noise. Speckle noise results in grainy images that 

makes determining edges in images difficult (Benzarti, 2013; Michailovich, 2006). The 

speckle noise in ultrasound images tends to be non-uniform, making simple filters 

ineffective in removing the noise generated. This is particularly important in diagnosis of 

Knee OA, as the width between the edges of the joint space are the ROI. Another artifact 

that appears in this application of US is shadow artifacts. This occurs around hyperechoic 

regions of the US and serves to blur the hypoechoic regions into having higher intensities 

than it would otherwise. This blurs edges in US images and prevents a sharp, definitive 

boundary around linear bone structures (Barr, 2013), like that on the femur and tibia in 

knee images. Less impactful but other challenges in ultrasound image segmentation 

include the limited field of vision and attenuation of deeper structures, both unavoidable 

limitations of transducer and signal detection methods. 

 

Despite the limitations of US images, methods have been proposed to assist or automate 

segmentation of the JSW in Knee OA. Most methods that seek to assist segmentation of 

the JSW use a method of enhancing the US image by denoising and improving the 
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contrast of the ROI. There are many different established methods of accomplishing 

improved images, including:  various histogram equalizations (Hossain, 2014; Hossain, 

2015; Amorim, 2018; Kim, 1997; Wang, 1999; Chen, 2003; Sim, 2007; Kim, 2008) 

(Contrast Limited Adaptive Histogram Equalization, Multipurpose Beta Optimized 

Recursive Bi-Histogram Equalization, etc.) and speckle reduction methods through 

diffusion methods (Perona, 1990; Yongjian, 2002; Gilboa, 2004; Yu, 2010). The 

histogram equalization methods hope to enhance the contrast of the ultrasound image by 

making hypoechoic structures brighter and hyperechoic structures dimmer. The diffusion 

methods attempt to remove the nonuniform speckle noise in the image without blurring 

edges or removing smaller details. After image enhancement, the images can then be 

used for manual segmentation, allowing a cleaner image for a US tech to segment from. 

To automate the segmentation, ROI finding techniques must be used.  

 

Three proposed methods for automatically segmenting the ROI in the enhanced 

ultrasound images include: Random Walker (RW), Watershed, and Graph-Cut (Desai, 

2018; Desai, 2019). These methods require a distinction to be made between the 

foreground and background. In the case of RW, a seed point to start growing out the ROI 

is required. These methods serve to increase the throughput of ultrasound image 

segmentation, and reach decent Dice Similarity Coefficients of 0.85, 0.82 and 0.81 

respectively. The main limitation of these methods is the requirement of selecting seed 

points to segment from, preventing a truly automatic segmentation of the ROI.  
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Chapter 3 

Methods 

3.1 Overview 

 

Figure 3.1: A figure showing the workflow of the study. The workflow begins with B-Mode 

Ultrasound Images and ends with 9 different Neural Networks for every combination of the three 

possible inputs: B-mode images, Enhanced images and both images combined, along with the three 

possible networks: U-Net, Stacked U-Net and W-Net.  
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3.2     Data Collection 

 

Figure 3.2: A picture showing the method for data collection (Desai, 2018; Desai, 2019). The 

transducer placement and patient knee position was kept consistent between imaging. 
3.2.1     Acquisition 

One image dataset used in this study were collected as part of a prior study and 

repurposed as a comparison between the CNN and the Random Walker (RW) methods 

(Desai, 2018; Desai, 2019). An example of this dataset, Dataset 1, can be seen in Figure 

3.3. The written consent was obtained prior to US scan for total 200 2D images from 10 

healthy volunteers. The scans were acquired using 14-5 MHz linear US transducer with a 

depth setting of 3.5 cm. During the scan, the knee was positioned at 90º of flexion, and 

US transducer was placed transversely in line with the medial and femoral condyle above 

the superior edge of the patella. This position of collection can be seen in Figure 3.2.  

Different scans of cartilage were obtained from both left and right knee joints. Another 

dataset of 50 images were used for only validation and was obtained using a portable 

Clarius C3 multipurpose ultrasound transducer using the aforementioned knee positions. 

An example of images from this dataset, Dataset 2, can be seen in Figure 3.4. The 
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breakdown of the use of the datasets in shown in Table 3.1.  These images served to test 

the performance of the CNNs on an untrained set of data. The training and validation of 

the Neural Network was implemented in the MATLAB R2018b software package and 

run on a 4.00 GHz Intel® Core™ i7-8086K CPU, 32 GB 2666 MHz DDR4 RAM PC 

running Windows 10. Training was performed using the built-in GPU accelerated 

methods in MATLAB on an NVIDIA GTX 1080. 

Table 3.1: A table summarizing the datasets used in this study. There is a total of 200 images in 

Dataset 1 and 50 images in Dataset 2, making a total of 250 images in this study. Dataset 1 was 

separated by patient to prevent the same patient being in both the training and validation set. 
 

Dataset 1 Dataset 2 

Training 150 0 

Validation 50 50 

Total 200 50 

 

3.2.2     Cropping 

The images from the transducer used in Dataset 1 created images with pixel dimensions 

of 292 by 380 as seen in Figure 3.3. For the purposes of training the Neural Network, the 

images were cropped to by 256 by 256. An example of this cropping is seen in Figure 

3.5. This cropping was done by simply removing 124 pixel rows away from the 

hypoechoic values in the bottom of the image and removing 18 pixel columns from each 

side of the image. The images in Dataset 2 were 800 pixels by 800 pixels. To crop these 

images, 75 pixels were removed from each side of the image and the image was 

downscaled to be 256 by 256 using bicubic interpolation and rescaling the pixel values. 
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The removal of the pixels was necessary to remove the watermarks and depth number 

from each image. 

 

Figure 3.3: An example of the original B-Mode image from Dataset 1.  

 
Figure 3.4: An example of the original B-mode image from Dataset 2. 
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Figure 3.5: An example of cropping the B-mode image in Figure 3.3.  

 

3.2.3     Enhancement 

A novel part of this study involves using a previously established method of local phase 

filtering and bone shadow enhancement on US knee images as an input into the CNNs 

(Desai, 2019). This method uses a Log-Gabor Filter as a method of edge emphasis of the 

hyperechoic regions of the knee US image, making the edges of high intensity bone 

appear more emphasized (Desai, 2019; Boukerroui, 2004).  The definition of the Log-

Gabor Filter is given in Equation 1.  

 

𝐺(𝜔, 𝜙) = exp

(

  −
𝑙𝑜𝑔 (

𝜔
𝜔0
)
2

2 ∗ 𝑙𝑜𝑔 (
𝑘
𝜔0
)
2 +

(𝜙 − 𝜙0)
2

2 ∗ 𝜎𝜙
)

  

Equation 1: The polar 2D Log-Gabor Filter as a function of the frequency ω and phase ϕ. Constants 

ω0 and ϕ0 are the center frequency and phase respectively, with width k for the frequency and σϕ for 

the phase (Desai, 2019). 
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In order to apply this filter on the US images and output an enhanced image, the discrete 

Log-Gabor was applied to the (x,y) pixel values of the original B-mode US image to 

produce the enhanced image, USE(x,y), shown in Equation 2.  

 

𝑈𝑆𝐸(𝑥, 𝑦) =
∑ ∑ [[𝑒𝑟𝑠(𝑥, 𝑦) − 𝑜𝑟𝑠] − 𝑇𝑟] 𝑠𝑟

∑ ∑ [√ 𝑒𝑟𝑠
2 (𝑥, 𝑦) − 𝑜𝑟𝑠

2 (𝑥, 𝑦) ] + 𝜖𝑠𝑟

 

Equation 2: The enhanced image USE(x,y) with the 2D discrete Log-Gabor Filter applied from 

Equation1 (Desai, 2019). This equation separates the even and odd responses from the Log-Gabor 

Filter as e(x,y) and o(x,y) respectively. Tr is the noise bias and ϵ is an offset. 

 

After applying this filter to the image in Figure 3.5, the image in Figure 3.6 is produced. 

This image shows great emphasis on the cartilage boundary, giving sharp boundaries and 

removing the shadowing effects around the hyperechoic bone structures. Using this 

image in the assisted RW segmentation proved to significantly increase the performance 

of segmentation (Desai, 2018). This study seeks to test whether adding these images to 

the training set and validating with enhanced images would significantly affect the 

performance of the CNN. This was done by both training CNNs with only the enhanced 

images as an input into the network and using a combination of both the B-Mode and 

enhanced images together in the beginning of the CNNs as an early stage fusion. 
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Figure 3.6: The results of using the local phase bone shadow enhancement algorithm on the image 

from Figure 3.5.  

 

3.2.4     Joint Space Segmentation 

The current standard for measuring JSW is to manual segment the ROI from the US 

image. For the purposes of training and validation of the CNN, each image was 

segmented using the built in Image Segmenter in Matlab. This allowed a tracing of the 

JSW over the original US B-mode image and created a binary image shown in Figure 3.7. 

These images served as the ground truth for the network training and validation after 

training was complete. The segmentation is not necessarily a perfect measurement of the 

true cartilage thickness in the patient, as there is natural noise in boundaries that exist in 

the US image. The only method of measuring the true cartilage thickness is through 

invasive surgery or using a cadaver. The true JSW measurement can also vary between 

images in the same patient, leaving variability in manual segmentations. For the purposes 

of training and evaluating the networks, the manually segmented images will be taken as 
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the ground truth, although it is possible for a segmentation algorithm to perform a more 

accurate segmentation than a manual one. 

 

Figure 3.7: The manually segmented knee cartilage of Figure 3.5. This was used for training the 

neural networks. 

 

3.2.5     Image Augmentation / Data Structure 

Training a predictive CNN can require many unique samples to train in order to reach an 

accurate result. The datasets used in this study contained 200 and 50 US images in total. 

This is a small database to train a large-scale CNN (Russel, 1995). In order to increase 

the total number of images for training, a method of modifying the images was 

developed. Firstly, a data structure for saving the original dataset images was modified 

starting with the Matlab Datastore class. This class was modified to allow random 

drawing of images when prompted. These images were then given a 25% chance of 

independently being augmented in three ways: translation, rotation or mirroring. The first 

modification was to translate or slide the image using linear interpolation. The image was 

translated both horizontally and vertically a random amount, with a maximum translation 

of 10 pixels in either direction. The second modification was to rotate the image using 
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nearest-neighbor interpolation. The bounds of rotation were 10 degrees either clockwise 

or counterclockwise. The final modification was to flip the image horizontally. The 

choices of maximum modifications attempted to keep the similarity of the collected 

images to images that would be reasonable to collect in a real US image. These 

modifications gave a total possible number of unique training images of 120,000. These 

modifications served to not only increase the total number of possible images in the 

dataset, but also increased the robustness of the CNN and prevented overfitting from 

making the CNN recognize images in the dataset rather than features in those images. 

These modifications were applied to both images that were being inputted into the CNN 

and the ground truth image. Although Matlab has these properties implemented within 

the built-in library, categorical ground truth images used for training were incompatible 

and were found to increase training time. 

 

3.3     Neural Network Architectures 

There are many well established CNNs that have been used for medical image 

segmentation. Many of these are applied to other modalities such as MR or Computed 

Tomography (CT). Many of the medical imaging CNNs for segmentation use the U-Net 

architecture (Ronnesberger, 2015). This architecture has been improved to fit different 

applications and has given rise to both the Stacked U-Net and W-Net as a result. These 

networks generally have more learnables, weights and biases, that theoretically improve 

segmentation power of the CNN. These networks were chosen for this study, however, 

because of the crosstalk across the network architectures that allow for connections that 
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skip over the deep layers of the network. This crosstalk should accentuate the local phase 

enhancement of the input images to give a more direct effect on the final segmentation. 

 

3.3.1     U-Net 

The U-Net used in this study uses various feedforward convolutions to take an input of 

256x256xN, where N is the number of images fed into the U-Net, to create a 256x256x2 

probability distribution matrix of whether a pixel is part of the ROI or the background. 

The U-Net architecture can be seen in Figure 3.8. The U-Net was implemented in Matlab 

using the various layer commands. All the learnables, weights and biases, were 

randomized prior to training. The U-Net goes through 4 different layers of feature sizes to 

capture features of different sizes throughout the image (Ronnesberger, 2015). These 

important features are copied over in the earlier parts of the network and propagated 

forward towards the end of the network. The sizes chosen for each matrix were made to 

be halves of each previous layer and the number of downsampling steps were made to 

four to not overload the GPU memory during training. 

 



24 

 

2
5
6
x
2
5
6
x
6
4
 

2
5
6
x
2
5
6
x
N

 

2
5
6
x
2
5
6
x
6
4
 

1
2
8
x
1
2
8
x
1
2
8
 

32x32x256 32x32x51

2 

6
4
x
6
4
x
2
5
6
 

6
4
x
6
4
x
2
5
6
 

1
2
8
x
1
2
8
x
6
4
 

1
2
8
x
1
2
8
x
1
2
8

 
6
4
x
6
4
x
1
2
8
 

16x16x512 16x16x1024 16x16x1024 

32x32x256 32x32x1024 32x32x512 32x32x51

2 

6
4
x
6
4
x
2
5
6
 

6
4
x
6
4
x
5
1
2

 

6
4
x
6
4
x
1
2
8

 

1
2
8
x
1
2
8
x
1
2
8

 

1
2
8
x
1
2
8
x
6
4

 

1
2
8
x
1
2
8
x
2
5
6

 

2
5
6
x
2
5
6
x
1
2
8
 

2
5
6
x
2
5
6
x
6
4
 

2
5
6
x
2
5
6
x
2
 

3x conv, ReLu 

Copy 
2x max pool 
2x up-conv 

Figure 3.8: The network architecture of the U-Net used in this study. The input into the U-Net has a size of 256x256xN, where N is the number of 

input images. If only the B-mode image is being sent into the U-Net, then it is 256x256x1. This image tile is then propagated through the net through 

a series of two 3x3 convolutions (3x conv) each followed by a Rectified Linear Unit (ReLu) which simply sets any negative value in the matrix to 

zero. This matrix is then downsampled using a 2x2 max pooling (2x max pool) which uses a 2x2 mask and returns the maximum value in the mask 

to reconstruct the matrix at approximately half the size. This process is then repeated until a size of 16x16x1024, where the matrix is then 

upsampled by using a 2x2 up convolution (2x up-conv) and concatenating it with a copy of the previous 32x32x512 matrix. This process continues 

until the final layer of 256x256x64 which is convolved with a 1x1x64 matrix to make a final size of 256x256x2. This final matrix is then softmaxed to 

create another 256x256x2 matrix which serves as the probability distribution of a given pixel in the original image being the ROI. The network has 

58 total layers.   
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3.3.2     Stacked U-Net 

Since the original publication of the U-Net in 2015 as a method of medical segmentation, 

there have been various changes and manipulations to the U-Net architecture (Wang, 

2018; Tang, 2018; Sun, 2018; Shah, 2018; Milletari, 2016). Most of these changes 

focused on adding more layers or more dense connections between nodes in the network. 

One implementation that showed to be promising was the Stacked U-Net or SU-Net 

(Shah, 2018). This implementation stacks the output of a U-net (Ronnesberger, 2015) and 

feeds it into another U-Net. A similar network to this was implemented in this study and 

can be seen in Figure 3.9. The original work intended for multiple U-Nets to be chained 

together, up to sixteen in the original publication. For this implementation with the 

limitation of GPU memory, only two U-Nets were bridged. In order to bridge the U-Nets, 

the output of the original U-Net in Figure 3.8 that was a 256x256x64 matrix was bridged 

with the input of a second U-Net with a matrix of 256x256x64. This connection was a 

3x3 convolution followed by a ReLu. Comparing the SU-Net to the original will show if 

connecting the additional U-Net would supply any significant improvements to the 

predictive power of the CNN.  
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Figure 3.9: The network architecture of the SUNet used in this study. This architecture mostly follows the architecture of Figure 3.8, with a bridge in 

the center of the path that uses a 3x3 convolution followed by a Rectified Linear Unit to bridge the 256x256x64 matrices together. The input of the 

network is like the U-Net and accepts an input of 256x256xN where N is the number of images. The network outputs a 256x256x2 probability 

distribution image of whether the pixel is in the foreground or background. The network had 110 layers in total. 
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3.3.3     W-Net 

A final network to be implemented in this study is a recent expansion on the idea of SU-

Nets. This network takes two bridged U-Nets and bridges them along the copy 

connections across the gap between the networks (Xia, 2017; Chen, 2019). This new net 

is called either “bridged U-Nets” or “W-Net.” To prevent confusion with other CNNs in 

this study, it will be referred to as the W-Net in this study. This network was used for 2D 

prostate segmentation in MR images and showed a significant increase in DSC than a 

similarly weighted SU-Net. This network was implemented and can be seen in Figure 

3.10. The goal of this net was to emphasize the features that were being copied across the 

first U-Net closer to the output of the total network to not lose the data through the 

network. This addition over the U-Net would also decrease training time and increase the 

robustness of the network. The addition of the addition block did, however, increase the 

total size of the network in memory. Comparing this network to the SU-Net will show 

how important preserving the copying blocks is to the segmentation power of the 

network.  
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Figure 3.10: The network architecture of the W-Net used in this study. This network is a slightly modified version of the SUNet from Figure 3.9. The 

matrices that are copied within in the first U-Net are now also stored in another layer and then added to the matrix of similar size in the second U-Net 

prior to the up-convolution. This serves to amplify features found in the first U-Net while still preserving the deeper features captured in the second U-

Net. The input of the network is like the U-Net and accepts an input of 256x256xN where N is the number of images. The network outputs a 256x256x2 

probability distribution image of whether the pixel is in the foreground or background. The network had 114 layers in total. 

3x conv, ReLu 

Copy 
2x max pool 
2x up-conv 

Addition 
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3.3.4     Training Methods 

To train the CNNs in this study, 150 of the 200 images from Dataset 1 were separated 

and used as a training set. The CNNs in this study were trained using the Matlab GPU 

accelerated training algorithms. The parameters of updating the weights and biases were 

kept consistent throughout the training of all networks to give more insight into the 

comparison of how the networks trained. Two different methods were initially considered 

to be used: Stochastic Gradient Descent with Momentum (SGDM) and Adam (Russel, 

1995; Kingma, 2014). The main difference between these two methods is that SGDM 

uses a single learning rate, or weight per iteration, on the entire backpropagation of error 

for all parameters, while Adam uses an adaptive model that changes the learning rate for 

each parameter (Kingma, 2014). Although Adam can approach a similar result to SGDM 

it has potentially less training iterations. The initial learning rate, however, was found to 

produce inconsistent results depending on the network architecture being trained. If an 

initial learning rate was found to be successful in a U-Net, it caused unsuccessful training 

in the W-Net. Since the parameters were kept consistent to allow for equal comparisons, 

SGDM was used instead. The update algorithm for SGDM is defined in Equation 3.  

𝜃𝑖+1 = 𝜃𝑖 − 𝛼∇E(θi) + 𝛾 ∗ (𝜃𝑖 − 𝜃𝑖−1) 

Equation 3: The definition of Stochastic Gradient Descent with Momentum. θx represents the x 

iteration of parameter vector (weight or bias) that is being updated, α represents the current learning 

rate for the training, ∇E(θi) represents the gradient of the loss function or the total rate of error 

accumulation in a training epoch, and γ represents the momentum factor.  

 

SGDM was implemented using a custom mini-batching system mentioned in Section 

3.1.5. This augmenting system randomly picked 10 images from the dataset, augmented 

the images, and calculated the loss function across the 10 images in a minibatch. This 

minibatch was used to calculate the loss function and dynamically update the weights and 
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biases in the network. The parameters used for training was an initial learning rate, α, of 

0.05, a momentum factor, γ, of 0.9, a regularization of loss factor (L2 Regularization) of 

0.0001 to help prevent gradient explosion, and a maximum number of training epochs of 

20. Many network trainings did not reach the maximum of 20 epochs and this was 

implemented to prevent overfitting in poorly training networks. The average number of 

epochs was 16 across all networks. Two different training curves are shown in Figure 

3.11 and represent both abnormally successful and unsuccessful network training. The 

unsuccessful training was ended before training could be completed because of gradient 

explosion, an issue that can arise with some deep-learning trainings (Yang, 2018). This 

occurs rarely when reaching large loss values that lead to overflows in the SGDM 

calculation. Matlab has a method of detecting this event and stopping training from 

continuing. Gradient explosion was a rare event and only mostly occurred when choosing 

extreme training parameters for learning rate and loss factors. Like abnormally 

unsuccessful trainings, some trainings were abnormally successful as shown in the 

bottom graph of Figure 3.11. This training curve plateaued very quickly since the 

network started with an 80% accuracy and produced the best performing network in this 

study. A typical training curve can be seen in Figure 3.12. This training graph shows an 

initially unsuccessful training result with an initial accuracy of 8.8%, but a promising 

90% accuracy by the first 100 iterations. Despite having a high classification accuracy, 

the Dice Similarity Coefficient for these segmentations would be relatively low at this 

stage. The network at 100 iterations has established the location of the knee cartilage but 

has not learned to segment the finer details and boundaries at this stage of training. As 

seen in the successful training in Figure 3.12, the training accuracy tends to oscillate 
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around 90% accuracy, but this accuracy can be misleading in terms of finer details of 

segmentation. This would affect the quality of the segmented region and can lead to noise 

within segmented shapes and noisy boundaries. The network is learning finer details that 

cannot be shown using a simple accuracy measurement, but only through validation. 

 

Figure 3.11: A graph of the training information from a failed Stacked U-Net training (top) and a 

successful W-Net training (bottom). The training accuracy in black is calculated as the percentage of 

pixels that were correctly classified into the correct group of “foreground” or “background”. The 

Loss in gray is calculated as the cross-entropy loss in the prediction. The top failed graph shows a 

training sequence that led to gradient explosion and premature finalization of training for the 

network before reaching a meaningful result. The bottom graph shows the first 500 iterations of a 

training set that started with an abnormally high accuracy of 80.%.   
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Figure 3.12: A training graph showing the typical beginning of a training curve. This network was 

training a U-Net with only B-mode ultrasound images. The accuracy is shown in black and starts at a 

low accuracy of 8.8% and increases to 90.2% by the first 100 iterations of training.  

 

Network training for this study had produced inconsistent results in some networks. To 

prevent abnormal results from affecting conclusions to be drawn from problems such as 

gradient explosion and abnormal starting network parameters, a 10-fold cross validation 

was done on every combination of network. Each combination of network and input type 

was tested by training 10 different networks with randomized starting parameters, 

training image orders and augmentations on the training images. After training, these 

networks were validated using two different datasets: the remaining 50 images from 

Dataset 1 using similar images to training, and the 50 images from Dataset 2, a separate 

image set with a different transducer and system. The file sizes of the networks were: 113 

MB for a U-Net, 225 MB for a SU-Net and 226 MB for a W-Net on average after 

training. 
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3.4     Analysis Metrics 

In order to test the accuracy of the trained Neural Networks, the manually segmented 

images were used as the ground truth, and a Dice Similarity Coefficient (DSC) was used 

to compare the results of the prediction. The DSC is used as a way of measuring how 

similar two binary images are. The DSC is defined in Equation 4 (Dice, 1945).  

𝐷𝑖𝑐𝑒(𝐴, 𝐵) = 2
|𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
 

Equation 4: The Dice Similarity Coefficient of predicted image A and ground truth image B. This 

calculates the amount of pixel overlap there is between A and B as a ratio by how many total pixels 

there are in both images, and scaled by how many images are being compared to normalize, 2.  The 

DSC can range from 0 to 1, where 0 is no similarity and 1 is the same image. 

 

The DSC is a widely adopted measure of semantic segmentation accuracy. For 

calculations in this study, the image generated from the network, A, was compared 

against the same image from the manual segmented joint space segmentations from 

Section 3.1.4, B. A Jaccard coefficient was also calculated for every network but was 

excluded because of the same trends that were shown with both metrics and would be 

redundant. The Neural Networks return an output matrix that corresponds to a probability 

that a position in the matrix belongs to the foreground. In this study, the networks return a 

256 by 256 matrix that corresponds to the pixels from the 256 by 256 input image. In 

order to calculate the DSC, this probability is thresholded to produce a binary image. The 

threshold value used is 0.5. Any pixel that the network predicts with a 50% or greater 

confidence is in the foreground is given a high value of 1. Any other pixel in the image 

was given a low value of 0. 
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Chapter 4 

Results 

4.1     Dice Coefficients 

The DSC generated from the 90 trained networks on both validation datasets are shown 

in Tables 4.1, 4.2, and 4.3. The average DSC and standard deviation for every 

combination of network input and network architecture are shown for the dataset of 

images similar to those used to train the networks (Dataset #1) and the dataset of images 

not used to train the network (Dataset #2).   
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Table 4.1: A table showing the DSCs from the trained U-Nets in this study rounded to two significant 

digits. Each combination of network was trained 10 times, displayed as a Net Index. The DSCs are 

divided by the network input types: The raw B-mode images, the Enhanced images, and the 

combination of both latter. The DSC are then further divided into results from the Dataset of images 

like those used to train the network, Dataset #1, and the Dataset of images using a different 

transducer, Dataset #2. Below these combinations is the average of the Dice Coefficients of the 10-

fold cross validation, along with the standard deviation. 

U-Net 

 

B-Mode Enhanced Combined 

Net 

Index Dataset # 1 Dataset # 2 Dataset # 1 Dataset # 2 Dataset # 1 Dataset # 2 

1 0.88 0.83 0.88 0.85 0.89 0.85 

2 0.73 0.64 0.63 0.51 0.89 0.87 

3 0.87 0.83 0.88 0.78 0.89 0.85 

4 0.87 0.78 0.86 0.72 0.87 0.78 

5 0.83 0.70 0.87 0.81 0.86 0.77 

6 0.87 0.78 0.89 0.82 0.88 0.82 

7 0.85 0.76 0.85 0.72 0.87 0.75 

8 0.81 0.71 0.88 0.78 0.89 0.83 

9 0.84 0.74 0.90 0.84 0.89 0.84 

10 0.87 0.78 0.81 0.78 0.88 0.83 

Average 0.841±0.04 0.756±0.06 0.846±0.074 0.762±0.09 0.882±0.01 0.818±0.04 
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Table 4.2: A table showing the DSCs from the trained Stacked U-Nets in this study rounded to two 

significant digits. Each combination of network was trained 10 times, displayed as a Net Index. The 

DSCs are divided by the network input types: The raw B-mode images, the Enhanced images, and 

the combination of both latter. The DSC are then further divided into results from the Dataset of 

images like those used to train the network, Dataset #1, and the Dataset of images using a different 

transducer, Dataset #2. Below these combinations is the average of the Dice Coefficients of the 10-

fold cross validation, along with the standard deviation. The 1st network in the Enhanced inputs 

performed the worst in the entire study and was the result of a gradient explosion during training as 

mentioned in Section 3.2.4. The 8th network in the combined inputs is tied for the highest DSC in the 

study. Excluding this outlier gives an average DSC of 0.890±0.02 for the first dataset and 0.811±0.05 

for the second dataset across the 9 networks.  

Stacked U-Net 

  B-Mode Enhanced Combined 

Net 

Index Dataset # 1 Dataset # 2 Dataset # 1 Dataset # 2 Dataset # 1 Dataset # 2 

1 0.60 0.48 0.19 0.15 0.87 0.72 

2 0.87 0.74 0.89 0.81 0.89 0.79 

3 0.84 0.63 0.87 0.73 0.90 0.76 

4 0.78 0.56 0.90 0.88 0.90 0.85 

5 0.78 0.60 0.90 0.79 0.91 0.83 

6 0.78 0.65 0.91 0.85 0.84 0.75 

7 0.67 0.55 0.89 0.79 0.91 0.83 

8 0.67 0.53 0.91 0.85 0.91 0.84 

9 0.89 0.82 0.91 0.86 0.91 0.82 

10 0.84 0.62 0.84 0.74 0.91 0.73 

Average 0.771±0.09 0.619±0.10 0.820±0.2 0.745±0.2 0.896±0.02 0.792±0.05 
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Table 4.3: A table showing the DSCs from the trained Stacked U-Nets in this study rounded to two 

significant digits. Each combination of network was trained 10 times, displayed as a Net Index. The 

DSCs are divided by the network input types: The raw B-mode images, the Enhanced images, and 

the combination of both latter. The DSC are then further divided into results from the Dataset of 

images like those used to train the network, Dataset #1, and the Dataset of images using a different 

transducer, Dataset #2. Below these combinations is the average of the Dice Coefficients of the 10-

fold cross validation, along with the standard deviation. The 2nd network in the combined dataset is 

tied for the highest DSC in the entire study.  

W-Net 

  B-Mode Enhanced Combined 

Net 

Index Dataset # 1 Dataset # 2 Dataset # 1 Dataset # 2 Dataset # 1 Dataset # 2 

1 0.81 0.70 0.90 0.85 0.91 0.82 

2 0.83 0.68 0.90 0.84 0.91 0.84 

3 0.81 0.67 0.90 0.81 0.86 0.73 

4 0.81 0.72 0.89 0.77 0.91 0.84 

5 0.79 0.67 0.90 0.84 0.87 0.77 

6 0.77 0.66 0.91 0.84 0.89 0.81 

7 0.85 0.67 0.90 0.78 0.88 0.79 

8 0.88 0.77 0.91 0.84 0.90 0.82 

9 0.72 0.58 0.89 0.79 0.91 0.83 

10 0.83 0.75 0.90 0.83 0.91 0.83 

Average 0.809±0.04 0.686±0.05 0.900±0.007 0.820±0.03 0.895±0.02 0.810±0.03 

 

4.2     Grouping by Input 

To better visualize the impact of the choice of input into the networks, Figure 4.1 shows 

the mean DSCs for Dataset 1, and Figure 4.2 shows the mean DSCs for Dataset 2. The 

most consistent networks trained resulted from the networks that took a combination of 

the B-mode image and the enhanced image as an input across both datasets.  The highest 
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average DSC across all combinations, however, resulted from using the enhanced images 

in a W-Net in the second dataset. Figures 4.3 and 4.5 show the best segmentations from 

the different inputs for Dataset 1 and Dataset 2 respectively.  These segmentations show 

promising results, with the Dataset 1 results showing very smooth boundaries around the 

segmentation in the enhanced and combination image input networks. Figure 4.4 shows 

the segmentations generated from the lowest DSC networks for Dataset 1. This includes 

the one SU-Net that had a gradient explosion in training. The B-mode inputs showed very 

messy segmentation and many false positives outside the desired ROI in this image. The 

combination network shows decent results, with one artifact in the original image 

showing as a false positive. These Figures also included segmentations from the RW 

algorithm that Dataset 1 was originally used in (Desai, 2018). In Figure 4.5, however, the 

RW parameters were not set optimally for Dataset 2 to highlight that it would need to be 

tuned to perform as well as Dataset 1. 

 



39 

 

 

Figure 4.1: A graph showing the mean Dice Similarity Coefficient validated on Dataset #1 for the 10 

networks in each combination sorted by the input into the network. Error bars show the standard 

deviation of the DSC across each set of 10 networks. One outlier in the Enhanced Stacked U-Net 

produced a large standard deviation and notably lower DSC for that set of networks. The highest 

average and lowest standard deviation was achieved by the combined images input networks.  

 

Figure 4.2: A graph showing the mean Dice Similarity Coefficient validated on Dataset #2 for the 10 

networks in each combination sorted by the input into the network. Error bars show the standard 

deviation of the DSC across each set of 10 networks. One outlier in the Enhanced Stacked U-Net 

produced a large standard deviation and notably lower DSC for that set of networks. The highest 

average and lowest standard deviation across inputs was achieved by the combined images input 

networks, the highest single combination was the W-Net using the Enhanced images as an input only. 
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Figure 4.3: Example segmentations from dataset 1 from the best networks across the three different 

inputs. The three lower segmentations were generated from a Stacked U-Net using a B-mode image 

input, an Enhanced image input and a combined image input. The manual segmentation was created 

using the Image Segmenter in Matlab, and the Random Walker segmentation was generated using an 

algorithm used on this dataset previously (Desai, 2018). The Random Walker shows a blocky 

segmentation while the Network segmentations show smoother boundaries. The Dice coefficients for 

the B-mode, Enhanced and Combined images are: 0.8828, 0.9180 and 0.9265 respectively.  
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Figure 4.4: Example segmentations from dataset 1 from the worst networks across the three different 

inputs. The B-Mode and Enhanced image segmentations were generated using a Stacked U-Net. The 

Combined segmentation was generated using a W-Net. The enhanced segmentation used the network 

that terminated early during training because of gradient explosion, resulting in noise. The manual 

segmentation was created using the Image Segmenter in Matlab, and the Random Walker 

segmentation was generated using an algorithm used on this dataset previously (Desai, 2018). The 

Random Walker shows a blocky segmentation while the Network segmentations show smoother 

boundaries. The Dice coefficients for the B-mode, Enhanced and Combined images are: 0.6099, 

0.2042 and 0.8819 respectively.  
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Figure 4.5: Example segmentations from dataset 2 from the best networks across the three different 

inputs. The B-Mode and Combined image segmentations were generated using a U-Net. The 

Enhanced segmentation was generated using a Stacked U-Net. The manual segmentation was created 

using the Image Segmenter in Matlab. The Random Walker segmentation in mostly unusable as the 

algorithm was not created for this dataset and needs different parameters to perform optimally. The 

Dice coefficients for the B-mode, Enhanced and Combined images are: 0.6668, 0.7103 and 0.7188 

respectively.  

 

4.3.     Grouping by Network 

To better visualize the impact the network architectures had on the final network, Figure 

4.6 shows the mean DSCs for Dataset 1, and Figure 4.7 shows the mean DSCs for 

Dataset 2. The most consistent networks trained resulted from the networks that took a 

combination of the B-mode image and the enhanced image as an input across both 

datasets. The highest average DSC across all combinations, however, resulted from using 

the enhanced images in a W-Net in the second dataset. Figures 4.8 and 4.9 show the best 

segmentations from the different inputs for Dataset 1 and Dataset 2 respectively across 

the different network architectures. All segmentations in these images look very similar 

between network architectures. The major differences being that the U-Net segmentations 
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tend to have a less smooth boundary on the segmentation and false positives in both the 

B-Mode U-Net and the Enhanced Image W-Net.  

 

 

Figure 4.6: A graph showing the mean Dice Similarity Coefficient validated on Dataset #1 for the 10 

networks in each combination sorted by the Network Architecture. Error bars show the standard 

deviation of the DSC across each set of 10 networks. One outlier in the Stacked U-Net using 

Enhanced images produced a large standard deviation and notably lower DSC for that set of 

networks. The highest average and lowest standard deviation was achieved by the W-Net. 
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Figure 4.7: A graph showing the mean Dice Similarity Coefficient validated on Dataset #2 for the 10 

networks in each combination sorted by the Network Architecture. Error bars show the standard 

deviation of the DSC across each set of 10 networks. One outlier in the Stacked U-Net using 

Enhanced images produced a large standard deviation and notably lower DSC for that set of 

networks. The highest average and lowest standard deviation was achieved by the W-Net. 

 

 
Figure 4.8: Example segmentations from dataset 1 from the best networks across the three different 

network architectures. The U-Net segmentation used the Enhanced image as an input. The Stacked 

U-Net and W-Net used the combination of both images as an input. The manual segmentation was 

created using the Image Segmenter in Matlab. The Random Walker shows a blocky segmentation 

while the Network segmentations show smoother boundaries. The DSC for the U-Net, Stacked U-Net 

and W-Net in this image were: 0.9209, 0.9273 and 0.9297 respectively.  

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M
ea

n
 D

ic
e 

C
o

ef
fi

ci
en

t 

Dataset 2

B-Mode

Enhanced

Combined

U-Net Stacked U-Net W-Net 



45 

 

 

 

Figure 4.9: Example segmentations from dataset 2 from the best networks across the three different 

network architectures. The U-Net segmentation used a combination of both images as an input while 

the Stacked U-Net and W-Net used the Enhanced image as an input. The manual segmentation was 

created using the Image Segmenter in Matlab. The Random Walker segmentation in mostly unusable 

as the algorithm was not created for this dataset and needs different parameters to perform 

optimally. 

 

 

4.3.     Statistical Analysis 

To quantify how impactful the differences in the three different Network Architectures 

and three different inputs into the networks, 6 standard one-way ANOVA tests were run 

on both datasets. The ANOVA was run on the set of DSCs that resulted from the 10-fold 

cross validations, with a significance level of 0.05 (α=0.05). Three ANOVA tests were 

run grouping together all the DSCs from each network architecture. This left three sets of 

10 DSCs, one for each input type: B-Mode, Enhanced and Combined. These three groups 

within each network were tested for the null hypothesis of all the mean DSCs being the 

same. This resulted in three p-values for each input type. This process was repeated in 
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reverse: three ANOVA tests were run grouping together all the input types within each 

network architecture. This resulted in three p-values for each network architecture. All 6 

ANOVA tests were done for each dataset to prevent the Yule-Simpson effect from 

skewing data between datasets. Table 4.4 summarizes the results of the ANOVA tests. 

Table 4.4: A table summarizing the results from the one-way ANOVA tests. The ANOVA tests were 

done using a significance level of 0.05. For this set of data, the critical value (Fcrit) was 3.35. To reject 

the null hypothesis, the displayed value of F must be larger than Fcrit. The table is displayed to show 

the grouping of values on the left as identifiers as either a network type or an input type. Each 

network type was grouped with the DSC from the 30 networks in that category and separated it into 

the three input types for the ANOVA test. Each input type was grouped with the DSC from the 30 

networks in that category and separated it into the three network types. The p-values that are 

displayed must be less than 0.05 to be considered significant. The four significant results are bolded. 

 

Dataset 1 

Network Type p-value F 

U-Net 0.19 1.8 

Stacked U-Net 0.15 2 

W-Net 5.40E-08 33 

Input Type   

B-Mode 0.074 2.9 

Enhanced  0.43 0.87 

Combined 0.16 1.9 

Dataset 2 

Network Type   

U-Net 0.11 2.4 

Stacked U-Net 0.026 4.2 

W-Net 4.80E-08 34 

Input Type   

B-Mode 0.0013 8.6 

Enhanced  0.82 0.45 

Combined 0.37 1 

 

Three results from this study were considered statistically significant. From Dataset 1, 

only the W-Net networks had p-values less than 0.05, while in Dataset 2 the SU-Net, W-

Net and B-mode networks had p-values less than 0.05. This means that the null 

hypothesis of the input values having the same DSC on the W-Net can be rejected. The 
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network architectures that use B-mode images and the SU-Net can also be considered 

unequal within Dataset 2 only. To further see the significance of these results, two sample 

t-tests were performed on the significant groups. To see the significance of the input type 

on the W-Net within each Dataset, 3 t-tests were completed on each combination of input 

types for both datasets. The t-tests performed were two sample one-tailed t-tests 

assuming equal variances. This produced 6 t-tests that is summarized in Table 4.5. This 

was repeated for the SU-Net in Dataset 2 and is shown in Table 4.6. To quantify the 

effects of the network architecture on the B-mode results in Dataset 2, three t-tests were 

done between combinations of networks in that group. The t-tests were one-tailed two 

sample tests assuming equal variances. The results in summarized in Table 4.7.  

Table 4.5: A table showing the p-values of the 6 t-tests performed on the W-Net DSCs within the two 

datasets. The t-tests grouped the DSC by the type of input into the W-Net and performed one-tailed 

two sample t-tests assuming equal variances. The tests are represented by separating the inputs with 

a forward slash. The tests were performed with a significance level of 0.05 and produced four 

significant results which are bolded.  

Test Dataset 1 Dataset 2 

B-mode/Enhanced 2.9E-06 8.0E-07 

Enhanced/Combined 0.22 0.26 

B-mode/Combined 1.1E-05 4.9E-06 

 

Table 4.6: A table showing the p-values of the 6 t-tests performed on the Stacked U-Net DSCs within 

the two datasets. The t-tests grouped the DSC by the type of input into the Stacked U-Net and 

performed one-tailed two sample t-tests assuming equal variances. The tests are represented by 

separating the inputs with a forward slash. The tests were performed with a significance level of 0.05 

and produced four significant results which are bolded. The Enhanced networks included the 

network with the outlier that caused a significantly lower p-value. 

Test Dataset 2 

B-mode/Enhanced 0.054 

Enhanced/Combined 0.25 

B-mode/Combined 6.0E-05 
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Table 4.7: A table summarizing the 3 t-tests performed on the B-mode DSCs on Dataset 2. The t-tests 

grouped the DSC by the network architectures using B-mode images and performed one-tailed t-tests 

assuming equal variances. All tests were performed with a significance level of 0.05, making all three 

t-tests shown to be significant. 

Test p-value 

U-Net / S U-Net 0.00080 

S U-Net / W-Net 0.039 

U-Net / W-Net 0.0061 

 

The first set of t-tests performed show that using either an enhanced image or the 

combination of images as in input into a W-Net produced segmented images with 

statistically significantly higher Dice Similarity Coefficients in both datasets. This can be 

concluded as the average DSC for the enhanced and combined inputs is larger than that 

of the B-mode input W-Nets. These t-tests also show that there was no significant 

difference between the DSC from using an enhanced image or a combined image into a 

W-Net for our datasets. The second set of t-tests show that there was only a significant 

difference between using a B-mode input and a combined image input when using a SU-

Net in Dataset 2. This shows that using a combined image was statistically better than 

using a B-mode image alone. The presence of the outlier in the set of enhanced images 

did affect the overall p-value when comparing the enhanced image to the other inputs. 

Specifically, if that outlier is ignored, then the p-value between the B-Mode and 

enhanced image inputs decreases to 4.7E-05 and the p-value between the enhanced image 

and the combined images lowers to 0.22. The third set of t-tests show that there is a 

statistically significant difference between using a U-Net SU-Net and W-Net in the 

second dataset. The order of the means of these DSC are: U-Net > W-Net > SU-Net. This 

would indicate that a U-Net produces better DSC than a W-Net which produces better 

DSC than a SU-Net using B-mode images with Dataset 2.  
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To compare using a CNN against the previously established method of using a Random 

Walker (RW) (Desai, 2018), a paired t-test was completed on every CNN generated. The 

paired t-test compared the DSC of the Neural Network against the manual segmentation 

and the DSC of the Random Walker against the manual segmentation of the same image. 

This would give a comparison of the segmentation accuracy on the same images. 90 

paired t-tests were performed, and the results were arranged in Tables 4.8, 4.9 and 4.10. 

The p-values are shown with the null hypothesis that the CNN being tested and the RW 

algorithm have similar DSC. A low p-value shows that the DSC of the two algorithms are 

significantly different. At a confidence level of 0.05 (α = 0.05), the p-values lower than 

0.05 indicate a significant difference in the algorithms. This can, however, show that the 

RW algorithm performed better. To conclude which networks performed significantly 

better than the RW, the DSCs from Tables 4.1, 4.2, and 4.3 were compared to the DSC of 

the RW algorithm, 0.8481. Any CNN with a higher mean DSC than 0.8481 and a p-value 

of less than 0.05 can be assumed to provide a significantly better segmentation than the 

Random Walker. The number of these networks that are significantly better than the RW 

in every combination is shown in Tables 4.8, 4.9 and 4.10 as “# > RW.”  
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Table 4.8: Table of the p-values generated from performing a paired t-test between the DSC from the 

U-Nets and a Random Walker algorithm on the same input images. The null hypothesis in this test is 

that the DSC from both algorithms are the same; a low p-value indicates a significant difference 

between the two. The p-values that also corresponded to a higher mean DSC are in bold to indicate 

that the DSC of this network are significantly larger than that of the Random Walker. The total 

number of these networks for each input type is shown in the last row of the table.  

U-Net 

Net Index B-Mode Enhanced Combined 

1 2.4 E-07 0.87 0.00032 

2 4.5 E-29 1.4 E-41 0.0027 

3 0.00026 0.0042 1.4 E-05 

4 0.049 0.00031 0.00023 

5 4.7 E-06 0.148 1.8 E-06 

6 0.00053 0.00012 0.31 

7 0.12 0.31 0.47 

8 2.2 E-07 2.5 E-06 0.00010 

9 0.011 2.9 E-12 0.85 

10 0.028 1.0 E-12 0.22 

# >RW 5 5 6 

 

Table 4.9: Table of the p-values generated from performing a paired t-test between the DSC from the 

Stacked U-Nets and a Random Walker algorithm on the same input images. The null hypothesis in 

this test is that the DSC from both algorithms are the same; a low p-value indicates a significant 

difference between the two. The p-values that also corresponded to a higher mean DSC are in bold to 

indicate that the DSC of this network are significantly larger than that of the Random Walker. The 

total number of these networks for each input type is shown in the last row of the table.  

 

Stacked U-Net 

Net Index B-Mode Enhanced Combined 

1 1.2 E-37 2.4 E-65 2.8 E-10 

2 0.0014 1.3 E-14 7.9 E-17 

3 0.13 4.8 E-05 1.1 E-15 

4 2.6 E-15 3.4 E-11 1.5 E-07 

5 2.4 E-17 1.3 E-12 1.1 E-15 

6 1.9 E-14 7.5 E-18 0.0015 

7 1.1 E-29 1.9 E-05 3.4 E-09 

8 1.2 E-26 4.5 E-17 2.6 E-13 

9 4.7 E-12 4.0 E-16 3.8 E-09 

10 0.0069 1.0 E-08 4.5 E-11 

# >RW 3 8 9 
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Table 4.10: Table of the p-values generated from performing a paired t-test between the DSC from 

the W-Nets and a Random Walker algorithm on the same input images. The null hypothesis in this 

test is that the DSC from both algorithms are the same; a low p-value indicates a significant 

difference between the two. The p-values that also corresponded to a higher mean DSC are in bold to 

indicate that the DSC of this network are significantly larger than that of the Random Walker. The 

total number of these networks for each input type is shown in the last row of the table.  

W-Net 

Net Index B-Mode Enhanced Combined 

1 7.7 E-11 3.6 E-14 1.1 E-13 

2 0.00028 9.6 E-13 2.5 E-10 

3 3.5 E-11 1.1 E-16 4.7 E-06 

4 1.1 E-09 1.7 E-10 4.2 E-12 

5 1.2 E-15 1.6 E-13 1.2 E-09 

6 6.1 E-20 3.1 E-14 3.0 E-11 

7 0.83 1.1 E-11 2.8 E-09 

8 5.0 E-07 5.1 E-15 2.6 E-11 

9 6.4 E-31 7.2 E-11 1.1 E-13 

10 2.2 E-11 1.0 E-15 4.3 E-13 

# >RW 1 10 10 

 

In total, 16 of the 30 U-Nets, 20 of the 30 SU-Nets, and 21 of the 30 W-Nets performed 

better than the RW. 9 of the 30 B-Mode inputs, 23 of the 30 Enhanced input and 25 of the 

30 Combined input networks performed better than the Random Walker.  
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Chapter 5  

Discussion & Conclusions 

The goal of this study was to see the effects of using the three different network 

architectures of the: U-Net, Stacked U-Net and W-Net while testing the effect of using 

local phase enhancement on the B-Mode knee images on segmentation accuracy. The 

following sections will evaluate how the generated CNNs performed in comparison to 

each other and a Random Walker that was established to be the best segmentation method 

for the dataset used. 

5.1      Quality of Segmentation 

Dice Similarity Coefficient is a widely established method of evaluating semantic 

segmentation algorithms. It allows a numerical value to be assigned to the accuracy of a 

segmentation. It is, however, a naïve measurement of the accuracy of medical image 

segmentation. A DSC does not take any biological landmarks or location of errors into 

calculation and cannot give a quality measurement to segmentation algorithms. DSC has 

limitations as a quality measurement but has a role as quantifying results. It is, however, 

difficult to give a visual score to segmentations. For this reason, artifacts in segmentation 

results will be mentioned in entirety. A common artifact that was segmented by the 

Neural Networks was the presence of a hypoechoic ridge above the knee cartilage. This 

artifact can most easily be seen in Figure 4.3 in the B-Mode segmentation. This artifact is 

produced by the patellar tendon and appears differently depending on the patient. This 

artifact is difficult to avoid in some automated systems of segmentation such as 

Watershed and Random Walker that use automated seed points to grow outwards (Desai, 

2018). Another artifact in segmentations that appeared to be exclusive to the U-Nets in 
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this study is noisy edges. Figures 4.8 and 4.9 show examples of this artifact, with the 

edges of the segmentations appearing powdery and rough. This artifact persisted through 

lower and higher thresholding values of the probability, showing that the U-Nets are not 

confident in finding the edges in the segmentation. An explanation for this behavior is 

that the U-Nets were overfit to the training data, but this artifact appeared when 

predicting training data as well. This edge blurriness can instead be explained by the 

network training algorithm not punishing these blurry edges significantly enough given 

the U-Net architecture. The addition of more weights and biases in the SU-Net and W-

Net architecture would work to smooth out these edges by having more total learnables.  

Determination of a ground truth model can be problematic for training neural networks. 

In this study, a manual segmentation of an ultrasound was used as the ground truth for 

training and validating the accuracy of the networks. This model is prone to human error 

and inconsistency around segmentation. A goal of this study was to segment the cartilage 

of the knee in ultrasound images to avoid the noise that damages the performance in other 

automated systems. This same noise also leads to difficulty in segmentation and can 

interfere with network training and can skew the absolute DSC, but not the relative DSC 

between groups within the study. Every figure shown with a manual segmentation is not 

perfect: rough lines and spikes in straight lines from using a mouse to segment can lead to 

imperfect segmentations. These imperfections are amplified through training with the low 

number of dataset images in this study. It is possible that a neural network can produce 

better segmentations than a manual segmentation, but the DSC would be lower in 

validation. Averaging together multiple expert segmentations can improve the accuracy 

of the ground truth but can also cause smoothing of rougher edges in the true 
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segmentation. Determining an absolute ground truth would be impossible without 

invasive surgery to physically measure the cartilage thickness of each patient, which is 

infeasible for this study. Changing the validation metric to a more physical value, such as 

median Joint Space Width, can improve the ground truth for validation, but it would not 

be able to be used for error backpropagation in training the networks. This dichotomy in 

training metric and validation metric could produce networks with high DSC and low 

JSW similarity. Combining the ultrasound images with an image from another modality 

can also improve the ground truth accuracy. If two modalities are being used in this way, 

however, it would be better to combine the inputs of both imaging modalities into the 

network, which can lead to problems with having enough unique images for training 

without overfit. This study used the current “golden standard” in Ultrasound imaging, 

manual segmentation, but must acknowledge that it is imperfect.  

 

5.2     Impact of Enhancement 

One novel part of this study is using an enhanced image as an input into the Neural 

Networks. A fair criticism of this decision is that any consistent transformation of an 

input into a network can be reconstructed with any Convolutional Neural Network given 

enough learnables (Russell, 1995). Given a large enough network, the enhancement 

algorithm used in this study can be learned by a neural network if it is trained to create it. 

With the limited amount of training images, however, this algorithm cannot be expected 

to form from networks with the amount of learnables used in this study. Within the 

results from this study, using an enhanced image or a combination of the B-mode image 

and the enhanced image was only significantly better when using a W-Net compared to 
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the other networks as shown in Table 4.5. This table also shows that there was not a 

significant difference between using the enhanced image and using the combination 

image as an input into the W-Net. These results would imply that the enhanced image 

was more impactful than the presence of the B-Mode image in the combination input for 

W-Nets. This is important because networks that used a combination of inputs had more 

learnables to account for the input. These networks had 576 more learnables, which 

should give an advantage in the amount of details it would be able to identify with perfect 

training. This means that the effect of these extra learnables was overshadowed by the 

effect of using an enhanced image as an input. Using an enhanced image or combination 

as an input into the networks compared to the RW algorithm in Tables 4.8, 4.9 and 4.10 

always show the same ore more networks that produced significantly higher DSCs. This 

difference, again, is most present in the W-Net where the number of outperforming 

networks increased from 10% of the networks to 100%. Overall, it appears that a more 

complicated network architecture such as the W-Net benefits more from the image 

enhancement than a simpler network such as a U-Net. The W-Net has many more 

learnables than the U-Net that need to be updated to reach an ideal segmentation. Given 

the same number of training iterations between the two, it would make sense that the W-

Net would reach the stage of training that is focusing on finer details earlier in training if 

given the enhanced image as an input. Moreover, this trend is not seen in the SU-Net to 

the same degree because of the lack of the crosstalk between the main arcs in the 

architecture.  The crosstalk in the W-Net may allow a more direct connection to the 

segmentation layer and prevent the important details from being lost in the forward 

propagation. The effect of using an enhanced image in a SU-Net is less clear. The 
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presence of an outlier in the networks caused skewing of the p-values, as discussed in 

Section 4.3. If the outlier is ignored, then it can be concluded that the SU-Net performed 

better in Dataset 2 when using an enhanced image or a combination of images instead of 

the B-mode image alone. With the outlier, however, this can only be extended to the 

combination of images. Since this only applies to Dataset 2, the images less similar to the 

images the network was trained on, it would again imply that the enhanced images 

improved the robustness of the final network after training and allowed for easier 

segmentation when the inputs are enhanced.  

 

5.3     Impact of Network Architecture 

When looking at the effect the Network Architecture had on the segmentations, it is 

difficult to draw many conclusions. Overall, the comparisons between networks along the 

same inputs did not give rise to many significant results between each other. The only 

significant results were using a B-Mode input on Dataset 2 as shown in Table 4.8. This 

showed that when using a B-mode image, the U-Net performed better than the W-Net, 

which performed better than the SU-Net. This would imply that the U-Net was the best 

network for segmentation of less similar images than what it was trained on but 

underperformed on images like that which it was trained on. This tradeoff of accuracy in 

a specific image type for accuracy in robustness of the network can be justified when 

training networks as templates for other uses. That is, using the trained U-Net in deep 

learning methods where the network would be retrained briefly on a newer dataset. This 

is niche but can have uses in general segmentation systems that would see many different 

types of images.  
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5.4     Comparison to Random Walker 

The Random Walker algorithm was chosen as the method to compare against the Neural 

Networks in this study, as it was previously established as the best method of 

segmentation compared to both Watershed and Graph-Cut algorithms on this specific 

dataset (Desai, 2018). The Neural Networks in this study were shown to significantly 

outperform the Random Walker segmentations when using either an enhanced image or 

combined image as an input, as shown in Tables 4.8 4.9, and 4.10. Both the SU-Net and 

the W-Net both underperformed when using only the B-Mode image but improved 

greatly when using the enhanced and combined images. This is contrary to the U-Net, 

which saw similar performance across all inputs when compared to the RW. The only 

combination of networks that did not have a majority be statistically better DSC than the 

RW were W-Nets and SU-Nets with the B-mode as an input. Otherwise, every other 

network was shown to be better. The U-Net had at least 50% of the networks to be better 

across all inputs, the SU-Net had 80% and 90% better for using the Enhanced and 

Combined input respectively, and the W-Net with the enhanced and combined input had 

90% and 100% of the networks be better.  

 

5.5     Conclusions 

The segmentation of Knee cartilage using three different Neural Network architectures: 

U-Net, SU-Net and W-Net, using B-mode, local phase filtering and bone shadow 

enhanced images and a combination of the two images as inputs for each were compared 

in this study. The performance of these networks was compared against the best 
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automated segmentation method established on this dataset, the Random Walker 

algorithm.  

The enhancement of training and testing images in the Neural Networks in this study 

were compared to similar networks that used pre-enhanced B-Mode images. It was 

shown that the enhanced images had a significant impact on the performance of the W-

Net when comparing the Dice Similarity Coefficients (DSC) against other networks and 

inputs in this study. This shows that the W-Net benefitted from having the enhanced 

images. The different network architectures were shown to be similar to each other in the 

datasets in this study. The only significant difference in DSC was found on networks that 

used the B-mode images as an input and only in the dataset that was less similar than the 

images the networks were trained on. This showed that the U-Net outperformed the W-

Net, and the W-Net outperformed the SU-Net. When comparing the Neural Networks in 

this study to the previously established best automatic segmentation algorithm: Random 

Walker, the networks outperformed when using the enhanced images. In this metric, the 

SU-Net and W-Net also outperformed the U-Net when using the enhanced images as an 

input. The U-Net, however, performed better when using the B-Mode images alone. 

Quantitatively, the Neural Networks outperformed the Random Walker in most cases 

presented in this study, and qualitatively produced much smoother segmentations than 

that of the Random Walker. It is difficult to conclude which Neural Network was the best 

performing, as different metrics contradict each other, but the U-Net was the most 

consistently performing network with a lower storage size and faster training and 

computation time. The other two networks had examples where they outperformed the U-

Net, but this tradeoff with computation time and storage may be more useful in some 
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clinical systems that attempt to perform real-time segmentation. The promise of mass 

throughput by using Neural Networks can allow many automated segmentations of knee 

cartilage in rapid succession and give rise to newer technologies that can assist both 

clinical and research alike. 

 

5.6     Challenges 

Many challenges in this study were faced with the nature of Neural Networks and the 

ever-expanding technologies for creating and training them. Thankfully, the use of a GPU 

instead of a CPU for the training of the networks shorten the total training time per 

network from approximately 6 hours to 30 minutes. Training 90 networks with these 

times became much easier with advancements in CUDA® cores and parallel computing. 

Moreover, the choices of parameters for training and attempting to prevent problems such 

as gradient explosion during training was tricky to achieve across the different network 

architectures and inputs given the limited RAM available for the GPU. Finally, the 

computation time for the Neural networks is relatively low, averaging 0.03 seconds for 

U-Nets and 0.05 seconds for SU-Net and W-Nets. This is, however, overshadowed by the 

time it takes to enhance the images to use in these networks, which takes approximately 

0.2 seconds. Overall, this should not affect most cases where this algorithm is used, but in 

real-time systems may be noticeable when combined with graphical rendering lag.  

 

5.7     Future Work  

This study looked specifically at the ability of CNNs to segment knee cartilage from US. 

This implementation had limitations that can be investigated and investigated with further 
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studies to continue the optimization of knee cartilage measurements and bring these 

technologies to the clinical space. 

 

5.7.1 Dice Similarity Coefficient Scaled Neural Network Training 

One major limitation of this study was the CNN training using Stochastic Gradient 

Descent. This method of error backpropagation is widely accepted in many different uses 

for CNNs but is limited to a measurement of accuracy to determine a dynamic learning 

rate across the training process. In the case of this study, training accuracy was 

represented as a percentage of correct guesses from the CNN in sorting pixels into the 

foreground and background. Scaling this accuracy by the Dice Similarity Coefficient 

during training can prevent cases of marginal increases in pixel accuracy leading to no 

change in the Dice Coefficient. 

 

5.7.2 Real-Time Knee Cartilage Segmentation 

The CNNs generated in this study allowed for relatively low segmentation times from the 

Ultrasound images in the datasets. This can be extended to allow real-time segmentation 

of the cartilage that can aid with transducer placement during measurement and allow a 

more accurate representation of the B-mode image a clinician is attempting to capture. 

 

5.7.3 Comparison of Ultrasound and MRI Knee Cartilage 

Segmentations 

MR and ultrasound both allow for soft tissue imaging of the knee for measuring cartilage. 

There have not been any major studies looking at the differences between the 
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measurements from ultrasound images and MRI from the same patients to see the 

accuracy differences between the two modalities. This comparison can show the clinical 

accuracy of ultrasound as a viable method of measuring knee cartilage. 

 

5.8     Thesis Contributions  

The main contributions of this thesis are summarized as:  

1) The comparison between the U-Net, Stacked U-Net and W-Net architectures be in 

an ultrasound imaging application. This study showed that the choice of neural 

network architecture had limited effects on the final segmentations generated. The 

U-Net performed more effectively in the dataset that was more different than the 

training set, showing that it avoided overfit and may have been more robust.  

2) The use of local phase enhancement of B-Mode ultrasound images for improving 

the accuracy and consistency of Convolutional Neural Networks. The use of 

enhanced images greatly increased the segmentation power of the CNNs and 

increased both the quantitative performance and quality of segmentation. Fusing 

the enhanced images and the B-mode images at the beginning of the CNN also 

proved to increase performance.  

3) The comparison of using a Convolutional Neural Network against a Random 

Walker for segmenting knee cartilage from Ultrasound images. The CNNs 

generated were shown to outperform the Random Walker when using the 

enhanced images or when using a more complex network architecture. 
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Appendix 

The code used in this thesis can be found at: 

https://github.com/MrMisnomer/USKneeCNN  

This contains example networks and most of the code that can be transferred over for 

most Ultrasound segmentations. 
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Appendix 1: The network architecture of a U-Net used in this study.  
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