
EFFICIENT AND ASYMPTOTICALLY OPTIMAL
KINODYNAMIC MOTION PLANNING

By

ZAKARY LITTLEFIELD

A dissertation submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Kostas E. Bekris

And approved by

New Brunswick, New Jersey

May 2020



ABSTRACT OF THE DISSERTATION

Efficient and Asymptotically Optimal

Kinodynamic Motion Planning

by ZAKARY LITTLEFIELD

Dissertation Director:

Kostas E. Bekris

This dissertation explores properties of motion planners that build tree data structures

in a robot’s state space. Sampling-based tree planners are especially useful for planning

for systems with significant dynamics, due to the inherent forward search that is per-

formed. This is in contrast to roadmap planners that require a steering local planner

in order to make a graph containing multiple possible paths. This dissertation explores

a family of motion planners for systems with significant dynamics, where a steering

local planner may be computationally expensive or may not exist. These planners fo-

cus on providing practical path quality guarantees without prohibitive computational

costs. These planners can be considered successors of each other, in that each sub-

sequent algorithm addresses some drawback of its predecessor. The first algorithm,

Sparse-RRT, addresses a drawback of the RRT method by considering path quality dur-

ing the tree construction process. Sparse-RRT is proven to be probabilistically complete

under mild conditions for the first time here, albeit with a poor convergence rate. The

second algorithm presented, SST, provides probabilistic completeness and asymptotic

near-optimality properties that are provable, but at the cost of additional algorithmic

overhead. SST is shown to improve the convergence rate compared to Sparse-RRT.

The third algorithm, DIRT, incorporates learned lessons from these two algorithms and
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their shortcomings, incorporates task space heuristics to further improve runtime per-

formance, and simplifies the parameters to more user-friendly ones. DIRT is also shown

to be probabilistically complete and asymptotically near-optimal. Application areas

explored using this family of algorithms include evaluation of distance functions for

planning in belief space, manipulation in cluttered environments, and locomotion plan-

ning for an icosahedral tensegrity-based rover prototype that requires a physics engine

to simulate its motions.
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Chapter 1

Introduction

In words, the motion planning problem is to determine the inputs a robot needs to move

from a start location to a goal location while avoiding collisions with its environment or

itself. This high level task can vary depending on the robotic platform, but the motion

planning algorithm employed will usually be determining some higher level inputs to

that system that “drives” the system to its goal. In its most general context, this

problem has been shown to be PSPACE-HARD [88].

One of the main contributors to this hardness result is the so called “curse of di-

mensionality.” The idea is that as the dimensionality of the motion planning problem

increases, the resulting algorithmic process that solves that problem gets exponentially

more difficult to perform. Of note, a robot’s state dimensionality is not limited to the

three-dimensional space of the world, but is instead inherent to how the robot is built

and configured. Another contributor to the difficulty of the motion planning problem

is robot dynamics. The dynamics of the robot introduce additional constraints that

must be respected in order to return a feasible motion plan. The consideration of both

kinematic constraints such as obstacles and these dynamic constraints constitute the

kinodynamic motion planning problem [20]. Examples of kinodynamic planning prob-

lems involve domains where the environment can cause drift (flying and underwater

robots), or if the robot is subject to its own inertia when controlled. The complexity

of these dynamics can even introduce runtime issues in a motion planning algorithm if

the dynamical model is highly complex.
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1.1 Sampling-based Planners

One class of motion planning algorithms has consistently shown the ability to address

the dimensionality problem outlined above, namely the sampling-based planner. These

methods aim to approximate the connectivity of a robot’s configuration space with a

graph structure. One such method is the Probabilistic Roadmap Method (PRM) [43].

This method builds an undirected graph in configuration space aimed at answering

multiple start-goal queries. By providing multiple different candidate paths through

the configuration space, it is possible to provide results for each of these requests, and

do so by preprocessing the environment, requiring just a graph search to satisfy the

query.

Another type of sampling-based planner instead builds a tree structure in the search

space, instead of a multi-connected graph. These methods gain a memory benefit from

not maintaining all possible edge connections in the graph, but are now relegated to only

working for a smaller subset of queries, usually where the start state is given beforehand.

In one sense, the roadmap method above is multiple-query, and tree methods, such as

the Rapidly-exploring Random Tree (RRT) [49] and Expansive-Space Tree (EST) [34]

are single query, and, in general, must be reconstructed for each new start-goal query,

except in specialized cases.

In reality, using multi-connected graphs or trees both have benefits and drawbacks.

Roadmaps have the benefit of being preprocessed, meaning a bulk of the runtime is

offline, and therefore has less impact during query time, and the size of the graph

constructed can be a bottleneck. This also assumes that the environment is mostly

static, otherwise the approximation of the free configuration space is inaccurate at

query time. For tree-based methods, there is minimal preprocessing, therefore most of

its execution is online, but there is no graph search to perform. Tree-based methods

are also amenable to more dynamic environments, since there is no preprocessing to

invalidate.

One of the most important differences between these two method types is in one of

the underlying primitive operations needed for edge generation. For the roadmap-based
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Figure 1.1: Construction of a roadmap and a tree. For roadmaps, an offline process
generates a graph approximating the connectivity of the configuration space. Then,
start and goal points are connected to the roadmap at query time. For tree planners,
a search is started from the state state and extended until the goal is reached.

methods, these edges are constructed node to node, with the aid of a boundary value

problem (BVP) solver. Given two configurations in the space, this primitive connects

the two states with an optimal local plan without considering obstacles. This primi-

tive is needed to maintain the multiple connections between nodes and their neighbors.

For tree-based planners, while this BVP solver is sometimes utilized, it is not required.

This critical observation becomes especially important in the context of kinodynamic

planning. Kinodynamic planning is usually conducted in a state space, which usually

consists of derivative terms from the configuration space (i.e. velocities, accelerations,

jerks, etc.) As such, it becomes more difficult to perform these locally optimal connec-

tions. In some cases, it may even be impossible or impractical, which means we have

to rely on forward propagation instead of a BVP solver, which only requires the initial

condition and simulates a control input forward to reach a new state.
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1.2 Properties of Sampling-based Planners

1.2.1 On the Completeness of Sampling-based Planners

Even though sampling-based methods can work effectively in high-dimensional con-

figuration and state spaces, this comes at the cost of completeness. Instead, these

algorithms have the property of probabilistic completeness:

Definition 1 (Probabilistic Completeness) The probability of finding a solution to the

motion planning query provided, if a solution exists, approaches one as the number of

samples tends toward infinity [42, 49].

Of note, this property has no guarantee on reporting that no solution exists, but

can only guarantee that if a solution exists, the algorithm will find that solution. Most,

if not all, sampling-based motion planners have this property, or some variation of it,

such as resolution completeness [76].

1.2.2 On the Optimality of Sampling-based Planners

One major point of note is that while probabilistic completeness is a guarantee about

returning a solution if it exists, this property does not provide a guarantee about how

optimized that solution is. In fact, in the case of RRT, there is a proof that the common

base version of RRT is provably sub-optimal [40]. For similar reasons to the completeness

property being impossible to show, it is also not going to be possible to prove that a

sampling-based algorithm is optimal. Therefore, a different property is considered, that

of asymptotic optimality.

Asymptotic optimality is a similar property to probabilistic completeness, just with

a different end result.

Definition 2 (Asymptotic Optimality) The property that as the number of samples

taken in the algorithm tends toward infinity, the probability that the cost of a solution

returned by that algorithm is the optimal tends toward one [40].
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This property does not explicitly guarantee the solution quality is good at any finite

iteration, but in practice, an anytime behavior is observed, where over time, solutions

tend to improve as more samples are generated. This anytime behavior is usually

observed in reasonable runtimes of sampling-based algorithms with this property, and

it is usually not necessary to exhaust a large amount of time to generate a better

solution. The asymptotic optimality property can also be relaxed into an asymptotic

near-optimality property, where the guaranteed solution cost is not necessarily the

optimal cost, but bounded by some function of the optimal cost.

A carefully constructed version of PRM, PRM∗ was analyzed and was determined to

have this asymptotic optimality property [40]. In that same work, an asymptotically

optimal algorithm called RRT∗ was also introduced that aimed to build a tree structure

just like RRT. These two algorithms have become the basis for many different variants,

just as PRM and RRT were previously (e.g. [1, 24, 35, 37, 55, 83, 108]) . Once again,

there is a common assumption that the asymptotic optimality property is inherited in

each variant.

1.3 Directions for Improving Practical Performance

In practice, there is no single implemented sampling-based algorithm that will solve all

potential use cases. It is often the case that many different variant methods will be

proposed that address different issues for different problems. For instance, there are

may different PRM variants (e.g. [19, 26, 32, 39, 43, 70, 93, 109]). Likewise, there are

many variants of RRT (e.g. [17, 21, 38, 50, 71, 112, 113]). It is commonly assumed

that these modifications do not cause issues with probabilistic completeness, but that

is not always the case. An example related to a particular common configuration of

the RRT algorithm can be found in [51]. A particular problem domain example was

provided that was not handled by this common RRT variant. It is not always the

case that modifications remove properties however. Certain modifications to the base

algorithmic framework can introduce more useful properties.
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1.4 Sampling-based Planning: Kinodynamic Case

When applying sampling-based motion planners to the kinodynamic problem domain,

there are additional considerations that need to be made compared to kinematic do-

mains, which relate to the robot’s dynamic constraints. For example, a canonical RRT

variant constructs a new edge with the following steps:

• Randomly sample a state.

• Find the closest existing node in the search tree.

• Extend an edge toward the random sample, making a direct connection if within

a distance threshold.

That third step becomes more problematic for dynamical systems. The task of steer-

ing toward a given state is the boundary value problem (BVP), which was discussed in

the context of roadmap methods, and are also appearing in certain tree-based variants.

In practice, a solver for the BVP needs to be provided, or a motion planning method

that does not require such a solver needs to be selected.

Luckily, there is a simple solution to this problem, where instead of steering toward

a state, an input to the system can be sampled at random, and then integrated forward

in time, thus making forward progress. In this way, edges can be introduced into a

tree search, but without the need for a BVP solver. However, this means that roadmap

methods cannot make use of this forward propagation strategy easily.

1.4.1 Efforts towards Asymptotic Optimality

As discussed previously, the PRM∗ and RRT∗ methods are proven to be asymptotically

optimal sampling-based motion planners [40]. Both methods require this BVP solver

in order to provide that property, however. PRM∗ is explicitly a roadmap method, so

it makes sense to have that requirement, but RRT∗ is building a tree structure. More-

over, RRT∗ is an algorithm that is a minimum spanning tree over an implicit roadmap,

specifically that of the RRG algorithm [40]. Therefore, if planning is performed in a

kinodynamic domain, and a variant of PRM∗ or RRT∗ is desired, a BVP solver is a needed

component, either to maintain the multiple connections in the graph or to rewire the
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tree. While this is not always a prohibitive requirement (e.g. [36, 55, 108]), for some

challenging systems, it may be difficult or impractical to provide such a solver in all

domains. On the other hand, a purely näıve strategy of randomly selecting nodes and

randomly trying control inputs can be proven to be asymptotically optimal, but at an

exponential computational cost [59]. This then leads to the central question of this

dissertation:

Is it possible to achieve asymptotic optimality (or asymptotic near-

optimality) with a sampling-based planner that does not use a BVP solver

at a reasonable computational cost?

1.4.2 Dissertation Contributions

This dissertation addresses this gap in sampling-based methods for kinodynamic plan-

ning. Tree sampling-based methods that do not require a BVP solver but can also

provide asymptotic properties regarding path quality are presented. In summary, this

dissertation presents:

• A preliminary algorithm, Sparse-RRT, which combines an existing RRT mod-

ification with a pruning strategy to be an effective motion planning method.

Sparse-RRT is shown to be effective at finding and improving solution trajectories

for kinodynamic problems. Unique to this dissertation, is a proof of probabilistic

completeness for Sparse-RRT, and arguments about the convergence rate of the

algorithm [65].

• With the motivation of improving the convergence rate, a second algorithm is

presented, SST, which modifies the pruning strategy of Sparse-RRT by making the

pruning regions stable, addressing an analytical problem with Sparse-RRT. This

modification does not negatively affect runtime performance, and is still shown to

be probabilistically complete. SST also is shown to improve the convergence rate

for finding solutions relative to Sparse-RRT[58, 59].

• Following trends from the community, task-space heuristic information is intro-

duced into this family of algorithms. In addition to this, the DIRT algorithm removes
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the need for hand-tuned pruning and selection parameters needed by Sparse-RRT

and SST, and replaces them with a unified selection and pruning mechanism, the

dominance informed regions [60, 61].

• Given this family of algorithms, several application areas are also discussed, in-

cluding planning under uncertainty, manipulation in clutter, and planning for a

highly complex tensegrity-based robot [45, 64, 66, 67, 68].

This family of algorithms presented all derive inspiration from RRT, with useful

fundamental changes in key components. Not only are these modifications able to pro-

vide path quality guarantees, explicit care is taken to improve the runtime efficiency

of these algorithms, since the lack of a BVP solver can result in worse runtime perfor-

mance. Chapter 2 introduces formal definitions and assumptions these sampling-based

algorithms use. Chapter 3 discusses the Sparse-RRT algorithm, which has good per-

formance in practice, but has a poor convergence rate, even when the algorithm is

probabilistically complete. This convergence issue is then addressed with an updated

algorithm, SST, in Chapter 4. Given this algorithm which has good computational

properties, a case study on how the domain of planning under uncertainty can make

use of SST is explored in Chapter 5. This application is aimed at evaluating different

distance function choices for belief-space planning. Next, in order to further improve

the performance for kinodynamic planning using a sampling-based method, and to ad-

dress some shortcomings related to parameters in SST, the DIRT method is discussed in

Chapter 6. Finally in Chapter 7, two challenging planning domains are discussed. The

first is the problem of manipulation in clutter, which can be tackled with an application

of DIRT that leverages the manipulator’s different task spaces representations. Second,

a challenging robotic platform based on the principle of tensegrity is discussed, along

with an exploration of how the DIRT algorithm is able to effectively plan motions for

that platform.
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Chapter 2

Foundations on Sampling-based Kinodynamic Planning

Sampling-based motion planning methods work by creating samples that reside in the

space where the robot can move. This requires a parameterization of that space, and

there are different parameterizations depending on the use case. Typically, sampling-

based planners aim to work in the configuration space, C [69]. This is the space where a

full specification of the robot has been defined. For example, for a multi-link arm robot,

the sequence of joint angles would provide the location of each component of that arm

all the way down to its end-effector. The workspace, W, is the world that the robot is

affecting or working in. In the arm example, that would be the three dimensional world

we observe and where the end-effector may try to manipulate objects. The workspace

is where we usually define obstacles, since that is the space where they are exist, and

then the robot itself has obstacles.

When moving to a planning domain of kinodynamic problems, it is common to

extend from a configuration space to a state space, X. This space is usually defined as

the configuration space, C, along with some of those terms’ higher order derivatives,

i.e. velocities, accelerations, jerks, etc. These extra terms are the extra dimensionality

that adds additional complexity to the planning problem. In addition to the higher

dimensionality, the dynamic constraints have to be considered as well.

Definition 3 (Robot Dynamics) A robot’s dynamics are assumed to satisfy a differen-

tial equation of the following form:

ẋ(t) = f(x, u), x ∈ X, u ∈ U (2.1)

where t is a time parameter and U is the space of control inputs to the robot.
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In other words, there is a function that defines how the robot will evolve over time,

given a state x and a control input u. The sequence of controls inputs to this function

is denoted as a plan, and the resulting sequence of states generated by such a plan is

called a trajectory.

Definition 4 (Plan) A plan υ is a function υ(t) : [0, tυ]→ U, where tυ is its duration.

The space of all plans is defined as Υ. In this dissertation, Υ is composed of piecewise

constant control sequences of length w.

Definition 5 (Trajectory) A trajectory π is a function π(t) : [0, tπ] → X, where tπ is

its duration. A trajectory π is generated by starting at a given state π(0) ∈ X, and by

following the sequence of inputs provided by a plan, υ, and is subject to Equation 2.1.

Note that tπ = tυ if π is generated using υ.

Recall that one of the objectives of a motion planning algorithm is to avoid obstacles.

This necessitates defining a collision-free portion of the state space, Xf , and an obstacle

subset of the state space Xobs. Mathematically, these two subspaces are complements of

one another, Xf = X\Xobs. So the goal of a motion planner is to find a plan that results

in a trajectory that completely resides in the collision-free part of the state space, while

also getting from a desired start point to a desired goal, then optimizing the trajectory

with respect to some cost function as a secondary objective. Of note, since the lack

of BVP-solver implies the inability to get to a specific state easily, the goal needs to be

defined as a region with some tolerance, which is commonly defined by a center point

and a small radius.

Definition 6 (Kinodynamic Motion Planning Problem) Given a robot that is con-

strained by dynamics of the form in Equation 2.1, a collision-free subset of that robot’s

state space, Xf , an initial state, x◦ ∈ Xf , a goal region XG ⊂ Xf , and the robot’s

control space, U, find a plan υ that results in a trajectory π that satisfies π(0) = x◦,

π(tπ) ∈ XG, and π(t) ∈ Xf for all t ∈ [0, tπ].

Note that by definition, the trajectory π is subject to the kinodynamic constraints of

Equation 2.1.
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2.1 Problem Definition and Notation

Recall during Section 1.2.1 that sampling-based planners are not able to provide a

traditional completeness guarantee, but instead have to rely on an asymptotic property,

probabilistic completeness:

Definition 7 (Probabilistic Completeness) Let ΠALG
n denote the set of trajectories dis-

covered by an algorithm ALG at iteration n. Algorithm ALG is probabilistically com-

plete, if for any motion planning problem (Xf , x◦, XG, U) the following holds:

lim inf
n→∞

P( ∃ π ∈ ΠALG
n : π solution to (Xf , x◦,XG,U)) = 1.

Stated another way, as the number of planner iterations tends toward infinity, the

probability that the motion planner’s data structure contains a trajectory that solves

the motion planning problem goes to one. This probabilistic completeness property

does not make any guarantee about the quality of the trajectory that solves the motion

planning problem. In order to compare trajectories to one another, a cost function

needs to be defined.

Definition 8 (Cost Function) A cost function, denoted by cost, assigns a strictly pos-

itive numerical value to a trajectory, i.e. cost: Π → R+ and results in a cost value

denoted by g. The notation g is commonly used in search-based planners such as A∗.

A cost function attempts to encode the desired behavior of the robot. Common

cost function choices include distance traveled, time to execute the trajectory, or energy

usage. Particular assumptions on this cost function are discussed in Assumption 3. The

aim of a motion planner sensitive to the cost of its output trajectory is to minimize this

cost. But once again, sampling-based planners do not provide a traditional optimality

guarantee, but instead may provide an asymptotic optimality guarantee.

Definition 9 (Asymptotic Optimality) Let g∗ denote the optimal trajectory cost for a

motion planning problem (Xf , x◦, XG, U). Let ΠALG
n denote the set of trajectories



12

discovered by an algorithm ALG at iteration n. Let Yn denote a random variable that

represents the minimum cost value among trajectories in ΠALG
n . An algorithm, ALG,

is asymptotically optimal if for all independent runs, P(
{

lim sup
n→∞

Yn = g∗
}

) = 1

Another useful property that sampling-based planners can provide is asymptotic

near-optimality. In this definition, instead of guaranteeing that an algorithm will find

a true optimum almost surely, the cost of the best trajectory found by the algorithm is

bounded.

Definition 10 (Asymptotic Near-Optimality) Let g∗ denote the optimal trajectory cost

for a motion planning problem (Xf , x◦, XG, U). Let ΠALG
n denote the set of trajectories

discovered by an algorithm ALG at iteration n. Let Yn denote a random variable that

represents the minimum cost value among trajectories in ΠALG
n . ALG is asymptotically

near-optimal if for all independent runs:

P(
{

lim sup
n→∞

Yn ≤ Bound(g∗)
}

) = 1

where Bound : R→ R is a function of the optimum cost, where Bound(g∗) ≥ g∗.

Notice that the bound on cost returned by an algorithm is a function of the true

optimum. In addition, there are usually other parameters of an algorithm that will

influence this bounding function, and those are discussed as they arise.

2.2 Common Modules in Sampling-based Planners

Although sampling-based planners come in may different variations, there are a common

set of tools that most of these algorithms employ. These common functions and modules

have made experimentation and implementation simple. This section formalizes these

modules to clarify what their expected inputs and outputs are, what variations are

commonly considered, and what drawbacks are introduced by using the module.
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Figure 2.1: Voronoi bias example. The probability of selecting a node is proportional
to the volume of the node’s Voronoi region.

2.2.1 Sampling Strategy

One could argue that this is the most fundamental choice for a sampling-based planner;

how are samples going to be drawn from the target space? The de facto answer is to

sample uniformly at random. As an example, in the operation of RRT, the first step is to

sample a state x from X. This is then used to guide the rest of that algorithm iteration.

By sampling from X uniformly at random, a natural exploration property arises, namely

the Voronoi bias. Another common sampling strategy is to sample uniformly at random

some percentage of the time, and then all other times provide a sample from the goal

region XG. This introduces a bit of exploitation into the algorithm to try to get to the

goal faster. Overall, there are a wide variety of strategies for sampling, but they all

follow a similar signature:

Definition 11 (Sampler) A sampler is a function Sample : S → s where s ∈ S and S

is some generic bounded space.

A sampling strategy can also be used to only find samples in Xf or even to sample
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controls from U to compose plans. One example of a specialization of this primitive

samples in smaller subset of the state space biased based on previous solutions [24, 25].

2.2.2 Collision Checker

A collision checker is how a sampling-based planner generally can determine if a state

is in Xf or Xobs. The most common method for determining if a state is collision-free

or not relies on computational geometry. Given a configuration of a robot, all the

linkages and physical components of the robot can be modeled with polyhedra, usually

composed of triangle faces. The same thing is done with obstacles in the environment.

Then, there are fast algorithms for determining if one set of polyhedra collides with

another set, and there are useful off-the-shelf libraries for this purpose [97, 16, 56, 78].

Then, we can define the collision checker as follows:

Definition 12 (Collision Checker) A collision checker is a boolean function

Colliding : C→ {0, 1} where if the function returns 0, that configuration is in Xf , or

if the function returns 1, then that configuration lies in Xobs. This function can take a

trajectory as well to return if any configuration on that trajectory is in collision or not.

Note that only the configuration of the robot (and its geometry) are needed for

a collision checker. None of the higher-order terms of the robot’s state space are in-

cluded in this primitive. A generalization of the configuration space collision checker

to the state space can be seen as inevitable collision states [22]. In that framework, an

inevitable collision state is a state where no matter what action the robot takes, a colli-

sion will occur in the future, even if the geometry is not in collision now. Ideally, when

planning for a dynamical system, these are states we want to detect early and avoid,

but these states are computationally intensive to compute. In contrast, configuration

space collision checking is cheap, and be further accelerated with hardware solutions

like GPUs and FPGAs [75, 77, 79] or with fast broadphase methods that can rule out

possible collisions ahead of time.
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2.2.3 Distance Function

One of the most heavily utilized components of sampling-based motion planners is the

distance function.

Definition 13 (Distance Function) A distance function, dist, is a function that de-

termines how far away two states are from one another.

dist : (X,X)→ R≥0

A commonly used distance function is the weighted L2 norm, or weighted Euclidean

distance. It is not always the case however, that all state spaces can be accurately

measured with a Euclidean distance, especially those spaces which contain rotational

dimensions. Although these spaces can be locally Euclidean, it is useful to remember

what limitations a distance function may have on a particular problem domain.

In the context of motion planning, a distance function is taking the role of a “cost-to-

go” estimator. The function dist is providing an estimate on what the cost of traveling

between two states would be, since that is what the true distance between those states

would be. As an example, for a car that needs to parallel park, the Euclidean distance

between the start and end states of parallel parking is small (just the lateral shift of the

vehicle), but the true distance would make use of a curved path that gets the vehicle

into the parking space.

2.2.4 Nearest Neighbor Data Structure

A fundamental operation of sampling-based planners is to find what states are nearby

a query state, given a distance function dist. In RRT, the first step after sampling a

random state is to find what node in the existing search tree is closest to the random

sample. In asymptotically optimal variants RRT∗ and PRM∗, the set of k closest nodes to

a state also needs to be answered (or alternatively, get all nodes within a radial region

around the query point). A brute force implementation of these two methods would

perform a linear search over all existing nodes in the data structure and compute the
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distances between the query state and all of those nodes, an O(n) operation. Since this

operation needs to be performed every iteration of the planner, these nearest neighbor

queries end up dominating the runtime complexity of sampling-based algorithms.

In practice, there are off-the-shelf implementations of algorithms that can answer

these nearest neighbor queries in much less time, usually O(log(n)) time where n is

the number of nodes stored. These algorithms try to exploit whatever state space the

robot has to perform hierarchical searches in that space efficiently [4, 7, 74]. However,

these exploitations depend on the distance function in use, and if the distance function

does not have the right structure (usually Euclidean), then the runtime improvements

may not be observed. It can also be challenging to build these structures online while

maintaining efficient lookup times.

A nearest neighbor structure for sampling-based motion planning needs to provide

the following operations:

• Add(q, NN) - Inserts a state into the data structure (denoted here as NN)

• Nearest(q) : X→ NN - Given a query state q, return the closest state in the data

structure.

• Near(q, r) : X,R≥0 → NN, {x|x ∈ NN,dist(x, q) <= r} - Return all states in NN

that are at most r distance from the query state.

• K− Near(q, k) : X,Z>0 → NN - Return the closest k states in NN to the query state.

Algorithm 1: Graph-Add(q, NN)

1 NN← NN ∪ {q};
2 Knear ← K− Near(q, k ∝ log(|NN|));
3 foreach x ∈ Knear do
4 q.neighbors← q.neighbors ∪ {x};
5 x.neighbors← x.neighbors ∪ {q};

Some algorithms may need to make use of a remove operation (Remove), and this can

invalidate certain methods for nearest neighbor structures. This is related to the hierar-

chical search strategy that assumes no removals occur. By removing nodes, additional

modifications need to be added to the nearest neighbor structure, which adds runtime
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costs. One way to accomplish the goal of fast removal with minimal data structure over-

head takes inspiration from roadmap sampling-based methods like PRM∗. Then, nearest

neighbor queries become graph searches on this “roadmap” of nodes that maintain

neighboring nodes when additions or removals happen.

Algorithm 2: Graph-Nearest(q)

1 Vrand ← Sample Random Vertices(NN) // Samples
√

(|NN|) nodes at random.

2 vmin ← arg min
v∈Vrand

dist(v, q);

3 repeat
4 Nodes← Neighbors(vmin) ∪ {vmin};
5 vmin ← arg min

v∈Nodes
dist(v, q);

6 until vmin unchanged ;
7 return vmin;

Algorithm 3: Graph-K− Near(q, k)

1 vmin ← NN.Nearest(v);
2 Knear ← {vmin};
3 repeat
4 Nodes← Neighbors(Knear) ; // All neighbors of nodes in this set.

5 Knear ← Knear ∪Nodes;
6 Knear ← arg min

(
k)v ∈ Kneardist(v, q);

7 until Knear unchanged ;
8 return Knear;

Algorithm 4: Graph-Remove(q)

1 foreach n ∈ q.neighbors do
2 n.neighbors← n.neighbors \ {q};
3 foreach n ∈ v.neighbors do
4 n.neighbors← n.neighbors \ {v};
5 NN← NN \ {q};

Algorithms that implement this graph-based nearest neighbor structure come from

Section 4.4 in [59], and are detailed in Algorithms 1,2,3, and 4. The radial version

of Algorithm 3 just changes the set update to be dependent on a radius instead of a

parameter k.
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2.2.5 Local Planner or Forward Propagation

Figure 2.2: Local planner examples, steering (on the left) and forward propagation
(right).

A local planner is how a sampling-based planner connects states together. In

roadmap methods like PRM, a local planner provides the edges that connect states with

trajectories that traverse between those two states, and in tree methods like RRT, the

local planner can drive the system toward a goal point. The local planner’s job is to

generate the edges that grow the roadmap or tree, and actually accomplish the task of

getting from start to goal.

Definition 14 (Local Planner) A baseline local planner function can be defined as:

local plan : X→ Υ,Π

where given a start state, generate a plan and a trajectory from that start state.

The reason that this definition is a baseline and not the canonical definition is

because this function is a linchpin into how a planner operates, and is heavily coupled

to the motion planning method. Examples of local planners are illustrated in Figure

2.2. As discussed above, a roadmap method needs to make use of a local planner that

takes two states and provides a trajectory that connects those two states. A tree-based

planner may make use of this “steering” local planner, but may also want to cutoff

the trajectory after a certain distance. On the other hand, a tree-based planner may

want to randomly sample a plan and use the system dynamics to generate a trajectory

by forward simulating those control inputs, and foregoing any steering behavior. This

is the so-called “forward propagation” primitive that is usually the fallback strategy



19

when the “steering” local planner is not available. This difference between “steering”

and “forward propagation” local planners is one of the driving observations for this

dissertation, and the effects of the difference between these two primitives is further

discussed in the following chapters.

2.3 Baseline Kinodynamic Planner: RRT

The RRT algorithm [57] can be summarized into two main operations: a selection process

and an expansion process. The selection is performed by randomly sampling a state

in the state space, and then finding the closest node in the search tree to that random

sample, using the nearest neighbor data structure. Then, an edge is generating that

attempts to make progress toward the random sample. If that edge is collision-free,

then that edge is added to the tree. This algorithm is outlined in Algorithm 5.

Algorithm 5: RRT-ForwardProp(X, U, x◦, XG, Tprop, N)

1 G = {V← {x◦},E← ∅};
2 NN.Add(x◦);
3 for N iterations do
4 xselected ← Voronoi Selection(V,X);
5 πnew ← MonteCarlo-Prop(xselected, U, Tprop);
6 if not Colliding(πnew) then
7 V← V ∪ {πnew(t)};
8 E← E ∪ {πnew};
9 NN.Add(πnew(t));

10 return G(V,E);

This version of RRT in Algorithm 5 is commonly referred to as RRT-ForwardProp

[57]. RRT-ForwardProp makes use of the random control sampling strategy of

MonteCarlo-Prop to enable RRT to plan for kinodynamic systems. This is contrast

to a version of RRT that tries to extend an edge toward the randomly sampled state

from the selection process, which is commonly referred to as just RRT, or in some con-

texts RRT-Connect (conflicting with a bidirectional variant of RRT with the same name)

[49].

The selection process of RRT has been labeled as Voronoi Selection and the formal

definition is in Algorithm 6. It is called Voronoi Selection due to the implicit Voronoi
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bias that this particular selection process exhibits. This bias creates an effect where

nodes in RRT that are at the periphery of the explored space have higher likelihood to

be selected for expansion at a given iteration. This creates an exploration effect in the

search space.

Algorithm 6: Voronoi Selection(V,X)

1 xsample ←Sample(X);
2 return NN.Nearest(xsample);

The expansion process for RRT-ForwardProp, called MonteCarlo-Prop, is formalized

in Algorithm 7. Simply, a time duration is sampled, up to a max duration of Tprop,

then a plan is sampled at random. Finally, a trajectory is generated by using the given

system dynamics.

Algorithm 7: MonteCarlo-Prop(x, U, Tprop)

1 t← Sample([0, Tprop]);
2 υ ←Sample(Υ);

3 return π ←
∫ t

0 f(π(t), υ(t)) dt, where π(0) = x;

2.3.1 Properties of RRT-ForwardProp

Formally, RRT-ForwardProp has the probabilistic completeness property [46]. The proof

for probabilistic completeness was recently re-confirmed and clarified to determine the

assumptions needed for probabilistic completeness. Arguably, the most effective practi-

cal property that RRT-ForwardProp has relates to the Voronoi bias previously discussed.

This bias is especially effective at allowing the algorithm to explore the reachable space

quickly.

A good search strategy should be balancing an exploration-exploitation trade-off.

RRT-ForwardProp, with no other modifications, is a quintessential exploratory planner,

with very little exploitation to find the goal more quickly. A method to introduce some

exploitation is to perform goal-biasing in the state sampling step.

Another form of exploitation that a planner can exhibit relates to the quality of

the resulting plans returned. RRT-ForwardProp has not been shown to have provable
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path quality guarantees. In practice, RRT-ForwardProp can find better solutions over

time given enough time executing, but this behavior is not exhibited in most practical

scenarios.

These goals of exploration and exploitation (both finding solutions quickly and op-

timizing the solution found) are instrumental in a practical motion planning algorithm,

and the canonical RRT method is not equipped to accomplish all of these goals. The

Sparse-RRT algorithm aims to address the improving path quality goal that RRT was

not able to provide on its own, while not sacrificing the exploration properties that

make RRT successful.
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Chapter 3

Sparse-RRT: Practical Kinodynamic Planning

After the discussion of RRT, what properties it has, benefits of the approach, and what

can be improved, this section describes two modifications of RRT that make up the

Sparse-RRT algorithm. Sparse-RRT is the baseline for the subsequent algorithms in

Chapters 4 and 6. After presenting practical benefits of the Sparse-RRT approach, an

analytical framework for proving probabilistic completeness is shown, and how it can be

used to prove that Sparse-RRT is probabilistically complete. Finally, discussion on the

weaknesses of this proof strategy is presented, as it relates to determining how quickly

solutions can be found.

3.1 Algorithmic Description of Sparse-RRT

One of the reasons why RRT is unsuccessful at providing high quality paths arises because

there is no step in the algorithm that considers path costs of trajectories in the tree,

but instead only focuses on providing quick exploration of the free space. One example

method to incorporate path costs is to select nodes biased by their path cost [104].

In this way, every expansion that is performed is biased toward the higher quality

trajectories in the tree so far. Sparse-RRT uses this type of strategy (inspired by [104])

to improve path quality over time.

Algorithm 8 describes the BestNear selection procedure for Sparse-RRT. It begins

the same as Voronoi Selection with selecting a random sample from the state space.

Then, a radial query to the nearest neighbor data structure is performed, with a given

parameter δBN . This can return a set of nodes from the tree, or it can return nothing

(which is common in the first iterations of the planner). If no nodes are within the δBN

radius, then this reverts to the Voronoi Selection algorithm. If there are nodes in the
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Algorithm 8: BestNear Selection(V,X, δBN )

1 xsample ←Sample(X);
2 Xnear ← NN.Near(xsample, δBN );
3 if Xnear = ∅ then
4 return NN.Nearest(xsample);

5 else
6 return arg min

x∈Xnear
cost(x);

Figure 3.1: Illustration of the BestNear operation.



24

Xnear set, then the node with the minimum trajectory cost from the root node (using

the overloaded notation of cost(x) to represent this cost). To optimize this operation,

the nearest neighbor query can be optimized to return the closest node if there are no

nodes the δBN radius. In this way, there is no need to have two independent queries to

the nearest neighbor structure.

3.1.1 Computational Efficiency of Using BestNear

In RRT, the dominant computational cost comes from the nearest neighbor queries in

the selection step. All of the other operations in RRT have a relatively constant runtime

complexity since they do not have to scale with the number of nodes in the tree. The

nearest neighbor queries, therefore, influence the practicality of using a motion planning

algorithm based on RRT. The Nearest function is generally the most efficient query

that a nearest neighbor structure can perform (beyond the basic addition and removal

operations). This is followed by the K-Near and Near operations. While these functions

all generally have the same runtime complexity, O(log(n), in practice the queries that

return multiple results take more time to process. Therefore, the BestNear selection

modification results in a slower algorithm, but the resulting trajectories are improved

relative to the ones in RRT.

3.1.2 Achieving Computational Efficiency Via The Pruning Primitive

The second modification that Sparse-RRT employs is a pruning mechanism to remove

unnecessary nodes from the search tree. By removing these nodes, they will never

be selected for expansion again, and allow for more selections to be focused on the

promising nodes in the tree for path quality.

Sparse-RRT makes use of Algorithm 9 to introduce a sparsity criterion. Whenever

a new trajectory is introduced, the end state of that trajectory is compared with other

trajectory end states within a radius, δs. If the new end state has a worse path cost than

another node in the tree, the new state is removed from the tree. On the other hand,

if the new node has better path cost, i.e. represents a better trajectory from the root

node, the previously existing node is removed. However, this pruning operation should
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Figure 3.2: Illustration of the pruning operation of Sparse-RRT.

Algorithm 9: Prune(πnew, G, δs)

1 Xnear ← NN.Near(πnew(t), δs);
2 if cost(πnew(t)) ≥ arg min

x∈Xnear\πnew(t)
cost(x) then

3 Vactive ← Vactive \ {πnew(t)};
4 E← E \ {πnew};
5 NN.Remove(πnew(t));

6 else
7 for xi ∈ Xnear \ πnew(t) do
8 Vactive ← Vactive \ {xi};
9 NN.Remove(xi);

10 Vinactive ← Vinactive ∪ {xi};
11 xdel ← xi;
12 while IsLeaf(xdel) and xdel ∈ Vinactive do
13 xnext ←Parent(xdel);
14 Vinactive ← Vinactive \ {xdel};
15 E← E \ {πdel};
16 xdel ← xnext;
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not remove a node’s children, potentially removing an entire subtree. Those children

nodes may be providing connectivity to a part of the state space that is difficult to

reach. For this reason, when a node is pruned, it is removed from the nearest neighbor

structure, which means that it will never be selected for expansion or prune other

nodes. The nodes that are included in the nearest neighbor structure are represented

by Vactive and nodes that are only retained for path connectivity are in Vinactive. As

an optimization, if a node is in Vinactive and does not have children nodes, that node

can be safely removed from the search tree, as well as an parent nodes that would have

no children once its child is removed.

With the introduction of this pruning procedure, there are now two different nearest

neighbor queries conducted in Sparse-RRT, one for selection and one for the pruning

step. If the number of nodes that Sparse-RRT maintains was the same as RRT, there

would be a significant runtime cost to performing these extra operations. But in real-

ity, the number of nodes that Sparse-RRT maintains is significantly smaller than RRT,

therefore, the runtime cost is actually smaller. In fact, the pruning operation creates

the effect of maintaining a finite number of nodes in bounded state spaces, which means

that there is an upper bound on the iteration cost of Sparse-RRT. For completeness,

the algorithm of Sparse-RRT with the highlighted changes relative to RRT is presented

in Algorithm 10.

Algorithm 10: Sparse-RRT(X, U, x◦, XG, Tprop, δBN , δs, N)

1 G = {Vactive ← {x◦},Vinactive ← ∅,E← ∅};
2 NN.Add(x◦);
3 for N iterations do
4 xselected ← BestNear-Selection(Vactive,X, δBN);

5 πnew ← MonteCarlo-Prop(xselected, U, Tprop);
6 if not Colliding(πnew) then
7 Vactive ← Vactive ∪ {πnew(t)};
8 E← E ∪ {πnew};
9 NN.Add(πnew(t));

10 Prune(πnew,G,δs);

11 return G(Vactive,Vinactive,E);

In practice, there are some minor modifications that can be made to this algorithm.
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First, the pruning condition for the newly generated trajectory can be checked before

it is added to the search tree, or before collision checking. If the new trajectory is going

to be pruned anyway, there is no reason to have to waste the computational effort for

adding the node to the nearest neighbor structure, or collision check the trajectory. This

type of trade-off can take into account what the expected computational bottleneck for

a particular problem will be, and put the cheapest computation first. In this way, an

iteration can “short circuit” early if the candidate edge would be removed.

3.2 Experimental Performance of Sparse-RRT

As previously discussed, Sparse-RRT can perform iterations much faster than RRT can

when the number of iterations gets larger. This is despite the extra nearest neighbor

queries that Sparse-RRT employs for the pruning operation. Data supporting this claim

is provided in Table 3.1, where both the BestNear and Prune methods are introduced

alone, combined together into the Sparse-RRT algorithm, and compared with a close

variant [37]. The number of iterations when using the Prune procedure is at worst

proportional to that of RRT in these cases. Note that the resulting path costs returned

by methods using either BestNear and/or Prune are improved.

Another important consideration when evaluating motion planning techniques is to

examine the behavior of an algorithm over time. This type of examination provides

evidence that a motion planner can improve solutions over time, or can find solutions

quickly. Figures 3.3 and 3.4 examine these components of these motion planners. The

combination of the BestNear selection procedure along with the pruning operation

(called Drain in the figure and in the reference material [65]) allows for solution cost

improvement over time.

3.3 Analysis

Practical performance is important to consider when deciding what motion planning

algorithm to use for an application. However, it is important to consider what provable

properties an algorithm has as well, since those properties examine the core components
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System Algorithm Iterations Nodes Path Cost (s)

Double Integrator

RRT 299749 299750 7.86
RRT with Prune 511137 35979 6.67
RRT with BestNear 269244 269245 6.87
Sparse-RRT 508187 35495 6.6675
RRT∗ w/ Shooting 66438 66439 7.76

Simple Pendulum

RRT 521528 521529 4.785
RRT with Prune 761252 39215 2.5275
RRT with BestNear 160856 160857 2.6825
Sparse-RRT 668167 38699.5 2.385
RRT∗ w/ Shooting 310289 310290 6.3825

Two-Link Acrobot

RRT 191081 154482 8.775
RRT with Prune 301122 24451 5.22
RRT with BestNear 184367 148824 5.8475
Sparse-RRT 295923 23862 4.245
RRT∗ w/ Shooting 313806 313807 6.67

Second-order Car

RRT 114200 83981 76.22
RRT with Prune 129721 3672.5 32.995
RRT with BestNear 119090 76062 38.175
Sparse-RRT 135741.5 2967 35.655
RRT∗ w/ Shooting N/A N/A N/A

Table 3.1: Planner Performances for Variants of Sparse-RRT and A Benchmark After
10 Minutes (Provided from [65])

Figure 3.3: Comparison of Improvement Rates related to Sparse-RRT. The plots display
the relative path cost over time. The path costs are relative to the best path found.
Reported in [65].
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Figure 3.4: Comparison of average path cost of all nodes over time. Results from [65].

of the algorithm and provide confidence in its operations.

At a high level, the proof strategy for the family of planners discussed in this dis-

sertation uses a Markov chain absorption argument (Theorem 11.3 [27]). The idea is to

construct a Markov chain that represents the construction of a solution trajectory that

a motion planner builds over time. Then, each state on the Markov chain represents

progress toward building on this hypothetical solution trajectory. Each of these Markov

states has a probability of transiting to the next state, which represents generating an

edge that “observes” the solution trajectory. If the probability of transiting from each

state to the next is strictly positive, it is guaranteed to “absorb” into the last state

in the chain, otherwise known as the sink state, given infinite iterations. If the sink

state is guaranteed to be reached, then it is guaranteed that the motion planner will

generate a solution trajectory to the given problem. To summarize, the steps to this

proof strategy are:

• Assume the existence of a solution trajectory with desired characteristics.

• Construct a covering ball sequence that discretizes this trajectory into trajectory

segments.
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• Create a Markov chain that mirrors this covering ball sequence.

• Prove that the transition probabilities in the Markov chain are strictly positive

(i.e. provide a lower bound that is non-zero).

Now, each of these steps is discussed in detail with the needed lemmas and theorems

to prove each step.

3.3.1 Assumptions on Solution Trajectory Existence

Beginning with the solution trajectory that will be observed, certain properties of that

trajectory are needed. These definitions are adapted from the analysis of SST[58, 59].

First, there needs to be some clearance from obstacles all along this trajectory.

Definition 15 (Obstacle Clearance) The obstacle clearance ε of a trajectory π

is the minimum distance from obstacles over all states in π, i.e., ε =

inft∈[0,tπ ],xo∈Xobs dist(π(t), xo).

Assumption 1 The system dynamics from Equation 2.1 that generate a trajectory

need to satisfy the following properties:

• Chow’s condition [14] of Small-time Locally Accessible (STLA) systems [12]: For

STLA systems, it is true that the reachable set of states A(x,≤ T ) ⊂ V from any

state x in time less than or equal to T without exiting a neighborhood V ⊂ X of x,

and for any such V , has the same dimensionality as X.

• Bounded second derivative: |ẍ(t)| ≤M2 ∈ R+.

• Lipschitz continuous for both of its arguments, i.e., ∃ Ku > 0 and ∃ Kx > 0:

||f(x0, u0)− f(x0, u1)|| ≤ Ku||u0 − u1||,

||f(x0, u0)− f(x1, u0)|| ≤ Kx||x0 − x1||.

During the construction of the Markov chain that represents building up a solution

trajectory, the notion of trajectories that are δ-similar is used:
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Figure 3.5: Illustration of a pair of δ-similar trajectories.

Definition 16 (δ-Similar Trajectories) Trajectories π, π′ are δ-similar if for a con-

tinuous, nondecreasing scaling function σ : [0, tπ] → [0, tπ′ ], it is true that π′(σ(t)) ∈

Bδ(π(t)). See Figure 3.5 for illustration.

This idea of a δ-similar trajectories is needed to relate the hypothetical solution

trajectory to the one that is actually constructed by the search tree. The main idea is

to guarantee that there is a positive probability that an algorithm can generate such a

δ-similar trajectory. First, this δ-similar trajectory needs to exist.

Lemma 1 Let there be a trajectory π for a system satisfying Assumption 1. Then

there exists a positive value δ0 called the dynamic clearance, such that: ∀ δ ∈ (0, δ0],

∀ x′0 ∈ Bδ(π(0)), and ∀ x′1 ∈ Bδ(π(tπ)), there exists a trajectory π′, so that: (i) π′(0) =

x′0 and π′(tπ′) = x′1; (ii) π and π′ are δ-similar trajectories.

Proof: This property is very closely related to other assumptions of sampling-based

planning proofs. Examples of this assumptions and concepts are “attraction sequences”

[57], “homotopic in δ-interior of Xf” [40, 41], and “linking sequence in ε-good free

spaces” [33]. Informally speaking, Chow’s condition implies that the Ball Box theorem

holds. It also implies that the manifold Xf is regular and involutory [12]. A real-

analytic control-affine system is small-time locally accessible (STLA), if and only if the

distribution satisfies Chow’s condition [102]. Assume every state on the optimal tra-

jectory is a regular point. Then, the sub-Riemannian ball up to a small constant radius

tε contains a weighted box of the same dimension of the state space and it is oriented

according to vector fields of the Lie brackets. The bases are real analytical. Therefore
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there exists an open neighborhood at each point x such that the bases evaluated at a

different point x′ converge to the bases at x as x′ approaches x. Then, the weighted

boxes centered by two sufficiently close states have a non-empty intersection. It implies

that a hyper ball of some positive radius δ0 can be fitted into this intersection region.

Overall, there are two sufficiently close hyper-ball regions on the optimal trajectory

such that between any point x in one ball and any point in the other ball there exists

a horizontal curve and the length of the curve is less or equal to the radius tε of the

sub-Riemannian ball. Then concatenating all hyper balls along a specified trajectory,

results in the generation of δ-similar trajectories. �

A kinodynamic motion planner in this context needs to consider both obstacle clear-

ance and dynamic clearance. Trajectories that satisfy both clearance constraints are

notated as being δ-robust.

Definition 17 (δ-Robust Trajectories) A trajectory π for a dynamical system following

Eq. 2.1 is called δ-robust if both its obstacle clearance ε and its dynamic clearance δ0

are greater than δ.

As an additional assumption on the kinodynamic motion planning problem, it is

assumed that one such trajectory exists, and that the plans constructed by the motion

planning algorithm can be used to generate such a trajectory.

Assumption 2 For a motion planning problem, there exists a δ-robust trajectory π

generated by a plan υ ∈ Υ.

This assumption in practice is not very restrictive, since most real world environ-

ments have some clearance in them. Nevertheless, it is an important restriction to be

made aware of.

3.3.2 Constructing the Markov Chain: The Covering Ball Sequence

Although path cost is not necessarily important in the context of probabilistic com-

pleteness, for the convenience of the forthcoming asymptotic near-optimality/optimality
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proofs, assumptions on cost are introduced into the covering ball sequence construction

method.

Assumption 3 The cost function cost(π) of a trajectory is assumed to be Lipschitz

continuous. Specifically, ∃ Kc > 0:

|cost(π0)− cost(π1)| ≤ Kc · sup∀t{||π0(t)− π1(t)||},

for all π1, π2 with the same start state. Consider two trajectories π1, π2 such that

their concatenation is π1|π2 (i.e., following trajectory π2 after trajectory π1), cost sat-

isfies:

• cost(π1|π2) = cost(π1) + cost(π2) (additivity)

• cost(π1) ≤ cost(π1|π2) (monotonicity)

• ∀ t2 > t1 ≥ 0, ∃Mc > 0, t2−t1 ≤Mc · |cost(π(t2))−cost(π(t1))| (non-degeneracy)

With the assumptions laid out, the definition of the covering ball sequence is as

follows:

Definition 18 (Covering Ball Sequence) Given a trajectory π(t): [0, tπ]→ Xf , robust

clearance δ ∈ R+, and a cost value g∆ > 0, the set of covering balls B(π(t), δ, g∆) is

defined as a set of M + 1 hyper-balls: {Bδ(x0), Bδ(x1), ..., Bδ(xM )} of radius δ, where

xi are defined such that cost(xi → xi+1)= g∆ for i = 0, 1, ...,M − 1. Illustration can

be found in Figure 3.6.

With this definition, and given an optimal solution trajectory, a theoretical covering

ball sequence can be constructed. Note that this trajectory may not be found by the

motion planning algorithm, and is instead a hypothetical trajectory that the motion

planner might build during its operation, and is guaranteed to exist by Assumption 2.

Now that the covering ball sequence is constructed, the Markov chain that relates

how a motion planner can build a trajectory that “observes” this covering ball sequence

can be constructed as well. Let each Markov state qi ∈ Q denote that a trajectory built

by a motion planning algorithm has reached each covering ball of the sequence, i.e. qi
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Figure 3.6: Illustration of a covering ball sequence around a reference trajectory, de-
limited by a small change in cost.

q0start q1 q2 ... qi ... qM

1− ρ

ρ

1− ρ

ρ

1− ρ

ρ ρ

1− ρ

ρ ρ

Figure 3.7: Markov chain illustrating the construction of a trajectory with RRT-
BestNear.

is the state where a trajectory has reached Bδ(xi). Thus, the state qM would represent

the state where the motion planner has constructed a trajectory that solves the motion

planning problem.

Next comes the transition probabilities on this Markov chain. Transitioning from

state qi to qi+1 represents the motion planner constructing a new trajectory from the

robot’s state x′i ∈ Bδ(xi) to a new state x′i+1 ∈ Bδ(xi+1). Let’s denote the probability

of this transition occurring as ρ. Then, the Markov chain can advance to the next state

with probability ρ, and stays in the same state with probability 1−ρ. If ρ is guaranteed

to be strictly positive, i.e. ρ > 0, then the absorption theorem guarantees reaching the

final Markov state (Theorem 11.3 [27]). An illustration of this Markov chain can be

found in Figure 3.7.
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3.3.3 Probability of Markov State Transition

For the sampling-based planners being discussed here, there are two major factors that

influence the transition probabilities in the Markov chain:

• Will the node in the tree that lies in Bδ(xi) be selected this iteration?

• If that node is selected, will a trajectory to Bδ(xi+1) be generated?

For the selection question, the algorithm BestNear needs to guarantee that the

selection probability is positive. Let this selection probability from the BestNear al-

gorithm be called γBN . For the expansion question, it is necessary to prove that the

MonteCarlo-Prop procedure is guaranteed to generate a δ-similar trajectory to the ref-

erence trajectory with positive probability. Let γδ denote this probability. Then, the

probability ρ is the product of these two events:

ρ = γBN ∗ γδ

.

Let’s begin with the calculation of γBN .

Lemma 2 Assuming uniform sampling in the Sample function of BestNear, and that

δBN < δ (the robust clearance constant), if ∃ x s.t. x ∈ BδBN (x∗i ) at iteration n, then

the probability that BestNear selects for propagation a node x′ ∈ Bδ(x∗i ) can be lower

bounded by a positive constant γBN for every n′ > n.

Proof: Consider the case that a random sample xrand is placed at the intersection

of a small ball of radius θ = δ − δBN , and of a δBN -radius ball centered at a state

yi ∈ BδBN (xi) that was generated during an iteration of the motion planner. In other

words, if xrand ∈ Bθ(xi) ∩ BδBN (yi), then yi will always be considered by BestNear

because yi will always be within δBN distance of a random sample there. The small

ball is defined so that the δBN ball of xrand can only reach states in Bδ(xi). It is also

required that xrand is in the δBN -radius ball centered at yi, so that at least one node

in Bδ(xi) is guaranteed to be returned. Thus, the probability the algorithm selects for

propagation a node x′ ∈ Bδ(x∗i ) can be lower bounded by the following expression:
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Figure 3.8: Possible area needed to guarantee selection of a node using BestNear.

γBN =
µ(Bθ(xi) ∩ BδBN (x′))

µ(X)
> 0

where µ denotes the Lebesque measure of the region. �

With a lower bound on the probability of selecting a node, next to consider is the

lower bound on the MonteCarlo-Prop procedure at generating a δ-similar trajectory.

First, consider the case where two trajectories share the same start state.

Theorem 1 For two trajectories π, π′ and any time horizon T ≥ 0, so that π(0) =

π′(0) = x0 and ∆u = supt(||υ(t)− υ′(t)||):

||π′(T )− π(T )|| < Ku · T · eKx·T ·∆u.

Proof: Given Assumption 1, for any two states x0, x1 and two controls u0, u1:

||f(x0, u0)− f(x0, u1)|| ≤ Ku||u0 − u1|| ||f(x0, u1)− f(x1, u1)|| ≤ Kx||x0 − x1||.
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Figure 3.9: An illustration of the local reachability set for x′i−1.

By summing these two inequalities:

||f(x0, u0)− f(x0, u1)||+ ||f(x0, u1)− f(x1, u1)|| ≤ Ku||u0−u1||+Kx||x0−x1||. (3.1)

Given the Euclidean distance, the following inequality is true:

||f(x0u0)− f(x1, u1)|| ≤ ||f(x0, u0)− f(x0, u1)||+ ||f(x0, u1)− f(x1, u1)||.

By joining this with (3.1):

||f(x0, u0)− f(x1, u1)|| ≤ Ku||u0 − u1||+Kx||x0 − x1||. (3.2)

Now, divide [0, T ] into n segments with equal length ∆t. Approximating the value of a

trajectory π(T ) using Euler’s Method, there is a sequence of states {x0, x1, ..., xn}. Let

ui denote υ(i∆t) corresponding to the control applied at each state.

xi = f(xi−1, ui−1)∆t+ x(i−1).

For two trajectories π and π′ such that π(0) = π′(0) = x0, υ(t) and υ′(t) are the

corresponding plans. Then:

xn = xn−1 + f(xn−1, un−1)∆tx′n = x′n−1 + f(x′n−1, u
′
n−1)∆t.

Then:

|xn − x′n|| ≤ ||xn−1 − x′n−1||+ ||f(xn−1, un−1)− f(x′n−1, u
′
n−1)||∆t. (3.3)
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Using (3.2) and (3.3):

||xn − x′n|| ≤ ||xn−1 − x′n−1||+ (Ku||un−1 − u′n−1||+Kx||xn−1 − x′n−1||)∆t,

||xn − x′n|| ≤ Ku∆t||un−1 − u′n−1||+ (1 +Kx∆t)||xn−1 − x′n−1||. (3.4)

By repeatedly reusing (3.4) to expand ||xn−1 − x′n−1||:

||xn − x′n|| ≤ (1 +Kx∆t)n||x0 − x′0||+

Ku∆t||un−1 − u′n−1||+

(1 +Kx∆t)Ku∆t||un−2 − u′n−2||+

· · ·+

(1 +Kx∆t)n−1Ku∆t||u0 − u′0||.

Since x0 = x′0, and ∆u = maxn−1
i=0 (||ui − u′i||:

||xn − x′n|| ≤ Ku∆t

n−1∑
i=0

(1 +Kx∆t)i∆u.

Since n∆t = T :

||xn − x′n|| ≤ KuT
1

n

n−1∑
i=0

(1 +
KxT

n
)i∆u

Due to the fact that 1 < (1 + α
n )i < eα, where 1 ≤ i ≤ n and α > 0:

||xn − x′n|| < KuTn
1

n
eKxT∆u⇒ ||xn − x′n|| < KuTe

KxT∆u.

Given Assumption 1, Euler’s method converges to the solution of the Initial Value

Problem. Then:

||π(T )− π′(T )|| = lim
n→∞

||xn − x′n||, where n∆t = T.

Therefore:||π(T )− π′(T )|| < KuTe
KxT∆u �

Theorem 1 provides a worst case upper bound on the error between two trajectories



39

that start at the same state. This type of construction is useful for the first edge that

MonteCarlo-Prop will generate from the root node of the tree, but by itself is not

general enough to handle the subsequent edges. It does, however, enable the task of

lower bounding the probability that MonteCarlo-Prop can get to the next covering

ball.

Theorem 2 Given a trajectory π of duration tπ, the success probability for

MonteCarlo-Prop to generate a δ-similar trajectory π′ to π when called from an in-

put state π′(0) ∈ Bδ(π(0)) and for a propagation duration tπ′ = Tprop > tπ is lower

bounded by a positive value γδ > 0.

Proof: Consider that the start of trajectory π is π(0) = xi−1 (from the covering ball

sequence), while its end is π(tπ) = xi. Similarly for π′: π′(0) = x′i−1 and π′(tπ′) = x′i.

From Lemma 1 regarding the existence of dynamic clearance we have the following: re-

gardless of where x′i−1 is located inside Bδ(xi−1), there must exist a δ-similar trajectory

π′ to π starting at x′i−1 and ending at x′i. Therefore, if the reachable set of nodes ATprop

from x′i−1 is considered, it must be true that Bδ(xi) ⊆ ATprop .

In other words, ATprop has the same dimensionality d as the state space (Assumption

1). The goal is to determine a probability γδ that trajectory π′ will have an endpoint

in Bδ(π(tπ)).

Given a λ ∈ (0, 1), construct a ball region b = Bλδ(xb), such that the center state

xb ∈ π(t) and b ⊂ Bδ(xi). Let Λδ denote the union of all such b regions. Clearly,

Figure 3.10: (left) A constructed segment of trajectory π of duration Tδ. (right) The
dotted curve illustrates the hypothetical trajectory used as reference, and the solid
curve above it illustrates one possible edge that is created by MonteCarlo-Prop.
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all of xb form a segment of trajectory π(t). Let Tδ denote the time duration of this

trajectory segment. For any state xb, there must exist a δ-similar to π trajectory

πb = π(x′i−1 → xb), due to Lemma 1.

Recall that MonteCarlo-Prop samples a duration for integration, and then, samples

a plan in Υ. The probability to sample a duration tπb for πb so that it reaches the region

Λδ is Tδ/Tprop.

Since the trajectory segment exists, it corresponds to a plan υm ∈ Υ.

MonteCarlo-Prop only needs to sample a plan υ′m, such that it is close to υm and

results in a δ-similar trajectory. Then Theorem 1 guarantees that MonteCarlo-Prop

can generate trajectory π′b = π(x′i−1 → x′b), which has bounded “spatial difference”

from π(x′i−1 → xb). And both of them have exactly the same duration of tπb . More

formally, given the “spatial difference” λδ, if MonteCarlo-Prop samples a control vector

υ′m such that:

||υ′m − υm|| ≤
λδ

Ku · Tprop · eKx·Tprop
⇒ ||xb − x′b|| < λδ.

Therefore, starting from state x′i−1, with propagation parameter Tprop,

MonteCarlo-Prop generates a δ-similar trajectory π(x′i−1 → x′b) to π(xi−1 → xi) with

probability lower bounded by:

γδ =
Tδ
Tprop

·
ζ · ( λδ

Ku·Tprop·eKx·Tprop
)w

µ(Υ)
> 0.

where ζ is a unit hyperball in the parameter space for Υ.

�

Now that there are lower bounds on the probability for selection (γBN ) and for

propagating from one covering ball to the next (γδ), RRT-BestNear(Sparse-RRT without

the Prune operation) has been shown to be probabilistically complete via the Markov

chain absorption theorem. The next section discusses how this proof framework has

complications when used for the full Sparse-RRT algorithm.
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3.3.4 Probabilistic Completeness of Sparse-RRT: Complications

In practice, Sparse-RRT appears to exhibit good behavior when applied to different

motion planning problems. In an effort to prove that RRT-BestNear is probabilistically

complete, a Markov chain was constructed that represents the events of generating δ-

similar trajectories to a hypothetical optimal one (although, this was assuming that

only δBN was a parameter, see Figure 3.7). One characteristic of that Markov chain

was that there were no backtracking edges on that chain. Every transition was to

either stay in the same state, or to move forward to the next state. When the Prune

procedure is introduced in Sparse-RRT this is no longer the case. Now, at every Markov

state qi, there is an additional possible transition to all qj , j < i, and is illustrated

in Figure 3.11. In addition, these probabilities are constantly changing, since these

q0start q1 q2 ... qi ... qM

1− ρ

ρ

1− φ− ρ

ρ

φ

1− φ− ρ

ρ

φ

ρ

φ

1− φ− ρ

ρ

φ

ρ

φ

Figure 3.11: Markov chain illustrating the construction of a trajectory with
Sparse-RRT.

probabilities of pruning depend heavily on the history of operations Sparse-RRT has

already performed, but assume that these probabilities are upper bounded by φ. This

assumption is reasonable since a node must be selected to generate an edge that would

remove nodes on the covering ball sequence. This selection process relies on random

sampling, so there is always some positive probability that this node is selected. This

implies an upper bound of φ = 1 − γBN assuming that if the desired node is not

selected, then the worst case node is selected and an edge that would remove progress

is generated with probability one. Since these backward transitions are the worst case
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scenario for finding a full solution trajectory, it is appropriate to consider the worst case

probability for these transitions, where the transition results in arriving at the initial

Markov state in the chain.

Even in this case, the Markov chain is still absorbing, and thus Sparse-RRT is still

probabilistically complete. To clarify this result, below is a restatement of Theorem

11.3 used for proving that a homogeneous Markov chain will reach its sink state [27].

Theorem 3 For an absorbing Markov chain, written in transition matrix form

P =

 Q R

0 I


where the i,j element in this matrix holds the transition probability for going from

state qi to qj. Q holds all of the transitions that are not absorbing states (transient),

and R is the matrix of probabilities from transient states to sink states. The Markov

chain is guaranteed to reach the sink state with probability one if and only if

Qn → 0 as n→∞

3.3.5 Convergence Rate for Finding Solutions with RRT-BestNear and

Sparse-RRT

While both RRT-BestNear and Sparse-RRT are probabilistically complete, both algo-

rithms are not equally able to find solutions. Consider another element from the analysis

of absorbing Markov chains called the fundamental matrix. Using the fundamental ma-

trix, it is possible to determine the expected number of iterations needed to reach the

absorbing state. The following theorem is a restatement of Theorems 11.4 and 11.5

from [27].

Theorem 4 For an absorbing Markov chain, written in transition matrix form

P =

 Q R

0 I
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The fundamental matrix N = (I−Q)−1 which represents the expected number of times

that the Markov chain is in each state, starting at each other state. Then, the number

to iterations to reach the absorbing state from each other state can be calculated as

E(iterations) = N · 1

where 1 is column vector of ones.

Using the fundamental matrix, and computing the expected number of iterations, it

is possible to characterize the convergence rate of each algorithm to finding solutions.

Consider the Markov chain representing RRT-BestNear(Figure 3.7). The transient ma-

trix for this chain is

QBN =



1− ρ ρ 0 . . . 0

0 1− ρ ρ
. . .

...

...
. . .

. . .
. . . 0

...
. . .

. . . 1− ρ ρ

0 . . . . . . 0 1− ρ


and is an MxM matrix. The values 1 − ρ comprise the main diagonal of the matrix

and then the forward transitions are the adjacent diagonal comprised of the ρ values.

Given QBN , the fundamental matrix is

NBN = (I−QBN )−1 =



1
ρ

1
ρ

1
ρ . . . 1

ρ

0 1
ρ

1
ρ

. . .
...

...
. . .

. . .
. . . 1

ρ
...

. . .
. . . 1

ρ
1
ρ

0 . . . . . . 0 1
ρ


Then, to determine the expected number of iterations for RRT-BestNear, multiply a

column vector of ones with the fundamental matrix NBN and examining the first entry

in the resulting matrix, since that first entry corresponds to the number of iterations
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needed to get to the absorbing state from the initial state.

NBN ∗ 1 =

 M
ρ
...


With this result, RRT-BestNear requires an expected number of iterations equal to M

ρ .

This matches the result obtained if the same analysis was performed as Bernoulli trials

with events of probability ρ. Now, let’s contrast this result with the same result for

Sparse-RRT.

Recall the Markov chain for Sparse-RRT(Figure 3.11). The transient matrix is

defined by

QSparse−RRT =



1− ρ ρ 0 . . . 0

φ 1− ρ− φ ρ
. . .

...

... 0
. . .

. . . 0

...
...

. . . 1− ρ− φ ρ

φ 0 . . . 0 1− ρ− φ


and the fundamental matrix (only focusing on the top row for clarity) is

NSparse−RRT = (I−QSparse−RRT)
−1 =


(ρ+φ)M−1

ρM
(ρ+φ)M−2

ρM−1 . . . (ρ+φ)
ρ2

1
ρ

...

...

 .

Then, the expected number of iterations needed to reach the absorbing state from the

initial state is
M∑
i=1

(ρ+ φ)i−1

ρi
=

(ρ+φ
ρ )M − 1

φ
.

The expected number of iterations for the Sparse-RRT algorithm is exponential w.r.t.

the number of Markov states, M . In contrast, the expected number of iterations for

RRT-BestNear is linear w.r.t M . Granted, this is a worst case analysis, so the empirical

performance is likely to not follow these expectations, but under the right conditions,

Sparse-RRT may have difficulty finding a solution.
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Chapter 4

SST: Sampling-based Kinodynamic Planner with

Guarantees

While Sparse-RRT has good practical performance, proving probabilistic completeness

is difficult due to the pruning operation. The main problem arises from the shifting

nodes resulting from repeated node removals. These removals in the tree can remove the

stability of trajectories in certain regions of the state space, particularly the theoretical

optimum that is used in analysis. In order to maintain as much of the computational

benefit as possible from Sparse-RRT, but make the proof of probabilistic completeness

possible with the desired convergence rate, the pruning operation needs to be modified.

4.1 Algorithmic Description of Stable Sparse-RRT

The primary drawback when proving the convergence rate of Sparse-RRT is that the

regions that can prune other nodes shift along with the nodes in the search tree, causing

subtle shifts in the locations of nodes, thereby creating instability in the tree. It is then

theoretically possible that after the right sequence of events, there will not be nodes in

a local area where there once were. This instability can also make the algorithm a bit

volatile in some adversarial cases. This undesired behavior may not be highly likely, but

remedying this potential outcome is necessary for a more effective algorithmic strategy.

Instead of having the regions that are “claimed” by a node be represented by the

node itself, and subject to moving along with the node, when a node reaches an unex-

plored part of the state space, a “witness” node can be placed where that tree node is.

This witness node does not change its location over time, and then watches for any new

tree nodes that enter its region, and maintains the invariant that only one node can be

the “representative” in that witness’s region. Another interpretation of this is that a
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flagpole is placed by the first node that reaches a region of the state space. Then, only

one tree node can be represented by that flag at any given time.

Figure 4.1: Example illustrating the witness set, S, in SST, the active set of nodes that
have not been pruned, Vactive, and nodes that are removed from the nearest neighbor
structure, but needed for connectivity, Vinactive.

Algorithm 11: Stable Sparse-RRT(X, U, x◦, XG, Tprop, δBN , δs, N)

1 G = {Vactive ← {x◦},Vinactive ← ∅,E← ∅};
2 s0 ← x◦, s0.rep = x◦, S ← {s0};
3 NN.Add(x◦);
4 NNS .Add(s0);
5 for N iterations do
6 xselected ← BestNear-Selection(Vactive,X, δBN );
7 πnew ← MonteCarlo-Prop(xselected, U, Tprop);
8 snew ←FindWitness(πnew(t), G, S, δs);
9 if not Colliding(πnew) and BetterRepresentative(πnew(t), snew) then

10 Vactive ← Vactive ∪ {πnew(t)};
11 E← E ∪ {πnew};
12 NN.Add(πnew(t));
13 SST-Prune(snew.rep,G);
14 snew.rep← πnew(t)

15 return G(Vactive,Vinactive,E);

Algorithm 11 provides this stability modification to the Sparse-RRT algorithm, thus

making Stable Sparse-RRT(SST). SST makes use of a second set of nodes, S, that

represent the witnesses. An illustration of this witness set relative to tree nodes is

in Figure 4.1. This witness set is used in the pruning step of the algorithm, just as

in Sparse-RRT, but each witness is decoupled from the tree. Each iteration selects a

node for expansion with the BestNear-Selection algorithm (Algorithm 8), expands

from that state using MonteCarlo-Prop(Algorithm 7), collision checks the edge, and
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Algorithm 12: FindWitness(xnew, G, S, δs)

1 snew ← NNS .Nearest(πnew(t));
2 if dist(xnew, snew) > δs then
3 S ← S ∪ {xnew};
4 snew ← xnew;
5 snew.rep← NULL;
6 NNS .Add(snew);

7 return snew

Algorithm 13: BetterRepresentative(xnew, snew)

1 xpeer ← snew.rep;
2 if xpeer == NULL or cost(xnew) < cost(xpeer) then
3 return True;

4 return False;

Algorithm 14: SST-Prune(x,G)

1 if x is not NULL then
2 Vactive ← Vactive \ {x};
3 NN.Remove(x);
4 Vinactive ← Vinactive ∪ {x};
5 xdel ← x;
6 while IsLeaf(xdel) and xdel ∈ Vinactive do
7 xnext ←Parent(xdel);
8 Vinactive ← Vinactive \ {xdel};
9 E← E \ {πdel};

10 xdel ← xnext;



48

Figure 4.2: When adding a new edge that ends in an existing witness region, the worse
cost node is moved into the Vinactive set. Note that the witness region does not shift
when the new node is added, which is where the Stable attribute is introduced.

finally prunes unneeded nodes (now using Algorithms 12, 13, and 14). There is a

slight modification where a node is never added if that new tree node does not end

up replacing an existing representative node, or does not reach new areas of the state

space. In the cases where a new region of the state space is explored, a new witness

node is placed at the same state the tree node is, and that witness will exist for the

lifetime of the algorithm (see Figure 4.3 for an example).

Figure 4.3: When a new edge does not end in any existing witness region, a new one is
created.

4.2 Experimental Performance of SST

Note that SST now makes use of two nearest neighbor data structures, one for the tree

nodes and one for the witness nodes. Now that the witness nodes used for pruning

are decoupled from the tree nodes, this is needed to keep the selection operation and

pruning operation correct. While this does impose an additional computational cost

for storage, since this aims to reduce the number of nodes that need to be stored, it is
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δs
0.2 0.4 0.6 0.8 1.0

δBN

1.0
Initial Solution Time 0.1105 0.1190 0.0603 0.0451 0.0548
Initial Solution Cost (s) 3.4201 3.2445 3.2155 3.0468 2.7695
Final Solution Cost (s) 1.7782 1.7851 1.7916 1.8229 1.8627

1.2
Initial Solution Time 0.1296 0.0915 0.0999 0.0593 0.0635
Initial Solution Cost (s) 3.2891 3.2614 3.2105 2.9554 2.7371
Final Solution Cost (s) 1.7798 1.7797 1.7973 1.8273 1.8723

1.4
Initial Solution Time 0.1516 0.0938 0.0670 0.0498 0.0567
Initial Solution Cost (s) 3.2248 3.1364 2.9795 2.8908 2.7365
Final Solution Cost (s) 1.7866 1.7833 1.7988 1.8193 1.8621

1.6
Initial Solution Time 0.1687 0.0961 0.0671 0.0545 0.0595
Initial Solution Cost (s) 3.0865 3.0506 2.9523 2.8334 2.7185
Final Solution Cost (s) 1.7890 1.7829 1.7987 1.8232 1.8853

1.8
Initial Solution Time 0.2095 0.0906 0.0679 0.0724 0.0601
Initial Solution Cost (s) 3.0641 3.1027 2.8082 2.6549 2.7493
Final Solution Cost (s) 1.7949 1.7852 1.7971 1.8416 1.8846

Table 4.1: A comparison of different parameter choices in SST for a 2D point with 60
seconds of execution time. (From [59])

still a better investment in space than keeping all nodes like in RRT or RRT-BestNear.

The time complexity is still the same as Sparse-RRT however. Practically, SST still

provides good runtime performance in both finding good solutions and in keeping the

computational cost low.

Table 4.1 shows practical performance for different values of the parameters for

selection radius (δBN ) and pruning radius (δs). Examining some of the trends that

this data exhibits, the pruning radius δs has a relationship with how quickly a solution

is found and how good that initial solution is. As the pruning radius gets larger,

solutions are found faster and of better path quality. The amount of improvement in

the solution trajectories is reduced when the pruning radius is high however. For larger

pruning radii, SST is greedily removing edges that while they are locally suboptimal,

may provide a better solution path to the goal.

Looking at the selection radius (δBN ), there are also interesting effects to observe.

In general, as the selection radius increases, the time to finding the first solution also

increases. This makes sense intuitively since larger selection radii will result in pro-

cessing more nodes each iteration. This extra cost allows SST to find higher quality
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solutions when the selection radius is larger. By selecting values of δBN and δs, a user

can tailor the implementation to the particular problem domain and the computational

budget for that task.

Figure 4.4: The different benchmarks used to evaluate SST. Each experiment is averaged
over 50 runs of each algorithm, and results are reported from [59]

System Parameters Distance Function δs δBN
Kinematic Point 2 Dim. State, 2 Dim.

Control
Euclidean Distance .5 1

3D Rigid Body 6 Dim. State, 6 Dim.
Control

Euclidean Distance 2 4

Simple Pendulum 2 Dim. State, 1 Dim.
Control, No Damping

Euclidean Distance .2 .3

Two-Link Acrobot
[98]

4 Dim. State, 1 Dim.
Control,

Euclidean Distance .5 1

Cart-Pole [80] 4 Dim. State, 1 Dim.
Control,

Euclidean Distance 1 2

Quadrotor [2] 12 Dim. State, 4 Dim.
Control,

Distance in SE3 3 5

Fixed-Wing Airplane
[81]

9 Dim. State, 3 Dim.
Control,

Euclidean Distance in
R3

2 6

Table 4.2: The experimental setup used to evaluate SST. Parameters are available in
the corresponding references.

Getting into comparisons against baseline planners, several different robot models

are considered. The following experimental evaluations were originally presented in a

previous publication [59].
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Figure 4.5: The average cost to each node in the tree for each algorithm (RRT, RRT∗ or
the shooting approach, and SST). Results from [59]

Kinematic Point. A simple system for a baseline comparison. The state space is 2D

(x, y), the control space is 2D (v, θ), and the dynamics are:

ẋ = v cos(θ) ẏ = v sin(θ).

3D Rigid Body. A free-flying rigid body. The state space is 6D (x, y, z, α, β, γ)

signifying the space of SE(3) and the control space is 6D (ẋ, ẏ, ż, α̇, β̇, γ̇) representing



52

Figure 4.6: The time for execution for each algorithm (RRT, RRT∗ or the shooting ap-
proach, and SST). Results from [59]

the velocities of these degrees of freedom.

Simple Pendulum. A pendulum system typical in control literature. The state space

is 2D (θ, θ̇), the control space is 1D (τ), and the dynamics are:

θ̈ =
(τ −mgl ∗ cos(θ) ∗ 0.5) ∗ 3

ml2
.

where m = 1 and l = 1.

Cart-Pole. Another typical control system where a block mass on a track has to

balance a pendulum. The state space is 4D (x, θ, ẋ, θ̇) and the control space is 1D (f)
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Figure 4.7: The number of nodes stored in each algorithm (RRT, RRT∗ or the shooting
approach, and SST). Results from [59]

which is the force on the block mass. The dynamics are from [80].

Two-link Acrobot. The two-link acrobot model with a passive root joint. The state

space is 4D (θ1, θ2, θ̇1, θ̇2) and the control space is 1D (τ) which is the torque on the

active joint. The dynamics are from [98].

Fixed-wing airplane. An airplane flying among cylinders. The state space is 9D

(x, y, z, v, α, β, θ, ω, τ), the control space is 3D (τdes, αdes, βdes), and the dynamics are

from [81].

Quadrotor. A quadrotor flying through windows. The state space is 12D
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(x, y, z, α, β, γ, ẋ, ẏ, ż, α̇, β̇, γ̇), the control space is 4D (w1, w2, w3, w4) corresponding

to the rotor torques, and the dynamics are from [2].

Figures 4.5,4.6,4.7 illustrate the performance of SST compared with RRT, and either

RRT∗ if the system is simple enough that a steering function is available, or RRT∗ with

the shooting method [37]. In all cases, SST is able to improve path costs over time,

contrary to RRT, or even RRT∗ with shooting in some cases. Looking at the cost of each

iteration (in terms of computation time), SST is able to outperform even RRT in terms of

computational cost. This is even when SST is performing more nearest neighbor queries

than RRT, and this is due to the pruning operation keeping the number of nodes low,

as evidenced by the plots comparing number of nodes.

4.3 Analysis

Recall from Section 3.3.4 that Sparse-RRT had difficulty using the Markov chain ab-

sorption argument to prove probabilistic completeness. This was related to the pruning

operation causing new transitions in the chain to be possible, and being unable to quan-

tify what the transition probabilities of those edges are. Now that the pruning regions

are stable in SST, these extra transitions do not need to be drawn, and instead, a new

lower bound on the selection probability can be determined. This, in turn, creates a

new transition probability for moving from Markov state qi to qi+1. With that, SST is

probabilistically complete.

In order for this probability lower bound to be computed, assumptions on the pa-

rameters δBN and δs relative to the robust clearance δ need to be made.

Proposition 1 The parameters δBN and δs need to satisfy the following relationship

given a robust clearance δ:

δBN + 2 · δs < δ

.

Lemma 3 Let δc = δ−δBN−2δs (guaranteed by Proposition 1). If a state xnew ∈ Vactive

is generated at iteration n so that x ∈ Bδc(x∗i ), then for every iteration n′ ≥ n, there is
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a state x′ ∈ Vactive so that x′ ∈ B(δ−δBN )(x
∗
i ) and cost(x′) ≤ cost(x).

Lemma 3 is a formalization on the witness invariant discussed in Section 4.1. As

long as a state was generated in the δc ball that covers the optimal path, there will

always be a state in the δ−δBN ball covering the optimal path. This allows the Markov

chain to not require backward transitions.

Figure 4.8: By sampling in the highlighted region (which exists given Proposition 1),
it is always possible to select a node in the Bδ around the optimal path.

Proof: Given x, a node generated by SST, then it is guaranteed that a witness point s

is located near x. The witness point s can be located, in the worst case, at distance δs

away from the boundary of Bδc(x∗i ) if x ∈ Bδc(x∗i ).

Note that x can be removed from Vactive by SST in later iterations. In fact, x almost

surely will be removed if x 6= x◦. It is possible that when x is removed, there could be

no state in the ball Bδc(x∗i ). Nevertheless, the witness sample s will not be deleted. A

node x′ representing s will always exist in Vactive and x′ will not leave the ball Bδs(s). It

is guaranteed by SST that the cost of the x′ will never increase, i.e., cost(x′)≤cost(x).

In addition, x′ has to exist inside Bδ−δBN (x∗i ) = Bδc+2δs(x
∗
i ). �

Now that it is guaranteed that once a node is in a covering ball of the optimal path,

it is possible to quantify the probability of selecting that node.

Lemma 4 Assuming uniform sampling in the Sample function of BestNear, if ∃ x ∈

Vactive so that x ∈ Bδc(x∗i ) at iteration n, then the probability that BestNear selects for

propagation a node x′ ∈ Bδ(x∗i ) can be lower bounded by a positive constant γSST for

every n′ > n.

Proof: BestNear performs uniform random sampling in X to generate xrand, and then
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examines the ball BδBN (xrand) to find the best path cost node. In order for a node in

Bδ(x∗i ) to be returned, the random sample needs to be in Bδ−δBN (x∗i ). If the sample is

outside this ball, then a node not in Bδ(x∗i ) can be considered, and therefore may be

selected.

Next, consider the size of the intersection of Bδ−δBN (x∗i ) and a ball of radius δBN that

is entirely enclosed in Bδ(x∗i ). Let xv denote the center of this ball. This intersection

represents the area that a sample can be generated so as to return a state from ball

Bδ−δBN (x∗i ). In the worst case, the center of this ball BδBN (xv) could be on the border

of Bδ−δBN (x∗i ). Then, the probability of sampling a state in this region can be computed

as:

γSST =
µ(Bδ−δBN (x∗i ) ∩ BδBN (xv))

µ(X)

. This is the smallest region that will guarantee selection of a node in Bδ(xi), and is

illustrated in Figure 4.8. �

With a lower bound of γSST, the transition probability in the Markov chain from

state qi to qi+1 is now ρ = γSSTγδ.

4.4 Asymptotic Near-Optimality of SST

Throughout this analysis, the hypothetical trajectory used for proving probabilistic

completeness has been assumed to be the optimal trajectory with δ-robust clearance.

Up until now, this has not be a requirement has not been explicitly used. Now, a bound

on the cost of the path generated by SST will be examined, and this cost is relative to

cost of the optimal trajectory g∗.

Theorem 5 SST is asymptotically near-optimal

Proof: Let π(x′i−1 → xi) denote the δ-similar trajectory segment generated by SST

where x′i−1 ∈ Bδ(x∗i−1) of the optimal path and xi ∈ BδBN (x∗i ). Theorem 2 guarantees

the probability of generating this trajectory by MonteCarlo-Prop can be lower bounded

as γδ. Then from the definition of δ-similar trajectories and Lipschitz continuity for
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Figure 4.9: Along the optimal path, as long as a node enters the region around that
path, there will always be a node there, either the original node or one with better path
cost.

cost:

cost(π(x′i−1 → xi)) ≤ cost(π(x∗i−1 → x∗i )) +Kc · δ. (4.1)

Lemma 4 guarantees that when xi exists in Bδ−δBN (x∗i ), then x′i, returned by the

BestNear function with probability γSST, must have equal or less cost, i.e., x′i can be

the same state as xi or a different state with smaller or equal cost:

cost(x′i) ≤ cost(xi). (4.2)

Consider the second covering ball in the sequence, Bδ(x∗1). According to Equation 4.1

and Equation 4.2:

cost(π(x0 → x′1)) ≤ cost(π(x0 → x1)) ≤ cost(x0 → x∗1) +Kc · δ

.

Assume this is true for k segments,

cost(π(x0 → x′k)) ≤ cost(π(x0 → x∗k)) + k ·Kc · δ.

Then, the cost of the trajectory with k + 1 segments is:
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cost(π(x0 → x′k+1)) ≤ cost(π(x0 → xk+1))

= cost(π(x0 → x′k)) + cost(π(x′k → xk+1))

≤ cost(π(x0 → x∗k)) + kKcδ + cost(π(x′k → xk+1))

≤ cost(π(x0 → x∗k)) + kKcδ + cost(π(x∗k → x∗k+1)) +Kcδ

= cost(π(x0 → x∗k+1)) + (k + 1)Kcδ.

By induction, this holds for all k. The index k is upper bounded by the number of

covering balls M (which was derived by a cost differential g∆).

cost(π(x0 → x′M )) ≤ cost(π(x0 → x∗M )) +M ·Kc · δ = (1 +
Kc · δ
g∆

) · g∗.

Therefore, SST is an asymptotically near-optimal algorithm with

Bound(g∗) = (1 +
Kc · δ
g∆

) · g∗ ≥ g∗

�

The bound on the path cost is dependent on the Lipschitz constant of the cost

function, the robust clearance value, and the cost differential. The cost differential is

mainly determined via the propagation time in MonteCarlo-Prop, and it essentially

determines how many edges are needed to generate a trajectory to the goal region.



59

Chapter 5

Planning Under Uncertainty: A Case Study

Now that the SST algorithm has been presented, it can be used to study a particularly

interesting problem domain, planning under uncertainty. This problem domain plans

in a belief space where instead of states representing a robot’s current position, they

are now represented as probability distributions of where the robot could be. The

source of such uncertainty can be anything from sensor noise making the state of the

robot inaccurate, actuator error which results in unpredicted behavior, or imprecise

environmental models. The content in this chapter is adapted from material from a

previous paper [64].

5.1 Planning Under Uncertainty Preliminaries

There are many methods that aim to plan specifically in belief space [53, 85, 87, 106,

31, 5, 48, 107]. This is exciting because planning in belief space is doubly exponentially

more difficult than planning in state space, because the space of possible probability

distributions is large.

Sampling-based methods once again provide a useful tool to handling this problem,

due to their inherent ability to work well with high dimensional spaces. As examples,

some applications of sampling-based methods, along with a belief space abstraction of

Gaussian probability distributions have been used previously [9, 71, 87]. One of the

most important algorithmic choices in this domain however is what distance function

to use. Many methods even rely heavily on this function for a variety of reasons, such

as sampling or pruning [47, 53, 103].

The SST algorithm provides an opportunity to evaluate different distance function

choices when planning in belief space. Since SST is not built to exploit any explicit
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structure in a belief space planning problem, the main evaluation criteria is the distance

function, of which SST makes heavy use. In addition, SST is only able to plan in belief

space due to its reliance on forward propagation instead of steering. Steering requires

knowledge about how the probability distributions can be constructed and generally

requires those distributions to have certain parameterizations. SST is a good impartial

testbed to evaluate different distance functions for belief space planning.

Commonly used distance functions, such as L1 and the Kullback-Leibler divergence

(KL), make an important assumption that the underlying state space does not affect the

distance measure. So, in the event that the probability distribution parameterization

results in a finite region where probability mass is gathered, two distributions that don’t

‘’overlap are considered to be infinitely far away from each other. A different distance

function, the Wasserstein or Earth Mover’s Distance (EMD) does make use of distance

in state space, but has been sparingly used [52, 54].

In order to evaluate these distance functions, and to allow for SST to be applied to

belief space planning, the type of problem considered here is a Non-Observable Markov

Decision Process (NOMDP), or otherwise referred to as conformant planning. As the

name suggests, this problem class does not have an observation model. In addition,

when solving a Partially-Observable Markov Decision Process (POMDP), the result of the

planning process is a policy, where in a NOMDP, the result is a nominal path, the same

result as a planner operating in state space. This means that solving a NOMDP can focus

on minimizing the cost of this nominal path, making SST a prime candidate for solving

this type of problem.

5.2 Distance Functions in Belief Space

A distance in belief space is between two different belief distributions b, b′ ∈ B(X) and

aims to measure how far away these two distributions are from one another. Four

different choices for distances in belief space are evaluated, two of which are commonly

used for belief space planning, and the other two are not, but are used for computer

vision or optimal transport problems.
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Figure 5.1: Illustration of the L1 distance.

A commonly used distance function for belief space planning is the L1 distance:

distL1(b, b
′) =

∫
x∈X
|b(x)− b′(x)| dx.

In practice, to compute this distance, the state space is discretized, which allows for

this distance to be computed for each “bin” that was created and summing every-

thing together. The accuracy of this distance is dependent on the resolution of the

discretization.

Figure 5.2: Illustration of the Kullback-Leibler (KL) divergence.

Another common distance function is the Kullback-Leibler divergence (KL), which

in general measures the difference in information between two probability distributions:

distKL(b, b
′) =

∫
x∈X

b(x)
(
ln b(x)− ln b′(x)

)
dx. (5.1)

while this distance does not generally consider the state space distance in its calculation,
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when the underlying distributions are Gaussian, the state space distance appears in the

difference of the means, i.e. when b1 = N (µ1,Σ1) and b2 = N (µ2,Σ2), then

distKL(b1, b2) =
1

2

(
(µ2 − µ1)T Σ−1

1 (µ2 − µ1) + tr
(
Σ−1

2 Σ1

)
+ ln

|Σ2|
|Σ1|

−K
)
, (5.2)

whereK is the dimension of the underlying state space. Of note, the KL divergence is not

symmetric, while distance functions are defined to be symmetric. Instead, the distance

between the distributions means can be used, i.e.
distKL(b,

b+b′
2

)+distKL(b′,
b+b′
2

)

2 . This is also

known as the Jensen-Shannon divergence. Both the Jensen-Shannon divergence and an

approximation using Gaussians are evaluated.

Figure 5.3: Illustration of the Hausdorff distance. Image attributed to [90].

Coming from the computer vision domain, the Hausdorff distance is also consid-

ered. This distance is between two sets and uses a max-min operation over those sets

where they have nonzero probability (otherwise called their support). For probability

distributions, this is defined as

distH(b, b′) = max{dH(b, b′), dH(b′, b)}

where dH(b, b′) = max
x∈support(b)

{
min

x′∈support(b′)

{
dist(x, x′)

}}
,

and support(b) = {x ∈ X | b(x) > 0}. Notice that in order to make this distance
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symmetric, both directions need to be calculated.

Figure 5.4: Illustration of the Earth Mover’s Distance. Image from [92]

Finally, the Wasserstein distance is considered, more commonly known as the Earth

Mover’s Distance (EMD). This distance is analogous to computing the amount of work

to move the probability mass from one distribution to another. The farther away the

two piles are, the more work is necessary. Formally, this is defined by:

distEMD(b, b
′) = inf

f

{∫
x∈X

∫
x′∈X

dist(x, x′)f(x, x′)∂x∂x′
∣∣∣∣

b =

∫
x′
f(x, x′)dx′ , b′(x′) =

∫
x
f(x, x′)dx

}
, (5.3)

where f is a joint density function.

5.3 Experimental Performance

All of these previous results were presented in published works [64]. All distances are

evaluated in the scenarios shown in Figure 5.5. The 2D rigid body (left) must move

from the left to the right side. The car (left middle) must drive through one of 3

corridors. The fixed-wing airplane (middle right), must move to the opposite corner

while avoiding cylindrical columns. The planar manipulator (right) must push the
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Figure 5.5: The scenarios for evaluating distances for planning in belief space (from
[64]).

round object into the storage location at the top right. All scenarios produce non-

Gaussian belief distributions due to the nonlinear dynamics, so these distributions are

represented via a particle representation and are binned into cells in the state space.

These binned cells and particle counts are then the inputs to the distance functions. The

exception to this process is the KL-divergence that approximates the distribution as a

Gaussian. The motion planning objective is to reach a goal region in state-space with

at least 90% probability (90% of the particles are in the goal region). Valid trajectories

have a collision probability of less than 20%, and any trajectory that would collide more

than that is not added to the search tree.

2D Rigid Body. This introductory example is a 2D rigid body moving among two

narrow corridors. Due to errors in actuation and requirement for collision avoidance,

the robot can only move through the lower corridor. The state space is 2D (x, y) and

the control space is also 2D (v, θ), where v ∈ [0, 10] and θ ∈ [−π, π]. The dynamics

follow this model:

ẋ = ṽ cos(θ̃), ẏ = ṽ sin(θ̃),

where ṽ = v+N (0, 1) and θ̃ = θ+N (0, 0.3). Numerical integration is performed using

Euler integration.

2nd-order Car. A four-wheeled vehicle with dynamics needs to reach a goal region,

while ensuring low collision probability. The state space is 5D (x, y, θ, v, ω), the control

space is 2D (a, ω̇) ∈ ([−1, 1], [−2, 0.2]), actuation error is (N (0, 0.05), N (0, 0.002)), and

the dynamics are:
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ẋ = v cos(θ) cos(ω), ẏ = v sin(θ) cos(ω),

θ̇ = v sin(ω), v̇ = ã.

Numerical integration is performed using Runge-Kutta order four (RK4). There are

multiple feasible paths through each of the 3 corridors.

Fixed-wing airplane. An airplane flying among multiple cylinders. The state space

is 9D (x, y, z, v, α, β, θ, ω, τ), the control space is 3D (τdes ∈ [4, 8], αdes ∈ [−1.4, 1.4],

βdes ∈ [−1, 1]) and the dynamics are (from [81]):

ẋ = v cos(ω) cos(θ), ẏ = v cos(ω) sin(θ)), ż = v sin(ω),

v̇ = τ ∗ cos(β)− Cdkv2 − g sin(ω), ω̇ = cos(α)(
τ sin(β)

v
+ Clkv)− g cos(ω)

v
,

θ̇ = v
sin(α)

cos(ω)
(
τ sin(β)

v
+ Clkv), τ̇ = τ̃des − τ α̇ = α̃des − α, β̇ = β̃des − β,

where τ̃des = τdes +N (0, 0.03), α̃des = τdes +N (0, 0.01), and β̃des = βdes +N (0, 0.01).

Numerical integration is performed using RK4. This problem has a state space that is

generally larger than most planners in belief space can handle computationally. Lever-

aging sampling-based techniques with proper distance functions makes planning for the

airplane model possible.

Non-prehensile manipulator. The task is to push an object to the goal. The state

space is 5D (xman, yman, xobj , yobj , θmanip) and the control space is 2D (v, θ), where

v ∈ [0, 10] and θ ∈ [−π, π]. The dynamics are:

ẋman = ṽ cos(θ̃), ẏman = ṽ sin(θ̃),

where ṽ = v + U(−1, 1) and θ̃ = θ + U(−0.3, 0.3). Numerical integration is performed

using RK4. The object cannot be moved unless the manipulator moves in the direction

of the object and pushes it, which implies that there is contact between the manipulator

and the object. Once pushed, the object moves as if it is attached to the manipulator.

Notice that the noise model used in this setup is a uniform distribution, meaning that
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Figure 5.6: Distance comparison results for the 2D rigid body.

the resulting belief distributions are clearly non-Gaussian.

In order to evaluate each distance function in each domain, the success rate of SST

in finding solutions and the quality of those solutions are compiled. Arguably, the rate

of finding solutions is the most important metric here, since large computational cost of

planning in belief space does not allow much extra computation time to optimizing an

existing solution. Nevertheless, this quality data is also provided. All of these results

are averaged over 30 independent SST runs.

In most scenarios, belief metrics that do consider the underlying state-space dis-

tance, such as EMD, Hausdorff, and KL-Gaussian, perform significantly better than those

that do not. Such consideration is sufficient when the state space is small (as in Figure

5.6). As the size of the state space increases, this is no longer sufficient. The path

costs achieved by the different metrics for successful runs are comparable, but there

is a significant difference among the distance functions for when solutions are actually

found.

In the spirit of the development of SST, it is useful to reexamine existing assumptions
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Figure 5.7: Distance comparison results for the car. L1 and KL failed to produce
solutions.

Figure 5.8: Distance comparison results for the airplane. L1 and KL failed to produce
solutions.
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Figure 5.9: Distance comparison results for the manipulator. L1 and KL failed to
produce solutions.

and methods to see if new perspectives can provide new conclusions. Just as reeval-

uating the BestNear primitive in the context of asymptotically-near optimal planners

resulted in a performant motion planning algorithm with provable guarantees, question-

ing the distance function choice in belief space planning is a useful exercise. Knowing

the advantages and disadvantages of a distance function choice is paramount to getting

planners to work well in practice, in addition to the local planner choice.
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Chapter 6

Informed Kinodynamic Planning with Guarantees

SST has good practical performance in some problem domains. SST does have some

drawbacks however. First, there are the two user-defined parameters, δBN and δs, that

need to be tailored to the particular environment, and are restricted by the duration

of propagation. If the pruning radius is larger than the largest possible edge length,

no edges can be added. If the selection radius is smaller than the pruning radius, the

BestNear procedure will not be likely to examine multiple nodes in each selection step,

negating its benefit of comparing multiple nodes.

Second, recall that the goal of Sparse-RRT and SST was to introduce more exploita-

tion for path cost into RRT-based motion planners. The addition of this exploitation is

at the cost of the pure Voronoi exploration bias of RRT. In addition to this cost, SST

does not have any goal-finding exploitation to find solutions quickly.

Another source of poor goal-finding exploitation is inherent to using the

MonteCarlo-Prop procedure for expanding nodes. Since the use of random controls

does not directly take the system toward the goal, but instead just lets the flow of the

system dynamics move the system, tt may take many iterations to attempt a control

that avoids obstacles and moves toward the goal. Having a mechanism that splits the

difference between MonteCarlo-Prop and the steering methods required by RRT∗ should

help alleviate this issue.

6.1 Incorporating Task Space Heuristics

This section aims to provide more exploitation for finding goals into a sampling-based

planner similar to SST. As discusses previously, a common and easy to implement

exploitative modification is goal-biasing the selection primitive. The random sample
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step in the selection primitive is replaced with “sampling” a state in the goal region

with some probability. This makes selection biased toward nodes that are closer to the

goal, thus increasing the likelihood that the goal will be reached in less iterations.

Another more effective method is to introduce some task space heuristic function.

This is similar to search-based methods like A∗, where in addition to the cost values,

g, there are heuristic values, h. The cost value represents true cost that a trajectory

has accumulated from its initial state, and the heuristic value represents the expected

cost to get from the end of that trajectory to the goal region. If you are using the A∗

algorithm, the heuristic function, H, needs to be consistent and admissible. Formally,

this is denoted as

H(x→ XG) ≤ cost∗(x→ XG), ∀x ∈ Xf

H(XG → XG) = 0

H(x→ z) ≤ H(x→ y) + H(y → z)

For ease of notation, the heuristic function H with one argument has the implicit

second argument of XG, since that that is the most common argument. It is also

important to note how similar H is to the distance function dist. In fact, there are

similar needs between both dist and H. Both functions want to estimate the cost

between states as closely as possible. One strategy that is commonly used is to use a

task space abstraction for this heuristic function. A task space, T, is a transformation

of the state space, X, via an embedding function F : X→ T. As long as the properties

above are satisfied for a given cost function and task embedding, a heuristic function

can make use of a distance function in task space instead of state space.

6.1.1 Prioritizing Selection with Heuristic Values

A∗ makes use of both cost and heuristic values to prioritize what nodes are expanded

during its search process, and does so by putting unexpanded nodes into a priority
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queue and sorting that queue by f = g + h, thus prioritizing lower f -values. In the

context of sampling-based planners, since selection of a node needs to occur many

times over the course of an algorithm’s execution loop, using a priority queue may not

be the right solution. The sampling-based selection process is one of the strengths of

sampling-based planners (its in the moniker for the algorithm class). The strategy of

using f -values for selection has already been applied in the RRT∗ family of algorithms

[24, 25, 13].

Trying to apply this philosophy onto SST, and addressing the issue of hand-tuned

δBN and δs, it is necessary to construct a different selection and pruning mechanism

that makes use of both trajectory cost and heuristic cost. By removing the constraint

of a user-provided parameter, additional flexibility is gained where every node can

freely determine how good that node is. Nodes that have lower f -values should get

higher priority than those with higher f -values. During a random selection process, this

corresponds to having higher probability of selecting lower f -value nodes. Moreover,

one way to accomplish this goal is to allow for the lower f -value nodes to have larger

“regions of influence” where those nodes can be selected, whereas higher f -value nodes

should have smaller regions. These regions that each node maintains are “dominance”

regions that are informed by these f -values.

Each node maintains a dominance informed region (DIR) by looking at nearby nodes

and determining the distance to the closest node that has a lower f -value. Then, at

any given time, each node knows that it is the best node in a ball of that radius. Then,

when a new node is added during a motion planner iteration, these dominance regions

are updated to account for this new node, in addition to the new node calculating its

dominance region.

Recall that the BestNear procedure looks at a region, examines all nodes in that

region, and returns the one with the best path cost. An analogous operation that uses

the dominance regions follows a process as follows:

• Randomly sample a state.

• Determine each dominance region that contains that random sample.

• If that set is empty, find the closest node to the random sample, and repeat this
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Algorithm 15: DIR Selection(G)

1 xrand ← Sample(X);
2 Xcand ← {x ∈ G|xrand ∈ DIR(x)};
3 if |Xcand| = 0 then
4 xclosest ← NN.Nearest(xrand);
5 Xcand ← {x ∈ G|xclosest ∈ DIR(x)};
6 return x ∈ Xcand uniformly at random;

Figure 6.1: Comparison of how nodes are selected in RRT and DIRT. (left) An RRT-like,
Voronoi-based selection would select the closest node to the random sample. (right)
The DIR-based method selects equally among all nodes that contain the random sample
in their DIR. The DIR radius is dependent on cost(x)+H(x) values at each node relative
to those nearby.

process using that node as the random sample.

• When the set of dominance regions is non-empty, uniformly at random select

among those nodes.

The algorithm for this selection strategy is provided in Algorithm 15.

6.1.2 Updating Dominance Regions

As previously mentioned, whenever a new node is added into the search tree, all of

the surrounding dominance regions need to be updated. Those existing nodes may

not be as good as the new node that was added. Conversely, the existing nodes will

influence the size of the dominance region of the new node. This process is formalized

in Algorithm 16.

Ideally, there should also be a version of Algorithm 16 that can also prune away
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Algorithm 16: Update Dominance Regions(G,xselected,xnew)

1 Xup ← {x ∈ G|dist(x, xnew) ≤ dist(xselected, xnew)};
2 ∀x ∈ Xup s.t.

cost(x) + H(x) > cost(xnew) + H(xnew), DIR(x)← B(x,dist(x, xnew));
3 DIR(xnew)← max

x∈Xup
(dist(xnew, x) s.t. cost(x) + H(x) > cost(xnew) + H(xnew);

xj

xk

xi δ (xj)

f(xi) < f(xj) xj

xk

xi

selected for
propagation

xnew

xj

xk

xi δ (xj)

f(xnew) < f(xj)

xnew

Figure 6.2: Computing a new DIR and updating others. A new node is added, which
reduces the size of DIR(xj). Because the new node is not close enough to xi, DIR(xi)
is not effected. The dotted line denotes the old DIR, and the solid lines are the current
DIR.

unneeded nodes. This way, an algorithm that uses dominance regions can gain the

computational benefits from a smaller number of nodes. One intuitive method to ac-

complish this goal is to remove nodes that have dominance regions that are small enough

to be completely subsumed by another dominance region, i.e. DIR(x′) ⊂ DIR(x). This

version on updating dominance regions is provided in Algorithm 17.

6.2 Dominance Informed Region Trees (DIRT)

Now that a new parameterless selection and pruning scheme have been presented, the

algorithm, Dominance Informed Region Trees (DIRT) can be presented. DIRT is an algo-

rithm that replaces the somewhat unintuitive parameters of δBN and δs from SST with

more human legible parameters of task-space heuristic functions and edge generation

primitives.

Algorithm 18 contains the formal DIRT algorithm. The normal initialization pro-

cedure of inserting the start node is performed first. Then, one of the new portions

of the DIRT algorithm is related to the saved node xsave. This addition allows for the
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Algorithm 17: Update DIR Pruning(G, xselected, xnew)

1 Update Dominance Regions(G,xselected,xnew);
2 Xd ← {x ∈ G|∃x′, DIR(x) ⊂ DIR(x′)};
3 for x ∈ Xd do
4 Vactive ← Vactive \ {x};
5 NN.Remove(x);
6 Vinactive ← Vinactive ∪ {x};
7 xdel ← x;
8 while IsLeaf(xdel) and xdel ∈ Vinactive do
9 xnext ←Parent(xdel);

10 Vinactive ← Vinactive \ {xdel};
11 E← E \ {πdel};
12 xdel ← xnext;

13 G← G \Xd;

Algorithm 18: DIRT(X, U, x◦, XG, H, BF, Tprop, N)

1 G = {Vactive ← {x◦},Vinactive ← ∅,E← ∅};
2 NN.Add(x◦);
3 xsave ← x◦;
4 for N iterations do
5 if xsave 6= NULL and H(xsave) < H(Parent(xsave)) then
6 xselected ← xsave;

7 else
8 xselected ← DIR Selection(G);

9 if Ecand(xselected) = ∅ then Ecand(xselected)← Blossom( xselected, U, BF) ;
10 while Ecand(xselected) 6= ∅ do
11 υ ← arg min

H(π(t))
Ecand(xselected);

12 Ecand(xselected)← Ecand(xselected) \ {υ};
13 πnew ←

∫ t
0 f(π(t), υ(t)) dt, where π(0) = xselected;

14 if not Colliding(πnew) then
15 Vactive ← Vactive ∪ {πnew(t)};
16 E← E ∪ {πnew};
17 NN.Add(πnew(t));
18 Update Dominance Regions(G, xselected, πnew(t));
19 xsave ← πnew(t);
20 if πnew(t) ∈ G and (πsol = ∅ or cost(xsave) < cost(πsol)) then
21 πsol ← π(x◦ → xsave);

22 break;

23 else
24 xsave ← NULL;

25 return πsol;
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algorithm to be greedy when a node is first added. By selecting a newly added node

that results in a smaller h value, in easy environments, in a small number of iterations,

an initial solution can be found in just a few iterations. This process trusts the heuristic

function, H, to judge when an edge is not making progress toward the goal, and reverts

to the DIR Selection process.

Algorithm 19: Blossom( x, U, BF)

1 if x expanded previously then t← Sample([0, Tprop]);
2 υ ←Sample(Υ);
3 return (υ,t) ;
4 else return Ecand = υ ∈ Υ s.t. |Ecand| = BF ;

The next new addition relates to the expansion process used here. When a node

is selected, in an effort to maximize the likelihood that a useful edge will be added

this iteration, a set of candidate edges are considered for each expansion step. This

is similar to the Randomized A∗ algorithm, or RRT-Blossom[18, 38], where each node

selection results in many edges added at once. The approach that DIRT takes is slightly

different, in that only one edge can be added in an iteration. An unchecked edges

are stored at that node and are examined when that node is selected again. The

generation of this candidate edge set, is left as a user defined process, with a default

as just a set of MonteCarlo-Prop calls. Finally, when the first edge set is exhausted,

the algorithm reverts to a simple MonteCarlo-Prop procedure that only generates one

edge. Algorithm 19 provides the Blossom procedure that switches between the edge

generation process and the MonteCarlo-Prop process.

This means that each node can be considered to be in one of three propagation

stages:

• If that node was generated along the negative gradient of the H function, it is

prioritized.

• While there are user-defined maneuvers left to examine, try to add those edges.

• When all the options are exhausted, propagate random controls via

MonteCarlo-Prop.

This progression of expansions when a node is selected over time reflects the priorities



76

of DIRT. The first priority is to find solutions quickly, then the priority becomes finding

low cost trajectories.

6.3 Experimental Performance

Figure 6.3: Test environments to evaluate DIRT: (Left to Right) 2-link acrobot, fixed-
wing airplane in a building, car-trailer in a maze, 4-link planar manipulator pushing an
object to the marked region. Results from [60].

The results here are originally from a previously published paper on DIRT[60]. The

algorithms compared are Randomized A∗ [18], AO-RRT [28], and SST [59]. Randomized

A∗ and SST have parameters that introduce pruning. SST has an additional parameter

for a selection radius. The parameters were chosen to maximize the algorithm’s effec-

tiveness in each evaluation. Two versions of DIRT are included: i) the basic algorithm

18 and ii) a pruning version using Algorithm 17. This is denoted as DIRT-Prune. When

Blossom generates a set of candidate edges, these edges are generated as equally spaced

control values to span the control space of the system. Randomized A∗ only uses these

generated candidate edges for expansion. These variants highlight the effectiveness of

different modules of the proposed planner. Randomized A∗ uses a Blossom expansion

strategy and shows the effects of not including randomized controls beyond greedy ex-

pansions. AO-RRT and SST have path quality guarantees but do not exhibit an informed

nature. Methods that require an optimal local planner are not considered.
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A set of scenarios involving dynamical systems are considered (Fig. 6.3):

a) a 2-link acrobot, which is passive-active [98]. The state space is 4 dims. The

control is the torque for the second joint. The system is tasked with reaching an upright

balancing position while avoiding obstacles, including self collisions. This system is low

dimensional, but highly non-linear. The task space is just the 2 angles representing

the point mass on the end of the links. The heuristic is the distance between the given

state and the upright goal in task space.

b) A fixed-wing airplane moving through a building with tight stairwells to reach

the top floor. The state space is 9 dimensions [81]. The task space is the x,y,z location

of the fixed-wing airplane, and the heuristic is computed via L2 distances to waypoints

in the stairwells.

c) A second order car-like vehicle with trailers and the task is moving among a

maze of obstacles. The state space for this system is 8 dimensional, corresponding to

the SE(2) configuration of the car, the steering angle, forward velocity, and three trailer

angles, θ1, θ2, θ3, relative to the chassis attachment. The controls for this system are

forward acceleration and steering angle velocity. The dynamics are:

ẋ = v cos(θ) cos(ω), ẏ = v sin(θ) cos(ω),

θ̇ = v sin(ω), v̇ = ã.

θ̇1 = v sin(θ1 − θ), θ̇2 = v sin(θ1 − θ2),

θ̇3 = v sin(θ2 − θ3).

The task space is x, y location of the front vehicle and the heuristic is the L2 norm

between the state and the goal.

d) A non-prehensile manipulation task, where an object must be pushed to a goal

region. The object has inertia once pushed. The state space is 8 dimensional, corre-

sponding to the 4 manipulator joint values and the object position and velocity in the

2D plane. The heuristic is the sum of a lower bounded time to reach the object with

the end effector and a lower bounded time for the object to move at maximum velocity

toward the goal, ignoring obstacles.
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Figure 6.4: A sum of number of solutions found over time for each of the evaluated
algorithm/system scenarios relating to DIRT. Each planner instance is ran 50 times to
account for different random seeds. Results from [60].

Figures 6.4 and 6.5 (left) show the results on the 2-link acrobot. Many algorithms

can find solutions quickly. Randomized A∗, however, had difficulty finding solutions

due to the pruning radius, which prohibits new nodes from being added in the highly

non-linear space. SST gets around this by allowing new nodes to prune others only

when path quality improves. SST does not find solutions for all instances within the

time limit, unlike AO-RRT and DIRT. Both versions of DIRT find the best solutions and

have lower variance.

Figures 6.4 and 6.5 (middle left) correspond to the fixed-wing airplane. Randomized

A∗ has failed to find solutions and doesn’t scale well. The DIRT methods effectively find

solutions quickly with high solution quality. In these scenarios, there is only one possible

corridor to the goal, which explains why both SST and DIRT find high quality solutions.

DIRT finds them faster.

Figures 6.4 and 6.5 (middle right) are results for the car-trailer. This is the most
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Figure 6.5: The average solution quality returned over time for each of the evaluated
algorithm/system scenarios relating to DIRT. Each planner instance is ran 50 times to
account for different random seeds (which results in some variance in solution quality).
Results from [60].

difficult benchmark due to the large number of obstacles and large state space. Heuristic

guidance is essential for finding solutions and DIRT is able to take advantage of it.

Figures 6.4 and 6.5 (right) provide results for the planar manipulator case. SST and

Randomized A∗ were ineffective in this space. SST did find some solution trajectories,

but the number of successes was small. The DIRT methods found the most solutions.

Encoding a heuristic with more knowledge about how the manipulator approaches the

object could help. In terms of path quality, when the algorithms find solutions, DIRT

has slightly better solutions on average.

6.4 DIRT and Probabilistic Completeness

The proofs of probabilistic completeness and asymptotic near-optimality of DIRT fol-

low the same Markov chain argument as SST. The propagation probability is the
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same as previous, just requiring that a node is selected enough times to revert to the

MonteCarlo-Prop procedure, γDIR−prop = γδ(γDIR−select)
BF. If the selection probability

is non-zero, this probability will also be non-zero.

There are two versions of the selection probability to consider here. First, the version

of the dominance regions that are not pruned, is the simplest case. The probability

that a node is selected is directly proportional to how large the dominance region.

The dominance region for a node is always some distance to another node. So, its

volume is always non-zero and the probability of selecting this node is also non-zero,

i.e., γselect = µ(DIR(x))
µ(X)∗|Xcand| . It is likely that the true probability of node selection in

the covering ball sequence is much higher, since multiple nodes may be in the same

ball, and the dominance region for nodes in this ball may have larger volume larger

than the covering ball. This probability also does not include cases where a random

sample does not fall into an existing dominance region. In the case of the pruned

dominance regions, when nodes are removed, that is only an event that occurs when

another node’s dominance region completely contains the other, so another node is

likely in the covering ball when the first node is removed. In the worst case, the proof

for probabilistic completeness can make use of the extended Markov chain used to prove

Sparse-RRT was probabilistically complete.
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Chapter 7

Planning in Challenging Domains

The DIRT motion planning algorithm is intended to be a motion planner with “plugin”

capability for particular problem domains, with the aim that these plugged in features

would be interpretable by the user. Instead of changing some pruning radius until

good performance is achieved, instead the propagation length can be tuned, and good

maneuvers can be generated before runtime. The heuristic function being defined in a

task space is also helpful for interpretability. This chapter first mentions an application

of the DIRT algorithmic framework in the context of manipulation, and then following

that, a deep dive on applying DIRT to the tensegrity robot prototype, SUPERball, is

presented.

7.1 Application Area: Manipulation

A large portion of this dissertation has been discussing the use of random controls in

sampling-based motion planners. Sparse-RRT, SST, and DIRT are methods that can

effectively make use of random controls. But, as expected, when a steering function is

available, other motion planning methods may outperform these methods (see Figure 4.5

results for the two-dimensional point and three-dimensional rigid body). One domain

that leverages these steering functions well is manipulation with linked arms.

In the context of manipulation tasks, one recent event showcasing state-of-the-art

progress in this area is the Amazon Picking Challenge [15]. In preparation for this event,

it is important to consider what type of local planning methods to use when building

roadmaps and trees to perform pick and place tasks in the constrained environments

for the challenge. In addition to this, the end-effector of the arm may be unsuited for

certain objects. In previous work, motion planning methods using different steering
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Figure 7.1: A Motoman SDA10F robot carrying the UniGripper tool and an Amazon-
Kiva Pod stocked with objects.

Figure 7.2: The end-effectors evaluated for the 2015 Amazon Picking Challenge. The
RightHand Robotics “ReFlex” hand and its preshape motion. An end-effector using
UniGripper’s suction technology with a 1 wrist-like DOF.

methods were used to evaluate different end effector choices for the manipulation task

of the Amazon Picking Challenge [68]. This is similar to how SST was used to evaluate

the effectiveness of distance functions for belief space planning, where a motion planner

is used as an impartial judge of some other factor.

The physical evaluation was performed with a Motoman SDA10F (Figure 7.1) and

the two grippers evaluated were the “ReFlex” hand from RightHand Robotics and a

custom designed vacuum gripper from UniGripper. The motion planning strategy is

outlined as follows (Figure 7.3):

Transit Plan: Takes the arm from an initial state to a “connection” state. This plan

is retrieved from a precomputed PRM∗roadmap [40], which takes into account the arm

and the static geometry. To find the shortest collision-free path given new objects in
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Figure 7.3: A visual breakdown of the two types of motion plans computed: (left)
transit and (right) transfer plans in the end-effector evaluation process.

the world, an iterative lazy evaluation process is followed.

Transit Connection Plan: Takes the arm from the “connection” to the “retracted”

state. This is computed online using a goal-biased RRT[57]. The start state is the “re-

tracted” state and the candidate goals are the nearest roadmap nodes to the “retracted”

state. The plan is executed in reverse to reach the shelf.

Reaching Plan: Takes the arm from the “retracted” to the “grasped” state. To

accommodate for the time it takes for the Unigripper to establish suction with an

object, the reaching portion of the plan was slowed down. A slight “pushing” action,

to enable better contact between the suction sponge and the object surface.

Retracting Plan: Takes the arm from the “grasped” to the “retracted” state. It

results in the arm moving a short distance away from the initial object pose.

Transfer Connection Plan: Takes the arm from the “retracted” state to a new

“connection” state. This plan is computed online using a goal-biased RRT, similar to

the transit connection, but with the object in hand.

Transfer Plan: Takes the arm from the new “connection” to the “target” state. This

plan can be retrieved from a precomputed roadmap using lazy evaluation. The resulting
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path is accepted only if it is collision-free given that the arm is holding the object.

The results of this study of end-effectors showed that the fingered end-effector is

especially suited to non-uniform objects while the vacuum gripper is good for flat-

surfaced objects. Getting back to the motion planning method itself, no care was taken

to consider the path quality (disregarding that the PRM∗ method was used for motions

outside the shelf). The motions into the shelf (the reaching and retracting portions)

were not evaluated for path quality directly, but the DIRT method could have been used

as a more effective tool to introduce improved path quality in these tasks.

7.1.1 The JIST Approach

The DIRT algorithm is the baseline of the method used for the Jacobian Informed

Search Tree (JIST) [45]. This approach calculates a heuristic function for guiding a

manipulator’s end effector toward a target object in order to grasp that object. This

heuristic is computed via a graph in the workspace of the end effector, and is built

by considering a free-flying end effector and computing a roadmap for that. Then,

when planning for the full manipulator the Jacobian can be used to try to follow those

roadmap edges, using an approach similar to Blossom. A figure illustrating a core

component of the method is in Figure 7.4, which describes the heuristic computation

strategy that guides the motion planner.

Figure 7.4: Highlight of the JIST algorithm for manipulation in clutter [45]. Using a
graph computed with just the end-effector as a rigid body as a task-space heuristic,
JIST is able to guide a tree-based planning strategy based on DIRT to grasp objects in
tight areas with the full manipulator.

An excerpt of results from the original paper [45] are presented in Figure 7.5. These

results show that the JIST approach is effective at both finding solutions in complex
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Figure 7.5: Success Rates, Solution Costs, and Example Picks for the Kuka+ReFlex
(0), Baxter+Parallel (1), Motoman+ReFlex (2), Motoman+Vacuum (3,4)

scenarios, but also finding low cost solutions as well.

7.2 SUPERball: Next Generation Tensegrity Rover Prototype

SUPERball is a tensegrity-based robot prototype build by NASA Ames Research Center

(seen in Figure 7.6). Tensegrity is a portmanteau of “tensional” and “integrity” and

refers to structures that have isolated pieces that are suspended in compression by

tensile elements. It is commonly seen in architecture, and recently has become a class

of robot frameworks [29, 95]. There have been a wide variety of works that explore

the capabilities of tensegrity-based robots for uneven terrain traversal, biological joint

modeling, and pipe cleaning [82, 72, 6, 11, 10, 23].

SUPERball is aimed at being an exploration rover that allows for study of dynamic

locomotion and path planning [8, 91]. This robot has a simulation framework built for

it, based on the Bullet physics engine [16, 99] and has been verified against the real

hardware prototype [73].

One of the goals of the SUPERball project is to explore the motion planning possi-

bilities for this platform. Solving this problem is challenging since the state and control

spaces for SUPERball are high dimensional and its dynamics are highly complex as
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Figure 7.6: SUPERball tensegrity robot prototype: a) during a test at NASA Ames. b)
active crouching by contracting cables (background and cables removed) c) deformation
during drop-test d) rolling from face to face.

well (as evidenced by the need for a physics-based simulator). All of the cables impose

forces on the structure, and there are many collisions from the ground that affect SU-

PERball’s motion. Because of these dynamic effects, a forward simulator that a planner

would use must make use of a physics-based simulator, such as the NTRT framework

[99]. The use of such a simulator imposes significant runtime overhead in a motion

planner, since each edge expansion requires a call to this simulator.

7.2.1 Previous Motion Planning Strategies

Some early planners provided deployment and shape changes through optimization to

generate statically stable configurations [84, 105]. Further work accounted for self-

collisions [30, 111]. Recent approaches plan paths for tensegrities but assume a control

process slow enough to eliminate dynamics [86, 111]. This quasi-static approach is

popular in civil engineering [89] but undesirable for mobile robots, which may need to

visit unstable states and can furthermore benefit from energetic motion. Methods have

been developed for utilizing dynamics locally, either along static equilibrium manifolds
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[96] or through linear feedback [3] and Lyapunov-based controllers for 3D systems [110].

These approaches generally have not accounted for self-collisions or external contacts,

limiting real-world applicability. A previous attempt at kinodynamic planning using

SST was also explored [62], but was computationally prohibitive, due to heavy reliance

on the physics-based simulator and many unsuccessful node additions due to pruning.

7.2.2 Motion Planning for SUPERball with DIRT: Setup

The mechanisms that DIRT provides for motion planning, i.e. the task space heuristic

guidance, and edge generation procedures, are the core components of the following

sections. A large portion is dedicated to the edge generation procedure, both for offline

generation of motion primitives for SUPERball, and also an online generation strategy

using the kinematic structure of SUPERball to generate dynamic motions [66, 67].

SUPERball’s structure is comprised of 6 rigid bars and 24 cables that are actuated

to spool and contract or unspool and release. All of the rigid bars cross the interior of

the icosahedral outer structure, while the cables that actuate the structure are roughly

on the exterior. The convex hull of the SUPERball consists of triangular faces of two

types:

• ∆i, i ∈ [0, 7]: These eight faces have cables along all three edges and never share

an edge with another ∆i. Their neutral shape is equilateral.

• Λi, i ∈ [8, 19] , These 12 faces have cables on only two edges. They occur in pairs

with a shared cable-free “virtual” edge. Their neutral shape is isosceles.

In its neutral configuration, SUPERball exhibits pyritohedral symmetry : there are

24 unique combinations of rotations and reflections that result in an equivalent con-

figuration of the robot. This regularity is also expressed topologically: all nodes are

connected to four cables, all ∆i faces are bordered by three Λi faces with the same

relative handedness, etc. Figure 7.7 presents a 2D illustration of the system topology

in relation to its 3D expression.

Since SUPERball has this symmetry property, it is possible remap each of the

24 symmetrical configurations into a base configuration using a topological remapping

[100]. This drastically reduces the effective search space for gaits, where the gaits relate
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Figure 7.7: SUPERball topology flattened onto the plane after making a cut, shown as
gray boundaries. Endcaps are represented by circles, actuators by black lines, virtual
edges by dotted lines, and equilateral faces in light blue. Matching bars are parallel in
physical space.

to what type of face is currently touching the ground, and what the target face type is.

Since the surface geometry of SUPERball contains 24 edges occupied by cables and six

additional virtual edges, 60 transitions between faces are possible when accounting for

directionality, but after accounting for symmetry, only three are needed:

Υ̃ = {υ̃Λ∆, υ̃∆Λ, υ̃ΛΛ} (7.1)

Once these motion primitives have been computed, either offline or there is a controller

that can perform these maneuvers online, then it is possible to plug those into the

Blossom procedure of DIRT.

7.2.3 Gait Generation for SUPERball

The motion of SUPERball is inherently dynamic, due to nontrivial influences from

gravity, friction, momentum, etc. Physically accurate simulation of the motion requires

significant computational effort for propagation of a detailed dynamical model. For

this reason, most of the past work has used simpler models to reason about the static

stability of the vehicle and determine shape changes that result in gravity-induced

locomotion [10, 11, 44].

The following setup is used to describe a small 4 dimensional but meaningfully

varied input space, (relative to the full 24 dimensional control space), to efficiently
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narrow down any search over possible actions.

In order to reduce the effective search space for good controls, the following kine-

matic reasoning is used. By simplifying the problem down to a manageable four dimen-

sional space, the control process can be interpreted more readily than the 24-dimensional

control space. The aim is not to maximize the fidelity or precision of geometric solu-

tions, but rather to provide a mapping from a convenient and interpretable space onto

a manifold of the much higher-dimensional control space that is useful for dynamic

execution.

Consider the expression of the kinematic state of SUPERball as the position of

all the endcaps of the rigid bars qi, i.e., the endpoints at which bars and cables are

connected to each other. Collected within the vector Q ∈ R36, these positions give the

full geometric state. Ignoring the elasticity of the cables, the cable lengths are fully

determined by the endcap positions. In addition, the center of mass of the system is also

determined by the endcap positions, q̄ = Σqi/12. The goal of this kinematics-based

parametrization is to influence the movement of q̄ from being over its support triangle

(the face of SUPERball on the ground) into its new target face. It is then assumed that

this shift will induce dynamic motion to roll over to the next face.

xF
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Figure 7.8: Main geometric parameters governing kinematic motion primitives, shown
from a simplified side-on view.

Figure 7.8 illustrates the relevant values in a 2D frame. The vertical axis ŷ corre-

sponds to the vertical direction in physical space, while the horizontal x̂ is the “forward”

direction, such that x̂× ŷ is parallel with the edge that is being pivoted over. Using an

origin O located in the center of the pivot edge, static instability is achieved when the
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x-component of q̄, xC , becomes positive. In addition, a larger xC produces more insta-

bility while larger yC adds more potential energy, adding more momentum to the pivot.

Given this kinematic description of SUPERball’s geometry, an optimization procedure

to get desired (xC , yC) and (xF , yF ) points is needed.

The optimization procedure to move all the endcap configurations to achieve a de-

sired center of mass shift falls into a coordinate descent framework. The full problem

has 36 degrees of freedom. Achieving the desired q̄ and foot locations according to

Figure 7.8 adds 6 constraints, and the bars of SUPERball constrain another 6 degrees

of freedom, leaving 24 dimensions, the same dimensionality as the cables that are di-

rectly controllable. The costs being optimized are error functions penalizing deviation

from the desired q̄, foot placement, and deviation from default cable lengths. The

optimization must respect max cable length limits, maintaining the strict bar lengths,

and achieving the q̄ position, while minimizing the error in foot placement and mini-

mizing the change in cable lengths. All of these cost functions have a Jacobian matrix

and provides gradient information for the optimization. Finally, the following four step

process is repeated until convergence.

1. Apply a large step to reduce center-of-mass cost.

2. Apply a smaller step to improve foot positioning and minimize cable deformation

(weighted by a factor w).

3. Ensure that cable bounds are approximately satisfied using one gradient step.

4. Ensure that bar lengths are exactly satisfied using multiple gradient steps.

Using this approach, basic kinematic behaviors can be achieved. But this opti-

mization was performed in order to execute dynamic motions, so this optimization is

evaluated in a dynamic setting. To that end, when computing the cable lengths that

achieve the desired shape change, a time parameter is chosen (t1) to reach the desired

cable lengths, and then a second time (t2) is chosen to maintain that shape in order

to let dynamic effects occur. In all, this becomes 7 parameters of a kinematic control

function:
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θ = [xC , yC , xF , yF , w, t1, t2] (7.2)

7.2.4 Gait Evaluation for SUPERball

Now that there is a procedure available to that can achieve a desired q̄ shift, the

dynamic effects are evaluated as follows. Each chosen optimization parameter set from

Equation 7.2 has several metrics considered about its resulting motion using the NTRT

simulator. For each value of θ, 1000 seconds of using that control method is simulated in

NTRT, resulting in several hundred control choices one after another. This evaluation

tests how effective the parameter choices are from many different initial configurations.

Each control choice from the several hundred in each evaluation is grouped by behaviors:

1. None: Remained on the original base face, essentially just shifting in place.

2. Correct: Ended on target base face, the result of careful motion.

3. Multi: Continued beyond target base, the result of additional momentum.

4. Wrong: Transitioned, but never reached target base, resulting in undesired mo-

tion.

If the target base triangle is not considered, the categories are simplified down to

None, Single, and Multi. In addition, due to the geometric distinctions between the

three transition types ({υ̃Λ∆, υ̃∆Λ, υ̃ΛΛ}), it is natural to use a different parameter vector

θ for each one. A standard set of values Θ = {θ∆Λ,θΛ∆,θΛΛ} is quickly established

here in advance of exploring alternate characteristics of motion. The procedure for

setting these standard values begins by measuring the xF and yF associated with the

neutral configuration. Then xC and yC are set so that the relationship between the

shifted center-of-mass and the next base is similar to that between the original center-of-

mass and the current base, while still maintaining sufficient positive xC for instability.

Finally, the remaining parameters t0, t1, w are set via coarse manual search, directly
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inspecting behavior that results from a sequence of several υ̃ beginning from the neutral

configuration and favoring Correct performance.

The standard parameter set Θ provides a basis from which to formulate a more

systematic search of the parameter space, which is desired for revealing qualitative

trade-offs. To maintain reasonable dimensionality, the search space is defined as δθ, such

that the parameters of Figure 7.8 are altered identically for the two simpler transition

types:

Θ′ = {θ∆Λ + δθ,θΛ∆ + δθ,θΛΛ} (7.3)

δθ = [δxC , δyC , δxF , δyF , 0, 0, 0]

The more difficult υ̃ΛΛ transition is not altered due to its relative fragility.

The four-dimensional space of δθ was explored using a grid search and evaluated

using the categories from above. The result of this controller parameter search is a set

of controllers with differing behaviors for SUPERball:

• The Steady controller ΘS is intended for providing reliable, if not maximal, forward

progress, and indeed does so on more than 90% of command cycles.

• The Fast controller ΘF provides higher rates of multiple-transition outcomes, but

at a high risk of causing movement in the wrong direction.

• The Aggressive controller ΘA spends more time at low speed in order to recover

from its more extreme deformations, which may be useful for ascending slopes or

passing small obstacles with a brief surge of momentum.

• The Big-step controller ΘB takes steps that are 15-25% larger than the other

controllers on average, which may provide more options for aligning with narrow

passages in the environment.

These four categories of gaits partition the behaviors of SUPERball. Figure 7.9

provides heatmaps for relevant parameters of the gait, such as movement speed, ex-

pected face transitions, and stride of foot. Additional in-depth displays of each chosen

parameter’s performance are in Figures 7.10 and 7.11.

Due to the symmetry of SUPERball, these same controller parameters can be used
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Figure 7.9: Each of four different controller evaluation metrics are plotted as a heat
map on the four-dimensional space δθ, shown as nested 2D axes. Red boxes mark the
selected controllers, Steady (S), Fast (F), Aggressive (A), and Big (B).

whichever of the 20 surface triangles of SUPERball are providing support. All of these

different controllers end up becoming the candidate controls in the Blossom procedure

of DIRT. The dominance regions are defined with respect to the q̄ in order to provide

useful distance measures in the planning process.

7.2.5 Evaluation of SUPERball Gaits in DIRT

SUPERball was tasked with planning in several environments which aimed to test the

effectiveness of the controllers, shown in Figure 7.12.

• Easy: An open, flat environment in which, the number of obstacles is minimal

and a simple path to the goal is achievable.
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Figure 7.10: Distributions of key metric values for the four selected controllers and
random controls.

Figure 7.11: Occurrence rates of different command outcomes for the four selected
controllers and random controls.

• Scattered: An environment with a number of small obstacles distributed

throughout it. Collisions are not allowed between the robot and these obstacles,

making high momentum maneuvers likely to be invalid.

• Steps: The robot can take a short path to the goal by first ascending a set of

stairs and “limboing” underneath a bar. Alternately, it may follow a longer path

on flat ground through a tight corridor.

• Narrow: The robot must pass through narrow obstacles and below a low ceil-

ing. Collision with the ceiling is not permitted, making this environment very

challenging.

Three different algorithms were evaluated in these environments. The first approach
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Figure 7.12: Environments used for evaluating planning for SUPERball: The goal is
always located in the back left corner.

Figure 7.13: Example DIRT search trees in the “easy”, “scattered”, “steps”, and “narrow
passage” environments.
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corresponds to the informed search process based on weighted A∗, which employs the

motion primitives as available controls. This method is used as an evaluation of the

primitives themselves, since no randomly sampled controls are considered. Two different

sets of motion primitives are evaluated:

• Offline-generated primitives using the Steady control parameterization, ΘS .

{υ̃Λ∆, υ̃∆Λ, υ̃ΛΛ}S

This experiment closely resembles the gait experiments from [67].

• Online-generated primitives using all parameterizations, with a reset primitive

added to the set.

{υ̃Λ∆, υ̃∆Λ, υ̃ΛΛ}S,F,A,B ∪ {υ̃
∗}

By considering each of these primitive sets, a gradual progression from low- momentum

motion to more dynamic gaits is evaluated. Since this is a continuous space search,

a small pruning radius is used (0.2m in these experiments). This mimics a “rewire”

operation that can occur where a better path reaches the same node. This would never

happen in continuous space, so this pruning mimics this behavior.

The second motion planning approach is an RRT, which utilizes the random controls.

This comparison point illustrates the use of none of the motion primitives, and is

considered a naive baseline that is not informed in any way.

The third approach is DIRT. Each of the motion primitive sets used for the weighted

A∗ experiments is also used here. All algorithms are evaluated in terms of two crite-

ria:

• Time elapsed until the first discovery of a valid solution

• Trajectory quality as a function of total search time

Trajectory quality is computed as the total duration of its physical execution within

the simulation testbed.

These three representative planners were chosen to highlight the effectiveness of the

primitive sets, while also emphasizing that the primitives cannot deal with every setup.

The RRT method and the weighted A∗ are meant to be two extremes on a spectrum
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Figure 7.14: Number of solutions found over computation time for each algorithm in the
“easy”, “scattered”, “steps”, and “narrow passage” environments (from left to right).
The sampling-based algorithms were executed 30 times each. A∗ planners do not find
solutions in the last two environments.

of “random sampling of controls” vs “using a discrete, fixed set motion primitives”,

respectively. DIRT highlights a strategy that balances this tradeoff. It prioritizes the

designed motion primitives and as a fallback when those primitives are not suitable to

the environment, it uses random controls.

Figure 7.14 reports the methods’ success ratio as a function of computation time.

Figure 7.15 provides the average solution cost over time for the different environments.

In the easy and scattered environments, A∗ is able to find solutions using only the

gait controls. The more difficult environment experiments did not produce an A∗ result

within the ten minute time limit. This can occur due to inability of the gaits to traverse

the environments due to collisions, or due to hitting the time limit of ten minutes.

Adding more diverse gaits to the gait library could potentially remedy this issue, but

each additional gait parameterization imposes additional computational cost, leading

to much longer planning times.

When using DIRT, the tradeoff of using a larger gait library is discovered. In all



98

Figure 7.15: Average solution quality over computation time (with standard deviation)
for the three methods in the “easy”, “scattered”, “steps”, and “narrow passage” envi-
ronments (from left to right). The sampling-based algorithms were executed 30 times
each.
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the environments, the use of many online gaits reduces the rate at which the planner

can find solution trajectories. This is compared to the offline gaits, where in all but

the narrow passage environment DIRT is competitive to the exploring RRT. The use of

offline gaits allowed the planner to find initial solutions quickly, and then improve them

over time. Example search trees can be found in Figure 7.13. As stated previously,

the environments are configured so that most collisions are considered invalid, making

the motion planning problem difficult in these scenarios. Random sampling is useful to

overcome these challenges when gaits are unable to handle the environment.

Figure 7.16: Gait composition for successful trajectories computed by DIRT.

When a solution is discovered using the online-evaluated gait library, however, the

quality of those solutions is significantly better than all other algorithms except for

A∗ equipped with the same gaits. DIRT using online gaits can also overcome A∗’s

drawback and find solutions in the steps and narrow passage environments, though

with an overhead of having to exhaust all of the gait options before trying out random

controls. To examine the gait composition of solutions when using DIRT, see Figure 7.16.
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In the given time budget, solutions are still mostly comprised of gaits and not random

controls. The random controls that do show up are usually necessary to overcome some

environmental difficulty, like in the narrow passage environment and its low ceiling.

DIRT makes use of all the controller types (ΘS ,ΘF ,ΘA,ΘB) to make progress in each

environment, but revert back to random controls after exhausting all controller options

at a node. Especially in the steps environment, more random controls are needed to

climb the stairs. This is expected due to the controller assumption of flat ground. A

different controller generation strategy would be needed to more effectively target this

terrain (e.g. [101]).

The algorithmic framework provided by DIRT is heavily influenced by the user gen-

erated primitives provided to the algorithm. This is the main difference between the

previous attempt at planning for SUPERball and this approach [62, 66].
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Chapter 8

Conclusions

Sampling-based algorithms are an effective class of methods that plan motions for kino-

dynamic robots. The general steps of these methods are node selection and node expan-

sion. The canonical kinematic RRT method makes use of a Voronoi selection strategy and

a steering node expansion strategy. However, the kinodynamic RRT(RRT-ForwardProp)

changes the expansion strategy into a forward propagation strategy that randomly sam-

ples control vectors and durations to propagate those controls with the system dynam-

ics. This is an especially useful strategy when the system dynamics are complex or

modeled computationally, such as with a physics engine.

As sampling-based algorithms matured, more focus on path quality was introduced,

but this same focus was non-existant for methods that relied on the forward propaga-

tion expansion strategy. Chapter 3 discussed the Sparse-RRT method, which modified

RRT-ForwardProp in two major ways. First, the selection procedure was changed to

incorporate path costs via the BestNear selection primitive. This modification allows

for some bias in selecting nodes depending on how good the path from the root node

to the selected node is. Secondly, Sparse-RRT introduces a pruning primitive after the

node expansion step of the tree search. This local pruning operation allows for faster

runtime performance by removing suboptimal nodes that are unlikely to provide high

quality solution paths to the goal. For the first time, Sparse-RRT has been proven to

be probabilistically complete, albeit with a subpar convergence rate.

Chapter 4 discusses a small variation on the Sparse-RRT method, called Stable

Sparse-RRT(SST). Instead of limiting the pruning regions to be centered around tree

nodes, SST allows for the pruning regions to be independent of the tree, and instead be

“witnesses” to their regions. This extra stability in the pruning operation allows for not
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only probabilistic completeness, but improved convergence rates for finding solutions.

The solutions that SST finds are also shown to be asymptotically near-optimal.

As an application area of SST, choices of distances functions for planning in belief

space are evaluated in Chapter 5. Since SST only requires the “forward propagation”

local planner, SST can be used to plan in belief space effectively, given a proper distance

function choice. After evaluating many alternatives, the Wasserstein, or Earth Movers,

distance was shown to be an effective tool for planning under uncertainty.

Even though SST is an effective algorithm to use, it still has its drawbacks. SST can

struggle at finding initial solutions if lots of pruning occurs during the planner’s first

set of iterations. Furthermore, SST makes use of parameters that can opaque to novice

implementers and users. Incorporating task-space heuristics into the Sparse-RRT/SST

methods can alleviate these issues. For methods that use the forward propagation

expansion strategy, task-space heuristics are an avenue for improving this expansion

strategy to provide a middle ground between forward propagation and steering. DIRT

is an example of a method that incorporates this heuristic guidance, and was detailed

in Chapter 6.

The DIRT method is a general framework for planning for systems and problems

were “forward propagation” is the preferred or only local planner choice, and exposes

interpretable parameters to this planning problem, namely good edge generation strate-

gies, propagation length, and task space guidance. By exposing all of these mechanisms

to the user, each can be examined and tailored to the specific planning problems. This

is highlighted with the case study of SUPERball and tailoring the expansion strategy

using local controllers, and briefly mentioned in the context of manipulation in Chapter

7.

8.1 Open Issues and Future Avenues for Exploration

The introduction of the Sparse-RRT/SST/DIRT family of algorithms provides much

needed alternative methods for sampling-based planning in domains where a steering

function is unavailable. This was shown to be effective in areas such as manipulation,
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locomotion, and general motion planning. Of note, the DIRT method relies heavily

on a good edge generation strategy. If the Blossom procedure is not provided with a

good set of candidate edges, DIRT’s performance will suffer. By spending effort on this

edge generation procedure, improvements can be made for different problem domains.

Using machine learning methods to learn good edge generation strategies is a promising

avenue for study, and even has some preliminary results to support the idea [94].

This family of algorithms has been shown to perform well in a variety of planning

domains and problems. In some cases, the performance of these motion planners is in

spite of, and not because of, the analysis presented. In the case of Sparse-RRT and

DIRT with the pruning extension, convergence rate results are unideal. In addition, the

asymptotic near-optimality bound is weak (a multiplicative bound). Revised analysis

techniques or algorithmic changes to enable different analysis strategies will possibly

be able to bridge this gap between performance in practice and performance in theory,

and some work in this area has begun [46] and extended in upcoming work.

One promising algorithmic paradigm is the AO-X framework [28]. This framework

acts as a meta-planning paradigm that makes use of other motion planning meth-

ods to improve their solutions over time. Exploring the combination of this with the

Sparse-RRT/SST/DIRT family of algorithms may yield interesting insights into analysis

and possibly provide improved practical performance as well.

Finally, one of the goals with the DIRT method was to maximize the effectiveness

of each edge generated during runtime, even going so far as to perform work offline

to generate good edge generation strategies, as was the case with SUPERball. Even

in this case, however, due to the use of a physics engine, iterations of DIRT were still

coupled to the efficiency of that physics engine. Another future direction of research

could examine this runtime dependency and explore strategies for further minimizing

the calls to a physics engine, possibly through multi-tiered planning strategies using

simplified robot dynamics.

Overall, this dissertation focused on compensating for a sampling-based planner’s

weaknesses by modifying other mechanisms of the algorithm. Because of RRT’s sim-

plicity, it is also simple to try many variants, and most of these variants provide some
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practical benefit for some application. By examining some previous variants of RRT,

provable benefits are possible by reintroducing such a variant to the research commu-

nity. This helps create more general planning algorithms, instead of ones that focus on

a particular application. This kind of reexamination is helpful, not only to make better

algorithms, but to understand their behavior more effectively.
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