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ABSTRACT OF THE THESIS

Improvements in cardiac segmentation for cross-modality

domain adaptation

By Rushin Hitesh Gindra

Thesis Director:

Dimitris Metaxas

In medical image computing, the problem of heterogeneous domain shift is quite com-

mon and severe, causing many deep convolutional networks to under-perform on various

imaging modalities. Retraining the network is difficult since annotating the new do-

main data is prohibitively expensive, specifically in medical areas that require expertise.

While recent works show approaches to tackle this problem using unsupervised do-

main adaptation, segmentation modules in such methods can be improved vastly. Our

implementation provides a segmentation improvement on the current state-of-the-art

framework, Synergistic Image and Feature Adaptation(SIFA). We revisit atrous spatial

pyramid pooling while using convolutional features as well as image features for multi-

scale object segmentation. We have validated the effectiveness of the improvement

on the framework using the challenging application of cross-modality segmentation of

cardiac structures. To demonstrate the robustness of the module, extensive experi-

ments have been performed on Long-Axis(MMWHS) cross-modal cardiac segmentation

tasks.
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Chapter 1

Introduction

Deep Convolutional Neural Networks(DCNNs) are currently dominating numerous chal-

lenging tasks like semantic segmentation, object detection, motion analysis, etc, yielding

outstanding performance in several medical imaging tasks [32]. These supervised al-

gorithms frequently assume that the training and testing data are independent and

identically (i.i.d) distributed. However this assumption rarely holds true in real life.

A number of recent theoretical and empirical results have pointed out the problem

of performance degradation when encountering a domain shift between the training

data(source domain) and testing data(target domain) [4, 37, 50]. Such domain shifts

are even more natural and severe in the case of medical image computing. Certain

scenarios may include, training and testing images coming from different sites, different

scanning protocols or even different imaging modalities [63, 62].

A typical situation in the medical field is the use of different indispensable imaging

modalities like MRI and CT for cardiac imaging. For example, MRIs capture great

contrast between soft tissues and provide high resolution in the temporal space. On the

contrary, CT imaging is quick and provides great spatial resolution. One can observe,

these different modalities play important complementary roles in clinical procedures for

disease diagnosis and treatment.

In practice, often the same image analysis task is required for multiple related but

different domains, like segmentation of cardiac structures from MRI and CT scans.

As anticipated, DCNNs trained on MRI data only, perform poorly when tested on

CT image scans, concluding that there exists a domain shift. To recover the model

performance, one rudimentary method is to fine-tune the model [51], which requires
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(a) Different MR Scans, Different scales

(b) Same CT Scan(multiple slices)

Figure 1.1: Existence of multiple scale samples of same cardiac structures

additional labeled data from the target domain. However, in many supervision depen-

dent tasks like segmentation, labeling data for new domains in extremely expensive

and cumbersome. Another option is to use purely synthetic data for model training.

Unfortunately, models naively trained on synthetic data do not generalize well to real

image samples.

This problem of domain shift has motivated several research works on unsuper-

vised domain adaptation(UDA). It is a methodology that attempts to learn a model

that performs well in target domain using solely unlabeled target domain data, and

labelled data from the source domain. Recent works on UDA can be divided among

two streams, Image Adaptation and Feature Adaptation. Briefly, image adaptation

deals with the domain shift at the input level using pixel-level transformations, while

feature adaptation learns a model that extracts domain invariant features.
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Recent studies have pointed out, both streams address domain shift from comple-

mentary perspectives. Furthermore, several promising works have emerged that perform

both the adaptations together [14, 24, 57]. The current state-of-the-art framework, Syn-

ergistic Image and Feature Adaptation (SIFA) [6] leverages the mutual interaction and

benefits of both adaptations by enabling a synergistic fusion of the adaptations from

both the feature and image perspectives. The network shares the feature encoder for

simultaneously transforming image appearances and extracting domain invariant rep-

resentations for segmentation tasks. The network is explained in detail in the Methods

section.

To the best of our knowledge, all recent UDA for segmentation methods, including

the state-of-the-art SIFA framework, use dilated residual networks (DRNs) [54] as their

segmentation modules. While, DRNs are efficient and work well for segmenting out

distinct structures, they do not capture the multi-scale context effectively (See figure

1.1). There remains extensive room for improvement in the segmentation module of

the network. Semantic segmentation being a separate research problem, a fairly large

number of methods [9, 33] have been developed to improve the performance in com-

puter vision systems. Most recent works include use of atrous convolutions and spatial

pyramid pooling [10] to capture multi-scale features.

In this thesis, noticing the growing inclination of researchers towards using PyTorch

as their default deep learning library, we re-implement the SIFA framework in PyTorch.

As far as we know, our implementation is the first reproduction of the TensorFlow im-

plementation [5] of SIFA in PyTorch. Most importantly, we propose an additional

component to the DRN module called atrous spatial pyramid pooling(ASPP)[10], and

successfully validate the method on the challenging task of cross-modality cardiac struc-

ture segmentation [63]. The segmentation module is an independent entity, that can be

appended to any domain adaptation modules effectively without interfering with the

adaptation process. We encourage researchers to use our implementation, in whole or

in part, for future improvements.

The major highlights of the thesis are as follows:

1. With growing inclination of researchers to use PyTorch, we re-implement the
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SIFA network in PyTorch to encourage further improvements in UDA for medical

imaging.

2. We propose an addition of atrous spatial pyramid pooling module to the segmen-

tation network, to capture multi-context features and thus improve segmentation

performance without interfering with the adaptation process.

3. We validate the robustness of the SIFA(PyTorch) module with the additional

ASPP and compare the results with the TensorFlow implementation of SIFA.
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Chapter 2

Literature Review

Our implementation involves improving the segmentation networks that can be used in

domain adaptation frameworks without affecting the adaptation process. As a result, in

this chapter, we discuss two independent modules and the previous works that inspired

this thesis. The modules discussed below, when integrated into one unified network,

exploit information effectively to perform domain-invariant and accurate segmentation.

2.1 Semantic Image Segmentation

Semantic segmentation was an extremely challenging task in the previous decade, when

deep learning was still on the rise. Most of the successful segmentation algorithms

involved using hand-crafted features with shallow classifiers like Random Forests [48]

and Support Vector Machines [17]. The performance of these systems has always been

compromised by the limited representational power of the hand-crafted features. With

the rise in DCNNs deployed in a fully convolutional manner (i.e Fully Convolutional

Networks or FCNs [47, 38, 36]), the performance of these models on several semantic

(a) Image Pyramid (b) Encoder-Decoder (c) Spatial Pyramid Pooling

Figure 2.1: Segmentation model designs
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segmentation benchmarks has been phenomenal.

We know that basic DCNNs normally are invariant to local image transforms [55],

allowing them to learn abstract representations. While this is desirable for high-level

vision tasks like image classification or object detection, it can hamper the performance

of dense prediction tasks like semantic segmentation. Another seemingly trivial but

difficult problem usually faced for segmentation tasks is the existence of objects at

multiple scales [63].

Current state-of-the-art(SoA) DCNN systems for low-level prediction tasks revolve

around two essential principles to solve the above problems. The first one is using

optimal neural network design and the second is ability to capture multi-scale context.

It has been known that context information is crucial for pixel labeling [22, 13, 39, 7,

31, 41, 46, 52]. Several model designs have been proposed for the same. (See figure 2.1)

2.1.1 Image Pyramid

The model is used repeatedly on multiple scaled inputs to capture multi-scale context.

Small scale inputs encode long-range context in features. On the other hand, large scale

inputs encode details relevant to small objects. For example, Farabet et al. [16], uses

a laplacian pyramid to obtain images at multiple scales. These images are then given

as an input to the model. The feature maps generated from the model, for all scales,

are then merged for final pixel-level labeling. [31, 11, 9] involved directly resizing the

inputs to various scales and fusing all the intermediate features from all the scales. The

image pyramid design of networks is not a favorable method, and doesn’t scale well for

deeper DCNNs due to its heavy computations and limited GPU memory. Such models

are usually applied during the Inference stage [12].

2.1.2 Encoder-decoder

This type of model comprises of two distinct components. The Encoder captures long-

range information easily in the deeper layers, using consecutive pooling or convolutional

striding operations. The Decoder inputs the captured information from the Encoder

to recover the object details and spatial resolution that is necessary for dense-labeling
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tasks.

One popular research example that uses the encoder-decoder design is U-Nets [44].

Comprising of several variations, U-Nets skip connections from encoder features to de-

coder activations, thus regaining all spatial resolution lost due to pooling and striding.

[19] employs Laplacian pyramid reconstruction for decoders. SegNet [1] uses the pooling

indices of the encoder for upsampling the convolutions in the decoder. Many such vari-

ations [30, 43, 42, 26] have performed effectively in several segmentation benchmarks.

2.1.3 Context Modules

In this design, models optimized for high-level tasks are appended with additional

modules in cascade to encode long range context. Quite frequently, researchers have

explored CRFs as context modules. One effective method is to append DenseCRFs [28]

as an independent module over the DCNNs [8]. Furthermore, [60, 31, 46] have proposed

to jointly train CRFs & DCNN components in a unified network.

Models based on atrous convolutions are also explored as context modules for seg-

mentation. For example, [35, 53, 54] experiment with modifying the atrous rates in

consecutive layers, to capture long range information effectively.

2.1.4 Spatial Pyramid Pooling

As the name suggests, this type of model [21, 29] incorporates pooling of feature maps

obtained from several multiple-scaled inputs. Few works [25, 8, 53, 9] have explored

atrous convolutions as context modules for spatial pyramid pooling(SPP) such that they

can be applied to any network. Specifically, they duplicate several copies of the last

block of the network (like ResNet [23]) and arrange them in a cascade before adding the

SPP module. Atrous Spatial Pyramid Pooling(ASPP) [10] is a popular method where

a layer with parallel atrous convolutions captures multi-scale information. In [34, 59],

ASPP module is augmented with image-level features as well to capture global context.

While the above methods represent semantic segmentation in traditional vision sys-

tems, medical imaging studies frequently borrow them to effectively perform complex

segmentations.
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2.2 Domain Adaptation

Numerous investigations of deep learning have focused on reducing performance degra-

dation of DCNNs under domain shift. As mentioned earlier, several research proposals

tackle this problem from the perspective of image adaptation, feature adaptation or a

mixture of both. This section gives an overview of the SoA approaches and focuses

on unsupervised domain adaptation. (Assuming annotations are available only for the

source domain). Studies on both traditional vision systems and medical imaging sys-

tems are covered.

2.2.1 Image Adaptation

Image adaptation is the process of aligning the image appearance between domains

with pixel-to-pixel transformations. With the introduction of GANs [20] and several

of its variations, image adaptation addresses the domain shift addressed at input level.

To preserve the semantic information of the input images, the entire process is usually

guided by a cycle-consistency constraint [61]. One stream of solutions is to test the

transformed source like images on the trained model [56, 45]. Alternatively, generated

target-like images can be used to train the model in the target domain(i.e using syn-

thetic data for model training). However, these methods is usually not effective as they

don’t generalize to real images [4, 58]. CycleGANs [61] have gained much recognition

in image-to-image transformations. Many natural [45] as well as medical imaging [24]

studies have heavily borrowed the idea of CycleGANs for the task of segmentation.

Bateson et al. [2] proposes a general constrained image adaptation approach for spine

segmentation. It encodes simple domain-invariant prior knowledge about the segmen-

tation regions, like region size, or region shape.

2.2.2 Feature Adaptation

Meanwhile, several feature-level adaptation methods have also been researched, with the

end goal being to reduce domain shift deeper in the network. The focus is on aligning the

feature distributions by minimizing a certain chosen measure of distances like Maximum
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Mean Discrepancy(MMD) [37] between features from the source and target domain.

Instead of using the distance measurements between distributions, methods like DANN

[18] and ADDA [50] have effectively used discriminators to differentiate the feature

space across domains. Several medical studies [27, 15] have adopted this framework

for segmenting tasks. A Recent studies [49], propose to project the high-dimensional

feature space to more compact spaces like the semantic prediction space, and use it as

the discriminator input to derive the adversarial loss.

Several methods have emerged that combine image and feature adaptation to achieve

a stronger process. For example CyCada [24], PnP-AdaNet [14] and FCAN [57] achieve

significant improvement in adaptation between synthetic and real world scenarios, by

sequentially performing image and feature adaptation.

While all the above methods assume that abundant unlabeled target data is avail-

able, which is not always realistic in medical image computing, OUyang et al. [40] uses

a different direction for 3D cross modality cardiac segmentation. The method heavily

borrows the idea of one shot domain translation [3].

It is worth noting that, to the best of our knowledge, most adaptation methods

for semantic segmentation above utilize dilated residual networks(DRNs) [54] as their

segmentation module.

Considering that cardiac MRI or CT can be taken across different sites or even

different angles depending on the purpose of diagnosis, it is highly possible that the

cardiac structures present are of multiple scales [63]. As a result, simple segmentation

modules that don’t effectively capture multi-scale context may not be sufficient in this

challenging task of cardiac segmentation. To tackle this task, we propose to merge the

current SoA SIFA framework [6] with the current SoA segmentation module to fully

exploit their mutual benefits toward whole-heart segmentation without interfering with

the unsupervised domain adaptation process. However there are certain constraints or

restrictions of using the segmentation research for domain adaptation. For example U-

Nets [44] cannot be utilized in adaptation frameworks because of the skip connections

since, along with regaining the resolution maps, the decoder also gains domain specific

features through the skip connections which is not desired for adaptation frameworks.
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As a result, we need to focus on segmentation modules [10] that can perform with-

out interfering with the adaptation process. To smoothen the integration process, we

implement the two modules independent of each other such that the segmentation mod-

ule can be used as an individual entity for use in future improved domain adaptation

frameworks.
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Chapter 3

Dataset

To compare the effectiveness of our method with it’s predecessor, SIFA [6], we test

it on the MICCAI Multi-modality Whole Heart Segmentation(MMWHS) Challenge

[63] dataset (Figure 3.1). It contains 20 MRI and 20 CT cardiac images with manual

segmentation annotations. The images in either domains are unpaired and are obtained

from different anonymous patients and sites. Similar to SIFA data preparation and

usage, we evaluate the adaptation process on segmentation of four structures: ascending

aorta(AA), left atrium blood cavity(LA-blood/LAC), left ventricle blood cavity(LV-

blood/LVC), and the myocardium of the left ventricle(LV-myo/MYO).

Figure 3.1: Severe cross-modality domain shift in cardiac imaging

To simplify the procedure and perform an equivalent evaluation like in SIFA, we use

the released pre-processed data from PnP-AdaNet [14]. The pre-processing of samples

includes normalizing all the data with zero mean and unit variance. The images were

cropped to the size 256× 256 and additionally augmentated with rotation, scaling and

affine transforms. For the learning process, each modality was randomly split with

80% cases for training, and 20% cases for testing. MR scans are considered as the

source domain, and CT scans are considered as the target domain. Please note, the
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ground-truth of the target domain(i.e CT image scans) were used only for validation

and testing phase.

Similar to the SIFA framework, for segmentation evaluation, Dice coefficient(%) and

average surface distance (ASD) metrics were used. Higher Dice coefficient and Lower

ASD indicated better segmentation performance.
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Chapter 4

Methods

Figure 4.1: Improved segmentation network: SIFA + ASPP

Generator GS T : source → target transformation.
Encoder E + Decoder U : target → source transformation.

Encoder E + ASPP segmentor S: Segmentation mask predictions.

4.1 Segmentation module

As mentioned previously, to the best of our knowledge, all recent UDA for segmentation

frameworks use DRNs as their segmentation module. Several segmentation improve-

ments have emerged since DRNs, that capture multi-scale context from data easily.

A variation of atrous spatial pyramid pooling proposed in [10] is one such improve-

ment which uses the design of DRNs as a context module and tool for adding multi-scale

context modules. The ASPP module captures multi-scale information by resampling

features at different scales using multiple atrous convolution rates as well as adopting
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image-level features. We refer the reader to head to [10] for specific configurations and

a detailed explanation of the design.

In the end, the module consists of the following parallel layer branches on top of

the base DRN design (Figure 4.1):

1. One 1× 1 convolution

2. Two 3×3 convolutions with rates = (4, 6, 8) (Experimented with rates = (6, 8, 10)

as well. Got comparable results)

3. Image-level features i.e upsampled feature space obtained from global average

pooling of the input feature map to module.

The resulting features from all the parallel branches are then concatenated and passed

through one more convolution before the final classification layer.

4.2 Synergistic Image and Feature Adaptation

As mentioned before, in order to enable cross-modality cardiac segmentation, SIFA [6]

proposes a synergistic integration of both the perspectives of adaptation, i.e. image

adaptation and feature adaptation, in a single unified network, such that both aspects

can mutually benefit each other during training (See figure 4.1).

4.2.1 Overview

Given source input domain Xs, set of labeled samples {xsi , ysi }Ni=1, and target domain

Xt, set of unlabeled samples {xtj}Mj=1, the aim is to reduce the domain shift such that,

the same segmentation network can be used to segment structures from either domain

inputs.

4.2.2 Image Adaptation

The image adaptation process narrows the domain shift between the source and tar-

get domain by aligning the image appearances. This is achieved using GANs [20] for

pixel-to-pixel image transformations of source images xs to target-like images xs→t.
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Specifically, a target generator GS T and a target discriminator Dt is built, forming a

minimax two player component in the target domain [xs→t = GS T (xs)].

The discriminator opposes the generator, trying to differentiate the fake image xs→t

from the real target image xt. The adverserial loss Lt
adv is defined as :

Lt
adv(GS T , Dt) = Ext∼Xt [logDt(x

t)]

+Exs∼Xs [log (1−Dt(GS T (xs)))]

The training of this network is guided by a cyclic consistency constraint using a

reverse generator Gs = E ◦ U and source discriminator Ds. (E : encoder and U :

upsampling decoder). This is necessary to preserve the semantic context of the input

during adversarial training. The pair (Gs, Ds) is trained in the same way as (GS T , Dt)

using adversarial loss Ls
adv:

Ls
adv(Gs, Ds) = Exs∼Xs [logDs(x

s)]

+Exs→t∼Xs→t [log (1−Ds(Gs(x
s→t)))]

The cyclic consistency loss is defined as follows:

Lcyc(GS T , E, U) = Exs∼Xs || U(E(GS T (xs)))− xs ||

+Ext∼Xt || GS T (U(E(xt)))− xt ||

In short, the aim is to obtain : U(E(GS T (xs))) ' xs ; GS T (U(E(xt))) ' xt.

Ideally this should bring xs→t closer to the data distribution of target domain. With

that assumption the segmentation network is trained with synthetic target-like images.

To elaborate, the feature maps extracted from E(xs→t) are input to the pixel-level

classifier (in our case, ASPP module), S for predicting segmentation masks ŷs→t =

S(E(xs→t)).

The segmentation loss to be optimized is:

Lseg(E,S) = H(ys, ŷs→t) + α ·Dice(ys, ŷs→t)

where, H is the weighted cross-entropy loss from ground-truth, predicted segmen-

tation mask, Dice is the Dice Loss, and α is the weighting hyper-parameter.
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4.2.3 Feature Adaptation

When domain shift is severe, like in the case of MRI scans & CT scans, only image

adaptation can be insufficient to achieve the desired performance. One needs to address

the remaining domain gap between the synthesized target images and real target images

using feature adaptation i.e. enabling the network to extract domain invariant features

such that it becomes indistinguishable or difficult to interpret, which domain it came

from.

It is worth noting that the feature space extracted by the DCNNs will be of very

high dimension. It can be difficult to learn the mappings from the specific domain

distribution X to the underlying domain-invariant feature space Z. To overcome this

problem, two independent discriminators, DsandDp are used to distinguish the domain

invariance in two lower dimensional spaces: Semantic Segmentation space and Auxiliary

Feature space.

Discriminator Dp distinguishes whether the predicted segmentation mask comes

from xs→t or xt. Since segmentations are supposedly simple anatomical structures, if

the segmenter receives features that are invariant, the discriminator would fail to tell

apart the domain of the predicted masks.

The adversarial loss for the semantic segmentation space is:

Lp
adv(E,S,Dp) = Exs→t∼Xs→t [log (Dp(S(E(xs→t))))]

+Ext∼Xt [log (1−Dp(S(E(xt))))]

While the cyclic consistency constraint helps preserve the semantic information during

pixel to pixel transformation, it can also be used to remove any remaining domain

characteristics in the latent feature space Z. Specifically, an auxiliary task is added

to the source discriminator Ds to distinguish whether the generated source-like images

xt→s came from real target images xt or generated target-like images xs→t.

The domain invariance training in the auxiliary feature space is guided by the fol-

lowing adversarial loss:
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Laux
adv (E,Ds) = Exs→t∼Xs→t [log (Ds(U(E(xs→t))))]

+Ext∼Xt [log (1−Ds(U(E(xt))))]

Overall, we enforce the encoder to extract domain invariant features by training

it from two perspectives: segmentation prediction (High-level semantics); generated

image space(low-level appearance).

Notice that the encoder E is shared for both image adaptation and feature adapta-

tion. This allows us to use the encoder simultaneously to extract features and transform

image appearances in a multi-task scenario - a synergistic merge indeed.

Since both the adaptation processes are independent of each other, they form in-

dependent training graphs allowing us to train the entire network in an end-to-end

manner. The final goal of the framework is to reduce the loss function:

L = Lt
adv(GS T , Dt) + λsadvL

s
adv(E,U,Ds) + λcycLcyc(GS T , E, U)

+λsegLseg(E,S) + λpadvL
p
adv(E,S,Dp) + λauxadvL

aux
aux(E,Ds)

where all the λs are the weighting hyper-parameters. We refer the reader to head to

[10] for specific network configurations and a detailed explanation of the design.

4.2.4 Implementation Details

The entire network including the SIFA framework + ASPP segmentation module is

implemented in PyTorch 1.2 (Python 3.6 ). Both independent modules are configured

as proposed in [6] and [10], respectively.

The learning protocols of SIFA framework are used for training the network. This

makes it easy for us to compare the results between the TensorFlow implementation

& PyTorch implementation. It also enables us to correctly evaluate the additional

segmentation improvements. Overall, the training parameters are as follows:

1. Adaptation module: we use the Adam optimizer with a learning rate of 2× 10−4

with no decay.
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2. Segmentation module: we use another Adam optimizer with a learning rate of

1× 10−3 with a step decay of 0.9 every 2 epochs.

3. During testing, the image scan from the target domain is given directly as input

to the domain invariant encoder E, followed by the segmenter S, to obtain the

segmentation prediction.
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Chapter 5

Results

For the purpose of this thesis, we compare our PyTorch implementation with the Ten-

sorFlow implementation of SIFA [5] framework without ASPP. Table 5.1 reports the

comparison results. We can see that the PyTorch implementation of SIFA gives a

slightly reduced performance. Since completely reproducible results can’t be guaran-

teed across deep-learning libraries and across CPU/GPU platforms, our best guess is

that we need better hyper-parameter tuning.

Nevertheless, when we integrate our SIFA implementation with the ASPP module,

there is a significant boost in the Dice score for the Left Atrium blood cavity (LAC) and

the Left Ventricle blood cavity (LVC). This demonstrates the effectiveness of multi-scale

context modules for segmentation.

Evaluation

Methods Dice ASD

AA LAC LVC MYO Average AA LAC LVC MYO Average

SIFA 81.1 76.4 75.7 58.7 73.0 10.6 7.4 6.7 7.8 8.1

SIFA(PyTorch) 79.6 70.0 74.8 54.0 69.6 10.3 6.2 5.6 7.3 7.3

Proposed 79.6 76 77.2 55.3 72.02 10.8 7.1 5.6 7.3 7.7

Table 5.1: Evaluation Results

Performance comparison between our method(SIFA + ASPP) and SIFA for the task
of cardiac cross-modality segmentation.
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Chapter 6

Conclusion

The thesis proposes adding the atrous spatial pyramid pooling to the segmentation sub-

module of the domain adaptation network, enabling it to capture multi-scale context

effectively and thus improving the segmentation performance.

We also provide a PyTorch implementation of SIFA, the current SoA domain adap-

tation framework for cross-modality cardiac segmentation. This is with the hope of

encouraging further research among scientists who prefer PyTorch’s dynamic ecosys-

tem.

The method is validated on unpaired MRI to CT image adaptation for cardiac

segmentation and compared with the base SIFA module. Our method is general and

can be extended to other segmentation appplications in part (i.e SIFA and ASPP) or

in whole for unsupervised domain adaptation. The code is publicly available at

https://github.com/rushin682/SIFA-PyTorch.git.
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Chapter 7

Discussion

When thinking of solutions for improvements in individual components of domain adap-

tation, a good start is to think of approaches that can simplify the framework without

affecting the adaptation process. From our own experimental experiences, for effective

model learning, it is necessary to have a refined dataset that doesn’t include many

outliers. Pre-processing can improve the training significantly.

It is also important to validate the robustness of the proposed method on multiple

datasets. Several publicly available datasets exist for domain adaptation like the Multi-

sequence Cardiac MR Segmentation Challenge 2019 [MS-CMR 2019] dataset [62]. We

plan to explore optimal pre-processing techniques for medical image data as well as

validate the robustness of our method on MS-CMR 2019 dataset in the near future.

With emerging research in Neural Architecture Search [33] beyond image classifica-

tion, building a domain adaptation framework should be plausible. With this note, we

encourage researchers to move ahead toward developing a general domain adaptation

search space that can reduce and possibly eliminate the multi-domain difference.
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[28] P. Krähenbühl and V. Koltun. Efficient inference in fully connected crfs with
gaussian edge potentials, 2012, 1210.5644.

[29] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories. In 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’06), volume 2,
pages 2169–2178, 2006.

[30] G. Lin, A. Milan, C. Shen, and I. Reid. Refinenet: Multi-path refinement networks
for high-resolution semantic segmentation, 2016, 1611.06612.

[31] G. Lin, C. Shen, A. van dan Hengel, and I. Reid. Efficient piecewise training of
deep structured models for semantic segmentation, 2015, 1504.01013.

[32] G. J. S. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian,
J. A. W. M. van der Laak, B. van Ginneken, and C. I. Sánchez. A survey on deep
learning in medical image analysis. CoRR, abs/1702.05747, 2017, 1702.05747.

[33] C. Liu, L.-C. Chen, F. Schroff, H. Adam, W. Hua, A. Yuille, and L. Fei-Fei. Auto-
deeplab: Hierarchical neural architecture search for semantic image segmentation,
2019, 1901.02985.

[34] W. Liu, A. Rabinovich, and A. C. Berg. Parsenet: Looking wider to see better,
2015, 1506.04579.

[35] Z. Liu, X. Li, P. Luo, C. C. Loy, and X. Tang. Semantic image segmentation via
deep parsing network, 2015, 1509.02634.

[36] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic
segmentation, 2014, 1411.4038.

[37] M. Long, Y. Cao, J. Wang, and M. Jordan. Learning transferable features with
deep adaptation networks. In Proceedings of the 32nd International Conference on
Machine Learning, pages 97–105. PMLR, 2015.

[38] P. Luo, G. Wang, L. Lin, and X. Wang. Deep dual learning for semantic image seg-
mentation. In 2017 IEEE International Conference on Computer Vision (ICCV),
pages 2737–2745, 2017.

[39] M. Mostajabi, P. Yadollahpour, and G. Shakhnarovich. Feedforward semantic
segmentation with zoom-out features, 2014, 1412.0774.

[40] C. Ouyang, K. Kamnitsas, C. Biffi, J. Duan, and D. Rueckert. Data efficient
unsupervised domain adaptation for cross-modality image segmentation, 2019,
1907.02766.

[41] G. Papandreou, L.-C. Chen, K. Murphy, and A. L. Yuille. Weakly- and semi-
supervised learning of a dcnn for semantic image segmentation, 2015, 1502.02734.

[42] C. Peng, X. Zhang, G. Yu, G. Luo, and J. Sun. Large kernel matters – improve
semantic segmentation by global convolutional network, 2017, 1703.02719.

[43] T. Pohlen, A. Hermans, M. Mathias, and B. Leibe. Full-resolution residual net-
works for semantic segmentation in street scenes, 2016, 1611.08323.



25

[44] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for
biomedical image segmentation, 2015, 1505.04597.

[45] P. Russo, F. M. Carlucci, T. Tommasi, and B. Caputo. From source to target and
back: symmetric bi-directional adaptive gan, 2017, 1705.08824.

[46] A. G. Schwing and R. Urtasun. Fully connected deep structured networks, 2015,
1503.02351.

[47] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat:
Integrated recognition, localization and detection using convolutional networks,
2013, 1312.6229.

[48] J. Shotton, M. Johnson, and R. Cipolla. Semantic texton forests for image cate-
gorization and segmentation. In 2008 IEEE Conference on Computer Vision and
Pattern Recognition, pages 1–8, 2008.

[49] Y.-H. Tsai, W.-C. Hung, S. Schulter, K. Sohn, M.-H. Yang, and M. Chan-
draker. Learning to adapt structured output space for semantic segmentation,
2018, 1802.10349.

[50] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. Adversarial discriminative do-
main adaptation, 2017, 1702.05464.

[51] A. van Opbroek, M. A. Ikram, M. W. Vernooij, and M. de Bruijne. Transfer
learning improves supervised image segmentation across imaging protocols. IEEE
Transactions on Medical Imaging, 34(5):1018–1030, 2015.

[52] F. Xia, P. Wang, L.-C. Chen, and A. L. Yuille. Zoom better to see clearer: Human
and object parsing with hierarchical auto-zoom net, 2015, 1511.06881.

[53] F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions,
2015, 1511.07122.

[54] F. Yu, V. Koltun, and T. Funkhouser. Dilated residual networks, 2017, 1705.09914.

[55] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks,
2013, 1311.2901.

[56] Y. Zhang, S. Miao, T. Mansi, and R. Liao. Task driven generative modeling for
unsupervised domain adaptation: Application to x-ray image segmentation, 2018,
1806.07201.

[57] Y. Zhang, Z. Qiu, T. Yao, D. Liu, and T. Mei. Fully convolutional adaptation
networks for semantic segmentation, 2018, 1804.08286.

[58] H. Zhao, H. Li, S. Maurer-Stroh, Y. Guo, Q. Deng, and L. Cheng. Supervised seg-
mentation of un-annotated retinal fundus images by synthesis. IEEE Transactions
on Medical Imaging, 38(1):46–56, 2019.

[59] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene parsing network, 2016,
1612.01105.



26

[60] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang,
and P. H. S. Torr. Conditional random fields as recurrent neural networks. 2015
IEEE International Conference on Computer Vision (ICCV), Dec 2015.

[61] J. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation us-
ing cycle-consistent adversarial networks. In 2017 IEEE International Conference
on Computer Vision (ICCV), pages 2242–2251, 2017.

[62] X. Zhuang. Multivariate mixture model for myocardial segmentation combining
multi-source images. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 41(12):2933–2946, 2019.

[63] X. Zhuang and J. Shen. Multi-scale patch and multi-modality atlases for whole
heart segmentation of mri. Medical Image Analysis, 31:77 – 87, 2016.


