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ABSTRACT OF THE DISSERTATION

Programming and Managing Data-Driven Applications

between the edge and the cloud

by Eduard Gibert Renart

Dissertation Director: Manish Parashar

Due to the proliferation of the Internet of Things (IoT), the number of devices con-

nected to the Internet is growing. These devices are generating large volumes of data

at the edge of the infrastructure. According to International Data Corporation (IDC)

predictions by 2025 the worldwide data will reach 180 zettabytes (ZB), and more than

half of that data will come from IoT sensors. Although the generated data provides

great potential for science and society, identifying and processing relevant data points

hidden in streams of unimportant data, and doing this in near real-time, remains a

significant challenge. The prevalent model of moving data from the edge to the cloud

of the network is becoming unsustainable, resulting in an impact on latency, network

congestion, storage cost and privacy. These observations can be leveraged to design

hybrid architectures that can leverage both the edge and the cloud resources to process

the data in a timely manner. Although the cloud is better suited to perform heav-

ier (resource intensive) analysis, such as processing historical events and very large

datasets, edge devices can support real-time analytics that consider the temporal and

spatial characteristics of IoT data. While edge processing can benefit IoT applications,

edge resources are typically constrained in their capabilities. In addition integrating

edge computing can also add complexity to applications, especially when they need to
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include policies that govern what kind of data is processed and analyzed at the edge

and what is sent to cloud.

To address these challenges, this dissertation presents an IoT Edge Framework,

called R-Pulsar, that extends cloud capabilities to local devices and provides a program-

ming model for deciding what, when, where and how data get collected and processed.

This thesis makes the following contributions: (1) A content- and location-based pro-

gramming abstraction for specifying what data gets collected and where the data gets

analyzed. (2) A rule-based programming abstraction for specifying when to trigger

data-processing tasks based on data observations. (3) A programming abstraction for

specifying how to split a given dataflow and place operators across edge and cloud

resources. (4) An operator placement strategy that aims to minimize an aggregate cost

which covers the end-to-end latency (time for an event to traverse the entire dataflow),

the data transfer rate (amount of data transferred between the edge and the cloud) and

the messaging cost (number of messages transferred between edge and the cloud). (5)

Performance optimizations on the data-processing pipeline in order to achieve real-time

performance on constrained devices. The applicability of this work to real-world IoT

applications is validated through a series of experiments in which shows that R-Pulsar

can reduce the bandwidth consumption between the edge and the cloud by up to 82%

and obtain results 40% faster than the traditional approach of moving all the data to

the cloud.
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Chapter 1

Introduction

The Internet of Things paradigm (IoT) fosters the connection of large numbers of

sensors to the network. According to Cisco systems [1], 500 billion IoT devices are

expected to be connected to the Internet by 2030, and mearly 50% of the data produced

worldwide will be generated by IoT sensors [2] IoT devices produce important and

timely data that can lead to new and transformative applications that are important

to science and society, such as:

• Precision medicine applications that benefit from runtime actuation based on

continuous monitoring by scientific instruments.

• Urban mobility applications that rely on processing data from sensors to identify

and alleviate traffic congestion.

• Healthcare applications that infer lifestyle patterns based on behavioral informa-

tion obtained from wearables.

Making such applications a reality requires collecting data from sensors and instru-

ments, processing this data individually or collectively in a timely manner, and making

decisions based on the results.

Stream processing frameworks (SPFs) have proven to be very effective at processing

large amounts of data in a timely manner, especially when combined with the elasticity

and scalability of the cloud. Nonetheless, existing solutions were developed keeping

in mind Big Data streams generated at the core of the infrastructure, such as those

associated with web analytics. As a result, applying these solutions to IoT data stream

requires transferring data from the edges to a data center located at the core of the
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infrastructure for processing. This model of moving data is quickly becoming unsus-

tainable [3], due to the resulting impact on latency, network congestion, storage cost,

and privacy, limiting the potential impact of IoT.

However, in recent years, non-trivial computational capabilities have proliferated

across the computing service landscape [4]. In particular, edge services are emerging

closer to the data sources and can provide potential data-processing capabilities[5, 6].

Edge computing extends the traditional cloud infrastructure with additional com-

puting resources enabling the execution of applications close to end-user. Edge com-

puting uses edge nodes, which may range from IoT embedded devices featuring limited

storage, memory, and processing capacity to whole data centers (i.e. ”local clouds”)

which are deployed closer to end-users and physical infrastructures. Overall, the edge

computing paradigm extends the cloud paradigm to the edge of the network. In this

way, users can benefit from computing, storage and communication resources at their

vicinity, instead of interfacing with the centralized cloud.

IoT data feature certain characteristics, which distinguish them radically from other

types of data sources and respective applications. The special characteristics and related

challenges for IoT data processing applications can be listed as follows:

• Geographically Distributed: IoT data streams are produced in a geographi-

cally distributed fashion manner.

• Time and Location: The data streams contains temporal and spatial dependen-

cies, which are directly related with the value. For that reason IoT applications

need to process data in a timely fashion and from the proper location, in order

to extract its maximum value.

• Real-Time: IoT data streams are produced in high velocities (machine speed)

and requires applications to process the data in real-time.

• Security: The majority of the IoT data produced by sensors contains personal

and sensitive data.
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• Mobility: IoT applications can involve sensors that moves around such as: con-

nected vehicles, autonomous cars, etc... and requires the communication to local

resources (computing, storage) residing in their vicinity.

While edge computing can help achieve all the new requirements that IoT appli-

cations need, edge resources are typically constrained in their capabilities. Therefore,

edge computing can be leveraged to complement the computing capabilities of the cloud-

centric approach. The use of edge and cloud architecture poses several challenges:

• Deciding how to split IoT applications among the edge and cloud resources, in

order to meet the requirement of the application; Where an IoT application is a

sequence of operators from a source to a sink.

• Exploring heterogeneous infrastructure for deploying data flow applications has

proved to be NP-hard [7]. Due to the fact that there are so many possible com-

binations (many edge devices and many operators to place).

• Moving operators from cloud to edge devices is challenging due to the devices’

limitations with respect to memory, CPU, and often network bandwidth [8].

Solving the challenges presented above in a correct manner will allow for faster

completion time, a reduction in edge to cloud data transfers, and ensure efficient use of

the edge and cloud resources. Doing them incorrectly can be detrimental to throughput

and exacerbate the time for handling data events.

1.1 Motivation

The popularity and proliferation of the Internet of Things (IoT) paradigm is resulting

in a growing number of devices connected to the Internet. These devices are generating

and consuming unprecedented amounts of data at the edges of the infrastructure, and

are enabling new classes of applications, however, current approaches typically rely

on cloud platforms located at the core of the infrastructure to process data. As the

number of devices and the amount of data they generate and consume increases, such
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core-centric approaches are becoming increasingly inefficient as they need to transfer

data back and forth between the edge and the core. Furthermore, not all the data

produced is interesting or relevant, and only a part of it may need to be processed in

the context of an application. These observations can be leveraged to design hybrid

architectures that can effectively leverage both the edge and the cloud resources to

process the data in an effective and timely manner[9, 10].

To address these limitations, we propose R-Pulsar, an architecture with a content-

and location-based programming abstraction to perform and orchestrate data analytics

between the edge and the cloud. The programming abstraction enables developers to

address the what, where, and when data needs to be processed by specifying content

and action descriptors. We also propose a programming model to provide developers

with the ability to define how to automatically split the dataflow across the edge

and the cloud by specifying a set of dataflow constraints. In addition we present an

optimized data-processing pipeline for achieving timely data analytics on constrained

devices.

1.2 Problem Description

With the increasing number of connected IoT devices, providing efficient and effective

streaming analytics across the edge and the cloud for IoT applications is non-trivial

due to the characteristics of IoT streams.

What data to consume

Due to the large number of IoT devices/sensors that are currently online, not all the

data produced by the sensors is interesting or relevant, or only a part of it may need to

be processed in the context of an application. Requiring all the data to be transported

to the cloud for processing, will result in latencies that can prevent timely decision

making or may reduce the amount of data processed. As a result there is a need for a

programming model to help developers decide what data they want to consume.

Where to perform the computations
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As mentioned earlier IoT streams have time and location dependencies, so in order to

satisfy the requirements, computations needs to be placed between the edge and the

cloud. Due to the hardware heterogeneity of edge and cloud resources, there is a need

for a programming model that allows developers to reason about where they want the

computations to be placed. Since edge resources are typically constrained in their ca-

pabilities and cloud resources are suited to perform heavier (resource intensive) analysis.

When to perform computations

Edge computing helps reduce the latency and the total amount of data and the load

that is sent to the cloud by pre-processing, filtering and analyzing at the edge of the

network. Once the data is pre-processed at the edge of the network a decision need to

be made to either discard it or forward it to the cloud for post-processing. For those

reasons there is a need for a rule programming abstraction to allow the ability to decide

when and where to perform post-processing computations.

How to split IoT applications across the edge and the cloud

Cloud-based architectures often centralize storage and processing, generating high data

movement overheads that penalize timely applications. Edge and Cloud architecture

pushes computation closer to where the data is generated, reducing the cost of data

movements and improving the application response time. The heterogeneity among the

edge devices and cloud servers introduces an important challenge for deciding how to

split and orchestrate the IoT applications across the edge and the cloud. For those

reasons there is a need for a programming model to provide developers with the ability

to define how to automatically split the dataflow across the edge and the cloud by

specifying a set of dataflow constraints.

1.3 Contributions

The primary contributions of the research in this thesis are a programming model for

deciding what, when, where data needs to be processed by specifying content and

action descriptors and how computations get distributed across the edge and the cloud.
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The detailed contributions are presented as follows.

• A content- and location-based programming abstraction for specifying what data

gets collected and where the data gets analyzed.

• A rule-based programming abstraction for specifying when to trigger data-processing

tasks based on data observations.

• A programming abstraction for specifying how to split a given dataflow and place

operators across edge and cloud resources.

• An operator placement strategy that aims to minimize an aggregate cost which

covers the end-to-end latency (time for an event to traverse the entire dataflow),

the data transfer rate (amount of data transferred between the edge and the

cloud) and the messaging cost (number of messages transferred between edge and

the cloud).

• Performance optimizations on the data-processing pipeline in order to achieve

high performance on constrained devices.

• An implementation of the above capabilities as part of the R-Pulsar architecture

and its evaluation using embedded devices (Raspberry Pi and Android phone).

1.4 Outline

  

Chapter 3 Chapter 4 Chapter 5 Chapter 6

State-of-
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Figure 1.1: Thesis Organization.

The core chapters of the thesis are structured as shown in Figure 1.1 and are deviated
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from articles and journals published during the PhD. The remaining of the thesis is

organized as follows:

• Chapter 2 shows some of the IoT application that where used in order to motivate

and validate the build of R-Pulsar.

• Chapter 3 presents an extensive literature review of all the commercial and aca-

demic edge-based middleware currently available.

• Chapter 4 presents the Associative Rendezvous programming abstraction that

R-Pulsar builds upon.

• Chapter 5 presents the system concepts and all the layers on what R-Pulsar was

build upon.

• Chapter 6 presents the implementation and evaluation details of all the layers

that R-Pulsar consists.

• Chapter 7 introduces the operator placement problem, to solve the how to split

IoT applications dynamically across the edge and the cloud.

• Chapter 8 concludes the dissertation by outlining future research work.
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Chapter 2

Motivating Applications and Requirements

2.1 Emergence, Benefits and Limitations of Using Edge Computing

Edge computing complements the cloud in IoT by filling in the gap between the cloud

and the internet of things by providing computing in the continuum. In this section we

describe the advantages and disadvantages of Edge computing and later propose some

IoT applications that will benefit from using edge computing.

2.1.1 Advantages

Allows to Minimize Data Explosion and Network Traffic: Due to the large

number of connected devices the volume of data that they will generate will increase

exponentially. Another concern with increasing data generation is the increase of net-

work traffic to the cloud. By using edge computing data can stay local and only send

the important data to the cloud, reducing the volume and network bandwidth.

Allows to Achieve Low Latency: Emerging IoT scenarios involve gathering and

processing large volumes of streaming data using complex workflows in a timely man-

ner to support decision making. Traditionally, data processing has been done at large

data centers in the core of the network, however, as the data volumes and rates grow,

and the application scenario becomes increasingly time sensitive, such an approach

is quickly becoming infeasible, and it is becoming essential to also leverage resources

closer to the edge. By applying edge computing applications are capable of supporting

time-sensitive applications.
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Allows to Achieve Real-Time Computations: Edge computing improves the over-

all performance by offloading computations near the data source and reducing the un-

necessary costs of moving the data to the cloud.

Increased Security: Edge computing allows to process and filter sensitive data locally

and transmit only the aggregate data over to the cloud. Therefore avoiding the need

to send personal and sensitive data to the cloud.

2.1.2 Disadvantages

Limited Computational Resources: While leveraging edge resources can alleviate

costs associated with cloud data transfers, edge resources tend to be constrained in

their capabilities. In addition state-of-the-art data analytics pipelines are known to be

computationally intensive tasks, resulting in the inability to performing timely data

analytics when deployed on constrained devices.

Added complexity: Integrating edge computing adds complexity to applications, es-

pecially when they need to include policies that govern what kind of data is processed

and analyzed at the edge and what is sent to cloud. In addition exploring heterogeneous

infrastructures such as edge and cloud for deploying dataflow applications has proved

to be NP-hard [7].

2.2 Motivating Applications

IoT applications are present in several domains: Precision medicine, Urban mobility,

and Healthcare. In this section, we highlight four different use cases described in both

industry and academia that benefits from the IoT paradigm. Table 2.1 summarises the

scenario, limitations and requirements of those use cases.
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Table 2.1: Edge Computing use cases, current limitations, and imperatives

Applications Example Use Case Limitations Requirements

Smart City
Help autistic people

navigate through large
crowded spaces.

Hard to provide timely
directions due to the need to
send large volumes of data to

the cloud.

Low Latency, Security,
Geographically

Distributed,
Mobility, Scalability

Reliability and Robustness

Disaster
Recovery

Need to quickly determine
whether building conditions

are safe for evacuees to return
after a natural disaster

has struck.

Hard to perform timely
decision due to the need to

send large volumes of data to
the cloud.

Low Latency,
Geographically

Distributed,
Orchestration

and Management

Distributed
Observatories

Large networked system of
under water instruments
to collect real-time data

from the ocean.

Hard to deliver near
real-time data to the end user
due to the need to send large
volumes of data to the cloud.

Low Latency, Security,
Geographically

Distributed,
Multi-Tenancy, Scalability

Video
Analaytics

Video analytics for safety
and security from public

video cameras.

Hard to perform timely
analytics due to the need to

send large volumes of data to
the cloud.

Low Latency, Security,
Geographically

Distributed,
Scalability

Observe Orient
Decide Act Loop

Refers to the decision-making
cycle ofobserve, orient, decide,
and act, developed by military

strategists and the United
States Air Force

Hard to deliver near
real-time data to the end user
due to the need to send large
volumes of data to the cloud.

Low Latency, Security,
Geographically

Distributed

2.2.1 Smart City

The first use case is smart cities for people with disabilities. Large cities are difficult to

navigate, especially for people with special needs such as those with visual impairment,

Autism Spectrum Disorder (ASD), or simply those with navigational challenges. The

primary objective of this application usecase is to explore the use of IoT capabilities to

transform cities around the world into smart cities capable of providing location-aware

services (e.g., finding buildings and streets, improving travel experience, obtaining se-

curity alerts) [11]. In order to create smart cities that can support reliable navigation

services to people with special needs, researchers are creating complex workflows inte-

grating a number of novel IoT elements, including video analytics, Bluetooth beacons,

mobile computing, and LiDAR-scanned 3D semantic models. For example, we may

have a streaming application workflow that analyzes video feeds from the surveillance

cameras of the streets in a timely manner to evaluate the density of crowds in different

parts of the city to help select path choices. Specially, ASD individuals may prefer to

choose paths that have less dense crowds due to psychological factors; people with vi-

sual impairment try to avoid large open spaces due to the difficulty of finding references
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for localization; and people in wheelchairs can navigate along paths with fewer crowds

far more conveniently than along those with large crowds. This information is then

combined with a 3D model and the location of the user to calculate the best path to

reach the desired destination. Additionally, we need to continuously monitor the user

(e.g., using the Bluetooth beacons), and the streets (e.g., using surveillance cameras)

to adapt to changes.

Data-driven workflow, such as the one described above, are very latency sensitive. In

our use case, the navigation path needs to be computed in a timely manner to improve

the quality of experience and allow users to meet planned schedules (for example, arrive

in time to take a specific bus). In some cases we might need to adapt the path based

on users’ feedback. For example, if an ASD user gets stuck and panics at a certain

location, the data-streaming application has to react following pre-defined or learned

strategies such as re-route the path to avoid a current crowd, or move them to certain

intermediate location to make them wait until the crowd passes.

Supporting workflows that require analyzing video analytics from a public space

requires the need of transferring all the raw data to the cloud. This can lead to extra

latencies that can affect users’ quality of experience and may also result in privacy

concerns.

2.2.2 Disaster Recovery

Our second use case is a disaster response use case.Disaster management is a process

that involves four phases: mitigation, preparedness, response, and recovery. Mitigation

efforts attempt to prevent hazards from developing into disasters altogether or to reduce

the effects of disasters when they occur. In the preparedness phase, emergency managers

develop plans of action when the disaster strikes and analyze and manage required

resources. The response phase executes the action plans, which include the mobilization

of the necessary emergency services and dispatch of first responders and other material

resources in the disaster area. Finally, the aim of the recovery phase is to restore the

affected area to its previous state.

This paper focuses on the response phase and use a multi-stage generic response
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workflow that will be executed at the edge and at the core of the network. We start

by capturing data from the affected zones (e.g LiDAR, photogrammetry, etc.) and we

perform a preprocessing stage at the edge of the network. In our case, a minivan or

a drone with networking and computational capabilities will be used to determine the

content of the data and if any further post-processing is needed. If further processing

is needed, data will be either sent to the cloud to perform a change detection with

previously recorded historical data, store data into the cloud, or notify agencies to

determine if building conditions are safe.

Unblocked &
Undamaged

Unblocked &
Damaged

Partial block &
Undamaged

Blocked &
Probably 
damaged

Notify 
Agency

Edge Only

Cloud Storage

Cloud 
Post-Processing

NOYES

NOYES

NOYES

YES

Figure 2.1: Disaster recovery decision stages and its associated reactions based on the
LiDAR images.

This workflow presents a content-driven stage where the stream-processing engine

needs to perform decisions based on the content of the data that is being processed.

Figure 2.1 depicts all the different content-driven stages that our workflow presents in

a decision tree way and its associated reactions.

The workflow consists of multiple different stages driven by the content of the data

(more data content variety means more stages), but only two of them need stream-

processing capabilities. The first stage with stream-processing needs is where data gets

generated and pre-processed; this stage is performed at the edge of the network so we

can quickly and efficiently determine whether the building conditions are safe or not for

evacuees to return. Depending on the results from this stage, we trigger the rest of the
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stages. The second stage, that also needs stream processing, is the change detection

application which is executed in the cloud.

Stage 1: Data generation - Pre-processing Stage

The following are the actual pre-processing stages that we implemented in Apache

Storm to determine the conditions of the buildings.

Noise Filtering: flags or removes noise points in the LiDAR data.

Ground Point Classification: it classifies the LiDAR points into ground object

points and non-ground object points.

Classification: it classifies the point features according to the geometry information.

Visual inspection: is designed to provide visual inspection, which allows experts or

agencies to access the data and perform visual inspections and help perform more in-

formed decisions.

Content-driven stage: the last stage on the workflow is a content-driven stage where,

depending on the results of the data, we might need to react and trigger further pro-

cessing to determine if a building is safe or not for evacuees to return. The decision

of whether or not data needs post-processing is based on two metrics obtained from

the first stage of the pre-processing workflow. The two metrics are: data quality and

computation intensity.

Measurement of data quality:

DQ =
Spacing

step para
(2.1)

where Spacing represents the average edge length (2D) to all neighbor points of the

original LiDAR data and step para represents to the cell size (or the grid size) param-

eter of the grid-based interpolation.

Measurement of computation intensity:

CI =
FileSize

(X lowe−X upper) · (Y lowe− Y upper)
(2.2)
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If both the data quality and the computation intensity do not satisfy the specified

threshold then further processing is required and the second stage will be performed.

Since this first stage will be performed at the edge of the network with limited

computation capabilities, the user needs to have the ability to specify QoS metrics. In

this case the user has the ability to specify a deadline that all the tuples have to meet,

as one wants to get the results as fast as possible.

The following mathematical expressions are the task optimization model proposed

for this workflow:

max
∑

xij∑
tij · xij ≤ tconstraint,∀i

xij ∈ 0, 1,∀i, j

(2.3)

Where xij detonates the jth tasks at the processing level i. xij ∈ 0, 1 where xij = 1

indicates the execution of the process, while xij = 0 represents not executing the

process. tij denotes the estimated runtime of task xij . tconstraint is the total workload

budget for all tasks at level i.

Stage 2: Change detection - Post-processing stage

The following are the actual post-processing stages that we implemented and are trig-

gered based on the content of the data.

Historical data: the first decision process to determine whether the data that needs

further processing has any geo-spatial overlaps with the historical data that is currently

stored in the system.

Change detection: the process that involves comparing changes between LiDAR

photographs taken over different time periods that cover the exact same geographic

area to understand how a given area has changed between two time periods.

Content-driven stage: this stage will notify agencies if the results produced are

alarmingly atrocious.
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To simulate this workflow we used real LiDAR images that were taken right after

Hurricane Sandy struck back in 2012 in the NY and Long Island area, with a total of

741 images and 3.7 GB in size, with the biggest image size of 33.8 MB, and the smallest

of 1.8 KB. For the historical data in stage 2 we used a bigger data set of pre-Hurricane

Sandy. Supporting workflows that generate such large amounts of information at the

edge of the network and having to transfer data back and forth between the edge and

the core can prevent an effective reaction to an emergency situation and/or target

application objectives.

2.2.3 Scientific Observatory

Our third use case is focused on scientific observatories, in particular the Ocean Ob-

servatory Initiative (OOI) [12]. OOI is a networked ocean research observatory with

arrays of sensors and autonomous underwater vehicles. This networked system of in-

struments provide scientists the means to collect data sets, and enables the examination

of complex cyber-physical processes. The scientific observatory use case presents simi-

lar timely constraints that prevents the sending large data products to the Cloud. This

particularly affects timely delivery and transformation of data products into scientific

insights.

2.2.4 Video Analytics

Our fourth use case is the use of video analytics for safety and security [13]. A standard

video camera produces between 553 Mbps and 1.24 Gbps for a minute of video recording.

The ability to record 4K video on cameras will push that number to grow exponentially

in the upcoming years. The traditional model to send all the data to the Cloud is not

efficient enough to support such video data analytics [14]. Video Analytics pipelines

need to be performed using edge, in-transit and cloud resources in order to cater to low

latency requirement for large-scale video streams [15].
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2.2.5 Observe Orient Decide Act Loop

Out last use case is the OODA loop. The Observe Orient Decide Act (OODA) loop

refers to the decision-making cycle of observe, orient, decide, and act, developed by

military strategists and the United States Air Force [16]. OODA is a decision-making

cycle to process data streaming from sensors in real time, becoming an essential design

characteristic for IoT applications.
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Figure 2.2: RIoTBench IoT high-level logical interactions between different sensors,
applications and users.

Anshu et al. [17] offer a suite of IoT applications that follows the closed-loop OODA

cycle. The applications are based on common IoT patterns for data pre-processing,

statistical summarization, and predictive analytics. These are coupled with workloads

sourced from real IoT observations. A high-level overview of the logical interaction of

the IoT applications is depicted in Figure 2.2.

The ETL dataflow requires a low-latency cycle in order to achieve timely monitoring,

in addition it also requires some of its operators to be located in the cloud for storing

messages and others to be at the edge of the network. This makes the ETL workflow

the perfect candidate workflow for testing the operator placement strategy proposed.
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Chapter 3

Background and Related Work

3.1 Introduction

Cloud computing was introduced a decade ago with the promise of seemingly infinite

computing resources available on demand [18]. This model has proved to be effective for

scaling up search engines[19], social networks[20], and content service providers[21] to

billions of users around the world. However, this centralized model is being challenged

by the emergence of a new computing paradigm and associated technologies i.e. Internet

of Things (IoT).

The Internet of Things paradigm (IoT) fosters the connection of large numbers of

sensors to the network. As the volume of data generated from the devices increases,

moving data from the edge of the network to the Cloud might not be feasible due to

bandwidth constraints [22]. Furthermore, as low latency and location-aware applica-

tions emerge [23], transfering all the data to the Cloud will not satisfy the low latency

or location-aware constraints that the IoT applications expect. In addition, some ap-

plications, deal with sensitive and personal data, making it not possible to send the

data to the Cloud due to privacy concerns [24]. For example, Toyota estimates that the

amount of data flowing between vehicles and servers will reach 10 exabytes per month

by 2025 [25]. Another example is commercial jets, which generate 10 TB of data for

every 30 minutes of flight, making it impractical to transport all the data from the edge

to the Cloud [26].

Edge computing has emerged as a potential approach for handling the large quantity

of data generated by connected devices. It leverages the ability to execute computations

and process data at the edge of the network, closer from the location of data producers.
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Edge computing leverages smaller servers or single board computers that are widely dis-

tributed close to the edge to improve delays. Edge middleware is the essential software

stack/architecture that serves as an interface between the Cloud and the IoT devices,

supporting data discovery, communication and processing between edge devices and

cloud services.

The realization of edge-based middleware platforms presents several conceptual and

technical challenges. We believe that the seamless integration of edge and Cloud systems

is one of the main challenges that prevent the efficient utilization of IoT. Without

such an integration, developers must explicitly manage the platform as a unified set of

resources to orchestrate computations, coordinate devices, and deliver data to users. As

a result, there has been a substantial amount of research towards building edge-based

middleware, addressing key crosscutting challenges, such as device discovery, scalability,

and privacy and security. It is therefore important to understand the current state-of-

the-art edge-based middleware and identify the gaps that may exist.
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Figure 3.1: Edge-based middleware reference architecture consisting of four layers, each
of them with their respective components.

3.2 Edge-based Middleware Architecture

Extensive research and development have been put into creating edge-based middleware

systems. There are currently more than 100 edge-based middleware platforms in the

market today and the number is continuously growing [27]. However, not every platform
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is designed with the same capabilities or architecture. Despite the diversity and large

number of edge-based middleware systems, two common architectures emerge:

The majority of IoT platform’s architecture follows the Cloud-centric approach.

They are built on the premise that ingestion, management, and processing of IoT data

can be done in the Cloud, without any edge computing capabilities. Some examples

are: Particle Cloud [28], Salesforce IoT Cloud [29] and If This Then That [30].

The other approach is the end-to-end architecture or edge-based middleware archi-

tecture built on the premise that edge-processing can save huge costs to clients.

In this survey, we focus on the end-to-end or edge-based middleware architecture,

since the Cloud-centric approach will not be able to satisfy the requirement of the IoT

applications presented in section 2.2. In order to compare and contrast all the existing

state-of-the-art edge-based middlewares, we carefully studied the requirements and lim-

itations of the IoT applications and came up with a four-layer edge-based middleware

framework that satisfies all the requirements and limitations of the IoT applications, and

each of the middlewares should consist. Figure 3.1 presents the layers and components

that need to be included in an edge-computing solution. The edge-based middleware

architecture is composed of four separate layers: resource management, data processing,

service , and security.

Table 3.1: Design goals of the resource management layer components of the cited
papers in this survey.

Resource Discovery Resource Monitoring Resource Mobility

Paper Distributed
Low

Overhead
Distributed

Low
Overhead

Distributed
Low

Overhead

Paganelli et al. [31] X X
Liu et al. [32] X

Cirani et al. [33] X X
Jara et al. [34] X
Zhou et al. [35] X

Tanganelli et al. [36] X X
Mäenpää et al. [37] X X

SEGUE [38] X X
Chaufournier et al. [39] X X

Farris et al. [40] X X
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3.2.1 Resource Management Layer

The resource management layer is dedicated to the discovery, identification and alloca-

tion of available resources. The challenge of the resource management layer is in man-

aging these limited and geo-distributed resources efficiently. The resource management

layer consists of the following components: resource discovery, resource monitoring, and

resource mobility. Table 3.1 summarizes the design goals of each of the works focused

on the resource management layer.

Design Goals

The following are the design goals that need to be taken into consideration when de-

veloping any of the components of the resource management layer.

Low Overhead: The algorithms and protocols of the resource management layer

need to offer low runtime overhead when deployed in performance-limited hardware

platforms.

Distributed: The resource management components also need to be designed in a

distributed fashion in order to scale with the number of applications running in the

system and with the number of IoT and edge devices.

Resource Discovery

The resource discovery component is responsible for efficiently identifying and discov-

ering the geo-distributed IoT sensors. The following are some of the work focused on

the resource discovery component.

Paganelli et al. [31] present a service for discovering Internet of Things resources.

The service uses a peer-to-peer approach along with distributed hash table (DHT)

techniques to support the discovery of distributed resources, the system guarantees

scalability, robustness, and maintainability. Paganelli et al. meet both design goals

since they use a distributed architecture by the means of a P2P architecture to support
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the number of growing devices and offers a low-overhead algorithm.

Liu et al. [32] propose a distributed architecture for resource discovery, designed

to be used in Machine-to-Machine applications. The architecture uses an overlay net-

work composed of peer nodes to distribute workload,and eliminating the single point

of failure. Liu et al. resource discovery mechanism only meet the distributed goal

since the system is build using a peer-to-peer architecture to efficiently discover the

resources in a decentralized manner. It does not meet the low overhead since it used

HTTP to communicate and discover resources [41]. The reason being that HTTP runs

on TCP, therefore it incurs all TCP connection overheads for connection establishment

and closing [41].

Cirani et al. [33] also present a Peer-to-Peer architecture for service and resource

discovery that can be applied for the Internet of Things applications. Cirani et al.

resource discovery mechanism satisfies both goals since it used a distributed P2P ar-

chitecture for discovering resources and it used CoAP a lightweight messaging system

that uses UDP [41] for keeping track of all the resources.

Jara et al. [34] presents a centralized mechanism for discovering devices based on

context and location. Jara et al. only satisfy the low overhead goal of the resource

discovery mechanism since it uses a centralized architecture for discovering devices. It

is well-known that centralized architectures have a single point-of-failure and present

some scalability concerns when the number of IoT devices grows [32].

Zhou et al. [35] presents a service discovery algorithm and architecture designed for

the Internet of Things. The work focuses on the context and location aware discovery.

They first present an architecture called ”Digcovery” to support the large number of IoT

devices. And finally they present a search engine to offer query, look-up and filtering

support. Zhou et al. only satisfy the low-overhead goal since the resource discovery

mechanism claims that the algorithm has good scalability, and it can be applied to

different fields. Only the domain ontology needs to be replaced.
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Resource Monitoring

The resource monitoring component is responsible for controlling and managing hard-

ware and software infrastructures. It also provides information and performance in-

dicators for both platforms and applications to assist in the decision of allocating the

resources. In addition, it monitors the state of the resources in the event of failure. The

following are some of the work focused only on the resource monitoring component.

Tanganelli et al. [36] propose an edge-centric architecture that uses the CoRE Re-

source Directory interface and the CoAP protocol to enable resource monitoring and

discovery for IoT applications. This approach is able to satisfy both design goals since

it is distributed, in the means of a P2P network, and achieves low overhead since they

run their experiments on emulated embedded devices and achieve millisecond latencies.

Mäenpää et al. [37] propose an architecture that focuses on the resource discovery

and monitoring of wide area sensors and actuators. The architecture enables a feder-

ation of geographically distributed Wireless Sensor Networks (WSNs) using a peer-to-

peer network. This approach satisfies both design goals.

Resource Mobility

The resource mobility component is responsible for moving computations between edge

nodes in order to achieve the requirements of the IoT applications. The following are

some of the work focused only on the resource mobility component.

SEGUE [38] is a migration system, that achieves optimal migration decisions by

using the Markov Decision Process (MDP) to perform migration decisions. SEGUE

meets all the design goals since it was carefully evaluated to showcase the real-time

performance, scalability, and dynamicity by using real mobility trace of 320 taxis in

Rome.

Chaufournier et al. [39] relies on multi-path TCP, an effort to use multiple paths to

maximize resource usage and increase redundancy. This techniques aims at improving

the migration time of virtual machines. Chaufournier et al. resource mobility approach

also achieves all the goals since it proposed the uses of multi-path TCP and claims that
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increases the migration throughput by 6x and reduces the time by 50% in some cases.

Farris et al. [40],presents two Integer Linear Problem optimization schemes, with

the pourpus of reducing the quality of service when performing migrations at the edge

of the network. Farris et al. resource mobility also meets all the goals since it was

designed to cope with the limitation of resource-constrained edge nodes and showcased

the scalability in terms of users and the dynamicity of the algorithm.

Table 3.2: Design goals of the data processing layer components of the cited papers in
this survey.
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Apache Kafka [42] X X
Mosquitto [43] X X
RabbitMQ [44] X
ActiveMQ [45] X

Heron [46] X X
Storm [47] X X
Flink [48] X X

MillWheel [49] X X
Spark [50] X X

ApacheEdgent [51] X X X
LMC [52] X X

DataFlog [53] X X X X X X
FogStore [54, 55] X X X X X X
Moon et. al. [56] X X

IOTMDB [57] X X

3.2.2 Data Processing Layer

The data processing layer is in charge of the consolidation of data from multiple pro-

ducers, along with its processing and delivery. Current approaches in data processing

are known to be data-intensive process. The frequent operations on disk results in

the inability to perform real-time data analytics when executed on edge constrained

devices. The data processing layer consists of four components: ingestion, analysis,

storage, and query. Table 3.2 summarizes the design goals of each of the works focused
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on the data processing layer.

Design Goals

The following are the design goals that need to be taken into consideration when de-

signing any of the components of the data processing layer.

Distributed: The data processing components should support distributed information

processing, distributed computing capabilities, distributed storage and query. In order

to address the variable number of devices, services, and users at any given point in time.

Scalable: The scalable term refers to the ability of the data processing component

to handle a growing number of clients. The data processing components also need to

be scalable also to address the needs of a variable number of devices, services, and users.

Real-Time: The real-time term refers to the ability to achieve low processing la-

tency as the number of messages increases. The data processing components need to

be able to process data in real-time either in edge constrained devices such as Raspberry

Pis or smartphones and the cloud. Since IoT applications are latency sensitive as we

described in section 2.2.

Data Ingestion

The data ingestion component aggregates data from multiple producers and sources in

order to enable processing through pipelines. The following works focused solely on the

data ingestion component.

Apache Kafka [42] is one of the most popular frameworks available, it is an open-

source framework used for building real-time data pipelines and streaming apps. Apache

Kafka meets three of the four design goals, the reason Apache Kafka does not offer real-

time processing at the edge of the network, because it was not designed to be deployed

in constrained devices, as it was demonstrated in this work[58].
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Mosquitto [43] is a lightweight open-source publish/subscribe messaging broker de-

signed for the Internet of Things. It implements the lightweight MQTT protocol,

to transport the messages, making it suitable for low-power devices. Even though

Mosquitto was created for the need to achieve real-time message handling, Scalagent

published a survey where they stress test the Mosquitto and show that it can succeed

at handling 60,000 publishers but it requires high transmission latency and high CPU

usage [59]. For those reasons Mosquitto only satisfies the scalability and distributed

and scalable design goals.

RabbitMQ [44] is also a lightweight publish/subscribe messaging broker, designed

to be deployed in the cloud.Similarly to Mosquitto, RabbitMQ in the scaleagent tests

shows that it can only handle 8,000 publishers producing 8,000 messages per second,

and is not able to achieve real-time analytics [59]. In this case RabbitMQ only satisfies

the distributed goal since it can only support 8,000 publishers, and as mentioned earlier,

current city-scale experimental research facilities envision the deployment of 20,000 to

40,000 sensors [60].

ActiveMQ [45] its an open-source messaging broker, that supports numerous industry-

standard protocols. ActiveMQ also suffers from the same problems as RabbitMQ since

it has high message transmission latency and cannot handle more than 20.000 publish-

ers [59].

Data Analysis

Data analysis is the process of analyzing large volumes of data to discover useful infor-

mation and perform informed decisions. The following are some of the work focused on

the data analysis component.

Heron [46] is a real-time analytics platform developed by Twitter. It is designed for

speedy performance, low latency, isolation, and reliability. Heron meets all the design

goals except for the real-time data analytics at the edge because it was designed to be

deployed in large clusters at the core of the network.

Apache Storm [47] is an open-source distributed real-time stream processing system.

Similarly, Storm was also designed to be deployed in the Cloud.
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Flink [48] is a distributed processing engine for performing stream processing ap-

plications over unbounded and bounded data streams. Flink was also designed to be

deployed in the Cloud and not for the edge.

MillWheel [49] is a framework for building low-latency data-processing applications

that was designed and build by Google. MillWheel, just like Heron, Storm, and Flink,

was designed to be deployed in large clusters in the Cloud.

Spark [50] is an open-source distributed general-purpose stream processing and

batch processing framework witch allow to perform in-memory analytics. Spark, just

like Heron, Storm, and Flink, was designed to be deployed in large clusters in the Cloud.

Apache Edgent [51] is a micro-kernel framework designed to be deployed in small

footprint edge devices, enabling local, real-time analytics at the edge of the network.

Apache Edgent is a stream processing engine that was designed to be deployed on edge

devices, allowing it to achieve all the design goals.

LMC [52] enables cross-platform code execution on constrained IoT devices. LCM

meets the real-time and the scalable design goals since it was designed to constrained

devices , but it doesn’t meet the distributed goal since there is no currently not sup-

ported.

Data Storage

Due to the ever-increasing deployment of bandwidth-intensive IoT platforms (especially

cameras), there is an increasing pressure on the bandwidth to transport data back and

forth between the edge and the Cloud. There is a need for a more efficient management

and computation of the data at the edge of the network. Building a storage system

on an edge computing infrastructure has its own set of particular challenges. The wide

geo-distribution and heterogeneous and constrained natures of this infrastructure re-

quire data-partitioning and replication policies that are commensurate with the latency

requirements of the applications. The following are some of the work focused on the

data storage component.

DataFlog [53] is a distributed indexing mechanism that performs data placement

(both among edge nodes, and between the edge and the Cloud) based on spatiotemporal
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attributes to support efficient queries involving multiple edge nodes. DataFlog is able to

achieve all the design goals for the data storage layer since it uses distributed indexing

mechanism, it supports efficient queries and it can scale since it uses a P2P network

and can be deployed in any environment.

FogStore [54] [55] is distributed key-value storage system tailored for the edge of

the network. FogStore uses a fog-aware replica placement, and a context-sensitive

differential consistency strategies to satisfy the requirements of the Edge and the Fog.

FogStore was designed by the same authors of DataFog and it also meets all the design

goals, just like DataFlog.

Data Query

Similarly to the data storage, once data has been stored it needs to be accessed as

well. The following are some of the research work on creating edge query systems. The

following are some of the work focused on the data query component.

Moon et al. [56] propose a data management and searching system based on blockchain

which ensures security. Moon et al. are able to meet all the goals for the data query

layer except for the real-time design goal since they are using the blockchain Proof-

of-Work consensus algorithm and it is known that the time to perform a computation

does not increase linearly as the number of nodes increases.

IOTMDB [57] is an IoT storage solution based on NoSQL (Not Only SQL), to solve

the storage and management problems of large volumes of IoT data. IOTMDB is able

to satisfy all the design goals except for the real-time, since storing 1,000 records can

take up to 2 seconds since other frameworks such as RocksDB can store 1,000 records

in less than 60 ms [58].

3.2.3 Service Layer

The service Layer defines an application’s set of available operations to the end user.

The service layer is composed of three components: rule engine, programming model,

and workflow orchestrator. Table 3.3 summarizes design goals of each of the works

focused on the service layer.
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Table 3.3: Design goals of the service layer components of the cited papers in this
survey.

Rule Engine Programming Model Workflow Orchestrator

Paper Scalable
Low

Overhead
Expressive Extensible Dynamic Scalable

Low
Overhead

Chui et. al. [61] X X
Lica et. al. [62] X
Mobile-Fog [63] X X

Rabel [64] X X
Fabryq [65] X X

FogFlow [66] X X
Eidenbenz et al. [67] X

Taneja et al. [68] X X
DROPLET [69] X X X
Ghosh et al. [70] X

Design Goals

The following are the design goals that need to be taken into consideration when cre-

ating any of the components of the service layer.

Low Overhead The service layer components need to be able to process data in

real-time, i.e. providing fast analysis and data queries when deployed in performance-

limited hardware platforms.

Scalable The service layer components need to offer good scalability, since there is

going to be a large number of rules and a large number of operators that need to be

placed.

Dynamic This design goal only applies to the workflow orchestrator. The workflow

ochestrator needs to be able to orchestrate the workflows based on the runtime charac-

teristics of the nodes.

Expressive This design goal only applies to the programming model. The program-

ming model needs to be easy to express ideas, algorithms, tasks in an easy-to-read and

succinct way.
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Extensible This design goal also only applies to the programming model. The pro-

gramming model needs to flexible enough that if new capabilities are needed, they can

be added to the software without major changes to the underlying architecture.

Rule Engine

The Rule Engine makes it possible to evaluate data, perform decisions and trigger

actions. The following are some of the work focused on the rule engine component.

Chui et al. [61] propose a rule-based system designed to support heterogeneous

IoT devices. The rule-based system is based on Event-Condition-Action (ECA) rule

mechanism with SOAP technology. Chui et al. rule engine satisfies all the design goals

since they use an Event-Condition-Action (ECA) pattern which allows them to scale

the system as the number of rules grows and achieve low overhead.

Lica et. al [62] propose a rule-based architecture that addresses the main issues

involved in application management in the Internet of Things. Lica et al. approach

satisfies the expressive and extensible goals since further developments are necessary to

improve the architecture effectiveness before its final implementation is carried out.

Programming Models

Due to the high dynamicity of edge resource, heterogeneity of Cloud and edge resources

deploying low latency and scalable applications can be tricky. For this reason, there

is a need for high-level programming models that simplify the development of IoT

applications across the edge and the Cloud. The following are some of the work focused

on the programming model component.

Mobile-Fog [63] is a high-level programming model designed for applications that

require large number of sensors and actuators and they are latency-sensitive. Mobile-

Fog only satisfies both design goals since it uses a high-level API to program the sensors,

making it easy to learn.

Ravel [64] proposes a programming model to program applications across embedded

devices, edge nodes and cloud nodes by using an extension of the Model-View-Controller

architecture. Ravel satisfies both design goals since it uses a high-level API.
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Fabryq et al. [65] propose a proxy programming model to find and control sensors

and actuators. Fabryq et al. approach also satisfies both design goals since it uses

Javascript as the main programming language and also has a high-level API to program

the sensors, making it easy to learn.

FogFlow [66] is a programming model that extends the dataflow programming

model, allowing developers fast and easy development of edge and fog applications.

FogFlow satisfies both design goals since it extends the Cloud dataflow programming

model and makes it suitable for the edge environment, making it easy to learn.

Workflow Orchestrator

The Workflow Orchestrator consists of defining how to accommodate the application

components (i.e., operators) on the available resources of the network topology to op-

timize one or more performance metrics [71]. The main challenge is to decide how to

split the operators between the edge and Cloud in order to minimize the overall com-

pletion time. The workflow placement has been proved to be at least NP-Hard [7]. The

following are some of the work focused only on the workflow orchestrator component.

Eidenbenz et al. [67] present an algorithm for the Series-Parallel-Decomposable

Graphs (SPDG). Eidenbenz et al. only satisfy the real-time design goals since its

only a theoretical approach.

Taneja et al. [68] propose an approach for deploying application across Cloud and

edge resources by using a Module Mapping Algorithm. Taneja et al. meet all the design

goals except for the dynamicity since the approach doesn’t take into consideration

network connectivity or failure of nodes.

DROPLET [69] is an algorithm, that partitions tasks across the edge and Cloud

resources, while minimizing the total completion time. DROPLET achieves all the

design goals since it is able to react and adapt to dynamic network events and is

capable of performing real-time decisions and scale polynomially with increasing the

number of operators to place.

Ghosh et al. [70] propose a Genetic Algorithm (GA) meta-heuristic for distributing

analytics across edge and Cloud resources to support IoT applications. The main goal
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of the genetic algorithm is to minimize the end-to-end latency. Ghosh et al. only meet

one of the design goals since it takes between 1 - 26 seconds for placing 1 - 50 operators,

making it not real-time or scalable when the number of operators grows.

R-Pulsar [71] we propose an operator placement strategy that aims to minimize

an aggregate cost which covers the end-to-end latency, the data transfer rate and the

messaging cost. The main differences between the R-Pulsar approach and other state

of the art approaches is that, R-Pulsar focuses on optimizing three metrics 7, where the

majority of the related work only focuses on end-to-end, bandwidth or both. Further-

more, the R-Pulsar approach implements a ”knob” approach that allows the end-user

to decide how much they want to optimize for each of the three techniques. Besides, all

of that our R-Pulsar approach offers a machine learning model that constantly monitors

the status of the operators, and if the requirements specified by the end-user are not

met. a redeployment is performed. R-Pulsar meets all the design goals.

Table 3.4: Design goals of the security layer components
of the cited papers in this survey.

Paper End-to-End Security Data Privacy

Lu. et al. [72] X
Shi et al. [73] X

Behrens et al. [74] X
Mukherjee et al. [75] X
Kothmayr et al. [76] X

3.2.4 Security Layer

The fourth and last layer is the Security Layer, which consists of keeping the data

generated by thousands of IoT devices private and secure. The following are some of

the work focused on the end-to-end security component. Table 3.4 summarizes the

work focused on the security layer.

Data privacy

Since the IoT produces large volumes of data easily available privacy protection in IoT

its a challenge. The following are some of the work focused only on the data privacy
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component.

Lu et al. [72] present a lightweight privacy-preserving data aggregation scheme de-

signed to be used in constrained devices. The proposed aggregation schema uses the

homomorphic Paillier encryption, Chinese Remainder Theorem, and one-way hash chain

techniques to aggregate data.

Shi et al. [73] propose an algorithm that allows users to upload encrypted data to

an untrusted aggregator, and allows the aggregator to decrypt statistics for each time

interval.

End-to-End Security

In this section, we analyze the similarities and differences amongst all the currently

available edge-based middleware systems that implement one or more of the layers of

our edge-based middleware architecture. To do so we use the proposed edge platform

architecture and the goals of each of the layers described in the previous section. Ta-

bles 3.5,3.6,3.7,3.8 summarize and offer more details on all the edge middleware surveyed

systems, including the design goals that each component satisfies.

AWS Greengrass [77] is a software stack that allows to locally run computations,

messaging, data caching, sync, and Machine Learning capabilities on devices in a secure

way. AWS Greengrass consists of all the four layers presented in section 3.2. The

main limitations of AWS Greengrass are the centralized architecture of the resource

management layer, the lack of storage and query of the data processing layer, the use of

a similar MQTT broker to Mosquitto for data ingestion violating the real-time design

goal for the data processing layer, and the lack the workflow orchestration component

in the service layer, leaving it to the end-user for the management and provisioning of

the workflows.

Azure IoT Edge [78] is a collection of services designed to create end-to-end IoT

applications on Azure Cloud. This service is meant for analyzing data at the edge

of the network, instead of in the Cloud. Azure IoT, similarly to AWS, takes security

very seriously, and uses certificate-based authentication as the primary mechanism for

authentication for the Azure IoT Edge platform. Azure IoT also implements all four
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layers proposed in section 3.1. Azure IoT only misses two components: the first one is

the workflow orchestrator from the service layer and the second one is the data privacy

at the security layer. Azure IoT uses a similar MQTT broker to Mosquitto making it

not able to achieve real-time analytics.

EAaaS [79] is an analytics service that enables real-time edge analytics in IoT sce-

narios. The main focus of the EAaaS is the uses of a unified rule-based analytic model

to simplify the user’s programming efforts. In addition, they put a great amount of

attention on making the system as lightweight and scalable as possible. EAaaS imple-

ments two of the four layers; it does not implement the resource management layer or

the security layer and misses some components on the layers that it implements. The

first components missing are from the data processing layer: EAaaS does not allow the

storage or query of data at the edge of the network. From the service layer, EAaS does

not implement the workflow orchestrator, forcing the end-user to decide where to place

computations to achieve optimal performance.

Google Cloud IoT Edge [80] is a collection of services that allows users to manage,

and consume IoT data from distributed devices at a large scale, and take actions as

needed. Google Cloud IoT Edge follows the same path as the AWS Greengrass, im-

plementing all four layers but missing some critical components on some of the layers.

Google Cloud IoT Edge does not support the ability to store or query at the edge of

the network. In addition, just like all the commercial systems surveyed so far, it also

implements a similar broker to Mosquitto, violating the real-time design goal. Google

Cloud IoT Edge does not offer the ability to orchestrate application between the edge

and the Cloud.

Everyware IoT [81] is a comperical platform that provides an end-to-end IoT plat-

form with propriotory software and hardware solutions. Everyware IoT implements

all four layers but misses some critical components in all the layers. Similar to AWS,

Azure, and Google, it lacks the query and storage support at the edge of the network

and uses a similar Mosquitto broker for the data ingestion. Additionally, Everyware

IoT lacks the rule engine of the service layer making it not possible to trigger or react

to events that happen at the edge of the network.
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Predix [82] is General Electric’s commercial software platform for the collection and

analysis of data from industrial machines. Predix implements all four layers but misses

some critical components. Predix does not offer resource monitoring, storage, or query.

In addition, it also doesn’t offer the ability to orchestrate workflows between the edge

and the cloud.

Bosch IoT [83] is a commercial end-to-end IoT platform that consists of multiple

Cloud-enabled services and software packages. Bosch IoT implements all four layers

but misses some components. Bosch IoT does not offer the rule engine or the workflow

orchestrator of the service layer, and just like all other commercial systems it also

implements a similar broker to Mosquitto.

Yanzi [84] is a commercial IoT platform designed to optimize office costs and pro-

ductivity. Yanzi implements three of the four layers, lacking the resource management

layer and some critical components on other layers. In the service layer, Yanzi misses

the rule engine and the workflow orchestrator, and in the security layer, it misses the

data privacy component.

R-Pulsar [85, 86] is an academic architecture that lets you run local analytics, mes-

saging, data storage, and data querying capabilities on edge devices. R-Pulsar is the

only one that satisfies all four layers with the most design goals. In addition, is the

only architecture that has a full memory-mapped pipeline making it truly real-time.

Also, it’s one of the few that offers a unified architecture between the edge and the

core, allowing it to seamlessly program the edge and the core. A limitation that the

majority of the software stacks/architectures present is a split platform architecture

between the edge and the core, leaving the end user to manage the scalability, repli-

cation, and distribution to the end user. For platforms that use a single architecture

such as R-Pulsar, the system takes care of it so the user can focus on developing the

application. R-Pulsar is also the only one to offer any application objectives, all the

other software do not any application objectives.

FogHorn [87] is a commercial software platform that enables to run advanced analyt-

ics and machine learning applications at the edge of the network. FogHorn implements

all four layers but misses some critical components in some of the layers. In the data
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processing layer it misses the data storage and query components, not allowing the

storage or query of data at the edge of the network. In the service layer, it misses

the workflow orchestrator making the end user responsible for the management and

provisioning of the resources and workflows. In the security layer, it misses the data

privacy component.

GeeLytics [88] is an academic platform, which can perform real-time analytics either

at the edge edge, or in the Cloud in a dynamic manner. Geelytics was designed to em-

phasize the service layer, in particular, the workflow orchestration component. Geelytics

enables developers to run stream processing applications across the edge and the Cloud,

without the need to consider where each task is located. GeeLytics implements two of

the four layers, not implementing the security and the resource management layer. In

addition, GeeLytics lacks the rule engine in the service layer and makes use of Mosquitto

or Apache Kafka as the data ingestion data processing layer making it hard to scale or

perform real-time analytics at the edge of the network.

Fogflow [66] is the evolution of GeeLytics, an academic framework that orchestrates

workflows over the Cloud and the edge based on various context, including system con-

text. For this second iteration they improved their workflow orchestration mechanism,

added the missing rule engine component, and implemented the resource management

layer. Some of the drawbacks existing on the previous version still have not been ad-

dressed, such as the use of Mosquitto or Kafka as the data ingestion component, limiting

the scalability and the performance at the edge of the network.

OpenMTC [89] is a commercial open-source implementation of an IoT/M2M mid-

dleware with the focus on providing a standard-compliant platform. OpenMTC im-

plements three of the four layers, missing the resource management layer. In the data

processing layer it does not allow the storage or query of data at the edge of the net-

work, and just like any other commercial approach, it uses a similar MQTT broker for

the data ingestion. In addition in the service layer, it misses the workflow orchestration.

SiteWhere [90] is an industrial open-source platform, that uses a multi-tenant microservice-

based infrastructure. SiteWhere implements all four layers and only misses very few



36

components on some of the layers. In the service layer, it lacks the workflow orchestra-

tion and in the security layer, it lacks data privacy.

SmartThings [91] is a commercial IoT platform designed for the smart houses.

SmartThings implements three of the four layers missing the resource management

layer and lacks some major components in some layers. In the data processing layer

lacks the ability to store or query data at the edge of the network. In the service layer,

it also lacks the workflow orchestration.

Kaa [92] is a commercial-grade IoT platform that is fully customizable. Kaa is one

of the commercial systems more complete, implementing all four layers and missing

very few components in some layers. The main drawback of Kaa is the lack of workflow

orchestration between the edge and the Cloud, and the lack of data privacy in the

security layer.

Samsung Artik [93] is a commercial IoT platform that focuses on unifying hardware,

software, the cloud and the edge as a single ecosystem. Samsung Artick implements

three of the four layers, missing the resource management layer. The main drawback

is the lack of two of the key components in the data processing layer: the storage

and query components. In addition, like all other commercial systems, Artick uses an

MQTT broker similar to Mosquitto for the data ingestion component.

Ayla Network [94] is a commercial end-to-end IoT platform that includes a com-

pletely managed Cloud service. Ayla implements all the layers except for the resource

management layer. In the data processing layer, it lacks the data storage and query

and it uses an MQTT broker for the data ingestion layer. In addition, it also lacks the

workflow orchestration component.

Altair SmartWorks [95] is a commercial platform designe as a Platform as a Service

(PaaS) for Internet of Things projects, to collect data from objects, store it and build

applications. Altair SmartWorks consists of three of the four layers, missing the data

management layer. In the data processing layer, it lacks the ability to store and query

data at the edge of the network. In also does not offer the ability to orchestrate

workflows between the edge and the Cloud.

EdgeX [96] is a commercial open-source IoT microservice framework that allows
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end uses to chose their sensors from a large ecosystem of 3rd party offerings. EdgeX

implements all four layers but lacks some of the components in most layers. In the data

processing layer, EdgeX does not support the data storage or query. In addition like all

other commercial systems, EdgeX uses an MQTT broker for the data ingestion violating

the real-time design goal. In the service layer, it lacks the workflow orchestration.

PiCasso [97] is an academic orchestration engine that deploys services based on

specifications and resources availability. PiCasso implements all the layers except for

the security layer. PiCasso puts a lot of emphasis in the service layer more, in particular,

the workflow orchestration component. PiCasso lacks the storage and query components

of the data processing layers.

Hua-Jun Hong et al. [98] is an academic fog computing platform that that focuses

on the task distribution between the edge and the cloud. Hua-Jun Hong et al. ap-

proach implements three of the four layers, missing the security layer. In addition, it

misses most of the components in all layers, since the main focus of this platform is to

make deployment decisions to maximize the number of satisfied IoT analytics (operator

deployment problem). In the data processing layer lacks the ability to store and query

data at the edge of the network.

Cloud4IoT [99] is an academic platform that focuses on automatically deploying

and orchestrating IoT applications. Cloud4IoT implements all the layers except for the

security layer. Cloud4IoT to ease the code interoperability between the edge and the

Cloud, to do that relies on commercial software that was designed to be deployed on a

large cluster, making it hard to achieve real-time analytics at the edge of the network.

Nebulae [100] is a commercial end-to-end IoT platform, which the main focus in in-

teroperability and inter-portability. Nebulae implements three of the four layers missing

the resource management layer. In the data processing layer, it lacks the ability to store

and query data at the edge of the network. In the service layer, it lacks the rule engine

and the workflow orchestrator.

FogGIS [101] is an academic framework for improving throughput and reducing la-

tency for analysis of geospatial data. FogGIS implements all the layers except for the
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resource management layer. In addition, FogGIS data processing layer relies on a com-

mercial system designed to be deployed on the Cloud not at the edge with constrained

devices, making it hard to achieve real-time analytics.

FOG-engine [102] is an academic end-to-end platform for processing real-time an-

alytics of data near where it is generated. FOG-engine implements two layers, not

implementing the resource management and security layers, missing some key compo-

nents on most layers. In the service layer, it lacks the orchestration and management

of resources and workflows.

CEFIoT [103] is an academic end-to-end fault-tolerant architecture that reuses

Cloud technologies at the edge of the network. CEFIoT implements two of the four

layers, missing the resource management and security layers. In the service layer, it

lacks the rule engine.

SAVI-IoT [104] is an academic self-managing programmable IoT platform that lever-

ages both Hybrid Virtual Machines (HVV) and container isolation techniques to manage

IoT applications. SAVI-IoT, just like CEFIoT, misses the same layers. The main differ-

ence is that SAVI-IoT does not offer a rule engine or a workflow orchestration. Another

drawbacks of SAVI-IoT uses Kafka as the data ingestion component and Spark for

the data analyses layer making them violate the real-time analytics at the edge of the

network when deployed on constrained devices.

Foggy [105] is an academic architectural framework and software platform based on

open-source technologies. Foggy main focus is the orchestration of application across

the edge and the cloud. Foggy implements three of the four layers, missing the resource

management layer. One of the main drawbacks of Foggy is the use of containers for

orchestrating resources between the federated resource, making it no able to perform

real-time analytics at the edge of the network. In addition, it lacks the ability to support

storage and query at the edge of the network.

ISYMPHONY [106] is an academic orchestration framework designed for scaling

real-time and on-demand IoT services. ISYMPHONY implements three of the four

layers missing the security layer. ISYMPHONY focuses on the service layer in particular

in the workflow orchestration layer. In the data processing layer, it lacks the data
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storage and query components. In addition, it lacks the rule engine in the service layer.

Macchina.io [107] is a commercial IoT SDK that allows to connect sensors, actuators,

Cloud services, mobile devices, and humans. Macchina.io implements three of the four

layers, missing the resource management layer. In the service layer, it doesn’t offer a

rule-based engine or the workflow orchestration. In addition, Macchina.io relies on an

MQTT broker similar to Mosquitto for the data ingestion layer.

Clearblade [108] is a commercial IoT platform to build scalable, secure enterprise

IoT solutions. Clearblade implements three of the four layers, missing the resource

management layer, and just like every other system it implements Mosquitto as their

data ingestion component.

IBM Watson IoT Platform [109] is a commercial IoT platform that can connect

and control IoT sensors, appliances, homes, and industries. The IBM Watson IoT

Platform relies on the cloud to distribute and manage the edge analytics. IBM Watson

IoT Platform implements all four layers proposed but misses the data storage and

data query components of the data processing layer. Just like every other commercial

systems surveyed above, it uses Mosquitto as their data ingestion component making

it not scalable and real-time.



40

Table 3.5: Four Layer and Components for all the commercial and academic edge
middleware available.
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AWS Greengrass [77] X X X X X X
Azure IoT Edge [78] X X X X X X X X

EAaaS [79] X X X X
Google

Cloud IoT [80]
X X X X X X X

Everyware IoT [81] X X X X X X
Predix [82] X X X X X X X

Bosch IoT [83] X X X X X X X
Yanzi et. al. [84] X X X X
R-Pulsar [85, 86] X X X X X X X X X X X

FogHorn [87] X X X X X X
GeeLytics [88] X X X
Fogflow [66] X X X X X X X X X X

OpenMTC [89] X X X X X
SiteWhere [90] X X X X X X X X X

SmartThings [91] X X X X X
Kaa [92] X X X X X X X X X X

Samsung Artik [93] X X X X X
Ayla Network [94] X X X X X

Altair
SmartWorks [95]

X X X X X

EdgeX [96] X X X X X X X
PiCasso [97] X X X X X X

Hua-Jun Hong
et. al. [98]

X X X X X X X

Cloud4IoT [99] X X X X X
Nebulae [100] X X X X
FogGIS [101] X X X X X

FOG-engine [102] X X X X X X
CEFIoT [103] X X X X X X

SAVI-IoT [104] X X X X X
Foggy [105] X X X X X X

ISYMPHONY [106] X X X X
Macchina.io [107] X X X X X X
Clearblade [108] X X X X X X X

IBM Watson IoT [109] X X X X X X X
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Table 3.6: Resource management layer and design goals for all the commercial and
academic edge middleware available.

Resource Discovery Resource Monitoring Resource Mobility

System Distributed
Low

Overhead
Distributed

Low
Overhead

Distributed
Low

Overhead

AWS
Greengrass [77]

X X

Azure
IoT Edge [78]

X X

Google
Cloud IoT [80]

X X

R-Pulsar [85, 86] X X X X X X
Fogflow [66] X X X

SiteWhere [90] X X
EdgeX [96] X X
PiCasso [97] X X

Hua-Jun Hong
et. al. [98]

X

Cloud4IoT [99] X X
CEFIoT [103] X
Foggy [105] X

ISYMPHONY [106] X
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Table 3.7: Data processing layer and design goals for all the commercial and academic
edge middleware available.

Data Ingestion Data Analysis Data Storage Data Query
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AWS
Greengrass [77]

X X X X X

Azure IoT Edge [78] X X X X X X X X X
EAaaS [79] X X X X X X

Google
Cloud IoT [80]

X X X X

Cisco IoT
Cloud Connect [110]

X X X X X

Everyware IoT [81] X X X X
Predix [82] X X X X

Bosch IoT [83] X X X X
Yanzi et. al. [84] X X X X
R-Pulsar [85, 86] X X X X X X X X X

FogHorn [87] X X X X
GeeLytics [88] X X X X X X X X X
Fogflow [66] X X X X X X X X X

OpenMTC [89] X X X X X X X X X
SiteWhere [90] X X X X

SmartThings [91] X X X X
Kaa [92] X X X X X X X X X X X X

Samsung Artik X X X X
Ayla Network [94] X X X X

Altair
SmartWorks [95]

X X X X

EdgeX [96] X X X X
PiCasso [97] X X

Hua-Jun Hong et. al. [98] X X X X X X X X
Cloud4IoT [99] X X X X X X
Nebulae [100] X X X X
FogGIS [101] X X X X X X X X

FOG-engine [102] X X X X
CEFIoT [103] X X X X

SAVI-IoT [104] X X X X
Foggy [105] X X X X

ISYMPHONY [106] X X X X
Macchina.io [107] X X X X X X X X
Clearblade [108] X X X X

IBM Watson IoT [109] X X X X X
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Table 3.8: Service layer and design goals for all the commercial and academic edge
middleware available.

Rule Engine Programming Model Workflow Orchestrator

System Scalable
Low

Overhead
Expressive Extensible Dynamic Scalable

Low
Overhead

AWS
Greengrass [77]

X X X X

Azure
IoT Edge [78]

X X X X

EAaaS [79] X X X X
Google

Cloud IoT [80]
X X X X

Cisco IoT
Cloud Connect [110]

X X

Everyware IoT [81] X X X X
Predix [82] X X X X

Bosch IoT [83] X X X X
Yanzi et. al. [84] X X
R-Pulsar [85, 86] X X X X X X X

FogHorn [87] X X X X
GeeLytics [88] X X
Fogflow [66] X X X X X X X

OpenMTC [89] X X
SiteWhere [90] X X X X

SmartThings [91] X X X X
Kaa [92] X X X X
Samsung
Artik [93]

X X

Ayla Network [94] X X X X
Altair

SmartWorks [95]
X X

EdgeX [96] X X X X
PiCasso [97] X X X X X

Hua-Jun Hong
et. al. [98]

X X

Cloud4IoT [99] X X X X X
Nebulae [100] X X X X
FogGIS [101] X X

FOG-engine [102] X X X X X X X
CEFIoT [103] X X X

SAVI-IoT [104] X X X
Foggy [105] X X X X

ISYMPHONY [106] X X X X X
Macchina.io [107] X X
Clearblade [108] X X X X

IBM Watson IoT [109] X X X X
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Chapter 4

Associative Rendezvous (AR)

4.1 Introduction

In this chapter, we describe the semantics and mechanisms that our programming

abstraction builds upon, which enable developers to decide what and where data are

collected and analyzed.

Figure 4.1: An illustration of the pub/sub model.

Figure 4.2: An illustration of the pub/sub model.

Publish/subscribe (pub/sub) systems are widely used in IoT applications, enabling
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event-driven and asynchronous parallel processing while improving performance, reli-

ability, and scalability. Pub/sub-protocols, however, make some common task in IoT

more challenging to achieve, for instance, it is not straightforward to discover potential

sensors of a particular type in a particular location. The lack of a discovery mech-

anism in the pub/sub its a challenge that needs to be addressed in order to enable

the interoperability of different IoT data providers and producers. For those reasons,

we chose the Associative Rendezvous (AR) paradigm. AR differs from the traditional

publish/subscribe paradigms in that it does not rely on topics, it relays on well-defined

combinations of keywords (i.e. keywords, partial keywords, wildcards, ranges) from

a semantic information space to enable the discovery mechanism. More information

about Associtive Rendezvous can be found in [111].

4.2 R-Pulsar Associative Rendezvous

R-Pulsar uses a custom implementation of the original AR semantics [112]. In our new

implementation of the AR model, we modified two elements: the AR Message and the

Reactive Behaviors.

4.2.1 AR Message

The AR message is now defined as a quintuplet instead of the original triplet: (header,

action, data, location, and data-processing task). The location and data processing

task fields have been added in to the already existing fields. The location field has been

added so the AR message can be routed based on the location and the content, where

the original version of AR only routes messages based on the content. The location

coordinates represent the physical location of the sensors or the physical location of

where to deploy data-processing tasks and the tag helps decide where to deploy data-

processing tasks, either the edge or the cloud, allowing to pick from multiple cloud or

edge geographically distributed resources.
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Table 4.1: R-Pulsar Reactive behaviors

Actions Semantics

store Store data in the RP queue.

profiles
Notify sender all the interest profiles stored in the RP
point.

store topology Store the new topology in the RP.
start topology Start the topology in the RP.
stop topology Stop the topology.
delete topology Delete the topology.

notify data Match with already existing data/interest profiles.
notify interest Notify sender if there is someone interested in the data.
query data Allows to perform SQL-like queries on stored data.
delete data Remove all the stored data from the RP.
delete interest Remove all interest profiles from the RP.

4.2.2 Reactive Behaviors

For the reactive behaviors are now classified in two two different classes: resource actions

and function actions. Where in the original implementation of AR there where only

one type of actions. Table 4.1 summarizes the available actions.

Resource actions are designated for discovering, starting, and stopping sensors from

transmitting data. Basic resource reactive behaviors currently defined include no-

tify interest, notify data, query data, and delete. The notify interest is used by sensors

for advertising its data producing capabilities and that they want to be notified when

there is someone interested in the data they can produce. The notify data are used

by the data-processing tasks that will consume the data produced by sensors. When

a notify data profile and a notify interest profile match, sensors are notified to start

streaming data to the consumer. The query data action is for performing SQL-like

queries on stored data. The delete action deletes all matching profiles from the system.

Function actions are designated for storing, triggering, and stopping data-processing

tasks. Basic function reactive behaviors currently defined include store function, start function

and stop function. The store function action allows users to submit and store user-

defined data-processing tasks in the RPs, allowing to share and discover existing data-

processing tasks previously uploaded by other users. This avoids the need to rewrite

the same function multiple times and facilitates the reproducibility of the experiments.
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The start function allows users to trigger data-processing tasks on demand. If there is

a match between two profiles, the data-processing task is executed. The stop function

allows users to stop data-processing tasks that are running.

4.2.3 Illustrative Example

This section illustrates two operation examples of the R-Pulsar AR model. The first

example in Figure 4.3 illustrates the exchange of messages for subscribing to sensors in

R-Pulsar. The second example in Figure 4.4 demonstrates the one-to-many interactions

using the R-Pulsar associative rendezvous.

AR

post (<C1>, notify_interest, x.x, y.y)

post (<T1>, notify_interest, x.y, y.x)

(1)

(1)

post (<C*>, notify_data, x.*, y.*)

(2)

notify(Start)(3)

notify(Start)(3)

(a)

AR

post (<C1>, store, data)(1)

notify(data)(3)

post (<C*>, delete_interest(), x.*, y.*)
(4)

(b)

Figure 4.3: An example illustrating the operation of associative rendezvous.

For this example we have two different types of data producers/sensors in this case

we have a temperature sensors and a CCTV camera as data producers. In step (1) both

sensors perform is to register themselves into the system by advertising the type of data

they can produce and where they are located, in the case of the temperature sensor its

described by the profile < T1 >, x.y,y.x and < C1 > x.x, y.y for the CCTV camera.
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By doing that they are requesting to be notified if there are other clients interested in

the type of data that they can produce. Both interest profiles are stored in the system,

and matched against existing interest profiles. Since there is no interest profiles stored

in the system nothing else happens. Both data producers/sensors publishes data in

the system only if other clients need it. In step (2) the data consumer/computation

is interested in consuming a very specific type of data, in this case it is interested in

consuming data that matches the profile < C∗ > and it is located in x.*,y.*., requesting

to be notified if there are data stored in the system matching the profile. The interest

profile of the computation is stored in the system and matched against the other profiles

in the system. Since the notify data profile matches the profile of the CCTV camera, in

step (3) a notification message is sent to the CCTV camera that someone is interested

in its data and to start pushing the data into the system. In Figure 4.3b step (4) the

camera starts publishing data in the system, the data published by the camera matches

the data profile specified by the computation, resulting in step (5) the data being send

to the computation for processing. After a few minutes the computation decide that the

data the CCTV camera is producing is no longer valuable and decides the unsubscribe

from it by sending a delete interest in step (6), pushing a notification to the CCTV

camera to sop pushing data to the system.

AR

post (<C*>, notify_data, x.*, y.*)

post (<T1>, store, data, x.y, y.x)

(1)

(2)

post (<C*>, notify_data, x.*, y.*)

notify(data)(3)

notify(data)(3)

(1)

Figure 4.4: One-to-many interactions using associative rendezvous.

Figure 4.4 illustrates a one-to-many (e.g. multicast) interaction using AR. The

example assumes that the temperature sensor has already been registered in the system

with the notify interest profile < T1 >. In step (1) the two data consumers register in

the system requesting to be notified if there are data stored in the system matching the
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profile. In step (2) the interest profile of the computation is stored in the system and

matched against the other profiles in the system. Since the notify data profile matches

the profile of the temperature sensor, a notification message is sent to the temperature

sensor that someone is interested in its data and to start pushing the data into the

system. In step (3) the temperature sensor published data into the system. In step (4)

the data published by the sensor matches the notify data profile of the two consumers

so both consumers are notified with the data.
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Chapter 5

Enabling Data-driven IoT Applications

In this chapter, we present our concepts in which R-Pulsar have been build upon. R-

Pulsar is an architecture that extends cloud capabilities to edge devices, allowing to

collect and analyze data closer to the source of information and react autonomously

to local events. R-Pulsar consists of four layers: (1) the infrastructure layer, (2) the

federation layer, (3) the streaming layer, and (4) the application layer. Each of the

layers consists of multiple components.
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Figure 5.1: Schematic overview of the R-Pulsar Architecture
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5.1 Infrastructure Layer

The infrastructure layer is composed of data producers and computational resources.

The data producers are the various streaming sources that can generate data, including

IoT devices (e.g., cameras, smart watch, and smart infrastructures, etc). The compu-

tational resources are a group of computers responsible for running the applications the

user deploys. The resources are heterogeneous and distributed through the infrastruc-

ture, from the core to the edge of the network.

R-Pulsar uses a distributed architecture by the means of an overlay network, where

each resource/node in the overlay network is called a Rendezvous Point (RP). RPs can

be part of a public or private gateways located at the edge of the network or public or

private server located in the cloud.

5.2 Federation Layer

The federation layer is responsible for orchestrating the geographically distributed re-

sources composing the infrastructure. This layer is built using two main components:

the location aware overlay component and the content based routing component.

Location-aware Overlay Network Component

L1

L2

L3

L4

L5

L7

L6

Root

Root

L1 L2 L3

L4 L5 L6 L7

L1

L2L3

L4 L5

L6 L7

Figure 5.2: R-Pulsar quadtree geographical organization to multi layer P2P overlay
network.

IoT data comes with temporal and spatial information, which is directly associated

with their business value in a given context. Hence, IoT applications must process
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data in a timely fashion and from proper locations. In order to process data from the

right location R-Pulsar uses a location-aware overlay network in conjunction with a

point quadtree to logically groups of RPs that are physically close together. A point

quadtree is a tree data structure in which each internal node has exactly four children.

Each node represents a 2D bounded box covering a specific part of the space to index,

using a root node to cover the entire area.

The R-Pulsar overlay network is an n-dimensional self-organizing structured overlay

composed of RP nodes. Peers in the overlay can join or leave the network at any time.

Every node in the overlay is assigned a unique identifier that consists of a 160bit unique

identifier. Each node stores the keys that maps to the segment of the curve between

itself and its predecessor node.

During the initialization of the overlay network, the RP attempts to discover already

existing RPs in the system and update its routing table. The joining RP sends a

discovery message. If the message remains unanswered, the RP assumes that it is the

first in the system and it becomes the master RP, creating a single overlay network

(Peer-to-Peer network). Every time any other RP joins the overlay network and the

master RP responds to the discovery message, the RP is added to the system by using

the location of the RP and determining which quadrant the RP occupies. Once the

initial P2P network has a sufficient number of RPs to guarantee that in case of multiple

failures the P2P network will not disappear, the quadtree subdivides the overlay network

into four additional P2P rings, plus an extra ring that will allow all the master RPs

of each ring to communicate. Each RP master keeps a copy of the quadtree, so in the

case of an RP failure the overlay network structure will never be lost. In the case of a

master RPs failure, a master RP election is performed using the Hirschberg and Sinclair

algorithm [113]. Figure 5.2 is a graphical representation of the quadtree and the logical

organization of the P2P network.

In order to route a message the first strep is perform a quadtree query to decide in

which of the P2P rings needs to be routed to. The locations in the AR message is used

to perform a lookup in the tree and find the P2P ring closes to the given location.
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(a)

(b)

Figure 5.3: R-Pulsar space filling curve routing using simple (a) and complex (b) pro-
files.

Content-based Routing Component

This component builds on top of the location-aware overlay to route messages. The

content-based routing component maps AR profiles onto single identifiers or clusters

of identifiers to enable information discovery using partial knowledge, as described in

[114].

Content-based routing is achieved by performing two steps: The first step is to

encode the set of attributes and/or attribute-value pairs of the AR message, into a set of

unique base 10 ids. The second step is to use the set of base 10 numbers produced in the

previous step and pass them to the Hilbert Space Filling Curve (SFC). The SFC [115] is

used to map the n-dimensional space of the AR profile to the one-dimensional space ID

of the location-aware overlay network. Content based routing can be performed in two

ways using simple keyword profiles or complex keyword profiles, the routing process is

described below.

Routing using simple keyword profiles: The routing process consists of two

steps. At the first step, the AR profile containing only exact attribute-value pairs is
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encoded into a set of based 10 ID’s, each id represents an exact attribute-value pair of

the AR profile, then the set of base 10 ID’s are passed to the SFC to obtain a single

based 10 ID. This base 10 ID corresponds to 160bit unique identifier used by the P2P

overlay network. Figure 5.3a illustrates this process.

Routing using complex keyword profiles: Similarly to the first step, an AR

profile this time contains wildcards, ranges, or both is encoded and a set of base 10 ID’s.

The wildcard gets replaced for each of the possible value in the alphabet, producing

multiple base 10 encoding sets. This sets of encoding are passed to the SFC to obtain a

single based 10 ID, this step is repeated for each of the base 10 encoding sets. Then we

end up with muntiple base 10 IDs that corresponds to several 160bit unique identifiers

of the P2P overlay network. Figure 5.3b illustrates this process.

5.3 Streaming Layer

The streaming layer provides users and applications with efficient data-driven access

to federated resources. This layer is composed of the serverless messaging component,

memory-mapped streaming analytics component, the rule-based programming compo-

nent and the operator placement component:

5.3.1 Serverless Messaging Component

Serverless computing is a cloud computing model that aims to abstract server manage-

ment and low-level infrastructure decisions away from developers. Allowing to deploy

and execute pieces of code in response to events without the need to specify IP ad-

dresses. The serverless messaging layer implements the AR interaction model described

in Chapter 4 and it consists of two components: the matching engine and the profile

manager.

The matching engine component is essentially responsible for matching profiles. If

the result of the match is positive, then the action field of the incoming message is

executed first, followed by the evaluation of the action field in the matched profiles.
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The profile manager manages locally stored profiles and monitors message creden-

tials and contexts to ensure that related constraints are satisfied.

Table 5.1: Available R-Pulsar operators.

Operators Guarantees

bool init()
Connects to the existing P2P network

and guarantees the discover all existing RPs

bool post(AR Message)

Routes the AR Message based on the
profile and the location;

Guarantees that all RPs responsible for that
content in that location will receive the

AR message.

bool stream(AR Message, String Peer Id)
Stream direct messages to a select RP.

Guarantees that the responsible RP will
always receive the message.

AR Message poll()
Retrieve messages from a select RP point.
Guarantees that the consumer will always

receive the message.

The serverless messaging component offers four different operators. Table 5.1 sum-

marized all of the available operators.

The init() operator is used to join the R-Pulsar network and it guarantees that all

the available RPs will be discovered.

The stream(AR Message, String Peer Id) operator is used to stream data directly

to a specific RP, this operator bypasses the location and the content based routing

component.

The poll() operator is used to retrieve the data other RPs are sending.

The post(AR message) operator is used to route the messages without the need of

specifying the recipient of the message, the recipient of the message is resolved by using

the AR Message.

5.3.2 Memory-mapped Streaming Analytics Component

The data pipeline is responsible for consolidating data, processing the data, and making

them available to be used. State-of-the-art data pipelines are known to be data-intensive

tasks, resulting in the inability to performing timely data analytics when deployed on

constrained devices. The memory-mapped streaming analytics pipeline component is
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motivated to overcome that issue. The streaming analytics pipeline comprises the

following sub-components:

1. The data collection sub-component gathers data and brings them to the pipeline.

2. The stream processing sub-component processes the data and performs compu-

tations on the collected data.

3. The data storage and query sub-component reads and writes data to the main

memory and disk.

Data Collection

Multiple data collection services are available, such as Apache Kafka [42], Google Pub-

/Sub [80], Amazon Firehose [116], and Mosquitto [43]. Although some are designed to

be deployed on edge devices, these services offer limited performance when deployed in

constrained devices due to the limited read and write disk speeds.

We designed and implemented a custom data collection sub-component designed

specifically for constrained devices using a memory-mapped queue. A memory mapped

file is a segment of virtual memory that has been assigned a direct correlation with

some portion of a file. This file is physically present on disk, which allows the operating

system to ensure data access operations with better performance than standard file

access. The core principle of the R-Pulsar queue system emerges from the observation

that random memory read is about 3.5x faster than sequential disk read, as measured in

Table 5.2. To perform the tests we used the Linux tool sysbench [117], a multi-threaded

benchmark tool that allows to quickly get an impression about system performance.

The trade-off of using a memory mapped data collection system is that operating

systems decides when to copy data from the main memory to disk.

Data Processing

R-Pulsar can be used on top of any data processing engine, allowing the end user to

choose his or her favorite data-processing engine. The current release of R-Pulsar was
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Table 5.2: Measurements of Disk I/O vs RAM memory performance on a Raspberry
Pi.

Operation Disk RAM Memory

Sequential read 18.89 MB/s 631.34 MB/s

Sequential write 7.12 MB/s 573.65 MB/s

Random read 0.78 MB/s 65.96 MB/s

Random write 0.15 MB/s 65.88 MB/s

validated using Apache Edgent.

Data Storage and Query

This sub-component leverages the AR programming abstraction and a key-value database

to offer SQL-like query capabilities. The storage sub-component uses the SFC of the

content-based routing component to allow the ability to perform wildcard, range, or

exact queries and allows the data to be horizontally partitioned among multiple RPs.

For storing data, R-Pulsar relies on RocksDB [118], an embedded key-value database

optimized for fast and low-latency storage. The database keeps the most recently used

data in the main memory and stores the least recently used data on disk.

5.3.3 Rule-based Programming Abstraction Component

The rule-based programming abstraction component makes it possible to build IoT

applications and decide when data must be sent to the cloud for further post-processing

without having to manage any infrastructure.

It consists of a rule engine that allows developers to specify IF-THEN rules that

can trigger other data-processing tasks when a condition is satisfied. The THEN clause

of the conditions sends an AR message with a custom profile to start and stop data-

processing tasks on demand.

We created a rule-based system, which contains all of the appropriate knowledge

encoded into a set of If-Then rules. The system examines all the rule conditions (IF)

and determines a subset, the conflict set, of the rules whose conditions are satisfied

based on the data tuples. Out of this conflict set, one of those rules is triggered (fired).
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When a rule is fired, the action specified in its THEN clause is carried out. The loop

for firing rules continues until one of two conditions are met: there are no more rules

whose conditions are satisfied or a rule is fired. We allow to specify two different

types of rules, ones that let you express data quality requirements which impose time

constraints on the processing of the tuples, allowing the specification of a trade-off

between the data quality and computational complexity. And the second one that

offers the ability to express content-driven rules which complement the data quality

requirements by triggering further stream-processing topologies either at the core or at

the edge of the network if the data needs further processing due to quality of the data.

Content-Driven Rules

The content-driven rules consists of a single rule table that contains a set of rule entries

installed by the developer. The rule entries contain a collection of conditions, a single

action, and a single priority field.

The priority field is used in the event of having two or more rules that satisfy the

condition, in order to brake the tie, only the one with highest priority will be executed.

The condition field consists of one ore multiple antecedents (If clause). The antecedent

of a rule consists of two parts: an object and its value. The object and its value

are linked by an operator. The operator identifies the object and assigns the value.

Table 5.3 summarized all the rule operators currently supported.

Table 5.3: Available R-Pulsar rule operators.

Operator Definition

AND Evaluates if two values or expressions are both true.

OR Evaluates if at least one of multiple values or expressions is true.

NOT Returns false for true and true for false.

>,<,
>=,<=

==

Evaluates if a value is less than the value that follows this symbol.
Evaluates if a value is greater than the value that follows this symbol.

Evaluates if a value is less than or equal to the value that follows this symbol.
Evaluates if a value is greater than or equal to the value that follows this symbol.

MIN Returns true if the given number is the lowest number from a list of numbers.

MAX Returns true if the given number is the highest number from a list of numbers.

AVG Returns true if the given number is the avg number from a list of numbers.

STD Returns true if the given number is the std number from a list of numbers.

IF
Determines if expressions are true or false.

Returns a given value if true and another value if false.
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The rule actions define what to do when the condition is satisfied, then the rule is fired

and the action its performed. Each rule-entry has a single action associated with it;

the three actions that are currently supported in our AR system are:

1. Store the results of the computation at the Edge or the Cloud. This allows the

topology developers to seamlessly store the results of the topology based on the

content of the data across a federated set of resources and have the ability to

locate where those data results have been stored when needed.

2. Trigger a new Apache Storm topology, if it doesn’t exist already, or route the

tuples to an already running topology. Can be used to achieve multiple functional-

ities such as: split topologies/workflows across a set of participating Rendezvous

Points that can be located at the core or at the edge of the network or make

decisions based on the content of the data and triggering new computations.

3. Notify action allows to notify any node part of the overlay network and stream

the results to them.

The rules can also be used to evaluate using a single tuple at a time or using window of

tuples at a time. Windows is the concept in stream processing of splitting the infinite

streams into finite chunks, and then apply computations to each chunk. There are two

types of windows:

• Sliding Window: data elements are grouped in one or more windows that slides

based on a specified interval.

• Tumbling Window: data elements are grouped in a single window based on

the specified interval.

Windows can be specified accordingly to two different types of intervals: time and

count.

• Time: can be used for both windows to group elements based on a period of

time.
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• Count: can be used for both windows to group elements in a defined size. In

this case, all windows have the same size.

Figure 5.4: A time duration based sliding window with length 10 secs and sliding
interval of 5 seconds.

Figure 5.4 depicts an example of a duration based sliding window with length of 10

secs and sliding interval of 5 seconds.

Figure 5.5 depicts a window is evaluated every five seconds and none of the windows

overlap.

Figure 5.5: A time duration based tumbling window with length 5 secs..
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Figure 5.6: Storm topology linewise representation

The second type of rule are the data quality rules. Data quality rules are used in

workflows that have multiple redundant computations, where each computations takes

different amount of time and produces a different data quality. The rule system is
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designed so users can specify time and data quality constraints so the QoS for the

application can be meet.

The data quality rules are only supported when the Apache Storm engine is used,

since it was build using Apache Storm. The content based rules consist of a custom

Apache Storm stream grouping and the rule engine. In Apache Storm, part of defining

a topology is to define how data is exchanged between components (how streams are

consumed by the bolts). A Stream Grouping specifies which streams are consumed

by each bolt. A stream grouping tells a topology how to send tuples between two

components. The rule engine parses the given rule entries and computes all the possible

paths that will satisfy the constraints specified by the rules. In order for the stream

grouping to determine all the paths that will satisfy the constraints specified by the rules

we developed in an offline training mode where the stream grouping collects execution

information, transfers information, etc.. to determine all the paths that will satisfy the

constraint. The data quality rule entries contain a tag filed and a deadline filed. The

tag filed needs to be part of each of the tuples that needs to processed. The deadline

filed specifies how much time each tuple with the corresponding tag has to go through

the entire Storm topology. The algorithm consists of following steps: (1) breakdown

the Storm topology into lines-paths from the task of the first level to the task of the

last level through only one child on each level; (2) order lines according to their relative

computing times T lcomp. (3) iterate over the lines until one of the lines does not meet

the deadline D and schedule the work.

The overall steps of the algorithm are depicted in Algorithm 1. In the first step of

execution process the algorithm creates lines of the topology tasks and calculates the

relative computing time T lcomp for each line. T lcomp is calculated as the sum of execution

times T lcomp of all tasks in the line. T lcomp consists of task runtime T trun and total

input data transfer time T tdata. Then we order all the paths according to their relative

computing times T lcomp so we only need to check if T lcomp satisfies the deadline D. Once

we find one path that does not satisfy the deadline D, we have our set of paths that

satisfies the constraint and we schedule the work. The algorithm is constantly running

and reschedules the work if the computation conditions change.
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5.4 Application Layer

The application layer is composed of data consumers. Data consumers are the IoT

applications described in Chapter 2. Data consumers process these the incoming data

from the sensors/data producers and aggregate incoming data, send automatic alerts

in a timely manner, or produce new streams of data that can be processed by other

consumers.
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Chapter 6

R-Pulsar, an edge-based middleware

6.1 Design

In this section we describe the design of R-Pulsar, Figure 6.1 depicts the interactions

that R-Pulsar performs when a the Post primitive is used.
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Serverless 
API

Quad Tree
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Figure 6.1: Sequence diagram of R-Pulsar, when a sensor wants to register itself in the
R-Pulsar network.

The following are the steps that are taken when the post primitive is called:

• Step 1: The application layer defines an AR profile by specifying the type of

sensor it is, and where is it located.

• Step 2: The application layer calls the post primitive with the profile specified

in step 1.
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• Step 3: The serverless API splits the profile passed by the post primitive in two

separate calls: one for the content, and one of the location.

• Step 4.1.1: The location specified in the AR message is used for performing a

location query in the quadtree. The result of the query is the closest P2P network

given that point.

• Step 4.2.1: The content of the AR profile is used to select which RP will be

responsible for the message. The content of the AR profile is encoded into a set

of base 10 ids.

• Step 4.2.2: The set of base 10 ids are passed to the space filling curve (SFC) to

go from n-dimensional space to 1-dimensional space id.

• Step 5: The base id of the SFC is used to route the message in to the P2P

network obtained in step 4.1.1, and the message is forwarded to the right RP.

The current design of R-Pulsar uses a P2P architecture and a distributed hash table

(DHT) which provides a decentralized key-value infrastructure for distributed applica-

tions.

6.2 Implementation

In this section we describe the implementation of R-Pulsar. Figure 6.2 depicts the

dependencies of the main R-Pulsar classes. The current implementation of R-Pulsar is

build using Java and builds upon the following open source projects: TomP2P for the

P2P and DHT implementation and RocksDB for the memory mapped key value pair

optimized for constrained devices. R-Pulsar consists of seven main packages that con-

tain all the programming abstractions presented in chapter 5. Further documentation

on the implementation and the code of R-Pulsar can be found on the GitHub [119].

• Core Package: The core package contains all the necessary code for starting and

stopping the P2P rings, it holds the implementation the Associative Rendezvous

programming abstraction and the memory mapped queuing system. The core
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Figure 6.2: R-Pulsar main classes interaction.

package main responsibility is to abstract the AR messaging system and offering

a simple API to the end user.

• DB Package: This package overwrites the database implementation of TomP2P

to implement a memory mapped key value store. As mentioned earlier R-Pulsar

storage system relies on RocksDB for storing data efficiently on constrained de-

vices.

• Encryption Package: The encryption package offers RSA data encryption, so

data can be encrypting so all the communications are safe.

• Hilbert Package: Contains the implementation of the space filling curve, R-

Pulsar implements the Hilbert space filling curve. In addition the Hilbert package

it contains all the necessary tools to encode the data to pass it to the Hilbert space
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filling curve. For the encoding R-Pulsar uses the Base 64 for encoding the AR

profiles so they can be passed to the Hilbert space filling curve.

• Quadtree Package: Contains the implementation of the quadtree which imple-

ments a point quadtree. The point quadtree has been created to accept latitude

and longitude coordinates so RPs and messages will be delivered based on where

they are located.

• Rule Engine Package: Contains a custom implementation of a rule engine

with all the conditions that are currently supported. The rule engine consists

of Operations and ActionDispatchers. The operations is a java class that allows

to define evaluation conditions. The ActionDispatcher is another java class that

allows to define the reactions of the rules.

• Examples Package: This package is not an essential package, but it simply

contains a collection of examples demonstrating the usage of all the features that

R-Pulsar offers.

6.3 API Examples

In this section, we present two sets of API examples, they are based on the disaster

recovery use case presented in Chapter 2. The first set of API examples showcase the

use of resource actions for sensor registration and discovery and the use of function

actions for storing and triggering data-processing tasks. The second set of examples

showcase the rule based programming abstraction.

The first set of examples uses the resource actions for enabling the exchange of

data, without prior knowledge between devices. In Listing 6.1, an advertising profile is

specified by the drone sensor with the type of data it can produce, and requests to be

notified when someone is interested in such data.

1 p r o f i l e . addSing le ( ”Drone” ) . addSing le (”LiDAR” ) ;

2 ARMessage msg = ARMessage . newBuilder ( )

. s e tAct ion (ARMessage .NOTIFY INTEREST)

. s e tLa t i tude ( 40 . 0583 ) . se tLong i tude (−74 . 4056 ) )
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. s e t P r o f i l e ( p r o f i l e ) ;

3 producer . post (msg ) ;

Listing 6.1: Data producer resource profile sample code.

Respectively, a data consumer declares the type of content of its interest. List-

ing 6.2 presents a data consumer with interest for any LiDAR sensor data that match

the profile “Drone” and “Li*”, located within the specified range (40*, 70*). As this

profile matches the previous profile, the sensor from Listing 1 is notified that there is a

consumer interested in its data, then the sensor starts streaming.

1 p r o f i l e . addSing le ( ”Drone” ) . addSing le ( ”Li∗” )

. addSing le ( ” l a t : 4 0∗” ) . addSing le ( ”long:−74∗” ) ;

2 ARMessage msg = ARMessage . newBuilder ( )

. s e t P r o f i l e ( p r o f i l e ) . s e tAct ion

(ARMessage .NOTIFY DATA) ;

3 producer . post (msg ) ;

Listing 6.2: Data consumer resource profile sample code.

As mentioned previously, profiles can be used in two different ways: for discovering

resources or subscribing to data publishers (resource actions) and for deploying data-

processing tasks across the edge and the cloud (function actions). Listing 6.3 showcases

the deployment of a function (post processing func) in the system. This allows the

developer to specify where/on which set of resources it should be deployed.

1 p r o f i l e . addSing le ( ” p o s t p r o c e s s i n g f u n c ” ) ;

2 ARMessage msg = ARMessage . newBuilder ( )

. s e t P r o f i l e ( p r o f i l e ) . setLocat ionTag ( ”Cloud” ) ;

. s e tAct ion (ARMessage .STORE FUNCTION) ;

3 producer . post (msg ) ;

Listing 6.3: Store post-processing task in the R-Pulsar overlay network.

Consequently, a profile and a decision (the IF-THEN rule) can be created to decide

when to trigger the data-processing function (post processing func). In Listing 6.4,
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the resulting action is created and attached to the function profile from Listing 6.5,

which is sent when the rule is satisfied.

In addition, Listing 6.4 defines a rule that is constantly evaluated for every data

element. If the condition of this rule is met, then the function profile from Listing 6.5

is forwarded, resulting in the execution (trigger) of the data-processing task previously

stored.

1 Action topo1 = bluenew Reaction ( T−prof i l e ) ;

2 Rule ru l e 1 = bluenew Rule . Bu i lder ( )

. withCondit ion ( ”IF (RESULT >= 10 ) ” )

. withConsequence ( topo1 ) . w i t h P r i o r i t y ( 0 ) ;

Listing 6.4: Rule based programming abstraction for deploying the post-processing

task.

1 T−prof i l e . addSing le ( ” p o s t p r o c e s s i n g f u n c ” ) ;

2 ARMessage msg = ARMessage . newBuilder ( )

. s e tAct ion (ARMessage .START FUNCTION)

. s e t P r o f i l e ( T−prof i l e ) ;

3 producer . post (msg ) ;

Listing 6.5: Profile for deploying the post-processing task.

The second set of examples showcase the rule based programming abstraction. The

following snippet of code shows how developers will express the content-driven rules to

trigger a new topology in the cloud:

Figure 6.3: Trigger topology reaction rule definition.
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The ’withCondition’ is the IF rule expression that has to be satisfied and the ’with-

Consequence’ is the action that will be triggered when the rule is satisfied. The action

has two parameters: the first one specifies the name of the topology that needs to trig-

gered if it is the first time executing the action or route to that topology if its already

running. The second parameter specifies where it needs to be triggered. In this case it

will be triggered on the cloud nodes that are part of the overlay network since its really

computationally intensive.

Another brief code example of how developers will express the content-driven rules

to store the matching results at the edge of the network:

Figure 6.4: Store reaction rule definition.

The action of this second rule also has two parameters: the first parameter specifies

where to store the results of the streaming computation, which in this case, is at one

of the edge nodes that are part of the overlay network since we want to be able to get

our results quickly. The second parameter specifies how to store the results either one

by one (streaming fashion) or batch (several at a time).

Figure 6.5 depicts the API to add a rule window with length 10 secs and sliding

interval of 5 seconds.

Figure 6.5: Rule engine window bolt definition.
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Figure 6.6 presents a brief code example of how developers will express the data

quality rules:

Figure 6.6: Tuple QoS rule definition

6.4 Location-aware Overlay Network Component Evaluation

In this section we evaluate the overhead and scalability of the location-aware overlay

network component of R-Pulsar. The tests are evaluated using cloud and edge resources:

• Edge System: Chameleon Cloud [120], a configurable experimental environment

for large-scale cloud research [120] with 100 instances of type m1.small (1 CPU

and 2 GB RAM) to simulate the computation capabilities of a Raspberry Pi.

• Cloud System: Using Chameleon Cloud [120] with 100 instances of type m1.medium

(2 CPU and 4 GB RAM).

6.4.1 Overhead and Scalability Over Cloud And Edge Systems

This experiment measures the overhead involved in performing a location-based query

to identify relevant resources around the location of a client node. In our experiments,

the location-based query used the GPS coordinates of each RP node and the client to

identify the RP around the client. Not that for this experiment we did not deploy 500k

RPs, we only used the location of 50k RPs to perform the queries.

Figure 6.7 shows that the overhead of performing a location-based query increases

as the number of RP nodes in the system increases. Results show a maximum overhead

of 10 milliseconds, which occurred when 50k RPs are in the system.
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Figure 6.7: Location-based query overhead for different number of matches per query.

6.4.2 Overhead and Scalability of the Data Replication

Next, we measured the time required to replicate the information stored across a set of

RP nodes in the system. In these experiments, we considered several scenarios involving

different number of RP nodes as well as different number of replication factors. For

this experiment we did deploy 25, 100 and 500 RPs, for the 5 RPs where deployed in

the same instance in order to achieve 500 RP instances. Figure 6.8 collects the results.
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Figure 6.8: Time neccessary to update information of all RP nodes in the system after
multiple topologies are registered.

We can observe that in Figure 6.8 that the time required to replicate the information
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across all the RP nodes in the system is relatively low. In particular, it can vary from

a few milliseconds to around 200 milliseconds on average when having a large system

with 500 RP nodes. The main factor affecting the time required to propagate the

information is the number of RP nodes, since the time to route a message increases.

The time it takes to update the information on all RPs increases along with the error

margins due to the fact that the cost of routing messages in a P2P network increases

as the number of peers increases.

6.5 Content-based Routing Component Evaluation

In the content-based routing component we evaluate three aspects: The first aspect

is the overhead of matching profiles, The second aspect we evaluate is the overhead

and scalability of the routing, and finally we evaluate the time it takes to propagate

information through the system when a new RP joins the system. The tests are evalu-

ated using the same cloud resources as described in the previous section. For the edge

resources of this set of experiments we used two different setups:

• Raspberry Pi System: Using 2 Raspberry Pi’s 3 with 4x ARM Cortex-A53

1.2GHz, 1GB LPDDR2 of RAM and 10/100 Ethernet.

• Android System: Using 1 Motorola Moto G5 Plus with a Qualcomm Snapdragon

625 processor with 2.0 GHz octa-core CPU, 3GB of RAM

6.5.1 Profile Matching Overhead Over Cloud Systems

This first experiment measures the overhead involved in the profile matching operation

at an RP node. We used a notify data action message for these experiments. We

considered different scenarios in which the system had different number of data profiles

(i.e. subscriptions) and the request returned a different number of profile matches.

The experiment was conducted using profiles that contained complex keyword tuples,

wildcards and/or ranges. Figure 6.9 collects the results of these experiments.

In Figure 6.9 we can observe that, for a moderate database size of up to 104 profiles,

the profile-matching operation incurs in an overhead between five and 10 milliseconds.
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Figure 6.9: Profile matching overhead. Results are grouped based on the matching
ratio expressed as a percentage of the total number of stored profiles.

Nonetheless, when we increase to 105 profiles, the overhead increases significantly, an

this is due to the fact that we are increasing the memory and data access times required

to identify and retrieve such a large number of profiles.

6.5.2 Routing Overhead and Scalability Over Edge Systems

This second set of experiments measure the routing overhead, which represents the time

interval between an AR message is created until it is forwarded to the recipient of the

message. It is important to maintain the routing overhead in the order of milliseconds

to achieve timely analytics on constrained devices. The routing overhead was evaluated

over Android and Raspberry PIs by simulating the storage or retrieval of data, as the

number of RPs on a given region grows, and also as the AR profiles complexity grows.

The profile complexity is defined in terms of the number of attribute-value pairs that

make up the profile. For example, a 2D profile is composed of two properties, such as

data type and location.
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Figure 6.10: Evaluation of R-Pulsar space filling curve routing overhead and scalability
as the number of messages and the complexity of profiles increase over the Android
system.
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Figure 6.11: Evaluation of R-Pulsar space filling curve routing overhead and scalability

as the number of messages and the complexity of profiles increase over the Raspberry

Pi system.

In Figure 6.10 shows that when the profile complexity increases by a factor of 6, the

time required to route messages increases by 2.5. Similarly, when the system increases

the number of messages sent by a factor of 100, the time required to route one message
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increases by a factor of 25. It shows that the routing overhead scales efficiently in both

cases, as messages become increasingly complex and as the number of messages sent

increases when using the Android system.

However, Figure 6.11 shows that when the profile complexity increases by a factor of

6, the time required to route messages increases by about 1.2, when using the Raspberry

Pi system. Likewise, when the system increases the number of messages sent by a factor

of 100, the time required to route one message increases by about 2.5. Demonstrating

that the routing overhead scales more efficiently on a Raspberry Pi system than on an

Android system.

6.5.3 Information Propagating through the System

This experiment is performed to understand the behavior of the system when multiple

RP nodes request to join an existing deployment of our system. Specifically, we mea-

sured the time from when the RP nodes sent their joint message until all RP nodes

existing in the system were updated. In our experiments, we varied both the num-

ber of RP nodes wanting to join and the number of existing RP nodes in the system.

Figure 6.12 collects the results.
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Figure 6.12: Time neccessary to update information of all RP nodes in the system after
multiple new RP nodes join.

Figure 6.12 shows that the time required to have a consistent view of all the new RP
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nodes after the requests are placed is relatively low, and that it scales properly when

increasing the number of existing RP nodes. In the case of a small system with only

five existing RP nodes the overhead is around 20 milliseconds on average. The overhead

increases to around 70 milliseconds in the case of having a large system with 100 existing

RP nodes. Additionally, we can observe that varying the number of requests does not

significantly affect the time required to propagate the information in a system with up

to 50 RP nodes. In the case of having 100 RP nodes, we observe that increasing the

number of requests, increases the overhead as well as the dispersion around the average.

Although it is important to maintain an updated view of the system to ensure that we

can efficiently process clients’ requests, it is not critical for the regular operations of the

system. Our system has mechanisms to adapt to changes in the availability of RP nodes

to improve data processing efficiency. Therefore, we consider that having an eventually

consistent system is sufficient. Similar to the experiment 6.8 in this experiment we also

observe that the time it takes to update small P2P rings is smaller than larger P2P

rings and once again that is due to the fact that the more P2P nodes we have the more

time it will take to route a message and the more potential for message collisions.

6.6 Memory-mapped Streaming Analytics Pipeline Evaluation

In this section we evaluate two of the sub-components that the memory-mapped stream-

ing analytics pipeline consists, the Data collection and the storage and query sub-

component. The tests are evaluated using the same cloud resources as in the location-

aware overlay network component evaluation section. For the edge resources this set of

experiments use the following resources:

• Raspberry Pi System: Using 2 Raspberry Pi’s 3 with 4x ARM Cortex-A53

1.2GHz, 1GB LPDDR2 of RAM and 10/100 Ethernet.

• Android System: Using 1 Motorola Moto G5 Plus with a Qualcomm Snapdragon

625 processor with 2.0 GHz octa-core CPU, 3GB of RAM
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6.6.1 Performance of the Data Collection Layer Over Edge Systems

The first experiment aims to evaluate the throughput of R-Pulsar messaging layer. This

experiment was carried out using two Raspberry Pi’s one as a producer and the other

as the broker. The workload sizes are chosen based on the current limitations imposed

by existing IoT services, such as AWS [121] and Azure [122]. The inner memory-

mapped queue is compared to Apache Kafka and Mosquitto. Apache Kafka (the de

facto standard for cloud and edge data analytics) [123, 124, 125], Mosquitto (a broker

that can be found on edge frameworks, such as Azure IoT or the AWS Greengrass),

and the R-Pulsar memory-mapped queue, using four different message sizes. The main

difference between them is the way they store information: Apache Kafka and Mosquitto

store messages on the disk while R-Pulsar stores them in the main memory and disk.
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Figure 6.13: Single broker and producer throughput performance as message sizes grow.
Comparison of R-Pulsar, Kafka, and Mosquitto systems deployed on a single Raspberry
Pi.

Results in Figure 6.13 show that R-Pulsar’s throughput scales as the message size

increase. This experiment is representative of a traditional IoT scenario with small

messages streamed at a high rate arrival. We observed that R-Pulsar pub/sub messag-

ing system outperforms Kafka by a factor of 3x and Mosquitto by a factor of 7x. Also,

Apache Kafka exhibits a high variability of throughput performance. This is explained
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by the fact that Kafka continuously stores messages on the disk overwhelming the filesys-

tem and producing this unpredictable throughput. The use of a memory-mapped queue

allows R-Pulsar to obtain higher throughput, but also steadier and more predictable

throughput.

In this second experiment, we want to demonstrate that R-Pulsar can be deployed on

Android Phones. The experiment setup consists of an Android device as a data producer

and a single Raspberry Pi as the RP. In Figure 6.14, the throughput comparison of R-

Pulsar and Mosquitto [43] shows similar performance with larger messages. For smaller

messages, R-Pulsar exhibits a better performance (factor of 10x). Also, Mosquitto

presents a larger variability of performance (unpredictable throughput).
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Figure 6.14: Single broker and producer throughput performance as message sizes grow.
Comparison of R-Pulsar and Mosquitto on the Android system.

6.6.2 Scalability of Store/Query Operations Over Cloud Systems

These experiments are aimed to stress the system and evaluated the storage and query

scalability of R-Pulsar using multiple workload sizes. The following workloads were

used for the tests: Workload 1 (W1) stored/queried one element, Workload 2 (W2)

stored/queried 10 different elements, Workload 3 (W3) stored/queried 50 different el-

ements, and Workload 4 (W4) stored/queried 100 different elements. For this test,

all RP nodes were part of the same P2P network and the same geographic region to
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evaluate how R-Pulsar scales as the number of RP increases in each region.
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Figure 6.15: Evaluation of R-Pulsar store query operations as the number of nodes
increases on Chameleon cloud.

Figure 6.15 presents the scalability evaluation of the R-Pulsar store operation. The

figure shows that for storing a single element (W1), the runtime increased by a factor

of ∼4 when the system size increased by a factor of 16 (from 4 nodes to 64 nodes). As

the system expands, the number of intermediary nodes involved in routing the query

grows, causing an increase in the runtime. The storage of 100 different elements (W4)

forces the system to store elements in multiple destinations.
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Figure 6.16: Evaluation of R-Pulsar exact query operations as the number of nodes

increases on Chameleon Cloud.

Figure 6.16 presents an evaluation of the exact query operations. It shows that the

query of a single element (W1), the runtime increases by a factor of 2.8 when the system

size increases by a factor of 16 (from 4 nodes to 64 nodes).

6.6.3 Performance of the Query and Store Layer Over Edge Systems

The next set of experiments explores the performance of the R-Pulsar’s storage and

query layer as compared to self-contained, embedded and lightweight data storage sys-

tems. We compare R-Pulsar with lightweight SQL (SQLite) and non-SQL (NitriteDB)

storage systems. We choose SQLite and Nitrite DB because both systems are designed

to be deployed in constrained devices [126] [127]. In addition, Nitrite DB is a key-value

store like R-Pulsar.

The experiments were deployed in 10 Raspberry Pis and grouped them together

in the same R-Pulsar group. A client then issued requests for data to be stored and

queried. As neither Nitrite DB nor SQLite supports horizontal data partitioning, the

client directly queried a single DB for these systems. In the case of R-Pulsar, the

content-based routing layer is responsible for determining where the data should be

stored or queried.
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We present three different results for these experiments. Figure 6.17 shows the time

required for each system to store different sets of elements. R-Pulsar presents a steady

performance as the number of elements grows. It also outperforms Nitrite DB (factor

of 30x).
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Figure 6.17: Storage performance of R-Pulsar, SQLite and Nitrite DB as the number
of elements to be stored increases over 10 Raspberry Pi.

Figure 6.18 and 6.19 present the results for experiments using exact and wildcard

queries (a profile containing wildcards, ranges or both). In the last two experiments, we

can observe that Nitrite DB and SQLite are both faster when the number of consecutive

reads is small, but R-Pulsar outperforms both when the workload increases. Overall,

R-Pulsar has a higher performance because it takes advantage of the distributed storage

of data over multiple RPs so that queries can be performed in parallel.

6.7 Rule-based Programming Abstraction Evaluation

In this section we performed two sets of experiments to evaluate the rule-based pro-

gramming abstraction. The tests are evaluated using edge and cloud virtual nodes.

• Edge System: Consists of two different Chameleon Cloud setups: The first node is

our ”drone” with computational capabilities with 1 vCPU and 2 GB of memory.

The second node is the ”minivan” with 8 vCPU and 32 GB of memory.
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Figure 6.18: Exact query performance of R-Pulsar, SQLite and Nitrite DB as the
number of exact queries increases over 10 Raspberry Pi.

• Cloud System: Consists of three Chamelon Cloud instances of type m1.large (4

CPUs and 8 GB of memory)

6.7.1 Scalability and Overhead Over Edge and Cloud Systems

To evaluate the scalability and overhead of the rule engine system we added different

rule amounts and streamed our regular workload, forcing the evaluation of each of the

tuples. The plotted graph in Figure 6.20 shows the scalability and overhead of our rule

engine for two different machines described above. We can observe that the overhead

is very minimal, we can also observe that as we add rules the overheads do not increase

exponentially making it suitable to handle hundreds of rules.

In this experiment we wanted to show the importance of being able to programmat-

ically express a trade-off between data quality and computational performance. Figure

6.21 we demonstrate that if we do not allow the to specify QoS rules to set a deadline

in this case a deadline of 20 seconds per tuple was specified, depending on the workload

and the underlying computing capabilities most of the tuples will not satisfy the dead-

line. We can also see that our algorithm can’t guarantee 100% completion in time in

small computational resources, but that is due to the fact that the CPU can’t drain the

storm bolt queues fast enough, so some tuples will experience some extra delay. The



83

 1

 4

 16

 64

 256

 1024

 4096

 16384

10 50 100 500 1000

Ti
m

e 
(m

ill
is

ec
on

ds
)

Number of wildcard queries

SQLite Nitrite DB R-Pulsar DHT

Figure 6.19: Wildcard query performance of R-Pulsar, SQLite and Nitrite DB as the
number of wildcard queries increases over 10 Raspberry Pi.

reason why the graph flattens after adding 50 or more rules into the system is due to

the fact that the system stops as soon as it finds a rule that is satisfied.

6.8 End To End Evaluation

In this section we implement one of the five uses cases using R-Pulsar to showcase the

ability to express and decide what, where and when data gets collected and processed,

using edge and cloud resources, and we compared it against a traditional approach of

moving all the data to the cloud for analysis.

6.8.1 Disaster Response Use Case

For the disaster response use case we performed a set of experiments to compare the

proposed split architecture (edge and core processing) with the current state of the art

approach in which the stream processing is located in a fixed location at the core of

the infrastructure. To perform these experiments we deployed them all in the same

Chameleon cluster and we introduced artificial latency between the edge of the network

and the core of the network. For the edge setup, 3 instances of type m1.small simulate

computation capabilities of a drone (1 VCPUs and 2 GB of memory) and 3 other



84

 0

 10

 20

 30

 40

 50

 60

 70

 0  50  100  150  200

Ti
m

e 
(m

ic
ro

se
co

nd
s)

Number of Rules

Drone   Minivan

Figure 6.20: Rule engine overhead for different number of rules.

instances of type m1.medium simulate the minivan (2 VCPUs and 8 GB of memory).

The core of the network is represented by 3 instances of type m1.large (4 CPUs and 8

GB of memory). To simulate that the edge infrastructure was located in a minivan or

a drone we stored all the images that need to be processed locally to simulate a small

latency since the minivan or the drone will be producing the data. For the traditional

approach the storm topology gets the data from an external server to simulate the

latencies need it to transfer between the edge and the core of the network.

For the experiment in Figure 6.22 we wanted to demonstrate that if we simply

deployed our entire workflow at the edge of the network without any ”quality” trade-off

and we compared it to the traditional approach where each of the LiDAR images will

be sent to the core for processing. We can see that with small workflows the edge is

significantly faster than the core of the network, but as the number of images that need

to be processed grows (the affected area is large) the core performs better than the edge

due to limited resources at the edge of the network.
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Figure 6.21: Data quality rule-based system 20 second deadline.
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Figure 6.25: Disaster response workflow 100 images edge speed-up.

Figures 6.23, 6.24, and 6.25 showcase the speed-up that can be obtained by trading

off some image ”quality” for some computational complexity. Figure 6.23 is the graph

for a workflow with 10 LiDAR images to be processed; one can observe that if we

perform all the computations in the ”drone” and only 10% of those images need further

processing we get a speed up of 44% compared to sending all 10 images to the core

of the network. We can observe from figures 6.24 6.25 that due to the small compute

limitations, the drone gets a faster speed-up when the worflow size is small and a
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Figure 6.23: Disaster response workflow 10 images edge speed-up.

small percentage of tuples needs further processing, which makes it perfect for assessing

affected areas where minivans can’t get to due to road blocks. In the case of the minivan,

it gets a higher speed-up in all three cases since it has higher computational resources

and we can also observe that we can still send a large percentage of rules to the core

and we still get a higher speed-up. In the best case the minivan is 71% faster than the

traditional approach where all the images are sent to the cloud.
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Figure 6.26: Disaster response workflow 100 images with breakdown.

For this last experiment we performed the same end-to-end evaluation of the disaster
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recovery use case as Figure 6.25, and recorder the time it took to perform all the

operations inside R-Pulsar to see where the time is being spend. The graph measures 5

different components of R-Pulsar, the first one is the matching of the AR profiles, the

second one is the time it takes to process at the edge, the third is the time it takes to

make a decision with the rule engine and the last two are the time to transfer the data

from the edge to the cloud and processes the data in the cloud. Figure 6.26 consists

of two experiments the first experiment assumes that only 10% of the images need to

go to the cloud for post-processing, and the second graph assumes that 70% of the

images need to go to the cloud for post-processing. We can observe that in the cloud

only approach we are spending about 80% of the time just moving data from the edge

to the cloud, and very little time computing. In the case of R-Pulsar we spend more

time computing at the edge due to the limited computational resources but we cut the

transfer time between the edge and the cloud by more than in half, since only a fraction

of the images need post-processing.
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Chapter 7

Application to the Distributed Operator Placement

Problem

7.1 Introduction

The number of Internet of Things applications is forecast to exponentially grow within

the coming decade. Owners of such applications strive to make predictions from large

streams of complex input in near real time. The heterogeneity among the edge devices

and cloud servers introduces an important challenge for deciding how to split and

orchestrate the IoT applications across the edge and the cloud. In this chapter, we

propose a solution on how to split IoT applications dynamically across the edge and the

cloud, allowing us to improve performance metrics such as end-to-end latency (response

time), bandwidth consumption, and edge-to-cloud and cloud-to-edge messaging cost.

7.2 Problem Description

We focus on three performance metrics for placing Internet of Things (IoT) applications

across edge and cloud resources, i.e., the end-to-end application latency [128], the

WAN traffic, and the messaging cost (messages exchanged between the edge and the

cloud). The IoT operator placement problem consists of defining how to accommodate

the application components (i.e., operators) on the available resources of the network

topology to optimize one or more performance metrics.

Table 7.1 summarizes the notation used throughout the paper.

We define a computational resource (i.e., cloud server or edge device) as a triple

rk = 〈cpurk,memr
k, f

r
k 〉 ∈ R, where cpurk is the CPU capability in Millions of Instruc-

tions per Second (MIPS), memr
k is the memory capability in bytes, and f rk ∈ {0, 1}
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Table 7.1: Main notation adopted for the problem description.

Symbol Description

R Set of cloud and edge resources
L Set of network links
i↔j A link connecting resources i and j
cpuri , mem

r
i CPU and memory capacities of resource i

lati↔j ,bdwi↔j Latency and bandwidth of link i↔j
O Set of stream processing operators
S Set of event streams between operators
fi Function to determine if the operator is a source, sink

and transformation
cpuoi , mem

o
i CPU and memory req. of operator i

ψoi Selectivity of operator i
ωoi Data compression rate of operator i
sρi→j Probability that a message emitted

by operator i will flow to j
λini , λ

out
i Input/output event rate of operator i

ς ini , ς
out
i Input/output event size of operator i

stime〈i,k〉 Service time of operator i at resource k

ctime〈i,k〉〈j,l〉 Communication time from operator i

at resource k to j at l
mem〈i,k〉 Overall memory required by operator

i when deployed at resource k
pi, lpi A graph path and its end-to-end latency
P The set of all paths in an application graph
µ〈i,k〉 The rate at which operator i

can process events at resource k

signals whether rk is a cloud resource. Similarly, the network link is drawn as a triple

lk↔l = 〈bdwk↔l, latk↔l, fk↔l〉 ∈ L, where k ↔ l represents the interconnection between

resource k and l, bdwk↔l the bandwidth capability in bits per second (bps), latk↔l the

latency in seconds, and fk↔l signals whether the link is part of a WAN. We consider

the latency of a resource k to itself (i.e latk↔k) to be 0.

Each operator of the IoT application is a quintuple oi = 〈cpuoi ,memo
i , ψ

o
i , ω

o
i , fi〉 ∈

O, where cpuoi is the CPU requirement in Instructions per Second (IPS) to handle an

individual event, memo
i is the memory requirement in bytes to load the operator, ψoi is

the ratio of number of input events to output events (i.e., selectivity), ωoi is the ratio

of the size of input events to the size of output events (i.e., data compression/expan-

sion factor), and fi ∈ {source, sink, transformation} signals whether oi is a source,
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Figure 7.1: Example of four operators and their respective queues placed on two re-
sources.

sink/output, or transformation. The rate at which operator i can process events at

resource k is denoted by µ〈i,k〉 and is essentially µ〈i,k〉 = cpurk ÷ cpuoi . An event stream

sρk→l ∈ S connects operator k to l with a probability ρ that an output event emitted

by k will flow through to l.

The rate at which operator i produces events is denoted by λouti and is a product of its

input event rate λini and its selectivity (ψoi ). The output event rate of a source operator

(fk = source) depends on the number of measurements it takes from a sensor or another

monitored device. Likewise, we can recursively compute the average size ς ini of events

that arrive at a downstream operator i and the size of events it emits ςouti by considering

the upstream operators’ event sizes and their respective compression/expansion factors

(i.e., ωoi ).

A computational resource can host one or more operators; operators within a same

host communicate directly whereas inter-node communication is done via a communi-

cation service as depicted in Figure 7.1. Events are handled in a First-Come, First-

Served (FCFS) fashion both by operators and the communication service that serialises

messages to be sent to another host. Both operators and the communication service

follow an M/M/1 model for their queues which allows for estimating the waiting and

service times for computation and communication. The computation or service time

stime〈oi,rk〉 of an operator i placed on a resource k is hence given by:

stime〈i,k〉 =
1

µ〈i,k〉 − λini
(7.1)

while the communication time ctime〈i,k〉〈j,l〉 for operator i placed on a resource k to
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send a message to operator j on a resource l is:

ctime〈i,k〉〈j,l〉 =
1(

bdwk↔l

ςouti

)
− λinj

+ lk↔l (7.2)

A mapping functionM : O → R, S → L indicates the resource to which an operator

is assigned and the link(s) to which a stream is mapped. The function mo〈i,k〉 returns 1

if operator i is placed on resource k and 0 otherwise. Likewise, the function ms〈i→j,k↔l〉

returns 1 when the stream between operators i and j has been assigned to the link

between resources k and l, and 0 otherwise.

A path in the IoT application graph is a sequence of operators from a source to a

sink. A path pi of length n is a sequence of n operators and n− 1 streams, starting at

a source and ending at a sink:

pi = o0, o1, . . . , ok, ok+1, . . . , on−1, on (7.3)

Where o0 = source and on = sink. The set of all possible paths in the application

graph is denoted by P. The end-to-end latency of a path comprises the sum of the

computation time of all operators along the path and the communication time required

to stream events on the path. More formally, the end-to-end latency of path pi, denoted

by Lpi , is:

Lpi =
∑
o∈O
r∈R

mo〈o,r〉 × stime〈o,r〉

+
∑
r′∈R

ms〈o→o+1,r↔r′〉 × ctime〈o,r〉〈o+1,r′〉

(7.4)

The WAN traffic accumulates the sizes of messages that cross the WAN network

where 1{fk↔l=1} is the indicator that the link between the resource k and l is on a

WAN. The WAN traffic of path pi is calculated as:

Wpi =
∑

si→j∈S
k↔l∈L

1{fk↔l=1} ×ms〈i→j,k↔l〉 × ςouti (7.5)

Likewise, the messaging cost is calculated by the number of messages that reaches

the cloud from the edge and vice versa. The indicator 1{frk=0 and fr
k′=1} indicates that
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the previous operator i is placed on edge (f rk = 0) and it sends messages to operator i′

in cloud (f rk′ = 1), the second part of the cost refers the other way cost (cloud to edge).

The number of messages in pi is given as:

Cpi =
∑
i∈O
i′∈O
k∈R
k′∈R

(
1{frk=0 and fr

k′=1} ×
(
mo〈i′,k′〉×

λini′ +mo〈i,k〉 × λouti′
)) (7.6)

The parameters latency (Parlat), WAN traffic (Parwan), and monetary cost (Parcost)

receive the current values of the running application. A single aggregate cost metric

uses the parameters and Simple Additive Weighting method [129] (normalized in the

interval [0,1]) offers a unified metric where wl, ww and wc, with wl + ww + wc = 1, are

non-negative weights for the different costs. Each metric of path pi is divided by its

corresponding parameters and is then multiplied by its weight. The sum of the three

metrics in the path pi results in the aggregate cost. Formally, the AggregateCost in pi

is determined as:

AggregateCostpi = wl ×
Lpi

Parlat
+

ww ×
Wpi

Parwan
+ wc ×

Cpi
Parcost

(7.7)

The problem of placing a distributed IoT application consists of finding a mapping

that minimizes the aggregate cost.

min
∑
pi∈P

AggregateCostpi (7.8)

Subject to:

λino < µ〈o,r〉 ∀o ∈ O, ∀r ∈ R|mo〈o,r〉 = 1 (7.9)

λino <
(bdwk↔n

ςouto−1

)
∀o ∈ O,∀k↔n ∈ L|mo〈o,k〉 = 1 (7.10)∑

o∈O
mo〈o,r〉 × λino ≤ cpur ∀r ∈ R (7.11)

∑
o∈O

mo〈o,r〉 ×mem〈o,r〉 ≤ memr ∀r ∈ R (7.12)
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∑
si→j∈S
k↔l∈L

ms〈i→j,k↔l〉 × ςouti ≤ bwdk↔l ∀k ↔ l ∈ L (7.13)

∑
r∈R

mo〈o,r〉 = 1 ∀o ∈ O (7.14)

∑
k↔l∈L

ms〈i→j,k↔l〉 = 1 ∀si→j ∈ S (7.15)

Constraint 7.9 guarantees that a resource can provide the service rate required by

its hosted operators whereas Constraint 7.10 ensures that the links are not saturated.

The CPU and memory requirements of operators on each host are ensured by Con-

straints 7.11 and 7.12 respectively. Constraint 7.13 guarantees the data requirements

of streams placed on links. Constraints 7.14 and 7.15 ensure that an operator is not

placed on more than a resource and that a stream is not placed on more than a network

link respectively.

7.3 R-Pulsar Framework Extension

s R-Pulsar has been extended with the following three components in order to auto-

matically split and orchestrate dataflows between the edge and the cloud.

R-Pulsar Infrastructure Controller: Designed to act similarly to software-

defined networking (SDN) controllers, this component keeps track of the network re-

sources available in real time. Some of the basic tasks include inventorying devices

within the R-Pulsar P2P network, their capabilities, locations, and network statistics.

R-Pulsar Plan Finder: This component computes the most optimized operator

placement plan. It uses a three-step approach for calculating the optimal operator

placement plan for deploying dataflows between the edge and the cloud. Section 7.3.2

presents the three-step operator placement strategy developed for R-Pulsar.

R-Pulsar Executor/Monitor: The primary responsibility is to monitor dataflows

running on the R-Pulsar P2P network, including dataflow deployment, task assignment,

and task reassignment in case of failure.
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7.3.1 R-Pulsar Nodes

Each rendezvous point (RP) in the R-Pulsar P2P network can be elected as a mas-

ter or as a worker. R-Pulsar differs from other master/slave clusters such as Apache

Storm [47] in the sense that R-Pulsar master and worker node roles are assigned dy-

namically every time a dataflow is deployed.

Master RP: The master RP’s primary responsibility is to manage, coordinate, and

monitor a dataflow running on the R-Pulsar P2P network, including dataflow deploy-

ment, task assignment, and task reassignment in the event of a failure. Each time a

new dataflow is deployed in the P2P network a new master RP for that dataflow is

elected.

Deploying a topology to the R-Pulsar P2P network involves submitting the pre-

packaged dataflow file along with topology configuration. Then the information will be

routed to the responsible RP using the content-based interactions [130]. The content-

based interactions allow users to route dataflows to unknown RPs; the RP who receives

the message will be automatically elected as the master RP for that dataflow. Once

the master RP has been elected, it then uses the infrastructure controller component

to collect the network information of all the worker RPs. That information is then

passed to the operator placement algorithm to generate a placement strategy. Once

the operator placement algorithm has an efficient operator placement plan, then the

master RP distributes the tasks to the worker RPs.

The master RP tracks the status of all worker nodes and the tasks assigned to each

one. If the master RP detects that a specific worker node has failed to heartbeat or has

become unavailable, it will reassign that worker RP tasks to other worker RP nodes in

the federation.

The master RP is not a single point of failure in the strictest sense. This quality

is because the master RP does not take part in the dataflow data processing, rather it

merely manages the deployment, task assignment, and monitoring of the dataflow. In

fact, if the master RP dies while a dataflow will continue to process data as long as the
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worker RPs assigned with tasks remain healthy.

Worker RP: Each worker node is responsible for creating, starting, and stopping

worker tasks assigned to that node. Worker RPs are also responsible for once the master

RP has died to perform a master RP election.

7.3.2 Placement Strategy

The strategy for operator placement on R-Pulsar applies statistics collected by profiling

the application and the location of sinks and sources. The operator placement aims

to minimize the AggregateCost (Equation 7.8) by splitting the IoT application across

edge and cloud by considering priorities of operators according to the infrastructure to

which the sinks are assigned. The operator placement strategy comprises three phases:

(i) application profiling; (ii) candidate placement and (iii) final placement.

Phase 1 – Application Profiling:. In the first phase the worker RPs and the master

RPs using the infrastructure controller component to continuously collect statistics [131]

from the running dataflow. The collected data includes the following information about

the operators:

• The arrival rate of events.

• Processing time per event.

• Number of MIPS required to process a tuple.

• Memory to run the operator.

• Arrival message size.

• Outcome message size.

This information is used to establish the selectivity, data compression/expansion factor,

as well as, the CPU and memory requirements.

Phase 2 – Candidate Placement: In phase two, the user-predefined locations of
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Figure 7.2: Phases to determine the final placement using split points, where red means
placed on edge, blue represents placed on cloud, and green delimits forks and joins.

sinks and sources are used to identify patterns in the dataflow (Section 7.3.3). As de-

picted in Figure 7.2, a dataflow can comprise multiple patterns such as (i) forks, where

messages can be replicated to multiple downstream operators or scheduled to down-

stream operators in a round-robin fashion, using message key hashes, or considering

other criteria [132]; (ii) parallel regions that perform the same operations over different

sets of messages or where each individual region executes a given set of operations over

replicas of the incoming messages; and (iii) joins, which merge the outcome of parallel

regions.

We consider that an IoT dataflow is a Series-Parallel-Decomposable Graph which

either consists of a series of linearly dependent operators, or operators that can be

executed independently in parallel, or a combination thereof. Phase 2 uses related

techniques to identify graph regions that present these patterns [67]. This information

is used to build a hierarchy of region dependencies (i.e. downstream and upstream rela-

tions between regions) and assist in placing operators across cloud and edge resources.

The streams in the graph paths that separate the operators are hereafter called the

split points. The rationale behind building such region hierarchy is to evaluate first the

operators that can have greater impact on the overall end-to-end latency. Figure 7.2

illustrates the phases of the method to determine the split points (green circles), where

red circles represent operators placed on edge resources whereas blue ones are on the
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cloud: (i) The method starts with sources and sinks whose placements are predefined

by the user; (ii) split points are discovered (green circles) as well as sinks that cor-

respond to actuators that can be placed on the edge; (iii) the branches between the

existing patterns (green, red, and blue circles) are transformed into series regions; (iv)

a hierarchy following the dependencies between regions is created; and (v) the regions

provide information to split the operators on edge candidate placement evaluating if

the operator flows events to actuators.

Algorithm 1 describes the function GetCandidates used to identify the patterns

and obtain the series regions. First, the function adds two virtual vertices to the graph:

virt src connected to all data sources and virt sink to which all sinks are connected

(line 2-4). These vertices allow for recognizing all paths between sources and sinks.

Second, each path is iterated moving operators to a temporary vector and classifying

them as upstream and downstream according to the number of input and output edges

(lines 5-8). If the operator is a split point, the temporary vector is converted into a

subset of regions set, and the temporary vector receives the current operator (lines 9-

10). Third, the function removes the redundant values (line 11). Fourth, the region

set is iterated comparing the regions by the first and the last position values (equal

values represent a connection) and consequently, they are stored in the hierarchy set

(lines 12-16). At last, using the hierarchy and the placement of the sinks, the function

evaluates if the operator flows events to sinks placed on edge device then the operators

is added to the candidate lines 17-23).

Phase 3 – Final Placement: Once phase two has completed and the profiling phase

has established the requirements from the different operators, an operator placement

strategy is created and deployed. The strategy reduces the combinatorial space by es-

timating only once the computation (Equation 7.1) and communication (Equation 7.2)

overheads to operators targeted to cloud (Phase 2). Otherwise, operators to edge (edge

candiate placements) have their overheads estimated for all edge devices evaluating

their constraints (Equation 7.9 – Equation 7.15). The strategy gives high priority to

edge since cloud sinks often store messages for batch processing, whereas the edge side
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Algorithm 1: Algorithm to get the candidate placement.

1 Function GetCandidates(G = (O,S))
2 O ← O ∪ virt src ∪ virt sink
3 S ← S ∪ svirt src→o, ∀o ∈ O and fo = source
4 S ← S ∪ so→virt sink,∀o ∈ O and fo = sink
5 for p ∈ GetAllPaths(G, virt src, virt sink) do
6 for o ∈ p do
7 temp← temp ∪ {o},∀o 6∈ {virt src, virt sink}
8 ups← |〈∗, o〉 ⊂ S|, downs← |〈o, ∗〉 ⊂ S|
9 if ups > 1 or downs > 1 and o 6∈ {virt src, virt sink} then

10 regions← regions ∪ temp, temp← {o}

11 Delete duplicate regions
12 for src ∈ regions do
13 for dst ∈ regions do
14 if src 6= dst then
15 if src[|src| − 1] = dst[0] then
16 hierarchy ← hierarchy ∪ {src, dst}

17 for operators ∈ regions do
18 for o ∈ operators do
19 if fo 6∈ {source, sink} then
20 for sink ∈ GetSinks(o) do
21 if GetLocation(sink) = edge then
22 candidate = candidate ∪ o
23 Break

24 return candidate

hosts actuators. If edge devices cannot meet all operator requirements then the oper-

ator is moved to the cloud, hence, the cloud hosts its operator candidates and those

that do not meet the constraints on edge. For instance, Operator 5 in Figure 7.2 was

reallocated since the edge does not respect the resource constraints. Along with the

overhead estimations, the strategy greedly uses the edge candiate placements for se-

quentially estimating the AggregateCost (Equation 7.7) and at each iteration, it picks

the device with the minimal value (Equation 7.8) to assign the operator.
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7.3.3 R-Pulsar API

In this section we present the API examples used for evaluating and deciding how to

split the ETL dataflow, between the edge and the cloud resources.

Listing 7.1 is for specifying the operator constraints. In our case some of the opera-

tors need to be placed at the cloud and some others need to be placed at the edge. Note

that if the wildcard or no placement is specified R-Pulsar will automatically decide the

best placement for the operator. CloudTableInsert, MQTTPublish, and BloomFilter-

Task are tasks used in the ETL dataflow.

op1 . map( CloudTableInsert ( ) ) . placement ( c loud ) ;

op2 . map(MQTTPublish ( ) ) . placement ( edge ) ;

op3 . map( BloomFilterTask ( ) ) . placement ( ∗ ) ;

Listing 7.1: User specified operator physical placements constraints.

Listing 7.2 is for specifying the optimizations to apply to the dataflow. The R-Pulsar

operator placement algorithm offers three optimizations: minimize end-to-end latency,

bandwidth, or messaging cost. Each of the functions requires a weight normalized in

the interval [0,1]; the sum of all three weights must be one. By doing so, users have the

ability to optimize the latency, data transfer rate and messaging cost at the same time.

topo logy . minEndToEndLatency ( 0 . 4 ) ;

topo logy . minDataTransferRate ( 0 . 3 ) ;

topo logy . minMessagingCost ( 0 . 3 ) ;

Listing 7.2: User specified dataflow optimizations (latency, data transfer rate and cost).

By specifying physical dataflow constraints and the optimizations desired R-Pulsar

can obtain an optimal operator placement plan.

7.4 Evaluation

This section presents an experimental evaluation of our system. First, we present

the setup and the other approaches in which the experiments will be evaluated and
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compared against. Second, we present an evaluation of our system based on latency,

data transfer rate, and messaging cost.

7.4.1 Setup

Our experiments are performed using the following edge and cloud setup:

• We used an experimental edge testbed developed by the authors, inspired by Hu

et. al. [133] that consists of 13 Raspberry Pis; 5 Raspberry Pis model 3 (4x ARM

Cortex-A53 1.2GHz, 1GB of RAM and 10/100 Ethernet), and 8 Raspberry Pis

model 2 (4x ARM Cortex-A7 900MHz, 1GB of RAM and 100 Ethernet).

• For the cloud we used the Chameleon cloud [120] with 5 instances of type m1.medium

(2 CPU and 4 GB RAM).

The 13 Raspberry Pis are connected to the same LAN. The Raspberry Pis use the

external WAN [134] (the Internet) for connecting to cloud. The LAN has a latency

0.523 ms and a bandwidth of 15 Mbits/sec. The WAN has latency 66.75 ms, and

bandwidth of 87.0 Mbits/sec.

In addition to the setup, each of our experiments is evaluated using three other strate-

gies. We compared our system with the following approaches:

• Cloud: deploys all operators in the cloud, apart from operators provided in the

initial placement.

• LB (Taneja et. al. [68]): iterate a vector containing the application operators,

gets the middle host of the computational vector, and evaluates CPU, memory,

and bandwidth constraints to obtain the operator placement.

• Random: simulates the user trying to guess the best placement for the dataflow

between the edge and the cloud. Random is the average of 15 different dataflow

deployments between the edge and the cloud resources.

All the tests are evaluated using the ETL dataflow. The ETL dataflow is an implemen-

tation of the ETL RIoTBench topology, it consists of: a single data source outputting
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data every 5 seconds, 2 sinks one located at the edge and one located at the cloud, and

7 tasks that need to be deployed between the edge and the cloud of the network. The

experiments were conducted using Sense Your City dataset1 which consists of transmit-

ting data each minute from sensors in 7 cities across 3 continents, with about 12 sensors

per city. The data content includes metadata on the sensor ID, geolocation, and five

timestamped observations (outdoor temperature, humidity, ambient light, dust, and air

quality).

7.4.2 End-to-end Tuple Latency Evaluation

The end-to-end tuple latency corresponds to the sum of the mean times from the two

paths in ETL dataflow (cloud and edge). The conducted experiment evaluates the

end-to-end tuple latency using Equation 7.7 where wl is equal to 1, and ww and wc are

equal to 0. The experiment aims to evaluate how efficient the cloud, Random, and LB

approaches are at minimizing the end-to-end tuple latency and compare the R-Pulsar

operator placement approach. In addition, three failures were manually injected to

showcase the dynamicity and flexibility to recover from node failures. The first failure

makes 38% of the edge cluster unavailable (100 ms). The second failure affects the

remaining 62% of the nodes (300 ms). Before the 62% of the nodes fail, the 38% of

the nodes are back online. The third and last failure affects 50% of the cloud instances

(505 ms).

Figure 7.3 shows that on average tuples are computed 31% faster when compared

to the traditional cloud setup, and 38% faster than Random and the LB placement

approaches. The reason why the Random failures recover much faster than LB when

compared to R-Pulsar is because Random is the average of multiple different deploy-

ments and in some cases the first failure is not affected. Figure 7.3 demonstrates that

R-Pulsar operator placement strategy is capable of splitting the dataflow efficiently

between the edge and the cloud and reduce the end-to-end tuple latency.

The second experiment aims to evaluate how efficient the Cloud, Random, and LB

1http://map.datacanvas.org
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Figure 7.3: End-to-end tuple latency optimization with 3 self injected failures affecting
edge and cloud nodes, while comparing it with Cloud, Random and LB approaches.

approaches are at minimizing end-to-end tuple latency and compare it with R-Pulsar

approach. In this experiment no failures were injected.
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Figure 7.4: End-to-end tuple latency optimization cumulative distribution function
(CDF) comparison with Cloud, Random and LB approaches.

Figure 7.4 shows that when R-Pulsar operator placement approach is used 80% of

the tuples see a reduction in the end-to-end tuple latency by 44% compared to the LB

and Random approaches and 38% compared to the cloud approach.
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Figure 7.5: End-to-end data transfer rate optimization cumulative distribution function
(CDF) comparison with cloud, Random and LB approaches.

7.4.3 Data Transfer Rate Evaluation

The Data transfer rate consists of the sum of all message sizes that traverse a WAN

link per second. The values for Equation 7.7 are ww equal to 1, and wl and wc equal to

0. This third experiment aims to evaluate how efficient are the cloud, Random, and LB

approaches at minimizing the transfer rate between the edge and the cloud and compare

the results with R-Pulsar operator placement approach. Minimizing the transfer rate

between the edge and the cloud is a critical point in order to achieve timely analytics.

Figure 7.5 shows that 80% of the time R-Pulsar reduces the transfer rate between

the edge and the cloud on average 35% when compared to the LB approach. And

it reduces the data transfer rate by 45% when compared to the cloud and Random

approaches.

This next experiment aims to evaluate the efficiency of minimizing the transfer rate

and the end-to-end latency at the same time (ww = .5, wl = .5, and wc = 0). This

experiment was also carried out using the cloud, Random, and LB approaches.

Figure 7.6 shows that the R-Pulsar operator placement approach can also optimize

the data transfer rate and the end-to-end latency by 46% and 38% respectively when

compared to the cloud, 36% and 45% respectively when compared to the LB, 38% and
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Figure 7.6: Multi optimization evaluation, end-to-end tuple latency and data transfer
rate comparison with cloud, Random, and LB approaches.

44% respectively when compared to the Random approach.

7.4.4 Messaging Cost Evaluation

This two experiments aim to calculate the messaging cost of running the dataflow for

a month using the cost models of two major actors, AWS and Microsoft, in a real life

edge and cloud scenario. For this reason, we setup Equation 7.7 with wc equal to 1,

and wl and wl equal to 0. The goal of this optimization is to reduce the number of

messages that reach the cloud servers.

Table 7.2: Azure IoT Hub and Amazon IoT Core messaging pricing.

Microsoft IoT Hub Pricing AWS IoT Core Pricing

Free Tier - 8,000 messages/day
$0

Every 1 million messages/day
$1.00

Tier 1- 400,000 messages/day
$25

Up to 1 billion messages/day
$1.00

Tier 2 - 6,000,000 messages/day
$250

Next 4 billion messages/day
$0.80

Tier 3 - 300,000,000 messages/day
$2,500

Over 5 billion messages/day
$0.70

Table 7.2 depicts two IoT cost models. The first cost model is the Microsoft Azure

IoT Hub [135]. Each tier enables a maximum number of messages exchanged between
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the Azure IoT Edge and the Azure IoT Hub and vice versa per day. T1 allows up to

400,000 messages a day, T2 allows up to 6,000,000 messages a day, and T3 allows up

to 300,000,000 messages a day.

The second cost model is the Amazon IoT Core [136] where messaging is metered by

the number of messages transmitted between your devices and AWS IoT Core and vice

versa per day. Amazon offers multiple costs for different regions, for this experiment

we choose the cheapest region (N.Virginia) which charges $1 per million messages sent,

and the cost per message decreases after the first 1 billion messages per day.
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Figure 7.7: Messaging cost savings evaluation based on the Microsoft Azure IoT Hub
pricing model, for four different setups.

Figure 7.7 depicts the cost of deploying the ETL dataflow using the Microsoft cost

model using the four different approaches presented earlier. When using a small setup

(15 sensors), the monthly cost for our system will be $25 a month while the cloud, LB,

or Random approaches will cost $250 a month, savings of 90%. A similar behavior

happens with a medium (200 sensors) and extra large (10000 sensors) setups.

Figure 7.8 depicts the cost of deploying the ETL dataflow using the Amazon cost

model. Our system obtains a 50% cost reduction when compared to the cloud and LB

approaches in all four different setups (15, 200, 5000 and 10000 sensors). In addition

our system obtains a 97% savings when compared to the Random approach in all four

different setups.
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for four different setups.

7.4.5 Model Evaluation

This last three experiments aim to evaluate the scalability, overhead and validate the

operator placement algorithm.
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Figure 7.9: Evaluation of the scalability of the operator placement problem algorithm
as the number of operators to place increase over edge and cloud resources.

Figure 7.9 depicts the scalability and the overhead of the initial operator placement

problem algorithm in both edge and cloud resources. We can observe that the algorithm

scales with the number of operators to place and a valid solution can be found in less
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than half a minute. Not that this step is only performed when the entire workflow

needs to be placed, once the operators are placed, only a portion of the operators are

moved.
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Figure 7.10: Evaluation of the cost of redeploying a subset of operators over edge and
cloud resources.

Figure 7.10 depicts the redeployment scalability and overhead of the algorithm. We

can observer that since we do not need to redeploy all the operators when the workflow

is not meeting the constraints, we can see that the cost of redeploying a subset of

operators is very low and more important decisions can be done in real time since it

the redeployment calculations are small.
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For the final evaluation we wanted to validate the model by comparing the expected

results and the actual results after deploying the workflow in a real setup, Figure 7.11

depicts the results. We can observe that when the number of operators is small the

difference between the expected and the actual results only differs by at most 10%,

when the number of operators grows to 25 the difference slightly grows up to 15%.
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Chapter 8

Conclusion

8.1 Summary

This thesis identified and addressed key problems and requirements of IoT applica-

tions. Specifically, this thesis presented a programming abstraction enables to address

the what, where, and when data needs to be processed by specifying content and action

descriptors. In addition this thesis also tackles the how to split a given dataflow and

place operators across edge and cloud resources. First, presented a modification of the

Associative Rendezvous programming abstraction to allow to decide what and where

data needs to be processed. Second presented a R-Pulsar an IoT Edge Framework that

extends cloud capabilities to edge devices, enabling users to collect and analyze data

closer to the source of the information. Third presented a rule-based programming

abstraction for specifying when to trigger data-processing tasks based on data obser-

vations. Finally, presented a solution to the distributed operator placement problem

for allowing to decide how to split the application operators between the edge and the

cloud, by specifying a set of constraints. We evaluated the effectiveness, scalability,

performance and overheads of R-Pulsar by using three sets of IoT applications and

validated every layer by performing scalability, overhead and performance tests.

8.2 Contributions

To recapitulate, the primary contributions presented in this dissertation are as follows.

• In chapter 4 presented a content- and location-based programming abstraction

for specifying what data gets collected and where the data gets analyzed.

• In chapter 5 presented a rule-based programming abstraction for specifying when
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to trigger data-processing tasks based on data observations.

• In chapter 7 presented a programming abstraction for specifying how to split a

given dataflow and place operators across edge and cloud resources.

• Also in chapter 7An operator placement strategy that aims to minimize an ag-

gregate cost which covers the end-to-end latency (time for an event to traverse

the entire dataflow), the data transfer rate (amount of data transferred between

the edge and the cloud) and the messaging cost (number of messages transferred

between edge and the cloud).

• In chapter 6 presented a performance optimizations on the data-processing pipeline

in order to achieve high performance on constrained devices.

• Also in chapter 6 presented an implementation of the above capabilities as part of

the R-Pulsar architecture and its evaluation using embedded devices (Raspberry

Pi and Android phone).

8.3 Perspectives

The research presented in this dissertation opens several research problems that need

to be addressed in order to further advance on the edge computing area.

Energy Management: A study published in 2017 determined that due to the large

number of IoT devices connected to the internet in 2025 they will consume 20% of

all the worldwide electricity consumption [137]. For those reasons there is a need to

implement energy management policies. Energy management needs to be incorporated

in the service layer in order to be able to schedule computations based on the energy

consumption. A large amount of research exists focused on modeling and optimizing

the energy consumption in the Cloud, but there is limited research targeting edge com-

puting. R-Pulsar does not have the ability to quantify the amount of energy spend or to

schedule computations while being energy efficient. There is a need for tools that will

give feedback on how energy efficient the code is. For those reasons energy management
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is a potential research direction.

Security and Privacy: IoT data differentiates itself from any other type of data

due that is mostly built upon personal and highly sensitive data. For those reasons

security is an important research topic. There is a need for algorithms that provide

strong security guarantees, while still being suitable for constrained environments. R-

Pulsar does not address any security or privacy cancers, so a possible research direction

is to create algorithms that provide strong security protection, while fitting within an

acceptable footprint. It needs to be lightweight enough that will still leave room for the

embedded OS and applications code.

Edge based stream processing engines: There is a need to develop more lightweight

stream processing engine that can be deployed on constrained devices. Current stream

processing engines (SPEs) such as Storm [47], Flink [48], Heron [46] and Spark [50]

where designed to be deployed in the Cloud, with large number of clusters with pow-

erful computing resources and plenty of memory. However, these assumptions do not

hold at the Edge of the network. R-Pulsar does not offer a new SPE, it just simply uses

Apache Edgent. For this reason there is a need to research a develop new SPE that are

designed to run in constrained devices.
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