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ABSTRACT OF THE DISSERTATION

Exploring Intelligent Functionalities of Spoken

Conversational Search Systems

by Souvick Ghosh

Dissertation Director: Chirag Shah

Conversational search systems often fail to recognize the information need of the

user, especially for exploratory and complex tasks where the question is non-factoid in

nature. In any conversational search environment, spoken dialogues by the user commu-

nicate the search intent and the information need of the user to the system. In response,

the system performs specific, expected search actions. This is a domain-specific natural

language understanding problem where the agent must understand the user’s utterances

and act accordingly. Prior literature in intelligent systems suggests that in a conver-

sational search environment, spoken dialogues communicate the search intent and the

information need of the user. The meaning of these spoken utterances can be deciphered

by accurately identifying the speech or dialogue acts associated with them. However,

only a few studies in the information retrieval community have explored automatic clas-

sification of speech acts in conversational search systems, and this creates a research

gap. Also, during spoken search, the user rarely has control over the search process as

the actions of the system are hidden from the user. This eliminates the possibility of

correcting the course of search (from the user’s perspectives) and raises concerns about

the quality of the search and the reliability of the results presented. Previous research

in human-computer interaction suggests that the system should facilitate user-system
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communication by explaining its understanding of the user’s information problem and

the search context (referred to as the system’s model of the user). Such explanations

could include the system’s understanding of the search on an abstract level and the

description of the search process undertaken (queries and information sources used)

on a functional level. While these interactions could potentially help the user and the

agent to understand each other better, it is essential to evaluate if explicit clarifications

are necessary and desired by the user.

We have conducted a within-subjects Wizard-of-Oz user study to evaluate user sat-

isfaction and preferences in systems with and without explicit clarifications. However,

the results of the Wilcoxon Signed Rank Test showed that the use of explicit system-

level clarifications produced no positive effect on the user’s search experience. We have

also built a simple but effective Multi-channel Deep Speech Classifier (MDSC) to pre-

dict speech acts and search actions in an information-seeking dialogue. The results

highlight that the best performing model predicts speech acts with 90.2% and 73.2%

for CONVEX and SCS datasets, respectively. For search actions, the highest reported

accuracy was 63.7% and 63.3% for CONVEX and SCS datasets, respectively. Overall,

for speech act prediction, MSDC outperforms all the traditional classification models

by a large margin and shows improvements of 54.4% for CONVEX and 18.3% over the

nearest baseline for SCS. For search actions, the improvements were 32.3% and 2.2%

over the closest machine learning baselines. The results of ablation analysis indicate

that the best performance is achieved using all the three channels for speech act predic-

tion and metadata features only when predicting search actions. Individually, metadata

features were most important, followed by lexical and syntactic features.

In this dissertation, we provide insights on two intelligent functionalities which are

expected of conversational search systems: (i) how to better understand the natural lan-

guage utterances of the user, in an information-seeking conversation; and (ii) if explicit

clarifications or explanations from the system will improve the user-agent interaction

during the search session. The observations and recommendations from this study will

inform the future design and development of spoken conversational systems.
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Preface

Parts of this dissertation are based on work previously published by the author in

(Ghosh, 2019a, 2019b, 2019c; Ghosh, Rath, & Shah, 2018)
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Chapter 1

Introduction and Outline

Good design, when it’s done well,

becomes invisible. It’s only when it’s

done poorly that we notice it. Think

of it like a room’s air conditioning.

We only notice it when it’s too hot,

too cold, making too much noise, or

the unit is dripping on us. Yet, if the

air conditioning is perfect, nobody

say anything and we focus, instead,

on the task at hand.

Jared Spool

1.1 Introduction

August 21, 2016. As the Emirates flight landed at JFK airport, New York City, I had

hundreds of questions running in my mind. I was in a country I have never been before,

starting a new phase of life as a Ph.D. student. I was used to driving on the other

side of the road as I grew up in a British Commonwealth country. The social, cultural,

and political understanding was also vastly different. Navigating the academic program

seemed more laborious than the coursework itself. The situation is not unique to me.

As a matter of fact, every student feels like it at some point in their life. So does a

traveler when visiting unknown countries. Although situations may differ significantly,

every human being encounters numerous situations in life where he feels puzzled and

lost. He does not know how to navigate those situations and what actions he should

take. That feeling of being lost, where our knowledge seems to fail us, and when we
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frantically look for answers to our questions form the motivation behind searching.

1.1.1 Motivation behind Searching

Every person, through his interaction with different knowledge resources (people, books,

or the Web), develops a view of the world around him. These views can be thought

of as certain typifications that help the person to model the world around him and

explain the different types of phenomena (Schutz & Luckmann, 1973). However, as

we live our daily lives, we encounter certain anomalies – called anomalous states of

knowledge by Belkin (1980) - which does not fit with the existing model of the world

and leads to a problematic situation. The situation could be resolved by searching

for new information, which helps us to create new knowledge structures or refine the

existing ones. Dervin (1992), in her sense-making model, views active information

seeking as a way to mitigate the gap (or uncertainty) between the desired and observed

situations. The knowledge resources could be the folklores or scrolls preserved by elders

in a tribal society or the books guarded by the friendly neighborhood librarians. The

World Wide Web, which has entirely changed how information is stored, managed, and

delivered, comes without the traditional “gatekeepers.” This has ushered in a modern

era of information and its retrieval, where the delivery of information is as important

as the information itself.

Information Retrieval systems consist of three components – the user (or the searcher),

the knowledge resource, and an intermediary who acts as a bridge between the infor-

mation searcher and the knowledge resource. The knowledge resource has traditionally

been textual, containing texts which are represented and organized in ways for fast and

efficient access. The searcher, once stimulated by a problem, approaches the intermedi-

ary who tries to retrieve some content from the knowledge resource, which will help the

searcher to satisfy his information needs. In this thesis, searcher, system, and speech,

whenever used, refer to the information seeker, the intermediary (or the agent), and

the audio channel, respectively.

One of the very first definitions of Information Retrieval using automated systems

was proposed by Mooers (1951):
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“Information retrieval embraces the intellectual aspects of the description

of information and its specification for search, and also whatever systems,

techniques, or machines are employed to carry out the operation.” (p.25,

Mooers, 1951)

Traditional IR systems consist of two streams of activities – the system performs

several processes like acquisition, representation, and organization of the documents

(and other objects). In contrast, the user performs processes like problem formulation,

representation, and query construction (as described in Figure 1.1 from Belkin and

Croft (1992)). The search interface (often browser-based), which popularly consists

of a text box, allows the user to enter the textual query, which is then reduced to

a collection of search terms (or keywords). The intermediary (the retrieval system)

matches the terms in the queries with those in the documents using different scoring

algorithms and presents potentially relevant objects to the user (usually in the form of

a ranked list). The user feedback, if any, is incorporated through query reformulations.

In an interactive environment, the user and the intermediary perform multiple rounds

of query reformulations and retrievals to mediate the information need. The initial

problem, the information need, and the knowledge structures of the user are dynamic

and keeps changing during an information-seeking episode (Brooks & Belkin, 1983).

1.1.2 Shortcomings of Traditional IR Systems

The major shortcomings of traditional information retrieval systems could be attributed

to the following factors (Begany, Sa, & Yuan, 2015):

1. The user may not know the exact nature of the information problem and what

he needs to do to solve the problem (Belkin, 1980);

2. It is difficult for the user to find terms that are accurate in describing their

information need. Also, they need to make sure that these terms appear in the

documents in the knowledge resource (the database);

3. Traditional search interfaces are suitable for shorter queries (which may not be

sufficient to describe the information problem)
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Figure 1.1: Structure of an IR System (Belkin and Croft, 1992).

Research in IR has acknowledged the limitations, as mentioned above, of traditional

IR systems. The last few decades have witnessed the massive proliferation and sub-

sequent digitization of information. Searching for information, therefore, has evolved

from traditional text-based to more multimodal approaches that promote and support

natural interactions. The initial focus – which was to organize and rank the documents

– has gradually shifted to make the search systems more accessible, user-centered, and

human-like. The current state-of-the-art information retrieval (IR) systems are interac-

tive, provide recommendations, and summarize results in addition to retrieving relevant

information.

1.1.3 Conversational Search Systems

As humans, we possess five basic senses: visual (sight), auditory (hear), gustatory

(taste), olfactory (smell), and cutaneous (touch). The sense organs detect various

forms of signals around us and send the raw data to our brain for processing. These
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channels of information help us perceive the world around us. Humans are more reliant

on visual stimuli as it allows us to process the largest amount of information with the

least cognitive effort. However, from a communication perspective, in-person spoken

conversation is the natural and most popular way of exchanging information between

two or more humans. We talk to communicate and express ourselves. Therefore, in

a situation of information need, where our existing knowledge structures have failed

us, it is only natural that we talk to express our problematic situation. Co-presence

is the natural mode of talking, which means that apart from verbal communication,

para-linguistic and non-verbal communication is also taking place, which invokes senses

other than hearing.

Conversational Search is a branch of interactive information retrieval where the

searcher enjoys the freedom to explain his information problem to the system (or agent),

in natural language. The use of natural language dialogues allows the user to explain

better and the system to better understand the knowledge gap of the user. The user-

agent interaction is not limited and can go over multiple turns, which should enable

the system to build the necessary context, resolve ambiguities through clarifications,

and retrieve documents (or information) which are most suited to the needs of the

user. The recent popularity of conversational systems can be partially attributed to

the limitations as mentioned earlier of the existing retrieval systems. Also, the ubiquity

of mobile devices, substantial improvements in automatic speech recognition, the emer-

gence of deep neural networks, and a focus towards more user-centered systems have

encouraged the researchers to build dialogue-based retrieval systems. Such systems

are significantly more complicated but they are a solution to the existing problems in

information retrieval.

Conversational search systems mimic the human-human interactions which occur

between a human information seeker and the provider (e.g., librarian-patron conversa-

tions). The conversations between the user and system could be in the form of text (as

in the case of chatbots) or audio (as in the case of personal assistants). The use of nat-

ural language dialogues, over multiple turns, is the reason why these systems are called

“conversational.” In this research, we focus on voice-based (or spoken) conversational
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search systems only.

A recently published statistic 1 highlights that 20% of all searches on Google and

20% of all mobile queries are by voice. Also, 65% of the users who have Amazon Echo

or Google Home prefer using voice commands over keyboard inputs. The size of the

market for virtual assistants has tripled from 3 billion USD in 2017) to 8.56 billion

USD (in 2019) worldwide 2. The estimated number of users of some type of digital

assistants is also projected to reach 1.8 billion by 2021 (Figure 1.2). When asked about

technology adoption, 55% of the users felt that they were more comfortable expressing

themselves over voice rather than typing their queries. Also, many of them preferred

not to touch their smartphones or other devices.

Figure 1.2: Size of VDA Market Worldwide.

Although text-based conversational chatbots are common, we limit our research to

an audio-only environment. The advantages and use cases of voice-based systems differ

1https://99firms.com/blog/voice-search-statistics/#gref

2https://mobiteam.de/en/the-rise-of-virtual-digital-assistant-usage-statistics-and-trends/
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from those of chatbots. The limited display capability of mobile devices – phones, wear-

ables, and smart devices – makes it hard to type queries and read the search results,

and hence, users prefer talking to the system and listening to the answers (Chang et al.,

2002; Najjar, Ockerman, & Thompson, 1998; Trippas, Spina, Sanderson, & Cavedon,

2015b; Turunen, Hakulinen, Rajput, & Nanavati, 2012). Voice commands allow hands-

free and eyes-free operation and, therefore, eliminate the need to type. Therefore, the

user can multitask, as is observed while driving, cooking, or exercising (Frummet, El-

sweiler, & Ludwig, 2019; Ghosh, 2019b; Guy, 2016) when typing is difficult, erroneous,

or risky. Voice-based systems are also better suited for people with visual or man-

ual impairment (Guy, 2016; Sahib, Al Thani, Tombros, & Stockman, 2012), dyslexia

(Klemmer et al., 2000) or people with limited literacy skills (Trippas et al., 2015b).

Although textual interfaces provide autocorrect suggestions, speaking to the system

eliminates the need to spell complex, difficult, or foreign words correctly.

1.1.4 Challenges for Conversational Search Systems

Despite all the affordances provided by conversational systems, such systems are still

in a nascent stage and need extensive research on multiple aspects. For example,

existing state-of-the-art personal assistants perform exceptionally well for simple tasks

like setting reminders or alarms, calling or texting a contact, and getting weather or

traffic updates. However, as is familiar with any emerging technology, many challenges

must be overcome before we can use conversational systems for search purposes.

First, even with existing high-performance computers, it is hard to maintain a long

conversation (in real-time) over multiple turns without losing contextual information,

something which ongoing research is striving to achieve. As such, the current state-of-

the-art conversational retrieval systems are better suited for short conversations, simple

queries, factoid questions, and non-exploratory searches. Second, conversational sys-

tems are often spoken, and the transient and linear nature of speech severely limits

the functionalities of such interfaces. Thus, information is required to be transmitted

in smaller chunks (short audios or limited results) (Lai & Yankelovich, 2002; Trippas,
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Spina, Sanderson, & Cavedon, 2015a) to prevent overloading the users’ short-term mem-

ory (Turunen et al., 2012). So, spoken conversational systems cannot present complex

structures like images, graphs, videos, and the search engine result pages and associ-

ated hyperlink support (Trippas, Spina, Cavedon, Joho, & Sanderson, 2018). Reading

the search engine results page (SERP) reduces user’s satisfaction and often leads to

search failures. Spoken conversational systems do not allow scanning of results, query

modifications (Sa & Yuan, 2019), or looking at prior results. Lastly, such systems suffer

in noisy environments, such as outdoors, where the environmental noise may superpose

with the voice searches and responses, thus causing recognition and comprehension er-

rors (Turunen et al., 2012). Non-native speakers of English, often with accents, also

find it challenging to communicate with conversational systems as recognition errors

increase manifold for words that are difficult to pronounce.

If we view searching as a learning process, then the spoken conversation may not

be suitable for all types of learners or users. As the VARK model of education suggests

that there are four primary types of learners: visual, auditory, reading/writing, and

kinesthetic (Fleming, 2001). So, for educational and learning purposes, the preference

of the search system will depend on the user’s subjective preference for the learning

medium. An ideal solution will be to use a multimodal interface that will support both

textual queries and human-computer dialogue and use displays for presenting visual

objects and the results of complex queries.

While developments in automatic speech recognition and generation have made it

possible for artificial systems to listen and speak, a human-human conversation is more

than that. It involves the correction of wrong utterances (on both sides), understanding

of conversational implicatures (Grice, 1989) and non-verbal cues, adhering to conver-

sational principles (Tannen et al., 2005), staying on-topic, and responding in a fashion

that suits the style and sensibilities of the listener. As most users are not good at

explaining their problems in few and exact words (Landis & Koch, 1977) and the exist-

ing state-of-the-art systems are still in a developmental stage, most of the modern-day

conversational assistants fail to meet the lofty standards expected of them Luger and

Sellen (2016). Therefore, current voice-based personal assistants are widely regarded
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as task-based systems (Luger & Sellen, 2016) incapable of performing complex searches

and engaging in multi-turn dialogues.

1.2 Research Problem

Most of the popular information retrieval systems and search engines are non-conversational.

The popularity of handheld and mobile devices has led to the ubiquity of conversational

search systems, where the one-shot query-response system is replaced by an interactive

dialogue-based system. Spoken conversational search systems allow the users to talk to

the search agent instead of typing the queries. The result could be presented back as au-

dio, or a combination of audio and text, therefore, mitigating the limited visual display

in mobile and handheld devices. The development of conversational systems, spoken

or otherwise, has tremendous implications for user satisfaction and search experience.

Not only is conversation the natural mode of communication for humans, but it also

allows the user to interact with the agent using natural language. The existing query

formulation and modification techniques, result presentation strategies, and evaluation

metrics are catered towards traditional and visual search processes. Research commu-

nities have tackled different challenges in conversational systems from both user- and

system-perspectives, exploring the different facets of such systems, which include but

are not limited to context-building in conversations, query creations and modifications,

intent recognition, and results presentation. However, it has also raised questions about

the nature of interactions that occur between the conversational search system and the

user: more specifically, what are the intelligent functionalities expected of such systems

as they converse with the user.

There is a widely accepted research gap in determining the types and extent of

interaction desirable in conversational search systems. While conversations help the

intermediary understand the long- and short-term contexts of the user, there should be

an option to backtrack if the conversation is following a wrong search direction. While

using most of the existing systems, the user rarely has control over the search process

as the actions of the system are hidden from the user. This eliminates the possibil-

ity of correcting the course of search (from the user’s perspectives) and also creates



10

concern about the quality of the search and the reliability of the results presented. Pre-

vious research in human-computer interaction suggests that the system should facilitate

user-system communication by explaining its understanding of the user’s information

problem and the search context (which is often referred to as the system’s model of the

user). Such explanations could include the system’s understanding of the search on an

abstract level and the description of the search process undertaken (queries and infor-

mation sources used) on a functional level. While these interactions could potentially

help the user and the agent to understand each other better, it is essential to evaluate

if explicit clarifications are necessary and desired by the user.

Also, the current state-of-the-art conversational search systems often fail to rec-

ognize the information need of the user, especially for exploratory and complex tasks

where the question is non-factoid in nature. In any conversational search environment,

it is of utmost importance that the agent understands the utterances by the user and

performs the appropriate search activity. This is a domain-specific natural language

understanding problem where the user’s utterances guide the agent’s action. Spoken

dialogues communicate the search intent and the information need of the user (searcher)

to the agent (intermediary). In response, the agent performs specific, expected search

actions. Prior literature in intelligent systems suggests that any conversation can be

represented as a state-transition diagram where the edges represent the speech or di-

alogue acts, and the nodes represent the conversational states. Speech acts have been

studied extensively in philosophy, speech, and dialog communities. They convey the

meaning of the utterances on a functional level and could be used to understand what

the user wants. Only a few studies in the information retrieval community have explored

automatic classification of speech acts in conversational search systems, and this creates

a research gap. Therefore, it is essential to develop insights on: (i) if explicit clarifi-

cations or explanations from the system will improve the user-agent interaction during

the search session; and (ii) how to better understand the natural language utterances

of the user, in an information-seeking conversation.

Throughout the rest of the thesis, we use conversational search systems (CSS) to

define systems that provide a more human-like interaction (Arguello, Choi, & Capra,
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2017) to the user who has the freedom to speak to the system (voice requests) instead

of typing. We also take the liberty of assuming that the user is also the searcher while

the system is the search intermediary or personal assistant.

1.3 Layout of the Thesis

This thesis is divided into three parts and a total of nine chapters.

• Part-I – Introduction and Thesis Overview :

This part comprises chapters 1, 2, and 3, where we explain traditional and con-

versational search, the different challenges, the motivations behind this research,

the research questions, and related works.

– Chapter 1 – Introduction and Outline:

We highlight the motivation behind searching, explain the challenges for

conversational search systems, and describe the research problems tackled

in this thesis. We also provide the layout of the thesis at the end of this

chapter.

– Chapter 2 – Related Work:

In this chapter, we discuss the previous research done in the domain of

conversational search systems. We point out the implications of the prior

work and how they motivate the design of this thesis.

– Chapter 3 – Research Questions:

We present the research questions which guide the overall direction of this

research.

• Part-II – Methodology :

This part comprises chapters 4, 5, and 6. We discuss the research methodology,

which includes the user study design, data collection and processing, and data

analysis.

– Chapter 4 – Experimental User Study Design:

We discuss the experimental set up used, the design of the search tasks, and
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the set of protocols that were developed for the study. We also specify the

data collection procedure.

– Chapter 5 – Transcription and Thematic Analysis:

We describe the details of the qualitative coding process and the themes de-

veloped for annotation. We provide descriptive statistics for the two datasets

used in this study.

– Chapter 6 – Development of the Deep Neural Classifier :

We report the details of the deep neural model used for the prediction of

speech acts and the search actions. This includes the model architecture

and the hyperparameters used for prediction.

• Part-III – Results and Discussion :

This part consists of chapters 7, 8, and 9. We present the results and discuss our

findings concerning the research questions. We suggest design recommendations

and outline possible directions for future research in conversational search systems.

– Chapter 7 – Exploring the Role of Clarifications in User-Agent

Information-seeking Dialogues:

In this chapter, we report the findings from our user study. We analyze

the user feedback statistically and assess the effect of clarification on the

user-agent conversation. We also use our user study to make design recom-

mendations.

– Chapter 8 – Towards Natural Language Understanding of Spoken

Conversational Search Systems:

In this chapter, we answer our second research question on natural language

understanding of voice-based conversational search systems. We report the

different performance metrics of the deep neural classifier and perform abla-

tion analysis to show the impact of different types of data on the prediction

performance.

– Chapter 9 – Conclusion and Future Work :

We conclude the thesis by providing a summary of our research, the practical
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implications of our findings, and recommendations for future research.

The thesis has four appendices. Appendix A contains details of the different docu-

mentations prior to the study. This includes the Institutional Review Board Approval,

Recruitment Letter, Consent Form, and Information Sheet for the users and the Wiz-

ard. Appendix B presents the questionnaires: pre-test, pre- and post-task, and exit

interview. Appendices C and D show the post-study documentations and additional

statistical charts, respectively.

1.4 Chapter Summary

In this chapter, we introduce the readers to the topic of this thesis, which is, Conver-

sational Search Systems. We highlight the key concepts in information retrieval and

how the motivations behind searching can be explained from the perspective of infor-

mation science. The typifications of the world around us, often influenced by different

social and cultural factors, explains how human beings create, modify, and restructure

knowledge. Our lack of knowledge motivates us to search and make sense of uncertain

concepts and situations. Searching is, therefore, an act of learning and sensemak-

ing. Next, we follow the evolution of search from libraries to traditional browser-based

systems to conversational systems. While traditional search systems have aspired to

provide interactivity and search functionalities similar to those of a human interme-

diary, conversational systems provide the much needed natural language support and

voice-based input mechanism. We briefly discuss the advantages and the challenges for

conversational systems and outline the major problems that this dissertation addresses.

We end the chapter by providing the layout of the chapters.
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Chapter 2

Background and Related Works

Searching for information within, or using systems, has long evolved from libraries

to web spaces and has kept evolving to more convenient and user-centered approaches.

User profiling, coupled with intent recognition, has led to research in information foster-

ing (Shah, 2018) and proactive search assistance. However, as mentioned in the previous

chapters, searching is a problematic activity when the user has to define his information

problem using a few keywords. To this end, conversational search approaches provide

the much-needed freedom to the user who can explain his search requirements and re-

solve ambiguities, which may occur to the search system. The user can talk to the

system to present his query, in natural language, and explain the information problem

through multiple rounds of back and forth dialogues.

In this chapter, we discuss literature relevant to various aspects of conversational

search systems (CSS). We discuss the different theoretical frameworks in information

retrieval and the ones which apply to conversational search systems. We define spo-

ken conversational search, the different categories of conversational search systems, and

their properties. We also discuss previous research papers that highlight the major chal-

lenges for conversational systems and propose potential solutions. Finally, we provide

an overview of the methodological approaches adopted by researchers in this domain,

ranging from human-centered experimental design to algorithmic development. Our

goal is to show the interdisciplinary nature of this area of research so that wheels are

not necessarily reinvented on all sides.
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2.1 Conversational Search Systems

In this section, we define what Conversational Search Systems are, the types, and

properties of such systems.

2.1.1 Definition

If we investigate the history of IR, we can find evidence of conversational systems

defined as dialogue-based, spoken, or discourse-oriented. H. C. Bunt (1989) is credited

for coining the word information dialogue for the type of dialogues observed in simple

information systems that provided factual information. The term dialogue, when used

in the context of IR systems, refers to the multiple rounds of negotiation or clarification

which occurs between the dialogue partners (user and intermediary). Such interactions

aim at developing a constructive solution to the initially vague information problem

and hypothesizing the information need of the user (Stein, Gulla, & Thiel, 1999).

Although conversational search systems are often defined as artificial systems that

can interact, understand, and respond in natural language (Laranjo et al., 2018; Ram et

al., 2018), it overlooks the complexity of a human-human conversation. Conversations

are interactive and incremental, explanatory and educational for both parties involved,

involves multiple rounds of turn-taking, and are expeditious (Joho, Cavedon, Arguello,

Shokouhi, & Radlinski, 2018). As such, it could be useful to use prior research works

in linguistics and apply them in the context of information seeking dialogues.

Radlinski and Craswell (2017) provided a formal definition of conversational search

systems:

“A conversational search system is a system for retrieving information that

permits a mixed-initiative back and forth between a user and agent, where

the agent’s actions are chosen in response to a model of current user needs

within the current conversation, using both short- and long-term knowledge

of the user.” (Radlinski and Craswell, 2017, p. 120).
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2.1.2 Properties of Conversational Search Systems

In recent years, the term “conversation” has gained popularity in the context of infor-

mation retrieval systems. The Oxford English Dictionary1 defines a conversation as “a

talk, especially an informal one, between two or more people, in which news and ideas

are exchanged” while Wikipedia defines conversation2 as “an interactive communication

between two or more people”. If we look closely at both the definitions from the per-

spective of IR, we can conclude that a conversation must be interactive, should involve

two or more participants, and should lead to an exchange of knowledge or information.

The term conversational defines the interaction mechanism between the user and the

intermediary and highlights the human-like properties aspired of future search systems

(Arguello et al., 2017).

Table 2.1: Properties of Conversational Search Systems (Radlinski & Craswell, 2017)

Property Description

User Revealment The system assists the user in discovering and expressing
the information need using natural language. The user can
also define his short- and long-term preferences.

System Revealment The system reveals itself to the user. This could include the
mode of operations, the capabilities and the limitations, and
the functioning. This helps in managing the user expecta-
tions on what the agent can and cannot do.

Mixed-Initiative The search is not necessarily controlled by the system or the
user. Both the system and the user can take the initiative
as appropriate.

Memory The system should maintain a context of previous utter-
ances by the user. This is similar to short-term memory
and would allow the system to understand the references to
past statements, contradictions, and backtracking.

Set Retrieval The system should be able to explain the utility of the sets
of complementary items.

To develop an effective conversational system, we need to allow for natural inter-

action (in the form of dialogues) between the user and the system. Such interactions,

although sophisticated and unconstrained, would allow for an accurate understanding

1https://en.oxforddictionaries.com/definition/conversation

2https://en.wikipedia.org/wiki/Conversation
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of the user’s information problem and the knowledge gap. To generate appropriate re-

sponses, we must understand the intention and information needs of the user. In recent

work, the desirable properties of such systems have been highlighted by (Radlinski &

Craswell, 2017) (Table 2.1): the user and the system should negotiate the user’s infor-

mation need in conjunction with the user’s long-term goals and the limitations of the

system while keeping track of context and old utterances.

These properties can be related to the work of Belkin (1984), who suggested that

both the user and the intermediary need to develop cognitive models of each other in

an effective information transfer environment. To have successful communication, the

participating individuals need to collaborate, create models of the other, and negotiate

it to perfection (Hollnagel, 1979). The functions of an intelligent search interface,

illustrated by Belkin, Seeger, and Wersig (1983) and Belkin, Brooks, and Daniels (1987),

is presented in Figure 2.2.
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Table 2.2: Functions of an intelligent agent (Belkin, 1987).

Name of the Function Description

Determine Problem State The agent must determine the position of the user in
problem treatment process, e.g., if the user is yet to
formulate the problem, if the problem has been well
specified, and so on.

Determine Problem Mode The appropriate mechanism capability should be de-
termined. For example, if it involves reference re-
trieval.

Determine User Model Generate description of the user. This could include
the type, goals, beliefs, etc. of the user. e.g., if the
user is a graduate student, if the search is to write a
paper.

Describe Problem Generate description of the type, topic, structure of
the problem along with contextual information

Determine Dialogue Mode Decide the appropriate dialogue type for situation,
e.g., natural language, menu.

Build Relevant World Choose and apply appropriate retrieval strategies to
knowledge resource, e.g., best match, gap filling.

Generate Response Determine propositional structure of the response
which should be given to the user as appropriate to
the situation.

Analyze Input Convert input from user into structures usable by
functional experts, e.g. query to SQL statements

Generate Output Convert propositional response from the agent to a
form which is appropriate to the user and his situa-
tion. For example, a picture may be converted to a
description if no displays are available.

Explain Describe mechanism of operation, capabilities, etc. to
the user as appropriate. This could also include other
information like query terms, information sources,
length of utterance allowed, and so on. (Similar to
System Revealment)

Secondary Communication This is essential to build and sustain the communica-
tion. The agent reassures the user that it understands
the user (or not). This helps in building the context,
and to create models of each other.
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Apart from the properties already stated above, a conversational agent should re-

spond in real-time, the response should be incremental and engaging and should have

a moral character. For example, the agent should not provide wrong information on

purpose or be biased (e.g., to promote the sale of a particular product). Additionally, it

should be transparent about the sources of information used, the query used (if appli-

cable), and why some information was preferred over the others (for the sake of brevity,

prior choices, and so on).

2.1.3 Types of Conversational Search Systems

Although our work is focused on voice-based conversational search systems, there could

be various categories of conversational systems based on their media of communication,

application areas, ways of functioning, and modes of development.

Existing conversational systems can be divided into two categories: text-based sys-

tems (chatbots) and voice-based systems (personal assistants). While there are some

hybrid systems that allow the user to switch between the two modalities, the use cases

suggest that users prefer either typing or speaking but not both at the same time. We

would like to highlight that the results may be presented over text, audio, or on-screen,

depending on the availability and affordances of the devices. While voice-based con-

versational systems allow the user to use speech as input, text-based conversational

systems require the user to type the dialogues in natural language. Therefore, chatbots

cannot be used for multitasking and handsfree operations. Also, while speech supports

terms that are easy to pronounce, text modality supports searching by using the terms

easy to type. However, text-based systems allow for more extended dialogues and can

return lists of results, including images and videos. Unlike the transient nature of

speech, the text output allows the user to scan the results, and process them slowly,

and refer to at a later point in the conversation. This leads to less cognitive load for

the user. Lastly, it also provides better support for exploratory and collaborative tasks

in conversational environments, as the system can handle multiple users, their intents,

and contextual information.

The use of personal assistants or chatbots can reduce the workload on the user and
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increase productivity. Chatbots have been employed for providing search assistance in

open- and closed- domains (Brandtzaeg & Følstad, 2017; Mallios & Bourbakis, 2016),

for example, vacation planning (Shiga, Joho, Blanco, Trippas, & Sanderson, 2017), tour

guidance (Kopp, Gesellensetter, Krämer, & Wachsmuth, 2005), flight booking services

(Dubiel, Halvey, Azzopardi, & Daronnat, 2018), or as conversational partners (Radzi-

will & Benton, 2017). While chatbots provide conversational capabilities in webpages

(popular in healthcare and banking industries), certain situations warrant a handsfree-

and eyes-free operation. Persona-based conversational models (Li et al., 2016; Y. Zhang,

Chen, Ai, Yang, & Croft, 2018) are also popular as they capture the styles and back-

grounds of individual users. A separate line of research explored the use of embodied

conversational agents (Bickmore & Cassell, 2005; Cassell, Sullivan, Churchill, & Pre-

vost, 2000).

While task-oriented interactions help the user in accomplishing specific tasks (Wen

et al., 2016; Williams & Zweig, 2016), non-task-oriented dialogues can be chitchat or

informational (W. Wang, Huang, Xu, Shen, & Nie, 2018). Some examples of task-

oriented systems would be digital personal assistants who can set alarms, play music,

and place an online order at the request of the user. Depending on how they function,

dialogue systems can be categorized as rule-based (if they use templates to generate

responses), retrieval-based (if they seek the response in the collection) (Ji, Lu, & Li,

2014; Wu, Wu, Xing, Zhou, & Li, 2016; Yan, Song, & Wu, 2016; Yan, Zhao, & E,

2017) or generation-based (response generation using sequence to sequence models)

(Bordes, Boureau, & Weston, 2016; Dhingra et al., 2016; Li et al., 2016; Tian et al.,

2017; L. Yang et al., 2018). Generation-based models are more flexible than rule-based

models, which are constrained by the heuristic templates, or retrieval-based models,

which are dependent on the archive (i.e., similar responses must be present in the

collection). Some hybrid models(Qiu et al., 2017) combine both the strategies.

Conversation is not only crucial for IR systems but also for building question-

answering and recommendation systems. If an automatic sales agent could speak to the

user, and offer relevant recommendations, it could improve the user experience and the
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sales volume for the online retailers. Kenter and de Rijke (2017) considered conversa-

tion as a machine reading task and developed a standalone question-answering system

to answer “common-sense” context-sensitive questions. Some of the other works (Fukui

et al., 2016; Gupta, 2017; Zhou, Tian, Sukhbaatar, Szlam, & Fergus, 2015) have also

focused on on multimodal aspects, like answering questions from an image using natural

language (e.g., How many cars can be seen in the picture?). Visual question answering

research works use insights from both natural language processing and computer vision.

Sun and Zhang (2018) attempted to integrate conversational and recommender systems

to build a personalized agent that focused on the long-term preference of the buyer us-

ing a deep reinforcement learning framework. The authors claimed that such a system

is better suited to capture the intent and preferences of the user. Christakopoulou,

Radlinski, and Hofmann (2016) addressed the problem of cold start in recommendation

by using human-like dialogues to understand the users’ preferences.

2.1.4 Challenges and Limitations

In a traditional search system (which is mostly browser-based), the user enters a query

in a text box. This query serves as an expression of the user’s information need. The

system (who acts as the intermediary) uses the query to retrieve relevant documents

that are expected to solve the user’s problematic situation. The single-shot keyword-

based approach is not an ideal way to elicit the information need of the user. Instead,

by allowing the user to talk, when he expresses the search situation in natural language,

the system can have a better understanding of the user, his information need, the search

context, and the user preferences.
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Table 2.3: Example of User-Agent Conversation

Speaker User-Agent Information-seeking Dialogues

User: Hey, Joanna,
Agent: Hi I am Joanna. How may I help you today?
User: What Artificial intelligence conferences are in early. 2020
Agent: Okay. Please Let me look into it. Give me a few minutes
Agent: The top of artificial intelligence conferences in early 2020 are 1) Con-

ference on Computer Vision and Pattern Recognition, 2) International
World Wide Web conferences and 3) Association for the Advancement
of Artificial Intelligence.

User: Where are they located?
Agent: Okay, please let me look into it. Give me a few minutes.
Agent: The top artificial intelligence conferences in early 2020 are: 1) Confer-

ence on computer vision and pattern recognition held in Seattle, USA,
2) International World Wide Web Conference is held in Taipei, Taiwan,
and 3) Association for the Advancement of Artificial Intelligence in New
York, New York, U.S.A.

User: Bye Joanna

The interactions between the user and the agent are incremental and occur over

multiple turns, thus allowing both the user and the system to develop accurate models

of each other and build context to the search situation. If we look at the user-agent

interactions in the example of Table 2.3, there are many challenges that must be over-

come.

The departure from a text-based interface to spoken dialogue queries involves many

challenges, in terms of characteristics, implementation, and evaluation. First, the agent

needs to recognize the user utterances correctly. The agent may face problems under-

standing the accent of non-native speakers. Also, during the early stages of the search,

the users are unsure of what they are looking for, and hence, the problem statement

may be vague and too complicated. As the users are no longer constrained by the search

box and keywords (which is a limitation of traditional text-based systems), they can

express their information problem in a long and verbose manner. Also, the users may

state multiple problems in a single turn, make multiple moves, and provide feedback

(Trippas et al., 2018). Users also tend to ask random and unanswerable questions, often

without context, which makes it extremely hard for an artificially intelligent agent to

respond satisfactorily.
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Therefore, the system will need to assign importance to specific sections of the

conversation and determine the appropriate system response, like clarifying, asking a

follow-up question, showing (or speaking from) some documents, or displaying the class

hierarchy (in multimodal systems) (Z. Liu, Niu Z.and Nie, Wu, & Wang, 2017). Unlike

traditional text-based systems (which present the result on display), conversational

search systems operate in personal assistants and mobile devices, which come with

small or no display. As speech is transient, linear, and temporal (Kotti, Papangelis, &

Stylianou, 2017), users do not have the option to revisit the results or scan over them.

The linear nature of speech increases the complexity of the system manifold from an

implementation perspective. For a scenario involving multiple goals, the system should

be optimized using multiple rewards functions and must be able to balance the trade-offs

between the length of response, diversity, and personalization (Stein & Maier, 1995).

The response time between conversational turns should be kept minimal to enhance

naturalness (Kenter & de Rijke, 2017); Otherwise, the user may feel frustrated and

quit the search session. Also, for questions that are similar semantically, the system

must not provide different answers. Lastly, the system should allow users to backtrack in

case of wrongly formulated or misrecognized (errors of ASR) queries. The backtracking

would require the system to model negation and query states, which would add more

steps to the search process (Begany et al., 2015).

For a traditional browser-based system, the response generated by an IR system is

usually in the form of the search engine results page (SERP) containing a ranked list

of documents. While such a system expects the user to click on any of the hyperlinks

on SERP, a conversational system is often constrained by the inadequacy of display

support. Therefore, it is ineffective for such systems to display the list of results (on

a small screen) from the search engine results page (SERP). Alternatively, reading out

the entire list over audio is insufficient and cognitively demanding for the user (Thomas,

McDuff, Czerwinski, & Craswell, 2017; Trippas et al., 2018). Instead, in similar situ-

ations, the system should perform answer aggregation, assimilation, or summarization

of the SERP results.

While the audio-channel is good for factoid questions (e.g., Who is the President
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of the USA?), which can be answered in a single sentence, more complex queries (e.g.,

What can you tell me about the life of current US President?) are answered with a

SERP. However, if the user intention and the information problem are simple enough,

the user may expect the final answer, obtained directly from within a document, without

the SERP. To answer such a question directly, the intermediary (system) will need

to create a model of the user and his intent through conversation. It could also use

historical search patterns to model similar users, their intents, and queries. By modeling

the user question (voice query), the user profile, and the query, similar documents

can be clustered to answer the question. Such clusters would allow the user to have

greater coverage of information space (Trippas et al., 2015b), better understand his

information need, and assess relationships between the search results (Pu, 2010). The

system response, presented in the form of audio-summaries, will allow the user to select

between the results of the SERP page (in case of a SERP summary) in subsequent

turns or access the information directly (in case of document summary). However,

presenting the information not only requires the integration of the search engine with

the documents (Trippas et al., 2018), but also the information must be transmitted in

smaller chunks (short audios, limited results) (Lai & Yankelovich, 2002; Trippas et al.,

2015a) to prevent overloading the users’ short-term memory (Turunen et al., 2012).

For evaluating the conversational search systems, it is essential to develop newer

evaluation paradigms and metrics. Such evaluations will be based on quantitative and

qualitative factors and are likely to be user-dependent and costly (Stein & Maier, 1995).

The evaluation will also require preparation of gold standard datasets and assessment

of the system performance not only from an information retrieval perspective, but also

from the perspectives of artificial intelligence (recognition of voice, modeling of intent,

intelligence), communication (clarity, adequacy, and better dialogue management), and

user-centered designing (user comfort, convenience, and aesthetics).

Overall, a conversational system should be more robust, precise, effective, mean-

ingful, engaging, and interactive (Jadeja & Varia, 2017) than a text-based system.

The interactions should not only be effective functionally but be more human-like in
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terms of style (Thomas, Czerwinski, McDuff, Craswell, & Mark, 2018), diversity, emo-

tions, ethics, and morality (Z. Liu et al., 2017; Radlinski & Craswell, 2017). If the

conversation involves multiple users (if the device or system is used by multiple users

simultaneously), the conversational system should adapt accordingly (to the speaker,

his language, background knowledge, and characteristics). The system should be able to

derive the relationship between different users and respond to the users individually or

in a group. The system should also model personality and keep track of different users,

their attributes, and states. In an open-domain conversation, the conversational search

agent must maintain coherence between successive turns and take the initiative like a

human intermediary (Bowden, Oraby, Wu, Misra, & Walker, 2017). As many of these

characteristics are desirable but too complicated to execute, the conversational agent

should gracefully reveal the services offered and the limitations to the user (Radlinski

& Craswell, 2017).

2.2 Conceptual Frameworks

In this section, we discuss different conceptual frameworks for informational retrieval

and specifically conversational systems.

2.2.1 Theoretical Models in IR

Many researchers have proposed different theoretical frameworks for research and de-

velopment in user interfaces that support information seeking (Marchionini & White,

2007). The popular models of information search (Belkin, 1980; Ellis, 1989; Marchion-

ini, 1997; Saracevic, 1997; Wilson, 1999) explored how the users performed a search in

a specific environment, either online or in-person (Hearst, 2009). Searching for infor-

mation is motivated by an information problem or need. Belkin (1980) explained the

information need from a cognitive viewpoint while Taylor (1962) conceptualized infor-

mation need as a fluid process with four stages: visceral, conscious, formalized, and

compromised. Information seeking has been envisioned as an evolving process (Bates,

1989) with multiple stages or steps (Ellis & Haugan, 1997; Marchionini & White, 2007;
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Saracevic, 1997) and involves both the user and the intermediary.

Figure 2.1: Stratified Model (Saracevic et al., 1997).

Marchionini and White (2007) divided the information-seeking process into various

subprocesses – recognize the information need, accept the information need, formulate

the problem question, expression of the problem in a way understood by a search sys-

tem, examination of the results returned by the search system, and reformulation of

the problem and its expression. Ideally, the search engine (or intermediary) should

assist the user in different stages of this process from translating the information need

to query to evaluating the results (Hearst, 2009). Saracevic (1997) proposed the strat-

ified model (Figure 2.1) from both the user- and the system- perspectives. According

to this model, there are several connected levels – content, processing, and engineer-

ing levels on the system side and query, cognitive, affective and situational levels on

the user side – and the user-computer interaction occurs at the interface level. The

strata are not independent of each other and the weakest point of interaction between

user and computer can compromise from achieving the best possible outcome of the

search. Ellis and Haugan (1997) divided the process of information-seeking into eight
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functional categories – surveying, chaining, monitoring, browsing, distinguishing, filter-

ing, extracting, and ending. Bates (1989) suggested that the information query is an

ever-evolving and modifying process that is not satisfied by the final retrieved set but

by bits of information at each stage of the search process (Figure 2.2). Several other

studies looked at information seeking from cognitive perspectives (Ingwersen, 1996) and

as part of everyday life (Savolainen, 1995).

Figure 2.2: Berrypicking Model (Bates, 1989).

2.2.2 Frameworks for Conversational Search

Some of the early research in conversational search explored how dialogues can be in-

corporated in retrieval systems (Oddy, 1977; Sitter & Stein, 1992; Stein & Maier, 1995).

According to Winograd, Flores, and Flores (1986), in an information-seeking episode,

the searcher-intermediary dialogue is akin to a conversation and can be represented

using a state transition network. In other words, any information-seeking dialogue can

be modeled based on the different speech or dialogue acts. This formed the basis of

the Conversation for Action (CfA) model – a theoretical model which could simulate

any conversation – where each node represents one of the dialogue states, and the arcs

are speech acts which help to transition from one dialogue state in the conversation to



28

the other. The CfA model combines the philosophy of language with interpretations in

context. The authors argue that the meanings of utterances are socially constructed,

and the behavioral expectations of the participants control the flow of conversation.

Later, the CfA model was modified and extended by Sitter and Stein (1996) through

their analysis of some generic dialogue scenarios. The authors proposed the Conversa-

tional Roles (COR) model, which categorizes the dialogue acts based on the intention

of the participants and aims to guide the users through different stages of IR by formu-

lating a dialogue plan. An alternate approach has been adopted by Belkin, Cool, Stein,

and Thiel (1995) who conceptualize Information Retrieval as interactive information

seeking and use case-based reasoning (CBR) (Riesbeck & Schank, 1991; Schank, Kass,

& Riesbeck, 2014) to model the human-computer interaction in an IR system. To un-

derstand the information problem and to generate effective interactions, the authors

propose various information seeking strategies (ISS) and example scripts to model the

pattern of human-computer interaction. The interaction patterns differ significantly for

different information-seeking strategies and could be modeled using the COR model.

In a separate work, Daniels et al. (1985) performed discourse analysis of human-human

information interactions and proposed a problem structure that could be used to guide

human-computer information-seeking dialogue. The authors presented the goal hierar-

chy (Table 2.4) and how the goals are instantiated as the foci of the dialogue.

Table 2.4: Goal Hierarchy for Document Retrieval Problem (Daniels et al., 1985)

Level Goal

1 User leaves the system
2 User is satisfied
3 Appropriate response to user
4 Appropriate search formulation
5 Subgoals to achieve Level 4 goals
6 Subgoals to achieve Level 5 goals

The proposed frameworks in the early 1990s preceded the recent growth in conver-

sational search systems. Some of the latest works in this domain (Azzopardi et al.,

2018; Trippas, Spina, Cavedon, & Sanderson, 2017a; Vakulenko, Markov, & de Rijke,

2017) attempted to develop frameworks capable of explaining the information-seeking
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dialogues and the associated cognitive functions. Trippas et al. (2017a) suggested a

turn-based framework for spoken environment (Figure 2.3), Azzopardi et al. (2018)

provided an extensive list of actions and interactions in conversational search (Figure

2.4) while Vakulenko et al. (2017) proposed the QRFA model to show the conversation

flow in information seeking episodes (Figure 2.5). These frameworks create the plat-

form for automatically identifying the different dialogue patterns and the corresponding

search actions witnessed during human-human information-seeking dialogues.

Figure 2.3: Interaction Theme Map (Trippas et al., 2017b)

In recent research, attempts have been made to develop newer frameworks to explain

conversational information-seeking dialogues or to bridge the terminology gap between

different conversational datasets and the associated cognitive actions (Azzopardi et al.,

2018; Trippas et al., 2017a; Vakulenko et al., 2019). To this end, Trippas et al. (2017a)

suggested a turn-based framework for the spoken environment, Azzopardi et al. (2018)

provided an extensive list of actions and interactions in conversational search while

Vakulenko et al. (2019) proposed the QRFA model to show the conversation flow in

information seeking episodes.
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Figure 2.4: Actions and Interactions (Azzopardi et al., 2018)

Figure 2.5: Functional Annotation Schema (Vakulenko et al., 2019)
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2.3 Approaches to Conversational Systems Research

Research in IR, and in Conversational Search Systems have followed two distinct ap-

proaches – user-centered and algorithmic. The former focuses on the user behavior and

preferences while the latter is concerned with building predictive models and systems

in a data-driven way. In this section, we try to highlight the breadth of this domain

by providing an overview on the research approaches. The first part discusses research

involving users while the second part elaborates on the applications of machine learning

algorithms in conversational search systems.

2.3.1 User-centered Research

Human information-seeking behavior on the Web is governed by the affordances of

browser-based search systems. The primary actions of the user can be categorized as

query input, result selection recommendations, and item selection (White, 2016). The

search system has become more interactive over the years. It not only responds with the

ranked list of relevant documents, but also completes the query automatically, recom-

mends alternate queries, and provides short summaries or snippets of results. Research

in spoken conversational search systems has focused on various aspects of user-centered

development and design: input mechanism (interface design, query behavior, and spo-

ken dialogues), information processing (dialogue analysis and user intent detection),

and result presentation (result summarization, system clarification, prosody). This line

of research requires a controlled environment, involves users or participants, focuses on

detecting the user’s behavioral patterns and preferences, and makes design recommen-

dations.

Interface Design

Although speech is the most natural way of human-human communication, yet typed-in

text emerged as the primary mode for human-computer communication. Any conversa-

tional system can be thought of as an interface or platform through which the users can

interact with computer applications like databases in spoken natural language. With
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the improvements in automatic speech recognition (Xiong et al., 2018) and machine

learning (L. Yang et al., 2018), the development of advanced voice-based search in-

terface has become possible. In the early 1990s, the available interfaces were limited

to small interactive programs that could handle simple requests over the phone. Cur-

rently, spoken interfaces are being used for question-answering systems, virtual digital

assistants (McTear, Callejas, & Griol, 2016), and domain-specific tasks (Walker, Pas-

sonneau, & Boland, 2001). Interacting with computer systems through speech still

remains unnatural (Klemmer et al., 2000; Turunen et al., 2012). Newer technologies

like Google Home and Amazon Alexa have a high acceptance rate because of novelty

but they leverage one of the major advantages of voice-based conversational systems:

they support operation without touching or looking at the device (Cohen & Oviatt,

1995; McTear et al., 2016; Yankelovich, Levow, & Marx, 1995).

Research in spoken search interfaces (Gibbon, Moore, & Winski, 1997; McTear

et al., 2016; Varges, Weng, & Pon-Barry, 2009) explored how to translate dialogues

to database queries, the optimum amount of information to be presented back, and

if providing a summary of irrelevant options increases user’s confidence (Demberg &

Moore, 2006) One of the most useful properties of any interface is to provide real-time,

context-aware feedback for any user action (Griol, Carbo, & Molina, 2013), such as

highlighting the query terms in the search results (Hearst, 2009). Ajmera et al. (2011)

proposed to acoustically highlight the keywords in audio that contain the query terms

while Tuuri, Eerola, and Pirhonen (2011) used prosodic non-speech audio feedback for

physical training application. A beeper-style sound stimulus was introduced to express

four different meanings, and the perceived expression by a group of users was noted. It

was found that prosodic characteristics provide useful information to correlate between

communicative function and acoustic descriptions (Tuuri et al., 2011). Yankelovich

et al. (1995) conducted a detailed study for designing the speech user interface and

recommended that the system-level dialog must be short and informative. Winterboer,

Tietze, Wolters, and Moore (2011) proposed a user model-based summarize and refine

(USMR) system and highlighted the importance of discourse markers. Higashinaka

et al. (2014) discussed the challenges of open-domain conversational systems. Such
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systems are hard to develop as there are no bounds on the topics, the utterances, and

the direction of the conversation. Sugiyama, Meguro, Higashinaka, and Minami (2013)

proposed that system utterances could be generated by using a combination of salient

words in the user utterance and related words gathered from social media.

Query Behavior

The differences between voice-based and text-based search systems have been assessed

by several researchers (Arguello, Choi, & Capra, 2018; Crestani & Du, 2006; Guy,

2016; Sa & Yuan, 2019; X. Yuan, Belkin, & Sa, 2013; X. J. Yuan & Sa, 2017). Most

of the studies collect data through controlled laboratory-based observational studies or

crowdsourcing (Arguello et al., 2018). Guy (2018) suggested spoken queries are closer

to natural language than typed in queries. In a separate study, Crestani and Du (2006)

concluded that spoken queries are more prolonged than written queries but do not have

any positive effect on the information retrieved. Sa and Yuan (2019) investigated the

partial query modification patterns in spoken conversational systems using a Wizard-of-

Oz study while X. J. Yuan and Sa (2017) assessed the user query behavior for different

task types using spoken and textual interfaces.

Guy (2018) extended the previous work to explore how voice-based search differed

from text-based search. The author suggested that spoken queries are mostly used

for audio-visual retrieval, on the go, and therefore, the browsing behavior of people is

different when using spoken queries. Studies (Yi & Maghoul, 2011) have also shown

that voice queries are typically longer but use twice the number of stopwords and hence,

are not linguistically richer when compared to typed-in queries. The findings of Sahib,

Tombros, and Stockman (2012) claimed otherwise, arguing that voice-based queries are

about 2.5 words long, which is less than typed in mobile queries (2.9 words) and typed

queries in desktop search (3.1 words).

Experimental Study Designs

There have been several studies that attempted to understand the user behavior and

preferences for conversational agents (Arguello et al., 2017; Avula, Chadwick, Arguello,
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& Capra, 2018; Begany et al., 2015; McDuff, Thomas, Czerwinski, & Craswell, 2017;

Thomas et al., 2017; Trippas et al., 2018, 2017a, 2015b; X. Yuan, Belkin, Jordan,

& Dumas, 2011). Most of these studies use crowdsourced workers or Wizard of Oz

techniques (Avula et al., 2018; Thomas et al., 2017; Trippas et al., 2018, 2017a, 2015b)

and almost all of them monitor the interaction patterns between the searcher and the

agent (Dubiel et al., 2018; Teevan, Alvarado, Ackerman, & Karger, 2004; Trippas et

al., 2018; Vtyurina, Savenkov, Agichtein, & Clarke, 2017).

To understand the types of conversations that take place between the user and the

intermediary, it is essential to observe the searcher-intermediary interactions during the

task. The collected data usually includes audio and video signals along with transcripts

of the dialogues. The collected datasets (Thomas et al., 2017; Trippas et al., 2018)

are useful to researchers for understanding the patterns of human-human interactions

that occur between the searcher and the intermediary. The research outcomes provide

insights on ideal human-computer interactions and search tactics (Gibbon et al., 1997)

for effective voice-based searching.

Some other studies (Larson, Jones, et al., 2012; Trippas et al., 2017a; Zarisheva

& Scheffler, 2015) discuss protocols for transcribing the audio and annotating the ut-

terances. Annotating the dialogues of a conversation is based on the hypothesis that

each distinct class will provide an insight into the user and system behavior during

the conversation (Reithinger & Maier, 1995). Various studies (Allen & Core, 1997;

H. Bunt, 2009; Kim, Chern, Feng, Shaw, & Hovy, 2006; Qu et al., 2018; Searle &

Searle, 1969) have explored the process of annotating and developed different anno-

tation schemas and classification taxonomies for spoken conversational systems. The

annotation schema could focus on the effectiveness of the conversation (Kim et al.,

2006), user intent (Qu et al., 2018), or functionality (Trippas et al., 2017b). H. Bunt

(1999, 2009) proposed a dialogue system called Dynamic Interpretation Theory (DIT)

to categorize four different types of human-human dialogue. DIT uses various com-

municative factors like semantic, social, linguistic, cognitive, and physical contexts to

create an annotation schema.



35

Studies have also been conducted to evaluate and improve user satisfaction in con-

versational systems (Jadeja & Varia, 2017; Kiseleva & de Rijke, 2017; Kiseleva et al.,

2016; Mehrotra, Awadallah, Kholy, & Zitouni, 2017). Thomas et al. (2018) explored

user-specific conversational styles to improve user engagement. Others have worked on

querying by voice (Utama, Weir, Binnig, & Çetintemel, 2017), reformulations of spoken

queries (Nogueira & Cho, 2017), characteristics of spoken query (Guy, 2016). Some

research works have also explored identifying user intent through query suggestions

(Radlinski & Craswell, 2017), clarifications (Aliannejadi, Zamani, Crestani, & Croft,

2019), and negative user feedback (Bi, Ai, Zhang, & Croft, 2019).

2.3.2 Applications of Machine Learning

Conversational systems, as the name suggests, involve dialogue between the user and

an automated system. However, such interactions are not restricted to audio-channels

only. For example, recent works on conversational systems have not only focused on

IR systems but also on language modeling, question-answering, chatbots, and image

captioning systems. Although retrieval is the most important part of conversational

search systems, yet it requires applications from other areas like natural language pro-

cessing, speech recognition, artificial intelligence, cognitive science, and so on. Deep

neural models have a profound influence on all the above developments because of their

ability to process massive volumes of raw data to discover the complex, non-linear rela-

tionship between input and output hierarchically. In this section, we discuss the studies

in conversational systems that involve various applications of machine learning.

The architecture pipeline of a spoken conversational system has been highlighted by

Kotti et al. (2017) in their work (Figure 2.6). The process starts with recognizing speech

(voice-query), then processing and understanding it in the context of the user and his

situation, and generating the response. As most retrieval systems work best with text,

an efficient, conversational system should identify the spoken utterances and convert the

spoken query into text using automatic speech recognition (ASR) (Hinton et al., 2012).

Next, the system needs to develop an understanding of the natural language (Natural

Language Understanding or NLU), manage the states of the conversation (Dialogue
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Management), and generate an appropriate response (Natural Language Generation or

NLG). The response generation involves identifying the domain of conversation, user

intent, and user-, language-, and intention-modeling. Finally, the textual response needs

to be converted back to audio (Text-to-Speech or TTS) for the user. The final stage

would be to evaluate the quality and usefulness of the user-system interaction (Quality

Evaluation).

Figure 2.6: Architecture of Spoken Conversational Systems (Kotti et al., 2017).

Machine Learning (ML), and Deep Neural Networks (DNN) specifically, have pro-

vided immense support in automatic speech recognition and natural language pro-

cessing, understanding, and generation. The applicability of deep neural networks in

language modeling has been proven by the works of Bengio (2012), Mikolov, Karafiát,

Burget, Černockỳ, and Khudanpur (2010), and Mikolov and Zweig (2012). By repre-

senting words in a document using embeddings, it is possible to capture the context and

semantic relationship between words. Word embeddings successfully capture the gram-

matical structures and the domain information from the training corpora. As we move

hierarchically from words to sentences to documents, the sparsity could be tackled using

different vector manipulation techniques. Ganguly, Roy, Mitra, and Jones (2015) ap-

plied generalized language modeling to reduce the vocabulary gap and enhance retrieval

efficiency. The authors used word embeddings to find transformational probability be-

tween terms present in a query and a document. In separate work, Zamora-Mart́ınez,

Espana-Boquera, Castro-Bleda, and De-Mori (2012) augmented the neural language

model with a cache model to capture long-term dependencies.



37

Retrieval models work well only when there is a large amount of data to select

candidate responses. Yan et al. (2016) mined context using previous utterances and

obtained the relationships between Query-Reply, Query-Posting, and Query-Context

pairs. The responses were ranked using a convolutional neural network (CNN). In

separate work, F. Yang, Mukherjee, and Dragut (2017) used the Dual-LSTM chain

model to rank the responses and to suggest the next utterance simultaneously. Both the

models proposed were trained using public posts and their associated replies available

on the Web. Wu, Wu, et al. (2016) used a sequential matching network for response-

utterance matching and an RNN to obtain the relationship between utterances. This

model was trained using the Ubuntu Dialog Corpus (Lowe, Pow, Serban, & Pineau,

2015), which contained around one million context-response pairs obtained from the

chat logs of Ubuntu Forum. The latest work by L. Yang et al. (2018) used a retrieval-

based module with additional modules for knowledge extraction and pattern matching.

Sordoni et al. (2015) trained the model (Recurrent Neural Network Language Model)

end-to-end using social media data. The model was data-driven, context-sensitive, and

open-domain. On the other hand, Serban, Sordoni, Bengio, Courville, and Pineau

(2016), Serban, Sordoni, et al. (2017), and Serban, Klinger, et al. (2017) developed dif-

ferent generative models for goal-oriented (Serban et al., 2016) and non-goal-oriented

dialogues (Serban, Klinger, et al., 2017). Serban et al. (2016) used RNN and n-grams to

build a hierarchical recurrent encoder-decoder. The open-domain dialogue model was

pretrained on a large corpus of question-answer pairs, and the response was generated

word by word. Serban, Klinger, et al. (2017) used a hierarchical sequence-to-sequence

framework with multiresolution RNNs to build the conversational model. Two se-

quences were generated, the high-level coarse tokens and the low-level natural language

words. This conversational model, which was built for the technical support domain,

generalized well to new examples. In a different work (Serban, Sordoni, et al., 2017),

the authors used twitter conversations to train an RNN architecture with latent vari-

ables. The latent variables modeled the complex dependencies in the sub-sequences

and helped in the generation of long utterances. However, generation-based models are

often criticized for generating dull responses which are not informative to the user.
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Dialogue systems may comprise single or multiple turns. Single-turn systems (Shang,

Lu, & Li, 2015; H. Wang, Lu, Li, & Chen, 2013; M. Wang, Lu, Li, & Liu, 2015; Xing

et al., 2017) are easier to build, and models question-response pairs, but the lack of

context makes them ineffective for long conversations. While Shang et al. (2015) used

an encoder-decoder framework, M. Wang et al. (2015) matched two short texts to pro-

duce the response. They mined matching patterns using a dependency tree and then

used those patterns to train the deep neural network. H. Wang et al. (2013) used a

retrieval-based approach to match the candidate responses. The authors trained the

neural network on a Chinese microblog service. Multi-turn systems (Serban, Klinger,

et al., 2017; Serban et al., 2016; Serban, Sordoni, et al., 2017; Sordoni et al., 2015)

can preserve the context by storing the entire conversation session as a vector. Use

of RNN (Shang et al., 2015; Sordoni et al., 2015) is typical for modeling context and

temporal information in multi-turn dialogue systems. Some other works have focused

on different aspects of conversational IR systems: The work of Williams et al. (2014)

and Zhao and Eskenazi (2016) tackles dialog states using deep reinforcement learning;

Z. Chen, Yang, Zhao, Cai, and He (2018) used CRF-structured network with end-to-end

training to identify dialogue acts; Kotti et al. (2017) used CNN to predict unsuccessful

dialogues in the early stages of the conversation. Ren, Malik, Ni, Ke, and Bhide (n.d.)

used deep learning (LSTM with attention) and word embeddings to understand the

questions in a multiturn conversation. C. Liu, Xu, and Sarikaya (2015) used the deep

neural network for understanding spoken language. W. Wang et al. (2018) enhanced the

conversational experience by increasing the coverage (by extending the topic to related

ones) or focus of the conversation (by selecting important keywords). The authors

used an encoder-decoder framework with recurrent neural networks (with attention)

and multilayer perceptrons for encoding and RNN for decoding. Boroş and Dumitrescu

(2015) designed a high-quality neural text-to-speech system (using autoencoders) for

smart devices that require minimal memory and no internet support. The research

proves that DNNs could be efficiently applied to mobile devices, with minimal decline

in performances.

While task-oriented interactions help the user in accomplishing specific tasks (Wen
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et al., 2016; Williams & Zweig, 2016), non-task-oriented dialogues can be chitchat or

informational (W. Wang et al., 2018). Some examples of task-oriented systems would be

digital personal assistants who can set alarms, play music, and place an online order at

the request of the user. Both Wen et al. (2016) and Williams and Zweig (2016) proposed

task-oriented systems, which operate in a text-based environment (chatbots) and can be

trained end-to-end. While Wen et al. (2016) use CNN feature extractor with a Jordan-

type RNN belief tracker, Williams and Zweig (2016) used Long Short-Term Memory

(LSTM). Chitchat systems (Shang et al., 2015; Xing et al., 2017; Y. Zhang et al., 2018)

are purely conversational without any goal orientation and are mostly open-domain

(e.g., ELIZA). Informational systems, on the other hand, help the user in exploring

some topics through conversation. Shang et al. (2015) and Xing et al. (2017) generated

responses for short textual conversations. The former implemented an encoder-decoder

framework using RNN, while the latter used a topic-aware sequence-to-sequence model.

Persona-based conversational models are also popular as they capture the styles and

backgrounds of individual users: Li et al. (2016) used LSTMs while Y. Zhang et al.

(2018) used memory augmented neural network to develop persona-based chatbots.

Machine (and deep neural) learning has been a popular choice for solving various

problems in conversational IR (Jadeja & Varia, 2017; Li et al., 2017; Yan & Zhao, 2018).

However, implementing a deep neural conversational IR model has many challenges

(Jadeja & Varia, 2017). A single objective function may not be enough to capture the

different goals of the conversational system. Recent works (Shang et al., 2015; Sordoni et

al., 2015) in recurrent neural networks have been more successful in modeling context in

conversations using natural language (Vinyals & Le, 2015). While CNNs use fixed-size

windows to handle variable-length word sequences and identify local patterns, RNNs

can capture information in a word sequence. Y.-N. Chen, Hakkani-Tür, and He (2015)

trained the model to learn intents and utterances using tri-letter vector embeddings.

Jadeja and Varia (2017) highlighted the different challenges and suggested how Deep

Reinforcement Learning can be used for implementing the conversational IR models.

Li et al. (2017) proposed an adversarial framework: the generator to produce responses
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sequences and discriminator to differentiate between human and machine-generated di-

alogues (reward function). Microsoft Research has developed a specialized deep learning

architecture called deep semantic similarity model (DSSM) and convoluted-DSSM for

conversational web searches (Deng, 2016).

Some of the recent works use deep neural networks to answer complex questions

(Kenter & de Rijke, 2017), predict the success of dialogues (Kotti et al., 2017), improve

contextual awareness (Yan et al., 2016), reformulate multiturn questions (Choi et al.,

2018; Gao, Galley, Li, et al., 2019; Ren et al., n.d.), and present exploratory search

results as interactive stories (Vakulenko et al., 2017). Much work has also been done on

conversational recommendation (Michalski, Charlin, & Pal, n.d.; Micoulaud-Franchi et

al., 2016; Sun & Zhang, 2018; Y. Zhang et al., 2018) where the authors use end-to-end

frameworks for e-commerce, movie, music, healthcare, and banking industries.

2.4 Chapter Summary

The interdisciplinary nature of conversational search as a domain has led to overlapping

research in the fields of human-computer interaction, machine learning, and information

science. In this chapter, we have described the background and research works related

to this thesis. We discuss the seminal papers that define conversational search systems

and the properties expected of such systems. As “conversational” is a broad term cov-

ering any natural language dialogue-based interaction, conversational search systems

could be categorized into text-based chatbots or voice-based personal assistants. Simi-

larly, they may or may not be task-oriented and could involve question-answering and

recommendations. Next, we discussed some of the papers which contribute towards

building a conceptual framework for both information retrieval systems and conversa-

tional systems.

As spoken conversational systems are still in a nascent stage, numerous challenges

need addressing soon. Research in conversational systems has explored context-building

in conversations, user query behavior, user intent recognition, and results presentation.

However, there are some open research problems in natural language understanding
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and user-system communication. For example, current state-of-the-art models perform

poorly as the search tasks get more complex. To exhibit human-level cognition while

searching, search systems must understand the natural language utterances by the user

and respond accordingly. Also, the user-system communication is problematic in the

absence of system-level clarifications. As the search actions of the system are not

revealed to the user, it is possible for the system to incorrectly interpret the user’s

information problem and therefore, pursue a wrong search direction.

Research in conversational search systems could also be categorized as user- or

system-oriented depending on the research methodology. The choice of methodology

is motivated by the problem being investigated by the researcher. User-oriented re-

search concentrates on the end user and explores different aspects of system design

and interfaces. By conducting user studies, the researchers observe user behavior in

controlled or naturalistic setting and evaluate system usability and user preferences.

System-oriented research focuses on the algorithmic development, which includes (but

is not limited to) the use of machine learning to process large-scale data and develop

insights. We describe both of these research approaches as they inform our choice of

methodology and study design.
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Chapter 3

Research Questions

In this chapter, we discuss the theoretical structures which guide the direction our

dissertation research and the research questions that follow from those structures. In the

following sections, we briefly recapitulate the research gaps and discuss the theoretical

models which furthers our understanding of the problem and helps us in proposing the

research questions.

3.1 Facilitating User-system Conversation

Over the last few years, we have witnessed many research efforts towards the devel-

opment of voice-based personal assistants. While the existing state-of-the-art personal

assistants perform satisfactorily for simple tasks, they are insufficient as search systems.

As the search tasks get more complex, it necessitates a greater effort to understand the

user’s information problem. The effort could be in the form of higher cognition (as in

a human-human conversation), more contextual awareness (through better knowledge

representation), or longer conversations.

Most of the existing conversational search systems fail to identify the information

need and the search context of the user. This can be attributed to the lack of effort

from the agent to explicitly clarify its understanding of the user with the user himself.

As the user has minimal control over the search process, and the actions of the system

are hidden from the user, it leads to vicious cycle where every iteration leads the search

away from the preferred direction (of the user). Many conversational search episodes

lead to failures as the user is unhappy about the clarity of communication, the quality

of the search performed, and the reliability of the information returned.

To address this problem, we rely on the theoretical understanding of discourse as
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proposed by prior works (Brooks & Belkin, 1983; Hollnagel, 1979). Conversational

search dialogues are mostly goal-oriented, where the user’s goal is to solve his problem

using the information provided by the system (or intermediary). The system’s goal is to

provide the most relevant and useful information available to it. The search situation

is not well-defined (more so for complex search tasks) as the goals of the user can

differ significantly based on his status, socio-cultural position, and self-image (Brooks

& Belkin, 1983). However, the subjective nature of the user goal can be handled through

co-operative dialogue, which iteratively enhances the knowledge of the system about

the needs of the user.

The types and models of interaction required in intentional discourse have been

discussed in Hollnagel (1979), where the focus is more on the functional analysis of

discourse rather than linguistic. Failures in human-human communication are often due

to the inability to understand the other person. This is exacerbated by any reluctance to

clarify our understanding of the conversational partner explicitly. Therefore, Hollnagel

(1979) proposed the joint cognitive system, where the author stressed the importance

of shared knowledge to achieve an effective and successful communication. Hollnagel

(1979) highlighted that any successful communication must involve both the parties

having a clear model of each other (Figure 3.1). This model – which is an abstract

level of understanding – involves knowledge of the preferences, long- and short-term

contexts, and personality of the conversational partner. We believe that in any user-

system information-seeking conversation, the user should clarify his search preferences,

search context, and information need to the agent, and the agent should reveal its

actions, limitations, and capabilities to the user (Radlinski & Craswell, 2017).
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Figure 3.1: Paradigm for Communication (Hollnagel, 1979).

The framework proposed by Hollnagel (1979) has been used previously to develop

a model of clarity (Belkin, 1988). In his work, Belkin (1988) defines clarity as a state

where the user develops an understanding of the components and functioning of the sys-

tem he is interacting with. The authors also highlight that such clarity can be achieved

through “overt explanation.” In a futuristic system with high levels of cognition, the

clarity is guided by the requirements of interaction and can be achieved by explaining

the ongoing search process, the intended actions (by the system), and the information

resources (Belkin, 1988). While the system should explain its model of the user on-

demand or during the search process, both the user and the system can also engage in

secondary communication by providing more information about each other, the search

task and the context.

While these interactions could potentially help the user and the agent to understand

each other better, it is essential to evaluate if explicit clarifications are necessary and

desired by the user. In our work, we envision a system that does not possess human-like

cognition and is feasible in the next few years. Therefore, in our work, we explore the

influence of explicit system-level explanations, which are cognitively less complex and

are provided unprompted by the system. The clarification provided is limited to the

search system’s model of the user and the user’s information need at different points in

time, and includes explanations about the queries and information sources used by the
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system. We investigate if such clarifications can facilitate the user-agent communication

and improve the user’s search experience.

Therefore, we formulate our first research question as:

For moderately complex tasks, can we determine the influence of explicit

system-level clarification on the user’s search experience?

3.2 Improving System’s Understanding of the User’s Search Problem

Current state-of-the-art conversational search systems often fail to recognize the infor-

mation need of the user, especially for exploratory and complex tasks where the question

is non-factoid in nature. In any conversational search environment, it is important that

the agent understands the utterances by the user and performs the appropriate search

activity. This is a domain-specific natural language understanding problem where the

user’s utterances guide the agent’s action. Spoken dialogues communicate the search

intent and the information need of the user (searcher) to the agent (intermediary). In

response, the agent performs specific, expected search actions.

To better understand the natural language utterances of the user during an information-

seeking conversation, we situate our research using the theoretical frameworks devel-

oped in intelligent systems, discourse, and dialog communities (Sitter & Stein, 1992,

1996; Stein & Maier, 1995; Winograd et al., 1986). During spoken conversational search

sessions, the user considers the system as a conversational partner, and the system is

expected to interpret the user’s commands, and intentions as an intelligent cognitive

being should. However, the user has the freedom to explain his problem using natural

language and can be verbose, vague, and incoherent. The user may not plan the con-

versation, and there may not be any specific goal to achieve. Also, the users change

the goals and strategies during the search session (Stein & Maier, 1995). Therefore,

Winograd et al. (1986) represented the searcher-intermediary conversation (during in-

formation search) using a state transition network. The authors highlighted that any

information-seeking dialogue could be modeled based on different speech or dialogue
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acts. This formed the basis of the Conversation for Action (CfA) model – a theoret-

ical model which could simulate any conversation – where each node represents one

of the dialogue states, and the arcs are speech acts which help to transition from one

dialogue state in the conversation to the other. The CfA model is designed to achieve

computer-supported “negotiations” between humans. The model combines the phi-

losophy of language with interpretations in context. The meanings of utterances are

socially constructed, and the behavioral expectations of the participants control the

flow of conversation.

Later, the CfA model was modified and extended by Sitter and Stein (1996) through

their analysis of information-seeking dialogue scenarios. The authors proposed the

Conversational Roles (COR) model, which categorizes the dialogue acts based on the

intention of the participants and aims to guide the users through different stages of

IR by formulating a dialogue plan. The participants assume the roles of information

seeker and provider in alternate turns. The COR model focuses on the interpersonal

nature of dialogues and facilitates the acquisition of knowledge about the conversational

partner incrementally and collaboratively (Stein et al., 1999). COR considers not only

the illocutionary aspects of conversation but also the communicative and functional

aspects. By using the local discourse structures and analyzing the different dialogue

acts and their interrelationships, the user and the agent can formulate conversational

tactics (Belkin et al., 1995).

Stein et al. (1999) aimed to represent all possible scenarios in a human-human

dialogue through this model - acceptance and refusal of conversational roles, requests,

promises, offers, negotiations, and evaluation - by constructing a recursive state-transition-

network (Figure 3.2). The COR model highlighted the various roles which the searcher

and the intermediary assume during search tasks and formed the basis for various pro-

totypical IR systems like MERIT, CORINNA, MIRACLE, and SPEAK!
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Figure 3.2: Conversational Roles Model (Sitter & Stein, 1992).

Therefore, to develop conversational search systems that possess higher-order cog-

nitive capabilities to understand the natural language utterances of the user, a viable

strategy would be to identify the speech (or dialogue) acts in the dialogue. By using the

discourse structures present in conversational dialogues, it could be possible to identify

the functional aspect of it (the goal or intention of the user). Our second research

question – which is motivated by the COR model and focused on improving natural

language understanding in conversational search systems – could be stated as follows:

How can we automatically predict the different speech acts and the search

actions in a user-system information-seeking conversation?

Information-seeking dialogues are task-oriented, and therefore, our problem is re-

duced from open-domain to search task-specific scenarios. We use the theories in dis-

course analysis and human-machine interaction to further the natural language under-

standing of conversational search systems. The actions of the system – which could

either be a spoken utterance or a search action – is governed by the spoken utterances

of the user. In our work, we use the speech acts to identify the intention of the user
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and infer the functional aspect of the utterance. Next, we predict the search function

performed by the system (which is in response to the user’s utterance)

3.3 Research Questions

The two research questions can therefore, be restated as:

• RQ1:

For moderately complex tasks, can we determine the influence of explicit system-

level clarification on the user’s search experience?

• RQ2:

How can we automatically predict the different speech acts and the search actions

in a user-system information-seeking conversation?

Both of the research questions aim to address one common problem in conversational

search systems, which is the inability of the system to understand the user. By answer-

ing both the research questions, we can improve the user-system interaction through

better natural language understanding and communication techniques. While both the

questions go beyond simple tasks involving factoid answers, the first research question

addresses user-system interaction from a communications perspective. Explicit system-

level clarifications can not only improve the users’ search experience but also help the

system to understand the users’ information needs in a better way. The second research

question will lead to an exploration of the problem from a systems perspective. By pre-

dicting the speech acts accurately – which convey the functional aspect of dialogues –

and the search actions, we might help the system to understand the intention of the

user and determine the appropriate search strategy.

3.4 Chapter Summary

In this chapter, we discuss the different theories which motivates this research and

guides the overall direction of this dissertation research. By our review of the semi-

nal work done in discourse analysis and intelligent systems, we identify the theoretical
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underpinning on which are research questions are developed. We have formulated two

research questions focused on the design and development of user-centered conversa-

tional search systems: the first from a human-computer interaction perspective and the

second from the perspective of natural language understanding. The research questions

dictate our choice of methodology and analysis.
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Chapter 4

Experimental User Study Design

In this chapter, we discuss the proposed methodology to answer the research questions.

We discuss the user study design, the experimental setup, the search tasks, and the

set of protocols that were followed. The types of data collected and the data collection

mechanism has also been explained.

4.1 Methodology

First, we will restate our research questions:

• RQ1:

For moderately complex tasks, can we determine the influence of explicit system-

level clarification on the user’s search experience?

• RQ2:

How can we automatically predict the different speech acts and the search actions

in a user-system information-seeking conversation?

To answer the first research question, we needed user-system interaction data that

contained a detailed record of the user- and the system-dialogues. However, as our re-

search focus was on system-level clarifications, the interaction data should contain such

clarifications. There was another caveat: the search task performed by the system must

not be simple. To assess the influence of system-level clarification on the user’s search

experience, we needed to use data that contained some form of user feedback. This feed-

back could be collected post-search or during search using some evaluation strategy. To

reduce the variances and confounding factors, we opted to design a laboratory-based,

controlled, user study. The second research question could be answered by collecting
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user-system spoken dialogues during a conversational search session. As we were not

investigating any specific outcome variable, the user study data (collected for RQ1) was

sufficient to answer the second research question.

Existing conversational search systems have limited cognition and cannot sustain

long conversations or complex questions. Therefore, such systems are not suitable for

inspecting the functionalities that do not yet exist. Most of the research in this domain

relies on a human Wizard to simulate the role of the intermediary (which is a futuristic

version of conversational search systems). Such Wizard-of-Oz experiments help us gain

insight into the functionalities, expectations, and design of conversational agents of the

future. An assessment of publicly available datasets revealed that the data collected

was not suitable to answer the research questions which we proposed. Therefore, we

performed a within-subjects Wizard-of-Oz experiment, which had two setups – one

experimental and one control – to explore the role of clarification in user-agent dialogue.

4.2 Study Design

The user and the intermediary were asked to complete different search tasks in a labora-

tory setting. The experiment was a within-subjects design, in which the users performed

three different search tasks using the two different systems:

1. The baseline or control system (Scontrol), where the interaction between the user

and the intermediary follows the normal flow of conversation; and

2. The experimental system (Sexperimental), where the intermediary explicitly stated

its models (or understanding) of the user and the user’s information need.

The baseline system (Scontrol) helped us to collect the conversational dialogues be-

tween the user and the agent, their interaction and behavioral patterns, and the web

search activities of the agent in response to the user’s questions. No explicit system-

level clarifications were involved in this system. In the experimental system, every time

the agent searched for or returned some information, it explicitly clarified its model

of the user. As the model is an abstract representation, we instructed the Wizard to
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clarify the query terms, information sources, and its understanding of the user’s in-

formation need. The clarifications provided by the Wizard was cognitively simple and

included system revealments. The Wizard revealed his actions to the user every time

he searched and asked for confirmation to proceed with the search. While the baseline

system served as the control, the experimental system helped us to answer our research

question.

There were a total of three tasks (the details of the tasks are provided in the next

section), the first being a warm-up task to familiarize users with the system. The next

two tasks were of moderate complexity levels (developed using the Taxonomy of Edu-

cational Objectives). These tasks helped us in understanding the interaction patterns

and search experiences of the users when seeking information. The data collected from

both the systems were used to create the CONVEX dataset.

Figure 4.1: Task System Combination.

Figure 4.2: Search Task, System Used, and Order of Presentation.

The combination of the tasks and the systems (Figure 4.1) were rotated for different

users to avoid the influence of learning effects on statistical analysis. We also rotated

the order in which these task-system combinations were presented. Figure 4.2 shows
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the 2*2*2 matrix of the search task, the system used, and the order of tasks. We

used the four configurations shown in the figure for our study. In all experimental

setups, the user had to talk to the Wizard over the audio channel and explain his

information need. The Wizard assessed the user’s information need and controlled

how the responses are presented back to the user. The various forms of response were

facts, summaries, or follow-up questions, which were typed in by the intermediary and

converted to audio using text-to-speech software. In our experiment, we do not inform

the user that the intermediary is a human and not an automated system. For the warm-

up and experimental tasks, the users were allowed a maximum of 10 and 20 minutes,

respectively, after which they were asked to fill up a questionnaire and move to the next

task. The Wizard was present for the entire duration of the study and was allowed a

five-minute break after each task. The Wizard was also allowed to leave once the search

tasks were completed, and the exit interview started. Participants were allowed to leave

at any time, but to be compensated, they were required to either complete all the tasks

or spend at least one hour in the laboratory engaging in the search task. Overall, the

user and the agent had to converse with each other to resolve the user’s information

problem and complete the tasks successfully.

4.3 Search Tasks

In this section, we explain how the search tasks were conceptualized and created. We

created backstories or simulated search situations (Borlund, 2000) to place the user

in real-life information seeking scenarios. Such a situation comprises two parts: the

backstory and the search task. The backstory provides context about the search task

and situates the user in the simulated task and creates an information need. This

promotes a more natural search behavior (Borlund, 2002). The search task serves to

mitigate the knowledge barrier and satisfy the information need. The description of the

task instructs the searcher on what to do without explaining how to do it. The searcher

interprets the task in the context which is influenced by the backstory. According to

(Borlund, 2003), the situation should have the following characteristics (White, Jose,

& Ruthven, 2006):
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1. realistic enough so that the user can relate himself to it;

2. topically interesting, and;

3. provides an imaginative context for the user to apply the situation.

4.3.1 Task Complexity

Bloom, Krathwohl, and Masia (1956) proposed the taxonomy of educational objectives

to develop learning objectives. The goal was to foster more creative thinking in the

classroom instead of rote learning. In this taxonomy, Bloom proposed a hierarchical

order of cognitive domains - Knowledge, Comprehension, Application, Analysis, Syn-

thesis, and Evaluation.

Figure 4.3: Taxonomy of Learning (Krathwohl, 2002)

Later, Anderson et al. (2001) and Krathwohl and Anderson (2001) revised the tax-

onomy to create a two-dimensional framework. The authors separated the noun and

verb aspects of the original taxonomy to the knowledge dimension and the cognitive

process dimension, respectively. The revised taxonomy (Figure 4.3) made significant

modifications to how the cognitive process dimension - consisting of Remember, Under-

stand, Apply, Analyze, Evaluate, and Create levels in a hierarchical order, from lowest

to highest - interacts with the knowledge dimension (Factual, Conceptual, Procedural,
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and Metacognitive). While the lowest levels involve additions of new information to our

existing knowledge structures, the middle levels involve reshaping and accommodating

knowledge, while the highest levels may require deleting and restructuring pre-existing

knowledge. The importance of the taxonomy lies in the fact that it views educational

goals as not only recalling facts but creating a more comprehensive understanding and

application of the learned concepts.

4.3.2 Task Development

The first task was a warm-up task which familiarized the participants with the search

system, the search process, and the intermediary. The next two tasks (on different

topics) were assigned one after the other and involved the use of the baseline or the

experimental system. The warm-up task was of low complexity, while the two main

tasks were of moderate complexity levels. Our tasks, which simulated naturalistic search

behavior among experimental subjects, were adopted from the literature (Byström &

Järvelin, 1995; Kelly, Arguello, Edwards, & Wu, 2015; White et al., 2006; Wildemuth

& Freund, 2012). While the warm-up task was from the Remember and Understand

levels of Bloom’s taxonomy, the main tasks were from Analyze and Evaluate levels

(highlighted in Table 4.2 and Table 4.1). The tasks (adopted from White et al. (2006)

and Kelly et al. (2015)) initiated a multi-turn conversation between the searcher and the

intermediary. While present state-of-the-art systems handle simple tasks with factoid

answers, it was important to develop the tasks which would be more complicated (but

not too much) and yet be representative of the search tasks likely to be presented to

the future systems.

The three search tasks are described in Table 4.1. Table 4.2 categorizes the tasks

based on cognitive complexities and outcomes. The warm-up task required the users

to find some factual information. They were expected to identify the facts and write

them in the response. The experimental tasks were more complex as they involved a

comparison of different results and the users were required to come up with a recom-

mendation.
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Table 4.1: Search Tasks

Tasks with Backstory

Warm-up Task (Level: Remember and Understanding)

It is May, and you are in North America. You have been sneezing every morning
and have red, watery eyes. Investigate the following: (1) What could be the cause
of that? (2) Medicines and/or Home remedies. In a few lines, state your findings.

Experimental Task 1 (Level: Analyze and Evaluate)

You are a researcher planning to submit your first paper in one of the top conferences
in Artificial Intelligence and/or Natural Language Processing. However, you are not
sure which conference would be the best option for you. To finalize the conference,
you may want to consider the following factors: (1) Are you interested in Artificial
intelligence or Natural Language Processing? Or both? (2) Writing the paper takes
time. Are you looking for early- or late- 2020? (3) The location could be: North
America, Europe, Asia. Which one would you prefer? Once you have made the
decision, write about the choices which you made and which conference you picked
and why (in brief)

Experimental Task 2 (Level: Analyze and Evaluate)

You want to gift a perfume to your dad for Christmas. You know that your dad
loves the smell of Bergamot in perfumes. To decide, you may consider (1) Bergamot
as one of the notes (scents) in the perfume. (2) How much you want to spend (for
example, you may want a perfume under 100 USD, but your budget allows you to
go as high as 150 USD) (3) You may add any seasonal preference. Once you have
made the decision, write about the choices which you made, and which perfume you
picked and why (in a few lines)
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Table 4.2: Task Categorization and Cognitive Processes and Outcomes

Task Learning Pro-
cess

Mental Activities Target Outcomes

Twarmup Remember and
Understand

Identify, Compile Fact, List

Tmain Analyze and
Evaluate

Compile, Describe, Com-
pare, Decide

List, Recommenda-
tion

4.4 Procedure

This section highlights the steps involved in the study – from the perspectives of both

the user and the agent (Figure 4.4)

Figure 4.4: Experimental Procedure

1. Introduction

Once the participants reported for the user study, they were given a brief overview
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of the research procedure, study objectives, and the role which they were expected

to assume during the search tasks. The participants were handed an Information

Sheet (See Table A.2 for the Information Sheet), which explained the overall flow

of the study. They were also informed that the system is in the prototypical stage

and running in the server. This helped in creating a plausible theory as to why

the system might be slower than existing virtual digital assistants, and why no

devices were available.

2. Consent Form

The participants were asked to sign the Consent Form1, which allowed the re-

searchers to collect data as per Institutional Review Board (IRB) guidelines.

3. Study Briefing

The participants were briefed about the system and the key voice commands to

operate the agent (See Table A.2). The Wizard was informed of the task-system

combinations and handed the guidelines for reference (See Table A.3 and Table

A.4). The study apparatus was checked to make sure that all the components were

functioning as expected. Once the audio connection was set up, the participant

(user) was invited into the test room.

4. Pre-test Questionnaire

The user filled out the Pre-test Questionnaire (See Section B.1 for details). The

questionnaire collected some basic demographic and background information about

the user.

5. Warm-up Task

The users were given a warm-up task (See Table 4.1 for details) to familiarize

themselves with the functioning of the systems. The researcher was available to

clarify any doubts which the user had about the study, the search tasks, or the

functioning of the agent.

6. Pre-Task Questionnaire

1See Appendix Figures A.2, A.3, A.4, and A.5 for the Consent Form
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For each search task, the users were required to answer a Pre-task Questionnaire

(See Table B.2 for details).

7. Experimental Search Tasks

Once we handed the task description, the users had a maximum of 20 minutes to

complete the search task. The users activated the agent (Wizard) using the key

phrase “Hi Joanna”. They had to explain their information need to the agent,

who performed the search and responded with the information. Users could end

the search session at any time if they were satisfied with the information collected.

The users had to write a response to the task question at the end of the search.

Since there were a total of two tasks – one using the baseline and the other using

the experimental system – the steps 6-8 were repeated two times. The description

of the search tasks are provided in Table 4.1.

8. Post-Task Questionnaire

For each search task, the users had to complete a Post-task Questionnaire (See

Table B.3 for details).

9. Exit Interview

At the end of the study, the researcher conducted a semi-structured interview (See

Table B.4 for details) to assess the experience of the participants. The participants

were compensated for their time and effort and paid 20 USD.

The entire experiment was conducted over 6-8 weeks. We recruited a total of 25

participants (users) and 1 Wizard for the study. The numbers do not include the

pilot participants. The duration of each study was around one hour, which included

two search tasks of 20 minutes (maximum) each and one warm-up task of 15 minutes

(maximum).

4.5 Wizard of Oz Setup

One of the major challenges of conducting the study was the difference between human-

human and human-machine conversation. The socio-cultural aspects of conversation
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govern how human beings take turns in conversation, maintain levels of patience and

politeness, and avoid interrupting the conversational partner. However, dialogue strate-

gies are much different when humans talk to machines. The lack of cooperation from

the machine is often a key factor that causes the human-machine conversation to be-

come awkward and unsuccessful, with the human partner being stiff and embarrassed

to continue the conversation beyond a certain point (Morel, 1989). The existing state-

of-the-art automated voice agents can perform only simple searches and answer factoid

questions. Also, the users expect such systems to provide the answer in a form suitable

(short and simple, no videos, images, SERPs, or hyperlinks) for the audio environment.

Fraser and Gilbert (1991) refers to human-computer dialogue as “formal, baby talk,

telegraphic or computerese” due to the lack of intelligence on the part of the computer.

Richards and Underwood (1984) also noted that users tend to be brief and concise,

speak slowly to aid in voice recognition, use simpler vocabulary and more keywords,

and take fewer turns.

This made it necessary to simulate the role of intermediary using a human operator

who would observe the social norms of conversation and perform intelligent functions,

but follow a set of rules to deceive the user into thinking that he is interacting with an

intelligent artificial intermediary. This was the only way to ensure that we captured

an authentic human-computer interaction without developing the actual state-of-art

system. For the success of our study, it was necessary to simulate the role of the

conversational search agent using a human operator. We identified two important

requirements for the Wizard (human intermediary):

1. The intermediary should observe the social norms of conversation and perform

intelligent search functions in real-time.

2. The intermediary should follow a set of rules so that the user is deceived into

thinking that he is interacting with an intelligent artificial intermediary.

We recruited a human operator who was skilled in searching efficiently. The actions

of the human intermediary were restricted to maintain the pretense: the user thought

that he was interacting with an intelligent automated agent who is smarter than the
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existing state-of-the-art but not as smart as a human replacement. It was the only

way of ensuring that we captured an authentic human-computer interaction without

developing the actual state-of-the-art system.

4.6 Observational Study and Experimental Site

The user study contained several search sessions, using three entities - the user (or

searcher), the agent (or intermediary), and the search system. The user – who had no

access to the internet or any other online or offline information source (apart from a

spoken communication channel) – was presented with an information need (through a

simulated backstory and a search task). The agent, on the other end of the commu-

nication channel (audio only), with access to a networked computer, assisted the user

with the search task.

Any user study has several use cases, and the design of the study is governed by

the research questions and the type of data to be collected. A Wizard of Oz study can

be of two types (Bernsen, Dybkjaer, & Dybkjaer, 1996): a controlled experiment where

the participants are instructed to perform some predefined tasks using a simulated

system under artificial laboratory settings. Such a study, while not realistic, helps in

collecting data that is reproducible as the number of variables is significantly reduced.

The other type of Wizard-Of-OZ study would be an uncontrolled experiment where

the participants interact with the system in a natural environment in an unsupervised

manner. It is a field study where the results and interactions are realistic but not

reproducible owing to a large number of variable factors. The success of our study

depended on our ability to deceive the searcher by using a human intermediary in place

of an artificially intelligent search system. Existing conversational agents like Siri or

Alexa, works with a noise-free background. If we allowed the Wizard to be in a natural

environment, the presence of any background noise could reveal the human intermediary

and affect the interactions. Also, the hardware required for a remote study (to record

search logs of the Wizard, the searcher-intermediary audio interactions, and the real-

time conversion of text-to-speech) was considerably complex and difficult to operate

for the participants. As such, in our study design, the searcher and the intermediary
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were spatially separated. They were located in different rooms and were not able to

see each other or communicate using gestures. The entire study was conducted in a

laboratory-based controlled environment (Figure 4.5).

Figure 4.5: Experimental Setting (Petrik, 2004).

4.6.1 Test room for Wizard/Intermediary

The test room for the Wizard contained a networked computer that the Wizard used for

searching information. We created a storyboard with the guidelines and conversation

scripts. The mock system was simulated using a high-quality Bluetooth speaker (which

played the user’s audio to the Wizard), a microphone (to transfer the audio response

from the Wizard to the user), and a networked computer with keyboard and mouse (see

Table 4.3). The Wizard searched on the computer and typed in the response in textual

form. The text was then converted to speech using Amazon Polly2, which is a state-of-

the-art text-to-speech system. The audio was played on the speaker, recaptured using

the microphone, and transmitted to the user (in the test room) using the audio channel.

The microphone served two purposes: (i) It helped us transmit the high-quality audio

played on the speaker to the user (on the other side of the audio channel); and (ii) On

occasions where the user interrupted the Wizard, the microphone allowed us to end the

agent dialogue using the mute button. The audio channel between the user and the

Wizard was established using Google Voice3. Google Voice also allowed us to record

2https://aws.amazon.com/polly/

3https://voice.google.com/
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the entire conversation between the user and the Wizard. The room had to be quiet to

allow the Wizard to concentrate on the search task (which was cognitively challenging

in nature). The microphone was turned off at all times when it was not transmitting.

This was done to eliminate any environmental noise, which, if transmitted to the user,

would have revealed the true nature of the intermediary. The computer was running

Windows 10 operating system. Although multiple browsers were available, the Wizard

used the Google Chrome browser (Version 80.0.3987.122 64-bit) throughout the study.

4.6.2 Test room for User/Searcher

The test room for the searcher was also under laboratory settings to control confounding

factors. While we did not use any unorthodox hardware, the room contained only the

mock system. Before the start of the study, the researcher created a ruse by presenting

a background for the study (Appendix Table A.2, points 7 and 8). This was done to

convince the user that he was interacting with an artificially intelligent system and not

a human intermediary. The researcher elaborated on the ruse and explained that an

advanced prototype was running on the server and was connected to the wireless head-

phone. We also explained that any voice-based hardware devices (like Amazon Alexa

or Google Home) were absent as the software was in a research and development stage.

The wireless Bluetooth headphone transmitted the user’s commands to the Wizard and

the entire conversation was recorded using the record functionality of Google Voice (see

Table 4.3). We also kept a backup audio recorder in the room for any unexpected

scenario.

4.7 Variables

In any user study, the number of variables should be limited in order to investigate

the research questions properly. The experimental variables could be divided into three

different categories:

1. Control Variables
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Table 4.3: Components of the Mock System

Component Description of the Hardware/Software Used

User Interface

Headphones Used by the user for voice commands and listening to the
responses from the Wizard. The user believed that the head-
phone was connected to one of the computers in the room.
The noise cancellation properties made sure that the user
was not distracted by any surrounding noise.

Phone (Hidden) Used to set up an audio call over Google Voice.

Wizard Interface

Computer Used by the Wizard to search online. The computer had
Windows 10 OS installed. The Wizard used the Chrome
browser (Version 80.0.3987.122 64-bit) for searching online.

Text-to-Speech
Software

A web-based instance of Amazon Polly, a state-of-the-art
text-to-speech software, was used to translate the Wizard’s
typed-in text to voice.

Speaker Played the voice (dialogues and commands) of the user.
Microphone The voice output from Amazon Polly was transmitted to the

user using the microphone.

Others

Communication
Channel

Audio call over Google Voice. Google Voice provided the
call recording facility, which allowed us to record the con-
versation between the user and the Wizard.

Text-to-Speech
Software

Converted the typed-in responses from the Wizard into
speech. Allowed different voices and accents. We used the
default (Joanna) voice.

Online Diary Contained the dialogue scripts which could be accessed by
the Wizard.

Kaltura Screen recording tool which was used to capture the search
actions of the Wizard.
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Control variables affect the outcome or response of the experiment. In any ex-

perimental setting, there could be various predictors that influence the outcome

variable. Therefore, the researcher needs to reduce the variance by fixing all the

predictors except the control variable. The control variable is set by the researcher

for different experimental settings. In our study, the System Used was the control

variable.

2. Response Variables

Response variables help in measuring the outcome of the experiment. These vari-

ables are directly related to the research questions. For the first research question,

we were evaluating the user’s search experience using the experimental and the

control systems. Therefore, the response variables were the eight system-level

differentials (Q4-11) in the post-task questionnaire which collected user feedback

on the system experience.

3. Confounding Variables

These variables are noise and do not belong to either control or response variables.

These variables (all predictors except control variables) influence the outcomes

but are not planned while designing the experiment. The experiment should be

designed to reduce the confounding variables as much as possible. Two examples

of confounding variables in our study are Search Task and Task Order.

Fraser and Gilbert (1991) performed an in-depth analysis of the different variables

involved in a Wizard-of-Oz study. In Table 4.4, we have provided a detailed description

of the variables involved in our study.

4.8 Recruitment and Roles

The recruitment of the participants (both the user and the intermediary) was a critical

aspect of the study. The user should be a representative sample of the target population

(for the system), while the intermediary should be selected to closely emulate an ideal

version of a future voice-based conversational search agent. Therefore, it was important
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Table 4.4: Experimental Variables and Values

Variable Definition Values

Scope The amount of simulation in-
volved in the experiment: a
full system or any specific
component of the system

Full system with a focus
on system response (with or
without explicit clarification)

Task The range of tasks which are
simulated in the study

Search tasks which are mod-
erately complex

Searcher parame-
ters

The details of the partic-
ipants who play the role
of the searcher: it could
include different demographic
features, search expertise,
previous experience with
voice-based search agents,
and domain expertise. Some
personal factors like user
personality, patience, affinity
towards technology could act
as confounding factors.

Gender: Male/Female
Search Experience: Users
were required to have prior
experience in browser-based
searching (Self-reported, not
verified or enforced)
Search Skill: Not set
Experience with voice-based
personal assistants: Preferred
(Self-reported, not verified or
enforced)
Domain Knowledge: Not Set
Knowledge of the Wizard: No

Wizard parame-
ters

Different parameters relevant
to the person playing the role
of Wizard. Once again, per-
sonal traits like personality
could be confounding factors.

Amount of Training: 2 search
sessions with the researcher,
followed by 2 pilot studies
Knowledge of the Task: Yes
Topic Knowledge: Yes
Level of experience with the
search tasks: Expert

Communication
Channel

The modes of communication
from the Wizard to user and
from user to Wizard.

Wizard to User: Text con-
verted to Audio
User to Wizard: Audio
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to decide on the different criteria that governed the recruitment of the participants

during the planning stage of the study.

4.8.1 Users/Searchers

As voice-based search agents are becoming ubiquitous, the future system should be

used by people of all age groups and professions. This was an advantage as we did

not have to identify any particular group of users who are more likely to use such a

system. Although the age of the participants was not an influencing factor in our study,

we aimed to keep the variance low by targeting students from a public university with

similar search skills and experience. We circulated the recruitment letter throughout

campus (See Table A.1 for details), over university electronic mailing lists, and on

online forums. In the recruitment letter, we mentioned our preference for participants

who were: (i) fluent speakers and listeners of North American English, (ii) proficient

in using the internet and search functions, (iii) familiar with voice-based conversational

search systems. The preferred language skills and search expertise of the participants

were advertised but not assessed by the researcher. Instead, we relied on self-reporting

by the participants. Although previous studies (White et al., 2006) have shown that

experienced and inexperienced users perform search differently, we targeted the users

who are familiar with the basics of search systems.

The recruited participants were asked to assume the role of the searcher. Based on

the number of different experimental settings (one experimental and one control system

in our case), we recruited N = 25 users for our study. Although our initial plan was to

recruit 20 participants, we ended with 20% more participants to account for the outliers

in the data. The number of users recruited was deemed to be sufficient to perform the

relevant statistical tests with requisite statistical power. Participants were allowed to

leave at any time, but to be compensated, they were required to either complete all

the tasks or spend at least one hour in the laboratory engaging in the search task. The

compensation amount was fixed at 20 USD.
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4.8.2 Intermediary/Wizard

The role of the intermediary was most vital for the success of our WOZ study. Based

on prior literature, the Wizard not only needs to be an experienced searcher who will

be able to perform searches and provide results in real-time but also “a con man”

(Price, Dahlstrom, Newton, & Zachary, 2002) to deceive the user into thinking that

the intermediary is non-human. Modern search systems replicate the traditional role

of librarians as a search intermediary. However, for our research question, the Wizard

did not need to be an expert searcher (like a reference librarian). As we were exploring

the role of system-level clarifications in the human-system information-seeking conver-

sations, our Wizard needed to perform searches in real-time, follow the protocols, and

closely emulate a search agent few years into the future. Also, the system-level clar-

ifications were cognitively less complex and limited to explanations about the queries

and information sources used by the system. Therefore, we hired a computer science

undergraduate student who was proficient with searching online and had considerable

experience in performing voice searches. For every user study session, the Wizard had

to be present for the entire duration of the study. The Wizard was allowed a five-minute

break after each task. The compensation of the Wizard was fixed at 20 USD for every

user study session.

4.9 Wizard Training and Protocol

We were concerned about the task and topic learning effects on the Wizard over subse-

quent search sessions and users. This could have potentially influenced the interaction

patterns and outcomes of the experiment. Therefore, to eliminate the influence of the

learning effects, we trained the Wizard before the actual experimental sessions. This

ensured that the skill and the behavior of the Wizard did not change during the course

of the study. The Wizard was provided with the task description to search online and

prepare notes about the search topic and possible search directions. The training famil-

iarized the Wizard with the working of the experimental setup and improved his task-

and topic-knowledge. In the pre-experimental stage, we also prepared a script that
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contained predefined dialogues for various search situations. The script had templates

to standardize the vocabulary and acted as a guideline for the Wizard to replicate the

simple vocabulary common in artificially generated speeches. For example, every time

the user started a search session, the Wizard responded with “Hi, I am Joanna, how

may I help you today?”. Similarly, search sessions ended with “It is always great talking

to you, bye!” The details of the conversational script and guidelines to the intermediary

have been provided in the following sections. These documents govern the behavior of

the Wizard, more specifically, what he should and should not do.

We allowed the Wizard a few weeks to familiarize himself with the protocol, the

scripts, and the tasks. Next, we conducted two search sessions with the Wizard to eval-

uate his performance when simulating the experimental and the control system. While

the dialogue scripts contained the general structure of the system-level responses, the

blank slots were filled up by the Wizard during the original conversation. The guidelines

and conversational scripts were essential to minimize the influence of the human inter-

mediary while at the same time increasing the response time and reducing the cognitive

workload on the Wizard. Besides, it made the results more reproducible and accurate

and reduced the variances and degrees of freedom within the WOZ experiment.

We conducted two pilot studies: one with a researcher who was familiar with the

details of the study and the other with an end-user. All the components of the study

– the experimental systems, the data collection devices, the conversational script, the

guidelines for the intermediary, the tasks, and the questionnaires – were reviewed by

peers and tested in a pilot study prior to the actual study. Based on the feedback

received, we reevaluated some technical and design details and made minor adjustments

to the script and the protocols. The pilot sessions also allowed the Wizard to get familiar

with the search task and the mock system.

While we present the conversational script for the Wizard in the next subsection,

the other guidelines and checklists for the Wizard can be found in Table A.3 and Table

A.4.
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4.9.1 Conversational Script for the Wizard

The conversational script of the Wizard is presented in this subsection. The script

was generated through observation of searcher-intermediary interaction in differently

publicly available datasets, SCS and MISC (Thomas et al., 2017), which allowed us

to understand the different categories of dialogue and their functions in human-human

conversation. After identifying the categories, we standardized the vocabulary of the

dialogue by closely following the speech patterns used in existing state-of-the-art sys-

tems (Write Out a Script with Conversational Turns , n.d.). In this section, we show

the different stages in conversation, the speaker, and the intended functional effect.

• Key phrases to start the conversation

Function: Triggers the start of the conversation

Speaker: User

– Hi, Joanna

– Hey, Joanna

• Greetings (Initial Response)

Function: Initiates the user to state his information problem

Speaker: Wizard

– Hi, I am Joanna, how may I help you today?

– Hi, I am Joanna, what kind of information are you looking for?

• Response to the user’s information request

Function: The Wizard can respond to the user’s utterance in the following four

ways: Positively, when he acknowledges the user’s question; negatively, when he

has trouble understanding the user or the question; request more information, or

provide explicit clarification about the Wizard’s model of the user.

Speaker: Wizard

– Positive response to the user’s question

∗ Okay, please let me look into it. Give me a few minutes.
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∗ Please give me a moment to search.

– Negative response to the user’s question

∗ Information Request too long or complex

· I am having a problem processing the request. Can you restate the

question slowly?

∗ Problem with hearing

· I could not hear you properly. Can you please repeat it?

∗ More information is required

· Can you tell me more about what you are looking for?

· Do you have any specific preferences?

• Presenting Results

Function: The Wizard should summarize the top-3 results on SERP or performs

disambiguation of the domain. He could also ask the user if he is interested in a

specific result or may read from any document.

Speaker: Wizard

– SERP Summary

∗ This is what I found: <summary of top-3 SERP>

– Selecting Document

∗ Do you want me to look into any of the results in particular? I can read

from: <say the name of top-3 sites in a using their website name and

extension e.g.: Quora.com for www.quora.com>

– Read from Document

∗ This is from: <name of website>: <some answer>

• Clarification of the user model before issuing the query

Function: This applies to the experimental system, where the Wizard provides

some simple clarifications to the user. The clarifications could include the Wiz-

ard’s understanding of the user’s information need, expressed by explicitly de-

scribing the query words or the information sources used. System clarifications
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allow the user to understand the search actions performed by the Wizard.

Speaker: Wizard

– Based on what you said, I am entering the query: <query used>

– To clarify, you are looking for <information object>. Is that correct?

– I am reading the information from the: <name of the website>. Is that

alright?

– Based on what you said, I understand that you are looking for <information

object>. Am I correct?

• After the last search

Function: To make sure that the conversation does not end abruptly. It also

allows the user to ask more questions when in doubt.

Speaker: Wizard

– Did you find what you were looking for?

– Is there anything else I can help you with?

• Repeat the utterance

Function: The user requests the Wizard to repeat the last utterance. This could

be due to several factors like a problems in hearing, the replay functionality, note-

taking or cognitive reasons.

Speaker: User

– Joanna, can you repeat?

• End phrase to terminate search session

Function: The user notifies the Wizard that he is ending the search session.

Speaker: User

– Bye, Joanna

• Ending the conversation

Function: Ends the search session.

Speaker: Wizard
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– It is always great talking to you. Bye.

4.10 Data Collection

Different forms of data lead credibility to the experimental results and allow for a more

comprehensive evaluation in the later stages of data analysis. We collected four different

types of raw data during our study: the users’ background and demographic informa-

tion, the spoken utterances by the user and the intermediary, the survey responses by

the user before and after the tasks to assess the search experience, the search actions

of the Wizard (the screen recordings), and the exit interview.

4.10.1 Pre-test Questionnaire

Before starting the search session, the registered participants were given an overall de-

scription of the objective and aim of this research, then asked to sign the online consent

form and to fill out a questionnaire on basic demographic and background informa-

tion. The questions inquired about the basic profile (i.e., age, gender, and academic

backgrounds), self-reported language proficiency, self-reported web search experience,

search frequency, and search skills. The participants were also asked to report their

frequency of use of intelligent personal assistants (Siri, Cortana, Amazon Alexa). For

all the three self-reported items, we used a 5-point Likert scale, where 1=novice and

5=expert. The user filled out the questionnaire on a paper form before entering the

test room. The exact questions can be found in Table B.1.

4.10.2 Pre-Task Questionnaire

Before each task, the participants were asked to answer a set of questions about the

task topic, knowledge of the topic, topic interest, and perceived difficulty of the task.

In Table B.2, we present the list of questions present in the pre-task questionnaire.
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4.10.3 During Task

During each of the search tasks, we recorded the search activities undertaken by the

Wizard and the conversation between the user and the Wizard. Using a screen capture

tool, Kaltura, we recorded the search activities of the Wizard. Recording the Wizard’s

screen and search activities provided us with the details of queries input in response

to the user dialogues, the pages visited, the amount of time spent on each page, and

the results presented back. The audio channel was captured using Google Voice, which

recorded the interaction – the information-seeking dialogues - between the user and the

Wizard.

After each task, we requested the participants (users) to write the answer to the

search task provided. The response – a few lines about what the user was looking for,

what he found, and his selection of perfume or conference – helped the researcher assess

if they were able to complete the task successfully.

4.10.4 Post-Task Questionnaire

The participants also answered questions about their search experience. We used a set of

questions derived from the User Engagement Scale (O’Brien & Toms, 2010) to measure

how the user engagement varied with the two systems. Our questions, measured on

a five-point Likert-scale, captured the details on novelty, involvement, and feelings of

reward, success, and engagement (O’Brien & Toms, 2010; Thomas et al., 2017). These

questions are relevant to the use of new technology and were worded as in Table B.3:

We reverse-coded one question to make sure that we can identify if the participants

select random answers.

4.10.5 Exit Interview

At the end of the study, the participants were asked to attend a brief in-person semi-

structured interview, where they answered a few open-ended questions about their

overall experiences. The questions listed in Table B.4, assessed the overall experience

of the users with the two prototypical systems and the tasks.



75

4.11 Implications of the User Study

Our study served three purposes:

1. The user study helped us answer our first research question, which explored the

role of system-level clarifications on the search experience of the user. The ques-

tionnaire data allowed us to assess how explicit system-level clarifications influ-

enced the user’s search experience when interacting with a conversational search

system.

2. We created a new dataset called CONVEX (CONVersation with EXplanations)

using the user study data. We collected richer data, which included both user-

agent information-seeking dialogues and the search actions undertaken by the

intermediary. This dataset was used to build our classification model to predict

the speech acts and search actions (to answer RQ2).

3. The feedback received from the users at the end of the study (as part of the

semi-structured interview) allowed us to suggest useful features and make design

recommendations.

4.12 Chapter Summary

To summarize this chapter, we explain our motivation behind the choice of methodology.

None of the publicly available datasets were suitable to answer our research questions,

which warranted the collection and analysis of new data. We describe the details of the

Wizard-of-Oz experimental setup: how the study was designed, test rooms were pre-

pared, and the different variables involved. We recruited people through advertisements

on social media and electronic mailing lists. Twenty-five participants were recruited to

play the role of searcher while one participant played the role of the intermediary or

Wizard. In our study, the user was never informed that the system on the other side

was not an artificially intelligent agent but a human. To maintain the pretense, the

Wizard was trained extensively on how to conduct himself and what protocols to follow.

We developed an exhaustive set of guidelines and model script to guide the actions of
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the intermediary, which have been elucidated in this chapter. We also discuss the study

design and the development of search tasks, the experimental procedure, and the data

collection mechanisms.
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Chapter 5

Transcription and Thematic Analysis

This chapter presents the basic statistics of the user study data. It also explains the

thematic analysis performed to identify the different categories of speech acts and search

actions, and the process of annotation.

5.1 Motivation

Our second research question was:

How can we automatically predict the different speech acts and the search

actions in a user-system information-seeking conversation?

To answer the research question, we collected user-system interaction data (which we

call CONVEX data) using the user study described in the previous chapter. However,

that was the first step towards creating a gold standard data which could then be used to

train and evaluate automatic prediction models. First, we perform a thematic analysis

to develop a set of qualitative codes for speech acts and search actions. We have used

previous literature to identify the initial themes and revised them in subsequent rounds

to develop labels for speech acts and search actions. Next, we hired multiple annotators

to label the utterances in the CONVEX dataset developed by us. To test the validity

of our model, we also annotated the publicly available Spoken Conversational Search

(SCS) dataset.

5.2 CONVersation with EXplanation (CONVEX) Dataset

The CONVEX dataset was created using the user study described in the previous

chapter.
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5.2.1 Participants and Demographic Information

For our user study, we recruited a total of 26 participants (25 users and one inter-

mediary). The user statistics can be found in Table 5.1. There were 20 females and

six male participants, including the Wizard. The mean age of our participants was

21.64 with the maximum and minimum ages being 29 and 19 respectively (Median=

21.0, Variance= 8.15, Standard Deviation = 2.855). Twenty-two participants reported

themselves to be native speakers of English while the remaining three identified Greek,

Hindi, and Gujarati, respectively, as their first languages. The participants rated their

English speaking and listening skills (which were essential for our study) and search

skills on a 5-point Likert scale where 1=Novice and 5=Expert. Based on the self-

reported scores, most of the participants considered themselves proficient in speaking

and listening English (with means of 4.8 and 4.92 respectively). The online web search

skill was high, with a mean of 4.6 and a median of 5. Almost all the participants had

prior experience with voice-based personal assistants and identified their success rate

to be between 1 and 5 (with a mean of 3.2 and a median of 3.0) when interacting with

voice-based assistants.

5.2.2 Transcription

During our user study, we captured a total of 50 user-agent information-seeking conver-

sations (two tasks for 25 user-agent pairs). Each search session was between 5 and 20

minutes, and each study led to audio and video recordings of length 20 to 60 minutes.

Overall, we had more than 12 hours of audio and video to transcribe. For transcrip-

tion, we followed the steps highlighted in previous works (McLellan, MacQueen, &

Neidig, 2003; Thomas et al., 2017; Trippas et al., 2017b) and made necessary changes

as required based on our data. The steps involved could be enumerated as follows:

1. Audio and Video Processing

We recorded the audio dialogues between the user and the Wizard using Google

Voice. The video was captured using a screen capture tool, Kaltura. The video

included the Wizard’s dialogues while the audio files captured the dialogues for
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(a) Distribution of age. (b) Gender of participants.

(c) English Listening Skills. (d) English Speaking Skills.

(e) Web Searches per day (f) Voice Searches per week.
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(g) Voice Search Success

Figure 5.1: Demographic and Search Information

both. The first step in the transcription process was to synchronize the audio and

video. We used an open-source video editing tool to obtain the synchronization

(by overlaying the audio tracks using the first response from the Wizard). The

recordings were trimmed to begin from the first user utterance and end with the

last user/agent utterance.

2. Automatic Speech-to-Text Transcription

After generating a high-quality audio file from the previous step, we used Amazon

Cloud to store the audio files1 and Amazon Transcribe2 to automatically generate

the text transcripts. The transcription also contained the timestamps and speaker

identification.

3. Utterance Identification

The utterances were identified based on two rules:

(a) Any utterance must have a single speaker;

(b) Two utterances should be separated by more than 10 seconds; and

(c) A single utterance should be on a single topic. Any change in topic marks a

new utterance.

1https://aws.amazon.com/s3/

2https://aws.amazon.com/transcribe/
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We identified the utterances automatically and then manually inspected them for

accuracy and topic identification.

4. Correct the automatically-generated text

We came up with a basic set of rules for correction:

(a) Preserve the originality of the transcription as possible, which means that

the user- or agent- utterances should be as exact as possible. Do not correct

the errors of either the user or agent, which could include grammatical errors

or incorrect usage of words. Instead, focus the corrections on the imperfect

text generated by the speech-to-text software.

(b) Abbreviations should not be expanded.

(c) Inaudible segments should be removed.

(d) The text should be kept structured and consistent.

(e) Transcription should not involve subject-matter experts but should be gen-

eralized and replicable.

5.2.3 Thematic Analysis and Annotation Schema

In an information-seeking dialogue, both the searcher and the intermediary take turns to

speak. An utterance is a continuous and uninterrupted sequence of speech by one of the

two participants. The end of an utterance is marked when the other participant starts

speaking or when the current speaker changes the conversational topic. Interjections

are ignored when annotating utterances.

To identify the popular themes in the data, we performed qualitative coding using

the following steps:

1. Evaluating the correctness of the transcription and the utterance segmentation:

This was important to ensure that there was no overlap between the utterances.

2. Using the existing frameworks to come up with the initial themes or labels:

The initial categories for Speech Acts were borrowed largely from the Philosophy

of Language and the frameworks created by early scholars in conversational IR
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(Stein et al., 1999; Winograd et al., 1986). In the Conversational Roles (COR)

model (Figure 3.2), the authors aim to represent all the possible scenarios in a

human-human dialogue through the following speech acts: acceptance and re-

fusal of conversational roles, the requests, promises, and offers, negotiations, and

evaluation. For identifying and annotating the search actions, we have used the

framework proposed by Azzopardi et al. (2018) and Trippas, Spina, Cavedon, and

Sanderson (2017c) to obtain initial themes. During the first phase of our coding

process, we came up with 15 speech acts and nine different search actions. The

initial themes are presented in Tables 5.1 and 5.2.

3. Employing independent annotators to label the utterances:

Two independent annotators annotated the dataset using the search and speech

labels developed in the last stage. The inter-annotator agreement was around

68% and 65% for speech and search actions, respectively.

4. Modifying the themes:

As the inter-annotator agreement was low, we performed a second round of the-

matic analysis and redefined the codes to resolve the ambiguities. Some of the

finer labels were merged to create broader categories.

5. Re-annotating the data:

In this last step, three independent annotators were asked to re-annotate the

utterances, and we ended up with an inter-annotator agreement of 90.2%. The

set of codes was finalized as the agreement among the annotators was fairly high.

The final thematic codes (along with their descriptions) are presented in the fol-

lowing subsections. It should be noted that search actions are performed only by the

intermediary, while speech acts are possible for both the user and the intermediary.
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Table 5.1: Speech Acts: Initial Codes

Speech Act Description

Request The user makes an information request to the intermediary.
Offer The intermediary offers some results or suggestions to the user.
Agent Accept The intermediary accepts the user’s information request.
Agent Reject The intermediary rejects the information request by the user.
User Accept The user accepts the offer made by the intermediary.
User Reject The user rejects the offer made by the intermediary.
Withdraw The user or the intermediary withdraws the request or offer.
Answer The intermediary responds with the answer to user’s question.
Inform The user provides some contextual information about the search.

This is not a question or information request.
Repeat The user or the intermediary repeats the last utterance.
Clarify The intermediary asks some clarifying questions to have better

idea about the information needs of the user.
Instruct The user instructs the intermediary on how to search.
Contented The user states that he is satisfied.
Discontented The user states that he is dissatisfied.

5.2.4 Themes for Speech Acts

A total of 16 broad themes were identified for Speech Acts. The coding scheme, along

with the category descriptions and examples, is explained as follows:

• Speech Acts (S) – Categories and Examples

1. Question or Seek

Description: Includes the initial information request. It could also involve

the situation when the user comes up with a new search request during the

conversation.

(a) Initial Information Request

Example: Joanna I am looking for a men’s perfume can you give me

some options?

(b) Information-seeking Questions

Example: So, what’s the price of Tom Ford Bergamot?

2. Accept

Description: The agent or user accepts the request of the conversational
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Table 5.2: Search Actions: Initial Codes

Search Act Description

Query Creation The intermediary ceates the first query.
SERP scanning The intermediary scans the search engine results page and pro-

vides an overall idea of what he found.
SERP Top Result The intermediary explains what the top-result contains without

opening the document.
Query Refinement The intermediary refines the query by rewording it.
Query Shortening The intermediary shortens the last query by removing words

from it.
Query Expansion The intermediary expands the last query by adding words to

it.
Document scan-
ning

The intermediary reads from inside the document.

Summary The intermediary reads out a summary of results.
List The intermediary provides a list of results.

partner. In the user-agent dialogues, such instances were identified by the

presence of keywords such as ‘Yes,’ ‘Ok’ or any interjections, the meaning of

which can be construed as an acceptance.

Example: Ok, please let me look into it. Give me a few minutes.

3. Reject

Description: The user or agent can choose to reject the request of the con-

versational partner.

Example: I will not be able to answer that question.

4. Counter

Description: The agent knows the user’s information need and suggests some

changes in the query. The control moves from the user to the agent.

Example: You would have to name a specific conference so I can check the

deadline.

5. Offer

Description: The agent knows the user’s information need and offers to do

something different from the user’s request. The control moves from the user

to the agent.

Example: None of these are in Europe. Would you like me to query Top
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conferences in A.I early 2020 in Europe?

6. Request to Simplify the Search Problem

Description: The request by the user is too complex for the agent to process.

The agent requests the user to simplify the problem.

Example: hmm. That search has become too complex for me. Can we do it

in steps?

7. Answer

Speaker: Agent

Description: The agent either informs the user of the result or answers the

question asked. This act signals the transfer of control back to the user. It

could either be the final answer to the user’s problem or an intermediate

step.

(a) Reading from the Document

Example: According to the sephora.com, Yves ST Laurent l’Homme

Cologne Bleue is 116 U. S. Dollars and contains Bergamot, Marine ac-

cord and Cardamom scent.

(b) Answering Follow-up Questions

Example: Yes, the $8.95 shipping fees for the 2 to 3 day express shipping.

8. Clarify

Description: The agent seeks clarifications from the user to get a better

understanding of the user’s information need.

(a) Explicit Clarification of the User’s Model

Description: This action is specific to the experimental system. The

agent clarifies its model of the user by describing the formulated query

or the search action undertaken. This allows the user to suggest edits,

restate information problems, or take control of the search situation.

Example 1: Based on what you said, I’m running the query, Men’s

perfume Bergamot. Am I correct?

Example 2: I have another article called Future of Artificial Intelligence
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for 2020 You need to know from read.com. would you like me to read

from that one?

(b) Follow-up Questions

Example: Can you tell me more about what you are looking for?

9. Inform

Description: The user provides some additional information related to the

search, either as a clarification to the question being asked or to add context

to the information problem.

(a) Declaring Preferences

Example: No, I want to know the price in US dollars

(b) Providing Additional Information

Example: Yes, and can you also put in as a gift for Christmas?

10. Evaluation

Description: The user could be contented or discontented.

(a) Satisfied with the Results

Example: Yes. I found what I was looking for. It was a great talk.

(b) Confirms Answer

Example: That’s the one.

11. Instruct

Description: The user directly instructs the agent on how to perform the

search. This could be done by defining keywords, queries, information sources

etc. At this point, the control of the search is with the user instead of the

agent.

(a) Suggest Alternate Source

Example: Can you use another source?

(b) Suggest Query Reformulation

Example: No. Query, how many artificial intelligence conferences is [sic]

there are in the United States?
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(c) Suggest Search Strategies

Example: Now filter by date.

12. Repeat

Description: The agent may ask the user to restate the information request

or the user may ask the agent to repeat the last utterance or answer. This

also includes the utterance, which is repeated on request.

(a) Repeat Information Request

Example: I’m having a problem processing the request. Can you restate

the question slowly?

(b) Repeat Answer

Example: Joanna, can you repeat?

13. Confirmation

Description: The user confirms when the agent asks for clarification or feed-

back.

(a) Confirm Query

Example 1: Yes. that is ok.

Example 2: Yes.

(b) Decline

Example: No, I don’t.

14. Courtesy

Description: The user or the agent follows the norms of polite conversation

by being deferential.

(a) Thanks

Example: Thank you, Joanna.

(b) Polite Expressions

Example 1: Is there anything else I can help you with?

Example 2: No, I’m good, Joanna.

(c) Asking for Other to be Patient

Example: Ok. Please let me look into it. Give me a few minutes.
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15. Greetings and Closing Rituals

Description: Includes the key phrases spoken by the user to activate and end

the search session. It also includes the opening and closing dialogues of the

agent, which signals the beginning and end of the conversation.

(a) Greeting

Example 1: Hi Joanna.

Example 2: Hi, I am Joanna. How may I help you today?

(b) Closing Ritual

Example 1: Bye Joanna.

Example 2: It is always great talking. Bye.

5.2.5 Themes for Search Actions

A total of four top-level themes were identified for Search Actions. Search actions are

performed only by the agent (Wizard in our case). The coding scheme, along with the

category descriptions and examples, is explained as follows:

• Search Actions – Categories and Examples

1. Query Creation or Refinement

Description: The agent creates a new query or modifies an existing query

for subsequent search.

(a) Query Creation

Example: Google search : “bergamot and lavender cologne”.

(b) Query Update

Example: Google search : “bergamot and lavender cologne under 150$”

(Query updated to include “under 150$”)

2. SERP Scanning

Description: The agent scans the search engine results page (SERP) and

provides a summary of top results from SERP. It may include summary

snippets or answers provided by the search engine at the top.
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(a) Reading Summarized Answer from SERP

Example: Google featured snippet to the query “what is the weather

in may in new jersey”: According to Google, average weather in May

in Atlantic City, New Jersey, United States daily high temperatures in-

creased by nine degrees Fahrenheit from 65 degrees Fahrenheit to 74

degrees Fahrenheit. Rarely falling below 55 degrees Fahrenheit or ex-

ceeding 84 degrees Fahrenheit.

(b) Reading Factual Answer from SERP

Example: Google’s rich answer to the query: “238 pounds to USD”: Tom

Ford Private Blend Venetian Bergamot is 306.52 United States dollars.

3. Document Scanning

Description: The intermediary reads from inside the documents returned by

query.

(a) Reading from Document in SERP

Example: [Reading from sephora.com] According to the sephora.com

Yves ST Laurent l’Homme Cologne bleue is 116 U. S. Dollars and con-

tains Bergamot, Marine accord and Cardamom scent.

(b) Reading from a Previously Opened Document

Example: [Reading from https://www.healthline.com/health/allergic

-rhinitis#risk-factors] You could use a dehumidifier or a high-efficiency

particulate air filter. Eye drops and nasal sprays can also help relieve

from itchiness.

4. Organizing Answer from Multiple Documents

Description: The intermediary reads from inside the documents returned by

the query.

(a) Reading from Inside Multiple Documents + Summarizing Answer

Example: [Combining answers from https://www.cigna.com/individuals

-families/health-wellness/hw/medical-topics/allergic-rhinitis

-hw33436 and https://www.healthline.com/health/allergic-rhinitis#



90

risk-factors] There is no permanent cure for allergic rhinitis. One of

the best things you can do is to avoid the things that cause your aller-

gies. You can take antihistamines to treat allergies. You can also use

decongestants to relieve a stuffy nose and sinus pressure. Eye drops and

nasal sprays can help relieve itchiness. Your doctor may recommend

immunotherapy, or allergy shots if you have severe allergies.

5.2.6 Statistics

The CONVEX data contained a total of 1834 utterances (with speech acts) from the

user and the intermediary combined. The number of instances containing search actions

was 509. Search actions were performed only by the intermediary. The distributions of

the speech and search acts (overall and by search tasks) are shown in Figure 5.2. Figure

5.3 shows the number of utterances for each search task. Based on the visualizations, it

can be assumed that the two experimental tasks had similar number of utterances, and

were therefore, similar in task complexity. Five speech acts (Offer, Reject, Simplify,

Instruct, and Counter) could be considered minority while ‘Organizing Answer from

Multiple Documents’ was the only search act to have a low occurrence rate.

5.3 Spoken Conversational Search (SCS) Dataset

The publicly available SCS dataset (Trippas et al., 2018, 2017a, 2017b) was created

through observation of participants engaged in information seeking over a spoken chan-

nel. This dataset was used to validate the performance of our predictive model. It

contained a total of nine backstories and nine search tasks for simulated search sessions,

adopted from the Taxonomy of Educational Objectives (Bloom et al., 1956; Krathwohl

& Anderson, 2009). The user was provided with a backstory that was created using

TREC topics: Q02, R03, and T04. The tasks belonged to three different levels of

varying cognitive complexities – Remember, Understand, and Analysis levels of the

taxonomy.

The conversations recorded were between the searcher and the intermediary (both
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(a) Speech Acts. (b) Speech Acts (by Search Task).

(c) Search Actions. (d) Search Actions (by Search Tasks).

Figure 5.2: Statistics for CONVEX Dataset
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Figure 5.3: Frequency of utterances for search tasks.

roles played by the participants) in a laboratory-based user study with 13 pairs of

participants located in the same room. Only the intermediary had access to a networked

computer and had to rely on the searcher to explain the search task. There was a limit

of ten-minute per task, and the searcher had to explicitly instruct the intermediary

to stop the search and end the task. There were between six to sixty-nine turns in

total, with one label per utterance. The dataset contained only the transcripts of the

conversation with broad themes for the search actions performed by the intermediary.

The researchers recruited participants to play the role of either the searcher or the

intermediary. As the goal of the study was to observe the conversational patterns,

none of the intermediaries were expert search agents. Instead, they were similar to the

searchers (as is evident from the transcripts and recorded audio files) in search skills,

knowledge of the database, and topic knowledge. Although the researchers report the

different search actions performed thematically, they did not share the details of the

search actions, like the pages visited, dwell time, click behavior, and so on. As such, in

order to recode the search actions (using a different set of themes), the search activities
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need to be inferred using the dialogues and existing codes.

5.3.1 Transcription

The publicly available dataset was already transcribed. We made some minor correc-

tions to the transcripts and utterance segmentation.

5.3.2 Thematic Analysis and Annotation

We used the same set of themes developed for the CONVEX dataset. Once again, two

independent annotators were hired to annotate the dataset with speech act and search

action labels. The final inter-annotator agreement was above 90%.

5.3.3 Statistics

Figure 5.4: Frequency of utterances by search tasks.

The dataset contained information-seeking dialogues from the user and the inter-

mediary. There were a total of 1043 utterances from the user and the intermediary

combined. The number of instances with search actions was 447. The distribution of

the speech and search acts (overall and by search tasks) is shown in Figure 5.5. Figure

5.4 shows the number of utterances for each search task. We observed that the SCS

dataset did not contain any instances of ‘Organizing Answer from Multiple Documents.’
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As the publicly shared data included only broad search categories, the human anno-

tators did not find enough evidence to differentiate between search actions involving

single or multiple documents. Six speech acts were a minority in SCS. There were

no instances of ‘Simplify,’ while the frequencies of occurrence of ‘Reject’, ‘Evaluation’,

‘Courtesy’, ‘Offer’, and ‘Counter’ were very low.

(a) Speech Acts. (b) Speech Acts (by Search Task).

(c) Search Actions. (d) Search Actions (by Search Tasks).

Figure 5.5: Statistics for SCS Dataset
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5.4 Chapter Summary

In this chapter, we describe the two datasets – CONVersation with EXplanation (CON-

VEX) and Spoken Conversational Search (SCS) – statistically and qualitatively. We

describe the user demographics for both the datasets and help the users visualize the

distribution of utterances, search actions, and speech acts in the two datasets. The

images help us compare the tasks by complexity and number of utterances. We explain

in detail the transcription process and the subsequent thematic analysis. We also share

the two codebooks which we developed for classification of the speech acts and the

search actions. The codebooks contain a description of the themes and examples to

familiarize the readers with the different categories of speech acts and search actions.

The readers can also develop an idea of the majority and minority classes involved in

the prediction tasks.
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Chapter 6

Development of the Deep Neural Classifier

In this chapter, we discuss the suggested features for classification, and the details of

the proposed deep neural model, MDSC.

6.1 Motivation

Our second research question was:

How can we automatically predict the different speech acts and the search

actions in a user-system information-seeking conversation?

To answer the second research question, we collected user-agent interaction data,

which contains the search activities performed by the agent in addition to the spoken

dialogues. Next, we annotated each utterance in the dataset with the corresponding

speech act and search actions. The final step in answering the question was to de-

velop a prediction model that could automatically identify the speech acts and search

actions. Based on prior literature (Cai et al., 2017; Y. Liu, Sun, Lin, & Wang, 2016;

Serban, Sankar, et al., 2017; W. Wang et al., 2018; Wu, Schuster, et al., 2016), machine

learning – deep learning in particular – have shown commendable performance when

tackling problems related to natural language, speech, and text. Therefore, we devel-

oped a multi-channel deep neural model for the prediction tasks, the details of which

are presented in the following sections.

6.2 Prediction Task

Information seeking dialogues are not chit-chats but goal- or task-oriented conversa-

tions. Therefore, detecting speech patterns in information-seeking dialogues is a subset
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of the original problem: open-domain machine conversation. Arguably, it is easier

to generate speech in a task-oriented environment. However, in a search session, the

search actions of the agent are as important as the spoken responses. Therefore, nat-

ural language understanding in conversational search agents involves connecting the

speech component of user utterances to the system search action. In order to do so,

we have used a modular approach which could be extended to any human-human or

human-computer information-seeking dialogue. First, for each utterance, we identify

the speech act it belongs to. In the next step, we use the speech act and other features

to identify the appropriate search activity.

6.3 Features and Channels

Bi-directional models have proven effective in learning patterns and context in natural

language and have been used extensively for natural language inference (Y. Liu et al.,

2016), chatbots (YIN, 2019), and dialog systems (Khatri, Goel, et al., 2018; Peng, Fang,

Xie, & Zhou, 2019). Prior research has also explored the use of different categories of

features in conversational search systems (W. Wang et al., 2018). Therefore, to answer

our research question, we have developed a simple, modular bi-directional LSTM model,

MDSC, with three channels. For each of the three channels, we have used a different

category of data. The input representations of each channel, xi, are fed as input to

the neural network. The feature representation function ψ maps each utterance into a

vector of features:

1. A sparse representation of natural language features (both lexical and syntactic)

2. A dense vector representation of each utterance using word embeddings; and

3. A dense representation of the different dialogue metadata features.

In the absence of any of the channels (which could be due to missing data), the

model could still be used and implemented with reasonable accuracy.
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6.3.1 Channel 1: Lexical and Syntactic Features

The lexical and semantic features were generated from the utterances using the SpaCy

API1 and were subsequently processed and extracted. SpaCy is a high-speed, industrial-

strength natural language processing library that works remarkably well in generating

natural language processing features. Use of the SpaCy library has been reported in

prior work on chatbots (Altinok, 2018; Khatri, Hedayatnia, et al., 2018) and natural

language understanding systems (Bocklisch, Faulkner, Pawlowski, & Nichol, 2017). The

different natural language features extracted at word- (or token-) level were:

1. Named Entity Type

If a given token is a named entity, then this feature identifies the category of

the named entity (which could be people, nationalities, companies, organizations,

places, etc.)

2. IOB Code

The IOB code of the named entity tag helps in identifying the position of the

token in the named entity. If the token begins an entity, the code is B. Similarly,

the IOB Code is I or O if the token is inside or outside an entity. If no entity tag

is set, the code is kept blank.

3. Orthographic Features

We identify the shape of the token by transforming the token string to get the

word shape – capitalization, punctuation, digits. However, we consider only the

first three characters to reduce the number of dimensions in later steps.

4. Alphabet

A Boolean variable to identify if the token contains alphabetic characters.

5. Digit

A Boolean variable to identify if the token contains numeric digits.

1https://spacy.io/
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6. Punctuation

A Boolean variable to identify if the token is a punctuation symbol.

7. Out-of-vocabulary Word

A Boolean variable to identify if the token does not exist in the vocabulary.

This feature could be important in identifying utterances containing wrong or

misspelled words.

8. Stopword

A Boolean variable to identify if the token is a frequently occurring word (or a

stopword).

9. URL

A Boolean variable to identify if the token is an URL.

10. Coarse-Grained Part-of-Speech

The basic (or top-level) part-of-speech tags for the English language, which would

include nouns, pronouns, verbs, adverbs, adjectives, conjunctions, etc. without

classifying them into subcategories.

11. Fine-Grained Part-of-Speech

The detailed information on the coarse-grained part-of-speech. For example, a

verb (which is the base form) can be further categorized as VB Verb, VBD (Verb,

past tense), VBG (Verb, gerund or present participle), VBN (Verb, past partici-

ple), VBP (Verb, no third-person singular present) or VBZ (Verb, third-person

singular present).

12. Dependency Relation

A single word can be used in different contexts, and its meaning differs based on

the usage and relative positioning in the sentence. The relations in the dependency

parse tree are often used for word sense disambiguation (Hale, 2003).

13. Character Offset

Distance of the word from the beginning of the sentence. Each character counts

as one unit in distance.
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14. Sentiment of the token

The sentiment of the words in the posted question could indicate an aggressive

or abusive language. This feature could help in identifying the positivity or neg-

ativity associated with each utterance and could help in identifying the correct

class.

15. Lexical Type

Each word in the utterance can be grouped into different lexical types like a noun

or a verb phrase.

For all the words in the utterance, we obtained the word-level one-hot representation

of each feature and combined them hierarchically to obtain the sentence-level and then

the utterance-level representations. For each utterance, we concatenated all the features

to obtain a final vector of 194 dimensions (for CONVEX utterances) and 164 dimensions

(for SCS utterances). For an utterance u, the feature extraction function ψ concatenates

the respective vector representations of the natural language features using the merge

functionM. For n words in the utterance, each feature Fj was represented by a vector

(v1...vk) of size kFj .

ψ(u) = [Mn
i=1(Fij

15
j=1)], (6.1)

6.3.2 Channel 2: Word Embeddings

In any conversational dataset, the transcripts of the dialogue (or utterances) are often

the most important (and also the easiest available) data. We have used the words in

the utterances to generate word-level embeddings, which can identify the proximity of

the words in the semantic space. To generate the word representations, we used the

pre-trained GloVe2 model with an utterance length of 100 words and a vocabulary of

25,000 words. The word embeddings help in capturing the rich linguistic context of the

words (as each word is projected onto a 100-dimensional space based on their semantic

2https://nlp.stanford.edu/projects/glove/
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proximity) (Mikolov, Chen, Corrado, & Dean, 2013; Mikolov, Sutskever, Chen, Corrado,

& Dean, 2013).

Each utterance (which contains a sequence of words) in the dataset was input to

the embedding function E , such that: E : V → Rm (where V denotes the vocabulary set

and m is the embedding dimension). For an utterance, u, which contained a total of

n words (w), the feature extraction function ψ concatenates (||) the word embeddings

of individual words (obtained using the embedding function) using the merge function

M.

ψ(u) = [Mn
i=1(E(wi)], (6.2)

However, word embeddings do not perform efficiently if used in isolation. Hence,

we augmented our natural language features with word embeddings (each category

implemented as a separate channel to ensure modularity).

6.3.3 Channel 3: Dialogue Metadata

Lastly, we combined all the dialogue metadata features which were available with the

utterances. Although these features were specific to our dataset, it should not be

difficult to derive them for any conversational data.

1. Utterance Number: The sequence number of the utterance in a given information-

seeking conversation. For example, in the SCS data, the number of utterances in

a conversation varied from 2 to 69;

2. Duration of the utterance: Length of the utterance in seconds;

3. If the speaker is intermediary;

4. System: The system which we were using (this was applicable only for the CON-

VEX dataset as it had two systems. SCS dataset had a single system)

5. Complexity of the task: In the SCS dataset, the task complexity was 1 (Remem-

ber), 2 (Understand), and 3 (Analyze). In CONVEX, the task was of either level
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0 (low complexity for the warm-up task) or 1 (moderate complexity for experi-

mental tasks).

6. Previous Speech Act: The speech act of the previous utterance.

7. Previous Search Act: The last search action performed by the intermediary.

8. Previous User Speech Act: The last speech act by the user.

For an utterance u, which contained the metadata features mentioned above, the

feature extraction function ψ concatenates (||) the respective numeric, binary, or one-

hot representations.

ψ(u) = [Fi
8
i=1], (6.3)

6.4 Output Classes for Speech Acts and Search Actions

We have used the final set of themes developed in Chapter 5 to label the output classes

for our utterances.

As the number of minority classes were high for both CONVEX and SCS data, we

merged some of the speech acts for the output class labels. The theme Reject was

merged with Accept as they were both initial system responses. Similarly, Counter,

Offer, and Simplify were merged as they were suggestions given to the user by the

agent. The final class labels for speech act prediction are presented in the Table 6.1.
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Table 6.1: Class Labels for Speech Acts

Class Speech Acts Description

S1 Question or
Seek

Search Request by the User.

S2 Accept or Reject The response of the agent to user’s information request.
Combines the minority theme Reject with Accept.

S3 Counter or Offer The agent suggests query modifications or offers al-
ternative search strategy. Combines minority themes
Counter, Offer, and Request for Simplification.

S4 Answer The agent responds with the answer to user’s question.
S5 Clarify The agent seeks clarification from the user.
S6 Inform or De-

clare
The user provides more information to the agent.

S7 Evaluation The user could be contented or disconted.
S8 Instruct The user instructs the agent on how to search.
S9 Repeat The user or agent repeats last utterance
S10 Confirmation The user confirms or rejects agent’s action.
S11 Courtesy The user or agent follow norms of polite conversation
S12 Greetings and

Closing Rituals
Key phrases to start or end the search session.

For Speech Actions, all the four themes were used as output classes. SCS did not

contain any instances of SR4. The output labels for search action prediction task is

presented in Table 6.2.

Table 6.2: Output Labels for Search Actions

Class Label Search Actions

SR1 Query Creation or Refinement
SR2 SERP Scanning
SR3 Document Scanning
SR4 Organizing Answer from Multiple Documents

6.5 MDSC Model Architecture and Implementation Details

For our model, we used a bidirectional RNN with Long short-term memory (LSTM)

cells (Hochreiter & Schmidhuber, 1997) to encode the words and the context into a

vector representation. Although some of the recent work in natural language under-

standing (Ahmadvand, Choi, & Agichtein, 2019) have used context explicitly, we used
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the bidirectional LSTMs, which have shown significant improvements in performance

when contextual information is involved. While regular LSTM cells in a feedforward

network process text from left to right, bidirectional LSTMs (Schuster & Paliwal, 1997)

analyze the text in both directions, from left to right and from right to left. As the

amount of text increases, with the sequence of texts before and after, the system is

able to recognize the patterns more accurately. Next, we had a max-pooling layer fol-

lowed by a dense layer, with the rectified linear unit (ReLU) as the activation function

and l1 and l2 regularizers. The last layer, which outputs the n-dimensional prediction

vector, is another dense layer with softmax activation function (where the value of n

is 12 and 3 or 4 while classifying speech acts and search actions respectively). All

the hyperparameters were determined based on previous literature and experimental

fine-tuning.

Given an utterance u, where the input sequence x = (x1, ..., x100 ), and the cor-

responding embedding e = (e1, ..., e100 ), our bidirectional recurrent neural network

(RNN) computed the forward hidden vector sequence
−→
h = (

−→
h 1, ...,

−→
h 100), backward

hidden sequence
←−
h = (

←−
h 1, ...,

←−
h 100), and the output vector sequence y = (y1, ..., y100

) by iterating the forward layer from t = 1 to 100 and the backward layer from t = 100

to 1.

−→
ht = H(W

e
−→
h
et +W−→

h
−→
h

−→
h t−1 + b−→

h
) (6.4)

←−
ht = H(W

e
←−
h
et +W←−

h
←−
h

←−
h t+1 + b←−

h
) (6.5)

yt = W−→
h y

−→
h t +W←−

h y

←−
h t + by (6.6)

6.5.1 Dropout

Dropout (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014) attempts

to regularize the model so that it could learn diverse parameters. By masking specific

parameters in the hidden units, it forces the model to learn more efficiently, using
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different patterns every time. The bidirectional LSTM layer had a dropout of 0.25 and

a recurrent dropout of 0.1.

6.5.2 Activation Function

In our model, we have used two different activation functions in different layers of

our model: Rectified Linear Units (ReLU) and Sigmoid. ReLU was used in the hidden

layers of the neural network and was replaced by sigmoid functions in the output layers.

6.5.3 Optimization Function

Optimization algorithms used in training deep learning models are different from the

traditional optimization algorithms (Goodfellow, Bengio, & Courville, 2016). These

algorithms do not directly influence the performance measure P . Instead, they aim at

reducing a cost function J , which is expected to reduce P . Schaul, Antonoglou, and

Silver (2013) compared different optimization algorithms in their paper by working on

different learning rates to set hyperparameters. Adam – an adaptive optimizer – which

uses mini-batches to adjust the learning rates of model parameters automatically was

the preferred optimization algorithm. It is more robust in the choice of hyperparameters

and considers estimates of both the first and second-order moments for bias correction

(Goodfellow et al., 2016).

6.5.4 Loss Function

As we were dealing with a multi-class prediction for answering our research question

– 12 output classes for speech acts and 4 for search actions – therefore, we have used

categorical cross-entropy as the loss function for our models. For every instance i, and

every possible class j, cross-entropy is calculated as:

L(θ) = − 1

n

n∑
i=1

m∑
j=1

yijlog(pij) (6.7)

MDSC model using the three channels individually are shown in Figure 6.1, Figures

6.2, and Figure 6.3. For ablation analysis, the output of all the three channels was
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combined together (as shown in Figure 6.4) and in pairs and input to another dense

layer with softmax activation. The batch size was 32 for both search act prediction

tasks (CONVEX and SCS). For speech act prediction, the batch size was 32 when

analyzing CONVEX and 64 for SCS. The number of epochs was fixed at 300. We

repeated our experiment for 30 times, working with different training and test data

collections (randomized and selected using different seed values).

Figure 6.1: Bi-LSTM using Channel 1 (NLP Features).
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Figure 6.2: Bi-LSTM Model using Chanel 2 (Word-embeddings)

Figure 6.3: Bi-LSTM: Dialgue Metadata.
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Figure 6.4: MDSC with Three Channels.
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6.6 Chapter Summary

In this chapter, we have proposed MDSC, which is a multi-channel deep speech classi-

fication model for identifying the speech acts and the search actions in conversational

search systems. Our classification model is simple but effective and incorporates differ-

ent groups of features – word embeddings, lexical and syntactic features, and dialogue

metadata – for the two prediction tasks. We provide a detailed description of how the

features were generated and implemented on different channels. We also explain the

model architecture and the implementation details, which include the hyperparameters

used. The proposed model is modular and could be extended to most user study data

which contains transcripts of searcher-intermediary conversations.
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Chapter 7

Exploring the Role of Clarifications in User-Agent

Information-seeking Dialogues

In this chapter, we present the results of our user study (described in Chapter 4) and

connect them to the first research question:

For moderately complex tasks, can we determine the influence of explicit

system-level clarification on the user’s search experience?

Our user study tests how explicit system-level clarifications (or explanation of the

system’s understanding of the user’s problematic situation) influence the search experi-

ence of the user. Twenty-five participants took part in the experimental within-subjects

design and performed three search tasks (the first a warm-up task, followed by one

task each on experimental and control systems). In the following sections, we analyze

statistically the feedback collected from the participants through questionnaires and

interviews.

7.1 Descriptive Statistics

The data collected as part of the user study are based on the user responses to pre- and

post-task questionnaires. The findings are further corroborated using comments made

by the user during the exit interview. There were a total of 5 pre-task questions and 13

post-task questions, with all the questions being answered using 5-point Likert scales.

During the user study, we reversed the scale for some of the questions randomly. This

ensured that the participant read the questions carefully before marking the response.

Once we finished with data collection, the responses were aggregated with a constant

descriptive scale. The pre-task questionnaire (Table B.2) contained two questions on
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topic knowledge and three on task complexity. Level 1 on the Likert scale represented

the lowest value of the differential (for example, no knowledge, no familiarity, or not

at all difficult). The post-task questionnaire (Table B.3) contained 3 questions on task

experience and 10 on system experience. Level 1 on the Likert-scale denote complete

agreement to the question asked while level 5 represents complete disagreement.

The distribution of the data is visualized in Figure D.1 (Pre-task responses), Figure

D.2 and Figure D.3 (Post-task responses). Although all the samples were independent

(obtained from different participants), all the variables were ordinal. Hence, we made no

assumptions about the normality of the data and performed the Shapiro-Wilk test and

Kolmogorov-Smirnov test (with Lilliefors Significance Correction) to test the normality

of the distribution. The outcome of the tests, as presented in Table 7.1, indicates that

the assumption of normality was violated for most of the variables (as the p-value was

less than 0.05 in almost all the cases). Therefore, for the rest of the chapter, all the

analyses involve non-parametric tests.
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Table 7.1: Normality Tests

Tests of Normality

Post-task Differentials System
Kolmogorov-Sm. Shapiro-Wilk
Statistic Sig. Statistic Sig.

Task Complexity
No Clarification .229 .002 .879 .007
Clarification .200 .011 .913 .035

Task Difficulty
No Clarification .212 .005 .894 .014
Clarification .279 .000 .870 .004

Successful Completion of Task
No Clarification .350 .000 .688 .000
Clarification .282 .000 .769 .000

Ease of using the System
No Clarification .396 .000 .671 .000
Clarification .369 .000 .697 .000

Helpfulness of System
No Clarification .372 .000 .626 .000
Clarification .391 .000 .679 .000

System Understood the Problem
No Clarification .349 .000 .649 .000
Clarification .314 .000 .777 .000

System Communication Clear
No Clarification .325 .000 .744 .000
Clarification .258 .000 .812 .000

System Response Adequate
No Clarification .400 .000 .647 .000
Clarification .312 .000 .728 .000

Experience with System Satisfying
No Clarification .420 .000 .593 .000
Clarification .289 .000 .759 .000

Would have done differently
No Clarification .237 .001 .889 .011
Clarification .208 .007 .909 .029

System Found Right Information
No Clarification .349 .000 .649 .000
Clarification .367 .000 .708 .000

Better Information was Available
No Clarification .278 .000 .813 .000
Clarification .222 .003 .811 .000

Will Use the System Again
No Clarification .434 .000 .610 .000
Clarification .321 .000 .753 .000
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7.2 Before Task Perception of the Search Topic and Task

In this section, we discuss the user’s perception of the search topic and task, as reported

in the pre-task questionnaire. The responses were marked after the users read the search

task description, and before they started the search session. The pre-task questions on

the user’s topic knowledge, topic familiarity, and task complexity were not directly

linked to our research questions. However, it was important to assess if these factors

(which were not predictors under experimental conditions) had any influence on the

user’s search experience. We also evaluated the effect of gender on all the pre-task

differentials.

7.2.1 Topic Knowledge and Familiarity

Based on the self-reported responses, the users felt similar familiarity with both the

search topics: Conference (Mean=2.04, SD=0.212) and Perfume (Mean=2.32, SD=0.236).

However, the perceived knowledge in perfumes (Mean=3.04, SD=0.248) was more than

that of Conference (Mean=2.36, SD=0.237). Although the variance in means for topic

knowledge could be attributed to the gender imbalance in our participant population,

we did not have enough evidence to make that claim. The effect of gender – main

effect or interaction effect with system – on task knowledge and familiarity was not

significant. Although no significant effects of gender were observed on topic knowledge,

it would be interesting to check if that has any impact on the post-task assessments.

Figure 7.1 shows the box-plot for the two differentials.
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(a) Topic Knowledge. (b) Topic Familiarity.

Figure 7.1: Topic Knowledge and Familiarity

7.2.2 Task Difficulty

Figure 7.2 shows the boxplots for the anticipated task difficulty, search difficulty, and

the difficulty explaining the search task to the agent. The perfume search task was

considered less difficult (Mean=2.08, SD=0.182) compared to the conference search

(Mean=2.84, SD=0.214). The users also felt that it would be harder to search for a con-

ference (Mean=3.24, SD=0.194) than for a perfume (Mean=2.44, SD=0.183) and also

more difficult (Mean=3.2, SD=0.183) to explain it to the agent (Mean=2.44, SD=0.183

for perfume search).
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(a) Task Difficulty. (b) Search Difficulty.

(c) Difficulty Explaining to Agent.

Figure 7.2: Task Difficulty
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We observed that although a majority of our participants were students, the perfume

search appeared friendlier and more natural compared to the conference search. This

could be a function of the gender imbalance in our participants. We had a higher

number of female participants (most of them younger students) and were more likely

to be familiar with searching for perfume and describing it than males. We evaluated

the effect of gender on different parameters for task difficulty. Although gender did

not have a significant main effect on any parameter by itself, the interaction effect

between gender and system is significant (at p = 0.01) for the overall pre-task difficulty

assessment (“What is the level of difficulty of the given task?”). Another possible reason

could be the wording of the conference search, which may have appeared more domain-

specific and technical for most participants. Interestingly, the pilot testers assessed that

searching for the conference is easier than searching for perfume.

7.3 Influence of Clarifications

The role of explicit system-level clarification was explored by comparing the experimen-

tal system to the control. The control system followed the regular flow of information-

seeking conversation without clarifying the agent’s model of the user. The experimental

system provided explicit system-level clarifications on the queries formulated, informa-

tion sources used, and general perception of the user’s search problem. The clarification

script used in the experimental system involved the following categories of system-level

clarifications:

• Queries formulated by the system

Example Script: System: Based on what you said, I am entering the query:

<query used>

• System’s perception of the user’s search problem

Example Script 1:

System: To clarify, you are looking for <information object>. Is that correct?

Example Script 2:

System: Based on what you said, I understand that you are looking for <information
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object>. Am I correct?

• Information Sources Used

Example Script:

I am reading the information from the: <name of the website>. Is that alright?

In this section and the next, we explore the effect of different variables in our data

on the response (or outcome) variables. The different outcome variables were post-

task feedback of the user on various differentials related to the systems, the tasks, and

the quality of information. As we were investigating the role of clarification (using

the experimental and control systems), the system used was our control (or predictor)

variable. However, there were other variables (confounding variables) – task order,

search tasks, user age, gender, and background, topic familiarity to name a few –

which could have influenced the results. We evaluated the main (or direct) effect of all

the variables (both control and confounding) on the outcome variables. We have also

assessed the interaction effect of the confounding variables with the control variable

(the system used) to check if they are significant.

7.3.1 User Perceptions of the Two Systems

Once the users completed the search tasks using the experimental and control systems,

we asked them questions related to the task, the system, and the quality of information.

The system-related differentials were: helpfulness, understanding, communication, re-

sponse, overall experience with the system, and if the user believed that he would have

used an alternate search strategy than that followed by the agent.
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Table 7.2: System Used and User Feedback

Post-Task Responses
Pearson Correlation with
System Used where
(1=Conference, 2=Perfume)

System was Easy-to-use .143
System was Helpful .000
System Understood the Problem .170
System Communicated Clearly .194
System Response was Adequate .057
Satisfied with Experience .243
Would have done differently 0.000
Will Use the System Again .200

The correlation values presented in Table 7.2 suggests that our data do not support

a strong interrelationship between the system-oriented variables and the systems used.

Two variables – satisfaction with the experience (r=0.243) and will use the system

again (r=0.2) – show some correlation with the system used. This indicates that the

use of experimental or control system may influence the user experience and system

usability. Figure 7.3 and Figure 7.4 help in visualizing the relationship using boxplots.

However, we needed to perform further tests to confirm the effect of clarification (in

the experimental system).
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Figure 7.3: Post-task responses by System (part 1)
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Figure 7.4: Post-task responses by System (part 2)

7.3.2 Testing for the Effect of Clarifications

As the assumption of normality was violated, we performed Wilcoxon Signed Ranks

Test – a non-parametric test for paired data – to analyze the difference in user feedback

for Experimental and Control systems. Table 7.3 shows the results from the test, which

has been obtained by deducting the means of the control system from those of the

experimental system.

Table 7.3: Wilcoxon Signed Ranks Test

Post-Task Responses (Experimental - Control)
(1=completely agree, 5=completely disagree)

Test-statistica

(Z)
Asymp. Sig.

(2-tailed)

Task was Complex −0.171b 0.86
Task was Difficult −0.645c 0.52
Task was Successful −0.741b 0.46
System was Easy-to-use −1.291b 0.20
System was Helpful +0.000d 1.00
System Understood the Problem −1.224b 0.22
System Communicated Clearly −1.428b 0.15
System Response was Adequate −0.532b 0.59
Satisfied with Experience −2.066b 0.04
Would have done differently −0.247c 0.80
Will Use the System Again −1.933b 0.05
Found Right Information −0.312b 0.75
Better Information was Available −0.322b 0.75

a. Wilcoxon Signed Ranks Test
b. Based on negative ranks.
c. Based on positive ranks.
d. Sum of negative ranks = Sum of positive ranks.
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The Wilcoxon Signed Ranks Test evaluates if both the samples are from the same

population, that is, if “the average signed-rank of two dependent samples is zero.”

It used the standard normal distributed z-value to test if the result was statistically

significant.

Feedback on the System

Twenty-five participants were subjected to the Experimental and Control systems. The

post-task questionnaire recorded the user feedback on a 5-point Likert Scale. For

system-related responses, level 1 represented complete agreement (lowest in scale =

highest in feedback).

Table 7.4: Wilcoxon Signed Ranks Test (Differentials Q4-Q8).

Post-task Responses (Experimental - Control)
(1 = Completely Agree, 5= Completely Disagree)

N Mean Rank

System was Easy-to-use

Negative Ranks 4 6.00
Positive Ranks 8 6.75
Ties 13
Total 25

System was Helpful

Negative Ranks 4 4.50
Positive Ranks 4 4.50
Ties 17
Total 25

System Understood the Problem

Negative Ranks 5 5.70
Positive Ranks 8 7.81
Ties 12
Total 25

System Communicated Clearly

Negative Ranks 4 5.50
Positive Ranks 8 7.00
Ties 13
Total 25

System Response was Adequate

Negative Ranks 5 8.90
Positive Ranks 9 6.72
Ties 11
Total 25

Tables 7.4 and 7.5 show the distribution of positive and negative ranks. As the ranks

were calculated as the difference between user agreement for experimental and control
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systems. For example, in response to a system-level differential, if the user selected 1

(Completely Agree) for experimental system and 5 (Completely Disagree) for control

system, then the rank will be negative. Therefore, a negative rank shows preference of

the user towards the experimental system for that specific differential. The reverse is

true for positive ranks, which shows that the users preferred the control system (based

on the agreement scores)

Let us look at each of the evaluation parameters individually:

1. System was easy to use

The results indicate that there were 13 ties, 4 negative ranks, and 8 positive ranks.

Based on the test, the test-statistic is not significant (Z = -1.291, p = 0.20) and

thus, we cannot reject the null hypothesis. We do not have conclusive evidence

that the control system (without clarification) was perceived easier by the users.

However, more users preferred the control system over experimental system.

2. System was Helpful

The results show no difference between the experimental and control systems (17

ties, and 4 positive and negative ranks each). Both systems were equally helpful

to the users.

3. System Understood the Problem

The results seem to indicate that the control system was preferred by more users

(12 ties, 8 positive, 5 negative ranks). The higher number of ties suggest that

most users had no preference between the two systems. As the test statistic

is not significant (Z = -1.224, p = 0.22), we do not have sufficient evidence to

suggest that clarifications from the system decreased the user’s perception that

his problem was better understood by the system.

4. System Communicated Clearly

Once again, the results seem to indicate that the experimental system was pre-

ferred by fewer users (13 ties, 8 positive ranks, and 4 negative ranks). However,

the observed test-statistic is not significant (Z = -1.428, p = 0.15) and thus, we
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cannot reject the null hypothesis. We do not have conclusive evidence that our

experimental system (using clarification) was different from the control.

5. System Response was Adequate

More users agree that the system response was adequate for the control system

as compared to the experimental system (11 ties, 9 positive, and 5 negative).

The test-statistic is not statistically significant (Z = -0.532, p = 0.59), hence, we

cannot reject the null hypothesis.

6. Satisfied with Experience

The results highlight that the experimental system was preferred by three users

(negative ranks), while ten users preferred the control (positive ranks), and twelve

were tied. Based on the Signed Ranks test, the observed test-statistic is statisti-

cally significant (Z = -2.066, p = 0.04), and thus, we can reject the null hypothesis.

Therefore, we have enough evidence to suggest that the experimental system is

different from the control system. However, the results are negative which indicate

that the control system led to greater user satisfaction with the search tasks. In

other words, since both the systems were identical in all aspects except clarifica-

tions, we can argue that system-level clarifications decreased the user experience

while searching using a voice assistant.

7. Would have done differently

There are 10 negative ranks, 9 positive ranks, and 6 ties. This indicates that

although most users preferred one system over the other, the opinion was equally

divided. The observed test statistic is not significant (Z = -0.247, p = 0.8), and

thus, we cannot reject the null hypothesis.

8. Will use the System Again

The results indicate that there were 18 ties, 6 positive ranks, and 1 negative

rank. This suggests that while most users did not have any preference, a greater

number of users preferred the control system over experimental. Based on the

Signed Ranks test, the test-statistic is not statistically significant (Z = -1.933, p

= 0.05), and thus, we cannot reject the null hypothesis.
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Overall, the results of our user study suggests that the use of system-level clar-

ifications (or explanations) did not produce any positive effect on the user’s search

experience. In fact, it has lowered the user’s overall search experience. The result of

the Wilcoxon Signed Ranks Test shows the differences between the control and experi-

mental systems are significant (p<0.05) for only one of the parameters.

Table 7.5: Wilcoxon Signed Ranks Test (Differentials Q9-Q13).

Post-task Responses (Experimental - Control)
(1 = Completely Agree, 5= Completely Disagree)

N Mean Rank

Satisfied with Experience

Negative Ranks 3 6.00
Positive Ranks 10 7.30
Ties 12
Total 25

Would have done differently

Negative Ranks 10 10.10
Positive Ranks 9 9.89
Ties 6
Total 25

Will Use the System Again

Negative Ranks 1 3.00
Positive Ranks 6 4.17
Ties 18
Total 25

Better Information was Available

Negative Ranks 6 5.83
Positive Ranks 6 7.17
Ties 13
Total 25

Found Right Information

Negative Ranks 5 4.00
Positive Ranks 4 6.25
Ties 16
Total 25

Feedback Quality of Information

Two questions in the post-task questionnaire obtain user feedback on the quality of

information returned by the agent. Level 1 represented complete agreement (lowest in

scale = highest in feedback), and Level 5 shows complete disagreement (Table 7.5).

1. Found Right Information

The results show that there were 13 ties, and 6 positive and negative ranks each.
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While most users had no preference, the remaining were equally divided on the

preferred system. However, the test statistic is not statistically significant (Z

= -0.312, p = 0.75), which means that there were no differences between the

experimental and control systems.

2. Better Information was Available

For this differential, there were 16 ties, 4 positive ranks, 5 negative ranks. This

shows that most users had no preference between the two systems. The test

statistic is not statistically significant (Z = -0.322, p = 0.75), so the null hypothesis

could not rejected.

The agent was using the same information retrieval mechanism (Google search) in

both the cases, and either returned the summary of top-results or read from within the

documents. We would have been surprised if there were any differences in the perceived

quality of information. Such a difference would have highlighted possible issues with

the delivery of information or the results returned by the search engine itself.

Feedback on the Tasks

The pre-task responses suggested that the users possessed greater knowledge about

perfumes and considered conference search to be more difficult to search, to explain,

and overall. Therefore, it was essential to assess the post-task responses of the users. If

one of the two tasks were significantly different from the other, it could affect the other

experiential outcomes.
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Table 7.6: Wilcoxon Signed Ranks Test (Differentials Q1-Q3).

Post-task Responses (Experimental - Control)
(1 = Completely Agree, 5= Completely Disagree)

N Mean Rank

Task was Complex

Negative Ranks 9 8.11
Positive Ranks 8 10.00
Ties 8
Total 25

Task was Difficult

Negative Ranks 9 8.89
Positive Ranks 7 8.00
Ties 9
Total 25

Task was Successful

Negative Ranks 4 5.13
Positive Ranks 6 5.75
Ties 15
Total 25

There were a total of three task-related questions, and level 1 indicated complete

agreement. The task-level parameters are presented in Table 7.6 and explained as

follows:

1. Task Complexity

The results seem to indicate that the tasks were considered equally complex for

both the systems. There were 8 ties, 8 positive, and 9 negative ranks. The

observed test-statistic was not statistically significant (Z = -0.171, p = 0.86) and

the complexity of the search task was not perceived differently in either system.

2. Task Difficulty

The results seem to indicate that the tasks were considered similarly difficult in

both the systems. There are 9 ties, 7 positive ranks, and 9 negative ranks. Once

again, the test statistic was not statistically significant (Z = -0.645, p = 0.52).

3. Task Success

There were 15 ties, 6 positive ranks, and 4 negative ranks. This shows that most

users did not consider task success to be different when using either systems.The

test statistic was not statistically significant (Z = -0.741, p = 0.46), therefore, we

cannot reject the null hypothesis.
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Our results show that although the users may have perceived one search task as

more difficult than the other, the task-system combination eliminated any influence of

the search task topic on the experimental outcomes.

The interview results suggested that the participants were divided in their opinion of

the search task. While some considered both tasks to be similar, the conference search

task was judged to be tougher than the perfume search task by more participants.

This was possibly due to the gender imbalance in the recruited participants, where

we had a higher number of undergraduate female students. The age and gender of

the participants could have been the reasons why they were more knowledgeable about

perfumes and knew how to describe the different features to the Wizard. Gender did not

have any direct effect on the user feedback, but significant interaction effects between

gender and system used were observed for post-task success assessment (“Task was

successful”) and pre-task difficulty assessment (“Task was difficult”) with p<0.05.

“I think they were very similar.” – User 11

“In the first search where I was choosing a perfume for my dad, I had options

to go in and [find] out different flavors... my budget was not fixed... I can go

up and down. But in the second search which was related to my profession.

I had to be specific about the area the about choosing the best conference.”

– User 2

“I think the perfume was a bit more of a complicated search, so it was helpful

to use her rather than searching myself as there are a lot of like different

aspects of it.” – User 6

7.4 Other Observations

Next, we explored some of the other variables in our data and evaluated their influence

on the outcome variables – post-task feedback of the user on various differentials related

to the systems, the tasks, and the quality of information. As we were investigating the
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7.4.1 Effect of Search Task on Post-task Responses

First, we checked the correlation between the experimental setting (the search task

performed, the system used, and the order of task presentation) and the post-task

responses. The correlation statistics are shown in Table 7.7. We have highlighted the

only significant correlation in bold: Going from conference search to perfume search,

participants disagree more that they would have done the task differently. We created

a univariate general linear model to evaluate the effect of search task performed on the

post-task responses. The results indicated significant effect (with p=0.013) of search

task performed on one post-task parameter: “would have done differently”.

As pre-task responses have shown that participants claim to know more about per-

fumes than conferences, it is surprising that users agree more that they would not have

performed the perfume search differently. The users also agree more that the system

obtained right information for the perfume search as compared to conference search.

We believe that this could be because of the users awareness of the search space (related

to the search topic), which made them believe that the search results solved his infor-

mation problem. Based on post-task responses, users perceived perfume search to be

less difficult, more successful (task-related feedback), and agreed more that they found

the right information (quality of information). We investigated the effect of pre-task

topic knowledge on all the post-task parameters. While no main effects were found,

there were significant interaction effects between pre-task topic knowledge and system

used for one system-related differential (“If I were searching, I would have done it dif-

ferently”). This conforms with findings from previous studies (J. Liu, Liu, & Belkin,

2016; X. Zhang, Liu, & Cole, 2013) about the effect of topic knowledge on search.

As the participants had varying levels of topic knowledge (about perfume and con-

ference), the search tasks might have performed had some influence on the post search

task performed. Although we found a direct effect of the search task performed on only

one parameter, we measured the interactions between the search task performed and

the system used on all the outcome variables. As the search task was a confounding
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variable, any such effect could explain the possible influence of clarifications in the ex-

perimental system or its lack thereof in the control system. Significant system-search

task interaction effects (with p<0) were observed for the following responses: ‘System

was Easy-to-use,’ ‘System was Helpful,’ ‘System Communicated Clearly,’ ‘Satisfied with

Experience,’ ‘Would have done differently,’ ‘Will Use the System Again,’ and ‘Better

Information was Available.’ These observations help in explaining the detrimental ef-

fect of clarification in the experimental system. As the users had varying levels of topic

knowledge for the two search tasks, their experiences when using the experimental and

control systems could have been influenced by the search tasks and not by the system

alone. Therefore, more data should be collected, and further analysis should be done

to validate the results.

Table 7.7: Effect of Experimental Settings on Post-task Responses

Pearson’s Correlation Coefficients

Experimental Conditions

Post-Task Responses
(1=completely agree,
5=completely disagree)

Search Task
(1=Conf,
2=Perfume)

Task Order
System Used
(0=Control,
1=Experimental)

Task-related Feedback

Task was Complex .078 .140 .016
Task was Difficult .263 .033 -.099
Task was Successful -.258 -.052 .103

System-related Feedback

System was Easy-to-use -.143 .029 .143
System was Helpful -.120 -.120 .000
System Understood the Problem -.073 -.024 .170
System Communicated Clearly .145 .097 .194
System Response was Adequate -.171 -.057 .057
Satisfied with Experience -.097 .049 .243
Would have done differently .349* .127 0.000
Will Use the System Again -.143 .143 .200

Quality of Information

Found Right Information -.200 -.086 .029
Better Information was Available .129 .129 .043
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7.4.2 Order of Tasks did not Influence User Experience

The order in which tasks were presented to the users did not have any significant

correlation with any of the post-task response variables (Table 7.7). We evaluated the

effect of task order on all post-task differentials and failed to observe any significant

main effect. Also, there were no significant interaction effects of task order and system

used on post-task user experiential feedback.

7.4.3 Pre- and Post-task Perceptions on Task Differentials

We have reported the correlation values in Figure 7.8. Significant correlations have

been highlighted in the table. Level 1 represents lowest in pre-task differentials but

complete agreement in post-task differentials. Therefore, a positive correlation shows

an inverse relationship.

Table 7.8: Pre- and Post- Task-related Differentials

Pearson’s Correlation Coefficients

Pre-Task Differentials
(1=lowest)

Post-task Responses (1=completely agree)

Task was
Complex

Task was
Difficult

Task was
Successful

Topic Knowledge .197 .306* -.334*
Topic Familiarity .199 .273 -.289*
Task Difficulty -.350* -.429** .302*
Perceived Search Difficulty -.157 -.193 .226
Perceived Difficulty Explaining -.258 -.209 .249

The results – which conforms with findings from previous studies (J. Liu et al.,

2016; X. Zhang et al., 2013) about the effects of topic knowledge on search success and

experience – indicate the following:

1. Greater topic knowledge (increasing) made the user disagree that the task was

difficult. Instead, the user agreed more that the search task was successful. This

could be due to greater confidence in the search space, which allows the user to

evaluate the search session and its success better.

2. More (increasing) topic familiarity leads to more agreement that the task was
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successful.

3. If the users anticipated the task to be more difficult before the search session be-

gan, they expressed an identical opinion after the search session (a higher agree-

ment that the task was complex and difficult). Also, for tasks perceived as less

difficult, the users agreed more to the task being successful.

7.4.4 Effect of Gender on User Feedback

In our study, the recruited participants were not the perfect representative sample of

the population. Out of the 25 users recruited for the study, 20 were female, and 5

were male. Gender was one of the confounding variables in this study, which could

have affected the outcome variable (user experiential factors). Therefore, we evaluated

the effect of gender on user feedback. While gender did not have a significant main

effect on pre- and post-task differentials, we observed significant interaction effects of

gender when combined with the system used. Significant interaction effects – between

gender and system used – were observed for post-task success assessment (“Task was

successful”) and pre-task difficulty assessment (“Task was difficult”) with p<0.05. The

age and gender of the participants could have been the reasons why they were more

knowledgeable about perfumes and knew how to describe the different features of the

perfume to the Wizard. Knowledge of the search space made the female users agree

on the lower difficulty and higher success of the perfume search task compared to the

conference search.

7.5 Discussion

In our study, we investigated the effect of explicit system-level clarifications on the

search and interaction experience of the user when using spoken conversational systems.

We recruited 25 users who used an experimental system (which offered clarifications)

and a control system (without system clarifications) and answered questions related

to their system-level experiences. Although we expected explicit system-level clarifica-

tions to improve the users’ search experience, – system revealment property proposed
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by Radlinski and Craswell (2017) – the analysis of the user study data showed that

there were no positive effects. Instead, the user’s post-task response suggested that

satisfaction with the overall search experience was higher in the control system.

To explain the deviation of our findings from the theoretical models that this thesis

is based on, we observed the influence of the confounding variables on the outcomes.

We also investigated if there were interactions between the control variable (system

used) and the confounding variables (gender, topic knowledge, task order, and search

tasks). The gender imbalance in the data, high topic knowledge for one of the two

tasks, the order in which the tasks are presented could have influenced the search

experience. We analyzed the variance between the experimental and control systems

and observed that most confounding variables did not any direct effect on the post-task

responses. There were exceptions: gender had a significant effect on pre- and post-

task difficulty assessments while the search task had a significant effect on the users’

perception of how to search (‘would have done differently’). However, we observed

significant interactions between the search task performed and the system used on

multiple post-task parameters.

While our statistical analysis provides some insight into the observed result, we

use the interview data (user feedbacks during the exit interviews) to highlight the

possible reasons why clarifications could produce a detrimental effect on the users’

search experience. First, we look into how the two systems were operationalized. In a

user-agent information-seeking interaction, the points of clarifications are random and

depend on the intermediary. As our goal was to limit the cognition of the Wizard

to a system feasible a few years from now, therefore, we had to develop some rules

when clarifications should be offered. In the experimental system, every time the agent

searched, it clarified the information sources used, the query terms, or the Wizard’s

broad-level interpretation of the user’s information problem. This allowed the user to

correct the agent if required. The user could also take the initiative, instruct the agent,

and control the search strategy.
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(a) Speech Acts. (b) Speech Acts (by Search Task).

Figure 7.5: User Speech Acts following System Clarification

In Figure 7.5, we present different speech acts (by the user), which immediately

follows the system-level clarifications. Figure 7.5a shows that the users responded to

more than half of the clarifying questions with confirmation. Few examples of the

system-level clarifications were:

• I am entering the query <query words>. Is that ok?

• Would you like me to query <query>?

• I have another article <source>. would you like me to read from

In all the examples above, the user responded in affirmative: “Yes”, “Yes, that is ok”,

“Yeah”. The second frequent response was ‘Inform’ where the user added some addi-

tional keywords (“for men”) or provided additional information (“I prefer Bergamot

but then I want to look around what is in the market”). The third category of user

response (‘Question’), which had more than 20 instances, usually followed system elic-

itation (“Can you tell me more about what you are looking for? ” or “Do you have

any specific preferences?”). The user asked a follow-up question (“What’s the nearest

one?”) or stated his preference to the system (“under 100 dollars”). There were a

few instances where the user asked the system to repeat or instructed the system to

search in a specific way (“Now filter by date”). The high number of affirmatives in
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the user responses highlight an interesting fact: the system asked more clarifications

because of how it was operationalized, many of which were answered with a single word

(yes or yeah). If the system possessed enough cognition to determine the points of

low confidence, clarifications could be limited to only those situations where the user’s

information need was unclear. The user response to such situations could involve cor-

recting the query used, providing more information, or asking follow-up questions, all

of which were observed during the study.

Therefore, the detrimental effect of clarification, as observed in the statistical anal-

ysis, could be attributed to the following factors related to the operationalization of the

system:

• As the Wizard provides clarification to the user every time he searches and asks

the user to confirm, it increases the number of turns and can be perceived as

intrusive by the user.

• The frequency of such clarifications and revealments was high, which might have

disrupted the usual search process, and therefore, produced a negative effect on

the user’s search and interaction experience.

User feedback during the exit interview suggests that a majority of the users rec-

ognized that the system provided some form of clarification in one of the tasks. We

specifically inquired if that was helpful or was an impediment to the flow of conversa-

tion. While most users felt that the clarifications were helpful, it was frustrating for a

few.

“I like how it tells you the query that it’s going to give you before because

I feel like with like Siri and Alexa they just kind of do their own thing you

don’t know exactly what they’re doing, so it’s nice that they tell you that.”

– User 11

“I guess it would depend on your audience too, yeah, but I just found it help-

ful because her reiterating it allowed me to know that she was understanding

what I was asking.” – User 17
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The common themes which emerged were clarifications helped users “double-check

what [they] asked” (User 1) and they appreciated knowing that “the system is under-

standing where you’re asking because you could be speaking to and if it doesn’t under-

stand then what’s the point?” (User 21). It also allowed them to correct the queries

(“fixed it when I restated what I wanted” – User 11)

However, explicit clarifications were also frustrating for some users. Since the agent

declared the queries it was using, few users found that redundant. For example, User

2 says, “Johanna has to use her brain what she should put in the system”. Similarly,

User 12 preferred if “ it [the agent] just would do the query and tell me.”

“I don’t know a lot of people look for like human interaction in like a voice

assistant... I just want to get my answer you know and I just want to get

my answers accurate and as fast as possible. ” – User 10

Some of the comments highlight that system-level clarification if provided, should

be done judiciously and only at times when the confidence of the search system is low.

This should reduce the number of conversational turns and the search task completion

time. Also, since explicit clarifications are not practiced in human-human conversations,

and are either implied or done tacitly, we should follow a similar approach during a

human-system conversation. The last user comment suggests that the users may not be

looking for human-like interactions with a system. However, it should be pointed out

that the motivation behind conversational search systems is to provide accurate results

to satisfy the user’s information need, and conversation is one of the many ways to elicit

the information need. Considering the detrimental effect that clarifications might cause

on the users’ search experience, the system-level clarifications should either be implicit

and presented as part of an engaged conversation or provided only at times when the

system fails to understand the user. Further research needs to be done to determine

how to implement such clarifications without downgrading the search experience of the

user.
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7.6 Design Recommendations and Desired Functionalities

We designed the user study to answer our first research question (the role of explicit

system clarifications) and to prepare the dataset for our second research question (nat-

ural language understanding of spoken conversational search agents). However, during

the study, while interviewing the users about their experiences, we came across the

numerous challenges that people face with conversational search systems. We identi-

fied the features which are highly desired (and are feasible), and therefore, we suggest

some recommendations for future design and functionalities. We have supported our

recommendations with user comments.

7.6.1 Advanced Search Capabilities

For many users, the ability to perform advanced and complex search mattered more

than the speed of response.

“It’s adding more steps, but it’s making sure you get the right one every

time.” – User 22

“I liked the fact that it is able to give you more than just your yes or no and

simple responses” – User 21

For multiple returned results, the result should be presented as a list. But this

allows the user to query by item number in the list instead of querying by name. For

longer responses, the agent should present one item from the list at a time and ask the

user for confirmation before reading out the next item.

7.6.2 Reporting the Findings: Say less but Save More

A majority of our users suggested that the longer response from the agent was harder

to process cognitively. This is in line with previous research (Guy, 2016; Trippas et

al., 2018; Turunen et al., 2012) in conversational search systems. However, most of the

prior work (and ours) focused on result presentation over audio. Based on the user

feedback during the interview, one of the key recommendations is to share the search
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history and findings over email or text on request. Our study involved complicated

proper nouns (names of perfumes and conferences), and a majority of users felt that

while they preferred writing the names down, it was tedious to do so. One alternative

would be to send the answer to the user’s phone on request or send the link to the

documents over email (on demand). Some of the users even wanted the transcript to be

forwarded for future reference. Implementing these functionalities can lead to a better

result presentation for conversational search systems.

Interviews with participants revealed that many of them preferred some mechanism

through which they could save the information. Writing down the agent responses was

cognitively demanding (in laboratory environment) and not feasible in real-life (for any

of the use cases of conversational search systems). When we asked if the participants

would be willing to share their emails or phone numbers for the system to forward the

findings, almost all the participants agreed that it would be helpful.

“Personally like if I’m on the go and I need information, you know chances

are I’m not gonna be able to like to write it down or something so it would

be nice if it could have some type of way that it could store the information

that I could access it later” – User 11

“If [the agent] could like maybe repeat the search with like what I said and

then just give a link to the website or give a few links to websites and not

just one link ” – User 20

“when it comes to the articles and stuff like that a lot of the times what we

do is we’ll be saving the article. I was just writing down the information

what it was but if I can ask her hey can you email me the article? ” – User

24

While some users preferred receiving just the final answer, others wanted the queries

and URLs to be included as well. However, none of them wanted to look at the tran-

script of the conversation.
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7.6.3 Faster Response Time

Although we requested the users to be more patient with our system (as it was a

prototype and hence, slower), the slow response time was frustrating for many users.

“It felt difficult because she was testing my patience. [The agent] was taking

a lot of time to reply me” – User 2

“I don’t know a lot of people look for like human interaction in like a voice

assistant... I just want to get my answer you know and I just want to get

my answers accurate and as fast as possible. ” – User 10

7.6.4 Pause and Control Speed of Utterance

For complex searches, some user suggested the option to pause and resume the playback.

The users also preferred if the agent, on request, would break the utterance in parts

or slow it down without causing the audio quality to go down (for example, robotic

voice). The agent should also be able to spell the words when required, even if such

words contain diacritics or accents.

“I think pausing would be good option because I’m like, you’re writing some-

thing and then pause and then resume keep writing.” – User 6

This was a recurring theme among users (as they had difficulty writing down the

responses)

“Perhaps the system could go a little slower when it’s giving results. I think

that would be a good idea.” – User 21

“...maybe slow down the pace should be an option” — User 25

7.7 Chapter Summary

In this chapter, we explored the role of explicit system-level clarifications on the user’s

experience with the conversational search system. We used an experimental system
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(which provided such clarifications) and a control system and analyzed the user feed-

back for both systems. The results of the Wilcoxon Signed Rank Test showed that the

use of explicit system-level clarifications produced no positive effect on the user’s search

experience. There were no observed differences between the experimental and control

systems for all but one system-level differential. When asked about the overall search

experience, the user agreement was higher for the control system over experimental.

The difference between the two systems was statistically significant (Z = -2.066, p =

0.04), but the direction was negative. As the experimental and control systems were

similar in all aspects except system-level clarifications, it can be argued that system-

level clarifications led to lower satisfaction with the overall search experience. For the

task- and information-level differentials, the results did not indicate any difference be-

tween the two systems. Since our results did not conform to the theoretical frameworks,

we checked the effect of confounding variables on the outcomes. We observed some in-

teraction effects of the control variable with gender, pre-task knowledge, and search

tasks, which explains why the findings deviated from expectations. Although the sta-

tistical results do not reveal any positive effect of system clarifications, the interview

data provided some valuable insights on the preferences of the users. We identified some

possible issues with how system revealment was operationalized and suggest how they

could be corrected in the future. We report these observations and make recommenda-

tions for future design and functionality. However, more tests need to be conducted to

confirm the generalizability of these findings and recommendations.
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Chapter 8

Towards Natural Language Understanding of Spoken

Conversational Search Systems

Our second research question was:

How can we automatically predict the different speech acts and the search

actions in a user-system information-seeking conversation?

In this chapter, we report the performance of our Multi-channel Deep Speech Clas-

sifier (MDSC) for the two prediction tasks: (i) speech acts (of the user and the agent),

and (ii) search actions (of the agent). We have presented the prediction results for the

two datasets:

1. The CONVEX dataset which was collected as part of our user study; and

2. The SCS dataset which was available publicly.

For each prediction task, we repeated the experiment 30 times. For each iteration,

we picked different training and test sets randomly using different seed values. The clas-

sification models were trained from scratch for each iteration using the training data

for that iteration. After collecting the accuracy values for 30 iterations, we reported

the descriptive statistics for each prediction task. We also performed ablation analysis

to evaluate the importance of different categories of features in the classification tasks.

Additionally, we have used a collection of popular machine learning algorithms to com-

pare the performance of our model against several off-the-shelf classifiers. The list of

baseline classifiers used were as follows: (1) Dummy Classifier with random guesses

(str); (2) Dummy classifier with most frequent class (mfq); (3) k-Nearest Neighbors

classifier (knn); (4) Gaussian Naive Bayes (gnb); (4) Random Forest Classifier (rfc); (5)
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AdaBoost classifier (ada); (6) Quadratic Discriminant Analysis (qda); (7) Support Vec-

tor Classifier (svc); (8) Multi-layer Perceptron classifier with stochastic gradient descent

(mlp); (9) One-vs-the-rest (OvR) multiclass/multilabel strategy (ovr); (10) One-vs-one

multiclass strategy (ovo); (11) Grid Search Cross Validation (gsc); and (12) Decision

Tree Classifier (dct). The performance of MDSC models (with prefix mdsc) is reported

for all the possible combinations of the channels. Channel 1 uses lexical and semantic

features (which is also referred to as natural language processing features), Channel

2 uses word embeddings, and Channel 3 uses dialogue metadata features. The pair-

wise combinations of the channels are shown as mdsc-12, mdsc-13, and mdsc-23, while

mdsc-123 uses all the three channels together.

8.1 Predicting Speech Acts

Our first task was to predict the speech actions in both the datasets. The performance

of MDSC classifier (with different configurations) can be visualized in Figure 8.1 and

Figure 8.2. The prediction results are summarized and compared with the baseline

machine learning classifiers in Table 8.1 (for the CONVEX dataset) and Table 8.2 (for

SCS dataset).

8.1.1 CONVEX Dataset

We compare the performance of our prediction model, MDSC, with various machine

learning classifiers. Figure 8.1 shows the boxplots for easy visualization while Table 8.1

shows the statistical details.
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Figure 8.1: CONVEX dataset: Speech Act Prediction Accuracy.

Table 8.1: Predicting Speech Acts: Accuracy on CONVEX dataset

mean std min 25% 50% 75% max

ada 0.337 0.087 0.161 0.265 0.353 0.404 0.458
mdsc-12 0.816 0.019 0.771 0.801 0.822 0.828 0.853
mdsc-123 0.868 0.016 0.823 0.859 0.869 0.877 0.902
mdsc-13 0.853 0.020 0.809 0.838 0.857 0.869 0.886
mdsc-23 0.828 0.027 0.760 0.813 0.830 0.847 0.880
mdsc-meta 0.630 0.025 0.580 0.612 0.634 0.646 0.676
mdsc-nlp 0.796 0.020 0.757 0.782 0.796 0.811 0.834
mdsc-word 0.794 0.019 0.755 0.782 0.794 0.807 0.842
dct 0.560 0.021 0.510 0.548 0.563 0.572 0.597
gnb 0.384 0.028 0.338 0.364 0.381 0.403 0.452
gsc 0.443 0.030 0.376 0.428 0.439 0.468 0.501
knn 0.434 0.026 0.371 0.412 0.439 0.446 0.488
mfq 0.183 0.020 0.131 0.170 0.180 0.196 0.218
mlp 0.556 0.022 0.512 0.540 0.550 0.575 0.599
ovo 0.468 0.037 0.390 0.440 0.467 0.495 0.534
ovr 0.425 0.066 0.240 0.403 0.424 0.466 0.526
qda 0.017 0.041 0.000 0.003 0.005 0.005 0.177
rfc 0.526 0.029 0.463 0.504 0.522 0.550 0.583
str 0.144 0.019 0.098 0.134 0.143 0.157 0.183
svc 0.449 0.022 0.379 0.439 0.446 0.463 0.482
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We have highlighted the two best performing models in Table 8.1 – MDSC with all

the three channels (mdsc-123 ) and MDSC with NLP and metadata features (mdsc-13 )

with a median accuracy of 86.9% and 85.7% respectively.

8.1.2 SCS Dataset

Next, we evaluated the performance of MDSC using the SCS Dataset. The results, as

shown in Figure 8.2 and Table 8.2, indicates that highest median accuracy of 64.1%

is obtained by MDSC using channels 1 (NLP features) and 3 (Dialogue Metadata).

MDSC using the three channels together is a close second with median accuracies of

63.9%. The highest accuracy of the best performing instances is 73.2% and 72.2%,

respectively.

Figure 8.2: SCS dataset: Speech Act Prediction Accuracy.
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Table 8.2: Predicting Speech Acts: Accuracy on SCS dataset

mean std min 25% 50% 75% max

ada 0.459 0.111 0.225 0.449 0.507 0.536 0.574
mdsc-12 0.493 0.052 0.325 0.464 0.495 0.531 0.565
mdsc-123 0.634 0.051 0.531 0.608 0.639 0.675 0.732
mdsc-13 0.633 0.052 0.522 0.602 0.641 0.679 0.722
mdsc-23 0.569 0.036 0.507 0.549 0.569 0.591 0.641
mdsc-meta 0.537 0.036 0.464 0.513 0.533 0.560 0.608
mdsc-nlp 0.517 0.034 0.455 0.494 0.517 0.539 0.589
mdsc-word 0.507 0.035 0.450 0.484 0.502 0.524 0.617
dct 0.484 0.028 0.421 0.459 0.490 0.501 0.541
gnb 0.349 0.041 0.258 0.331 0.349 0.372 0.440
gsc 0.536 0.032 0.464 0.513 0.531 0.560 0.593
knn 0.310 0.029 0.249 0.291 0.316 0.329 0.368
mfq 0.296 0.032 0.211 0.274 0.294 0.319 0.349
mlp 0.537 0.035 0.464 0.514 0.543 0.560 0.608
ovo 0.506 0.059 0.349 0.488 0.514 0.539 0.589
ovr 0.486 0.050 0.368 0.455 0.500 0.526 0.574
qda 0.224 0.026 0.172 0.207 0.220 0.234 0.278
rfc 0.465 0.034 0.402 0.443 0.467 0.488 0.545
str 0.174 0.023 0.120 0.159 0.179 0.190 0.215
svc 0.356 0.030 0.287 0.335 0.359 0.382 0.397

8.1.3 Discussion

For both the datasets, we performed ablation analysis by using each of the three chan-

nels individually, combining them in pairs, and all the three channels together. The

different configurations of MDSC are shown in the Tables using prefix mdsc. The highest

reported accuracy was 90.2% and 73.2% for CONVEX and SCS datasets, respectively.

The results of ablation analysis indicate that the best performance is achieved using

all the three channels, that is, the word embeddings (channel 2), the lexical and se-

mantic features (channel 1), and the dialogue metadata (channel 3). However, for SCS

dataset, the median performance of the mdsc-13 (64.1% accuracy) is slightly better

than mdsc-123 (63.9% accuracy). The lower accuracy on SCS data can be attributed

to the human-human nature of the dialogues. There are multiple occasions where the

utterances resemble casual chit-chats and do not follow a specific set of rules. None

of the three feature channels show comparable performance when used individually,

and the largest drop in performance is observed on removing the metadata features (as
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observed in mdsc-12 ), followed by natural language features (mdsc-23 ). The results

are consistent for both the datasets.

(a) CONVEX (MDSC-123).

(b) SCS (MDSC-123).

Figure 8.3: Confusion Matrix (Speech): CONVEX and SCS (MDSC-123)

In Figure 8.3, we present the confusion matrix for speech prediction using mdsc-123

(MDSC with three channels together). Figure 8.3a and Figure 8.3b are for CONVEX

and SCS data respectively. The iterations have been selected at random. The green

cells are the correct predictions while the red cells show the major misclassifications by

the model.

For CONVEX speech prediction, four instances of S9 (Repeat) were classified as S1

(Question/Seek). A closer inspection into the dataset revealed that all the misclassifi-

cations occured when the user requested the agent to repeat the last utterance. The

model wrongly assumed that the user utterance is a question instead of a request to

repeat. Similarly, the answers by the agent were marked as S4 by the annotators for

the first time and as S9 for subsequent repetitions. The model failed to recognize the

rule followed by the human annotators and classified multiple instances of S4 (Answer
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by the agent) as S9 (Repetitions by the agent). On two occasions, the model confused

courtesy (S11) by the agent as accept (S2). Both of these instances involved only the

word “Okay”. In three cases, implicit requests for clarifications (S5) were wrongly clas-

sified as Question/Seek (S1). An example of correctly classified instance is: “Based on

what you said I am running the query “top conferences in Artificial Intelligence” am I

correct?” while a wrongly classified instance is: “It’s a perfume for men or women?”

For SCS speech predictions, 11 instances of S1 (Question/Seek) were misclassified as

S8 (Instruct). On observing the specific instances, we noticed that the wrongly classi-

fied instances were either towards the end of the conversation (utterance number > 30)

or did not end with a question mark. All the correctly predicted instances (of S1) ended

with question mark. Similar to our observations for CONVEX, three instances of S9

(Repeat) were classified as S1 (Question/Seek). It must be noted that S9 is a minority

class in SCS dataset. The highest number of misclassification occured when predicting

S12 (Greetings and Closing Rituals). 16 instances of S12 were predicted as S10 (Con-

firmation). A close inspection revealed that all the wrongly classified utterances had

words like “Okay” or “Yeah” which were heavily used for confirmation.

Let us look at utterance number 5 (by the agent) for User 21:

“Here is what I have found: Deep Learning Summit San Francisco, Insur-

ance AI and Innovative Tech, USA 2020; Deep Learning in Health Care

Summit, Boston; and AI for CPG Summit. Would you like me to list some

more?”

Human annotators labeled this instance as S4 (Answer) and all the annotators were in

complete agreement. The mdsc-metadata model classified this utterance as S5 (Clar-

ify) and mdsc-word and mdsc-nlp models classified the utterance as S9 (Repeat). Ma-

chine Learning models depend on the confidence scores to make prediction. The mdsc-

metadata model looked at different features like duration of the utterance, speaker of

the utterance, utterance number, and previous speech act and search actions. But since

mdsc-metadata did not use word-level meanings, it failed to get enough confidence to la-

bel the instance as S4. Similarly, mdsc-word used only word-embeddings and mdsc-nlp
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used only lexical and semantic features without any without any contextual information

like the speaker, utterance number, previous user speech act and previous agent search

act. Therefore, both these models could not differentiate between the agent generated

S4 and S9. Individually, none of the models (using different channels) achieved enough

confidence to make the correct prediction. However, when all the channels were used

together in MDSC-123, the combination of weak clues from each channel was able to

push the confidence past the threshold, and resulted in accurate detection. This is a

classic example of Gestalt principle (Koffka, 2013) where “the whole is greater than the

sum of its parts.”

Overall, for speech act prediction, MSDC outperforms all the traditional classifica-

tion models by a large margin and shows improvements of 54.4% and 18.3% over the

nearest baseline for CONVEX and SCS, respectively (Decision Tree with 56.3% me-

dian accuracy and Multilayer Perceptron with 51.4% median accuracy). Based on our

findings, it can be argued that the dialogue metadata features like the relative position

of the utterance in the conversation, or the duration of it are extremely important in

predicting the speech acts. Also, different lexical and semantic features could be cru-

cial in natural language understanding. Although word embeddings are important, we

need a considerable amount of training data before the model can recognize underlying

patterns.
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Table 8.3: Statistical Significance using Wilcoxon Signed-Rank Test (Speech Act)

Classifier 2
Classifier 1 (mdsc-123)

CONVEX SCS

(If
p<0.05?)

(If
p<0.05?)

ada Yes Yes
dct Yes Yes
gnb Yes Yes
gsc Yes Yes
knn Yes Yes
mdsc-12 Yes Yes
mdsc-13 Yes No
mdsc-23 Yes Yes
mdsc-meta Yes Yes
mdsc-nlp Yes Yes
mdsc-word Yes Yes
mfq Yes Yes
mlp Yes Yes
ovo Yes Yes
ovr Yes Yes
qda Yes Yes
rfc Yes Yes
str Yes Yes
svc Yes Yes

Next, we evaluated the significance of our classification results using statistical anal-

ysis. This helped us in assessing if the difference between MDSC and the other classifiers

are real or by chance. As the training and test sets were chosen from the same dataset

(for 30 iterations), the observations were not independent, and so we opted for a non-

parametric Wilcoxon signed-rank test for pairwise comparisons. The best performing

MDSC classifier for both the datasets – MDSC with three channels (mdsc-123 ) – was

compared with all the baseline classifiers. The statistical significance is reported in Ta-

ble 8.3. The results emphasize that for the CONVEX dataset, the MDSC model with

three channels (mdsc-123 ) is significantly better than all the baseline classifiers. For

the SCS dataset, the results were significantly different when compared to the baseline

classifiers. However, the improvement was not significant when compared to mdsc-3,

which is understandable as it is a different variation of the same architecture.
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8.2 Predicting Search Actions

Next, we used the MDSC model to predict the search actions performed by the agent

(Wizard). The search actions were initiated in response to the spoken utterances of

the user. Therefore, instead of using the spoken utterance of the current turn, we have

used the previous utterance by the user to generate the word-embeddings.

8.2.1 CONVEX Dataset

When predicting search actions for the CONVEX dataset, the best performing model

was MDSC with channels 1 (NLP features) and 3 (dialogue metadata). The highest

reported accuracy was 63.7%. However, the highest median accuracy was obtained

using MDSC with channel 3 (dialogue metadata). Both the models are highlighted in

Table 8.4. The boxplot can be seen in Figure 8.4.

Figure 8.4: CONVEX dataset: Search Act Prediction Accuracy.
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Table 8.4: Predicting Search Acts: Accuracy on CONVEX dataset

mean std min 25% 50% 75% max

ada 0.358 0.039 0.265 0.336 0.353 0.380 0.431
mdsc-12 0.351 0.053 0.265 0.314 0.353 0.390 0.451
mdsc-123 0.475 0.069 0.324 0.424 0.475 0.517 0.608
mdsc-13 0.491 0.056 0.392 0.453 0.490 0.529 0.637
mdsc-23 0.457 0.067 0.333 0.422 0.461 0.510 0.588
mdsc-meta 0.510 0.048 0.422 0.483 0.510 0.539 0.627
mdsc-nlp 0.308 0.027 0.235 0.287 0.309 0.324 0.363
mdsc-word 0.294 0.036 0.235 0.275 0.299 0.314 0.402
dct 0.269 0.037 0.147 0.255 0.265 0.294 0.353
gnb 0.365 0.044 0.294 0.333 0.363 0.390 0.461
gsc 0.394 0.048 0.304 0.363 0.392 0.422 0.520
knn 0.303 0.034 0.255 0.284 0.294 0.324 0.412
mfq 0.330 0.027 0.265 0.314 0.333 0.350 0.402
mlp 0.372 0.046 0.275 0.353 0.363 0.402 0.529
ovo 0.390 0.050 0.255 0.353 0.397 0.422 0.471
ovr 0.388 0.044 0.314 0.365 0.382 0.419 0.490
qda 0.356 0.042 0.265 0.326 0.353 0.380 0.431
rfc 0.238 0.031 0.186 0.216 0.245 0.255 0.304
str 0.309 0.037 0.245 0.287 0.314 0.324 0.382
svc 0.270 0.036 0.176 0.255 0.265 0.284 0.343

8.2.2 SCS Dataset

When predicting search actions on the SCS dataset, the best median accuracy was

obtained using MDSC with metadata features (mdsc-meta). However, the highest

accuracy was reported by the AdaBoost model (63.3%). The MDSC model had the

highest accuracy of 60%. More details can be found on Figure 8.5 and Table 8.5.
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Figure 8.5: SCS dataset: Search Act Prediction Accuracy.

Table 8.5: Predicting Search Acts: Accuracy on SCS dataset

mean std min 25% 50% 75% max

ada 0.494 0.047 0.411 0.467 0.494 0.531 0.633
mdsc-12 0.410 0.047 0.311 0.389 0.411 0.431 0.522
mdsc-123 0.461 0.064 0.311 0.414 0.456 0.489 0.589
mdsc-13 0.464 0.060 0.333 0.433 0.472 0.506 0.567
mdsc-23 0.477 0.070 0.333 0.417 0.483 0.531 0.611
mdsc-meta 0.503 0.060 0.367 0.469 0.511 0.542 0.600
mdsc-nlp 0.409 0.057 0.244 0.381 0.411 0.453 0.500
mdsc-word 0.417 0.056 0.322 0.367 0.422 0.467 0.511
dct 0.427 0.056 0.344 0.392 0.422 0.453 0.544
gnb 0.410 0.052 0.300 0.369 0.422 0.453 0.489
gsc 0.443 0.056 0.267 0.422 0.444 0.478 0.556
knn 0.454 0.054 0.333 0.422 0.456 0.486 0.578
mfq 0.430 0.053 0.311 0.400 0.422 0.464 0.544
mlp 0.486 0.043 0.378 0.458 0.500 0.511 0.578
ovo 0.432 0.069 0.300 0.383 0.433 0.467 0.578
ovr 0.426 0.075 0.233 0.392 0.422 0.478 0.567
qda 0.313 0.043 0.222 0.300 0.317 0.342 0.389
rfc 0.453 0.045 0.367 0.422 0.456 0.467 0.544
str 0.340 0.059 0.189 0.311 0.344 0.375 0.467
svc 0.407 0.048 0.300 0.378 0.406 0.433 0.511
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8.2.3 Discussion

Once again, we performed an ablation analysis for both the datasets. The highest re-

ported accuracy was 63.7% and 63.3% for CONVEX and SCS datasets, respectively.

To predict the appropriate search action for the agent, we used the user utterance in

the last turn to generate the word embeddings. The results indicate that MDSC using

metadata features slightly outperforms the baseline classifiers. MDSC with metadata

channel (mdsc-meta) had the highest median accuracy for both the datasets with 51%

and 51.1%, respectively. The improvements were 32.3% and 2.2% over the closest ma-

chine learning baselines (OVO with 39.7% accuracy for CONVEX and MLP with 50%

accuracy for SCS). For both the datasets, metadata features were the most important

for MDSC.

(a) CONVEX (MDSC-Meta).

(b) SCS (MDSC-Meta).

Figure 8.6: Confusion Matrix (Search Actions): MDSC-Meta

Unlike speech act prediction, combining all the channels led to a decline in perfor-

mance when predicting search actions. One of the likely reasons is the significance of

dialogue features in determining the search actions of the intermediary. The speech act

of the user immediately preceding the intermediary’s action governs the search tactic to

be followed and therefore, could be used to develop an understanding of how to search

in response to spoken utterances. Word-based features are necessary to build context,

and in framing the queries, but they have limited influence (compared to speech acts)
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while determining the search action. Second, search actions are performed only by the

intermediary; therefore, the number of instances with the search actions in both the

datasets was less than half of those with speech acts. We believe that as the training

data decreased while predicting search actions, our model failed to identify underlying

patterns in word embeddings and lexical and semantic features. As a result, both the

channels showed poor performance and led to lower accuracy when combined.

In Figure 8.6, we present the confusion matrix for search act prediction using the

MSDC with metadata channel (msdc-meta). Figures 8.6a and 8.6b are for CONVEX

and SCS data respectively. Once again, the correct predictions are the diagonal ele-

ments (highlighted in green) and the major misclassifications have been highlighted in

red. For CONVEX data, 14 instances of SR1 (Query Creation or Refinement) were

wrongly classified as SR3 (Document Scanning). Although analysis of the data did not

reveal any noticeable insights, we did notice that the correctly classified instances of

SR1 were preceded by user utterances that had a mean duration of 23 seconds whereas

the incorrectly classified instances were preceded by user utterance that had a mean

duration of 12 seconds or less. There is a possibility that the model assumed that longer

utterances involved the users stating (or restating) their information need and called

for query creation/modification. Therefore, the model predicted document scanning for

shorter utterances (which might involve identifying sections within document). Simi-

larly, all the wrongly classified instances of SR3 were preceded by user utterances of

duration longer than 10 seconds and lesser than 30 seconds. They were classified either

as SR1 or SR2. Next, we noted that SR4 (Organizing Answer from Multiple Docu-

ments) was a minority class and none of the instances of SR4 were correctly classified.

Six instances of SR4 were marked as SR3 and two as SR2.

In Figure 8.6b, we see the matrix for SCS data. The last column shows that SCS

data did not contain any instances of SR4. As the data did contain details of the search

actions performed but broad labels, it was not possible to recognize multi-document

answers. We noticed that 13 instances of SR1 and 12 of SR3 were wrongly classified

as SR2. One possible explanation is the higher number of SR2 labels in the training

dataset. Since SR2 is the majority class (almost 43% of the search action labels are
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SR2), our model is biased towards SR2. Training with a larger dataset with oversampled

minority classes could improve the model performance.

Table 8.6: Statistical Significance using Wilcoxon Signed-Rank Test (Search Action)

Classifier 2
Classifier 1 (mdsc-meta)

CONVEX SCS

(If
p<0.05?)

(If
p<0.05?)

ada Yes Yes
dct Yes Yes
gnb Yes Yes
gsc Yes No
knn Yes Yes
mdsc-12 Yes Yes
mdsc-123 Yes Yes
mdsc-13 No Yes
mdsc-23 Yes Yes
mdsc-nlp Yes No
mdsc-word Yes Yes
mfq Yes Yes
mlp Yes No
ovo Yes Yes
ovr Yes Yes
qda Yes Yes
rfc Yes Yes
str Yes Yes
svc Yes Yes

The statistical significance is reported in Table 8.6. Once again, we used Wilcoxon

signed-rank test – which is non-parametric – for pairwise comparisons. The best per-

forming MDSC classifier for both the datasets – MDSC with metadata channel (mdsc-

meta) – has been compared with the other classifiers. The results proved that for the

CONVEX dataset, the MDSC model with the metadata channel (mdsc-meta) was sig-

nificantly better than all the baseline classifiers. However, no significant improvement

was observed when mdsc-meta was compared with mdsc-13. For SCS dataset, no sig-

nificant difference was observed when the results of mdsc-meta was compared to gsc,

mlp, and mdsc-nlp. For all other classifiers, the results were significantly different.
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8.3 Chapter Summary

In this chapter, we proposed a deep neural approach to identify the speech acts and

the search actions in human-agent information-seeking dialogues. Since speech acts

convey the meaning of the utterances, by identifying the speech acts automatically, we

can develop an understanding of what is being said by the user. As the utterance of

the user should guide the search action performed by the agent, we can argue that the

speech act of the user could be used as a feature to predict the search action which the

agent should perform. Therefore, by predicting the speech acts and the search actions

accurately, the conversational search system can decide on what the ideal response

should be (as each label represents different categories of action). Overall, our research

contributes towards the natural language understanding of spoken conversational search

systems.

To a human intermediary, the content of the dialogue provides sufficient indication

for the search actions necessary. However, for a non-human intermediary (as our sys-

tem here), large amounts of training data are required to identify patterns from only

the words in the conversational dialogue. By adding the different natural language

and the metadata features, we optimize the prediction process and considerably lower

the training and computation times. Feature engineering is important as training and

deploying a massive deep neural model is not only expensive (both financially and

computationally) but also produces emissions which have an adverse effect on the envi-

ronment (Strubell, Ganesh, & McCallum, 2019). The neural model which we proposed

here is simple and modular. We have tested our model on two datasets – the CON-

VEX dataset created by us and SCS dataset available publicly – and our model shows

impressive accuracy while predicting speech acts (highest of 90.2% for CONVEX and

73.2% for SCS dataset). The accuracy while predicting search actions is lower (63.7%

on CONVEX and 60% on SCS), but training on a larger dataset should improve the

performance in the future. Overall, our classifier (MDSC) outperforms the existing

machine learning baselines significantly and could be extended to other datasets with

little or no additional effort. Our results are fully reproducible, and the code and data
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will be made public on a major code sharing platform.
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Chapter 9

Conclusion

In this chapter, we conclude the thesis by providing a brief summary of the research

undertaken, the contributions and practical implications of our findings, and the pos-

sible directions for future research. Conversational systems are becoming increasingly

popular in our everyday lives as they allow multitasking and handsfree operations.

However, as is common with many emerging technologies, there are several challenges

which the scientific community is trying to address, which range from understanding

the user’s utterances to result presentation and evaluation of such systems. In our

work, we explored the two of the intelligent functionalities expected of conversational

search systems. We concentrate on two of the many intelligent functionalities desired

of conversational search systems:

• Natural language understanding (how to connect what is being said by the user

to the search actions to be performed by the agent?);

• System-level clarifications (does explicit clarifications by the agent facilitate user-

agent information-seeking conversations and, therefore, create a better search

experience for the user?)

We focus on search systems specifically, with voice-only input and output, although

many of our findings could be extended to multimodal search systems.

9.1 Thesis Summary

In this thesis, we presented an overview of the Conversational Search Systems as a

research domain and proposed possible solutions to some of the existing challenges in

such systems. While conversations are the natural mode of communication for humans,
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search systems have traditionally been textual and browser-based. With the popularity

of mobile and wearable devices, there is an increasing demand for voice-based search

systems. Users can interact with these systems – also called digital personal assistants

– using natural language dialogues. However, as we highlighted in Chapters 2 and

3, numerous challenges must be overcome in different stages of information retrieval.

Current and future research in this domain is focused on various aspects of information

organization, human-system interaction, result presentation, and evaluation strategies.

In our work, we have focused on two of the intelligent functionalities that are ex-

pected from conversational search systems. The first explores system-level clarifications

that the system could provide to the user. Prior research (Hollnagel, 1979) has sug-

gested that successful communication between the user and the system can only be

achieved when both have developed clear models of each other. The act of model build-

ing could involve user- and system-revealment (Radlinski & Craswell, 2017) during the

search session. As the search task increases in complexity, it requires a greater effort to

understand the user’s information problem. The effort could be in the form of higher

cognition (as in a human-human conversation), more contextual awareness (through

better knowledge representation), or more extended conversations. Therefore, in our

research, we have assessed the influence of explicit system-level clarification on the

user’s search experience when performing moderately complex search tasks. We per-

formed a within-subjects Wizard-of-Oz experiment – with two systems, experimental

and control – to answer our research question. In the experimental system, the agent

clarified its model every time it searched for information. The clarification included

the query terms, information sources, or the agent’s understanding of the user’s infor-

mation need. Our analysis of the user study data revealed no significant insight into

the effect on system-level clarification. There were no observed differences between the

experimental and control systems for all but one post-task response. When asked about

satisfaction with the overall search experience, the user agreement was higher for the

control system over experimental. The difference between the two systems was statis-

tically significant (Z = -2.066, p = 0.04), but the direction of the result was negative.

As the observations were contrary to our expectations, we investigated for possible
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reasons why clarifications did not improve the users’ search experience. We assessed

if the confounding variables (gender, topic knowledge, task order, and search tasks)

had any direct effect on the user responses or any interaction effect with the control

variable (system used). While most confounding variables did not any direct effect on

the post-task responses, gender had a significant effect on pre- and post-task difficulty

assessments while the search task had a significant effect on the users’ perception of how

to search (‘would have done differently’). Significant interactions were observed between

the search task performed and the system used on multiple post-task parameters. In

the future, further investigations are required with a larger number of participants and

different search tasks. Our analysis of the exit interviews provides some insights into

how the operationalization of the system could have influenced the findings and possible

alterations for future studies. For example, the Wizard provided clarification to the user

every time the Wizard searched and asked the user for confirmation. This increased

the number of turns and might have been perceived as intrusive by the user. Also, the

frequency of such clarifications and revealments were high and might have disrupted the

usual search process, and therefore, produced a negative effect on the user’s search and

interaction experience. For future work, we suggest that the system-level clarifications

should either be implicit and presented as part of an engaged conversation or provided

only at times when the system fails to understand the user. Further research needs

to be done to determine how to implement such clarifications without downgrading

the search experience of the user. We analyzed the user interviews and reported some

other observations from the study. We also proposed some recommendations about the

design and functionality expected in future systems.

The second research question explored the natural language understanding of con-

versational search systems. During a search session, the spoken utterances of the user

guide the actions of the agent. Depending on the utterance of the user, the agent may or

may not perform a search action. In either case, the agent responds in natural language,

either furthering the conversation or responding with an answer (if it performs a search

action). In our work, we have used the concept of Speech (or Dialogue) Acts from

Linguistics to develop a natural language understanding model for the search agent.
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Speech acts convey the meaning of the utterance on a functional level. By identifying

the speech acts automatically, we can develop an understanding of what is being said

by the user and what should be the response of the agent. The speech act of the user

should also influence the search action of the agent. Therefore, we develop two predic-

tive models: one to predict the speech act of the user and the agent and the other to

predict the search action performed by the agent. To build the machine learning clas-

sifiers, we use the CONVEX dataset (developed by us) and the SCS dataset (available

publicly). We performed a thematic analysis of the data to develop a set of qualitative

codes. Next, we use these codes to annotate each utterance in the two datasets with the

search acts and corresponding search actions. Finally, we developed a multi-channel

deep neural classifier (MDSC) to perform the prediction tasks. We trained our classi-

fier on three different categories of features – word-embedding of the utterances, lexical

and semantic features, and the dialogue metadata. We reported the accuracy of our

classifier along with the confusion matrices. We also tested the statistical significance

of our model when compared with baselines, and performed ablation analysis to show

the importance of each category of features. The results indicate that the MDSC model

(with best configurations) achieved the highest accuracy of 90.2% for CONVEX and

73.2% for the SCS dataset (when predicting speech acts). The accuracy of prediction for

search actions was 63.7% for CONVEX and 60% for SCS data. Metadata features were

most important for both the prediction tasks, while word-embeddings were least effec-

tive. For speech act prediction, the best performing model used all the three channels

together. Overall, our classifier (MDSC) outperformed the existing machine learning

baselines significantly. To a human intermediary, the content of the dialogue provides

sufficient indication for the search actions necessary. However, for a non-human inter-

mediary (as our system here), large amounts of training data are required to identify

patterns from only the words in the conversational dialogue. By adding the different

natural language and the metadata features, we optimize the prediction process and

considerably lower the training and computation times. Also, the simple and modular

nature of our model ensures that it could be extended for similar user study datasets

with few changes.
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9.2 Contributions

Our contributions focus on the design and development of more user-centered spo-

ken conversational search systems. In the following subsections, we try to present an

overview of the significant contributions of this thesis.

9.2.1 Detailed Survey of Prior Literature

First, as part of this thesis, we explored the literature on conversational systems from

both human- and algorithmic- perspectives. We presented a detailed account (to date)

of the key papers in the last decade and beyond that contributes to the development

of theory and understanding of conversational information retrieval as a domain. This

includes experimental user study designs to understand users and their preferences

and applications of machine learning to build such systems. However, our review of

literature is comprehensive up to the time of writing the thesis. Also, the reviewed

papers are mostly from IR-specific conferences and journals. Although we have tried to

include relevant papers from conferences in artificial intelligence and natural language

processing, our review is not exhaustive.

9.2.2 Development of New Gold Standard Dataset

Many of the prior research works have focused primarily on agent-user interactions and

information-seeking dialogues. While the search actions of the agent were shared as

broad themes, there was no publicly available record of the queries used, web pages

visited, time spent on each page, and so on. Therefore, a major goal of our user study

was to collect the search activities (performed by the agent) in addition to the spoken

dialogues (by the user and the agent). We have collected four different types of data –

the dialogues between the user and the agent, the search activities of the agent, and the

user feedback (collected through survey and interview). We also annotated each utter-

ance in the dataset with labels for speech acts and search actions. The CONVersation

with EXplanation (CONVEX) dataset developed as part of this thesis will be made

publicly available for further research, analysis, and evaluation purposes. We presented
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the details of the instruments used, how the data was cleaned and processed, and how

the utterances were identified. This methodology could be used for developing other

datasets in the future.

9.2.3 Development of Themes and Data Annotation

We provide a detailed description of the thematic analysis performed to identify the

different speech acts (performed by the user and the agent) and the search actions

(performed by the intermediary). To begin with, we started with a large set of themes

identified in previous studies. Through multiple rounds of annotation (using indepen-

dent annotators) and inter-annotator reliability assessments, we finalized 12 themes

for speech acts and four for search actions. The details of the qualitative coding pro-

cess and the codebook have been shared in Chapter 5. The themes developed in this

thesis could be used as-is or refined for annotating other conversational datasets. We

have annotated two datasets – the CONVEX data collected by us and the SCS dataset

available publicly – using the revised set of themes for speech acts and search actions.

9.2.4 Predictive Model for Natural Language Understanding

In our work, we have used the concept of Speech (or Dialogue) Acts from Linguistics to

develop a natural language understanding model for the search agent. The actions of

the conversational search agent – which could either be a spoken utterance or a search

action – are governed by the spoken utterances of the user. In Chapter 6, we presented

the details of the Multi-channel Deep Speech Classifier (MDSC) – a simple, modular,

and deep neural classifier – which we developed to automatically predict the speech acts

and the corresponding search actions in both CONVEX and SCS datasets. We discussed

the architecture of the model, the different hyperparameters, and the different groups

of features – word embeddings, lexical and syntactic features, and dialogue metadata –

used by our model for the two prediction tasks.

While our model has been developed for information-seeking conversations, the mod-

ular nature of the proposed model ensures that it could be extended to conversational

search datasets (which contains transcripts of searcher-intermediary conversations) with
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minimal fine-tuning of hyperparameters. The proposed model furthers the natural lan-

guage understanding in spoken conversational search systems. The code will be made

available to the community for further analysis and applications.

9.2.5 Recommendations for New Functionalities

A brief analysis of the user interview data presented some interesting ideas for new

features. We suggested alternate ways of presenting the search results on user request

(which can mitigate the linear and transient nature of speech), proposed turn-based,

contextual handling of list results, and called for variations in the speed of agent utter-

ance (particularly for non-native speakers of English).

9.3 Limitations of our Work

We would like to point out some of the limitations of the work undertaken in this

thesis. First, the data collected as part of our user study involved 25 participants.

While the number of users was predetermined to obtain requisite statistical power, it

could always be extended for a more comprehensive analysis. Also, the distribution of

participants was not a perfect sample of the population (or end-users of conversational

search agents). A majority of participants were female and undergraduate students in

a public university. While it reduced the variance in the test subjects, the feedback

received, and results obtained apply more to a younger student population. We do not

have sufficient evidence to claim that the results would generalize for the entire target

population.

Second, the results of the study raised some questions about the operationalization

of some of the system components. In our study, we made some choices regarding

when and how system revealments should be provided to the user. For example, the

Wizard clarified his model of the user (queries and information sources) every time

he searched. Also, the system-level clarifications were overt and not sought implicitly

during the conversation. As the clarifications were frequent, it increased the number of

turns and the duration of the search task and, therefore, could have potentially affected
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the search and interaction experience of the users. We designed the Wizard of Oz

study and developed behavioral protocols and the scripts for the Wizard. While the

results suggest that certain aspects of the study design and behavioral protocols need

to be altered for future work, it also provides essential insights into how the different

components of the system should be implemented.

Next, the number of utterances in each of the two datasets are less than ideal

for building deep neural models involving multi-class predictions. While CONVEX

contained 1834 instances of speech acts, SCS contained 1043 instances. Search actions

are performed only by the intermediary; therefore, the number of instances with the

search actions in both the datasets was less than half of those with speech acts (509

in CONVEX and 447 in SCS). As there were 12 output labels for speech acts, and

4 for search actions, the performance of the model suffered when predicting minority

classes with insufficient training data. Therefore, our model failed to identify underlying

patterns in word embeddings and lexical and semantic features. As a result, both the

channels showed poor performance (for search actions) and led to lower accuracy when

combined.

Next, the themes for speech acts and search actions were developed by analyzing

CONVEX data. We noticed some ambiguities when labeling the SCS dataset with the

same set of themes. This showed that the themes might not conform to all datasets

and search situations. While we firmly believe that the SCS dataset is not an ideal

representation of human-system conversation, we will need to validate our themes using

other datasets and make revisions as required.

The lexical and syntactic features used in one of the channels were generated using

SpaCy. While these features have been used in previous research works to gain insight

into the properties of written text, our data contains transcripts of spoken conversations.

As such, the utility of these features was limited to the quality of the transcription.

For example, even if the uttered word is a number, the transcribed text contained it

as a word (a collection of alphabets and not digits), therefore, rendering the feature

ineffective. The textual features are also missing important speech components like

pitch, loudness, prosody, or emphasis.
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Lastly, our natural language model addresses a small subset of a bigger problem,

which is open domain conversation. We focused on information seeking dialogues which

are task-focused and follows a specific pattern.

9.4 Directions for Future Research

As pointed out in the limitations, our study contains data from 25 users, with a high

concentration of female students from a public university. We performed statistical

analysis of the user study data to answer our first research question. The results

highlight some interaction effect of the search tasks and participant’s gender on the

outcome variables. To make the results more generalizable, we plan on recruiting more

participants in the future. While creating a better representative sample of the end-

users is one option, we will also explore tasks of different complexities and from different

topic-domains. The results from our study also provide some important insight into

the different factors of study design and system operationalization; for example, how

frequent system-level clarifications may deteriorate user satisfaction. For future work,

we intend to make some changes in how the system revealments are operationalized and

implemented. The goal would be to develop a better model for system revealment and

system dialogues that can accurately portray an automated agent and will be deemed

essential by the users.

We have collected a wide variety of data as part of our user study, which includes

user-system dialogues, search activities performed by the Wizard, questionnaires con-

taining user feedback, and exit interview data. We have used the user-agent interaction

data and user feedback to answer our second and first research questions, we plan on

using the search logs of the agent for further analysis. This could include a cost-benefit

analysis of successive turns, or developing newer metrics for evaluation. Next, we plan

on performing conformance analysis with the set of themes and other publicly available

conversational datasets. This should help us create a uniform set of codes and frame-

works for conversational search data. As many of the theoretical frameworks – which

formed the foundation of this study) – were developed in the early 90s when spoken

searches were not as popular, it is essential to develop new theoretical models which
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would account for the current patterns of user-system interaction, user expectations,

and communication strategies. We plan on aggregating our user study data with other

publicly available user-system conversational data to revise the earlier frameworks for

modern-day conversational search systems.

We would like to evaluate the performance of our model on other publicly avail-

able datasets that contain human-human and human-machine dialogues. The modular

nature of our model could be exploited by adding additional channels or categories

of data. For example, audio-based features like prosody, pitch, and loudness are sig-

nificant in spoken dialogue (but were not explored in this task). Creating profiles of

users, searches, and tasks could also enable us to implement them as newer categories

of features. We would like to explore further how to engineer features in real-time

and implement them in existing state-of-the-art systems. A possible direction for the

future could be to use other pre-trained models like BERT or ELMo for contextualized

embeddings and to build more transparent and explainable models that could provide

necessary clarifications to the users in real-time.

Conversational search systems need to overcome a lot of potential challenges involv-

ing both the users and algorithmic development. Some of the major research directions

could be to enhance long- and short-term context, profile users and tasks, develop query

reformulation techniques over voice, present results in a multimodal fashion, and to de-

velop evaluation strategies specific to conversational search. While a futuristic search

agent will possess all the above-mentioned intelligent functions, this thesis explored

only two of the intelligent functions. Overall, our work provides insights into the design

and development of conversational search systems in a more user-centered way.
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Appendix A

Pre-study Documentations

A.1 Institutional Review Board Approval



168

Figure A.1: IRB Approval

A.2 Recruitment Letter

Table A.1: Recruitment Letter

Come take part in the paid user study at SC&I

Hello,

My name is Souvick Ghosh, and I am a doctoral candidate in the Department

of Library and Information Science at RU School of Communication and Infor-

mation (SC&I). My colleagues and I are conducting a study on a prototypical

conversational system (you all have heard or used Siri, Cortana, Alexa, how cool

it is to try something newer?!). You are invited to participate in this study! So

you get to try something new and get paid for it!!!

In order to participate in this study, you have to be an adult who is proficient

in speaking and listening to English. You also need to know how to perform

basic searchers online. This study consists of one laboratory session, in which

you will be required to complete one warmup task and two search tasks using

our newest prototype. In this task, you will interact with (or perform searches

using) a voice-based search system for all the tasks. We will ask you to answer

questions related to your search experience and preferences.
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The total time you will spend for this study will be approximately one hour,

including a 10-minute exit-interview. You will receive $20 in cash for your par-

ticipation upon completion of the study, and there will also be three prizes given

to the three most active participants worth $50, $30 and $20.

Participants will be required to perform the tasks in laboratory using a voice-

based search device, so it is mandatory for all the participants to schedule a

study slot with the researcher. Taking part in this study will help to advance our

understanding of how to design future versions of conversational search systems.

Here are the basic requirements to take part in this study:

– You must be at least 18 years old to participate.

– Proficiency in English is required.

– Intermediate typing and online search skills are required.

– Familiarity with voice-based assistants preferred.

Once you register for your participation, you will receive further instructions

regarding how to go about taking part in the user study. Participation is purely

voluntary. Choosing or declining to participate in this study will not affect any of

your classes or grades at Rutgers. This study has been approved by the Rutgers

Institutional Review Board (IRB Study # 2019001950) and will be supervised

by Dr. Katherine Ognyanova (katya.ognyanova@rutgers.edu) at the School of

Communication and Information. For more information about this study, please

email Souvick Ghosh at souvick.ghosh@rutgers.edu. You can also contact Souvick

Ghosh to ask questions or get more information about the project.

Thank you for your interest! I look forward to hearing from you. To sign-up*,

please fill up this online link:

https://forms.gle/EPD6L6rRwWN7ZhpY6
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*Signing up for the study does not guarantee your participation to the study

due to limitation of availability. Once your signup has been confirmed, you will

receive further instructions on how to proceed with the study.
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A.3 Consent Form

Figure A.2: Consent Form (Pg-1)
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Figure A.3: Consent Form (Pg-2)
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Figure A.4: Consent Form (Pg-3)
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Figure A.5: Consent Form (Pg-4)
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A.4 Information Sheet for Participants

Table A.2: Information Sheet for Participants

Guidelines:

1. You can begin the search sessions by using the trigger word:
“Hi Joanna”

OR
“Hey Joanna”

2. To end the search session, you can say:
“Bye, Joanna”

3. To make the assistant repeat what it just said, you can say:
“Joanna, can you repeat?”

4. To stop the assistant, you can say:
“Stop, Joanna”

5. To restart from the beginning, you can say:
“Joanna, start over”

6. Our system should support longer discussions and long questions.
However, please try not make it too long.

7. We are using an advanced prototype that performs huge computations in the
background. Also, it is running on the university server which is slower than
commercial servers. So the response might be slower than your regular voice
assistants.

8. Please excuse small glitches because we are still in prototype/research mode
on this.

You can note any unusual or unsatisfactory interaction and let us know at the end of
the study.
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A.5 Instructions for Wizard

A.5.1 Pre-study Guidelines

Table A.3: Instruction Sheet for Wizard

Guidelines:

1. Try to follow the script as much as possible. This will ensure that all sessions
are standardized and consistent.
2. Make sure that the initial response is ready when the user begins with key
phrase

“Hi, Joanna”
3. Every time the user asks something, acknowledge and ask him to wait.
4. Make sure of the distinctions between the two experimental systems.

a. System 1: we follow the script without providing any explicit clarification
(emphasized in the script)
b. System 2: Clarifications

5. No response should be longer than four sentences or 50 words, whichever is
lower. No need to count, just an estimate.
6. Your response should be typed into the text-to-speech system.
7. A faster response is preferable to a more detailed one.
8. End the call at the end of the study.
9. Some simple commands which the user will use:

“Hi Joanna”
OR

“Hey Joanna”
–This is to start the search session

“Bye, Joanna”
–This is to end the search session

“Joanna, can you repeat?”
–This is to repeat what the assistant just said. Replay whatever you just played.

“Stop, Joanna”
–This is to stop the assistant.

Stop the voice from playing by muting the microphone
“Joanna, start over”

–This is to restart from the beginning.
Start by “Hi, this is Joanna, how may I help you today?
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A.5.2 Pre-study Checklist

Table A.4: Pre-study Checklist for Wizard

Checklist:

1. Check the devices:
a. Is the microphone working?
b. Test the green (ON)/red(OFF) light.
c. Make sure the speaker is working.

2. Check if Kaltura is running in the background
3. Open Amazon TTS
4. Open Google Voice
5. Do you know which system it is? Please confirm.
6. Before I transfer to the user, do you have any questions?
7. Remember: The user will begin the conversation with “Hello Joanna”, so have
your

first response ready.
8. Let me know when you are ready to transfer!
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Appendix B

Questionnaires

B.1 Pre-Test Questionnaire

Table B.1: Pre-Test Questionnaire

Questions

Demographic Questions:

1. Please enter your age:
2. How would you identify your gender?

Language Proficiency:

3. Native language: English /Other (please specify):
4. How would you rate your English-speaking proficiency level?

(1=Novice, 5=Expert)
5. How would you rate your English listening proficiency level?

(1=Novice, 5=Expert)
6. How would you rate your English reading proficiency level?

(1=Novice, 5=Expert)
7. How would you rate your English writing proficiency level?

(1=Novice, 5=Expert)

Search Experience:

8. How often do you search the Web per day?
(Never / 1-3 searches per day / 4-6 searches per day/ 7-10 searches per day/
10+ searches per day)

9. How often do you use personal assistants (Siri, Alexa, Bixby, etc.) for
searching?

(Never / 1-3 searches per week / 4-6 searches per week / 7-10 searches per week /
10+ searches per week)

10. How would you rate your level of online searching skills?
(1=Novice, 5=Expert)

11. How would you rate your success while using voice-based personal assis-
tants?

(1=Low, 5=High)
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B.2 Pre-Task Questionnaire

Table B.2: Pre-Task Questionnaire

Questions

Topic Knowledge:

1. How much do you know about this topic of the task?
(1=nothing, 3=somewhat, 5=I know a lot)

2. What is your familiarity with the given topic?
(1=not at all familiar, 3=somewhat familiar, 5=extremely familiar)

Task Complexity:

3. What is the level of difficulty of the given task?
(1=not at all difficult, 3=somewhat difficult, 5=extremely difficult)

4. How difficult do you think it will be to search for information for this task
using a search engine?
(1=not at all difficult, 3=somewhat difficult, 5=extremely difficult)

5. How difficult do you think it will be to explain the task to the search agent?
(1=not at all difficult, 3=somewhat difficult, 5=extremely difficult)
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B.3 Post-Task Questionnaire

Table B.3: Post-Task Questionnaire

Questions

Task Experience:

1. The task which I performed was complex [in general]
(1=completely agree, 5=completely disagree)
2. The task which I performed was difficult [to me]
(1=completely agree, 5=completely disagree)
3. I completed the task successfully.
(1=completely agree, 5=completely disagree)

System Experience:

4. The system was easy to use.
(1=completely agree, 5=completely disagree)

5. The system was helpful.
(1=completely agree, 5=completely disagree)

6. The system understood my problem.
(1=completely agree, 5=completely disagree)

7. The system communication was clear.
(1=completely agree, 5=completely disagree)

8. The response provided by the system was adequate.
(1=completely agree, 5=completely disagree)

9. My experience with the system was satisfying.
(1=completely agree, 5=completely disagree)

10. If I was searching, I would have done it differently.
(1=completely agree, 5=completely disagree)

11. I would use the system again.
(1=completely agree, 5=completely disagree)

Quality of Information:

12. I have succeeded in finding the right information.
(1=completely agree, 5=completely disagree)

13. I think better information was available, which the system failed to pro-
vide.

(1=completely agree, 5=completely disagree)
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B.4 Exit Interview

Table B.4: Exit Interview Questions

Questions

1. Did you notice any difference between the two search experiences (your
interaction with the system)? If yes, what were the differences?

2. In which of the two searches did you find the system to be more helpful?
Why?

3. In which of the two searches did you find the system easier to use? Why?

4. Which search experience (not the search topic but your interaction with the
system) did you like more? Why?

5. If I told you that there were two different systems, which one would you
like to use more in your daily life?

6. Any other feedback? Merits or shortcomings?
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Appendix C

Post-study Documentation

C.1 Compensation Receipt

Table C.1: Compensation Receipt

Compensation Receipt

Principal Investigator: Souvick Ghosh (souvick.ghosh@rutgers.edu)
Faculty Advisor: Dr. Katherine Ognyanova (katya.ognyanova@rutgers.edu)
Dept. of Library and Information Science
School of Communication and Information

Project Title: “Exploring Intelligent Functionalities of Spoken Conversational
Systems”

IRB Study Number: #2019001950

I acknowledge receipt of $20 for participating in the research study.

Name of the Research Participant:

Signature of the Research Participant:

Name of the researcher who paid the participant: Souvick Ghosh

Signature of the Researcher:

Date:
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Appendix D

Statistics

D.1 Pre-task Responses

Figure D.1: Pre-task Responses
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D.2 Post-task Responses

Figure D.2: Post-task Responses (Q1 - Q6)
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Figure D.3: Post-task Responses (Q7 - Q13)
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