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In-situ scientific workflows, i.e., executing the entire application workflows on the HPC sys-
tem, have emerged as an attractive approach to address data-related challenges by moving
computations closer to the data, and staging-based frameworks have been effectively used
to support in-situ workflows at scale.

However, running in-situ scientific workflows on extreme-scale computing systems presents
fault tolerance challenges which significantly affect the correctness and performance of work-
flows. First, scientific in-situ workflow requires sharing and moving data between coupled
applications through data staging. As the data volumes and generate rates keep grow-
ing, the traditional data resilience approaches such as n-way replication and erasure codes
become cost prohibitive, and data staging requires more scalable and efficient approach to
support the data resilience. Second, Increasing scale is also expected to result in an increase
in the rate of silent data corruption errors, which will impact both the correctness and per-
formance of applications. Moreover, this impact is amplified in the case of in-situ workflows
due to the dataflow between the component applications of the workflow. Third, since cou-
pled applications in workflows frequently interact and exchange the large amount of data,
simply applying the state of the art fault tolerance techniques such as checkpoint /restart

to individual application component can not guarantee data consistency of workflows after
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failure recovery. Furthermore, naive use of these fault tolerance techniques to the entire
workflows will limit the diversity of resilience approaches of application components, and
finally incur a significant latency, storage overheads, and performance degradation.

This thesis addresses these challenges related to data resilience and fault tolerance for
in-situ scientific workflows, and makes the following contributions. This thesis first presents
CoREC, a scalable resilient in-memory data staging runtime for large-scale in-situ work-
flows. CoREC uses a novel hybrid approach that combines dynamic replication with erasure
coding based on data access patterns. CoREC also provides multilevel data resilience to
satisfy different fault tolerance requirements. Furthermore, CoREC introduces optimiza-
tions for load balancing and conflict avoiding encoding, and a low overhead, lazy data
recovery scheme. Then, this thesis addresses silent error detection for extreme scale in-
situ workflows, and presents a staging based error detection approach which leverages idle
computation resource in data staging to enable timely detection and recovery from silent
data corruption. This approach can effectively reduce the propagation of corrupted data
and end-to-end workflow execution time in the presence of silent errors. Finally, this the-
sis addresses fail-stop failures for extreme scale in-situ scientific workflows, and presents a
loose coupled checkpoint /restart with data logging framework for in-situ workflows. This
proposed approach introduces a data logging mechanism in data staging which is composed
by the queue based algorithm and user interface to provide a scalable and flexible fault
tolerance scheme for in-situ workflows while still maintaining the data consistency and low
resiliency cost. The research concepts and software prototypes have been evaluated using

synthetic and real application workflows on production HPC systems.
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Chapter 1

Introduction

1.1 Background

Scientific workflows running on current and emerging extreme-scale systems are providing
new opportunities for solving some of the most important problems in science and society,
such as those being addressed by the US Exascale Computing Program (ECP) [56]. How-
ever, running such workflows at extreme scale presents significant challenges spanning all
aspects of data management, such as data analysis challenge, data movement challenge,
data storage challenge, and energy efficiency, etc. For example, the S3D [16] extreme scale
scientific workflow, which is a coupled, multi-scale, multi-physics turbulent combustion
workflow, involves intricate data-processing that includes multiple analyses performed at
different temporal frequencies on non-overlapping subsets of data. To address the data-
related challenges associated with coupled scientific workflows such as S3D executing at
extreme scales, in-situ approaches based on data staging have emerged and are being used
by applications on current high-end computing systems [23, 51]. Figure 1.1 illustrates an
in-situ scientific workflow where the application components are coupled via an in-memory
data staging framework. In this workflow, the primary scientific simulation is the data pro-
ducer and the data consumer(s) include secondary simulations, analytics services, and/or
visualization applications coupled to the data producer.

In-situ workflow approaches, such as those based on data staging and in-situ/in-transit
data-management, have emerged as effective solutions for addressing data-related challenges
at extreme scales, and are being adopted by applications across current high-end computing
systems [23, 19, 45]. These techniques leverage resources (compute, storage) on the HPC
system itself to support the data interaction and data couplings required by the workflows

as well as to execute data-processing workflows close to where the data is being produced.



These techniques reduces the amount of data that needs to be moved off the system and
stored to persistent storage (see Figure 1.1). For example, a multi-scale, multi-physics
turbulent combustion application S3D [16], has an intricate data-processing workflow with
multiple analyses performed at different temporal frequencies on non-overlapping subsets

of data.

Simulation A Data Objects

Simulation B

Simulation C In Memo.ry Data -
Staging

Figure 1.1: A typical data staging workflow.

DataSpaces [23], one such staging-based in-situ frameworks, uses data staging cores
(cores on simulation and dedicated nodes for data staging) to implement a semantically
specialized shared-space abstraction along with underlying runtime and RDMA-based asyn-
chronous data transport mechanisms to effectively support in-situ/in-transit data analytics
workflows requirements with minimal impact on the simulation itself [5, 46].

However, due to expected higher fault rates and dramatically increasing cost for ad-
dressing failures, there are several key fault tolerance challenges for building and effectively
running in-situ scientific workflows on extreme-scale HPC systems. These challenges include

the data reliability, data verification and crash consistency in in-situ workflows.

1.2 Research Challenges

1.2.1 Support for Data Reliability

To mitigate data loss on current and emerging extreme-scale systems which are expected
to experience higher rates of failures [15], various fault tolerance techniques such as check-
point /restart, process replication [26], and erasure coding [63] have been widely studied, and

have been utilized. Unfortunately, current fault tolerance techniques can not be directly



used to implement a resilient data staging services due to the contradiction between high
memory and/or computation overhead for data resilience and limited resource with high
performance requirement for data staging.

Even worse, data loss due to fail-stop failures (e.g., process failures, node failures) in
any module of workflows, including data staging, will impact the execution of the entire
workflow and can invalidate the final results. Consequently, it is critical to address data
resilience of data staging for the extreme scales end-to-end workflow. A data resilience
mechanism that can support in-memory data recovery with high-performance,
low overhead and minimum interference with regular data operation is needed

to guarantee the data reliability for data staging.

1.2.2 Support for Data Verification

Although various error-detection techniques for silent errors, such as ABFT [10] and time-
series predictions [7], have been widely studied, these studies have generally been in the
context of single applications rather than workflows, which are a composition of multiple
interacting component applications. Moreover, addressing error detection for in-situ work-
flows including the analysis components is more complicated than single application’s. The
final results of the overall computation for the long-running extreme scale workflows are the
outputs of the workflow, and silent errors in any component of the workflow can invalidate
these outputs. Also, since the component applications of a scientific workflow exchange
data, the impact of a silent errors will be propagated across application components in the
workflow.

As a result, it is important to detect, isolate and correct silent errors in a component
application as early as possible and to prevent the propagation of these errors between
components. A data verification mechanism is required for In-situ workflows to

identify error corrupted components and minimize its impact.

1.2.3 Support for Crash Consistency

Due to the dependencies, interactions and data exchanges between application components,

naively applying states-of-the-arts fault tolerance scheme for the individual component can



not maintain the consistent state of workflows during the failure recovery, which finally
makes the result of workflows invalid or incorrect. Meanwhile, directly using uniform fault
tolerance technique, such as global coordinated Checkpoint/Restart, to all application com-
ponents to achieve crash consistency can make the complexity and overhead for addressing
failures to be unacceptably high. Furthermore, this uniform fault tolerance strategy re-
stricts the diversification for addressing application resiliency, and potentially increases the
overall resiliency cost.

As a result, it is requirement to design a loose coupled workflow-level fault
tolerance mechanism to minimize the interference between components during

recovery, while still maintaining consistent states of workflows.

1.3 Overview of Thesis Research

The overall goal of this thesis is to address the research challenges related to data resilience,
data verification, and crash consistency for in-situ scientific workflows, which are described
above. This section presents an overview of thesis research.

This thesis presents CoOREC (Combining Replication and Erasure Coding), which is a
hybrid approach to data resilience for data staging. CoREC provides the benefit of data
replication, i.e., high performance, while leveraging erasure coding to reduce storage costs.
CoREC uses online data classification, based on spatial/temporal locality, to determine
whether to use erasure coding or replication, and balances storage efficiency with low com-
putation overheads while maintaining desired levels of fault tolerance. Moreover, to satisfy
the diverse data resiliency requirements of different workflow components, CoREC sup-
ports the use of different data redundancy schemes, such as a hybrid approach combining
both replication and triplication with different erasure codes. CoREC with multilevel data
redundancy (CoREC-multilevel) can dynamically decide between erasure coding and repli-
cation schemes (for e.g., duplicate, triplicate, and Reed-Solomon codes) based on the data
access patterns while maintaining application-specified resiliency requirement and incurring
minimal storage overhead.

Furthermore, I develop a optimized load balance and conflict avoid encoding scheme

for CoREC to decrease data encoding overhead further. To alleviate the overhead and



interference associated with CoREC for both data-writes and data-recovery, I also develop
a light overhead staging server recovery scheme based on lazy mode. I have used CoREC to
implement resilient data staging within DataSpaces, and have also integrated ULFM (User
Level Fault Migration) [8] to efficiently recover from both processes and node failures.

This thesis also explores the detection and remediation of silent errors for staging-based
in-situ workflows. I leverage the fact that in-situ workflows exchange coupling data through
data staging frameworks [21][24] and the idle computational resources within the staging
area to provide uniform and efficient error detection. Specifically, I perform data validation
as soon as the data is written to the staging area. If an error is identified in recently written
data, the faulty application is instructed to roll back to the last known correct checkpoint
and re-execute. In this way, the application waiting to consume the written data will
only get access to the correct data, and error propagation from producer to consumer is
eliminated. I use a spatial outlier detection method for data validation as an illustrative
example in this thesis, and also explore how the performance impact of data verification
can be reduced by leveraging GPGPU resources at the staging nodes to execute the error
detection algorithms.

Finally, this thesis explores the workflow-level crash consistency strategy for in-situ work-
flows. I employ a data/event logging mechanism in the data staging to keep data consistency
among application components during the failure recovery while decouple fault tolerance
schemes between application components in workflows. Specifically, the data/event logging
is performed as soon as the data is written or read through the staging area. Also, I intro-
duce a global user interface to application components, which works with the queue based
algorithm to record and replay data access events when preforming checkpointing and roll-
back recovery. In this way, our checkpoint/restart with data logging framework allows wide
area fault tolerance schemes to be applied in workflows with flexibility and scalability, and
minimize the interference between normal application components and the failed one when

performing the recovery strategy.

1.4 Contributions

This thesis makes the following contributions.



e Design and implementation of CoREC, which provides scalable data resilience and
process/nodes failure recovery for data staging. CoREC also enables multi-level data
resilience with high performance and low overhead for the distributed in-memory data

staging.

e Design and implementation of error detection framework in data staging, which pro-
vides data verification for staging based in-situ scientific workflows. By leveraging
idle computation resource in staging, staging based error detection framework can
effectively prevent error propagation among application components, and minimize

the cost for recovering from silent errors.

e Design and implementation of checkpoint/restart with data logging framework for
in-situ scientific workflows, which effectively keep data consistency during application
failure recovery meanwhile providing a compatibility of diverse state-of-the-art fault

tolerance approaches to individual application components.

e Implementations of the prototype within Open-sources data staging DataSpaces, and
experimental evaluations using synthetic workloads and the S3D combustion work-
flow on the Titan Cray XK7 production system at Oak Ridge National Laboratory
(ORNL), the Cori Cray XC40 system at the National Energy Research Scientific Com-
puting Center (NERSC), and the Caliburn system at Rutgers Discovery Informatics
Institute (RDI2).

1.5 Thesis Outline

The rest of this thesis is organized as follows.

Chapter 2 presents a high-level overview of the related fault tolerance approaches for
realizing the resilient workflows.

Chapter 3 presents motivating and representative workflow examples, and summarizes
the fault tolerance requirements.

Chapter 4 presents the model, design, implementation, and evaluation for CoREC.

Chapter 5 presents a staging based silent error detection framework.

Chapter 6 presents a workflow-level Checkpoint/Restart with data logging framework.



Chapter 7 summarizes the research work, presents concluding remarks and directions

for future work.



Chapter 2

Background and Related Work

There are many types of errors, faults, or failures. Some are transient, others are unrecov-
erable. Some cause a fatal interruption of the application as soon as they strike, others may
corrupt the data in a silent way and will manifest only after an arbitrarily long delay.
While there is an increasing body of work on scalable fault-tolerance mechanisms ap-
plicable to individual applications [31], these mechanisms are not directly applicable to
in-situ scientific workflows, and to the data staging service supporting the workflow and
the data being staged by the workflow. To tackle this problem, this dissertation mainly
focuses on fail-stop failures and silent errors, and address data resilience challenges which
are related with these two type of failures for in-situ scientific workflows. In this chapter,
we first investigate failure rate of current and future extreme scale system. We then explore
why traditional mechanisms, such as Checkpoint/Restart, are unable to effectively meet

resilience requirements of staging-based in-situ workflows.

2.1 Failures in Extreme Scale HPC Systems

For HPC application workflows, scale is a major opportunity. Massive parallelism with
100,000+ nodes is the most viable path to achieving sustained Petascale performance. Fu-
ture platforms will enroll even more computing resources to enter the Exascale era. Current
plans refer to systems either with 100,000 nodes, each equipped with 10,000 cores (the fat
node scenario), or with 1,000,000 nodes, each equipped with 1,000 cores (the slim node
scenario)[37].

Unfortunately, scale is also a major threat, because resilience becomes a big challenge.
Even if each node provides an individual MTBF (Mean Time Between Failures) of, say, one

century, a machine with 100,000 such nodes will encounter a failure every 9 hours in average,



which is larger than the execution time of many HPC applications. Worse, a machine with
1,000,000 nodes (also with a one-century MTBF) will encounter a failure every 53 min in
average.l Note that a one-century MTBF per node is an optimistic figure, given that each
node is composed of several hundreds or thousands of cores.

To further darken the picture, everything else is not equal: smaller transistors are more
error prone. One major cause for transient hardware errors is cosmic radiation. High-
energy neutrons occasionally interact with the silicon die, creating a secondary cascade of
charged particles. These can create current pulses that change values stored in DRAM or
values produced by combinatorial logic. Smaller circuits are more easily upset because they
carry smaller charges. Furthermore, multiple upsets become more likely. Smaller feature
sizes also result in larger manufacturing variances, hence larger variances in the properties
of transistors, which can result in occasional incorrect or inconsistent behavior. Smaller
transistors and wires will also age more rapidly and more unevenly so that permanent
failures will become more frequent. Energy consumption is another major bottleneck for
exascale. Subthreshold logic significantly reduces current leakage but also increases the
probability of faults.

Vendors can mitigate for the increase in fault rates with various techniques. For example,
for regular memory arrays, one can use more powerful error correction codes and interleave
coding blocks in order to reduce the likelihood of multiple bit errors in the same block. Buses
are usually protected by using parity codes for error detection and by retries; it is relatively
easy to use more powerful codes. Logic units that transform values can be protected by
adding redundancy in the circuits. Researchers have estimated that an increase in the
frequency of errors can be avoided at the expense of 20% more circuits and more energy
consumption [49]. Whether such solutions will be pursued is unclear, however: the IC
market is driven by mobile devices that are cost and energy sensitive and do not require
high reliability levels. Most cloud applications are also cost sensitive but can tolerate higher
error rates for individual components. The small market of high-end servers that require
high reliability can be served by more costly solutions such as duplication or triplication of
the transactions. This market is not growing in size or in the size of the systems used. Thus,

if exascale systems will be built out of commodity components aimed at large markets, they
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are likely to have more frequent hardware errors that are not masked or not detected by
hardware or software.

As hardware becomes more complex (heterogeneous cores, deep memory hierarchies,
complex topologies, etc.), system software will become more complex and hence more error-
prone. Failure and energy management also add complexity. Similarly, the increase use
of open source layers means less coordinated design in software, which will increase the
potential for software errors. In addition, the larger scale will add complexities as more
services need to be decentralized, and complex failure modes that are rare and ignored
today will become more prevalent.

Application codes are also becoming more complex. Multiphysics and multiscale codes
couple an increasingly large number of distinct modules. Data assimilation, simulation, and
analysis are coupled into increasingly complex workflows. Furthermore, the need to reduce
communication, allow asynchrony, and tolerate failures results in more complex algorithms.
Like system software, these more complex algorithms and application codes are more error-
prone.

Researchers have predicted that large parallel jobs may fail as frequently as once every
30 minutes on exascale platforms [49]. Such failure rates will require new error-handling
techniques. Furthermore, silent hardware errors may occur, requiring new error-detection

techniques in (system and/or application) software.

2.2 Data Resilience Techniques

2.2.1 Data Replication

Since ensuring access to the staged data in spite of failures is most critical for a staging
service, data resilience techniques such as data replication or erasure coding are more ap-
propriate. Traditional ways of providing data reliability are through replication, by which a
dataset is replicated M + 1 times to tolerate M failures. Actually, replication schemes such
as standard primary-backup (PBR) [14] and chain-replication [48] have been widely used for

building highly available in-memory KV-store systems. For example, large-scale in-memory
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key /value systems like Memcached [30] and Redis [62] have performed in-memory replica-
tion scheme to provide both high throughput and high availability so that such systems
can continuously handle millions of requests per second in presence of frequent fail-stop
failures. However, this also means dedicating M copies of CPU/memory without producing
user work, and requiring more storage requirements, standby machines and thus multiply-
ing energy consumption. For example, tolerating two node failures requires at least 200%
storage overhead, which may not be feasible for in-memory staging due to limited memory

size and staging nodes.

2.2.2 Erasure Codes

An alternate approach to data resilience with lower storage overheads is to employ erasure
coding techniques. Erasure codes are constructed using two configurable parameters n and
k (where k < n). The data is treated as a collection of fixed size units called blocks/objects.
Every k original objects (called data objects) are encoded into n — k additional equal size
coded objects (called parities) and the set of the n data and parity objects is called a stripe.
In case of a data staging service, objects of independently encoded multiple stripes are
stored on distinct staging servers, allowing the service to tolerate n — k server failures.

The motivation for using erasure coding comes from the need to reduce the cost of
storage. FErasure coding can reduce the cost of storage over 50%, and is widely used as
off-line data resilience with a tremendous cost saving in an Exabyte of storage. One typical
use case of erasure coding is to provide data reliability for log file system. In the log system,
data is appended to the end of active log file, which are replicated to keep the data durable.
Once reaching a certain size (e.g., 1 GB), the log files are sealed. These sealed log files can
no longer be modified and thus make perfect candidates for performing erasure coding, and
once the data is erasure-coded the original replicas of the log files are deleted.

The trade-off for using erasure coding instead of replication is performance and avail-
ability. The data in the failed data staging server will be offline and not available during
performing decoding for data recovery. Also, while erasure coding provides lower storage
overheads as compared to the replication, it can lead to significant computation and net-

work overheads as parity has to be re-computed for every object update. If a data object in
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a stripe is updated, erasure coding must update the associated parity. This process involves
reading old data objects in the stripe, re-computing parities and updating them. For exam-
ple, if a stripe has 6 data objects and 2 parity objects, updating one data object requires 5
data object reads (for old data), re-computing 2 parity objects and 2 parity object writes.
As a result, using erasure coding can be suboptimal for frequently written/updated data

objects.

2.3 Checkpoint/Restart

2.3.1 Coordinated Checkpointing

Checkpoint/Restart (C/R) is the most widely used fault-tolerant technique for recovering
fail-stop failures in high performance applications. The principle of strategy for (C/R) is:
checkpoints are periodically saved during application initial execution, and when processes
are subject to failures, it uses these checkpoints to rollback the application processes to
the latest consistent state, and re-execute the program from that point. Using Check-
point/Restart for fault tolerance of the data staging service presents two concerns. The

first is the impact on the runtime of application workflows that use the data staging service.

To illustrate this impact, we performed periodic checkpointing of the data stored at the
DataSpaces servers to the parallel file system on Titan and measured the total execution
time with no server failure. Checkpointing was performed every 5 minutes, which is similar
to the frequency used in the experiments presented in [31], for a total of 8 staging servers
with varying staged data sizes. This resulted in a range from 17 checkpoints for a data size
of 4G to 20 checkpoints for a data size of 32G. The results are plotted in Figure 2.1. From
the plots, we can see that even if no failures are present, checkpointing significantly increases
the total execution time of the workflow as the staged data size increases. In this case, the
maximum time spent to achieve fault tolerance for just the staging servers is ~ 15.6% of the
workflow run-time without failures. In addition, this does not include the work lost from
rolling back to a previous state. As presented in the chapter 4, failure recovery using CoREC

increases the total execution time of the workflow by up to 2.23%, which is significantly
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Figure 2.1: Impact of checkpointing on staging-based in-situ application workflows. Ezec is
the total execution time of the workflow without checkpointing; Fzec-CoREC' is the total
execution time of the workflow using CoREC; FEzec-check is the total execution time of
the workflow with periodic checkpointing of the staged data; Checkpoint is the total time
required to checkpoint the data staging servers; Restart is the time required to perform a

global restart of the data staging servers using a checkpoint.

lower than using Checkpoint/Restart. Furthermore, there is no loss of work in the case
of CoREC. The second concern is the overhead due to large amounts of data movement
and potential cascading rollback. When using Checkpoint/Restart for MPI applications,
rolling back the data staging server can cause the tightly coupled application components
of the workflow to become out of sync. Since all of the tightly coupled components in
the MPI communication group must be rolled back to an overall consistent state, this can
trigger a cascading rollback of the workflow where the rollback of one component triggers
other healthy component(s) to rollback, and, in the worst case, cause the entire workflow
to restart from the beginning. This process can result in significant coordination and data

movement overheads.

Uncoordinated Checkpointing with Message Logging

The coordinated checkpointing require that all processes rollback to the last valid checkpoint
wave, when a failure occurs. This ensures a global consistency, at the cost of scalability: as

the size of the system grows, the probability of failures increase, and the minimal cost to



14

handle such failures also increase.

To reduce the inherent costs of coordinated checkpointing, uncoordinated checkpointing
with message logging have thus been proposed. On the failure-free part of the execution,
the main idea is to remove the coordination of checkpointing, targeting a reduction of the
I/0O pressure when checkpoints are stored on shared space, and the reduction of delays or
increased network usage when coordinating the checkpoints. Furthermore, uncoordinated
protocols aim at forcing the restart of a minimal set of processes when a failure happens.
Ideally, only the processes subject to a failure should be restarted.

In uncoordinated checkpointing with message logging, processes log nondeterministic
events and message payloads as they proceed along the initial execution; without strong
coordination, they checkpoint their state independently; in case of failure, the failed process
restarts from its last checkpoint, it collects all its log history, and enters the replay mode.
Replay consists in following the log history, enforcing all nondeterministic events to produce
the same effect they had during the initial execution. Message payloads must be provided
to this process for this purpose. If multiple failures happen, the multiple replaying processes
may have to reproduce the messages to provide the payload for other replaying processes, but
since they follow the path determined by the log history, these messages, and their contents,
will be regenerated as any deterministic action. Once the history has been entirely replayed,
by the piecewise deterministic assumption, the process reaches a state that is compatible
with the state of the distributed application, that can continue its progress from this point
on.

Uncoordinated checkpointing with message logging has been explored for efficiently min-
imizing application vulnerability to fail-stop failures, and seems to an option for addressing
fail-stop failures in in-situ workflows. Unfortunately, to the best of our knowledge, there is
not a supported framework to allow an uncoordinated checkpointing mechanism running at

in-situ workflows level and maintaining a global consistency.

2.4 Data Verification

Silent error is another potential threat to the data integrity of an HPC application. Silent

errors may occur in the form of transient bit-flips and are typically caused by electronic noise
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or strikes by high energy particles, such as cosmic rays or proton radiation. Although the
mean time between silent errors (which we will denote as MTBE in this thesis) of individual
components is high, at extreme scales the aggregate MTBE of the entire system is low due
to the large number of system components. Additionally, silent errors are becoming more
prevalent in HPC systems as lower power chips with smaller feature sizes are being deployed.
Research has shown that there exists a strong inverse correlation between the spontaneous
error rate and the device sizes and operating voltages [28]. Compounding the issue, scientific
workflows, due to their complexity and long execution times, tend to encounter interruptions
or obtain invalid results caused by silent errors at a relatively high rate. Therefore, data
resiliency is a critical concern for scientific workflows running on extreme scale systems and
an efficient silent errors detection approaches is important for guaranteeing data resilience.

In contrast to a fail-stop failure whose detection is immediate, a silent error is identified
only when the corrupted data leads to an unusual application behavior. Such a detection
latency raises a new challenge: if the error struck before the last checkpoint, and is detected
after that checkpoint, then the checkpoint is corrupted and cannot be used for rollback.
In order to avoid corrupted checkpoints, an effective approach consists in employing some
verification mechanisms and combining it with checkpointing. This verification mechanism
can be general-purpose (e.g., based on replication or even triplication [29]) or application-
specific (e.g., based on Algorithm-based fault tolerance (ABFT) [10], or on data dynamic
monitoring [7]). In this section, we will briefly talk about three widely-used error detection
approaches in application-level and figure out generality, accuracy and performance of each
approach. The accuracy of error detection is quantified by using two measures: recall and

precision, which are defined as:

TruePositives
recall = — -
TruePositives + FalseNegatives
o TruePositives
precision =

TruePositives + FalsePositives
2.4.1 Process Replication

Process replication [29] has been widely used for tolerating both silent errors and fail-stop

failures. It creates replica tasks, such as MPI process, for each primary task and compares
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the computation results between replicated processes to detect corrupted data. This ap-
proach is very general with high recall and precision. Unfortunately, process replication
may not always be feasible for extreme scale in-situ workflows because computing redun-
dant tasks of any components including data staging will impose large computation and
storage overheads which significantly degrade the overall performance of in-situ workflows,
since application components such as scientific simulation are usually computation intensive,
and the compute resources in data staging are much smaller than that in that application
components.

Also, using replication for fault tolerance of the data staging service would require
each staging server and its data to be replicated, which doubles the compute and storage

requirements and can make it infeasible.

2.4.2 ABFT

The general idea of Algorithm Based Fault Tolerance (ABFT) [10] is to introduce infor-
mation redundancy in the data, and maintain this redundancy during the computation.
Linear algebra operations over matrices are well suited to apply such a scheme: the matrix
(original data of the user) can be extended by a number of columns, in which checksums
over the rows are stored. The operation applied over the initial matrix can then be extended
to apply at the same time over the initial matrix and its extended columns, maintaining
the checksum relation between data in a row and the corresponding checksum column(s).
Usually, it is sufficient to extend the scope of the operation to the checksum rows, although
in some cases the operation must be redefined.

If a failure hits processes during the computation, the data host by these processes is
loss or corrupted. However, in theory, the checksum relation being preserved, if enough
information survived the failure between the initial data held by the surviving processes
and the checksum columns, a simple inversion of the checksum function is sufficient to
reconstruct the missing data or detect the silent errors.

No periodical checkpoint is necessary, and more importantly the recovery procedure
brings back the missing or corrupted data at the point of failure, without introducing a

period of re-execution as the general techniques seen above impose, and a computational
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cost that is usually linear with the size of the data. Thus, the overheads due to ABFT are
expected to be significantly lower than those due to rollback-recovery.

ABFT was shown to be an effective method with low computation overhead and high
accuracy for application-layer detection and correction for a range of basic matrix operations
including addition, multiplication, scalar product, transposition. Also, such techniques were
also proven effective for LU factorization, Cholesky factorization and QR factorization.
However, ABFT does not provide general error detection for applications. It has only been
implemented for a limited set of linear algebra application, and so is only available to a

small subset of the vast spectrum of scientific applications.

2.4.3 Outlier Based Error Detection

Most of the datasets produced by HPC scientific applications have expected informational
characteristics that reflect the properties of the underlining physical phenomena that the
applications seek to model [33]. Silent data corruption via bit flips alters the value of the
data causing it to deviate from these standard characteristics. Therefore, corrupted data can
be detected as an outlier based on its deviation from the expected range of normal values.
There are two classes of outlier detection: time-series outlier detection and spatial outlier
detection. Time-series outlier detection [7] is illustrated in Figure 2.2(a). HPC scientific
application often iteratively operate upon data, changing their values over time. At each
iterative time-step, a time-series outlier detection approach can be used to dynamically
predict the possible range for data values at the next time-step, and a data value can be
considered as an outlier if it falls outside this range. Modeling the value of a data point
will take with a random variable, it is then possible to find outliers using variations of the
Chebyshev’s inequality,

1
P(X — ] 2 k8) < 7
where p and 0 are the mean and variance of the random variable X that models the
data point be considered. For example, data value can be identified as silent errors when it

cannot hold this inequality. When additional information is available, like the distributional

assumption of X | this inequality can be sharpened. For example, when X follows a normal
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distribution, it can be shown that 99.7% of the data lies between three standard deviations,

as opposed to 88.8% given by the general Chebyshev’s inequality.
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Figure 2.2: Examples of time series and spatial outlier detection techniques for a 1D data
domain.

Spatial outlier detection [3] is illustrated in Figure 2.2(b). A spatial outlier is a spatially-
referenced object whose non-spatial attribute values are significantly different from those
of other spatially referenced objects in its spatial neighborhood. A spatial neighborhood
may be defined based on spatial attributes, e.g., location, using spatial relationships such
as distance or adjacency. Non-spatial attributes between spatially referenced objects can be
compared within that neighborhood, considering those values whose non-spatial attributes
deviate significantly to be spatial outliers. Although not perfectly accurate, outlier detection
techniques can still detect a substantial fraction of silent errors, and more importantly these
methods incur low overhead. These properties make them attractive candidates for staging-
based error detection framework which will be discussed in chapter 5

Although outlier-based error detection approaches are good candidates for SDC detec-
tion, it should be noted that the choice of the most appropriate error detection approach
depends on the data characteristics of the workflow; this thesis aims to provide a pluggable
approach for enabling error detection in the staging area and to highlight its benefits, and

can use the chosen most appropriate error detection approach for a specific workflow.

2.5 Summary

This chapter described the fail-stop failures and silent errors on extreme-scale computing

systems, and presented five widely-used data and process resilience approaches, and figured
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out why directly using these state-of-the-art fault tolerance approaches in in-situ scientific

workflows can not address fault tolerance related challenges efficiently.
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Chapter 3

Motivating Applications and Challenges

Chapter 2 described the failures and state-of-the-art approaches for addressing them in HPC
system. This chapter presents an overview of the technical approaches and implementations
used for in-situ scientific workflows. In addition, this chapter describes the underlying
technology, i.e., DataSpaces framework, which is used by the implementations presented in

this thesis.

3.1 DMotivating Staging Based In-situ Scientific Workflows

3.1.1 Coupled Combustion Simulation DNS-LES Workflow

S3D is a massively parallel computational fluid dynamics (CFD) solver that performs first
principles based” direct numerical simulations” (DNS) of turbulent combustion. DNS is very
expensive both in terms of flops and data generation, since it resolves the entire range of
spatial and temporal scales in the continuum regime of given problem. Another paradigm
of turbulent combustion simulations that is less expensive and more suitable for engineer-
ing calculations is ”large eddy simulations” (LES), which only resolves the large energy
containing a range of scales and models the physics for smaller scales. Coupled DNS-LES
simulations are being considered as a rigorous, albeit expensive, test bed for assessing mod-
els, because they are capable of isolating and eliminating numerical errors. This is achieved
by performing DNS and LES in lockstep, where the base solution field from the well resolved
DNS solution is appropriately filtered and then fed to the LES simulation, which is running
in tandem and is solving only one additional quantity whose model is being tested.

The lock-step DNS-LES coupling requirement presents a number of data management
challenges. The simulations advance in time a six-stage Runge-Kutta scheme, which implies

that the exchange of data between DNS and LES must happen six times every time step,
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and each time step typically requires a few seconds of wall-clock time. This effectively means
frequent exchanges of a large volume of data. However, due to several uncertainties during
execution (e.g., lag of LES simulation, network issues while transferring the data, etc.), the
DNS and LES simulations often go out of sync. As a result, a large amount of data has to

be cached over multiple time steps before the lock-step data exchange can recover.

3.1.2 Online Data Analytics Workflow for Combustion Simulations

Combustion simulation-analysis workflow is composed of a primary S3D simulation and
many coupled analysis components, such as iso-surface extraction [57], feature tracking [13],
and volume rendering [61]. These analyses cover a broad set of algorithms that have het-
erogeneous data access patterns and requirements. We briefly describe the scientific back-

ground for two of the simulation analyses workflows.

S3D - Iso-surface Extraction

Extracting iso-surfaces of a varying scalar field in the computational domain is interesting
and important for the S3D simulation since these iso-surfaces represent flame sheets in the
turbulent flow. One challenge in extracting these iso-surface is that they are not volume
filling, hence constructing them using a traditional marching cubes algorithm requires ac-
cessing the data from only a only a small portion of the entire data domain (less than 10%).
However, the spatial-temporal fluctuations of turbulent flow cause the temporal iso-surface
to experience ”flapping.” The result of this volatile behavior means that the required por-
tion of the data domain needed for extraction may change accordingly over different time
steps (i.e., it is not fixed). Furthermore, the domain scientist is often interested in the
extraction of multiple iso-surfaces for different iso-values of the scalar field. In this case,

multiple sub-regions of the data domain need to be accessed in the same time step.

S3D - Feature Tracking

Direct numerical simulations resolve all the relevant spatial-temporal scales and provide
information on the dynamics of many interesting features, such as auto-ignition kernel,

expanding or contracting flames, and extinction regions. A feature can typically identified
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and classified in a scalar field based on some critical points and a suitable threshold. Mostly,
these features move and grow over time in the computational domain, but seldom extend to
the full domain. Therefore, the feature tracking analysis can safely identify and track these
features by accessing data of relevant sub-domains, under the guidance of corresponding
thresholds. With the spatial-temporal changes of these features, the sizes and locations of

these sub-domains change accordingly over time steps.

3.1.3 Data Staging technique - DataSpaces

DataSpaces provides distributed data interaction and coordination services to support in-
situ scientific workflows on the very large scale system. It provides simple high-level ab-
stractions that can support the dynamic and asynchronous data-intensive coupling pat-
terns required by the targeted application workflows. It enables live data to be extracted
from running simulation components, indexes this data online, and then allows it to be
monitored, queried and accessed by other components and services via the space using
semantically meaningful operators. Specifically, DataSpaces is built on an asynchronous,
low-overhead, memory-to-memory data communication module, which allows applications
to overlap interactions and data transfers with computation, and to reduce the 1/O over-
heads by offloading data operations to staging area. This module is built upon DART [22],
an open-source asynchronous communication and data transportation substrate based on
RDMA.

The DataSpaces design enables it to be scalable and efficiently implemented on and
across various high-performance systems and clusters. The DataSpaces implementation
consists of two key components, a DataSpaces Client and a DataSpaces Server. The DataS-
paces client component is integrated with the user application and provides the interfaces for
interacting with DataSpaces Server. It prepares, i.e., organizes for its internal representa-
tion, and submits data queries received from the application to the DataSpaces Server. The
DataSpaces server component consists of multiple server instances that run independently
of user applications, on a set of nodes in the staging area. Similar to the client component,
the server component provides the communication interfaces for interactions with the client

components and other server component instances. The server component extends DART
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functionality with data storage services. Actually, It allocates in-memory storage space at
each of the DataSpaces nodes and manages the memory buffers to create the abstraction
of a distributed virtual storage for application data. It stores the data captured from ap-
plications locally at the DataSpaces nodes, and complements the DHT, which stores the
metadata (e.g., geometric descriptor) associated with the data. The application data and
the corresponding index are stored in memory to enable faster access time as compared to

storing the information on disk, which thus incurs the associated latencies.

DataSpaces Workload Pattern

A data staging server which provides data indexing and transformation service, are not
generally CPU-intensive. To demonstrate this workload pattern, we performed experiments
using a synthetic workflow on the Titan Cray XK7 system. The data used in this workflow
is based on the S3D access patterns shown in Figure 3.2. 64 synthetic simulation processes
wrote a set of n-dimensional arrays to 4 staging servers with varying staged data sizes in

each time step. The arrays consist of uniform double-precision floating point data.
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Figure 3.1: Cumulative data write throughput (blue dot line) and CPU Utilization =
compute time in staging/write response time (red line) for different problem sizes when

writing the entire data domain to data staging.

The amount written to each staging server per time step varied between 8M and 64M
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and total data size stored in the staging area through the life of the workflow varied between
320M and 2560M. Using this configuration, we measured the average write throughput
and CPU utilization for the data staging servers under different workloads. The results
are plotted in Figure 3.1. As the size of the workload was increased, the CPU utilization
of the staging cores remained consistently low, while the write throughput has already
reached the peak and decreased. In this particular test, the maximum CPU utilization
was observed around 22% when the write size was 8 M for each staging server per time
step. This experiment illustrates that the compute resource in the staging area is not fully
utilized and the staging performance is constrained by other resources limitation such as
network congestion. Therefore, there is an opportunity to leverage compute resource within
staging-area to perform error detection without degrading the read and write throughput

of the staging service.

3.2 Fault Tolerance Challenges

3.2.1 Data Reliability

Data loss due to failures (e.g., process failures, node failures) in any module of such com-
plex workflows will impact the execution of the entire workflow and can invalidate the
final results. Consequently, it is critical to ensure the data resilience of the end-to-end
workflow. In order to address fault tolerance at extreme scales with the expected commen-
surate higher rates of failures and data loss [15], recent research has explored techniques
for minimizing application vulnerability to failures. Various fault tolerance techniques such
as checkpoint /restart, process replication [26], and erasure coding [63] have been widely
studied, and have been utilized to mitigate failures in individual software components of
the scientific workflow. While these approaches have been utilized to mitigate failures in
individual software components of the scientific workflow, they do not address the resilience
of the overall workflow. For example, in case of staging-based in-situ workflows, the under-
lying data staging framework supporting workflow workflows remains vulnerable to failure

that lead to data loss in the case of failures.
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3.2.2 Data Verification

Unlike data verification for single applications, remediation of silent errors on in-situ work-
flows has only recently been explored. Even worse, The impact of silent errors can po-
tentially be amplified in the case in-situ workflows due to the dependencies, interactions
and data exchanges between the components of the workflow. For example, the S3D work-
flow comnsists of S3D simulation and visualization coupling application, as illustrated in
Figure 3.2. In each coupling cycle, the workflow first executes S3D simulation for several
time steps, moves the data generated to the staging area, which is the processed by the
analytics/visualization applications for feature extraction.

Execution time —»  Data writing L
Error detection |E| Data reading >

S3D simulation >

-
-

 J
\

xispaces_put() dspaces_put() \dspaces_put() \dspaces_put()
Data Staging H H H E H->
¥spaces_get() &jspaces_get() Xispaces_get() &Jspaces_get()
Visualization > > > -

Figure 3.2: Coupling and data-exchange patterns for the in-situ S3D coupled simulation

workflow.

When the workflow passes data between the S3D simulation components and the vi-
sualization components, dozens of 3D scalar and vector field components (fluid velocity,
molecular species concentrations, temperature, pressure, density, etc.) are transferred us-
ing staging or other mechanisms. If there are silent errors in this data, these errors will also
be propagated to the coupled components of the workflow. This will result in erroneous
results in the visualization and analysis products. Even worse, in the case of multiphysics
coupling, even small errors can have catastrophic results, especially to the stability of non-
linear PDEs. These errors have the potential to significantly alter the accuracy of the
simulation, and may not be otherwise detected by the simulation without expensive analy-
sis on the invariant terms of the simulation.

To prevent such silent errors from propagating across components, we must identify and

recover from data corruption before the data transfer is completed. While error detection
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algorithms can be hard-coded into applications and invoked before every data exchange, this
can become quite expensive. In the case of staging-based in-situ workflows, data transfers
between workflow components is done through staging, which provides an opportunity to
leverage computational capabilities on the staging resources to perform error detection only
on the exchanged data in an asynchronous manner. In in chapter 5, we explore the feasibility

add effectiveness of such an approach.

3.2.3 Data Consistency

Recent research has also addressed fault tolerance at extreme scales and the expected higher
rates of fail-stop failures. These works have explored techniques for minimizing application
vulnerability to such failures. However, applying fault tolerance techniques to the applica-
tion components individually does not effectually address the resiliency challenge for the
whole workflows due to the data coupling at extreme scale. For example, the S3D work-
flow consists of S3D simulation and visualization coupling application, as illustrated in
Figure 3.3. In this similar scenario that we discuss in Section 3.2.2, if the S3D simulation
and analytics are protected by checkpoint/restart individually, and a failure happens in
the analytics, the re-executive analytics process will get the wrong version of data from
data staging considering the S3D simulation has updated the data during the analytics
re-execution. (the casel shown in Figure 3.3). Similarly, if a failure hits the S3D simula-
tion, the re-executive simulation will unnecessarily perform the data updating operation to
data staging twice, considering data has already been staged in staging in first execution
(the case2 shown in Figure 3.3). These data/events inconsistency issues finally result in
erroneous results of visualization and analysis products.

A further challenge to fault tolerance of entire workflows is application components in
workflows exhibit different resiliency requirements, program properties and failure charac-
teristics, which result in diversification of fault tolerance strategy among these components.
For example, the stencil-based application which is commonly used as scientific simulations,
such as the S3D simulation, employs local recovery strategy [31] to effectively reduce the
overhead of recovery in case of frequent process failures. This recovery strategy is based

on unique communication pattern of stencil-based applications which implies that multiple



27

Data exchange: Execution time:—» Checkpointing: i

Rollback restart: &%\ Failure: X
Case2

Simulation —i Casel i T i i >
m Time
Analysis i i i i i—y
A

wrong read ‘ unnecessary write

Data Staging

-

Figure 3.3: individually checkpoint /restart for the in-situ S3D coupled simulation workflow.

independent failures can be masked to effectively reduce the impact on the total time to
solution. Meanwhile, as another large group of applications, the linear algebra applications
typically utilize algorithm-based fault tolerance (ABFT) [10] to tolerate both fail-stop fail-
ures and silent errors. In ABF'T, the application uses intricate knowledge of linear algebra
to maintain supplementary, redundant data, and can be updated algorithmically to form a
recovery dataset in case of failure. Although local recovery and ABFT can exhibit excellent
performance and resiliency for the single application, they are less generalist approaches,
and can not be appropriate for all application components in workflows. Therefore, when
such types of applications with the specific fault tolerance strategies combine together into a
in-situ workflow, to enable these resilience techniques working cooperatively is challenging,
and constructing a workflow-level loose coupled fault tolerance framework becomes neces-
sary. Ideally, workflow-level fault tolerance mechanisms should enable individual application
components to exploit the wide area of fault tolerance techniques.

Unfortunately, naive using state-of-the-art fault tolerance approaches in workflows can
not address those challenges discussed above efficiently. One possible solution to fault tol-
erance of in-situ workflows is to use global coordinated checkpoint/restart protocols shown
as Figure 3.4. This method requires that all processes in the workflow rollback to the last
valid checkpoint place, when a failure occurs. In the case of the Message Passing Inter-
face (MPI), a very simple approach have often been taken to ensure the consistency of the
snapshot: a couple of synchronizing MPI barriers can be used, before and after taking the
process checkpoints, to guarantee that no application in-flight messages are present at the

time of triggering the checkpoint, and thus the causal ordering of communications inside
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the application is avoided entirely. Global coordinated checkpoint/restart ensures a global
state consistency, but it presents two concerns. As the size of the system grows, the prob-
ability of failures increases, and the minimal cost to handle such failures also increase due
to frequently rollback whole workflow for recovery. Even worse, rollback of other healthy
components which have no data coupling with the failed component during failures time
and last checkpoint time, shown as Figure 3.4, are unnecessary and wasteful. The second is
global coordinated checkpoint/restart constrain the diversity of individual application fault

tolerance strategies which can efficiently reduce the resiliency cost.
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Figure 3.4: Coordinated checkpoint/restart for the entire in-situ S3D coupled simulation

workflow.

Ideally, a good candidate of workflow-level fault tolerance approaches should maintain
the data consistency between coupled application components efficiently, meanwhile pro-
vide a compatibility with diverse state-of-the-art fault tolerance approaches to construct a

workflow-level loose coupled fault tolerance mechanism for the entire workflows.
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Chapter 4

CoREC: a Scalable and Resilient In-memory Data Staging

4.1 Introduction

In this chapter, I present CoREC (Combining Replication and Erasure Coding), which
is a hybrid approach to data resilience for data staging. CoREC provides the benefit of
data replication, i.e., high performance, while leveraging erasure coding to reduce storage
costs. CoREC uses online data classification, based on spatial/temporal locality, to deter-
mine whether to use erasure coding or replication, and balances storage efficiency with low
computation overheads while maintaining desired levels of fault tolerance. Moreover, to
satisfy the diverse data resiliency requirements of different workflow components, CoREC
supports the use of different data redundancy schemes, such as a hybrid approach combin-
ing both replication and triplication with different erasure codes. CoREC with multilevel
data redundancy (CoREC-multilevel) can dynamically decide between erasure coding and
replication schemes (for e.g., duplicate, triplicate, and Reed-Solomon codes) based on the
data access patterns while maintaining application-specified resiliency requirement and in-
curring minimal storage overhead. Furthermore, I develop optimized load balancing and
conflict avoiding encoding for CoREC, as well as a low-overhead lazy-recovery scheme for
the staging nodes, to alleviate overheads and interference associated with CoREC for both
data-writes and data-recovery. CoREC also provides a process/node recovery solution that
cooperates with the data resiliency scheme, and aims to recover failed staging servers so as
to maintain the performance of the data staging framework over the lifetime of the workflow.

I have used CoREC to implement resilient data staging within DataSpaces, and have
also integrated ULFM (User Level Fault Migration) [8] to efficiently recover from both
processes and node failures. I have deployed the resulting resilient DataSpaces on the Titan

Cray XK7 production system at Oak Ridge National Laboratory (ORNL), the Cori Cray
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XC40 system at the National Energy Research Scientific Computing Center (NERSC), and
the Caliburn system at Rutgers Discovery Informatics Institute (RDI2). Our experimental
evaluations using synthetic workloads and the S3D combustion workflow demonstrate that
CoREC maintains good storage efficiency and low latency for various use cases, supporting
sustained performance and scalability even in the face of frequent node failures.

The rest of this chapter is organized as follows. Section 4.2 presents the low-latency and
high-efficiency CoREC and CoREC-multilevel approach to data resilience for data staging,
and Section 4.3 describes the design of CoREC. In Section 4.4, I present the implementa-
tion and evaluation of CoREC. Finally, Section 4.5 presents related work and Section 4.6

concludes the chapter.

4.2 CoREC (Combining Replication and Erasure Coding)

CoREC is a hybrid approach that dynamically (and intelligently) combines replication with
erasure coding based on data access patterns to balance storage efficiency with computation
overheads, while maintaining desired levels of fault tolerance. Specifically, CoREC uses a
robust classification of data access patterns to identify hot and cold data — the key idea is to
replicate the write-hot data while applying erasure coding for write-cold data. Using repli-
cation for write-hot data eliminates the expensive parity updates as I only need to update
the replicas. Using erasure coding for write-cold data ensures limited object updates and
dramatically reduces storage costs as compared to using a pure replication-based approach.
For example, in a two-failure resiliency case, let us assume that 60% of the data is identified
as write-cold, which uses erasure code (n = 8,k = 6), and the remaining 40% hot data
objects are replicated for fault-tolerance. Here, using CoREC, I incur only 100% storage
overhead compared to the 200% needed for full replication, but maintain write performance
close to that of replication, assuming write-cold data are rarely updated. Note that I do
not consider read access patterns in our hot/cold classification because data encoded with

systematic erasure codes do not need to be decoded for reads in the absence of failures [52].
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4.2.1 Classifying Data Access

CoREC utilizes the concept of write-hot and write-cold data to identify data objects as
candidates for either replication or erasure coding. If a data object has been recently
written/updated more than a threshold number of times within a certain interval it is
considered to be hot data, otherwise it is considered to be cold data. While data access
patterns in real applications can change as the application evolves, i.e., a hot data object
may become cold and vice versa, access patterns in scientific applications typically exhibit
high temporal and spatial data localities as the data and its access is typically defined
along some discretization of a physical domain (e.g., a mesh or a grid), and the accesses are

iterative in time [5].
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Figure 4.1: An illustration of spatial and temporal data write/update patterns for a 2D
data domain with N 4 1 time steps. The solid red regions and slash regions (i.e., hot data)
indicate data written into the staging area, while the black dot regions (i.e., cold data) are

not updated since time step <.

During the execution of scientific simulation workflows, the simulation (e.g., S3D) issues

a data write request, which writes n-dimensional data, at the end of each time-step/iteration.
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Here, I use temporal locality of objects to indicate data objects being written/updated in
consecutive time-step, and spatial locality of objects to refer to data objects that are near
to each other in the n-dimensional space. As an illustrative example, consider a simulation
that uses a 2-dimension Cartesian grid as show in Figure 4.1(a). The simulation writes
data objects in region {(2, 2), (6, 6)} of the grid at time step 1, and this hot data turns
cold at time step i (temporal locality). At time step n, another application writes/updates
only a portion of that region (say region {(2,2), (3,3)}). In this case, it is very likely that
the surrounding data objects in region {(2, 2), (6, 6)} (due to spatial locality) will also be
written/updated at subsequent time steps, n + 1, n 4+ 2, and n+ 3 [5].

I may go beyond this one step lookahead prediction and consider several time steps. For
example, suppose that the highlighted data objects at time step 1 and step 2 are written by
one application in Figure 4.1(b), and these multiple objects turn cold at time step 7. If at
time step n another application writes a portion of the combined regions of {(2, 2), (4, 6)}
and {(4, 4), (7, 5)}, it will likely access objects in the combined region during time steps
n+1, n+2, and n+ 3. This multi-time step look-ahead mechanism is beneficial because an
application may have several different hot data objects at the same time-step in different
regions of the grid. CoREC uses these spatial-temporal data locality attributes for multi
time-step data access prediction.

While choosing candidates for replication and erasure coding, I need to consider the
properties of both replication and erasure coding as described in sub-section 2.2. Since
replication has advantages in terms of write performance for frequent writes but has storage
overhead as compared to erasure coding, I use data access patterns to classify write-hot and
write-cold data and apply replication and erasure coding techniques respectively. Specifi-
cally, newly written or updated data objects are classified as hot data. Data objects with
spatial coordinates near current hot-data are anticipated to be accessed in near-future,
and thus are also considered hot. The data objects with temporal locality in previous
iterations/time-steps relative to the current hot data objects are also classified as hot data
objects. CoREC replicates these hot data objects while all other cold-data objects are era-
sure coded. I use reference counters to record the access frequency of each data object. From

a pool of replicated data objects, the object with the lowest access frequency is selected as
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a candidate for erasure coding. Once it is erasure coded, its access frequency is reset back
to zero and incremented with every future access. The objects in the erasure coding pool
with highest access frequencies are selected to be transitioned to replication if and only if
the current storage overhead is lower than a user-specified threshold, i.e., COREC aims to

maintain storage efficiency while providing highest performance.

4.2.2 Modeling the CoREC Approach

In this section I analyze the trade-off between replication and erasure coding and the impact
of data access classification on a simple hybrid approach.

If Njeyer is the data resilience level, i.e., the maximum number of simultaneous node
failures that system should be able to recover from, using replication for fault tolerance
requires additional Ny copies of each object. Therefore, the storage efficiency, which is
ratio of the size of original data objects to the size of original data object plus redundant

data objects, for replication is:

1
b= Nieyer +1
Assuming that replication schemes use streaming pipelines: stream to the first node, which
streams to the second node, and so on up to N. Also, the data transfer time from one server
to another server is [ seconds. Further assuming that each server has ¢ second for sending

the object to the remote server, the time required to guarantee Njg,.; data resiliency level

for one object is:
Cr =1lx Nlevel +c

Using Reed Solomon Code [47], supporting Nie,e; fault tolerance with a group of Nyoqe
servers involves both encoding and data transfer between servers. It requires a computation
overhead of O(Njeyer X Npoge) and data transfer of Njeye; + Npoge — 1 data objects for Ny oqe

objects. Thus, the storage efficiency is:

Nnode

o —
‘ Nlevel + Nnode

and the time required to encode one data object is:

l Y N,
Ce = O(Nlevel X Nnode) + x ( li}fel i node) +c
node
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Simple Hybrid Erasure Coding

In this chapter, I use simple hybrid erasure coding to refer to a hybrid approach where
candidate data objects for replication and erasure coding are selected randomly without
any data classification. Suppose that an application stages n disjoint objects, and runs
for a duration T while uniformly updating each object ¢ times. Then, the resulting object
update frequency is f = % If the probability that an object will be replicated is P, and the
probability that an object will be erasure coded is P. = 1 — P,, then the storage efficiency

for simple hybrid erasure coding (Epyprig) can be computed as:

Nnode
(Nnode X (Nlevel + 1) X Pr + (Nle'uel + Nnode) X Pe)

The corresponding time complexity is given by:

Chypria = (Pr x Cr + Po X Ce) X f X n (4.1)

CoREC

In CoREC T classify data objects as hot or cold based on the data update frequency f.
Assuming that the object update frequency is non-uniform for hot and cold data, let these
frequencies be fj, and f. respectively, and that f; > f.. For n disjoint data objects, Py, x n
hot data objects are replicated and P, x n cold data objects are encoded in CoREC, where
P, and P, are the percentages of hot and cold data objects in the data staging service

respectively. Therefore, the time complexity for CoREC can be computed as:

CcorEc = Py x Cp X fry x4+ P, x Co X foxn (4.2)

Since each data object in the data staging service is classified as either hot or cold, P. =

1 — Pj. From equation 1, I have:

Ceorbc = (Cr X fr, = Ce X fo) X n X P+ Ce X fe X n (4.3)

Accordingly, the time complexity for exclusively using erasure coding Cepqsure and replica-

tion Creplica are:

Creplica:(fh_fc)XCranPh+CTXfCXn (44)
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Cerasure = (fh - fc) X Coxnx P,+ C, x fc Xn (4.5)

The advantage of CoOREC as compared to simple hybrid erasure coding in terms of time

complexity can be computed as:

Gain = Chypria — Coorec = (Ce — Cp) X Py X Pe X (fon — fe) xn (4.6)

The storage efficiency for CoREC, which depends on percentage of hot and cold data
(EcorEC), is given by:

N, node

4.7
(Nnode X (Nlevel + 1) X PT + (Nlevel + Nnode) X Pe) ( )

The prediction and classification of hot data objects depends upon the accuracy of the
classifier. If the classifier is not accurate, it might classify cold data as hot data (or vice
versa). Even if the accuracy of the classifier is perfect, replicating all hot data objects might
be infeasible due to limited memory size. Since I can tolerate a limited storage overhead for
data resiliency, in CoREC I introduce two parameters: miss ratio r,, and storage efficiency
constraint S. I use miss ratio, i.e., the ratio of misclassified data objects to total hot data
objects, as a measure of the accuracy of data access classification. Then, P,r,,n real hot
data are classified as cold data and encoded. Thus, the time complexity for CoREC under

miss ratio 7, can be computed as:

CcorEC = Ph(l - 7ﬁm)c'rfhn + Phrmcefhn + Pccefcn = ( )
4.8

(Crfh - Cefc + (Ce - Cr)fnrm)nph + Cefcn

The storage efficiency constraint S is used as an upper bound for the storage overhead that
can be tolerated, which is a lower-bound for Ejyy.iq and Ecorpc. When Ecorpc = S,
the storage efficiency constraint limit is reached and equation 7 can be solved to obtain the

value of P, as:

B, x(S—-E)
" Sx(E,—E.)

When P, < Py and P, > P., (P,—(1—7y,)P,)n real hot data are encoded under constraint S.

Thus, when CoREC hits the storage efficiency constraint, the time complexity for CoREC
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with miss ratio r,, can be computed as:

CcorEC = Pr(l - Tm)crfhn + (Ph - (1 - Tm)PT)Cefhn + PcCefcn = (4 9)

(fn = fe)CenPy + Cefen — (Ce — Cr)(1 — 1) Py fan

Using the time complexity equations (1), (3), (4), (5), (8) and (9), I plot relative
write/update cost versus the hot data percentage in Figure 4.2. When all of the data
objects are cold (Marker 1 in the figure), the write performance of CoREC is the same as
simple hybrid erasure coding, because data is written/updated rarely. With the increase
in the hot data percentage, the time complexity for CoREC increases linearly, i.e., perfor-
mance is gained due to the replication of hot data objects. If I assume that classification
is accurate and there is no constraint on storage, then all hot objects are replicated and all
cold objects erasure coded. In this case, the write cost will be similar to replication. When
storage constraint limit S is reached (Marker 2 in the figure), some of the hot data objects
will be erasure coded, irrespective of their classification, which will lead to an increase in the
cost. In addition to this, if the classifier is not accurate, then there will be misclassifications,
and write/update performance will be further degraded. In conclusion, between points 1
and 2 in Figure 4.2, the performance of CoOREC increases due to the increase in hot data
objects, but beyond point 2, the storage overhead limit is reached and objects are erasure
coded irrespective of their classification, leading to a constant difference in time complexity
with the full erasure coding approach, i.e., Cergsure-

Based on Equation (6) and Figure 4.2, I can deduce that CoREC’s time complexity
depends on the following factors: (i) The difference in the data access frequencies of hot
and cold data objects, i.e., fp — f.. The larger the difference, the greater the benefit of
CoREC. (i7) The difference in the time complexity of replication and erasure coding, i.e.,
Ce — C,. The larger the difference, the greater the benefit of CoREC. (i7i) The scale of
workload n. The larger the workload, the greater the benefit of CoREC. (iv) The miss

ratio, i.e., 7. The lower the miss ratio, the greater the benefit of CoREC.

4.2.3 CoREC-multilevel, CoOREC with multilevel data redundancy

When dealing with in-situ workflows, each application and variable potentially has different

data resilience requirements. For example, large-scale, long-term simulation applications
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Figure 4.2: An analytic study of the relative time complexity of COREC (Ccorrc) with
RS(4,3), and varying miss ratios(R,,) and percentages of hot data objects (P}). The time
complexity for erasure coding (Cerqsure), replication (Chrepiica) and simple hybrid erasure

coding (Chypriq) is noted by red dotted lines, as baselines.

require high data resiliency due to a higher probability of failures. Meanwhile, applications
in a small scale workflow may have lower data resilience requirement. Since different work-
flows can share the same data staging resource, using the same data resiliency scheme across
the whole data staging framework is not efficient. Amplifying this concern, the level of data
resilience might vary for each wvariable of an application. For example, in machine learning
workflows which performing hyperparameter optimization, the hyperparameter variable is
the key result of the hyperparameter tuning and failures affecting this dataset will signif-
icantly affect the entire workflow. In contrast, variables used for logging purpose are less
important and unavailability /corruption of such data rarely impacts the final result of the
workflow. This warrants a need to support the ability to set the data redundancy level at
the granularity of variables.

In the following section, I introduce CoREC with multilevel data redundancy (CoREC-
multilevel). Unlike CoREC, which only cares about data access frequency and applies a
universal data redundancy for all data, CoREC-multilevel takes into account the resilience

requirement of applications and variables. Specifically, I enable a varying data redundancy
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scheme, which corresponds to different n-way replications and erasure coding schemes based
on the data resilience requirements. In CoREC-multilevel, each variables has an individual
level of data redundancy, which is set by the application, and the global storage efficiency
constraint is set as an upper bound of storage cost in the staging area.

Assuming that the overall cost of multilevel replications is the sum of the cost of each
replication scheme (C);) weighted by the percentage of corresponding data (P,;) in the total
replication data, the expected cost of the multilevel method that combines n replication

schemes C. is:

67" = rlcrl + P’r‘207"2 + ...+ PTHCTTL

In the same way, the expected cost for the n erasure coding schemes 6’6 is:

6;e - Pelcel + PeQCEQ + ...+ PenCen

From these equations and equation (8), the time complexity for CoREC-multilevel Coorronm

under average replication C; and erasure coding C, costs can be computed as:

CCORECM = (érfh - éefc + (ée - ér)fnrm)nph + 5efcn (4‘10)

Similarly, I can get the average storage efficiency for replication Er and erasure coding Ee

as:

Er = PEp + PoEp + ...+ Py By

Ee = PeyFe1 + PooFea + ... + PepEep
The storage efficiency for CoREC-multilevel is then given by:
E.E,

Ecorpom = =———=— (4.11)
E.P. + E, P,

4.3 CoREC System Design

CoREC is composed of three key components, i.e., the grouped replication & erasure coding

based data placement scheme, the load balancing & conflict-avoid encoding workflow, and
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the lazy recovery strategy. In this section, I present the overall design and implementation

details of CoOREC, and describe these three components.

4.3.1 Data Placement
Grouped Replication & Erasure Coding Scheme

In order to tolerate concurrent staging server failures (i.e., node failure), I divide staging
servers into replication groups and erasure coding groups. A replication group includes the
data object and its replica, and an erasure coding group includes data objects and their
parities. The grouped replication and erasure coding scheme overcomes the limitation of
random replication and makes data objects able to survive concurrent failures with higher
probability. Figure 4.3 shows an example of how two-way replication and erasure coding
group (k = 3,n = 4) scheme work in a sixteen-servers data staging.

Grouped replication & erasure coding Replicati
Physical layout eplication group

C1 C1 ) Coding group

N 1
“‘. B ‘ Staging server
>< Inject failure
Node 2

Node 3 ::> |
ooe® %q)@

Cc3

i

Figure 4.3: Data Objects, Replicas and Parity layout in data staging. Servers 1 and 2 are
in the same replication group while servers 1, 2, 3 and 4 belong to the same coding group.

This topology-aware data layout can tolerate arbitrary single node failure.

The placement of replicas and data/parity objects on staging servers in the physical
organization can also have a critical effect on data resilience. In many cases, a single event
such as a power failure or a physical disturbance will affect multiple devices, and greatly
increases the risk of data loss. By reflecting the underlying physical organization of data
staging servers, our approach can model and thereby address potential sources of correlated

staging server failures. Specifically, in CoREC, I reorder the data staging server ID based
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on network topology and organize them in a logical ring. Each server is followed in the
logical ordering by a server on a different node or cabinet so that as many as n contiguous
servers belong to n different nodes or cabinets. By encoding this information into the logical
network topology, our data placement policy can separate the data object, its replicas and
parity objects across different failure groups while maintaining the desired distribution.
As depicted in Figure 4.3, a sixteen-servers data staging which is located in 4 dedicated

compute nodes can tolerate arbitrary one node failure.

4.3.2 Load Balancing & Conflict Avoid Encoding Workflow

In CoREC, data objects are encoded in staging servers during transition from replication
to erasure coding. If one staging server is currently busy with a large read-write workload,
assigning the encoding task to this server will impact other requests being served, as well
as the encoding time. CoREC addresses this interference with a load-balancing & conflict-
avoid encoding workflow. Since hot data objects are always replicated, CoOREC can simply
select the staging server with the lightest workload in the replication group to perform data
classification and encoding operation.
Work flow: —

Grouped Server 1 Grouped Server 2 (helper server)
Client: object put request

Client: object put request

cold cold
Encoding Encoding

low low
Keep token Keep token

Figure 4.4: Encoding workflow in CoREC.
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Figure 4.4 illustrates an encoding workflow with one server and one paired server, also
called helper server, executing on a replication group of size 2. The encoding workflow is
triggered by the server when it receives an object-put request from a client. Once server
receives and pre-processes the data object, data classification component classifies data
objects and make decision for the data resilience approach based on data frequency and
storage efficiency constraint. After that, the workload measurement component decides
whether to encode locally or let the helper server encode based on its workload level. If
local node’s workload is high, then it sends the replica node (node with replica data) an
encoding token to perform erasure coding. Otherwise, the server performs encoding locally.
After the server performs the encoding operation, it sends data & parity objects to other
servers in the erasure coding group.

The encoding workflow comprises four principal components. First, a data fitting and
partition component pre-processes the data objects into a specific size and shape. Second,
a data classification and encoding component classifies data object and makes it resilient.
Third, a workload measurement component measures a server’s workload level based on the
frequency of client read-write requests. Finally, a data/parity object consistency mechanism
provides atomic encoding processing for each data objects. In a replication group, all servers
share one encoding token and the server can get the encoding token only if it has a low
workload. Only the server that holds an encoding token can perform an encoding operation,
which ensures that exactly one stripe is placed in the coding grouped servers. It also ensures
that the less busy server in the group performs more encoding operation than the busier

one and workload is balanced throughout the coding group.

4.3.3 Data Size & Geometric Shape

While very small data objects suffer from metadata overheads, larger data objects have
relatively smaller metadata overheads and achieve better throughput during asynchronous
communication such as RDMA [23]. However, large-sized data objects increase the pro-
cessing time required for data encoding, decoding, replication and transportation [60]. This
leads to longer data access latencies. Thus, an appropriate object size is required to balance

metadata overhead and data access latency.
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Algorithm 1 Geometric partitioning and fitting of an object

Require: Data Object (object), metadata, dimension (n), fitting size (size);
Ensure: Fitting data objects (object|m]), metadata (metadata[m]);
N <1
object[m] < object
while N # 0 do
if 3 obj in object|m] > size then
get maximum boundary size of obj in dimension n
partition boundary to half
partition obj to half
metadata[m] < metadata
object[m| < obj
else {Object is fitting}
return objectm|, metadatalm)
end if

end while




43

In order to fit data objects into desirable size and shape on the servers, the data fitting
and partition component in CoREC uses Algorithm 1. In this algorithm, I first set a range
of target data object sizes. When a staging server receives a data object that is larger than
the range, I partition the object into halves along the longest geometric dimension. This is
done repeatedly until all sub-objects fall into the range of target size. This simple binary
partition algorithm ensures that data objects do not exceed a threshold size. Partitioning
in this way ensures a balance between the size of objects and the quantity of objects. Under
perfect conditions, every object can be partitioned into regular and uniform n-dimensional

objects.

4.3.4 Recovering Data Staging Server Failures

Existing large-scale resilient storage solutions typically use an aggressive data recovery
strategy[18]. Whenever a failure on one or more servers is detected, all lost objects are
recovered and re-generated onto active servers immediately. The problem with such an
aggressive data recovery scheme is that it requires significant resources to recover data from
a failure. Decoding operations and data transportation may consume considerable network
and computing resources in a short time window. These overheads eventually hinder the
application read-write requests. In CoREC, I propose a new lazy recovery scheme with
a time limit on delayed data recovery. As shown in Figure 4.5, recovering data staging
servers from failures involves four key steps: (i) failure detection, (ii) data recovery in the
degraded mode, (iii) process recovery, and (iv) data recovery in the lazy recovery mode.
CoREC introduces two data recovery modes (the degraded mode and lazy recovery mode)

for data recovery.

Failure Detection

In CoREC, the function of detection and handling of failures is delegated to ULFM-enabled
MPI. As a proposed extension of the MPI standard, ULFM [8][9] includes mechanisms to
tolerate fail-stop failures without the need to restart all processes linked to the MPI com-
municator. I leverage ULFM to tolerate and recover from such failures in the data staging

area. ULFM guarantees that MPI operations involving communication should return an
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ERR_PROC_FAILED error code if the runtime detects a process failure in the data staging
communication area. ULFM-specific return codes are captured using MPI’s profiling inter-
face and no changes in the MPI runtime itself are required. In data staging frameworks,
the data exchange between applications happen via reads/writes from/to the staging area.
The reads/writes are facilitated via asynchronous RDMA. When staging server processes

fail or are unavailable, RDMA error codes can also used to detect these failures.

Degraded Mode

Once a data staging server detects a process failure, it distributes failure notifications to the
remaining data staging servers. The data staging area is then shrunk to remove the failed
staging servers and the rest of the staging servers switch to a degraded mode, as shown
in Figure 4.5. In this mode, only the requested data is re-constructed, and transferred
to the client. This temporarily re-constructed data is discarded once the read request is
served. The reconstruction of failed data objects in the read-path increases read latency.
Experimental evaluation results for the reading performance in degraded mode are presented

in Section 4.4.

Process Recovery

To be able to recover from process failures, COREC reserves a few staging server processes
as backup processes. The number of backup processes is determined by the choice of erasure
code and server process density on a node. For example, if CoREC is initialized to uses
erasure code with n = 8, k = 6, the goal is to tolerate 2 node failures per 6 nodes. If the each
node has 8 server processes, then for process recovery, CoOREC initiates 16 backup processes
per 48 staging processes. When failures are detected, these idle data staging processes will
be activated and merged with the old data staging processes group. These newly activated
processes will be reassigned the same rank numbers as failed ones. An alternative approach
is to spawn new processes instead of use processes from a previously prepared process pool,

if this is supported by the job scheduler.
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Lazy Recovery Mode

After a replacement server joins data staging, CoREC switches to the lazy recovery mode.
In this mode, each object on the failed server will be recovered immediately after it is queried
or updated. The recovery of all other remaining objects are triggered based on the time-
limit set for delayed data recovery. The time-limit setting depends on the fault tolerance
requirement for data objects and the overall MTBF of the system. Normally, too long of a
time-limit constraint results in an unacceptably high risk of permanently losing the data as
it increases the chance of multiple failures in the same group. On the other hand, too short
time-limit constraint risks interfering with the application’s regular requests in the same
way as aggressive recovery. Specifically, CoREC uses %M TBF as the recovery timeline
constraint. In many data-intensive simulation applications, most of the failed objects will
be recovered much earlier than the end of the timeline due to high-frequency of update and

query requests.

4.4 Experimental Evaluation

This section describes the implementation details of CoOREC and presents an experimen-
tal evaluation using synthetic benchmarks as well as the S3D combustion simulation and
analysis workflow [16].

CoREC is implemented on the top of DataSpaces [23], an open-source data staging

framework. The schematic overview of the runtime system is presented in Figure 4.6. In
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addition to modifying several existing components of DataSpaces for the integration, the
system architecture introduces three key new components in data resiliency module: Lo-
cal Object Management, Object Transportation, and System Status Monitor. The Local
Object Management component maintains local data objects, replicas, parity objects, and
metadata. It also stores the data object classification information in addition to performing
the encoding, decoding and object preprocessing tasks. I use the Jerasure open-source li-
brary [50] to perform encode/decode operations. While evaluation results demonstrate the
efficacy of CoREC when using Reed-Solomon code, the Jerasure library offers a variety of
erasure codes to choose from and it is straightforward to change the erasure code used in
CoREC. The Object Transportation component synchronizes data objects, replicas, pari-
ties, and metadata while managing the transportation of objects between different staging
servers. Server’s workload monitoring and failure detection is performed by the System
Status Monitor component. In order to recover from failed staging server processes, I also
introduce an additional process resiliency module. This module manages a spare process
pool and implements the detection and handling of staging server failures using ULFM,

which offers a set of fault tolerance mechanisms for MPI applications.

Staging Server New/Update component : 1
IF__________________________j Existing component : -
I Data Storage Layer Data Resiliency I
I Module I
i I e——

|
| Parity Object >
| /o8 Object | Client
I 3 Management || | len
| Jerasure Library :
| || Query Engine, Data Indexing | [« |
I Object I
| Transportation :
|
I |
|
|
|
|
I

Process Resiliency Module (ULFM) |

Figure 4.6: System Architecture
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Synthetic Experiments

Our synthetic experiments were performed on both, the ORNL Titan Cray XK7 system
and the NERSC Cori Cray XC40 system. These experiments evaluate the read and write
performance of applications with different data read and write patterns, when they use
CoREC for resilient data staging. To better understand the performance and effectiveness of
our approach, I selected five test cases with common data reading and writing patterns used
by real scientific simulation workflows. In these cases, I assume that scientific applications
write data to a 3-dimensional global space (data domain). 1 also assume that data is
written in multiple iterations (time-steps) as described in five test cases below. I compared
CoREC with five other fault tolerance mechanisms: DataS_PFS (replicates all data objects
and places replicas on the parallel file system), DataS_BB (replicates all data objects and
places replicas on burst buffer nodes), Replication (replicates all data objects and places
replicas on peer staging servers), Erasure Coding (encodes all data objects locally and places
data/parity objects on peer staging servers), and Hybrid Erasure Coding (data objects are
classified and selected for replication/erasure coding under the LRU algorithm and a defined
constraint on storage overhead). I additionally compared our results to the performance
of data staging without any fault tolerance. In order to evaluate the balance between the
write response time and the storage cost for various data resilience technique, I introduce
write efficiency, which is a ratio of application’s observed write response time to the storage
efficiency of the data resiliency technique. The low write efficiency value indicates a better
balance between time and storage cost for data resilience. The setup of these experiments
is described in Table 4.1. The experimental results are presented in Figure 4.7 (collected
on Cori) and Figure 4.8 (collected on Titan), along with a detailed discussion and analysis
of these results.

1) Case 1 - Write the entire data domain in each time step: In this case, the data of the
entire domain is written at every simulation time step. Since there is no data replication,
encoding, data movement and metadata synchronization overhead, the data staging without
fault tolerance has the best relative data write response time. For the fault tolerance
approaches, although the replication approach with unlimited storage constraint on peer

memory or burst buffer does not incur the overhead of data encoding, I/O operation and
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Figure 4.7: Average data write and read response time (blue bars) and Write Efficiency
= Write response time/Storage Efficiency (red line) of different data resilience mechanisms
for the five test cases using different writing patterns. DataS: Data staging without fault
tolerance; DataS_PFS: Data is stored in PFS for resilience; DataS_BB: Data is stored in
Burst Buffer for resilience; Replicate: Data is replicated in peer memory for resilience;
Erasure: Data is erasure coded for resilience; Hybrid: hybrid erasure coding with LRU
data classification; CoREC+1d and CoREC+2d: CoREC in degraded mode with 1 and 2
server failures; CoREC+1f and CoREC+2f: CoREC in lazy recovery mode with 1 and 2
server failures; Erasure+1f and Erasure+2f: Erasure coded data staging with an aggressive

recovery strategy under 1 and 2 server failures.
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Total number of cores 64+ 32+ 8 =104
No. of parallel writer cores 4x4x4=064
No. of staging cores 8

No. of parallel reader cores 32

Volume size 256 x 256 x 256
In-staging data size (20 T'Ss) 2560MB

No. of replica 1

No. of data objects 3

No. of parity objects 1

Coding technique Reed-Solomon Code
Storage efficiency for hybrid erasure coding | 67%

Storage efficiency lower-bound for COREC | 67%

Table 4.1: Experimental setup for synthetic tests.

extra data transportation overhead, these approach have only achieved 6.9% and 2.6%
smaller write response time in comparison to CoREC respectively. Meanwhile, storing the
replicated data into PFS gets the worst write access performance and the longest total
workflow execution time due to intensive I/O operations. Also, the result for the erasure
coding method shows the second worst performance for both write access and total workflow
execution time because of the overhead associated with frequently encoding the original data
objects and the placement of data/parity objects on peer servers. Although only a portion
of data objects are erasure coded in hybrid erasure coding, frequently switching between
replication and erasure coding approach on the same data object makes this approach’s
write performance just slightly better than the erasure coding approach and has longest
total transportation time. For CoREC, due to the write-intensive workload, the workload
balance and conflict-avoid encoding workflow plays a vital role in minimizing the interference
to regular request. CoREC gets achieves a decrease of 48.7% and 53.2% in encoding time
and an improvement of 13.5% and 10.1% in the write response time, relative to erasure
coding and hybrid erasure coding. The lower-bound constraint for storage efficiency in

CoREC causes some data objects to be erasure coded, even if they are hot, and this leads
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to a 6.9% increase in write-time as compared to replication.
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Figure 4.8: Breakdown of the total execution time (in seconds) for the workflows in Figure
4.7. transport: Time spent in data movement; metadata: Time spent to update the dis-
tributed metadata; encode: Time spent to perform data encoding; classify: Time spent for

data classification in CoOREC (listed as number).

2) Case 2 - Write the entire data domain in multiple time steps: In this case, the
entire data domain is divided into 4 subdomains, and each subdomain is written in a time

step. This means that in every 4 time steps, the entire data domain is written. Since each
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subdomain has the same write access frequency, all data objects in that subdomain are
either hot or cold. However, CoOREC leverages its multi-time step look ahead mechanism
to efficiently convert data objects from cold to hot i.e., moving from erasure coding to
replication. Thus, CoREC has better (around 12.7%) performance improvement for write
response time and 38.4% decrease in the encoding time with respect to hybrid erasure
coding, while incuring an overhead of 4.3% in the write response time over replication. In
addition, the conflict avoid encoding workflow and fewer data conversion from replication
to erasure coding contributes to having smaller data transportation overhead than hybrid
erasure coding.

3) Case 3 - Write a subset of the data domain at a higher frequency than others: In this
case, data objects of a subdomain in a particular domain is written at higher frequency and
data objects in other subdomains are written just once. This setup addresses the presence
of hot spots in the data domain. Both CoREC and hybrid erasure coding with LRU can
easily identify these hot data objects and apply the corresponding resiliency technique.
Since erasure coding always select all data objects as candidates for erasure coding, CoREC
improves the write response time by 11.3% and 1.1% and decreases encoding time by 50.4%
and 16.5% respectively, while increasing the write response time by just 8.8% as compared
to replication.

4) Case 4 - Write subsets of the data domain with random access pattern: This case
differs from the previous case as the subdomains of the data domain are randomly chosen for
writing/updating. The random access pattern reduces the accuracy of the data classifier,
which is based on temporal and spatial locality. However, the workload balance and conflict-
avoid encoding workflow optimizations enhance the performance of CoREC by 13.8% and
5.8% and decrease encoding time by 14.6% and 17.8% compared to erasure coding and
hybrid erasure coding respectively.

Figure 4.8 shows the breakdown of the normalized execution time for workflows in
aforementioned cases in failure free case. The plots show that CoREC has lower overheads
compared to hybrid erasure coding and pure erasure coding in all cases. CoREC has less
data transport time than erasure coding and hybrid technique because fewer erasure coded

objects incur updates and it minimizes the parity update operations, which leads to less
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encoding time also. While replication has better performance, it should be noted that it
suffers from high storage overhead.

These experiments demonstrate although CoREC involves extra cost for data classifica-
tion and switching resilience approaches between replication and erasure coding, it can still
get the more benefit from dynamically identifying hot /cold data and performing correspond-
ing data resilience approaches. Therefore, CoOREC achieves the overall better performance
and lower cost than full erasure coding and hybrid erasure coding with LRU approaches in
four synthetic cases.

5) Case 5 - Read entire data domain in each time step: The data of the entire domain
is read for every time step. In this case, the replication method, either in peer memory
or burst buffer, has a similar read response time to data staging without fault tolerance,
meanwhile replicating data to the PFS results in the worst performance among all fault tol-
erance approaches. Since, erasure coding splits original data objects into small objects and
distributes them among the staging servers, a single read request can be distributed across
multiple servers and consequently erasure coding, hybrid erasure coding, and CoREC have
better read response times than both replication and the original data staging technique. I
also performed experiments for various cases of reads as we did for writes, but the results
are not presented in this section due to the similar patterns as case 5. I also evaluated read
response time of CoREC in the presence of failures. In degraded mode, the read response
time increases by 7.93% and 21.7% for single and double server failures respectively, as
compared to failure-free case. However, when using lazy recovery, the read response time
increases by 2.66% for single failure and 13.9% for double server failures as compared to
failure-free case. While I demonstrated that COREC performs better on average than both
erasure coding and hybrid erasure coding, replication might seem like a good choice for
fault tolerance. However, I also need to consider the storage overhead associated with each
fault tolerance mechanism. I also plot the ratio of write-response time and storage efficiency
in Figure 4.7. It can be seen that, data staging without fault-tolerance provides best per-
formance along with best storage efficiency. On the other hand, fault-tolerance introduces
overheads on both write response time and storage efficiency. Among the fault-tolerant

mechanisms, CoREC provides the best balance for storage efficiency and write response



93

0.09 7

1 failure, recovery =~ ====--- 2 failure, recovery

0.08 +
0.07 $
0.06 1
0.05 F
0.04 $

Read Time (sec)

003 +
0.02 +
001 +

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time Step
Figure 4.9: The average read response time for reading the entire data domain with 1 and 2
failures, along with failure recovery, for 20 time steps. The first failure occurs at time step
4, and second failure occurs at time step 6. First failure-recovery begins at the 8" time
step and another recovery is initiated at the 12" time step, and they end at time steps 9

and 13 respectively.

time in all the data access patterns studied.

In order to study the impact of lazy recovery in CoREC, I also perform the experiment
on Titan and plot the read response time at every time step for 20 time steps in Figure 4.9.
For a single failure case, I inject a staging server failure at time step 4 and recover it at
time step 8. For the two failure case, I inject a first staging server failure at time step 4
and a second failure at time step 6, and then start recovering them at time step 8 and 12
respectively. In both the cases, the entire data domain was read for all time steps. I observe
that, unlike aggressive recovery, our lazy recovery approach does not trigger data recovery
for the failed server immediately, which may result in an increased data read response time.
From time step 8 to time step 9, our approach gradually recovers unavailable data objects,
which leads to a nominal increase in the data read response time for recovery from multi-
server failure. After time step 14, the data read response time resets back to what it had

been before the failure was injected.



No. of cores

4480

8960

17920

No. of simulation cores

16 x 16 x 16 = 4096

32 x 16 x 16 = 8192

32 X 32 X 16 = 16896

No. of staging cores

256

512

1024

No. of analysis cores

128

256

512

Volume size

1024 x 1024 x 1024

2048 x 1024 x 1024

2048 x 2048 x 1024

Data size (GB) 160 320 640
No. of replica 1 1 1
No. of data objects 3 3 3
No. of parity objects 1 1 1
Storage efficiency 67% 67% 67%

Table 4.2: Configuration of core-allocations, data sizes, and data resilience for the three

test scenarios on 4480, 8960 and 17920 cores.

Large Scale S3D Experiment

I also performed large-scale tests for CoOREC using the lifted hydrogen combustion simula-
tion workflow using S3D[16] and an analysis application on Titan, and compared it to pure
replication and erasure codes. CoREC was tested using three different core count (4480,
8960 and 17920) and corresponding grid domain sizes so that each core was assigned a spa-
tial sub-domain of size 64 x 64 x 64. In terms of the data access pattern, in this experiment,
the S3D simulation wrote the vector field component pressure of entire domain to data
staging at each time, which was processed for feature extraction by the visualization appli-
cation later. For comparison purpose, I also ran S3D without data staging, S3D with data
staging but without resilience, and S3D with data staging and resilience. The cumulative
time for reading/writing data over 20 time steps was measured. The core configurations,
the data region assignments, and data resilience for our experimental setup are summarized
in Table 4.2.

Figure 4.10 and Figure 4.11 illustrate the experimental results for the S3D coupled
simulation and analysis application workflow, for various resiliency settings. Since the PFS
(parallel filesystem) based S3D does not have data staging and the data is saved to disk, it
has the longest read and write response time. While data staging without resilience shows
best performance, it is not able to recover from failures. Among the resilient data staging
techniques studied, CoREC reduces the write response time by 7.3%, 14.8%, and 5.4% as

compared to pure erasure coding on 4480, 8960, and 17920 cores respectively. In comparison
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to replication, COREC has an overhead of 4.2%, 5.3%, and 17.2% in write response time on
4480, 8960, and 17920 cores respectively. It can also be seen that in the presence of failures,
CoREC reduces the read response time by up to 40.8% and 37.4% for one and two server
failures respectively as compared to pure erasure coding.

These results show that CoREC demonstrates good overall scalability, better storage
efficiency with small overheads for different processor counts and data sizes, while providing

data resiliency for extreme-scale HPC systems.

4.4.1 Experiments with Node Failures

The goal of these experiments is to demonstrate that CoREC is capable of handling data

and process recovery under high-frequency node failures.

Experimental Setup

I have deployed CoREC with ULFM on the Caliburn cluster which consists of 560 com-
pute nodes, each containing two 18-core Intel Xeon E5-2695v4 processors, 256 GB of main
memory and an Intel Omni-Path Host-Fabric interface adapter at Rutgers Discovery In-
formatics Institute (RDI2). In this experiment, I evaluate the overhead related to data
recovery for staging node failures. In our experiments, a staging node failure is equivalent
to N staging server processes failures at same time, where N is the total number of pro-
cesses per dedicated staging node. In order to perform these experiments, node failures
are injected by simultaneously sending SIGKILL signals to all the staging server processes
running on a particular node. Since the data objects, parity objects, replicas and metadata
are stored in process memory, killing server processes makes such data unavailable. This is
consistent with the behavior of real node failures. In our experiments, one compute node of
the Caliburn cluster runs 8 staging processes, which translates to N = 8 for node failures.
Unless specified otherwise, all tests have been repeated 5 times. I ran some preliminary
experiments for high values of MTBFs (such as 5 minutes, 10 minutes or 30 minutes, etc.)
and observed negligible recovery overheads relative to the total execution time. Subsequent
experiments were ran under MTBFs less than a minute. The data size for each data staging

server was 50 MB. I also ran this workflow with a failure-free case as the baseline. The
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setup of these experiments is described in Table 4.3.

Total number of cores 1024 + 256 + 128 = 1408
No. of parallel writer cores 8 x 8 x 16 = 1024

No. of staging cores 256 (32 nodes)

No. of parallel reader cores 128

Volume size 128 x 128 x 256

In-staging data size (50 TSs) | 3.2GB

No. of replica 1
No. of data objects 3
No. of parity objects 1
Coding technique Reed-Solomon Code

Storage efficiency lower-bound | 67%

Table 4.3: Experimental setup for node failures tests.

Experiment Description and Results

For node failure experiments, I studied the read/write response time for different data/pro-
cess recovery strategies in the data staging. I also evaluated the total overhead for workflows
in order to empirically demonstrate the low cost of data recovery and small latency impact.
I performed these experiments on a 256 core (32 node) data staging area. Figure 4.12
and 4.13 plot the average read/write response time for different frequencies of node failures
injected for a synthetic workflow with a total execution time of about 150 seconds. The
synthetic failure rates range from 18 to 150 seconds, and the corresponding total number of
failures range from 8 processes (1 node) to 64 processes (8 nodes), as noted on top of each
bar, over a total time period of about 150 seconds.

Figure 4.12 shows the cumulative read-response time for 50 time steps. The read-
response time increases with the failure rate. In the worst case (8 node failures), the read-
response time increases 9.58% in degraded mode, and 6.77% in lazy mode as compared
to the failure free case (FF). For the write-response time shown in Figure 4.13 shows the

similar trend with the read-response time. The write-response time increases by only 2.41%
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Figure 4.12: Comparison of the cumulative data read response time using the synthetic

workflow on Caliburn. FF: in the x-axis represents CoREC in failure free case.

in degraded mode, and 1.13% in the lazy mode for an MTBF of 150 seconds. For the MTBF
of 18 seconds, the write-response time increases 10.88% in degraded mode, and 8.11% in
lazy mode as compared to FF. As a whole, the experiment results demonstrate that grouped
replication and coding scheme with lazy recovery mode can tolerate frequent node failures
with minimal overhead.

I also study the impact of data and process recovery on the total workflow execution time,
which includes the overhead of data replication, encoding, decoding and process recovery.
Specifically, I compare the end-to-end workflow execution time under varying MTBFs and
the failure-free case. The leftmost bar in Figure 4.14 shows the total workflow execution
time for the failure-free case. By using lazy recovery I obtain much lower performance
penalties even at the higher failure rates. In comparison to the baseline failure-free case,
the total execution time is increased by only about 0.8% in degraded mode and by 0.5% in
lazy recovery mode for the MTBF of 150 seconds. For the case of failures occurring every
18 seconds, the workflow execution time increases by about 5.69% in degraded mode and
by 4.25% in lazy recovery mode. In short, COREC can handle data recovery under frequent
node failures, with total overheads of up to 5.69% in degraded mode, 4.25% in lazy mode

for the worst case scenario.
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4.4.2 Experiments for CoOREC with multilevel data redundancy

In this section, I demonstrate that CoREC-multilevel can efficiently provide varying lev-
els of data redundancy based on application requirements. Although CoREC-multilevel
uses different redundancy schemes to satisfy resiliency requirements, the storage efficiency
constraint is maintained by managing the trade-off between storage and performance, and
duplication/triplications and erasure coding. Since CoREC-multilevel is intelligent enough
to make dynamic decisions based on data access characteristics, I did not observe a sig-
nificant impact on application performance. The synthetic workflow writes two variables
into data staging. These two variables are intended to representative high and low redun-
dancy datasets. Within the workflow, the coupled components write and read these two
variables into the data staging area concurrently in each time step, and the response time

is measured.

Total number of cores 512+ 120 + 512 = 1144
No. of parallel writer cores 8§ x 8 x 8 =512

No. of staging cores 120

No. of parallel reader cores 512

Volume size 256 x 256 x 256
In-staging data size (20 T'Ss) 3200MB

Replication for high data redundancy | Triplication

Replication for low data redundancy | Duplication

Coding for high data redundancy RS(6, 4)
Coding for low data redundancy RS(6, 5)
Storage efficiency lower-bound 66.7%

Table 4.4: Experimental setup for multilevel redundancy tests.

For high data redundancy, I use RS(6,4) and triplication to tolerance concurrent failures
in two arbitrary staging servers. For low data redundancy, I use RS(6,5) and duplication
to tolerate one staging server failure. To study the impact of lazy recovery in the pres-
ence of concurrent failures for CoOREC-multilevel, I insert failures into two staging servers

concurrently. During a total-runtime of 20 time-steps the failures were inserted only once,
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and then recovered in subsequent time-steps using the lazy recovery mechanism. Since
2 staging servers have failed, only high-redundancy data can be recovered. As CoREC-
multilevel can re-direct write requests to other staging servers when failures are detected,
the low-redundancy data sets for all time-steps are available except for the particular time-
step when the failures were introduced and detected. In our experiments, the total data
exchanged between readers and writers is kept constant. I vary the percentage of high-
redundancy data with regards to total data from 0 to 30, while keeping a constant storage
efficiency constraint in CoREC-multilevel. Since the total data is comprised of high and
low-redundancy data, it can also be viewed as varying low-redundancy data from 100% to
70%. Figure 4.15 shows both cumulative read-response and write-response time. A failure
free case is considered as baseline in our tests. The details of the experimental setup is

listed in Table 4.4
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Figure 4.15: Read and write response time of variables under the percentage of high data

redundancy in CoREC-multilevel. Failure free: CoREC-multilevel in failure free case.

In Figure 4.15(b). I observed that when the percentage of high-redundancy data in-
creases, the cumulative write-response time increases in Figure 4.15(b). This increase cor-

responds to the higher complexity or overheads of erasure coding and replication for higher
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data redundancy. When the amount of high-redundancy increases, more data can be re-
covered and correspondingly the write response is affected to a higher degree in presence
of failures. When all of the data is low redundancy, the data cannot be recovered when
multiple failures are inserted. Thus, no write and read-response time is reported for 0%
high-redundancy data. As compared to the failure-free case, CoOREC-multilevel has an in-
crease in cumulative write response time by around 2.2%, 4.5% and 3.2% as compared to
failure free case.

When no failures are present, the read-response time remains fairly constant across
varying percentages of high and low dataset. In the presence of failures, read-response times
are directly impacted because data needs to be recovered first and then sent to the reader
application. Under the presence of concurrent failures and data recovery, the read response
time of CoREC-multilevel increases by around 4.1%, 7.9% and 15.5% as compared to the

failure free cases, when high-redundancy data is set to 10%, 20%, and 30% respectively.
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Figure 4.16: Storage cost and efficiency for the percentage of high data redundancy in test

scenarios.

To understand the impact of different data resiliency techniques on the overall storage
capacity of the staging area, I measure the total memory consumed by the data in the
staging area and also show the storage efficiency in Figure 4.16. When the percentage of
high redundancy data increases, the storage efficiency of replication decreases from 50% to

45%. Similarly, the storage efficiency of erasure coding also decreases from 83.3% to 78.3%.
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Correspondingly, the memory consumption for replication decreases from 3200M B to the
least 2576M B, and the consumption for erasure coding increases from 1920M B to the
largest 2683M B so as to maintain total storage usage is constant. Since the total amount
of raw data written to the staging area is fixed, the overall storage efficiency also remains
the same for different percentages of high and low redundancy data. From these results, I
can infer that CoREC-multilevel is performed with light overhead and can provide various

data resiliency levels based on application needs.

4.5 Related Work

Supporting resilience in contexts other than in-situ/in-transit data analytics, such as Check-
pointing [34],[1],[58],[32] and Replication/Erasure Coding [18],[59] has been widely studied,
but there are limited research efforts focussed on in-situ/in-transit data processing systems.
The study in [40] exploits the reduction style processing pattern in analytics applications
and reduces the complications of keeping checkpoints of the simulation and the analyt-
ics consistent. Research efforts in [41] use a synchronous two-phase commit transactions
protocol to tolerate failures in high performance and distributed computing system. In
comparison to these efforts, our data resilience approach specifically targets data staging
based in-situ workflows, and is more flexible, asynchronous and scalable. Furthermore, it
can handle dynamic execution and failure patterns across multiple applications that are
part of in-situ/in-transit workflows.

Burst buffers are being increasingly used in HPC systems [39],[55],[38],[2] with the initial
goal of relieving the bandwidth burden on the parallel file systems by providing an extra
layer of low-latency storage between compute and storage resources. CoREC can easily be
extended to use burst buffers. In this setting, CoREC would store the hot data in local
DRAM memory and keep the cold data in the non-volatile storage layer on the burst buffers
nodes to achieve faster read/write performance for workflows generating large amount of
data. However, burst buffers themselves are not immune to failures. Furthermore, due
to the difference in the physical typologies in burst buffers provided by vendors, the fault
model and resiliency for burst buffers are complicated and remain an open challenge. The

fault tolerance of burst buffers needs to explored further before any of the data resiliency
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methods, explored in the paper, can be used on such devices.

Recent research [36],[43],[4],[35],[44] indicates temporal and spatial properties of failures
in different software and hardware components. CoREC can easily tolerate such concurrent
and correlated process/node failures using topology aware grouped replication and erasure
coding schemes discussed in Section 4.3.1. I believe CoREC can also be adapted to tolerate
other classes of failures such as a GPU failure, which will potentially result in data loss at
staging servers, by extending the failure detection and handler mechanism to those failures.

While aspects of COREC may appear conceptually similar to Cocytus [63], where repli-
cation is used for small-sized and scattered data (e.g., metadata and key) and erasure coding
is used for large data (e.g., value), COREC uses data access frequency rather than data size
for data classification. In contrast to Cocytus, which is designed for cluster storage system,

CoREC targets in-situ/in-transit data processing on large-scale HPC systems.

4.6 Summary

This chapter addresses data resiliency for staging-based in-situ/in-transit workflows, and
presented the design, implementation and evaluation of CoOREC and CoREC-multilevel,
a scalable hybrid approach to data resilience for data staging frameworks that used on-
line data access classification to effectively combines replication and erasure codes, and
to balance computation and storage overheads. Then, this chapter introduces an imple-
mentation and deployment of CoREC on top of the DataSpaces on the Titan Cray XK7
at OLCF, Cori Cray XC40 at NERSC, and the Caliburn system at RDI2. Finally, this
chapter evaluated its effectiveness and performance by using both synthetic benchmarks
and real world large scale S3D application on large-scale HPC cluster, and demonstrated
that CoREC can dynamically classify data objects based on data-driven access pattern
and provide efficient data recovery in the presence of frequent process and node fail-
ures. The source code for our prototype implementation of CoREC is publicly available

at https://github.com/shaohuaduan/datastaging-fault-tolerance.
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Chapter 5

Staging Based Silent Error Detection Framework

5.1 Overview

A silent error is an unintentional change to a bit in memory. These undetected bit flips
impact the correctness and performance of applications and workflows [15]. These types of
error events are already present and impactful in high-end computing. Although various
error-detection techniques for silent errors, such as ABFT [10] and time-series predictions
[7], have been widely studied, these studies have generally been in the context of single
applications rather than workflows, which are a composition of multiple interacting compo-
nent applications. As extreme scale workflows are often long-running and the final result of
the workflow dependends upon intermediate results, a silent error or data corruption in any
component can invalidate the entire execution of the workflow, with substantial impact. As
aresult, it is important to detect and isolate silent errors in a component application as early
as possible and to contain the propagation of these errors between components. However,
simulation and analysis applications in workflows are commonly CPU-bound, so frequently
performing error detection in such applications will significantly degrade the overall per-
formance of the workflow. In chapter 3, we observed that staging resources tend to be
relatively less heavily loaded compared to the computations nodes that run the workflow
components. Given this resource-usage pattern, this chapter presents a staging based silent
error detection framework to offload error detection task to data staging, which enables
efficient error detection without suffering performance degradation.

The rest of the chapter is organized as follows. In Section 5.2, we introduce our staging-
based error detection framework. In Section 5.3, we evaluate our approach using various
synthetic and real-world scientific simulation workflows. Section 5.4 provides details of

various related work, and Section 5.5 summarizes this chapter.
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5.2 Error Detection in Staging

In this section, we first model our staging-based error detection framework. We then analyze
it by simulating scientific workflow events and present factors that influence the rate of error
detection in staging. Finally, we propose optimizations for implementing error detection
approaches in the data staging area and leveraging GPU resource (if available) to ameliorate

the impact of performing error detection on common I/O operations.

5.2.1 Modeling Error Detection in Staging

Notations: Let C, T, and Ts denote the cost of checkpointing, the optimal time cycle
for checkpointing, and the time cycle of error detection in staging, respectively. Let Ry
represent the recall of error detection in staging, which is the proportion of detected errors
over all errors that have occurred in the course of execution. If D is the cost of error
detection in a given checkpoint component and Dy is the cost of error detection in staging,
we assume that Dy << D, since the amount of data exchanged via the staging area is much
smaller than checkpoint data size. Wj,s denotes the base execution time of a workflow
without any resilience technique. The notations that are used in the model are listed in
Table 5.1.

Fault tolerance model: Scientific workflows typically employ a checkpoint /restart mech-
anism to periodically perform checkpointing tasks to enable rollback to the previous state
in case of a fail-stop failure. To deal with both fail-stop failures and silent errors, check-
pointing tasks are coupled with error detection (or verification) mechanisms. To guarantee
that checkpoint data is error-free, error detection is performed just before checkpointing
tasks [6]. If the verification fails, it can be assumed that a silent error has occurred and the
application must rollback to the previous checkpoint for error-free data.

Figure 5.1 shows a typical workflow with a checkpointing scheme combined with error
detection. In each checkpoint cycle, coupled simulations simul, simu2 can access staging
servers and fetch or write data from/to the servers. Since data is stored in the staging
area, we can improve the fault tolerance scheme by leveraging idle compute resource in the

staging area to perform data verification. In this way, during each checkpoint cycle, there
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Symbols Explanation
C Cost of checkpointing
T, Optimum time cycle for checkpoint
D Error detection cost in the checkpointing component
T Time cycle for error detection in data staging
Dy Error detection cost in data staging
T, Time interval from last checkpoint to the error detection in data staging
R recall of error detection in data staging
P precision of error detection in data staging
Py Probability of silent errors during execution time
Tw Time cycle for workflows pattern
Whase Workflow execution time without resilience techniques and failures

Table 5.1: Symbols summary

Restart —p» Call for rollback Checkpointing
Execution time —» Data writing to staging
Data reading from staging Error detection|E| Silent error x
Roll back

simul EE D"C D||c o
Tc
H >
Ts Ime
simu2 EE D"C D"C D

Tw

Data Staging

[=n|
=1

Tr

(o]

Figure 5.1: An illustration of a typical workflow with two coupled simulations simul,
stmu2. Simulations alternate in exchanging data via data staging. For fault tolerance, each
simulation performs checkpointing and silent error detection tasks based on their optimal

checkpoint time cycles.
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will be multiple error detections in the staging for early detection of silent errors and to save
re-execution time. For the checkpointing scheme, a workflow makes a global checkpoint and
performs error detection based on its optimal checkpoint time cycle for fail-stop failures.
In the following analysis, we compare the approach where error detection occurs only at
checkpoint-time with the approach that performs error detection in both staging and at the
checkpoint. The goal of performing error detection in staging is to minimize the expected

execution time of the workflow, E(W).

Error detection in checkpoint component

Suppose that the probability of a silent error happening in the workflows is Pr. Let Tpc
be the maximum cost for error detection and checkpoint of simul, simu2: Max(D; +
C1, D2 + C3). Let T.c denote the maximum time chunk for two consecutive checkpoints:
Max(Te —Cy,Tea—C3). Also, error detection in the checkpoint component can always fully
verify data. Then, the expected execution time of the workflow (E(W;)) can be computed

as:

Tw
E(Wc) = ?(TDC + Pf X TCC) + Wbase (51)

Error detection in checkpoint and staging

We now add an extra error detection in the staging area. Firstly, let us suppose that
any silent error happening during 7T can be detected. That means recall and precision
for error detection in staging are Ry = 100%, Ps = 100%. In this scenario, the workflow
executes for an extra Dy time until error detection in staging completes and sends an error
notification back. Then, the workflow needs to rollback to the previous error-free checkpoint
and discard T + D, time worth of work. Therefore, the expected execution time of the

workflow (E(W)) can be computed as:
Tw
E(Ws) - ?(TDC + Pf(Tr + Ds)) + Wbase (5'2)

Then, we can make our model more realistic by only assuming that the precision of

error detection in staging Ps; = 100. In this case, the staging can detect R4 percent of silent
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errors and the remaining 1 — R, percentage will be detected by the checkpoint component.

Thus, the expected execution time of the workflow (E(W5)) can be updated to:

T
?(TDC’ + Pf((l — Rs)TcC + RS(TT + DS))) + Whase

When the recall rate is Rs and the precision is Ps for the error detection in staging, the
staging will generate 1 — P percentage needless rollback operations due to the introduction
of false positives in detection. The penalty for false positives is T, = (1 — Ps)(T, + D).

Thus, the expected execution time of the workflow (E(W5)) can be updated to:

Tw
?(TDC —+ Pf((l — Rs)TcC + RS(TT + DS) + Tp)) + Whase

From the above equations, it can be expected that adding error detection in the staging

area can reduce the total workflow execution time in the presence of errors, which can be

computed as:

E(W,) — E(W,) = %Pf(Rs(ch — T, — Dy) —Tp) (5.3)

5.2.2 Simulation and Analysis

In order to determine the expected advantage of this approach in practice, we simulate the
execution of a scientific workflow using the parameters (i.e., MTBF, C, and T,) suggested
in [6], which are also listed in Table 5.2. For MTBF and MTBE, we calculate the MT BF
and MTBE of one computing node, which is 4.3 years for fail-stop failures and 7.9 years
for silent errors. The overall MTBF and MTBE are obtained by dividing the per-node
MTBF and MTBE by the total number of nodes running the workflow. For example,
when 65536 nodes are used in extreme scale systems, the overall MT'BF and MTBE are
2064s for fail-stop failures and 3784s for silent errors. The silent errors are generated by
following an exponential distribution of parameter \ = m. The disk checkpoint cost
C' is close to 300s, which is typical of many state-of-the-art platforms, such as Hera [6].
Under the assumed MTBEF for fail-stop failures and the checkpoint cost C, we get the
optimum checkpoint cycle of 1491s through Daly’s formula [54]. Furthermore, we assume
that there is no relation between MT BF and MTBE, and MTBF will be kept constant

in the simulation test cases. For error detection, we assume that the error detection in a
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checkpoint has a cost of 100s with the recall and precision of 100% and that error detection
in staging has a cost of 4s with a recall 70% due to error detection being performed on a
subset of the global data domain. We assume that the computation and communication
cost of the workflow is 81920s (22.6hr), which does not include checkpointing and error

detection tasks.
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Figure 5.2: The simulated total work flow execution time comparison between error de-
tection in checkpoint component (blue dot line) and error detection in both checkpoint and

staging (solid line).

Table 5.2 describes the inputs of the emulation program. The emulation results are
presented in Figure 5.2, followed by a detailed discussion and analysis of each. The reported
results are the average of 100 experimental runs.

In simulation case 1, where we vary the workflow’s MTBE, our approach has better

performance than performing error detection only in checkpoint as long as MT BE is under
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No. of case | Case 1 | Case 2 | Case 3 | Case 4
MTBE / 3784s 3784s 3784s
C 300s 300s 300s 300s
D 100s 100s 100s 100s
T 1491s 1491s 1491s 1491s
P 100% / 100% 100%
R 70% / 70% 70%
Dy 4s 4s / 4s
T, 600s 600s 600s /
T 81920s | 81920s | 81920s | 81920s

Table 5.2: The parameter configuration for workflow time sequence emulation.

3784s. We performed analysis for different values of recall under precision = 100% and
different values of precision under recall = 100% in simulation case 2. It can be seen that
when recall is greater than 70% or precision is greater than 89%, error detection should
be performed in the staging area. For the cost of error detection when it is less that 4s,
error detection in staging outperforms the detection in checkpointing, which is illustrated
in simulation case 3. To analyze the impact of T, we also varied T in simulation case
4 and observed that when Ts < 800s, our approach is beneficial and it maintains similar
performance for higher values.

Based on Equation 5.3 and the analysis above, we can deduce that the advantage of
enabling error detection in the staging depends on the following factors: (i) The frequency
of silent errors MTBE (higher will see more advantage from the in-staging approach); (i7)
The recall and precision of error detection in staging R, Ps (higher is better); (¢i7) The cost
of error detection in staging Dy (lower is better); (iv) The frequency of staging operation
T, (performance will improve with less frequent staging operations).

In addition, unlike recall, lower precision can significantly deteriorate the performance
of error detection in staging. Part of the reason for this is that lower precision indicates
high false positive, which can unnecessarily rollback the workflow frequently. In contrast,
lower recall corresponds to high false negative, which means that CPU cycles are wasted
performing error detection that is unable to detect silent errors. Generally, the cost of error

detection in staging is much less than the cost of re-executing the workflow.
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5.2.3 Implementing Error Detection in Staging

While the integration of error detection within a data staging framework seems straight-
forward, naive application of error detection technique in the data staging can result in
significant performance degradation and low error detection accuracy. One of the challenges
for error detection in staging is that the data staging framework stores data temporarily
during data exchanges, so an entire spatial dataset is not always available. Another challenge
for error detection in staging is that data staging has relatively limited compute resource, so
an error detection approach having a long computation time could significantly degrade the
performance of staging servers. Thus, an ideal error detection approach should maintain
high accuracy, especially high precision, in error detection. Also, the approach should have
light overhead and minimal impact on common data staging operations, such as data put()
and get().

In the following section, we introduce two optimization techniques which can achieve the
twin goals of lightweight execution and high accuracy. We use Spatial Local Outlier Measure
(SLOM) [53] as an example to illustrate how to integrate an error detection approach in
the data staging efficiently. SLOM is a type of spatial outlier detection approach that
can capture both spatial auto-correlation (non-independence) and spatial heteroscedasticity
(non-constant variance), which are common features of scientific spatial datasets. In SLOM,
the effects of spatial auto-correlation are factored out by a measure d(o). The variance of
a neighborhood is captured by (o), which quantifies the oscillation and instability of an

area around o.

SLOM (o) = d(o) x B(0)

CPU-GPU Hybrid Staging

In an extreme-scale workflow, staging servers need to process thousands of requests. Thus,
any delay caused by error-detection will interfere with servicing other requests, amplify-
ing the impact, and potentially causing a significant delay across the whole workflow. To
minimize this impact, we propose offloading workload to GPUs, when available. GPUs are

now widely used as general purpose devices in HPCs. They enable significant speed-ups
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in performance for scientific computation and analysis tasks. Since silent error detection
approaches are computation intensive tasks, we can leverage these GPUs to achieve signif-
icant acceleration of error detection. Specifically, CPU cores in the dedicated staging node
can be used to serve communication and regular staging operations, such as indexing and
data storage, while the data from local CPU memory is offloaded to GPUs and GPU kernel

performs the spatial outlier detection.

Algorithm 2 Error Detection Processing
Input: spatial data P, meta data Q)

Output: outlier value Opyqq, error decision flag
1: dspaces_put(P)
2: flag =10
3: Detector_Kernel(Q, P)
4: if Oyez > threshold then
5. flag=1
6: end if
7: insert P into staging
8: update meta data Q)
9: Detector_Kernel(Q, P)
10: for each point p in P do
11: D =d(p)
12: B = beta(p)
13: O=DxB
14: Opmaz = Max(O, Omaz)

15: end for

There are two main challenges in processing large amounts of data on the local GPU
device: relatively limited bandwidth and small memory size. We address these issues as
follows. The data staging process first partitions the larger geometric dataset into several
smaller tiles, such that each tile fits into the GPU global memory. Next, the tiles are
stored in a queue, which is located in CPU memory and is ready to be offloaded to GPU

global memory. While the GPU threads process the tile, the next tile in the queue is
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prefetched into GPU global memory to hide the data transfer latency. This CPU-GPU
hybrid staging approach can also be leveraged by CPU-only application workflows, such as
the S3D simulation workflow. The pseudo code of spatial outlier error detection in CPU-
GPU hybrid staging is provided in Algorithm 2. This can be easily extended to other error

detection methods.

Tuning precision and recall in Staging

Although recall and precision both play a very important role for error detection in stag-
ing, from section 5.2.2, we can deduce that compared with recall, a lower precision can
significantly deteriorate the performance of error detection in staging. In addition, many
outlier-based error detection approaches output a score quantifying the level of ’outlierness’
of each data point, but this value does not provide a concise summary of the small number
of data points that should be considered as silent errors. Specifically, in SLOM simply
identifying the data point with the maximum SLOM value as a silent error will virtually
always produce a false positive.

In the following, we introduce dataset/feedback training which can tune precision and
recall for outlier based error detection approaches so as to minimize false positives with
acceptable false negatives. During the dataset training, we inserted synthetic bit flip errors
into the staged dataset and monitored the minimum value that can just cover all synthetic
errors, then we mark it as the error detection threshold. For simplification, in our imple-
mentation the synthetic silent errors are uniformly distributed along the dataset and bit
position. The threshold may be different for different simulation time steps, datasets, and
staging servers.

During the feedback training, at the initialization of runtime, staging servers systemati-
cally calculate a SLOM value for each data point and keep track of the maximum observed
SLOM value, as error detection threshold threshold. The staging servers then start to per-
form error detection for the available dataset. When the staging server finds one silent error
candidate and the workflow is re-executed from the last checkpoint, it goes into feedback
training mode. The staging server compares the new SLOM value with the previous one

which was detected as an error. If the new SLOM value in that area is under the threshold,
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Figure 5.3: An illustration of the behavior of and relation between dataset training and

feedback training.

that means the staging server accurately identified the silent error. Otherwise, the previ-
ously detected silent error is a false positive and threshold is raised. Figure 5.3 illustrates
that feedback training tunes the detection threshold towards the error data distribution and
achieves higher precision of error detection. Similarly, dataset training pushes the detection

threshold toward a normal data distribution and achieves higher recall.

5.3 Experimental Evaluation

In this section, we evaluate staging based error detection framework, implemented as an ex-
tension of DataSpaces [21], an open-source data staging framework, and perform evaluations
using both real and synthetic applications in the presence of silent errors.

In Section 5.2, we described our model for error detection in staging. In this section, we
provide a specific implementation for the model on Titan HPC system. Figure 5.4 shows
the overall system configuration for error detection in the workflow. In the Titan Cray XK7
system, each compute node contains a 16-core 2.2GHz AMD processor with 32 GB of DDR
RAM, a NVIDIA Kepler accelerator (GPU) with 6 GB of GDDR RAM and a Cray Gemini
high-speed interconnect. Although subsequent experiments are only run on Titan, recently
deployed machines such as Summit (a 4,608-node supercomputer at Oak Ridge National
Laboratory (ORNL)) also have GPUs attached to each nodes and our approach can benefit

from these GPUs. Please note that our implementation of SLOM using CPU-GPU is just
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Figure 5.4: Implementation of error detection in CPU-GPU hybrid staging

an example of an error detection method. The goal of the paper is to leverage idle staging
resources to perform error detection using the error detection method of choice for stag-
ing based in-situ scientific workflows. The system architecture permits a key component:
dedicated staging nodes, distinct from the application nodes. Simulation and analysis ap-
plications’ processes run on application nodes. Before an application process checkpoints
its entire data into the parallel file system, the process also performs an error detection
locally to ensure data correctness. The DataSpaces coordination layer in application nodes
sends dataset to staging servers through the DART layer (DataSpaces’ data communication
layer). After a staging server stores the data in local memory, it performs error detection in
the staging nodes. For CPU-GPU hybrid staging, it will ofload error detection into local
GPU if the GPU compute resource is available for the dedicated staging node. When a silent
error is detected, the staging server sends error message to application’s checkpoint /restart
components and triggers a process restart. In order to do that, we update the DataSpaces
interface function ds_put() so that it can return the detection result back to applications
and indicate if there is a silent error in the dataset.

We performed experiments that fall into four broad categories: performance experi-
ments, synthetic test cases, and real-world large scale experiments. All staging servers run

on dedicated compute nodes with GPU accelerators.
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Total number of cores

(16 to 128) 4+ 16 + 16 = 48 to 160

No. of writer cores

2 x4 % (2t08) x 4 x 4 =16 to 128

No. of staging cores/nodes

16/1

No. of reader cores

16

Volume size

64 x 128 x 64 to 256 x 128 x 128

In-staging data size (20ts)

80 to 640 MB

Workflow pattern

Write immediately followed by Read

Cycle for error detection

1 time step

Table 5.3: Experimental setup for performance tests.

5.3.1 Performance Experiments

In this subsection, we evaluate whether applying idle resources in data staging to perform

silent error detection has any adverse affect upon the applications connected to the staging

servers. In order to quantify the interference (if any) caused by the proposed technique, we

measure the write performance of the staging servers with error detection enabled. We also

record write-response time without error detection in staging as a baseline. The setup of

these experiments is described in Table 5.3.
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Figure 5.5: Comparison of the data write-response time for data staging with error de-

tection on Titan. DataSpaces: Data staging write response time without error detection

(baseline); DS_SLOM_C: Data staging write response time with error detection in CPU

staging; DS_SLOM_G1024/8192: Data staging write response time with error detection in

CPU-GPU hybrid staging under 1024/8192 GPU threads.
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Figure 5.5 shows the cumulative write-response time for staging severs with error de-
tection. We can see that error detection involve much lower performance penalties even
at large dataset in data staging. For example, for CPU-based error detection in staging,
the write response time overhead was no worse than 24.11% as compared to the same ap-
plication without error detection. When we perform error detection in CPU-GPU hybrid
staging, we see much lower overhead than the CPU-alone case. The write-response time
increases by only 8.41% for the 1024 GPU thread case and 2.43% in the worst case for the
8192 GPU thread case as compared to the case of no error detection. Our approach shows

good overall scalability and has minimal overhead as compared to the baseline.
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Figure 5.6: Comparison of the total execution time of the workflow under different error de-
tection frequencies or length of each time step in data staging. Error detection is performed

in each time step.

We also explore the overhead of error detection in staging over different workflow con-
figurations. We plot the total execution time for a workflow with different error detection
cycle in Figure 5.6. In this experiment, we perform error detection in staging in each time
step and keep M TBE = 5 minutes and checkpoint cycle T, = 2.5 minutes constant. We
then vary the length of the time steps from 10 seconds down to 1.25 seconds. Figure 5.6
shows that, for larger than 5 second time steps, the benefit for error detection in staging
becomes significant, with a decrease of up to 22.5% in the total execution time as compared
to error detection in only the local component checkpoint. For the frequent error detection

or smaller length of each time step(between 1.25 and 5 second), error detection in staging
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does not provide much benefit. At the extreme, for the 1.25 second time step case error

detection can trigger an overhead of 11.7%.

5.3.2 Synthetic Test Cases

To better understand the performance of error detection in staging and its effectiveness,
we also design synthetic cases and evaluate the total execution time of the workflow. Our
synthetic experiments were performed on Titan. In these experiments, both synthetic simu-
lation and analysis applications have their own local error detection and checkpoint compo-
nent. For simplification we assume that the local error detection in checkpoint component
has 100% recall and precision. We checkpoint every 10 iterations and before checkpointing
dataset into the parallel file system, error detection is performed, guaranteeing that the
checkpoint is error-free. Besides detecting silent errors in the local checkpoint component,
the error detection is also performed through staging servers after the data is staged. We
also assume that precision of error detection in data staging is 100%, and recall is linearly
related with the proportion of staged data. Once a silent error is detected, the workflow is
rolled back to the last checkpoint and re-executed. We ran the synthetic workflow under
varying proportions of staged data to total data and different frequency of error detection in
staging. Then, we measure the total execution time of the workflow. In these experiments,
two significant soft errors were randomly introduced into the dataset within the 40 time
steps, which corresponds to MTBE = 5min. We re-run our experiments for 50 times and
report the total execution time as an average of these runs. The set-up of these experiments
is described in Table 5.4. The experimental results are presented in Figure 5.7 followed by
a detailed discussion and analysis of each.

1) Case 1 - Write the entire data domain in each time step under different MTBE:
Similar to simulation case 1 in Section 5.2.2, we vary MTBE (occurrence of silent errors)
between 5, 7, 10, and 20 minutes which corresponds to 100, 75, 50, and 25 silent errors
respectively being introduced during a total of 50 runs. Since data staging can detect silent
errors and roll back workflow early in each time, the method of performing error detection
in staging can get a relatively better total execution time than the error detection in local

checkpoint component under the high frequent M T BE. This improves the total execution
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indicate the total number of errors that was corrected by the staging component during 50

experiment runs.
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time of the workflow by 18.1% for MTBE = 5min, 14.3% for MTBE = Tmin, 11%
for MTBE = 10min and 10.1% for MTBE = 20min respectively, as compared to error
detection in local checkpoint component only under correspond MT BE value.

2) Case 2 - Write a subset of the data domain and perform error detection in each
time step: This case is effectively a combination of simulation case 2 and 3 in Section 5.2.2.
In this case and other subsequent cases, we inject a total of 100 errors during 50 runs
of the experiment. Since different percentage of whole data-set is exchanged via staging
framework, there is variance in the recall and overhead of error detection in data staging,
which is based on proportion of subdomain size to the entire data domain. Thus, error
detection in staging has an increase in detected errors when the amount of data in the
staging area increases. Our approach reduced the total execution by around 7.6% for 40%,
11.3% for 60% and 14.2% for 80% subset data, as compared to the error detection in local
checkpoint component only.

3) Case 3 - Write the entire data domain in multiple time steps and perform error detec-
tion in each time step: This case differs from the previous case, where a certain percentage
of entire data domain was written in a time step. In this case, although a subset in written
in each step, data staging can stages entire data domain in between 2 to 3 time steps. This
enables staging framework to have high cumulative recall. Therefore, error detection in
staging reduces the total execution time (around 14.9% for 40%, 16.3% for 60% and 16.9%
for 80% subset data) as compared to error detection in local checkpoint component only.

4) Case 4 - Write the entire data domain and perform error detection with different time
step cycle: Like simulation case 4 in Section 5.2.2, the entire data domain is written into
the data staging periodically for every 1, 2, 4, 8 time steps separately. For error detection
in staging, as the entire data is staged, a high recall of error detection is achieved. We
can thus detect silent errors in the staging area and roll back the workflow immediately.
Therefore, error detection in staging achieves a decrease of 2.2% for 8ts, 8.4% for 4ts, 13.8%
for 2ts and 18.1% for 1ts in the total execution time relative to error detection in the local

checkpoint component only.



Total number of cores

96 + 16 + 16 = 128

No. of writer cores 6 x4 x4=96
No. of staging cores/nodes 16/1
No. of reader cores 16

Volume size

192 x 128 x 128

In-staging data size (40 ts)

960M B

Workflow pattern

Write immediately followed by read

Local checkpoint, detection cycle

10ts

Table 5.4: Experimental setup for synthetic test cases.

5.3.3 Large Scale S3D Experiment
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We perform large scale tests of our method using the combustion DNS-LES simulation/-

analysis from the S3D combustion and analysis workflow [16] on Titan and compare it with

error detection-only in the local checkpoint component. We also integrate error detection

algorithm within S3D before checkpointing. Our staging-based error detection framework

is tested using three different core counts (4416, 8832 and 17664) and corresponding grid

domain sizes so that each core is assigned a spatial sub-domain of size 16 x 16 x 16. In

each time steps, 60%, 80%, 100% percentage of entire data passes through data staging

separately. The total execution time of the workflow over 40 time steps is measured. Other

core configurations, and data resilience setup are detailed in Table 5.5.

No. of cores 4416 8832 17664
No. of simulation cores 4096 8192 16384
No. of staging cores/nodes 256/16 512/32 1024/64
No. of analysis cores 64 128 256

Volume size

256 x 256 x 256 | 512 x 256 x 256 | 512 x 512 x 256

Data size (GB) 110 220 440
Checkpoint cycle 10ts 10ts 10ts
Detection cycle of staging 1ts 1ts 1ts
MTBE of silent error 300sec 300sec 300sec

Table 5.5: Configuration of core-allocations, data sizes, and data resilience for the three

test scenarios on 4416, 8832 and 17664 cores.

Figure 5.8 and Figure 5.9 illustrate the experimental results for the total execution
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time of S3D coupled simulation and analysis application workflow for various scale in the
presence of silent errors. We also measure the precision and recall of error detection in
staging. For all tests, the precision always equals 100%, and the value of recall is shown
on top of the bars in Figure 5.8 and Figure 5.9. For all error detection approaches, the
workflow with error detection in CPU-GPU hybrid staging always shows lower execution
time than the corresponding workflow running with CPU-based staging alone. Under error
detection in CPU-only staging techniques with the presence of silent errors, error detection
in staging reduces the total workflow execution time by up to 14.4%, 16.5%, and 18.9%
as compared to error detection in only the local checkpoint component on 4416, 8832, and
17664 cores, respectively.

The same trend can also be seen in the CPU-GPU hybrid staging. The error detection
in staging improves the total execution time by up to 14.1%, 22.6% and 15.4% as compared
to a workflow with error detection in only the local checkpoint component. In addition,
when error detection is performed in staging, it was observed that the greater the fraction
of the dataset being put into staging and verified, the lower the total execution time in
the presence of errors. These results demonstrate that error detection in staging achieves
good overall scalability with small overhead for different processor counts and data sizes on

extreme scale HPC systems.
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Figure 5.8: Comparison of the total execution time (in seconds) for the S3D simulation and
coupled analysis workflow with error detection in CPU staging. Numbers on top of the bars

indicate the recall of error detection in staging.
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Another concern for error detection in data staging is about the extra energy consump-
tion involved in utilizing a data staging area. For this paper, we did not explore energy
optimization approaches for error detection in data staging, nor conduct experiments to
evaluate energy consumption. Although evaluations of energy efficiency are beyond the
scope of the paper, we can make some general statements about the energy consumption
of our approach. Error detection in data staging introduces three main operations: data
computation, data storage, and data movement. Transporting data across compute notes
and storing it in DRAM devices increase the energy consumption [20]. Although it seems
that adding error detection will increase the energy consumption for the workflow, if we
consider that error detection in staging can decrease the total workflow execution time by
eliminating substantial computation time in the presence of silent errors, we expect the

energy consumption of the workflow to decrease.
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Figure 5.9: Comparison of the total execution time (in seconds) for the S3D simulation and
coupled analysis workflow with error detection in CPU-GPU hybrid staging. Numbers on

top of the bars indicate the recall of error detection in staging.

5.4 Related Work

Considerable efforts have been directed at developing techniques to detect and remediate
silent errors. Process replication or redundancy techniques [29] can achieve a high recall
and precision of detection with commensurately high compute and storage cost. Algorithm-

based fault tolerance (ABFT) [10] can be very useful in decreasing the error detection
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cost and are specifically fit for detecting errors in linear algebra kernels using checksums.
Detectors based on data analytics have been explored recently to serve as lightweight error
detection methods[33, 7]. These approaches use interpolation techniques, such as time series
prediction and spatial multivariate interpolation on the scientific dataset. In contrast to
these efforts, we provide a framework for in-situ workflows for performing error detection.
In addition, any error detection techniques can be easily integrated with our staging based
error framework.

Since fail-stop failure is another significant risk for applications and checkpoint /restart
has become a standard technique to address it, some research has combined checkpoint /restart
with error detection approaches in order to deal with both fail-stop failure and silent errors.
The study in [6] provides optimal resilience patterns to cope with fail-stop and silent errors.
The research in [17] introduces an on-line ABFT based error detection approach and uses
it in conjunction with checkpoint/restart to improve the time required to obtain correct
results in an unreliable computing system. These approach are mainly designed for single
applications and do not solve the problem of error propagation between coupled application.
Our approach specifically targets the coupled scientific simulations and aims to eliminate

error propagation via data verification in the shared abstraction, or a staging area.

5.5 Summary

This chapter presents a staging based error detection framework that uses idle computation
resource to effectively detect silent errors for in-situ workflows. Then, this chapter intro-
duces a design, implementation and deployment of this framework on top of the DataSpaces
on Titan Cray XK7 at OLCF. Finally, This chapter have evaluated the effectiveness and
performance of this framework through performance tests, synthetic tests and real world
large scale S3D application runs. The experiments demonstrate that staging based error
detection framework can effectively reduce the total execution time of scientific workflows

when combined with checkpoint /restart.
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Chapter 6

A Checkpoint/Restart with Data Logging Framework

6.1 Overview

In tightly coulped scientific workflows, simulation data is quickly shared and exchanged
amongst different coupled applications for accelerating the overall scientific discovery. These
simulation workflows running at extreme scales are providing new capabilities and oppor-
tunities in a wide range of application areas. However, due to the scales, coupling and
coordination behaviors and overall data management complexities, they are also presenting
new fault tolerance challenges that must be addressed before their potential can be fully
realized. As demonstrated in Chapter 3, to efficiently maintain the crash consistency be-
tween coupled application components and enable diverse state-of-the-art fault tolerance
approaches in the workflows have become significant and immediate challenges.

This chapter presents a workflow-level checkpoint /restart strategy for in-situ workflows.
This framework employs a data/event logging mechanism to keep data consistency among
application components during the failure recovery while decouple fault tolerance schemes
between application components in workflows. Specifically, it performs data/event logging
as soon as the data is written or read through the staging area. Also, it adapts global
user interface to application components, which works with the queue based algorithm to
record and replay data access events when preforming checkpointing and rollback recovery.
In this way, the checkpoint/restart with data logging framework allows wide area fault
tolerance schemes to be applied in workflows with flexibility and scalability, and minimize
the interference between normal application components and the failed one when performing
the recovery strategy.

The rest of the chapter is organized as follows. In Section 6.2, we introduce our check-

point/restart with data logging framework. In Section 6.3, we implement and evaluate our
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approach using various synthetic scientific workflows. Section 6.4 provides details of various

related work, and we conclude the chapter in Section 6.5.

6.2 Workflow-level Checkpointing Framework

In this section, we first propose our workflow-level uncoordinated checkpoint framework
which is integrated with multiple checkpoint /restart strategies. We then extend the frame-
work with other fault tolerance strategies such as process replication and ABFT, and con-
struct a hybrid checkpoint approach. Finally, we design the global user interface for the

framework which is implemented in open source data staging, DataSpaces.

6.2.1 Uncoordinated Checkpointing

To mitigate the data inconsistency issue discussed in Section 3.2.3, we introduce workflow-
level uncoordinated checkpoint with data logging framework. In this framework, the work-
flow logs data transportation events and payloads between application components as it
proceeds along the initial execution; without strong coordination, application components
in workflows checkpoint their state independently. In case of application component failure,
the workflow collects all its data/event log history, and enters the replay mode. Replay
consists in following the log history, enforcing all data transportation events of the failed
component to produce the same effect they had during the initial execution, and the cor-
responding data is re-provided to this process for this purpose. Therefore, the data depen-
dency and consistency between coupled application components will keep during the replay
mode. Once the history has been entirely replayed, the application component reaches a
state that is compatible with the state of the other components in workflows, that can

continue its progress from this point on.

Data Logging in Staging

One way to implement a data logging mechanism for workflows is to perform data logging
in a data resilience staging area. Figure 6.1 shows a typical workflow with a uncoordinated
checkpoint scheme combined with data staging. In this workflow, application components

send the data communication requests to data staging. For data write requests, applications
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Figure 6.1: An illustration of uncoordinated checkpointing for a typical workflow with

simulation, Analytic.

offload the data to the staging area for data transportation to coupled components later. For
data read requests, applications receive the data from the staging area which are generated
by coupled components in early time. Data staging logs the data communication requests
and corresponding payloads, and records the fault tolerance events such as chechpointing
and failure recovery during the initial execution. In case of failure, data staging switches
to the recovery phrase. It cooperates with the application recovery scheme, and reproduces
the data communication requests for the recovered component, which are determined by the
log history in the initial execution. To guarantee the data availability in staging, the data
staging can contain data resilience mechanisms such as data replication or erasure coding.
It can also be integrated with the third part framework such as FTI [34] for data resilience.

Specifically, we employ a queue based data consistency algorithm in the staging area.
Figure 6.2 illustrates a queue based data consistency algorithm for a coupled applications
workflow. The workflow consists of two coupled applications, and in each coupling cycle
(1 time step), coupled simulations a, b exchange the data through data staging. The data
staging creates a event queue for each application, and pushes the data communication
request events which related with the application into queue. In case of failure, the staging
area will replay the events from the queue during the application recovery phase. In this
example, simulation b failed and performs a rollback recovery at time step 7, and during
time step 8 to 10, the staging area relays the events in the queue for the simulation b which
are recorded from time step 5 to 7. At the end of checkpoint cycle(ts4, ts9, ts12), data

staging will clean the event queue and reload the following event from the front of queue. By
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maintaining the data request event queue, data staging can keep data consistency between
coupled applications during failure recoveries.

As well as uncoordinated checkpoint with multiple checkpoint periods shown in Fig-
ure 6.2, this data logging mechanism can easily adapt to other checkpoint /restart strategies
such as proactive checkpointing [11] and multi-level checkpointing [42] with only minor
changes.
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Figure 6.2: An illustration of queue based data consistency algorithm for a coupled appli-
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cations workflow. Simulation b fails and performs rollback recovery at time step 7, then
during time step 8 to 10, the staging area relays the events in the queue for the simulation

b which are recorded from time step 5 to 7.

Storage Cost and Garbage Collection

To reducing the storage cost, a garbage collecting mechanism is provided in the staging
area. Specifically, data staging servers periodically delete logged data which are related with
previous checkpoint periods without data dependency to other application components, and

only keep the latest version of data in the staging area.

6.2.2 Hybrid Checkpointing

Beside checkpoint /restart approaches, this workflow-level framework can also support the
wide area fault tolerance mechanisms, and construct a hybrid checkpointing scheme for
the workflow resiliency. Figure 6.3 illustrates a hybrid checkpoint framework which in-

tegrated with process replication and checkpoint/restart approaches. In this example, a
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simulation employs checkpoint/restart approach meanwhile the analytic uses process repli-
cation for resiliency. To make checkpoint/restart collaborate with a replication approach,
during checkpointing periods, the data communication requests between these coupled ap-
plications will be logged in the staging area. If a failure happens in the application with
checkpoint/restart, the application will rollback to last checkpoint place and re-execute
through the latest checkpoint, and the data staging switches to recovery phase. The data
logging in the data staging guarantees the restarted application can always get the correct
version of data from the coupled application. Since the application with process replication
can tolerate failures without rollback recovery, the failures will not trigger the data staging

to switch to recovery phase and replay the events.
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Figure 6.3: An illustration of hybrid checkpoint (integrated with a process replication) for

a typical workflow with simulation, analytic.

6.2.3 Global User Interface

In this section, we describe more details about global user interface, and present an example
to illustrate how this interface can be used to integrate multiple application fault tolerance
approaches to a workflow-level fault tolerance scheme.

As shown in Figure 6.4(a), When the application component performs checkpointing, it
first saves process states and user-level data to the reliable storage devices. The checkpoints
can be stored through a centralized parallel file system, assumed to be fault-free. Other
options include storing the checkpoints in the node-local storage (such as NVRAM and
SSD) or bust-buffer if the hardware architecture provides these devices. After that, the

application component calls workflow_check() function, and notices a checkpoint event



work flow_check() send a checkpoint event to data staging.

recover data staging client and notify
work flow_restart()

the recovery event to data staging.

dspaces_put_with_log() | log data to data staging.

retrieve the logged data specified by geometric
dspaces_get_with_log()

descriptor from data staging.

Table 6.1: User interface for checkpoint/restart in workflows.

Application components

Application

Application components

Application

Data staging Data staging

* event indexing event querying
[isrdrs cestpiming ¥ w_ano g o
* event logging event replay
return return
(a) workflows checkpointing (b) workflows restart
Application components Data staging Application components Data staging
i i SO X
return return
(c) data read with logging (d) data write with logging

Figure 6.4: User interface for checkpoint/restart in workflows.
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to data staging. When data staging receives the event notification, it creates a checkpointing
ID: W_Chk_ID for this event, and then inserts it into the event queue. Since application
components may have different checkpoint time spots, we assign an unique W_Chk_ID for
each checkpoint event which refer to the same application component.

For the application recovery, it involves four key steps shown in Figure 6.4(b): fail-
ure detection, process recovery, data recovery, and data staging client recovery with event
notification. To enable to recover applications from failures, application components will
delete failed processes and recover the MPI communicator through ULFM [8] [9]; a pro-
posed extension of the MPI standard which includes mechanisms for MPI applications to
tolerate fail-stop failures. After that, the equal number of spare processes join the old com-
municator to construct the new one. An alternative approach is to spawn new processes
instead of using processes from a previously prepared process pool, if this is supported by
the job scheduler. After the failed application component recovered from the latest check-
point spot, it calls workflow_restart() function. This function firstly initializes the data
staging client, and tries to build an RDMA connection to data staging servers, and send
the recovery event notification to the servers. After receiving the notification, the data
staging servers will update the event queue, and generate a replay script for the recovered
application.

During a workflow execution, when an application component tries to read the coupled
data from data staging, it calls dspaces_get_with_log() function. This function sends
data read request with the data descriptor to data staging. Based on the log history in
the event queue, the data staging identifies whether the read request comes from a rollback
execution or an initial execution of applications, and return the correct version of logged
data. Finally, data staging performs garbage collection operation to erase those data which
are no longer in use.

Similarly, when an application component tries to write the coupled data into data stag-
ing, it calls dspaces_put_with_log() function, and sends the data with the data descriptor
to data staging. After receiving the request, data staging will query the events in the event

queue. If the request is from initial execution, data staging will store data as the logged
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data otherwise omit the write request due to the redundant write request from the roll-
back recovering application. Table 6.1 summarize the global user interface for application

components to perform checkpoint /restart and data communication.

6.3 Experimental Evaluation

In this section, we describe the implementation details of workflow-level checkpoint frame-
work and perform an experimental evaluation using synthetic benchmarks in the presence
of failures.

Our workflow-level checkpoint framework is implemented on the top of CoREC [25],
an open-source data staging with scalable data resilience. CoREC is a branch version of
DataSpaces [21], and provides data resilience for a staging area in the case of both process
and node failures while still maintaining low latency and sustaining high overall storage effi-
ciency at large scales. The schematic overview of the runtime system is presented in Figure
6.5. In addition to modifying several existing components of CoREC for the integration,
the system architecture introduces four key new components: Data Logging Component,
Garbage Collection Component, Global User Interface, and Process/Data Resilience Com-
ponent. The Data Logging Component stores, indexes and maintains the log data from
coupled applications. Garbage Collection Component regularly cleans the unused historical
log data. User Interface provides a set of checkpoint/restart and data logging interfaces for
the applications in workflows. The Process/Data Resilience Component manages recovering
applications from failures. This Component manages a spare process pool and implements
the detection and handling of the process failures using ULFM, which offers a set of fault

tolerance mechanisms for MPI applications.

6.3.1 Synthetic Experiments

Our synthetic experiments were performed on the NERSC Cori Cray XC40 system, and
evaluated the write performance and memory usage of data staging with data/event logging.
We also measured the total workflow execution time to evaluate the benefit from workflow-
level checkpoint /restart framework in case of failures. To better understand its performance

and effectiveness, we selected two test cases with common data access patterns and resilience
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Figure 6.5: Implementation of workflow-level checkpoint framework

schemes used by real scientific workflows.

In each case, the simulation wrote the coupled data into the data staging, and the
analytic read the data right after simulation write. Checkpoint/restart and/or process
replication method were applied to the individual application to construct either uncoor-
dinated checkpoint or hybrid checkpoint scheme for the entire synthetic workflows. In the
synthetic workflows, simulation and analytic applications have different scales and resiliency
requirements which correspond to checkpointing data to the parallel file system with differ-
ent frequencies. For the process replication method, we use process duplication to tolerance
one process failure. In case of failures, the application tolerated by checkpoint/restart will
be rolled back to the last checkpoint place and re-executed from that point. For the ap-
plication with replication scheme, it will be tolerated failures by switching the task from
the failed process to the replicated process. We ran the synthetic workflow with different
data access patterns and various frequencies of checkpointing. Then, we measure write
response time and memory usage of data staging and the total execution time of workflows.
In these experiments, a failure was randomly introduced into the application process within
40 time steps, which corresponds to MT BF = 10min. This simulates frequent failures on
an extreme-scale supercomputer system. We compared our approach with two other fault
tolerance mechanisms: global coordinated checkpoint (checkpoint application components
in workflows coordinately, and restart them globally) as a baseline and individual checkpoint
(individually checkpoint/restart application components without guarantee of correctness

results) as the theoretical optimal lower bound. All experiments ran on the Cori, Cray XC40
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system, a 12,076-node supercomputer located at the NERSC center at Lawrence Berkeley
National Laboratory (LBNL). The set-up of these experiments is described in Table 6.2.
The experimental results are presented in Figure 6.6 followed by a detailed discussion and

analysis of each.

Total No. of cores 256 + 64 + 32 = 352

No. of simulation cores 8 x 8 x 4 =256

No. of staging cores 32

No. of analytic cores 64

Volume size 512 x 512 x 256

Data size (40 ts) 20GB

Data access pattern write immediately followed by read
Coordinated checkpoint period (ts) | 4

Simulation checkpoint period (ts) 4

Analytic checkpoint period (ts) 5

Table 6.2: Experimental setup for synthetic test cases.

1) Case 1 - Write different subsets of the entire data domain in each time step: In
this case, 20%, 40%, 60%, 80%, 100% percentages of the entire data domain are exchanged
between application components via data staging in each time step. Meanwhile, we perform
checkpointing every 4 iterations for large simulation application, and 5 iterations for the
small analytic application. With more data exchanging through data staging, both compu-
tation cost and storage cost for data/event logging increased. Data/event logging increased
the write response time by 10%, 12%, 14%, 14%, and 15% as compared to the original data
staging respectively. For the storage overhead of data/event logging in data staging, as
shown in Figure 6.6(c), data/event logging increased the memory usage by 81% for 20%,
82% for 40%, 84% for 60%, 86% for 80%, and 86% for 100% subset, as compared to the
original data staging’s.

2) Case 2 - Write the entire data domain and perform checkpointing with different
frequencies: In this case, we write the entire data domain in data staging, and change
the checkpoinnting periods from every 2 time steps to every 6 time steps. As seen in
Figure 6.6(b), we got slight performance degradation when performing data/event logging
in data staging. Data/event logging increased the write response time by maximum 14%
as compared to original data staging under five different checkpoint frequencies. Since the

less frequent checkpoint indicates the longer data/event queue size in the staging area, the
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Total No. of cores 704 | 1408 | 2816 | 5632 | 11264
No. of simulation cores 512 | 1024 | 2048 | 4096 | 8192
No. of staging cores 64 128 256 512 1024
No. of analytic cores 128 256 512 1024 2048
Data size (40 ts)(GB) 40 80 160 320 640
Coordinated checkpoint period (ts) 8 8 8 8 8
Simulation checkpoint period (ts) 8 8 8 8 8
Analytic checkpoint period (ts) 10 10 10 10 10
MTBF(sec) / No. of failures 600 / 1, 300 /2, 200 /3

Table 6.3: Configuration of core-allocations, data sizes, and failure characteristics for the

scalability test scenarios on 704, 1408, 2816, 5632, and 11264 cores.

higher storage cost can be expected. Therefore, as shown in Figure 6.6(d), the memory
usage for data logging increases by 76% for 2ts, 79% for 3ts, 84% for 4ts, 89% for 5ts, and
97% for 6ts checkpoint period, as compared to the memory usage of original data staging.

In these two cases, both uncoordinated checkpoint and hybrid checkpoint achieved nearly
same execution time as individual checkpoint’s which is theoretical optimal lower bound for
the execution time of workflows with fault tolerance. Also, they achieve a decrease of 3.06%
and 3.05% in the total execution time relative to global coordinated checkpoint in case 1.
In case 2, as seen in Figure 6.6(e), we get similar performance improvement with case
1. The uncoordinated checkpoint and hybrid checkpoint reduce the total execution time
around 3.15% for 2ts, 3.28% for 3ts, 3.26% for 4ts, 3.05% for 5ts and 3.18% for 6ts relative
to global coordinated checkpoint respectively.

In order to study the scalability of workflow-level uncoordinated /hybrid checkpoint, we
also plot the total workflow execution time at different workflow scales and MTBF. The
setup of these experiments is described in Table 6.3. Figure 6.7 summarizes the total
workflow execution time in case of different numbers of failures (from 1 to 3) and scales
(704, 1408, 2816, 5632, and 11264 cores). It can be seen that in the presence of multiple
failures, workflow-level uncoordinated checkpoint reduced the total execution time by up
to 7.89%, 10.48%, 11.5%, 12.03%, and 13.48% on 704, 1408, 2816, 5632, and 11264 cores
scales in comparison to global coordinated checkpoint.

These results show that workflow-level checkpoint framework demonstrates good overall
scalability and flexibility with small storage overheads for different data coupling patterns,

fault tolerance schemes and processor counts.
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Figure 6.6: Comparison of the cumulative data write response time, storage cost, and
total workflow execution time using the synthetic workflow on Cori. Ds: The workflow
with original data staging and failure free; Co: Global coordinated checkpoint /restart; Un:
Uncoordinated checkpoint /restart; Hy: Hybrid checkpoint /restart with process replication;
In: Individual checkpoint/restart; +1f: with one synthetic process failure. Percentages on
top of the bars indicate the ratio of memory usage of data logging to the original data
staging’s, and the ratio of write response time delay of data staging with data logging to

the original ones.
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6.4 Related Work

Although various checkpoint/restart strategies [27] [12] [42] [31] [11] and process resilience
techniques such as process replication or redundancy techniques [29] and algorithm-based
fault tolerance (ABFT) [10] can effectually address the fail-stop failures in single applica-
tion, there are limited research efforts on failure recovery for in-situ scientific workflows.
The study in [40] exploits the reduction style processing pattern in analytic applications
and reduces the complications of keeping checkpoints of the simulation and the analytic con-
sistent. Research efforts in [41] use a synchronous two-phase commit transactions protocol
to tolerate failures in high performance and distributed computing system. In comparison
to these efforts, our checkpoint /restart with data logging approach specifically targets tight

coupled in-situ workflows, and is more flexible, asynchronous and scalable.

6.5 Summary

This chapter presents a checkpoint/restart with data logging framework for tight coupled
in-situ scientific workflows to enable diverse fault tolerance schemes to be used in workflows
effectively and efficiently while maintaining data consistency. Then, this chapter introduces
an implementation and deployment of uncoordinated and hybrid checkpoint framework on

top of the DataSpaces on Cori, a Cray XC40 production system at Lawrence Berkeley
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National Laboratory (LBNL). Finally, this chapter have evaluated the effectiveness and
performance of our approach through synthetic tests. The experiments demonstrate that
compared with global coordinated checkpoint, the uncoordinated checkpoint and hybrid
checkpoint with data logging framework can effectively reduce the execution time of in-situ

scientific workflows.
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Chapter 7

Conclusions and future work

Cutting-edge in-situ workflows are generating and consuming data at an ever-growing scale.
Data-staging frameworks and in-situ data process techniques have emerged as effective
solutions for addressing data-related challenges at extreme scale and supporting in-situ
workflows in high-performance computing (HPC) systems. However, reliability is an im-
portant issue that needs to be addressed in order to allow these workflows to continue
scaling efficiently. The resilience challenge for extreme-scale in-situ workflows requires var-
ious hardware and software components in workflows are capable of handling a broad set
of failures at accelerated fault rates. While the HPC community has developed various so-
lutions, application-level as well as system-based solutions, the solution space of resilience
techniques for in-situ workflows remains fragmented.

This thesis identifies and addresses key problems and requirements for in-situ scientific
workflows. Specifically, this thesis presents CoOREC and CoREC-multilevel, a scalable hy-
brid approach to data resilience for data staging frameworks that used online data access
classification to effectively combines replication and erasure codes, and to balance compu-
tation and storage overheads. CoREC-multilevel can support different data resiliency tech-
niques in order to satisfy the varying data resiliency requirements of multiple applications.
Furthermore, utilizing lazy recovery and conflict-avoid encoding workflow optimizations, we
reduced the interference due data-resiliency on the simulation/analysis components of the
workflow. Secondly, this thesis presents a staging-based framework for detecting corruption
that uses idle computation resource to effectively detect silent errors for in-situ workflows.
As an illustrative example, we have demonstrated the use of an improved spatial outlier
detection technique to achieve lightweight error detection with high accuracy. We have also

provided a CPU-GPU hybrid staging architecture to minimize the impact of error detection
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on regular I/O operations on a data staging framework and interference with simulation/-
analysis components of the workflow further when performing error detection. Finally, this
thesis presents a checkpoint/restart with data logging framework for tight coupled in-situ
scientific workflows to keep crash consistency and enable diverse fault tolerance schemes
to be used in workflows effectively and efficiently. Specifically, we apply data logging in
staging area to effectively decouple fault tolerance schemes between application compo-
nents while maintaining data consistency among application components during the failure
recovery. We have also provided a user interface for integrating this framework with appli-
cation fault tolerance schemes. We evaluated the effectiveness, scalability and performance
of the proposed programming interface and runtime mechanisms, through integration and
experiments with synthetic and real-world in-situ scientific workflows.

In the future, this work can be extended in several directions.

e Modeling and addressing failures for workflows in heterogeneous HPC sys-
tem: To sustain performance while facing always tighter power and energy envelopes,
High Performance Computing (HPC) is increasingly leveraging heterogeneous archi-
tectures such as Burst buffer, General-purpose computing on graphics processing units
(GPGPU), and Non-Uniform Memory Access(NUMA). However, this poses new chal-
lenges to efficiently model and address the heterogeneous architectures related failures
in applications. In terms of in-situ scientific workflows, the required resilience manage-
ment must support a wide range of different heterogeneous devices and programming
models that target different application domains to provide end-to-end resilience so-

lution for workflows.

e Modeling and addressing silent errors in machine learning workflows: This
thesis focuses on in-situ scientific workflows which are composed by coupled scien-
tific simulation and analytics. However, as machine learning becomes pervasive in
high performance computing, it has found its way into scientific workflow domains
(e.g..knowledge discovery). Thus, the fault tolerance for scientific machine learning
has grown in importance. Specifically, failures in machine learning workflows can have

catastrophic consequences, and can occur due to silent errors, which are increasing
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in frequency due to system scaling. Meanwhile, Machine learning applications of-
ten possess uniquely inherent properties such as self-correcting behavior, due to their
iterative convergent nature. Therefore, the new resilience frameworks for scientific
machine learning workflows are needed to leverage these properties to achieve adapt-
ability and efficiency by relaxing the consistency of execution and allowing silent errors

to be self-corrected during workflow execution.
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