
c© 2020

Aditya Potukuchi

ALL RIGHTS RESERVED

1

COMBINATORIAL PROBLEMS IN ALGORITHMS AND
COMPLEXITY THEORY

By

ADITYA POTUKUCHI

A dissertation submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Department of Computer Science

Written under the direction of

Swastik Kopparty

And approved by

New Brunswick, New Jersey

May, 2020

ABSTRACT OF THE DISSERTATION

Combinatorial problems in Algorithms and Complexity

Theory

By ADITYA POTUKUCHI

Dissertation Director:

Swastik Kopparty

Theoretical Computer Science has connections to several areas of mathematics and one of the more

prominent of these connections is to combinatorics. Indeed, many problems in this subject are often

very combinatorial in nature. These problems have either used existing techniques from combina-

torics or have given rise to new combinatorial techniques. This dissertation is a collection of the

study of some such problems.

• We recover a result by Abbe, Shpilka, and Wigderson which states that a Reed-Muller code of

rate 1−Θ
(

logr n
n

)
can be recovered from o

(
logb

r−1
2 c n

)
randomly chosen errors in a stronger

way. Namely, we show that the set of corrupted locations in the message can be recovered just

from the syndrome of the message. Among the techniques are the study of tensor decomposi-

tion over finite fields and an algorithm to find the roots of a space of low degree polynomials.

• A hypergraph is r-rainbow colorable if the vertices can be colored with r colors such that every

hyperegde has at least one vertex of each color. We show that it is NP-hard to properly 2-color

a k-uniform (k−O(
√
k))-rainbow colorable hypergraph. In particular, we show that it is NP-

hard to properly 2-color a 4-uniform 3-rainbow colorable hypergraph. We further extend this

using a notion of almost rainbow colorability. We show that given a k-uniform hypergraph

where there is a (k −
√
ck)-coloring of the vertices such that every edge gets (k − 3

√
ck)

colors, it is NP-hard to properly c-color it. Among the techniques are topological methods to

ii

lower bound the chromatic number of certain hypergraphs and a theorem of Sarkaria on the

chromatic number of generalized Kneser hypergraphs.

• We show that the discrepancy of a regular hypergraph can be bounded in terms of its spectral

information. Let H ⊂ 2[n] be a t-regular hypergraph where |H| ≥ n, and M be the |H| × n

incidence matrix. Define λ := maxv⊥1,‖v‖=1 ‖Mv‖. We show that the discrepancy of H is at

most O(
√
t+ λ). In particular, this shows that for every t, a random t-regular hypergraph on

m ≥ n hyperedges has discrepancy O(
√
t) with high probability as n grows. This bound also

comes with an efficient algorithm that takes H as input and outputs a coloring that has the

guaranteed discrepancy.

• We show that every q-ary error-correcting code of distance 1−q−1−ε2 can be punctured to rate

Ω̃
(

ε
log q

)
so that it is (Oρ,δ(ε

−2), δ, ρ)-list-recoverable. In particular, this shows that there are

Reed-Solomon codes that are list-recoverable beyond the Johnson radius. Instantiating this

for the zero-error regime immediately gives improved degree bounds for unbalanced expanders

obtained from randomly punctured Reed-Solomon codes.

iii

Acknowledgements

I am extremely thankful to my advisor Swastik Kopparty. Swastik gave me the freedom and support

to explore, and has always been optimistic, and encouraging. I learnt a lot from him through many

courses, meetings, e-mails, and just in general being in the same room as him.

This dissertation also contains joint works with Per Austrin, Amey Bhangale, and Ben Lund. I

am extremely thankful to all of them. Working with each of them was a lot of fun and I have learnt

a lot from each of them.

Some of the best parts of my grad school experience were my interactions with Jeff Kahn. Most

of my knowledge, interests, and tastes in mathematics were shaped by the numerous very inspiring

and enjoyable conversations I had with him. It’s almost suspicious how often I would stumble into

Jeff’s papers in my research!

Another highlight of my grad school experience is the CS theory reading group organized by

Mike Saks. Mike’s near constant presence, patience, and enthusiasm made it extremely easy for me

to explore topics that I would not have normally. I quickly realized that presenting a paper to Mike

and the rest of the group is often the fastest way to understand it. I would like to thank everyone

in the reading group for their time and enthusiasm.

I am thankful to Shubhangi Saraf and Raghu Meka for agreeing to be on my defense committee,

to the graduate director Martin Farach-Colton, and to Maryann Holtsclaw, Ginger Olszewski and

the rest of the department staff for help with the bureaucracy. Extra thanks to Michelle Walezak

for patiently guiding me through the graduation procedure during very strange times.

I have been fortunate enough to interact with several amazing people during my stay at Rutgers.

I am thankful to Bhargav Narayanan for the numerous conversations in the last three years. Bhargav

taught me many clever and interesting ideas, and was often available to discuss any new papers. I am

also thankful to Eric Allender, Sepehr Assadi, Pranjal Awasthi, Per Austrin, Yuval Filmus, Venkate-

san Guruswami, Prahladh Harsha, Nutan Limaye, Abhishek Khetan, Pravesh Kothari, Periklis Pa-

pakonstantinou, Noga Ron-Zewi, Jaikumar Radhakrishnan, Ramprasad Saptharishi, Srikanth Srini-

vasan, Mario Szegedy, Avishay Tal, Mary Wootters, and many others for extremely helpful and

interesting conversations. I would also like to thank Prahladh for hosting me at TIFR in the sum-

mer of ’16, Yuval for hosting me at Technion in the summer of ’18, and Noga for hosting me at the

iv

University of Haifa in the summer of ’19. These visits were extremely helpful and enjoyable.

I am also thankful to my friends Abhishek, Aditi, Aditya, Amartya, Cole, Deepti, Harsha, Jay,

Mrinal, Surya, Tulasi, Vishwas, Vishwajeet, Zach, and others. I am especially thankful to Anurag

Bishnoi for introducing me to research, and for the wonderful conversations about math, music, life,

and more.

I feel extremely indebted to Abhilasha. Her support has been constant during every stage of my

journey in the last few years.

Finally, I am incredibly thankful to my parents and my sister. I feel really fortunate to have had

their support on every endeavor I made.

v

Dedication

To my parents

vi

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . vi

1. Introduction . 1

1.1. Overview of the thesis . 1

1.1.1. Organization . 1

1.2. Syndrome decoding of Reed-Muller codes and tensor decomposition over finite fields 1

1.2.1. Background on Reed-Muller codes . 1

1.2.2. Reed-Muller codes in the Binary Symmetric Channel and previous work . . . 2

1.2.3. The main result in Chapter 2 . 3

Tensor decompositions over finite fields . 3

Roots of a space of polynomials . 3

1.3. Improved inapproximability of rainbow coloring . 4

1.3.1. Background on the complexity of hypergraph coloring 4

1.3.2. Rainbow coloring and previous work . 4

1.3.3. The main results in Chapter 3 . 5

1.4. A spectral bound on hypergraph discrepancy . 5

1.4.1. Background on hypegraph discrepancy . 5

1.4.2. Discrepancy of random regular hypergraphs and previous work 6

1.4.3. The main result in Chapter 4 . 6

1.5. List recovery of randomly punctured codes . 7

1.5.1. Background on list recovery . 7

1.5.2. The main result of Chapter 5 . 8

1.5.3. Motivation for the result . 8

vii

2. Syndrome decoding of Reed-Muller codes and tensor decomposition over finite

fields . 9

2.1. Introduction . 9

2.1.1. Techniques . 11

Approach via tensor decomposition . 11

Approach via solving polynomial equations 12

2.2. Notation . 13

2.3. The Main Result . 14

2.4. Proof of Theorem 2.3.1 using Jennrich’s Algorithm 15

2.4.1. An overview and analysis of the algorithm . 15

2.4.2. The algorithm and running time . 17

2.4.3. A note on derandomization . 18

2.5. Proof of Theorem 2.3.1 by reducting to common zeroes of a space of polynomials . . 19

2.6. Efficiently finding roots of a space of polynomials . 21

2.6.1. A sketch of the rest of the algorithm . 21

2.6.2. Counting the number of error locations . 22

2.6.3. Applying a random invertible affine map . 24

2.6.4. The Valiant-Vazirani isolation lemma . 24

2.6.5. Restricting the points to a hyperplane . 25

2.6.6. A note on derandomization. 27

2.7. Extension to other small fields . 28

2.8. Discussion and open problems . 29

3. Improved inapproximability of rainbow coloring . 31

3.1. Introduction . 31

3.1.1. Related work. 33

3.2. The main results . 34

3.3. A sketch of the proofs . 35

3.3.1. Organization of the chapter . 37

3.4. Preliminaries . 38

3.4.1. Label Cover . 38

3.4.2. A Covering Bound . 39

3.5. Rainbow Hypergraph Gadget for 2-coloring . 40

viii

3.6. Warm-up: Hardness of Rainbow(4, 3, 2) . 41

3.6.1. Reduction . 41

3.7. The Rainbow
(
td+ bd2c, t(d− 1) + 1, 2

)
-hardness . 43

3.7.1. Reduction . 44

3.7.2. Analysis . 45

3.7.3. Proof of Corollary 3.2.2 . 49

3.8. A Generalized Hypergraph Gadget . 49

3.8.1. Topology Background . 50

3.8.2. Bound on the Chromatic Number . 51

3.9. Almost Rainbow Hardness . 54

3.10. Discussion and open problems . 58

4. A spectral bound on hypergraph discrepancy . 59

4.1. Introduction . 59

4.1.1. Background . 60

4.1.2. Discrepancy in random settings . 60

4.1.3. The partial coloring approach . 62

4.1.4. Proof sketch . 62

4.2. Proof of Theorem 4.1.1 . 63

4.2.1. Preliminaries and notation . 63

A technical remark: . 64

4.2.2. Partial coloring using Lemma 4.2.3 . 66

4.3. Proof of Theorem 4.1.4 . 68

4.3.1. A martingale inequality . 68

4.3.2. Proof of Theorem 4.1.4 . 68

4.4. Discussion and open problems . 73

5. On the list recoverability of randomly punctured codes 75

5.1. Introduction . 75

5.1.1. Unbalanced expander graphs from codes . 77

5.2. Algebraic view of expanders . 79

5.3. Proof of Theorem 5.1.2 . 81

5.3.1. A probability inequality . 81

ix

5.3.2. A sketch of the proof . 81

5.3.3. Proof of Theorem 5.1.2 . 81

5.4. Upper bound . 84

5.5. Discussion and open problems . 86

Bibliography . 87

References . 87

x

1

Chapter 1

Introduction

1.1 Overview of the thesis

It is well known that the field of Theoretical Computer Science has many deep connections to topics

in mathematics and statistics. The development of new tools in one field, can, and often do result

in solutions to old problems in another. This dissertation is a modest step towards broadening and

deepening some of these interdisciplinary connections and discovering new ones. The ultimate goal

is to (I) discover new techniques that help solve interesting problems in computer science, and (II)

discover problems in other fields that are amenable to techniques from computer science.

One common theme that ties the results in this dissertation together is that the motivation for all

these problems come from existing problems in Computer Science. The solutions and approaches, on

the other hand, involve techniques that are more combinatorial in nature. Below, the aforementioned

results and the techniques underlying each are described.

1.1.1 Organization

• Chapter 2 is based on [KP18]. A brief overview of this is given in Section 1.2.

• Chapter 3 is based on [ABP20]. A brief overview of this is given in Section 1.3.

• Chapter 4 is based on [Pot19]. A brief overview of this is given in Section 1.4.

• Chapter 5 is based on [LP]. A brief overview of this is given in Section 1.5.

1.2 Syndrome decoding of Reed-Muller codes and tensor decomposition

over finite fields

1.2.1 Background on Reed-Muller codes

Reed-Muller codes are one of the most studied family of error-correcting codes. Apart from the

usual applications for transmission of messages/storing data, they are also studied in Mathematics,

Cryptography, and Computational Complexity Theory for their properties. One of the more recent

2

reasons for interest in these codes is based on their ability to handle random errors seemingly much

better than the worst-case errors. Let n = 2m, the Reed-Muller code RM(m, d) is a subspace of

Fn2 where the coordinates are identified with Fm2 . Every codeword c ∈ RM(m, d) is identified with

a polynomial pc over F2 in m variables and degree at most d. For a point x = (x1, . . . , xm) ∈ Fm2 ,

we have c[x] = pc(x1, . . . , xm). The Reed-Muller code RM(m, d) has distance 2m−d which means

that the Hamming distance between any two distinct c1, c2 ∈ RM(m, d) is at least 2m−d. Using

the fact that RM(m, d) is a linear space, this is just a restatement of the fact that every nonzero

polynomial over F2 in m variables of degree at most d has at least 2m−d nonzero points. Moreover,

this is the truth, ie., there are degree-d polynomials with exactly 2m−d nonzero points, for example,

the monomial X1 · · ·Xd.

Since RM(m, d) is a linear space, it must be the nullspace of some matrix. This is called a parity

check matrix. One such matrix, that we call H is given as follows: H has columns indexed by

elements of Fm2 and rows indexed by monomials of degree at most d−1. The entry H(M,x) is given

by M(x), i.e., the evaluation of the monomial M evaluated at the point x.

The rate of the code, which is defined to be the quantity log |RM(m,d)|
n =

(m≤d)
n . We will be

interested in the case when d is very close to m. For the sake of this discussion, let us set d = m− r

where we think of r as a constant. This code has rate 1−Θr

(
mr

2m

)
= 1−Θr

(
logr n
n

)
, and distance

2r, and so, when one is allowed to adversarially flip 2r (which we think of as a constant) bits of c to

obtain c′, then one cannot hope to recover c from c′. However, when the bits that are flipped are

randomly chosen, the story is somewhat different.

1.2.2 Reed-Muller codes in the Binary Symmetric Channel and previous work

Let c ∈ RM(m, r) be a codeword that is passed through a binary symmetric channel, and let c′ be

the output. This just means that every coordinate of c is flipped independently with probability p.

We would like to know the value of p below which one can recover c from c′ with high probability.

In coding theory terms, we are uniquely decoding the corrupted codeword. As stated, this is just a

combinatorial question. Heuristically, this should at least depend on the rate of RM(m, d).

Abbe, Shpilka, and Wigderson [ASW15] gave quantitative bounds for flipping probability below

which one can decode uniquely. Later, Saptharishi, Shpilka, and Volk [SSV17] made this result

algorithmic. These results say that if the rate is 1−Θr

(
(logn)r

n

)
, then one can uniquely decode from

o
(

logb
r−1

2 c n
)

randomly chosen errors. However, it is not known that one cannot uniquely decode

from o((log n)r) errors. This gap is related to whether or Reed-Muller codes ‘achieve capacity’ in

symmetric channels, which is an extremely interesting open problem that is relevant here.

3

1.2.3 The main result in Chapter 2

In [KP18], we recover the bound of [ASW15] in a stronger way. Namely, we show that when one

changes o(logb
r−1

2 c n) randomly chosen locations in c to obtain c′, the set of coordinates flipped can

be recovered with high probability just from H · c′. Here, H · c′ is called the syndrome of the error.

The point is that c′ determines H · c′ but H · c′ = H · (c′ − c) is much smaller in size than c′. The

main theorem is informally stated below:

Theorem 1A (Informal) : Let c ∈ RM(m,m− r) be an arbitrary codeword, and let e ∈ Fn2 be a

uniformly random string with Hamming weight at most o
(
(log n)b(r−1)/2c). There is a deterministic

(log n)O(r) time algorithm, which when given the syndrome S = H · e, computes the set of nonzero

coordinates of e (with high probability over the choice of e).

We prove this theorem in a couple of ways.

Tensor decompositions over finite fields

The first way we solve the above problem is via. a connection to the classic Tensor Decomposi-

tion problem. For the 3 dimension case, it is stated as follows: For sets of vectors {a1, . . . , an},

{b1, . . . , bn}, and {c1, . . . , cn}, we are given the sum
∑
i∈n ai ⊗ bi ⊗ ci. From this, we would like

to recover the ai’, bi’s and the ci’s. We are particularly interested in conditions that ensure that

the recovered vectors are unique. This problem is quite well studied in the world of Data Science,

Statistics, and Machine learning, and an elegant algorithm known as ‘Jennrich’s algorithm’ from

over 30 years ago is still essentially the best algorithmic solution known for this problem. We show

that the ideas here can be adapted to the finite fields setting and recover the bound of [ASW15] in

an algorithmic way.

Roots of a space of polynomials

The second way we do this is by reducing the above problem to finding the set of roots of a space

of low degree polynomials in m variables over F2. This is much closer to [SSV17], and in fact, it

relies on one of the main theorems in their work. Once this reduction is complete, we then proceed

to show how to solve it using random restrictions to subspaces. This is very closely related to the

Valiant-Vazirani isolation lemma.

4

1.3 Improved inapproximability of rainbow coloring

1.3.1 Background on the complexity of hypergraph coloring

Graph and hypergraph coloring have always been fundamental problems in Combinatorics and Al-

gorithms. These are among the most famous examples of computational problems which are very

hard for a variety of notions of ‘hardness’. A (hyper)graph H ⊂ 2[n] is said to be c-colorable if there

is a coloring χ : [n]→ [c] so that no edge e ∈ H has all vertices of the same color. On the algorithmic

side, we only know how to color 3 colorable graphs on n vertices with nε colors where ε is a small

positive constant less than 1. On the hardness side, only recently [BKO19], it was shown that it is

NP-hard to 5-color a 3-colorable graph. In general, for c ≥ 4, it is NP-hard to c-color a graph with(
c
bc/2c

)
− 1 colors. It is also known that for every ε > 0 it is NP-hard to approximate the chromatic

number to n1−ε factor.

Slightly better hardness results are known for hypergraph coloring. For instance, it is quasi -

NP-hard to color a 3-colorable 3-uniform hypergraph on n vertices with (log n)γ/ log log logn col-

ors [GHH+17]. Also, given a 2-colorable 12-uniform hypergraph, it is NP-hard to color it with

2log1−o(1) n colors [KS14]. In general, the situation for hardness is much better than for graphs,

however, the picture is far from complete.

1.3.2 Rainbow coloring and previous work

A hypergraph H ⊂ 2[n] is said to be r-rainbow colorable if there is a coloring χ : [n] → [r] so that

every edge e ∈ H has a vertex of every color. In [AGH17], rainbow coloring was introduced in

order to try and understand when coloring hypergraphs can be done efficiently. As an example, for

a large (say 1000) k, given a k uniform, r < k rainbow colorable graph, can one even 10 color it

efficiently? Note that even a 2 coloring always exists, and efficient algorithms (for the 2-coloring)

were conjectured to not exist in [BG16], and [BG17] (the conjecture in [BG17] was stronger) unless

P = NP. More formally,

Conjecture [BG16] : For k ≥ 3, it is NP-hard to find a 2-coloring of a k-uniform hypergraph

that is (k − 1)-rainbow colorable.

The case where k = 3 just says that it is NP-hard to decide if a 3-uniform hypergraph is

2-colorable. However, for k = 4, it was unknown whether the above conjecture was true.

A result of Guruswami and Lee [GL15] states that for k ≥ 4, it is NP-hard to c color a k-colorable

bk/2c-rainbow colorable hypergraph. Guruswami and Saket [GS17] show the same result even when

one is guaranteed a balanced rainbow coloring (this is explained in more detail in Section 3.1). More

5

recently, Guruswami and Sandeep [GS19], building on some results from [ABP20] show that it is

NP-hard to bk−1
2 c-rainbow color a k-uniform (k − 1)-rainbow colorable hypergraph.

1.3.3 The main results in Chapter 3

In [ABP20], we make some progress in this direction and show the following

Theorem 2A : For k ≥ 4 and c ≥ 2, it is NP-hard to find a 2-coloring of a k-uniform hypergraph

that is (k − 2b
√
kc)-rainbow colorable.

Doing the proof k = 4 gives:

Theorem 2B : It is NP-hard to find a 2-coloring of a 3-rainbow colorable 4-uniform hypergraph.

The proofs are by adapting a previous result by Dinur, Regev and Smyth [DRS02]. We modify

the main graph gadget used by [DRS02] (which was the so-called Schrijver graph) into a hypergraph

gadget. This hypergraph has chromatic number at least 3, which is proved combinatorially, and is

interesting in its own right.

In attempts to replace ‘2’ above by any constant, say even ‘3’, we make partial progress by

showing hardness of a seemingly slightly harder problem. We call a hypergraph H ⊆ 2[n] almost

(p, q) rainbow colorable if there is a coloring of the vertices χ : [n]→ [p] such that every hyperedge

gets at least q distinct colors. We show the following:

Theorem 2C : For k ≥ 4, it is NP-hard to find a c-coloring of a (k+ b
√
ckc)-uniform hypergraph

that is (k, k − 2b
√
ckc)-almost rainbow colorable.

Here too, the main starting point is [DRS02]. However, the hypergraph gadget we now end

up with is analyzed using topological methods. More specifically, we rely on a generalization of the

Borsuk-Ulam theorem to free Zp actions on the sphere where p is a prime. We also require a covering

bound on sets (Theorem 3.4.6) which follows from a result of Sarkaria [Sar90], also using topological

methods. This led to a number of combinatorial problems which, to our best knowledge, have not

been explored. Most of them have to do with understanding the aforementioned hypergraph gadget,

which is a key component in the reduction, and interesting in its own right.

1.4 A spectral bound on hypergraph discrepancy

1.4.1 Background on hypegraph discrepancy

Discrepancy of hypergraphs (or set systems) is a classic problem that was the cause of several beau-

tiful theorems, algorithms, and connections. Discrepancy is also at the heart of several algorithmic

6

problems, particularly in (Computational) Geometry. The classical hypergraph discrepancy setting

is as follows: Let H ⊆ 2[n] be a hypergraph, and χ : [n] → {−1, 1} be a coloring. One can extend

χ : H → Z by defining χ(e) =
∑
v∈e χ(v) for e ∈ H. The discrepancy of H is defined as

disc(H) := min
χ

max
e∈H
|χ(e)|.

We call H t-regular if every i ∈ [n] is in exactly t edges in H, and t-bounded if every i ∈ [n] is

in at most t edges in H. A famous and seemingly very difficult conjecture of Beck and Fiala [BF81]

states that the discrepancy of a t-bounded hypergraph is O(
√
t). Beck and Fiala also show [BF81]

that such a hypergraph has discrepancy at most 2t− 1. This bound has not moved much since, and

the current record bound, due to Bukh [Buk16] is ‘stuck at’ 2t− log∗ t for large enough t.

1.4.2 Discrepancy of random regular hypergraphs and previous work

Motivated by the seeming difficulty of the Beck-Fiala conjecture, Ezra and Lovett, in [EL15], initiated

the study of discrepancy of random t-regular hypergraphs. Let us take Ht to mean a random t-

regular hypergraph with n vertices and m edges. Let us restrict ourselves to the case m = Ω(n),

where the conjecture is also wide open. The result in [EL15] shows that H has discrepancy at most

O(
√
t log t) with high probability. Here ‘with high probability’ means with probability tending to 1

as t grows. Note that the Beck-Fiala conjecture is also for constant t. A recent result of Bansal and

Meka gives that the discrepancy of random t-regular set systems is almost surely O(
√
t) provided

t = Ω((log log n)2).

1.4.3 The main result in Chapter 4

In [Pot19], this gap is closed. The main result implies the following:

Theorem 3A : There is an absolute constant C > 0 such that the following holds: Let Ht be a

random t-regular hypergraph on n vertices and m ≥ n hyperedges where t = o(
√
m). Then,

P
(

disc(Ht) ≤ C
√
t
)
≥ 1− o(1).

So in particular, this takes care of the case when t is small (fixed) as well. Moreover, this comes

with an efficient algorithm to output such a coloring. The main idea in [Pot19] is to use the usual

partial coloring approach [LM15] in conjunction with spectral methods. Let M be the matrix with

rows induced by H, and columns by [n], and entry (e, v) = 1 if v ∈ e and 0 otherwise. Define

λ = λ(M) := maxv⊥1,‖v‖=1 ‖Mv‖. The main theorem in [Pot19] says the following:

7

Theorem 3B : Let H be a t-regular hypergraph on n vertices and m edges with M . Then

disc(H) = O
(√

t+ λ(M)
)
.

Theorem 3A then follows from the following, which is proved using the methods of Kahn and

Szemerédi [FKS89].

Theorem 3C : Let M be the incidence matrix of a random t-regular set system on n vertices,

where t = o(
√
m), and m ≥ n edges. Then with probability at least 1− nΩ(1),

λ(M) = O
(√

t
)
.

This gives a different direction for future progress on the Beck-Fiala conjecture, where one can

bound the discrepancy in terms of ‘weaker’ spectral information. The reason is that some tools

in discrepancy theory, such as partial coloring, are much better understood, and can be done in

seemingly different ways (such as [LM15], [Rot17], [LRR17]). Thus one can hope for some sort of

control over this procedure.

1.5 List recovery of randomly punctured codes

1.5.1 Background on list recovery

We say that a code C ⊂ [q]n is (`, δ, ρ) list recoverable if, for every collection of sets {Li ⊆ [q]}i∈[n]

with |Li| ≤ ` for each i, we have

|{c ∈ C | ∆(c, L1 × · · · × Ln) ≤ ρn}| ≤ `(1 + δ)

A well known result is that every code of good enough distance has good list-recovery properties.

This is usually called the Johnson bound for list recovery.

Johnson bound for list recovery : Every q-ary code of relative distance ρ is
(
`, ρ

1−`(1−ρ) − 1
)

-

zero-error list recoverable.

One extremely interesting family of codes is the degree-d Reed-Solomon codes for a fixed degree d.

The codewords of the degree-d Reed-Solomon code over Fq with evaluation set S ∈
(

[q]
m

)
are the eval-

uations of all univariate polynomials of degree at most d on elements of S. In other words, suppose

S = {s1, . . . , sm}, the degree-d Reed-Solomon code on S is the set {(p(s1), . . . , p(sm)) | deg(p) ≤ d}.

8

The degree-d Reed-Solomon codes with evaluation set of size n have distance n − d. Taking

n = q, i.e., using Fq as the evaluation set, this shows that there are Reed-Solomon codes of rate ε2

that are (Oδ,ρ(ε
2), δ, ρ)-list recoverable.

1.5.2 The main result of Chapter 5

The main result in [LP] is the following:

Theorem 4A (Informal) : Every code C ⊂ [q]n with distance at least n(1 − q−1 − ε2) can be

punctured to rate Ω
(

ε
log q

)
so that it is (Oδ,ρ(ε

−2), δ, ρ)-list recoverable.

In particular, this shows that there are codes that are list recoverable beyond the Johnson Bound.

1.5.3 Motivation for the result

The main motivation for this result is the existence of puncturings of Reed-Solomon codes that give

unbalanced expanders. Given a q-ary code C ⊆ [q]n, one can construct a bipartite graph G(C) on

vertex Ct([n]×[q]). Every c = (c1, . . . , cn) has the set {(i, ci)}i∈[n] as neighbors. This graph is called

a (k, ε)-unbalanced expander if for every set C′ ⊆ C of size at most k, we have that |N(C′)| ≥ kn(1−ε).

The following is an old question in Complexity theory that is attributed to Guruswami [Gur], which

is also explicitly mentioned in [CZ18].

Question : Let CS be the degree-d Reed-Solomon code on evaluation set S. What is the smallest

m such that when S is chosen uniformly at random, G(CS) is, with high probability, a (o(q), o(1))-

unbalanced expander?

This is a very interesting problem, and as far as we know, only the almost trivial m = O(q) was

known. Theorem 4A implies that m = Õ(
√
q).

9

Chapter 2

Syndrome decoding of Reed-Muller codes and tensor

decomposition over finite fields

Reed-Muller codes are some of the oldest and most widely studied error-correcting codes, of interest

for both their algebraic structure as well as their many algorithmic properties. A beautiful result

of Saptharishi, Shpilka and Volk [SSV17] (building on Abbe, Shpilka and Wigderson [ASW15])

showed that for binary Reed-Muller codes of length n and distance d = O(1), there is a poly(n)-time

algorithm1 that can correct poly log(n) random errors (which is well beyond the worst-case error

tolerance of d/2 = O(1) errors). In this paper, we show that the poly log(n) random error locations

can in fact be computed in poly log(n) time given the syndrome vector of the received word. In

particular, our main result shows that there is a poly(n)-time, poly log(n)-space algorithm that can

compute the error-locations.2

Syndrome decoding of Reed-Muller codes turns out to be equivalent to a basic problem about

tensor decompositions over finite fields. We give two algorithms for our main result, one coming

from the Reed-Muller code world (and based on [SSV17]), and another coming from the tensor-

decomposition world (and based on algorithms for tensor decompositions over the real numbers).

2.1 Introduction

A binary error-correcting code is simply a subset C ⊆ Fn2 . We say the code C has minimum distance

≥ d if for any distinct c1, c2 ∈ C, the Hamming distance ∆(c1, c2) ≥ d. The main nontrivial

algorithmic task associated with an error-correcting code C is decoding: for a codeword c and a

sparse error-vector e, if we are given the “received word” y = c + e, we would like to compute the

original codeword c.

A linear code C is a code which is also an F2-linear subspace of Fn2 . Let k denote the dimension of

the code, and let k′ = n− k. Linear codes are usually specified either by giving a generating matrix

G (whose rows span C) or an k′ × n parity-check matrix H (whose rows span the orthogonal space

1In fact, the algorithm of [SSV17] runs in near linear time n poly log(n).
2This algorithm is in fact a one-pass streaming algorithm which spends poly log(n)-time per coordinate as it scans

the received word, and at the end of the pass it computes the error-locations in time poly log(n).

10

C⊥). Given a received word y = c+ e, where c is a codeword and e is a sparse vector, the syndrome

of y is simply the vector S ∈ Fk′2 given by:

S = H · y = H · (c+ e) = 0 +H · e = H · e.

Observe that the syndrome can easily be computed from the received word. An important fact here

is that the syndrome is exclusively a function of e, and does not depend on c. Given the syndrome

S = H · y (where y = c + e for a codeword c and a sparse error vector e), the algorithmic problem

of syndrome decoding is to compute the error vector e. Clearly, a syndrome decoding algorithm can

also be used for standard decoding: given a received word y we can compute the syndrome H · y,

and then apply a syndrome decoding algorithm to it.

Reed-Muller codes are algebraic error-correcting codes based on polynomial evaluation [Ree54,

Mul54]. Here we focus on Reed-Muller codes over F2 with constant distance (although our results

apply to larger fields and larger distances too). Let m be a large integer, and let r = O(1) be an

integer. Associated to these parameters, the Reed-Muller code RM(m,m− r) is defined as follows.

The coordinates of the code correspond to the points of Fm2 (and thus the length n = 2m. To

each polynomial P (X1, . . . , Xm) of individual degree ≤ 1 and total degree ≤ m− r, we associate a

codword in RM(m,m− r): this codeword is given by evaluations of P at all the points of Fm2 . This

code has codimension Θ(mr) = Θ((log n)r) and minimum distance d = 2r = Θ(1).

Decoding algorithms for Reed-Muller codes have a long history. It has been known for a long

time that one can decode from d/2 worst case errors in polynomial time (recall that d is the distance

of the code). There has been much work on decoding these codes under random errors [Dum17] and

the local testing, local decoding and local list-decoding of these codes [BLR93, RS96, GL89, AS03,

STV01, AKK+05, BKS+10].

A beautiful and surprising result of Saptharishi, Shpilka and Volk [SSV17] (building on Shpilka

Abbe, Shpilka and Wigderson [ASW15], Kumar and Pfister [KP15], and Kudekar et.al. [KMSU15])

gave new insights into the error-correction capabilities of Reed-Muller codes under random errors. In

the constant distance regime, their results showed that the above Reed-Muller codes RM(m,m− r)

(with codimension Θ ((log n)r) and distance O(1) can in fact be decoded in poly(n) time from

Θ
(
(log n)b(r−1)/2c) random errors with high probability (which is well beyond the worst-case error-

correction radius of O(1)).

The main result in this chapter is a syndrome decoding version of the above.

Theorem A (Informal) : Let c ∈ RM(m,m − r) be an arbitrary codeword, and let e ∈ Fn2 be a

uniformly random string with Hamming weight at most o
(
(log n)b(r−1)/2c). There is a deterministic

(log n)O(r) time algorithm, which when given the syndrome S = H · e, computes the set of nonzero

11

coordinates of e (with high probability over the choice of e).

As an immediate corollary, there is a streaming algorithm for computing the error-locations

in the above setting, which makes one pass over y, uses only poly log(n) space, and spends only

poly log(n) time per coordinate. Indeed, the syndrome H · y (where H is parity check matrix of

Reed-Muller codes) can be easily computed in one pass over y (using the poly log(n) space and

poly log(n) time per coordinate), after which the syndrome decoding algorithm of Theorem A can

compute the nonzero coordinates of e.

2.1.1 Techniques

We give two proofs of our main result. The first goes via a connection to the problem of tensor-

decomposition of random low-rank tensors over finite fields. We give an efficient algorithm for this

tensor-decomposition problem, by adapting a known algorithm (due to Jennrich) for the analogous

problem over the real numbers. The second goes via the original approach of [SSV17], which is a

novel variant of the Berlekamp-Welch decoding algorithm for Reed-Solomon codes. We show how to

implement their steps in a compact form; an important technical step in this is a new algorithm to

solve certain systems of polynomial equations, using ideas related to the Valiant-Vazirani isolation

lemma.

Approach via tensor decomposition

It will be useful to understand how a parity-check matrix H of the Reed-Muller code RM(m,m −

2r− 2) looks. Recall that H is a k′ × n matrix (where k′ is the codimension of RM(m,m− 2r− 2)

in Fn2). The rows of H are indexed by elements of Fm2 , and for x ∈ Fm2 , the x-column of H turns out

to (essentially) equal x⊗≤2r+1, the ≤ 2r+ 1’th tensor powers of x. Thus for a random sparse vector

e whose nonzero coordinates are E ⊆ Fm2 , the syndrome S = H · e ends up equalling:

S =
∑
e∈E

e⊗≤2r+1.

Having written the problem in this way, the problem of computing the error locations E from the

syndrome S is basically just the problem of tensor decomposition of an appropriately constructed

random low rank tensor over F2.

We show how this problem can be solved efficiently. We adapt an elegant algorithm of Jennrich

for this task over the real numbers. This algorithm is based on taking two random flattenings of the

tensor S into matrices, using properties of the pseudoinverse (a.k.a. the Moore-Penrose generalized

inverse) of a singular matrix, and spectral ideas. Two difficulties show up over finite fields. The

12

more serious one is that the Moore-Penrose generalized inverse does not exist in general over finite

fields [Rao03] (and even in our special situation). We overcome this by developing an alternate

algorithm that does not use the pseudoinverse of a singular matrix, but instead keeps track of a full

rank minor of the singular matrix. The other difficulty is that small finite fields do not have enough

elements in them for a matrix to have all distinct eigenvalues in the field. We overcome this by

moving to a large enough extension field F210m .

Finally we note that this gives a new proof of the main theorem of [SSV17]. The details appear

in Section 2.4. There we also mention how to derandomize this algorithm.

Approach via solving polynomial equations

The original approach of [SSV17] works as follows. Given the received word y ∈ Fn2 , we view it as a

function from Fm2 → F2. We then look for all polynomials A(X1, . . . , Xm), B(X1, . . . , Xm) of degree

at most r + 1, m− r − 1 respectively, such that for all x ∈ Fm2 :

A(x) · y(x) = B(x).

[SSV17] suggested to consider the linear space V of all A(X1, . . . , Xm) for which there exists such

a B(X1, . . . , Xm)3. The main property they show is that for E is completely characterized by V ;

namely, E is precisely the set of common zeroes of all the elements of V . Then [SSV17] simply check

for each point x ∈ Fm2 whether it is a common zero of all elements of V .

Our syndrome decoder tries to do the same, in poly(m) time instead of poly(2m) time, using

only the syndrome. We begin by observing that a basis for the space V can be found given only the

syndrome of y. This reduces us to the problem of finding the common zeroes of the collection of

polynomials in V .

In full generality, given a collection of low degree polynomial finding their common solutions is

NP-hard. Indeed, this very easily encodes SAT. However our situation is different in a subtle but

important way. It turns out that V is the space of all low degree polynomials that vanish on E. So

we are not solving an arbitrary system of polynomial equations! The next theorem says that such

systems of polynomial equations are solvable efficiently.

Theorem B (Informal): Let E ⊆ Fm2 be a uniformly random subset of size o(mr). Let V be

the space of all polynomials of degree at most r + 1 which vanish on E. There is a deterministic

polynomial time algorithm that, when given a basis for V as input, computes E (with high probability

over the choice of E).

3This idea of considering all solutions of this “error-locating equation” instead of just one solution is the radical
new twist over the Berlekamp-Welch algorithm that makes [SSV17] so powerful.

13

Our algorithm for this problem uses ideas related to the Valiant-Vazirani isolation lemma (which

reduces SAT to Unique-SAT). If E turned out to be of size exactly 1, it turns out that there is a very

simple way to read off the element of E from V . We show how to reduce the general case to this

case: by choosing a random affine subspace G of a suitable small codimension c, we can ensure that

|E ∩G| = 1. It also turns out that when E is random, given the space of all m-variate polynomials

of degree at most r + 1 vanishing on E, we can compute the space of all m− c-variate polynomials

(viewing G as Fm−c2) of degree at most r + 1 vanishing on G ∩ E. This lets us reduce to the case

of a unique solution, and we can recover an element of E. Repeating this several times gives us all

elements of E.

We also give a different algorithm for Theorem B using similar ideas, which has the advantage of

being deterministic. The key subroutine for this algorithm is that given an affine subspace H ⊆ Fm2 ,

we can compute the size of E∩H from V (for this it is important that E is random). This subroutine

then easily allows us to zoom in on the elements of E.

2.2 Notation

We give some notation that will be used throughout this chapter.

• We say that a = b± c to mean a ∈ [b− c, b+ c].

• We use ω to denote the exponent of matrix multiplication.

• For a matrixMm×n, and subsets A ⊆ [m] and B ⊆ [n], we sayMA,B to mean to submatrix ofM

with rows and columns indexed by elements in A and B respectively. Further, MA,· := MA,[n],

and M·,B := M[m],B .

• We use Mn
r to denote the set of all monomials of degree ≤ r in n variables X1, . . . , Xn.

• For a vector v ∈ Fm2 , let us write v⊗≤t to mean the vector of length
(
m
≤t
)
, whose entries are

indexed by the monomials in Mm
t . The entry corresponding to M ∈Mm

r is given by M(v).

• For a set of points A ⊆ Fn2 , we use A⊗≤t := {v⊗≤t | v ∈ A}.

• A set of points A ⊆ Fn2 is said to satisfy property Ur if the vectors in A⊗≤r are linearly

independent.

• For a set A ⊆ Ft2, we denote mat(A) to be the |A| × t matrix whose rows are elements of A.

14

2.3 The Main Result

The main result is that we show how to decode high-rate Reed Muller codes RM(m,m − 2r − 2),

where we think of r as growing very slowly compared to m, say, a constant. In this case, the

received corrupted codeword is of length n = 2m. However, syndrome of this code word is O(m2r).

We want to find the set of error locations from the syndrome itself efficiently. Formally, we prove

the following:

Theorem 2.3.1. Let E be a set of points in Fm2 that satisfy property Ur. There is a randomized

algorithm that takes as input, the syndrome of an RM(m,m− 2r− 2) codeword corrupted at points

in E, and returns the list of error locations E with probability > .99. This algorithm runs in time

O(mωr+4).

Our first proof of this theorem is via the ‘Tensor Decomposition Problem’ over small finite fields.

As the name suggests, this is just the finite field analogue of the well-studied Tensor Decomposition

problem (see, for example, [McC87]). The problem is (equivalently) stated as follows: Vectors

e1, . . . , et are picked uniformly and independently from Fm2 . We are given access to∑
i∈[t]

e⊗≤2r+1
i ,

and the goal is to recover ei’s. The fact that the ei’s are picked randomly is extremely important,

as otherwise, the ei’s can be picked so that the decomposition is not unique. We rely on the results

from [ASW15], [KMSU15] and [KP15], which informally state that the Reed-Muller codes achieve

capacity in the Binary Erasure Channel (BEC) in the very high rate regime, entire constant rate

regime, and the very low rate regime. More precisely, for RM(m, d) when the degree d of the

polynomials is o(m), m/2±O(
√
m), m− o(

√
m/ logm). This means that when a set of points are

picked independently with probability p, where p = 1−R− ε, where R is the rate of the code, and

ε is a small constant, these points satisfy property Ur with high probability for this range of R.

Since this is a tensor decomposition problem, one natural approach is to try and adapt existing

tensor decomposition algorithms. Assuming only that the e⊗≤ri ’s are linearly independent, we show

how to decompose
∑
i∈[t] e

⊗≤2r+1
i . Indeed, this is a very well studied problem in the machine learning

community, and one can adapt existing techniques with a bit of extra work. The advantage of this

approach is the simplicity and its ability to give the proof the main result of [SSV17] by giving an

efficient algorithm.

Our second approach to solving this problem in finite fields is to reduce it to finding the common

zeroes of a space of low degree polynomials, which we then proceed to solve. This algorithm goes

via an interesting and natural algebraic route involving solving systems of polynomial equations.

15

The running time of the resulting algorithm has a worse dependence on the field size that the first

approach. We note here that this alsogives a new approach to tensor decomposition, using ideas

related to the Berlekamp-Welch algorithm.

2.4 Proof of Theorem 2.3.1 using Jennrich’s Algorithm

The key idea is that, we will look the vector v⊗≤2r+1 as a 3-tensor v⊗≤r⊗v⊗≤r⊗v⊗≤1. Indeed, given

the syndrome
∑
i∈[t] e

⊗≤2r+1
i , one can easily construct the 3-dimensional tensor∑

i∈[t] e
⊗≤r
i ⊗ e⊗≤ri ⊗ e⊗≤1

i , so we may assume that we are given the tensor. This allows to use

techniques inspired by existing tensor decomposition algorithms [Har70, LRA93] like Jennrich’s Al-

gorithm (see [Blu15]). To our best knowledge, this problem has not been previously studied over

finite fields. Although we only need the result for codes over F2, the proof works almost verbatim

over other fields.

2.4.1 An overview and analysis of the algorithm

We first restate the problem:

Input: For a set of vectors E = {e1, . . . , et} ⊂ Fm2 that satisfy property Ur, we are given the

syndrome as a 3-tensor

S =
∑
i∈[t]

e≤ri ⊗ e
⊗≤r
i ⊗ e≤1

i .

Output: Recover the ei’s

Following in the footsteps of Jennrich’s Algorithm, we pick random points in a and b in Fm+1
210m

and compute the matrices

Sa :=
∑
i∈[t]

〈a, e⊗≤1
i 〉e⊗≤ri ⊗ e⊗≤ri ,

and

Sb :=
∑
i∈[t]

〈b, e⊗≤1
i 〉e⊗≤ri ⊗ e⊗≤ri .

Computing these matrices is the same as taking the weighted linear combination of the slices

of the tensor T along one of its axes. Define the t ×
(
m
≤r
)

matrix X := mat(E⊗≤r)T , so we have

the matrices Sa = XAXT , and Sb = XBXT for diagonal matrices A and B respectively. The i’th

diagonal entry of A is given by ai := 〈a, e⊗≤1
i 〉, and the i’th diagonal entry of B is given by 〈b, e⊗≤1

i 〉.

16

Let K and L be two (not necessarily distinct) maximal linearly independent sets of t(= |E|) rows

in X. Denote XK := XK,·, and XL := XL,· as shorthand. We have that SaK,L := XKAX
T
L , and

SbK,L := XKBX
T
L are full rank, since the diagonal entries of A and B are all distinct and nonzero.

Therefore, we have the inverse (SbK,L)−1 = (XT
L)−1B−1X−1

K . Multiplying with SaL, we have:

SaK,L(SbK,L)−1 = XKAX
T
L (XT

L)−1B−1X−1
K

= XK(AB−1)X−1
K .

In order to carry out the operations over an extension field, we need to pick an irreducible

polynomial of appropriate degree over F2. Fortunately, this can also be done in time poly(m). The

reason that a, and b are chosen from a large extension field is that it ensures that all the entries of

AB−1 are also nonzero and distinct w.h.p. So, the columns of XK are just the eigenvectors of this

matrix, which we will then proceed to compute. In order to compute the eigenvalues, we need to

factor the characteristic polynomial. Here one can use Berlekamp’s factoring algorithm [Ber67]. So,

we require the following two lemmas:

Lemma 2.4.1. For nonzero and distinct x1, . . . , xt ∈ Fm2 , and a uniformly chosen a and b from

Fm+1
210m , denote ai := {〈a, x⊗≤1

i 〉, and bi := 〈a, x⊗≤1
i 〉

}
. Then we have that w.h.p,

(1) a1, . . . , at, b1, . . . , bt are all distinct and nonzero.

(2) 6 ∃i, j ∈ [t] such that i 6= j and aib
−1
i = ajb

−1
j .

Proof. For the proof of (1), we just need to say that there is no subset S ⊆ [n] such that 〈a,1S〉 = 0,

or equivalently, there are no nontrivial linearly dependencies in the entries of a. Since we picked

a and b from a vector space over a large enough field, there are at most 22(m+1) possibilities for

nontrivial linear dependencies, and each occurs with probability 1
210m . Therefore, there are nontrivial

linear dependencies with probability at most 2−7m.

To prove (2), first fix i and j. W.L.O.G, let k be a coordinate where x⊗≤1
i is 1 and x⊗≤1

j is

zero. Fixing a, and all but the k’th coordinate of b we see that there is exactly one b[k] such that

aib
−1
i = ajb

−1
j . Therefore, with a, and b picked uniformly, this equation is satisfied with probability

at most 1
210m . Therefore, there are i and j that satisfy this equality with probability at most m2

210m .

Therefore, by union bound, both (1), and (2) are satisfied with probability at least 1− 2−6m.

�

Lemma 2.4.2. With X, A, B as given above, the only eigenvectors of XKAB
−1X−1

K are the columns

of XK with probability at least 1− 2−7m.

17

Proof. Indeed, the columns of XK are eigenvectors of XKAB
−1X−1

K since it is easy to verify that

(XKAB
−1X−1

K)XK = XK(AB−1). Moreover, by Lemma 2.4.1, with probability at least 1 − 2−7n,

the matrix AB−1 has distinct nonzero diagonal entries. Therefore, all the eigenvalues are distinct,

and so no other vector in the span of the columns if XK is an eigenvector.

�

Remark: In the traditional Jennrich’s Algorithm, after defining the matrices Sa, and Sb, one

usually works with the pseudo-inverse of Sb. It turns out that a necessary condition for the pseudo

inverse to exist is that rank(Sb) = rank(Sb(Sb)T) = rank((Sb)TSb). However, this need not be the

case for us, in fact, one can have that X is full rank, yet, XTX = 0, which gives Sb(Sb)T = 0, while

Sb still has full rank. Hence, we needed to find a full rank square submatrix of X and use it to

determine the rest of X.

To recover the rest of X, we make use of the entries (Sl,i,1)l∈L of S. We may assume that the

entries of e⊗≤1
i are labelled such that e⊗≤1

i [1] = 1, and so S·,·,1 = XXT . Now suppose we want to

recover row i, we set up a system of linear equation in the variables x[i] = (x[i, 1], . . . , x[i, t]):

XL · x[i]T = STi,L,1.

This can be solved since XL is full rank, and therefore, is invertible.

2.4.2 The algorithm and running time

Given the analysis above, we can now state the algorithm:

procedure JennrichFF(S)
a, b ∼ Fm+1

210m

Sa ←
∑
i∈[n+1] S·,·,ia[i]

Sb ←
∑
i∈[n+1] S·,·,ib[i]

K,L← indices of the largest full rank submatrix of Sa

v1, . . . , vt ← eigenvectors of Sa(Sb)−1

XK ← (v1, . . . , vt)
initialize matrix X
for 1 ≤ i ≤

(
m
≤r
)

do

XT
i,· ← X−1

K STK,i,1
end for
return X

end procedure

There are several steps in this algorithm. We will state the running time of each step

18

0. Constructing the 3-dimensional tensor from the syndrome takes time O(m2r+3)

1. Finding an irreducible polynomial of degree 10m takes time O(m4) (see, for example, [Sho94]).

This is for constructing Fm+1
210m .

2. Constructing Sa, and Sb takes time O
((

m
≤2r+1

))
.

3. Computing K,L takes time O
((

m
≤r
)ω)

.

4. Inverting XK takes time at most O (tω).

5. Recovering X takes time O
(
t2
(
m
≤r
))

. In fact, recovering just the relevant coordinates of X

takes time just O(t2m).

6. Factoring degree
(
m
≤r
)

polynomials over F210m takes O(mr+4) time. This is required for com-

puting eigenvectors.

Therefore, the whole algorithm runs in time O(mωr+1), compared to the input size of O(m2r).

2.4.3 A note on derandomization

We needed to pick a and b at random to ensure that all the ai’s and bi’s satisfy the conditions given

in Lemma 2.4.1. In order to ensure this deterministically, set the vectors of polynomials

a(α) = (1, α, α2, . . . , αm)

b(α) = (α3m, α3m+2, . . . , α5m)

For any xi, xj ∈ Fm+1
2 \ {0}, where xi 6= xj , it is easy to see that the polynomials

〈a(α), xi〉,

〈b(α), xi〉,

〈a(α), xi〉 − 〈a(α), xj〉,

〈a(α), xi〉 − 〈b(α), xj〉,

〈b(α), xi〉 − 〈b(α), xj〉, and

〈a(α), xi〉〈b(α), xj〉 − 〈a(α), xj〉〈b(α), xi〉

are all nonzero polynomials of degree at most 6m in α. In Claim 2.4.3, we prove this for the last

polynomial, the others are trivial. Taking α to be some primitive element of the field F210m ensures

19

that is it not a root of any of the above polynomials. Such an element can also be efficiently and

deterministically found (see [Sho94]).

Claim 2.4.3. For two distinct nonzero elements xi.xj ∈ Fm+1
2 , the polynomial

P (α) = 〈a(α), xi〉〈b(α), xj〉 − 〈a(α), xj〉〈b(α), xi〉

is nonzero.

Proof. W.L.O.G, let xi > xj lexicographically. Let u be the largest index such that xi[u] = 1, and

xj [u] = 0, and let v be the largest index such that xj [v] = 1, so xi and xj agree on all coordinates

indexed higher than u. We claim that monomial α3m+2u+v−3 in P (α) survives, and therefore P

is nonzero. Indeed, this is true since it is easy to see that if this monomial has to be cancelled

out, it has to be equal to some α3m+2u′+v′−3, where xi[u
′] = xj [v

′] = 1 and where u < u′, v′ < v.

But by our assumption, xi and xj agree on every coordinate indexed higher than u, and therefore,

xi[v
′] = xj [u

′] = 1, and therefore, the monomial α3m+2u′+v′−3 is computed an even number of

additional times.

�

2.5 Proof of Theorem 2.3.1 by reducting to common zeroes of a space of

polynomials

In this section, we prove Theorem 2.3.1 via finding common roots to a space of low degree polyno-

mials. There are two components to this, the first is a reduction to an algebraic problem:

Theorem 2.5.1. Let y be a corrupted codeword from RM(m,m − 2r − 2), with error locations

at E ⊆ Fm2 . There is an algorithm, SpaceRoots, that runs in time O(m(r+1)ω) that takes the

syndrome of y as input, and returns the space of all reduced polynomials of degree ≤ r + 1 that

vanish on E.

We are now left with the following neat problem, which is interesting in its own right, namely,

finding the roots of a space of low degree polynomials:

Theorem 2.5.2. For a set of points E ⊆ Fm2 that satisfy property Ur, given the space V of all

reduced polynomials of degree ≤ r+1 that vanish on E, there is an algorithm,FindRoots, that runs

in time m2r , and returns the set E with probability 1− o(1).

The rest of this section is will be dedicated to proving Theorem 2.5.1, and setting up the stage

for Theorem 2.5.2.

20

We set up more notation that will be continue to be used in the paper: For a vector v ∈ F2m

2 , we

will treat v as a function from Fm2 to F2 and vice versa in the natural way, i.e., for a point x ∈ Fm2 ,

v(x) is the coordinate corresponding to point x in v.

We shall use the following theorem from [SSV17] that completely characterizes the space of

polynomials V that we are looking for:

Theorem 2.5.3. For a set of points E satisfying property Ur, let y be the codeword from RM(m,m−

2r−2) which is flipped at points in E. Then, there exists nontrivial polynomials A, and B that satisfy:

A(x) · y(x) = B(x) ∀x ∈ Fm2 ,

where deg(A) ≤ r + 1 and deg(B) ≤ m − r − 1. Moreover, E is the set of common zeroes of

all such A’s which satisfy the equations. Furthermore, for every polynomial A that vanishes on all

points of E, there is a B such that the above equation is satisfied.

So, the way we prove Theorem 2.5.1 is by finding polynomials A(X1, . . . , Xm) of degree ≤ r + 1

such that A · y is a polynomial of degree ≤ m − r − 1. Most important, we would like to find this

space V of polynomials efficiently, i.e., in time poly(m2r). For this, we set up a system of linear

equations and solve for A.

Proof of Theorem 2.5.1. Let us use s to denote the syndrome vector, whose entries are indexed by

monomials of degree at most 2r + 1. Let us denote

A =
∑

M∈Mm
r+1

aMM(X1, . . . , Xm)

to be a polynomial whose coefficients are indeterminates aM for M ∈Mm
r . We want that A ·y is

a polynomial of degree ≤ m− r− 1, so we look at it as a codeword of RM(m,m− r− 1). Using the

fact that the dual code of RM(m,m− r − 1) is RM(m, r), we have, for any monomial M ′ ∈Mm
r ,

0 =
∑
x∈Fm2

A(x)y(x)M ′(x)

=
∑

M∈Mm
r+1

aM
∑
x∈Fn2

y(x)M(x)M ′(x)

=
∑

M∈Mm
r+1

aMsM ·M ′ .

Hence, the solution space to this system of |Mm
r | equations in |Mm

r+1| variables gives us the

space V of all polynomials of degree ≤ r + 1 that vanish on all points of E. Moreover, we can do

this efficiently in time O(m(2r+1)ω) using gaussian elimination.

21

�

Once we have the above result, we can give a proof of Theorem 2.3.1 assuming Theorem 2.5.2.

procedure SyndromeDecode(S)
V ← SpaceRoots(S)
return FindRoots(V)

end procedure

Of course, assuming we have an algorithm such as FindRoots, it is obvious that the above

algorithm is, indeed what we are looking for. Most of the rest of the paper goes into finding such

an algorithm.

2.6 Efficiently finding roots of a space of polynomials

At this point, we are left with the following neat problem:

Input: Given the space V of all degree ≤ r + 1 polynomials which vanish on a set of points E

satisfying property Ur.

Output: Recover E.

2.6.1 A sketch of the rest of the algorithm

Let us denote t = |E|. The main idea in the rest of the algorithm is to restrict the set of points

to only those lying on a randomly chosen affine subspace of codimension ∼ log t. The hope is that

exactly one point in E lies in this subspace. This happens with constant probability, and in fact, for

every point e ∈ E, e is the only point that lies in this subspace with probability at least 1
4t . This is

given by the Valiant-Vazirani lemma. If we could somehow find all multilinear polynomials of degree

≤ r + 1 on this subspace that vanish at e, we can just recover this point with relative ease.

We repeat the above procedure O(t log t) times, and we will have found every error point with

high probability.

In order to get into slightly more detail, we will set up the following notation, which we will

continue to use:

• For i ∈ [m], let us denote Ei to be the set of errors left after restricting the last i variables to

zero and dropping these coordinates, i.e., Ei := {x | (x1, . . . , xm−i, 0, . . . , 0) ∈ E}.

• For i ∈ [m], let us denote Vi ⊆ F2[X1, . . . , Xm−i] be the space of all polynomials of degree

≤ r + 1 vanishing on Ei.

22

Here is another way to look at the above approach which makes the analysis fairly straightforward:

Suppose in the (initially unknown) set E, we restricted ourselves only to points that lie on Xm = 0,

and the number of points is strictly less than |E|. We can find the space of all degree ≤ r + 1

polynomials V1 that vanish on this subset by simply setting Xm = 0 in all the polynomials in V (see

Section 2.6.5). Thus, we have reduced it to a problem in Fm−1
2 with fewer points.

Suppose after setting the last k variables to zero, there is exactly one point e left. Let the space

of polynomials that vanish on this point be Vk. We observe that for every i ∈ [m − k], there is

a polynomial a − Xi ∈ Vk for exactly one value of a ∈ F2. This is because Vk is the space of all

polynomials of degree ≤ r + 1 that vanish on e. So e(i) − Xi, for every i ∈ [m − k], is a degree

1 polynomial vanishing on e, and therefore must belong to V k. In fact, we can ‘read off’ the first

m− k coordinates of e from Vk by looking at these polynomials. The other coordinates, as dictated

by our restriction, are 0 (see Section 2.6.2).

Of course, there are a few problems with the above approach. Firstly, restricting E to Xn = 0

might not reduce the size at all. This is exactly where the randomness of the invertible affine

transformation comes to use. The idea is that this ensures that around half the points are eliminated

at each restriction. For appropriately chosen k, the Valiant-Vazirani Lemma (see Section 2.6.4) says

that an affine linear restriction of codimension k isolates exactly one error location with constant

probability. Next, a subtle, but crucial point is that after an invertible linear transformation, the

set of points E must still satisfy property Ur. Fortunately, this is not very difficult either (see

Section 2.6.3).

A final remark is that we store the error location once we find it, but thinking back to the

decoding problem, once an error is found, it can also be directly corrected. This step is easy. For

example, over F2, an error location e is corrected by adding the vector e⊗2r+1 to the syndrome S.

Over fields of other characteristics, adding e⊗2r+1 to the syndrome does not ensure that the error

at location e has been corrected. However, this isn’t a problem because any error location that has

not been corrected will be found again. At this point, we add a different multiple of e⊗2r+1 to the

syndrome and continue.

We will now proceed to analyze each of the above mentioned steps separately.

2.6.2 Counting the number of error locations

We have briefly mentioned that we can check if the size of the set Ei at stage i is 1 or not. However,

something more general is true: we can count the number of error locations left |Ei| at any stage.

This more general fact will prove to be especially useful in the derandomization of this algorithm,

given in Section 2.6.6. It basically follows from the following simple fact:

23

Claim 2.6.1. The vectors in E⊗≤ri are linearly independent.

Proof. Consider vector e⊗≤r ∈ E⊗≤ri . The entries of e come from a fixed subset of the nonzero

coordinates of some vector ẽ⊗≤r ∈ E⊗≤r. Since, the vectors in E⊗≤r are linearly independent, it

follows that the vectors in E⊗≤ri are also linearly independent.

�

Let Ei = {e1, . . . , ek}. Since e⊗≤r1 , . . . , e⊗≤rk are linearly independent, we have that e⊗≤r+1
1 , . . . , e⊗≤r+1

k

are also linearly independent. Therefore, Vi given by the null space of the matrix mat(E⊗≤r+1
i),

which (recall) is given by:


e⊗≤r+1

1

...

e⊗≤r+1
k


and as a consequence, has codimension exactly equal to the number of points in Ei. This gives

a general way to count the number of error points that we are dealing with. Thus we have:

|Ei| = codim(Vi). (2.1)

However, in the case where there is just one point, e, it is easier to check, and even recover the

point. The idea is that for every j ∈ [m], exactly one of Xj and 1−Xj is in V depending on whether

e(j) = 0 or e(j) = 1 respectively. In this spirit, we define the algorithm to read off a point given

the space of all degree ≤ r+ 1 polynomials vanishing on it, in fact, the algorithm returns ⊥ if there

isn’t exactly one point.

procedure FindUniqueRoot(V)
Initialize e
for j ∈ [m] do

if Xj ∈ V & 1−Xj 6∈ V then
e(j)← 0

else if 1−Xj ∈ V & Xj 6∈ V then
e(j)← 1

else
return ⊥

end if
end for
return e

end procedure

24

2.6.3 Applying a random invertible affine map

We had also briefly mentioned that when we analyze the algorithm, we are applying a random

invertible affine map to Fm2 . We do need to prove that after this map, the set of points still satisfy

property Ur.

Proposition 2.6.2. For an invertible affine map L, if E satisfies property Ur, then L(E) also

satisfies Ur.

Proof. There is a bijection between set of degree ≤ r reduced polynomials vanishing on E, and

the set of degree ≤ r reduced polynomials vanishing on L(E) given by applying the map L to

variables. For a reduced polynomial P (X1, . . . , Xm) of degree ≤ r vanishing on E, we have that the

polynomial reduce(P (L−1(X1), . . . , L−1(Xm))) vanishes on T (E). Moreover, this is unique, in that

no other P ′(X1, . . . , Xm) maps to this polynomial. This is easy to see since there is a unique way

to go between the evaluation tables of P (X1, . . . , Xm) and reduce(P (L−1(X1), . . . , L−1(Xm))), and

no two distinct reduced polynomials have the same evaluation tables.

Similarly, for a reduced polynomial Q(X1, . . . , Xm) of degree ≤ r+ 1 vanishing on T = L(E), we

have that the polynomial reduce(Q(L(X1), . . . , L(Xm))) vanishes on E, and no otherQ′(X1, . . . , Xm)

maps to this polynomial. Therefore, the number of points in the null space of mat(E⊗≤r)T has the

same size as the null space of mat(L(E)⊗≤r)T . Therefore, the spaces has the same codimension,

and the rank of mat(L(E)⊗≤r) is the same as the rank of mat(L(E)⊗≤r).

�

2.6.4 The Valiant-Vazirani isolation lemma

Here, we will make use of a simple fact, commonly referred to as the Valiant-Vazirani Lemma [VV86]

to isolate a single point in E using a subspace of appropriate codimension.

Lemma 2.6.3 (Valiant-Vazirani Lemma.). For integers t and m such that t ≤ 1
1002m/2, let l and

c be such that l is an integer, and l = log2 ct where 2 ≤ c < 4. Given E ⊂ Fm2 such that |E| = t,

let a1, . . . , al be uniform among all sets of l linearly independent vectors, and b1, . . . , bl be uniformly

and independently chosen elements of F2. Let

S := {x ∈ E | 〈x, ak〉 = bk ∀k ∈ [l]}.

Then, for every e ∈ E,

P(S = {e}) ≥ 1

7t
.

25

Proof. Assume that a1, . . . , al are chosen uniformly and independently from Fm2 . let I denote the

event {a1, . . . , al are linearly independent}. We have P(I) ≥ 1 − ct
2m . We have, for every i ∈ [t],

that P(〈ei, ak〉 = bk) = 1
2 . Moreover, we have the pairwise independence property that P(〈ei, ak〉 =

bk ∧ 〈ej , ak〉 = bk) = 1
4 for i 6= j.

With this in mind, let E = {e1, . . . , el}, and Ei denote the event {〈ei, ak〉 = 0 | k ∈ [l]}. We have

that P(Ei) = 1
2l

= 1
ct , and P(Ei ∧ Ej) = 1

4l
= 1

c2t2 for i 6= j. We have:

Ei ⊆

Ei ∩
⋂
j 6=i

Ej

 ∪
⋃
j 6=i

(Ei ∩ Ej)

 .

Therefore, by union bound,

P(Ei) ≤ P

Ei ∩
⋂
j 6=i

Ej

+
∑
j 6=i

P(Ei ∩ Ej),

or

P

Ei ∩
⋂
j 6=i

Ej

 ≥ 1

t

(
1

c
− 1

c2

)
≥ 1

6t
.

And finally, by the law of total probability,

P

Ei ∩
⋂
j 6=i

Ej

 ∣∣∣∣∣ I
 ≥ 1

6t
− ct

2m

≥ 1

7t
.

�

So, if we restrict 100t log t times, then the probability that some point is never isolated is at most

t
(
1− 1

7t

)100t log t ≤ 0.001. What remains is to ensure that we have all the polynomials of the given

degree that vanish at that point. This is shown by obtaining this set of polynomials after every

affine restriction.

2.6.5 Restricting the points to a hyperplane

Here, we just analyze the case when restricting to Xm = 0. Further restrictions are analyzed in

exactly the same way.

We have E1, the set of all z ∈ Fm−1
2 such that (z, 0) ∈ E. Let Ê1 be the set of all z ∈ Fm−1

2 such

that (z, 1) ∈ E. We also have V1, the space of all n− 1 variate polynomials that vanish on E1. The

following lemma shows that V1 can be found easily from V .

26

Lemma 2.6.4. We have that

V1 = {P (X1, . . . , Xm−1, 0) ∈ F2[X1, . . . , Xm−1] |

P (X1, . . . , Xm) ∈ V }.

Proof. Let P (X1, . . . , Xm) ∈ V . We first show that Q(X1, . . . , Xm−1) = P (X1, . . . , Xm−1, 0) lies in

V1. But this is obvious: since P (X1, . . . , Xm) ∈ V , we know that P (y) = 0 for all y ∈ E. Thus for

any z ∈ E1, P (z, 0) = 0. Thus Q(z) = 0.

For the other direction, suppose Q(X1, . . . , Xm−1) ∈ V1. We need to show that there exists some

P (X1, . . . , Xm) ∈ V such that Q(X1, . . . , Xm−1) = P (X1, . . . , Xm−1, 0).

We will show that there is some polynomial P ′(X1, . . . , Xm−1) ∈ F[X1, . . . , Xm−1] of degree ≤ r

such that

Q(X1, . . . , Xm−1) +Xm · P ′(X1, . . . , Xm−1) ∈ V.

Towards this, let (aM)M∈Mm−1
r

be indeterminates, and let P ′(X1, . . . , Xm−1) be given by:

P ′(X1, . . . , Xm−1) =
∑

M∈Mm−1
r

aMM(X1, . . . Xm−1).

We set up a system of linear equations on the aM :

Q(z) + P ′(z) = 0 For every z ∈ E1

We claim that there exists a solution (a∗M)M∈Mm−1
r

to this system of equations.

This is because Ê1 satisfies property Ur. This follows from the fact that for every e ∈ Ê1, i.e.,

for any (e, 1) ∈ E, the entries of (e, 1)⊗≤r are the same as the entries in e⊗≤r with some entries

repeated, so any linear dependency among the columns of Ê1
⊗≤r

corresponds to a linear dependency

in the columns of E⊗≤r).

Finally, it remains to check that for every such P ′ (actually, just some P ′ is enough), we have

that

Q(X1, . . . , Xm−1) +XmP
′(X1, . . . , Xm−1) ∈ V,

i.e., Q(X1, . . . , Xm−1) + XmP
′(X1, . . . , Xm−1) vanishes on E. But this is obvious: the case when

Xm = 0 is taken care of by the fact that Q ∈ S̃, and the case when Xm = 1 is handled by the fact

that P ′ is a solution to our system of equations.

�

27

In the above lemma, all the polynomials in V are reduced, i.e., have degree in each variable at

most one. When we apply an invertible affine transformation on the variables, we have to ensure

that all the polynomials are reduced. However, this is again easy, as it suffices to reduce the basis

polynomials of the space. Henceforth, for a set of polynomial P ∈ F2[X1 . . . , Xn], we shall denote

reduce(P) to be polynomial obtained after reducing P .

And finally, we present the full algorithm

procedure FindRoots(V)
t← codim(V)
Initialize E ← ∅ . error set
for 100t log t iterations do

M ∼ GL(m,F2), b ∼ Fm2
for P ∈ V do

P (X)← reduce(P (MX + b)) . affine
transformation

end for
Vl ← {P (X1, . . . , Xn−l, 0, . . . , 0) | P (X1, . . . , Xn) ∈ V }
e←FindUniqueRoot(V)
if e 6= ⊥ then

E ← E ∪ {e}
end if

end for
return E

end procedure

We do 100t log t iterations, and in each step the most expensive operation is FindUniqueRoot,

which takes time O(mrω+2), since it is essentially equivalent to checking if s given vector is in the

span of some set of ≤ mr vectors . Therefore, the total running time is O
(
m(ω+1)r+4

)
2.6.6 A note on derandomization.

In this section, we show how to run the previous algorithm in a derandomized way. The key tool is

that we can count the number of common roots of the space via Equation 2.1 for any instance. So,

this suggests a natural approach: we try to restrict variables one by one to 0 or 1, and then finding

the corresponding space of polynomials by Lemma 2.6.4, only ensuring that the number of common

roots after restricting is still nonzero.

To find the running time, we utilize the following recurrence:

T (m, |E|) ≤ T (m− 1, |E0|) + T (m− 1, |E1|)

+

(
m

≤ r + 1

)ω
,

where |E0|+ |E1| = |E|. This gives a running time bound of O
(
m(ω+1)r+2

)
.

28

procedure DetFindRoots(V)
V0 ← {P (X1, . . . , Xn−1, 0) | P (X1, . . . , Xn) ∈ V }
V1 ← {P (X1, . . . , Xn−1, 1) | P (X1, . . . , Xn) ∈ V }
if codim(V0) 6= 0 then

E0 ← DetFindRoots(V0)
else

E0 ← ∅
end if
if codim(V1) 6= 0 then

E1 ← DetFindRoots(V1)
else

E1 ← ∅
end if
return E0 ∪ E1

end procedure

2.7 Extension to other small fields

The algorithm given above is easily extended to other fields of small order. The reduction of

the syndrome decoding problem to finding roots of a space of low degree polynomials, and the

isolation lemma can be adapted with almost no change at all. We will only reproduce the result

of Section 2.6.5. We do it for Fp and show that we can recover the whole space of polynomials

that vanish on a set of points after one restriction Xm = 0. We carry over the notation too. Let

E1 := {e | (e, 0) ∈ E}. Let Ê1 := E \ {(e, 0) | e ∈ E1}.

Lemma 2.7.1.

V1 = {P (X1, . . . , Xm−1, 0) ∈ Fp[X1, . . . , Xm−1] |

P (X1, . . . , Xm) ∈ V }

Proof. As in the previous case, one direction is obvious. Let P (X1, . . . , Xm) ∈ V . For every point

(z, 0) ∈ E, we have that P (X1, . . . , Xm−1, 0) vanishes at z.

For the other direction, again similar to the previous case, let (a
(i)
M)M∈Mm−1

r ,i∈[p−1] be indetermi-

nates, let the polynomials in the indeterminates

A1(X1, . . . Xm−1), . . . , Ap−1(X1, . . . Xm−1) be given by:

A1(X1, . . . , Xm−1) =
∑

M∈Mm−1
r

a
(1)
M M(X1, . . . , Xm−1)

...

Ap−1(X1, . . . , Xm−1) =
∑

M∈Mm−1
r−p+1

a
(p−1)
M M(X1, . . . , Xm−1).

29

and consider the system of linear equations:

A1(y(1)) + · · ·+Ap−1(y(1)) = −Q(y(1)) for (y(1), 1) ∈ E
...

(p− 1)A1(y(p−1)) + (p− 1)p−1Ap−1(y(p−1)) = −Q(y(p−1)) for (y(p−1), p− 1) ∈ E

Rearranging, we have:

A1(y(1)) + · · ·+Ap−1(y(1)) = −Q(y(1)) for (y(1), 1) ∈ E
...

A1(y(p−1)) + (p− 1)p−2Ap−1(y(p−1)) = −(p− 1)−1Q(y(p−1)) for (y(p−1), p− 1) ∈ E

We claim that a solution exists, and therefore such a polynomial

Q(X1, . . . , Xm−1) +
∑

i∈[p−1]

Xi
mAi(X1, . . . , Xm−1)

vanishes on E, and has degree at most r+ 1 and therefore, must belong to V . Let us denote, for

i ∈ [p− 1], E
(i)
1 := {e | (e, i) ∈ E}. Writing the coefficients on the L.H.S in matrix form, we get


mat((E

(1)
1)⊗≤r) · · · mat((E

(1)
1)⊗≤r−p+1)

...
. . .

...

mat((E
(p−1)
1)⊗≤r) · · · (p− 1)p−2 mat((E

(p−1)
1)⊗≤r−p+1)


It is easy to see that the above matrix is constructed by dropping some repeated columns of

mat((Ê1)⊗≤r), and therefore, is full rank.

2.8 Discussion and open problems

A very nice question of [ASW15] is to determine whether Reed-Muller codes achieve capacity for

the Binary Symmetric Channel. In the constant distance regime, this would amount to being able

to correct Θ(mr) random errors in the Reed-Muller code RM(m,m − r). If it turns out that

Reed-Muller codes do achieve capacity in the BSC, and further if one could find an poly(mr)-time

syndrome decoding algorithm for this setting, then it would give an efficient randomized zero-error

30

constructions of tensors with high tensor rank. These objects are of great interest in algebraic

complexity theory (eg. see [Raz13] and the references therein).

Another interesting problem comes from our second approach to this syndrome decoding problem.

Although our algorithm works well over small fields, over large fields, it has a bad dependence on the

field size. This mainly comes because when trying to isolate one point using a subspace. It would

be interesting to have an algorithm whose running time grows polynomially in log p instead of p,

where p is the size of the field. More concretely is there a poly(mr, log p) algorithm for the following

problem?

• Input: The space S of all polynomials in m variables of degree at most r + 1 over Fp which

vanish on an (unknown) set E of points that satisfy property Ur.

• Output: The set E.

31

Chapter 3

Improved inapproximability of rainbow coloring

This chapter is dedicated to studying the inapproximability of rainbow coloring. Roughly speaking,

the main result of this chapter is that it is NP-hard to 2-color a k-uniform, (k − o(k))-rainbow

colorable hypergraph. Here, the notion of almost rainbow colorability is also introduced. A k-

uniform hypergraph is r-almost rainbow colorable if, roughly speaking, one can color the vertices

in a way that every edge gets r − o(r) colors. We also show that it is NP-hard to color an almost

k − o(k)-rainbow colorable k-uniform hypergraphs with c colors.

3.1 Introduction

A k-uniform hypergraph H = (V,E) consists of a set of vertices V (|V | = n) and a collection

E ⊂
(
V
k

)
of hyperedges.. A (proper) c-coloring of H is a coloring of V using c colors such that every

hyperedge is non-monochromatic. The complexity of coloring a hypergraph with few colors has been

extensively studied over the years.

For k = 2 (i.e., graphs), it is NP-hard to find a 3-coloring whereas finding a 2-coloring is easy.

For higher uniformity k ≥ 3, even finding a 2-coloring is NP-hard. From the upper bounds side,

given a 3-colorable graph or 2-colorable 3-uniform hypergraph, the best approximation algorithms,

despite a long line of work [KNS01, Chl07, CS08], only find colorings using O(nδ) colors for some

constant 0 < δ < 1.

At the same time, strong inapproximability results for coloring have been elusive. Given a 3-

colorable graph, it is NP-hard to find a 4-coloring [KLS00], and assuming the n-Conjecture (a

variant of the Unique Games Conjecture) it is hard to find a coloring using any constant number of

colors [DMR09]. Recently, [BKO19] showed the NP-hardness of coloring a 3-colorable graph with

5-colors and in general the NP-hardness of coloring a k-colorable graph with (2k − 1)-colors. For

large constant c, it was known that it is NP-hard to color a c-colorable graph using 2Ω(c1/3) colors

[Hua13], and in general it is known that the chromatic number is NP-hard to approximate within

n1−ε for every ε > 0 [FK98, Zuc07]. Very recently, the results of [Hua13, BKO19] were improved

by [WZ20] by showing that for every c ≥ 4, given a c-colorable graph, it is NP-hard to color it with

32

(
c
bc/2c

)
− 1 colors.

In the hypergraph case, stronger hardness results are known: for instance, given a 4-colorable

4-uniform hypergraph or a 2-colorable 8-uniform hypergraph, it is quasi-NP-hard1 to find a coloring

using 2(logn)1/20−ε
colors for every ε > 0 [Var16] following a series of recent developments [DG13,

GHH+17, Hua15, KS17]. In the 3-uniform case, the current best hardness is that given a 3-colorable

3-uniform hypergraph it is quasi-NP-hard to find a coloring with (log n)γ/ log log logn colors for some

γ > 0 [GHH+17]. Stronger results are known when the hypergraph is only guaranteed to be almost

2-colorable2: given an almost 2-colorable 4-uniform hypergraph, it is quasi-NP-hard to find an

independent set of relative size 2− log1−o(1) n [KS14].

Given the strong hardness of hypergraph coloring, it is natural to consider restricted forms of

coloring having some additional structure that might make them more amenable to algorithms. One

such variant is rainbow colorability which is introduced in [AGH17]. A q coloring of the hypergraph

is called a rainbow q-coloring if there exists a coloring of the vertices with q colors such that every

hyperedge contains all q colors.

Definition 3.1.1 (Rainbow Coloring). A q-coloring χ : V → [q] of a hypergraph H = (V,E) is a

rainbow q-coloring if for every hyperedge e ∈ E, χ(e) = [q].

A hypergraph is called rainbow q-colorable if there exists a rainbow q-coloring. If we restrict the

uniformity of the hypergraph to k then the definition of rainbow q-coloring is meaningful only when

2 ≤ q ≤ k. It is easy to observe that the property of H being rainbow q-colorable is stronger the

larger q is, and that it is always stronger than 2-colorability. We have the following implications on

the structure of hypergraphs:

k-RC⇒ (k − 1)-RC⇒ . . .⇒ 2-RC

⇔ 2-C⇒ 3-C⇒ . . .⇒ n-C,

where i-RC stands for “H is rainbow i-colorable” and i-C stands for “H is i-colorable”.

Since rainbow q-colorable hypergraphs have more structure than 2-colorable hypergraphs for q >

2, one can hope to improve on the known upper bounds on the hypergraph coloring results in [KNS01]

when the given hypergraph is rainbow q-colorable. In this work, we study the inapproximability of

coloring such hypergraphs. More concretely, we study the following problem: what guarantee (in

terms of rainbow q-colorability) on H is necessary in order for us to be able (in polynomial time) to

1there is a DTIME(2poly log n) time reduction from 3SAT.
2A hypergraph is called almost c-colorable if there is an induced sub-hypergraph of size(1−ε)n which is c-colorable,

for 0 < ε� 1.

33

certify that it is c-colorable? Conversely, for what rainbow colorability guarantees is it still NP-hard

to find a normal c-coloring? More formally, we define the following decision problem:

Definition 3.1.2 (Rainbow(k, q, c), q ≤ k). Given a k-uniform hypergraph H, distinguish between

the following two cases:

Yes: H is rainbow q-colorable.

No: H is not c-colorable.

Note that this problem gets easier when q increases for a fixed c as well as when c increases for

a fixed q.

3.1.1 Related work.

From the upper bounds side, Rainbow(k, k, 2) is known to be in P – a simple randomized algorithms

shows that it is in RP [McD93] and the problem can be solved without randomness using an SDP

[GL15]. In fact, a stronger result is possible: If a given hypergraph is c colorable with the property

that there exists two colors, say red, blue, such that all the hyperedges contain an equal number of

red and blue vertices, then the 2-coloring of such hypergraph can be found in polynomial time.

On the inapproximability side, Guruswami and Lee [GL15] showed that, for all constants k, c ≥ 2,

Rainbow(k, bk/2c, c) is NP-hard. Even in the case of c = 2, this remains the current best NP-

hardness result in terms of rainbow coloring guarantee for any fixed k > 3 i.e their result does not

rule out Rainbow(k, bk/2c + 1, 2) ∈ P. Austrin et al. [AGH17] asked the question whether it is

NP-hard to find a 2-coloring of rainbow (k − 1)-colorable k-uniform hypergraph.

Brakensiek and Guruswami [BG16] conjectured that Rainbow(k, k − 1, 2) is NP-hard. Later

they showed [BG17] that a strong form of this conjecture would follow assuming a “V Label Cover”

conjecture. Assuming that conjecture, for any ε > 0 it is NP-hard to even find an independent set

of an ε fraction of vertices (and in particular it is hard to find a 1/ε-coloring) in a rainbow (k − 1)-

colorable k-uniform hypergraph. However, the V Label Cover conjecture (which is essentially a

variant of the Unique Games Conjecture with perfect completeness) is very strong and it is not clear

yet whether it should be believed.

Recently Guruswami and Saket [GS17], further restrict the guarantee on the rainbow coloring

to balanced rainbow coloring. More specifically, for Q, k ≥ 2, suppose we are given a Qk-uniform

hypergraph with the guarantee that it is rainbow k-colorable such that in every hyperedge ` colors

occur exactly Q − 1 times, ` colors occur exactly Q + 1 and the remaining occur exactly Q times

for some parameter 1 ≤ ` ≤ k/2. In this case, they show that it is NP-hard to find an independent

34

set of size roughly (1 − `+1
k). Note that in their result, the hypergraph might not satisfy rainbow

(bk/2c + 1)-coloring guarantee and therefore the result in [GS17] does not even rule out efficiently

finding a 2-coloring when the k-uniform hypergraph is rainbow (bk/2c+ 1)-colorable.

A dual notion to rainbow colorability is that of strong coloring. A k-uniform hypergraph H is

strongly q-colorable for q ≥ k if there is a q-coloring of H such that every hyperedge contains k

different colors. Note that the two notions coincide when q = k. [BG16] studied the problem of

finding a c-coloring of a strongly q-colorable hypergraph. On the hardness side, they showed that

it is NP-hard to find a 2-coloring of a strongly d3k/2e-colorable k-uniform hypergraph. Since the

focus of this paper is on rainbow coloring, we refer interested readers to [BG16] for more details

about strong rainbow coloring.

3.2 The main results

We show the following hardness results. First, we give a relatively simple proof that it is NP-hard to

find a 2-coloring even when the graph is guaranteed to be roughly rainbow (k−2
√
k)-colorable. This

significantly improves on the hardness bounds of [GL15] and settles the smallest previous unknown

case which was Rainbow(4, 3, 2). Concretely, we show the following.

Theorem 3.2.1. For every t ≥ 1, d ≥ 2, Rainbow(td+ bd2c, t(d− 1) + 1, 2) is NP-hard.

We have the following corollary (proved in Section 3.7):

Corollary 3.2.2. For all k ≥ 6, Rainbow(k, k − 2b
√
kc, 2) is NP-hard.

The NP-hardness result of Rainbow(4, 3, 2) has been improved recently by Guruswami and

Sandeep [GS19], who show that for a k-uniform hypergraph, it is NP-hard to rainbow q-color a

rainbow (k − 1)-colorable hypergraph where q = bk−1
2 c. In particular, this shows NP-hardness of

Rainbow(k, k − 1, 2) for 4 ≤ k ≤ 6.

The techniques used in the proof the Theorem 3.2.1 can only show 2-coloring in the soundness

case. Towards obtaining similar results for c > 2, we introduce a generalization of rainbow coloring

in which we only require that each hyperedge contains at least p different colors for some p ≤ q.

Definition 3.2.3 (Rainbow (q, p)-Coloring). A q-coloring χ : V → [q] of a hypergraph H = (V,E)

is a rainbow (q, p)-coloring if for every hyperedge e ∈ E, |χ(e)| ≥ p.

A hypergraph is called rainbow (q, p)-colorable if there exists a rainbow (q, p)-coloring. Note that

rainbow (q, q)-coloring is same as rainbow q-coloring, and that as long as p > dq/2e then a (q, p)-

colorable graph is still always 2-colorable. We define the following decision problem analogously to

Rainbow(k, q, c).

35

Definition 3.2.4 (AlmostRainbow(k, q, p, c)). Given a k-uniform hypergraph H, where that p ≤

q ≤ k, p > dq/2e, distinguish between the following two cases:

Yes: H is rainbow (q, p)-colorable.

No: H is not c-colorable.

We prove the following hardness result for AlmostRainbow(k, q, p, c).

Theorem 3.2.5. For every d ≥ c ≥ 2 and t ≥ 2 such that d and t are primes and d is odd, let

q = t(d − c + 1) + c − 1 and k = td. Then AlmostRainbow(k, q, q − d, c) is NP-hard (provided

d < bq/2c so that the AlmostRainbow problem is well-defined).

For q ≥ 4c, setting d to be a prime between
√
qc and 2

√
qc we have the following more concrete

corollary.

Corollary 3.2.6. For infinitely many q ≥ 4c, AlmostRainbow(q + b√qcc, q, q − b2√qcc, c) is

NP-hard.

In particular this means that AlmostRainbow(q+ o(q), q, q− o(q), c) is NP-hard for infinitely

many q and c = o(q).

A key difference between our results and previous hardness results is that we only show hardness

of finding a c-coloring, not hardness of finding a large independent set (which is an easier task than

finding a c-coloring). In fact, the graphs constructed in our reduction always have independent sets

consisting of almost 1/2 the vertices.

3.3 A sketch of the proofs

Like so many other strong hardness of approximation results, our proof follows the general framework

of long code-based gadget reductions from the Label Cover problem. However, we depart from the

predominant approach of analyzing such reductions using tools from discrete Fourier analysis such

as (reverse) hypercontractivity or invariance principles. Indeed, such methods appear inherently

ill-suited to analyze our gadgets – as alluded to earlier, our gadgets have very large independent

sets, and Fourier-analytic methods usually cannot say anything about the chromatic number of such

graphs.

Instead we use methods from topological combinatorics to analyze our gadgets. Since its intro-

duction with Lovsz’ resolution of Kneser’s conjecture in 1978 [Lov78], topological combinatorics has

been used to resolve a number of combinatorial problems, many of them regarding the chromatic

number of various families of graphs and hypergraphs.

36

The lower bound on the chromatic number of Kneser graphs (or more accurately, the lower bound

on the chromatic number of the Schrijver graphs, which are vertex-critical subgraphs of the Kneser

graphs) was used by Dinur et al. [DRS02] and recently by Bhangale [Bha18] to analyze a long code

gadget giving NP-hardness of coloring 3-uniform hypergraphs with any constant number of colors

and of coloring 4-uniform hypergraphs with poly(log n) number of colors respectively. Recently

[KO19, WZ20] used topological methods to analyze the gadgets in the reduction of generalized

graph coloring. Their proofs are algebraic in nature compared to ours which are combinatorial.

For our results, we construct a new family of hypergraphs that we call rainbow hypergraphs.

These are k-uniform hypergraphs over the n-dimensional k-ary cube [k]n, and k strings x1, . . . ,xk

form a hyperedge if, in all but a constant number t of coordinates i ∈ [n], it holds that x1
i , . . . ,x

k
i

are all different. Our hardness results rely on lower bounds on the chromatic number of these

hypergraphs. For Theorem 3.2.1, a simple direct proof yields non-2-colorability of the corresponding

rainbow hypergraph, whereas for Theorem 3.2.5, we give a proof that the chromatic number of

the corresponding rainbow hypergraph grows with t, based on a generalization of the Borsuk-Ulam

theorem (see Theorem 3.8.2).

We now give a brief informal overview of how these rainbow hypergraphs can be used as gadgets

in a Label Cover reduction. At their core, these reductions boil down to a type of dictatorship

testing, in the following sense. We have a large set of functions f1, . . . , fu : [q]n → [q], and our task

is to define a hypergraph with vertex set [u]× [q]n such that:

Completeness If the functions are all the same dictator function (depending only on one coordinate

in their input), then using the function values as colors (i.e., the vertex (i,x) gets color fi(x))

results in a rainbow q-coloring.

Soundness Each function fa can be decoded to a small set of coordinates Sa ⊆ [n] (depending only

on fa and not the other functions) such that if the function induces a proper c-coloring then

many pairs of functions fa, fb have overlapping decoded coordinates (i.e., Sa ∩ Sb 6= ∅).

One simple way of constructing such a dictatorship test would be as follows: let H be a 3-uniform

rainbow hypergraph (over [3]n) which is not 2-colorable. For an edge {x1,x2,x3} of H, we refer

to the set of ≤ t coordinates where {x1
i ,x

2
i ,x

3
i } 6= [3] as the noisy coordinates of the edge. Now

create a 6-uniform hypergraph on [u]× [3]n by for every pair a, b ∈ [u] adding an edge consisting of

{(a,x1), (a,x2), (a,x3), (b,y1), (b,y2), (b,y3)} whenever (i) {x1,x2,x3} and {y1,y2,y3} are edges in

H, and (ii) for each i ∈ [n], {x1
i ,x

2
i ,x

3
i ,y

1
i ,y

2
i ,y

3
i } = [3]. It should be clear that this 6-uniform graph

is rainbow 3-colorable using any dictatorship coloring. For the soundness, consider any 2-coloring

of the vertices. By the non 2-colorability of H, each fi has a H-monochromatic edge {x1,x2,x3}.

37

For any pair (a, b) of such f ’s with an H-monochromatic edge of the same color, it follows that

{x1
i ,x

2
i ,x

3
i ,y

1
i ,y

2
i ,y

3
i } 6= [3] for some i ∈ [n], otherwise we would have a monochromatic hyperedge.

This means that the set of noisy coordinates for the two H-monochromatic edges overlaps, so if we

decode each fa to the set of ≤ t noisy coordinates, then at least half the pairs of functions fa, fb

have overlapping decoded coordinates. This essentially proves hardness of Rainbow(6, 3, 2).

To get hardness of Rainbow(4, 3, 2), we modify the construction slightly to make it lopsided by

only using one vertex (b,y) from the b part, instead of a full hyperedge of H. It turns out that the

soundness property still holds, using an additional property that every 2-coloring of H must have a

monochromatic hyperedge from a large color class.

For the general cases Theorem 3.2.1,Theorem 3.2.5, the construction is generalized as follows.

We use as gadget a non-c-colorable d-uniform rainbow hypergraph H for c, d < q, and construct

hyperedges as follows: pick any r functions fa1
, . . . , far , and for each such faj pick d strings

xj,1, . . . ,xj,d ∈ [q]n such that in each coordinate i ∈ [n], the set of values seen in the r · d strings is

all of [q] (this is the analogue of condition (ii) above). The soundness analysis of this construction

is more involved. The key idea here is that for any σ ∈
(

[q]
d

)
, fa restricted to σn induces a coloring

of H and thus contains a monochromatic hyperedge. If r is sufficiently large, there is in fact a cover

σ1, σ2, . . . , σr ∈
(

[q]
d

)
of [q] such that the copies of H under each of these σj ’s have a monochromatic

hyperedge of the same color. By a pigeon hole argument, a constant fraction of fa’s must have the

same monochromatic cover and we show that this can be used to decode each fa to a small set of

candidate coordinates.

The bound on the uniformity we get is r · d, where r is lower bounded by the need to obtain the

covering property described above. Using a theorem of Sarkaria, we show in Section 3.4.2 that r can

be taken as approximately q−c+1
d−c+1 (which is tight for the covering property).

3.3.1 Organization of the chapter

Since this chapter contains mutiple results, we give a brief sketch of the layout.

Section 3.4 provides some necessary background material regarding hardness of Label Cover and

a combinatorial covering bound. In Section 3.5 we define the rainbow hypergraph gadget used for

Theorem 3.2.1 and show that it is not 2-colorable. As a warm-up we then provide in Section 3.6

a special case of Theorem 3.2.1, NP-hardness of Rainbow(4, 3, 2), since this is much simpler than

the general reductions of Theorem 3.2.1 and Theorem 3.2.5 (experts may want to skip Section 3.6).

In Section 3.8 we define the more general rainbow hypergraph gadget used for Theorem 3.2.5 and

lower bound its chromatic number, and then proceed to prove Theorem 3.2.5 in Section 3.9. The

full proof of Theorem 3.2.1 and Corollary 3.2.2 is given in Section 3.7. In Section 3.10 we give some

38

concluding remarks and further research directions.

3.4 Preliminaries

We denote the set {1, 2, 3, . . . , n} by [n]. Bold face letters x,y, z . . . are used to denote strings. When

we have a collection of several strings we use superscripts to index which string is referred to, and

subscripts to index into locations in the strings, e.g., xij denotes the entry in the j’th position of the

i’th string.

3.4.1 Label Cover

The starting point in our hardness reductions is the Layered Label Cover problem, defined next.

Definition 3.4.1 (Layered Label Cover). An `-layered Label Cover instance consists of ` sets of

variables X = {X1, . . . , X`}. The range of variables in layer i is denoted by [Ri]. Every pair of

layers 1 ≤ i < j ≤ ` has a set of constraints Φij between the variables in Xi and Xj. The constraint

between x ∈ Xi and y ∈ Xj is denoted by φx→y. Moreover, every constraint between a pair of

variables is a projection constraint – for every assignment k ∈ [Ri] to x there is a unique assignment

to y that satisfies the constraint φx→y.

In a Label Cover instance as defined above, for any constraint φx→y ∈ Φi,j , we view it as a

function φx→y : [Ri]→ [Rj] defined such that for any k ∈ [Ri], (k, φx→y(k)) satisfies the constraint

φx→y. Thus, where there is no ambiguity, we will use φx→y to denote both the constraint, as well

as the function. Moreover, for brevity, we say x ∼ y, or “x is a neighbour of y” if φx→y ∈ Φi,j .

Definition 3.4.2 (Weakly dense, [DGKR05]). An instance of `-layered Label Cover is weakly dense

if the following property holds. For any m layers i1 < · · · < im, where 1 < m < l, and any sequence

of variable sets Sk ⊆ Xik for k ∈ [m] such that |Sk| ≥ 2
m |Xik |, we have that there are two sets Sk

and Sk′ such that the number of constraints between Sk and Sk′ is at least a 1
m2 fraction of the total

number of constraints between layers Xik and Xik′ .

We have the following NP-hardness result from [DGKR05], [DRS02], which we use as a starting

point in proving Theorem 3.2.1.

Theorem 3.4.3 ([DGKR05], [DRS02]). For any constant parameters ` ≥ 2, r ∈ Z the following

problem is NP-hard. Given a weakly dense `-layered Label Cover instance where all variable ranges

[Ri] are of size 2O(`r), distinguish between the following two cases:

Completeness There is an assignment satisfying all the constraints of the Label Cover instance.

39

Soundness For every 1 ≤ i < j ≤ `, no assignment satisfies more than a 2−Ω(r) fraction of the set

of constraints Φi,j between layers i and j.

3.4.2 A Covering Bound

We say a function f :
(

[q]
d

)
→ [c] has a t-cover if there is a family S ⊆

(
[q]
d

)
of size |S| = t such that

∪S∈S = [q] and f is constant on S. Let B(q, d, c) be the minimum t such that every f :
(

[q]
d

)
→ [c]

has a t-cover.

Claim 3.4.4. For all 1 ≤ c ≤ d, B(q, d, c) ≥
⌈
q−c+1
d−c+1

⌉
. For c ≥ d + 1 and q ≥ d + 1 a cover may

fail to exist.

Proof. For S ∈
(

[q]
d

)
, set f(S) to be the smallest i ∈ [c−1] such that i 6∈ S, or f(S) = c if [c−1] ⊆ S.

By definition, f−1(i) does not cover [n] for i ∈ [c − 1], so any cover must use sets from f−1(c).

However all such sets contain [c − 1], so the total number of elements covered by k sets from

f−1(c) is at most d + (k − 1)(d − c + 1) thus in order to obtain a cover of all q elements we need

d+ (k − 1)(d− c+ 1) ≥ q or equivalently k ≥ q−c+1
d−c+1 .

In the case c = 2, there is a simple inductive proof (see Lemma 3.7.2) that the lower bound of

Claim 3.4.4 is tight. By a simple reduction to the Generalized Kneser Hypergraph, we get nearly

matching upper bounds for all values of c. The Generalized Kneser Hypergraph has vertex set
(

[n]
k

)
,

and a collection of (not necessarily distinct) sets S = {S1, . . . , St} forms a hyperedge if each element

in [n] is present in at most s sets in S. For our bound, we only need the special case where s = t−1,

where a hyperedge just translates to a collection of sets with empty intersection.

Sarkaria [Sar90] lower bounded the chromatic number of the Generalized Kneser Hypergraph for

many cases, and in particular for the s = t− 1 case we have the following.

Theorem 3.4.5. For any choice of integer parameters n, k, c, t with n ≥ k and t prime, satisfying

n(t− 1)− 1 ≥ c(t− 1) + t(k − 1), and any c-coloring of
(

[n]
k

)
there exist t sets S1, . . . , St ∈

(
[n]
k

)
of

the same color such that their intersection is empty.

Sarkaria’s Theorem as originally stated [Sar90] did not require t to be prime, but the proof does

not work in general for the non-prime case [LZ07], and the result is in general currently only known

to hold for t prime or a power of 2 (see also [ACC+18]). Interestingly enough, all the proofs of the

aforementioned results heavily use topology and we are not aware of any non-topological proof of

this covering theorem.

Using Theorem 3.4.5, we get a nearly sharp upper bound on B(q, d, c). If the requirement that

t is prime in Theorem 3.4.5 could be dropped, we would get the exact values of B(q, d, c).

40

Theorem 3.4.6. For all 1 ≤ c ≤ d, B(q, d, c) ≤ p(q, d, c), where p(q, d, c) is the smallest prime that

is at least
⌈
q−c+1
d−c+1

⌉
.

Proof. Let f :
(

[q]
d

)
→ [c] be arbitrary. Let n = q, k = q−d, and define f̃ :

(
[n]
k

)
→ [c] by f̃(S) = f(S),

where S = [q]\S. By Theorem 3.4.5, for any prime t that satisfies q(t−1)−1 ≥ c(t−1)+t(q−d−1),

or equivalently t ≥ q−c+1
d−c+1 , there exist t sets T1, . . . , Tt ∈

(
[n]
k

)
such that ∩ti=1Ti = ∅ and f̃(T1) =

. . . = f̃(Tt). Letting Si = Ti we have ∪ti=1Si = [n], so f indeed has a monochromatic cover of size t

provided t ≥ q−c+1
d−c+1

3.5 Rainbow Hypergraph Gadget for 2-coloring

Definition 3.5.1. (The hypergraph Hnr ([d])) Let Hnr ([d]) be the d-uniform hypergraph with vertex set

[d]n where d vertices x1, . . . ,xd ∈ [d]n form a hyperedge iff

n∑
i=1

|[d] \ {xji | j ∈ [d]}| ≤ r.

The up to r coordinates i ∈ [n] where |{xji | j ∈ [d]}| 6= d are called noisy coordinates.

In other words, if we write down x1, . . . ,xd in a d×n matrix form, and it is possible to change up

r entries so that all the columns become permutations of [d], then these vertices form a hyperedge.

We sometimes abuse the notation and instead of [d] in Hnr ([d]), either use a finite set or a finite group.

The definition of Hnr (·) still makes sense with this change.

The following claim shows that the hypergraph Hnr ([d]) is not 2-colorable for r = bd/2c.

Lemma 3.5.2. For all d ≥ 2, Hnbd/2c([d]) is not 2-colorable.

Proof. We prove the claim by induction on d. We take the natural convention that the 0-uniform

hypergraph, and a 1-uniform hypergraph, are not 2-colorable. Therefore the base cases d = 0 or

d = 1 are trivial.

Suppose the claim is true for d− 2. For contradiction assume Hnbd/2c([d]) is 2-colorable and that

f : [d]n → {0, 1} is some 2-coloring of Hnbd/2c([d]). Since f is not a constant function, there exists x1

and a coordinate i such that changing i’th coordinate of x changes the value of f . Without loss of

generality, x1 = d, f(x1) = 1, and f(x̃1) = 0, where x̃1 is a string which differs from x1 only in the

i’th coordinate.

Now, the restricted function on [d−1]n cannot be a constant function; since otherwise {1,2, . . . ,d− 1}

along with either x1 or (x1 + δi) form a monochromatic hyperedge, contradicting the assumption

that f is a proper 2-coloring of Hnbd/2c([d]). Since, f on [d−1]n is not a constant function, we can find

41

x2 and a coordinate j such that f(x2) 6= f(x̃2), where again x̃2 differs from x2 only at coordinate

j. Without loss of generality, we can assume x2 = d− 1 and f(x2) = 0 (and hence f(x̃2) = 1).

By the induction hypothesis, Hnbd/2c−1([d− 2]) is not 2-colorable and thus there exists a monochro-

matic hyperedge if we color the vertices [d−2]n according to f . Let the hyperedge be {x3,x4, . . . ,xd}

and f(x3) = f(x4) = . . . = f(xd). If f(x3) = 0, then {x3,x4, . . . ,xd}∪{x2, x̃1} is a 0-monochromatic

hyperedge. Otherwise, {x3,x4, . . . ,xd} ∪ {x1, x̃2} is a 1-monochromatic hyperedge. Thus, f is not

a 2-coloring of Hnbd/2c([d]).

Let α(H) denote the relative size of a maximum independent set of a hypergraph H. We have

the following simple fact:

Fact 3.5.3. For all n ≥ 2, α(Hn1 ([3])) ≤ 2
3 .

Proof. Consider the equivalence class x,x+1,x+2 where + is the coordinate wise addition mod 3.

Then any independent set must contain at most 2 elements from any equivalence class.

3.6 Warm-up: Hardness of Rainbow(4, 3, 2)

In this section, we prove the special case of Theorem 3.2.1 that Rainbow(4, 3, 2) is NP-hard. This

illustrates many of the ideas of the reductions for the general results in a simpler context, but an

expert reader may want to skip this section and instead go directly to the full proof Theorem 3.2.1,

in Section 3.7.

3.6.1 Reduction

We give a reduction from the `-layered Label Cover instance with parameters ` = 8 and r a suffi-

ciently large constant from Theorem 3.4.3 to a 4-uniform hypergraph H(V, E). We will select r such

that the Label Cover soundness is smaller than 1/48. The reduction is given as follows:

Vertices V: Each vertex v from layer i in the layered Label Cover instance L is replaced by a

cloud of size 3Ri denoted by C[v] := v × {0, 1, 2}Ri . We refer to a vertex from cloud C[v] by a pair

(v,x) where x ∈ {0, 1, 2}Ri . The vertex set of the hypergraph is given by

V = ∪v∈∪iXiC[v].

Hyperedges E: Hyperedges are given by sets {(u,x), (u,y), (u, z), (v,w)} such that:

1. There are i, j such that u ∈ Xi, v ∈ Xj , and u ∼ v.

42

2. (x,y, z) form an edge in HRi1 ({0, 1, 2}).

3. {xk,yk, zk,wφu→v(k)} = {0, 1, 2} for all k ∈ [Ri]

For a hyperedge {(u,x), (u,y), (u, z), (v,w)} ∈ E , we say that a coordinate k ∈ [Ri] is noisy if

|{xk,yk, zk}| = 2.

Lemma 3.6.1 (Completeness). If the Label Cover instance is satisfiable then the hypergraph H is

rainbow 3-colorable.

Proof. Let A :
⋃
iXi →

⋃
i[Ri] define the assignment satisfying all constraints of the layered Label

Cover instance. The rainbow 3-coloring of the hypergraph is given by assigning a vertex (v,x) the

color xA(v).

A hyperedge {(u,x), (u,y), (u, z), (v,w)} is thus given the set of colors

{xA(u),yA(u), zA(u),wA(v)}.

Since A satisfies all constraints, we have that A(v) = φu→v(A(u)) and by Item 3 in the definition of

E it follows that we see all three colors.

Lemma 3.6.2 (Soundness). If the hypergraph H is 2-colorable then there exists an assignment A

to the Label Cover instance which satisfies a 1/32 fraction of all constraints between some pair of

layers Xi and Xj.

Proof. Fix a 2-coloring of the hypergraph. Call the colors red and blue. Consider HRi1 ([3]) defined

on the cloud C[v] for v ∈ Xi. By Lemma 3.5.2, and Fact 3.5.3, there exists a color class so that more

than 1
3 fraction of vertices in C[v] are colored with that color and there exists a monochromatic

hyperedge with the same color. Label a vertex v ‘red’ if that hyperedge is colored red otherwise

label it ‘blue’ (breaking ties using ‘red’ by default). Label a layer with a color which we used to

label maximal number of clouds in the layer. Out of the 8 layers there are at least 4 layers of the

same color. Without loss of generality, let the color be red.

By the weak density property of layered Label Cover instance, out of these 4 layers there exist

two layers i and j (i < j) such that the total number of constraints between the red variables in

those two layers is at least 1
16 times the total number of constraints between Xi and Xj . We now

give a labeling to the red variables in Xi and Xj which satisfies a constant fraction of the induced

constraints.

From now on, let U denote the red variables of Xi and V the red variables of Xj . We know from

above that the total number of constraints between U and V is at least 1
16 times the total number

43

of constraints between layers i and j. Thus, if we show that we can satisfy a constant fraction of

constraints between U and V then we are done.

Labeling: We define the labeling A to vertices U ∪ V as follows: for u ∈ U , the copy of HRi1 ([3])

has a monochromatic red edge. Let that edge be {(u,x), (u,y), (u, z)}. If the edge has a noisy

coordinate k ∈ [Ri] then set A(u) = k, otherwise set A(u) =⊥. This defines the labeling of the

vertices in U .

For v ∈ V , consider the following collection of labels:

Sv = {φu→v(A(u)) | u ∈ U, u ∼ v}.

Here we define φu→v(⊥) =⊥ for all u ∼ v. We assign a label to v randomly by picking a uniformly

random label from Sv.

Claim 3.6.3. For every v ∈ V , ⊥/∈ Sv and it holds that |Sv| ≤ 2.

Proof. If ⊥∈ Sv then by definition, there exists u ∼ v, u ∈ U and x,y, z ∈ {0, 1, 2}[Ri] such that

(u,x), (u,y), (u, z) are colored red and {xk,yk, zk} = {0, 1, 2} for all k ∈ [Ri]. Thus, {xk,yk, zk}

along with any vertex (v,w) ∈ C[v] form a hyperedge in E . Since v ∈ V , it has at least one red

colored vertex C[v], but this gives a monochromatic hyperedge with respect to the coloring.

Consider a label t ∈ Sv. Every such label imposes a restriction on the elements in the cloud

C[v] that are colored red. By definition there is a u ∈ U such that φu→v(A(u)) = t, and x,y, z ∈

{0, 1, 2}[Ri] such that (u,x), (u,y), (u, z) are colored red and |{xA(u),yA(u), zA(u)}| = 2. Thus, for ev-

ery w ∈ {0, 1, 2}Rj such that (v,w) is colored red, it must be the case that wt ∈ {xA(u),yA(u), zA(u)}

because otherwise {(u,x), (u,y), (u, z), (v,w)} would form a monochromatic hyperedge of H.

In other words, for every t ∈ Sv, there is at least one value zt ∈ {0, 1, 2} such that all red

vertices (v,w) of C[v] have wt 6= zt. This implies that the fraction of red vertices in C[v] is at most

(2/3)|Sv|. But by construction, at least a 1/3 fraction of vertices in C[v] are red, and it follows that

|Sv| ≤ 2.

It now follows that the randomized labeling A defined above satisfies at least a 1/2 fraction of all

constraints between U and V in expectation, and since the constraints between U and V constitute

a 1/16 fraction of all constraints between layers i and j, we are done.

3.7 The Rainbow
(
td+ bd

2
c, t(d− 1) + 1, 2

)
-hardness

In this section, we give a generalization of the Rainbow(4, 3, 2) result from the Section 3.6. This

gives an elementary proof of Rainbow(td+ bd2c, t(d− 1) + 1, 2)-hardness.

44

Theorem 3.7.1 (Theorem 3.2.1 restated). For every t ≥ 1 and d ≥ 2, Rainbow(td + bd2c, t(d −

1) + 1, 2) is NP-hard.

In the proof of this theorem, we use the c = 2 case of the covering bound Theorem 3.4.6

(c.f. Section 3.4.2). While we are not aware of any non-topological proof of the full version of

Theorem 3.4.6, the c = 2 case does admit an simple inductive proof, provided here for completeness.

Lemma 3.7.2 (c = 2 case of Theorem 3.4.6). For every q ≥ d ≥ 2, B(q, d, 2) = d q−1
d−1e, i.e., for

every f :
(

[q]
d

)
→ {0, 1}, there are b = d q−1

d−1e sets S1, . . . , Sb ∈
(

[q]
d

)
such that ∪Si = [q] and f is

constant on S1, . . . , Sb.

Proof. We prove it by induction on q. The base case when q = d is trivial. Let q ≥ 2d−1. If f is not

a constant function then there exists T ∈
(

[q]
d−1

)
and i, j ∈ [q] \T , such that f(T ∪{i}) 6= f(T ∪{j}).

By induction, for the restricted function f̃ :
(

[q]\T
d

)
→ {0, 1}, there exists a cover S̃ ⊆

(
[q]\T
d

)
of

[q] \ T such that f̃ is constant on S̃ and |S̃| ≤ d q−1−(d−1)
d−1 e ≤ d q−1

d−1e − 1. Either S = S̃ ∪ {T ∪ {i}}

or S = S̃ ∪ {T ∪ {j}} gives the required covering whose size is at most d q−1
d−1e.

The remaining case d < q ≤ 2d− 2 is handled similarly – in this case we take T ∈
(

[q]
q−d
)

in order

to end up in the base case and get a cover of size 2, as desired.

3.7.1 Reduction

We are now ready to give the reduction. We start with a multi-layered Label Cover L instance with

parameters ` and r to be determined later. We reduce it to the hypergraph H(V, E). The reduction

is given as follows. Let q := t(d− 1) + 1, where t ≥ 1 and d ≥ 2 are integers.

Vertices V: Each vertex v from layer i in the layered Label Cover instance L is replaced by a

cloud of size qRi denoted by C[v] := {v} × [q]Ri . We refer to a vertex from the cloud C[v] by a pair

(v,x) where x ∈ [q]Ri . The vertex set of the hypergraph is given by

V = ∪v∈∪iXiC[v].

Hyperedges E: There are two types of edges.

Type 1: For every 1 ≤ ζ < η ≤ `, every vertex v ∈ Xη and every set of t neighbors u1, u2, . . . , ut of

v from layer Xζ , we add the following hyperedges. Let πi = φui→v be the projection constraint

between ui and v for 1 ≤ i ≤ t.

Let xi,j ∈ [q]Rζ be a set of td strings indexed by i ∈ [d] and j ∈ [t], let yi ∈ [q]Rη be bd2c strings

indexed by i ∈ [bd2c]. If it holds that for every β ∈ [Rη] and all choices of αj ∈ π−1
j (β) ⊆ [Rζ]

45

for j ∈ [t] that {
xi,jαj | i ∈ [d], j ∈ [t]

} ⋃ {
yiβ | i ∈ [bd/2c]

}
= [q], (3.1)

then we add add the hyperedge

{
(uj ,x

i,j)
}
i∈[d],j∈[t]

⋃ {
(v,yi)

}
i∈[bd/2c]

to the hypergraph.

Type 2: For every 1 ≤ η ≤ `, v ∈ Xη, in the cloud C[v], add a hyperedge {y1,y2, . . . ,ytd+b d2 c} if

for all β ∈ [Rη] {
yiβ | i ∈ [td+ bd/2c]

}
= [q].

For comparison with the warm-up reduction for Rainbow(4, 3, 2), observe that if we set t =

1, d = 3, and only take the Type 1 edges from the above reduction, we obtain reduction for

Rainbow(4, 3, 2). The sole purpose of the additional Type 2 edges used in this more general

reduction is to force any 2-coloring of the resulting hypergraph to be somewhat balanced within

each cloud (see further Claim 3.7.5 below). In the Rainbow(4, 3, 2) case this was instead achieved

via Fact 3.5.3.

3.7.2 Analysis

Lemma 3.7.3 (Completeness). If the Label Cover instance is satisfiable then the hypergraph H is

rainbow q-colorable.

Proof. Let A :
⋃
iXi →

⋃
i[Ri] define the satisfiable labeling to the layered Label Cover instance.

The rainbow q-coloring of the hypergraph is given by assigning a vertex (v,x) with a color xA(v).

To see that this is a rainbow q-coloring, consider any Type 1 hyperegde in the hypergraph between

the clouds C[u1], C[u2], . . . , C[ut] and C[v] where u1, u2, . . . , ut ∈ Xζ and v ∈ Xη. This hyperegde

is of the form

{(uj ,xi,j)}i∈[d],j∈[t]

⋃
{(v,yi)}i∈[b d2 c]

∈
(

V
td+ bd2c

)
satisfying (3.1). By definition, χ assigns color xi,jA(uj)

to vertices {(uj ,xi,j)} for i ∈ [d] and j ∈ [t]

and yiA(v) to (v,yi) for i ∈ [bd2c]. It is easy to see from (3.1) that these vertices get q distinct colors

since A(uj) ∈ π−1
j (A(v)) for all 1 ≤ j ≤ t.

Also, all Type 2 hyperedges trivially contain all the q colors. Hence χ is a valid rainbow q-

coloring.

We now prove the main soundness lemma.

46

Lemma 3.7.4 (Soundness). If ` ≥ 8·(td)2td and H is properly 2-colorable then there is an assignment

A to the layered Label Cover instance which satisfies an 2−O(t2d2) fraction of all constraints between

some pair of layers Xi and Xj.

In particular setting the layered Label Cover parameter r � t2d2 in Theorem 3.4.3, proves

Theorem 3.2.1.

Proof. Assume for contradiction that the hypergraph H is 2-colorable. Fix a 2-coloring χ : V →

{0, 1} of the vertices of H.

We have a following simple claim about the upper bound on the density of a color class in every

cloud.

Claim 3.7.5. For every 1 ≤ η ≤ `, v ∈ Xη and b ∈ {0, 1}, in the cloud C[v], the fraction of vertices

colored with color b is at least 1/q.

Proof. Consider the class of shifts of x ∈ [c][Rη] defined as [x] := {x + 1,x + 2, . . . ,x + q}, where

+ is coordinate-wise addition (modulo q). Suppose for contradiction that the fraction of vertices in

C[v] that are colored b is less than 1/q. Thus, there exists x such that [x] is monochromatic with

color 1 − b. Since at least 1 − 1/q fraction of C[v] is colored with color 1 − b, there exist a set of

distinct strings y1,y2, . . . ,y(t−1)+b d2 c /∈ [x], such that χ(yi) = 1 − b for all i ∈ [(t − 1) + bd2c]. But

then {yi | i ∈ [(t− 1) + bd2c]} ∪ [x] is a hyperedge of Type 2 in H which is monochromatic w.r.t. the

coloring χ.

For every u ∈ Xi, define functions fu :
(

[q]
d

)
→ {0, 1}, and gu :

(
[q]
d

)
→
(

[Ri]
≤d
)

as follows. For

a σ ∈
(

[q]
d

)
, in a cloud C[u], consider the induced d-uniform hypergraph HRib d2 c

(σ). Look at the

coloring on these vertices induced by χ i.e. χu,σ : σRi → {0, 1} defined by χu,σ(x) = χ((u,x)).

By Lemma 3.5.2, there exists a color class, say b ∈ {0, 1}, such that there exists a monochromatic

hyperedge with color b in HRib d2 c
(σ). Set fu(σ) = b, where b is one such color class, breaking ties

arbitrarily. Also, set gu(σ) = Ju if Ju ⊆ [Ri] is the set of noisy coordinates in the b-monochromatic

hyperedge, again breaking ties arbitrarily. If none of the coordinates are noisy in the hyperedge,

then set gu(σ) = {1}.

By Lemma 3.7.2, there exist for each variable u subsets σu1 , σ
u
2 , . . . , σ

u
t ∈

(
[q]
d

)
and a color bu ∈

{0, 1} such that fu(σuj) = bu for all j ∈ [t] and ∪tj=1σ
u
j = [q]. Write Su = (σu1 , . . . σ

u
t) ∈

(
[q]
d

)t
. Next,

associate each layer i with the most frequent value among (Su, bu) over all vertices u ∈ Xi. For each

layer i ∈ [`], let X̃i be the set of vertices in Xi with the same label as layer i.

Let T be the total number of coverings of
(

[q]
d

)
of size at most t. A trivial upper bound on T is(

q
d

)t ≤ (td)td. Since ` ≥ 8 · (td)2td ≥ 8T 2, there exists m = 4T layers which are all associated with

47

the same pair (S, b), and in each of these 4T layers, at least a 1/(2T) = 2/m fraction of all variables

are associated with (S, b). By the weak density property of the Label Cover instance, it follows that

there exist two layers i and j such that the fraction of constraints between X̃i and X̃j is at least a

1
16T 2 fraction of all constraints between Xi and Xj .

For the rest of the analysis, we set U = X̃i and V = X̃j and focus on satisfying the constraints

between U and V . Let S = {σ1, σ2, . . . , σt} be the covering.

Labeling: We now proceed to define the labeling. For u ∈ U , define the set of candidate labels

as A(u) = ∪ti=1gu(σi). Then construct the labeling A as follows: for u ∈ U let A(u) be a random

label from A(u) and for v ∈ V pick a random u ∈ U such that u ∼ v and let A(v) = φu→v(A(u)).

To analyze the quality of the labeling, we need the following two claims, which together form

a generalization of the simpler Claim 3.6.3 used in the Rainbow(4, 3, 2) reduction – that if the

neighbors u ∈ U of v ∈ V suggest many incompatible candidate labels for v, then a large fraction of

vertices (v,y) in C[v] must not have color b (contradicting Claim 3.7.5).

Claim 3.7.6. Let v ∈ V and let u1, . . . , ut ∈ U be distinct neighbors of v and let Ij = φuj→v(guj (σj)).

Let I = ∪tj=1Ij and suppose that the Ij’s are all pairwise disjoint. Then there exists a string w ∈ [q]I

such that for all y ∈ [q]RV with y|I = w, the vertex (v,y) does not have the color b.

Proof. For all j ∈ [t], by definition of Ij , there exist x1,j , . . . ,xd,j ∈ σRUj such that

1. (uj ,x
i,j) has color b for all i ∈ [d], j ∈ [t].

2. There exists Juj ⊆ [RU], φuj→v(Juj) = Ij such that for all α /∈ Juj it holds that {xi,jα }i∈[d]

= σj and for all α ∈ Juj , we have |{xi,jα }i∈[d]| ≥ dd2e. Moreover, there exists a subset Suj ⊆ σj

of size at least dd/2e such that for all α ∈ Juj , the set {xi,jα }i∈[d] contains all the elements from

Suj .

Consider any set of bd/2c strings y1, . . . ,ybd/2c ∈ [q]RV such that for all β ∈ Ij it holds that

{yiβ}i∈[bd/2c] ⊇ σj \ Suj . (3.2)

Note that |σj \ Suj | is at at most bd/2c and hence there are y1, . . . ,ybd/2c ∈ [q]RV satisfying (3.2)

for all j ∈ [t]. By construction it follows that these strings along with {xi,j}i∈[d],j∈[t] satisfy (3.1)

and thus

{(uj ,xi,j)}i∈[d],j∈[t] ∪ {(v,yi)}i∈[bd/2c],

forms a hyperedge of H. It follows that at least one of (v,yi) must have a color than different b.

Let H ⊆ [bd/2c] be the set of indices i such that (v,yi) is not colored b.

48

Suppose for the sake of contradiction, for all such (v,yi) which is not colored b, there exists a

string zi agreeing with yi at locations I i.e. yi|I = zi|I such that the color of vertex (v, zi) is b. One

can check that {(uj ,xi,j)}i∈[d],j∈[t]∪{(v, zi)}i∈H ∪{(v,yi)}i∈[bd/2c]\H is a valid hyperedge with color

b, a contradiction. Therefore there exists i ∈ T such that for all strings y ∈ [q]RV with y|I = yi|I ,

the vertex (v,y) does not have color b.

The following claim rules out that for many neighbors of v, the collection of candidate labelings

φu→v(A(u)) are pairwise disjoint.

Claim 3.7.7. Let B = t · qtd · ln q and v ∈ V . Then for any B distinct neighbors u1, . . . , uB ∈ U of

v, it holds that the label sets

φuj→v(A(uj)),

for j ∈ [B] are not all pairwise disjoint.

Proof. Suppose for contradiction that B such neighbors exist where the corresponding label sets are

all pairwise disjoint. Split them into D := B/t groups of size t. By Claim 3.7.6 it follows that there

exist D disjoint label sets I1, . . . , ID ⊆ [RV] and strings w1 ∈ [q]I1 , . . . ,wD ∈ [q]ID such that (v,y)

does not have color b whenever y|Ij = wj for some j ∈ [D]. Furthermore the sets Ij have size at

most |Ij | ≤ td so there at most a fraction 1− q−td of strings in [q]RV differ from wj on Ij . By the

disjointness of the Ij ’s we thus have that the total fraction of vertices in the cloud C[v] that have

color b is at most

(1− q−td)D ≤ e−
D

qtd .

However, by Claim 3.7.5, for every v ∈ V the cloud C[v] must contain at least a fraction 1
q of the

vertices with color b. Therefore, it follows that we must have D/qtd ≤ ln q and the claim follows.

Using Claim 3.7.7 it is straightforward to obtain a lower bound on the quality of the randomized

labeling.

Claim 3.7.8. Let B = t · qtd · ln q be as in Claim 3.7.7. Then the randomized labeling satisfies in

expectation at least a
(

1
t2B

)
fraction of the constraints between U and V .

49

Proof. The expected fraction of satisfied constraints involving v ∈ V is at least

IEu1,u2∈U
u1,u2∼v

[
PA(u1),A(u2)[φu1→v(A(u1)) = φu2→v(A(u2))]

]
≥ IEu1,u2∈U

u1,u2∼v

[
|φu1→v(A(u1)) ∩ φu2→v(A(u2))|

t2

]
≥ 1

t2
Pu1,u2∈U
u1,u2∼v

[φu1→v(A(u1)) ∩ φu2→v(A(u2)) 6= ∅]

≥ 1

t2
· 1

B

where the last inequality follows from Claim 3.7.7 and Claim 3.9.5.

Thus, the constructed labeling satisfies a 1
B ·
(

1
2Tt

)2
= 1

tqtd ln q
1

4(td)2tdt2
≥ 2−O(t2d2) fraction of all

constraints between the two layers, and this finishes the proof.

3.7.3 Proof of Corollary 3.2.2

We start with the following simple claim:

Claim 3.7.9. If Rainbow(k, q, 2) is NP-hard then Rainbow(k + 1, q, 2) is NP-hard.

Proof. Let H(V,E) be an instance of Rainbow(k, q, 2) . Construct a k + 1 uniform hypergraph

H1(V1, E1) as follows: V1 = V ∪ {v1, v2, . . . , vk+1} where {v1, v2, . . . , vk+1} are the extra set of

vertices not in V . For every hyperedge e ∈ E add (e ∪ vi) to E1 for all 1 ≤ i ≤ k + 1. Also add

{v1, v2, . . . , vk+1} to E1. This finishes the reduction. Now, if H is rainbow q-colorable, then coloring

{v1, v2, . . . , vk+1} with q different colors and keeping the colors of vertices V as given by the rainbow

q-coloring of H gives a rainbow q-coloring of H1. On the other hand, if H1 is 2-colorable then the

restriction of the 2-coloring to V gives a proper 2-coloring of H.

Proof of Corollary 3.2.2. Let t =
⌊

1
2

√
k
⌋

and set d to be the largest integer such that u := td +

bd/2c ≤ k. Observe that d ≤ 2
√
k and that k − u ≤ t + 1. Applying Theorem 3.2.1 and k − u

repetitions of Claim 3.7.9, we have that Rainbow(k, q, 2) is NP-hard for q = t(d − 1) + 1 =

u− bd/2c − t+ 1. The difference between k and q is

k − q = k − u+ bd/2c+ t− 1 ≤ bd/2c+ 2t ≤ 2b
√
kc.

3.8 A Generalized Hypergraph Gadget

In order to prove the hardness of almost rainbow coloring, we will work with the following family of

hypergraphs:

50

Definition 3.8.1 (The hypergraph RHnt (Σ)). For an alphabet Σ of size p and parameters 0 ≤ t ≤ n,

let RHnt (Σ) be the p-uniform hypergraph with vertex set Σn where p vertices x1, . . . ,xp ∈ Σn form a

hyperedge iff

|{x1
i ,x

2
i , . . . ,x

p
i }| = p (3.3)

for at least n− t different coordinates i ∈ [n].

The set of noisy coordinates for a hyperedge is the set of ≤ t values of i where (3.3) does not

hold.

The graph RHn1 ({0, 1, 2}) is very similar to, but not exactly the same as the hypergraph Hn1 ({0, 1, 2})

used in Section 3.6. The difference is that in Hn1 ({0, 1, 2}), we required the single noisy coordinate

of a hyperedge to have at least 2 different colors, whereas in RHn1 ({0, 1, 2}) the noisy coordinate may

have only a single color. This difference is mostly superficial, and we could have defined Hn1 ({0, 1, 2})

differently to make it match RHn1 ({0, 1, 2}) (but the additional edges contained in RHn1 ({0, 1, 2}) would

not have been used in the reduction for Rainbow(4, 3, 2)).

Note that RHnt (Zp) has very large “non-junta-like” independent sets containing almost half the

vertices, e.g. the set of all strings containing more than n/p + t zeros is independent and has size

1/2− o(1) for fixed t and p as n→ ∞.

Generalizing Lemma 3.5.2, we want to obtain lower bounds on the chromatic number of RHnt (Zp)

that grow with t.

Our main combinatorial result is the following.

Theorem 3.8.2. For every odd prime p, c ≥ 1, and n ≥ p2c, the chromatic number of RHnp2c(Zp) is

at least c+ 1.

The proof is given in Section 3.8.2. This bound is likely far from tight (for one thing, note that

for fixed t, the value of c even decreases with p).

3.8.1 Topology Background

In this subsection, we cover some necessary topological notions and theorems that will be used in

the proof of Theorem 3.8.2. The curious reader is referred to Matoušek’s excellent book [Mat07] for

proofs and further details.

We use Sd = {x ∈ Rd+1 | ‖x‖ = 1} to denote the unit d-sphere.

Definition 3.8.3 (Free Zp-action). For a topological space X, a Zp-action on X is a collection

Φ = {ψg}g∈Zp of homeomorphisms X 7→ X such that for every g ∈ Zp, the map ψg is continuous,

51

and for every g, h ∈ Zp, we have that ψg ◦ ψh = ψgh. Moreover, the action is free is for every

nonzero g ∈ Zp, and every x ∈ X, we have ψg(x) 6= x.

We shall mainly talk about Zp-actions on a sphere Sk, where p is a prime and k is odd. In this

case, every nonzero element of Zp has essentially the same kind of action, i.e., for every nonzero

g ∈ Zp, and every x ∈ Sk, we have

1. ψg(x) 6= x.

2. (ψg)
p(x) = x.

Hence, we shall just pick an arbitrary nonzero element g of Zp, and define L | ψg. By slight abuse

of notation, we shall call L the free Zp-action, also since it determines how every other element acts.

Let ωp = exp(2πi/p) be the primitive p’th root of unity in C. In our uses, p will always be

some fixed prime and we omit the subscript and simply write ω. Let φ : R2n → Cn be the bijection

φ(x) = (x2j−1 + ix2j)j∈[n] (i.e., we clump together pairs of coordinates in R2n).

Fact 3.8.4. For every odd prime p and integer n ≥ 1 the map L : S2n−1 → S2n−1 defined by

L(x) = φ−1(ωφ(x)) is a free Zp-action on S2n−1.

It is important that the sphere in the above fact is an odd sphere as only Z2 acts freely on even

spheres. We use the following generalization of the classic Borsuk-Ulam Theorem.

Theorem 3.8.5 ([Woj96], or [Mat07] Theorem 6.3.3). Let p be an odd prime, and let S = S(p−1)d+1.

Let f : S → Rd be a continuous map, and L be any free Zp-action on S. Then, there is some point

x ∈ S such that

f(x) = f(Lx) = f(L2x) = · · · = f(Lp−1x)

With the above general theorem at hand, we can draw the same covering conclusion as in the

Lusternik-Schnirelmann theorem on covering (see, for example, [Mat07], Exercise 6.3.4).

Corollary 3.8.6. For any covering of S(p−1)(c−1)+1 by c closed sets A1, . . . , Ac, there is an i ∈ [c]

and a point x ∈ S(p−1)(c−1)+1 such that x, Lx, . . . , Lp−1x are all contained in Ai.

3.8.2 Bound on the Chromatic Number

In this section we give a lower bound on the chromatic number of RHnt (Zp).

The proof is basically an adaptation of Bárány’s proof [Bár78] of Lovász’s theorem [Lov78] on

the chromatic number of Kneser graphs. In order to carry this out, one needs to adapt an equivalent

formulation of Gale’s theorem.

52

Before proceeding with the proof, we develop some notation that will be useful. For an even

integer d, we have the bijection φ : Rd → Cd/2 and the free Zp-action L from Fact 3.8.4 acting on

Sd−1 by taking z to φ−1(ωφ(z)). Define a bilinear function M : Rd × Rd → R2 by

M(w, z) = φ−1
(〈
φ(w), φ(z)

〉)
where 〈·, ·〉 is the usual inner product over Cd/2 and by slight abuse of notation we view φ also as

a bijection between R2 and C. For brevity, we will parameterize this function by the first variable

and denote Mw(z) = M(w, z). The key properties to note are:

(M1) M is bilinear and in particular for Lz = φ−1(ωφz) we have

Mw(Lz) = φ−1(ω〈φ(w), φ(z)〉)

which equals both MLw(z) and LMw(z) (where, just like with φ, we view L as also acting on

R2 by rotating every point counter-clockwise by 2π/p around the origin).

(M2) For w 6= 0, we have that Mw is a full rank map, i.e., image(Mw) = R2.

Next, we define a function T : Rd×Rd → {⊥, 0, . . . , p−1} which is almost like a p-way threshold

function as follows: Denote by `j ∈ R2 the ray
{(
α cos(2πj

p), α sin(2πj
p)
)
| α ≥ 0

}
for 0 ≤ j ≤ p− 1.

For j = 0, . . . , p− 1, let rj denote the open region between `j and `j+1 mod p. We define:

Tw(z) =


j if Mw(z) ∈ rj for some j

⊥ otherwise

Note that Tw almost acts like a threshold function except it does not deal with “ties” – in case of a

tie, Tw is simply defined as ⊥. The most important property of Tw is that it interacts well with L:

Claim 3.8.7. For all integers j ≥ 0, and all w, z ∈ Rd, it holds that

TLjw(z) = Tw(Ljz) =


(Tw(z) + j) mod p if Tw(z) 6=⊥

⊥ otherwise

Proof. By Property (M1), MLjw(z) = Mw(Ljz) equals Mw(z) rotated 2πj/p radians counter-

clockwise around the origin. Thus if Mw(z) ∈ rk for some k then Mw(Ljz) ∈ rk+j mod p (and

thus Tw(Ljz) = (k + j) mod p) and similarly if Mw(z) ∈ `k then Mw(Ljz) ∈ `k+j mod p (and thus

Tw(Ljz) =⊥).

Let u : R≥0 → Sd−1 be the normalized moment curve in Rd, i.e., u(s) = γ(s)/‖γ(s)‖2 where

γ(s) = (1, s, s2, . . . , sd−1). One important property to note is that for any subset S ⊂ R such that

|S| ≤ d, we have that the vectors {u(s)}s∈S are linearly independent. We have the following basic

fact.

53

Claim 3.8.8. For every w ∈ Sd−1, Tw(u(s)) =⊥ for less than pd different values of s ∈ R.

Proof. Suppose for contradiction that at least pd points Mw(u(s)) lie on the p rays `0, `1, . . . , `p−1.

Of these at least d lie on a line. Since any subset of at most d u(s)’s are in general position, this

contradicts Property (M2) that image(Mw) = R2.

The choice of u is somewhat arbitrary – any continuous curve whose image under Mw intersects

the `k’s in a finite number of points would work. With these facts in hand, we are ready to prove

Theorem 3.8.2.

Theorem (Theorem 3.8.2 restated). . For every odd prime p and c, n ≥ p2c, the chromatic number

of RHnp2c(Zp) is at least c+ 1.

Proof. Let d := (p− 1)(c− 1) + 2. We construct a set of n points V = {v1,v2, . . . ,vn} on Sd−1, one

for every index in [n], as follows:

vi = Li−1u(i)

The key property of these points is that they give a correspondence between points in Sd−1 and the

vertices in RHnp2c(Zp) (i.e., Znp) in the following sense. We say that x ∈ Znp matches w ∈ Sd−1 if

xi = Tw(vi)

for all i ∈ [n] such that Tw(vi) 6=⊥. Now, given a coloring χ : Znp → [c], we define a covering

{A1, A2, . . . , Ac} of Sd−1 as follows: for every point w ∈ Sd−1, put w ∈ Aj if there is a x ∈ Znp that

matches w and has χ(x) = j. Observe that it is possible that a point a belongs to many Aj ’s and

that every point a ∈ Sd−1 is matched by at least one x ∈ Znp (so that this is indeed a cover).

Next, we observe that the sets A1, . . . , Ac are closed.

Claim 3.8.9. Each Aj is closed.

Proof. Note that the map w 7→ Mw(vi) is continuous for each i ∈ [n]. Thus for every w ∈ Sd−1,

there is some ε > 0 such that for every w′ within distance ε of w it holds that

for every i ∈ [n], either Tw′(v
i) = Tw(vi) or Tw(vi) =⊥ (3.4)

Now let w be a point in the closure of Aj . Taking ε > 0 as above, there is an w′ ∈ Aj within distance

ε of w satisfying (3.4). But any x that matches such an w′ also matches w and in particular it

follows that w ∈ Aj and hence Aj = Aj .

54

Thus, {A1, . . . , Ac} is a cover of Sd−1 = S(p−1)(c−1)+1 by c closed sets, so by Corollary 3.8.6

there is a point w? ∈ Sd−1 such that w?, Lw?, . . . , Lp−1w? are all covered by the same set. Suppose

that this set is A1. For each j ∈ Zp, let xj be any vertex of RHnp2c(Zp) that has χ(xj) = 1 and that

matches Ljw?. By construction these p vertices have the same color and all that remains to prove

is the following claim.

Claim 3.8.10. x0,x1, . . . ,xp−1 form a hyperedge in RHnp2c(Zp)

Proof. To prove this, it suffices to show that for every i ∈ [n] such that Tw?(vi) 6=⊥, we have

{x0
i ,x

1
i , . . . ,x

p−1
i } = Zp, since the number of i ∈ [n] s.t. Tw?(vi) =⊥ is at most pd ≤ p2c. To prove

this, first note that by definition xji = TLjw?(vi) for all i such that Tw?(vi) 6=⊥. By Claim 3.8.7 it

thus follows that xji = (x0
i + j) mod p.

Thus any χ : V (RHnp2c(Zp)) → [c] must have a monochromatic hyperedge and the proof of

Theorem 3.8.2 is done.

3.9 Almost Rainbow Hardness

In this section we prove Theorem 3.2.5. Recall from Section 3.4.2 that B(q, d, c) is the worst case

covering size t such that every function g :
(

[q]
d

)
→ [c] has a monochromatic cover of size t.

Theorem 3.9.1 (Theorem 3.2.5 restated). For every d ≥ c ≥ 2 and t ≥ 2 such that d and t are

primes and d is odd, let q = t(d− c+ 1) + c− 1 and k = td. Then AlmostRainbow(k, q, q − d, c)

is NP-hard (provided d < bq/2c).

In the rest of this section, fix t := q−c+1
d−c+1 which is equal to B(q, d, c) using Theorem 3.4.6, as t is

a prime number for the setting of q in the above theorem.

For this result, we do not need the full power of layered Label Cover, but use Theorem 3.4.3 with

` = 2 layers (i.e., normal Label Cover). To simplify notation in this case, we refer to the two vertex

sets as U = X1 and V = X2, and denote the alphabet size of U by R and the alphabet size of V by

L. In other words, our starting point is a Label Cover instance on variables U ∪ V with alphabet

sizes R and L of size 2O(r) and soundness 2−Ω(r) for some parameter r that will be chosen to a large

enough constant as a function of q, d and c later.

We reduce it to a hypergraph H(V, E) using the reduction given as follows

Vertices V: Each vertex u ∈ U in the Label Cover instance L is replaced by a cloud of size

qR denoted by C[u] := {u} × [q]R. We refer to a vertex from the cloud C[u] by a pair (u,x) where

55

x ∈ [q]R. The vertex set of the hypergraph is given by

V = ∪u∈UC[u].

Hyperedges E: For every vertex v ∈ V and every set of t neighbors u1, u2, . . . , ut of v from U ,

we add the following hyperedges:

Let πi = φui→v be the projection constraint between ui and v for 1 ≤ i ≤ t. Let xi,j ∈ [q]R be

a set of td strings indexed by i ∈ [d] and j ∈ [t]. If it holds that for every β ∈ [L] and all choices of

αj ∈ π−1
j (β) ⊆ [R] for j ∈ [t] that ∣∣∣{xi,jαj | i ∈ [d], j ∈ [t]

}∣∣∣ ≥ q − d (3.5)

then we add add the hyperedge

{(uj ,xi,j)}i∈[d],j∈[t] ∈
(
V
td

)
.

Lemma 3.9.2 (Completeness). If the Label Cover instance is satisfiable then the hypergraph H is

rainbow (q, q − d)-colorable.

Proof. Let A : U ∪ V → [R] ∪ [L] define the satisfiable labeling to the Label Cover instance. The

rainbow (q, q−d)-coloring of the hypergraph is given by assigning a vertex (u,x) with a color xA(u).

To see that this is a rainbow (q, q−d)-coloring, consider any hyperegde in the hypergraph between

the clouds C[u1], C[u2], . . . , C[ut] where u1, u2, . . . , ut ∈ U and v ∈ V be their common neighbor.

This hyperegde is of the form

{(uj ,xi,j)}i∈[d],j∈[t] ∈
(
V
td

)
satisfying the (3.5). By definition, χ assigns color xi,jA(uj)

to vertices {(uj ,xi,j)} for i ∈ [d] and j ∈ [t].

It is easy to see from (3.5) that these vertices get q − d distinct colors since A(uj) ∈ π−1
j (A(v)) for

all 1 ≤ j ≤ t.

Hence χ is a valid rainbow (q, q − d)-coloring.

We now prove the main soundness lemma.

Lemma 3.9.3 (Soundness). If H is properly c-colorable then there is an assignment A to the Label

Cover instance which satisfies an 1
d4c3t42td log q fraction of all constraints between U and V .

Proof. Assume for contradiction that the hypergraph H is c-colorable. Fix a c-coloring χ : V → [c]

of the vertices of H.

Set h = d2c. For every u ∈ U , define functions fu :
(

[q]
d

)
→ [c], and gu :

(
[q]
d

)
→ 2[R] as

follows. For a σ ∈
(

[q]
d

)
, in a cloud C[u], consider the induced d-uniform hypergraph RHRh (σ). Look

56

at the coloring on these vertices induced by χ i.e. χu,σ : σR → [c] defined by χu,σ(x) = χ((u,x)).

By Theorem 3.8.2, there exists a color class, say b ∈ [c], such that there exists a monochromatic

hyperedge with color b in RHRh (σ). Set fu(σ) = b, where b is one such color class, breaking ties

arbitrarily. Also, set gu(σ) = J if J ⊆ [R] are the set of noisy coordinates in the b-monochromatic

hyperedge, again breaking ties arbitrarily. If none of the coordinates are noisy in the hyperedge,

then set gu(σ) = {1}.

Recall that t = B(q, d, c), so by definition, for each variable u, subsets σu1 , σ
u
2 , . . . , σ

u
t ∈

(
[q]
d

)
and a

color bu ∈ [c] such that fu(σuj) = bu for all j ∈ [t] and ∪tj=1σ
u
j = [q]. Write Su = (σu1 , . . . σ

u
t) ∈

(
[q]
d

)t
and label a variable u as (Su, bu). Let T be the total number of coverings of

(
[q]
d

)
of size at most t.

A trivial upper bound on T is
(
q
d

)t ≤ 2td log q. By an averaging argument, there is a label (S, b) such

that at least a 1
cT fraction of all constraints of the Label Cover instance are incident upon vertices

u ∈ U with label (S, b). Let that subset be U ′. Thus, between U ′ and V , we have at least a 1
cT

fraction of all constraints.

For the rest of the analysis, we focus on satisfying the constraints between U ′ and V . Let

S = {σ1, σ2, . . . , σt} be the covering.

We now proceed to define the labeling. For u ∈ U ′, define the set of candidate labels as A(u) =

∪ti=1gu(σi). Then construct the labeling A as follows: for u ∈ U ′ let A(u) be a random label from

A(u) and for v ∈ V pick a random u ∈ U ′ such that u ∼ v and let A(v) = φu→v(A(u)) (if v has no

neighbors in U ′, set A(v) arbitrarily).

The quality of this labeling hinges on Claim 3.9.4 below.

Claim 3.9.4. Let v ∈ V and u1, . . . , ut ∈ U ′ be distinct neighbors of v and write Ij = φuj→v(guj (σ
j)).

Then, the Ij’s are not pairwise disjoint.

It is possible that v has fewer than t neighbors in U ′ but in this case the claim is vacuously true.

Proof. Suppose for contradiction that the Ij ’s are pairwise disjoint. By the definition of Ij , there

exist x1,j , . . . ,xd,j ∈ σRUj such that

1. (uj ,x
i,j) has color b for all i ∈ [d], j ∈ [t].

2. For all β 6∈ Ij and αj ∈ φ−1
uj→v(β) it holds that {xi,jαj}i∈[d] = σj .

From the pairwise disjointness of Ij ’s, it follows that these strings satisfy (3.5) for every β ∈ [L] and

for all choices of αj ∈ φ−1
uj→v(β) ⊆ [R] for j ∈ [t]. Thus,

{(uj ,xi,j)}i∈[d],j∈[t],

57

forms a hyperedge of H which is monochromatic w.r.t. χ, a contradiction to the fact that χ was a

valid c-coloring.

We also need the following simple claim:

Claim 3.9.5. For any set family S ⊆ 2[n] such that no ∆ of them are pairwise disjoint,

Ps1,s2∈S [s1 ∩ s2 6= ∅] ≥
1

∆− 1
.

Proof. Define a graph G(S, E) on S where s1 ∼ s2 if they do not intersect. By the property of S,

G does not contain a clique of size ∆. By Turán’s theorem, the number of edges in G is at most

|E| ≤ ∆− 2

∆− 1
· |S|

2

2
.

Now, the probability that s1, s2 ∈ S do not intersect is equivalent to saying (s1, s2) ∈ E. Thus, the

probability is at most
2|E|
|S|2

≤ 2 · ∆− 2

∆− 1
· |S|

2

2
· 1

|S|2
= 1− 1

∆− 1

Using Claim 3.9.4 it is straightforward to obtain a lower bound on the quality of the randomized

labeling.

Claim 3.9.6. The randomized labeling satisfies in expectation at least a 1
h2t3 fraction of the con-

straints between U ′ and V .

Proof. The expected fraction of satisfied constraints involving v ∈ V ′ is at least

IEu1,u2∈U ′
u1,u2∼v

[
PA(u1),A(u2)[φu1→v(A(u1)) = φu2→v(A(u2))]

]
≥ IEu1,u2∈U

u1,u2∼v

[
|φu1→v(A(u1)) ∩ φu2→v(A(u2))|

(ht)2

]
≥ 1

(ht)2
Pu1,u2∈U
u1,u2∼v

[φu1→v(A(u1)) ∩ φu2→v(A(u2)) 6= ∅]

≥ 1

(ht)2
· 1

t

where the last inequality follows from Claim 3.9.4 and Claim 3.9.5.

To summarize, the constructed labeling satisfies a 1
h2t3 ·

1
cT fraction of all constraints between

the U and V , and we are done.

Proof of Theorem 3.2.5. The proof follows from Lemma 3.9.2 and Lemma 3.9.3 and by setting r

such that the soundness of the Label Cover is 2−Ω(r) � 1
d4c3t32td log q .

58

3.10 Discussion and open problems

We have shown improved hardness of finding 2-colorings in rainbow colorable hypergraphs, and

of finding c-colorings of almost rainbow colorable hypergraphs. There are a number of interesting

open questions. For the Rainbow problem, the smallest open case is currently Rainbow(7, 6, 2)

([GS19]). It would be interesting to know whether this problem is NP-hard or not.

In some sense, the reason why we only get hardness for 2-colorings is that the soundness argument

contains steps along the following lines: (i) no cloud can be almost monochromatic, (ii) therefore

since there are only two colors, each cloud contains a constant fraction of vertices of each color, (iii)

in order for the randomized labeling to fail, the involved clouds would need to have a very small

fraction of vertices of some color. Here, step (ii) is clearly not true for colorings with more than 2

colors.

On the combinatorial side, the two most interesting problems here are:

(1) What is the independence number of the RHnt (p)? [Conjecture: (1/2− o(1))km]

(2) What is the chromatic number of the RHnt (p)?

The second and third problems are stated separately despite the apparent similarity because we

believe that the approaches to them should be completely different and the answers are completely

unrelated. For instance, we believe that the independence number is more related to generalizing

Kletiman’s Isodiametric Theorem [Kle66], whereas the chromatic number is more closely related to

the discrete Borsuk graph, whose chromatic number is not known. Answers to the above problems

would not only help us understand the hardness of rainbow coloring better, but would also help in

understanding the underlying objects, which could be applicable elsewhere and are interesting in

their own right.

59

Chapter 4

A spectral bound on hypergraph discrepancy

The main aim of this section is to give a spectral condition that is sufficient for the discrepancy of a

regular hypergraph to be small. This is proved via the partial coloring approach while using some

combinatorial properties of the hypergraph that are given by this spectral condition. This immedi-

ately implies, via an old proof technique of Kahn and Szemerédi, that for every t, the discrepancy of

a random t-regular hypergraph on n vertices and m ≥ n edges is almost surely O
(√
t
)
. Previously,

a result of this form was proved by Ezra and Lovett [EL15] who show that the discrepancy of a

random t-regular hypergraph on n vertices and m ≥ n edges is O(
√
t log t) almost surely as t grows.

More recently, Bansal and Meka [BM19] showed that for random t-regular hypergraphs on n vertices

and m edges, the discrepancy is O
(√
t
)

almost surely provided t = Ω
(
(log logm)2

)
. To state our

result formally, we make some definitions.

4.1 Introduction

LetH = (V,E) be a hypergraph, with V as the set of vertices, and E ⊆ 2V as the set of (hyper)edges.

Let X = {χ : V → {±1}}, be the set of ±1 colorings of V , and for χ ∈ X , and e ∈ E, denote

χ(e) :=
∑
v∈e χ(v). The discrepancy of H, denoted by disc(H) is defined as:

disc(H) := min
χ∈X

max
e∈E
|χ(e)|.

We call a hypergraph t-regular if every vertex is present in exactly t hyperedges. These will be

the main focus of this paper. For a hypergraph H, let M = M(H) be the |E|× |V | incidence matrix

of H, i.e., M has rows indexed by E, columns indexed by V , and entries are M(e, v) = 1 if v ∈ e

and 0 otherwise. We will use ‖ · ‖ to denote the Euclidean norm. The main result is the following:

Theorem 4.1.1. Let H be a t-regular hypergraph on n vertices and m edges with M as its incidence

and let λ = maxv⊥1,‖v‖=1 ‖Mv‖. Then

disc(H) = O
(√

t+ λ
)
.

60

Moreover, there is an Õ((max{n,m})7) time algorithm that takes the hypergraph H as input and

outputs the coloring with the above guarantee.

4.1.1 Background

The study of hypergraph discrepancy, which seems to have been first defined in a paper of Beck [Bec81],

has led to some very interesting results with diverse applications (see, for example [Mat99], [Cha00]).

One of the most interesting open problems in discrepancy theory is what is commonly known as the

Beck-Fiala conjecture, regarding the discrepancy of general t-regular hypergraphs.

Conjecture 4.1.2 (Beck-Fiala conjecture). For a t-regular hypergraph H, we have

disc(H) = O(
√
t).

Although this conjecture is usually stated for bounded degree hypergraphs (as opposed to regular

ones), this is not really an issue. One can always add hyperedges containing just a single vertex and

make it regular, which increases the discrepancy of the original hypergraph by at most one. Beck

and Fiala [BF81] also proved that for any t-regular hypergraph H,

disc(H) ≤ 2t− 1.

This is more commonly known as the Beck-Fiala theorem. Essentially the same proof can be

done a bit more carefully to get a bound of 2t−3 (see [BH97]). Given Conjecture 4.1.2, it is perhaps

surprising that the best upper bound, due to Bukh [Buk16], is “stuck at” 2t−log∗ t for large enough t.

It is possible that one of the reasons that the discrepancy upper bounds are so far away from the

conjectured bound (assuming it’s true) is our inability to handle many ‘large’ hyperedges. Indeed, if

one is offered the restriction that each hyperedge is also of size O(t) (regular and ‘almost uniform’),

then a folklore argument using the Lovász Local Lemma shows that the discrepancy is bounded by

O(
√
t log t). The proof of Theorem 4.1.1 also relies on being able to avoid dealing with large edges

(which are few, if any, in number).

4.1.2 Discrepancy in random settings

Motivated by the long-standing open problem of bounding discrepancy of general t-regular hyper-

graphs, Ezra and Lovett [EL15] initiated the study of discrepancy of random t-regular hypergraphs.

By random t-regular hypergraph, we mean the hypergraph sampled by the following procedure:

We fix n vertices V and m (initially empty) hyperedges E. Each vertex in V chooses t (distinct)

61

hyperedges in E uniformly and independently to be a part of. They showed that if m ≥ n, then

the discrepancy of such a hypergraph is almost surely O(
√
t log t) as t grows. The proof idea is the

following: First observe that most of the hyperedges have size O(t). For the remaining large edges,

one can delete one vertex from every hyperedge and make them pairwise disjoint. This allows one to

apply a folklore Lovász Local Lemma based argument, but with a slight modification which makes

sure that the large edges have discrepancy at most 2. More recently, Bansal and Meka [BM19] re-

duced the discrepancy bound to O(
√
t) almost surely as long as t = Ω

(
(log log n)2

)
for all m and n.

A corollary of Theorem 4.1.1 states that one can get the bound of O(
√
t) for every (not necessarily

growing) t = t(n) as n grows and m ≥ n. More formally,

Corollary 4.1.3. There is an absolute constant C > 0 such that the following holds: Let Ht be a

random t-regular hypergraph on n vertices and m ≥ n hyperedges where t = o(
√
m). Then,

P
(

disc(Ht) ≤ C
√
t
)
≥ 1− o(1)

The theorem that implies Corollary 4.1.3 from Theorem 4.1.1 is the following:

Theorem 4.1.4. Let M be the incidence matrix of a random t-regular set system on n vertices,

where t = o(
√
m), and m ≥ n edges. Then with probability at least 1− nΩ(1),

max
v⊥1,‖v‖=1

‖Mv‖ = O
(√

t
)
.

A couple of remarks here: First, observe that it suffices to prove Theorem 4.1.4 for m = n.

Indeed, let M and N be random m×m and m×n random matrices (m ¿ n) respectively distributed

by choosing t random 1’s in each column independently. Notice that the distribution of N is exactly

the same as that of the first n columns of M . Then, setting Mn to be the matrix consisting of the

first n columns of M , we observe that λ(Mn) ≤ λ(M). Second, we point out that t = o(
√
m) is

just a limitation of the proof technique in [FKS89] (also see [BFSU98]) that we use to prove this

theorem. Although we believe that Theorem 4.1.4 should hold for all t < m, we do not make any

attempt to verify this, especially since the result of Bansal and Meka [BM19] already takes care of

the discrepancy of random hypergraphs in this case. Although many variations of Theorem 4.1.4 are

known and standard, one needs to verify it for our setting too. It should come as no surprise that

the proof follows that of Kahn and Szemerédi’s 1 in [FKS89], which is postponed to Section 4.3.2.

1[FKS89] is combination of two papers that prove the same result upto a constant factor: one by Friedman using
the so-called trace method, and the other by Kahn and Szemerédi using a more combinatorial approach which is
flexible enough to be easily adapted here.

62

4.1.3 The partial coloring approach

Most of the bounds and algorithms on hypergraph discrepancy proceed via a partial coloring ap-

proach. In general, a partial coloring approach [Bec81] works by coloring a fraction of the (still

uncolored) vertices in each step, while ensuring that no edge has discrepancy more than the desired

bound. Perhaps the most famous successful application of this is Spencer’s celebrated ‘six standard

deviations’ result [Spe85], which gives a bound of 6
√
n for any hypergraph on n vertices and n edges.

The original proof of Spencer was not algorithmic, i.e., it did not give an obvious way to take as input

a hypergraph on n vertices and n edges, and efficiently output a coloring that achieves discrepancy

O(
√
n). In fact, Alon and Spencer([AS00], §14.5) suggested that such an algorithm is not possible.

However, this was shown to be incorrect by Bansal [Ban10] who showed an efficient algorithm to do

the same task. However, the analysis of this algorithm still relied on the (non-algorithmic) discrep-

ancy bound of 6
√
n. Later, Lovett and Meka [LM15] gave a ‘truly constructive’ proof of the fact

that the discrepancy is O(
√
n). This proof did not rely on any existing discrepancy bounds and the

novel and simple analysis proved to be extremely influential. The proof of Theorem 4.1.1 will rely

on a somewhat technical feature of the main partial coloring from this work. More recently, a result

due to Rothvoss [Rot17] gives a simpler proof of the same O(
√
n) bound, which is also constructive,

and more general.

4.1.4 Proof sketch

The proof of Theorem 4.1.1 is proved via the aforementioned partial coloring approach. The main

source of inspiration is a later paper of Spencer [Spe88], which computes the discrepancy of the pro-

jective plane (i.e., the hypergraph where the vertices are the points and the hyperedges are the lines

of PG(2, q)) upto a constant factor. A more general bound was also obtained by Matoušek [Mat95],

who upper bounds the discrepancy of set systems of bounded VC-dimension (note that the projec-

tive plane has VC-dimension 2).

We also use the aforementioned result of Lovett and Meka [LM15] heavily, in particular, the

partial coloring theorem. Informally, this says that one can ‘color’ roughtly an α fraction of the

hypergraph with real numbers in [−1, 1] so that (1) at least half the vertices get colors 1 or −1 and

(2) every edge e has discrepancy O(
√
e). We now sketch the proof.

Consider the following ‘dream approach’ using partial coloring: In every step, one colors an α

fraction of vertices. Suppose that at the start, every edge has size O(t) and that each step of partial

63

coloring colors exactly an α fraction of the remaining uncolored vertices (i.e., these vertices are

colored from {−1, 1}). Then the discrepancy of an edge e is at most O
(∑

i

√
αi|e|

)
= O(

√
t). Of

course, this is too much to hope for, since some edges can potentially be large, and more impor-

tantly, there is no guarantee on how much of each edge gets colored in this partial coloring procedure.

This is precisely where the spectral condition on M saves us. One can establish standard com-

binatorial ‘pseudorandomness’ properties of H in terms of λ. In particular, if λ is small, then an α

fraction of V (H) take up an α fraction of most edges. This means, intuitively, that in the partial

coloring approach, if one colors an α fraction of the vertices, then most of the edge sizes will have

also reduced by an α fraction. The partial coloring method of Lovett and Meka (and, curiously,

none of the older ones) also allows one to color in such a way that Ω(n) edges can be made to

have discrepancy zero in each step. This allows one to maintain that in every round of the partial

coloring, the edges that don’t behave according to the ‘dream approach’, i.e., those that are too

large (i.e., Ω(t)) or don’t reduce by an α fraction can be made to have discrepancy zero in the next

step. Thus, most other edges reduce in size by an α fraction. This lets one not have to deal with

the discrepancy of these ‘bad’ edges until they become small.

4.2 Proof of Theorem 4.1.1

4.2.1 Preliminaries and notation

We will need the aforementioned partial coloring theorem due to Lovett and Meka:

Theorem 4.2.1 ([LM15]). Given a family of sets M1, . . . ,Mm ⊆ [n], a vector x0 ∈ [−1, 1]n, positive

real numbers c1, . . . , cm such that
∑
i∈[m] exp

(
−c2i /16

)
≤ n/16, and a real number δ ∈ [0, 1], there

is a vector x ∈ [−1, 1]n such that:

1. For all i ∈ [m], 〈x− x0,1Mi
〉 ≤ ci

√
|Mi|.

2. |xi| ≥ 1− δ for at least n/2 values of i.

Moreover, this vector x can be found in Õ((m+ n)3δ−2) time.

Lovett and Meka initially gave a randomized algorithm for the above. It has since been made

deterministic [LRR17].

64

A technical remark:

The reason we use the Lovett-Meka partial coloring, as opposed to Beck’s partial coloring is not just

the algorithmic aspect that the former offers, but also because it also offers the technical condition:∑
i∈[m]

exp
(
−c2i /16

)
≤ n/16.

This means one can set Ω(n) edges to have discrepancy 0. To compare, we first state Beck’s

partial coloring lemma (for reference, see [Mat99]):

Theorem 4.2.2 (Beck’s partial coloring lemma). Given a family of sets M1, . . . ,Mm ⊆ [n], and

positive real numbers c1, . . . , cm such that
∑
i∈[m] g(ci) ≤ n/5, where

g(x) =


e−x

2/9 x > 0.1

ln(1/x) x ≤ 0.1

there is a vector x ∈ {−1, 0, 1}n such that:

1. For all i ∈ [m], 〈x,1Mi〉 ≤ ci
√
|Mi|.

2. |xi| = 1 for at least n/2 values of i.

If one ignores the algorithmic aspect, Beck’s partial coloring, while assigning vertices to {−1, 1, 0}

(instead of [−1, 1], thus making it a ‘partial coloring’ in the true sense) only guarantees that Ω
(

n
log t

)
edges can be made to have discrepancy 0. Although [LM15] did not really need this particular ad-

vantage, they do mention that this feature could potentially be useful elsewhere. This seemingly

subtle advantage turns out to be crucial in the proof of Theorem 4.1.1, where we set Ω(n) edges

(that will be called ‘bad’ and ‘dormant’ edges) to have discrepancy 0.

Henceforth, let V and E denote the vertices and edges of our hypergraph respectively. We will

need a ‘pseudorandomness’ lemma that informally states that an α fraction of vertices takes up

around an α fraction of most edges:

Lemma 4.2.3. For any S ⊆ V with |S| = αn where α ∈ (0, 1) and a positive real number K, there

is a subset E′ ⊂ E of size at most K−2 ·αn such that for every e 6∈ E′, we have ||e∩S|−α|e|| ≤ Kλ,

where λ = maxv⊥1,‖v‖=1 ‖Mv‖.

Proof. Consider a vector v ∈ Rn where v(i) = 1 − α for i ∈ S and −α otherwise. Clearly, v ∈ 1⊥

and so

‖Mv‖2 ≤ λ2 · ‖v‖2 = λ2α(1− α)n. (4.1)

65

On the other hand, Mv(e) = (1− α)|e ∩ S| − α|e \ S| = |e ∩ S| − α|e|, and so

‖Mv‖2 =
∑
e

(|e ∩ S| − α|e|)2. (4.2)

Putting (4.1) and (4.2) together, we get that there at most K−2 · αn edges e such that

||e ∩ S| − α|e|| ≥ Kλ.

Since this proof is via partial coloring, let us use i to index the steps of the partial coloring. For

a partial coloring χ : V → [−1, 1], we call the set of vertices u for which |χ(u)| < 1 as uncolored.

Let us use V i to denote the still uncolored vertices at step i and for an edge e ∈ E, let us denote

ei := e ∩ V i. In every step, we invoke Theorem 4.2.1 setting δ = 1
n to get the partial coloring, so

will have |V i| ≤ 2−in. Let t′ := max{t, λ} 2.

We call an edge dormant at step i if |ei| > 100t′. Let us call an edge bad in step i if∣∣|ei| − 2−i|e|
∣∣ ≥ 10λ. Edges that are neither dormant not bad are called good. Finally, we say

that e is dead in step i if |ei| ≤ 100λ.

Informally, the roles of these sets are as follows: In the partial coloring step i, we ensure that

an edge e edges only get nonzero discrepancy if it is good, i.e., if |ei| is close to what is expected

and is not too large. Even dead edges can be good or bad, and we will not distinguish them while

coloring the vertices. However, in the analysis we will break the total discrepancy accumulated by

e into two parts: Before it is dead and after. The main point is to bound the discrepancy gained

before it becomes dead. After it becomes dead, we simply bound the discrepancy incurred since by

its remaining size, i.e., at most 100λ.

First, we make two easy observations:

Claim 4.2.4. If |V i| = 2−in, then at step i, the number of dormant edges is at most 1
1002−in.

Proof. This is just Markov’s inequality, using the fact that the average edge size is

|V i|t
m ≤ |V

i|t′
m .

Claim 4.2.5. If |V i| = 2−in, then at step i, the number of bad edges is at most 1
1002−in.

Proof. This is by setting K = 10 and α = 2−i in Lemma 4.2.3.

2In fact, we may assume w.l.o.g. that λ ≤ t and so t′ = t since in the other case, the Beck-Fiala Theorem gives us
that the discrepancy is O(t) = O(λ). However, this is not needed and the techniques here also handle this case with
this minor change.

66

4.2.2 Partial coloring using Lemma 4.2.3

Proof of Theorem 4.1.1. Setting V 0 = V , we proceed by partial coloring that colors exactly half the

remaining uncolored vertices at each stage. For a step i ≥ 0, suppose that |V i| = 2−in. We will

describe a partial coloring given by χi : V i → [−1, 1] that colors half the vertices of V i.

For ` ≥ 1, let A` := {e ∈ E | |e| ∈ [100 · 2`t′, 100 · 2`+1t′)}, and A0 := {e ∈ E | |e| < 200t′}.

Observe that the edges in A` for ` ≥ 1 are either bad or dormant in steps i < `. Also observe that

|A`| ≤ 2−`

100n for ` ≥ 1, Define constants {ce}e∈E as follows:

ce =


4
√

2 ln
(

1
2`−i

)
if e ∈ A` for ` ≥ 1 is good

4

√
ln
(

200t′

2−i|e|

)
if e ∈ A0 is good

0 otherwise.

Let B = Bi and D = Di denote the bad and dormant edges respectively. We handle the edges in A0

and E \A0 separately. For edges in E \A0, we have:

∑
e∈E\A0

e−
c2e
16 ≤

∑
e∈E\(B∪D∪A0)

e−
c2e
16 + |B|+ |D|

≤
∑

1≤`≤i

∑
e∈A`

e2 ln(2`−i) +
2−in

50

=
∑

1≤`≤i

|A`|22(`−i) +
2−in

50

≤ n

100

∑
`≤i

2−` · 22`−2i +
2−in

50

=
2−in

100

∑
`≤i

2`−i +
2−in

50

≤ 2−in

25
.

The second inequality above follows from Claim 4.2.4 and Claim 4.2.5. For the other case, we

have

∑
e∈A0

e−
c2e
16 ≤

∑
e∈A0

e
ln

(
2−i|e|
200t

)
=

2−i

200

∑
e∈E

|e|
t′

=
2−in

200
.

Here we have used the fact that since the hypergraph is t-regular, we have
∑
e∈E |e| = nt ≤ nt′.

Putting these together, we have

67

∑
e∈E

e−
c2e
16 ≤ 2−in

200
+

2−in

50
≤ |V

i|
20

.

Therefore, Theorem 4.2.1 guarantees that there is a fractional coloring χi : V i → [−1, 1] such

that

1. |χi(v)| ≥ 1− 1
n for at least half of V i.

2. All the bad and dormant edges get discrepancy 0.

3. A good and live edge e gets discrepancy at most ce
√
|ei|.

Finally, we pick an arbitrary subset of all the vertices v such that |χi(v)| ≥ 1− 1
n of size exactly

(1/2) · |V i| and round them to the nearest integer. It is easy to see that since every edge has size

at most n, this rounding, over all the steps of the partial coloring adds discrepancy of at most 1 for

every edge. This completes step i of the partial coloring and we are left with 2−(i+1)n uncolored

vertices for the next step.

For an edge e, let i be a round where e had incurred non-zero discrepancy and ei was not

dead. Since only good edges incur nonzero discrepancy, |ei| = 2−i|e| ± 10λ. Since e is also not

dead at step i, we must have that |ei| ≥ 100λ. This gives us that 2−i|e| ≥ 90λ and therefore

(1/2) · 2−i|e| ≤ |ei| ≤ 2 · 2−i|e|. So, if e ∈ A` where ` ≥ 1, the total discrepancy incurred by e at

step i without the rounding step is at most

4
√

2 ln(1/2j−i)ei ≤ 8
√

200 ln(1/2`−i) · (2`−i) · t′.

Here, we have used the fact that |e| ≤ 100 · 2`+1t′. If e ∈ A0, the discrepancy incurred by e at

step i without the rounding is at most

4

√
2 ln

(
200t′

2−i|e|

)
ei ≤ 8

√
200 ln(1/2−i) · (2−i) · t′.

Therefore, the discrepancy of an edge e ∈ A` for ` ≥ 0 until it becomes dead is at most

∑
i≥`

8
√

200 ln(1/2`−i) · (2`−i) · t′ = O(
√
t′) = O(

√
t+ λ).

Here we have used the fact that t′ = max{t, λ}. Finally, rounding the color of every vertex to its

nearest integer increases the discrepancy by at most 1. When the edge becomes dead, we simply

bound its discrepancy by its size O(λ).

68

It remains to check that each of the O(log n) stages of partial coloring can be done in time Õ((m+

n)3n2), and the constants {ce}e∈E take Õ(mn) time to compute at each stage, thus establishing the

algorithmic part.

4.3 Proof of Theorem 4.1.4

4.3.1 A martingale inequality

We will state a martingale inequality that we will use in the proof of Theorem 4.1.4. A sequence of

random variables X0, X1, . . . , Xn martingale with respect to another sequence of random variables

Z0, Z1, . . . , Zn such that for all i ∈ [n − 1], we have Xi = fi(Z1, . . . Zi) for some function fi, and

IE[Xi+1|Zi, . . . , Z1] = Xi.

A martingale is said to have the C-bounded difference property if |Xi+1 −Xi| ≤ C.

The variance of a martingale is the quantity:

σ2 =
∑

i∈[n−1]

sup
(Z1,...,Zi)

IE[(Xi+1 −Xi)
2|Z1, . . . , Zi].

We get good large deviation inequalities for martingales with bounded differences and variances

(see, for example, [CL06], Theorem 6.3 and Theorem 6.5). For a martingale X0, X1, . . . , Xn with

respect to Z0, Z1, . . . , Zn, with the C-bounded difference property and variance σ2, we have

P(|Xn −X0| ≥ λ) ≤ e−
t2

2(σ2+Cλ/3) . (4.3)

4.3.2 Proof of Theorem 4.1.4

We shall now prove Theorem 4.1.4. Recall that we only need to prove the case where m = n, As

mentioned before, we adapt the proof technique of Kahn and Szemerédi for our random model (also

see [BFSU98]). We have that the regularity is t� m1/2.

We shall prove that for every x, and y such that ‖x‖ = ‖y‖ = 1 and x ⊥ 1, we have that

|ytMx| ≤ O(
√
t). First, we ‘discretize’ our problem by restricting x to belong to the ε-net

T :=

{
x ∈

(
ε√
m
Z
)m
| ‖x‖ ≤ 1 and x ⊥ 1

}
and y belonging to

T ′ :=

{
y ∈

(
ε√
m
Z
)m
| ‖y‖ ≤ 1

}
for a small enough constant ε.

69

Claim 4.3.1 ([FKS89], Proposition 2.1)). If for every x ∈ T , and y ∈ T ′, we have that ‖ytMx‖ ≤ α,

then we have that for every z ∈ Rm such that ‖z‖ = 1, we have that ‖Mz‖ ≤ (1− 3ε)−1α.

Proof. Let z = argmax‖z‖=1 ‖Mz‖. We shall use the fact that there are x ∈ T , and y ∈ T ′ such that

‖x− z‖ ≤ ε, and
∥∥∥y − Mz

‖Mz‖

∥∥∥ ≤ ε. With this in mind, we have:

‖Mz‖ =

〈
Mz

‖Mz‖
,Mz

〉
= 〈y + w1,M(x+ w2)〉

= ytMx+ 〈w1,Mx〉+ 〈y,Mw2〉+ 〈w1,Mw2〉.

Where |w1|, |w2| ≤ ε. We note that each of the terms 〈w1,Mx〉 and 〈y,Mw2〉, and 〈w1,Mw2〉

are upper bounded by ε‖Mz‖, and 〈w1,Mw2〉 ≤ ε2‖Mz‖. Combining this, and using the fact that

ε2 ≤ ε, we have

‖Mz‖ ≤ (1− 3ε)−1ytMx ≤ (1− 3ε)−1α.

So now, will need to only union bound over T ∪ T ′. It is not hard to see that each of these has

size at most |T |, |T ′| ≤
(
Cv
ε

)m
for some absolute constant Cv.

Indeed, we have:

|T | ≤
(√

m

ε

)m
Vol {x ∈ Rm | ‖x‖ ≤ 1 + ε}

≤
(√

m

ε

)m
· 1√

πm

(
2πe

m

)m/2
(1 + ε)m

≤
(
Cv
ε

)m
for some constant Cv.

We split the pairs [m] × [m] = L ∪ L where L := {(u, v) | |xuyv| ≥
√
t/m}, which we will call

‘large entries’ and write our quantity of interest:∑
(u,v)∈[m]×[m]

xuMu,vyv =
∑

(u,v)∈L

xuMu,vyv +
∑

(u,v)∈L

xuMu,vyv.

For the large entries: For a set of vertices A ⊂ [m] and a set of edges B ⊂ [m], let us denote

I(A,B) to be the number of vertex-edge incidences in A and B. Let us use µ(A,B) := IE[|I(A,B)|].

Lemma 4.3.2. There is a constant C such that, for every set A of vertices and every set B of

hyperedges where |A| ≤ |B|, we have that with probability at least 1 − m−Ω(1), I := |I(A,B)| and

µ := µ(A,B) satisfy at least one of the following:

70

1. I ≤ Cµ

2. I log (I/µ) ≤ C|B| log (m/|B|).

This lemma is sufficient to show that the large pairs do not contribute too much, as shown by

the following lemma, which is the main part of the proof of Kahn and Szemerédi.

Lemma 4.3.3 ([FKS89], Lemma 2.6, [BFSU98], Lemma 17). If the conditions given in Lemma 4.3.2

are satisfied, then
∑

(u,v)∈L |xuMu,vyv| = O(
√
t) for all x, y ∈ T .

Notice that since we are bounding
∑

(u,v)∈L |xuMu,vyv| = O(
√
t), which is much stronger than

what we really need, it is okay to consider both x and y from T .

Proof of Lemma 4.3.2. First, we observe that it is enough to consider |B| ≤ m/2, since otherwise,

|I(A,B)| ≤ d|A| ≤ 2µ(A,B). Let Bi(a, b) denote the event that there is an A of size a and a B of

size b which do not satisfy either of the conditions (with a fixd constant C to be specified later) and

|I(A,B)| = i. Before, we prove the lemma, let us make some observations, which (in hindsight) help

us compute the probabilities much easier. Let A be a set of a vertices and B be a collection of b

edges, such that a ≤ b ≤ m/2.

The point here is that we basically want to evaluate the sum:

P

⋃
a,b,i

Bi(a, b)

 ≤∑
i

P

⋃
a,b

Bi(a, b)


=

∑
i≤log2 m

P

⋃
a,b

Bi(a, b)

+
∑

i≥log2 m

P

⋃
a,b

Bi(a, b)

 .

The first observation is that every term in the second sum is small. Towards this, we have the

straightforward claim.

Claim 4.3.4. For a set of vertices A and edges B and a set of possible incidences J ⊂ A × B, we

have that P(I(A,B) = J) ≤
(

2t
m

)|J|
.

Proof. W.L.O.G, let A = {1, . . . , a}, and for i ∈ A, let ti = I({i}, B). We have that:

P(I(A,B) = J) =
∏
i∈A

(
m−b
t−ti

)(
m
t

) ≤∏
i∈A

2
(m− b)t−ti

(t− ti)!
t!

mt
≤
∏
i∈A

(
2t

m

)ti
≤
(

2t

m

)|J|
.

Here, the first inequality uses the fact that t = o(
√
m). Therefore, we have:

71

P (Bi(a, b)) ≤
(
m

a

)(
m

b

)(
ab

i

)(
2t

m

)i
≤
(
m

b

)2(
e
abt

mi

)i
≤
(
m

b

)2 (µ
i

)i
(e)i.

If i ≥ 2eµ and i ≥ log2m, this probability is at most 22m · 2− log2 m � m−Ω(logm). Thus

∑
i≥log2 m

P

⋃
a,b

Bi(a, b)

 ≤∑
a,b

∑
i≥log2 m

P (Bi(a, b)) ≤ m−Ω(logm).

It remains to deal with the sum
∑
i≤log2 m Pr

(⋃
a,b Bi(a, b)

)
. For these summands, we have that

if |I(A,B)| ≤ log2m and I log(I/µ) > Cb log(m/b), then

I logm ≥ I log(I/µ) > Cb log(m/b) ≥ Cb.

and so Cb ≤ log3m. The first inequality above comes from the observation that I ≤ ab and so

I/µ ≤ m/t ≤ m. Now, using that I logm ≥ Cb log(m/ log3m), we have that I ≥ Cb/2.

Therefore, we only need to evaluate the sum:

log2 m∑
i=Cb/2

P (Bi(a, b)) ≤
(
m

a

)(
m

b

) log2 m∑
i=Cb/2

(
ab

i

)(
10et

m

)i
≤
(
m

b

)2 log2 m∑
i=Cb/2

(
10e2abt

im

)i

≤ log2m
(em
b

)2b
(

20e2at

Cm

)Cb/2
= m2b−Cb/2b−2baCb/2tCb/2(20e2)2b

≤ m2b−Cb/4bCb/2−2b(20e2)2b

= m−Ω(b).

We have used the fact that t = o(
√
m), b ≥ a and b ≤ log3m. Thus union bounding over log3m

many values of a and b, we have
∑
a,b≤log3 m

∑
i≤log2 m P

(⋃
a,b Bi(a, b)

)
= m−Ω(1).

For the small entries: Bounding the contribution from the small entries is much easier. The

analysis given here is slightly different to the one given in [FKS89] and [BFSU98]. However, it does

not make much of a difference, and is still, essentially, the same large deviation inequality. We will

first compute the expected value of the quantity of interest using the following claim:

Claim 4.3.5. We have that: ∣∣∣∣∣∣
∑

(u,v)∈L

xuyv

∣∣∣∣∣∣ ≤ m√
t
.

Proof. Since
∑
xi = 0, we have (

∑
xi) (

∑
yi) =

∑
(u,v)∈L xuyv +

∑
(u,v)∈L xuyv = 0 or∣∣∣∣∣∣

∑
(u,v)∈L

xuyv

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

(u,v)∈L

xuyv

∣∣∣∣∣∣ .

72

To bound this, we note that

1 =
(∑

x2
u

)(∑
y2
u

)
≥

∑
(u,v)∈L

x2
uy

2
v ≥
√
t

m

∣∣∣∣∣∣
∑

(u,v)∈L

xuyv

∣∣∣∣∣∣ =

√
t

m

∣∣∣∣∣∣
∑

(u,v)∈L

xuyv

∣∣∣∣∣∣ .
which gives us what we want.

Given Claim 4.3.5 above, we can easily compute the expectation:

IE

 ∑
(u,v)∈L

xuMu,vyv

 =
t

m

∑
(u,v)∈L

xuyv ∈ [−
√
t,
√
t].

Claim 4.3.6. We have that with high probability,
∑

(u,v)∈L xuMu,vyv = O(
√
t).

Proof. We set up a martingale and use the method of bounded variances. Let us write the quantity

that we wish to estimate as

X :=
∑

(u,v)∈B

xuMu,vyv.

We imagine M being sampled one column at a time, and in each column, t entries are sampled.

For column i, let us denote these by ei,1, . . . , ei,t. Clearly, X = X(e1,1, . . . , em,t). Denote Xi,j :=

IE[X|e1,1, . . . , ei,j]. For distinct k, k′ ∈ [m], it is easy to see that we have the ‘Lipschitz property’:

|IE[X|e1,1, . . . , ei,j−1, ei,j = k]− IE[X|e1,1, . . . , ei,j−1, ei,j = k′]| ≤ |xiyk|+ |xiyk′ |.

Therefore, we have a bounded difference property on |Xi,j −Xi,j−1| as follows:

|Xi,j −Xi,j−1| =

∣∣∣∣∣IE[X|e1,1, . . . , ei,j−1, ei,j]

− 1

m− j + 1

∑
k′∈[m]\{ei,1,...,ei,j−1}

IE[X|e1,1, . . . , ei,j−1, ei,j = k′]

∣∣∣∣∣
≤ |xej ||yi|+

1

m− j + 1

∑
k′∈[m]\{ei,1,...,ei,j−1}

1[(k′, i) ∈ L]|xk′yi|

We will use that the above quantity is bounded by 2
√
t

m since we only consider |xejyi| where

(ej , i) ∈ L. However, another way to upper bound the above is by using

73

1

m− j + 1

∑
k′∈[m]\{ei,1,...,ei,j−1}

1[(k′, i) ∈ L]|xk′yi|

≤ 1

m− j + 1

∑
k′∈[m]\{ei,1,...,ei,j−1}

|xk′yi|

≤ |yi|
n− j + 1

∑
k′∈[m]

|xk′ |

≤ 2|yi|√
m
.

Using this, we now compute the variance of the martingale:

Var(Xi,j −Xi,j−1|e1,1, . . . , ei,j−1) ≤ 1

m− j + 1

∑
k∈[m]

(
|xkyi|+

2|yi|√
m

)2

≤ 2

m− j + 1

∑
k∈[m]

(
|xkyi|2 +

4y2
i

m

)

≤ 10y2
i

m− j + 1
.

Where the last inequality uses that
∑
k x

2
k ≤ 1. Therefore, the variance of the martingale is at

mostt · 10
m−t

∑
i y

2
i ≤ 20t

m =: σ2. This is because
∑
i y

2
i ≤ 1. Therefore, by the bounded variance

martingale inequality (4.3), using |Xi −Xi−1| ≤ 2
√
t

m =: C:

P(X ≥ (D + 1)
√
t) ≤ exp

{
− D2t

2σ2 + tC/3

}
≤ exp

{
− D2t

40t
m + 2t

3m

}
≤ exp

{
−Ω(D2m)

}
.

For a large enough constant D, this lets us union bound over all x, y ∈ T , whose number can be

bounded by
(
Cv
ε

)m
.

4.4 Discussion and open problems

We have given an upper bound on t-regular hypergraph discrepancy in terms of t and a spectral

property of the incidence matrix. However, when one restricts attention to random t-regular hyper-

graphs, the O(
√
t) bound is achieved only when m = Ω(n). In the case where m = o(n), one can

replace λ in Theorem 4.1.1 by λ′ where

λ′(H) := max
U⊂V
|U |=16m

max
v⊥1,
‖v‖=1,

supp(v)⊆U

‖Mv‖

and the proof would remain the same. This is because using the partial coloring theorem (The-

orem 4.2.1), one may assign colors to all but at most 16m vertices while maintaining that the

74

discrepancy of every edge is 0. However, when H is a random t regular hypergraph with n vertices

and m = o(n) edges, we need not have λ′(H) = O
(√
t
)

(in fact, the guess would be O(
√
tn/m)).

The problem is that Claim 4.3.6 (In Section 4.3.2) does not extend. However, in this regime, we

believe that with high probability, the discrepancy is much lower than
√
t (in contrast to λ growing).

Recently, Franks and Saks [FS18] showed that for n = Ω̃(m3), the discrepancy is O(1) al-

most surely. Independently, Hoberg and Rothvoss [HR19] considered a different model of random

hypergraphs with n vertices and m edges and each vertex-edge-incidence is an i.i.d. Ber(p) ran-

dom variable. They show that if n = Ω̃(m2), the discrepancy is O(1) almost surely. Both [FS18]

and [HR19] used similar Fourier analytic techniques inspired by [KLP12]. Moreover, it was an open

question in [HR19] whether the hypergraph with i.i.d Ber(1/2) incidences where n = O(m logm)

almost surely has discrepancy O(1). This was shown to be true by the author [Pot18].

We argue that this is an interesting regime for random regular hypergraphs, as this kind of

discrepancy bound is not implied by the Beck-Fiala conjecture. The case where n = Ω(m logm), is

of particular interest, since we believe there is a phase transition for constant discrepancy at this

point. On the one hand, we do not know if the discrepancy bound given by Corollary 4.1.3 is the

truth, and on the other hand, we do not know if random regular hypergraphs with, for example,

n = Θ(m1.5) almost surely has discrepancy O(1). We conclude with a conjecture, building on an

open problem (open problem 1) in [FS18]:

Conjecture 4.4.1. There is an absolute constant K > 0 such that the following holds. Let t > 0

be any integer and H be a random t-regular hypergraph on n vertices and K n
logn edges. Then with

high probability,

disc(H) = O(1).

75

Chapter 5

On the list recoverability of randomly punctured codes

The main result of this section is that one can puncture codes with good distance appropriately

to obtain codes that are zero-error list recoverable beyond the Johnson bound. This shows the

existence of Reed-Solomon codes that are zero-error list recoverable beyond the Johnson bound.

It was previously known that there are Reed-Solomon codes that do not have this property, thus

showing that the choice of evaluation points in a Reed-Solomon codes does make a difference. As

an immediate corollary, we obtain better degree bounds on unbalanced expanders that come from

Reed-Solomon codes. To state the result formally, we need some definitions

5.1 Introduction

List recoverable codes were defined by Guruswami and Rudra [GR06] to demonstrate a barrier to

improving known algorithms for list decoding. Here, we study list recoverable codes in their own

right, showing that random puncturings of codes over a sufficiently large alphabet are list recoverable.

Our result is analogous to earlier work by Rudra and Wooters [RW14, RW15] on the list decodability

of randomly punctured codes.

We use q to denote the alphabet size, and n to denote the block length of an arbitrary code.

Given two codewords c1, c2 ∈ [q]n, denote the Hamming distance between c1 and c2 by ∆(c1, c2).

Denote the minimum distance between a codeword c ∈ [q]n and a set L ⊆ [q]n by ∆(c,L).

Definition 5.1.1 (List recoverability). Let q, n, k be positive integers, and let δ > 0 and 0 ≤ ρ < 1 be

real numbers. A code C ⊂ [q]n is (`, δ, ρ) list recoverable if, for every collection of sets {Li ⊆ [q]}i∈[n]

with |Li| ≤ ` for each i, we have

|{c ∈ C | ∆(c, L1 × · · · × Ln) ≤ ρn}| ≤ `(1 + δ)

In the above definition, ` is called the list size from which the code can be recovered. The case

ρ = 0 is already interesting, and called zero-error list recoverability. We say that a code C is (`, δ)

zero-error list recoverable if it is (`, δ, 0) list recoverable. Also, in the definition, we do not require δ

76

to be less than 1. This was of stating simply allows us to carry the notation over for the discussion

in Section 5.1.1.

A puncturing of a code C ⊂ [q]n to a set S ⊂ [n] is the code CS ⊂ [q]S defined by CS [i] = C[i]

for each i ∈ S. A punctured code will typically have higher rate, but lower distance, than the

unpunctured version. Our main result is that every code over a large enough alphabet [q] can be

punctured to a code of rate R > q−1/2 while being list recoverable with list size roughly R−2. On a

first reading, it may be helpful to first consider the case ρ = 0.

Theorem 5.1.2. There are positive constants c, n0, and q0 so that the following holds. Let 0 < δ ≤ 1

and 0 ≤ ρ < 1−(1+δ)−1/2 be real numbers. Denote γ = (1+δ)(1−ρ)2−1 and σ = (1−ρ)(2−ρ)−1.

Let n > n0 and q > q0 be integers. Let q−1/2 < ε < min(c, 2−1γσ). Then, every code C ⊂ [q]n with

distance at least n(1 − q−1 − ε2) can be punctured to rate Ω
(

ε
log q

)
so that it is (ε−2σ2γ, δ, ρ)-list

recoverable.

To attempt to make the parameters more transparent, we would like to draw the reader’s focus

to the list size, i.e., ε−2σ2γ. The main point here is that this is as large as ε−2, so one way to

interpret the above theorem is that we get (Oδ,ρ(ε
−2), δ, ρ)-list recoverability after the aforementioned

puncturing. In fact, we show a random puncturing of C is list recoverable with the same list size

with high probability; see Theorem 5.3.1 for a precise statement.

Theorem 5.1.2 is analogous to a theorem of Rudra and Wooters [RW14, RW15] on the list

decodability of punctured codes over large alphabets. A code C ⊂ [q]n is (ρ, `)-list decodable if for

each x ∈ [q]n, there are at most ` codewords of C that differ from x in fewer than ρn coordinates.

Theorem 5.1.3 ([RW15]). Let ε > q−1/2 be a real number, and q, n be sufficiently large integers.

Every code C ⊂ [q]n with distance n(1 − q−1 − ε2) can be punctured to rate Ω̃
(

ε
log q

)
so that it is

(1−O(ε), O(ε−1))-list decodable.

Theorems 5.1.2 and 5.1.3 are most interesting in the case of Reed-Solomon codes. The codewords

of the degree-d Reed-Solomon code over Fq with evaluation set S ∈
(

[q]
m

)
are the evaluations of

all univariate polynomials of degree at most d on elements of S. In other words, suppose S =

{s1, . . . , sm}, the degree-d Reed-Solomon code on S is the set

{(p(s1), . . . , p(sm)) | deg(p) ≤ d}.

The block length of this code is m ≤ q. Since two distinct polynomials of degree at most d can agree

on at most d locations, the distance of any degree-d Reed-Solomon code is at least m− d.

A fundamental result, which gives a lower bound on the list decodability of a code with given

distance, is the Johnson bound (see, for example Corollary 3.2 in [Gur06]).

77

Theorem 5.1.4 (Johnson bound for list decoding). Every code C ⊂ [q]n of minimum distance at

least n(1− (1/q)− ε2) is (n(1− q−1 − ε), O(ε−1))- list decodable.

One of the main points of Theorem 5.1.3 is that it shows that there are Reed-Solomon codes

that are list decodable beyond the Johnson bound.

A similar result as Theorem 5.1.4, using a similar argument, also known as the Johnson bound,

is known for list recoverability (see for example, Lemma 5.2 in [GKdO+18]).

Theorem 5.1.5 (Johnson bound for list recovery). Let C ⊆ [q]n be a code of relative distance r.

Then C is (`, δ, ρ)-list recoverable for any ρ ≤ 1−
√
`(1− r) where δ = r

(1−ρ)2−`(1−r) − 1.

A result of Guruswami and Rudra [GR06]) shows that there are Reed-Solomon codes that are

not list recoverable beyond the Johnson bound.

Theorem 5.1.6. Let q = pm where p is a prime, and let C denote the degree-
(
pm−1
p−1

)
Reed-Solomon

code over Fq with Fq as the evauation set. Then there are lists S1, . . . , Sq each of size p such that

|C ∩ (S1 × · · · × Sq)| = q2m

To understand this, recall that a degree-d Reed-Solomon code has relative distance 1 − 1
q −

d
q .

Setting ` = p − 1 and ρ = 0 in the Johnson bound tells us that such a code is (p − 1, O(q), 0)-list

recoverable. Setting the list size as p in the bound gives us nothing, and Theorem 5.1.6 says that the

number of codewords grows superpolynomially in q. On the other hand, Theorem 5.1.2 immediately

gives the following corollary.

Corollary 5.1.7. For a prime power q and ε ≥ q−1/2, there are Reed-Solomon codes of rate Ω̃
(

ε
log q

)
which are (q/2, 1/2)-list recoverable.

Again, one can easily check that setting k = q/2 in the Johnson bound gives nothing.

5.1.1 Unbalanced expander graphs from codes

The zero-error case of Theorem 5.1.2 leads to some progress on a question of Guruswami regarding

unbalanced expanders obtained from Reed-Solomon graphs. This was also the main motivation

behind this theorem.

Informally, an expander graph is a graph where every small set of vertices has a relatively large

neighborhood. In this case, we say that all small sets expand. One interesting type of expander

graphs are unbalanced expanders. These are bipartite graphs where one side is much larger than the

other side, and we want that all the small subsets of the larger side expand.

78

Definition 5.1.8 (Unbalanced expander). A (k, d, ε)-regular unbalanced expander is a bipartite

graph on vertex set LtR, |L| ≥ |R| where the degree of every vertex in L is d, and for every S ⊆ L

such that |S| = k, we have that |N(S)| ≥ d|S|(1− ε).

Note that in the above definition, |N(S)| ≤ d|S|. We are typically interested in infinite families

of unbalanced expanders for which ε = o(1), d = o(|R|), and k = Ω̃(|R|/d).

For a q-ary error correcting code C ⊂ [q]n, and a subset S := {i1, . . . , i|S|} ⊆ [n] with i1 < · · · <

i|S|, we use CS to denote the S-punctured code given by

CS := {(ci1 , . . . , ci|S|) | (c1, . . . , cn) ∈ C}.

Thus, CS is just the set of codewords of C restricted to the coordinates in S.

Given a code C ⊆ [q]n, it is natural to look at the bipartite graph, which we will denote by G(C)

where the vertex sets are |C| t ([n] × [q]). For every c = (c1, . . . , cn) ∈ C the set of neighbors is

{(1, c1), . . . , (n, cn)}. This graph is especially interesting when C is a low-degree Reed-Solomon code

evaluated at an appropriate set.

The following is a open question in the study of pseudorandomness that is attributed to Gu-

ruswami [Gur], (also explicitly stated in [CZ18]): Fix an integer d. For a subset S ∈
(

[q]
m

)
, define CS

to be the degree-d Reed-Solomon code with S as the evaluation set, where d is a constant.

Question: What is the smallest m such that when S is chosen uniformly at random, G(CS) is,

with high probability, a (o(q), o(1))-unbalanced expander?

There are examples of explicit constructions unbalanced expanders that come from other means

(in fact, other codes) [GUV09]. However, the above “natural” geometric/combinatorial question is

still interesting in its own right and so far, seems to evade known techniques.

It was probably well known that m = Ω(log q), and we also give a proof of this (Theorem 5.4.1)

since we could not find it in the literature. But for upper bounds, it seems nothing better than the

almost trivial m = O(q) was known [Che]. Since the zero-error list recoverability of C is equivalent

to the expansion of G(C), an immediate Corollary to Theorem 5.3.1 gives an improved upper bound.

Corollary 5.1.9. Let q, n be sufficiently large integers and δ ∈ (0, 1), ε > q−1/2 be real numbers.

For every code C ⊂ [q]n with relative distance 1 − q−1 − ε2, there is a subset S ⊂ [n] such that

|S| = O(εn log q) such that G(CS) is a (δε−2, |S|, δ)-unbalanced expander.

Instantiating the above theorem for degree-d Reed-Solomon codes, we have n = q and ε =

(d/q)−
1
2 . This gives, m = Õ(

√
q).

79

5.2 Algebraic view of expanders

In this section, we give some perspective on why obtaining unbalanced expanders are in some sense,

harder than just regular expanders. The point is essentially that regular expansion is basically

determined by one quantity, i.e., the second largest eigenvalue of the adjacency matrix. This quantity

is relatively easy to get a handle on for proving crude bounds (good enough for some expansion).

Unbalanced expansion is a weaker condition (in the sense that regular expansion implies that small

sets also expand) and is, so far, not determined by a single relatively tractable quantity, and in

particular, not by the second eigenvalue of the adjacency matrix, which forms most of the base for

our understanding of expander graphs.

We recall the algebraic definition of expander graphs, that is usually much easier to deal with.

Let G be a bipartite graph on the vertex set LtR where every vertex in L has degree dL and every

vertex in R had degree dR. Let us use M = MG to denote it’s adjacency matrix. Since M is a real

symmetric matrix, it has real eigenvalues λ1 ≥ · · · ≥ λn. The largest eigenvalue of this matrix is

λ1 =
√
dLdR. We use λ = λG = λ2 to denote the second largest eigenvalue. Expansion can also be

defined in terms of λ.

Definition 5.2.1. ((d, λ)-expander) A bipartite graph G on L tR is a (dL, dR, λ)-expander if

1. Every vertex in L has degree dL and every vertex in R has degree dR.

2. λG ≤ λ.

This is a working definition that is far more due to our relatively better understanding of eigen-

values of matrices. The fact that a graph G is a (dL, dR, λ)-expander also means that all small sets

expand. The following well known result which is one direction in the so called ‘Expander Mixing

Lemma’ originally due to Haemers [Hae95]. This is similar to Lemma ?? and the proof is almost

identical.

Lemma 5.2.2 (Expander Mixing Lemma). Let G be a (dL, dR, λ)-expander graph on L tR. Then

for any subsets S ⊂ L and T ⊂ R, such that |S| = α|L| and |T | = β|R|, we have

e(S, T)

e(L,R)
≤ αβ +

λ√
dLdR

√
αβ(1− α)(1− β).

One example to help give more perespective here is: Let S be of size at most o
(
|R|
dL

)
, and

T = N(S). It is easy to see that |T | ≤ dL|S| = o(|R|), or, equivalently, β ≤ αdR = o(1). A

straightforward application of Lemma 5.2.2 gives us

80

α =
e(S, T)

e(L,R)
≤ αβ +

λ√
dLdR

√
αβ

or, using that β = o(1),

β ≥ αdLdR
λ2

(1− o(1)).

One thing to observe here is that the smaller λ gets, the larger |T | = |N(S)| is, and so if

λ = O(
√
dL), we would have that |T | = Ω(dL|S|). This gives us an approach to show that certain

graphs are unbalanced expanders, since as mentioned before, eigenvalues, especially of structured

matrices is a relatively well studied subject with a plethora of extremely powerful tools.

The reason this approach is not viable is essentially that when λ cannot be so small. It is atleast

of the order of Ω(
√
dR), which can be quite large when |L| � |R|.

Claim 5.2.3. For a (dL, dR)-regular bipartite graph G on L t R where

max{dL, dR} = o(min{|L|, |R|}), we have that λ(G) ≥ Ω(
√
dL +

√
dR).

Proof. Let M be the adjacency matrix of G. The largest eigenvalue of M in magnitude is
√
dLdR

and is given by the eigenvectors v1 = 1
2
√
L
1L + 1

2
√
R
1R and v2 = 1

2
√
L
1L − 1

2
√
R
1R. Let A ⊂ R be

maximal such that N(A) ≤ |L|/2 and define A′ := N(A). Likewise, let B ⊂ L be maximal such

that |N(B)| ≤ |R|/2 and let B′ := N(B). Clearly, we have |A| ≥ |L|
3dR

and |B| ≥ |R|
2dL

. Consider the

vector

u =

√
|L| − |A′|
|A′| · |L|

1A′ −

√
|A′|

(|L| − |A′|) · |L|
1L\A′

+

√
|R| − |B′|
|B′| · |L|

1B′ −

√
|B′|

(|L| − |B′|) · |L|
1L\B′ .

Note that u ⊥ v1 and u ⊥ v2, and so since the eigenvectors of real symmetric matrices are orthogonal,

we have that λ ≥ ‖Mv‖. Using the fact that M1A′ = dR1A and M1B′ = dL1B , we have

λ ≥ ‖Mu‖ ≥

√
|L| − |A′|
|A′| · |L|

· ‖M1A′‖+

√
|R| − |B′|
|B′| · |L|

· ‖M1B′‖

=

√
|L| − |A′|
|A′| · |L|

dR
√
|A|+

√
|R| − |B′|
|B′| · |B|

dL
√
|B|

≥ dR

√
|A|
|L|

+ dL

√
|B|
|R|

≥
√
dR/3 +

√
dL/3.

81

5.3 Proof of Theorem 5.1.2

The bulk of this section is the statement and proof of Theorem 5.3.1. After the proof of Theorem

5.3.1, we show how to derive Theorem 5.1.2 from it.

5.3.1 A probability inequality

We will use the following large deviation inequality for hypergeometric random variables (see [DP09]).

Let X be a hypergeometric random variable with mean µ. Then for any δ ≥ 1,

P(X ≥ (1 + δ)µ) ≤ exp(−δµ/4). (5.1)

5.3.2 A sketch of the proof

Here, we sketch the proof when ρ = 0, i.e., for zero-error list recovery. This contains most of the main

ideas required for the general theorem. Let S = {x1, . . . , xm} ⊂ [n] be a randomly chosen evaluation

set. The main observation is that if there are input lists L1, . . . , Lm ⊆ [q], such that (L1× · · ·×Lm)

contains a large subset D ⊆ C of codewords, then there is a small subset C′ ⊆ D (⊆ C) which agree

on an unusually high number of coordinates. An appropriately sized random subset of D does this.

Thus the event that a given puncturing is bad is contained witnessed by the event that there are

few codewords that agree a lot on the coordinates chosen in S. The number of events of the latter

kind are far fewer in number, thus giving us a relatively small(er) number of bad events to overcome

for the union bound.

5.3.3 Proof of Theorem 5.1.2

We not prove Theorem 5.1.2. The calculations in the proof of Theorem 5.3.1 are all explicit, but we

have not tried to optimize the constant terms.

Theorem 5.3.1. Let 0 < δ < 1 and 0 ≤ ρ < 1− (1 + δ)−1/2 be real numbers. Let q, n, d, `, and m be

positive integers. Let C ⊂ [q]n be a code of distance at least n−nq−1−d. Denote γ = (1+δ)(1−ρ)2−1

and σ = (1− ρ)(2− ρ)−1. Suppose that the following inequalities are satisfied:

d ≥ nq−1,

4γ−1 ≤ ` ≤ 800−1 σγnd−1,

σm ≥ 1280
√
`γ−1 log |C|,

m < n.

82

Then, for S ∈
(

[n]
m

)
chosen uniformly at random, the probability that CS is (`, δ, ρ)-list recoverable

is at least 1− e−σm/64.

Proof. For any C′ ⊆ C, denote by T (C′) the set of coordinates i ∈ [n] such that there is a pair

c1, c2 ∈ C′ with c1[i] = c2[i].

The basic outline of the proof is to first show that, for any S such that CS is not (`, δ, ρ)-list

recoverable, there is a pair S′, C′ such that S′ is large and |T (C′) ∩ S′| is unusually large. Taking a

union bound over all candidates for C′ then shows that there cannot be too many pairs of this sort.

Let S ∈
(

[n]
m

)
so that CS is not (`, δ, ρ)-list recoverable. We will show that there is a set C′ ⊂ CS

such that

|C′| ≤ 10
√
`/γ, and (5.2)

|T (C′) ∩ S| ≥ σm/4. (5.3)

Since CS is not (`, δ, ρ)-list recoverable, there are subsets Li ⊆ [q] for each i ∈ S such that each

|Li| ≤ ` and |{c ∈ CS : ∆(c,
∏
i∈S Li) ≤ ρn}| > k(1 + δ).

Let

D = {c ∈ Cs : ∆(c,
∏
i∈S

Li) ≤ ρn}.

For i ∈ S, let

Di = {c ∈ D : c[i] ∈ Li}.

Let

I = {(c, i) ∈ D × S : c ∈ Di}.

From the definition of D, we have

|I| ≥ |D|(1− ρ)m. (5.4)

Note that the average cardinality of the Di is (1− ρ)|D|. Let

S′ = {i ∈ S : |Di| ≥ (1− ρ)2|D|}.

If ρ = 0, then Di = D for each i, and hence |S′| = m. Next we show that, if ρ > 0, then

|S′| ≥ (1− ρ)(2− ρ)−1m = σm. Since |Di ≤ |D| for each i, we have

|S′| |D| ≥
∑
i∈S′
|Di| = |I| −

∑
i∈S\S′

Di. (5.5)

Since |Di| < (1− ρ)2|D| for each i ∈ S \ S′, we have

∑
i∈S\S′

≤ (m− |S′|)(1− ρ)2|D|. (5.6)

83

A straightforward rearrangement of (5.4), (5.5), and (5.6) using the assumption that ρ > 0 leads

to the claimed lower bound on |S′|:

|S′| ≥ σm. (5.7)

Since σ < 1, the bound |S′| ≥ σm holds for the case ρ = 0 as well.

For each i ∈ S′, choose a set Pi ⊂
(D

2

)
of |Pi| ≥ γk/2 disjoint pairs of codewords in Di such

that for each {c1, c2} ∈ Pi, we have c1[i] = c2[i]. This is always possible since |Li| ≤ ` and

|Di| ≥ (1 + ρ)2|D| ≥ (1 + γ)`.

Now choose C′ randomly by including each element of D with probability p = (γ`/2)−1/2`(1 +

δ)|D|−1. Since ` ≥ 4γ−1 by hypothesis and |D| ≥ `(1+δ) by the assumption that CS is not (`, δ, ρ)-list

recoverable, we have p < 1. The expected size of C′ is

IE[|C′|] = p|D| ≤ (γ/(2`))−1/2(1 + δ) ≤ (8`/γ)1/2.

For any fixed pair c1 6= c2 of codewords in D, the probability that both are included in C′ is

p2. Since the pairs in Pi are disjoint, the events that two distinct pairs {c1, c2}, {c3, c4} ∈ Pi are

both included in C′ are independent. Hence, the probability that no pair in Pi is included in C′ is

(1 − p2)|Pi| < e−p
2|Pi| < 1/2. Consequently, for each fixed i ∈ S′, the probability that i ∈ T (C′) is

greater than 1/2. By linearity of expectation, IE[|T (C′) ∩ S′|] ≥ |S′|/2 ≥ σm/2.

Let

Y = |T (C′) ∩ S′| − σm

4

|C′|
IE[|C′|]

.

By linearity of expectation, IE[Y] ≥ σm/4, hence there is some specific choice of C′ for which

Y ≥ σm/4. This can hold only if |T (C′)∩S| ≥ |T (C′)∩S′| ≥ m/4 and |C′| ≤ 3IE(|C′|) simultaneously,

which establishes (5.2) and (5.3).

Next we bound the probability that, for a fixed choice of C′ and random S, we have have

|T (C ′)∩S| large. Let C′ ⊂ C be an arbitrary set of |C′| ≤ 10`1/2γ−1/2 codewords. Since the distance

of C′ is at least n− nq−1 − d and d ≥ nq−1, we have

|T (C′)| ≤ (nq−1 + d)

(
|C′|
2

)
< d|C′|2. (5.8)

For S ∈
(

[n]
m

)
chosen uniformly at random, |T (C′) ∩ S| follows a hypergeometric distribution.

Specifically, we are making m draws from a population size of n of which |T (C′)| ≤ d|C′|2 contribute

to |T (C′) ∩ S|. Using the assumption that ` ≤ γσn(800d)−1, the expected value of |T (C′) ∩ S| is

IE [|T (C′) ∩ S|] ≤ d|C′|2n−1m ≤ 100
d`

γn
m ≤ σm

8
. (5.9)

Combining this with standard tail bounds for the hypergeometric distribution (5.1),

P(|T (C′) ∩ S| ≥ σm/4) ≤ exp
(
−σm

32

)
. (5.10)

84

Finally, we take a union over all candidates for C′. Let X be the event that CS is not (`, δ, ρ) list

recoverable, with S ∈
(

[n]
m

)
uniformly at random. Using the assumption that σm ≥ 1280

√
`/γ log |C|,

we have

P(X) ≤
∑

C′⊂CS :|C′|≤10
√
`/γ

P(|T (C′ ∩ S)| ≥ σm/4)

≤
(|C|
d10
√
`/γe+ 1

)
exp

(
−m

32

)
< exp

(
20
√
`/γ log |C| − σm/32

)
≤ exp(−σm/64),

as claimed.

We now show how to derive Theorem 5.1.2 from Theorem 5.3.1.

Proof of Theorem 5.1.2. Suppose we have δ, ρ, n, q, and ε as in the hypotheses of Theorem 5.1.2. Let

m = d1280ε−1 log |C|e. The singleton bound combined with the assumption that ε < c for a suitably

chosen absolute constant c implies that m < n. Choose S ∈
(

[n]
m

)
uniformly at random. The rate of

CS is

R = log |C|(m log q)−1 = Ω(ε(log q)−1).

It is straightforward to check that the hypotheses of Theorem 5.3.1 are satisfied if we take ` = ε−2σ2γ,

and hence we have that CS is (ε−2σ2γ, δ, ρ)-list recoverable with high probability.

5.4 Upper bound

Here we show the aforementioned upper bound for the rate to which a degree-d Reed-Solomon code

over Fq can be randomly punctured to be (q/2, 1/2)-zero-error list-recoverable.

First, we recall a bit of standard and relevant sumset notation. For a group G and subsets

A,B ⊆ G, we denote the sumset A+B = {a+b | a ∈ A, b ∈ B}. Clearly, we have |A+B| ≤ |A| · |B|.

If G = Zp, then for n < p/2, we have that [n] + [n] = {2, . . . , 2n}. We are now ready to state and

prove the upper bound.

Theorem 5.4.1. Let m = o(log q), and X = {x0, . . . , xm} be a uniformly random subset of Fq

where q is a prime. Then every d ≥ 1, the degree-d Reed-Solomon code with the evaluation set at X

is, with high probability, not (q/2, 1/2)-zero-error list-recoverable.

Proof. Let X = {x0, . . . , xm}. Let n be a large number such that nm = o(
√
q). We are using the fact

that m = o(log q) for the existence of such an n. W.L.O.G assume x0 = 0 and x1 = 1 (if 0, 1 6∈ S,

85

then adding them to S only makes the lower bound stronger). Consider the two sets

X0 =
1

1− x2
[n] + · · · 1

1− xm−1
[n]

and

X1 =
1

x2
[n] + · · · 1

xm−1
[n].

Claim 5.4.2. With high probability over the choice of X, we have that |X0|, |X1| = Ω(
(
nm−2

)
).

Proof. We do the proof for X0, the case for X1 follows analogously. Let P be the set of “collisions”

in X0. Formally:

P :=

{
(a2, . . . , am−2, b2, . . . , bm−2) |

m−2∑
i=2

aixi =

m−2∑
i=2

bixi

}
.

So the number of distinct elements in X0 is at least nm−2 − |P |. We observe that

IE[|P |] =
∑

a2,...,am−2∈[n]
b2,...,bm−2∈[n]

P

(
m−2∑
i=2

aixi =

m−2∑
i=2

bixi

)

≤ 1

p
n2m−4

= o(nm−2).

So by Markov’s Inequality, with high probability, |X0| ∼ nm−2.

Consider D, the set of degree-1 Reed-Solomon codes given by the lines

{Y = aX + b}b∈X0,a∈X1
.

First, we note that |Y | = Ω(n2m−4). Geometrically, D is just the set of all lines passing through

some point of {0} ×X0 and {1} ×X1. Clearly, {c[0] | c ∈ C} = X0 and {c[1] | c ∈ D} = X1. For

i 6= 0, 1, let us similarly define Xi := {c[xi] | c ∈ D}.We have that

Xi = {a(1− xi) + bxi}b∈X0,a∈X1

= (1− xi)
(

1

1− x2
[n] + · · · 1

1− xm−1
[n]

)
+ xi

(
1

x2
[n] + · · · 1

xm−1
[n]

)

=

[n] +
∑

2≤j≤m, j 6=i

1− xi
1− xj

[n]

+

[n] +
∑

2≤j≤m, j 6=i

xi
xj

[n]


= {2, . . . , 2n}+

∑
2≤j≤m, j 6=i

1− xi
1− xj

[n] +
∑

2≤j≤m, j 6=i

xi
xj

[n].

Thus, |Xi| ≤ (2n)× n2m−6 ≤ 2n2m−5.

This shows that there are lists X0, X1, . . . , Xm each of size at most ` := 2n2m−5 such that there

are at least Ω(n2m−4) = `1+ 1
k codewords, namely D, contained in X0 × · · · ×Xm.

86

For a fixed d, the above theorem rules out hope of randomly puncturing degree-d Reed-Solomon

codes to rate ω
(

1
log q

)
for the desired list recoverability. We believe that this is essentially the

barrier. We state the concrete conjecture that we alluded to in Section 5.1.1.

Conjecture 5.4.3. For any δ > 0, the degree-d Reed-Solomon code with evaluation set Fq can be

randomly punctured to rate Ωd

(
1

log q

)
so that is it (δq, δ)-list recoverable with high probability.

5.5 Discussion and open problems

The main open problem that we would like to showcase is Conjecture 5.4.3. This was probably

believed to be true but we could not find it written down explicitly in the literature. List re-

coverable codes have connections to various other combinatorial objects (see [Vad07]) and if true,

Conjecture 5.4.3 could lead to the construction of some other interesting combinatorial objects.

The second open problem is to derandomize Theorem 5.1.2, i.e., to find an explicit Reed-Solomon

code which is list recoverable beyond the Johnson bound at least in the zero-error case. Under-

standing how these evaluation sets look like could lead to progress on Conjecture 5.4.3, or could be

interesting in its own right.

Finally, the last open problem is that given a Reed-Solomon code C ⊂ [q]m of rate R on a

randomly chosen evaluation set S, find an efficient algorithm for list recovery, i.e., take input lists

L1, . . . , Lm of size O(R−2(log q)−1), and output all the codewords contained in L1 × · · · × Lm with

high probability (over the choice of S and the randomness used by the algorithm). This would also

likely require some understanding of the properties of the evaluation set.

87

References

[ABP20] Per Austrin, Amey Bhangale, and Aditya Potukuchi. Improved inapproximability of
rainbow coloring. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8,
2020, pages 1479–1495. SIAM, 2020.

[ACC+18] Jai Aslam, Shuli Chen, Ethan Coldren, Florian Frick, and Linus Setiabrata. On the
generalized erdskneser conjecture: Proofs and reductions. Journal of Combinatorial
Theory, Series B, 2018.

[AGH17] Per Austrin, Venkatesan Guruswami, and Johan H̊astad. (2+ε)-Sat is NP-hard. SIAM
J. Comput., 46(5):1554–1573, 2017.

[AKK+05] Noga Alon, Tali Kaufman, Michael Krivelevich, Simon Litsyn, and Dana Ron. Testing
reed-muller codes. IEEE Trans. Information Theory, 51(11):4032–4039, 2005.

[AS00] Noga Alon and Joel H. Spencer. The probabilistic method, 2000.

[AS03] Sanjeev Arora and Madhu Sudan. Improved low-degree testing and its applications.
Combinatorica, 23(3):365–426, 2003.

[ASW15] Emmanuel Abbe, Amir Shpilka, and Avi Wigderson. Reed-muller codes for random
erasures and errors. IEEE Trans. Information Theory, 61(10):5229–5252, 2015.

[Ban10] Nikhil Bansal. Constructive algorithms for discrepancy minimization. In 51th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2010, October 23-26,
2010, Las Vegas, Nevada, USA, pages 3–10, 2010.

[Bár78] Imre Bárány. A short proof of Kneser’s conjecture. Journal of Combinatorial Theory,
Series A, 25(3):325 – 326, 1978.

[Bec81] József Beck. Roth’s estimate of the discrepancy of integer sequences is nearly sharp.
Combinatorica, 1(4):319–325, 1981.

[Ber67] E. R. Berlekamp. Factoring polynomials over finite fields. Bell System Tech. J.,
46:1853–1859, 1967.

[BF81] József Beck and Tibor Fiala. ”integer-making” theorems. Discrete Applied Mathemat-
ics, 3(1):1–8, 1981.

[BFSU98] Andrei Z. Broder, Alan M. Frieze, Stephen Suen, and Eli Upfal. Optimal construction
of edge-disjoint paths in random graphs. SIAM J. Comput., 28(2):541–573, 1998.

[BG16] Joshua Brakensiek and Venkatesan Guruswami. New Hardness Results for Graph and
Hypergraph Colorings. In 31st Conference on Computational Complexity, CCC 2016,
May 29 to June 1, 2016, Tokyo, Japan, pages 14:1–14:27, 2016.

[BG17] Joshua Brakensiek and Venkatesan Guruswami. The Quest for Strong Inapproximabil-
ity Results with Perfect Completeness. In Approximation, Randomization, and Combi-
natorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2017, August
16-18, 2017, Berkeley, CA, USA, pages 4:1–4:20, 2017.

88

[BH97] Debe Bednarchak and Martin Helm. A note on the beck-fiala theorem. Combinatorica,
17(1):147–149, Mar 1997.

[Bha18] Amey Bhangale. NP-Hardness of Coloring 2-Colorable Hypergraph with Poly-
Logarithmically Many Colors. In 45th International Colloquium on Automata, Lan-
guages, and Programming (ICALP 2018), volume 107, pages 15:1–15:11, 2018.

[BKO19] Jakub Buĺın, Andrei A. Krokhin, and Jakub Oprsal. Algebraic approach to promise
constraint satisfaction. In Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, (STOC 2019), pages 602–613, 2019.

[BKS+10] Arnab Bhattacharyya, Swastik Kopparty, Grant Schoenebeck, Madhu Sudan, and
David Zuckerman. Optimal testing of reed-muller codes. In 51th Annual IEEE Sym-
posium on Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las
Vegas, Nevada, USA, pages 488–497, 2010.

[BLR93] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with appli-
cations to numerical problems. J. Comput. Syst. Sci., 47(3):549–595, 1993.

[Blu15] Avrim Blum. Lecture notes in foundations of machine learning and data science,
November 2015.

[BM19] Nikhil Bansal and Raghu Meka. On the discrepancy of random low degree set systems.
In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 2557–2564, 2019.

[Buk16] Boris Bukh. An improvement of the beck-fiala theorem. Combinatorics, Probability
and Computing, 25(3):380?398, 2016.

[Cha00] Bernard Chazelle. The Discrepancy Method: Randomness and Complexity. Cambridge
University Press, New York, NY, USA, 2000.

[Che] Xue Chen. personal communication.

[Chl07] Eden Chlamtac. Approximation algorithms using hierarchies of semidefinite program-
ming relaxations. In Foundations of Computer Science, 2007. FOCS’07. 48th Annual
IEEE Symposium on, pages 691–701. IEEE, 2007.

[CL06] Fan Chung and Linyuan Lu. Concentration inequalities and martingale inequalities: a
survey. Internet Math., 3(1):79–127, 2006.

[CS08] Eden Chlamtac and Gyanit Singh. Improved approximation guarantees through higher
levels of SDP hierarchies. In Approximation, Randomization and Combinatorial Opti-
mization. Algorithms and Techniques, pages 49–62. Springer, 2008.

[CZ18] Xue Chen and David Zuckerman. Existence of simple extractors. Electronic Colloquium
on Computational Complexity (ECCC), 25:116, 2018.

[DG13] Irit Dinur and Venkatesan Guruswami. PCPs via Low-Degree Long Code and Hardness
for Constrained Hypergraph Coloring. In 54th Annual IEEE Symposium on Founda-
tions of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA,
pages 340–349, 2013.

[DGKR05] Irit Dinur, Venkatesan Guruswami, Subhash Khot, and Oded Regev. A new multilay-
ered pcp and the hardness of hypergraph vertex cover. SIAM Journal on Computing,
34(5):1129–1146, 2005.

[DMR09] Irit Dinur, Elchanan Mossel, and Oded Regev. Conditional Hardness for Approximate
Coloring. SIAM J. Comput., 39(3):843–873, 2009.

89

[DP09] Devdatt Dubhashi and Alessandro Panconesi. Concentration of Measure for the Anal-
ysis of Randomized Algorithms. Cambridge University Press, New York, NY, USA, 1st
edition, 2009.

[DRS02] Irit Dinur, Oded Regev, and Clifford Smyth. The hardness of 3-uniform hypergraph
coloring. In The 34rd Annual IEEE Symposium on Foundations of Computer Science,
2002.

[Dum17] Ilya Dumer. Recursive decoding and its performance for low-rate reed-muller codes.
CoRR, abs/1703.05306, 2017.

[EL15] Esther Ezra and Shachar Lovett. On the beck-fiala conjecture for random set systems.
In APPROX-RANDOM, 2015.

[FK98] Uriel Feige and Joe Kilian. Zero Knowledge and the Chromatic Number. J. Comput.
Syst. Sci., 57(2):187–199, 1998.

[FKS89] J. Friedman, J. Kahn, and E. Szemerédi. On the second eigenvalue of random regular
graphs. In Proceedings of the Twenty-first Annual ACM Symposium on Theory of
Computing, STOC ’89, pages 587–598, New York, NY, USA, 1989. ACM.

[FS18] C. Franks and M. Saks. On the Discrepancy of Random Matrices with Many Columns.
ArXiv e-prints, July 2018.

[GHH+17] Venkatesan Guruswami, Prahladh Harsha, Johan H̊astad, Srikanth Srinivasan, and
Girish Varma. Super-Polylogarithmic Hypergraph Coloring Hardness via Low-Degree
Long Codes. SIAM J. Comput., 46(1):132–159, 2017.

[GKdO+18] Sivakanth Gopi, Swastik Kopparty, Rafael Mendes de Oliveira, Noga Ron-Zewi, and
Shubhangi Saraf. Locally testable and locally correctable codes approaching the gilbert-
varshamov bound. IEEE Trans. Information Theory, 64(8):5813–5831, 2018.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions.
In Proceedings of the 21st Annual ACM Symposium on Theory of Computing, May
14-17, 1989, Seattle, Washigton, USA, pages 25–32, 1989.

[GL15] Venkatesan Guruswami and Euiwoong Lee. Strong Inapproximability Results on Bal-
anced Rainbow-Colorable Hypergraphs. In Proceedings of the Twenty-Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 822–836. SIAM, 2015.

[GR06] Venkatesan Guruswami and Atri Rudra. Limits to list decoding reed-solomon codes.
IEEE Trans. Information Theory, 52(8):3642–3649, 2006.

[GS17] Venkatesan Guruswami and Rishi Saket. Hardness of Rainbow Coloring Hypergraphs.
In 37th IARCS Annual Conference on Foundations of Software Technology and Theo-
retical Computer Science (FSTTCS 2017), pages 33:1–33:15, 2017.

[GS19] Venkatesan Guruswami and Sai Sandeep. Rainbow coloring hardness via low sensitivity
polymorphisms. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2019, pages 15:1–15:17, 2019.

[Gur] Venkatesan Guruswami. personal communication.

[Gur06] Venkatesan Guruswami. Algorithmic results in list decoding. Foundations and Trends
in Theoretical Computer Science, 2(2), 2006.

[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil P. Vadhan. Unbalanced ex-
panders and randomness extractors from parvaresh-vardy codes. J. ACM, 56(4):20:1–
20:34, 2009.

90

[Hae95] Willem H. Haemers. Interlacing eigenvalues and graphs. Linear Algebra and its Appli-
cations, 226-228:593 – 616, 1995. Honoring J.J.Seidel.

[Har70] R. A. Harshman. Foundations of the PARAFAC procedure: Models and conditions for
an” explanatory” multi-modal factor analysis. UCLA Working Papers in Phonetics,
16(1):84, 1970.

[HR19] Rebecca Hoberg and Thomas Rothvoss. A fourier-analytic approach for the discrep-
ancy of random set systems. In Timothy M. Chan, editor, Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, Cal-
ifornia, USA, January 6-9, 2019, pages 2547–2556. SIAM, 2019.

[Hua13] Sangxia Huang. Improved Hardness of Approximating Chromatic Number. In Approx-
imation, Randomization and Combinatorial Optimization. Algorithms and Techniques,
pages 233–243, 2013.

[Hua15] Sangxia Huang. 2(logN)1/10−o(1)

Hardness for Hypergraph Coloring. CoRR,
abs/1504.03923, 2015.

[Kle66] Daniel J. Kleitman. On a combinatorial conjecture of erdós. Journal of Combinatorial
Theory, 1(2):209 – 214, 1966.

[KLP12] Greg Kuperberg, Shachar Lovett, and Ron Peled. Probabilistic existence of rigid com-
binatorial structures. In Proceedings of the 44th Symposium on Theory of Computing
Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages 1091–1106,
2012.

[KLS00] Sanjeev Khanna, Nathan Linial, and Shmuel Safra. On the Hardness of Approximating
the Chromatic Number. Combinatorica, 20(3):393–415, 2000.

[KMSU15] Shrinivas Kudekar, Marco Mondelli, Eren Sasoglu, and Rüdiger L. Urbanke. Reed-
muller codes achieve capacity on the binary erasure channel under MAP decoding.
CoRR, abs/1505.05831, 2015.

[KNS01] Michael Krivelevich, Ram Nathaniel, and Benny Sudakov. Approximating coloring and
maximum independent sets in 3-uniform hypergraphs. Journal of Algorithms, 41(1):99–
113, 2001.

[KO19] Andrei A. Krokhin and Jakub Oprsal. The complexity of 3-colouring h-colourable
graphs. In David Zuckerman, editor, 60th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019,
pages 1227–1239. IEEE Computer Society, 2019.

[KP15] Santhosh Kumar and Henry D. Pfister. Reed-muller codes achieve capacity on erasure
channels. CoRR, abs/1505.05123, 2015.

[KP18] Swastik Kopparty and Aditya Potukuchi. Syndrome decoding of reed-muller codes and
tensor decomposition over finite fields. In SODA, pages 680–691, 2018.

[KS14] Subhash Khot and Rishi Saket. Hardness of finding independent sets in 2-colorable and
almost 2-colorable hypergraphs. In Proceedings of the twenty-fifth annual ACM-SIAM
symposium on Discrete algorithms, pages 1607–1625. SIAM, 2014.

[KS17] Subhash Khot and Rishi Saket. Hardness of Coloring 2-Colorable 12-Uniform Hyper-

graphs with 2(logn)Ω(1)

Colors. SIAM J. Comput., 46(1):235–271, 2017.

[LM15] Shachar Lovett and Raghu Meka. Constructive discrepancy minimization by walking
on the edges. SIAM J. Comput., 44(5):1573–1582, 2015.

91

[Lov78] László Lovász. Kneser’s conjecture, chromatic number, and homotopy. Journal of
Combinatorial Theory, Series A, 25(3):319 – 324, 1978.

[LP] Ben Lund and Aditya Potukuchi. On the list recovery of randomly punctured codes.
(in preparation).

[LRA93] S. E. Leurgans, R. T. Ross, and R. B. Abel. A decomposition for three-way arrays.
SIAM Journal on Matrix Analysis and Applications, 14(4):1064–1083, 1993.

[LRR17] Avi Levy, Harishchandra Ramadas, and Thomas Rothvoss. Deterministic discrepancy
minimization via the multiplicative weight update method. In Integer Programming and
Combinatorial Optimization - 19th International Conference, IPCO 2017, Waterloo,
ON, Canada, June 26-28, 2017, Proceedings, pages 380–391, 2017.

[LZ07] Carsten E.M.C. Lange and Gnter M. Ziegler. On generalized kneser hypergraph color-
ings. Journal of Combinatorial Theory, Series A, 114(1):159 – 166, 2007.

[Mat95] Jǐŕı Matoušek. Tight upper bounds for the discrepancy of half-spaces. Discrete &
Computational Geometry, 13:593–601, 1995.

[Mat99] J. Matousek. Geometric Discrepancy: An Illustrated Guide. Algorithms and Combina-
torics. Springer Berlin Heidelberg, 1999.

[Mat07] Jiri Matousek. Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in
Combinatorics and Geometry. Springer Publishing Company, Incorporated, 2007.

[McC87] P. McCullagh. Tensor methods in statistics. Monographs on statistics and applied
probability. Chapman and Hall, 1987.

[McD93] Colin McDiarmid. A Random Recolouring Method for Graphs and Hypergraphs. Com-
binatorics, Probability & Computing, 2:363–365, 1993.

[Mul54] D. E. Muller. Application of boolean algebra to switching circuit design and to error
detection. Transactions of the I.R.E. Professional Group on Electronic Computers,
EC-3(3):6–12, Sept 1954.

[Pot18] Aditya Potukuchi. Discrepancy in random hypergraph models, 2018.

[Pot19] Aditya Potukuchi. A spectral bound on hypergraph discrepancy. CoRR,
abs/1907.04117, 2019. To appear in ICALP 2020.

[Rao03] KPS Bhaskara Rao. Theory of generalized inverses over commutative rings, volume 17.
CRC Press, 2003.

[Raz13] Ran Raz. Tensor-rank and lower bounds for arithmetic formulas. J. ACM, 60(6):40:1–
40:15, 2013.

[Ree54] I. Reed. A class of multiple-error-correcting codes and the decoding scheme. Trans-
actions of the IRE Professional Group on Information Theory, 4(4):38–49, September
1954.

[Rot17] Thomas Rothvoss. Constructive discrepancy minimization for convex sets. SIAM J.
Comput., 46(1):224–234, 2017.

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with
applications to program testing. SIAM J. Comput., 25(2):252–271, 1996.

[RW14] Atri Rudra and Mary Wootters. Every list-decodable code for high noise has abundant
near-optimal rate puncturings. In Symposium on Theory of Computing, STOC 2014,
New York, NY, USA, May 31 - June 03, 2014, pages 764–773, 2014.

92

[RW15] Atri Rudra and Mary Wootters. It’ll probably work out: Improved list-decoding
through random operations. In Proceedings of the 2015 Conference on Innovations
in Theoretical Computer Science, ITCS 2015, Rehovot, Israel, January 11-13, 2015,
pages 287–296, 2015.

[Sar90] Karanbir S. Sarkaria. A generalized kneser conjecture. J. Comb. Theory, Ser. B,
49(2):236–240, 1990.

[Sho94] Victor Shoup. Fast construction of irreducible polynomials over finite fields. J. Symb.
Comput., 17(5):371–391, 1994.

[Spe85] Joel Spencer. Six standard deviations suffice. Transactions of the American Mathe-
matical Society, 289(2):679–706, 1985.

[Spe88] Joel Spencer. Coloring the projective plane. Discrete Mathematics, 73(1):213 – 220,
1988.

[SSV17] Ramprasad Saptharishi, Amir Shpilka, and Ben Lee Volk. Efficiently decoding reed-
muller codes from random errors. IEEE Trans. Information Theory, 63(4):1954–1960,
2017.

[STV01] Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom generators without
the XOR lemma. J. Comput. Syst. Sci., 62(2):236–266, 2001.

[Vad07] Salil P. Vadhan. The unified theory of pseudorandomness: guest column. SIGACT
News, 38(3):39–54, 2007.

[Var16] Girish Varma. Reducing uniformity in Khot-Saket hypergraph coloring hardness re-
ductions. Chicago J. Theor. Comput. Sci., 2016, 2016.

[VV86] Leslie G. Valiant and Vijay V. Vazirani. NP is as easy as detecting unique solutions.
Theor. Comput. Sci., 47(3):85–93, 1986.

[Woj96] Jerzy Wojciechowski. Splitting Necklaces and a Generalization of the Borsuk-Ulam
Antipodal Theorem. The Journal of Combinatorial Mathematics and Combinatorial
Computing, 21:235–254, 1996.

[WZ20] Marcin Wrochna and Stanislav Zivny. Improved hardness for H -colourings of G-
colourable graphs. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January
5-8, 2020, pages 1426–1435. SIAM, 2020.

[Zuc07] David Zuckerman. Linear Degree Extractors and the Inapproximability of Max Clique
and Chromatic Number. Theory of Computing, 3(1):103–128, 2007.

	Abstract
	Acknowledgements
	Dedication
	Introduction
	Overview of the thesis
	Organization

	Syndrome decoding of Reed-Muller codes and tensor decomposition over finite fields
	Background on Reed-Muller codes
	Reed-Muller codes in the Binary Symmetric Channel and previous work
	The main result in Chapter 2
	Tensor decompositions over finite fields
	Roots of a space of polynomials

	Improved inapproximability of rainbow coloring
	Background on the complexity of hypergraph coloring
	Rainbow coloring and previous work
	The main results in Chapter 3

	A spectral bound on hypergraph discrepancy
	Background on hypegraph discrepancy
	Discrepancy of random regular hypergraphs and previous work
	The main result in Chapter 4

	List recovery of randomly punctured codes
	Background on list recovery
	The main result of Chapter 5
	Motivation for the result

	Syndrome decoding of Reed-Muller codes and tensor decomposition over finite fields
	Introduction
	Techniques
	Approach via tensor decomposition
	Approach via solving polynomial equations

	Notation
	The Main Result
	Proof of Theorem 2.3.1 using Jennrich's Algorithm
	An overview and analysis of the algorithm
	The algorithm and running time
	A note on derandomization

	Proof of Theorem 2.3.1 by reducting to common zeroes of a space of polynomials
	Efficiently finding roots of a space of polynomials
	A sketch of the rest of the algorithm
	Counting the number of error locations
	Applying a random invertible affine map
	The Valiant-Vazirani isolation lemma
	Restricting the points to a hyperplane
	A note on derandomization.

	Extension to other small fields
	Discussion and open problems

	Improved inapproximability of rainbow coloring
	Introduction
	Related work.

	The main results
	A sketch of the proofs
	Organization of the chapter

	Preliminaries
	Label Cover
	A Covering Bound

	Rainbow Hypergraph Gadget for 2-coloring
	Warm-up: Hardness of Rainbow(4,3,2)
	Reduction

	The `39`42`"613A``45`47`"603ARainbow(td+"4262304 d2"5263305 , t(d-1)+1, 2)-hardness
	Reduction
	Analysis
	Proof of Corollary 3.2.2

	A Generalized Hypergraph Gadget
	Topology Background
	Bound on the Chromatic Number

	Almost Rainbow Hardness
	Discussion and open problems

	A spectral bound on hypergraph discrepancy
	Introduction
	Background
	Discrepancy in random settings
	The partial coloring approach
	Proof sketch

	Proof of Theorem 4.1.1
	Preliminaries and notation
	A technical remark:

	Partial coloring using Lemma 4.2.3

	Proof of Theorem 4.1.4
	A martingale inequality
	Proof of Theorem 4.1.4

	Discussion and open problems

	On the list recoverability of randomly punctured codes
	Introduction
	Unbalanced expander graphs from codes

	Algebraic view of expanders
	Proof of Theorem 5.1.2
	A probability inequality
	A sketch of the proof
	Proof of Theorem 5.1.2

	Upper bound
	Discussion and open problems

	Bibliography
	References

