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ABSTRACT OF THE DISSERTATION

Towards understanding the approximation of

Boolean functions by nonclassical polynomials

By ABHISHEK BHRUSHUNDI

Dissertation Director:

Swastik Kopparty

The representation and approximation of Boolean functions by polynomials is an im-

portant area of research in theoretical computer science, having numerous applications

in circuit complexity, communication complexity, pseudorandomness, quantum com-

putation, learning theory, algorithm design, and explicit combinatorial constructions.

Results of Green and Tao [GT09], Lovett et al. [LMS11], and Tao and Ziegler [TZ12],

on the Inverse Conjecture for the Gowers norm over finite fields of low characteristic,

and the subsequent work of Bhowmick and Lovett [BL15], suggest that a potential

barrier to the resolution of some of the outstanding open problems in this area is the

class of nonclassical polynomials and its ability to nontrivially represent and approx-

imate Boolean functions.

Motivated by these works, in this dissertation, we investigate the ability of nonclas-

sical polynomials to approximate Boolean functions with respect to both previously

studied and new notions of approximation:
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• We introduce and study an agreement-based notion of approximation by polyno-

mials over Z/2kZ. Investigating this notion serves as a proxy for understanding

the maximum possible agreement between nonclassical polynomials and Boolean

functions. We prove several new results that shed light on this new notion of

approximation, and these results help us answer some questions left open in the

work of Bhowmick and Lovett [BL15] concerning the approximation of Boolean

functions by nonclassical polynomials in the agreement sense.

• We propose a new notion of point-wise approximation by nonclassical polyno-

mials. Using a result of Green et al. [GKT92], which itself is an extension of the

classic work of Beigel and Tarui [BT91], we observe that Boolean functions com-

putable by ACC0 circuits (constant-depth circuits of polynomial size, containing

AND, OR, NOT, and MODq gates) are amenable to point-wise approximation

by low-degree nonclassical polynomials. Motivated by this new observation,

we then explore how well can low-degree nonclassical polynomials point-wise

approximate the majority function, in the hope of resolving the long-standing

open problem of proving that majority is not computable by ACC0 circuits.

Our results suggest several interesting and promising directions of research. We ex-

plore some of these directions and state concrete open problems along with plausible

approaches to solving them.
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Chapter 1

Introduction

The representation and approximation of Boolean functions by polynomials is a fairly

well-studied topic in theoretical computer science, having applications in several areas

such as explicit combinatorial constructions (e.g., [Gro00, Gop14]), learning theory

(e.g., [LMN93, KS04]), design of algorithms for combinatorial problems (e.g., [Wil14a,

AWY15]), circuit complexity (e.g., [Raz87, Smo87, AB01]), quantum computation

(e.g., [BNRW05, BKT18]), pseudorandomess (e.g., [BV10, CHLT19]), communication

complexity (e.g., [BW01, She12]), etc.

In this dissertation, we focus on the approximation of Boolean functions by non-

classical polynomials, an extension of standard polynomials in higher order Fourier

analysis introduced by Tao and Ziegler [TZ12], with respect to three different notions

of approximation: agreement-based, correlation-based, and point-wise approxima-

tion. Before stating the contributions of this dissertation, we discuss these notions of

approximation along with the notion of nonclassical polynomials.

1.1 Three notions of approximation

1.1.1 Agreement-based approximation

For functions F,G : D → R for some finite domain D and range R, the agreement

between F and G, denoted by agr(F,G), is defined to be the fraction of inputs where

F and G agree (or take the same value), i.e.,

agr(F,G) = Pr
x∼D

[F (x) = G(x)],
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where x ∼ D means that x is sampled uniformly at random from D.

We say that F ε-approximates G in the agreement sense if agr(F,G) ≥ ε, for some

ε > 0.

To study the agreement between a Boolean function F : {0, 1}n → {0, 1} and

functions of the form P : {0, 1}n → R, where R is an arbitrary set containing at least

two elements, we define an R-valued version of F as follows. Let r0, r1 ∈ R be two

distinct elements in the range R. We use r0 and r1 to represent the elements 0 and 1

from the set {0, 1}. In particular, we define the function F ′ : {0, 1}n → R defined as

F ′(x) =


r0 if F (x) = 0

r1 if F (x) = 1,

for all x ∈ {0, 1}n. F ′ is an R-valued version of the function F .

Let us assume that the choice of r0, r1 ∈ R has been fixed. Then we say that the

function P : {0, 1}n → R ε-approximates the Boolean function F : {0, 1}n → {0, 1} if

agr(F ′, P ) ≥ ε, where F ′ is the R-valued version of F defined above. For the sake of

convenience, we often refer to agr(F ′, P ) as the agreement between F and P .

We remark that it is often the case that the range R contains the elements 0 and 1.

In this case, it makes sense to choose r0 = 0, r1 = 1.

1.1.2 Correlation-based approximation

Let F,G : D → C be two complex-valued functions defined over a finite domain D.

Then the correlation between F and G, denoted by Corr(F,G), is defined as

Corr(F,G) =
∣∣∣Ex∈D [F (x) ·G(x)

]∣∣∣ . (1.1.1)

We remark that Corr(F,G) is essentially the normalized inner product of F and G if

we view them as vectors in C|D|. For ε > 0, we say that F ε-approximates G in the

correlation sense if Corr(F,G) ≥ ε.

Let R be either the nontrivial finite abelian group Z/mZ (for an integer m > 1),

or the infinite abelian group R/Z, and let exp(·) denote the exponential function. As
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in the case of agreement-based approximation, we choose and fix r0, r1 ∈ R so that

we can consider R-valued versions of Boolean functions. Then, for a Boolean function

F : {0, 1}n → {0, 1} and a function P : {0, 1}n → R, we say P ε-approximates F in

the correlation sense if

Corr (φ ◦ F ′, φ ◦ P ) ≥ ε,

where F ′ denotes the R-valued version of F defined earlier, and φ : R → C∗ is

the character φ : Z/mZ → C∗ defined as φ(x) = ωx (ω is the m-th root of unity

exp (2πi/m)), if R = Z/mZ, and the character φ : R/Z → C∗ defined as φ(x) =

exp(2πix), if R = R/Z.

Abusing notation, for F,G : D → R, by correlation between F and G, denoted by

Corr(F,G), we mean the correlation between φ ◦ F and φ ◦G:

Corr(F,G) = Corr(φ ◦ F, φ ◦G).

It can be verified that, for F,G : D → R,

Corr(F,G) = Corr(φ ◦ F, φ ◦G) ≥ |2 · agr(F,G)− 1| .

When R = Z/2Z, the inequality becomes an equality, i.e.,

Corr(F,G) = Corr(φ ◦ F, φ ◦G) = |2 · agr(F,G)− 1| .

Thus, nontrivial approximability in the agreement-sense implies nontrivial approx-

imability in the correlation-sense. We remark that, barring the case of R = Z/2Z,

the converse is not necessarily true.

1.1.3 Point-wise approximation

Let R be a metric space with the metric dR : R × R → R defined on it, and let

F,G : D → R be two functions defined on a finite domain D. We say that F

ε-approximates G in the point-wise sense if for all x ∈ D,

dR (F (x), G(x)) ≤ ε.
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Again, as before, in order to study the approximation of a Boolean function F :

{0, 1}n → {0, 1} by a function P : {0, 1}n → R, we consider the R-valued version

F ′ : {0, 1}n → R defined as above, with respect to a fixed choice of r0, r1 ∈ R. In

a similar spirit as before, we say that the function P ε-approximates the Boolean

function F in the point-wise sense if for all x ∈ {0, 1}n,

dR(F ′(x), P (x)) ≤ ε.

Typically, point-wise approximation isn’t directly related to agreement-based ap-

proximation. However, in certain cases, (e.g., Section 3.2.4), it can be related to

correlation-based approximation.

1.2 Nonclassical polynomials

We remark that, although the following discussion concerns correlation between

Boolean functions and polynomials over F2, most of the statements and results men-

tioned below hold true even for polynomials over arbitrary finite fields Fp, for a

prime p. Similarly the notion of nonclassical polynomials can be defined over Fp (see

[TZ12]). We restrict ourselves to the F2 case for the sake of simplicity.

1.2.1 The problem of proving correlation bounds

A long-standing open problem in the area of polynomial-based representations and

approximations of Boolean functions is that of proving correlation bounds against

polynomials over F2. In particular, the problem asks for the following: for d ≤

α · n, where α > 0 is an absolute constant, find an explicit1 Boolean function F

in n variables that cannot be ε-approximated in the correlation sense by degree d

polynomials in F2[x1, . . . , xn] for ε = 2−c·n, where c > 0 is an absolute constant. In

other words, the explicit function F is such that for any degree d polynomial P over

1By explicit, we mean a function that belongs to a complexity class such as P or NP.
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F2,

Corr(F, P ) < 2−c·n.

If we restrict to d ≤ β ·n for β ≈ 10−4, it can be shown using a counting argument that

most Boolean functions cannot even be 2−δ·n-approximated by degree d polynomials

over F2 for δ ≈ 1/2. The challenge of course is to find an explicit function with this

property. The survey by Viola [Vio09] is an excellent source for more information on

the problem and its applications.

1.2.2 The Gowers norm

An important tool used in studying the correlation between a function and low-

degree polynomials is the Gowers norm, introduced in the work of Gowers [Gow01].

For the sake of convenience, let us think of Boolean functions as both F2-valued and

R/Z-valued functions, by mapping their codomain F2 to the set {0, 1/2} ⊂ R/Z via

the group homomorphism from (F2,+) to (R/Z,+). For h ∈ Fn2 and a function

F : Fn2 → R/Z, define the derivative of F in the direction h, denoted by DhF , as the

function

DhF (x) := F (x+ h)− F (x),

and, for k vectors h1, . . . , hk ∈ Fn2 , define the derivative of F in the directions

h1, . . . , hk, denoted by Dh1,...,hkF , to be the function

Dh1,...,hkF (x) := Dhk

(
Dh1,...,hk−1

F (x)
)
.

Then the d-th Gowers norm of F , denoted by ‖F‖Ud , is defined as

‖F‖Ud :=
(
Ex,h1,...,hd∼Fn2 [φ (Dh1,...,hdF (x))]

)1/2d
,

where φ : R/Z→ C∗ is the character φ(x) = exp (2πix) of R/Z.

It can be observed that a Boolean function F : Fn2 → {0, 1/2} can be represented

as a polynomial over F2 of degree at most d if and only if for all h1, . . . , hd+1 ∈ Fn2 ,

Dh1,...,hd+1
F ≡ 0.
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Equivalently, we can rewrite this as

Corr(F, d) = 1⇔ ‖F‖Ud+1 = 1,

where Corr(F, d) is the maximum possible correlation between F and degree d poly-

nomials over F2. Implicit in the work of Gowers [Gow01] and Green and Tao [GT08],

is the following “robust” version of the forward direction of the above statement: for

all F : Fn2 → R/Z and d > 0,

Corr(F, d) > ε =⇒ ‖F‖Ud+1 > ε.

This can be used to upper-bound the correlation between F and degree d polynomials

over F2 by upper-bounding the (d + 1)-th Gowers norm of F , and the work of Viola

and Wigderson [VW08] employs this idea to show the existence of explicit functions

in P that cannot be ε-approximated by polynomials over F2 of degree d, for some

ε = exp(−Ω(n/2d)).

1.2.3 Inverse Conjecture for the Gowers Norm

A natural question to ask is whether there is a robust version of the reverse direction,

i.e., if ‖F‖Ud+1 > ε for a Boolean function F , does it mean that Corr(F, d) > ε?

If true, this would mean that the Gowers norm of a Boolean function F precisely

captures the correlation between F and degree d polynomials over F2. This problem

was formalized as the Inverse Conjecture for the Gowers Norm (ICGN) in the works

of Samorodnitsky [Sam07] and Green and Tao [GT08].

Unfortunately, the conjecture was disproved by Green and Tao in a subsequent

work [GT09], and independently, by Lovett et al. [LMS11]. In particular, both the

works give a counterexample to the ICGN for d = 4; they show that the Boolean func-

tion S4, the elementary symmetric polynomial over F2 of degree 4, satisfies ‖S4‖U4 =

Ω(1), but for every polynomial P over F2 of degree at most 3, Corr(S4, P ) = o(1),

due to a result of Alon and Beigel [AB01]. In fact, Green and Tao [GT09] show that
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S2` , the elementary symmetric polynomial of degree 2`, is a counterexample to the

ICGN for all ` ≥ 2.

1.2.4 The work of Tao and Ziegler

In their work, Tao and Ziegler [TZ12] explain why the ICGN (as stated above) is

false, and prove a modified version of the conjecture. To do this, they introduce the

notion of nonclassical polynomials.

Recall that if, for a Boolean function F : Fn2 → {0, 1/2},

Dh1,...,hd+1
F ≡ 0 (1.2.1)

for all h1, . . . , hd+1 ∈ Fn2 , then F can be represented as a polynomial of degree at

most d over F2. We refer to such functions and their polynomial representations as

classical polynomials of degree at most d.

Since the derivative operator is defined for all R/Z-valued functions defined on Fn2 ,

we can consider arbitrary functions F : Fn2 → R/Z that satisfy Eq. (1.2.1). Tao

and Ziegler show that the set of such functions is a strict superset of the set of

the aforementioned classical polynomials of degree d, and refer to such functions as

nonclassical polynomials of degree d. They also prove that, structurally, nonclassical

polynomials of degree d can be thought of as real polynomials of degree d evaluated

modulo 1, having the following structure2:

P (x1, . . . , xn) =

α +
∑

S⊆[n];k≥0:|S|+k≤d

cS,k
2k+1

∏
i∈S

xi

 mod 1,

where α ∈ [0, 1) and cS,k ∈ {0, 1}. Conversely, they show that every function that can

be written in the above form is a nonclassical polynomial of degree d, i.e., it satisfies

Eq. (1.2.1).

Tao and Ziegler aruge that the reason ICGN is false is that the (d+ 1)-th Gowers

norm of a Boolean function F captures the correlation between F and nonclassical

2Below, we identify F2 with the set {0, 1} ⊂ R without explicitly using any inclusion maps.
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polynomials of degree d, and not just classical polynomials. In other words, their

results imply that the following modified version of the ICGN is true: if ‖F‖Ud+1 is

“large” for some Boolean function F : Fn2 → {0, 1/2}, then there is a nonclassical

polynomial P : Fn2 → R/Z of degree at most d that has “large” correlation with F ,

or equivalently, there is a nonclassical polynomial of degree d that approximates F

well in the correlation sense.

We remark that the counterexamples to the ICGN given by Green and Tao [GT09]

and Lovett et al. [LMS11] (e.g., S4) were subsequently shown to have nontrivial

correlation with specific nonclassical polynomials.

1.2.5 Nonclassical polynomials as a barrier

The discussion in the previous section suggests that nonclassical polynomials are, in

some sense, a barrier to studying the correlation between explicit Boolean functions

and low-degree classical polynomials using the Gowers norm because of their ability

to approximate in the correlation sense Boolean functions that are “hard” for classical

polynomials. The work of Bhowmick and Lovett [BL15] provides concrete examples

of such functions.

In fact, Bhowmick and Lovett suggest that nonclassical polynomials are a barrier

to a more general set of techniques for proving correlation bounds that are based

on iterative schemes involving squaring and the Cauchy-Schwarz inequality (see, e.g.,

[Vio09, Section 2.2] and [VW08]). They refer to such techniques as “derivative-based”

techniques, and argue that, since the derivative operator is at the heart of these tech-

niques, they should generalize to nonclassical polynomials, which would then mean

that such techniques cannot “separate” classical polynomials from the nonclassical

ones.

To illustrate this more clearly, consider any explicit Boolean function F that is be-

lieved to have correlation o(1) with classical polynomials of degree d, but has correla-

tion Ω(1) with a nonclassical polynomial of the same degree (e.g, the MOD3 function).
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Then, any “derivative-based” technique that proves an upper bound of γ on the cor-

relation between F and classical polynomials of degree d, must, presumably, imply

the same upper bound on the correlation between F and nonclassical polynomials of

the same degree, which would mean that γ must be Ω(1).

In their work, Bhowmick and Lovett [BL15] also give examples of other problems,

such as the problem of constructing weak representations of the OR function using

polynomials over Z/6Z, where the same phenomenon occurs because of the ability of

nonclassical polynomials to nontrivially represent or approximate “classically hard”

Boolean functions.

1.3 Contributions of this dissertation

Motivated by the results discussed in the previous section, we continue the study of

nonclassical polynomials and their ability to approximate Boolean functions. We go

beyond the paradigm of correlation-based approximation and focus on agreement-

based and point-wise approximation by nonclassical polynomials. We now give a

high-level overview of our main results.

1.3.1 Agreement-based approximation by nonclassical polynomials

The work of Bhowmick and Lovett [BL15] mentioned above initiates the study of

agreement between nonclassical polynomials and Boolean functions. In particular,

they focus on the problem of approximating the majority function on n bits, Majn,

in the agreement sense by nonclassical polynomials. They conjecture that, when it

comes to approximating the majority function, nonclassical polynomials should not

be any more powerful than classical polynomials. In fact, they also conjecture that

this should be true when considering the approximation of any arbitrary Boolean

function, and not just the majority function.
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In Chapter 2, we show that their first conjecture (concerning the majority func-

tion) is, in fact, true, by showing that the agreement between Majn and any nonclas-

sical polynomial P of degree d is bounded from above as follows,

agr(Majn, P ) ≤ 1

2
+
O(d)√
n
.

Juxtaposing this bound with those of Szegedy [Sze89] and Smolensky [Smo93] on the

agreement between Majn and classical polynomials of degree d confirms their first

conjecture.

We, however, disprove their second conjecture for general Boolean functions by show-

ing examples of functions that can be nontrivially approximated by nonclassical poly-

nomials in the agreement sense but are inapproximable by classical polynomials of

the same degree.

To compute the maximum possible agreement between Boolean functions and

nonclassical polynomials and prove the above results, we study the agreement between

Boolean functions and polynomials over the ring Z/2kZ. In particular, we study the

quantity γd,k(F ), the maximum possible agreement between a Boolean function F and

degree d polynomials over Z/2kZ, and prove several interesting properties of γd,k(F )

as a function of d and k.

We remark that the material and results in Chapter 2 are based on the original work

of the author of this dissertation that appears in [BHS17].

1.3.2 Point-wise approximation by nonclassical polynomials

In Chapter 3, we introduce a notion of point-wise approximation by nonclassical

polynomials by defining a metric on R/Z. The main motivation for the results in

this chapter comes from our observation that a result from the work of Green et

al. [GKT92] implies that any function computable by ACC0 circuits3 can be approx-

imated by a nonclassical polynomial of degree polylog(n) with respect to the notion

3Circuits of polynomial size and constant depth, containing AND, OR, NOT, and MODm gates,
where a MODm gate outputs 1 if and only if the number of ones in its inputs is non-zero modulo m.
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of point-wise approximation introduced by us.

This observation naturally leads to the problem of showing that an explicit Boolean

function is inapproximable by low-degree nonclassical polynomials in the point-wise

sense, in the hope of proving an ACC0 lower bound for the function. We study the

point-wise approximability of the majority function, Majn, and show that low-degree

symmetric torus polynomials cannot approximate Majn. While this does not prove

Majn /∈ ACC0, we believe that it is an important first step towards achieving such a

separation.

We prove several other upper and lower bound results demonstrating both the power

and limitations of nonclassical polynomials, when it comes to approximating Boolean

functions in the point-wise sense. Our results open up several promising directions of

research, and we discuss them along with plausible approaches to attacking them in

Chapter 4.

The material and results in Chapters 3 and 4 are based on the original work of the

author of this dissertation that appears in [BHLR19].
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Chapter 2

Agreement-based approximation by polynomials

over Z/2kZ

2.1 Introduction

In this chapter, we introduce and study a notion of agreement-based approximation

of Boolean functions by polynomials over the ring Z/2kZ. We motivate our setup by

recalling Razborov’s [Raz87] result on approximating Boolean functions in the agree-

ment sense by polynomials over Z/2Z. Given a Boolean function F : {0, 1}n → {0, 1}

and degree d ≤ n, Razborov considers the largest γ such that there is a polynomial

Q ∈ Z/2Z[x1, . . . , xn] of degree d that has agreement γ with F , i.e.,

Pr
x∼{0,1}n

[Q(x) = F (x)] = γ.

Call this γd(F ).

We consider a generalization of γd(F ) to rings Z/2kZ in the following simple manner.

For illustration, let us consider the ring Z/4Z. Given a Boolean function F : {0, 1}n →

{0, 1}, let F2 : {0, 1}n → {0, 2}, where {0, 2} is thought of as a subset of Z/4Z, be

the 2-lift of F defined as

F2(x) :=

 0 if F (x) = 0,

2 if F (x) = 1.

Building upon the notation introduced earlier, we can define γd,2(F ) to be the largest

γ such that there exists a polynomial Q2 ∈ Z/4Z[x1, . . . , xn] of degree d that has

agreement γ with F2. Note that γd,2(F ) ≥ γd(F ) since if, for instance, Q(x) =

x1x2 + x3 ∈ Z/2Z[x1, . . . , xn] has agreement γ with F , then Q2 := 2(x1x2 + x3) ∈
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Z/4Z[x1, . . . , xn] also has the same agreement γ with F2.

More generally, we can extend these definitions to define γd,k(F ): the largest possible

agreement that Fk : {0, 1}n → {0, 2k−1}, which we call the k-lift of F , defined as

Fk(x) :=

 0 if F (x) = 0,

2k−1 if F (x) = 1,

can have with polynomials of degree d in Z/2kZ[x1, . . . , xn].

Our study of this notion of approximation of Boolean functions by polynomials

over Z/2kZ is motivated by the work of Bhowmick and Lovett [BL15] that studies the

maximum possible agreement between nonclassical polynomials over F2 of degree d

and a Boolean function F . Informally speaking, nonclassical polynomials of degree d

can be thought of as a subset of the degree d polynomials in Z/2dZ[x1, . . . , xn], and so

the maximum possible agreement between nonclassical polynomials of degree d and

a Boolean function F is upper bounded by γd,d(F ) (we formalize this relationship in

Section 2.2). One of the results from their work shows that low-degree nonclassical

polynomials can only have “small” agreement with the majority function on n bits.

To do this, they essentially prove the following bound, which can be stated using our

notation as:

γd,d(Majn) ≤ 1

2
+
O(d · 2d)√

n
.

If d = ω(log n), this result unfortunately does not give any nontrivial upper bound

on the maximum possible agreement between nonclassical polynomials of degree d

and the majority function. This is in contrast to the case of classical polynomials

of degree d (i.e, polynomials of degree d in Z/2Z[x1, . . . , xn]) where a much stronger

upper bound on the agreement with the majority function is known due to results of

Szegedy [Sze89] and Smolensky [Smo93]:

γd,1(Majn) ≤ 1

2
+
O(d)√
n

;

this gives a nontrivial upper bound even when d is as large as O(
√
n).
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Bhowmick and Lovett, however, conjectured that their result could be improved,

and left open the question of whether nonclassical polynomials can have larger agree-

ment with the majority function than their classical counterparts.

More generally, they informally conjectured that although nonclassical polynomials

can approximate some Boolean functions in the correlation sense better than classical

polynomials of the same degree do, this is not true in the case of agreement-based

approximation. Our work stems from trying to answer these questions.

2.1.1 Our results

We prove the following results about agreement of Boolean functions with polynomials

over the ring Z/2kZ.

1. We explore whether there exist Boolean functions for which agreement can

increase by increasing k. In particular, are there Boolean functions F such that

γd,k(F ) > γd,1(F )?

We begin by investigating this question for d ≤ 1, and prove that there are no

such functions in this case.

(a) For all Boolean functions F and d ≤ 1, k > 1,

γd,k(F ) = γd,1(F ).

Keeping this in mind, the first place where we can expect larger k to give better

agreement is γ2,2 vs. γ2,1. Our next result shows that there are indeed separating

examples in the regime.

(b) For infinitely many n, there exists a Boolean function F : {0, 1}n → {0, 1}

such that

γ2,1(F ) ≤ 1

2
+

1

8
+ o(1),

whereas

γ2,2(F ) ≥ 1

2
+

1

4
− o(1).
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Since γd,k(F ) is a quantity based on agreement of polynomials with a Boolean

function F , it can be shown that γd,k(F ) ≥ 1/2 for any d ≥ 0, k ≥ 1. We then

ask if there exist Boolean functions F such that γd,1(F ) is more or less equal

to the trivial bound of 1/2, while γd′,k(F ) is significantly larger for d′ ≤ d and

some k > 1. In this context, we show the following result.

(c) Fix ` ≥ 2. There is a Boolean function F : {0, 1}n → {0, 1} such that

γ2`−1,1(F ) ≤ 1

2
+ o(1),

whereas

γd,3(F ) ≥ 1

2
+

1

16
− o(1)

for d = 2`−1 + 2`−2 ≤ 2` − 1.

2. Next, we turn to the majority function on n bits and show that for d ≥ 0, k ≥ 1,

γd,k(Majn) ≤ 1

2
+
O(d)√
n
,

by adapting a proof due to Green [Gre00] of a result on the inapproximability

of the parity function by low-degree polynomials over the ring Z/pkZ for prime

p 6= 2.

Coupled with the observation that polynomials of degree d over the ring Z/2dZ “sub-

sume” nonclassical polynomials over F2 of the same degree, part (c) of the first result

from above provides a counterexample to the informal conjecture of Bhowmick and

Lovett [BL15] mentioned above, that for any Boolean function F , nonclassical poly-

nomials of degree d do not approximate F in the agreement sense any better than

classical polynomials of the same degree do. The second result from above confirms

their conjecture that nonclassical polynomials do not do any better than classical

polynomials of the same degree as far as agreement with the majority function is

concerned.
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2.1.2 Organisation

We start with some preliminaries in Section 2.2. In Section 2.3, we study the be-

haviour of γd,k as a function of k (Part 1 of the results from above). Next, in Sec-

tion 2.4, we prove an upper bound on γd,k(Majn) (Part 2 of the results from above),

and finally, in Section 2.5, we discuss the applications of our results in answering

questions raised by Bhowmick and Lovett [BL15].

2.2 Preliminaries

We use [n] to denote the set {1, . . . , n} ⊂ N. We will naturally identify {0, 1} ⊂ Z,

F2, and Z/2Z with each other, without explicitly using inclusion or embedding maps.

Similarly, we will identify Z/2kZ with the set {0, . . . , 2k − 1}.

For x ∈ {0, 1}n and i ≥ 0, we use |x| to denote the Hamming weight of x, and |x|i to

denote the (i+ 1)-th least significant bit of |x| in base 2.

For an x ∈ {0, 1}n, by the Hamming ball of radius d around x, we mean the set

{y ∈ {0, 1}n| the Hamming distance between x and y is at most d}.

For a finite set S, by x ∼ S, we mean an x sampled uniformly at random from S.

Since we always restrict the domain of polynomials to {0, 1}n, it will suffice for

us to only consider multilinear polynomials, i.e., polynomials in which the individual

degree of any variable is at most one. Thus, unless otherwise specified, “polynomials”

will refer to “multilinear polynomials”.

2.2.1 Elementary symmetric polynomials

Recall that for t ≥ 1, the elementary symmetric polynomial of degree t over F2 is

defined as

St(x1, . . . , xn) :=
∑

S⊆[n];|S|=t

∏
i∈S

xi.
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It may be noted that for all x ∈ {0, 1}n,

St(x1, . . . , xn) =

(
|x|
t

)
mod 2. (2.2.1)

A direct consequence of Lucas’s theorem and Eq. (2.2.1) is the following:

Lemma 2.1. Fix ` ≥ 0. Then, for every x ∈ {0, 1}n, we have that S2`(x) = |x|`.

More generally, for t ≥ 1, St(x) =
∏

i |x|i where the product runs over all i ≥ 0 such

that the (i+ 1)th least significant bit of the binary expansion of t is 1.

The following result follows from the work of Green and Tao [GT09, Theorem

11.3], who build upon the ideas of Alon and Beigel [AB01].

Theorem 2.2 (Green-Tao [GT09], Alon-Beigel [AB01]). Fix ` ≥ 0. Then, for every

polynomial P ∈ Z/2Z[x1, . . . , xn] of degree at most 2` − 1, we have that

Pr
x∼{0,1}n

[S2`(x) = P (x)] ≤ 1

2
+ o(1).

Theorem 2.2 has a useful corollary that immediately follows from it.

Corollary 2.3. For every fixed ` ≥ 0, the functions {S2i(x1, . . . , xn)}0≤i≤` are almost

balanced and almost uncorrelated, i.e.,

• ∀ 0 ≤ i ≤ `, ∣∣∣∣ Pr
x∼{0,1}n

[S2i(x) = 0]− Pr
x∼{0,1}n

[S2i(x) = 1]

∣∣∣∣ = o(1).

• ∀ a0, . . . , a` ∈ {0, 1},∣∣∣∣∣ Pr
x∼{0,1}n

[ ∧
0≤i≤`

(S2i(x) = ai)

]
− 1

2`+1

∣∣∣∣∣ = o(1).

Combining Corollary 2.3 with Lemma 2.1, we get another useful fact:

Lemma 2.4. For every fixed r ≥ 1, if x is a random variable that is uniformly

distributed in {0, 1}n then the random variables {|x|i}0≤i≤r−1 are almost uniform and

almost r-wise independent i.e.
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• ∀ 0 ≤ i ≤ r − 1, ∣∣∣∣ Pr
x∼{0,1}n

[|x|i = 0]− Pr
x∼{0,1}n

[|x|i = 1]

∣∣∣∣ = o(1).

• ∀ (a0, . . . , ar−1) ∈ {0, 1}r,∣∣∣∣ Pr
x∼{0,1}n

[(|x|0, . . . , |x|r−1) = (a0, . . . , ar−1)]− 1

2r

∣∣∣∣ = o(1).

2.2.2 Polynomials over Z/2kZ and Boolean functions

For d ≥ 0 and k ≥ 1, Pd,k will denote the set of multilinear polynomials of degree at

most d over the ring Z/2kZ, i.e., polynomials P ∈ Z/2kZ[x1, . . . , xn] of the form

P (x) =
∑

S⊆[n];|S|≤d

cS
∏
i∈S

xi,

where cS ∈ Z/2kZ. We say that P ∈ Pd,k is the zero polynomial if cS = 0 for all

S ⊆ [n].

Following [Gop08], we call a set I ⊆ {0, 1}n an interpolating set1 for Pd,k if the

only polynomial P ∈ Pd,k that vanishes at all points in I is zero everywhere. Formally

speaking, I ⊆ {0, 1}n is an interpolating set for Pd,k if for any P ∈ Pd,k,

(∀x ∈ I P (x) = 0)⇒ (∀y ∈ {0, 1}n P (y) = 0).

We now state a number of basic facts about polynomials in Pd,k.

Lemma 2.5. Let d ≥ 0, k ≥ 1. Then, any polynomial Q ∈ Pd,k satisfies the following:

1. If Q is a non-zero polynomial, then

Pr
x∼{0,1}n

[Q(x) 6= 0] ≥ 1

2d
.

2. Q is the zero polynomial iff Q(x) = 0 for all x ∈ {0, 1}n.

1This is also called a hitting set in the literature.



19

3. Say Q(x) =
∑

S⊆[n];|S|≤d cSxS, where cS ∈ Z/2kZ and xS denotes
∏

i∈S xi. Then,

for all S ⊆ [n], |S| ≤ d,

cS =
∑
T⊆S

(−1)|S|−|T |Q(1T )

where 1T ∈ {0, 1}n is the characteristic vector of T .

4. Q vanishes at all points in {0, 1}n iff Q vanishes on the Hamming ball of radius

d centered around the origin, i.e., on all points x with |x| ≤ d. By shifting the

origin to any point of {0, 1}n, the same is true of any Hamming ball of radius

d in {0, 1}n.

Proof. Part 1: Write Q as Q(x) = 2` · Q′(x), where ` < k is the largest power of 2

that divides the GCD of the coefficients of Q. Projecting Q′ to a non-zero polynomial

Q′′ over Z/2Z by dropping all its coefficients modulo 2, and applying the DeMillo-

Lipton-Schwartz-Zippel lemma for F2 (see, e.g., [CT15, Appendix C]), gives us that

Pr
x∈{0,1}n

[Q′′(x) 6= 0] ≥ 1

2d
.

This means that Q′(x) is not a multiple of 2 on at least a 2−d fraction of points in

{0, 1}n. Noting that Q(x) = 2` · Q′(x) cannot be zero unless Q′(x) is even, then

completes the proof.

Part 2 follows from Part 1.

Part 3 is follows from the Möbius inversion formula (see, e.g., [GSL10, Section 2]).

Part 4 follows immediately from parts 2 and 3.

Given a Boolean function F : {0, 1}n → {0, 1} and k ≥ 1, we define the k-lift of

F to be the function Fk : {0, 1}n → Z/2kZ defined as follows2. For any x ∈ {0, 1}n,

Fk(x) :=

 0 if F (x) = 0,

2k−1 if F (x) = 1.

2This is a Z/2kZ-valued version of F ; see Section 1.1.1.
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We will consider how well polynomials in Pd,k can approximate k-lifts of Boolean

functions in the agreement sense. More precisely, for any Boolean function F :

{0, 1}n → {0, 1}, we define

γd,k(F ) := max
Q∈Pd,k

agr(Fk, Q) = max
Q∈Pd,k

[
Pr

x∼{0,1}n
[Fk(x) = Q(x)]

]
.

Note that γd,k(F ) is always at least 1/2, since one can consider the constant polyno-

mials to achieve an agreement of at least 1/2 with the k-lift of a Boolean function

F .

Lemma 2.6. Let F be a Boolean function and k ≥ 1, d ≥ 0 be integers. Then

γd,k(F ) ≥ 1/2.

2.2.3 Polynomials over Z/2kZ and nonclassical polynomials

In this section, we relate the agreement between a Boolean function F and nonclassical

polynomials over F2, to the agreement between F and polynomials in Pd,k. This

section will also shed some light on why we study agreement-based approximation by

polynomials over Z/2kZ.

For x ∈ R, x modulo one, denoted by x mod 1, is equal to the fractional part of

x given by x − bxc. We think of R/Z as the set [0, 1) ⊂ R equipped with addition

modulo 1.

We will now state a characterization of nonclassical polynomials over Fp due to Tao

and Ziegler [TZ12]. Here we state a slightly modified version of the original statement

for p = 2.

Theorem 2.7 (Tao and Ziegler [TZ12]). A function P : {0, 1}n → R/Z is a nonclas-

sical polynomial over F2 of degree d if and only if it has the following form:

P (x1, . . . , xn) =

α +
∑

S⊆[n];k≥0:|S|+k≤d

cS,k
2k+1

∏
i∈S

xi

 mod 1
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Here α ∈ [0, 1) ⊂ R and cS,k ∈ {0, 1} ⊂ R are uniquely determined. α is called the

shift of P , and the largest k such that cS,k 6= 0 for some S ⊆ [n] is called the depth of

P .

Following [BL15], we define the agreement between a nonclassical P : {0, 1}n →

R/Z over F2 and a Boolean function F : {0, 1}n → {0, 1} as

agr

(
F

2
, P

)
= Pr

x∼{0,1}n

[
F (x)

2
= P (x)

]
.

Note that F/2 is a R/Z-valued version of F (see Section 1.1.2), since it always takes

values in {0, 1/2} ⊂ R/Z.

We remark that nonclassical polynomials P : {0, 1}n → R/Z whose shift and depth

are both zero, are called classical polynomials. It’s not hard to verify that a classical

polynomial P : {0, 1}n → R/Z of degree d can be written as

P (x) =
P ′(x)

2
mod 1,

where P ′(x) is some polynomial in Pd,1 (see [BL15, Section 2]). Thus, we will refer

to polynomials in Pd,1 as classical polynomials.

Also note that, since we are studying agreement between nonclassical polynomials

over F2 and Boolean functions (and thus, {0, 1/2}-valued functions), it suffices to

restrict ourselves to nonclassical polynomials whose shift α is 0.

The following facts immediately follow from Theorem 2.7.

Lemma 2.8. Let d, k ≥ 1.

1. Let d ≥ k and P : {0, 1}n → R/Z be a nonclassical polynomial of degree d and

depth k over F2, and suppose the shift α of P is zero. Then there is a polynomial

Q(x) ∈ Z[x1, . . . , xn] of degree d with coefficients in {0, . . . , 2k − 1} such that

for all x ∈ {0, 1}n,

P (x) =
Q(x)

2k
mod 1.
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2. Let Q(x) ∈ Z[x1, . . . , xn] be a polynomial of degree d. If P : {0, 1}n → R/Z is

such that for all x ∈ {0, 1}n,

P (x) =
Q(x)

2k
mod 1

then P is a nonclassical polynomial over F2 of degree at most d + k − 1 and

depth at most k.

Fix d, k ≥ 1, and suppose that F : {0, 1}n → {0, 1} is Boolean function such that

there is a polynomial Q ∈ Pd,k with agr(Fk, Q) = γ. We can naturally think of Q as

a polynomial of degree d in Z[x1, . . . , xn] with coefficients in {0, . . . , 2k− 1} ⊂ Z, and

define the function P : {0, 1}n → R/Z as follows. For all x ∈ {0, 1}n,

P (x) :=
Q(x)

2k
mod 1.

It now follows from the definition of Fk that for all x ∈ {0, 1}n,

Fk(x) = Q(x)⇔ P (x) =
F (x)

2
mod 1.

Combining this with Part 2 of Lemma 2.8, we conclude that P is a nonclassical

polynomial over F2 of degree ≤ d+ k − 1 and depth ≤ k such that

agr

(
F

2
, P

)
= agr(Fk, Q) = γ.

Conversely, suppose that d ≥ k, and P : {0, 1}n → R/Z is a nonclassical polyno-

mial of degree d and depth k such that

agr

(
F

2
, P

)
= γ.

By Part 1 of Lemma 2.8, there is a polynomial Q of degree d in Z[x1, . . . , xn] such

that for all x ∈ {0, 1}n,

P (x) =
Q(x)

2k
mod 1.

Furthermore, it is guaranteed that all the coefficients of Q are in {0, . . . , 2k− 1}, and

so we can naturally think of Q as a polyomial in Pd,k. Using the definition of Fk and
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a similar argument as before, we can conclude that

agr(Fk, Q) = agr

(
F

2
, P

)
= γ.

We can summarize this discussion as follows.

Lemma 2.9. Let F be a Boolean function and d, k ≥ 1. Then there is a nonclassical

polynomial P over F2 of degree ≤ d+ k − 1 and depth ≤ k such that

agr

(
F

2
, P

)
= γd,k(F ).

Additionally, if d ≥ k, and γ is the maximum possible agreement between F and

nonclassical polynomials over F2 of degree d and depth k, then

γd,k(F ) ≥ γ.

Lemma 2.9 motivates the study of the quantity γd,k in order to bound the agree-

ment between nonclassical polynomials and Boolean functions.

2.3 Understanding the behavior of γd,k(F ) as a function of k

Our goal in this section is to understand how γd,k(F ) behaves as k increases and d

remains fixed. The first observation one can make, which was alluded to in Section 2.1,

is that γd,k(F ) cannot decrease as k increases.

Lemma 2.10. For every Boolean function F and k ≥ 1, d ≥ 0, γd,k+1(F ) ≥ γd,k(F ).

Proof. Suppose that P ∈ Pd,k has agreement α with Fk. Then, 2 · P (interpreted

naturally as a polynomial in Pd,k+1) also has agreement α with Fk+1.

This naturally motivates the question as to whether there are Boolean functions

F for which γd,k′(F ) > γd,k(F ) for some d ≥ 0 and k′ > k ≥ 1.
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2.3.1 Behavior of γd,k(F ) for d ≤ 1

Let F be any Boolean function. For d = 0, the only polynomials in Pd,k that can have

non-zero agreement with Fk are the constant polynomials Q(x) = 0 and Q(x) = 2k−1.

For some k > 1, if Q(x) = 2k−1 (resp. Q(x) = 0) in P0,k has agreement γ with Fk

then the polynomial Q(x) = 1 (resp. Q(x) = 0) in P0,1 has agreement γ with F

(this follows from the definition of Fk), and so γ0,k(F ) ≤ γ0,1(F ), which together with

Lemma 2.10 implies that γ0,k(F ) = γ0,1(F ).

We now investigate this question for d = 1, i.e., for degree one polynomials.

Recall that Lemma 2.6 tells us that γ1,k(F ) ≥ 1/2. In particular, this means that

γ1,1(F ) ≥ 1/2. Thus, if there were a k > 1 for which γ1,k(F ) > γ1,1(F ) then it must be

the case that γ1,k(F ) > 1/2. We will now use the Schwartz-Zippel lemma for Z/2kZ

polynomials (see Lemma 2.5) to show that if γ1,k(F ) > 1/2 then γ1,k(F ) = γ1,1(F ),

which rules out the existence of a k > 1 for which γ1,k(F ) > γ1,1(F ). In fact, we prove

a more general result that holds for all d ≥ 1.

Lemma 2.11. For any Boolean function F and d ≥ 1, k > 1,

γd,k(F ) > 1− 1

2d
⇒ γd,k(F ) = γd,1(F ).

Proof. Fix an F and d ≥ 1, k > 1 such that γd,k(F ) = γ > 1− 2−d. This means that

there must be a Q ∈ Pd,k such that agr(Fk, Q) = γ. Since Fk is a {0, 2k−1}-valued

function, it follows that Q must take a value in {0, 2k−1} on at least a γ fraction of

points in {0, 1}n. Let Q′ ∈ Pd,k−1 be the polynomial obtained from Q by dropping all

its coefficients modulo 2k−1. Then, since Q is {0, 2k−1}-valued on at least a γ fraction

of points in {0, 1}n, it follows that Q′ is 0 on at least a γ > 1− 2−d fraction of points.

Lemma 2.5 then implies that Q′ must be the zero polynomial, and so Q′(x) = 0 for

all x ∈ {0, 1}n.

Since Q′ was obtained from Q by dropping the coefficients of Q modulo 2k−1, it

follows that every coefficient of Q is a multiple of 2k−1, and so Q can be naturally

identified with 2k−1 ·Q′′ for some Q′′ ∈ Pd,1. Furthermore, whenever Q agrees with Fk
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it must be the case that Q′′ agrees with F — this just follows from the definition of

Fk. Thus, agr(F,Q′′) ≥ γ, and so γd,1(F ) ≥ γd,k(F ). We also know from Lemma 2.10

that γd,k(F ) ≥ γd,1(F ) and so we conclude that γd,k(F ) = γd,1(F ).

We can now conclude that for every Boolean function F and k > 1:

• either γ1,k(F ) ≤ 1/2, in which case Lemmas 2.6 and 2.10 together imply that

1

2
≤ γ1,1(F ) ≤ γ1,k(F ),

and so γ1,k(F ) = γ1,1(F ), or

• γ1,k(F ) > 1/2, in which case Lemma 2.11 implies that γ1,k(F ) = γ1,1(F ).

We can summarize the results for d ≤ 1 as follows.

Theorem 2.12. For every Boolean function F and d ≤ 1, k > 1, γ1,k(F ) = γ1,1(F ).

2.3.2 Examples of F with γ2,2(F ) > γ2,1(F )

In light of Theorem 2.12, the next question to ask is whether we can find examples of

F for which γ2,k(F ) > γ2,1(F ) for some k > 1, and in particular for k = 2. Somewhat

surprisingly, it turns out there are examples of this kind:

Theorem 2.13. For infinitely many n, there exist Boolean functions F : {0, 1}2n →

{0, 1} such that

γ2,2(F ) ≥ 1

2
+

1

4
− o(1),

whereas

γ2,1(F ) ≤ 1

2
+

1

8
+ o(1).

Before we go into the formal details of the proof of Theorem 2.13, we will give a

sketch of the proof.

We consider Boolean functions F in 2n variables x1, . . . xn, y1, . . . yn. Lemma 2.11

implies that for any F , γ2,2(F ) = γ2,1(F ) unless γ2,2(F ) ≤ 3/4. We then restrict our
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attention to Boolean functions F for which this bound is almost tight i.e., γ2,2(F ) =

3/4−o(1). Any quadratic polynomial Q over Z/4Z that has agreement 3/4−o(1) with

F2 (the 2-lift of F ) must be {0, 2}-valued on a 3/4− o(1) fraction of points in {0, 1}n,

and so, by dropping its coefficients modulo 2, we obtain a quadratic polynomial Q′

over F2 that is zero on a 3/4− o(1) fraction of points in Fn2 .

Results on the structure of polynomials over F2 (see, e.g., [LN97, Chapter 6]) then

dictate that Q′ must be of the form L1(x, y)L2(x, y) + L3(x, y) where L1, L2, and L3

are independent linear polynomials over F2. This then implies that the polynomial Q

must have been of the form L′1(x, y)L′2(x, y) + 2Q′′(x, y) for some linear polynomials

L′1, L
′
2 and quadratic polynomial Q′′ over Z/4Z.

Guided by the above, we try to work our way backwards: we begin with a

quadratic polynomial P from Z/4Z[x1, . . . , xn, y1, . . . , yn] of the above form, and con-

struct a Boolean function F whose 2-lift has agreement 3/4 − o(1) with P , hoping

that the agreement of F with quadratic polynomials over Z/2Z is significantly less

than 3/4. In particular, we choose

P (x, y) =

( ∑
1≤i≤n

xi

)( ∑
1≤i≤n

yi

)
,

and define F as

F (x, y) :=


0 if P (x, y) = 0

1 if P (x, y) = 2

H(x, y) otherwise,

where H(x, y) is some Boolean function that we later choose carefully.

By construction, γ2,2(F ) ≥ 3/4 − o(1). Suppose S = {(x, y) | P (x, y) /∈ {0, 2}}.

We first ensure that F has agreement 1/2+o(1) with quadratic polynomials over Z/2Z

when restricted to S, by carefully choosing H(x, y) to be a function that is “hard”

for these polynomials (e.g., a random function). Using the fact that F restricted to

the complement of S is a quadratic polynomial of high rank, we then show that, over

the complement of S, F has “sufficiently” low agreement with quadratic polynomials,
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thus concluding that γ2,1(F ) ≤ 5/8 + o(1).

Let us begin the formal proof of Theorem 2.13. We first define a family of Boolean

functions on {0, 1}2n, where n ≡ 1 (mod 2). As mentioned before, we denote the 2n

variables by x = (x1, . . . , xn) and y = (y1, . . . , yn).

Define the set S to be

S := {(x, y) ∈ {0, 1}2n | |x|, |y| ≡ 1 (mod 2)}.

Given any function H : S → {0, 1}, we define the Boolean function FH : {0, 1}2n →

{0, 1} as follows:

FH(x, y) :=


0 if |x||y| ≡ 0 (mod 4),

1 if |x||y| ≡ 2 (mod 4),

H(x, y) if (x, y) ∈ S.

(2.3.1)

First of all, let us note that for any choice of H, γ2,2(FH) ≥ 3/4.

Lemma 2.14. For all H : S → {0, 1}, γ2,2(FH) ≥ 3/4.

Proof. Consider the following polynomial in P2,2,

P (x, y) =

(
n∑
i=1

xi

)
·

(
n∑
j=1

yj

)
.

It may be noted that if |x||y| ≡ 0 (mod 2), then P (x, y) = FH,2(x, y), where FH,2 is

the 2-lift of FH . Thus, the probability that P (x, y) 6= FH,2(x, y) is the probability

that |x| and |y| are both odd, which is 1/4. This finishes the proof.

We will now prove some lemmas that will help use prove γ2,1(FH) ≤ 5/8 + o(1)

for an appropriate choice of H. We first show how to choose H so that no quadratic

function over Z/2Z can agree with H on too many points in S.

Lemma 2.15. There is an H : S → {0, 1} such that for all quadratic polynomials

q ∈ P2,1 we have that

Pr
(x,y)∼S

[H(x, y) 6= q(x, y)] ≥ 1

2
− o(1).
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Proof. Sample H uniformly at random from the set of all Boolean functions defined

on S. For each such q, the expected number of locations (x, y) ∈ S where H(x, y) 6=

q(x, y) is |S|/2. By a standard Chernoff bound, the probability that this number is

less than |S|/2−|S|2/3 is exp(−Ω(|S|1/3)), which is at most exp(−2Ω(n)) using the fact

that |S| = Ω(22n). Observing that the number of quadratic polynomials q ∈ P2,1 is at

most 2O(n2), a union bound over all possible q tells us that with probability 1− o(1)

over the choice of H,

Pr
(x,y)∼S

[H(x, y) 6= q(x, y)] ≥ 1

2
− o(1).

This establishes the existence of an H with the desired property.

We will now show that for any H : S → {0, 1}, FH cannot agree with a quadratic

polynomial on too many points in S, i.e., the complement of S. Noting that S is

essentially the union of the subspaces given by
∑

i xi = 0 and
∑

i yi = 0, it will be

helpful to work with respect to the following alternate basis for the space of linear

functions on Fn2 (recall that n ≡ 1 (mod 2)):

u1(x) =
n∑
i=1

xi

u2(x) = x1 +
∑
i≥3

xi u3(x) = x2 +
∑
i≥3

xi

u4(x) = x3 +
∑
i≥5

xi u5(x) = x4 +
∑
i≥5

xi

...
...

u2j(x) = x2j−1 +
∑

i≥2j+1

xi u2j+1(x) = x2j +
∑

i≥2j+1

xi

...
...

un−1(x) = xn−2 + xn un(x) = xn−1 + xn.

We can similarly define linear functions v1(y), . . . , vn(y) that span the set of all linear

functions over F2 in the y variables.
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To see that these linear functions are indeed linearly independent and form a basis

for all linear functions on Fn2 , it suffices to note that for every i ∈ [n],

xi =


∑i

j=1 uj(x) if i is even,∑i
j=1 uj(x) + ui+2(x) if i is odd.

We can similarly write the y variables in terms of v1(y), . . . , vn(y). We will use u and v

to denote the variables (u1, . . . , un) and (v1, . . . , vn) respectively. These variables will

always be assumed to be related to the variables x = (x1, . . . , xn) and y = (y1, . . . , yn)

via the equations given above.

It may be noted that for any Boolean function F (x1, . . . , xn, y1, . . . , yn), there is

a unique degree d polynomial P ∈ F2[u1, . . . , un, v1, . . . , vn] such that for all (x, y) ∈

{0, 1}2n,

P (u1(x), . . . , un(x), v1(y), . . . , vn(y)) = F (x1, . . . , xn, y1, . . . , yn),

where u1(x), . . . , un(x), v1(y), . . . , vn(y) are the linear functions defined above. We

will say that P represents F as a polynomial in u, v.

Lemma 2.16. The degree 2 elementary symmetric polynomials S2(x) and S2(y) are

represented as polynomials in u, v over F2 by

u2u3 + . . .+ un−1un + L′(u)

and

v2v3 + . . . vn−1vn + L′′(v)

respectively, for some linear functions L′(u) and L′′(v).

Proof. Observe that

u2(x)u3(x) + u4(x)u5(x) + · · ·+ un−1(x)un(x)

=

( ∑
1≤i<j≤n

xixj

)
+

n−1
2∑
i=1

(
n∑

j=2i+1

xj

)2

= S2(x) +

n−1
2∑
i=1

(
n∑

j=2i+1

xj

)
.
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Thus, the polynomial S2(x) is represented as a polynomial in u, v by the quadratic

u2u3 + . . . + un−1un + L′(u) for some linear function L′. A similar argument can be

used to prove the statement for S2(y).

We will also need some basic preliminaries about F2-quadratics, i.e., polynomials

from P2,1. Given Q(x1, . . . , xn) ∈ P2,1, we define the rank of Q to be the least r such

that we can write Q in the form

Q(x) =
r∑
i=1

Li(x)L′i(x) + L(x)

where Li, L
′
i (i ∈ [r]) and L are linear polynomials in x1, . . . , xn. We use rk(Q) to

denote the rank of Q.

The following are standard facts about the rank of quadratic polynomials (see,

e.g., [LN97, Chapter 6]).

Lemma 2.17. Let Q,Q1, and Q2 be polynomials in P2,1 such that

Q(x) =
r∑
i=1

Li(x)L′i(x) + L(x), (2.3.2)

where Li, L
′
i (i ∈ [r]) and L are linear polynomials.

1. For any linear function L′′, rk(Q+ L′′) = rk(Q).

2. rk(Q1 +Q2) ≤ rk(Q1) + rk(Q2).

3. If the Li, L
′
i in Eq. (2.3.2) form a set of 2r linearly independent polynomials,

then rk(Q) = r.

4. If Q has rank r, then

Pr
x∼{0,1}n

[Q(x) 6= 0] ≥ 1

2
− 1

2r+1
.

We are now ready to prove the main technical lemma of this section that bounds

the agreement between FH and quadratic polynomials on the set S.
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Lemma 2.18. Let H : S → {0, 1} be any function. Then for every q ∈ P2,1, we have

Pr
(x,y)∼S

[FH(x, y) 6= q(x, y)] ≥ 1

3
− o(1).

Proof. Fix H, and let G(u, v) be the unique polynomial over F2 in the variables u, v

that represents FH . Define the set Ω as

Ω := {(u, v) ∈ {0, 1}2n| u1 = 0 or v1 = 0}.

We can rewrite the definition of S as

S = {(x, y) ∈ {0, 1}2n | u1(x) = 0 or v1(y) = 0},

and so if (x, y) is uniformly distributed in S then (u, v) is uniformly distributed in

Ω. Thus, proving the statement of the lemma is equivalent to proving that for every

quadratic q(u, v),

Pr
(u,v)∼Ω

[G(u, v) 6= q(u, v)] ≥ 1

3
− o(1).

For any α, β ∈ {0, 1} such that αβ 6= 1, define Ωα,β as

Ωα,β := {(u, v) ∈ {0, 1}2n| u1 = α, v1 = β}.

Also let Gα,β(u2, . . . , un, v2, . . . , vn) denote the polynomial obtained by setting u1 =

α, v1 = β in G(u, v), i.e., Gα,β = G|Ωα,β , and for any quadratic q(u, v), define

∆α,β(q) := Pr
(u,v)∼Ωα,β

[Gα,β(u, v) + q(u, v) 6= 0]. (2.3.3)

Noting that

Ω = Ω0,0 ∪ Ω0,1 ∪ Ω1,0,

and that

|Ω0,0| = |Ω0,1| = |Ω1,0| =
|Ω|
3
,

it follows that for every quadratic q(u, v),

Pr
(u,v)∼Ω

[G(u, v) 6= q(u, v)] =
1

3
(∆0,0(q) + ∆0,1(q) + ∆1,0(q)). (2.3.4)
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So, it suffices to prove that ∆0,0(q) + ∆0,1(q) + ∆1,0(q) ≥ 1− o(1) for every q. To do

this, we begin by analyzing the structure of the polynomials G0,0, G1,0, G0,1.

The condition u1(x) = v1(y) = 0 in equivalent to both |x| and |y| being even,

which implies that |x| · |y| is a multiple of 4. Eq. (2.3.1) tells us that FH is the zero

function when |x| · |y| is a multiple of 4, and so whenever u1(x) = v1(y) = 0, FH must

be zero. Since G(u, v) represents FH as a polynomial in u, v, G(u, v) must be zero for

any (u, v) with u1 = v1 = 0, i.e., for any (u, v) ∈ Ω0,0. Thus, G0,0 = G|Ω0,0 is the zero

polynomial.

Let us now consider points (x, y) which satisfy u1(x) = 0, v1(y) = 1. In this case,

we know that |x| must be even and |y| must be odd. Thus, if |x| ≡ 2 (mod 4) then

|x| · |y| ≡ 2 (mod 4), and so Eq. (2.3.1) implies that FH(x, y) = 1. Similarly, if

|x| ≡ 0 (mod 4) we can conclude that FH(x, y) = 0. Furthermore, it may be noted

that restricted to x such that |x| is even,

|x| ≡

 2 (mod 4) if |x|1 = 1,

0 (mod 4) if |x|1 = 0.

Combining all these observations, we can conclude that

FH |u1(x)=0,v1(y)=1(x, y) =

 1 if |x|1 = 1,

0 if |x|1 = 0.

Using Lemma 2.1, it follows that FH |u1(x)=0,v1(y)=1(x, y) = S2(x). Recalling that the

points (u, v) ∈ Ω0,1 correspond to points (x, y) with u1(x) = 0, v1(y) = 1, and using

Lemma 2.16, we can conclude that

G0,1 = G|Ω0,1 = u2u3 + u4u5 + . . .+ un−1un + L′(u)

for some linear function L′. A similar argument yields that

G1,0 = G|Ω1,0 = v2v3 + v4v5 + . . .+ vn−1vn + L′′(v).

Part 3 of Lemma 2.17 then implies that G0,1 and G1,0 are rank (n− 1)/2 quadratics

in u and v respectively.
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Note that any quadratic q(u, v) can be written as

q(u, v) = c+ L(u, v) +B(u, v) +Q(u) +R(v),

where c is the constant term, L(u, v) is the homogeneous degree 1 part, B(u, v) is the

bilinear3 part, and Q(u) and R(v) are homogeneous degree 2 polynomials in u and v

respectively.

We can further expand Q(u) as u1L1(u) + Q′(u) where Q′(u) is the sum of all the

terms in Q that don’t involve u1, and L1(u2, . . . , un) is a linear function. Similarly,

we can expand R(v) as v1L2(u) +R′(v). Thus, q can be expanded as

q(u, v) = c+ L(u, v) +B(u, v) + u1L1(u) +Q′(u) + v1L2(v) +R′(v) (2.3.5)

For any α, β ∈ {0, 1} such that αβ 6= 1, define Pα,β(u, v) to be the polynomial

Pα,β(u, v) := Gα,β(u, v) + q|u1=α,v1=β(u, v).

By substituting values of u1 and v1 in the expansion of q in Eq. (2.3.5), and recalling

our observations about the structure of G0,0, G0,1, and G1,0, it may be noted that

P0,0(u, v) = 0 + c+ L|u1=0,v1=0(u, v) +B|u1=0,v1=0(u, v) +Q′(u) +R′(v)

P0,1(u, v) = G0,1(u) + c+ L|u1=0,v1=0(u, v) +B|u1=0,v1=1(u, v) +Q′(u) + L2(v) +R′(v),

P1,0(u, v) = G1,0(v) + c+ L|u1=0,v1=0(u, v) +B|u1=1,v1=0(u, v) + L1(u) +Q′(u) +R′(v).

We can further simplify these expression as

P0,0(u, v) = Q′(u) +R′(v) +B0,0(u, v)

P0,1(u, v) = G0,1(u) +Q′(u) +R′(v) +B1,0(u, v),

P1,0(u, v) = G1,0(v) +Q′(u) +R′(v) +B0,1(u, v),

(2.3.6)

where B0,0, B0,1, and B1,0 are quadratics in which every monomial contains at most

one u variable and at most one v variable.

3degree 2 terms that contain exactly one variable from each of u and v, i.e., terms of the form
uivj
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We are now ready to prove that ∆0,0(q) + ∆0,1(q) + ∆1,0(q) ≥ 1 − o(1) for every

quadratic q(u, v).

Fix q(u, v) to be any quadratic. Noting that Pα,β is essentially a polynomial in

the variables u2, . . . , un, v2, . . . , vn, we can rewrite the definition of ∆α,β(q) given in

Eq. (2.3.3) in the following two ways:

∆α,β(q) = E(u2,...,un)∼{0,1}n−1

[
Pr

(v2,...,vn)∼{0,1}n−1
[Pα,β(u2, . . . , un, v2, . . . , vn) 6= 0]

]
,

= E(v2,...,vn)∼{0,1}n−1

[
Pr

(u2,...,un)∼{0,1}n−1
[Pα,β(u2, . . . , un, v2, . . . , vn) 6= 0]

]
.

The remaining proof is a case analysis based on the tuple (rk(Q′), rk(R′)) (recall that

rk(Q) denotes the rank of the quadratic Q). Without loss of generality, we may

assume that rk(Q′) ≤ rk(R′).

• Case 1 (rk(Q′) ≥ (n−1)/4): In particular, this implies that rk(R′) ≥ rk(Q′) ≥

(n − 1)/4, and hence both Q′ and R′ are high-rank quadratics. Note that for

every setting of the u variables, Eq. (2.3.6) tells us that P0,0 simplifies to R′(v)

plus a linear function in v, and so its rank is at least (n − 1)/4 by part 1 of

Lemma 2.17. Part 4 of Lemma 2.17 combined with the alternate definition

of ∆α,β(q) given above then implies that ∆0,0(q) ≥ (1/2) − o(1). A similar

argument yields that both ∆1,0(q) and ∆0,1(q) are also at least (1/2)−o(1), and

so ∆0,0(q) + ∆1,0(q) + ∆0,1(q) ≥ 1− o(1) in this case.

• Case 2 (rk(Q′) ≤ (n − 1)/4 ≤ rk(R′)): In this case, for every setting of the u

variables, an analysis similar to that of case 1 yields that the quadratics P0,0 and

P0,1 have rank at least (n − 1)/4. Hence part 4 of Lemma 2.17 along with the

alternate definition of ∆α,β(q) implies that ∆0,0,∆0,1 ≥ 1
2
− o(1), which implies

that ∆0,0 + ∆0,1 + ∆1,0 ≥ 1− o(1).

• Case 3 (rk(R′) ≤ (n− 1)/4): This means that rk(Q′) ≤ (n− 1)/4. Recall that

we argued earlier that both G0,1 and G1,0 are quadratics of rank (n− 1)/2. For

any setting of the v variables, P0,1 simplifies to the quadratic G0,1(u) + Q′(u)
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plus a linear function in u. Using part 2 of Lemma 2.17, and the fact that

Q′ +Q′ ≡ 0 (we are working over Z/2Z), we have that

rk ((G0,1 +Q′) +Q′) ≤ rk(G0,1 +Q′) + rk(Q′)

=⇒ rk(G0,1 +Q′) ≥ rk(G0,1)− rk(Q′)

=⇒ rk(G0,1 +Q′) ≥ n− 1

2
− n− 1

4
=
n− 1

4

Part 1 of Lemma 2.17 then implies that P0,1 is a quadratic of rank at least

(n− 1)/4 in the u variables, for every setting of the v variables. The alternate

definition of ∆α,β(q) given above together with part 4 of Lemma 2.17 then gives

us that ∆0,1(q) ≥ (1/2)− o(1).

A similar argument can be used to show that P1,0 is a quadratic of rank at least

(n− 1)/4 in the v variables, for every setting of the u variables, implying that

∆1,0(q) ≥ (1/2) − o(1). Once again, we can conclude that ∆0,0(q) + ∆0,1(q) +

∆1,0(q) ≥ 1− o(1).

Combining the fact that ∆0,0(q) + ∆0,1(q) + ∆1,0(q) ≥ 1 − o(1) for every q with

Eq. (2.3.4) then implies the statement of Lemma 2.18.

We now have all the tools needed to prove Theorem 2.13.

Proof of Theorem 2.13. Let H : S → {0, 1} be any function that satisfies the state-

ment of Lemma 2.15, and use H to define FH as per Eq. (2.3.1).

Let q ∈ P2,1 be an arbitrary quadratic polynomial. Then Lemma 2.18 implies that

Pr
(x,y)∼S̄

[FH(x, y) 6= q(x, y)] ≥ 1

3
− o(1).

Also, our choice of H guarantees that

Pr
(x,y)∼S

[FH(x, y) 6= q(x, y)] = Pr
(x,y)∼S

[H(x, y) 6= q(x, y)] ≥ 1

2
− o(1).
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Using the fact that |S| = 22n/4, we can combine the above equations to conclude that

Pr
(x,y)∼{0,1}2n

[FH(x, y) 6= q(x, y)]

=

(
3

4
· Pr

(x,y)∼S̄
[FH(x, y) 6= q(x, y)]

)
+

(
1

4
· Pr

(x,y)∼S
[FH(x, y) 6= q(x, y)]

)
≥ 3

4
·
(

1

3
− o(1)

)
+

1

4
·
(

1

2
− o(1)

)
≥ 3

8
− o(1),

and so agr(FH , q) ≤ 5/8 + o(1). Since this holds for any q ∈ P2,1, it follows that

γ2,1(FH) ≤ 5

8
+ o(1) =

1

2
+

1

8
+ o(1). (2.3.7)

On the other hand, Lemma 2.14 implies that

γ2,2(FH) ≥ 3

4
=

1

2
+

1

4
. (2.3.8)

Eqs. (2.3.7) and (2.3.8) together give us the statement of Theorem 2.13.

2.3.3 Behavior of γd,k(F ) for functions with γd,1(F ) ≈ 1/2

In Section 2.3.2, we showed that there are examples of Boolean functions F : {0, 1}n →

{0, 1} for which γ2,2(F ) > γ2,1(F ). However, these examples all had nontrivial agree-

ment with polynomials from P2,1, i.e., from Z/2Z[x1, . . . , xn]; γ2,1(F ) was approxi-

mately 5/8.

Recall that Lemma 2.6 says that γd,k(F ) is trivially at least 1/2. We say “trivially”

because the constant polynomials in Z/2kZ[x1, . . . , xn], for all k ≥ 1, can achieve

agreement at least 1/2 with any Boolean function F . Thus, it makes sense to ask

the following question: are there Boolean functions F such that degree d polynomials

over Z/2Z can’t approximate F in the agreement sense any better than constant poly-

nomials do, i.e., γd,1(F ) ≈ 1/2, whereas, for some k > 1 there are polynomials over

Z/2kZ of the same degree that have nontrivial agreement with F , i.e., γd,k(F )� 1/2.

To guide our search for a suitable function F : {0, 1}n → {0, 1}, we can make the

following observations:
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• Clearly, F must satisfy γd,1(F ) ≤ (1/2) + o(1). This means that for every

degree d polynomial P over F2, we have that agr(F, P ) ≤ (1/2) + o(1). It may

be recalled that the correlation between F and P is related to the agreement

in the following manner,

Corr(F, P ) =
∣∣Ex∼{0,1}n [(−1)F (x)−G(x)

]∣∣ = |2 · agr(F, P )− 1| ,

and this implies that

Corr(F, P ) ≤ o(1).

In other words, F is uncorrelated with degree d classical polynomials over F2.

• F must also satisfy γd′,k(F ) ≥ 1
2

+ Ω(1) for some d′ < d and k > 1. Lemma 2.9

then implies that there must a nonclassical polynomial P : {0, 1}n → R/Z of

degree ≤ d′ + k − 1 and depth ≤ k such that

agr

(
F

2
, P

)
= γd′,k(F ) ≥ 1

2
+ Ω(1).

In this case, we can recall that

Corr

(
F

2
, P

)
≥
∣∣∣∣2 · agr

(
F

2
, P

)
− 1

∣∣∣∣ ≥ Ω(1).

If we further constrain ourselves to d′, k such that d′+k− 1 < d then the above

equation implies that there is a nonclassical polynomial over F2 of degree at

most d that has nontrivial correlation with F .

Combining the two observations, we can note that if we constrain ourselves to choosing

d, d′ and k that satisfy d′+k−1 < d, then F must be a counterexample to the Inverse

Conjecture for the Gowers norm. As mentioned before, it was established by Lovett

et al. [LMS11] and Green and Tao [GT09] that S2`(x), the elementary symmetric

polynomial over F2 of degree 2`, is a counterexample to the conjecture for ` ≥ 2, and

so we work with this function.

We know from Theorem 2.2 that

γ2`−1,1(S2`) ≤
1

2
+ o(1), (2.3.9)
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We observe that S2`,3(x), the 3-lift of S2` , has nontrivial agreement with degree 3

polynomials over Z/8Z. This is the main technical result of this section.

Lemma 2.19. Let ` ≥ 2 and d = 2`−1 + 2`−2. Then

γd,3(S2`) ≥
1

2
+

1

16
− o(1).

For ` = 2, Lemma 2.19 gives us that

γ3,3(S4) ≥ 1

2
+

1

8
− o(1).

While Eq. (2.3.9) instantiated for ` = 2 gives

γ3,1(S4) ≤ 1

2
+ o(1).

Together, the two equations answer the question raised at the beginning of this sec-

tion:

Theorem 2.20. There is a Boolean function F : {0, 1}n → {0, 1} such that

γ3,1(F ) ≤ 1

2
+ o(1)

while

γ3,3(F ) ≥ 1

2
+

1

16
− o(1).

We now give a brief sketch of the main idea behind the proof of Lemma 2.19. For

the sake of clarity, we focus on the ` = 2 case. Recall that for x ∈ {0, 1}n, S4(x)

is equal to |x|2, the 3rd least significant bit of |x|. Consider the quantity
(|x|

3

)
. It

can be shown that modulo 2,
(|x|

3

)
only depends on |x|1 and |x|0, and is uncorrelated

with |x|2 (see Section 2.2.1 for more details). In other words, it has no “information”

about |x|2.

The key insight here is that modulo 8,
(|x|

3

)
has nontrivial “information” about |x|2.

This then can be used to show that the function
(|x|

3

)
mod 8 has good agreement with
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S4,3(x), the 3-lift of S4, since the latter is completely determined by |x|2. Note that

the function
(|x|

3

)
mod 8 can be represented as a polynomial of degree 3 over Z/8Z; if

P (x) =
∑

T⊆[n];|T |=3

∏
i∈T

xi,

i.e. the elementary symmetric polynomial of degree 3 over Z/8Z, then for all x ∈

{0, 1}n,

P (x) =

(
|x|
3

)
mod 8.

Understanding what “information” P (x) has about |x|2, and thus about S4,3(x),

comes down to computing the largest power of 2 that divides
(|x|

3

)
, and we use a

classic theorem of Kummer to do this analysis4.

We now give the formal details of the proof.

Proof of Lemma 2.19. Fix ` ≥ 2 and let d = 2`−1 + 2`−2. Assume n is much larger

than 2`. Lemma 2.1 from Section 2.2 tells us that S2`(x) = |x|`. Thus, S2`,3(x) ∈

Z/8Z[x1, . . . , xn], the 3-lift of S2`(x), is given by

S2`,3(x) =


4 if |x|` = 1

0 otherwise

(2.3.10)

Let P be the elementary symmetric polynomial of degree d in Z/8Z[x1, . . . , xn],

i.e.,

P (x) =
∑

T⊆[n];|T |=d

∏
i∈T

xi.

To prove the theorem, it suffices to show that

agr(S2`,3, P ) = Pr
x∼{0,1}n

[P (x) = S2`,3(x)] ≥ 1

2
+

1

16
− o(1).

4It is known that the linear polynomial
∑n

i=1 xi in P1,3 has nontrivial correlation with S4,3(x)
(see, e.g., [LMS11, Section 1.3]). However, this polynomial cannot have agreement better than 1/4
with S4,3(x) since it is {0, 4}-valued on only about a 1/4 fraction of the points in {0, 1}n, whereas
S4,3(x) takes values in {0, 4} on all the points in {0, 1}n by the definition of a 3-lift. This is why we
cannot simply use

∑n
i=1 xi and need to find another suitable polynomial over Z/8Z.
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It may be noted that

P (x) =

(
|x|
d

)
mod 8,

and so

P (x) =


0 if 8 divides

(
|x|
d

)
4 if 4 divides

(
|x|
d

)
but 8 does not

(2.3.11)

To understand the behavior of P on different inputs, we use the following theorem

due to Kummer (see, e.g., [Knu97, Section 1.2.6, Ex. 11]) that determines the largest

power of a prime p that divides a binomial coefficient (we state it for p = 2).

Theorem 2.21 (Kummer). Let 0 ≤ b ≤ a. Suppose r is the largest integer such that

2r divides
(
a
b

)
. Then r is equal to the number of borrows required when subtracting b

from a in base 2.

Let Bd(x) be the number of borrows required when subtracting d from |x|. Rewrit-

ing Eq. (2.3.11) in terms of Bd(x) using Kummer’s theorem, we get

P (x) =


4 if Bd(x) = 2

0 if Bd(x) ≥ 3

(2.3.12)

The following lemma uses Eqs. (2.3.10) and (2.3.12) to provide sufficient conditions

for P (x) to agree with S2`,3(x).

Lemma 2.22. P (x) = S2`,3(x) if either

1. |x|`−2 = 0, or

2. (|x|`−2, |x|`−1, |x|`, |x|`+1) = (1, 0, 0, 0).

Proof. Since d = 2`−1 + 2`−2, all the bits of d except d`−1 and d`−2 are zero. Thus,

when subtracting d from |x|, no borrows are required by the bits |x|i, 0 ≤ i ≤ `− 3.

Using the above observation, it immediately follows that when

(|x|`−2, |x|`−1, |x|`, |x|`+1) = (1, 0, 0, 0),
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the number of borrows required is at least 3 i.e., Bd(x) ≥ 3, which in turn implies

that P (x) = 0. Since |x|` = 0, it must be the case that S2`,3(x) = 0, which proves

that the second condition in the statement of the lemma implies that P (x) = S2`,3(x).

To prove that the first condition also implies agreement between P and S2`,3, sup-

pose |x|`−2 = 0. Since d`−1 = d`−2 = 1, it follows that both |x|`−2 and |x|`−1 will need

to borrow when subtracting d from |x|. As argued before, no borrows are required by

the bits before (i.e., less significant than) |x|`−2, and thus the total number of borrows

required by the bits |x|i for 0 ≤ i ≤ `− 1 is 2.

Noting that the bit |x|`−1 always borrows from |x|`, consider the following case anal-

ysis:

• Case |x|` = 1: |x|` will not need to borrow since d` = 0. In fact, none of the bits

after (i.e., more significant than) |x|` will need to borrow, and thus Bd(x) = 2.

This implies that P (x) = 4. We also have S2`,3(x) = 4 (since |x|` = 1) and so

P (x) = S2`,3(x).

• Case |x|` = 0: |x|` will require a borrow and this means Bd(x) ≥ 3. This implies

that P (x) = 0. Since |x|` = 0, we have that S2`,3(x) = 0 and it follows that

P (x) = S2`,3(x).

This completes the proof.

By Lemma 2.22, we have

agr(S2`,3, P ) = Pr[P (x) = S2`,3(x)]

≥ Pr[|x|`−2 = 0] + Pr [(|x|`−2, |x|`−1, |x|`, |x|`+1) = (1, 0, 0, 0)]
(2.3.13)

We now recall that if x is uniformly distributed in {0, 1}n then for large enough n,

Lemma 2.4 from Section 2.2 tells us that the bits {|x|i}0≤i≤`+1 are almost uniformly

and almost independently distributed in {0, 1}. This gives us that

Pr
x∼{0,1}n

[|x|`−2 = 0] ≥ 1

2
− o(1)

Pr
x∼{0,1}n

[(|x|`−2, |x|`−1, |x|`, |x|`+1) = (1, 0, 0, 0)] ≥ 1

16
− o(1),
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which, together with Eq. (2.3.13), imply that

agr(S2`,3, P ) = Pr[P (x) = S2`,3(x)] ≥ 1

2
+

1

16
− o(1).

2.4 Bounds on γd,k(Majn)

Recall that Majn denotes the majority function on n bits: Majn(x1, . . . , xn) takes the

value 1 if strictly more than half of the n bits x1, . . . , xn are equal to 1, otherwise

it takes the value 0. The goal of this section is to study how well polynomials over

Z/2kZ can approximate Majn in the agreement sense. We begin by discussing what

we know for k = 1.

The classic works of Szegedy [Sze89] and Smolensky [Smo93] show that for every

degree d polynomial P ∈ Z/2Z[x1, . . . , xn] the agreement between P and Majn is

bounded as follows.

Theorem 2.23 (Szegedy [Sze89], Smolensky [Smo93]). For any polynomial P ∈

Z/2Z[x1, . . . , xn] of degree d ≥ 0,

agr(Majn, P ) ≤ 1

2
+
O(d)√
n
.

An equivalent way of stating the above statement is that for all d ≥ 0,

γd,1(Majn) ≤ 1

2
+
O(d)√
n
. (2.4.1)

Although there are polynomials of degree Θ(
√
n) over Z/2Z that have nontrivial

agreement with Majn (see, e.g., [Vio09, Section 2.3]), Eq. (2.4.1) implies that no

polynomial over Z/2Z of degree d �
√
n can have nontrivial agreement with Majn.

Then, a natural question to ask is whether there is a k > 1 and d �
√
n such that

the k-lift of Majn has good agreement with a degree d polynomial over Z/2kZ. We

will later prove that this is impossible and the same bound as in Eq. (2.4.1) holds for
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γd,k(Majn) for k > 1. We begin by establishing a weaker yet nontrivial upper bound

for the majority function by proving a more general statement that upper-bounds

γd,k(F ) for all F .

2.4.1 A nontrivial upper bound on γd,k(F )

Let F be any Boolean function. Implicit in the work of Bhowmick and Lovett [BL15,

Proof of Lemma 2.2] is an interesting observation that the agreement between Fk

and polynomials of degree d over Z/2kZ can be no larger than the maximum possible

agreement between F and polynomials of degree d(2k−1) over Z/2Z. More formally,

Theorem 2.24 (Implicit in Bhowmick and Lovett [BL15]). For d ≥ 0, k ≥ 1, and

any Boolean function F , γd,k(F ) ≤ γd′,1(F ) for d′ = d(2k − 1).

We now present a proof of the result based on ideas from [BL15, Proof of Lemma

2.2].

Proof of Theorem 2.24. Suppose γd,k(F ) = γ. Then there must be a polynomial

P ∈ Pd,k such that agr(Fk, P ) = γ. Let A ⊆ {0, 1}n denote the set of points where

Fk and P agree; |A| = γ · 2n. We can naturally think of P (x1, . . . , xn) as an integer

polynomial with coefficients in {0, . . . , 2k − 1}. Furthermore, we can write P as

P (x) = M1(x) + . . .Mt(x),

where each Mi(x) is a monomial of degree d of the form Mi(x) =
∏

j∈Si xj for some

Si ⊆ [n] with |Si| = d. It is possible that Mi(x) = Mi′(x) for i 6= i′, since we might

have to use multiple copies of the same monomial if it originally appeared in P with

a coefficient larger than 1. It may be noted that for all x ∈ A,

M1(x) + . . .+Mt(x) ≡ Fk(x) (mod 2k). (2.4.2)

Let us define a Boolean function H : {0, 1}t → {0, 1} as follows. For all y =



44

(y1, . . . , yt) ∈ {0, 1}t,

H(y1, . . . , yt) :=


1 if |y| ≡ 2k−1 (mod 2k),

0 if |y| ≡ 0 (mod 2k),

0 otherwise.

(2.4.3)

where |y| denotes the Hamming weight of y.

Note that for every x ∈ {0, 1}n and i ∈ [t], Mi(x) is either 0 or 1, and so we can

define the Boolean function H ′ : {0, 1}n → {0, 1} as

H ′(x1, . . . , xn) := H(M1(x), . . . ,Mt(x)) (2.4.4)

for all x ∈ {0, 1}n.

It follows from the definition of H ′ and Eqs. (2.4.2) and (2.4.3) that for all x ∈ A,

H ′(x1, . . . , xn) :=


1 if Fk(x) ≡ 2k−1 (mod 2k),

0 if Fk(x) ≡ 0 (mod 2k).

Using the definition of Fk, we may conclude that H ′(x) = F (x) for all x ∈ A, and

so agr(F,H ′) ≥ γ (recall that |A| = γ · 2n). We will now show that H ′(x) can be

represented as a polynomial of degree d′ = d(2k − 1) over Z/2Z, which would imply

that F has agreement at least γ with a polynomial in Pd′,1 and thus γd′,1(F ) ≥ γd,k(F ).

This would complete the proof.

Observe from Eq. (2.4.3) that H(y1, . . . , yn) only depends on the k least significant

bits of the base 2 representation of |y|. Let G : {0, 1}k → {0, 1} be the Boolean

function such that for all y ∈ {0, 1}t,

H(y1, . . . , yt) = G(|y|0, |y|1, . . . , |y|k−1).

We know from Lemma 2.1 that for any ` ≥ 0, S2`(y) = |y|` for all y ∈ {0, 1}t. Thus,

H(y1, . . . , yt) = G(S20(y), S21(y), . . . , S2k−1(y))
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for all y ∈ {0, 1}t. Combining this equation with the definition of H ′ in Eq. (2.4.4),

we get that for all x ∈ {0, 1}n,

H ′(x1, . . . , xn) = G (S20 (M1(x), . . .Mt(x)) , . . . , S2k−1 (M1(x), . . .Mt(x))) .

For every ` ≥ 0, S2`(M1(x), . . . ,Mt(x)) can be represented as a polynomial Q`(x) of

degree d·2` over Z/2Z. We can also trivially represent G(z0, . . . , zk−1) as a polynomial

Q(z0, . . . , zk−1) of degree at most k over Z/2Z. In the worst case, the monomial of

largest degree in Q is
∏k−1

i=0 zi, and hence in this case, the largest-degree monomial in

the polynomial

Q′(x1, . . . , xn) = Q(Q0(x), Q1(x), . . . , Qk−1(x))

would come from
∏k−1

i=0 Qi(x). The degree of any monomial in
∏k−1

i=0 Qi(x) is at most

d′ =
k−1∑
i=0

d · 2i = d(2k − 1),

and so the degree of Q′(x) is at most d′. Noting that Q′(x) represents H ′(x) then

completes the proof.

We can combine Theorem 2.24 with Eq. (2.4.1) to obtain the following upper

bound for the majority function.

Theorem 2.25 (Implicit in Bhowmick and Lovett [BL15]). For all d ≥ 0, k ≥ 1,

γd,k(Majn) ≤ 1

2
+
O(d2k)√

n
.

Even though this bound is weaker than the one in Eq. (2.4.1), it can still establish

that there is no polynomial in Pd,k that has nontrivial agreement with the k-lift of

Majn for k � log n and d �
√
n. However, for k = Ω(log n), the bound becomes

trivial, and leaves open the possibility that there is a k ≥ c · log n and d�
√
n such

that some polynomial in Pd,k has nontrivial agreement with the k-lift of Majn. We

now show that this is impossible.
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2.4.2 A better upper bound on γd,k(Majn)

The main result of this section is the following.

Theorem 2.26. For any k ≥ 1, d ≥ 0,

γd,k(Majn) ≤ 1

2
+

10d√
n
.

This matches the bound in Eq. (2.4.1) and shows that no matter how large k is,

the agreement between polynomials in Pd,k and Fk cannot exceed the trivial bound

of 1/2 + o(1). We now give a sketch of the proof. For the sake of clarity, we assume

that n is even in the proof sketch.

We start by recalling a variant5 of the arguments of Szegedy [Sze89] and Smolen-

sky [Smo93] for upper bounding γd,1(Majn). Say that a polynomial P over Z/2Z of

degree d agrees with Majn on the points in SP ⊆ {0, 1}n where |SP | ≥ ((1/2) + ε) 2n.

We first find a non-zero degree D (D as small as possible) polynomial Q over Z/2Z

such that Q is zero at all points of SP . To be able to do this, we need to ensure that SP

is not an interpolating set for polynomials of degree D (see Section 2.2.2 for a defini-

tion). This can be done by choosing D so that the Hamming ball of radius D is larger

than |SP | (see part 4 of Lemma 2.5); in particular, choosing D = (n/2) − Θ(ε
√
n)

works.

Consider the polynomial R = Q · P . On any input x ∈ Maj−1
n (0), R(x) = 0 since ei-

ther x 6∈ SP , and hence Q(x) = 0, or x ∈ SP , which implies that P (x) = Majn(x) = 0.

Secondly, since the Hamming ball of radius (n/2) − 1 around the all 1s vector is an

interpolating set for Q (this follows from part 4 of Lemma 2.5), and Q is a non-zero

polynomial, there must a point x0 ∈ Maj−1
n (1), such that Q(x0) 6= 0. Also, since Q is

zero on SP it must be the case that x0 ∈ SP , and so P (x0) = Majn(x0) = 1. Hence

we have

R(x0) = Q(x0)P (x0) 6= 0. (2.4.5)

5This is essentially a “dual” view of their argument.
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Therefore, R is a non-zero polynomial of degree at most deg(Q)+deg(P ) that vanishes

at all points in Maj−1
n (0), i.e., on all x ∈ {0, 1}n of Hamming weight at most n/2.

Appealing to the fact that Hamming balls of radius n/2 are interpolating sets for

polynomials of degree at most n/2, this implies that deg(Q) + deg(P ) > n/2, and

hence ε ≤ O(d/
√
n), finishing the proof of the theorem.

Let Majn,k denote the k-lift of the majority function. If we were to try and use the

same approach as above for polynomials over Z/2kZ, the problem we may run into is

that Eq. (2.4.5) may not hold any more, since the product of two non-zero elements

in Z/2kZ can be zero. In particular, it could be the case that Q(x0) is non-zero and

even, and P (x0) = Majn,k(x0) = 2k−1, in which case their product is 0.

To overcome this, we instead try to find a Q that vanishes on SP and moreover Q(x0)

is odd for some x0 ∈ SP . We say that SP is forcing for degree D polynomials if such

a polynomial Q of degree D does not exist. Note that this notion is different from

the notion of interpolating sets: every interpolating set is of course forcing, but the

converse is not true (see Remark 2.27 below).

The main techinical lemma (Lemma 2.28) of this section gives a tight lower bound on

the size of forcing sets for polynomials of degree D over Z/2kZ, which lets us carry

out the above argument and prove Theorem 2.26. Our proof of this lemma is an

adaptation of techniques appearing in a work of Green [Gre00], who proved a similar

result on the approximability of the parity function by polynomials over the ring

Z/pkZ, for prime p 6= 2. We now give formal details of the proof of Theorem 2.26.

We will need some more definitions and facts about Pd,k. We use π to denote the

unique ring homomorphism from Z/2kZ to Z/2Z. Its kernel

π−1(0) = {a ∈ Z/2kZ | 2k−1a = 0}

is the set of non-invertible elements in Z/2kZ.

We call a set S ⊆ {0, 1}n forcing for Pd,k if any polynomial P ∈ Pd,k that vanishes

over S is forced to take a value in π−1(0) at all points x ∈ {0, 1}n. Formally, for all
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P ∈ Pd,k,

(∀x ∈ S P (x) = 0)⇒ (∀y ∈ {0, 1}n π(P (y)) = 0).

Define the polynomial π(P ) ∈ Z/2Z[x1, . . . , xn] to be the polynomial obtained by

applying the map π to each of the coefficients of P . Since a multilinear polynomial

in Z/2kZ[x1, . . . , xn] is the zero polynomial iff it vanishes at all points of {0, 1}n (see

part 2 of Lemma 2.5), we see that S is forcing for Pd,k iff for all P ∈ Pd,k,

(∀x ∈ S P (x) = 0)⇒ π(P ) = 0.

Note that any interpolating set for Pd,k is forcing for Pd,k, but the converse need not

be true.

Remark 2.27. Let n = 3, d = 1, and k = 2. Consider the set S consisting of all

inputs of Hamming weight exactly 2 and the all 0s input. We first argue that S is

not an interpolating set for degree 1 polynomials over Z/4Z. Consider the polynomial

P (x) = 2(x1 + x2 + x3) ∈ P1,2; P is a non-zero polynomial since P (1, 1, 1) = 2.

Further, it can be verified that P vanishes on all points in S. This means that S is

not an interpolating set for P1,2.

We will now argue that S is forcing for P1,2. Note that for a ∈ Z/4Z, π(a) = 0 iff

2a = 0 over Z/4Z. Consider an arbitrary P ∈ P1,2. We can write P = a0 + a1x1 +

a2x2 + a3x3. Since P vanishes over S, we have the following.

a0 = 0

a0 + a1 + a2 = 0

a0 + a1 + a3 = 0

a0 + a2 + a3 = 0.

(2.4.6)

Adding the last three equations and setting a0 = 0 tells us that 2(a1 + a2 + a3) =

2P (1, 1, 1) = 0. This implies that π2(P (1, 1, 1)) = 0. We can also easily derive that

each of 2P (0, 0, 1), 2P (0, 1, 0), and 2P (1, 0, 0) are 0 as well. For example, for the case
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of P (0, 0, 1), we can do the following.

2P (0, 0, 1) = 2a3 = 2a3 + 4(a1 + a2)

= 2(a1 + a2 + a3) + 2(a1 + a2)

= 2P (1, 1, 1) + 2(a1 + a2).

We already showed that 2P (1, 1, 1) = 0 and also know that 2(a1 + a2) = 0 from

Eq. (2.4.6), and thus, it follows that 2P (0, 0, 1) = 0. A similar argument works for

2P (0, 1, 0) and 2P (1, 0, 0).

This shows that 2P (x) = 0 for all x ∈ {0, 1}3 which implies that π(P (x)) = 0 for all

x, and so S is a forcing set.

We now adapt the proof of Lemma 11 in [Gre00] to bound the size of forcing sets

for Pd,k.

Lemma 2.28. Fix d ≥ 0, k ≥ 1. If S is forcing for Pd,k, then |S| ≥
(
n
≤d

)
.

Proof. Assume for the sake of contradiction that S ⊆ {0, 1}n is forcing for Pd,k and

|S| <
(
n
≤d

)
. Note that there must be a non-zero polynomial Q(x) ∈ Q[x1, . . . , xn]

of degree at most d satisfying Q(x) = 0 for all x ∈ S. To see why, recall that a

multilinear polynomial Q of degree d over Q looks like

Q(x) =
∑

T⊆[n];|T |=d

cT
∏
i∈T

xi,

where cT ∈ Q for all T . We want to find a nontrivial assignment of values to the

coefficients cT such that Q(s) = 0 for all s ∈ S. Each s ∈ S gives us an equation

in the unknowns cT , and so we have a homogeneous system of |S| <
(
n
≤d

)
equations

over Q in
(
n
≤d

)
variables. This implies that there is a nontrivial assignment to the

coefficients cT such that Q(s) = 0 for all s ∈ S though Q is a non-zero polynomial.

Having obtained the polynomial Q as above, we can rewrite it as

Q(x) =
α · Q̃(x)

β
,
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for some α, β ∈ Z, and an integer polynomial Q̃(x) =
∑

T⊆[n];|T |≤d c
′
T

∏
i∈T xi such

that the GCD of its coefficients {c′T} is 1.

Let P (x) =
∑

T⊆[n];|T |≤d c
′′
T

∏
i∈T xi be the polynomial in Pd,k obtained by choosing

c′′T ∈ {0, . . . , 2k− 1} for all T , such that c′′T ≡ c′T (mod 2k). It follows that P is a non-

zero polynomial of degree at most d such that π(P ) is a non-zero polynomial, since

if π(P ) = 0 then every coefficent of P , and thus, every coefficent of Q̃, is divisible by

two, which is impossible since the coefficients of Q̃ have no common divisors.

To complete the proof, observe that P (x) = 0 for all x ∈ S, and since S is forcing

for Pd,k, this implies that π(P ) = 0, which is a contradiction.

We now use Lemma 2.28 to prove Theorem 2.26.

Proof of Theorem 2.26. We assume throughout that 1 ≤ d ≤
√
n/10; otherwise,

there is nothing to prove. Let Majn,k : {0, 1}n → Z/2kZ be the k-lift of the majority

function. Let P ∈ Pd,k be arbitrary and let SP = {x ∈ {0, 1}n | P (x) = Majn,k(x)}.

We want to show that

|SP | ≤ 2n ·
(

1

2
+

10d√
n

)
.

We will prove this by contradiction, and so we assume that

|SP | > 2n ·
(

1

2
+

10d√
n

)
.

Let EP be the complement of SP , i.e., the set of points where P does not agree

with Majn,k. We have

|EP | < 2n
(

1

2
− 10d√

n

)
. (2.4.7)

We will try to find a degree D (for suitable D ≤ bn/2c) polynomial Q such that Q

vanishes on all points in EP but has the property thatQ(x) is a unit (i.e., π(Q(x)) 6= 0)

for some x ∈ {0, 1}n. To be able to do this, we need the fact that EP is not forcing

for PD,k. By Lemma 2.28, if EP is indeed forcing for PD,k, then
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|EP | ≥
(

n

≤ D

)
=

D∑
i=0

(
n

i

)
=

bn/2c∑
i=0

(
n

i

)
−
bn/2c∑
i=D+1

(
n

i

)
≥ 2n−1 − (bn/2c −D) ·

(
n

bn/2c

)
≥ 2n ·

(
1

2
− 2(bn/2c −D)√

n

)
= 2n ·

(
1

2
− 4d√

n

)
where the last equality follows if we choose D = bn/2c − 2d. This contradicts the

upper bound on the size of |EP | in Eq. (2.4.7). Hence, EP cannot be forcing for PD,k,

and in particular, we can find a Q that vanishes on EP and also satisfies π(Q(x)) 6= 0

for some x ∈ {0, 1}n.

We now claim that π(Q(x0)) 6= 0 for some x0 of Hamming weight greater than

n/2. To see this, consider the polynomial Q1 = π(Q) in PD,1. Q1 must be a non-

zero polynomial, since otherwise it would mean that all the coefficients of Q are even

and so Q(x) is even for all x ∈ {0, 1}n, which would be a contradiction — Q is

guaranteed to be odd (i.e., a unit) on at least one point in {0, 1}n. It now follows

that, by part 4 of Lemma 2.5, Q1 is non-zero when restricted to the Hamming ball

of radius D < n/2 around the all 1s vector. In particular, this implies that there

is an x0 of Hamming weight greater than n/2, where Q1(x0) is non-zero, and hence

π(Q(x0)) 6= 0, or equivalently, Q(x0) is a unit in Z/2kZ. Fix this x0 for the remainder

of the proof. Note that x0 6∈ EP , and thus x0 ∈ SP , since Q vanishes on EP . This

implies that P (x0) = Majn,k(x0) = 2k−1.

Now, consider the polynomial R(x) = Q(x) · P (x). We first show that R(x) = 0

for all x of Hamming weight at most n/2. Consider any x such that |x| ≤ n/2. If

x ∈ EP , then R(x) = 0 since Q(x) = 0. On the other hand, if x 6∈ EP , then x ∈ SP ,

and so P (x) = Majn,k(x) = 0. Thus, R vanishes at all inputs of Hamming weight at

most n/2.

Since the degree of R is at most

deg(Q) + deg(P ) = D + d =
(⌊n

2

⌋
− 2d

)
+ d ≤

⌊n
2

⌋
− d,
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and R vanishes on all x of Hamming weight at most n/2, part 4 of Lemma 2.5 implies

that R must be 0 everywhere. However, at x0 we have that

R(x0) = Q(x0)P (x0) = Q(x0)Majn,k(x0) = 2k−1Q(x0) 6= 0,

and this yields the desired contradiction.

2.5 On the conjectures of Bhowmick and Lovett

As mentioned earlier, Bhowmick and Lovett [BL15] were the first to study agreement

between nonclassical polynomials over F2 and Boolean functions. In their work, they

establish the following bound for the majority function.

Theorem 2.29 (Bhowmick and Lovett [BL15]). For every d ≥ 0, k ≥ 1, the agree-

ment between a nonclassical polynomial P over F2 of degree ≤ d and depth ≤ k and

Majn, the majority function on n bits, is upper-bounded as follows.

agr

(
Majn

2
, P

)
≤ 1

2
+
O(d2k)√

n
.

On the other hand, a much stronger bound is known for classical polynomials

due to Szegedy [Sze89] and Smolensky [Smo93] as stated earlier in Theorem 2.23.

Bhowmick and Lovett conjectured that their bound in Theorem 2.29 could be im-

proved to match the bound in Theorem 2.23. Our results imply that their conjecture

is true: Lemma 2.9 implies that any nonclassical polynomial of degree d and depth

k can agree with the majority function on at most γd,k(Majn) points, and combining

this with Theorem 2.26 gives us the following result.

Theorem 2.30. For d ≥ 0, k ≥ 1, let P be any nonclassical polynomial over F2 of

degree ≤ d and depth ≤ k. Then,

agr

(
Majn

2
, P

)
≤ 1

2
+

10d√
n
.
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Recall that there are Boolean functions F that cannot be nontrivially approxi-

mated by classical polynomials of degree d in the correlation sense but can be approxi-

mated in this sense by nonclassical polynomials of the same degree. For example, from

the works of Alon and Beigel [AB01], Tao et al. [GT09], and Lovett et al. [LMS11],

it is known that any classical polynomial P of degree at most 3 satisfies

Corr (S4, P ) ≤ o(1),

where S4 is the elementary symmetric polynomial of degree 4. On the other hand, the

work of Tao and Ziegler [TZ12] (see, e.g., Lovett et al. [LMS11, Section 1.3]) implies

the existence of a nonclassical polynomial P ′ over F2 of degree at most 3 such that

Corr

(
S4

2
, P ′
)
≥ Ω(1).

Bhowmick and Lovett [BL15] conjecture that this is not the case when considering

agreement-based approximation: for every Boolean function F , the maximum possible

agreement between nonclassical polynomials of degree d and F is the same as the

maximum possible agreement between F and classical polynomials of the same degree.

We now show that our results imply that this conjecture is false.

Consider the Boolean function F = S24 = S16, i.e., the elementary symmetric

polynomial of degree 16 over Z/2Z. Theorem 2.2 can be used to conclude the following

bound on the agreement between F and classical polynomials: if P is a classical

polynomial of degree at most 15 then

agr (S16, P ) ≤ 1

2
+ o(1). (2.5.1)

On the other hand, Lemma 2.19 instantiated for ` = 4, together with Lemma 2.9

implies that there is a nonclassical polynomial P ′ over F2 of degree

2`−1 + 2`−2 + 3− 1 = 23 + 22 + 2 = 14

such that

agr

(
S16

2
, P ′
)
≥ 1

2
+

1

16
− o(1). (2.5.2)
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We can now use Eqs. (2.5.1) and (2.5.2) to conclude that there is a counterexample

to the conjecture of Bhowmick and Lovett discussed in the previous paragraph.

Theorem 2.31. There is a Boolean function F such that for every classical polyno-

mial P of degree at most 15, we have

agr(F, P ) ≤ 1

2
+ o(1),

but there is a nonclassical polynomial P ′ of degree at most 15 satisfying

agr

(
F

2
, P ′
)
≥ 1

2
+ Ω(1).
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Chapter 3

Point-wise approximation by R/Z-valued

polynomials

3.1 Introduction

In this chapter, we introduce and study a new notion of point-wise approximation by

a generalization of nonclassical polynomials that we call torus polynomials. These

polynomials are a generalization of nonclassical polynomials in the sense that they

are real polynomials modulo one whose coefficients can be arbitrary real numbers,

whereas the coefficients of nonclassical polynomials are of the form q/pk for some

integer k > 0, prime p, and integer 0 ≤ q ≤ pk − 1.

To introduce this new notion of point-wise approximation, it is imperative to

first define a notion of distance between two points in R/Z. Recall that there is

an isomorphism φ : R/Z → T between the groups (R/Z,+) and (T,×), where the

latter is the set of all complex numbers on the unit circle equipped with complex

multiplication. In particular, we have that for all x ∈ R/Z,

φ(x) = exp (2πix) .

Informally speaking1, our notion of the distance d(x, y) between points x, y ∈ R/Z

can be thought of as being proportional to the shortest distance between φ(x) and

φ(y) along the circumference of the unit circle in the complex plane. For example,

let x = 1/8 and y = 7/8 be two points in R/Z, then the shortest distance between

φ(x) = exp(πi/4) and φ(y) = exp(3πi/4) along the circumference of the unit circle is

1The notion of distance will be formalized in Section 3.2.2.
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π/4, and so d(x, y) = c · (π/4) for some absolute constant c ∈ R.

With this notion of distance in mind, we say that a torus polynomial P : {0, 1}n →

R/Z ε-approximates a Boolean function F in the point-wise sense2

∀x ∈ {0, 1}n, d
(
F (x)

2
, P (x)

)
≤ ε.

While the class of torus polynomials might seem unnatural at first, we remark that

for the purpose of studying point-wise approximation of Boolean functions over the

torus in the regime of parameters we work with (polylog(n) degree, and ε ≥ n−O(1)),

torus polynomials and nonclassical polynomials are equivalent: if a Boolean function

F can be ε-approximated in the point-wise sense by a nonclassical polynomial of

degree d then, trivially, it is also ε-approximable by a torus polynomial of degree d,

and conversely, it can be shown that if a degree d torus polynomial ε-approximates

F in the point-wise sense then there is a nonclassical polynomial of degree d′ that

ε′-approximates F where d′ = O(d log n) and ε′ = O(ε).

Thus, all the results of this chapter can be similarly phrased in terms of point-wise

approximation by nonclassical polynomials instead of torus polynomials. However,

because torus polynomials are easier to describe (they are arbitrary real polynomials

evaluated modulo 1) and more elegant (they can be defined in a field-independent

manner), we believe that they are a better choice for stating our results, and serve as

a convenient proxy for nonclassical polynomials.

We now discuss the motivation behind introducing and studying this notion of point-

wise approximation by torus polynomials.

A major goal of complexity theory is to prove Boolean circuit lower bounds, i.e.,

find explicit Boolean functions that cannot be computed by small size circuits of a

given type. Over the years, three general approaches have been developed to achieve

this. The first approach is based on random restrictions. It applies to circuit classes

2Recall from Section 1.1.3 that we have to define an R/Z-valued version of F in order to consider
its point-wise approximability by an R/Z-valued function. This is typically done by considering the
function F (x)/2, which can be thought of as a {0, 1/2}-valued function, where {0, 1/2} ⊂ R/Z.
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in which functions simplify when most inputs are fixed to random values. Classic

examples are the proofs by H̊astad that AC0, i.e., polynomial size circuit families of

constant depth consisting of AND, OR, and NOT gates, cannot compute or approxi-

mate the parity function [H̊as87], and the shrinkage of De Morgan formulas (Boolean

circuits consisting of AND, OR, and NOT gates whose underlying graph is a tree)

under random restrictions [H̊as98]. However, random restrictions don’t seem to be

useful against more powerful circuit classes such as AC0[⊕] — the class of AC0 cir-

cuits equipped with parity gates.

The second approach is based on representation/approximation by low-degree poly-

nomials. Razborov [Raz87] and Smolensky [Smo87] used this approach to prove lower

bounds for AC0[⊕] = AC0[2], and more generally for AC0[p] for any prime p (This

is the class of AC0 circuits that are allowed to have MODp gates 3). This technique

is based on showing that any function in the circuit class can be approximated (in

the agreement sense) by a low-degree polynomial over the finite field Fp. Then, func-

tions that do not admit such an approximation are provably outside the circuit class.

A classic example here is that the majority function cannot be approximated by a

low-degree polynomial over Fp, and thus cannot be computed by AC0[p]. However,

this method also breaks down when considering more powerful circuit classes such as

AC0[6], and more generally ACC0, i.e., AC0 circuits with MODm gates where m is

composite.

The third method involves designing nontrivial satisfiability algorithms and then us-

ing them along with classical tools from structural complexity theory (among other

techniques and results) to prove circuit lower bounds against ACC0 for functions in

high complexity classes such as NEXP. Williams [Wil14b] used this approach to prove

that NEXP 6⊆ ACC0, and this was subsequently extended to show that NQP 6⊆ ACC0

by Williams and Murray [MW18].

3a MODp gate outputs 1 if and only if the sum of its inputs is congruent to a non-zero value
modulo p.
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While the works of Williams and Murray are groundbreaking and prove nontrivial

lower bounds against ACC0, their proofs are not purely combinatorial4. One of the

reasons why non-uniform models of computation such as circuits are studied in the

first place is because they are believed to be more amenable to purely combinatorial

approaches for proving lower bounds than uniform models. Thus, the above works,

while being a major breakthrough in theoretical computer science, leave us with the

desire for an approach to proving ACC0 lower bounds that’s more similar to the

first two approaches mentioned above. Motivated by this, we focus on trying to use

the second approach, namely the framework of representation/approximation by low-

degree polynomials, to prove ACC0 lower bounds.

The classic works of Yao [Yao85] and Beigel and Tarui [BT91] were the first works

to explore this direction. In particular, they showed that ACC0 functions can be

represented as low-degree integer polynomials composed with functions of the form

Z→ {0, 1}. In fact, Beigel and Tarui mention in their work the problem of using their

representation to prove ACC0 lower bounds in a purely combinatorial or algebraic

manner. While their characterization of ACC0 plays a fundamental role in the works

of Williams and Murray mentioned above, the problem mentioned by Beigel and Tarui

still remains open.

To make the second approach work, we first have to find a suitable class of polyno-

mials and a notion of approximation that can be used to approximate ACC0 functions.

We show that the class of torus polynomials and the notion of point-wise approxi-

mation introduced above are concrete candidates to achieve this. In particular, we

observe that a strengthened version of a result of Green et al. [GKT92] that extends

the work of Beigel and Tarui [BT91] implies that functions in ACC0 can be point-wise

approximated by low-degree torus polynomials.

This new characterization of ACC0 raises a host of questions, the most remarkable

4By a combinatorial proof, we mean a proof that doesn’t involve uniform models of computation
– algorithms, turing machines, etc.
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being the problem of finding an explicit Boolean function that cannot be point-wise

approximated by low-degree torus polynomials — an answer to this question would

imply an ACC0 lower bound for the function. In this chapter, we take steps towards

trying to resolve this question by initiating the study of point-wise approximation of

Boolean functions by torus polynomials and proving some interesting results along

the way.

3.1.1 Our results

The following are the main results of this chapter:

1. (Approximation of general classes of functions) We show that point-wise ap-

proximation by torus polynomials can be used to characterize some general

classes of Boolean functions:

• Using the notion of modulus-amplifying polynomials from the works of

Yao [Yao85], Toda [Tod91], and Beigel and Tarui [BT91], we prove that

if a Boolean function can be computed by a degree d polynomial over the

field Fp (for a prime p) then it can also be ε-approximated in the point-wise

sense by a torus polynomial of degree O(d log(1/ε)) for any ε > 0.

• Building off of the previous result, and a classic result of Razborov [Raz87]

and Smolensky [Smo87], we show that any Boolean function that can be

computed by an AC0[p] circuit (for a prime p) can also be ε-approximated

in the point-wise sense by a torus polynomial of degree polylog(n/ε) for

all ε > 0.

• Finally, we show that a stronger version of a result of Green et al. [GKT92]

which builds on the classic work of Beigel and Tarui [BT91] can be used to

generalize our previous result: if a function can be computed by an ACC0

circuit then it can be ε-approximated by a torus polynomial of degree

polylog(n/ε) for ε > 0.
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2. (Upper and lower bounds for concrete functions) The above results suggest that

an approach to proving ACC0 lower bounds is to find an explicit function that

is not approximable by low-degree torus polynomials in the point-wise sense.

The majority function Majn is believed to be not computable in ACC0, and

so we investigate the approximability of the majority function and some other

related functions by torus polynomials:

• Noting from the above results that any function computable by ACC0

circuits should be (1/20n)-approximable by torus polynomials of degree

polylog(n), it suffices to show that Majn does not admit such an ap-

proximation, in order to prove that Majn /∈ ACC0. As a step towards

proving this, we show that if any symmetric torus polynomial of degree d

(1/20n)-approximates the majority function in the point-wise sense then

d = Ω(
√
n/ log n).

• En route to proving the previous result, we also show that the delta func-

tions5 ∆n,w can be (1/20n)-approximated by torus polynomials of degree

d only if d = Ω(
√
n/ log n).

• Somewhat surprisingly, for relatively large values of ε (ε ≥ (polylog(n))−1),

we show that the delta functions can be nontrivially approximated by

torus polynomials. In particular, we show that for every ε > 0, any delta

function can be ε-approximated in the point-wise sense by a symmetric

torus polynomial of degree polylog(n/ε)ε−1.

3.1.2 Organization

We begin with some preliminaries in Section 3.2. In Section 3.3, we prove approxima-

tion results for various classes of Boolean functions: Boolean functions computable by

finite field polynomials, and the classes AC0[p] and ACC0. Finally, in Section 3.4.1,

5For w ≥ 0, the delta function ∆n,w(x) is defined as ∆n,w(x) = 1⇔ |x| = w.
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we discuss concrete upper and lower bounds for the majority and delta functions.

3.2 Preliminaries

We carry over the preliminaries mentioned at the beginning of Section 2.2. Building

on them, we naturally identify Fp with {0, . . . , p − 1} ⊂ Z without explicitly using

inclusion or embedding maps.

We use polylog(n) to mean an arbitrary function of the form logO(1)(n), and poly(n)

to mean a function of the form nO(1).

3.2.1 Metrics and norms on R/Z

For an x ∈ R, recall that x modulo 1, denoted by x mod 1, denotes the fractional

part of x:

x mod 1 = x− bxc.

It may be observed that the modulo 1 function satisfies the following properties: for

all x, y ∈ R,

(x+ y) mod 1 = ((x mod 1) + (y mod 1)) mod 1,

(x− y) mod 1 = ((x mod 1)− (y mod 1)) mod 1.

We think of the group R/Z as the set [0, 1) ⊂ R equipped with addition modulo 1.

We will now define the following metric, denoted by dT(x, y), on R/Z: for all x, y ∈

R/Z,

dT(x, y) := min (|x− y|, 1− |x− y|) . (3.2.1)

It immediately follows from the definition that

0 ≤ dT(x, y) ≤ 1

2
.

To see that this is indeed a metric, we observe that for all x, y ∈ R/Z,

• dT(x, y) ≥ 0,
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• d(x, y) = 0⇔ x = y,

• d(x, y) = d(y, x).

• and finally, for all z ∈ R/Z,

dT (x, y) ≤ dT (x, z) + dT (y, z) .

We will now prove this is in the lemma below.

Lemma 3.1. Let x, y ∈ R/Z. Then for all z ∈ R/Z, dT (x, y) ≤ dT (x, z) + dT (y, z) .

Proof. Let α = x − z and β = z − y. Note that 0 ≤ |α|, |β| < 1. Further more,

α + β = x− y, and so 0 ≤ |α + β| < 1.

With these definitions, it follows from Eq. (3.2.1) that proving the desired statement

is equivalent to proving

min(|α + β|, 1− |α + β|) ≤ min(|α|, 1− |α|) + min(|β|, 1− |β|), (3.2.2)

where 0 ≤ |α|, |β|, |α + β| < 1. We will prove this using a case analysis on the tuple

(|α|, |β|).

Case 1 (|α| ≤ 1/2, |β| ≤ 1/2): In this case,

min(|α|, 1− |α|) + min(|β|, 1− |β|) = |α|+ |β|

≥ |α + β| ≥ min(|α + β|, 1− |α + β|),

and so we are done.

Case 2 (|α| > 1/2, |β| ≤ 1/2, or |α| ≤ 1/2, |β| > 1/2): In the case of the former,

min(|α|, 1− |α|) + min(|β|, 1− |β|) = 1− |α|+ |β|

= 1− (|α| − |β|) ≥ 1− |α + β| (since |α + β| ≥ |α| − |β|)

≥ min(|α + β|, 1− |α + β|),

and so we are done. The |α| ≤ 1/2, |β| > 1/2 case can be dealt with in a similar

manner.
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Case 3 (|α| > 1/2, |β| > 1/2): Here, it must be the case that α and β have opposite

signs, otherwise |α+β| = |α|+|β| > 1, which is impossible. Without loss of generality,

assume that |α| > |β|. Then we can write

|α + β| = |α| − |β| < 1

2
,

where the last inequality follows from the fact that |α| < 1 and |β| > 1
2
.

Then it follows that

min(|α + β|, 1− |α + β|) = |α + β| = |α| − |β|.

We also have that

min(|α|, 1− |α|) = 1− |α|,

min(|β|, 1− |β|) = 1− |β|.

Now assume for the sake of contradiction that Eq. (3.2.2) is violated in this case.

Based on the above discussion, this would imply that

|α| − |β| > 2− |α| − |β| ⇒ |α| > 1,

which is impossible, and so Eq. (3.2.2) could not have been violated in this case. This

completes the proof.

For z ∈ R/Z, we define the torus norm6 of z, denoted by ‖z‖T, to be

‖z‖T = d(z, 0).

It follows from the definition of dT (x, y) that ‖z‖T ≥ 0 with the equality being true

if and only if z = 0.

We can also show that the norm satisfies the following property that will help us

prove the triangle inequality.

6Note that this is not a norm in the formal sense since it does not satisfy the property ‖αz‖T =
|α| ‖z‖T for all z ∈ R/Z, α ∈ R. However, as we shall see, the norm does satisfy the triangle
inequality and the non-degeneracy condition, i.e., ‖z‖T = 0 ⇔ z = 0, much like the sparsity norm
`0.
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Lemma 3.2. Let x, y ∈ R/Z. Then dT (x, y) = ‖(x− y) mod 1‖T.

Proof. Let z = (x− y) mod 1. Note that it suffices to prove that dT (x, y) = dT (z, 0)

which in turn is equivalent to showing that

dT (z, 0) = min(|x− y|, 1− |x− y|).

Case I (x > y): In this case,

z = (x− y) mod 1 = x− y,

and so

dT (z, 0) = min(|x− y|, 1− |x− y|).

Case II (x < y): It follows immediately that

z = (x− y) mod 1 = 1 + x− y.

This implies that

dT (z, 0) = min(|1 + x− y|, 1− |1 + x− y|)

= min(1 + x− y, y − x)

= min(1− |x− y|, |x− y|).

This completes the proof.

An immediate consequence of this lemma is the following useful fact: for all

x, y ∈ R/Z,

‖(x− y) mod 1‖T = dT (x, y) = dT (y, x) = ‖(y − x) mod 1‖T ,

and thus for z ∈ R/Z, we have that ‖z‖T = ‖−z mod 1‖T.

The above lemma also implies the triangle inequality for the torus norm.
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Lemma 3.3. Let x, y ∈ R/Z, then

‖(x+ y) mod 1‖T ≤ ‖x‖T + ‖y‖T .

Proof. Let z ∈ R/Z such that z = 1− y. Then we can write

‖(x+ y) mod 1‖T = ‖(x− z) mod 1‖T

= dT (x, z) (By Lemma 3.2)

≤ dT (x, 0) + dT (z, 0) (By Lemma 3.1 and symmetry)

= ‖x‖T + min(|1− y|, 1− |1− y|)

= ‖x‖T + min(y, 1− y)

= ‖x‖T + ‖y‖T

We also need the following useful lemma which we will use in our approximation

results.

Lemma 3.4. Let x, y > 0 be real numbers, then

‖(x+ y) mod 1 ‖T ≤ |x|+ |y|.

Proof. Let x′ = x mod 1 and y′ = y mod 1. Observe that, since x, y ≥ 0,

‖x′‖T = min (|x mod 1|, 1− |x mod 1|) ≤ |x mod 1| ≤ |x|.

‖y′‖T = min (|y mod 1|, 1− |y mod 1|) ≤ |y mod 1| ≤ |y|.

Then, using the triangle inequality, it follows that

‖(x+ y) mod 1 ‖T = ‖x′ + y′‖T ≤ ‖x
′‖T + ‖y′‖T ≤ |x|+ |y|.
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3.2.2 Torus polynomials and Boolean functions

We say that a function P : {0, 1}n → R/Z is a torus polynomial of degree at most d

if it can be written as a real multilinear polynomial of degree d modulo one, i.e., for

all x ∈ {0, 1}n,

P (x) =

 ∑
S⊆[n],|S|≤d

cS
∏
i∈S

xi

 mod 1, (3.2.3)

where cS ∈ R. We can prove that every torus polynomial has a unique representation

in the following sense:

Lemma 3.5. Let P : {0, 1}n → R/Z be a torus polynomial of degree at most d. Then

for all x ∈ {0, 1}n,

P (x) =

 ∑
S⊆[n],|S|≤d

cS
∏
i∈S

xi

 mod 1,

where cS ∈ [0, 1) are uniquely determined.

Proof. To prove the statement, it suffices to show that if for all x ∈ {0, 1}n, ∑
S⊆[n],|S|≤d

cS
∏
i∈S

xi

 mod 1 = 0, (3.2.4)

then cS ≡ 0 (mod 1) for all S. Suppose this is not true, then there must be an S ⊆ [n]

such that cS 6≡ 0 (mod 1), and for all T ⊂ S, cT ≡ 0 (mod 1). Let 1S ∈ {0, 1}n denote

the characteristic vector of such an S. Substituting x = 1S in Eq. (3.2.4), we get(
cS +

∑
T⊂S

cT

)
mod 1 = 0.

Using the fact that cT ≡ 0 (mod 1) for all T ⊂ S, we can rewrite this as

cS mod 1 = 0,

which leads to a contradiction. This completes the proof.

Let F,G : {0, 1}n → R/Z and ε > 0. Then we say that G ε-approximates F in

the point-wise sense if for all x ∈ {0, 1}n,

dT (F (x), G(x)) = ‖(F (x)−G(x)) mod 1‖T ≤ ε.
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Let F : {0, 1}n → {0, 1} be a Boolean function. Then, for any ε > 0, a torus

polynomial P : {0, 1}n → R/Z is said to ε-approximate F in the point-wise sense if

P ε-approximates the function F/2, i.e., for all x ∈ {0, 1}n,∥∥∥∥(F (x)

2
− P (x)

)
mod 1

∥∥∥∥
T
≤ ε.

Intuitively, this means that for every x ∈ {0, 1}n, “the angle between” φ (F (x)/2)

and φ(P (x)) on the unit circle in the complex plane is “small”. Here φ : R/Z→ T is

the obvious isomorphism between R/Z and T, the unit circle in the complex plane.

Recall that the function F/2 used in the definition above is the R/Z-valued version

of the Boolean function F that takes values in {0, 1/2} ⊂ R/Z.

3.2.3 Torus polynomials and nonclassical polynomials

As mentioned before, torus polynomials generalize the class of nonclassical polyno-

mials. To further illustrate this, we now recall the global definition of nonclassical

polynomials from the work of Tao and Zielger [TZ12].

Theorem 3.6 (Tao and Ziegler [TZ12]). A function Q : Fnp → R/Z is a nonclassical

polynomial over Fp of degree at most d and depth k if and only if

Q(x) =

α +
∑

0≤e1,...,en≤p−1,k≥0;
∑
i ei+(p−1)k≤d

ce1,...,en,k
pk+1

∏
i∈[n]

xeii

 mod 1

where ce1,...,en,k ∈ {0, 1, . . . , p− 1}, and α ∈ [0, 1), are uniquely determined.

The largest k such that ce1,...,en,k 6= 0 for some 0 ≤ e1, . . . , en ≤ p−1 is the depth, and

α is called the shift.

Note that we only care about restrictions of nonclassical polynomials to {0, 1}n ⊂

Fnp . Abusing terminology, we will call a function P : {0, 1}n → R/Z a nonclassical

polynomial of degree d over Fp if it is the restriction of some nonclassical polynomial

Q : Fnp → R/Z of degree d to {0, 1}n, i.e., for all x ∈ {0, 1}n, P (x) = Q(x). A useful

characterization of such functions immediately follows from Theorem 3.6:
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Corollary 3.7 (Corollary of Theorem 3.6). A function P : {0, 1}n → R/Z is a

nonclassical polynomial of degree d over Fp (i.e., a restriction of some nonclassical

polynomial Q : Fnp → R/Z of degree d to {0, 1}n) if and only if

P (x) =

α +
∑

S⊆[n];k≥0;|S|+(p−1)k≤d

cS,k
pk+1

∏
i∈S

xi

 mod 1, (3.2.5)

where α ∈ [0, 1), and cS,k ∈ {0, . . . , p− 1}.

Eq. (3.2.5) implies that every nonclassical polynomial P : {0, 1}n → R/Z of

degree d over Fp can be written as a real polynomial P̂ modulo 1 such that all the

coefficients of P̂ except the constant term are of the form q/pk for some integer

k > 0 and 0 ≤ q ≤ pk − 1. Comparing this to the definition of torus polynomials in

Eq. (3.2.3) tells us that every such nonclassical polynomial P is also a torus polynomial

of degree d, and so torus polynomials generalize the class of nonclasical polynomials

in this sense.

Note that the structure and coefficients of nonclassical polynomials have a de-

pendence on the field over which they are defined, i.e., the parameter p, and on the

degree, i.e., the parameter d. In contrast, torus polynomials have a significantly sim-

pler definition because they can be defined in a field-independent manner and their

coefficients do not have a dependence on the degree, and thus are more convenient

to work with. However, the goal of this dissertation is to understand the approxima-

tion power of nonclassical polynomials, and so it is natural to ask how the study of

point-wise approximation by torus polynomials brings us closer to this goal. We will

now show that for the regime of parameters we work with, point-wise approximation

by torus polynomials is equivalent to point-wise approximation by nonclassical poly-

nomials.

The following lemma shows that torus polynomials can be point-wise approximated

by nonclassical polynomials.

Lemma 3.8. Let P : {0, 1}n → R/Z be a torus polynomial of degree at most d.
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Then, for every prime p and ε > 0, there exists a nonclassical polynomial Q over Fp

of degree at most O(dp log p log (n/ε)) that ε-approximates P in the point-wise sense.

Proof. Fix a prime p and ε > 0. Suppose that

P (x) =

 ∑
S⊆[n],|S|≤d

cS
∏
i∈S

xi

 mod 1.

We can assume without loss of generality that cS ∈ [0, 1) for all S. We now approxi-

mate each cS using p-adic rationals.

Let t ≥ 1 be a parameter that we will choose later, and let S ⊆ [n] such that |S| ≤ d.

We can always choose non-negative integers cS,k ∈ {0, . . . , p − 1} for 1 ≤ k ≤ t such

that

0 ≤ cS −
∑

1≤k≤t

cS,k
pk

< p−t.

Define the torus polynomial

Q(x) :=

 ∑
S⊆[n];|S|≤d;1≤k≤t

cS,k
pk

∏
i∈S

xi

 mod 1,

By comparing the form of Q(x) to that of a nonclassical polynomial in Eq. (3.2.5), we

can conclude that Q is a nonclassical polynomial of degree at most d+ (p− 1)(t− 1).

Furthermore, using Lemma 3.4, for every x ∈ {0, 1}n,

‖(P (x)−Q(x)) mod 1‖T =

∥∥∥∥∥∥
 ∑
S⊆[n];|S|≤d

(
cS −

∑
1≤k≤t

cS,k
pk

)∏
i∈S

xi

 mod 1

∥∥∥∥∥∥
T

≤
∑

S⊆[n];|S|≤d

∣∣∣∣∣
(
cS −

∑
1≤k≤t

cS,k
pk

)∏
i∈S

xi

∣∣∣∣∣
≤
(
n

≤ d

)
p−t

≤ ε (By choosing t = O (d log (n/ε) log p).

Noting that the degree of Q is O(dp log p log (n/ε)) completes the proof.

For our purposes, it suffices to work with d = O(polylog(n)), ε ≥ n−O(1), and

p = O(1), and so we have the following result that follows from the above lemma and

the triangle inequality.
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Lemma 3.9. For every ε ≥ n−O(1) and prime p = O(1), if there a torus polyno-

mial of degree O(polylog(n)) that ε-approximates a Boolean function F : {0, 1}n →

{0, 1} in the point-wise sense then there is also a nonclassical polynomial of degree

O(polylog(n)) over Fp that 2ε-approximates F in the point-wise sense.

Thus, for the regime our parameters we work with, point-wise approximation

by torus polynomials serves as an elegant proxy for point-wise approximation by

nonclassical polynomials.

3.2.4 Correlation and point-wise approximation

Recall that the correlation between two R/Z-valued functions F,G : {0, 1}n → R/Z

is defined as

Corr(F,G) =
∣∣Ex∼{0,1}n [e2πiF (x)e−2πiG(x)

]∣∣ ,
and we say that F ε-approximates G in the correlation-sense if Corr(F,G) ≥ ε.

We will now show that point-wise approximation is stronger than correlation-based

approximation in the sense that if F approximates G well in the point-wise sense then

F also approximates G well in the correlation-sense.

Lemma 3.10. Suppose that F : {0, 1}n → R/Z ε-approximates G : {0, 1}n → R/Z

in the point-wise sense for some ε < 1/2π. Then Corr(F,G) ≥ 1− 4π2ε2.

Proof. Let H : {0, 1}n → R/Z be the function defined as

H(x) := (F (x)−G(x)) mod 1.

Since F ε-approximates G in the point-wise sense, for all x ∈ {0, 1}n, we have that

‖H(x)‖T ≤ ε, and so by the definition of the torus norm,

min (H(x), 1−H(x)) ≤ ε. (3.2.6)
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We can write

Corr(F,G) =
∣∣Ex∼{0,1}n [e2πi(F (x)−G(x))

]∣∣
=
∣∣Ex∼{0,1}n [e2πiH(x)

]∣∣
≥
∣∣Ex∼{0,1}n [cos(2πH(x))]

∣∣ (3.2.7)

Let θx = min (H(x), 1−H(x)). Since cos(2πH(x)) = cos(2π(1 − H(x))), we can

rewrite Eq. (3.2.7) as

Corr(F,G) ≥
∣∣Ex∼{0,1}n [cos(2πθx)]

∣∣ .
Note that, from Eq. (3.2.6) and the definition of θx, we have that for all x ∈ {0, 1}n,

0 ≤ θx ≤ ε < 1/2π, and so 0 ≤ 2πθx < 1 < π/2. This means that cos(2πθx) ∈ (0, 1],

and then, using cos(x) ≥ 1− x2 in the above lower bound on Corr(F,G), we get

Corr(F,G) ≥
∣∣Ex∼{0,1}n [cos(2πθx)]

∣∣
= Ex∼{0,1}n [cos(2πθx)]

≥ 1− Ex∼{0,1}n
[
4π2θ2

x

]
It then follows from the fact that 0 ≤ θx < ε that

Corr(F,G) ≥ 1− Ex∼{0,1}n
[
4π2θ2

x

]
≥ 1− 4π2ε2.

3.3 Approximation of some classes of Boolean functions

In this section, we illustrate how the framework of point-wise approximation by torus

polynomials captures some fairly general classes of Boolean functions. We begin by

showing that functions that are computable by low-degree polynomials over prime

finite fields can be point-wise approximated by low-degree torus polynomials. For the

remainder of this section, assume that all the prime numbers p we consider satisfy

p = O(1).
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3.3.1 Functions computable by polynomials over finite fields

We will only consider finite fields Fp where p is a prime. We say a Boolean function

F : {0, 1}n → {0, 1} is computable by a polynomial of degree d over Fp if there exists

a multilinear polynomial P (x) ∈ Fp[x1, . . . , xn] of degree d such that F (x) = P (x) for

all x ∈ {0, 1}n.

We will prove the following result in this section:

Theorem 3.11. Let F : {0, 1}n → {0, 1} be a Boolean function computable by a

polynomial of degree d over Fp. Then for every ε > 0, there is a torus polynomial

P of degree O(d log(1/ε)) that ε-approximates F in the point-wise sense, i.e., for all

x ∈ {0, 1}n, ∥∥∥∥(F (x)

2
− P (x)

)
mod 1

∥∥∥∥
T
≤ ε.

It is well known that if a Boolean function F is computable by a polynomial of

degree d over Fp then there is a nonclassical polynomial P (and so a torus polynomial)

of degree d that exactly computes the function F (x)/p, i.e., for all x ∈ {0, 1}n,

F (x)

p
= P (x).

To see why, suppose Q ∈ Fp[x1, . . . , xn] is the polynomial of degree d that computes F .

We can think of Q as an integer polynomial whose coefficients are in {0, . . . , p−1} ⊂ Z

such that F (x) ≡ Q(x) (mod p) for all x ∈ {0, 1}n. Now define the nonclassical

polynomial Q′ as7

Q′(x) :=
Q(x)

p
mod 1.

Then it follows from the definition of Q that Q′ computes F/p.

Our goal, on the other hand, is to show that, no matter what the p prime is, if a

Boolean function F is computable a low-degree polynomial over Fp, then the function

F/2 (and not F/p) can be point-wise approximated by a low-degree torus polynomial.

In fact, we will prove a stronger version of this statement in this section: not only

7Q′ should not be confused with the derivative of Q.
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can the function F/2 be point-wise approximated, but for every 0 < α < 1, we can

find a low-degree torus polynomial that point-wise approximates αF .

Theorem 3.12. Let F : {0, 1}n → {0, 1} be a Boolean function computable by a

polynomial of degree d over Fp. Then for every ε > 0 and 0 < α < 1, there is a torus

polynomial P of degree O(d log(1/ε)) that ε-approximates the function αF : {0, 1}n →

{0, α} in the point-wise sense, i.e., for all x ∈ {0, 1}n,

‖(αF (x)− P (x)) mod 1‖T ≤ ε.

Clearly, Theorem 3.12 implies Theorem 3.11.

The approach we take to prove this stronger result is inspired by the discussion

in the previous paragraph. Suppose a Boolean function F is computable by some

polynomial Q of degree d over Fp. Recall that we can think of Q as an integer

polynomial that, modulo p, equals F (x) on {0, 1}n. Our main idea is to “amplify” Q

to get an integer polynomial Q′ such that for all x ∈ {0, 1}n,

Q′(x) ≡ F (x) (mod pk),

for a k of our choosing. Then, the torus polynomial

qQ′(x)

pk
mod 1

for a q such that |α− (q/pk)| ≤ ε, ε-approximates αF .

To do the amplification, we use the following theorem on modulus-amplifying poly-

nomials of Beigel and Tarui [BT91], following previous results of Toda [Tod91] and

Yao [Yao85].

Theorem 3.13 (Beigel and Tarui [BT91]). For every k ≥ 1, there exists a univariate

polynomial Ak : Z → Z of degree 2k − 1 such that the following holds. For every

m ≥ 2,

• If x ∈ Z satisfies x ≡ 0 (mod m) then Ak(x) ≡ 0 (mod mk).
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• If x ∈ Z satisfies x ≡ 1 (mod m) then Ak(x) ≡ 1 (mod mk).

We now give the formal details of the proof of Theorem 3.12.

Proof of Theorem 3.12. Since F is computable by a degree-d polynomial over Fp,

there must be an integer polynomial Q(x) of degree d such that for all x ∈ {0, 1}n,

Q(x) ≡ F (x) (mod p)

Choose k = O(log(1/ε)) so that p−k ≤ ε. Note that we can always find 0 ≤ q ≤ pk−1

such that

0 ≤ α− q

pk
< p−k ≤ ε.

Define the torus polynomial

G(x) :=
qAk(Q(x))

pk
mod 1, (3.3.1)

where Ak is the modulus-amplifying polynomial from Theorem 3.13. We claim that

‖αF (x)−G(x)‖T ≤ ε

for all x ∈ {0, 1}n. To see this, fix x ∈ {0, 1}n, and note that, if F (x) = 0 then

Ak(Q(x)) ≡ 0 (mod pk), and so G(x) = 0 = αF (x). On the other hand, if F (x) = 1

then Ak(Q(x)) ≡ 1 (mod pk), which would imply that

‖(αF (x)−G(x)) mod 1‖T =

∥∥∥∥(α− q

pk

)
mod 1

∥∥∥∥
T
≤
∣∣∣∣α− q

pk

∣∣∣∣ < ε

by Lemma 3.4 and our choice of q and k.

Noting that the degree of G is (2k− 1)d ≤ O(d log(1/ε)) completes the proof.

To summarize the results of this section, torus polynomials generalize finite field

polynomials in that they provide a uniform way to capture computation of Boolean

functions by polynomials over different finite fields — if a Boolean function can be

computed by a low-degree polynomial over any finite field then it can be point-wise

approximated by a low-degree torus polynomial.
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3.3.2 Functions computable by AC0[p] circuits

Recall that, for a fixed prime p, AC0[p] is the class of functions computable by polyno-

mial size circuits of constant depth, consisting of AND, OR, NOT, and MODp gates,

for a prime p. Here a MODp gate is one that outputs 1 if and only if the sum of its

inputs is congruent to a non-zero value modulo p.

Let F : {0, 1}n → {0, 1} be any function in AC0[p] for some prime p. We will show

that F can also be approximated in the point-wise sense by a low-degree torus poly-

nomial:

Theorem 3.14. Let ε > 0. If F : {0, 1}n → {0, 1} is computable by an AC0[p] circuit

for some prime p then there is a torus polynomial P of degree d = polylog(n/ε) that

ε-approximates F in the point-wise sense.

The starting point is the classic result of Razborov [Raz87] and Smolensky [Smo87]

which shows that AC0[p] circuits can be approximated by random low-degree poly-

nomials over Fp in the following sense.

Theorem 3.15 (Razborov [Raz87] and Smolensky [Smo87]). Let F : {0, 1}n → {0, 1}

be computable by an AC0[p] circuit. Then for every ε > 0, there exists a distribution

ν supported on polynomials over Fp of degree d = polylog(n/ε) such that for all

x ∈ {0, 1}n,

Pr
P∼ν

[P (x) = F (x)] ≥ 1− ε.

We now give a brief sketch of the proof of Theorem 3.14. Given a Boolean function

F computable by an AC0[p] circuit, we first use the above result of Razborov and

Smolensky to obtain the distribution ν over low-degree polynomials over Fp. It can

be shown that, without loss of generality, we can assume that all the polynomials in

the support of ν are {0, 1}-valued. Thus, we can now think of ν as a distribution over

Boolean functions that are computable by low-degree Fp-polynomials. Next, we draw

a large enough sample Ω of Boolean functions from ν so that for every x ∈ {0, 1}n,
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the fraction of Boolean functions in Ω that agree with F on x is large. Finally,

by using Theorem 3.12, since each Boolean function G in the sample is computable

by a low-degree polynomial over Fp, we can obtain a low-degree torus polynomial

PG that point-wise approximates (1/2m) · G where m is the size of the sample. It

then immediately follows that the torus polynomial defined as
∑

G∈Ω PG point-wise

approximates F .

We now give formal details of this proof. We prove the following lemma which, when

combined with Theorem 3.15, implies Theorem 3.14.

Lemma 3.16. Let F : {0, 1}n → {0, 1} be a Boolean function and p be a prime.

Assume that there exists a distribution ν supported on polynomials of degree d over

Fp such that for all x ∈ {0, 1}n,

Pr
P∼ν

[P (x) = F (x)] ≥ 1− ε.

Then there is a torus polynomial of degree O(d log(n/ε)) that 2ε-approximates F in

the point-wise sense.

Proof. We can assume without loss of generality that all the polynomials in the

support of the distribution ν are {0, 1}-valued. This is because for any P (x) in the

support we can transform it into the polynomial (P (x))p−1 which has range {0, 1} ⊂

Fp by Fermat’s little theorem. Note that the degree of each polynomial after the

transformation is at most pd = O(d).

By using the standard Chernoff bound followed by a union bound, if we sample

polynomials P1, . . . , Pm ∼ ν independently for m = O(n/ε2) then with high probabil-

ity, for all x ∈ {0, 1}n,

|{i ∈ [m] : Pi(x) 6= F (x)}| ≤ 2εm. (3.3.2)

Fix such a sample. Recall that the polynomials Pi are {0, 1}-valued and so we can

think of them as Boolean functions Pi : {0, 1}n → {0, 1} computable by degree

d polynomials over Fp. Thus, for each i ∈ [m], we can apply Theorem 3.12 with
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α = 1/2m and approximation parameter εm−1 to obtain a torus polynomial Qi :

{0, 1}n → R/Z of degree O(d log(m/ε)) such that for all x ∈ {0, 1}n,∥∥∥∥(Pi(x)

2m
−Qi(x)

)
mod 1

∥∥∥∥
T
≤ ε

m
(3.3.3)

Finally, define the torus polynomial Q : {0, 1}n → R/Z as

Q(x) :=

(
m∑
i=1

Qi(x)

)
mod 1.

We claim that Q(x) is a torus polynomial which 2ε-approximates F (x) in the

point-wise sense. To see this, fix x ∈ {0, 1}n, and observe that Eq. (3.3.3) and the

triangle inequality together imply that∥∥∥∥∥
(

m∑
i=1

Pi(x)

2m
−Q(x)

)
mod 1

∥∥∥∥∥
T

=

∥∥∥∥∥
(

m∑
i=1

(
Pi(x)

2m
−Qi(x)

))
mod 1

∥∥∥∥∥
T

≤
m∑
i=1

∥∥∥∥(Pi(x)

2m
−Qi(x)

)
mod 1

∥∥∥∥
T

≤ ε.

Also, we can observe that

m∑
i=1

Pi(x)

2m
=
F (x)

2
− |{i ∈ [m] : Pi(x) 6= F (x)}|

2m
.

Then, it follows from Lemma 3.4 and Eq. (3.3.2) that∥∥∥∥∥
(
F (x)

2
−

m∑
i=1

Pi(x)

2m

)
mod 1

∥∥∥∥∥
T

≤ |{i ∈ [m] : Pi(x) 6= F (x)}|
2m

≤ ε,

and so we conclude that∥∥∥∥(F (x)

2
−Q(x)

)
mod 1

∥∥∥∥
T

≤

∥∥∥∥∥
(
F (x)

2
−

m∑
i=1

Pi(x)

2m

)
mod 1

∥∥∥∥∥
T

+

∥∥∥∥∥
(

m∑
i=1

Pi(x)

2m
−Q(x)

)
mod 1

∥∥∥∥∥
T

≤ 2ε.
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3.3.3 Functions computable by ACC0 circuits

We now turn our attention to ACC0 functions. Recall that a function F is in the

class ACC0 if it can be computed by polynomial size circuits of constant depth with

AND, OR, NOT, and MODm gates, where m may be composite. Thus, the class

ACC0 generalizes the class AC0[p] since it allows for MOD gates with composite

moduli. The goal of this section is to show that ACC0 functions can be point-wise

approximated by low-degree torus polynomials, generalizing the main result of the

previous section.

The pioneering works of Yao [Yao85] and Beigel and Tarui [BT91] were the

first to study and propose polynomial representations of ACC0 functions. Green

et al. [GKT92] further extended these works and proved the following result.

Theorem 3.17 (Green et al. [GKT92]). Let F : {0, 1}n → {0, 1} be computable by

an ACC0 circuit of depth ` and size poly(n). Then for any e ≥ 1, there exists an

integer k ≥ e and a polynomial Q ∈ Z[x1, . . . , xn] of degree d = eO(`) logO(`2)(n) which

satisfies the following condition: for all x ∈ {0, 1}n,

Q(x) ≡ F (x)2k + E(x) (mod 2k+e)

for some error 0 ≤ E(x) ≤ 2k−1.

Informally speaking, the above theorem states that the (k + 1)th least-significant

bit of Q(x) in its binary representation always equals F (x). Furthermore, this bit

is “padded” with e − 1 zeros to its left, i.e the (k + 2)th, (k + 3)th, . . . , (k + e)th

least-significant bits are all guaranteed to be equal to 0.

Then, a natural approach to constructing a torus polynomial that point-wise approxi-

mates a Boolean function F ∈ ACC0 is as follows: we can use Theorem 3.17 to obtain

the polynomial Q and define the torus polynomial Q′ as

Q′(x) :=
Q(x)

2k+1
mod 1.
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It can then be shown that for all x ∈ {0, 1}n,∥∥∥∥(F (x)

2
−Q′(x)

)
mod 1

∥∥∥∥
T

=

∣∣∣∣E(x)

2k+1

∣∣∣∣ ≤ 1

4
.

Thus, this gives us a torus polynomoial that ε-approximates F in the point-wise sense

for ε = 1/4, which is a large approximation error. Note that a bottleneck in obtaining

a better approximation is the error E(x) in Theorem 3.17 that can be as high as 2k−1.

One way to lower this error is to pad enough zeros on both sides of the output bit (i.e.,

the (k + 1)th least-significant bit) so that E(x) ≤ 2k−e for an appropriately chosen

value of e, which would then make the error as small as 2−(e+1).

We observe that the following stronger version of Theorem 3.17 is implicit in the work

of Green et al. [GKT92].

Theorem 3.18 (Implicit in Green et al. [GKT92]). Let F : {0, 1}n → {0, 1} be

computable by an ACC0 circuit of depth ` and size poly(n). Then for any e ≥ 1,

there exists an integer k ≥ e and a polynomial Q ∈ Z[x1, . . . , xn] of degree d =

eO(`) logO(`2)(n) which satisfies the following: for all x ∈ {0, 1}n,

Q(x) ≡ F (x)2k + E(x) (mod 2k+e)

for some error 0 ≤ E(x) ≤ 2k−e.

Note the difference between the statements of Theorem 3.17 and Theorem 3.18:

while the former upper-bounds the error E(x) by 2k−1, the latter upper-bounds it by

2k−e by padding the output bit with e − 1 zeros on both the sides. We remark that

the proof of Theorem 3.18 is essentially the same as that of Theorem 3.17, and so we

choose to omit it here.

Based on ideas discussed in the previous paragraphs, we will now use Theorem 3.18

to prove that ACC0 functions can be point-wise approximated by low-degree torus

polynomials.

Theorem 3.19. Let F : {0, 1}n → {0, 1} be a function in ACC0. Then for every

ε > 0, there is a torus polynomial of degree polylog(n/ε) that ε-approximates F in the

point-wise sense.
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Proof. Let F be computable by an ACC0 circuit of size poly(n) and depth ` = O(1).

Let Q(x) be the polynomial obtained by applying Theorem 3.18 to F with e =

dlog(1/2ε)e such that for some k ≥ e,

Q(x) ≡ F (x)2k + E(x) (mod 2k+e) (3.3.4)

for all x ∈ {0, 1}n. We are guaranteed that 0 ≤ E(x) ≤ 2k−e, and the degree of Q(x)

is d = eO(`) logO(`2)(n) = polylog(n/ε). Define the following torus polynomial

P (x) :=
Q(x)

2k+1
mod 1.

It is evident that the degree of P is also d.

Fix x ∈ {0, 1}n. Then, it follows from Eq. (3.3.4), that

P (x) =
Q(x)

2k+1
mod 1 =

(
F (x)

2
+
E(x)

2k+1

)
mod 1.

Combining this with the fact that 0 ≤ E(x) ≤ 2k−e, Lemma 3.4 implies that∥∥∥∥(F (x)

2
− P (x)

)
mod 1

∥∥∥∥
T

=

∥∥∥∥(−E(x)

2k+1

)
mod 1

∥∥∥∥
T
≤
∣∣∣∣E(x)

2k+1

∣∣∣∣ ≤ 1

2e+1
.

Recalling that e = dlog(1/2ε)e completes the proof.

3.4 Upper and lower bounds for concrete functions

The characterization of ACC0 discussed in the previous section suggests a new ap-

proach to proving ACC0 lower bounds: show that an explicit Boolean function F ,

ideally in the class NP8, cannot be point-wise approximated by low-degree torus poly-

nomials. One such candidate for this approach is the majority function on n bits,

Majn. In fact, showing that Majn /∈ ACC0 is a long-standing open problem in cir-

cuit complexity, the resolution of which would imply a separation between TC0 and

ACC0. Here TC0 denotes the class of functions computable by constant depth cir-

cuits of polynomial size with AND, OR, NOT, and threshold gates. In this section,

8The result of Murray and Williams [MW18] separates NQP from ACC0, and so the next big
challenge is to do the same for the class NP.
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we will study how well low-degree torus polynomials can point-wise approximate the

majority function.

Recall that Theorem 3.19 implies that any function in ACC0 can be (1/20n)-

approximated in the point-wise sense by a torus polynomial of degree polylog(n).

Thus, to show Majn /∈ ACC0, it suffices to prove that any torus polynomial that

(1/20n)-approximates Majn must have degree ω(polylog(n)). Noting that torus poly-

nomials are real polynomials modulo 1, and that strong bounds are known for the

point-wise approximation of Majn by real polynomials [NS92], we now investigate

these bounds hoping to gain some insights into the problem at hand.

Given a Boolean function F : {0, 1}n → {0, 1}, we say that a multilinear polyno-

mial P ∈ R[x1, . . . , xn] of degree d ε-approximates F in the point-wise sense if for all

x ∈ {0, 1}n,

|F (x)− P (x)| ≤ ε.

It immediately follows that if there is a real polynomial P that ε-approximates F

then the torus polynomial

P ′(x) =
P (x)

2
mod 1

ε-approximates F over R/Z in the point-wise sense. Thus, when proving degree lower

bounds for point-wise approximation over R/Z, we are also implicitly proving lower

bounds for approximation over R.

A beautiful result of Nisan and Szegedy [NS92] shows that for any ε < 1/2, any

real polynomial that ε-approximates the majority function on n bits must have degree

Ω(
√
n). Their proof proceeds in two stages: (i) first show that if a symmetric real

polynomial ε-approximates Majn then it must have degree Ω(
√
n); (ii) then show

that any polynomial that ε-approximates Majn can be symmetrized and made into a

symmetric polynomial with the same degree and approximation guarantee.

In an attempt to follow the same strategy in the case of torus polynomials, we will

now show that any symmetric torus polynomial (namely, symmetric real polynomials

evaluated modulo one) that 1/(20n)-approximates Majn in the point-wise sense must
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have degree Ω(
√
n/ log n). En route to proving this lower bound we will also prove

lower bounds for the delta functions ∆n,w(x), showing that one needs symmetric torus

polynomials of degree Ω(
√
n/ log n) in order to be able to (1/20n)-approximate the

delta functions.

3.4.1 Lower bounds for Majn and ∆n,w

For x ∈ {0, 1}n, recall that |x| denotes the Hamming weight of x. A real polynomial

P ∈ R[x1, . . . , xn] is said to be symmetric if for all x, y ∈ {0, 1}n such that |x| = |y|,

P (x) = P (y). Using univariate polynomial interpolation over R, and the fact that

every function P : {0, 1}n → R has a unique representation as a real multilinear

polynomial (see, e.g., [GSL10, Section 2]), it immediately follows that a symmetric

real polynomial P (x) of degree d can be written as

P (x1, . . . , xn) =
d∑
j=0

cj

(
n∑
i=1

xi

)j

,

for cj ∈ R.

A torus polynomial P : {0, 1}n → R/Z is said to be symmetric if for all x, y ∈

{0, 1}n such that |x| = |y|, P (x) = P (y). We will now show that every symmetric

torus polynomial of degree d also has a nice representation, similar to that of a

symmetric real polynomial.

Lemma 3.20. If P : {0, 1}n → R/Z is a symmetric torus polynomial of degree d

then

P (x1, . . . , xn) =

 d∑
j=0

cj

(
n∑
i=1

xi

)j
 mod 1,

where cj ∈ [0, 1).

Proof. For j ∈ {0, . . . , n}, let yj ∈ [0, 1) denote the value that P takes on inputs

of Hamming weight j. Using univariate polynomial interpolation, we can find a

polynomial Q ∈ R[z] of degree n such that for all j ∈ {0, . . . , n}, Q(j) = yj. Since
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the generalized binomial coefficients
{(

z
j

)}
j∈N

form a basis for polynomials in R[z],

we can write

Q(z) =
n∑
j=0

cj

(
z

j

)
,

for cj ∈ R. Observe that, from our construction of Q, for all x ∈ {0, 1}n,

P (x1, . . . , xn) =

(
n∑
j=0

cj

(∑n
i=1 xi
j

))
mod 1. (3.4.1)

Let d′ ∈ {0, . . . , n} be the largest integer such that cd′ 6≡ 0 (mod 1). Expanding and

multilinearizing9 the polynomial on the right-hand side of the above equation, we get

P (x1, . . . , xn) =

 ∑
S⊆[n];|S|≤d′

cS
∏
i∈S

xi

 mod 1

for all x ∈ {0, 1}n, where cS ∈ R. It follows from the definition of generalized binomial

coefficients that cS = cd′ for all S ⊆ [n] satisfying |S| = d′, and so cS 6≡ 0 (mod 1) for

all such S. Using the fact that P is a torus polynomial of degree d, it follows from

Lemma 3.5 that d′ must be at most d. Thus, we can rewrite Eq. (3.4.1) as

P (x1, . . . , xn) =

(
d∑
j=0

cj

(∑n
i=1 xi
j

))
mod 1.

Let Q′ ∈ R[z] be the polynomial defined as

Q′(z) :=
d∑
j=0

cj

(
z

j

)
.

Then we can write Q′ in the standard polynomial basis as Q(z) =
∑d

j=0 c
′
jz
j for some

c′j ∈ R, which implies that

P (x1, . . . , xn) =

 d∑
j=0

c′j

(
n∑
i=1

xi

)j
 mod 1.

The statement of the lemma now follows by dropping the coefficients c′j modulo

one.

9This is the process of making the degree of each xi at most one in every monomial followed by
the combining of similar terms if necessary.
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The goal of this section is to prove the following theorem:

Theorem 3.21. Any symmetric torus polynomial that (1/20n)-approximates Majn(x)

in the point-wise sense must have degree Ω
(√

n/ log n
)

.

We now give a sketch of the proof of Theorem 3.21.

The delta function ∆n,w : {0, 1}n → {0, 1}, for 0 ≤ w ≤ n, is defined as

∆n,w(x) =


1 |x| = w

0 otherwise

.

Let d ≥ 0 be an integer. In the first part of the argument, we observe that if all of the

n + 1 delta functions can be (1/20n)-approximated by symmetric torus polynomials

of degree d then every symmetric Boolean function in n variables can be (1/20)-

approximated by a degree d torus polynomial. By using an argument similar to the

one in the proof of Lemma 3.8, we then “discretize” the coefficients of these polyno-

mials, showing that every symmetric Boolean function can be (1/10)-approximated

by symmetric torus polynomials of degree d whose coefficients are of the form (q/2k)

for q ∈ {−(2k−1), . . . , 2k−1}. Observing that each such discretized symmetric torus

polynomial can (1/10)-approximate at most one symmetric Boolean function, and

that there are 2n+1 such functions, then implies via a counting argument that d must

be Ω
(√

n/ log n
)
.

The second part of the argument begins by observing that the delta functions on

n′ = bn/2c bits can be written as linear combinations of “projections” of the major-

ity function on n bits. This lets us show that if there are symmetric torus polynomials

of degree o(
√
n/ log n) that (1/20n)-approximate Majn then there also are symmetric

torus polynomials of degree o(
√
n′/ log n′) that (1/20n′)-approximate the delta func-

tions on n′ bits. In conjunction with the first part of the argument, this then implies

the statement of Theorem 3.21.

We now provide the formal details of the first part of the argument, i.e., proving

degree lower bounds for the delta functions.
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Theorem 3.22. Let d ≥ 0, and suppose that for every 0 ≤ w ≤ n, there is a sym-

metric torus polynomial Qw : {0, 1}n → R/Z of degree d that (1/20n)-approximates

∆n,w(x) in the point-wise sense, then d = Ω
(√

n/ log n
)

.

Proof. Fix F : {0, 1}n → {0, 1} to be any symmetric Boolean function. Abusing

notation, we let F−1(1) denote the set of all integers 0 ≤ m ≤ n such that

|x| = m =⇒ F (x) = 1.

Note that

F (x) =
∑

w∈F−1(x)

∆n,w(x)

for all x ∈ {0, 1}n.

Define the torus polynomial QF as

QF (x) =

 ∑
w∈F−1(1)

Qw(x)

 mod 1.

It follows that QF is a symmetric torus polynomial of degree d. Using the fact that

each Qw (1/20n)-approximates the delta function ∆n,w(x), and that |F−1(1)| ≤ n+1,

we have that for every x ∈ {0, 1}n,∥∥∥∥(F (x)

2
−QF (x)

)
mod 1

∥∥∥∥
T

=

∥∥∥∥∥∥
 ∑
w∈F−1(1)

(
∆n,w(x)

2
−Qw(x)

) mod 1

∥∥∥∥∥∥
T

≤
∑

w∈F−1(1)

∥∥∥∥(∆n,w(x)

2
−Qw(x)

)
mod 1

∥∥∥∥
T

(Using triangle inequality)

≤ |F−1(1)| · 1

20n

≤ 1

20
+ o(1), (3.4.2)

and so QF (0.05 + o(1))-approximates F in the point-wise sense.

SinceQF is a symmetric torus polynomial, we can rewrite it as follows using Lemma 3.20,

QF (x) =

(
d∑
j=0

cj

(∑
xi

)j)
mod 1
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for cj ∈ [0, 1). Let k ≥ 0 be an integer whose value we choose later. For 0 ≤ j ≤ d,

let qj ∈ {−(2k − 1), . . . , 2k − 1} be such that

cj −
qj
2k

<
1

2k
,

and define Q′F to be the torus polynomial

Q′F (x) =

(
d∑
j=0

qj
2k
·
(∑

xi

)j)
mod 1.

Observe that for every x ∈ {0, 1}n,

‖(QF (x)−Q′F (x)) mod 1‖T

≤

∥∥∥∥∥
(

d∑
j=0

(
cj −

q

2k

)(∑
xi

)j)
mod 1

∥∥∥∥∥
T

≤
d∑
j=0

∣∣∣∣(cj − q

2k

)(∑
xi

)j∣∣∣∣ (Using Lemma 3.4)

≤ (d+ 1)nd

2k
≤ 1

20
,

where the last inequality follows by choosing k = Θ(d log(n)). Also recall from

Eq. (3.4.2) that for all x ∈ {0, 1}n,∥∥∥∥(F (x)

2
−QF (x)

)
mod 1

∥∥∥∥
T
≤ 1

20
+ o(1),

and so using the triangle inequality we can conclude that∥∥∥∥(F (x)

2
−Q′F (x)

)
mod 1

∥∥∥∥
T
≤
(

1

20
+ o(1)

)
+

1

20
≤ 1

10
+ o(1).

Thus, Q′F (0.1 + o(1))-approximates F in the point-wise sense.

Let SymPolyd,k denote the set of symmetric torus polynomials in n variables of

degree d whose coefficients are of the form q/2k for q ∈ {−(2k − 1), . . . , 2k − 1}. So

far we have shown that for every symmetric Boolean function F : {0, 1}n → {0, 1},

there is a torus polynomial Q′F ∈ SymPolyd,k that (0.1 + o(1))-approximates F ,

where k = Θ(d log(n)). In the other direction, every polynomial in SymPolyd,k can
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(0.1 + o(1))-approximate at most one symmetric Boolean function. This implies that

|SymPolyd,k| ≥ 2n+1, since the number of symmetric Boolean function in n variables

is 2n+1. Noting that |SymPolyd,k| = 2O(kd) and k = Θ(d log n), implies that d must

be Ω(
√
n/ log n).

Before we proceed, we recall that Majn(x) denotes the majority function on n

bits, defined as:

Majn(x) =


1 |x| > n

2

0 otherwise

for all x ∈ {0, 1}n. We will now give the formal details of the second part of the

argument used in proving Theorem 3.21. The argument is based on the observation

that the delta functions on n′ = bn/2c bits can be written in terms of projections of

the majority function Majn.

Lemma 3.23. Let n′ = bn/2c, and suppose that Majn, the majority function on n

bits, can be (1/20n)-approximated by a symmetric torus polynomial of degree d in the

point-wise sense. Then for every 0 ≤ w ≤ n′, there is a symmetric torus polynomial

in n′ variables of degree at most d that (1/20n′)-approximates ∆n′,w.

Proof. Fix w ∈ {1, . . . , n′ − 1} (we deal with w = 0 and w = n′ later), and let

∆≥w : {0, 1}n′ → {0, 1} denote the function that takes value 1 iff |x| ≥ w, for all

x ∈ {0, 1}n′ . Observe that

∆≥w(x1, . . . , xn′) = Majn(x1, . . . , xn′ , c1, . . . cn−n′), (3.4.3)

where c ∈ {0, 1}n−n′ is the binary string whose first n′ + 1− w bits are set to 1, and

the rest are set to 0.

Let Q(x1, . . . xn) be a symmetric torus polynomial of degree d that (1/20n)-

approximates Majn(x). Define Q≥w(x1, . . . , xn′) to be the following symmetric torus
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polynomial in n′ variables,

Q≥w(x1, . . . xn′) := Q(x1, . . . , xn′ , c1, . . . , cn−n′),

where c ∈ {0, 1}n−n′ is as defined above. It follows from (3.4.3) that Q≥w(x1, . . . , xn′)

(1/20n)-approximates ∆≥w(x1, . . . , xn′). Furthermore, since Q≥w is a projection of

Q, its degree is at most d.

Similarly, we can obtain a symmetric torus polynomial Q≥w+1(x1, . . . , xn′) of degree

d that (1/20n)-approximates ∆≥w+1(x1, . . . , xn′).

Note that for all x ∈ {0, 1}n′ ,

∆n′,w(x)

2
mod 1 =

(
∆≥w(x)

2
− ∆≥w+1(x)

2

)
mod 1.

Defining the degree d symmetric torus polynomial

Qw(x1, . . . , xn′) := (Q≥w(x1, . . . , xn′)−Q≥w+1(x1, . . . , xn′)) mod 1,

it follows from the triangle inequality and the definitions of Q≥w and Q≥w+1 that for

all x ∈ {0, 1}n′ ,∥∥∥∥(∆n′,w(x)

2
−Qw(x)

)
mod 1

∥∥∥∥
T

≤
∥∥∥∥(∆≥w(x)

2
−Q≥w(x)

)
mod 1

∥∥∥∥
T

+

∥∥∥∥(Q≥w+1(x)− ∆≥w+1(x)

2

)
mod 1

∥∥∥∥
T

≤ 1

20n
+

1

20n
≤ 1

10n
≤ 1

20n′
.

This shows that for all 1 ≤ w ≤ n′−1, the function ∆w,n′ can be (1/20n′)-approximated

in the point-wise sense by a symmetric torus polynomial in n′ variables of degree d.

Observe that, for w = n′ − 1, the function ∆≥w+1(x1, . . . , xn′) is the same as the

function ∆n′,w, and so the symmetric torus polynomial Q≥w+1 of degree d from above

(1/20n′)-approximates ∆n′,w for w = n′ − 1.

Finally, note that for all x ∈ {0, 1}n′ ,

∆n′,0(x)

2
mod 1 =

(
1

2
− ∆≥1(x)

2

)
mod 1.
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Since it was shown earlier thatQ≥1(x1, . . . , xn′) (1/20n)-approximates ∆≥1(x1, . . . , xn′),

it follows that ∆n′,0 can be (1/20n′)-approximated by the symmetric torus polynomial(
1

2
−Q≥1(x1, . . . , xn′)

)
mod 1,

thus completing the proof.

Theorem 3.21 immediately follows from Theorem 3.22 and Lemma 3.23.

Recalling the approach of [NS92] discussed at the beginning of Section 3.4, the

next thing to do is to try and mimic their symmetrization step in the setting of

torus polynomials. This essentially means showing that if there is a degree d torus

polynomial Q that ε-approximates Majn then Q can be symmetrized to obtain a

symmetric torus polynomial Q′ of the same degree that ε-approximates Majn. Such a

result, when combined with Theorem 3.21, would immediately imply that Majn can-

not be (1/20n)-approximated by polylog(n) degree torus polynomials, thus implying

Majn /∈ ACC0 via Theorem 3.19. Unfortunately, it is unclear how to make the idea

of symmetrization work in the torus setting. We now explain why.

Let Sn denote the group of permutations on the set [n], and for x ∈ {0, 1}n, we

abuse notation and define

π(x) := (xπ(1), . . . , xπ(n)).

Then, the symmetrized version of a real polynomial P ∈ R[x1, . . . xn] is the real

polynomial P sym, defined as follows.

P sym(x1, . . . xn) :=
∑
π∈Sn

P (π((x1, . . . , xn))

n!
.

Note that P sym is symmetric and has the same degree as P .

Now, it immediately follows that if P (x1, . . . , xn) is a real polynomial of degree d that

ε-approximates Majn in the point-wise sense over R, i.e., for all x ∈ {0, 1}n,

|Majn(x)− P (x)| ≤ ε,
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then P sym(x1, . . . , xn) is also of degree d and ε-approximates F over R in the point-

wise sense: for any x ∈ {0, 1}n,

|Majn(x)− P sym(x)| ≤
∑
π∈Sn

∣∣∣∣Majn(π(x))− P (π(x))

n!

∣∣∣∣
=
∑
π∈Sn

|Majn(π(x))− P (π(x))|
n!

(3.4.4)

≤ |Sn| ·
ε

n!
≤ ε

In the case of torus polynomials and point-wise approximation over R/Z, all the

above steps can be carried out in an analogous manner except for the equality in

Eq. (3.4.4): it is not always true that, for all x ∈ {0, 1}n and π ∈ Sn,∥∥∥∥∥
(

Majn(π(x))
2

− P (π(x))

n!

)
mod 1

∥∥∥∥∥
T

≤

∥∥∥(Majn(π(x))
2

− P (π(x))
)

mod 1
∥∥∥
T

n!
.

Consider the case when Majn(π(x)) = 0 and P (π(x)) = m+ ε for integer 0 ≤ m < n!.

Assuming ε� 1, we can see that∥∥∥∥(Majn(π(x))

2
− P (π(x))

)
mod 1

∥∥∥∥
T

= ε,

whereas ∥∥∥∥∥
(

Majn(π(x))
2

− P (π(x))

n!

)
mod 1

∥∥∥∥∥
T

=
( ε
n!

+
m

n!

)
mod 1 >

ε

n!
.

3.4.2 Upper bounds for ∆n,w

It is plausible that point-wise approximation by low-degree torus polynomials is too

powerful a framework that not only characterizes functions computable by ACC0

circuits, but also the majority function Majn, the delta functions ∆n,w, and possibly

the whole of TC0. Thus, it is worth exploring the possibility that the majority

function and the delta functions are ε-approximable by polylog(n/ε) degree torus

polynomials. We now investigate this by trying to prove upper bounds, i.e., trying

to construct explicit low-degree polynomials that approximate Majn and ∆n,w. In
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particular, we prove the following surprising result that demonstrates the power of

point-wise approximation by torus polynomials.

Theorem 3.24. For every 0 ≤ w ≤ n and ε > 0, there is a symmetric torus polyno-

mial of degree polylog(n/ε)ε−1 that ε-approximates ∆n,w in the point-wise sense.

Note that the degree of the symmetric torus polynomial in the statement of The-

orem 3.24 has an extra multiplicative factor of ε−1 on top of polylog(n/ε); without

this factor, the statement of the theorem instantiated for ε = 1/20n would contradict

Theorem 3.22. In fact, Theorems 3.22 and 3.24 together present an interesting con-

trast: if ε is “large enough”, i.e., ε ≥ 1/polylog(n), then there are symmetric torus

polynomials of degree polylog(n) that ε-approximate the delta functions in the point-

wise, whereas if ε is “too small”, i.e., ε ≤ 1/20n, then we need symmetric polynomials

of degree Ω(
√
n/ log n) to achieve the same error of approximation.

We remark that we are not able to obtain similar nontrivial upper bounds for the

majority function.

We now give a proof sketch for Theorem 3.24. Fix a w. Note that we want to

construct torus polynomials that can “detect” if |x| = w, or equivalently, if |x|−w = 0.

The main observation we use is that if |x| − w = 0 then trivially, all of the first t

primes (for some t ≥ 0) divide |x| − w, but if |x| − w 6= 0 then the integer |x| − w is

divisible by at most log n primes out of the first t primes, since ||x| − w| ≤ n.

We use this criterion because it can be written in terms of the subcriteria of divisibility

of |x| − w by primes, and all these subcriteria can themselves be written in terms

of finite field polynomials. In particular, note that for every prime p, the following

{0, 1}-valued polynomial over Fp detects if |x| − w is divisible by p:

Fp(x) = 1−
(∑

xi − w
)p−1

.

Using results from Section 3.3.1 (in particular, Theorem 3.12), we can then approxi-

mate scaled versions of these polynomials using low-degree torus polynomials. Finally,
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it can be shown that these torus polynomials can be appropriately combined to de-

tect whether all of the first t primes divide |x| − w, or only a small fraction of them

divide |x| −w (the fraction can be made small by choosing t to be large enough, i.e.,

t = Ω(log n)). Additionally, we have to make sure that the resulting polynomial is

low-degree and symmetric. We now cover these details in the formal proof.

Proof of Theorem 3.24. Fix w. For any prime p ≥ 2, let Fp : {0, 1}n → {0, 1} denote

the Boolean function:

Fp(x) =


1 |x| ≡ w (mod p)

0 otherwise

.

Note that each Fp can be computed by a polynomial of degree p− 1 over Fp:

Fp(x) = 1−
(∑

xi − w
)p−1

.

Let P = {p1, . . . , pt} be the first t primes, for t to be chosen later. For each p ∈ P ,

we can apply Theorem 3.12 with F = Fp, α = 1/2t, and error ε/2t to obtain a torus

polynomial Qp : {0, 1} → R/Z of degree O(p log(t/ε)) that (ε/2t)-approximates the

function Fp(x)/2t, i.e., for all x ∈ {0, 1}n,∥∥∥∥(Fp(x)

2t
−Qp(x)

)
mod 1

∥∥∥∥
T
≤ ε

2t
. (3.4.5)

Define the torus polynomial

Q(x) :=

(∑
p∈P

Qp(x)

)
mod 1. (3.4.6)

We claim that Q is a symmetric torus polynomial that ε-approximates ∆n,w in the

point-wise sense.

Let x ∈ {0, 1}n such that |x| = w, i.e., ∆n,w(x) = 1. In this case, for each p ∈ P ,

we have that Fp(x) = 1, and so Eq. (3.4.5) implies that∥∥∥∥( 1

2t
−Qp(x)

)
mod 1

∥∥∥∥
T
≤ ε/2t.
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Then, using the triangle inequality,∥∥∥∥(∆n,w(x)

2
−Q(x)

)
mod 1

∥∥∥∥
T

=

∥∥∥∥(1

2
−Q(x)

)
mod 1

∥∥∥∥
T

=

∥∥∥∥∥
(∑
p∈P

(
1

2t
−Qp(x)

))
mod 1

∥∥∥∥∥
T

≤
∑
p∈P

∥∥∥∥( 1

2t
−Qp(x)

)
mod 1

∥∥∥∥
T

≤ ε

2
.

Now suppose x ∈ {0, 1}n is such that |x| 6= w, i.e., ∆n,w(x) = 0. Let Px ⊂ P be the

set of primes that divide |x| − w. Since ||x| − w| ≤ n, |Px| ≤ log n. For each p ∈ P ,

we have that Fp(x) = 1 if and only if p ∈ Px. Then, using Eq. (3.4.5), we have that

∀p ∈ P \ Px ‖(−Qp(x)) mod 1‖T ≤ ε/2t

∀p ∈ Px ‖((1/2t)−Qp(x)) mod 1‖T ≤ ε/2t.
(3.4.7)

The triangle inequality and Lemma 3.4 imply that∥∥∥∥(∆n,w(x)

2
−Q(x)

)
mod 1

∥∥∥∥
T

= ‖(−Q(x)) mod 1‖T

=

∥∥∥∥( |Px|2t
−Q(x)− |Px|

2t

)
mod 1

∥∥∥∥
T

≤
∥∥∥∥( |Px|2t

−Q(x)

)
mod 1

∥∥∥∥
T

+

∥∥∥∥(−|Px|2t

)
mod 1

∥∥∥∥
T

=

∥∥∥∥∥∥
∑
p∈Px

(
1

2t
−Qp(x)

)
+
∑

p∈P\Px

(−Qp(x))

 mod 1

∥∥∥∥∥∥
T

+
|Px|
2t

≤
∑
p∈Px

∥∥∥∥( 1

2t
−Qp(x)

)
mod 1

∥∥∥∥
T

+
∑

p∈P\Px

‖(−Qp(x)) mod 1‖T +
|Px|
2t

≤ |Px| ·
ε

2t
+ |P \ Px| ·

ε

2t
+
|Px|
2t

(Using Eq. (3.4.7))

≤ |P| · ε
2t

+
log n

2t

=
ε

2
+

log n

2t
≤ ε,
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where the last inequality follows by choosing t = O(log n/ε). This proves that Q

ε-approximates ∆n,w in the point-wise sense.

Eq. (3.4.6) implies that the degree of Q is equal to O(p log(t/ε)), where p is

the largest prime in P . Note that the largest prime in P is upper bounded by

O(t log t) = polylog(n/ε)ε−1 by the prime number theorem, since P only contains the

first t primes. It follows that the degree of Q is polylog(n/ε)ε−1.

To see why Q is symmetric, first observe that for each p ∈ P , the torus polynomial

Qp obtained by applying Theorem 3.12 to Fp is of the form

Qp(x) =
qAk

(
1− (

∑
i xi)

p−1)
pk

mod 1,

where q is some integer, and Ak
(
1− (

∑
i xi)

p−1) is a symmetric integer polynomial in

Z[x1, . . . , xn] obtained by composing the univariate modulus amplifying polynomial

Ak with the symmetric integer polynomial 1− (
∑

i xi)
p−1 (see Eq. (3.3.1) in the proof

of Theorem 3.12). Thus, each Qp is a symmetric torus polynomial. It then follows

from Eq. (3.4.6) that Q is also symmetric, and this completes the proof.

We remark that combining Theorem 3.24 with Lemma 3.9 implies the existence

of symmetric nonclassical polynomials of degree polylog(n)ε−1 that ε-approximate

the delta functions. This is because the proof of Lemma 3.9 simply “discretizes” the

coefficients of a torus polynomial using diadic rationals in order to transform it into

a nonclassical polynomial, and thus this process is symmetry preserving.
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Chapter 4

Conclusion and open problems

The research in this dissertation was motivated by two main questions.

1. How much more powerful are nonclassical polynomials in comparison to clas-

sical polynomials, when it comes to approximating Boolean functions in the

agreement-sense?

2. Is it possible to prove that some explicit Boolean function is not computable by

ACC0 circuits in a purely combinatorial manner, using only polynomial-based

approximations/representations of Boolean functions?

As far as the first question is concerned, in Chapter 2, we made some progress

towards answering it by giving examples of explicit Boolean functions which have

good agreement with nonclassical polynomials but not with classical polynomials of

the same degree. We also proved that this is not true for all Boolean functions,

and in particular, showed that both classical and nonclassical polynomials of degree

o(
√
n) have agreement at most 1/2+o(1) with Majn, the majority function on n bits.

These results resolved some of the open problems stated in the work of Bhowmick

and Lovett [BL15].

We remark that the results in Chapter 2 were obtained by studying the behavior of

the quantity γd,k(F ), which is the maximum possible agreement between polynomials

over Z/2kZ of degree d and a Boolean function F , and several interesting properties

of γd,k(F ) were observed en route to obtaining these results.

In Chapter 3, we attempted to answer the second question from above by us-

ing the polynomial-based representations of Green et al. [GKT92] and Beigel and
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Tarui [BT91], to show that functions computable by ACC0 circuits can be approxi-

mated by low-degree nonclassical polynomials with respect to a new notion of point-

wise approximation introduced by us. In hopes of proving Majn /∈ ACC0 in a purely

combinatorial or algebraic manner, we then tried to show that Majn cannot be point-

wise approximated by low-degree nonclassical polynomials. While we were unsuccess-

ful at this attempt, we did manage to show that Majn cannot be approximated by

symmetric low-degree nonclassical polynomials. We also obtained nontrivial upper

and lower bounds on the degree of nonclassical polynomials that point-wise approxi-

mate the delta functions ∆n,w.

Several interesting research directions are suggested by our results, and we now

state some of them:

ACC0 lower bounds via nonclassical polynomials

Theorem 3.19 in conjunction with Lemma 3.9 suggests a combinatorial approach to

proving lower bounds against ACC0. Concretely, we pose the following open problem.

Problem 4.1. Find an explicit Boolean function F : {0, 1}n → {0, 1}, and an ε =

ε(n), such that any nonclassical polynomial that ε-approximates F in the point-wise

sense must have degree ω (polylog(n/ε)). Such an F is not in ACC0.

Recall that we know from the results of Williams [Wil14b], and Williams and

Murray [MW18], that NEXP 6⊆ ACC0, and more generally, NQP 6⊆ ACC0. As

mentioned before the tools and techniques used in proving these results are not purely

combinatorial or algebraic, and so an immediate goal could be to solve Problem 4.1

by finding an F ∈ NEXP or F ∈ NQP. A more ambitious goal is to find an F ∈ NP.

Proving Majn /∈ ACC0 via degree lower bounds

In Section 3.4, we proved that no symmetric torus polynomial of degree o
(√

n/ log n
)

can (1/20n)-approximate Majn in the point-wise sense. We conjecture that this should



97

hold even if we consider general torus polynomials:

Problem 4.2. Prove that any torus polynomial that (1/20n)-approximates Majn must

have degree Ω(
√
n/ log n).

We remark that the resolution of this problem will show that the majority function

is not in ACC0, thereby proving TC0 6⊆ ACC0. Note note that, in light of Lemma 3.9,

it suffices to only prove that no nonclassical polynomial of degree o
(√

n/ log n
)

can

(1/40n)-approximate Majn.

Proving Majn /∈ ACC0 via correlation bounds

Recall that if Majn ∈ ACC0 then there is a nonclassical polynomial P of degree

polylog(n) that (1/n)-approximates Majn in the point-wise sense. By Lemma 3.10,

it follows that

Corr

(
Majn

2
, P

)
≥ 1−O

(
1

n2

)
,

i.e., P ε-approximates Majn in the correlation sense for ε ≥ 1−O(1/n2).

Thus, another way to show Majn /∈ ACC0 is to upper bound the correlation that

Majn can have with degree polylog(n) nonclassical polynomials. In particular, we

pose the following problem.

Problem 4.3. Show that if P is any nonclassical polynomial of degree O(polylog(n))

then it must be the case that

Corr

(
Majn

2
, P

)
≤ 1− ω

(
1

n2

)
.

We remark that no nontrivial upper bounds on the correlation between the ma-

jority function and nonclassical polynomials of degree O(polylog(n)) are known1. On

the contrary, a result of Bhowmick and Lovett [BL15] constructs a nonclassical poly-

nomial over F2 of degree O(log n) that has correlation at least δ with Majn, for some

absolute constant δ > 0.

1Obviously, this correlation must be strictly less than 1 because otherwise it would imply that
the majority function has agreement 1 with a nonclassical polynomial of degree polylog(n), which
is impossible.
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(In)approximability by torus polynomials as a natural property

The natural proofs barrier of Razborov and Rudich [RR97] isn’t really a problem

for the approach to proving ACC0 lower bounds outlined in Section 3.4. This is

because we are only trying to prove lower bounds against ACC0, and pseudorandom

generators are not believed to be contained in this class. It is also not clear whether the

property in question, i.e., (in)approximability by torus polynomials, is natural, and,

in particular, it will be interesting to investigate whether this property is constructive,

i.e., whether one can efficiently distinguish between Boolean functions which can be

approximated by low-degree torus polynomials and a random Boolean function.

Problem 4.4. Given the truth table of a function F : {0, 1}n → {0, 1} and an ε > 0,

decide in polynomial time (in 2n and 1/ε) whether F is ε-approximable in the point-

wise sense by a torus polynomial of degree polylog(n/ε).

We remark that if this property is indeed constructive (and thus, also natural) then

the work of Carmosino et al. [CIKK16] would imply quasipolynomial time learning

algorithms for ACC0 — currently such learning algorithms are only known for AC0[p].

Amplification for torus polynomials

An interesting property of point-wise approximation by polynomials over R is its

amenability to amplification, namely the fact that, for any Boolean function F

and ε < 1/3, given a polynomial P over R of degree d that 1/3-approximates

F in the point-wise sense, it can be transformed into a polynomial P ′ of degree

d′ = O(d log(1/ε)) that ε-approximates F .

It is not clear whether such a transformation is possible in the case of point-wise ap-

proximation by torus polynomials. In the case of approximation by real polynomials,

the transformation is symmetry preserving, but, given the upper and lower bounds

for the delta functions discussed in Section 3.4 (see Theorems 3.22 and 3.24), we

should not expect this in the case of torus polynomials. This motivates the following
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problem.

Problem 4.5. Suppose that a Boolean function F can be 1/3-approximated in the

point-wise sense by torus polynomials of degree d, and (1/20n)-approximated by torus

polynomials of degree d′. Then how does d′ compare to d?

Nontrivial point-wise approximation of Majn

Theorem 3.24 shows the existence of symmetric torus polynomials of degree at most

polylog(n)ε−1 that ε-approximate the delta functions in the point-wise sense. We

were not able to do the same in the case of the majority function, and leave this as

an open problem.

Problem 4.6. Is there a symmetric torus polynomial of degree at most polylog(n)ε−1

that ε-approximates Majn in the point-wise sense?
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