
ADDRESSING FAULT TOLERANCE FOR STAGING
BASED SCIENTIFIC WORKFLOWS

By

SHAOHUA DUAN

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Manish Parashar

And approved by

New Brunswick, New Jersey

May, 2020

ABSTRACT OF THE DISSERTATION

Addressing Fault Tolerance for Staging Based Scientific

Workflows

By SHAOHUA DUAN

Dissertation Director:

Manish Parashar

In-situ scientific workflows, i.e., executing the entire application workflows on the HPC sys-

tem, have emerged as an attractive approach to address data-related challenges by moving

computations closer to the data, and staging-based frameworks have been effectively used

to support in-situ workflows at scale.

However, running in-situ scientific workflows on extreme-scale computing systems presents

fault tolerance challenges which significantly affect the correctness and performance of work-

flows. First, scientific in-situ workflow requires sharing and moving data between coupled

applications through data staging. As the data volumes and generate rates keep grow-

ing, the traditional data resilience approaches such as n-way replication and erasure codes

become cost prohibitive, and data staging requires more scalable and efficient approach to

support the data resilience. Second, Increasing scale is also expected to result in an increase

in the rate of silent data corruption errors, which will impact both the correctness and per-

formance of applications. Moreover, this impact is amplified in the case of in-situ workflows

due to the dataflow between the component applications of the workflow. Third, since cou-

pled applications in workflows frequently interact and exchange the large amount of data,

simply applying the state of the art fault tolerance techniques such as checkpoint/restart

to individual application component can not guarantee data consistency of workflows after

ii

failure recovery. Furthermore, naive use of these fault tolerance techniques to the entire

workflows will limit the diversity of resilience approaches of application components, and

finally incur a significant latency, storage overheads, and performance degradation.

This thesis addresses these challenges related to data resilience and fault tolerance for

in-situ scientific workflows, and makes the following contributions. This thesis first presents

CoREC, a scalable resilient in-memory data staging runtime for large-scale in-situ work-

flows. CoREC uses a novel hybrid approach that combines dynamic replication with erasure

coding based on data access patterns. CoREC also provides multilevel data resilience to

satisfy different fault tolerance requirements. Furthermore, CoREC introduces optimiza-

tions for load balancing and conflict avoiding encoding, and a low overhead, lazy data

recovery scheme. Then, this thesis addresses silent error detection for extreme scale in-

situ workflows, and presents a staging based error detection approach which leverages idle

computation resource in data staging to enable timely detection and recovery from silent

data corruption. This approach can effectively reduce the propagation of corrupted data

and end-to-end workflow execution time in the presence of silent errors. Finally, this the-

sis addresses fail-stop failures for extreme scale in-situ scientific workflows, and presents a

loose coupled checkpoint/restart with data logging framework for in-situ workflows. This

proposed approach introduces a data logging mechanism in data staging which is composed

by the queue based algorithm and user interface to provide a scalable and flexible fault

tolerance scheme for in-situ workflows while still maintaining the data consistency and low

resiliency cost. The research concepts and software prototypes have been evaluated using

synthetic and real application workflows on production HPC systems.

iii

Acknowledgments

First and foremost, I would like to thank my advisor, Dr. Manish Parashar, for his guidance

and support throughout my doctoral study and research. I am grateful for his advice,

encouragement, patience and cheerfulness during my years at Rutgers.

I would like to thank as well Dr. Santosh Nagarakatte, Dr. Sudarsun Kannan, and Dr.

George Bosilca for serving as part of my committee members and taking time off their busy

schedule to read and review my thesis.

I would like to give special thanks to the DataSpaces team, Tong Jin, Marc Gamell,

Qian Sun, Pradeep Subedi, Philip Davis, and Zhe Wang, with whom I spent the best part

of my years at Rutgers. Much of this work would not have been possible without their

contributions.

I thank Dr. Keita Teranishi, Dr. Hemanth Kolla from Sandia National Laboratories,

Dr. George Bosilca, Dr. Aurelien Bouteiller, and Dr. Barbara Chapman at CAARES team

for their collaborations, valuable discussions and co-authoring research papers.

I would also like to thank my friends and colleagues at Rutgers Discovery Informatics

Institute (RDI2) for creating a collaborative, productive and motivating work environment.

I owe enormous thanks to my parents Guixiang Wang and Jianhe Duan, my wife Lu

Sun, and my son Eilian Duan who have been a persistent source of love and encouragement

for me.

iv

Dedication

To my mother Guixiang Wang.

v

Table of Contents

Abstract . ii

Acknowledgments . iv

Dedication . v

List of Tables . ix

List of Figures . x

1. Introduction . 1

1.1. Background . 1

1.2. Research Challenges . 2

1.2.1. Support for Data Reliability . 2

1.2.2. Support for Data Verification . 3

1.2.3. Support for Crash Consistency . 3

1.3. Overview of Thesis Research . 4

1.4. Contributions . 5

1.5. Thesis Outline . 6

2. Background and Related Work . 8

2.1. Failures in Extreme Scale HPC Systems . 8

2.2. Data Resilience Techniques . 10

2.2.1. Data Replication . 10

2.2.2. Erasure Codes . 11

2.3. Checkpoint/Restart . 12

2.3.1. Coordinated Checkpointing . 12

2.4. Data Verification . 14

vi

2.4.1. Process Replication . 15

2.4.2. ABFT . 16

2.4.3. Outlier Based Error Detection . 17

2.5. Summary . 18

3. Motivating Applications and Challenges . 20

3.1. Motivating Staging Based In-situ Scientific Workflows 20

3.1.1. Coupled Combustion Simulation DNS-LES Workflow 20

3.1.2. Online Data Analytics Workflow for Combustion Simulations 21

3.1.3. Data Staging technique - DataSpaces 22

3.2. Fault Tolerance Challenges . 24

3.2.1. Data Reliability . 24

3.2.2. Data Verification . 25

3.2.3. Data Consistency . 26

4. CoREC: a Scalable and Resilient In-memory Data Staging 29

4.1. Introduction . 29

4.2. CoREC (Combining Replication and Erasure Coding) 30

4.2.1. Classifying Data Access . 31

4.2.2. Modeling the CoREC Approach . 33

4.2.3. CoREC-multilevel, CoREC with multilevel data redundancy 36

4.3. CoREC System Design . 38

4.3.1. Data Placement . 39

4.3.2. Load Balancing & Conflict Avoid Encoding Workflow 40

4.3.3. Data Size & Geometric Shape . 41

4.3.4. Recovering Data Staging Server Failures 43

4.4. Experimental Evaluation . 45

4.4.1. Experiments with Node Failures . 56

4.4.2. Experiments for CoREC with multilevel data redundancy 60

4.5. Related Work . 63

vii

4.6. Summary . 64

5. Staging Based Silent Error Detection Framework 65

5.1. Overview . 65

5.2. Error Detection in Staging . 66

5.2.1. Modeling Error Detection in Staging 66

5.2.2. Simulation and Analysis . 69

5.2.3. Implementing Error Detection in Staging 72

5.3. Experimental Evaluation . 75

5.3.1. Performance Experiments . 77

5.3.2. Synthetic Test Cases . 79

5.3.3. Large Scale S3D Experiment . 82

5.4. Related Work . 84

5.5. Summary . 85

6. A Checkpoint/Restart with Data Logging Framework 86

6.1. Overview . 86

6.2. Workflow-level Checkpointing Framework 87

6.2.1. Uncoordinated Checkpointing . 87

6.2.2. Hybrid Checkpointing . 89

6.2.3. Global User Interface . 90

6.3. Experimental Evaluation . 93

6.3.1. Synthetic Experiments . 93

6.4. Related Work . 98

6.5. Summary . 98

7. Conclusions and future work . 100

References . 103

viii

List of Tables

4.1. Experimental setup for synthetic tests. 49

4.2. Configuration of core-allocations, data sizes, and data resilience for the three

test scenarios on 4480, 8960 and 17920 cores. 54

4.3. Experimental setup for node failures tests. 57

4.4. Experimental setup for multilevel redundancy tests. 60

5.1. Symbols summary . 67

5.2. The parameter configuration for workflow time sequence emulation. 71

5.3. Experimental setup for performance tests. 77

5.4. Experimental setup for synthetic test cases. 82

5.5. Configuration of core-allocations, data sizes, and data resilience for the three

test scenarios on 4416, 8832 and 17664 cores. 82

6.1. User interface for checkpoint/restart in workflows. 91

6.2. Experimental setup for synthetic test cases. 95

6.3. Configuration of core-allocations, data sizes, and failure characteristics for

the scalability test scenarios on 704, 1408, 2816, 5632, and 11264 cores. . . 96

ix

List of Figures

1.1. A typical data staging workflow. 2

2.1. Impact of checkpointing on staging-based in-situ application workflows. Exec

is the total execution time of the workflow without checkpointing; Exec-

CoREC is the total execution time of the workflow using CoREC; Exec-check

is the total execution time of the workflow with periodic checkpointing of the

staged data; Checkpoint is the total time required to checkpoint the data

staging servers; Restart is the time required to perform a global restart of

the data staging servers using a checkpoint. 13

2.2. Examples of time series and spatial outlier detection techniques for a 1D data

domain. 18

3.1. Cumulative data write throughput (blue dot line) and CPU Utilization =

compute time in staging/write response time (red line) for different problem

sizes when writing the entire data domain to data staging. 23

3.2. Coupling and data-exchange patterns for the in-situ S3D coupled simulation

workflow. 25

3.3. individually checkpoint/restart for the in-situ S3D coupled simulation workflow. 27

3.4. Coordinated checkpoint/restart for the entire in-situ S3D coupled simulation

workflow. 28

4.1. An illustration of spatial and temporal data write/update patterns for a 2D

data domain with N + 1 time steps. The solid red regions and slash regions

(i.e., hot data) indicate data written into the staging area, while the black

dot regions (i.e., cold data) are not updated since time step i. 31

x

4.2. An analytic study of the relative time complexity of CoREC (CCoREC) with

RS(4, 3), and varying miss ratios(Rm) and percentages of hot data objects

(Ph). The time complexity for erasure coding (Cerasure), replication (Creplica)

and simple hybrid erasure coding (Chybrid) is noted by red dotted lines, as

baselines. 37

4.3. Data Objects, Replicas and Parity layout in data staging. Servers 1 and 2

are in the same replication group while servers 1, 2, 3 and 4 belong to the

same coding group. This topology-aware data layout can tolerate arbitrary

single node failure. 39

4.4. Encoding workflow in CoREC. 40

4.5. Data and process recovery in data staging area. 45

4.6. System Architecture . 46

4.7. Average data write and read response time (blue bars) and Write Efficiency =

Write response time/Storage Efficiency (red line) of different data resilience

mechanisms for the five test cases using different writing patterns. DataS:

Data staging without fault tolerance; DataS PFS: Data is stored in PFS for

resilience; DataS BB: Data is stored in Burst Buffer for resilience; Replicate:

Data is replicated in peer memory for resilience; Erasure: Data is erasure

coded for resilience; Hybrid: hybrid erasure coding with LRU data classifica-

tion; CoREC+1d and CoREC+2d: CoREC in degraded mode with 1 and 2

server failures; CoREC+1f and CoREC+2f: CoREC in lazy recovery mode

with 1 and 2 server failures; Erasure+1f and Erasure+2f: Erasure coded data

staging with an aggressive recovery strategy under 1 and 2 server failures. . 48

4.8. Breakdown of the total execution time (in seconds) for the workflows in

Figure 4.7. transport: Time spent in data movement; metadata: Time spent

to update the distributed metadata; encode: Time spent to perform data

encoding; classify: Time spent for data classification in CoREC (listed as

number). 50

xi

4.9. The average read response time for reading the entire data domain with 1

and 2 failures, along with failure recovery, for 20 time steps. The first failure

occurs at time step 4, and second failure occurs at time step 6. First failure-

recovery begins at the 8th time step and another recovery is initiated at the

12th time step, and they end at time steps 9 and 13 respectively. 53

4.10. Comparison of the cumulative data read response time using the S3D and

coupled analysis workflow on Titan. 55

4.11. Comparison of the cumulative data write response time using the S3D and

coupled analysis workflow on Titan. 55

4.12. Comparison of the cumulative data read response time using the synthetic

workflow on Caliburn. FF: in the x-axis represents CoREC in failure free case. 58

4.13. Comparison of the cumulative data write response time using the synthetic

workflow on Caliburn. FF: CoREC with failure free case. 59

4.14. Comparison of the total execution time using the synthetic workflow on Cal-

iburn. FF: CoREC in failure free case. 59

4.15. Read and write response time of variables under the percentage of high data

redundancy in CoREC-multilevel. Failure free: CoREC-multilevel in failure

free case. 61

4.16. Storage cost and efficiency for the percentage of high data redundancy in test

scenarios. 62

5.1. An illustration of a typical workflow with two coupled simulations simu1,

simu2. Simulations alternate in exchanging data via data staging. For fault

tolerance, each simulation performs checkpointing and silent error detection

tasks based on their optimal checkpoint time cycles. 67

5.2. The simulated total work flow execution time comparison between error de-

tection in checkpoint component (blue dot line) and error detection in both

checkpoint and staging (solid line). 70

5.3. An illustration of the behavior of and relation between dataset training and

feedback training. 75

5.4. Implementation of error detection in CPU-GPU hybrid staging 76

xii

5.5. Comparison of the data write-response time for data staging with error de-

tection on Titan. DataSpaces: Data staging write response time without

error detection (baseline); DS SLOM C: Data staging write response time

with error detection in CPU staging; DS SLOM G1024/8192: Data staging

write response time with error detection in CPU-GPU hybrid staging under

1024/8192 GPU threads. 77

5.6. Comparison of the total execution time of the workflow under different error

detection frequencies or length of each time step in data staging. Error

detection is performed in each time step. 78

5.7. Breakdown of the total execution time (in seconds) for the workflows with

checkpoint restart and error detection under 2 silent errors. Execute: Time

spent in workflow execution; Checkpoint: Time spent to perform checkpoint-

ing; Restart: Time spent to restart workflow; Detect: Time spent performing

error detection in staging; Re-execute: Time spent for re-executing the work-

flow from last checkpoint (correct error). The leftmost bar represents error

detection in local checkpoint component only. Other bars represent error de-

tection in both staging and local checkpoint components. Numbers on top of

the bars indicate the total number of errors that was corrected by the staging

component during 50 experiment runs. 80

5.8. Comparison of the total execution time (in seconds) for the S3D simulation

and coupled analysis workflow with error detection in CPU staging. Numbers

on top of the bars indicate the recall of error detection in staging. 83

5.9. Comparison of the total execution time (in seconds) for the S3D simula-

tion and coupled analysis workflow with error detection in CPU-GPU hybrid

staging. Numbers on top of the bars indicate the recall of error detection in

staging. 84

6.1. An illustration of uncoordinated checkpointing for a typical workflow with

simulation, Analytic. 88

xiii

6.2. An illustration of queue based data consistency algorithm for a coupled ap-

plications workflow. Simulation b fails and performs rollback recovery at time

step 7, then during time step 8 to 10, the staging area relays the events in

the queue for the simulation b which are recorded from time step 5 to 7. . . 89

6.3. An illustration of hybrid checkpoint (integrated with a process replication)

for a typical workflow with simulation, analytic. 90

6.4. User interface for checkpoint/restart in workflows. 91

6.5. Implementation of workflow-level checkpoint framework 94

6.6. Comparison of the cumulative data write response time, storage cost, and

total workflow execution time using the synthetic workflow on Cori. Ds:

The workflow with original data staging and failure free; Co: Global co-

ordinated checkpoint/restart; Un: Uncoordinated checkpoint/restart; Hy:

Hybrid checkpoint/restart with process replication; In: Individual check-

point/restart; +1f: with one synthetic process failure. Percentages on top of

the bars indicate the ratio of memory usage of data logging to the original

data staging’s, and the ratio of write response time delay of data staging with

data logging to the original ones. 97

6.7. Summary of the total workflow execution time in case of failures (1, 2, and

3) and at different scales (704, 1408, 2816, 5632, and 11264 cores). 98

xiv

1

Chapter 1

Introduction

1.1 Background

Scientific workflows running on current and emerging extreme-scale systems are providing

new opportunities for solving some of the most important problems in science and society,

such as those being addressed by the US Exascale Computing Program (ECP) [56]. How-

ever, running such workflows at extreme scale presents significant challenges spanning all

aspects of data management, such as data analysis challenge, data movement challenge,

data storage challenge, and energy efficiency, etc. For example, the S3D [16] extreme scale

scientific workflow, which is a coupled, multi-scale, multi-physics turbulent combustion

workflow, involves intricate data-processing that includes multiple analyses performed at

different temporal frequencies on non-overlapping subsets of data. To address the data-

related challenges associated with coupled scientific workflows such as S3D executing at

extreme scales, in-situ approaches based on data staging have emerged and are being used

by applications on current high-end computing systems [23, 51]. Figure 1.1 illustrates an

in-situ scientific workflow where the application components are coupled via an in-memory

data staging framework. In this workflow, the primary scientific simulation is the data pro-

ducer and the data consumer(s) include secondary simulations, analytics services, and/or

visualization applications coupled to the data producer.

In-situ workflow approaches, such as those based on data staging and in-situ/in-transit

data-management, have emerged as effective solutions for addressing data-related challenges

at extreme scales, and are being adopted by applications across current high-end computing

systems [23, 19, 45]. These techniques leverage resources (compute, storage) on the HPC

system itself to support the data interaction and data couplings required by the workflows

as well as to execute data-processing workflows close to where the data is being produced.

2

These techniques reduces the amount of data that needs to be moved off the system and

stored to persistent storage (see Figure 1.1). For example, a multi-scale, multi-physics

turbulent combustion application S3D [16], has an intricate data-processing workflow with

multiple analyses performed at different temporal frequencies on non-overlapping subsets

of data.

Data Objects

In Memory Data
Staging

Simulation C

Simulation B

Simulation A

Data

Analytic F

Analytic E

Analytic D

Data

Figure 1.1: A typical data staging workflow.

DataSpaces [23], one such staging-based in-situ frameworks, uses data staging cores

(cores on simulation and dedicated nodes for data staging) to implement a semantically

specialized shared-space abstraction along with underlying runtime and RDMA-based asyn-

chronous data transport mechanisms to effectively support in-situ/in-transit data analytics

workflows requirements with minimal impact on the simulation itself [5, 46].

However, due to expected higher fault rates and dramatically increasing cost for ad-

dressing failures, there are several key fault tolerance challenges for building and effectively

running in-situ scientific workflows on extreme-scale HPC systems. These challenges include

the data reliability, data verification and crash consistency in in-situ workflows.

1.2 Research Challenges

1.2.1 Support for Data Reliability

To mitigate data loss on current and emerging extreme-scale systems which are expected

to experience higher rates of failures [15], various fault tolerance techniques such as check-

point/restart, process replication [26], and erasure coding [63] have been widely studied, and

have been utilized. Unfortunately, current fault tolerance techniques can not be directly

3

used to implement a resilient data staging services due to the contradiction between high

memory and/or computation overhead for data resilience and limited resource with high

performance requirement for data staging.

Even worse, data loss due to fail-stop failures (e.g., process failures, node failures) in

any module of workflows, including data staging, will impact the execution of the entire

workflow and can invalidate the final results. Consequently, it is critical to address data

resilience of data staging for the extreme scales end-to-end workflow. A data resilience

mechanism that can support in-memory data recovery with high-performance,

low overhead and minimum interference with regular data operation is needed

to guarantee the data reliability for data staging.

1.2.2 Support for Data Verification

Although various error-detection techniques for silent errors, such as ABFT [10] and time-

series predictions [7], have been widely studied, these studies have generally been in the

context of single applications rather than workflows, which are a composition of multiple

interacting component applications. Moreover, addressing error detection for in-situ work-

flows including the analysis components is more complicated than single application’s. The

final results of the overall computation for the long-running extreme scale workflows are the

outputs of the workflow, and silent errors in any component of the workflow can invalidate

these outputs. Also, since the component applications of a scientific workflow exchange

data, the impact of a silent errors will be propagated across application components in the

workflow.

As a result, it is important to detect, isolate and correct silent errors in a component

application as early as possible and to prevent the propagation of these errors between

components. A data verification mechanism is required for In-situ workflows to

identify error corrupted components and minimize its impact.

1.2.3 Support for Crash Consistency

Due to the dependencies, interactions and data exchanges between application components,

naively applying states-of-the-arts fault tolerance scheme for the individual component can

4

not maintain the consistent state of workflows during the failure recovery, which finally

makes the result of workflows invalid or incorrect. Meanwhile, directly using uniform fault

tolerance technique, such as global coordinated Checkpoint/Restart, to all application com-

ponents to achieve crash consistency can make the complexity and overhead for addressing

failures to be unacceptably high. Furthermore, this uniform fault tolerance strategy re-

stricts the diversification for addressing application resiliency, and potentially increases the

overall resiliency cost.

As a result, it is requirement to design a loose coupled workflow-level fault

tolerance mechanism to minimize the interference between components during

recovery, while still maintaining consistent states of workflows.

1.3 Overview of Thesis Research

The overall goal of this thesis is to address the research challenges related to data resilience,

data verification, and crash consistency for in-situ scientific workflows, which are described

above. This section presents an overview of thesis research.

This thesis presents CoREC (Combining Replication and Erasure Coding), which is a

hybrid approach to data resilience for data staging. CoREC provides the benefit of data

replication, i.e., high performance, while leveraging erasure coding to reduce storage costs.

CoREC uses online data classification, based on spatial/temporal locality, to determine

whether to use erasure coding or replication, and balances storage efficiency with low com-

putation overheads while maintaining desired levels of fault tolerance. Moreover, to satisfy

the diverse data resiliency requirements of different workflow components, CoREC sup-

ports the use of different data redundancy schemes, such as a hybrid approach combining

both replication and triplication with different erasure codes. CoREC with multilevel data

redundancy (CoREC-multilevel) can dynamically decide between erasure coding and repli-

cation schemes (for e.g., duplicate, triplicate, and Reed-Solomon codes) based on the data

access patterns while maintaining application-specified resiliency requirement and incurring

minimal storage overhead.

Furthermore, I develop a optimized load balance and conflict avoid encoding scheme

for CoREC to decrease data encoding overhead further. To alleviate the overhead and

5

interference associated with CoREC for both data-writes and data-recovery, I also develop

a light overhead staging server recovery scheme based on lazy mode. I have used CoREC to

implement resilient data staging within DataSpaces, and have also integrated ULFM (User

Level Fault Migration) [8] to efficiently recover from both processes and node failures.

This thesis also explores the detection and remediation of silent errors for staging-based

in-situ workflows. I leverage the fact that in-situ workflows exchange coupling data through

data staging frameworks [21][24] and the idle computational resources within the staging

area to provide uniform and efficient error detection. Specifically, I perform data validation

as soon as the data is written to the staging area. If an error is identified in recently written

data, the faulty application is instructed to roll back to the last known correct checkpoint

and re-execute. In this way, the application waiting to consume the written data will

only get access to the correct data, and error propagation from producer to consumer is

eliminated. I use a spatial outlier detection method for data validation as an illustrative

example in this thesis, and also explore how the performance impact of data verification

can be reduced by leveraging GPGPU resources at the staging nodes to execute the error

detection algorithms.

Finally, this thesis explores the workflow-level crash consistency strategy for in-situ work-

flows. I employ a data/event logging mechanism in the data staging to keep data consistency

among application components during the failure recovery while decouple fault tolerance

schemes between application components in workflows. Specifically, the data/event logging

is performed as soon as the data is written or read through the staging area. Also, I intro-

duce a global user interface to application components, which works with the queue based

algorithm to record and replay data access events when preforming checkpointing and roll-

back recovery. In this way, our checkpoint/restart with data logging framework allows wide

area fault tolerance schemes to be applied in workflows with flexibility and scalability, and

minimize the interference between normal application components and the failed one when

performing the recovery strategy.

1.4 Contributions

This thesis makes the following contributions.

6

• Design and implementation of CoREC, which provides scalable data resilience and

process/nodes failure recovery for data staging. CoREC also enables multi-level data

resilience with high performance and low overhead for the distributed in-memory data

staging.

• Design and implementation of error detection framework in data staging, which pro-

vides data verification for staging based in-situ scientific workflows. By leveraging

idle computation resource in staging, staging based error detection framework can

effectively prevent error propagation among application components, and minimize

the cost for recovering from silent errors.

• Design and implementation of checkpoint/restart with data logging framework for

in-situ scientific workflows, which effectively keep data consistency during application

failure recovery meanwhile providing a compatibility of diverse state-of-the-art fault

tolerance approaches to individual application components.

• Implementations of the prototype within Open-sources data staging DataSpaces, and

experimental evaluations using synthetic workloads and the S3D combustion work-

flow on the Titan Cray XK7 production system at Oak Ridge National Laboratory

(ORNL), the Cori Cray XC40 system at the National Energy Research Scientific Com-

puting Center (NERSC), and the Caliburn system at Rutgers Discovery Informatics

Institute (RDI2).

1.5 Thesis Outline

The rest of this thesis is organized as follows.

Chapter 2 presents a high-level overview of the related fault tolerance approaches for

realizing the resilient workflows.

Chapter 3 presents motivating and representative workflow examples, and summarizes

the fault tolerance requirements.

Chapter 4 presents the model, design, implementation, and evaluation for CoREC.

Chapter 5 presents a staging based silent error detection framework.

Chapter 6 presents a workflow-level Checkpoint/Restart with data logging framework.

7

Chapter 7 summarizes the research work, presents concluding remarks and directions

for future work.

8

Chapter 2

Background and Related Work

There are many types of errors, faults, or failures. Some are transient, others are unrecov-

erable. Some cause a fatal interruption of the application as soon as they strike, others may

corrupt the data in a silent way and will manifest only after an arbitrarily long delay.

While there is an increasing body of work on scalable fault-tolerance mechanisms ap-

plicable to individual applications [31], these mechanisms are not directly applicable to

in-situ scientific workflows, and to the data staging service supporting the workflow and

the data being staged by the workflow. To tackle this problem, this dissertation mainly

focuses on fail-stop failures and silent errors, and address data resilience challenges which

are related with these two type of failures for in-situ scientific workflows. In this chapter,

we first investigate failure rate of current and future extreme scale system. We then explore

why traditional mechanisms, such as Checkpoint/Restart, are unable to effectively meet

resilience requirements of staging-based in-situ workflows.

2.1 Failures in Extreme Scale HPC Systems

For HPC application workflows, scale is a major opportunity. Massive parallelism with

100,000+ nodes is the most viable path to achieving sustained Petascale performance. Fu-

ture platforms will enroll even more computing resources to enter the Exascale era. Current

plans refer to systems either with 100,000 nodes, each equipped with 10,000 cores (the fat

node scenario), or with 1,000,000 nodes, each equipped with 1,000 cores (the slim node

scenario)[37].

Unfortunately, scale is also a major threat, because resilience becomes a big challenge.

Even if each node provides an individual MTBF (Mean Time Between Failures) of, say, one

century, a machine with 100,000 such nodes will encounter a failure every 9 hours in average,

9

which is larger than the execution time of many HPC applications. Worse, a machine with

1,000,000 nodes (also with a one-century MTBF) will encounter a failure every 53 min in

average.1 Note that a one-century MTBF per node is an optimistic figure, given that each

node is composed of several hundreds or thousands of cores.

To further darken the picture, everything else is not equal: smaller transistors are more

error prone. One major cause for transient hardware errors is cosmic radiation. High-

energy neutrons occasionally interact with the silicon die, creating a secondary cascade of

charged particles. These can create current pulses that change values stored in DRAM or

values produced by combinatorial logic. Smaller circuits are more easily upset because they

carry smaller charges. Furthermore, multiple upsets become more likely. Smaller feature

sizes also result in larger manufacturing variances, hence larger variances in the properties

of transistors, which can result in occasional incorrect or inconsistent behavior. Smaller

transistors and wires will also age more rapidly and more unevenly so that permanent

failures will become more frequent. Energy consumption is another major bottleneck for

exascale. Subthreshold logic significantly reduces current leakage but also increases the

probability of faults.

Vendors can mitigate for the increase in fault rates with various techniques. For example,

for regular memory arrays, one can use more powerful error correction codes and interleave

coding blocks in order to reduce the likelihood of multiple bit errors in the same block. Buses

are usually protected by using parity codes for error detection and by retries; it is relatively

easy to use more powerful codes. Logic units that transform values can be protected by

adding redundancy in the circuits. Researchers have estimated that an increase in the

frequency of errors can be avoided at the expense of 20% more circuits and more energy

consumption [49]. Whether such solutions will be pursued is unclear, however: the IC

market is driven by mobile devices that are cost and energy sensitive and do not require

high reliability levels. Most cloud applications are also cost sensitive but can tolerate higher

error rates for individual components. The small market of high-end servers that require

high reliability can be served by more costly solutions such as duplication or triplication of

the transactions. This market is not growing in size or in the size of the systems used. Thus,

if exascale systems will be built out of commodity components aimed at large markets, they

10

are likely to have more frequent hardware errors that are not masked or not detected by

hardware or software.

As hardware becomes more complex (heterogeneous cores, deep memory hierarchies,

complex topologies, etc.), system software will become more complex and hence more error-

prone. Failure and energy management also add complexity. Similarly, the increase use

of open source layers means less coordinated design in software, which will increase the

potential for software errors. In addition, the larger scale will add complexities as more

services need to be decentralized, and complex failure modes that are rare and ignored

today will become more prevalent.

Application codes are also becoming more complex. Multiphysics and multiscale codes

couple an increasingly large number of distinct modules. Data assimilation, simulation, and

analysis are coupled into increasingly complex workflows. Furthermore, the need to reduce

communication, allow asynchrony, and tolerate failures results in more complex algorithms.

Like system software, these more complex algorithms and application codes are more error-

prone.

Researchers have predicted that large parallel jobs may fail as frequently as once every

30 minutes on exascale platforms [49]. Such failure rates will require new error-handling

techniques. Furthermore, silent hardware errors may occur, requiring new error-detection

techniques in (system and/or application) software.

2.2 Data Resilience Techniques

2.2.1 Data Replication

Since ensuring access to the staged data in spite of failures is most critical for a staging

service, data resilience techniques such as data replication or erasure coding are more ap-

propriate. Traditional ways of providing data reliability are through replication, by which a

dataset is replicated M + 1 times to tolerate M failures. Actually, replication schemes such

as standard primary-backup (PBR) [14] and chain-replication [48] have been widely used for

building highly available in-memory KV-store systems. For example, large-scale in-memory

11

key/value systems like Memcached [30] and Redis [62] have performed in-memory replica-

tion scheme to provide both high throughput and high availability so that such systems

can continuously handle millions of requests per second in presence of frequent fail-stop

failures. However, this also means dedicating M copies of CPU/memory without producing

user work, and requiring more storage requirements, standby machines and thus multiply-

ing energy consumption. For example, tolerating two node failures requires at least 200%

storage overhead, which may not be feasible for in-memory staging due to limited memory

size and staging nodes.

2.2.2 Erasure Codes

An alternate approach to data resilience with lower storage overheads is to employ erasure

coding techniques. Erasure codes are constructed using two configurable parameters n and

k (where k < n). The data is treated as a collection of fixed size units called blocks/objects.

Every k original objects (called data objects) are encoded into n − k additional equal size

coded objects (called parities) and the set of the n data and parity objects is called a stripe.

In case of a data staging service, objects of independently encoded multiple stripes are

stored on distinct staging servers, allowing the service to tolerate n− k server failures.

The motivation for using erasure coding comes from the need to reduce the cost of

storage. Erasure coding can reduce the cost of storage over 50%, and is widely used as

off-line data resilience with a tremendous cost saving in an Exabyte of storage. One typical

use case of erasure coding is to provide data reliability for log file system. In the log system,

data is appended to the end of active log file, which are replicated to keep the data durable.

Once reaching a certain size (e.g., 1 GB), the log files are sealed. These sealed log files can

no longer be modified and thus make perfect candidates for performing erasure coding, and

once the data is erasure-coded the original replicas of the log files are deleted.

The trade-off for using erasure coding instead of replication is performance and avail-

ability. The data in the failed data staging server will be offline and not available during

performing decoding for data recovery. Also, while erasure coding provides lower storage

overheads as compared to the replication, it can lead to significant computation and net-

work overheads as parity has to be re-computed for every object update. If a data object in

12

a stripe is updated, erasure coding must update the associated parity. This process involves

reading old data objects in the stripe, re-computing parities and updating them. For exam-

ple, if a stripe has 6 data objects and 2 parity objects, updating one data object requires 5

data object reads (for old data), re-computing 2 parity objects and 2 parity object writes.

As a result, using erasure coding can be suboptimal for frequently written/updated data

objects.

2.3 Checkpoint/Restart

2.3.1 Coordinated Checkpointing

Checkpoint/Restart (C/R) is the most widely used fault-tolerant technique for recovering

fail-stop failures in high performance applications. The principle of strategy for (C/R) is:

checkpoints are periodically saved during application initial execution, and when processes

are subject to failures, it uses these checkpoints to rollback the application processes to

the latest consistent state, and re-execute the program from that point. Using Check-

point/Restart for fault tolerance of the data staging service presents two concerns. The

first is the impact on the runtime of application workflows that use the data staging service.

To illustrate this impact, we performed periodic checkpointing of the data stored at the

DataSpaces servers to the parallel file system on Titan and measured the total execution

time with no server failure. Checkpointing was performed every 5 minutes, which is similar

to the frequency used in the experiments presented in [31], for a total of 8 staging servers

with varying staged data sizes. This resulted in a range from 17 checkpoints for a data size

of 4G to 20 checkpoints for a data size of 32G. The results are plotted in Figure 2.1. From

the plots, we can see that even if no failures are present, checkpointing significantly increases

the total execution time of the workflow as the staged data size increases. In this case, the

maximum time spent to achieve fault tolerance for just the staging servers is ∼ 15.6% of the

workflow run-time without failures. In addition, this does not include the work lost from

rolling back to a previous state. As presented in the chapter 4, failure recovery using CoREC

increases the total execution time of the workflow by up to 2.23%, which is significantly

13

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

4G 8G 16G 32G

Ti
m

e
(s

ec
)

Data Size

Exec Exec-CoREC Exec-check Checkpoint Restart

Figure 2.1: Impact of checkpointing on staging-based in-situ application workflows. Exec is

the total execution time of the workflow without checkpointing; Exec-CoREC is the total

execution time of the workflow using CoREC; Exec-check is the total execution time of

the workflow with periodic checkpointing of the staged data; Checkpoint is the total time

required to checkpoint the data staging servers; Restart is the time required to perform a

global restart of the data staging servers using a checkpoint.

lower than using Checkpoint/Restart. Furthermore, there is no loss of work in the case

of CoREC. The second concern is the overhead due to large amounts of data movement

and potential cascading rollback. When using Checkpoint/Restart for MPI applications,

rolling back the data staging server can cause the tightly coupled application components

of the workflow to become out of sync. Since all of the tightly coupled components in

the MPI communication group must be rolled back to an overall consistent state, this can

trigger a cascading rollback of the workflow where the rollback of one component triggers

other healthy component(s) to rollback, and, in the worst case, cause the entire workflow

to restart from the beginning. This process can result in significant coordination and data

movement overheads.

Uncoordinated Checkpointing with Message Logging

The coordinated checkpointing require that all processes rollback to the last valid checkpoint

wave, when a failure occurs. This ensures a global consistency, at the cost of scalability: as

the size of the system grows, the probability of failures increase, and the minimal cost to

14

handle such failures also increase.

To reduce the inherent costs of coordinated checkpointing, uncoordinated checkpointing

with message logging have thus been proposed. On the failure-free part of the execution,

the main idea is to remove the coordination of checkpointing, targeting a reduction of the

I/O pressure when checkpoints are stored on shared space, and the reduction of delays or

increased network usage when coordinating the checkpoints. Furthermore, uncoordinated

protocols aim at forcing the restart of a minimal set of processes when a failure happens.

Ideally, only the processes subject to a failure should be restarted.

In uncoordinated checkpointing with message logging, processes log nondeterministic

events and message payloads as they proceed along the initial execution; without strong

coordination, they checkpoint their state independently; in case of failure, the failed process

restarts from its last checkpoint, it collects all its log history, and enters the replay mode.

Replay consists in following the log history, enforcing all nondeterministic events to produce

the same effect they had during the initial execution. Message payloads must be provided

to this process for this purpose. If multiple failures happen, the multiple replaying processes

may have to reproduce the messages to provide the payload for other replaying processes, but

since they follow the path determined by the log history, these messages, and their contents,

will be regenerated as any deterministic action. Once the history has been entirely replayed,

by the piecewise deterministic assumption, the process reaches a state that is compatible

with the state of the distributed application, that can continue its progress from this point

on.

Uncoordinated checkpointing with message logging has been explored for efficiently min-

imizing application vulnerability to fail-stop failures, and seems to an option for addressing

fail-stop failures in in-situ workflows. Unfortunately, to the best of our knowledge, there is

not a supported framework to allow an uncoordinated checkpointing mechanism running at

in-situ workflows level and maintaining a global consistency.

2.4 Data Verification

Silent error is another potential threat to the data integrity of an HPC application. Silent

errors may occur in the form of transient bit-flips and are typically caused by electronic noise

15

or strikes by high energy particles, such as cosmic rays or proton radiation. Although the

mean time between silent errors (which we will denote as MTBE in this thesis) of individual

components is high, at extreme scales the aggregate MTBE of the entire system is low due

to the large number of system components. Additionally, silent errors are becoming more

prevalent in HPC systems as lower power chips with smaller feature sizes are being deployed.

Research has shown that there exists a strong inverse correlation between the spontaneous

error rate and the device sizes and operating voltages [28]. Compounding the issue, scientific

workflows, due to their complexity and long execution times, tend to encounter interruptions

or obtain invalid results caused by silent errors at a relatively high rate. Therefore, data

resiliency is a critical concern for scientific workflows running on extreme scale systems and

an efficient silent errors detection approaches is important for guaranteeing data resilience.

In contrast to a fail-stop failure whose detection is immediate, a silent error is identified

only when the corrupted data leads to an unusual application behavior. Such a detection

latency raises a new challenge: if the error struck before the last checkpoint, and is detected

after that checkpoint, then the checkpoint is corrupted and cannot be used for rollback.

In order to avoid corrupted checkpoints, an effective approach consists in employing some

verification mechanisms and combining it with checkpointing. This verification mechanism

can be general-purpose (e.g., based on replication or even triplication [29]) or application-

specific (e.g., based on Algorithm-based fault tolerance (ABFT) [10], or on data dynamic

monitoring [7]). In this section, we will briefly talk about three widely-used error detection

approaches in application-level and figure out generality, accuracy and performance of each

approach. The accuracy of error detection is quantified by using two measures: recall and

precision, which are defined as:

recall =
TruePositives

TruePositives+ FalseNegatives

precision =
TruePositives

TruePositives+ FalsePositives

2.4.1 Process Replication

Process replication [29] has been widely used for tolerating both silent errors and fail-stop

failures. It creates replica tasks, such as MPI process, for each primary task and compares

16

the computation results between replicated processes to detect corrupted data. This ap-

proach is very general with high recall and precision. Unfortunately, process replication

may not always be feasible for extreme scale in-situ workflows because computing redun-

dant tasks of any components including data staging will impose large computation and

storage overheads which significantly degrade the overall performance of in-situ workflows,

since application components such as scientific simulation are usually computation intensive,

and the compute resources in data staging are much smaller than that in that application

components.

Also, using replication for fault tolerance of the data staging service would require

each staging server and its data to be replicated, which doubles the compute and storage

requirements and can make it infeasible.

2.4.2 ABFT

The general idea of Algorithm Based Fault Tolerance (ABFT) [10] is to introduce infor-

mation redundancy in the data, and maintain this redundancy during the computation.

Linear algebra operations over matrices are well suited to apply such a scheme: the matrix

(original data of the user) can be extended by a number of columns, in which checksums

over the rows are stored. The operation applied over the initial matrix can then be extended

to apply at the same time over the initial matrix and its extended columns, maintaining

the checksum relation between data in a row and the corresponding checksum column(s).

Usually, it is sufficient to extend the scope of the operation to the checksum rows, although

in some cases the operation must be redefined.

If a failure hits processes during the computation, the data host by these processes is

loss or corrupted. However, in theory, the checksum relation being preserved, if enough

information survived the failure between the initial data held by the surviving processes

and the checksum columns, a simple inversion of the checksum function is sufficient to

reconstruct the missing data or detect the silent errors.

No periodical checkpoint is necessary, and more importantly the recovery procedure

brings back the missing or corrupted data at the point of failure, without introducing a

period of re-execution as the general techniques seen above impose, and a computational

17

cost that is usually linear with the size of the data. Thus, the overheads due to ABFT are

expected to be significantly lower than those due to rollback-recovery.

ABFT was shown to be an effective method with low computation overhead and high

accuracy for application-layer detection and correction for a range of basic matrix operations

including addition, multiplication, scalar product, transposition. Also, such techniques were

also proven effective for LU factorization, Cholesky factorization and QR factorization.

However, ABFT does not provide general error detection for applications. It has only been

implemented for a limited set of linear algebra application, and so is only available to a

small subset of the vast spectrum of scientific applications.

2.4.3 Outlier Based Error Detection

Most of the datasets produced by HPC scientific applications have expected informational

characteristics that reflect the properties of the underlining physical phenomena that the

applications seek to model [33]. Silent data corruption via bit flips alters the value of the

data causing it to deviate from these standard characteristics. Therefore, corrupted data can

be detected as an outlier based on its deviation from the expected range of normal values.

There are two classes of outlier detection: time-series outlier detection and spatial outlier

detection. Time-series outlier detection [7] is illustrated in Figure 2.2(a). HPC scientific

application often iteratively operate upon data, changing their values over time. At each

iterative time-step, a time-series outlier detection approach can be used to dynamically

predict the possible range for data values at the next time-step, and a data value can be

considered as an outlier if it falls outside this range. Modeling the value of a data point

will take with a random variable, it is then possible to find outliers using variations of the

Chebyshev’s inequality,

P (|X − µ| ≥ kδ) ≤ 1

k2

where µ and δ are the mean and variance of the random variable X that models the

data point be considered. For example, data value can be identified as silent errors when it

cannot hold this inequality. When additional information is available, like the distributional

assumption of X , this inequality can be sharpened. For example, when X follows a normal

18

distribution, it can be shown that 99.7% of the data lies between three standard deviations,

as opposed to 88.8% given by the general Chebyshev’s inequality.

History window

Predict the normal value
range for next-step data

Time step

X axis in 1D domainSpatial neighbor

Predict the normal value
range for neighbor data

(a) Time-series outlier detection

History window

Predict the normal value
range for next-step data

Time step

X axis in 1D domainSpatial neighbor

Predict the normal value
range for neighbor data

(b) Spatial outlier detection

Figure 2.2: Examples of time series and spatial outlier detection techniques for a 1D data

domain.

Spatial outlier detection [3] is illustrated in Figure 2.2(b). A spatial outlier is a spatially-

referenced object whose non-spatial attribute values are significantly different from those

of other spatially referenced objects in its spatial neighborhood. A spatial neighborhood

may be defined based on spatial attributes, e.g., location, using spatial relationships such

as distance or adjacency. Non-spatial attributes between spatially referenced objects can be

compared within that neighborhood, considering those values whose non-spatial attributes

deviate significantly to be spatial outliers. Although not perfectly accurate, outlier detection

techniques can still detect a substantial fraction of silent errors, and more importantly these

methods incur low overhead. These properties make them attractive candidates for staging-

based error detection framework which will be discussed in chapter 5

Although outlier-based error detection approaches are good candidates for SDC detec-

tion, it should be noted that the choice of the most appropriate error detection approach

depends on the data characteristics of the workflow; this thesis aims to provide a pluggable

approach for enabling error detection in the staging area and to highlight its benefits, and

can use the chosen most appropriate error detection approach for a specific workflow.

2.5 Summary

This chapter described the fail-stop failures and silent errors on extreme-scale computing

systems, and presented five widely-used data and process resilience approaches, and figured

19

out why directly using these state-of-the-art fault tolerance approaches in in-situ scientific

workflows can not address fault tolerance related challenges efficiently.

20

Chapter 3

Motivating Applications and Challenges

Chapter 2 described the failures and state-of-the-art approaches for addressing them in HPC

system. This chapter presents an overview of the technical approaches and implementations

used for in-situ scientific workflows. In addition, this chapter describes the underlying

technology, i.e., DataSpaces framework, which is used by the implementations presented in

this thesis.

3.1 Motivating Staging Based In-situ Scientific Workflows

3.1.1 Coupled Combustion Simulation DNS-LES Workflow

S3D is a massively parallel computational fluid dynamics (CFD) solver that performs first

principles based”direct numerical simulations”(DNS) of turbulent combustion. DNS is very

expensive both in terms of flops and data generation, since it resolves the entire range of

spatial and temporal scales in the continuum regime of given problem. Another paradigm

of turbulent combustion simulations that is less expensive and more suitable for engineer-

ing calculations is ”large eddy simulations” (LES), which only resolves the large energy

containing a range of scales and models the physics for smaller scales. Coupled DNS-LES

simulations are being considered as a rigorous, albeit expensive, test bed for assessing mod-

els, because they are capable of isolating and eliminating numerical errors. This is achieved

by performing DNS and LES in lockstep, where the base solution field from the well resolved

DNS solution is appropriately filtered and then fed to the LES simulation, which is running

in tandem and is solving only one additional quantity whose model is being tested.

The lock-step DNS-LES coupling requirement presents a number of data management

challenges. The simulations advance in time a six-stage Runge-Kutta scheme, which implies

that the exchange of data between DNS and LES must happen six times every time step,

21

and each time step typically requires a few seconds of wall-clock time. This effectively means

frequent exchanges of a large volume of data. However, due to several uncertainties during

execution (e.g., lag of LES simulation, network issues while transferring the data, etc.), the

DNS and LES simulations often go out of sync. As a result, a large amount of data has to

be cached over multiple time steps before the lock-step data exchange can recover.

3.1.2 Online Data Analytics Workflow for Combustion Simulations

Combustion simulation-analysis workflow is composed of a primary S3D simulation and

many coupled analysis components, such as iso-surface extraction [57], feature tracking [13],

and volume rendering [61]. These analyses cover a broad set of algorithms that have het-

erogeneous data access patterns and requirements. We briefly describe the scientific back-

ground for two of the simulation analyses workflows.

S3D - Iso-surface Extraction

Extracting iso-surfaces of a varying scalar field in the computational domain is interesting

and important for the S3D simulation since these iso-surfaces represent flame sheets in the

turbulent flow. One challenge in extracting these iso-surface is that they are not volume

filling, hence constructing them using a traditional marching cubes algorithm requires ac-

cessing the data from only a only a small portion of the entire data domain (less than 10%).

However, the spatial-temporal fluctuations of turbulent flow cause the temporal iso-surface

to experience ”flapping.” The result of this volatile behavior means that the required por-

tion of the data domain needed for extraction may change accordingly over different time

steps (i.e., it is not fixed). Furthermore, the domain scientist is often interested in the

extraction of multiple iso-surfaces for different iso-values of the scalar field. In this case,

multiple sub-regions of the data domain need to be accessed in the same time step.

S3D - Feature Tracking

Direct numerical simulations resolve all the relevant spatial-temporal scales and provide

information on the dynamics of many interesting features, such as auto-ignition kernel,

expanding or contracting flames, and extinction regions. A feature can typically identified

22

and classified in a scalar field based on some critical points and a suitable threshold. Mostly,

these features move and grow over time in the computational domain, but seldom extend to

the full domain. Therefore, the feature tracking analysis can safely identify and track these

features by accessing data of relevant sub-domains, under the guidance of corresponding

thresholds. With the spatial-temporal changes of these features, the sizes and locations of

these sub-domains change accordingly over time steps.

3.1.3 Data Staging technique - DataSpaces

DataSpaces provides distributed data interaction and coordination services to support in-

situ scientific workflows on the very large scale system. It provides simple high-level ab-

stractions that can support the dynamic and asynchronous data-intensive coupling pat-

terns required by the targeted application workflows. It enables live data to be extracted

from running simulation components, indexes this data online, and then allows it to be

monitored, queried and accessed by other components and services via the space using

semantically meaningful operators. Specifically, DataSpaces is built on an asynchronous,

low-overhead, memory-to-memory data communication module, which allows applications

to overlap interactions and data transfers with computation, and to reduce the I/O over-

heads by offloading data operations to staging area. This module is built upon DART [22],

an open-source asynchronous communication and data transportation substrate based on

RDMA.

The DataSpaces design enables it to be scalable and efficiently implemented on and

across various high-performance systems and clusters. The DataSpaces implementation

consists of two key components, a DataSpaces Client and a DataSpaces Server. The DataS-

paces client component is integrated with the user application and provides the interfaces for

interacting with DataSpaces Server. It prepares, i.e., organizes for its internal representa-

tion, and submits data queries received from the application to the DataSpaces Server. The

DataSpaces server component consists of multiple server instances that run independently

of user applications, on a set of nodes in the staging area. Similar to the client component,

the server component provides the communication interfaces for interactions with the client

components and other server component instances. The server component extends DART

23

functionality with data storage services. Actually, It allocates in-memory storage space at

each of the DataSpaces nodes and manages the memory buffers to create the abstraction

of a distributed virtual storage for application data. It stores the data captured from ap-

plications locally at the DataSpaces nodes, and complements the DHT, which stores the

metadata (e.g., geometric descriptor) associated with the data. The application data and

the corresponding index are stored in memory to enable faster access time as compared to

storing the information on disk, which thus incurs the associated latencies.

DataSpaces Workload Pattern

A data staging server which provides data indexing and transformation service, are not

generally CPU-intensive. To demonstrate this workload pattern, we performed experiments

using a synthetic workflow on the Titan Cray XK7 system. The data used in this workflow

is based on the S3D access patterns shown in Figure 3.2. 64 synthetic simulation processes

wrote a set of n-dimensional arrays to 4 staging servers with varying staged data sizes in

each time step. The arrays consist of uniform double-precision floating point data.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

5

10

15

20

25

30

35

40

45

8 16 24 32 40 48 56 64

C
P

U
 u

ti
liz

ti
o

n
 in

 s
ta

gi
n

g
se

rv
er

 (
%

)

D
S

w
ri

te
 t

h
ro

u
gh

p
u

t
(M

B
/s

ec
)

Write data size/server.timestep (MB)

DS_Write_Throughput DS_CPU_Util

Figure 3.1: Cumulative data write throughput (blue dot line) and CPU Utilization =

compute time in staging/write response time (red line) for different problem sizes when

writing the entire data domain to data staging.

The amount written to each staging server per time step varied between 8M and 64M

24

and total data size stored in the staging area through the life of the workflow varied between

320M and 2560M . Using this configuration, we measured the average write throughput

and CPU utilization for the data staging servers under different workloads. The results

are plotted in Figure 3.1. As the size of the workload was increased, the CPU utilization

of the staging cores remained consistently low, while the write throughput has already

reached the peak and decreased. In this particular test, the maximum CPU utilization

was observed around 22% when the write size was 8M for each staging server per time

step. This experiment illustrates that the compute resource in the staging area is not fully

utilized and the staging performance is constrained by other resources limitation such as

network congestion. Therefore, there is an opportunity to leverage compute resource within

staging-area to perform error detection without degrading the read and write throughput

of the staging service.

3.2 Fault Tolerance Challenges

3.2.1 Data Reliability

Data loss due to failures (e.g., process failures, node failures) in any module of such com-

plex workflows will impact the execution of the entire workflow and can invalidate the

final results. Consequently, it is critical to ensure the data resilience of the end-to-end

workflow. In order to address fault tolerance at extreme scales with the expected commen-

surate higher rates of failures and data loss [15], recent research has explored techniques

for minimizing application vulnerability to failures. Various fault tolerance techniques such

as checkpoint/restart, process replication [26], and erasure coding [63] have been widely

studied, and have been utilized to mitigate failures in individual software components of

the scientific workflow. While these approaches have been utilized to mitigate failures in

individual software components of the scientific workflow, they do not address the resilience

of the overall workflow. For example, in case of staging-based in-situ workflows, the under-

lying data staging framework supporting workflow workflows remains vulnerable to failure

that lead to data loss in the case of failures.

25

3.2.2 Data Verification

Unlike data verification for single applications, remediation of silent errors on in-situ work-

flows has only recently been explored. Even worse, The impact of silent errors can po-

tentially be amplified in the case in-situ workflows due to the dependencies, interactions

and data exchanges between the components of the workflow. For example, the S3D work-

flow consists of S3D simulation and visualization coupling application, as illustrated in

Figure 3.2. In each coupling cycle, the workflow first executes S3D simulation for several

time steps, moves the data generated to the staging area, which is the processed by the

analytics/visualization applications for feature extraction.

Execution time

Data reading
Data writing

Visualization

S3D simulation

Data Staging

dspaces_put()

dspaces_get() dspaces_get() dspaces_get()

dspaces_put()dspaces_put()

D D D D

DError detection

D

dspaces_get()

dspaces_put()

Execution time
Data reading
Data writing

DError detection

Visualization

S3D simulation

DataSpaces

dspaces_put()

dspaces_get() dspaces_get() dspaces_get()

dspaces_put()dspaces_put()

D D D DD

dspaces_get()

dspaces_put()

Figure 3.2: Coupling and data-exchange patterns for the in-situ S3D coupled simulation

workflow.

When the workflow passes data between the S3D simulation components and the vi-

sualization components, dozens of 3D scalar and vector field components (fluid velocity,

molecular species concentrations, temperature, pressure, density, etc.) are transferred us-

ing staging or other mechanisms. If there are silent errors in this data, these errors will also

be propagated to the coupled components of the workflow. This will result in erroneous

results in the visualization and analysis products. Even worse, in the case of multiphysics

coupling, even small errors can have catastrophic results, especially to the stability of non-

linear PDEs. These errors have the potential to significantly alter the accuracy of the

simulation, and may not be otherwise detected by the simulation without expensive analy-

sis on the invariant terms of the simulation.

To prevent such silent errors from propagating across components, we must identify and

recover from data corruption before the data transfer is completed. While error detection

26

algorithms can be hard-coded into applications and invoked before every data exchange, this

can become quite expensive. In the case of staging-based in-situ workflows, data transfers

between workflow components is done through staging, which provides an opportunity to

leverage computational capabilities on the staging resources to perform error detection only

on the exchanged data in an asynchronous manner. In in chapter 5, we explore the feasibility

add effectiveness of such an approach.

3.2.3 Data Consistency

Recent research has also addressed fault tolerance at extreme scales and the expected higher

rates of fail-stop failures. These works have explored techniques for minimizing application

vulnerability to such failures. However, applying fault tolerance techniques to the applica-

tion components individually does not effectually address the resiliency challenge for the

whole workflows due to the data coupling at extreme scale. For example, the S3D work-

flow consists of S3D simulation and visualization coupling application, as illustrated in

Figure 3.3. In this similar scenario that we discuss in Section 3.2.2, if the S3D simulation

and analytics are protected by checkpoint/restart individually, and a failure happens in

the analytics, the re-executive analytics process will get the wrong version of data from

data staging considering the S3D simulation has updated the data during the analytics

re-execution. (the case1 shown in Figure 3.3). Similarly, if a failure hits the S3D simula-

tion, the re-executive simulation will unnecessarily perform the data updating operation to

data staging twice, considering data has already been staged in staging in first execution

(the case2 shown in Figure 3.3). These data/events inconsistency issues finally result in

erroneous results of visualization and analysis products.

A further challenge to fault tolerance of entire workflows is application components in

workflows exhibit different resiliency requirements, program properties and failure charac-

teristics, which result in diversification of fault tolerance strategy among these components.

For example, the stencil-based application which is commonly used as scientific simulations,

such as the S3D simulation, employs local recovery strategy [31] to effectively reduce the

overhead of recovery in case of frequent process failures. This recovery strategy is based

on unique communication pattern of stencil-based applications which implies that multiple

27

C

CC C C
Time

C C C CSimulation

Analysis

Data Staging

Execution time: Checkpointing:Data exchange:

C
F

C
F

C
F

Time

C
F

C
F

C
F

C
F

Simulation

Analysis

Data Staging

Coordinated checkpointing + Global recovery

Failure:Rollback restart:

C
F

C
FExecution time:

Checkpointing
with filtering:

Data exchange:

Failure:Rollback restart:

Uncoordinated checkpointing with redundant data filltering + data staging with data logging

CC C C
Time

C C C CSimulation

Analysis

Data Staging

Uncoordinated checkpointing + Individual recovery

C

CExecution time: Checkpointing:Data exchange:

Failure:Rollback restart:

Case2

without data coupling

Case1

wrong read unnecessary write

C
F

data logging data logging data logging

Figure 3.3: individually checkpoint/restart for the in-situ S3D coupled simulation workflow.

independent failures can be masked to effectively reduce the impact on the total time to

solution. Meanwhile, as another large group of applications, the linear algebra applications

typically utilize algorithm-based fault tolerance (ABFT) [10] to tolerate both fail-stop fail-

ures and silent errors. In ABFT, the application uses intricate knowledge of linear algebra

to maintain supplementary, redundant data, and can be updated algorithmically to form a

recovery dataset in case of failure. Although local recovery and ABFT can exhibit excellent

performance and resiliency for the single application, they are less generalist approaches,

and can not be appropriate for all application components in workflows. Therefore, when

such types of applications with the specific fault tolerance strategies combine together into a

in-situ workflow, to enable these resilience techniques working cooperatively is challenging,

and constructing a workflow-level loose coupled fault tolerance framework becomes neces-

sary. Ideally, workflow-level fault tolerance mechanisms should enable individual application

components to exploit the wide area of fault tolerance techniques.

Unfortunately, naive using state-of-the-art fault tolerance approaches in workflows can

not address those challenges discussed above efficiently. One possible solution to fault tol-

erance of in-situ workflows is to use global coordinated checkpoint/restart protocols shown

as Figure 3.4. This method requires that all processes in the workflow rollback to the last

valid checkpoint place, when a failure occurs. In the case of the Message Passing Inter-

face (MPI), a very simple approach have often been taken to ensure the consistency of the

snapshot: a couple of synchronizing MPI barriers can be used, before and after taking the

process checkpoints, to guarantee that no application in-flight messages are present at the

time of triggering the checkpoint, and thus the causal ordering of communications inside

28

the application is avoided entirely. Global coordinated checkpoint/restart ensures a global

state consistency, but it presents two concerns. As the size of the system grows, the prob-

ability of failures increases, and the minimal cost to handle such failures also increase due

to frequently rollback whole workflow for recovery. Even worse, rollback of other healthy

components which have no data coupling with the failed component during failures time

and last checkpoint time, shown as Figure 3.4, are unnecessary and wasteful. The second is

global coordinated checkpoint/restart constrain the diversity of individual application fault

tolerance strategies which can efficiently reduce the resiliency cost.

C

CC C C
Time

C C C CSimulation

Analysis

Data Staging

Execution time: Checkpointing:Data exchange:

C
F

C
F

C
F

Time

C
F

C
F

C
F

C
F

Simulation

Analysis

Data Staging

Coordinated checkpointing + Global recovery

Failure:Rollback restart:

C
F

C
FExecution time:

Checkpointing
with filtering:

Data exchange:

Failure:Rollback restart:

Uncoordinated checkpointing with redundant data filltering + data staging with data logging

CC C C
Time

C C C CSimulation

Analysis

Data Staging

Uncoordinated checkpointing + Individual recovery

C

CExecution time: Checkpointing:Data exchange:

Failure:Rollback restart:

Case2

without data coupling

Case1

wrong read unnecessary write

C
F

data logging data logging data logging

Figure 3.4: Coordinated checkpoint/restart for the entire in-situ S3D coupled simulation

workflow.

Ideally, a good candidate of workflow-level fault tolerance approaches should maintain

the data consistency between coupled application components efficiently, meanwhile pro-

vide a compatibility with diverse state-of-the-art fault tolerance approaches to construct a

workflow-level loose coupled fault tolerance mechanism for the entire workflows.

29

Chapter 4

CoREC: a Scalable and Resilient In-memory Data Staging

4.1 Introduction

In this chapter, I present CoREC (Combining Replication and Erasure Coding), which

is a hybrid approach to data resilience for data staging. CoREC provides the benefit of

data replication, i.e., high performance, while leveraging erasure coding to reduce storage

costs. CoREC uses online data classification, based on spatial/temporal locality, to deter-

mine whether to use erasure coding or replication, and balances storage efficiency with low

computation overheads while maintaining desired levels of fault tolerance. Moreover, to

satisfy the diverse data resiliency requirements of different workflow components, CoREC

supports the use of different data redundancy schemes, such as a hybrid approach combin-

ing both replication and triplication with different erasure codes. CoREC with multilevel

data redundancy (CoREC-multilevel) can dynamically decide between erasure coding and

replication schemes (for e.g., duplicate, triplicate, and Reed-Solomon codes) based on the

data access patterns while maintaining application-specified resiliency requirement and in-

curring minimal storage overhead. Furthermore, I develop optimized load balancing and

conflict avoiding encoding for CoREC, as well as a low-overhead lazy-recovery scheme for

the staging nodes, to alleviate overheads and interference associated with CoREC for both

data-writes and data-recovery. CoREC also provides a process/node recovery solution that

cooperates with the data resiliency scheme, and aims to recover failed staging servers so as

to maintain the performance of the data staging framework over the lifetime of the workflow.

I have used CoREC to implement resilient data staging within DataSpaces, and have

also integrated ULFM (User Level Fault Migration) [8] to efficiently recover from both

processes and node failures. I have deployed the resulting resilient DataSpaces on the Titan

Cray XK7 production system at Oak Ridge National Laboratory (ORNL), the Cori Cray

30

XC40 system at the National Energy Research Scientific Computing Center (NERSC), and

the Caliburn system at Rutgers Discovery Informatics Institute (RDI2). Our experimental

evaluations using synthetic workloads and the S3D combustion workflow demonstrate that

CoREC maintains good storage efficiency and low latency for various use cases, supporting

sustained performance and scalability even in the face of frequent node failures.

The rest of this chapter is organized as follows. Section 4.2 presents the low-latency and

high-efficiency CoREC and CoREC-multilevel approach to data resilience for data staging,

and Section 4.3 describes the design of CoREC. In Section 4.4, I present the implementa-

tion and evaluation of CoREC. Finally, Section 4.5 presents related work and Section 4.6

concludes the chapter.

4.2 CoREC (Combining Replication and Erasure Coding)

CoREC is a hybrid approach that dynamically (and intelligently) combines replication with

erasure coding based on data access patterns to balance storage efficiency with computation

overheads, while maintaining desired levels of fault tolerance. Specifically, CoREC uses a

robust classification of data access patterns to identify hot and cold data – the key idea is to

replicate the write-hot data while applying erasure coding for write-cold data. Using repli-

cation for write-hot data eliminates the expensive parity updates as I only need to update

the replicas. Using erasure coding for write-cold data ensures limited object updates and

dramatically reduces storage costs as compared to using a pure replication-based approach.

For example, in a two-failure resiliency case, let us assume that 60% of the data is identified

as write-cold, which uses erasure code (n = 8, k = 6), and the remaining 40% hot data

objects are replicated for fault-tolerance. Here, using CoREC, I incur only 100% storage

overhead compared to the 200% needed for full replication, but maintain write performance

close to that of replication, assuming write-cold data are rarely updated. Note that I do

not consider read access patterns in our hot/cold classification because data encoded with

systematic erasure codes do not need to be decoded for reads in the absence of failures [52].

31

4.2.1 Classifying Data Access

CoREC utilizes the concept of write-hot and write-cold data to identify data objects as

candidates for either replication or erasure coding. If a data object has been recently

written/updated more than a threshold number of times within a certain interval it is

considered to be hot data, otherwise it is considered to be cold data. While data access

patterns in real applications can change as the application evolves, i.e., a hot data object

may become cold and vice versa, access patterns in scientific applications typically exhibit

high temporal and spatial data localities as the data and its access is typically defined

along some discretization of a physical domain (e.g., a mesh or a grid), and the accesses are

iterative in time [5].

Hot data Cold dataQuery data

TS 1

TS i

TS n
TS n+1

TS 1

TS 2

TS i

TS n
TS n+1

Y

X

Y

X

(a) Single time step data locality case

Hot data Cold dataQuery data

TS 1

TS i

TS n
TS n+1

TS 1

TS 2

TS i

TS n
TS n+1

Y

X

Y

X

(b) Multi time steps data locality case

Figure 4.1: An illustration of spatial and temporal data write/update patterns for a 2D

data domain with N + 1 time steps. The solid red regions and slash regions (i.e., hot data)

indicate data written into the staging area, while the black dot regions (i.e., cold data) are

not updated since time step i.

During the execution of scientific simulation workflows, the simulation (e.g., S3D) issues

a data write request, which writes n-dimensional data, at the end of each time-step/iteration.

32

Here, I use temporal locality of objects to indicate data objects being written/updated in

consecutive time-step, and spatial locality of objects to refer to data objects that are near

to each other in the n-dimensional space. As an illustrative example, consider a simulation

that uses a 2-dimension Cartesian grid as show in Figure 4.1(a). The simulation writes

data objects in region {(2, 2), (6, 6)} of the grid at time step 1, and this hot data turns

cold at time step i (temporal locality). At time step n, another application writes/updates

only a portion of that region (say region {(2,2), (3,3)}). In this case, it is very likely that

the surrounding data objects in region {(2, 2), (6, 6)} (due to spatial locality) will also be

written/updated at subsequent time steps, n+ 1, n+ 2, and n+ 3 [5].

I may go beyond this one step lookahead prediction and consider several time steps. For

example, suppose that the highlighted data objects at time step 1 and step 2 are written by

one application in Figure 4.1(b), and these multiple objects turn cold at time step i. If at

time step n another application writes a portion of the combined regions of {(2, 2), (4, 6)}

and {(4, 4), (7, 5)}, it will likely access objects in the combined region during time steps

n+ 1, n+ 2, and n+ 3. This multi-time step look-ahead mechanism is beneficial because an

application may have several different hot data objects at the same time-step in different

regions of the grid. CoREC uses these spatial-temporal data locality attributes for multi

time-step data access prediction.

While choosing candidates for replication and erasure coding, I need to consider the

properties of both replication and erasure coding as described in sub-section 2.2. Since

replication has advantages in terms of write performance for frequent writes but has storage

overhead as compared to erasure coding, I use data access patterns to classify write-hot and

write-cold data and apply replication and erasure coding techniques respectively. Specifi-

cally, newly written or updated data objects are classified as hot data. Data objects with

spatial coordinates near current hot-data are anticipated to be accessed in near-future,

and thus are also considered hot. The data objects with temporal locality in previous

iterations/time-steps relative to the current hot data objects are also classified as hot data

objects. CoREC replicates these hot data objects while all other cold-data objects are era-

sure coded. I use reference counters to record the access frequency of each data object. From

a pool of replicated data objects, the object with the lowest access frequency is selected as

33

a candidate for erasure coding. Once it is erasure coded, its access frequency is reset back

to zero and incremented with every future access. The objects in the erasure coding pool

with highest access frequencies are selected to be transitioned to replication if and only if

the current storage overhead is lower than a user-specified threshold, i.e., CoREC aims to

maintain storage efficiency while providing highest performance.

4.2.2 Modeling the CoREC Approach

In this section I analyze the trade-off between replication and erasure coding and the impact

of data access classification on a simple hybrid approach.

If Nlevel is the data resilience level, i.e., the maximum number of simultaneous node

failures that system should be able to recover from, using replication for fault tolerance

requires additional Nlevel copies of each object. Therefore, the storage efficiency, which is

ratio of the size of original data objects to the size of original data object plus redundant

data objects, for replication is:

Er =
1

Nlevel + 1

Assuming that replication schemes use streaming pipelines: stream to the first node, which

streams to the second node, and so on up to N . Also, the data transfer time from one server

to another server is l seconds. Further assuming that each server has c second for sending

the object to the remote server, the time required to guarantee Nlevel data resiliency level

for one object is:

Cr = l ×Nlevel + c

Using Reed Solomon Code [47], supporting Nlevel fault tolerance with a group of Nnode

servers involves both encoding and data transfer between servers. It requires a computation

overhead of O(Nlevel×Nnode) and data transfer of Nlevel +Nnode− 1 data objects for Nnode

objects. Thus, the storage efficiency is:

Ee =
Nnode

Nlevel +Nnode

and the time required to encode one data object is:

Ce = O(Nlevel ×Nnode) +
l × (Nlevel +Nnode)

Nnode
+ c

34

Simple Hybrid Erasure Coding

In this chapter, I use simple hybrid erasure coding to refer to a hybrid approach where

candidate data objects for replication and erasure coding are selected randomly without

any data classification. Suppose that an application stages n disjoint objects, and runs

for a duration T while uniformly updating each object t times. Then, the resulting object

update frequency is f = T
t . If the probability that an object will be replicated is Pr and the

probability that an object will be erasure coded is Pe = 1− Pr, then the storage efficiency

for simple hybrid erasure coding (Ehybrid) can be computed as:

Nnode

(Nnode × (Nlevel + 1)× Pr + (Nlevel +Nnode)× Pe)

The corresponding time complexity is given by:

Chybrid = (Pr × Cr + Pe × Ce)× f × n (4.1)

CoREC

In CoREC I classify data objects as hot or cold based on the data update frequency f .

Assuming that the object update frequency is non-uniform for hot and cold data, let these

frequencies be fh and fc respectively, and that fh > fc. For n disjoint data objects, Ph × n

hot data objects are replicated and Pc× n cold data objects are encoded in CoREC, where

Ph and Pc are the percentages of hot and cold data objects in the data staging service

respectively. Therefore, the time complexity for CoREC can be computed as:

CCoREC = Ph × Cr × fh × n+ Pc × Ce × fc × n (4.2)

Since each data object in the data staging service is classified as either hot or cold, Pc =

1− Ph. From equation 1, I have:

CCoREC = (Cr × fh − Ce × fc)× n× Ph + Ce × fc × n (4.3)

Accordingly, the time complexity for exclusively using erasure coding Cerasure and replica-

tion Creplica are:

Creplica = (fh − fc)× Cr × n× Ph + Cr × fc × n (4.4)

35

Cerasure = (fh − fc)× Ce × n× Ph + Ce × fc × n (4.5)

The advantage of CoREC as compared to simple hybrid erasure coding in terms of time

complexity can be computed as:

Gain = Chybrid − CCoREC = (Ce − Cr)× Ph × Pc × (fh − fc)× n (4.6)

The storage efficiency for CoREC, which depends on percentage of hot and cold data

(ECoREC), is given by:

Nnode

(Nnode × (Nlevel + 1)× Pr + (Nlevel +Nnode)× Pe)
(4.7)

The prediction and classification of hot data objects depends upon the accuracy of the

classifier. If the classifier is not accurate, it might classify cold data as hot data (or vice

versa). Even if the accuracy of the classifier is perfect, replicating all hot data objects might

be infeasible due to limited memory size. Since I can tolerate a limited storage overhead for

data resiliency, in CoREC I introduce two parameters: miss ratio rm and storage efficiency

constraint S. I use miss ratio, i.e., the ratio of misclassified data objects to total hot data

objects, as a measure of the accuracy of data access classification. Then, Phrmn real hot

data are classified as cold data and encoded. Thus, the time complexity for CoREC under

miss ratio rm can be computed as:

CCoREC = Ph(1− rm)Crfhn+ PhrmCefhn+ PcCefcn =

(Crfh − Cefc + (Ce − Cr)fnrm)nPh + Cefcn

(4.8)

The storage efficiency constraint S is used as an upper bound for the storage overhead that

can be tolerated, which is a lower-bound for Ehybrid and ECoREC . When ECoREC = S,

the storage efficiency constraint limit is reached and equation 7 can be solved to obtain the

value of Pr as:

Pr =
Er × (S − Ee)

S × (Er − Ee)

When Pr < Ph and Pe > Pc, (Ph−(1−rm)Pr)n real hot data are encoded under constraint S.

Thus, when CoREC hits the storage efficiency constraint, the time complexity for CoREC

36

with miss ratio rm can be computed as:

CCoREC = Pr(1− rm)Crfhn+ (Ph − (1− rm)Pr)Cefhn+ PcCefcn =

(fh − fc)CenPh + Cefcn− (Ce − Cr)(1− rm)Prfhn

(4.9)

Using the time complexity equations (1), (3), (4), (5), (8) and (9), I plot relative

write/update cost versus the hot data percentage in Figure 4.2. When all of the data

objects are cold (Marker 1 in the figure), the write performance of CoREC is the same as

simple hybrid erasure coding, because data is written/updated rarely. With the increase

in the hot data percentage, the time complexity for CoREC increases linearly, i.e., perfor-

mance is gained due to the replication of hot data objects. If I assume that classification

is accurate and there is no constraint on storage, then all hot objects are replicated and all

cold objects erasure coded. In this case, the write cost will be similar to replication. When

storage constraint limit S is reached (Marker 2 in the figure), some of the hot data objects

will be erasure coded, irrespective of their classification, which will lead to an increase in the

cost. In addition to this, if the classifier is not accurate, then there will be misclassifications,

and write/update performance will be further degraded. In conclusion, between points 1

and 2 in Figure 4.2, the performance of CoREC increases due to the increase in hot data

objects, but beyond point 2, the storage overhead limit is reached and objects are erasure

coded irrespective of their classification, leading to a constant difference in time complexity

with the full erasure coding approach, i.e., Cerasure.

Based on Equation (6) and Figure 4.2, I can deduce that CoREC’s time complexity

depends on the following factors: (i) The difference in the data access frequencies of hot

and cold data objects, i.e., fh − fc. The larger the difference, the greater the benefit of

CoREC. (ii) The difference in the time complexity of replication and erasure coding, i.e.,

Ce − Cr. The larger the difference, the greater the benefit of CoREC. (iii) The scale of

workload n. The larger the workload, the greater the benefit of CoREC. (iv) The miss

ratio, i.e., rm. The lower the miss ratio, the greater the benefit of CoREC.

4.2.3 CoREC-multilevel, CoREC with multilevel data redundancy

When dealing with in-situ workflows, each application and variable potentially has different

data resilience requirements. For example, large-scale, long-term simulation applications

37

R
e

la
ti

ve
 t

im
e

co
m

p
le

xi
ty

Ph (%)0 100

1 32

Ph = Pr

Percentage of hot data

Figure 4.2: An analytic study of the relative time complexity of CoREC (CCoREC) with

RS(4, 3), and varying miss ratios(Rm) and percentages of hot data objects (Ph). The time

complexity for erasure coding (Cerasure), replication (Creplica) and simple hybrid erasure

coding (Chybrid) is noted by red dotted lines, as baselines.

require high data resiliency due to a higher probability of failures. Meanwhile, applications

in a small scale workflow may have lower data resilience requirement. Since different work-

flows can share the same data staging resource, using the same data resiliency scheme across

the whole data staging framework is not efficient. Amplifying this concern, the level of data

resilience might vary for each variable of an application. For example, in machine learning

workflows which performing hyperparameter optimization, the hyperparameter variable is

the key result of the hyperparameter tuning and failures affecting this dataset will signif-

icantly affect the entire workflow. In contrast, variables used for logging purpose are less

important and unavailability/corruption of such data rarely impacts the final result of the

workflow. This warrants a need to support the ability to set the data redundancy level at

the granularity of variables.

In the following section, I introduce CoREC with multilevel data redundancy (CoREC-

multilevel). Unlike CoREC, which only cares about data access frequency and applies a

universal data redundancy for all data, CoREC-multilevel takes into account the resilience

requirement of applications and variables. Specifically, I enable a varying data redundancy

38

scheme, which corresponds to different n-way replications and erasure coding schemes based

on the data resilience requirements. In CoREC-multilevel, each variables has an individual

level of data redundancy, which is set by the application, and the global storage efficiency

constraint is set as an upper bound of storage cost in the staging area.

Assuming that the overall cost of multilevel replications is the sum of the cost of each

replication scheme (Cri) weighted by the percentage of corresponding data (Pri) in the total

replication data, the expected cost of the multilevel method that combines n replication

schemes C̃r is:

C̃r = Pr1Cr1 + Pr2Cr2 + ...+ PrnCrn

In the same way, the expected cost for the n erasure coding schemes C̃e is:

C̃e = Pe1Ce1 + Pe2Ce2 + ...+ PenCen

From these equations and equation (8), the time complexity for CoREC-multilevel CCoRECM

under average replication C̃r and erasure coding C̃e costs can be computed as:

CCoRECM = (C̃rfh − C̃efc + (C̃e − C̃r)fnrm)nPh + C̃efcn (4.10)

Similarly, I can get the average storage efficiency for replication Ẽr and erasure coding Ẽe

as:

Ẽr = Pr1Er1 + Pr2Er2 + ...+ PrnErn

Ẽe = Pe1Ee1 + Pe2Ee2 + ...+ PenEen

The storage efficiency for CoREC-multilevel is then given by:

ECoRECM =
ẼeẼr

ẼePr + ẼrPe

(4.11)

4.3 CoREC System Design

CoREC is composed of three key components, i.e., the grouped replication & erasure coding

based data placement scheme, the load balancing & conflict-avoid encoding workflow, and

39

the lazy recovery strategy. In this section, I present the overall design and implementation

details of CoREC, and describe these three components.

4.3.1 Data Placement

Grouped Replication & Erasure Coding Scheme

In order to tolerate concurrent staging server failures (i.e., node failure), I divide staging

servers into replication groups and erasure coding groups. A replication group includes the

data object and its replica, and an erasure coding group includes data objects and their

parities. The grouped replication and erasure coding scheme overcomes the limitation of

random replication and makes data objects able to survive concurrent failures with higher

probability. Figure 4.3 shows an example of how two-way replication and erasure coding

group (k = 3, n = 4) scheme work in a sixteen-servers data staging.

1

16

14

13

12 10
9

3

R1 Replication group

C1 Coding group

1 Staging server2

11

15

Inject failure

4

5

7

8

6

R1
R2

R3

R4

C2

C4

1 9

Node 1

R8

C3

R7

C1

grouping

5 13

2 10

Node 2

6 14

3 11

Node 3

7 15

4 12

Node 4

8 16
R6

R5

Physical layout
Grouped replication & erasure coding

Figure 4.3: Data Objects, Replicas and Parity layout in data staging. Servers 1 and 2 are

in the same replication group while servers 1, 2, 3 and 4 belong to the same coding group.

This topology-aware data layout can tolerate arbitrary single node failure.

The placement of replicas and data/parity objects on staging servers in the physical

organization can also have a critical effect on data resilience. In many cases, a single event

such as a power failure or a physical disturbance will affect multiple devices, and greatly

increases the risk of data loss. By reflecting the underlying physical organization of data

staging servers, our approach can model and thereby address potential sources of correlated

staging server failures. Specifically, in CoREC, I reorder the data staging server ID based

40

on network topology and organize them in a logical ring. Each server is followed in the

logical ordering by a server on a different node or cabinet so that as many as n contiguous

servers belong to n different nodes or cabinets. By encoding this information into the logical

network topology, our data placement policy can separate the data object, its replicas and

parity objects across different failure groups while maintaining the desired distribution.

As depicted in Figure 4.3, a sixteen-servers data staging which is located in 4 dedicated

compute nodes can tolerate arbitrary one node failure.

4.3.2 Load Balancing & Conflict Avoid Encoding Workflow

In CoREC, data objects are encoded in staging servers during transition from replication

to erasure coding. If one staging server is currently busy with a large read-write workload,

assigning the encoding task to this server will impact other requests being served, as well

as the encoding time. CoREC addresses this interference with a load-balancing & conflict-

avoid encoding workflow. Since hot data objects are always replicated, CoREC can simply

select the staging server with the lightest workload in the replication group to perform data

classification and encoding operation.

Update metadata

Data encoding

Object partition, fitting, shaping

Send objects to group server

low

Grouped Server 1

work load
measurement

Client: object put request

Grouped Server 2 (helper server)

Object

Save object to local

metadata

Data flow:
Work flow:

Keep token

Data classification
Send replica

hot

cold
Encoding

Update metadata

Data encoding

Object partition, fitting, shaping

Send objects to group server

low

work load
measurement

Client: object put request

Object

Save object to local

metadata

Keep token

Data classification
Send replica

hot

cold
Encoding

Figure 4.4: Encoding workflow in CoREC.

41

Figure 4.4 illustrates an encoding workflow with one server and one paired server, also

called helper server, executing on a replication group of size 2. The encoding workflow is

triggered by the server when it receives an object-put request from a client. Once server

receives and pre-processes the data object, data classification component classifies data

objects and make decision for the data resilience approach based on data frequency and

storage efficiency constraint. After that, the workload measurement component decides

whether to encode locally or let the helper server encode based on its workload level. If

local node’s workload is high, then it sends the replica node (node with replica data) an

encoding token to perform erasure coding. Otherwise, the server performs encoding locally.

After the server performs the encoding operation, it sends data & parity objects to other

servers in the erasure coding group.

The encoding workflow comprises four principal components. First, a data fitting and

partition component pre-processes the data objects into a specific size and shape. Second,

a data classification and encoding component classifies data object and makes it resilient.

Third, a workload measurement component measures a server’s workload level based on the

frequency of client read-write requests. Finally, a data/parity object consistency mechanism

provides atomic encoding processing for each data objects. In a replication group, all servers

share one encoding token and the server can get the encoding token only if it has a low

workload. Only the server that holds an encoding token can perform an encoding operation,

which ensures that exactly one stripe is placed in the coding grouped servers. It also ensures

that the less busy server in the group performs more encoding operation than the busier

one and workload is balanced throughout the coding group.

4.3.3 Data Size & Geometric Shape

While very small data objects suffer from metadata overheads, larger data objects have

relatively smaller metadata overheads and achieve better throughput during asynchronous

communication such as RDMA [23]. However, large-sized data objects increase the pro-

cessing time required for data encoding, decoding, replication and transportation [60]. This

leads to longer data access latencies. Thus, an appropriate object size is required to balance

metadata overhead and data access latency.

42

Algorithm 1 Geometric partitioning and fitting of an object

Require: Data Object (object), metadata, dimension (n), fitting size (size);

Ensure: Fitting data objects (object[m]), metadata (metadata[m]);

N ⇐ 1

object[m]⇐ object

while N 6= 0 do

if ∃ obj in object[m] > size then

get maximum boundary size of obj in dimension n

partition boundary to half

partition obj to half

metadata[m]⇐ metadata

object[m]⇐ obj

else {Object is fitting}

return object[m], metadata[m]

end if

end while

43

In order to fit data objects into desirable size and shape on the servers, the data fitting

and partition component in CoREC uses Algorithm 1. In this algorithm, I first set a range

of target data object sizes. When a staging server receives a data object that is larger than

the range, I partition the object into halves along the longest geometric dimension. This is

done repeatedly until all sub-objects fall into the range of target size. This simple binary

partition algorithm ensures that data objects do not exceed a threshold size. Partitioning

in this way ensures a balance between the size of objects and the quantity of objects. Under

perfect conditions, every object can be partitioned into regular and uniform n-dimensional

objects.

4.3.4 Recovering Data Staging Server Failures

Existing large-scale resilient storage solutions typically use an aggressive data recovery

strategy[18]. Whenever a failure on one or more servers is detected, all lost objects are

recovered and re-generated onto active servers immediately. The problem with such an

aggressive data recovery scheme is that it requires significant resources to recover data from

a failure. Decoding operations and data transportation may consume considerable network

and computing resources in a short time window. These overheads eventually hinder the

application read-write requests. In CoREC, I propose a new lazy recovery scheme with

a time limit on delayed data recovery. As shown in Figure 4.5, recovering data staging

servers from failures involves four key steps: (i) failure detection, (ii) data recovery in the

degraded mode, (iii) process recovery, and (iv) data recovery in the lazy recovery mode.

CoREC introduces two data recovery modes (the degraded mode and lazy recovery mode)

for data recovery.

Failure Detection

In CoREC, the function of detection and handling of failures is delegated to ULFM-enabled

MPI. As a proposed extension of the MPI standard, ULFM [8][9] includes mechanisms to

tolerate fail-stop failures without the need to restart all processes linked to the MPI com-

municator. I leverage ULFM to tolerate and recover from such failures in the data staging

area. ULFM guarantees that MPI operations involving communication should return an

44

ERR PROC FAILED error code if the runtime detects a process failure in the data staging

communication area. ULFM-specific return codes are captured using MPI’s profiling inter-

face and no changes in the MPI runtime itself are required. In data staging frameworks,

the data exchange between applications happen via reads/writes from/to the staging area.

The reads/writes are facilitated via asynchronous RDMA. When staging server processes

fail or are unavailable, RDMA error codes can also used to detect these failures.

Degraded Mode

Once a data staging server detects a process failure, it distributes failure notifications to the

remaining data staging servers. The data staging area is then shrunk to remove the failed

staging servers and the rest of the staging servers switch to a degraded mode, as shown

in Figure 4.5. In this mode, only the requested data is re-constructed, and transferred

to the client. This temporarily re-constructed data is discarded once the read request is

served. The reconstruction of failed data objects in the read-path increases read latency.

Experimental evaluation results for the reading performance in degraded mode are presented

in Section 4.4.

Process Recovery

To be able to recover from process failures, CoREC reserves a few staging server processes

as backup processes. The number of backup processes is determined by the choice of erasure

code and server process density on a node. For example, if CoREC is initialized to uses

erasure code with n = 8, k = 6, the goal is to tolerate 2 node failures per 6 nodes. If the each

node has 8 server processes, then for process recovery, CoREC initiates 16 backup processes

per 48 staging processes. When failures are detected, these idle data staging processes will

be activated and merged with the old data staging processes group. These newly activated

processes will be reassigned the same rank numbers as failed ones. An alternative approach

is to spawn new processes instead of use processes from a previously prepared process pool,

if this is supported by the job scheduler.

45

comm

Communication / failure detection

1 Staging server process

1 52 3

Inject failures

4

1 52 3 4

1 53

1 3 ?5 ?

1 52 3 4

1 52 3 4

commcomm

comm

commcomm

comm

Idle staging server process?

Data staging area

Process/node failure
detection

Degraded mode

Activate idle staging servers

Lazy recovery mode

New data staging area

Figure 4.5: Data and process recovery in data staging area.

Lazy Recovery Mode

After a replacement server joins data staging, CoREC switches to the lazy recovery mode.

In this mode, each object on the failed server will be recovered immediately after it is queried

or updated. The recovery of all other remaining objects are triggered based on the time-

limit set for delayed data recovery. The time-limit setting depends on the fault tolerance

requirement for data objects and the overall MTBF of the system. Normally, too long of a

time-limit constraint results in an unacceptably high risk of permanently losing the data as

it increases the chance of multiple failures in the same group. On the other hand, too short

time-limit constraint risks interfering with the application’s regular requests in the same

way as aggressive recovery. Specifically, CoREC uses 1
4MTBF as the recovery timeline

constraint. In many data-intensive simulation applications, most of the failed objects will

be recovered much earlier than the end of the timeline due to high-frequency of update and

query requests.

4.4 Experimental Evaluation

This section describes the implementation details of CoREC and presents an experimen-

tal evaluation using synthetic benchmarks as well as the S3D combustion simulation and

analysis workflow [16].

CoREC is implemented on the top of DataSpaces [23], an open-source data staging

framework. The schematic overview of the runtime system is presented in Figure 4.6. In

46

addition to modifying several existing components of DataSpaces for the integration, the

system architecture introduces three key new components in data resiliency module: Lo-

cal Object Management, Object Transportation, and System Status Monitor. The Local

Object Management component maintains local data objects, replicas, parity objects, and

metadata. It also stores the data object classification information in addition to performing

the encoding, decoding and object preprocessing tasks. I use the Jerasure open-source li-

brary [50] to perform encode/decode operations. While evaluation results demonstrate the

efficacy of CoREC when using Reed-Solomon code, the Jerasure library offers a variety of

erasure codes to choose from and it is straightforward to change the erasure code used in

CoREC. The Object Transportation component synchronizes data objects, replicas, pari-

ties, and metadata while managing the transportation of objects between different staging

servers. Server’s workload monitoring and failure detection is performed by the System

Status Monitor component. In order to recover from failed staging server processes, I also

introduce an additional process resiliency module. This module manages a spare process

pool and implements the detection and handling of staging server failures using ULFM,

which offers a set of fault tolerance mechanisms for MPI applications.

Coordination Layer

DART/Data Communication Layer (RDMA)

Staging Server

Jerasure Library

Data Resiliency
Module

Application Interface

Object
Transportation Coordination Layer

Client

Query Engine, Data Indexing

Parity Object

Data Storage Layer

Data Object

Object
Management

System Monitor

New/Update component :
Existing component :

Process Resiliency Module (ULFM)

Figure 4.6: System Architecture

47

Synthetic Experiments

Our synthetic experiments were performed on both, the ORNL Titan Cray XK7 system

and the NERSC Cori Cray XC40 system. These experiments evaluate the read and write

performance of applications with different data read and write patterns, when they use

CoREC for resilient data staging. To better understand the performance and effectiveness of

our approach, I selected five test cases with common data reading and writing patterns used

by real scientific simulation workflows. In these cases, I assume that scientific applications

write data to a 3-dimensional global space (data domain). I also assume that data is

written in multiple iterations (time-steps) as described in five test cases below. I compared

CoREC with five other fault tolerance mechanisms: DataS PFS (replicates all data objects

and places replicas on the parallel file system), DataS BB (replicates all data objects and

places replicas on burst buffer nodes), Replication (replicates all data objects and places

replicas on peer staging servers), Erasure Coding (encodes all data objects locally and places

data/parity objects on peer staging servers), and Hybrid Erasure Coding (data objects are

classified and selected for replication/erasure coding under the LRU algorithm and a defined

constraint on storage overhead). I additionally compared our results to the performance

of data staging without any fault tolerance. In order to evaluate the balance between the

write response time and the storage cost for various data resilience technique, I introduce

write efficiency, which is a ratio of application’s observed write response time to the storage

efficiency of the data resiliency technique. The low write efficiency value indicates a better

balance between time and storage cost for data resilience. The setup of these experiments

is described in Table 4.1. The experimental results are presented in Figure 4.7 (collected

on Cori) and Figure 4.8 (collected on Titan), along with a detailed discussion and analysis

of these results.

1) Case 1 - Write the entire data domain in each time step: In this case, the data of the

entire domain is written at every simulation time step. Since there is no data replication,

encoding, data movement and metadata synchronization overhead, the data staging without

fault tolerance has the best relative data write response time. For the fault tolerance

approaches, although the replication approach with unlimited storage constraint on peer

memory or burst buffer does not incur the overhead of data encoding, I/O operation and

48

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

W
ri

te
 e

ff
ic

ie
n

cy

W
ri

te
 r

es
p

o
n

se
 t

im
e

(s
ec

)

(a) Case 1

0

0.05

0.1

0.15

0.2

0.25

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

W
ri

te
 e

ff
ic

ie
n

cy

W
ri

te
 r

es
p

o
n

se
 t

im
e

(s
ec

)

(b) Case 2

0

0.05

0.1

0.15

0.2

0.25

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

W
ri

te
 e

ff
ic

ie
n

cy

W
ri

te
 r

es
p

o
n

se
 t

im
e

(s
ec

)

(c) Case 3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

W
ri

te
 e

ff
ic

ie
n

cy

W
ri

te
 r

es
p

o
n

se
 t

im
e

(s
ec

)

(d) Case 4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

R
ea

d
 r

es
p

o
n

se
 t

im
e

(s
ec

)

(e) Case 5

Figure 4.7: Average data write and read response time (blue bars) and Write Efficiency

= Write response time/Storage Efficiency (red line) of different data resilience mechanisms

for the five test cases using different writing patterns. DataS: Data staging without fault

tolerance; DataS PFS: Data is stored in PFS for resilience; DataS BB: Data is stored in

Burst Buffer for resilience; Replicate: Data is replicated in peer memory for resilience;

Erasure: Data is erasure coded for resilience; Hybrid: hybrid erasure coding with LRU

data classification; CoREC+1d and CoREC+2d: CoREC in degraded mode with 1 and 2

server failures; CoREC+1f and CoREC+2f: CoREC in lazy recovery mode with 1 and 2

server failures; Erasure+1f and Erasure+2f: Erasure coded data staging with an aggressive

recovery strategy under 1 and 2 server failures.

49

Total number of cores 64 + 32 + 8 = 104

No. of parallel writer cores 4× 4× 4 = 64

No. of staging cores 8

No. of parallel reader cores 32

Volume size 256× 256× 256

In-staging data size (20 TSs) 2560MB

No. of replica 1

No. of data objects 3

No. of parity objects 1

Coding technique Reed-Solomon Code

Storage efficiency for hybrid erasure coding 67%

Storage efficiency lower-bound for CoREC 67%

Table 4.1: Experimental setup for synthetic tests.

extra data transportation overhead, these approach have only achieved 6.9% and 2.6%

smaller write response time in comparison to CoREC respectively. Meanwhile, storing the

replicated data into PFS gets the worst write access performance and the longest total

workflow execution time due to intensive I/O operations. Also, the result for the erasure

coding method shows the second worst performance for both write access and total workflow

execution time because of the overhead associated with frequently encoding the original data

objects and the placement of data/parity objects on peer servers. Although only a portion

of data objects are erasure coded in hybrid erasure coding, frequently switching between

replication and erasure coding approach on the same data object makes this approach’s

write performance just slightly better than the erasure coding approach and has longest

total transportation time. For CoREC, due to the write-intensive workload, the workload

balance and conflict-avoid encoding workflow plays a vital role in minimizing the interference

to regular request. CoREC gets achieves a decrease of 48.7% and 53.2% in encoding time

and an improvement of 13.5% and 10.1% in the write response time, relative to erasure

coding and hybrid erasure coding. The lower-bound constraint for storage efficiency in

CoREC causes some data objects to be erasure coded, even if they are hot, and this leads

50

to a 6.9% increase in write-time as compared to replication.

0100

transport metadata encode classify

66.6
66.8

67
67.2
67.4
67.6
67.8

68
68.2
68.4
68.6
68.8

69

To
ta

l e
xe

cu
ti

o
n

 t
im

e
(s

ec
)

0.009

(a) Case 1

65.8
65.9
66

66.1
66.2
66.3
66.4
66.5
66.6
66.7
66.8

0.006

(b) Case 2

65.8
65.9
66

66.1
66.2
66.3
66.4
66.5
66.6
66.7
66.8

0.004

(c) Case 3

66.6
66.7
66.8
66.9
67

67.1
67.2
67.3
67.4
67.5
67.6

0.006

(d) Case 4

Figure 4.8: Breakdown of the total execution time (in seconds) for the workflows in Figure

4.7. transport: Time spent in data movement; metadata: Time spent to update the dis-

tributed metadata; encode: Time spent to perform data encoding; classify: Time spent for

data classification in CoREC (listed as number).

2) Case 2 - Write the entire data domain in multiple time steps: In this case, the

entire data domain is divided into 4 subdomains, and each subdomain is written in a time

step. This means that in every 4 time steps, the entire data domain is written. Since each

51

subdomain has the same write access frequency, all data objects in that subdomain are

either hot or cold. However, CoREC leverages its multi-time step look ahead mechanism

to efficiently convert data objects from cold to hot i.e., moving from erasure coding to

replication. Thus, CoREC has better (around 12.7%) performance improvement for write

response time and 38.4% decrease in the encoding time with respect to hybrid erasure

coding, while incuring an overhead of 4.3% in the write response time over replication. In

addition, the conflict avoid encoding workflow and fewer data conversion from replication

to erasure coding contributes to having smaller data transportation overhead than hybrid

erasure coding.

3) Case 3 - Write a subset of the data domain at a higher frequency than others: In this

case, data objects of a subdomain in a particular domain is written at higher frequency and

data objects in other subdomains are written just once. This setup addresses the presence

of hot spots in the data domain. Both CoREC and hybrid erasure coding with LRU can

easily identify these hot data objects and apply the corresponding resiliency technique.

Since erasure coding always select all data objects as candidates for erasure coding, CoREC

improves the write response time by 11.3% and 1.1% and decreases encoding time by 50.4%

and 16.5% respectively, while increasing the write response time by just 8.8% as compared

to replication.

4) Case 4 - Write subsets of the data domain with random access pattern: This case

differs from the previous case as the subdomains of the data domain are randomly chosen for

writing/updating. The random access pattern reduces the accuracy of the data classifier,

which is based on temporal and spatial locality. However, the workload balance and conflict-

avoid encoding workflow optimizations enhance the performance of CoREC by 13.8% and

5.8% and decrease encoding time by 14.6% and 17.8% compared to erasure coding and

hybrid erasure coding respectively.

Figure 4.8 shows the breakdown of the normalized execution time for workflows in

aforementioned cases in failure free case. The plots show that CoREC has lower overheads

compared to hybrid erasure coding and pure erasure coding in all cases. CoREC has less

data transport time than erasure coding and hybrid technique because fewer erasure coded

objects incur updates and it minimizes the parity update operations, which leads to less

52

encoding time also. While replication has better performance, it should be noted that it

suffers from high storage overhead.

These experiments demonstrate although CoREC involves extra cost for data classifica-

tion and switching resilience approaches between replication and erasure coding, it can still

get the more benefit from dynamically identifying hot/cold data and performing correspond-

ing data resilience approaches. Therefore, CoREC achieves the overall better performance

and lower cost than full erasure coding and hybrid erasure coding with LRU approaches in

four synthetic cases.

5) Case 5 - Read entire data domain in each time step: The data of the entire domain

is read for every time step. In this case, the replication method, either in peer memory

or burst buffer, has a similar read response time to data staging without fault tolerance,

meanwhile replicating data to the PFS results in the worst performance among all fault tol-

erance approaches. Since, erasure coding splits original data objects into small objects and

distributes them among the staging servers, a single read request can be distributed across

multiple servers and consequently erasure coding, hybrid erasure coding, and CoREC have

better read response times than both replication and the original data staging technique. I

also performed experiments for various cases of reads as we did for writes, but the results

are not presented in this section due to the similar patterns as case 5. I also evaluated read

response time of CoREC in the presence of failures. In degraded mode, the read response

time increases by 7.93% and 21.7% for single and double server failures respectively, as

compared to failure-free case. However, when using lazy recovery, the read response time

increases by 2.66% for single failure and 13.9% for double server failures as compared to

failure-free case. While I demonstrated that CoREC performs better on average than both

erasure coding and hybrid erasure coding, replication might seem like a good choice for

fault tolerance. However, I also need to consider the storage overhead associated with each

fault tolerance mechanism. I also plot the ratio of write-response time and storage efficiency

in Figure 4.7. It can be seen that, data staging without fault-tolerance provides best per-

formance along with best storage efficiency. On the other hand, fault-tolerance introduces

overheads on both write response time and storage efficiency. Among the fault-tolerant

mechanisms, CoREC provides the best balance for storage efficiency and write response

53

4480 6.85876 6.9161 10.94627 7.16493 7.42498 7.83669 7.83669 7.83669 7.83669

8960 8.60171 8.60592 13.758 8.68631 8.88107 9.30848 9.30848 9.30848 9.30848

17920 9.77172 12.5854 14.4691 13.6669 14.0651 14.2856 14.2856 14.2856 14.2856

5G8S: 1 GB total staging size, 8 number of servers.

orignal: orignal dataSpaces.

replicate: replicate version.

erasure: erasure code version.

partial: partial erasure code version. (our approach)

1S failed: partial erasure code version with 1 server failure.(our approach)

Note:

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
ea

d
 T

im
e

(s
ec

)

Time Step

1 failure, recovery 2 failure, recovery

Figure 4.9: The average read response time for reading the entire data domain with 1 and 2

failures, along with failure recovery, for 20 time steps. The first failure occurs at time step

4, and second failure occurs at time step 6. First failure-recovery begins at the 8th time

step and another recovery is initiated at the 12th time step, and they end at time steps 9

and 13 respectively.

time in all the data access patterns studied.

In order to study the impact of lazy recovery in CoREC, I also perform the experiment

on Titan and plot the read response time at every time step for 20 time steps in Figure 4.9.

For a single failure case, I inject a staging server failure at time step 4 and recover it at

time step 8. For the two failure case, I inject a first staging server failure at time step 4

and a second failure at time step 6, and then start recovering them at time step 8 and 12

respectively. In both the cases, the entire data domain was read for all time steps. I observe

that, unlike aggressive recovery, our lazy recovery approach does not trigger data recovery

for the failed server immediately, which may result in an increased data read response time.

From time step 8 to time step 9, our approach gradually recovers unavailable data objects,

which leads to a nominal increase in the data read response time for recovery from multi-

server failure. After time step 14, the data read response time resets back to what it had

been before the failure was injected.

54

No. of cores 4480 8960 17920

No. of simulation cores 16 × 16 × 16 = 4096 32 × 16 × 16 = 8192 32 × 32 × 16 = 16896

No. of staging cores 256 512 1024

No. of analysis cores 128 256 512

Volume size 1024 × 1024 × 1024 2048 × 1024 × 1024 2048 × 2048 × 1024

Data size (GB) 160 320 640

No. of replica 1 1 1

No. of data objects 3 3 3

No. of parity objects 1 1 1

Storage efficiency 67% 67% 67%

Table 4.2: Configuration of core-allocations, data sizes, and data resilience for the three

test scenarios on 4480, 8960 and 17920 cores.

Large Scale S3D Experiment

I also performed large-scale tests for CoREC using the lifted hydrogen combustion simula-

tion workflow using S3D[16] and an analysis application on Titan, and compared it to pure

replication and erasure codes. CoREC was tested using three different core count (4480,

8960 and 17920) and corresponding grid domain sizes so that each core was assigned a spa-

tial sub-domain of size 64×64×64. In terms of the data access pattern, in this experiment,

the S3D simulation wrote the vector field component pressure of entire domain to data

staging at each time, which was processed for feature extraction by the visualization appli-

cation later. For comparison purpose, I also ran S3D without data staging, S3D with data

staging but without resilience, and S3D with data staging and resilience. The cumulative

time for reading/writing data over 20 time steps was measured. The core configurations,

the data region assignments, and data resilience for our experimental setup are summarized

in Table 4.2.

Figure 4.10 and Figure 4.11 illustrate the experimental results for the S3D coupled

simulation and analysis application workflow, for various resiliency settings. Since the PFS

(parallel filesystem) based S3D does not have data staging and the data is saved to disk, it

has the longest read and write response time. While data staging without resilience shows

best performance, it is not able to recover from failures. Among the resilient data staging

techniques studied, CoREC reduces the write response time by 7.3%, 14.8%, and 5.4% as

compared to pure erasure coding on 4480, 8960, and 17920 cores respectively. In comparison

55

0

0.5

1

1.5

2

2.5

3

3.5

4

4480 8960 17920

R
ea

d
 r

es
p

o
n

se
 t

im
e

(s
ec

)

No. of cores

S3D disk DataSpaces Replicate Erasure CoREC

Erasure+1f CoREC+1f Erasure+2f CoREC+2f

21.5436 sec 22.7551 sec 26.8691 sec

Figure 4.10: Comparison of the cumulative data read response time using the S3D and

coupled analysis workflow on Titan.

0

2

4

6

8

10

12

14

16

18

20

22

4480 8960 17920

W
ri

te
 r

es
p

o
n

se
 t

im
e

(s
ec

)

No. of cores

S3D disk DataSpaces Replicate Erasure CoREC

Erasure+1f CoREC+1f Erasure+2f CoREC+2f

166.46 sec

234.42 sec

346.68 sec

Figure 4.11: Comparison of the cumulative data write response time using the S3D and

coupled analysis workflow on Titan.

56

to replication, CoREC has an overhead of 4.2%, 5.3%, and 17.2% in write response time on

4480, 8960, and 17920 cores respectively. It can also be seen that in the presence of failures,

CoREC reduces the read response time by up to 40.8% and 37.4% for one and two server

failures respectively as compared to pure erasure coding.

These results show that CoREC demonstrates good overall scalability, better storage

efficiency with small overheads for different processor counts and data sizes, while providing

data resiliency for extreme-scale HPC systems.

4.4.1 Experiments with Node Failures

The goal of these experiments is to demonstrate that CoREC is capable of handling data

and process recovery under high-frequency node failures.

Experimental Setup

I have deployed CoREC with ULFM on the Caliburn cluster which consists of 560 com-

pute nodes, each containing two 18-core Intel Xeon E5-2695v4 processors, 256 GB of main

memory and an Intel Omni-Path Host-Fabric interface adapter at Rutgers Discovery In-

formatics Institute (RDI2). In this experiment, I evaluate the overhead related to data

recovery for staging node failures. In our experiments, a staging node failure is equivalent

to N staging server processes failures at same time, where N is the total number of pro-

cesses per dedicated staging node. In order to perform these experiments, node failures

are injected by simultaneously sending SIGKILL signals to all the staging server processes

running on a particular node. Since the data objects, parity objects, replicas and metadata

are stored in process memory, killing server processes makes such data unavailable. This is

consistent with the behavior of real node failures. In our experiments, one compute node of

the Caliburn cluster runs 8 staging processes, which translates to N = 8 for node failures.

Unless specified otherwise, all tests have been repeated 5 times. I ran some preliminary

experiments for high values of MTBFs (such as 5 minutes, 10 minutes or 30 minutes, etc.)

and observed negligible recovery overheads relative to the total execution time. Subsequent

experiments were ran under MTBFs less than a minute. The data size for each data staging

server was 50 MB. I also ran this workflow with a failure-free case as the baseline. The

57

setup of these experiments is described in Table 4.3.

Total number of cores 1024 + 256 + 128 = 1408

No. of parallel writer cores 8× 8× 16 = 1024

No. of staging cores 256 (32 nodes)

No. of parallel reader cores 128

Volume size 128× 128× 256

In-staging data size (50 TSs) 3.2GB

No. of replica 1

No. of data objects 3

No. of parity objects 1

Coding technique Reed-Solomon Code

Storage efficiency lower-bound 67%

Table 4.3: Experimental setup for node failures tests.

Experiment Description and Results

For node failure experiments, I studied the read/write response time for different data/pro-

cess recovery strategies in the data staging. I also evaluated the total overhead for workflows

in order to empirically demonstrate the low cost of data recovery and small latency impact.

I performed these experiments on a 256 core (32 node) data staging area. Figure 4.12

and 4.13 plot the average read/write response time for different frequencies of node failures

injected for a synthetic workflow with a total execution time of about 150 seconds. The

synthetic failure rates range from 18 to 150 seconds, and the corresponding total number of

failures range from 8 processes (1 node) to 64 processes (8 nodes), as noted on top of each

bar, over a total time period of about 150 seconds.

Figure 4.12 shows the cumulative read-response time for 50 time steps. The read-

response time increases with the failure rate. In the worst case (8 node failures), the read-

response time increases 9.58% in degraded mode, and 6.77% in lazy mode as compared

to the failure free case (FF). For the write-response time shown in Figure 4.13 shows the

similar trend with the read-response time. The write-response time increases by only 2.41%

58

30

35

40

45

50

55

FF 150 75 50 35 30 25 20 18

R
ea

d
 r

es
p

o
n

se
 t

im
e

(s
ec

)

MTBF (sec)

1 2 3 4 65 7 8

0

Failure Free lazy mode degraded mode

Figure 4.12: Comparison of the cumulative data read response time using the synthetic

workflow on Caliburn. FF: in the x-axis represents CoREC in failure free case.

in degraded mode, and 1.13% in the lazy mode for an MTBF of 150 seconds. For the MTBF

of 18 seconds, the write-response time increases 10.88% in degraded mode, and 8.11% in

lazy mode as compared to FF. As a whole, the experiment results demonstrate that grouped

replication and coding scheme with lazy recovery mode can tolerate frequent node failures

with minimal overhead.

I also study the impact of data and process recovery on the total workflow execution time,

which includes the overhead of data replication, encoding, decoding and process recovery.

Specifically, I compare the end-to-end workflow execution time under varying MTBFs and

the failure-free case. The leftmost bar in Figure 4.14 shows the total workflow execution

time for the failure-free case. By using lazy recovery I obtain much lower performance

penalties even at the higher failure rates. In comparison to the baseline failure-free case,

the total execution time is increased by only about 0.8% in degraded mode and by 0.5% in

lazy recovery mode for the MTBF of 150 seconds. For the case of failures occurring every

18 seconds, the workflow execution time increases by about 5.69% in degraded mode and

by 4.25% in lazy recovery mode. In short, CoREC can handle data recovery under frequent

node failures, with total overheads of up to 5.69% in degraded mode, 4.25% in lazy mode

for the worst case scenario.

59

3

3.5

4

4.5

5

5.5

FF 150 75 50 35 30 25 20 18

W
ri

te
 r

es
p

o
n

se
 t

im
e

(s
ec

)

MTBF (sec)

1 2 3
4 5 6 7 8

0

Failure Free lazy mode degraded mode

Figure 4.13: Comparison of the cumulative data write response time using the synthetic

workflow on Caliburn. FF: CoREC with failure free case.

160

165

170

175

180

185

FF 150 75 50 35 30 25 20 18

To
ta

l e
xe

cu
ti

o
n

 t
im

e
(s

ec
)

MTBF (sec)

1 2 3 4 5
6

7
8

0

lazy mode degraded modeFailure Free

Figure 4.14: Comparison of the total execution time using the synthetic workflow on Cal-

iburn. FF: CoREC in failure free case.

60

4.4.2 Experiments for CoREC with multilevel data redundancy

In this section, I demonstrate that CoREC-multilevel can efficiently provide varying lev-

els of data redundancy based on application requirements. Although CoREC-multilevel

uses different redundancy schemes to satisfy resiliency requirements, the storage efficiency

constraint is maintained by managing the trade-off between storage and performance, and

duplication/triplications and erasure coding. Since CoREC-multilevel is intelligent enough

to make dynamic decisions based on data access characteristics, I did not observe a sig-

nificant impact on application performance. The synthetic workflow writes two variables

into data staging. These two variables are intended to representative high and low redun-

dancy datasets. Within the workflow, the coupled components write and read these two

variables into the data staging area concurrently in each time step, and the response time

is measured.

Total number of cores 512 + 120 + 512 = 1144

No. of parallel writer cores 8× 8× 8 = 512

No. of staging cores 120

No. of parallel reader cores 512

Volume size 256× 256× 256

In-staging data size (20 TSs) 3200MB

Replication for high data redundancy Triplication

Replication for low data redundancy Duplication

Coding for high data redundancy RS(6, 4)

Coding for low data redundancy RS(6, 5)

Storage efficiency lower-bound 66.7%

Table 4.4: Experimental setup for multilevel redundancy tests.

For high data redundancy, I use RS(6, 4) and triplication to tolerance concurrent failures

in two arbitrary staging servers. For low data redundancy, I use RS(6, 5) and duplication

to tolerate one staging server failure. To study the impact of lazy recovery in the pres-

ence of concurrent failures for CoREC-multilevel, I insert failures into two staging servers

concurrently. During a total-runtime of 20 time-steps the failures were inserted only once,

61

and then recovered in subsequent time-steps using the lazy recovery mechanism. Since

2 staging servers have failed, only high-redundancy data can be recovered. As CoREC-

multilevel can re-direct write requests to other staging servers when failures are detected,

the low-redundancy data sets for all time-steps are available except for the particular time-

step when the failures were introduced and detected. In our experiments, the total data

exchanged between readers and writers is kept constant. I vary the percentage of high-

redundancy data with regards to total data from 0 to 30, while keeping a constant storage

efficiency constraint in CoREC-multilevel. Since the total data is comprised of high and

low-redundancy data, it can also be viewed as varying low-redundancy data from 100% to

70%. Figure 4.15 shows both cumulative read-response and write-response time. A failure

free case is considered as baseline in our tests. The details of the experimental setup is

listed in Table 4.4

0:10 1:9 2:8 3:7

Failure free 2 failures

0

0.5

1

1.5

2

2.5

3

0% 10% 20% 30%

R
ea

d
 r

es
p

o
n

se
 t

im
e

(s
ec

)

Percentage of high data
redundancy

(a) Read response time of variables

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0% 10% 20% 30%

W
ri

te
 r

es
p

o
n

se
 t

im
e

(s
ec

)

Percentage of high data
redundancy

(b) Write response time of variables

Figure 4.15: Read and write response time of variables under the percentage of high data

redundancy in CoREC-multilevel. Failure free: CoREC-multilevel in failure free case.

In Figure 4.15(b). I observed that when the percentage of high-redundancy data in-

creases, the cumulative write-response time increases in Figure 4.15(b). This increase cor-

responds to the higher complexity or overheads of erasure coding and replication for higher

62

data redundancy. When the amount of high-redundancy increases, more data can be re-

covered and correspondingly the write response is affected to a higher degree in presence

of failures. When all of the data is low redundancy, the data cannot be recovered when

multiple failures are inserted. Thus, no write and read-response time is reported for 0%

high-redundancy data. As compared to the failure-free case, CoREC-multilevel has an in-

crease in cumulative write response time by around 2.2%, 4.5% and 3.2% as compared to

failure free case.

When no failures are present, the read-response time remains fairly constant across

varying percentages of high and low dataset. In the presence of failures, read-response times

are directly impacted because data needs to be recovered first and then sent to the reader

application. Under the presence of concurrent failures and data recovery, the read response

time of CoREC-multilevel increases by around 4.1%, 7.9% and 15.5% as compared to the

failure free cases, when high-redundancy data is set to 10%, 20%, and 30% respectively.

0:10 1:9 2:8 3:7

0

20

40

60

80

100

120

1400

1900

2400

2900

3400

3900

0% 10% 20% 30%

St
o

ra
ge

 e
ff

ic
ie

n
cy

 (
%

)

M
em

o
ry

 s
iz

e
(M

B
)

Percentage of high data redundancy

Duplication Triplication
RS(6,1) RS(6,2)
Replication Erasure coding

Figure 4.16: Storage cost and efficiency for the percentage of high data redundancy in test

scenarios.

To understand the impact of different data resiliency techniques on the overall storage

capacity of the staging area, I measure the total memory consumed by the data in the

staging area and also show the storage efficiency in Figure 4.16. When the percentage of

high redundancy data increases, the storage efficiency of replication decreases from 50% to

45%. Similarly, the storage efficiency of erasure coding also decreases from 83.3% to 78.3%.

63

Correspondingly, the memory consumption for replication decreases from 3200MB to the

least 2576MB, and the consumption for erasure coding increases from 1920MB to the

largest 2683MB so as to maintain total storage usage is constant. Since the total amount

of raw data written to the staging area is fixed, the overall storage efficiency also remains

the same for different percentages of high and low redundancy data. From these results, I

can infer that CoREC-multilevel is performed with light overhead and can provide various

data resiliency levels based on application needs.

4.5 Related Work

Supporting resilience in contexts other than in-situ/in-transit data analytics, such as Check-

pointing [34],[1],[58],[32] and Replication/Erasure Coding [18],[59] has been widely studied,

but there are limited research efforts focussed on in-situ/in-transit data processing systems.

The study in [40] exploits the reduction style processing pattern in analytics applications

and reduces the complications of keeping checkpoints of the simulation and the analyt-

ics consistent. Research efforts in [41] use a synchronous two-phase commit transactions

protocol to tolerate failures in high performance and distributed computing system. In

comparison to these efforts, our data resilience approach specifically targets data staging

based in-situ workflows, and is more flexible, asynchronous and scalable. Furthermore, it

can handle dynamic execution and failure patterns across multiple applications that are

part of in-situ/in-transit workflows.

Burst buffers are being increasingly used in HPC systems [39],[55],[38],[2] with the initial

goal of relieving the bandwidth burden on the parallel file systems by providing an extra

layer of low-latency storage between compute and storage resources. CoREC can easily be

extended to use burst buffers. In this setting, CoREC would store the hot data in local

DRAM memory and keep the cold data in the non-volatile storage layer on the burst buffers

nodes to achieve faster read/write performance for workflows generating large amount of

data. However, burst buffers themselves are not immune to failures. Furthermore, due

to the difference in the physical typologies in burst buffers provided by vendors, the fault

model and resiliency for burst buffers are complicated and remain an open challenge. The

fault tolerance of burst buffers needs to explored further before any of the data resiliency

64

methods, explored in the paper, can be used on such devices.

Recent research [36],[43],[4],[35],[44] indicates temporal and spatial properties of failures

in different software and hardware components. CoREC can easily tolerate such concurrent

and correlated process/node failures using topology aware grouped replication and erasure

coding schemes discussed in Section 4.3.1. I believe CoREC can also be adapted to tolerate

other classes of failures such as a GPU failure, which will potentially result in data loss at

staging servers, by extending the failure detection and handler mechanism to those failures.

While aspects of CoREC may appear conceptually similar to Cocytus [63], where repli-

cation is used for small-sized and scattered data (e.g., metadata and key) and erasure coding

is used for large data (e.g., value), CoREC uses data access frequency rather than data size

for data classification. In contrast to Cocytus, which is designed for cluster storage system,

CoREC targets in-situ/in-transit data processing on large-scale HPC systems.

4.6 Summary

This chapter addresses data resiliency for staging-based in-situ/in-transit workflows, and

presented the design, implementation and evaluation of CoREC and CoREC-multilevel,

a scalable hybrid approach to data resilience for data staging frameworks that used on-

line data access classification to effectively combines replication and erasure codes, and

to balance computation and storage overheads. Then, this chapter introduces an imple-

mentation and deployment of CoREC on top of the DataSpaces on the Titan Cray XK7

at OLCF, Cori Cray XC40 at NERSC, and the Caliburn system at RDI2. Finally, this

chapter evaluated its effectiveness and performance by using both synthetic benchmarks

and real world large scale S3D application on large-scale HPC cluster, and demonstrated

that CoREC can dynamically classify data objects based on data-driven access pattern

and provide efficient data recovery in the presence of frequent process and node fail-

ures. The source code for our prototype implementation of CoREC is publicly available

at https://github.com/shaohuaduan/datastaging-fault-tolerance.

65

Chapter 5

Staging Based Silent Error Detection Framework

5.1 Overview

A silent error is an unintentional change to a bit in memory. These undetected bit flips

impact the correctness and performance of applications and workflows [15]. These types of

error events are already present and impactful in high-end computing. Although various

error-detection techniques for silent errors, such as ABFT [10] and time-series predictions

[7], have been widely studied, these studies have generally been in the context of single

applications rather than workflows, which are a composition of multiple interacting compo-

nent applications. As extreme scale workflows are often long-running and the final result of

the workflow dependends upon intermediate results, a silent error or data corruption in any

component can invalidate the entire execution of the workflow, with substantial impact. As

a result, it is important to detect and isolate silent errors in a component application as early

as possible and to contain the propagation of these errors between components. However,

simulation and analysis applications in workflows are commonly CPU-bound, so frequently

performing error detection in such applications will significantly degrade the overall per-

formance of the workflow. In chapter 3, we observed that staging resources tend to be

relatively less heavily loaded compared to the computations nodes that run the workflow

components. Given this resource-usage pattern, this chapter presents a staging based silent

error detection framework to offload error detection task to data staging, which enables

efficient error detection without suffering performance degradation.

The rest of the chapter is organized as follows. In Section 5.2, we introduce our staging-

based error detection framework. In Section 5.3, we evaluate our approach using various

synthetic and real-world scientific simulation workflows. Section 5.4 provides details of

various related work, and Section 5.5 summarizes this chapter.

66

5.2 Error Detection in Staging

In this section, we first model our staging-based error detection framework. We then analyze

it by simulating scientific workflow events and present factors that influence the rate of error

detection in staging. Finally, we propose optimizations for implementing error detection

approaches in the data staging area and leveraging GPU resource (if available) to ameliorate

the impact of performing error detection on common I/O operations.

5.2.1 Modeling Error Detection in Staging

Notations: Let C, Tc, and Ts denote the cost of checkpointing, the optimal time cycle

for checkpointing, and the time cycle of error detection in staging, respectively. Let Rs

represent the recall of error detection in staging, which is the proportion of detected errors

over all errors that have occurred in the course of execution. If D is the cost of error

detection in a given checkpoint component and Ds is the cost of error detection in staging,

we assume that Ds << D, since the amount of data exchanged via the staging area is much

smaller than checkpoint data size. Wbase denotes the base execution time of a workflow

without any resilience technique. The notations that are used in the model are listed in

Table 5.1.

Fault tolerance model: Scientific workflows typically employ a checkpoint/restart mech-

anism to periodically perform checkpointing tasks to enable rollback to the previous state

in case of a fail-stop failure. To deal with both fail-stop failures and silent errors, check-

pointing tasks are coupled with error detection (or verification) mechanisms. To guarantee

that checkpoint data is error-free, error detection is performed just before checkpointing

tasks [6]. If the verification fails, it can be assumed that a silent error has occurred and the

application must rollback to the previous checkpoint for error-free data.

Figure 5.1 shows a typical workflow with a checkpointing scheme combined with error

detection. In each checkpoint cycle, coupled simulations simu1, simu2 can access staging

servers and fetch or write data from/to the servers. Since data is stored in the staging

area, we can improve the fault tolerance scheme by leveraging idle compute resource in the

staging area to perform data verification. In this way, during each checkpoint cycle, there

67

Symbols Explanation

C Cost of checkpointing

Tc Optimum time cycle for checkpoint

D Error detection cost in the checkpointing component

Ts Time cycle for error detection in data staging

Ds Error detection cost in data staging

Tr Time interval from last checkpoint to the error detection in data staging

Rs recall of error detection in data staging

Ps precision of error detection in data staging

Pf Probability of silent errors during execution time

Tw Time cycle for workflows pattern

Wbase Workflow execution time without resilience techniques and failures

Table 5.1: Symbols summary

simu2

simu1

Data Staging

Tc

D

time

C

C

C

D

Roll back

C CDD

Tw

D D C

CD

D C

D D D
Tr

Execution time

Data reading from staging
Data writing to staging

DError detection

CCheckpointingCall for rollbackRestart

Silent error

Ts

Figure 5.1: An illustration of a typical workflow with two coupled simulations simu1,

simu2. Simulations alternate in exchanging data via data staging. For fault tolerance, each

simulation performs checkpointing and silent error detection tasks based on their optimal

checkpoint time cycles.

68

will be multiple error detections in the staging for early detection of silent errors and to save

re-execution time. For the checkpointing scheme, a workflow makes a global checkpoint and

performs error detection based on its optimal checkpoint time cycle for fail-stop failures.

In the following analysis, we compare the approach where error detection occurs only at

checkpoint-time with the approach that performs error detection in both staging and at the

checkpoint. The goal of performing error detection in staging is to minimize the expected

execution time of the workflow, E(W).

Error detection in checkpoint component

Suppose that the probability of a silent error happening in the workflows is Pf . Let TDC

be the maximum cost for error detection and checkpoint of simu1, simu2: Max(D1 +

C1, D2 + C2). Let TcC denote the maximum time chunk for two consecutive checkpoints:

Max(Tc1−C1, Tc2−C2). Also, error detection in the checkpoint component can always fully

verify data. Then, the expected execution time of the workflow (E(Wc)) can be computed

as:

E(Wc) =
Tw
Tc

(TDC + Pf × TcC) +Wbase (5.1)

Error detection in checkpoint and staging

We now add an extra error detection in the staging area. Firstly, let us suppose that

any silent error happening during Ts can be detected. That means recall and precision

for error detection in staging are Rs = 100%, Ps = 100%. In this scenario, the workflow

executes for an extra Ds time until error detection in staging completes and sends an error

notification back. Then, the workflow needs to rollback to the previous error-free checkpoint

and discard Tr + Ds time worth of work. Therefore, the expected execution time of the

workflow (E(Ws)) can be computed as:

E(Ws) =
Tw
Tc

(TDC + Pf (Tr +Ds)) +Wbase (5.2)

Then, we can make our model more realistic by only assuming that the precision of

error detection in staging Ps = 100. In this case, the staging can detect Rs percent of silent

69

errors and the remaining 1−Rs percentage will be detected by the checkpoint component.

Thus, the expected execution time of the workflow (E(Ws)) can be updated to:

Tw
Tc

(TDC + Pf ((1−Rs)TcC +Rs(Tr +Ds))) +Wbase

When the recall rate is Rs and the precision is Ps for the error detection in staging, the

staging will generate 1−Ps percentage needless rollback operations due to the introduction

of false positives in detection. The penalty for false positives is Tp = (1 − Ps)(Tr + Ds).

Thus, the expected execution time of the workflow (E(Ws)) can be updated to:

Tw
Tc

(TDC + Pf ((1−Rs)TcC +Rs(Tr +Ds) + Tp)) +Wbase

From the above equations, it can be expected that adding error detection in the staging

area can reduce the total workflow execution time in the presence of errors, which can be

computed as:

E(Wc)− E(Ws) =
Tw
Tc
Pf (Rs(TcC − Tr −Ds)− Tp) (5.3)

5.2.2 Simulation and Analysis

In order to determine the expected advantage of this approach in practice, we simulate the

execution of a scientific workflow using the parameters (i.e., MTBF , C, and Tc) suggested

in [6], which are also listed in Table 5.2. For MTBF and MTBE, we calculate the MTBF

and MTBE of one computing node, which is 4.3 years for fail-stop failures and 7.9 years

for silent errors. The overall MTBF and MTBE are obtained by dividing the per-node

MTBF and MTBE by the total number of nodes running the workflow. For example,

when 65536 nodes are used in extreme scale systems, the overall MTBF and MTBE are

2064s for fail-stop failures and 3784s for silent errors. The silent errors are generated by

following an exponential distribution of parameter λ = 1
MTBE . The disk checkpoint cost

C is close to 300s, which is typical of many state-of-the-art platforms, such as Hera [6].

Under the assumed MTBF for fail-stop failures and the checkpoint cost C, we get the

optimum checkpoint cycle of 1491s through Daly’s formula [54]. Furthermore, we assume

that there is no relation between MTBF and MTBE, and MTBF will be kept constant

in the simulation test cases. For error detection, we assume that the error detection in a

70

checkpoint has a cost of 100s with the recall and precision of 100% and that error detection

in staging has a cost of 4s with a recall 70% due to error detection being performed on a

subset of the global data domain. We assume that the computation and communication

cost of the workflow is 81920s (22.6hr), which does not include checkpointing and error

detection tasks.

Detect in checkpoint Detect in staging

0

50

100

150

200

250

30274 15137 7568 3784 1892 946 473

Ex
ec

u
ti

o
n

 t
im

e
(h

o
u

r)

MTBE of silent errors (sec)

(a) Simulation case 1

36

38

40

42

44

46

48

50

52

54

56

10 20 30 40 50 60 70 80 90 100
Ex

ec
u

ti
o

n
 t

im
e

(h
o

u
r)

Accuracy of error detection (%)

precision

recall

(b) Simulation case 2

36

38

40

42

44

46

48

50

52

54

56

.125 .25 0.5 1 2 4 8 16 32 64

Ex
ec

u
ti

o
n

 t
im

e
(h

o
u

r)

Cost of error detection (sec)

(c) Simulation case 3

36

38

40

42

44

46

48

50

52

54

56

100 200 300 400 500 600 700 800 900 1000

Ex
ec

u
ti

o
n

 t
im

e
(h

o
u

r)

Cycle of error detection (sec)

(d) Simulation case 4

Figure 5.2: The simulated total work flow execution time comparison between error de-

tection in checkpoint component (blue dot line) and error detection in both checkpoint and

staging (solid line).

Table 5.2 describes the inputs of the emulation program. The emulation results are

presented in Figure 5.2, followed by a detailed discussion and analysis of each. The reported

results are the average of 100 experimental runs.

In simulation case 1, where we vary the workflow’s MTBE, our approach has better

performance than performing error detection only in checkpoint as long as MTBE is under

71

No. of case Case 1 Case 2 Case 3 Case 4

MTBE / 3784s 3784s 3784s

C 300s 300s 300s 300s

D 100s 100s 100s 100s

Tc 1491s 1491s 1491s 1491s

Ps 100% / 100% 100%

Rs 70% / 70% 70%

Ds 4s 4s / 4s

Ts 600s 600s 600s /

Tw 81920s 81920s 81920s 81920s

Table 5.2: The parameter configuration for workflow time sequence emulation.

3784s. We performed analysis for different values of recall under precision = 100% and

different values of precision under recall = 100% in simulation case 2. It can be seen that

when recall is greater than 70% or precision is greater than 89%, error detection should

be performed in the staging area. For the cost of error detection when it is less that 4s,

error detection in staging outperforms the detection in checkpointing, which is illustrated

in simulation case 3. To analyze the impact of Ts, we also varied Ts in simulation case

4 and observed that when Ts < 800s, our approach is beneficial and it maintains similar

performance for higher values.

Based on Equation 5.3 and the analysis above, we can deduce that the advantage of

enabling error detection in the staging depends on the following factors: (i) The frequency

of silent errors MTBE (higher will see more advantage from the in-staging approach); (ii)

The recall and precision of error detection in staging Rs, Ps (higher is better); (iii) The cost

of error detection in staging Ds (lower is better); (iv) The frequency of staging operation

Ts (performance will improve with less frequent staging operations).

In addition, unlike recall, lower precision can significantly deteriorate the performance

of error detection in staging. Part of the reason for this is that lower precision indicates

high false positive, which can unnecessarily rollback the workflow frequently. In contrast,

lower recall corresponds to high false negative, which means that CPU cycles are wasted

performing error detection that is unable to detect silent errors. Generally, the cost of error

detection in staging is much less than the cost of re-executing the workflow.

72

5.2.3 Implementing Error Detection in Staging

While the integration of error detection within a data staging framework seems straight-

forward, näıve application of error detection technique in the data staging can result in

significant performance degradation and low error detection accuracy. One of the challenges

for error detection in staging is that the data staging framework stores data temporarily

during data exchanges, so an entire spatial dataset is not always available. Another challenge

for error detection in staging is that data staging has relatively limited compute resource, so

an error detection approach having a long computation time could significantly degrade the

performance of staging servers. Thus, an ideal error detection approach should maintain

high accuracy, especially high precision, in error detection. Also, the approach should have

light overhead and minimal impact on common data staging operations, such as data put()

and get().

In the following section, we introduce two optimization techniques which can achieve the

twin goals of lightweight execution and high accuracy. We use Spatial Local Outlier Measure

(SLOM) [53] as an example to illustrate how to integrate an error detection approach in

the data staging efficiently. SLOM is a type of spatial outlier detection approach that

can capture both spatial auto-correlation (non-independence) and spatial heteroscedasticity

(non-constant variance), which are common features of scientific spatial datasets. In SLOM,

the effects of spatial auto-correlation are factored out by a measure d(o). The variance of

a neighborhood is captured by β(o), which quantifies the oscillation and instability of an

area around o.

SLOM(o) = d(o) ∗ β(o)

CPU-GPU Hybrid Staging

In an extreme-scale workflow, staging servers need to process thousands of requests. Thus,

any delay caused by error-detection will interfere with servicing other requests, amplify-

ing the impact, and potentially causing a significant delay across the whole workflow. To

minimize this impact, we propose offloading workload to GPUs, when available. GPUs are

now widely used as general purpose devices in HPCs. They enable significant speed-ups

73

in performance for scientific computation and analysis tasks. Since silent error detection

approaches are computation intensive tasks, we can leverage these GPUs to achieve signif-

icant acceleration of error detection. Specifically, CPU cores in the dedicated staging node

can be used to serve communication and regular staging operations, such as indexing and

data storage, while the data from local CPU memory is offloaded to GPUs and GPU kernel

performs the spatial outlier detection.

Algorithm 2 Error Detection Processing

Input: spatial data P , meta data Q

Output: outlier value Omax, error decision flag

1: dspaces put(P)

2: flag = 0

3: Detector Kernel(Q, P)

4: if Omax > threshold then

5: flag = 1

6: end if

7: insert P into staging

8: update meta data Q

9: Detector Kernel(Q, P)

10: for each point p in P do

11: D = d(p)

12: B = beta(p)

13: O = D ∗B

14: Omax = Max(O,Omax)

15: end for

There are two main challenges in processing large amounts of data on the local GPU

device: relatively limited bandwidth and small memory size. We address these issues as

follows. The data staging process first partitions the larger geometric dataset into several

smaller tiles, such that each tile fits into the GPU global memory. Next, the tiles are

stored in a queue, which is located in CPU memory and is ready to be offloaded to GPU

global memory. While the GPU threads process the tile, the next tile in the queue is

74

prefetched into GPU global memory to hide the data transfer latency. This CPU-GPU

hybrid staging approach can also be leveraged by CPU-only application workflows, such as

the S3D simulation workflow. The pseudo code of spatial outlier error detection in CPU-

GPU hybrid staging is provided in Algorithm 2. This can be easily extended to other error

detection methods.

Tuning precision and recall in Staging

Although recall and precision both play a very important role for error detection in stag-

ing, from section 5.2.2, we can deduce that compared with recall, a lower precision can

significantly deteriorate the performance of error detection in staging. In addition, many

outlier-based error detection approaches output a score quantifying the level of ’outlierness’

of each data point, but this value does not provide a concise summary of the small number

of data points that should be considered as silent errors. Specifically, in SLOM simply

identifying the data point with the maximum SLOM value as a silent error will virtually

always produce a false positive.

In the following, we introduce dataset/feedback training which can tune precision and

recall for outlier based error detection approaches so as to minimize false positives with

acceptable false negatives. During the dataset training, we inserted synthetic bit flip errors

into the staged dataset and monitored the minimum value that can just cover all synthetic

errors, then we mark it as the error detection threshold. For simplification, in our imple-

mentation the synthetic silent errors are uniformly distributed along the dataset and bit

position. The threshold may be different for different simulation time steps, datasets, and

staging servers.

During the feedback training, at the initialization of runtime, staging servers systemati-

cally calculate a SLOM value for each data point and keep track of the maximum observed

SLOM value, as error detection threshold threshold. The staging servers then start to per-

form error detection for the available dataset. When the staging server finds one silent error

candidate and the workflow is re-executed from the last checkpoint, it goes into feedback

training mode. The staging server compares the new SLOM value with the previous one

which was detected as an error. If the new SLOM value in that area is under the threshold,

75

Spatial outlier measure

Feedback training push
threshold to right, get
high precision

Normal data distribution Error data distribution

Detection threshold

Dataset training push
threshold to left, get
high recall

Figure 5.3: An illustration of the behavior of and relation between dataset training and

feedback training.

that means the staging server accurately identified the silent error. Otherwise, the previ-

ously detected silent error is a false positive and threshold is raised. Figure 5.3 illustrates

that feedback training tunes the detection threshold towards the error data distribution and

achieves higher precision of error detection. Similarly, dataset training pushes the detection

threshold toward a normal data distribution and achieves higher recall.

5.3 Experimental Evaluation

In this section, we evaluate staging based error detection framework, implemented as an ex-

tension of DataSpaces [21], an open-source data staging framework, and perform evaluations

using both real and synthetic applications in the presence of silent errors.

In Section 5.2, we described our model for error detection in staging. In this section, we

provide a specific implementation for the model on Titan HPC system. Figure 5.4 shows

the overall system configuration for error detection in the workflow. In the Titan Cray XK7

system, each compute node contains a 16-core 2.2GHz AMD processor with 32 GB of DDR

RAM, a NVIDIA Kepler accelerator (GPU) with 6 GB of GDDR RAM and a Cray Gemini

high-speed interconnect. Although subsequent experiments are only run on Titan, recently

deployed machines such as Summit (a 4,608-node supercomputer at Oak Ridge National

Laboratory (ORNL)) also have GPUs attached to each nodes and our approach can benefit

from these GPUs. Please note that our implementation of SLOM using CPU-GPU is just

76

Server

DART/Data Communication Layer (Gemini)

Staging Node

GPU (Nvidia Kepler)
Applications

DataSpaces
Coordination Layer

Aplication Node

Meta Data

memory (DDR 3)

Data Object

Slom kernel

DataSpaces component :

Server Server

CPU (AMD Opteron)

Checkpoint/Restart

Data flow :

Control flow :

Slom

Figure 5.4: Implementation of error detection in CPU-GPU hybrid staging

an example of an error detection method. The goal of the paper is to leverage idle staging

resources to perform error detection using the error detection method of choice for stag-

ing based in-situ scientific workflows. The system architecture permits a key component:

dedicated staging nodes, distinct from the application nodes. Simulation and analysis ap-

plications’ processes run on application nodes. Before an application process checkpoints

its entire data into the parallel file system, the process also performs an error detection

locally to ensure data correctness. The DataSpaces coordination layer in application nodes

sends dataset to staging servers through the DART layer (DataSpaces’ data communication

layer). After a staging server stores the data in local memory, it performs error detection in

the staging nodes. For CPU-GPU hybrid staging, it will offload error detection into local

GPU if the GPU compute resource is available for the dedicated staging node. When a silent

error is detected, the staging server sends error message to application’s checkpoint/restart

components and triggers a process restart. In order to do that, we update the DataSpaces

interface function ds put() so that it can return the detection result back to applications

and indicate if there is a silent error in the dataset.

We performed experiments that fall into four broad categories: performance experi-

ments, synthetic test cases, and real-world large scale experiments. All staging servers run

on dedicated compute nodes with GPU accelerators.

77

Total number of cores (16 to 128) + 16 + 16 = 48 to 160

No. of writer cores 2 × 4 × (2to8) × 4 × 4 = 16 to 128

No. of staging cores/nodes 16/1

No. of reader cores 16

Volume size 64 × 128 × 64 to 256 × 128 × 128

In-staging data size (20ts) 80 to 640 MB

Workflow pattern Write immediately followed by Read

Cycle for error detection 1 time step

Table 5.3: Experimental setup for performance tests.

5.3.1 Performance Experiments

In this subsection, we evaluate whether applying idle resources in data staging to perform

silent error detection has any adverse affect upon the applications connected to the staging

servers. In order to quantify the interference (if any) caused by the proposed technique, we

measure the write performance of the staging servers with error detection enabled. We also

record write-response time without error detection in staging as a baseline. The setup of

these experiments is described in Table 5.3.

0

0.5

1

1.5

2

2.5

80 160 240 320 400 480 560 640

W
ri

te
 r

es
p

o
n

se
 t

im
e

(s
ec

)

Data size in 16 staging servers (MB)

DS_SLOM_C DS_SLOM_G1024
DS_SLOM_G8192 DataSpaces (baseline)

Figure 5.5: Comparison of the data write-response time for data staging with error de-

tection on Titan. DataSpaces: Data staging write response time without error detection

(baseline); DS SLOM C: Data staging write response time with error detection in CPU

staging; DS SLOM G1024/8192: Data staging write response time with error detection in

CPU-GPU hybrid staging under 1024/8192 GPU threads.

78

Figure 5.5 shows the cumulative write-response time for staging severs with error de-

tection. We can see that error detection involve much lower performance penalties even

at large dataset in data staging. For example, for CPU-based error detection in staging,

the write response time overhead was no worse than 24.11% as compared to the same ap-

plication without error detection. When we perform error detection in CPU-GPU hybrid

staging, we see much lower overhead than the CPU-alone case. The write-response time

increases by only 8.41% for the 1024 GPU thread case and 2.43% in the worst case for the

8192 GPU thread case as compared to the case of no error detection. Our approach shows

good overall scalability and has minimal overhead as compared to the baseline.

60

160

260

360

460

560

660

760

1.25 2.5 3.75 5 6.25 7.5 8.75 10

To
ta

l e
xe

cu
ti

o
n

 t
im

e
(s

ec
)

Length of each time step (sec)

DS_SLOM_C DS_SLOM_G1024
DS_SLOM_G8192 DataSpaces (baseline)

Figure 5.6: Comparison of the total execution time of the workflow under different error de-

tection frequencies or length of each time step in data staging. Error detection is performed

in each time step.

We also explore the overhead of error detection in staging over different workflow con-

figurations. We plot the total execution time for a workflow with different error detection

cycle in Figure 5.6. In this experiment, we perform error detection in staging in each time

step and keep MTBE = 5 minutes and checkpoint cycle Tc = 2.5 minutes constant. We

then vary the length of the time steps from 10 seconds down to 1.25 seconds. Figure 5.6

shows that, for larger than 5 second time steps, the benefit for error detection in staging

becomes significant, with a decrease of up to 22.5% in the total execution time as compared

to error detection in only the local component checkpoint. For the frequent error detection

or smaller length of each time step(between 1.25 and 5 second), error detection in staging

79

does not provide much benefit. At the extreme, for the 1.25 second time step case error

detection can trigger an overhead of 11.7%.

5.3.2 Synthetic Test Cases

To better understand the performance of error detection in staging and its effectiveness,

we also design synthetic cases and evaluate the total execution time of the workflow. Our

synthetic experiments were performed on Titan. In these experiments, both synthetic simu-

lation and analysis applications have their own local error detection and checkpoint compo-

nent. For simplification we assume that the local error detection in checkpoint component

has 100% recall and precision. We checkpoint every 10 iterations and before checkpointing

dataset into the parallel file system, error detection is performed, guaranteeing that the

checkpoint is error-free. Besides detecting silent errors in the local checkpoint component,

the error detection is also performed through staging servers after the data is staged. We

also assume that precision of error detection in data staging is 100%, and recall is linearly

related with the proportion of staged data. Once a silent error is detected, the workflow is

rolled back to the last checkpoint and re-executed. We ran the synthetic workflow under

varying proportions of staged data to total data and different frequency of error detection in

staging. Then, we measure the total execution time of the workflow. In these experiments,

two significant soft errors were randomly introduced into the dataset within the 40 time

steps, which corresponds to MTBE = 5min. We re-run our experiments for 50 times and

report the total execution time as an average of these runs. The set-up of these experiments

is described in Table 5.4. The experimental results are presented in Figure 5.7 followed by

a detailed discussion and analysis of each.

1) Case 1 - Write the entire data domain in each time step under different MTBE :

Similar to simulation case 1 in Section 5.2.2, we vary MTBE (occurrence of silent errors)

between 5, 7, 10, and 20 minutes which corresponds to 100, 75, 50, and 25 silent errors

respectively being introduced during a total of 50 runs. Since data staging can detect silent

errors and roll back workflow early in each time, the method of performing error detection

in staging can get a relatively better total execution time than the error detection in local

checkpoint component under the high frequent MTBE. This improves the total execution

80

Execute Checkpoint Restart Detect Re-execute

350

400

450

500

550

600

650

MTBE5 MTBE7 MTBE10 MTBE20

To
ta

l e
xe

cu
ti

o
n

 t
im

e
(s

ec
)

92
61

47

21

(a) Case 1

350

400

450

500

550

600

650

Check 40% 60% 80% 100%

To
ta

l e
xe

cu
ti

o
n

 t
im

e
(s

ec
)

58
65

77

92

(b) Case 2

350

400

450

500

550

600

650

Check 40% 60% 80% 100%

To
ta

l e
xe

cu
ti

o
n

 t
im

e
(s

ec
)

76 79 84
92

(c) Case 3

350

400

450

500

550

600

650

Check 8ts 4ts 2ts 1ts

To
ta

l e
xe

cu
ti

o
n

 t
im

e
(s

ec
) 30

56

73

92

(d) Case 4

Figure 5.7: Breakdown of the total execution time (in seconds) for the workflows with

checkpoint restart and error detection under 2 silent errors. Execute: Time spent in workflow

execution; Checkpoint: Time spent to perform checkpointing; Restart: Time spent to restart

workflow; Detect: Time spent performing error detection in staging; Re-execute: Time

spent for re-executing the workflow from last checkpoint (correct error). The leftmost bar

represents error detection in local checkpoint component only. Other bars represent error

detection in both staging and local checkpoint components. Numbers on top of the bars

indicate the total number of errors that was corrected by the staging component during 50

experiment runs.

81

time of the workflow by 18.1% for MTBE = 5min, 14.3% for MTBE = 7min, 11%

for MTBE = 10min and 10.1% for MTBE = 20min respectively, as compared to error

detection in local checkpoint component only under correspond MTBE value.

2) Case 2 - Write a subset of the data domain and perform error detection in each

time step: This case is effectively a combination of simulation case 2 and 3 in Section 5.2.2.

In this case and other subsequent cases, we inject a total of 100 errors during 50 runs

of the experiment. Since different percentage of whole data-set is exchanged via staging

framework, there is variance in the recall and overhead of error detection in data staging,

which is based on proportion of subdomain size to the entire data domain. Thus, error

detection in staging has an increase in detected errors when the amount of data in the

staging area increases. Our approach reduced the total execution by around 7.6% for 40%,

11.3% for 60% and 14.2% for 80% subset data, as compared to the error detection in local

checkpoint component only.

3) Case 3 - Write the entire data domain in multiple time steps and perform error detec-

tion in each time step: This case differs from the previous case, where a certain percentage

of entire data domain was written in a time step. In this case, although a subset in written

in each step, data staging can stages entire data domain in between 2 to 3 time steps. This

enables staging framework to have high cumulative recall. Therefore, error detection in

staging reduces the total execution time (around 14.9% for 40%, 16.3% for 60% and 16.9%

for 80% subset data) as compared to error detection in local checkpoint component only.

4) Case 4 - Write the entire data domain and perform error detection with different time

step cycle: Like simulation case 4 in Section 5.2.2, the entire data domain is written into

the data staging periodically for every 1, 2, 4, 8 time steps separately. For error detection

in staging, as the entire data is staged, a high recall of error detection is achieved. We

can thus detect silent errors in the staging area and roll back the workflow immediately.

Therefore, error detection in staging achieves a decrease of 2.2% for 8ts, 8.4% for 4ts, 13.8%

for 2ts and 18.1% for 1ts in the total execution time relative to error detection in the local

checkpoint component only.

82

Total number of cores 96 + 16 + 16 = 128

No. of writer cores 6× 4× 4 = 96

No. of staging cores/nodes 16/1

No. of reader cores 16

Volume size 192× 128× 128

In-staging data size (40 ts) 960MB

Workflow pattern Write immediately followed by read

Local checkpoint, detection cycle 10ts

Table 5.4: Experimental setup for synthetic test cases.

5.3.3 Large Scale S3D Experiment

We perform large scale tests of our method using the combustion DNS-LES simulation/-

analysis from the S3D combustion and analysis workflow [16] on Titan and compare it with

error detection-only in the local checkpoint component. We also integrate error detection

algorithm within S3D before checkpointing. Our staging-based error detection framework

is tested using three different core counts (4416, 8832 and 17664) and corresponding grid

domain sizes so that each core is assigned a spatial sub-domain of size 16 × 16 × 16. In

each time steps, 60%, 80%, 100% percentage of entire data passes through data staging

separately. The total execution time of the workflow over 40 time steps is measured. Other

core configurations, and data resilience setup are detailed in Table 5.5.

No. of cores 4416 8832 17664

No. of simulation cores 4096 8192 16384

No. of staging cores/nodes 256/16 512/32 1024/64

No. of analysis cores 64 128 256

Volume size 256× 256× 256 512× 256× 256 512× 512× 256

Data size (GB) 110 220 440

Checkpoint cycle 10ts 10ts 10ts

Detection cycle of staging 1ts 1ts 1ts

MTBE of silent error 300sec 300sec 300sec

Table 5.5: Configuration of core-allocations, data sizes, and data resilience for the three

test scenarios on 4416, 8832 and 17664 cores.

Figure 5.8 and Figure 5.9 illustrate the experimental results for the total execution

83

time of S3D coupled simulation and analysis application workflow for various scale in the

presence of silent errors. We also measure the precision and recall of error detection in

staging. For all tests, the precision always equals 100%, and the value of recall is shown

on top of the bars in Figure 5.8 and Figure 5.9. For all error detection approaches, the

workflow with error detection in CPU-GPU hybrid staging always shows lower execution

time than the corresponding workflow running with CPU-based staging alone. Under error

detection in CPU-only staging techniques with the presence of silent errors, error detection

in staging reduces the total workflow execution time by up to 14.4%, 16.5%, and 18.9%

as compared to error detection in only the local checkpoint component on 4416, 8832, and

17664 cores, respectively.

The same trend can also be seen in the CPU-GPU hybrid staging. The error detection

in staging improves the total execution time by up to 14.1%, 22.6% and 15.4% as compared

to a workflow with error detection in only the local checkpoint component. In addition,

when error detection is performed in staging, it was observed that the greater the fraction

of the dataset being put into staging and verified, the lower the total execution time in

the presence of errors. These results demonstrate that error detection in staging achieves

good overall scalability with small overhead for different processor counts and data sizes on

extreme scale HPC systems.

400

600

800

1000

1200

1400

1600

1800

2000

4416 8832 17664

To
ta

l E
xe

cu
ti

o
n

 T
im

e
(s

ec
)

No. of cores

SDC checkpoint SDC stage 60% SDC stage 80% SDC stage 100%

100%

60% 81% 100%

62% 80%

61% 80% 100%

Figure 5.8: Comparison of the total execution time (in seconds) for the S3D simulation and

coupled analysis workflow with error detection in CPU staging. Numbers on top of the bars

indicate the recall of error detection in staging.

84

Another concern for error detection in data staging is about the extra energy consump-

tion involved in utilizing a data staging area. For this paper, we did not explore energy

optimization approaches for error detection in data staging, nor conduct experiments to

evaluate energy consumption. Although evaluations of energy efficiency are beyond the

scope of the paper, we can make some general statements about the energy consumption

of our approach. Error detection in data staging introduces three main operations: data

computation, data storage, and data movement. Transporting data across compute notes

and storing it in DRAM devices increase the energy consumption [20]. Although it seems

that adding error detection will increase the energy consumption for the workflow, if we

consider that error detection in staging can decrease the total workflow execution time by

eliminating substantial computation time in the presence of silent errors, we expect the

energy consumption of the workflow to decrease.

400

600

800

1000

1200

1400

1600

1800

2000

4416 8832 17664

To
ta

l E
xe

cu
ti

o
n

 T
im

e
(s

ec
)

No. of cores

SDC checkpoint SDC stage 60% SDC stage 80% SDC stage 100%

60% 79% 100%

63% 82% 100%

60% 80% 100%

Figure 5.9: Comparison of the total execution time (in seconds) for the S3D simulation and

coupled analysis workflow with error detection in CPU-GPU hybrid staging. Numbers on

top of the bars indicate the recall of error detection in staging.

5.4 Related Work

Considerable efforts have been directed at developing techniques to detect and remediate

silent errors. Process replication or redundancy techniques [29] can achieve a high recall

and precision of detection with commensurately high compute and storage cost. Algorithm-

based fault tolerance (ABFT) [10] can be very useful in decreasing the error detection

85

cost and are specifically fit for detecting errors in linear algebra kernels using checksums.

Detectors based on data analytics have been explored recently to serve as lightweight error

detection methods[33, 7]. These approaches use interpolation techniques, such as time series

prediction and spatial multivariate interpolation on the scientific dataset. In contrast to

these efforts, we provide a framework for in-situ workflows for performing error detection.

In addition, any error detection techniques can be easily integrated with our staging based

error framework.

Since fail-stop failure is another significant risk for applications and checkpoint/restart

has become a standard technique to address it, some research has combined checkpoint/restart

with error detection approaches in order to deal with both fail-stop failure and silent errors.

The study in [6] provides optimal resilience patterns to cope with fail-stop and silent errors.

The research in [17] introduces an on-line ABFT based error detection approach and uses

it in conjunction with checkpoint/restart to improve the time required to obtain correct

results in an unreliable computing system. These approach are mainly designed for single

applications and do not solve the problem of error propagation between coupled application.

Our approach specifically targets the coupled scientific simulations and aims to eliminate

error propagation via data verification in the shared abstraction, or a staging area.

5.5 Summary

This chapter presents a staging based error detection framework that uses idle computation

resource to effectively detect silent errors for in-situ workflows. Then, this chapter intro-

duces a design, implementation and deployment of this framework on top of the DataSpaces

on Titan Cray XK7 at OLCF. Finally, This chapter have evaluated the effectiveness and

performance of this framework through performance tests, synthetic tests and real world

large scale S3D application runs. The experiments demonstrate that staging based error

detection framework can effectively reduce the total execution time of scientific workflows

when combined with checkpoint/restart.

86

Chapter 6

A Checkpoint/Restart with Data Logging Framework

6.1 Overview

In tightly coulped scientific workflows, simulation data is quickly shared and exchanged

amongst different coupled applications for accelerating the overall scientific discovery. These

simulation workflows running at extreme scales are providing new capabilities and oppor-

tunities in a wide range of application areas. However, due to the scales, coupling and

coordination behaviors and overall data management complexities, they are also presenting

new fault tolerance challenges that must be addressed before their potential can be fully

realized. As demonstrated in Chapter 3, to efficiently maintain the crash consistency be-

tween coupled application components and enable diverse state-of-the-art fault tolerance

approaches in the workflows have become significant and immediate challenges.

This chapter presents a workflow-level checkpoint/restart strategy for in-situ workflows.

This framework employs a data/event logging mechanism to keep data consistency among

application components during the failure recovery while decouple fault tolerance schemes

between application components in workflows. Specifically, it performs data/event logging

as soon as the data is written or read through the staging area. Also, it adapts global

user interface to application components, which works with the queue based algorithm to

record and replay data access events when preforming checkpointing and rollback recovery.

In this way, the checkpoint/restart with data logging framework allows wide area fault

tolerance schemes to be applied in workflows with flexibility and scalability, and minimize

the interference between normal application components and the failed one when performing

the recovery strategy.

The rest of the chapter is organized as follows. In Section 6.2, we introduce our check-

point/restart with data logging framework. In Section 6.3, we implement and evaluate our

87

approach using various synthetic scientific workflows. Section 6.4 provides details of various

related work, and we conclude the chapter in Section 6.5.

6.2 Workflow-level Checkpointing Framework

In this section, we first propose our workflow-level uncoordinated checkpoint framework

which is integrated with multiple checkpoint/restart strategies. We then extend the frame-

work with other fault tolerance strategies such as process replication and ABFT, and con-

struct a hybrid checkpoint approach. Finally, we design the global user interface for the

framework which is implemented in open source data staging, DataSpaces.

6.2.1 Uncoordinated Checkpointing

To mitigate the data inconsistency issue discussed in Section 3.2.3, we introduce workflow-

level uncoordinated checkpoint with data logging framework. In this framework, the work-

flow logs data transportation events and payloads between application components as it

proceeds along the initial execution; without strong coordination, application components

in workflows checkpoint their state independently. In case of application component failure,

the workflow collects all its data/event log history, and enters the replay mode. Replay

consists in following the log history, enforcing all data transportation events of the failed

component to produce the same effect they had during the initial execution, and the cor-

responding data is re-provided to this process for this purpose. Therefore, the data depen-

dency and consistency between coupled application components will keep during the replay

mode. Once the history has been entirely replayed, the application component reaches a

state that is compatible with the state of the other components in workflows, that can

continue its progress from this point on.

Data Logging in Staging

One way to implement a data logging mechanism for workflows is to perform data logging

in a data resilience staging area. Figure 6.1 shows a typical workflow with a uncoordinated

checkpoint scheme combined with data staging. In this workflow, application components

send the data communication requests to data staging. For data write requests, applications

88

C C
Time

C C C CSimulation

Analysis

Data Staging

C

CExecution time: Checkpointing:Data exchange:

Failure:Rollback restart:

Data logging: L

L L L

replay

replay

Figure 6.1: An illustration of uncoordinated checkpointing for a typical workflow with

simulation, Analytic.

offload the data to the staging area for data transportation to coupled components later. For

data read requests, applications receive the data from the staging area which are generated

by coupled components in early time. Data staging logs the data communication requests

and corresponding payloads, and records the fault tolerance events such as chechpointing

and failure recovery during the initial execution. In case of failure, data staging switches

to the recovery phrase. It cooperates with the application recovery scheme, and reproduces

the data communication requests for the recovered component, which are determined by the

log history in the initial execution. To guarantee the data availability in staging, the data

staging can contain data resilience mechanisms such as data replication or erasure coding.

It can also be integrated with the third part framework such as FTI [34] for data resilience.

Specifically, we employ a queue based data consistency algorithm in the staging area.

Figure 6.2 illustrates a queue based data consistency algorithm for a coupled applications

workflow. The workflow consists of two coupled applications, and in each coupling cycle

(1 time step), coupled simulations a, b exchange the data through data staging. The data

staging creates a event queue for each application, and pushes the data communication

request events which related with the application into queue. In case of failure, the staging

area will replay the events from the queue during the application recovery phase. In this

example, simulation b failed and performs a rollback recovery at time step 7, and during

time step 8 to 10, the staging area relays the events in the queue for the simulation b which

are recorded from time step 5 to 7. At the end of checkpoint cycle(ts4, ts9, ts12), data

staging will clean the event queue and reload the following event from the front of queue. By

89

maintaining the data request event queue, data staging can keep data consistency between

coupled applications during failure recoveries.

As well as uncoordinated checkpoint with multiple checkpoint periods shown in Fig-

ure 6.2, this data logging mechanism can easily adapt to other checkpoint/restart strategies

such as proactive checkpointing [11] and multi-level checkpointing [42] with only minor

changes.

App a events:

App b events:

1

Time steps:

App b event queue:

2 3 4 5 6 7 8 8 8 8 9 10 11 12

1 2 3 4 5 6 7 5 6 7 8 9 10 11 12

a:5
b:8 b:8 b:8

a:6 a:7

ts1 ts2 ts3 ts4 ts5 ts6 ts7 ts8 ts9 ts10 ts11 ts12 ts13 ts14 ts15

1
2
1

3
2
1

4
3
2
1 5

6
5

7
6
5

7
6
5

7
6
5

7
6
5

8
7
6
5 9

10
9

11
10
9

12
11
10
9

replay events

C C C C

C R C C

Figure 6.2: An illustration of queue based data consistency algorithm for a coupled appli-

cations workflow. Simulation b fails and performs rollback recovery at time step 7, then

during time step 8 to 10, the staging area relays the events in the queue for the simulation

b which are recorded from time step 5 to 7.

Storage Cost and Garbage Collection

To reducing the storage cost, a garbage collecting mechanism is provided in the staging

area. Specifically, data staging servers periodically delete logged data which are related with

previous checkpoint periods without data dependency to other application components, and

only keep the latest version of data in the staging area.

6.2.2 Hybrid Checkpointing

Beside checkpoint/restart approaches, this workflow-level framework can also support the

wide area fault tolerance mechanisms, and construct a hybrid checkpointing scheme for

the workflow resiliency. Figure 6.3 illustrates a hybrid checkpoint framework which in-

tegrated with process replication and checkpoint/restart approaches. In this example, a

90

simulation employs checkpoint/restart approach meanwhile the analytic uses process repli-

cation for resiliency. To make checkpoint/restart collaborate with a replication approach,

during checkpointing periods, the data communication requests between these coupled ap-

plications will be logged in the staging area. If a failure happens in the application with

checkpoint/restart, the application will rollback to last checkpoint place and re-execute

through the latest checkpoint, and the data staging switches to recovery phase. The data

logging in the data staging guarantees the restarted application can always get the correct

version of data from the coupled application. Since the application with process replication

can tolerate failures without rollback recovery, the failures will not trigger the data staging

to switch to recovery phase and replay the events.

Time

C C C CSimulation

Analysis

Data Staging

CExecution time: Checkpointing:Data exchange:

Failure:Rollback restart:

Data logging: L

L L L

Process replication:

replay

Figure 6.3: An illustration of hybrid checkpoint (integrated with a process replication) for

a typical workflow with simulation, analytic.

6.2.3 Global User Interface

In this section, we describe more details about global user interface, and present an example

to illustrate how this interface can be used to integrate multiple application fault tolerance

approaches to a workflow-level fault tolerance scheme.

As shown in Figure 6.4(a), When the application component performs checkpointing, it

first saves process states and user-level data to the reliable storage devices. The checkpoints

can be stored through a centralized parallel file system, assumed to be fault-free. Other

options include storing the checkpoints in the node-local storage (such as NVRAM and

SSD) or bust-buffer if the hardware architecture provides these devices. After that, the

application component calls workflow check() function, and notices a checkpoint event

91

workflow check() send a checkpoint event to data staging.

workflow restart()
recover data staging client and notify

the recovery event to data staging.

dspaces put with log() log data to data staging.

dspaces get with log()
retrieve the logged data specified by geometric

descriptor from data staging.

Table 6.1: User interface for checkpoint/restart in workflows.

Application components

logged data/event
querying

Application

dspaces_get_with_log()

Data staging

Data staging

return

Application components

W_Chk_ID

garbage collection

logged data/event
querying

Application

dspaces_put_with_log()

Data staging

return

Application components

data logging

event indexing

event logging

Application

process checkpointing

return

user data checkpointing

workflow_check()

Application components

Data staging

W_Chk_ID

event querying

event replay

Application

failure detection

return

process recovery

workflow_restart()

user data recovery

data

(a) workflows checkpointing

Application components

logged data/event
querying

Application

dspaces_get_with_log()

Data staging

Data staging

return

Application components

W_Chk_ID

garbage collection

logged data/event
querying

Application

dspaces_put_with_log()

Data staging

return

Application components

data logging

event indexing

event logging

Application

process checkpointing

return

user data checkpointing

workflow_check()

Application components

Data staging

W_Chk_ID

event querying

event replay

Application

failure detection

return

process recovery

workflow_restart()

user data recovery

data

(b) workflows restart

Application components

logged data/event
querying

Application

dspaces_get_with_log()

Data staging

Data staging

return

Application components

W_Chk_ID

garbage collection

logged data/event
querying

Application

dspaces_put_with_log()

Data staging

return

Application components

data logging

event indexing

event logging

Application

process checkpointing

return

user data checkpointing

workflow_check()

Application components

Data staging

W_Chk_ID

event querying

event replay

Application

failure detection

return

process recovery

workflow_restart()

user data recovery

data

(c) data read with logging

Application components

logged data/event
querying

Application

dspaces_get_with_log()

Data staging

Data staging

return

Application components

W_Chk_ID

garbage collection

logged data/event
querying

Application

dspaces_put_with_log()

Data staging

return

Application components

data logging

event indexing

event logging

Application

process checkpointing

return

user data checkpointing

workflow_check()

Application components

Data staging

W_Chk_ID

event querying

event replay

Application

failure detection

return

process recovery

workflow_restart()

user data recovery

data

(d) data write with logging

Figure 6.4: User interface for checkpoint/restart in workflows.

92

to data staging. When data staging receives the event notification, it creates a checkpointing

ID: W Chk ID for this event, and then inserts it into the event queue. Since application

components may have different checkpoint time spots, we assign an unique W Chk ID for

each checkpoint event which refer to the same application component.

For the application recovery, it involves four key steps shown in Figure 6.4(b): fail-

ure detection, process recovery, data recovery, and data staging client recovery with event

notification. To enable to recover applications from failures, application components will

delete failed processes and recover the MPI communicator through ULFM [8] [9]; a pro-

posed extension of the MPI standard which includes mechanisms for MPI applications to

tolerate fail-stop failures. After that, the equal number of spare processes join the old com-

municator to construct the new one. An alternative approach is to spawn new processes

instead of using processes from a previously prepared process pool, if this is supported by

the job scheduler. After the failed application component recovered from the latest check-

point spot, it calls workflow restart() function. This function firstly initializes the data

staging client, and tries to build an RDMA connection to data staging servers, and send

the recovery event notification to the servers. After receiving the notification, the data

staging servers will update the event queue, and generate a replay script for the recovered

application.

During a workflow execution, when an application component tries to read the coupled

data from data staging, it calls dspaces get with log() function. This function sends

data read request with the data descriptor to data staging. Based on the log history in

the event queue, the data staging identifies whether the read request comes from a rollback

execution or an initial execution of applications, and return the correct version of logged

data. Finally, data staging performs garbage collection operation to erase those data which

are no longer in use.

Similarly, when an application component tries to write the coupled data into data stag-

ing, it calls dspaces put with log() function, and sends the data with the data descriptor

to data staging. After receiving the request, data staging will query the events in the event

queue. If the request is from initial execution, data staging will store data as the logged

93

data otherwise omit the write request due to the redundant write request from the roll-

back recovering application. Table 6.1 summarize the global user interface for application

components to perform checkpoint/restart and data communication.

6.3 Experimental Evaluation

In this section, we describe the implementation details of workflow-level checkpoint frame-

work and perform an experimental evaluation using synthetic benchmarks in the presence

of failures.

Our workflow-level checkpoint framework is implemented on the top of CoREC [25],

an open-source data staging with scalable data resilience. CoREC is a branch version of

DataSpaces [21], and provides data resilience for a staging area in the case of both process

and node failures while still maintaining low latency and sustaining high overall storage effi-

ciency at large scales. The schematic overview of the runtime system is presented in Figure

6.5. In addition to modifying several existing components of CoREC for the integration,

the system architecture introduces four key new components: Data Logging Component,

Garbage Collection Component, Global User Interface, and Process/Data Resilience Com-

ponent. The Data Logging Component stores, indexes and maintains the log data from

coupled applications. Garbage Collection Component regularly cleans the unused historical

log data. User Interface provides a set of checkpoint/restart and data logging interfaces for

the applications in workflows. The Process/Data Resilience Component manages recovering

applications from failures. This Component manages a spare process pool and implements

the detection and handling of the process failures using ULFM, which offers a set of fault

tolerance mechanisms for MPI applications.

6.3.1 Synthetic Experiments

Our synthetic experiments were performed on the NERSC Cori Cray XC40 system, and

evaluated the write performance and memory usage of data staging with data/event logging.

We also measured the total workflow execution time to evaluate the benefit from workflow-

level checkpoint/restart framework in case of failures. To better understand its performance

and effectiveness, we selected two test cases with common data access patterns and resilience

94

Coordination Layer

DART/Data Communication Layer (RDMA)

Staging Server

Workflow Resilience

User Interface

Coordination Layer

Staging Client

Query Engine, Data Indexing

Logged Data Object

Resiliency Storage Layer

Data Object

Garbage Collection

Data Logging
Management

New/Update component :
Existing component :

Process Resilience
Layer

(ULFM, Replication)

Data Resilience Layer

Application Components

Fault Tolerance

Process Resiliency
ULFM

Figure 6.5: Implementation of workflow-level checkpoint framework

schemes used by real scientific workflows.

In each case, the simulation wrote the coupled data into the data staging, and the

analytic read the data right after simulation write. Checkpoint/restart and/or process

replication method were applied to the individual application to construct either uncoor-

dinated checkpoint or hybrid checkpoint scheme for the entire synthetic workflows. In the

synthetic workflows, simulation and analytic applications have different scales and resiliency

requirements which correspond to checkpointing data to the parallel file system with differ-

ent frequencies. For the process replication method, we use process duplication to tolerance

one process failure. In case of failures, the application tolerated by checkpoint/restart will

be rolled back to the last checkpoint place and re-executed from that point. For the ap-

plication with replication scheme, it will be tolerated failures by switching the task from

the failed process to the replicated process. We ran the synthetic workflow with different

data access patterns and various frequencies of checkpointing. Then, we measure write

response time and memory usage of data staging and the total execution time of workflows.

In these experiments, a failure was randomly introduced into the application process within

40 time steps, which corresponds to MTBF = 10min. This simulates frequent failures on

an extreme-scale supercomputer system. We compared our approach with two other fault

tolerance mechanisms: global coordinated checkpoint (checkpoint application components

in workflows coordinately, and restart them globally) as a baseline and individual checkpoint

(individually checkpoint/restart application components without guarantee of correctness

results) as the theoretical optimal lower bound. All experiments ran on the Cori, Cray XC40

95

system, a 12,076-node supercomputer located at the NERSC center at Lawrence Berkeley

National Laboratory (LBNL). The set-up of these experiments is described in Table 6.2.

The experimental results are presented in Figure 6.6 followed by a detailed discussion and

analysis of each.

Total No. of cores 256 + 64 + 32 = 352

No. of simulation cores 8 × 8 × 4 = 256

No. of staging cores 32

No. of analytic cores 64

Volume size 512 × 512 × 256

Data size (40 ts) 20GB

Data access pattern write immediately followed by read

Coordinated checkpoint period (ts) 4

Simulation checkpoint period (ts) 4

Analytic checkpoint period (ts) 5

Table 6.2: Experimental setup for synthetic test cases.

1) Case 1 - Write different subsets of the entire data domain in each time step: In

this case, 20%, 40%, 60%, 80%, 100% percentages of the entire data domain are exchanged

between application components via data staging in each time step. Meanwhile, we perform

checkpointing every 4 iterations for large simulation application, and 5 iterations for the

small analytic application. With more data exchanging through data staging, both compu-

tation cost and storage cost for data/event logging increased. Data/event logging increased

the write response time by 10%, 12%, 14%, 14%, and 15% as compared to the original data

staging respectively. For the storage overhead of data/event logging in data staging, as

shown in Figure 6.6(c), data/event logging increased the memory usage by 81% for 20%,

82% for 40%, 84% for 60%, 86% for 80%, and 86% for 100% subset, as compared to the

original data staging’s.

2) Case 2 - Write the entire data domain and perform checkpointing with different

frequencies: In this case, we write the entire data domain in data staging, and change

the checkpoinnting periods from every 2 time steps to every 6 time steps. As seen in

Figure 6.6(b), we got slight performance degradation when performing data/event logging

in data staging. Data/event logging increased the write response time by maximum 14%

as compared to original data staging under five different checkpoint frequencies. Since the

less frequent checkpoint indicates the longer data/event queue size in the staging area, the

96

Total No. of cores 704 1408 2816 5632 11264

No. of simulation cores 512 1024 2048 4096 8192

No. of staging cores 64 128 256 512 1024

No. of analytic cores 128 256 512 1024 2048

Data size (40 ts)(GB) 40 80 160 320 640

Coordinated checkpoint period (ts) 8 8 8 8 8

Simulation checkpoint period (ts) 8 8 8 8 8

Analytic checkpoint period (ts) 10 10 10 10 10

MTBF (sec) / No. of failures 600 / 1, 300 / 2, 200 / 3

Table 6.3: Configuration of core-allocations, data sizes, and failure characteristics for the

scalability test scenarios on 704, 1408, 2816, 5632, and 11264 cores.

higher storage cost can be expected. Therefore, as shown in Figure 6.6(d), the memory

usage for data logging increases by 76% for 2ts, 79% for 3ts, 84% for 4ts, 89% for 5ts, and

97% for 6ts checkpoint period, as compared to the memory usage of original data staging.

In these two cases, both uncoordinated checkpoint and hybrid checkpoint achieved nearly

same execution time as individual checkpoint’s which is theoretical optimal lower bound for

the execution time of workflows with fault tolerance. Also, they achieve a decrease of 3.06%

and 3.05% in the total execution time relative to global coordinated checkpoint in case 1.

In case 2, as seen in Figure 6.6(e), we get similar performance improvement with case

1. The uncoordinated checkpoint and hybrid checkpoint reduce the total execution time

around 3.15% for 2ts, 3.28% for 3ts, 3.26% for 4ts, 3.05% for 5ts and 3.18% for 6ts relative

to global coordinated checkpoint respectively.

In order to study the scalability of workflow-level uncoordinated/hybrid checkpoint, we

also plot the total workflow execution time at different workflow scales and MTBF. The

setup of these experiments is described in Table 6.3. Figure 6.7 summarizes the total

workflow execution time in case of different numbers of failures (from 1 to 3) and scales

(704, 1408, 2816, 5632, and 11264 cores). It can be seen that in the presence of multiple

failures, workflow-level uncoordinated checkpoint reduced the total execution time by up

to 7.89%, 10.48%, 11.5%, 12.03%, and 13.48% on 704, 1408, 2816, 5632, and 11264 cores

scales in comparison to global coordinated checkpoint.

These results show that workflow-level checkpoint framework demonstrates good overall

scalability and flexibility with small storage overheads for different data coupling patterns,

fault tolerance schemes and processor counts.

97

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

20% 40% 60% 80% 100%

W
ri

te
 r

es
p

o
n

se
 t

im
e

(s
ec

)

10%
12%

14%

15%14%

(a) Case 1 write latency

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

2 ts 3 ts 4 ts 5 ts 6 ts

W
ri

te
 r

es
p

o
n

se
 t

im
e

(s
ec

) 13% 13% 14% 14%14%

(b) Case 2 write latency

0

100

200

300

400

500

600

700

800

900

1000

1100

20% 40% 60% 80% 100%

M
em

o
ry

 s
iz

e
(M

B
)

81%

82%

84%

86%

86%

(c) Case 1 storage cost

0

100

200

300

400

500

600

700

800

900

1000

1100

2 ts 3 ts 4 ts 5 ts 6 ts

M
em

o
ry

 s
iz

e
(M

B
)

76% 79% 84%
97%89%

(d) Case 2 storage cost

540

560

580

600

620

640

660

680

700

720

740

2 ts 3 ts 4 ts 5 ts 6 ts

To
ta

l e
xe

cu
ti

o
n

 t
im

e
(s

ec
)

Ds Co+1f Un+1f Hy+1f In+1f

(e) Case 2 workflow execution time

Figure 6.6: Comparison of the cumulative data write response time, storage cost, and

total workflow execution time using the synthetic workflow on Cori. Ds: The workflow

with original data staging and failure free; Co: Global coordinated checkpoint/restart; Un:

Uncoordinated checkpoint/restart; Hy: Hybrid checkpoint/restart with process replication;

In: Individual checkpoint/restart; +1f: with one synthetic process failure. Percentages on

top of the bars indicate the ratio of memory usage of data logging to the original data

staging’s, and the ratio of write response time delay of data staging with data logging to

the original ones.

98

500

550

600

650

700

750

800

850

900

704 1408 2816 5632 11264

To
ta

l e
xe

cu
ti

o
n

 t
im

e
(s

ec
)

Number of cores

Co Un Co+1f Un+1f Co+2f Un+2f Co+3f Un+3f

Figure 6.7: Summary of the total workflow execution time in case of failures (1, 2, and 3)

and at different scales (704, 1408, 2816, 5632, and 11264 cores).

6.4 Related Work

Although various checkpoint/restart strategies [27] [12] [42] [31] [11] and process resilience

techniques such as process replication or redundancy techniques [29] and algorithm-based

fault tolerance (ABFT) [10] can effectually address the fail-stop failures in single applica-

tion, there are limited research efforts on failure recovery for in-situ scientific workflows.

The study in [40] exploits the reduction style processing pattern in analytic applications

and reduces the complications of keeping checkpoints of the simulation and the analytic con-

sistent. Research efforts in [41] use a synchronous two-phase commit transactions protocol

to tolerate failures in high performance and distributed computing system. In comparison

to these efforts, our checkpoint/restart with data logging approach specifically targets tight

coupled in-situ workflows, and is more flexible, asynchronous and scalable.

6.5 Summary

This chapter presents a checkpoint/restart with data logging framework for tight coupled

in-situ scientific workflows to enable diverse fault tolerance schemes to be used in workflows

effectively and efficiently while maintaining data consistency. Then, this chapter introduces

an implementation and deployment of uncoordinated and hybrid checkpoint framework on

top of the DataSpaces on Cori, a Cray XC40 production system at Lawrence Berkeley

99

National Laboratory (LBNL). Finally, this chapter have evaluated the effectiveness and

performance of our approach through synthetic tests. The experiments demonstrate that

compared with global coordinated checkpoint, the uncoordinated checkpoint and hybrid

checkpoint with data logging framework can effectively reduce the execution time of in-situ

scientific workflows.

100

Chapter 7

Conclusions and future work

Cutting-edge in-situ workflows are generating and consuming data at an ever-growing scale.

Data-staging frameworks and in-situ data process techniques have emerged as effective

solutions for addressing data-related challenges at extreme scale and supporting in-situ

workflows in high-performance computing (HPC) systems. However, reliability is an im-

portant issue that needs to be addressed in order to allow these workflows to continue

scaling efficiently. The resilience challenge for extreme-scale in-situ workflows requires var-

ious hardware and software components in workflows are capable of handling a broad set

of failures at accelerated fault rates. While the HPC community has developed various so-

lutions, application-level as well as system-based solutions, the solution space of resilience

techniques for in-situ workflows remains fragmented.

This thesis identifies and addresses key problems and requirements for in-situ scientific

workflows. Specifically, this thesis presents CoREC and CoREC-multilevel, a scalable hy-

brid approach to data resilience for data staging frameworks that used online data access

classification to effectively combines replication and erasure codes, and to balance compu-

tation and storage overheads. CoREC-multilevel can support different data resiliency tech-

niques in order to satisfy the varying data resiliency requirements of multiple applications.

Furthermore, utilizing lazy recovery and conflict-avoid encoding workflow optimizations, we

reduced the interference due data-resiliency on the simulation/analysis components of the

workflow. Secondly, this thesis presents a staging-based framework for detecting corruption

that uses idle computation resource to effectively detect silent errors for in-situ workflows.

As an illustrative example, we have demonstrated the use of an improved spatial outlier

detection technique to achieve lightweight error detection with high accuracy. We have also

provided a CPU-GPU hybrid staging architecture to minimize the impact of error detection

101

on regular I/O operations on a data staging framework and interference with simulation/-

analysis components of the workflow further when performing error detection. Finally, this

thesis presents a checkpoint/restart with data logging framework for tight coupled in-situ

scientific workflows to keep crash consistency and enable diverse fault tolerance schemes

to be used in workflows effectively and efficiently. Specifically, we apply data logging in

staging area to effectively decouple fault tolerance schemes between application compo-

nents while maintaining data consistency among application components during the failure

recovery. We have also provided a user interface for integrating this framework with appli-

cation fault tolerance schemes. We evaluated the effectiveness, scalability and performance

of the proposed programming interface and runtime mechanisms, through integration and

experiments with synthetic and real-world in-situ scientific workflows.

In the future, this work can be extended in several directions.

• Modeling and addressing failures for workflows in heterogeneous HPC sys-

tem: To sustain performance while facing always tighter power and energy envelopes,

High Performance Computing (HPC) is increasingly leveraging heterogeneous archi-

tectures such as Burst buffer, General-purpose computing on graphics processing units

(GPGPU), and Non-Uniform Memory Access(NUMA). However, this poses new chal-

lenges to efficiently model and address the heterogeneous architectures related failures

in applications. In terms of in-situ scientific workflows, the required resilience manage-

ment must support a wide range of different heterogeneous devices and programming

models that target different application domains to provide end-to-end resilience so-

lution for workflows.

• Modeling and addressing silent errors in machine learning workflows: This

thesis focuses on in-situ scientific workflows which are composed by coupled scien-

tific simulation and analytics. However, as machine learning becomes pervasive in

high performance computing, it has found its way into scientific workflow domains

(e.g.,knowledge discovery). Thus, the fault tolerance for scientific machine learning

has grown in importance. Specifically, failures in machine learning workflows can have

catastrophic consequences, and can occur due to silent errors, which are increasing

102

in frequency due to system scaling. Meanwhile, Machine learning applications of-

ten possess uniquely inherent properties such as self-correcting behavior, due to their

iterative convergent nature. Therefore, the new resilience frameworks for scientific

machine learning workflows are needed to leverage these properties to achieve adapt-

ability and efficiency by relaxing the consistency of execution and allowing silent errors

to be self-corrected during workflow execution.

103

References

[1] L. Arturo, B. Gomez, N. Maruyama, and F. Cappello. Distributed diskless checkpoint
for large scale systems. In 2010 10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing (CCGrid), pages 263–272, May 2010.

[2] G. Aupy, O. Beaumont, and L. Eyraud-Dubois. Sizing and partitioning strategies for
burst-buffers to reduce io contention. In Proceedings of the 33th IEEE International
Parallel and Distributed Processing Symposium (IPDPS’19), pages 631–640, May 2019.

[3] L. Bautista-Gomez and F. Cappello. Detecting silent data corruption for extreme-scale
mpi applications. In Proceedings of the 22nd European MPI Users’ Group Meeting
(EuroMPI’15), September 2015.

[4] L. Bautista-Gomez, A. Gainaru, S. Perarnau, D. Tiwari, S. Gupta, C. Engelmann,
F. Cappello, and M. Snir. Reducing waste in extreme scale systems through introspec-
tive analysis. In Proceedings of the 30th IEEE International Parallel and Distributed
Processing Symposium (IPDPS’16), pages 631–640, May 2016.

[5] J. Bennett, H. Abbasi, P.-T. Bremer, R. Grout, A. Gyulassy, T. Jin, S. Klasky, H. Kolla,
M. Parashar, V. Pascucci, P. Pebay, D. Thompson, H. Yu, F. Zhang, and J. Chen.
Combining in-situ and in-transit processing to enable extreme-scale scientific analy-
sis. In High Performance Computing, Networking, Storage and Analysis (SC), 2012
International Conference for, pages 1–9, Nov 2012.

[6] A. Benoit, A. Cavelan, Y. Robert, and H. Sun. Optimal resilience patterns to cope
with fail-stop and silent errors. In Proceedings of the 30th IEEE International Parallel
and Distributed Processing Symposium (IPDPS’16), May 2016.

[7] E. Berrocal, L. Bautista-Gomez, S. Di, Z. Lan, and F. Cappello. Lightweight silent data
corruption detection based on runtime data analysis for hpc applications. In Proc. 24th
International Symposium on High Performance Distributed Computing (HPDC’15),
June 2015.

[8] W. Bland, A. Bouteiller, T. Herault, G. Bosilca, and J. Dongarra. Post-failure recovery
of mpi communication capability: Design and rationale. In International Journal of
High Performance Computing Applications, volume 27, pages 244–254, August 2013.

[9] W. Bland, A. Bouteiller, T. Herault, J. Hursey, G. Bosilca, and J. Dongarra. An
evaluation of user-level failure mitigation support in mpi. In Proceedings of the 19nd
European MPI Users’ Group Meeting (EuroMPI’12), September 2012.

[10] G. Bosilca, R. Delmas, J. Dongarra, and J. Langou. Algorithm-based fault tolerance
applied to high performance computing. Journal of Parallel and Distributed Comput-
ing, 69(4):410–416, 2009.

104

[11] M. S. Bouguerra, A. Gainaru, L. B. Gomez, F. Cappello, S. Matsuoka, and
N. Maruyam. Improving the computing efficiency of hpc systems using a combina-
tion of proactive and preventive checkpointing. In Proceedings of the 27th IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS’13), pages 501–512,
May 2013.

[12] A. Bouteiller, T. Ropars, G. Bosilca, C. Morin, and J. Dongarra. Reasons for a pes-
simistic or optimistic message logging protocol in mpi uncoordinated failure, recovery.
In 2009 IEEE International Conference on Cluster Computing and Workshops, pages
1–9, August 2009.

[13] P. Bremer, E. Bringa, M. Duchaineau, A. Gyulassy, D. Laney, A. Mascarenhas, and
V. Pascucci. Topological feature extraction and tracking. In Journal of Physics: Con-
ference Series, volume 78, page 012007. IOP Publishing, 2007.

[14] N. Budhiraja, K. Marzullo, and S. Toueg. The primary backup approach. In Dis-
tributed systems, page 2:199–216, 1993.

[15] F. Cappello, G. Al, W. Gropp, S. Kale, B. Kramer, and M. Snir. Toward exascale re-
silience: 2014 update. In Supercomputing Frontiers and Innovations: an International
Journal, volume 1, pages 5–28, 2014.

[16] J. H. Chen, A. Choudhary, B. de Supinski, M. DeVries, E. R. Hawkes, S. Klasky,
W. K. Liao, K. L. Ma, J. Mellor-Crummey, N. Podhorszki, R. Sankaran, S. Shende,
and C. S. Yoo. Terascale direct numerical simulations of turbulent combustion using
s3d. Computational Science & Discovery, 2(1), 2009.

[17] Z. Chen. Online-abft: an online algorithm based fault tolerance scheme for soft error
detection in iterative methods. In Proceedings of the 18th ACM SIGPLAN symposium
on Principles and practice of parallel programming (PPoPP’13), August 2013.

[18] A. Cidon, R. Stutsman, S. Rumble, S. Katti, J. Ousterhout, and M. Rosenblum. Min-
copysets: derandomizing replication in cloud storage. In at the 10th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI), 2013.

[19] E. Deelman, T. Peterka, I. Altintas, C. D. Carothers, K. K. van Dam, K. Moreland,
M. Parashar, L. Ramakrishnan, M. Taufer, and J. Vetter. The future of scientific
workflows. The International Journal of High Performance Computing Applications,
32(1):159–175, 2018.

[20] M. e. M. Diouri, O. Gluck, L. Lefevre, and F. Cappello. Energy considerations in check-
pointing and fault tolerance protocols. In Proceedings of the Workshop on IEEE/I-
FIP International Conference on Dependable Systems and Networks (DSN 2012), June
2012.

[21] C. Docan, M. Parashar, and S. Klasky. Dataspaces: an interaction and coordination
framework for coupled simulation workflows. In Proceedings of the 19th ACM Inter-
national Symposium on High Performance Distributed Computing, HPDC ’10, pages
25–36, 2010.

[22] C. Docan, M. Parashar, and S. Klasky. Enabling high-speed asynchronous data extrac-
tion and transfer using dart. Concurrency and Computation: Practice and Experience,
22:1181–1204, 2010.

105

[23] C. Docan, M. Parashar, and S. Klasky. Dataspaces: an interaction and coordination
framework for coupled simulation workflows. Cluster Computing, 15(2):163–181, Jun
2012.

[24] C. Docan, F. Zhang, T. Jin, H. Bui, Q. Sun, J. Cummings, N. Podhorszki, S. Klasky,
and M. Parashar. Activespaces: Exploring dynamic code deployment for extreme scale
data processing. volume 27. Wiley Online Library, 2014.

[25] S. Duan, P. Subedi, K. Teranishi, P. Davis, H. Kolla, M. Gamell, and M. Parashar.
Scalable data resilience for in-memory data staging. In Proceedings of the 32th IEEE
International Parallel and Distributed Processing Symposium (IPDPS’18), pages 105–
115, May 2018.

[26] I. P. Egwutuoha, D. Levy, B. Selic, and S. Chen. A survey of fault tolerance mechanisms
and checkpoint/restart implementations for high performance computing systems. In
The Journal of Supercomputing, volume 65(3), pages 1302–1326, 2013.

[27] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A survey of rollback-
recovery protocols in message-passing systems. ACM Computing Surveys (CSUR),
34(3):375–408, September 2002.

[28] S. Feng, S. Gupta, A. Ansari, and S. Mahlke. Shoestring: probabilistic soft error
reliability on the cheap. In Proceedings of the fifteenth edition of ASPLOS on Architec-
tural support for programming languages and operating systems (ASPLOS’10), pages
385–396, March 2010.

[29] D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Ferreira, and R. Brightwell. Detec-
tion and correction of silent data corruption for large-scale high-performance comput-
ing. In Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis (SC’12), November 2012.

[30] B. Fitzpatrick. Distributed caching with memcached. In Linux journal, volume 124,
page 5, August 2004.

[31] M. Gamell, K. Teranishi, M. A. Heroux, J. Mayo, H. Kolla, J. Chen, and M. Parashar.
Local recovery and failure masking for stencil-based applications at extreme scales. In
High Performance Computing, Networking, Storage and Analysis (SC), 2015 Interna-
tional Conference for, November 2015.

[32] S. Gao, B. He, and J. Xu. Real-time in-memory checkpointing for future hybrid mem-
ory systems. In Proceedings of the 29th ACM on International Conference on Super-
computing, pages 263–272, Nov 2015.

[33] L. B. Gomez and F. Cappello. Detecting silent data corruption through data dy-
namic monitoring for scientific applications. In the 19th ACM SIGPLAN symposium
on Principles and practice of parallel programming (PPoPP), pages 381–382, February
2014.

[34] L. B. Gomez, D. Komatitsch, and N. Maruyama. Fti: high performance fault tolerance
interface for hybrid systems. In 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 728–740, Nov 2012.

106

[35] S. Gupta, T. Patel, C. Engelmann, and D. Tiwari. Failures in large scale systems:
long-term measurement, analysis, and implications. In High Performance Comput-
ing, Networking, Storage and Analysis (SC), 2017 International Conference, November
2017.

[36] S. Gupta, D. Tiwari, C. Jantzi, J. Rogers, and D. Maxwell. Understanding and exploit-
ing spatial properties of system failures on extreme-scale hpc systems. In 2015 45th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), pages 37–44, June 2015.

[37] T. Herault and Y. Robert. Fault-tolerance techniques for high-performance computing.
In Fault-Tolerance Techniques for High-Performance Computing, pages 12–24, 2015.

[38] A. Kougkas, H. Devarajan, X.-H. Sun, and J. Lofstead. Harmonia: An interference-
aware dynamic i/o scheduler for shared non-volatile burst buffers. In 2018 IEEE In-
ternational Conference on Cluster Computing (CLUSTER), Sept 2018.

[39] A. Kougkas, M. Dorier, R. Latham, R. Ross, and X.-H. Sun. Leveraging burst buffer
coordination to prevent i/o interference. In 2016 IEEE 12th International Conference
on e-Science (e-Science), Oct 2016.

[40] J. Liu and G. Agrawal. Supporting fault-tolerance in presence of in-situ analytics. In
2017 17th IEEE/ACM International Conference on Cluster, Cloud and Grid Comput-
ing (CCGrid), pages 304–313, May 2017.

[41] J. Lofstead, J. Dayaly, I. Jimenezz, and C. Maltzahn. Efficient, failure resilient trans-
actions for parallel and distributed computing. In 2014 International Workshop on
Data Intensive Scalable Computing Systems, pages 17–24, November 2014.

[42] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski. Design, modeling,
and evaluation of a scalable multi-level checkpointing system. In Proceedings of the
International Conference on High Performance Computing, Networking, Storage and
Analysis (SC’10), pages 1–11, November 2010.

[43] B. Nie, D. Tiwari, S. Gupta, E. Smirni, and J. H. Rogers. A large-scale study of
soft-errors on gpus in the field. In 2016 IEEE International Symposium on High Per-
formance Computer Architecture (HPCA), pages 519–530, March 2016.

[44] B. Nie, J. Xue, S. Gupta, T. Patel, C. Engelmann, E. Smirni, and D. Tiwari. Machine
learning models for gpu error prediction in a large scale hpc system. In 2018 48th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), pages 95–106, June 2018.

[45] M. Parashar. Addressing the petascale data challenge using in-situ analytics. In Pro-
ceedings of the 2Nd International Workshop on Petascal Data Analytics: Challenges
and Opportunities, PDAC ’11, pages 35–36, New York, NY, USA, 2011. ACM.

[46] M. Parashar. Addressing the petascale data challenge using in-situ analytics. In Pro-
ceedings of the 2Nd International Workshop on Petascal Data Analytics: Challenges
and Opportunities, PDAC ’11, pages 35–36, New York, NY, USA, 2011. ACM.

[47] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. In Journal of
the Society for Industrial & Applied Mathematics, volume 8(2), page 300, 1960.

107

[48] R. V. Renesse and F. B. Schneider. Chain replication for supporting high throughput
and availability. In in Proceedings of the 5th symposium on Operating Systems Design
and Implementation OSDI’04, pages 91–104, 2004.

[49] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi, P. Balaji, J. Belak,
P. Bose, F. Cappello, B. Carlson, A. A. Chien, P. Coteus, N. A. DeBardeleben, P. C.
Diniz, C. Engelmann, M. Erez, S. Fazzari, A. Geist, R. Gupta, F. Johnson, S. Krish-
namoorthy, S. Leyffer, D. Liberty, S. Mitra, T. Munson, R. Schreiber, J. Stearley, and
E. V. Hensbergen. Addressing failures in exascale computing. International Journal
of High Performance Computing Applications, 28(2):129–173, 2014.

[50] J. S.Plank, J.Luo, C. D.Schuman, L.Xu, and Z.-O. Hearn. A performance evaluation
and examination of open-source erasure coding libraries for storage. In the Seventh
USENIX Conference on File and Storage Technologies (FAST), pages 263–272, Dec
2009.

[51] P. Subedi, P. Davis, S. Duan, S. Klasky, H. Kolla, and M. Parashar. Stacker: An
autonomous data movement engine for extreme-scale data staging-based in-situ work-
flows. In High Performance Computing, Networking, Storage and Analysis (SC), 2018
International Conference for. ACM, 2018.

[52] P. Subedi and X. He. A comprehensive analysis of xor-based erasure codes tolerat-
ing 3 or more concurrent failures. In Parallel and Distributed Processing Symposium
Workshops and PhD Forum (IPDPSW), 2013 IEEE 27th International Symposium on,
April 2013.

[53] P. Sun and S. Chawla. On local spatial outliers. In Fourth IEEE International Con-
ference on Data Mining, November 2004.

[54] J. T. Daly. A higher order estimate of the optimum checkpoint interval for restart
dumps. Future Generation Computer Systems, 3(22):303–312, 2004.

[55] K. Tang, P. Huang, X. He, T. Lu, S. S. Vazhkudai, and D. Tiwari. Toward managing
hpc burst buffers effectively: Draining strategy to regulate bursty i/o behavior. In
2017 IEEE 25th International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS), Sept 2017.

[56] U.S. Department of Energy, Office of Science. Exascale computing project.
https://www.exascaleproject.org/exascale-computing-project/, 2018.

[57] L. Vervisch, E. Bidaux, K. N. C. Bray, and W. Kollmann. Surface density function
in premixed turbulent combustion modeling, similarities between probability density
function and flame surface approaches. Physics of Fluids (1994-present), 7(10):2496–
2503, 1995.

[58] D. Vogt, C. Giuffrida, H. Bos, and A. S. Tanenbaum. Techniques for efficient in-
memory checkpointing. In Proceedings of the 9th Workshop on Hot Topics in Depend-
able Systems, pages 263–272, Nov 2013.

[59] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn. Ceph: a scal-
able, high-performance distributed file system. In in Proceedings of the 7th symposium
on Operating Systems Design and Implementation OSDI’06, pages 307–320. Berkeley,
CA, USA: USENIX Association, 2006.

108

[60] M. M. T. Yiu, H. H. W. Chan, and P. P. C. Lee. Erasure coding for small objects in
in-memory kv storage. In in Proceedings of the 10th ACM International Systems and
Storage Conference (SYSTOR), May 2017.

[61] H. Yu, C. Wang, R. W. Grout, J. H. Chen, and K.-L. Ma. In situ visualization for large-
scale combustion simulations. IEEE Computer Graphics and Applications, (3):45–57,
2010.

[62] J. Zawodny. Redis: Lightweight key/value store that goes the extra mile. Linux
Magazine, 79, 2009.

[63] H. Zhang, M. Dong, and H. Chen. Efficient and available in-memory kv-store with
hybrid erasure coding and replication. In the Fourteenth USENIX Conference on File
and Storage Technologies (FAST) for, February 2016.

	Abstract
	Acknowledgments
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Research Challenges
	Support for Data Reliability
	Support for Data Verification
	Support for Crash Consistency

	Overview of Thesis Research
	Contributions
	Thesis Outline

	Background and Related Work
	Failures in Extreme Scale HPC Systems
	Data Resilience Techniques
	Data Replication
	Erasure Codes

	Checkpoint/Restart
	Coordinated Checkpointing

	Data Verification
	Process Replication
	ABFT
	Outlier Based Error Detection

	Summary

	Motivating Applications and Challenges
	Motivating Staging Based In-situ Scientific Workflows
	Coupled Combustion Simulation DNS-LES Workflow
	Online Data Analytics Workflow for Combustion Simulations
	Data Staging technique - DataSpaces

	Fault Tolerance Challenges
	Data Reliability
	Data Verification
	Data Consistency

	CoREC: a Scalable and Resilient In-memory Data Staging
	Introduction
	CoREC (Combining Replication and Erasure Coding)
	Classifying Data Access
	Modeling the CoREC Approach
	CoREC-multilevel, CoREC with multilevel data redundancy

	CoREC System Design
	Data Placement
	Load Balancing & Conflict Avoid Encoding Workflow
	Data Size & Geometric Shape
	Recovering Data Staging Server Failures

	Experimental Evaluation
	Experiments with Node Failures
	Experiments for CoREC with multilevel data redundancy

	Related Work
	Summary

	Staging Based Silent Error Detection Framework
	Overview
	Error Detection in Staging
	Modeling Error Detection in Staging
	Simulation and Analysis
	Implementing Error Detection in Staging

	Experimental Evaluation
	Performance Experiments
	Synthetic Test Cases
	Large Scale S3D Experiment

	Related Work
	Summary

	A Checkpoint/Restart with Data Logging Framework
	Overview
	Workflow-level Checkpointing Framework
	Uncoordinated Checkpointing
	Hybrid Checkpointing
	Global User Interface

	Experimental Evaluation
	Synthetic Experiments

	Related Work
	Summary

	Conclusions and future work
	References

