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ABSTRACT OF THE DISSERTATION 

Improved Automatic Bone Segmentation Using Large-Scale Simulated Ultrasound Data 

to Segment Real Ultrasound Bone Surface Data 

 

by HRIDAYI PATEL 

Thesis Director:  

Ilker Hacihaliloglu 

 

 

Automatic segmentation of bone surfaces from ultrasound images is of great 

interest in the ultrasound-guided computer assisted orthopedic surgery field. These 

automatic segmentations help the system locate where the bone surface is in the image 

which can allow for proper surgical manipulation. Methods that involve using image 

processing tools have previously been used to perform the segmentations however, they 

have faced problems due to the noise and various imaging artifacts associated with 

ultrasound data. Most recently, methods based on deep learning have achieved promising 

results. However, a drawback is that these methods require large number of training 

dataset. Therefore, new methods which can overcome these drawbacks need to be 

investigated in order to accurately segment bone surfaces from real ultrasound data. 

This thesis introduces the concept of training the deep learning methods with large-

scale simulated bone ultrasound data and investigating how using large-scale simulated 

data along with limited real ultrasound data affects the segmentation performance of the 

deep learning network. A transfer learning approach and using a training dataset consisting 

of both real and simulated ultrasound bone surface data was applied for the investigation. 
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We show that by using simulated bone ultrasound data, the success of traditional deep 

learning methods increases compared to using small-scale real ultrasound data only. 

Data used in the study consisted of real ultrasound data collected from different 

subjects and utilizing 3D Slicer and PLUS for generating simulate ultrasound data. Various 

networks were trained in order to determine how well the network of a certain dataset is 

able to perform automatic segmentations on the same type of data. Additionally, networks 

trained with both large-scale simulated US data and limited real ultrasound data were 

trained and tested on real ultrasound data to determine if using large-scale simulated data 

improves network performance. The automatic segmentations of the neural networks were 

compared against manual segmentations of the same data by calculating the Sorensen- Dice 

Coefficient and Average Euclidean Distance. Results of the thesis show that using large-

scale simulated ultrasound data can be used to train a neural network to segment real 

ultrasound data if both types of datasets are used together to develop the network.   
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CHAPTER 1 

 

INTRODUCTION 

 

 

 

1.1 Thesis Motivation 

 

Between 2012 to 2014, the direct and indirect annual cost for musculoskeletal disease 

was estimated to be $322 billion [1]. One of the most common types of musculoskeletal 

injuries include falls which account for 51.7% of hospitalizations and 35.7% of emergency 

department visits [1]. The most frequent injury that is a result of falls is a fracture which 

makes up for 80% of hospitalizations and 33% of emergency department visits [1]. 

Fractures also account for 63% of traumatic injuries seen in hospital cases [1]. One of the 

ways to treat fractures and other musculoskeletal medical conditions includes orthopedic 

surgery.  

As more and more new research and technologies are being explored in the medical 

device industry, the field of surgery is experiencing many breakthroughs in surgical 

equipment and computer guided surgery. These breakthroughs help to develop more 

efficient and safer surgical practices for the patients. Orthopedic surgery in particular is 

well suited for computer assistance as bones and periarticular tissues can be imaged easily 

using pre-operative X-rays, computed tomography (CT), magnetic resonance imaging 

(MRI), and fluoroscopy [2]. The dominant intra-operative imaging modality in computer-

assisted orthopedic surgery (CAOS) is 2D/3D fluoroscopy. 2D fluoroscopy is limited to 

projection imaging which causes difficulties during fixation of complex fractures. On the 

other hand, 3D fluoroscopy has improved the surgical success rates by providing 3D 
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guidance [3]. However, 3D fluoroscopy units are expensive and not as widely available as 

2D units. Finally, one of the major healthy concerns of intra-operative fluoroscopy is the 

exposure, of the surgical team and patient, to harmful ionizing radiation.   

New research techniques have looked into using the ultrasound (US) in order to 

perform intra-operative imaging in CAOS for reducing the exposure to ionizing radiation 

[4]. US images however are noisy, have artifacts, have a limited field of view and bone 

surfaces appears several millimeters in thickness (Fig 1.1) [4]. Due to these limitations, 

interpretation of US bone images is difficult. In order to overcome these challenges 

researchers have looked into developing automatic bone segmentation and registration 

methods. Accurate segmentation is important for improved guidance in US-guided CAOS 

systems. The segmented bone surfaces are also used for real-time intra-operative 

registration [5]. Therefore, accurate segmentation is also important for robust intra-

operative registration.  
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Early work for segmenting bone surfaces from US data was based on the use of 

image intensity or gradient information [6]. However, intensity-based methods are not 

robust due to the typical imaging artifacts associated with image acquisition or the noise in 

the US scan which can result in low accuracy segmentation. In order to overcome this, 

methods based on local phase image information have been developed [7]. Although local 

phase information based methods can provide accurate and robust segmentation results, 

their success depends on the optimization of specific filter parameters used to extract phase 

information. Furthermore, methods based on local phase image information are also time 

  

Fig. 1.1  Two B-mode US images of bone surfaces are shown above. The image on the 

left shows a high-quality US image as the bone surface (red arrows) is shown in high 

intensity and is followed by a shadow region (yellow arrows). In comparison, the image 

on the right shows the different artifacts and noise that can occur in a US image. The 

soft tissue interface (blue arrow) can be misinterpreted as the bone surface (green 

arrows) by an algorithm. Additionally, noise in the shadow region can occur due to 

suboptimal probe orientation. This noise may also interfere with the machine learning 

algorithms segmentation of the bone surface. 
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consuming and not suitable for real-time imaging. Recently, methods based on deep 

learning have been investigated by various groups for automatic, accurate and real-time 

segmentation of bone surfaces from US data [8, 9]. However, a limitation of using deep 

learning methods includes limited data availability for training the neural networks. Two 

methods, traditionally used by researchers, in order to overcome the scarcity of medical 

image data are data augmentation and transfer learning. During transfer learning an existing 

deep learning architecture, designed for natural image datasets, is fine-tuned using the 

sparse new medical image data [10]. Data augmentation is obtained by introducing random 

image transformations, rotations or nonlinear deformations, resulting in the generation of 

new image datasets. Transfer learning and data augmentation have achieved improved 

results for various tasks such as classification and segmentation [11, 12]. Data 

augmentation and transfer learning have also been used for various US image analysis 

methods [13].  

Since the US is not the standard imaging modality used in orthopedics, there is a 

need to efficiently perform segmentations with a smaller dataset. Therefore, this thesis aims 

to answer the questions:  

1) Can simulated US data be used to train a neural network for accurate and 

robust segmentation of real in vivo bone US data? 

2) Can simulated and real in vivo bone US data be used together to train a neural 

network for accurate and robust segmentation of real in vivo bone US data? 
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1.2 Computer Assisted Orthopedic Surgery 

 

Computer Assisted Orthopedic Surgery is the implementation of computer-based 

technology in order to perform successful orthopedic surgery. The area was introduced in 

the mid-1990s when the first successful spine and hip replacement surgery was performed 

using CAOS systems [3]. In orthopedic surgery, precision is of utmost importance because 

fracture fixation, implant fixation, etc. need to be carried out efficiently in order to 

minimize post-operation risks [3]. CAOS systems “allows surgeons to get real-time 

feedback” about the surgical incisions so that they are able to navigate clearly during the 

surgical procedure [3]. CAOS system components include the preoperative and 

intraoperative plan, and registration. The preoperative plan is developed when a CT scan 

of a patient’s fracture is taken in order for the surgeon to have a reference image to help 

determine the proper surgical plan [14]. In order for the CAOS system to help perform the 

surgery, the patient’s anatomy needs to be known during the operation as well. 

Intraoperative imaging consists of using X-rays, fluoroscopy, or more recently, US 

imaging [3, 14]. The intraoperative model then needs to be matched with the preoperative 

model via registration in order to bridge the gap between the preoperative and 

intraoperative plan [3]. After this registration process is complete, a three dimensional (3D) 

and real-time image of the patient’s bone surface can be obtained which can then be used 

to perform a more precise and accurate surgery [14]. 
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1.3 Challenges in Computer Assisted Orthopedic Surgery (CAOS) 

 

Due to the importance of imaging in CAOS systems, a proper and safe method of 

imaging the bone structures needs to be determined. The CT scan is a great imaging tool 

for use in orthopedic surgery because it provides a 3D image with good contrast between 

the bone and tissue interface [3]. However, CT imaging is not the ideal method to be used 

during the intraoperative planning as it requires large changes in the hospital’s layout which 

can come with great financial costs [3]. Therefore, intraoperative imaging uses fluoroscopy 

to view the bone structures in real-time. However, fluoroscopic images only provide two-

dimensional (2D) information which is why several images need to be taken from different 

planes in order to match them to the 3D CT images [15]. These images require the surgeon 

to use trial-and-error to determine the placement of the implant in different planes [16]. 

Although 3D fluoroscopy units are available, they are much more expensive than 

traditional 2D fluoroscopy which might not make them feasible to obtain [16]. In order to 

perform the surgery, the surgeon needs to fix the surgical tools and implant relative to the 

bone. This process relies on the surgeon’s expertise and knowledge of anatomical areas 

from previous surgeries and trainings. 2D fluoroscopy images are relied upon for the 

surgeon to obtain an accurate estimate of the trajectory to reach the target structure [16].   

In addition to the imaging and navigation challenges, a large area of concern is the 

safety of the patients and surgeons involved in the surgical procedures. In a study 

performed by Gausden et al. tracked the radiation exposure of surgeons, it was found that 

orthopedic surgeons in the study received an average of 0.2 to 79 mrem/month (mrem is a 

unit of radiation exposure) [17]. The senior surgeons who performed multiple trauma 

surgeries were exposed to more radiation than their peers [17]. Although these results are 
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under the dose limit that is 5,000 mrem/year, considering the amount of surgeries a surgeon 

performs it is better to keep radiation exposure lower [17]. The importance of imaging and 

guidance during surgery can also been seen in the number of radiology images that are 

requested by the emergency department. Blane et al. showed that 72,886 imaging studies 

were requested in 2004 from the radiology department [18]. As seen by this number, 

imaging plays a large role in the diagnosis and treatment of patients coming into the 

emergency department who possibly require surgery. Therefore, it is important to develop 

an accurate method of performing surgery that reduces risks to the patients and surgeons, 

is more efficient, and less invasive. 

 

 

 

1.4 US-Based CAOS Systems 

 

The use of the US as an imaging modality has primarily been restricted to imaging 

soft tissues and internal organs. From 2000-2011, the amount of CTs and MRIs performed 

have doubled [19]. In comparison, the number of US imaging done has increased tenfold 

[19]. This can be attributed to the fact that the US is a robust imaging modality which can 

offer real time feedback and lack of radiation. Due to these advantages, the US can be used 

as a good replacement for fluoroscopy for intraoperative imaging. The CT and MRI scans 

can be used as preoperative imaging with the US used as an intraoperative imaging method. 

Using US based CAOS systems comes with two potential areas of improvement. One area 

is registering the intraoperative US image to the preoperative CT/MRI image and the 

second area is the bone segmentation that needs to be done on the US image in order to 

register it to the preoperative image. The goal of this work is to improve the bone 
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segmentation accuracy by investigating the effect of using simulated US data on an 

automatic segmentation process. 

 

1.5 Literature Review of Previous Methods for Bone Surface Segmentations from US 

Prior work on segmenting bone surfaces from US data has used both image 

processing methods and deep learning methods. Kowal et al. used different types of 

filtering and thresholding including depth-weighted thresholding in combination with 

contour filters to attempt to segment the bone [6]. They found a difference of an average 

of 0.42 mm of distance error with a 0.19 mm standard deviation between their 

automatically segmented contours versus reference contour points [6]. Their segmentation 

also did not require any manual intervention but as it depended on image morphology, the 

contrast conditions of the US scans can affect the accuracy of the segmentation [6]. Daanen 

et al. also evaluated an automated image processing technique in order to segment bone 

surfaces. They developed “fuzzy intensity images” based on the property that the pixel 

intensity is highest at the bone surface and used that to develop gradient images [20]. These 

gradient images were then further processed using wavelet transformations and 

thresholding to create a segmentation [20]. They found that the mean error for the 

automated segmentation was less than 10 pixels when compared to the manual 

segmentations [20]. However, their method also relies on image processing methods which 

means that the amount of noise in the US image can affect the segmentation which also 

needs to be taken into account [20]. A 2016 method of bone structure segmentation of US 

data developed by Jia et al. used “acoustic characteristics of the intensity profile during the 

US scan to eliminate the soft tissue interference” that occurs in an US image [21]. 
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Additionally, they combined local phase features to determine the areas of the image which 

have high likelihood of being bone structures. These results were compared to manual 

segmentations using the average Euclidean distance and they found a very low (0.2 mm) 

error between the automatic and manual segmentations [21]. However, all of these image 

processing methods need to incorporate the noise in the US data while retaining the full 

bone surface profile.  

Due to this limitation, neural networks have shown great promise in automatic 

segmentations [8, 9, 22, 23]. They do not require as much image processing on the US data 

and rely on a more dataset-based approach for training the neural networks. Villa et al. took 

into account inter- and intra-user variability while developing a new algorithm based on 

fully convolutional neural networks (FCN) and compared it to the confidence in phase 

symmetry (CPS) method [22]. They did this by removing images from the training dataset 

which had a higher inter-user variability than a confidence threshold value. The FCN based 

algorithm outperformed the CPS method on all their validation methods except the recall 

calculation. The average RMSE value for the FCN based method was 1.3mm compared to 

a 5mm RMSE for CPS methods [22]. Convolutional neural networks (CNN) that 

incorporate fusion of feature maps and multi-modal images have also been explored by 

Alsinan et al [23]. Due to the use of real US data for the CNN, variations in the data due to 

the image artifacts can interfere with a proper bone surface segmentation. Therefore, 

Alsinan et al. enhanced the bone surface using local phase image feature extraction and 

used the local phase filtered images and B-mode US images to train a CNN with different 

fusion layers [23]. The study found that the average Euclidean distance for their late fusion 

design was 0.1482 mm while for the U-net using normal B-mode US images was 2.296 
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mm [23]. Wang et al. proposed using a pre-enhancing network along with a modified U-

net to segment bone surfaces from real US data. The pre-enhancement network, which uses 

the B-mode US image and three filtered image features, serves to make the bone surface 

more dominant in the real US data so that modified U-net can perform the automatic 

segmentation more effectively [8]. The modified U-net and pre-enhanced network had an 

average Euclidean distance of 0.246 compared to an average Euclidean distance of 0.435 

of using only the U-net [8]. Salehi et al. proposed another bone surface detection method 

that uses a CNN in order to make registration to pre-operative data more accurate [9]. The 

CNN used was based off the U-net and was used to generate fuzzy probability maps of the 

bone surface locations in the US image [9]. Speed of sound calibration was then used to 

make sure that bone surfaces were not sensitive to the type of tissue present in the US 

images [9]. The results of the proposed neural network were compared to another feature-

based network and the random forest segmentation method [9]. The average dice 

coefficient was 0.87 for the new neural network compared to 0.44 and 0.79 for the feature-

based and random forest methods, respectively [9]. El-Hariri et al. evaluated different 

image processing methods and the U-net for segmenting hip bone from 439 images of US 

data [24]. They investigated the shadow peak and confidence-weighted structured phase 

symmetry methods along with a normal U-net network and a multi-channeled U-net 

network [24]. The results showed that both types of U-net outperformed the image 

processing methods and had average dice coefficients of 0.86 and 0.92 both datasets tested 

[24].  Another study investigated the use of the U-net for automatic segmentation of the 

spinous process from US data [25]. When results were compared to the random forest 
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algorithm for segmentation, the U-net outperformed the random forest on the test dataset 

with an F-score of 0.90 vs 0.83 for random forest [25]. 

Previous 

Studies 

Methods Results 

Kowal et al. [6] Combination of filters and depth-

weighted thresholding 

Average of 0.42 mm 

distance error between 

automatically segmented 

contours vs. reference 

contour points 

Daanen et al. 

[20] 

Development of “fuzzy intensity 

images” and using gradients and 

wavelet transformations 

Mean error of automatic 

segmentations was less 

than 10 pixels when 

compared to manual 

segmentations  

Jia et al. [21] Used acoustic characteristics of 

intensity profile during US scans and 

local phase features 

Automatic segmentations 

when compared to manual 

segmentations had 0.2 mm 

average Euclidean distance 

Villa et al. [22] Accounted inter- and intra-user 

variability when using FCN for 

segmentations 

Algorithm outperformed 

CPS method and average 

RMSE values for FCN 

based method was 1.3 mm 

Alsinan et al. 

[23] 

Used a CNN that incorporated fusion 

of feature maps and multi-modal 

images 

Average Euclidean 

distance for late fusion 

design was 0.1482 mm  

Wang et al. [8] Developed a pre-enhancement 

network and then used a modified U-

net to segment bone surfaces 

Modified U-net and pre-

enhanced network had an 

average Euclidean distance 

of 0.246 

Salehi et al. [9] Incorporated speed of sound 

calibration after using U-net to 

generate fuzzy probability maps 

Average dice coefficient 

was 0.87 for their method  

El-Hariri et al. 

[24] 

Investigated shadow peak and 

confidence-weighted structured 

phase symmetry methods along with 

investigating U-net and multi-

channeled U-net 

U-net outperformed image 

processing methods and 

had average dice 

coefficients of 0.86 and 

0.92 on different datasets 

Baka et al. [25] Used the U-net and compared to 

random forest algorithm for 

segmentations 

U-net outperformed the 

random forest algorithm 

and had a F-score of 0.90 

vs. 0.83 for random forest 
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Table 1.1 A summary of the literature review of methods of segmentation bone surfaces 

from US data. 

 

The results of these studies demonstrate that although methods based on deep 

learning have shown successful results, they are dependent on the amount of training data 

used. This is specifically an issue when trying to develop methods for processing US data 

due to the data collection method being manual and user-dependent, along with the 

dependence on the machine settings and patient characteristics which can affect the 

appearance of the bone surface in the US data. Methods of improving the success of the 

deep learning algorithms can be using multi-feature images as input [8, 23], or by collecting 

a large amount of data. However, collecting large amounts of real in vivo bone surface US 

data is not feasible which is why this thesis investigates the use of using large-scale 

simulated bone surface US data to improve the deep learning methods. 

 

1.6 Thesis Objective 

In order to investigate the problem of limited data for training neural networks for 

orthopedic surgery use, this works looks into evaluating how training a network on large 

scale simulated data can improve the accuracy and robustness of bone segmentation from 

real US data. The objective of the study is to demonstrate that by incorporating simulated 

bone surface US data in the trained work, the success of traditional deep learning methods 

increases compared to using limited real in vivo US data. This method will use a deep 

learning-based approach to automatically segment the US data which removes the need of 
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using image processing methods to get rid of the noise and other imaging artifacts. The 

proposed work will also investigate the effectiveness of training a deep learning network 

with a transfer learning method where the network will be pre-trained using simulated US 

data and then the deeper layers will be optimized using real in vivo US data. The overall 

goal of the study is to show that using large scale simulated US data in conjunction with 

limited real US data will improve the performance of the network for automatically 

segmenting bone surface images from in vivo US data.  Our second goal is to show how 

the use of transfer learning affects the accuracy of the automatic bone surface 

segmentations when compared to the traditional deep learning approach from real B-mode 

US images. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

14 

1.8 References 

1. The Burden of Musculoskeletal Diseases in the United States (BMUS). (n.d.). 

Retrieved from https://www.boneandjointburden.org/fourth-edition/usbji 

 

2. Sugano, N. (2003). Computer-assisted orthopedic surgery. In Journal of 

Orthopaedic Science. https://doi.org/10.1007/s10776-002-0623-6 

 

2 Zheng, G., & Nolte, L. P. (2015). Computer-Assisted Orthopedic Surgery: Current 

State and Future Perspective. Frontiers in Surgery. 

https://doi.org/10.3389/fsurg.2015.00066 

 

3 Hacihaliloglu, I. (2017). Ultrasound imaging and segmentation of bone surfaces: A 

review. TECHNOLOGY, 05(02), 74–80. 

https://doi.org/10.1142/s2339547817300049 

 

4 Schumann S. (2016) State of the Art of Ultrasound-Based Registration in Computer 

Assisted Orthopedic Interventions. In: Zheng G., Li S. (eds) Computational 

Radiology for Orthopaedic Interventions. Lecture Notes in Computational Vision 

and Biomechanics, vol 23. Springer, Cham 

 

5 Kowal, J., Amstutz, C., Langlotz, F., Talib, H., & Ballester, M. G. (2007). 

Automated bone contour detection in ultrasound B-mode images for minimally 

invasive registration in computer-assisted surgery - An in vitro evaluation. 

International Journal of Medical Robotics and Computer Assisted Surgery, 3. 

https://doi.org/10.1002/rcs.160 

 

6 Hacihaliloglu, I., Abugharbieh, R., Hodgson, A. J., & Rohling, R. N. (2009). Bone 

Surface Localization in Ultrasound Using Image Phase-Based Features. Ultrasound 

in Medicine and Biology. https://doi.org/10.1016/j.ultrasmedbio.2009.04.015 

 

7 Wang, P., Patel, V. M., & Hacihaliloglu, I. (2018). Simultaneous Segmentation and 

Classification of Bone Surfaces from Ultrasound Using a Multi-feature Guided 

CNN. Lecture Notes in Computer Science (Including Subseries Lecture Notes in 

Artificial Intelligence and Lecture Notes in Bioinformatics). 

https://doi.org/10.1007/978-3-030-00937-3_16 

 

8 Salehi, M., Prevost, R., Moctezuma, J. L., Navab, N., & Wein, W. (2017). Precise 

ultrasound bone registration with learning-based segmentation and speed of sound 

calibration. Lecture Notes in Computer Science (Including Subseries Lecture Notes 

in Artificial Intelligence and Lecture Notes in Bioinformatics). 

https://doi.org/10.1007/978-3-319-66185-8_77 

 

9 Raghu M, Zhang C, Kleinberg J, Bengio S. Transfusion: Understanding transfer 

learning for medical imaging. InAdvances in Neural Information Processing 

Systems 2019 (pp. 3342-3352).  

https://www.boneandjointburden.org/fourth-edition/usbji
https://doi.org/10.1007/s10776-002-0623-6
https://doi.org/10.3389/fsurg.2015.00066
https://doi.org/10.1142/s2339547817300049
https://doi.org/10.1002/rcs.160
https://doi.org/10.1016/j.ultrasmedbio.2009.04.015
https://doi.org/10.1007/978-3-030-00937-3_16
https://doi.org/10.1007/978-3-319-66185-8_77


 

 

15 

 

10 Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J., & Greenspan, H. 

(2018). GAN-based synthetic medical image augmentation for increased CNN 

performance in liver lesion classification. Neurocomputing. 

https://doi.org/10.1016/j.neucom.2018.09.013 

 

11 Zhao, A., Balakrishnan, G., Durand, F., Guttag, J. v., & Dalca, A. v. (2019). Data 

augmentation using learned transformations for one-shot medical image 

segmentation. Proceedings of the IEEE Computer Society Conference on Computer 

Vision and Pattern Recognition. https://doi.org/10.1109/CVPR.2019.00874 

 

12 Liu, S., Wang, Y., Yang, X., Lei, B., Liu, L., Li, S. X., Ni, D., & Wang, T. (2019). 

Deep Learning in Medical Ultrasound Analysis: A Review. In Engineering. 

https://doi.org/10.1016/j.eng.2018.11.020 

 

13 Pandey, P. (2018). Real-time ultrasound bone segmentation and robust US-CT 

registration for surgical navigation of pelvic fractures (Issue December). 

https://doi.org/10.14288/1.0375839 

 

14 Suhm, N., Jacob, A. L., Nolte, L. P., Regazzoni, P., & Messmer, P. (2000). Surgical 

navigation based on fluoroscopy - Clinical application for computer-assisted distal 

locking of intramedullary implants. Computer Aided Surgery. 

https://doi.org/10.1002/igs.1001 

 

15 Hacihaliloglu, I. (2010). Towards A Novel Minimally Invasive 3D Ultrasound 

Imaging Based Computer Assisted Orthopaedic Surgery System for Bone Fracture 

Reduction (Issue April). 

 

16 Gausden, E. B., Christ, A. B., Zeldin, R., Lane, J. M., & McCarthy, M. M. (2017). 

Tracking Cumulative Radiation Exposure in Orthopaedic Surgeons and Residents. 

Journal of Bone and Joint Surgery - American Volume. 

https://doi.org/10.2106/JBJS.16.01557 

 

17 C.E. Blane, J.S. Desmond, M.A. Helvie, B.J. Zink, J.E. Bailey, L.D. Yang, N.R. 

Dunnick, “Academic radiology and the emergency department: does it need 

changing?”, Academic Radiology, vol.14, no.5 pp. 625-630, 2007. 

 

18 Klibanov, A. L., & Hossack, J. A. (2015). Ultrasound in radiology: From anatomic, 

functional, molecular imaging to drug delivery and image-guided therapy. In 

Investigative Radiology. https://doi.org/10.1097/RLI.0000000000000188 

 

19 Daanen, V., Tonetti, J., & Troccaz, J. (2004). A fully automated method for the 

delineation of osseous interface in ultrasound images. Lecture Notes in Computer 

Science, 549–557. https://doi.org/10.1007/978-3-540-30135-6_67 

 

https://doi.org/10.1016/j.neucom.2018.09.013
https://doi.org/10.1109/CVPR.2019.00874
https://doi.org/10.1016/j.eng.2018.11.020
https://doi.org/10.14288/1.0375839
https://doi.org/10.1002/igs.1001
https://doi.org/10.2106/JBJS.16.01557
https://doi.org/10.1097/RLI.0000000000000188
https://doi.org/10.1007/978-3-540-30135-6_67


 

 

16 

20 Jia, R., Mellon, S. J., Hansjee, S., Monk, A. P., Murray, D. W., & Noble, J. A. 

(2016). Automatic bone segmentation in ultrasound images using local phase 

features and dynamic programming. Proceedings - International Symposium on 

Biomedical Imaging. https://doi.org/10.1109/ISBI.2016.7493435 

 

21 Villa, M., Dardenne, G., Nasan, M., Letissier, H., Hamitouche, C., & Stindel, E. 

(2018). FCN-based approach for the automatic segmentation of bone surfaces in 

ultrasound images. International Journal of Computer Assisted Radiology and 

Surgery, 13(11), 1707–1716. https://doi.org/10.1007/s11548-018-1856-x 

 

22 Alsinan, A. Z., Patel, V. M., & Hacihaliloglu, I. (2019). Automatic segmentation 

of bone surfaces from ultrasound using a filter-layer-guided CNN. International 

Journal of Computer Assisted Radiology and Surgery, 14(5), 775–783. 

https://doi.org/10.1007/s11548-019-01934-0 

 

23 El-Hariri, H., Mulpuri, K., Hodgson, A., & Garbi, R. (2019). Comparative 

Evaluation of Hand-Engineered and Deep-Learned Features for Neonatal Hip Bone 

Segmentation in Ultrasound. Lecture Notes in Computer Science (Including 

Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 

Bioinformatics). https://doi.org/10.1007/978-3-030-32245-8_2 

 

24 Baka, N., Leenstra, S., & van Walsum, T. (2017). Ultrasound Aided Vertebral 

Level Localization for Lumbar Surgery. IEEE Transactions on Medical Imaging. 

https://doi.org/10.1109/TMI.2017.2738612 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1109/ISBI.2016.7493435
https://doi.org/10.1007/s11548-018-1856-x
https://doi.org/10.1007/s11548-019-01934-0
https://doi.org/10.1007/978-3-030-32245-8_2


 

 

17 

CHAPTER 2 

 

METHODS 

 

2.1 Overview 

 

The main aim of this thesis is to show how using large-scale simulated US data can 

improve the performance of bone segmentation. As stated in Chapter 1, this work explores 

the idea of using simulated US data in order to improve the accuracy and robustness of an 

already developed neural network called the U-net [1]. One of the ways that simulated US 

data will be investigated to improve traditional deep learning methods is by evaluating how 

well a transfer learning method works on the network architecture and if it improves the 

segmentation output when compared to using limited real US data. The second way that 

simulated US data will be investigated is by evaluating how well a network trained with a 

dataset comprised of both large-scale simulated US data and limited real US data performs 

automatic bone surface segmentation on real US data. 

 

2.2 Data Acquisition 

2.2.1 Overview 

In order to determine whether transfer learning has an impact on the outcome of a 

neural network, different networks were trained with two types of datasets. One dataset 

consisted entirely of real B-mode US images obtained from patients while the second 

dataset consisted of simulated US data that was obtained via 3D Slicer and the Public 

software Library for Ultrasound (PLUS) toolkit [2, 3]. 

 

2.2.2 In vivo B-mode US Images and Manual Segmentations 
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380 in vivo US scans of radius and femur bone surfaces were collected from 5 

different subjects after obtaining approval from the Rutgers University Institutional 

Review Board (IRB). The US scans were then manually segmented by an expert. In order 

to keep training data separate from the testing data, Subject 5’s US scans were used for the 

testing data while Subjects 1-4’s US scans were used as a part of the training dataset. 

However, in order to check the cross validation of the mixed network, different subjects 

needed to be used for training and testing data which is described in Section 2.6. To have 

enough images for training and testing the network, data augmentation was used on all the 

US images and their corresponding manual segmentations from Subjects 1-5. The data 

augmentation steps consisted of rotation ±10 degrees and translation in the x and y 

directions ±5 pixels. These data augmentation steps resulted in a total of 2,000 images 

across all 5 subjects. 1,600 images were from selected from 4 of the subjects and 400 

images from remaining subject were used for the training and testing datasets, respectively. 

Therefore, the network training was split into an 80:20 percent ratio of training and testing 

data.  

 

2.2.3 Simulated US Images and Manual Segmentations 

3D Slicer, SlicerIGT and PLUS were used in order to obtain simulated US images 

and their segmentations [4]. STL files of femur and radius bones were loaded in the US 

simulator in 3D Slicer in order to obtain the simulated US scans [5]. 

PLUS is a toolkit platform that allows for communication with 3D Slicer in real 

time by obtaining the US image and sending it as configuration files to 3D Slicer [3].  The 

configuration files in PLUS contain different acoustic material properties and surface 
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meshes so that positions of the objects can be tracked during the US simulation [3]. In order 

to have the correct acoustic properties required for the US, the attenuation and reflection 

coefficients and speed of sound data in addition to other parameters were also sent over in 

the configuration file.  The US transducer can also be selected and in this study, a linear 

US transducer, Ultrasonix L9-4/38 was used for the simulation. The machine settings of 

the transducer were kept within the same ranges as the transducer used for real image 

acquisition. 

3D Slicer was then used to visualize the simulated US images and to perform the 

manual segmentations (Fig. 2.1). The images from the PLUS platform were sent over to 

Slicer in real-time in order to track the positions of the transducer relative to the bone 

surface in the bone model STL file. The relative positions were obtained using the 

Transforms Module in Slicer which allowed the user to control the transducer and move it 

along the bone surface to obtain simulated US images in real-time. As the transducer was 

moved along the bone surface, a sequence of simulated US images with their relative 

spatial positions were generated as 3D volumetric US images. These sequences were able 

to be saved using the Sequence Browser in 3D Slicer. After obtaining this sequence, the 

simulated US could then be segmented using the Single Slice Segmentation module and 

the Segment Editor module in Slicer. The Segment Editor module allowed the user to paint 

over the bone surface, which effectively created a manual segmentation of the bone surface 

[6]. The corresponding simulated US image and the segmentation were then able to be 

exported as PNG files.  
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3D Slicer and PLUS were used to obtain 355 US images of the femur and radius 

bone. 167 of the images were from the femur STL file and 188 of the images were from 

the radius STL file. The femur and radius images from Slicer along with real US images 

are shown in Fig. 2.2. Out of the total 355 images, 142 images and their manual 

segmentations were separated in the testing dataset. Data augmentation was also performed 

on these scans in order to create a total of 10,000 simulated US images and segmentations. 

The data augmentation steps consisted of the same rotation ±10 degrees and translation in 

the x and y directions ±5 pixels as the real US dataset. The data was split according to the 

same 80:20 percent ratio of training and testing data that was used for the real US data 

a) b) 

Fig. 2.1 The image on the left shows the US transducer in 3D Slicer along with the femur 

model and the gel block which allows for the simulation of the US. The image on the 

right shows the corresponding Simulated US image that is generated in 3D Slicer using 

PLUS. 
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acquisition. Therefore, 8,000 simulated US images were used for training and validation 

while 2,000 of the simulated US images were used for testing. 

 

 

 

a) b) 

c) 

 

d) 

Fig. 2.2 The images above show the simulated US images generated through 3D Slicer 

and Plus and the B-mode US taken in vivo. The image shows a) Simulated Femur US, 

b) Simulated Radius US, c) Real Femur B-mode US, d) Real Radius B-mode US. The 

Simulated US images lack the artifacts and noise that is present in the real US images. 
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2.3 U-net for bone US data segmentation 

The U-net neural network was developed for the purpose of making it easier and 

more efficient to segment biomedical images [1]. The U-net is a type of modified fully 

convolutional neural network (FCN) that was developed for the segmentation of 

biomedical images by predicting each pixel’s class [1]. The U-net was proposed in order 

to solve the problem of the requirement of large datasets for training and large networks 

[1].  

Compared to the fully convolutional neural network, the U-net has modified 

network architecture so that the network is symmetric and consists of 3 separate areas: the 

downsampling (contracting) path, the bottleneck and 

the upsampling (expansive) path (Fig. 2.3) [7]. The purpose of the 

downsampling path is to get the context of the input image that is needed to start the 

segmentation. Therefore, the downsampling path helps to obtain what information is 

present in the image. The bottleneck is built from 2 convolutional layers and then the 

upsampling path works to localize the segmentation with the contextual information [7]. 

The network architecture shows that in the contracting path, each block takes an input, then 

applies two 3x3 convolution layers and a 2x2 max pooling operation [8]. Convolutional 

layers use filters to detect patterns in the image and output a feature map. The spatial 

pooling operations reduce the dimensions of the feature maps while retaining the data but 

minimizing the number of parameters in the network. The contraction path of the neural 

network is the basis of any fully convolutional neural network. However, the difference 

with the U-net is the expansive path. The blocks in the expansive path take the input, apply 

two 3x3 convolution layers and then apply a 2x2 upsampling layer which increases the 
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dimensions of the input [8]. The symmetry in the U-net allows for the features in the images 

to be learned properly so that the same features can be used to reconstruct the image and 

perform a segmentation [8]. The loss function in the U-net is also different compared to 

other fully convolutional neural networks since it uses a pixel-based loss weight function. 

Higher weights are assigned at the border of the segmented surfaces and the loss function 

works to ensure that the pixels are properly classified into either the segmentation or the 

background [8]. 

 

Fig. 2.3 The U-net architecture is shown above. The network consists of a contracting 

path and expansive path which work together to obtain contextual information from the 

image and then localize it to perform a segmentation [1,7] 
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The data that was used for training was separated into different datastores: Real US 

images, Real US manual segmentations, Simulated US images, and Simulated US manual 

segmentations. The testing data was also separated into datastores according to the type of 

US scan – simulated or real US data. As the manual segmentations were binary images, 

the label IDs for the images were 1 and 0 where 1 denoted the bone surface values and 0 

was the background which resulted in only 2 classes for the network. The size of the input 

images was modified to be 256x256 and the encoder depth was 4. Initially, in order to 

determine how the training parameters work in MATLAB, different networks were trained 

using different parameters on only the Real US data. The parameters that were varied for 

the network included the encoder depth, minibatch size, learning rate, and the number of 

epochs. The L2 regularization was changed for one network but all other networks kept the 

default value of 0.0001. The parameters were chosen to be varied depending on how well 

the trained network performed on the validation data set.  

 

2.4 Transfer Learning 

Transfer learning is a part of machine learning algorithms where an algorithm 

learns information via a “source task” and applies to another related “target task” [9]. Using 

this method, a neural network would not need to be trained from scratch and can instead 

use the features that it learned from the source task and apply it to the target task [10]. For 

the purposes of this research, transfer learning can help optimize a network with minimal 

real US data available. The neural network can be trained on large scale simulated US data 

which will allow it to learn general US features. Then, the deeper layers of the network 
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will be retrained using only limited real US data which will allow the network to segment 

real US bone surfaces.  

In order to investigate the use of using simulated US data for transfer learning 

methods, a network trained on large-scale simulated US data was optimized by retraining 

the final convolutional layer, the pixel classification layer, and softmax layers with limited 

real US data. The deeper layers allow for learning of the features of the images and the 

final convolutional layer is one of the last layers that is trained therefore, it was chosen to 

be retrained. 

 

2.5 Validation Metrics  

Quantitative evaluation was performed by calculating the Sorensen Dice coefficient 

and Average Euclidean Distance. 

The Sorensen Dice coefficient was automatically calculated in MATLAB using a 

built-in function [11]. The equation used in the calculation for this coefficient is shown in 

Equation 1. The Dice Coefficient calculation takes into account the true positives, false 

positives, and false negatives while comparing the automatic segmentations to the manual 

segmentations. The true positives account for the amount of overlap between the two types 

of segmentations while the false positives and false negatives work to lower the dice 

coefficient value for mistakes in the automatic segmentations. 

 

𝑑𝑖𝑐𝑒(𝐴, 𝐵) =
2×𝑇𝑃

2×𝑇𝑃+𝐹𝑃+𝐹𝑁
                                                          (Equation 1) 

Equation used in the calculation of the Sorensen Dice Coefficient. A and B in this 

equation represent the manual segmentation and the automatic segmentation.  [11]. 
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The Euclidean distance error is the distance of the line segment separating a point 

on the manual segmentation from the closest point on the automatic segmentation. The 

Euclidean distance only gives the information of how far apart the automatic and manual 

segmentations are however, in order to have a good metric, it needs to incorporate if the 

entire segmentation is properly covered as well. Therefore, the Euclidean distance error 

was modified by taking into account the length of the segmentations. The Euclidean 

distance, which is reported in millimeters (mm), was divided by the ratio of the overlapping 

length of the pixels in both the manual and automatic segmentation to the sum of the length 

of the manual and automatic segmentations. In this thesis, the metric is referred to as the 

Average Euclidean Distance (AED) and it is reported in mm. A higher AED means that 

the manual and automatic segmentations are far apart in distance or are not the same 

coverage and a lower AED means that both the segmentations are overlapping.  Both the 

Dice and AED were used to evaluate how well the automatic segmentation matches the 

manual segmentation. An evaluation of the validation metrics is shown in Chapter 3.8 

 

2.6 K-fold Cross Validation 

In order to evaluate if the network was performing well and not over-fitting the 

data, a method of validation called the K-fold cross validation was used on the mixed 

network developed with Simulated and Real US Data. Cross validation allows for the 

resampling of the data in order to evaluate a model [12]. K-fold cross validation is a method 

of cross validation where different data in the original dataset is allowed to appear in the 

testing and training dataset [12]. The method depicted in Fig. 2.5 requires that a certain 

number of iterations (k) are run on the original dataset where randomly, certain data are 
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used for validation and the remaining for training. The average of the validation results for 

the different iterations is taken to get an overall metric for how well the network is trained 

[12]. 

 

 For the purpose of this thesis, a 3-fold cross validation was performed on the mixed 

network that was trained using both simulated and real US data. Since all of the simulated 

US data was used as part of training (10,000 images), the real US data was varied. All of 

the iterations used 1600 real US images for training and 400 real US images for testing. 

For the first iteration, real US data from Subjects 1-4 was used for training and testing was 

done on Subject 5’s data which was composed of 30 original US scans which were 

augmented to 400 images. The second iteration used Subjects 1,2,3 and 5 for training and 

Subject 4 for testing. Subject 4 originally had 35 real US scans.  The last iteration used 

 

Fig. 2.4 The process of K-fold Cross Validation is depicted in the image above. The 

different number of iterations (denoted as k) are run on the original dataset and the testing 

data is randomized per iteration. The average of the results of validation process is then 

taken to determine the performance of the network [13].  
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Subjects 1,2,4 and 5 for training and Subject 3 for testing. Originally, Subject 3 had 70 

original real US scans that were then augmented. The 3-fold cross validation performed on 

the mixed network will demonstrate how well the network was trained and if it is able to 

segment different bone surface data that the network has not seen in the training dataset.   

 

2.7 Training Networks and Validation Process  

2.7.1 Training on Real US Data and Testing on Real US Data 

After the Real US data network was trained on the training dataset, validation was 

performed on the same 1,600 images from Subjects 1-4 by checking the Sorensen Dice 

coefficient between the automatic segmentations and the manual segmentations. In order 

to evaluate how the network performed on the testing data, the Sorensen Dice coefficient 

and Distance index were calculated on the automatic segmentation of the 400 testing 

images and their corresponding manual segmentations.  

 

2.7.2 Training on Simulated US Data and Testing on Simulated US Data 

After the parameter optimization was performed on the network trained on Real US 

data, the same parameters were used to train a new U-net neural network on the simulated 

US data. The neural network was also validated on the 8,000 training images of the 

Simulated US data and their corresponding segmentations and their Dice and Distance 

index were calculated. The network was then evaluated against the 2,000 testing images of 

the Simulated US data and the Distance index and Sorensen Dice Coefficient were 

calculated.  
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2.7.3 Training on Simulated US Data and Testing on Real US Data 

The network that was trained on the simulated US data was then also tested on the 

Real US images. 400 of the testing images from Subject 5 were used to perform the 

evaluation. The Distance index and Sorensen Dice Coefficients were calculated in order to 

determine how well a network that is trained on Simulated US data perform on the real US 

data. 

 

2.7.4 Training on Transfer Learning Network and Testing on Real US Data 

Another network that was trained was the transfer learning network which used a 

base of the network trained on simulated US data. Using the network that was trained on 

the Simulated US data, the final layers of the network, such as the final convolutional layer, 

were retrained with 260 images from the Real US training dataset (specifically, from 

Subject 1). The network was then tested on the 400 testing images of the Real US dataset 

which were from Subject 5. The Dice coefficient and Distance index values were calculated 

for that dataset as well in order to compare the automatic segmentations to their respective 

manual segmentations.  

 

2.7.5 Training on Mixed Network and Testing on Real US Data 

 In order to evaluate how well the large-scale simulated US data and limited real US 

data worked to segment the real US data, a network was trained from scratch using both 

types of data. All 10,000 images from the simulated US data and 80% of the real US data 

(1,600) were used to train a neural network using similar parameters as the previous 

networks. This mixed network was validated against the 400 images (20%) of real US data.  
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CHAPTER 3 

RESULTS AND DISCUSSION 

3.1 Overview 

In this chapter, the results of the evaluation of the different networks will be shown 

both quantitively and qualitatively. The networks’ evaluation was performed by using the 

validation metrics discussed in Chapter 2.5. The different validation metrics will be 

compared to determine the effect that transfer learning and mixed network had on the 

performance of a neural network compared to networks trained solely on one type of US 

data. The results will help determine what method of network optimization works best to 

automatically segment the bone surfaces in US data and whether simulated data can be 

used for the segmentation of real US bone surface data. Additionally, this section will 

answer the questions discussed at the end of Chapter 1.1:  

1) Can simulated US data be used to train a neural network for accurate and robust 

segmentation of real in vivo US data? 

2) Can simulated and real in vivo US data be used together to train a neural 

network for accurate and robust segmentation of real in vivo US data? 

 

3.2 Evaluation of Real US Data Based Network 

The first step to the development of a neural network for segmenting US bone 

surfaces involved experimenting with the different parameters that are used in the 

optimization of the network. This step involved training different networks using real US 

data to determine what the optimal parameters for developing future networks would be. 

Table 3.1 shows a few examples of the different networks that were trained on real US data 
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and their validation and testing results. From the network optimization, 

trainedNet_1600T11 was selected as the optimized network because of the high dice 

coefficient on testing data and was then chosen to be used for comparison to the Simulated 

US network, transfer learning network and the mixed data network.  

 

 

The quantitative evaluation of the network was done by determining the best and 

worst dice coefficient and AED values. The corresponding automatic segmentation images 

were there overlaid on the original US image and the corresponding manual segmentation. 

Fig. 3.1 shows the images with the best and worst Dice coefficients and AED values.  

Network Name Parameters Varied Dice Coefficient on 
Training Data 

Dice Coefficient on 
Testing Data 

trainedNet_1600T6 Epochs = 50 
Learn Rate = 3e-4 

0.78883 0.6522 

trainedNet_1600T8 Epochs = 80 
Learn Rate = 3e-4 

0.8659 0.657 

trainedNet_1600T10 Epochs = 30 
Learn Rate = 6e-4 

0.7334 0.6168 

trainedNet_1600T11 Epochs = 100 
Learn Rate = 3e-4 

0.7643 0.7067 

 

Table 3.1 shows the different networks that were trained on real US data. In order to 

optimize the network, the learning rate and number of epochs were varied during 

training. TrainedNet_1600T11 had the best dice coefficient on the testing data and was 

chosen for comparison against the other networks. 
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 The quantitative images in Fig. 3.1 show that only using limited real US data to 

train a network does not give optimal segmentations. As seen by the images with the 

 

Dice Coefficient = 0.8315 

 

Dice Coefficient = 0.4790 

 

AED = 0.0130 mm 

 

AED = 8.2942 mm  

Fig. 3.1 The top row shows the segmentations on real US Data with the maximum 

(left) and minimum (right) dice coefficient value. The bottom row shows the minimum 

(left) and maximum (right) AED values. The green line is the automatic segmentation 

generated by the network and the red line is the manual segmentation. 
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minimum values of the dice coefficient and maximum AED values, the optimized 

algorithm does not segment the bone surface accurately. In Fig. 3.1, the automatic 

segmentation in the minimum dice coefficient image missed a large portion of the bone 

surface towards the bottom of the image. Additionally, in Fig. 3.1, the automatic 

segmentation in the maximum AED image chose part of the soft tissue interface as the 

bone surface. These mistakes in segmentations would result in an improper segmentation 

result which can be detrimental to the use of the scans in surgery. 

 

3.3 Evaluation of the Simulated US Data Based Network 

3.3.1 Simulated US Data Based Network Tested on Simulated US Data 

After a network was trained on real US data, simulated US data was used to train a 

network keeping similar parameters as the optimized real US data-based network. This 

optimized network trained on simulated US data was then tested on the 20% of the testing 

dataset of the simulated US data. Fig. 3.2 shows the images for the best and worst dice 

coefficient and AED segmentations from the simulated data. 

Overall, the network that was trained on simulated US data and tested on simulated 

US data performed very well. In Fig. 3.2, even the automatic segmentation for the image 

with the minimum dice coefficient value was good and it could be used for surgical 

purposes. However, the result of a dice coefficient of 0.5865 does not sufficiently 

summarize how well the actual automatic segmentation was because according to the 

image, the segmentation lines up very well with the bone surface and the manual 

segmentation.  



 

 

36 

 

  

 

 

Dice Coefficient = 0.9121 

 

Dice Coefficient = 0.5865 

 

AED = 0.0330 mm  

 

AED = 0.3192 mm 

Fig. 3.2 The top row shows the segmentations on simulated US data with the maximum 

(left) and minimum (right) dice coefficient value. The bottom row shows the minimum 

(left) and maximum (right) AED values. The green line is the automatic segmentation 

generated by the network and the red line is the manual segmentation. 
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3.3.2 Simulated US Data Based Network Tested on Real US Data 

The same optimized network trained on simulated US data was tested on the real 

US data in order to evaluate how well a network trained solely on large-scale simulated 

performs on limited real US data. The qualitative results of the dice coefficient and AED 

are summarized in Fig. 3.3.   

 

 

Dice Coefficient = 0.4265 

 

Dice Coefficient = 0.0392 

 

AED =   5.6022 mm  

 

AED =    66.3558 mm 
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Overall, these three networks (network trained on real US data and tested on real 

data, network trained on simulated US data and tested on both simulated data and real data) 

show how well the U-net performs on segmenting bone surfaces in US data. A network 

trained and tested on its own type of dataset performs much better than a network that is 

trained on simulated US data and tested on real US data (as seen in Fig. 3.3). The 

discrepancy is understood because the simulated US images do not have the artifacts that 

are present in the real US images causing the algorithm to fail at segmenting the specific 

bone surface. The failure in segmenting the actual bone surface results in very low dice 

and high AED values. 

The next two sections will show the results of a network trained via transfer 

learning and network trained with both types of data. 

 

3.4 Evaluation of the Transfer Learning Network  

 The transfer learning network is a network that has the base of the simulated US 

network with the last layers of the network retrained on the real US data. Therefore, the 

network has been taught how to segment both the simulated US data and limited real US 

Fig. 3.3 The top row of the figure shows the segmentations on real US data with the 

maximum (left) and minimum (right) dice coefficient value. The bottom images show 

the segmentations with the minimum (left) and maximum (right) AED values.  The green 

line is the automatic segmentation generated by the network and the red line is the 

manual segmentation. This network was trained on simulated US data and therefore, the 

values are much lower compared to the other networks. 
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data. However, since the simulated data is large-scale and consists of 8000 scans the results 

on the real US network were not optimal as seen by the images in Fig. 3.4.  

 

Dice Coefficient = 0.7806 

 

Dice Coefficient = 0.2750 

 

AED = 0.0091 mm   

 

AED = 14.7680 mm 

Fig. 3.4 The images above show the segmentations generated by the transfer learning 

network on real US data. The maximum (left) and minimum (right) dice coefficient value 

images are show in the top row and the minimum (left) and maximum (right) AED values 

are shown in the bottom row. The green line is the automatic segmentation generated by 

the network and the red line is the manual segmentation. The images show that the 
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 The purpose of using transfer learning was to evaluate how well using large-scale 

simulated US data and limited real US data can work together using the deeper layers of 

the network. The images shown in Fig. 3.4 were generated by using the same network that 

was trained completely on the large-scale simulated US data and then retraining was done 

on the final convolutional layer and the pixel classification layer using the real US data. 

However, the resulting automatic segmentations were not exact since the network missed 

some of the bone surfaces and segmented other surfaces as well as seen in Fig. 3.4. 

 

3.5 Evaluation of the Mixed Network  

 The mixed network is a network that is trained on scratch from 10,000 of the scans 

from simulated US data and 80% of the total dataset for the real US data. Therefore, this 

network has exposure from both datasets in all the layers of the network. The qualitative 

results of the network tested on the 20% of the real US data are shown in Fig. 3.5. 

 The images in Fig. 3.5 show that at best, the network performs on par with the 

network trained only on simulated US data and tested on simulated US data but the 

algorithm still classifies some of the soft tissue surface as the bone surface. The mixed 

network outperformed the network trained solely on the limited real US data based off of 

the AED values. The minimum dice coefficient value for the mixed network was 0.2957 

compared to a value of 0.4790 which was the minimum dice coefficient for the network 

algorithm was not able to learn which areas were the bone surface and which showed 

soft tissue as seen by both of the images with the minimum values. 
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trained from real US data. However, as determined before, the dice coefficient metric might 

not be the most suitable metric for the thin bone surfaces. 

 

Dice Coefficient = 0.8471 

 

Dice Coefficient = 0.2957 

 

AED =  0.0030 mm  

 

AED  =   6.3988 mm 

Fig. 3.5 The images above show the segmentations generated by the mixed network 

which consists of both real and simulated US data which was tested on real US data. The 

top row shows the segmentations with the maximum (left) and minimum (right) Dice 

Coefficient value.  The bottom row shows the segmentations with the minimum (left) 
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3.6 K-Fold Cross Validation of the Mixed Network 

 

 The results of the K-fold cross validation are summarized in Table 3.2. All of the 

networks were trained from scratch using all 10,000 images of the simulated US data and 

80% (1,600 images) of the real US data. The networks were tested on different Subjects 

from the real US dataset in order to get an overview of how well the network was 

performing. The average dice coefficient of the different networks was 0.712 and the 

average AED value was 0.323 which showed that the networks were automatically 

segmenting the US bone surfaces efficiently no matter which subject was used in the testing 

and training datasets. 

and maximum (right) AED index values. The green line is the automatic segmentation 

generated by the network and the red line is the manual segmentation.  

Network Name Testing Dice 

Coefficient 

Testing AED 

Value (mm) 

Notes 

MixedNetwork1 0.676  0.114 0.444  0.886 

 

Tested on Subject 

5; 30 original US 

scans 

MixedNetwork2 0.771  0.063 0.423  1.083 Tested on Subject 

4; 35 original US 

scans 

MixedNetwork3 0.688  0.117 0.102  0.344 Tested on Subject 

3; 70 original US 

scans 

Average 0.712  0.052 0.323  0.040 - 

 

Table 3.2 shows the results of the K-fold cross validation on the mixed networks. The 

networks were all tested on different subjects from the real US dataset. 
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3.7 Quantitative Comparison of all Networks  

 

 Comparing the testing results from all the different networks, as seen in Table 3.3, 

the network that performed the best was the network that was trained on simulated US data 

and tested on simulated US data. This result was expected as the simulated US data does 

not contain any artifacts that are found in the real US data which makes the automatic 

segmentation a much more efficient process. In line with this observation is also the fact 

that the worst performing network was the network that was trained only on simulated US 

data and was tested on the real US data.  

 The next two graphs demonstrate the individual validation metrics for all the 

different networks that were trained. 

 

Network Name and 

Type 

Average Dice 

Coefficient on Testing 

Data 

Average AED on Testing 

Data (mm) 

Real US Network Tested 

on Real US Data 
0.707  0.084 1.343  2.001 

Simulated US Network 

Tested on Simulated US 

Data 

0.795  0.050 0.112  0.033 

Simulated US Network 

Tested on Real US Data 
0.158  0.070 18.233  8.279 

Transfer Learning 

Network 
0.586  0.111 3.060  3.309 

Mixed Network 0.676  0.114 0.444  0.886 
 

Table 3.3 shows the results on the testing results for the different networks that were 

trained. The mixed network showed better results than the limited real US data network 

according to the AED. 



 

 

44 

 

 The box and whisker plot in Fig. 3.6 shows the dice coefficient values for the 

different networks that were trained. The best performing network was the network trained 

on simulated US data and tested on simulated US data and the worst performing network 

was the network trained on simulated US data and tested on real US data. Compared to the 

average dice coefficient (0.707) of the network trained using only limited real US data, the 

 

Fig. 3.6 This box and whisker plot shows the dice coefficient values for all of the 

different trained networks. The lowest average dice coefficient value comes from the 

network trained on simulated US data and tested on real US data. The mixed network 

outperformed the transfer learning network in terms of average dice coefficient and the 

average value is close to the average dice coefficient for the real US network.  
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transfer learning network had a lower average dice (0.586) and so did the mixed network 

(0.6760).  Looking at the previous qualitative images, it can be seen that the Dice 

coefficient metric is not an ideal way of describing how well the automatic segmentation 

matches the manual segmentations. Therefore, it is also important to consider the AED 

values to consider how well the networks performed. 

 

 

 

Fig. 3.7 This box and whisker plot shows the AED values for all of the different trained 

networks. The highest average AED value comes from the network trained on simulated 

US data and tested on real US data. The mixed network outperformed both the real US 

network and the transfer learning network.  
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 The box and whisker plot in Fig. 3.7 shows the AED values for the different 

networks. The simulated US network that was tested on simulated US data and the mixed 

network that was tested on real US data showed a very low variability in the AED values 

compared to the other trained networks that were trained. This demonstrates that the 

networks were trained well and had a good automatic segmentation results which closely 

matched the manual segmentations. The best and worst performing networks match the 

results provided by the dice coefficient values.  The large-scale simulated US data network 

that was tested on simulated US data had the lowest average AED of 0.112 mm while the 

simulated US network tested on real US data had the highest average AED of 18.233 mm. 

In comparison to the average AED of the real US network, 1.343 mm, the transfer learning 

network had a higher AED of 3.060 mm while the mixed network had a very low average 

AED of 0.444 mm. 

These results demonstrate that using simulated US data and applying transfer 

learning is not an efficient way of automatically segmenting the US bone surfaces. The 

dice coefficient and AED values of the transfer learning network fail in comparison to 

using only limited real US data. However, a mixed network developed using large-scale 

simulated data and limited real US data outperforms the network trained only on the real 

US data when comparing the AED value. Although the average dice coefficient value of 

the mixed network (0.676) was lower than the average dice coefficient value of the network 

trained on limited real US data (0.707), it was found that it is not a reliable metric for 

comparing bone surface segmentations the segmentations are not large regions that are 

ideally used for the dice coefficient calculations. 
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Therefore, the results show that large-scale simulated US data can be used in 

conjunction with limited real US data to train a neural network for accurate and robust 

segmentation of real in vivo US data. Additionally, simulated US data alone cannot be used 

to segment real in vivo US data due to the lack of artifacts and different regions that are 

found in the real US data. 

 

3.8 Investigation of Validation Metrics 

 An evaluation of the validation metrics was done to demonstrate how well the dice 

coefficient and the AED show the difference between the manual and automatic 

segmentations of bone surface data. In order to perform this evaluation, simulated manual 

and automatic segmentations were generated and the values of the dice coefficient and 

AED were determined by varying either the distance or the length of the segmentations.  

 First, a vertical displacement analysis was performed. A manual segmentation was 

created which was a single line that was 5 pixels in thickness with a length of 151 pixels. 

Automatic segmentations were also created, and the segmentations were moved vertically 

downwards by 1 pixel and their corresponding dice and AED values were calculated. Fig. 

3.8 shows an example of the generated segmentations.  The results that are shown in Fig. 

3.9 demonstrate that the dice coefficient decreases linearly as the automatic segmentation 

overlaps less rows of the manual segmentation. Although the segmentations may be close 

to each other in proximity, the dice coefficient will come out as 0 if there is no overlap 

between the regions of the manual and automatic segmentations. In contrast, the AED 

values show a different change where if the automatic segmentation only misses a couple 

rows of pixels, the AED value will stay towards the lower end. Due to the thin appearance 



 

 

48 

of bone surface segmentations from US data, automatic segmentations have a high 

likelihood of missing a couple rows of pixels when compared to the manual segmentations. 

However, if the segmentation is still overlaid on the bone surface then, the automatic 

segmentation would have been performed effectively but that cannot be seen from a low 

dice coefficient value.  

 

 

a) 

 

b) 

 
Fig. 3.8 Vertical displacement of a simulated manual segmentation (red) and automatic 

segmentation (green) was performed to evaluate the Dice and AED values. Images 

above show (a) complete overlap of the two segmentations and (b) complete mismatch 

of the two segmentations by translating the automatic segmentation down 5 rows of 

pixels. 



 

 

49 

 

A horizontal displacement analysis was also performed to show how the dice 

coefficient and AED values change when part of the bone surface is not selected in the 

automatic segmentations. A manual segmentation was generated which was a line that was 

5 pixels in thickness with a length of 151 pixels. The segmentations were then shifted down 

one row of pixels and the lengths of the automatic segmentations are decreased by 5 pixels 

at a time. The corresponding dice and AED values were then calculated. Fig. 3.10 shows 

an example of the generated segmentations.  The results that are shown in Fig. 3.11 

demonstrate if the automatic segmentation is one row lower and missing 25 pixels in 

length, the dice coefficient drops to a value of around 0.72. In comparison, the AED value 

for this error in the segmentation was found to be around 0.03 mm. The automatic 

 

Fig. 3.9 A comparison of the Dice Coefficient and AED values for different vertical 

displacements of the automatic segmentations compared to the manual segmentation. 
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segmentation corresponding to this case can be seen in Fig. 3.10b. The large drop in the 

dice coefficient value from 1 to 0.8 is due to the vertical displacement of 1 row of pixels. 

However overall, for horizontal displacement, the dice coefficient decreases slowly and the 

AED values increase slowly.  

 

a) 

 

b) 

 
Fig. 3.10 Horizontal displacement of a simulated manual segmentation (red) and 

automatic segmentation (green) was performed to evaluate the Dice and AED values. 

Images above show (a) complete overlap of the two segmentations and (b) mismatch of 

the two segmentations by translating the automatic segmentation down 1 row and 

lessening the length by 25 pixels. 
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Fig. 3.11 A comparison of the Dice Coefficient and AED values for different horizontal 

displacements of the automatic segmentations compared to the manual segmentation. 

 

The last evaluation of the validation metrics was performed to check how the 

metrics change if an additional surface is segmented in the automatic segmentation 

compared to the manual segmentation. To investigate this, a manual segmentation was 

generated that had only one surface outlined as the segmentation. Then, a corresponding 

automatic segmentation was generated that had the same surface selected as the manual 

segmentation, but it also had one additional surface segmented (Fig. 3.12). The dice 

coefficient of these two segmentations is 0.7139 while the AED was 16.4782 mm. This 

shows that the dice coefficient does not give an adequate value to show how the automatic 

segmentation fails if it has multiple regions segmented as a bone surface. This error in 
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automatic segmentation can occur when the algorithm incorrectly picks some of the high 

intensity values in the soft tissue interface as a bone surface.  

a) 

 

b) 

 
Fig. 3.12 a) shows the simulated manual segmentation with one bone surface 

segmented. However, image b) has an extra region segmented which can occur if the 

soft tissue is selected as a bone surface by the automatic segmentation.  The dice value 

of these two segmentations is 0.7139 while the AED was 16.4782 mm. 
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CHAPTER 4 

CONCLUSIONS AND FUTURE WORK 

4.1 Significance of Research 

 In this thesis, a method of improving bone surface segmentation from limited real 

US data was investigated in order to determine a way to efficiently perform segmentations 

with a smaller real US dataset. The approach involved using large-scale simulated US data 

in conjunction with the limited real US data to train a network using different methods to 

determine if it would allow for segmentation of real US bone surface data. 

 Previous methods of segmenting real US bone surfaces have tried using traditional 

image processing and deep learning methods. However, the image processing methods 

have to overcome the problem of noise and artifacts in the US data. The use of traditional 

deep learning methods suffers from being dependent on a large amount of training dataset. 

In this thesis, it was proposed that using large-scale simulated US data along with limited 

real US data will help improve the accuracy of the deep learning-based automatic 

segmentation of bone surfaces from in vivo real US data.  

Various training and testing strategies were investigated when training a well-

known deep learning architecture developed specifically for segmenting medical data 

named U-net.  First, U-net was trained using limited real US data and tested on real US 

data. Second, the U-net network was trained using large-scale simulated US data and was 

tested on both simulated and real US data. Third, a transfer learning approach was 

investigated to determine how it would affect the accuracy of segmenting real US data 

compared to only using real US data for training. In the transfer learning network, the U-

net network was trained on large-scale simulated data and had the last layers retrained on 
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limited real US data. Fourth, the U-net network was trained from scratch with both large-

scale simulated US data and real US data to determine how well it would segment real US 

bone surface data.   

 The results of the networks that used both large-scale simulated US data and real 

US data in their training were compared against the results of the network trained on limited 

real US data. This allowed for the determination of whether using large-scale simulated 

US data is a beneficial addition to only using limited real US data for performing automatic 

bone surface segmentations. 

 

4.2 Contributions 

As described at the end of Chapter 1.1, the work done in this thesis provides 

answers to the following two questions: 

1) Can simulated US data be used to train a neural network for accurate and robust 

segmentation of real in vivo bone US data? 

A neural network that was trained using large-scale simulated US data was able 

to perform accurate and robust segmentation of real in vivo bone US data when 

used in conjunction with limited real US data. A mixed neural network that was 

developed using both simulated and real US data outperformed the network that 

was trained using only limited real US data. However, the use of only simulated 

US data in a transfer learning network was not effective as the results of the 

dice coefficient and the AED showed that it did not have better values than the 

network that was trained on limited real US data. 
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2) Can simulated and real in vivo bone US data be used together to train a neural 

network for accurate and robust segmentation of real in vivo bone US data? 

Using simulated and real in vivo bone US data to train a neural network was 

shown to be effective as the results of the mixed network showed a smaller 

AED compared to the results of the network trained only on the limited real US 

data. 

 

4.3 Limitations of this Thesis 

This thesis explores the use of Simulated US data to help optimize a neural network 

to segment US bone surfaces. The Simulated US data that was obtained from 3D Slicer 

showed a bone surface image but with no artifacts present like in a real US scan which can 

also show soft tissue and other noise. The limitation with this data is that due to the lack of 

artifacts, the Simulated US images look similar even if the transducer was moved along 

the bone surface. Even when the transducer was rotated in 3D Slicer, only a small number 

of pixels changed because it was a slow rotational movement which led to the same bone 

surface with just a few different pixels. However, when the transducer was translated, the 

image moved accordingly but the shape of bone surfaces looked similar.  

 A problem with the real US data occurs when the manual segmentations are used 

for comparison. Manual segmentations, which are performed by expert annotators, can 

have both an inter-user and intra-user variability. Inter-user variability occurs when two 

different annotators segment the same bone surface US image but have slightly different 

segmentations. Intra-user variability occurs when the same annotator segments the same 

bone surface US image, but the segmentations have a variation. Therefore, a limitation of 



 

 

56 

this data is that those small errors, or variations, in the segmentations were not accounted 

for in the training and testing process. Although the variations might be small, some better 

method of validation which can incorporate those types of errors might help make the data 

more comprehensive.  

 

4.4 Future Work  

In order to effectively use the simulated US data that was used in the training of the 

neural networks, the simulated US data needs to be varied further. The data generated using 

3D Slicer and PLUS used only one model of the human femur and radius. However, if 

different models can be found and used for the data (specifically models that come from 

different individuals) then the neural network training might give better results. Future 

work can include these different bone surfaces so that more scans be generated. A multi-

institutional collaboration has been opened to gather more US scans and their 

segmentations so that they can be used in the future for developing better metrics for 

comparison and can improve the reliability of the manual segmentations [1].  

Another aspect that can be improved is the method of validation that was used to 

compare the automatic segmentations to the manual segmentations. In this thesis, the 

Sorensen Dice Coefficient and Average Euclidean Distance were evaluated in order to 

determine how well the automatic segmentation matched the manual segmentation. The 

Sorensen Dice Coefficient is best used for larger regions and not optimal for a thin bone 

surface segmentation. Therefore, evaluation metrics that are based on the AED and how 

well the segmentations overlap would be better suited to give a good quantitative 

evaluation of the neural network. 
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 Additionally, newer methods of segmenting bone surfaces have recently been 

explored. Neural networks can work in conjunction with image processing methods to 

further optimize the results obtained from the segmentations. Alsinan et al. have explored 

using B-mode US images and their corresponding local phase filtered images in order to 

incorporate them into a fusion network [2]. Another method that was utilized by Wang et 

al. used a network to enhance the bone surface present in the B-mode US scan and then 

used a modified version of the U-net in order to classify the bone surface and effectively 

segment the enhanced US bone surface image [3]. Newer methods have looked into using 

US elastography approaches to use US strain imaging and envelope power detection at 

each radiofrequency sample in order to localize the bone surfaces [4]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

58 

4.5 References 

 

1. Pandey, P., Patel, H., Guy, P., Hacihalilogu, I., & Hodgson, A. J. (2019). 

Preliminary Planning for a Multi-institutional Database for Ultrasound Bone 

Segmentation. https://doi.org/10.29007/m1ll 

 

2. Alsinan, A. Z., Patel, V. M., & Hacihaliloglu, I. (2019). Automatic segmentation 

of bone surfaces from ultrasound using a filter-layer-guided CNN. International 

Journal of Computer Assisted Radiology and Surgery, 14(5), 775–783. 

https://doi.org/10.1007/s11548-019-01934-0 

 

3. Wang, P., Patel, V. M., & Hacihaliloglu, I. (2018). Simultaneous Segmentation and 

Classification of Bone Surfaces from Ultrasound Using a Multi-feature Guided 

CNN. Lecture Notes in Computer Science (Including Subseries Lecture Notes in 

Artificial Intelligence and Lecture Notes in Bioinformatics). 

https://doi.org/10.1007/978-3-030-00937-3_16 

 

4. Hussain, M. A., Hodgson, A., & Abugharbieh, R. (2014). Robust bone detection in 

ultrasound using combined strain imaging and envelope signal power detection. 

Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial 

Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-

319-10404-1_45 

 

 

 

https://doi.org/10.29007/m1ll
https://doi.org/10.1007/s11548-019-01934-0
https://doi.org/10.1007/978-3-030-00937-3_16
https://doi.org/10.1007/978-3-319-10404-1_45
https://doi.org/10.1007/978-3-319-10404-1_45

