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ABSTRACT OF THE DISSERTATION

Scene Graph Parsing And Its Application in Cross-Modal Reasoning

Tasks

by JI ZHANG

Dissertation Director:

Ahmed Elgammal

Scene graph parsing aims at understanding an image as a graph where vertices are visual ob-

jects (potentially with attributes) and edges are visual relationships among objects. This task

is commonly seen as an extension to the object detection task where objects are detected indi-

vidually, while the former requires recognizing relationships between object pairs. Therefore,

scene graphs are usually seen as a better semantic representation of images for visual reason-

ing. In thesis we start with an inherent issue lying in scene graph parsing: the unbearable

quadratic complexity of relationship detection. We develop an efficient model that effectively

reduces the complexity from quadratic down to quasi-linear and show clear superiority over in-

tuitive and strong baselines. Then we introduce two salient issues that naturally occur in scene

graphs: Ambiguity in the language dimension and ambiguity in the visual dimension. The

first happens when the vocabulary of objects and relationships are significantly large, and the

second happens when multiple vertices or edges in a scene graph are from the same category

and confuse the model to recognize the correct relational pairing. We propose two models that

tackle these two problems separately, where the first model utilizes learnable embeddings to

handle the ambiguity in the language dimension, while the second adds three types of losses

that we design to for the model to learn to discriminate correct instances against confusing and

hard negative instances. At last, with an accurately parsed scene graph, we discuss the topic of
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using scene graphs as richer feature and deeper knowledge of the input visual signals for bet-

ter visual-semantic cross-modal reasoning. We design and develop a model that follows such

logic and apply it on the video story understanding task, which achieves satisfying advantage

over strong baseline models. In summary, we claim that scene graphs can be accurately and

efficiently obtained by our models, and that we can build a sophisticated system that employs

scene graphs for more explicit and interpretable cross-modal understanding.
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Chapter 1

Introduction

1.1 Relationship Proposal and Scene Graph Parsing

Image scene understanding requires learning the relationships between objects in the scene. A

scene with many objects may have only a few individual interacting objects (e.g., in a party im-

age with many people, only a handful of people might be speaking with each other). To detect

all relationships, it would be inefficient to first detect all individual objects and then classify all

pairs; not only is the number of all pairs quadratic, but classification requires limited object cat-

egories, which is not scalable for real-world images. In this these we address these challenges

by using pairs of related regions in images to train a relationship proposer that at test time pro-

duces a manageable number of related regions. We name our model the Relationship Proposal

Network (Rel-PN). Like object proposals, our Rel-PN is class-agnostic and thus scalable to

an open vocabulary of objects. We demonstrate the ability of our Rel-PN to localize relation-

ships with only a few thousand proposals. We demonstrate its performance on Visual Genome

dataset and compare to other baselines that we designed. We also conduct experiments on a

smaller subset of 5,000 images with over 37,000 related regions and show promising results.

1.2 Ambiguities in Scene Graph Parsing

The task of Scene Graph Parsing aims at parsing the given image into a graph whose nodes are

objects of interest and edges are meaningful pairwise relationships. Even with the aforemen-

tioned proposal method utilized, there could still be scenarios where two major ambiguities

happen that might significantly harm the task. Concretely, this thesis studies two cases:
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1.2.1 Semantic Ambiguity

It is a common practice in academia to restrict the number of object and predicate categories

when doing the scene graph parsing. However, in real application the vocabulary could be very

large or even totally open. In that case, ambiguity might exist among these categories, i.e., the

model is not 100% sure which category to output since there are several candidates with very

similar semantic meanings. In this thesis we propose to use learnable embeddings to solve this

issue. The embeddings are learned in a way that under the context of subjects and objects,

the model learns to not only discriminate rights against wrongs, but also preserve semantic

similarities between categories.

1.2.2 Visual Ambiguity

Visual ambiguity happens in a more common setting since it is an intrinsic issue of scene

graphs. Concretely there are two major visual ambiguities: 1) Entity Instance Confusion: the

subject or object is related to one of many instances of the same class, and the model fails to

distinguish between the target instance and the others; 2) Proximal Relationship Ambiguity: it

occurs when the image contains multiple subject-object pairs interacting in the same way, and

the model fails to identify the correct pairing. The primary cause of these two failures lies in the

inherent difficulty of inferring relationships. It is challenging for any model to learn to attend

to these details precisely, and it would be impractical to specify which details to focus on for all

kinds of relationships, let alone to learn all these details. These challenges motivate the need

for a mechanism that can automatically learn fine details that determine visual relationships,

and explicitly discriminate related entities from unrelated ones, for all types of relationships.

This is one of the goals of this thesis.

1.3 Visual-Semantic Understanding via Scene Graphs

Visual Semantic Understanding is a task that given both visual and textual signals, the machine

needs to learn to understand the association between them and complete the required mission,

such as question answering or image-to-text matching. In order to do it accurately and reason-

ably, it is critical for a model to ground visual and textual signals into solid elements as well
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as figuring out how these elements are composed and related. This is where the motivation

of scene graphs lies in, since scene graphs are a grounded and associated representation for

salient elements in the given visual signals. In this thesis we explore one of the visual-semantic

understanding tasks, i.e., video story understanding, by leveraging scene graphs as richer rep-

resentation of the input video, and analyze how and why it could help on comprehending the

video and answering the given questions.
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Chapter 2

Background and Related Work

2.1 Visual Relationships

Visual relationships [62, 90] are defined as 〈subject, predicate, object〉 tuples, where the “sub-

ject” is related to the “object” by the “predicate” relationship. Detecting visual relationships

aims at not only predicting if a relationship exists in an image but also localizing the “subject”

and the “object”. The predicate region can be simply determined by the union of the subject

and object box. There are various types of visual relationships that appear in the real world,

non-comprehensively exemplified next. Positional relationships describe relative location be-

tween objects like 〈glass, on, table〉, 〈bag, under, desk〉, etc.. Attributive relationships describe

that an object is a part of another or is composed of another (e.g., 〈brick, of, building〉, 〈man,

with, glasses〉). This requires an understanding beyond spatially relating the two objects. A

third type of relationship describes interactions between living objects like 〈person, dancing

with, person〉, and 〈man, riding, horse〉. Here, a posture-level understanding is needed since

recognizing these interactions rely on how each object is posed to the other. A fourth type of

relationship includes interactions between living and non-living objects like 〈kid, flying, kite〉

and 〈man, throwing, frisbee〉. In addition to difficult pose-level understanding needed for this

type, the interacting objects might be far from each other which makes it further challenging

(e.g., 〈kid, flying, kite〉). To handle all of these cases, it would be impractical to hand-write

rules that can determine an arbitrary relationship between any two regions. The aforemen-

tioned challenges strongly motivate the need to learn the connection between image regions

from data; this is one of the major motivations of this thesis.
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2.2 Object Proposals

Object proposal methods can be generally classified into two types: unsupervised approaches,

including super-pixel merging [101, 10, 4] and objectness evaluation [2, 147], and supervised

region prediction based on learned deep features from CNNs [87, 47, 9]. The latter has become

increasingly popular since proposal generation can be simply performed using one CNN for-

ward pass with near real-time running speed. With a minor sacrifice in accuracy, it is possible

to integrate the proposal network into an end-to-end trainable detection system, enabling higher

detection efficiency [18, 85, 61].

2.3 Object Relationship Exploration

There is significant literature that explores relationships between multiple objects, including

object co-occurrence [70, 91, 49] and semantic segmentation [30, 94]. Spatial relationships

have also been studied to improve both object-level and pixel-precision tasks [23, 30]. The

goal of these methods is to utilize connections between objects to improve individual object

recognition. In contrast, our task aims to recognize the entire relationship. Additionally, ac-

tion/interaction recognition [89, 120, 67] has been a well-studied area where the “subject” is a

human and “predicate” is a verb. In this thesis, we study general relationships with different

types, where the“subject” and “predicate” are not constrained.

2.4 Visual Relationship Detection

In [90], the concept of visual phrases is introduced to represent relationship tuples. In [62],

a new relationship detection model is proposed to not only recognize the relationship but to

also locate the related objects. However, this method is restricted to a limited set of predi-

cates/relations (i.e., 70 object labels and 100 predicate labels). In [16], a classification-free

approach is proposed for visual relationship recognition, but it does not localize the objects in

the predicted relationship.

Some object detection methods [61, 93, 85] have removed the object proposal step and di-

rectly output detection boxes with labels. However, relationship proposals are still necessary
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and difficult to avoid for three reasons. First, the elimination of object proposals is usually re-

alized by regressing and classifying anchor boxes (i.e., a set of location- and shape-predefined

boxes), where the number of anchor boxes are at the same scale of feature maps (e.g., 8732

boxes in [61]). Simply applying this strategy to relationship detection would require consider-

ing a quadratic number of anchor boxes, which is not tractable at large scale. Second, classi-

fication requires limited object categories, while relationship descriptions in the real-world are

usually open. Third, proposing relationships involves not only localizing salient regions but

also evaluating the visual connection between regions, making it more challenging than simply

proposing objects.

Looking back at more recent literature, almost all of the relationship detectors are built for

small vocabularies, e.g., 100 object and 70 relation categories from the VRD dataset [62], or a

subset of VG with the most frequent object and relation categories [134, 114, 140, 138, 141].

In one of the earliest works, [62] utilize the object detection output of an an R-CNN detector

and leverage language priors from semantic word embeddings to fine-tune the likelihood of

a predicted relationship. Very recently, [146] use language representations of the subject and

object as “context” to derive a better classification result for the relation. However, similar to

[62] their language representations are pre-trained. Unlike these approach, we fine-tune subject

and object representations jointly and employ the interaction between branches also at an earlier

stage before classification.

In [128], the authors employ knowledge distillation from a large Wikipedia-based corpus

and get state-of-the-art results for the VRD [62] dataset. In ViP-CNN [55], the authors pose

the problem as a classification task on limited classes and therefore cannot scale to the open-

vocabulary scenarios. In this thesis we exploit co-occurrences at the relationship level to model

such knowledge. Our approach directly targets the large category scale and is able to utilize

semantic associations to compensate for infrequent classes, while at the same time achieves

competitive performance in the smaller and constrained VRD [62] dataset.

Approaches like [144, 84] target open-vocabulary for scene parsing and visual relationship

detection, respectively. In [84], the related work closest to ours, the authors learn a CCA model

on top of different combinations of the subject, object and union regions and train a Rank

SVM. They however consider each relationship triplet as a class and learn it as a whole entity,
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thus cannot scale to our setting. Our approach embeds the three components of a relationship

separately to the independent semantic spaces for object and relation, but implicitly learns

connections between them via visual feature fusion and semantic meaning preservation in the

embedding space.

2.5 Semantically Guided Visual Recognition

Another parallel category of vision and language tasks is known as zero-shot/few-shot, where

class imbalance is a primary assumption. In [21], [78] and [96], word embedding language

models (e.g., [71]) were adopted to represent class names as vectors and hence allow zero-shot

recognition. For fine-grained objects like birds and flowers, several works adopted Wikipedia

Articles to guide zero-shot/few-shot recognition[51, 17]. However, for relations and actions,

these methods are not designed with the capability of locating the objects or interacting ob-

jects for visual relations. Several approaches have been proposed to model the visual-semantic

embedding in the context of the image-sentence similarity task (e.g., [46, 19, 106, 28]). Most

of them focused on leaning semantic connections between the two modalities, which we not

only aim to achieve, but with a manner that does not sacrifice discriminative capability since

our task is detection instead of similarity-based retrieval. In contrast, visual relationship also

has a structure of 〈subject, relation, object〉 and we show in our results that proper design of a

visual-semantic embedding architecture and loss is critical for good performance.

2.6 Scene Graph Parsing

A scene graph is defined as a graph where nodes are objects with their attributes and edges are

relationships between objects. The task of scene graph parsing is to extract the scene graph

from the given image. Recent scene graph parsers use the same pipeline that first either uses

off-the-shelf detectors [62, 146, 134, 13, 128, 117] or detectors fine-tuned with relationship

datasets [55, 114, 132, 136, 137, 122, 115] to detect entities, then predicts the predicate using

proposed methods. Most of them [62, 146, 134, 13, 128, 122, 55, 114, 132, 136, 139, 140]

model the second step as a classification task that takes features of each entity pair as input

and output a label independently from other pairs. [137] instead learn embeddings for subjects,
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predicates and objects and use nearest neighbor searching during testing to predict predicates.

Nevertheless, the prediction is still done on each entity pair individually. We show that this

pipeline struggles with two major scenarios. We find that ignoring the intrinsic graph structure

of relationships and predicting each predicate separately is the main cause. Our proposed losses

compensate for such drawback by contrasting positive against negative edges for each node,

providing global supervision to the classifier and significantly alleviating those two issues.

The scene graph parsing work most related to ours is Associative Embedding [76]. They

use use a push and pull contrastive loss to train embeddings for entities within a visual genome

scene graph. Our work differs in that we propose to have different sets of hard negatives to

target specific error types within scene graph parsing.

2.7 Phrase Grounding and Referring Expressions

Phrase grounding and referring expression models aim to localize the region described by a

given expression, with the latter focusing more on cases of possible reference confusion [126,

69, 127, 74, 35, 65, 88, 107, 60, 11, 34, 83]. It can be abstracted as a bipartite graph matching

problem, where nodes on the visual side are the regions and nodes on the language side are the

expressions, and the goal is to find all matched pairs. In contrast, scene graphs are arbitrarily

connected graphs whose nodes are visual entities and edges are predicates with rich semantic

information. Our losses are designed to leverage that information to better discriminate between

related and non-related entities.

2.8 Contrastive Training

Contrastive training using a triplet loss [46] has wide application in both computer vision and

natural language processing. Representative works include Negative Sampling [71] and Noise

Contrastive Sampling [72]. More recent work also utilizes it to solve multi-modal tasks such

as phrase grounding, image captioning, VQA, and vector embeddings [107, 32, 126, 76]. Our

setting differs in that we define hard negative contrastive margins along the known structure

of the annotated scene graph, allowing us to specifically target entity instance and proximal

relationship confusion. By adding our losses as additional supervision on top of the N-way
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cross-entropy loss, we are able to improve the model by significant margins.

2.9 Visual Question Answering (VQA)

The current dominant framework for VQA systems consists of an image encoder, a question

encoder, multimodal fusion, and an answer predictor. In lieu of directly using visual features

from CNN-based feature extractors, [118, 20, 80, 63, 99, 75, 145, 68] explored various image

attention mechanisms to locate regions that are relevant to the question. To learn a better rep-

resentation of the question, [63, 75, 20] proposed to perform question-guided image attention

and image-guided question attention collaboratively, to merge knowledge from both visual and

textual modalities in the encoding stage. [22, 43, 129, 7, 42] explored higher order fusion meth-

ods to better combine textual information with visual information (e.g., using bilinear pooling

instead of simpler first-order methods such as summation, concatenation and multiplication).

To make the model more interpretable, some literature [53, 124, 52, 110, 111, 109] also

exploited high-level semantic information in the image, such as attributes, captions and visual

relation facts. Most of these methods applied VQA independent models to extract semantic

knowledge from the image, while [64] built a Relation-VQA dataset and directly mined VQA-

specific relation facts to feed additional semantic information to the model. A few recent studies

[97, 66, 52] investigated how to incorporate memory to aid the reasoning step, especially for

difficult questions. However, the semantic knowledge brought in by either memory or high-

level semantic information is usually converted into textual representation, instead of directly

used as visual representation, which contains richer and more indicative information about

the image. Our work is complementary to these prior studies in that we encode object relations

directly into image representation, and the relation encoding step is generic and can be naturally

fit into any state-of-the-art VQA model.

2.10 Relational Reasoning

We name the visual relationship aforementioned as explicit relation, which has been shown

to be effective for image captioning [121]. Specifically, [121] exploited pre-defined semantic

relations learned from the Visual Genome dataset [48] and spatial relations between objects.
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A graph was then constructed based on these relations, and a Graph Convolutional Network

(GCN) [45] was used to learn representations for each object.

Another line of research focuses on implicit relations, where no explicit semantic or spatial

relations are used to construct the graph. Instead, all the relations are implicitly captured by an

attention module or via higher-order methods over the fully-connected graph of an input image

[92, 33, 8, 119], to model the interactions between detected objects. For example, [92] reasons

over all the possible pairs of objects in an image via the use of simple MLPs. In [8], a bilinear

fusion method, called MuRel cell, was introduced to perform pairwise relationship modeling.

Some other work [100, 77, 108] have been proposed for learning question-conditioned

graph representations for images. Specifically, [77] introduced a graph learner module that

is conditioned on question representations to compute the image representations using pair-

wise attention and spatial graph convolutions. [100] exploited structured question represen-

tations such as parse trees, and used GRU to model contextualized interactions between both

objects and words. A more recent work [108] introduced a sparser graph defined by inter/intra-

class edges, in which relationships are implicitly learned via a language-guided graph attention

mechanism. However, all these work still focused on implicit relations, which are less inter-

pretable than explicit relations.

2.11 Video Story Question Answering

The task of video question answering has been explored in many recent studies. While some of

them [54, 24, 36] principally focus on factual understanding in short videos, another research

direction aims at understanding videos that contain story-lines and answering questions about

them. Read Write Memory Networks (RWMN) [73] rely on Compact Bilinear Pooling to fuse

individual captions with corresponding frames and store them in memory slots. Multi-layered

CNNs are then employed to represent adjacent slots in time. PAMN [41] proposes a progressive

attention memory to progressively prune out irrelevant temporal parts in memory and utilizes

dynamic modality fusion to adaptively determine the contribution of each modality for answer-

ing questions. ES-MTL [40] introduces additional temporal retrieval and modality alignment

networks to predict the time when the question was generated and to find associations of video
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and subtitles. However, these methods merely extract visual features from video frames or

parts of video frames with pre-trained CNNs while ignoring the characters inside video scenes,

making their models lack the ability of deep scene understanding.

2.12 Visual Relation Detection

Visual relation detection has recently emerged as a task that goes one step further than object de-

tection towards a holistic semantic understanding of images [62, 48, 114, ?]. The task involves

first detecting any visually related pairs of objects and recognizing the predicate that describes

their relations. Most recent approaches achieve this goal by learning classifiers that predict

relations based on different types of features of the object pairs [114, 128, 132, 137, 141]. It

has been demonstrated in recent works that scene graphs can provide rich knowledge of image

semantics and help boost high-level tasks such as Image Captioning and Visual Question An-

swering [121, 57, 119]. We are interested in how relations can be exploited not just for images

but also for video understanding with a character-based relation representation, which to the

best of our knowledge has not been fully explored yet.

2.13 Character Naming

The goal of character naming is to automatically identify characters in TV shows or movies.

Previous methods tend to train a face assignment model based on extracted face tracklets. Some

approaches rely on semi-supervised learning for person identification [98, 79, 5]. Meanwhile,

[38] propose an unsupervised method to address the task. In this work, we train the character

naming and question answering modules in a multi-task scheme. Our approach does not require

any explicit annotations on faces. We only rely on weak supervision from the subtitles that

contain speakers’ names and exploit the co-occurrence distribution between appearing faces

and names in subtitles.
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Chapter 3

Relationship Proposal Networks

3.1 Introduction

While object detection is progressing at an ever-faster rate, relatively little work has explored

understanding visual relationships at a large scale with related objects visually grounded to

image regions. Visual relationships [62, 90] are defined as 〈subject, predicate, object〉 tuples,

where the “subject” is related to the “object” by the “predicate” relationship. Detecting visual

relationships aims at not only predicting if a relationship exists in an image but also localizing

the “subject” and the “object”. The predicate region can be simply determined by the union of

the subject and object box. There are various types of visual relationships that appear in the real

world, non-comprehensively exemplified next. Positional relationships describe relative loca-

tion between objects like 〈glass, on, table〉, 〈bag, under, desk〉, etc.. Attributive relationships

describe that an object is a part of another or is composed of another (e.g., 〈brick, of, building〉,

〈man, with, glasses〉). This requires an understanding beyond spatially relating the two objects.

A third type of relationship describes interactions between living objects like 〈person, dancing

with, person〉, and 〈man, riding, horse〉. Here, a posture-level understanding is needed since

recognizing these interactions rely on how each object is posed to the other. A fourth type of

relationship includes interactions between living and non-living objects like 〈kid, flying, kite〉

and 〈man, throwing, frisbee 〉. In addition to difficult pose-level understanding needed for this

type, the interacting objects might be far from each other which makes it further challenging

(e.g., 〈kid, flying, kite〉). To handle all of these cases, it would be impractical to hand-write

rules that can determine an arbitrary relationship between any two regions. The aforemen-

tioned challenges strongly motivate the need to learn the connection between image regions

from data; this is the goal of our work.

Assuming the availability of a fixed dictionary of objects categories, the solution adopted
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in [62] for detecting relationship labels is to first detect all the individual objects in images

and consider all pairs as potential 〈subject, object〉 pairs. The objects are detected by training

a Faster-RCNN on a set of 100 types of objects, and similarly a predicate detector is learned

to detect one out of the 70 predicates (from a closed dictionary of predicates). This limitation

can be avoided by class-agnostic object proposals. However, in order to have a good recall

rate, the number of proposals cannot be too small. In [101], ∼2000 proposals are used while

the number is reduced to 1000 in [147]. In [87], they manage to use only 300 proposals at

test-time. However, the complexity becomes quadratic when considering all pairs of proposals.

Even if the number of proposals is as small as 300, we still need to recognize all 90,000 pairs,

making it a computational bottleneck for relationship detection systems. Moreover, an image

with many individual objects might only contain a handful of relationships. Recently, the Visual

Genome dataset [48] has been released, which contains a total of 108,077 images with 33,877

object categories. Clearly, it is not straightforward to apply any closed-dictionary method at this

scale, since the 33,877 object labels are too many for a CNN-based classification to perform

well.

In this chapter, we introduce Relationship Proposal Networks (Rel-PN) to extend the idea

of object proposals to visual relationships. In particular, we aim to directly propose a set of

potential 〈subject, object〉 pairs without considering every pair of individual objects. The re-

sulting number of proposed pairs is a few thousand, which is an order of magnitude less than

the number due to quadratic complexity. We call these pairs visual relationship proposals, since

they are good candidates with high recall rates for relationships, and their computational cost

is much lower than either exhaustive search (using a sliding window search) or by considering

all object pairs. We propose an end-to-end trainable network with three branches for proposing

subjects, objects and relationships, respectively. We use an efficient strategy to select candidate

pairs that satisfy spatial constraints. The resulting pairs are then passed to a network module

designed to evaluate the compatibility using both visual and spatial criteria, where incompati-

ble pairs are filtered out and the remaining pairs are the final relationship proposals. We further

compare our method with several intuitive baselines using individual object proposals, and we

demonstrate that our method exhibits both higher recall rates and faster test-time performance.
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3.2 Model Architecture

We consider three important aspects while designing our model. (1) Relationship compati-

bility: we model the probability of two regions being related to one-another (i.e., relationship

compatibility predictor), (2) Efficiency: Bounding the relationship regions (i.e. 〈subject,

object〉 pairs) that are checked for compatibility by (1), and (3) Subjectness and objectness:

We account for the fact that the subject and object coming from different distributions. We

later show that there is a gain when the probability of a region is a subject (we call this subject-

ness); this is modeled by a different sub-network in contrast to the sub-network that models the

probability of a region being an object (we call this objectness).

Subjectness and objectness sub-networks: We start to address the aforementioned as-

pects by modeling the probability of being an subject given a region (i.e., subjectness) and the

probability of being an object given a region (i.e., objectness). It may be intuitive that subjects

and objects should exist within the same category space. However, we will show later that the

distributions of subject and object categories are biased differently; see section3.2.1. Our model

discriminatively learns these two distributions by separate sub-networks that we designate as

subjectness and objectness sub-networks.

Relationship compatibility module: The subjectness and the objectnness sub-networks

produce regions with high probability of being subjects or objects respectively, but these regions

might not have a connecting relationship. Hence, the need to learn the compatibility with the

relationship becomes apparent. The relationship compatibility module takes a subject-object

pair and their context (i.e., the union in our case) and produces a relationship compatibility

score between the two regions. These scores are used to discard subject-object regions that do

not have a relationship.

Pruning subject-object pairs: While the compatibility module could be fed regions with

high subjectness and objectness scores, it is still computationally expensive to evaluate the

compatibility for all subject-object pairs. This motivates further pruning of the pairs. Our

solution starts by introducing a third sub-network, which is trained to detect the union-box

of a relationship with ground truth annotation as the union box of subject and object pairs.

We observed that this sub-network can locate the union box alone with 94% recall. Our idea
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Figure 3.1: Relationship Proposal Network architecture. “sbj”, “obj” and “rel” are abbreviations for
“subject”, “object” and “relationship”. We feed an input image to a 3-branch RPN where each branch
produces a set of candidate boxes. Orange, purple, blue boxes are subject, relationship and object
proposals, respectively. The proposal selection module takes these boxes and selects qualified subject-
object pairs, which are then used to generate visual and spatial features. In visual compatibility module,
each subject box is ROI-pooled out as a 7× 7× 512 feature, and so as for object and relationship boxes.
The three features are then concatenated, followed by a convolutional (conv) layer, a fully-connected
(fc) layer and a softmax layer to get the visual score; in spatial compatibility module, an 18-d feature
is generated by concatenating the box deltas of 〈S, O〉, 〈S, P〉 and 〈O, P〉. Then we pass the feature to
two fully-connected (fc) layers followed by a softmax layer to get the spatial score. Finally, visual and
spatial scores are combined with different weights controlled by α to get the overall score.

is to prune the subject-object pairs by using this high-recall sub-network to generate a set of

union boxes, and then select only the subject-object pairs whose union rectangles overlap with

the generated union boxes by at least 50%. We found this approach to be highly effective in

reducing the computational complexity.

Apart from these concerns, we also aim at a model that can be trained and tested end-to-end,

i.e., it takes an image as input and directly outputs a set of relationship proposals. To address

all these issues, we split the task into three steps which correspond to the three modules shown

in Figure 3.1.

3.2.1 3-branch RPN

We use the Region Proposal Networks (RPN) in Faster RCNN [87] to propose subjects, ob-

jects and unions respectively. In particular, we add two twin branches to RPN starting from
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conv3 1 down to conv5 3, resulting in a 3-branch RPN (Figure 3.1). The relationship branch

is used to propose union boxes of subject-object pairs, while the subject and object branches

propose their own boxes. This structure comes from our observation that the distribution of

categories is different for subjects and objects. First, if a relationship is an interaction (i.e., the

predicate is a verb) such as 〈boy, fly, kite〉, its subject is more likely to be a living being. In this

case, the distribution of subjects’ categories is more biased towards living beings than objects’.

Second, for some positional relationships such as 〈marking, on, t-shirt〉, 〈kite, in, sky〉, and

attributive relationships such as 〈brick, of, building〉, objects’ category distribution is biased

towards larger, coarser things while subjects’ is towards smaller and finer ones. Therefore, two

separated branches are necessary to learn these two different distributions.

Given an input image of size W × H , we adopt VGG-16 architecture from conv 1 1 to

conv 5 3 (13 layers) to convert the image into C×W ′×H ′ tensor of features, where C = 512,

W ′ = bW16 c, and H ′ = bH16c. Starting from this feature map, each branch is N ×W ′ × H ′

boxes in the form of (xmin, ymin, xmax, ymax), where N is the number of anchor boxes for

each feature map location. Each of these boxes is associated with a confidence score for each

branch. We consider 5 ratios and 7 scales for every location in the W ′ ×H ′ grid, resulting in

N = 35, where the 5 ratios are 1:4, 1:2, 1:1, 2:1, 4:1, and the 7 scales are 2, 4, 8, 16, 32, 64,

128. All the 3×N ×W ′ ×H ′ boxes and 3×N ×W ′ ×H ′ confidence scores from the three

branches are passed as input to the proposal selection module.

At train-time, we feed subject and object branches with their corresponding ground-truth

boxes. For the relationship branch, we use the union of subject and object box as ground-truth

for each relationship. We fix the parameters of conv1 1 to conv2 2 and fine-tune conv3 1 to

conv5 3.

3.2.2 Proposal Selection

In this module, each set of N ×W ′ × H ′ boxes are clipped to the image boundary, followed

by non-maximum-suppression and sorting by their confidence scores. Then, we pick the top

Krel(Krel = 5000 in our model) relationship boxes and do the following for each of them:

1. Get search region: Enlarge the relationship box by a factor (1.1 in our model) and use that
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as a search region;

2. Select individual subjects and objects: Consider only those subject and object boxes that

are within the search region, select top Ksbj of subject boxes and top Kobj of object boxes

(Ksbj = Kobj = 9 in our model);

3. Select qualified pairs: For each of the Ksbj ×Kobj subject-object pairs, we check whether

its union box overlaps with the current relationship box by a threshold (0.5 in our model),

and keep it only if this condition is satisfied; we also consider an additional set of Ksbj

pairs where we pair each of the Ksbj subject boxes with the current relationship box. This

additional set is generated specifically for those relationships whose subjects are located

within objects, such as 〈kite, in, sky〉 and 〈window, of, building〉. In those cases, the object

box coincides with the relationship box. We add all qualified pairs to an accumulative,

duplicate-free list;

After these are done for all the Krel relationship boxes, the result pairs are ranked by the

average of subjectness and objectness scores, and the top Npair pairs are kept. At test-time,

theseNpair candidates are directly passed to the next module; at train-time, we need to generate

positive and negative samples from them, since the compatibility module is trained as a binary

classifier, which is fed with a batch of subject-object pairs as training samples, with binary

labels indicating whether each pair is compatible or not.

For a positive sample, we define it as a pair satisfying all the following three conditions:

1) the subject box S overlaps with its closest ground-truth subject box Sgt by at least 0.5; 2)

the object box O overlaps with its closest ground-truth object box Ogt by at least 0.5; 3) the

two ground-truth boxes Sgt and Ogt should be a ground-truth relationship pair. The first two

conditions ensure localization accuracy of each box, while the third condition excludes those

pairs that are well located but mismatched.

For a negative sample, the definition is a pair satisfying any of the following three: 1) the

subject box S overlaps with the ground-truth Sgt by less than 0.5; 2) the object box O overlaps

with the ground-truth Ogt by less than 0.5; 3) both the subject and object overlaps are at least

0.5, but the two ground-truth boxes 〈Sgt, Ogt〉 is not a ground-truth relationship pair. The third

condition is critical, since it enables the compatibility module to contrast correctly matched
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(a) Two positive samples

(b) Two negative samples

Figure 3.2: Sampling strategy for training. Sampling on an example image with a) two positive pairs:
R1 = 〈S1, O1〉 = 〈girl, play, basketball〉,R2 = 〈S2, O2〉 = 〈boy, wear, pants〉, and b) the corresponding
negative pairs: R′1 = 〈S1, O2〉, R′2 = 〈S2, O1〉, which are obtained by pairing unrelated subjects and
objects.

pairs against mismatched ones and learn the visual connection between subjects and objects in

positive pairs. The sampling strategy is illustrated in Figure 3.2.

3.2.3 Compatibility Evaluation

The compatibility module is designed to evaluate the likelihood of a given box pair being

a true relationship. We consider two aspects of the likelihood – visual compatibility, which

analyzes coherence of the two boxes’ appearance; spatial compatibility, which explores the

locations and shapes of the two boxes. We designed two branches for these two purposes,

get a visual score and spatial score from each branch, then integrate them into a final score(as

shown in “Compatibility Evaluation” of Figure 3.1). The following paragraphs introduce the

two components of this module.

Visual Compatibility: The input to this component is visual features of the samples selected

from the last module. Each feature is obtained by extracting the conv5 3 features within the
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subject, object and the union box using ROI-pooling, then concatenating the three features into

one. Since the feature of each box is 512× 7× 7, we end up with a 1536× 7× 7 concatenated

feature map. Note that we also integrate the feature of the union box since it provides contextual

information (i.e., visual feature of the whole relationship region). On this feature map we apply

a convolution layer using a 3 × 3 filter with no zero-padding, shrinking the feature map from

7 × 7 to 5 × 5. We do this for two reasons: one is to learn a representative feature for the

concatenation, the other is to reduce the size of parameters. After that, we append one fully-

connected layer with 2048-d output and a softmax layer to generate a probability as the visual

score.

Spatial Compatibility: The spatial feature of each sample is obtained by considering the dif-

ference between subject, object and relationship boxes. Specifically, a spatial feature is a vector

of 18 dimensions concatenating three 6-d vectors, each indicating the difference of subject and

object boxes ∆(S,O), subject and relationship boxes ∆(S, P ), object and relationship boxes

∆(O,P ). We adopt the idea of box regression [25] and use box delta as the metric of box

difference. Specifically, ∆(S,O) = (tSOx , tSOy , tSOw , tSOh , tOS
x , tOS

y ) where each dimension is

given by

tSOx = (xS − xO)/wS , tSOy = (yS − yO)/hS ,

tSOw = log(wS/wO), tSOh = log(hS/hO),

tOS
x = (xO − xS)/wO, tOS

y = (yO − yS)/hO,

(3.1)

where xS , yS , wS , hS denotes the center coordinates of a subject box, and similarly xO, yO, wO, hO

is for an object box. The first 4 dimensions (tSOx , tSOy , tSOw , tSOh ) is the box delta that regresses

the subject box to the object box, while the last 2 dimensions (tOS
x , tOS

y ) comes from the

box delta (tOS
x , tOS

y , tOS
w , tOS

h ) that regresses the object box to the subject, excluding tOS
w =

log(wO/wS) and tOS
h = log(hO/hS) since tOS

w = 1− tSOw and tOS
h = 1− tSOh . Similarly, we

define ∆(S, P ) = (tSPx , tSPy , tSPw , tSPh , tPS
x , tPS

y ), and ∆(O,P ) = (tOP
x , tOP

y , tOP
w , tOP

h , tPO
x , tPO

y ).

We concatenate ∆(S,O), ∆(S, P ) and ∆(O,P ) to get the 18-d feature, which is then passed

to two consecutive fully-connected layers with 64 outputs. A softmax layer is appended in the

end to produce the spatial score.
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Once we have the visual score pv and spatial score ps, we integrate them by a convex

combination defined as

p = αpv + (1− α)ps (3.2)

where p is the combined score, α is the ratio of visual compatibility, which can be learned

using existing linear programming methods. We empirically set α = 0.8 for all experiments

and found that this fixed value works just as well. We also conduct a comprehensive evaluation

on different values of α in section 3.4.2.

3.3 Implementation Details

We utilize Region Proposals Network (RPN) [87] framework to build our 3-branch RPN mod-

ule, and implemented proposal selection and compatibility evaluation module by our own using

python layer from Caffe library [37]. Our model uses pre-trained VGG16 [95] weights for con-

volutional layers, and initializes other layers randomly by “xavier” algorithm [27]. For proposal

selection, we consider the top 5, 000 union boxes by confidence scores generated from the re-

lationship branch, then for each of them, we enlarge it by 1.1 to get a search region, and pick

the top 9 subject boxes and top 9 object boxes that are within this search region, resulting in 81

subject-object pairs. Then we eliminate those pairs that do not overlap with the current union

box by at least 0.5. As mentioned in section 3.2 in the paper, we also pair each of the 9 subject

boxes with the current union box. Therefore, the resulting set contains both subject-object pairs

and subject-union pairs. We pick the top 15, 000 from this set while ensuring that 30% of them

are subject-union pairs, since this is the ratio of such pairs in the training data. Note that these

15, 000 pairs are to be evaluated on compatibility and are not the final relationship proposals.

At train-time, we merge the 15, 000 boxes with ground-truth boxes and sample 256 out of

them with 64 positive and 192 negative pairs, where half of the negative samples have overlaps

of less than 0.5 for either subject or object (condition 1 and 2 in section 3.2 in the paper), and

the other half overlap with ground-truth by at least 0.7 for both subjects and objects but are

simply mismatched (condition 3 in section 3.2 in the paper). In this way, we enforce the model

to learn all potential types of negatives.

At test-time, we feed all the 15, 000 proposals to ROI pooling layer by 2 mini-batches
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implemented as 2 forward passes of 7, 500 proposals since GPU memory is insufficient for one

single pass. Once we get compatibility scores for each of these proposals, we select the top

Nrel as the final relationship proposals where Nrel varies in our experiments.

It is worth mentioning that at train-time, we do not back-propagate either visual or spatial

compatibility loss to the preceding convolution layers (i.e., the 3-branch RPN module), because

those convolution layers are supposed to learn to generate subject, object and relationship boxes

independently without considering connections between boxes, so we should not blame them

for the loss from some incompatible box pairs. For example, if a subject box and an object

box are perfectly located, but they do not form a meaningful pair (i.e., there is no relationship

between them), then each of them should still be a positive sample for the subject and object

branch, but this pair of boxes is a negative sample for the compatibility module. Therefore,

we disable back-propagation of compatibility loss to the 3-branch RPN module in order to

eliminate such confusion.

3.4 Experiments

We evaluate our model by localizing relationships in images. To our best knowledge we are

the first to study relationship proposals, hence we demonstrate the necessity and superiority of

our method over several strong baselines derived from individual object proposals. We conduct

experiments and report state-of-art results on two datasets: Visual Genome (VG) relationships

[48] and Visual Relationship Detection (VRD) dataset [62].

3.4.1 Experimental Setup

Baseline Models. Our goal of studying the following baseline models is to evaluate the per-

formance of relationship proposals generated by some intuitive strategies. Given a set of N

object proposals P = {P1, P2, ..., PN}, the first strategy is to simply pair every two object

proposals (denoted as “pairwise”). A more sophisticated strategy is to pair each object with

its geometric nearest neighbors (denoted as “nns”), since intuitively speaking, closer objects

are more likely to be related. Specifically, our second baseline is to pair each proposal with

each of the top K nearest neighbors Q = {Q1, Q2, ..., QK}, resulting in N ×K relationship
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5000 proposals IoU≥0.5 IoU≥0.6 IoU≥0.7
SS, pairwise, 71×71 18.4 12.3 7.2

SS, nns, 100×50 19.5 12.6 7.1
SS, nns, 200×25 17.5 10.5 5.5
SS, nns, 400×13 14.8 8.4 4.2

EB, pairwise, 71×71 20.8 14.7 8.3
EB, nns, 100×50 21.9 14.8 7.5
EB, nns, 200×25 21 13 5.8
EB, nns, 400×13 18.7 10.5 4.2

RPN, pairwise, 71×71 27.3 19.2 9.4
RPN, nns, 100×50 32.5 22.5 9.8
RPN, nns, 200×25 34 21.1 8.1
RPN, nns, 400×13 28.3 15.8 5.2

Rel-PN, pro sel 37.1 22 8.5
Rel-PN, pro sel + spt 34.2 20.2 7.8
Rel-PN, pro sel + vis 39.1 24 9.7

Rel-PN, pro sel + vis + spt 39.4 24.2 9.9
Table 3.1: Recall rates on VG by 5000 proposals. “IoU≥t” means both subject and object boxes
overlap with ground-truth by at least t. “Rel-PN” represents our model, “nns” denotes nearest neighbors
search, “pro sel” denotes proposal selection, “vis” and “spt” stand for visual and spatial compatibility.

IoU≥0.5 2000 5000 8000 10000
SS, pairwise 14.9 18.4 20.5 21.5
EB, pairwise 16.4 20.8 23.3 24.4

RPN, pairwise 18.1 27.3 32.6 35.3
Rel-PN, pro sel 29.7 37.1 39.5 40.3

Rel-PN, pro sel + spt 25.2 34.2 39 41.2
Rel-PN, pro sel + vis 29.3 39.1 42.3 43.1

Rel-PN, pro sel + vis + spt 29.8 39.4 42.8 43.2
Table 3.2: Recall rates on VG with IoU≥0.5. Abbreviations are the same with Table 3.1.

proposals. Euclidean distance between box centers is used as the distance metric. Every pair

of 〈Pi, Qj〉(i = 1, ..., N, j = 1, ...,K) is used twice: one with Pi as subject and Qj as object,

and the other with Qi as subject and Pj as object. Duplicate pairs are removed if exist.

We consider three object proposal methods for each of these two strategies: Selective

Search (SS) [101], EdgeBoxes (EB) [147] and Region Proposal Network (RPN) [87]. For

SS and EB, we directly apply them on our testing images. For RPN, we use both subject and

object boxes as ground-truth for training, then use the trained model to generate individual

object proposals.

Our Model. We perform ablation studies on our model and compare results with the baselines.

Specifically, we consider the following variants of our model:
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• Proposal Selection. We select top N proposals by the average of subjectness and objectness

scores from the proposal selection module without feeding it to the compatibility module.

• Proposal Selection + Spatial Compatibility. We use only spatial confidence scores for the

final proposals.

• Proposal Selection + Visual Compatibility. We use only visual confidence scores for the

final proposals.

• Proposal Selection + Visual + Spatial Compatibility. This is our complete model. Visual

and spatial scores are combined as shown in section 3.2.3.

Evaluation Settings. We design the following two experiments and evaluate recall rates in

various settings:

1. 5000 proposals, varying IoU thresholds We fix the number of relationship proposals as

5000, leading to N = d
√

5000e = 71 object proposals for the pairwise strategy. For the

nearest-neighbor strategy, we generate 1) N = 100 object proposals with K = 50 nearest

neighbors for each; 2) N = 200 object proposals with K = 25 nearest neighbors for each;

3) N = 400 object proposals with K = 13 nearest neighbors for each. We use 0.5, 0.6, 0.7

for Intersection over Union (IoU) thresholds and report recall rates of relationship proposals

where both subject and object overlap with ground-truth by at least the threshold.

2. IoU≥0.5, varying number of proposals We fix the baseline strategy as pairwise and gener-

ate Nrel =2000, 5000, 8000 and 10000 relationship proposals for baselines and our models.

For the baselines, the corresponding numbers of object proposals are N = d
√
Nrele = 45,

71, 90 and 100. For our models, we directly select the top 2000, 5000, 8000 and 10000

proposals ranked by scores from our different modules.

3.4.2 Visual Genome

The Visual Genome dataset (VG) contains 108, 077 images with 21 relationships on average

per image. Each relationship is of the form 〈subject, predicate, object〉 with annotated subject

and object bounding boxes. We follow [39] and split the data into 103, 077 training images and
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Figure 3.3: Recall vs IoU on VG with various numbers of proposals. We compare against the pairwise
baselines for 2000, 8000 and 10000 proposals while considering both pairwise and nearest-neighbor
baselines for 5000 proposals.

5, 000 testing images. We train the model for 300k iterations with a learning rate of 0.001 for

the first 200k and 0.0001 for the last 100k.

Quantitative Results. The results of the first experiment are shown in Table 3.1, while the

second experiment is reported in Table 3.2. We also show Recall vs IoU curves with 2000,

5000, 8,000 and 10,000 proposals in Figure 3.3. We make the following observations:

• Table 3.1 shows that using 5000 proposals, which is of a reasonable complexity, our complete

model achieves the highest recall against all baselines and variants of our model.

• Even without compatibility evaluation, the proposal selection module alone (“Rel-PN, pro sel”

in Table 3.1) can achieve 37.1% recall, due to the accuracy of union box localization, and

the efficient strategy of selecting qualified subject-object pairs using the union boxes.
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(a) 〈woman, hold, controller〉(Interactive) (b) 〈woman, holding, bike〉(Interactive)

(c) 〈man, play, soccer ball〉(Interactive) (d) 〈animal, under, tree〉(Positional)

(e) 〈elephant, behind, dog〉(Positional) (f) 〈airplane, in, sky〉(Positional)

(g) 〈woman, wearing, scarf〉(Attributive) (h) 〈tire, on, bus〉(Attributive)

Figure 3.4: Example relationship proposals on VG. Red and blue boxes are ground-truth subject and
object, yellow and green boxes are outputs from our model.

• The visual compatibility is clearly more important than spatial. Using only visual compati-

bility can lead to a sub-optimal performance (39.1%), while using spatial compatibility alone

exhibits an obvious drop in recall. This is mainly because for general relationships, the dis-

tribution of spatial features are usually more uniform and thus less discriminating than visual

features. For example, the appearance of 〈man, fly, kite〉 usually involves a human holding

the string of a kite in the sky. However, the man’s size, the kite’s shape and the distance

between the man and kite often varies across different scenes, making it harder to learn by

using spatial features alone. That said, the spatial compatibility is still better than the best

nearest-neighbor baseline (37.1% vs 32.5%), since our spatial evaluation module learns to

cover various relationships with different spatial layouts, while nearest-neighbor methods

naively treat closer objects as providing better relationships.

• With a proper number of neighbors, the nearest-neighbor strategy is better than the pairwise
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5000 proposals IoU≥0.5 IoU≥0.6 IoU≥0.7
1.0 visual, 0.0 spatial 39.1 24 9.7
0.9 visual, 0.1 spatial 39.3 24.2 9.8
0.8 visual, 0.2 spatial 39.4 24.3 9.9
0.7 visual, 0.3 spatial 39.3 24.2 9.9
0.6 visual, 0.4 spatial 39 24 9.9
0.5 visual, 0.5 spatial 38.5 23.8 9.7

Table 3.3: Recall rates on VG with different values of α. The number of proposals is fixed as 5000

strategy. For example, using Edgeboxes by 100 object proposals with 50 neighbors (“EB,

nns, 100 × 50”) has a higher recall (21.9%) than using Edgeboxes in a pairwise manner

(“EB, pairwise, 71 × 71”). This benefit arises from considering more object proposals than

pairwise (100 vs 71) and pairing with closest objects, which are intuitively more likely to be

related. However, when the number of nearest neighborsK is much smaller than the number

of object proposals N , there is an obvious decrease in performance. This is because a small

number of nearest neighbors cannot cover medium or long distance relationships, such as

〈boy, fly, kite〉, where “boy” is on the ground and “kite” is high in the sky.

• As shown in Figure 3.3, our model works better for smaller IoU thresholds. We found that

this is mainly due to the same reason why RPN is not good when IoU values are high (see

Figure 2 in [87]), when unsupervised proposal methods (SS and EB) utilize pixel level clues

(e.g., superpixels in SS and edges in EB) to determine object boundaries, while RPN-like

networks regress proposals from anchor boxes using smaller size features (i.e., 7x7 from

conv5 3). Therefore, the regressed proposals have less ability to guarantee that object bound-

aries can be exactly located in the original image. Nevertheless, our model still outperforms

others when using a moderate number of proposals (e.g., 5000) with a reasonable IoU (e.g.,

IoU≥0.7).

Qualitative Results. In Figure 3.4, we show example proposals generated by our model with

their corresponding ground-truth. The phrase of each ground-truth relationship (e.g., 〈girl,

chasing, bubble〉) is also shown for better illustration. Our model is able to cover all three

types of relationships (interactive, positional, attributive). Note that subject and object boxes

have various shapes and distances, while our model correctly finds meaningful relationships

and accurately localizes subjects and objects by boxes.
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IoU≥0.5 2000 5000 8000 10000
SS, pairwise 22.1 28 31.4 33
EB, pairwise 15.1 20.6 24.2 25.2

RPN, pairwise 28.9 36.2 41 43
Rel-PN, pro sel 35.1 41.9 43.9 44.5

Rel-PN, pro sel + spt 27.2 38.6 44 46.1
Rel-PN, pro sel + vis 36.8 44.1 45.5 47

Rel-PN, pro sel + vis + spt 38.3 44.3 46.4 47.3
Table 3.4: Recall rates on VRD with IoU≥0.5.

Visual Compatibility Weight. In Table 3.3, we show recall rates with different values of the

visual compatibility weight α. We can see that results are close as long as visual compatibility

weighs are more than the spatial, since the spatial scores are generally less discriminating than

visual scores. However, combining a moderate amount of spatial information with visual scores

improves the performance (e.g., 0.3% gain from 39.1% of “1.0 visual, 0.0 spatial” to 39.4% of

“0.8 visual, 0.2 spatial”).

3.4.3 Visual Relationship Detection dataset

In this section we conduct experiments on the Visual Relationship dataset (VRD) from [62].

We use the same settings with the Visual Genome experiments. In Table 3.4 we observed

that our model outperforms baselines on small datasets as well. We also notice that here our

spatial module has an obviously better performance than Visual Genome (e.g., 44% for 8, 000

proposals and 46% for 10, 000). This is mainly because the annotated relationships in this

dataset are usually denser than Visual Genome, i.e., distances between subjects and objects are

smaller. Hence, the spatial distribution of relationships is more biased and easier to learn by

our spatial compatibility module.

We also report results of various methods on Visual relationship Detection (VRD) dataset

in Table 3.5. We notice that our model achieves better recall rates on VRD compared to Vi-

sual Genome (VG) with all the three IoU thresholds (see Table 1 in the paper). We attribute

this phenomenon to two factors: 1) The VRD dataset is cleaner than VG in that subjects and

objects are located more accurately and annotated with less ambiguity. For example, for some

relationships in VG where the objects are large areas, such as 〈sheep, eat, grass〉, the bounding

box for “grass” might be a small rectangle containing grass near the feet of the sheep, instead
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5000 proposals IoU≥0.5 IoU≥0.6 IoU≥0.7
SS, pairwise, 71×71 28 18.8 10

SS, nns, 100×50 29.1 18.7 9.3
SS, nns, 200×25 21 12 5.2
SS, nns, 400×13 14.3 7.9 3.3

EB, pairwise, 71×71 20.6 13.8 7.9
EB, nns, 100×50 21.6 14.7 7.4
EB, nns, 200×25 20.2 11.6 5.4
EB, nns, 400×13 18 9.5 3.4

RPN, pairwise, 71×71 28.4 20.8 10.3
RPN, nns, 100×50 33.5 23.3 10.1
RPN, nns, 200×25 31.4 18.9 7
RPN, nns, 400×13 24.9 13.8 4.1

Rel-PN, pro sel 41.9 24.3 8.9
Rel-PN, pro sel + spt 38.6 21.2 7.7
Rel-PN, pro sel + vis 42.9 25.2 9.6

Rel-PN, pro sel + vis + spt 44.3 26.6 10.6
Table 3.5: Recall rates on VRD by 5000 proposals. Abbreviations are the same with Table 1 in the
paper.

of the whole meadow where the sheep stands in. Such inaccuracy of annotation could confuse

the relationship proposer at train-time when it occurs in training data, and cause misjudgment

during test-time when it is in testing data. In contrast, this is barely the case in the VRD dataset;

2) VRD has only 100 object categories and 70 predicate types compared to 33,877 object cat-

egories and 40,480 unique relationships in VG, which also leads to a more limited and biased

space of relationship types than VG. Hence, not only our 3-branch RPN module has less bur-

den on individually generating initial subject and object candidates, but also our compatibility

module can learn to discriminate relationships from non-relationships more easily.

We also illustrate Recall vs IoU curves in Figure 3.5. Similar with VG, the gap between our

model and baselines is larger when the number of proposals is smaller and the IoU threshold

is smaller. Again, it is mainly due to the small size (7×7) of ROI-pooled features. Potential

solutions include enlarging this feature size by using dilation convolutions [142, 12, 125] or by

using deconvolutions [131].

3.5 More Qualitative Results on VG

We show more example relationship proposals from VG dataset in Figure 3.6. We fix the

number of proposals as 5,000 for all examples. For each image, the 5,000 proposals are ranked
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Figure 3.5: Recall vs IoU on VRD with various numbers of proposals.

by IoUs with ground-truth, and the shown proposal is selected from the top 17 with the best

illustrative effect.

3.6 Limitations

Although our model is able to localize meaningful relationships, these relationships might not

be significantly connected to the underlying scenes. For example, Figure 3.6m is mainly about

a man lying beside a dog, so the most important relationship should be 〈man, beside, dog〉.

Our model did localize this relationship as shown in Figure 3.6m, but it localized other trivial

relationships with higher accuracy. In fact, if we rank all the 5,000 proposals by IoUs with

ground-truth, the proposal for 〈man, beside, dog〉 is ranked only at 14th, while other minor

proposals with higher ranks include 〈head, on, pillow〉 at 1st (Figure 3.7a), 〈man, has, head〉

at 2nd (Figure 3.7b), 〈teeth, in, mouth〉 at 9th (Figure 3.7c), and 〈dog, in, bed〉 at 10th (Figure
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3.7d). Such failure of attending to the most interesting region in the scene is due to the lack

of global context of the scene (i.e., the whole image), which provides information about how

salient a relationship is given the image. A possible solution is to obtain context information

by spatial Recurrent Neural Networks (RNNs) [6, 104] and integrate into our 3-branch RPN

module so that subjects and objects with tighter connection to the background have higher

subjectness and objectness scores.
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(a) 〈sheep, eating, grass〉 (b) 〈man, surfing, wave〉

(c) 〈boy, with, frisbee〉 (d) 〈man, with, racket〉

(e) 〈bride, with, groom〉 (f) 〈people, riding, elephant〉

(g) 〈surfer, on, board〉 (h) 〈elephant, in, water〉

(i) 〈man, on, a skateboard〉 (j) 〈person, on, horse〉

(k) 〈boy, playing, frisbee〉
(l) 〈dogs, want, frisbee〉



39

(m) 〈man, beside, dog〉
(n) 〈kid, has, frisbee〉

(o) 〈person, on, snow board〉 (p) 〈girl, chasing, bubble〉

Figure 3.6: More example relationship proposals on VG. Red and blue boxes are ground-truth subject
and object, yellow and green boxes are outputs from our model.
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(a) 〈head, on, pillow〉 (b) 〈man, has, head〉

(c) 〈teeth, in, mouth〉 (d) 〈dog, in, bed〉
Figure 3.7: Illustration of our model’s limitation. These four output proposals are ranked prior to the
one shown in Figure 3.6m, which is supposed to be ranked at the top according to human’s perceptual
intuition about this image, since it is mostly about a man lies beside a dog.
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Chapter 4

Large-Scale Visual Relationship Understanding

Large scale visual understanding is challenging, as it requires a model to handle the widely-

spread and imbalanced distribution of 〈subject, relation, object〉 triples. In real-world scenarios

with large numbers of objects and relations, some are seen very commonly while others are

barely seen. We develop a new relationship detection model that embeds objects and relations

into two vector spaces where both discriminative capability and semantic affinity are preserved.

We learn a visual and a semantic module that map features from the two modalities into a

shared space, where matched pairs of features have to discriminate against those unmatched,

but also maintain close distances to semantically similar ones. Benefiting from that, our model

can achieve superior performance even when the visual entity categories scale up to more than

80, 000, with extremely skewed class distribution. We demonstrate the efficacy of our model on

a large and imbalanced benchmark based of Visual Genome that comprises 53, 000+ objects

and 29, 000+ relations, a scale at which no previous work has been evaluated at. We show

superiority of our model over competitive baselines on the original Visual Genome dataset

with 80, 000+ categories. We also show state-of-the-art performance on the VRD dataset and

the scene graph dataset which is a subset of Visual Genome with 200 categories.

4.1 Introduction

Scale matters. In the real world, people tend to describe visual entities with open vocabulary,

eg., the raw ImageNet [15] dataset has 21,841 synsets that cover a vast range of objects. The

number of entities is significantly larger for relationships since the combinations of 〈subject,

relation, object〉 are orders of magnitude more than objects [62, 84, 136]. Moreover, the long-

tailed distribution of objects can be an obstacle for a model to learn all classes sufficiently well,
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Figure 4.1: Relationships predicted by our approach on an image. Different relationships are colored
differently with a relation line connecting each subject and object. Our model is able to recognize
relationships composed of over 53, 000 object categories and over 29, 000 relation categories.

and such challenge is exacerbated in relationship detection because either the subject, the ob-

ject, or the relation could be infrequent, or their triple might be jointly infrequent. Figure 5.1

shows an example from the Visual Genome dataset, which contains commonly seen relation-

ship (e.g., 〈man,wearing,glasses〉) along with uncommon ones (e.g., 〈dog,next to,woman〉).

Another challenge is that object categories are often semantically associated [15, 48, 14],

and such connections could be more subtle for relationships since they are conditioned on the

contexts. For example, an image of 〈person,ride,horse〉 could look like one of 〈person,ride,ele-

-phant〉 since they both belong to the kind of relationships where a person is riding an animal,

but 〈person,ride,horse〉 would look very different from 〈person,walk with,horse〉 even though

they have the same subject and object. It is critical for a model to be able to leverage such

conditional connections.

In this work, we study relationship recognition at an unprecedented scale where the total

number of visual entities is more than 80,000. To achieve that we use a continuous output

space for objects and relations instead of discrete labels. We demonstrate our superiority over
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Figure 4.2: (a) Overview of the proposed approach. Ls, Lp, Lo are the losses of subject, relation and
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i and wo
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competitive baselines on a large and imbalanced benchmark based of Visual Genome that com-

prises 53, 000+ objects and 29, 000+ relations. We also achieve state-of-the-art performance

on the Visual Relationship Detection (VRD) dataset [62], and the scene graph dataset [114].

4.2 Method

Figure 4.2 shows the work flow of our model. We take an image as input to the visual module

and output three visual embeddings xs, xp, and xo for subject, relation, and object. During

training we take word vectors of subject, relation, object as input to the semantic module and

output three semantic embeddings ys, yp, yo. We minimize the loss by matching the visual

and semantic embeddings using our designed losses. During testing we feed word vectors of

all objects and relations and use nearest neighbor searching to predict relationship labels. The

following sections describe our model in details.

4.2.1 Visual Module

The design logic of our visual module is that a relation exists when its subject and object exist,

but not vice versa. Namely, relation recognition is conditioned on subject and object, but object
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recognition is independent from relations. The main reason is that we want to learn embed-

dings for subject and object in a separate semantic space from the relation space. That is, we

want to learn a mapping from visual feature space (which is shared among subject/object and

relation) to the two separate semantic embedding spaces (for objects and relations). Therefore,

involving relation features for subject/object embeddings would have the risk of entangling the

two spaces. Following this logic, as shown in Figure 4.2 an image is fed into a CNN (conv1 1

to conv5 3 of VGG16) to get a global feature map of the image, then the subject, relation and

object features zs, zp, zo are ROI-pooled with the corresponding regions RS , RP , RO, each

branch followed by two fully connected layers which output three intermediate hidden features

hs2, hp2, ho2. For the subject/object branch, we add another fully connected layer ws
3 to get the

visual embedding xs, and similarly for the object branch to get xo. For the relation branch, we

apply a two-level feature fusion: we first concatenate the three hidden features hs2, hp2, ho2 and

feed it to a fully connected layerwp
3 to get a higher-level hidden feature hp3, then we concatenate

the subject and object embeddings xs and xo with hp3 and feed it to two fully connected layers

wp
4 w

p
5 to get the relation embedding xp.

4.2.2 Semantic Module

On the semantic side, we feed word vectors of subject, relation and object labels into a small

MLP of one or two fc layers which outputs the embeddings. As in the visual module, the sub-

ject and object branches share weights while the relation branch is independent. The purpose

of this module is to map word vectors into an embedding space that is more discriminative

than the raw word vector space while preserving semantic similarity. During training, we feed

the ground-truth labels of each relationship triplet as well as labels of negative classes into the

semantic module, as the following subsection describes; during testing, we feed the whole sets

of object and relation labels into it for nearest neighbors searching among all the labels to get

the top k as our prediction.

A good word vector representation for object/relation labels is critical as it provides proper

initialization that is easy to fine-tune on. We consider the following word vectors:

Pre-trained word2vec embeddings (wiki). We rely on the pre-trained word embeddings pro-

vided by [71] which are widely used in prior work. We use this embedding as a baseline, and
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show later that by combining with other embeddings we achieve better discriminative ability.

Relationship-level co-occurrence embeddings (relco). We train a skip-gram word2vec model

that tries to maximize classification of a word based on another word in the same context.

As is in our case we define context via our training set’s relationships, we effectively learn

to maximize the likelihoods of P (P |S,O) as well as P (S|P,O) and P (O|S, P ). Although

maximizing P (P |S,O) is directly optimized in [128], we achieve similar results by reducing

it to a skip-gram model and enjoy the scalability of a word2vec approach.

Node2vec embeddings (node2vec). As the Visual Genome dataset further provides image-

level relation graphs, we also experimented with training node2vec embeddings as in [31].

These are effectively also word2vec embeddings, but the context is determined by random

walks on a graph. In this setting, nodes correspond to subjects, objects and relations from the

training set and edges are directed from S → P and from P → O for every image-level graph.

This embedding can be seen as an intermediate between image-level and relationship level co-

occurrences, with proximity to the one or the other controlled via the length of the random

walks.

4.2.3 Training Loss

To learn the joint visual and semantic embedding we employ a modified triplet loss. Traditional

triplet loss [46] encourages matched embeddings from the two modalities to be closer than

the mismatched ones by a fixed margin, while our version tries to maximize this margin in a

softmax form. In this subsection we review the traditional triplet loss and then introduce our

triplet-softmax loss in a comparable fashion. To this end, we denote the two sets of triplets for

each positive visual-semantic pair by (xl, yl):

trilx = {xl, yl, xl−} (4.1)

trily = {xl, yl, yl−} (4.2)

where l ∈ {s, p, o}, and the two sets trix, triy correspond to triplets with negatives from the

visual and semantic space, respectively.
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Triplet loss. If we omit the superscripts {s, p, o} for clarity, the triplet loss LTr for each branch

is summation of two losses LTr
x and LTr

y :

LTr
x =

1

NK

N∑
i=1

K∑
j=1

max[0,m+ s(yi, x
−
ij)− s(yi, xi)] (4.3)

LTr
y =

1

NK

N∑
i=1

K∑
j=1

max[0,m+ s(xi, y−ij)− s(xi, yi)] (4.4)

LTr = LTr
x + LTr

y (4.5)

whereN is the number of positive ROIs,K is the number of negative samples per positive ROI,

m is the margin between the distances of positive and negative pairs, and s(·, ·) is a similarity

function.

We can observe from Equation (3) that as long as the similarity between positive pairs is

larger than that between negative ones by margin m, [m+ s(xi, x−ij)− s(xi, yi)] ≤ 0, and thus

max(0, ·) will return zero for that part. That means, during training once the margin is pushed

to be larger than m, the model will stop learning anything from that triplet. Therefore, it is

highly likely to end up with an embedding space where points are not discriminative enough

for a classification-oriented task.

It is worth noting that although theoretically traditional triplet loss can pushes the margin

as much as possible when m = 1, most previous works (eg., [46, 19, 29]) adopted a small m to

allow slackness during training. It is also unclear how to determine the exact value of m given

a specific task. We follow previous works and set m = 0.2 in all of our experiments.

Triplet-Softmax loss. The issue of triplet loss mentioned above can be alleviated by applying

softmax on top of each triplet, i.e.:

LTrSm
x =

1

N

N∑
i=1

− log
es(yi,xi)

es(yi,xi) +
∑K

j=1 e
s(yi,x

−
ij)

(4.6)

LTrSm
y =

1

N

N∑
i=1

− log
es(xi,yi)

es(xi,yi) +
∑K

j=1 e
s(xi,y−ij)

(4.7)

LTrSm = LTrSm
x + LTrSm

y (4.8)



47

where s(·, ·) is the same similarity function (we use cosine similarity in this paper). All the

other notations are the same as above. For each positive pair (xi, yi) and its corresponding set

of negative pairs (xi, y−ij), we calculate similarities between each of them and put them into a

softmax layer followed by multi-class logistic loss so that the similarity of positive pairs would

be pushed to be 1, and 0 otherwise. Compared to triplet loss, this loss always tries to enlarge

the margin to its largest possible value (i.e., 1), thus has more discriminative power than the

traditional triplet loss.

Visual Consistency loss. To further force the embeddings to be more discriminative, we add

a loss that pulls closer the samples from the same category while pushes away those from

different categories, i.e.:

Lc =
1

NK

N∑
i=1

K∑
j=1

max[0,m+ s(xi, x−ij)− min
l∈C(i)

s(xi, xl)] (4.9)

where N is the number of positive ROIs, C(l) is the set of positive ROIs in the same class

of xi, K is the number of negative samples per positive ROI and m is the margin between

the distances of positive and negative pairs. The interpretation of this loss is: the minimum

similarity between samples from the same class should be larger than any similarity between

samples from different classes by a margin. Here we utilize the traditional triplet loss format

since we want to introduce slackness between visual embeddings to prevent embeddings from

collapsing to the class centers.

Empirically we found it the best to use triplet-softmax loss for Ly while using triplet loss

for Lx. The reason is similar with that of the visual consistency loss: mode collapse should be

prevented by introducing slackness. On the other hand, there is no such issue for y since each

label y is a mode by itself, and we encourage all modes of y to be separated from each other.

In conclusion, our final loss is:

L =LTrSm
y + αLTr

x + βLc (4.10)

where we found that α = β = 1 works reasonably well for all scenarios.

Implementation details. For all the three datasets, we train our model for 7 epochs using 8
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GPUs. We set learning rate as 0.001 for the first 5 epochs and 0.0001 for the rest 2 epochs.

We initialize each branch with weights pre-trained on COCO [59]. For the word vectors, we

used the gensim library [86] for both word2vec and node2vec [31]. For the triplet loss, we

set m = 0.2 as the default value.

For the VRD and VG200 datasets, we need to predict whether a box pair has relationship,

since unlike VG80k where we use ground-truth boxes, here we want to use general proposals

that might contain non-relationships. In order for that, we add an additional “unknown” cate-

gory to the relation categories. The word “unknown” is semantically dissimilar with any of the

relations in these datasets, hence its word vector is far away from those relations’ vectors.

There is a critical factor that significantly affects our triplet-softmax loss. Since we use

cosine similarity, s(·, ·) is equivalent to dot product of two normalized vectors. We empirically

found that simply feeding normalized vector could cause gradient vanishing problem, since

gradients are divided by the norm of input vector when back-propagated. This is also observed

in [6] where it is necessary to scale up normalized vectors for successful learning. Similar with

[6], we set the scalar to a value that is close to the mean norm of the input vectors and multiply

s(·, ·) before feeding to the softmax layer. We set the scalar to 3.2 for VG80k and 3.0 for VRD

in all experiments.

ROI Sampling. One of the critical things that powers Fast-RCNN is the well-designed ROI

sampling during training. It ensures that for most ground-truth boxes, each has 32 positive

ROIs and 128 − 32 = 96 negative ROIs, where positivity is defined as overlap IoU >= 0.5.

In our setting, ROI sampling is similar for the subject/object branch, while for the relation

branch, positivity is defined as both subject and object IoUs >= 0.5. Accordingly, we sample

64 subject ROIs with 32 unique positives and 32 unique negatives, and do the same thing for

object ROIs. Then we pair all the 64 subject ROIs with 64 object ROIs to get 4096 ROI pairs as

relationship candidates. For each candidate, if both ROIs’ IoU >= 0.5 we mark it as positive,

otherwise negative. We finally sample 32 positive and 96 negative relation candidates and use

the union of each ROI pair as a relation ROI. In this way we end up with a consistent number

of positive and negative ROIs for the relation branch.
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4.3 Experiments

Datasets. We present experiments on three datasets, the original Visual Genome (VG80k) [48],

the version of Visual Genome with 200 categories (VG200) [114], and Visual Relationship

Detection (VRD) dataset [62].

• VRD. The VRD dataset [62] contains 5,000 images with 100 object categories and 70 re-

lations. In total, VRD contains 37,993 relation annotations with 6,672 unique relations and

24.25 relationships per object category. We follow the same train/test split as in [62] to get

4,000 training images and 1,000 test images. We use this dataset to demonstrate that our

model can work reasonably well on small dataset with small category space, even though it

is designed for large-scale settings.

• VG200. We also train and evaluate our model on a subset of VG80k which is widely used

in previous methods [114, 76, 133, 116]. There are totally 150 object categories and 50

predicate categories in this dataset. We use the same train/test splits as in [114]. Similarly

with VRD, the purpose here is to show our model is also state-of-the-art in large-scale sample

but small-scale category settings.

• VG80k. We use the latest version of Visual Genome (VG v1.4) [48] that contains 108, 077

images with 21 relationships on average per image. We follow [39] and split the data

into 103, 077 training images and 5, 000 testing images. Since text annotations of VG are

noisy, we first clean it by removing non-alphabet characters and stop words, and use the

autocorrect library to correct spelling. Following that, we check if all words in an an-

notation exist in the word2vec dictionary [71] and remove those that do not. We run this

cleaning process on both training and testing set and get 99, 961 training images and 4, 871

testing images, with 53, 304 object categories and 29, 086 relation categories. We further

split the training set into 97, 961 training and 2, 000 validation images.1

Evaluation protocol. For VRD, we use the same evaluation metrics used in [128], which runs

relationship detection using non-ground-truth proposals and reports recall rates using the top 50

1We will release the cleaned annotations along with our code.
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Relationship Phrase Relationship Detection Phrase Detection
free k k = 1 k = 10 k = 70 k = 1 k = 10 k = 70

Recall at 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100

w/ proposals from [62]
CAI*[146] 15.63 17.39 17.60 19.24 - - - - - - - - - - - -
Language cues[84] 16.89 20.70 15.08 18.37 - - 16.89 20.70 - - - - 15.08 18.37 - -
VRD[62] 17.43 22.03 20.42 25.52 13.80 14.70 17.43 22.03 17.35 21.51 16.17 17.03 20.42 25.52 20.04 24.90
Ours 19.18 22.64 21.69 25.92 16.08 17.07 19.18 22.64 18.89 22.35 18.32 19.78 21.69 25.92 21.39 25.65

w/ better proposals
DR-Net*[13] 17.73 20.88 19.93 23.45 - - - - - - - - - - - -
ViP-CNN[55] 17.32 20.01 22.78 27.91 17.32 20.01 - - - - 22.78 27.91 - - - -
VRL[56] 18.19 20.79 21.37 22.60 18.19 20.79 - - - - 21.37 22.60 - - - -
PPRFCN*[135] 14.41 15.72 19.62 23.75 - - - - - - - - - - - -
VTransE* 14.07 15.20 19.42 22.42 - - - - - - - - - - - -
SA-Full*[82] 15.80 17.10 17.90 19.50 - - - - - - - - - - - -
CAI*[146] 20.14 23.39 23.88 25.26 - - - - - - - - - - - -
KL distilation[128] 22.68 31.89 26.47 29.76 19.17 21.34 22.56 29.89 22.68 31.89 23.14 24.03 26.47 29.76 26.32 29.43
Zoom-Net[122] 21.37 27.30 29.05 37.34 18.92 21.41 - - 21.37 27.30 24.82 28.09 - - 29.05 37.34
CAI + SCA-M[122] 22.34 28.52 29.64 38.39 19.54 22.39 - - 22.34 28.52 25.21 28.89 - - 29.64 38.39
Ours 26.98 32.63 32.90 39.66 23.68 26.67 26.98 32.63 26.98 32.59 28.93 32.85 32.90 39.66 32.90 39.64

Table 4.1: Comparison with state-of-the-art on the VRD dataset.

Scene Graph Detection Scene Graph Classification Predicate Classification
Recall at 20 50 100 20 50 100 20 50 100
VRD[62] - 0.3 0.5 - 11.8 14.1 - 27.9 35.0
Message Passing[114] - 3.4 4.2 - 21.7 24.4 - 44.8 53.0
Message Passing+ 14.6 20.7 24.5 31.7 34.6 35.4 52.7 59.3 61.3
Associative Embedding[76] 6.5 8.1 8.2 18.2 21.8 22.6 47.9 54.1 55.4
Frequency 17.7 23.5 27.6 27.7 32.4 34.0 49.4 59.9 64.1
Frequency+Overlap 20.1 26.2 30.1 29.3 32.3 32.9 53.6 60.6 62.2
MotifNet-LeftRight [133] 21.4 27.2 30.3 32.9 35.8 36.5 58.5 65.2 67.1
Ours 20.7 27.9 32.5 36.0 36.7 36.7 66.8 68.4 68.4

Table 4.2: Comparison with state-of-the-art on the VG200 dataset.

and 100 relationship predictions, with k = 1, 10, 70 relations per relationship proposal before

taking the top 50 and 100 predictions.

For VG200, we use the same evaluation metrics used in [133], which uses three modes: 1)

predicate classification: predict predicate labels given ground truth subject and object boxes

and labels; 2) scene graph classification: predict subject, object and predicate labels given

ground truth subject and object boxes; 3) scene graph detection: predict all the three labels

and two boxes. Recalls under the top 20, 50, 100 predictions are used as metrics. The mean is

computed over the 3 evaluation modes over R@50 and R@100 as in [133].

For VG80k, we evaluate all methods on the whole 53, 304 object and 29, 086 relation cat-

egories. We use ground-truth boxes as relationship proposals, meaning there is no localization

errors and the results directly reflect recognition ability of a model. We use the following met-

rics to measure performance: (1) top1, top5, and top10 accuracy, (2) mean reciprocal ranking

(rr), defined as 1
M

∑M
i=1

1
ranki

, (3) mean ranking (mr), defined as 1
M

∑M
i=1 ranki, smaller is

better.
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4.3.1 Evaluation of Relationship Detection on VRD

We first validate our model on VRD dataset with comparison to state-of-the-art methods using

the metrics presented in [128] in Table 5.8. Note that there is a variable k in this metric which

is the number of relation candidates when selecting top50/100. Since not all previous methods

specified k in their evaluation, we first report performance in the “free k” column when consid-

ering k as a hyper-parameter that can be cross-validated. For methods where the k is reported

for 1 or more values, the column reports the performance using the best k. We then list all

available results with specific k in the right two columns.

For fairness, we split the table in two parts. The top part lists methods that use the same

proposals from [62], while the bottom part lists methods that are based on a different set of

proposals, and ours uses better proposals obtained from Faster-RCNN as previous works. We

can see that we outperform all other methods with proposals from [62] even without using

message-passing-like post processing as in [55, 13], and also very competitive to the overall

best performing method from [128]. Note that although spatial features could be advantageous

for VRD according to previous methods, we do not use them in our model in concern of large-

scale settings. We expect better performance if integrating spatial features for VRD, but for

model consistency we do experiments without it everywhere.

4.3.2 Scene Graph Classification & Detection on VG200

We present our results in Table 4.2. Note that scene graph classification isolates the factor of

subject/object localization accuracy by using ground truth subject/object boxes, meaning that

it focuses more on the relationship recognition ability of a model, and predicate classification

focuses even more on it by using ground truth subject/object boxes and labels. It is clear that the

gaps between our model and others are higher on scene graph/predicate classification, meaning

our model displays superior relation recognition ability.

4.3.3 Relationship Recognition on VG80k

Baselines. Since there is no previous method that has been evaluated in our large-scale set-

ting, we carefully design 3 baselines to compare with. 1) 3-branch Fast-RCNN: an intuitively
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Relationship Triplet Relation
top1 top5 top10 rr mr top1 top5 top10 rr mr

All classes
3-branch Fast-RCNN 9.73 41.95 55.19 52.10 16.36 36.00 69.59 79.83 50.77 7.81
ours w/ triplet 8.01 27.06 35.27 40.33 32.10 37.98 61.34 69.60 48.28 14.12
ours w/ softmax 14.53 46.33 57.30 55.61 16.94 49.83 76.06 82.20 61.60 8.21
ours final 15.72 48.83 59.87 57.53 15.08 52.00 79.37 85.60 64.12 6.21
Tail classes
3-branch Fast-RCNN 0.32 3.24 7.69 24.56 49.12 0.91 4.36 9.77 4.09 52.19
ours w/ triplet 0.02 0.29 0.58 7.73 83.75 0.12 0.61 1.10 0.68 86.60
ours w/ softmax 0.00 0.07 0.47 20.36 58.50 0.00 0.08 0.55 1.11 65.02
ours final 0.48 13.33 28.12 43.26 45.48 0.96 7.61 16.36 5.56 45.70

Table 4.3: Results on all relation classes and tail classes (#occurrence ≤ 1024) in VG80k. Note that
since VG80k is extremely imbalanced, classes with no greater than 1024 occurrences are still in the tail.
In fact, there are more than 99% of relation classes but only 10.04% instances of these classes that occur
for no more than 1024 times.

0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024
Frequency Intervals

20

10

0

10

20

Re
la

tiv
e 

Ac
cu

ra
cy

(%
)

Ours with softmax
Ours with triplet
Ours final

(a) Top 5 rel triplet

0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024
Frequency Intervals

20

10

0

10

20

Re
la

tiv
e 

Ac
cu

ra
cy

(%
)

Ours with softmax
Ours with triplet
Ours final

(b) Top 5 relation

Figure 4.3: Top-5 relative accuracies against the 3-branch Fast-RCNN baseline in the tail intervals. The
intervals are defined as bins of 32 from 1 to 1024 occurrences of the relation classes.

straightforward model is a Fast-RCNN with a shared conv1 to conv5 backbone and 3 fc

branches for subject, relation and object respectively, where the subject and object branches

share weights since they are essentially an object detector; 2) our model with softmax loss: we

replace our loss with softmax loss; 3) our model with triplet loss: we replace our loss with

triplet loss.

Results. As shown in Table 4.3, we can see that our loss is the best for the general case where

all instances from all classes are considered. The baseline has reasonable performance but

is clearly worse than ours with softmax, demonstrating that our visual module is critical for

efficient learning. Ours with triplet is worse than ours with softmax in the general case since

triplet loss is not discriminative enough among the massive data. However it is the opposite

for tail classes (i.e., #occurrence ≤ 1024), since recognition of infrequent classes can benefit

from the transferred knowledge learned from frequent classes, which the softmax-based model

is not capable of. Another observation is that although the 3-branch Fast-RCNN baseline works
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Relationship Triplet Relation
Methods top1 top5 top10 rr mr top1 top5 top10 rr mr
wiki 15.59 46.03 54.78 52.45 25.31 51.96 78.56 84.38 63.61 8.61
relco 15.58 46.63 55.91 54.03 22.23 52.00 79.06 84.75 63.90 7.74
wiki + relco 15.72 48.83 59.87 57.53 15.08 52.00 79.37 85.60 64.12 6.21
wiki + node2vec 15.62 47.58 57.48 54.75 20.93 51.92 78.83 85.01 63.86 7.64
0 sem layer 11.21 28.78 34.84 38.64 43.49 44.66 60.06 64.74 51.60 24.74
1 sem layer 15.75 48.23 58.28 55.70 19.15 51.82 78.94 85.00 63.79 7.63
2 sem layer 15.72 48.83 59.87 57.53 15.08 52.00 79.37 85.60 64.12 6.21
3 sem layer 15.49 48.42 58.75 56.98 15.83 52.00 79.19 85.08 63.99 6.40
no concat 10.47 42.51 54.51 51.51 20.16 36.96 70.44 80.01 51.62 9.26
early concat 15.09 45.88 55.72 54.72 19.69 49.54 75.56 81.49 61.25 8.82
late concat 15.57 47.72 58.05 55.34 19.27 51.06 78.15 84.47 63.03 7.90
both concat 15.72 48.83 59.87 57.53 20.62 52.00 79.37 85.60 64.12 6.21
Ly 15.21 47.28 57.77 55.06 19.12 50.67 78.21 84.70 62.82 7.31
Ly + Lx 15.07 47.37 57.85 54.92 19.59 50.60 78.06 84.40 62.71 7.60
Ly + Lc 15.53 47.97 58.49 55.78 18.55 51.48 78.99 84.90 63.59 7.32
Ly + Lx + Lc 15.72 48.83 59.87 57.53 15.08 52.00 79.37 85.60 64.12 6.21

Table 4.4: Ablation study of our model on VG80k.

poorly in the general case, it is better than our model with softmax. Since the main difference

of them is with and without visual feature concatenation, it means that integrating subject and

object features does not necessarily helps infrequent relation classes. This is because subject

and object features could lead to strong prior on the relation, resulting in lower chance of

predicting infrequent relation when using softmax. For example, when seeing a rare image

where the relationship is “dog ride horse”, subject being “dog” and object being “horse” would

give very little probability to the relation “ride”, even though it is the correct answer. Our model

alleviates this problem by not mapping visual features directly to the discrete categorical space,

but to a continuous embedding space where visual similarity is preserved. Therefore, when

seeing the visual features of “dog”, “horse” and the whole “dog ride horse” context, our model

is able to associate them with a visually similar relationship “person ride horse” and correctly

output the relation “ride”.

4.3.4 Ablation Study

Variants of our model. We explore variants of our model in 4 dimensions: 1) the semantic

embeddings fed to the semantic module; 2) structure of the semantic module; 3) structure of

the visual module; 4) the losses. The default settings of them are 1) using wiki + relco; 2) 2

semantic layer; 3) with both visual concatenation; 4) with all the 3 loss terms. We fix the other

3 dimensions as the default settings when exploring one of them.
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Relationship Triplet Relation
λ = top1 top5 top10 rr mr top1 top5 top10 rr mr
1.0 0.00 0.61 3.77 22.43 48.24 0.04 1.12 5.97 4.11 21.39
2.0 8.48 27.63 34.26 35.25 46.28 44.94 70.60 76.63 56.69 13.20
3.0 14.19 39.22 46.71 48.80 29.65 51.07 74.61 78.74 61.74 10.88
4.0 15.72 47.19 56.94 54.80 20.85 51.67 78.66 84.23 63.53 8.68
5.0 15.72 48.83 59.87 57.53 15.08 52.00 79.37 85.60 64.12 6.21
6.0 15.32 47.99 58.10 55.57 18.67 51.60 78.95 85.05 63.62 7.23
7.0 15.11 44.72 54.68 54.04 20.82 51.23 77.37 83.37 62.95 7.86
8.0 14.84 45.12 54.95 54.07 20.56 51.25 77.67 83.36 62.97 7.81
9.0 14.81 45.72 55.81 54.29 20.10 50.88 78.59 84.70 63.08 7.21
10.0 14.71 45.62 55.71 54.19 20.19 51.07 78.64 84.78 63.21 7.26

Table 4.5: Performances of our model on VG80k validation set with different values of the scaling factor.
We use scaling factor λ = 5.0 for all our experiments on VG80k.

The scaling factor before softmax. As mentioned in the implementation details, this value

scales up the output by a value that is close to the average norm of the input and prevents

gradient vanishing caused by the normalization. Specifically, for Eq(7) in the paper we use

s(x, y) = λ xT y
||x||||y|| where λ is the scaling factor. In Table 4.5 we show results of our model

when changing the value of the scaling factor applied before the softmax layer. We observe

that when the value is close to the average norm of all input vectors (i.e., 5.0), we achieve

optimal performance, although slight difference of this value does not change results too much

(i.e., when it is 4.0 or 6.0). It is clear that when the scaling factor is 1.0, which is equivalent

to training without scaling, the model is not sufficiently trained. We therefore pick 5.0 for this

scaling factor for all the other experiments on VG80k.

Which semantic embedding to use? We explore 4 settings: 1) wiki and 2) relco use wikipedia

and relationship-level co-occurrence embedding alone, while 3) wiki + relco and 4) wiki +

node2vec use concatenation of two embeddings. The intuition of concatenating wiki with relco

and node2vec is that wiki contains common knowledge acquired outside of the dataset, while

relco and node2vec are trained specifically on VG80k, and their combination provides abun-

dant information for the semantic module. As shown in Table 4.4, fusion of wiki and relco

outperforms each one alone with clear margins. We found that using node2vec alone does not

perform reasonably, but wiki + node2vec is competitive to others, demonstrating the efficacy of

concatenation.

Number of semantic layers. We also study how many, if any, layers are necessary to embed

the word vectors. As it is shown in Table 4.4, directly using the word vectors (0 semantic layers)
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Relationship Triplet Relation
m = top1 top5 top10 rr mr top1 top5 top10 rr mr
0.1 7.77 29.84 38.53 42.29 28.13 36.50 63.50 70.20 47.48 14.20
0.2 8.01 27.06 35.27 40.33 32.10 37.98 61.34 69.60 48.28 14.12
0.3 5.78 24.39 33.26 37.03 34.55 36.75 58.65 64.86 46.62 20.62
0.4 3.82 22.55 31.70 34.10 36.26 34.89 57.25 63.74 45.04 21.89
0.5 3.14 19.69 30.01 31.63 38.25 33.65 56.16 62.77 43.88 23.19
0.6 2.64 15.68 27.65 29.74 39.70 32.15 55.08 61.68 42.52 24.25
0.7 2.17 11.35 24.55 28.06 41.47 30.36 54.20 60.60 41.02 25.23
0.8 1.87 8.71 16.30 26.43 43.18 29.78 53.43 60.01 40.29 26.19
0.9 1.43 7.44 11.50 24.76 44.83 28.35 51.73 58.74 38.89 27.27
1.0 1.10 6.97 10.51 23.57 46.60 27.49 50.72 58.10 37.97 28.13

Table 4.6: Performances of triplet loss on VG80k validation set with different values of margin m. We
use margin m = 0.2 for all our experiments in the main paper.

is not a good substitute of our learned embedding; raw word vectors are learned to represent as

much associations between words as possible, but not to distinguish them. We find that either

1 or 2 layers give similarly good results and 2 layers are slightly better, though performance

starts to degrade when adding more layers.

Are both visual feature concatenations necessary? In Table 4.4, “early concat” means using

only the first concatenation of the three branches, and “late concat” means the second. Both

early and late concatenation boost performance significantly compared to no concatenation,

and it is the best with both. Another observation is that late concatenation is better than early

alone. We believe the reason is, as mentioned above, relations are naturally conditioned on

and constrained by subjects and objects, e.g., given “man” as subject and “chair” as object,

it is highly likely that the relation is “sit on”. Since late concatenation is at a higher level,

it integrates features that are more semantically close to the subject and object labels, which

gives stronger prior to the relation branch and affects relation prediction more than the early

concatenation.

Do all the losses help? In order to understand how each loss helps training, we trained 3 models

of which each excludes one or two loss terms. We can see that using Ly+Lx is similar with Ly,

and it is the best with all the three losses. This is because Lx pulls positive x pairs close while

pushes negative x away. However, since (x, y) is a many-to-one mapping (i.e., multiple visual

features could have the same label), there is no guarantee that all x with the same y would be

embedded closely, if not using Lc. By introducing Lc, x with the same y are forced to be close

to each other, and thus the structural consistency of visual features is preserved.
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Figure 4.4: Qualitative results. Our model recognizes a wide range of relation ship triples. Even if they
are not always matching the ground truth they are frequently correct or at least reasonable as the ground
truth is not complete.

The margin m in triplet loss We show results of triplet loss with various values for the margin

m in Table 4.6. As described earlier, this value allows slackness in pushing negative pairs away

from positive ones. We observe similar results with previous works [46, 19] that it is the best

to set m = 0.1 or m = 0.2 in order to achieve optimal performance. It is clear that triplet loss

is not able to learn discriminative embeddings that are suitable for classification tasks, even

with larger m that can theoretically enforce more contrast against negative labels. We believe

that the main reason is that in a hinge loss form, triplet loss treats all negative pairs equally

“hard” as long as they are within the margin m. However, as shown by the successful softmax

models, “easy” negatives (e.g., those that are close to positives) should be penalized less than

those “hard” ones, which is a property our model has since we utilize softmax for contrastive

training.
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4.3.5 Qualitative results

The VG80k has densely annotated relationships for most images with a wide range of types.

In Figure 4.4 there are interactive relationships such as “boy flying kite”, “batter holding bat”,

positional relationships such as “glass on table”, “man next to man”, attributive relationships

such as “man in suit” and “boy has face”. Our model is able to cover all these kinds, no

matter frequent or infrequent, and even for those incorrect predictions, our answers are still

semantic meaningful and similar to the ground-truth, e.g., the ground-truth “lamp on pole” v.s.

the predicted “light on pole”, and the ground-truth “motorcycle on sidewalk” v.s. the predicted

“scooter on sidewalk”.

4.4 Summary

In this work we study visual relationship detection at an unprecedented scale and propose a

novel model that can generalize better on long tail class distributions. We find it is crucial

to integrate subject and object features at multiple levels for good relation embeddings and

further design a loss that learns to embed visual and semantic features into a shared space,

where semantic correlations between categories are kept without hurting discriminative ability.

We validate the effectiveness of our model on multiple datasets, both on the classification and

detection task, and demonstrate the superiority of our approach over strong baselines and the

state-of-the-art. Future work includes integrating a relationship proposal into our model that

would enable end-to-end training.
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Chapter 5

Graphical Contrastive Losses for Scene Graph Parsing

Most scene graph parsers use a two-stage pipeline to detect visual relationships: the first stage

detects entities, and the second predicts the predicate for each entity pair using a softmax dis-

tribution. We find that such pipelines, trained with only a cross entropy loss over predicate

classes, suffer from two common errors. The first, Entity Instance Confusion, occurs when the

model confuses multiple instances of the same type of entity (e.g. multiple cups). The sec-

ond, Proximal Relationship Ambiguity, arises when multiple subject-predicate-object triplets

appear in close proximity with the same predicate, and the model struggles to infer the correct

subject-object pairings (e.g. mis-pairing musicians and their instruments). We propose a set of

contrastive loss formulations that specifically target these types of errors within the scene graph

parsing problem, collectively termed the Graphical Contrastive Losses. These losses explicitly

force the model to disambiguate related and unrelated instances through margin constraints

specific to each type of confusion. We further construct a relationship detector, called RelDN,

using the aforementioned pipeline to demonstrate the efficacy of our proposed losses. Our

model outperforms the winning method of the OpenImages Relationship Detection Challenge

by 4.7% (16.5% relative) on the test set. We also show improved results over the best previous

methods on the Visual Genome and Visual Relationship Detection datasets.

5.1 Introduction

Given an image, the aim of scene graph parsing is to infer a visually grounded graph comprising

localized entity categories, along with edges denoting their pairwise relationships. This is often

formulated as the detection of 〈subject, predicate, object〉 triplets, e.g. 〈man, holds, guitar〉

in Figure 5.1b. Current state-of-the-art methods achieve this goal by a two-stage mechanism:

first detecting entities, then predicting a predicate for each pair of entities.
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(a) without our losses (b) with our losses

Figure 5.1: Example of failure of models without our losses and success of our losses. (a) RelDN
learned with only multi-class cross-entropy loss incorrectly relates the man with the microphone,
while (b) RelDN learned with our Graphical Contrastive Losses detects the correct relationship
〈man, holds, guitar〉.

We find that scene graph parsing models using such pipelines tend to struggle with two

types of errors. The first is Entity Instance Confusion, in which the subject or object is

related to one of many instances of the same class, and the model fails to distinguish between

the target instance and the others. We show an example in Figure 5.2a, in which the model

identifies the man is holding a wine glass, but struggles to determine exactly which of the 3

visually similar wine glasses is being held. The incorrectly predicted wine glass is transparent

and intersecting with the left arm, which makes it look like being held. The second type of

error, Proximal Relationship Ambiguity, occurs when the image contains multiple subject-

object pairs interacting in the same way, and the model fails to identify the correct pairing. An

example can be seen in the multiple musicians ”playing” their respective instruments in Figure

5.2b. Due to their close proximity, visual features for each musician-instrument pair overlap

significantly, making it difficult for the scene graph models to identify the correct pairings.

The primary cause of these two failures lies in the inherent difficulty of inferring rela-

tionships like “hold” and “play” from visual cues. Concretely, which glass is being held is

determined by the small part of the hand that covers the glass. Whether a player is playing the

drum can only be inferred by very subtle visual cues such as his standing pose or where his

fingers are placed. It is challenging for any model to learn to attend to these details precisely,

and it would be impractical to specify which details to focus on for all kinds of relationships,

let alone to learn all these details. These challenges motivate the need for a mechanism that can

automatically learn fine details that determine visual relationships, and explicitly discriminate
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(a) Entity Instance Confusion (b) Proximal Rel Ambiguity
Figure 5.2: Examples of Entity Instance Confusion and Proximal Relationship Ambiguity. Red boxes
highlight relationships our baseline model predicts incorrectly. (a) the man is not holding the predicted
wine glass. (b) the guitar player on the right is not playing drum.

related entities from unrelated ones, for all types of relationships. This is the goal of our work.

In this paper we propose a set of Graphical Contrastive Losses to tackle these issues. The

losses use the form of the margin-based triplet loss, but are specifically designed to address the

two aforementioned errors. It adds additional supervision in the form of hard negatives spe-

cific to Entity Instance Confusion and Proximal Relationship Ambiguity. To demonstrate the

effectiveness of our proposed losses, we design a relationship detection network named RelDN

using the aforementioned pipeline with our losses. Figure 5.1 shows a result of RelDN with N-

way cross-entropy loss only vs. with our additional contrastive losses. Our best model achieves

0.328 on the Private set of the OpenImages Relationship Detection Challenge, outperforming

the winning model by a significant 4.7% (16.5% relative) margin. It also attains state-of-the-art

performance on the Visual Genome[48] and VRD[62] datasets.

In this paper, we denote subject, predicate, object and attribute with s, pred, o, a. We use

“entity” to describe individual detected objects to distinguish from “object” in the semantic

sense, and use “relationships” to describe the entire 〈s, pred, o〉 tuple, not to be confused with

“predicate,” which is an element of said tuple.



61

5.2 Graphical Contrastive Losses

Our Graphical Contrastive Losses encompass three types of loss, each addressing the two afore-

mentioned issues in their own way: 1) Class Agnostic: contrasts positive/negative entity pairs

regardless of their relation and adds contrastive supervision for generic cases; 2) Entity Class

Aware: addresses the issue in Figure 5.2a by focusing on entities with the same class; 3) Pred-

icate Class Aware: addresses the issue in Figure 5.2b by focusing on entity pairs with the same

potential predicate. We define our contrastive losses over an affinity term Φ(s, o), which can be

interpreted as the probability that subject s and object o have some relationship or interaction.

Given a model that outputs the distribution over predicate classes conditioned on a subject and

object pair p(pred|s, o), we define Φ(s, o) as:

Φ(s, o) = 1− p(pred = ∅|s, o) (5.1)

where ∅ is the class symbol representing no relationship. This is equivalent to summing

over all predicate classes except ∅.

5.2.1 Class Agnostic Loss

Our first contrastive loss term aims to maximize the affinity of the lowest scoring positive

pairing and minimize the affinity of the highest scoring negative pairing. For a subject indexed

by i and an object indexed by j, the margins we wish to maximize can be written as:

ms
1(i) = min

j∈V+
i

Φ(si, o
+
j )− max

k∈V−
i

Φ(si, o
−
k )

mo
1(j) = min

i∈V+
j

Φ(s+i , oj)− max
k∈V−

j

Φ(s−k , oj)

(5.2)

where V+i and V−i represent sets of objects related to and not related to subject si; V+j and

V−j are defined similarly for object j as the sets of subjects related to and not related to oj .
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The class agnostic loss for all sampled positive subjects and objects is written as:

L1 =
1

N

N∑
i=1

max(0, α1 −ms
1(i))

+
1

N

N∑
j=1

max(0, α1 −mo
1(j))

(5.3)

where N is the number of annotated entities and α1 is the margin threshold.

This loss tries to contrast positive and negative (s, o) pairs, ignoring any class information,

and is similar to the triplet losses used referring expression and phrase-grounding literature. We

found it works as well in our scenario and even better with the following class-aware losses, as

shown in Table 5.3.

5.2.2 Entity Class Aware Loss

The Entity Class Aware loss deals with entity instance confusion, in which the model struggles

to determine interactions between a subject (object) and multiple instances of a same-class

object (subject). It can be viewed as an extension of the Class Agnostic loss where we further

specify a class c when populating the positive and negative sets V+ and V−. We extend the

formulation in equation (5.3) as:

ms
2(i, c) = min

j∈Vc+
i

Φ(si, o
+
j )− max

k∈Vc−
i

Φ(si, o
−
k )

mo
2(j, c) = min

i∈Vc+
j

Φ(s+i , oj)− max
k∈Vc−

j

Φ(s−k , oj)

(5.4)

where Vc+i , Vc−i , Vc+j and Vc−j are now constrained to instances of class c.

The entity class aware loss for all sampled positive subjects and objects is defined as

L2 =
1

N

N∑
i=1

1

|C(V+i )|
∑

c∈C(V+
i )

max(0, α2 −ms
2(i, c))

+
1

N

N∑
j=1

1

|C(V+j )|
∑

c∈C(V+
j )

max(0, α2 −mo
2(j, c))

(5.5)

where C() returns the set of unique classes of the sets V+i and V+j as defined in the class
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agnostic loss. Compared to the class agnostic loss which maximizes the margins across all

instances, this loss maximizes the margins between instances of the same class. It forces a

model to disentangle confusing entities illustrated in Figure 5.2a, where the subject has several

potentially related objects with the same class.

5.2.3 Predicate Class Aware Loss

Similar to the entity class aware loss, this loss maximizes the margins within groups of instances

determined by their associated predicates. It is designed to deal with the proximal relationship

ambiguity as exemplified in Figure 5.2b, where instances joined by the same predicate class are

within close proximity of each other. In the context of Figure 5.2b, this loss would encourage

the correct pairing of who is playing which instrument by penalizing wrong pairing, i.e., “man

plays drum” in the red box. Replacing the class groupings in equation (5.4) with predicate

groupings restricted to predicate class e, we define our margins to maximize as:

ms
3(i, e) = min

j∈Ve+
i

Φ(si, o
+
j )− max

k∈Ve−
i

Φ(si, o
−
k )

mo
3(j, e) = min

i∈Ve+
j

Φ(s+i , oj)− max
k∈Ve−

j

Φ(s−k , oj)

(5.6)

Here, we define the sets Ve+i and Ve+j as the sets of subject-object pairs where the ground

truth predicate between si and oj is e, anchored with respect to subject i and object j respec-

tively. We define the sets Ve−i and Ve−j as is the set of instances where the model incorrectly

predicts (via argmax) the predicate to be e, anchored with respect to subject i and object j

respectively.

The predicate class aware loss for all sampled positive subjects and objects is defined as

L3 =
1

N

N∑
i=1

1

|E(V+i )|
∑

e∈E(V+
i )

max(0, α3 −ms
3(i, e))

+
1

N

N∑
j=1

1

|E(V+j )|
∑

e∈E(V+
j )

max(0, α3 −mo
3(j, e))

(5.7)

where E() returns the set of unique predicates associated with the input (excluding ∅). The
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final loss is expressed as:

L = L0 + λ1L1 + λ2L2 + λ3L3 (5.8)

where L0 is the cross-entropy loss over predicate classes.

5.2.4 Complexity Analysis

We look at the case where the subject si is fixed and we vary object for positive/negative

pairings. The reverse case (object fixed, subject varies) has the same complexity. All sampling

is conducted on the entities of a single image per batch. The set of entities include ground truth

bounding boxes, as well as any detector output with >= 0.5 IOU to ground truth entities.

For the Class Agnostic Loss L1, the computational complexity of the sampling procedure

isO(N2), whereN is the upper bounded on number of sampled entities per image. In practice,

for each subject, we randomly sample at most K non-related objects (negative pairings), which

makes the actual complexity O(NK).

For the Entity Class Aware Loss L2, the sampling procedure is the same as with L1, except

that we need to keep only those non-related objects that are of class c, i.e., the object class of

the current o in the sampled (s, o) pair. This involves a filtering operation on the K objects

which takes O(K) time, therefore the overall complexity is still O(NK).

The analysis for the Predicate Class Aware Loss L3 is similar to that of L2, except that

the filtering operation looks at the predicate class e instead of the object class c. The overall

complexity is also O(NK).

We set N = 512 and K = 64 per batch in practice.

5.3 RelDN

We demonstrate the efficacy of our proposed losses with our Relationship Detection Network

(RelDN). The RelDN follows a two stage pipeline: it first identifies a proposal set of likely

subject-object relationship pairs, then extracts features from these candidate regions to perform

a fine-grained classification into a predicate class. We build a separate CNN branch for pred-

icates (conv body rel) with the same structure as that of entity detector CNN (conv body det)
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Figure 5.3: The RelDN model architecture. The structures of conv body det and conv body rel are
identical. We freeze the weights of the former and only train the latter.

to extract predicate features. The intuition for having a separate branch is that we want visual

features for predicates to focus on the interactive areas of subjects and objects as opposed to

individual entities. As Figure 5.4 illustrates, the predicate CNN clearly learns better features

which concentrate on regions that strongly imply relationships.

The first stage of the RelDN exhaustively returns bounding box regions containing every

pair. In the second stage, it computes three types of features for each relationship proposal:

semantic, visual, and spatial. Each feature is used to output a set of class logits, which we

combine via element-wise addition, and apply softmax normalization to attain a probability

distribution over predicate classes. See Figure 5.3 for our model pipeline.

Semantic Module: The semantic module conditions the predicate class prediction on subject-

object class co-occurrence frequencies. It is inspired by Zeller, et al. [132] which introduced

a frequency baseline that performs reasonably well on Visual Genome by counting frequen-

cies of predicates given subject and object. Its motivation is that in general, the combination

of relationships between two entities is usually very limited, e.g., the relationship between a

person-horse subject-object pairing is most likely to be “ride”, “walk”, or “feed”, and unlikely

to be “stand on” or “wear”. For each training image, we count the occurrences of predicate

class pred given subject and object classes s and o in the ground truth annotations. This gives

us an empirical distribution p(pred|s, o). We assume that the test set is also drawn from the

same distribution.

Spatial Module: The spatial module conditions the predicate class predictions on the relative

positions of the subject and object. One of the major predicate types are about positions, for

example, “on”, “under”, or “inside of.” These predicate types can often be inferred using only
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relative spatial information. We capture spatial information by encoding the box coordinates of

subjects and objects using the box delta [87] and normalized coordinates.

We define the delta feature between two sets of bounding box coordinates as follows:

∆(b1, b2) = 〈x1 − x2
w2

,
y1 − y2
h2

, log
w1

w2
, log

h1
h2
〉 (5.9)

where b1 and b2 are two coordinate tuples in the form of (x, y, w, h).

We then compute the normalized coordinate features for a bounding box b as follows:

c(b) = 〈 x

wimg
,
y

himg
,
x+ w

wimg
,
y + h

himg
,

wh

wimghimg
〉 (5.10)

where wimg and himg are the width and height dimensions of the image. Our spatial feature

vector for the subject, object, and predicate bounding boxes bs, bo, bpred is represented as:

〈∆(bs, bo),∆(bs, bpred),∆(bpred, bo), c(bs), c(bo)〉 (5.11)

Note that bpred is the tightest bounding box around bs and bo. This feature vector is fed through

an MLP to attain predicate class logit scores.

Visual Module: The visual module produces a set of class logits conditioned ROI feature

maps, as in the fast-RCNN pipeline. We extract subject and object ROI features from the entity

detector’s convolution layers (conv body det in Figure 5.3) and extract predicate ROI features

from the relationship convolution layers (conv body rel in Figure 5.3). The subject, object, and

predicate feature vectors are concatenated and passed through an MLP to attain the predicate

class logits.

We also include two skip-connections projecting subject-only and object-only ROI features

to the predicate class logits. These skip connections are inspired by the observation that many

relationships, such as human interactions [26], can be accurately inferred by the appearance of

only the subjects or objects. We show an improvement from adding these skip connections in

5.5.4.

Module Fusion: As illustrated in Figure 5.3, we obtain the final probability distribution over
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(a) ground truth (b) conv body det (c) conv body rel

Figure 5.4: Visualization of CNN features by averaging over the channel dimension of convolution
feature maps [130]. (a) shows the image ground truth relationships, (b) shows the convolution feature
from the entity detector backbone, and (c) shows the feature from the predicate backbone. In all the
three examples there are clear shifts of salience from large entities to small areas that strongly indicate
the predicates (highlighted in white boxes).

predicate classes by adding the three scores followed by softmax normalization:

ppred = softmax(fvis + fspt + fsem) (5.12)

where fvis, fspt, fsem are unnormalized class logits from the visual, spatial, semantic modules.

5.4 Implementation Details

We train the entity detector CNN (conv body det) independently using entity annotations, then

fix it when training our model. While previous works [55, 13, 122] claim it is beneficial to fine-

tune the entity detector end-to-end with the second stage of the pipeline, we opt to freeze our

entity detector weights for simplicity. We initialize the predicate CNN (conv body rel) with

the entity detector’s weights and fine-tune it end-to-end with the second stage.

During training, we independently sample positive and negative pairs for each loss, subject

to their respective constraints. For L0, we sample 512 pairs in total where 128 of them are

positive. For our class-agnostic loss, we sample 128 positive subjects, then for each of them

sample the two closet contrastive pairs according to Eq.5.2; we do the sampling symmetrically
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for objects. For our entity and predicate aware losses, we sample in the same way with class-

agnostic except that negative pairs are grouped by entity and predicate classes, as described

in Eq.5.4,5.6. We set λ1 = 1.0, λ2 = 0.5, λ3 = 0.1, determined by cross-validations, for all

experiments.

During testing, we take up to 100 outputs from the entity detector and exhaustively group

all pairs as relationship proposals/entity pairs. We rank relationship proposals by multiplying

the predicted subject, object, predicate probabilities as pdet(s) · ppred(pred) · pdet(o) where

pdet(s),pdet(o) are the probabilities of the predicted subject and object classes from the entity

detector, and ppred(pred) is the probability of the predicted predicate class from the result of

Eq.5.12.

To match the architectures of previous state-of-the-art methods, We use ResNeXt-101-FPN

[113, 58] as our OpenImages backbone and VGG-16 on Visual Genome (VG) and Visual Re-

lationship Detection (VRD).

5.5 Experiments

We present experimental results on three datasets: OpenImages (OI) [1], Visual Genome (VG)

[48] and Visual Relationship Detection (VRD) [62]. We first report evaluation settings, fol-

lowed by ablation studies and finally external comparisons.

5.5.1 Evaluation Settings

OpenImages: The full train and val sets contains 53,953 and 3,234 images, which takes our

model 2 days to train. For quick comparisons, we sample a “mini” subset of 4,500 train and

1,000 validation images where predicate classes are sampled proportionally with a minimum

of one instance per class in train and val. We first conduct parameter searches on the mini set,

then train and compare with the top model of the OpenImages VRD Challenge [1] on the full

set. We show two types of results, one using the same entity detector from the top model, and

the other using a detector trained by our own initialized by COCO pre-trained weights.

In the OpenImages Challenge, results are evaluated by calculating Recall@50 (R@50),

mean AP of relationships (mAPrel), and mean AP of phrases (mAPphr). The final score is
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L0 L1 L2 L3 R@50 mAPrel mAPphr score mAP*
rel mAP*

phr score*

X 74.67 35.28 41.04 45.46 33.87 38.99 44.08
X X 75.06 44.18 50.19 52.76 35.24 40.30 45.23
X X 74.64 36.19 41.71 46.09 34.67 39.61 44.64
X X 74.88 34.80 40.47 45.08 34.92 40.01 44.95
X X X 75.03 35.10 41.18 45.52 35.09 40.22 45.13
X X X 75.30 43.96 49.61 52.49 34.89 39.87 44.96
X X X 75.00 35.83 41.32 45.86 34.62 39.70 44.73
X X X X 74.94 39.09 44.47 48.41 35.82 40.43 45.49

Table 5.1: Ablation Study on our losses with the official mAPrel, mAPphr and score metrics. Metric
marked with a * means “under” and “hits” are excluded from evaluation. The fluctuating numbers
in mAPrel, mAPphr and score indicate that the mAP metrics are unstable and unreliable, while when
“under” and “hits” are excluded, all the results become consistent with Table 5.3.

R@50 mAPrel mAPphr score
L0 61.72 25.20 35.37 36.57

L0 + L1 + L2 + L3 62.65 26.77 36.79 37.95
Table 5.2: Comparison of our model with Graphical Contrastive Loss vs. without the loss on 100 im-
ages containing the 5 classes that suffer from the two aforementioned confusions, selected via visual
inspection on a random set of images. The metrics are the official mAPrel, mAPphr and the score. The
“under” and “hits” predicates are not in this 100 image subset.

obtained by score = 0.2 × R@50 + 0.4 ×mAPrel + 0.4 ×mAPphr. The mAPrel evaluates

AP of s, pred, o triplets where both the subject and object boxes have an IOU of at least 0.5

with ground truth. The mAPphr is similar, but applied to the enclosing relationship box1. In

practice, we find mAPrel and mAPphr to suffer from extreme predicate class imbalance. For

example, 64.48% of the relationships in val have the predicate “at”, while only 0.03% of them

are “under”. This means a single “under” relationship is worth much more than the more

common “at” relationships. We address this by scaling each predicate category by their relative

ratios in the val set, which we refer to as the weighted mAP (wmAP). We use wmAP in all of

our ablation studies (Table 5.3-5.6), in addition to reporting scorewtd which replaces mAP with

wmAP in the score formula.

We compare with other top models on the official evaluation server. The official test set is

split into a Public and Private set with a 30%/70% split. The Public set is used as a dev set. We

present individual results for both, as well as their weighted average under Overall in Table 5.9.

Visual Genome: We follow the same train/val splits and evaluation metrics as [132]. We

1More details of evaluation can be found on the official page: https://storage.googleapis.com/
openimages/web/vrd_detection_metric.html
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L0 only with our losses

(a) Entity Instance Confusion

L0 only with our losses

(b) Proximal Relationship Ambiguity
Figure 5.5: Example results of RelDN with L0 only and with our losses. The top row shows RelDN
outputs and the bottom row visualizes the learned predicate CNN features of the two models. Red and
green boxes highlight the wrong and right outputs (the first row) or feature saliency (the second row).
As it shows, our losses force the model to attend to the representative regions that discriminate the
correct relationships against unrelated entity pairs, thus is able to disentangle entity instance confusion
and proximal relationship ambiguity.

train our entity detector initialized by COCO pre-trained weights. Following [132], we con-

duct three evaluations: scene graph detection(SGDET), scene graph classification (SGCLS),

and predicate classification (PRDCLS). We report results for these tasks with and without the

Graphical Contrastive Losses.

VRD: We evaluate our model with entity detectors initialized by ImageNet and COCO pre-

trained weights. We use the same evaluation metrics as in [128], which reports R@50 and

R@100 for relationship predictions at 1, 10, and 70 predicates per entity pair.

5.5.2 Loss Analysis

Loss Combinations: We now look at whether our proposed losses reduce two aforementioned

errors without affecting the overall performance, and whether all three losses are necessary.

Results in Table 5.3 show that combination of all the three losses with the N-way cross-entropy

loss (L0 + L1 + L2 + L3) has consistently superior performance over just L0. Notably, APrel

on “holds” improves by from 41.84 to 43.09 (+1.3). It improves even more significantly from

36.04 to 41.04 (+5.0) on “plays” and from 40.43 to 44.16 (+3.7) on “interacts with” respec-

tively. These three classes suffer the most from the two aforementioned problems. Our results

also show that any subset of the losses is worse than the entire ensemble. We see that L0 +L1,
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L0 + L2 and L0 + L3 are inferior to L0 + L1 + L2 + L3, especially on “holds”, “plays”, and

“interacts with”, where the largest margin is 3.87 (L0 +L2 vs. L0 +L1 +L2 +L3 on “play”).

To better verify the isolated impact of our losses, we carefully sample a subset of 100 im-

ages containing five predicates that significantly suffer from the two aforementioned problems,

selected via visual inspection on a random set of images. The five predicates are “at”, “holds”,

“plays”, “interacts with”, and “wears”. We sample them by looking at the raw images and

select those with either entity instance confusion or proximal relationship ambiguity. Example

images can be found in Figure 5.7. Table 5.4 shows comparison of our losses with L0 only on

this subset. The overall gap is 1.4 and the largest gap is 4.1 at APrel on “holds”.

Figure 5.5 shows two examples from this subset, one containing entity instance confusion

and the other containing proximal relationship ambiguity. In Figure 5.5a the model with only

L0 fails to identify the wine glass being held, while by adding our losses, the area surrounding

the correct wine glass lights up. In Figure 5.5b 〈woman, plays, drum〉 is incorrectly predicted

since the L0-only model mistakenly pairs the unplayed drum with the singer – a reasonable

error considering the amount of person-play-drum examples as well as the relative proximities

between the singer and the drum. Our losses successfully suppress that region and attend to the

correct microphone being held, demonstrating the effectiveness of our hard-negative sampling

strategies.

Margin Thresholds: We study the effects of various values of the margin thresholds α1, α2, α3

used in Eq.5.3,5.5,5.7. For each experiment, we set α1 = α2 = α3 = m while varying m. As

shown in Table 5.6, we observe similar results with previous work [46, 103] that m = 0.1 or

m = 0.2 achieves the best performance. Note that m = 1.0 is the largest possible margin, as

our affinity scores range from 0 to 1.

5.5.3 Loss Analysis with the Official mAP metrics

Here, we show our ablation studies using the official uniform-class-weighting evaluation met-

rics, mAPrel, mAPphr and score. We also include mAP*
rel, mAP*

phr and score*, which is the

standard mAP and score excluding “under” and “hits” in the evaluation. Table 5.1 presents

ablation study results on loss components. Table 5.2 shows comparison between the L0-only

model against the model with our losses on the 100 selected images. In Table 5.1 the variation
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APrel per class
L0 L1 L2 L3 R@50 wmAPrel wmAPphr scorewtd at on holds plays interacts with wears inside of under hits
X 74.67 34.63 37.89 43.94 32.40 36.51 41.84 36.04 40.43 5.70 44.17 25.00 55.40
X X 75.06 35.25 38.37 44.46 32.78 36.96 42.93 37.55 43.30 9.01 44.15 100.00 50.95
X X 74.64 35.03 38.18 44.21 32.76 36.82 42.24 37.17 40.47 8.53 44.71 33.33 49.68
X X 74.88 35.19 38.27 44.36 32.88 36.73 42.38 38.03 43.53 6.71 44.18 16.67 52.06
X X X 75.03 35.38 38.50 44.56 32.95 37.10 42.82 38.58 43.66 6.79 43.72 20.00 50.24
X X X 75.30 35.30 38.27 44.49 32.92 36.73 42.58 38.81 44.13 6.35 42.74 100.00 51.40
X X X 75.00 35.12 38.34 44.39 32.79 36.47 42.31 39.74 41.35 6.11 43.57 25.00 55.12
X X X X 74.94 35.54 38.52 44.61 32.92 37.00 43.09 41.04 44.16 7.83 44.72 50.00 51.04

Table 5.3: Ablation Study on our losses. We report a frequency-balanced wmAP instead of mAP, as
the test set is extremely imbalanced and would fluctuate wildly otherwise (see fluctuations in columns
“under” and “hits”). We also report scorewtd, which is the official OI scoring formula but with wmAP
in place of mAP. “Under” and “hits” are not highlighted due to having too few instances.

APrel per class APphr per class
R@50 wmAPrel wmAPphr scorewtd at holds plays interacts with wears at holds plays interacts with wears

L0 61.72 25.80 33.15 35.92 14.77 26.34 42.51 21.33 21.03 21.76 35.88 48.57 38.74 31.92
L0 + L1 + L2 + L3 62.65 27.37 34.58 37.31 16.18 30.39 42.73 22.40 22.14 22.67 39.60 48.09 40.96 32.64

Table 5.4: Comparison of our model with Graphical Contrastive Loss vs. without the loss on 100 im-
ages containing the 5 classes that suffer from the two aforementioned confusions, selected via visual
inspection on a random set of images.

of numbers using mAP and score demonstrates the necessity of de-emphasizing the extremely

infrequent classes. Note that the mAP*-based columns show a similar trend to our wmAP-

based results from the paper. In Table 5.2, the model with our losses is still better than the

L0-only model by a non-trivial margin, mainly because the former outperform the latter on al-

most every per-class AP metric for those 5 selected classes. Note that since “under” and “hits”

are not in the 100 image subset, there is no need to evaluate with mAP*
rel, mAP*

phr and score*.

5.5.4 Model Analysis

We conduct an effectiveness evaluation on the three modules of the RelDN. For the visual

module, we also investigate the two skip-connections. As Table 5.5 shows, the semantic module

alone cannot solve relationship detection by using language bias only. By adding the basic

visual feature, i.e., the 〈S,P,O〉 concatenation, we see a significant 4.7 gain, which is further

improved by adding additional separate S,O skip-connections, especially at “plays” (+3.1),

“interacts with” (+1.0), “wears” (+2.0) where subjects’ or objects’ appearance and poses are

highly representative of the interactions. Finally, adding the spatial module gives the best

results, and the most obvious gaps are at spatial relationships, i.e., “at” (+0.2), “on” (+0.2),

“inside of” (+2.4).
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APrel per class
R@50 wmAPrel wmAPphr scorewtd at on holds plays interacts with wears inside of under hits

sem only 72.98 28.73 33.07 39.32 28.62 24.52 37.04 27.33 38.37 3.16 16.34 25.00 38.45
sem + 〈S,P,O〉 74.97 34.70 37.96 44.06 32.26 36.26 42.44 38.47 41.63 6.50 40.97 20.00 54.38

sem + vis 75.12 35.22 38.33 44.44 32.68 36.83 42.09 41.53 42.58 8.49 42.31 33.33 53.95
sem + vis + spt 74.94 35.54 38.52 44.61 32.92 37.00 43.09 41.04 44.16 7.83 44.72 50.00 51.04

Table 5.5: Ablation Study on RelDN modules. sem only means using only the semantic module without
training any model; 〈S,P,O〉 means using only the 〈S,P,O〉 concatenation without the separate S,O layers
in the visual module; vis means our full visual module, and spt means spatial module. “Under” and
“hits” are not highlighted due to having too few instances.

R@50 wmAPrel wmAPphr scorewtd

m = 0.1 75.09 35.29 38.43 44.51
m = 0.2 74.94 35.54 38.52 44.61
m = 0.5 74.64 35.14 38.39 44.34
m = 1.0 74.28 34.17 37.75 43.62

Table 5.6: Ablation Study on the margin threshold m. We use m = 0.2 everywhere in our experiments.

Graph Constraint No Graph Constraint
SGDET SGCLS PRDCLS SGDET SGCLS PRDCLS

Recall at 20 50 100 20 50 100 20 50 100 50 100 50 100 50 100
VRD[62] - 0.3 0.5 - 11.8 14.1 - 27.9 35.0 - - - - - -
Associative Embedding[76] 6.5 8.1 8.2 18.2 21.8 22.6 47.9 54.1 55.4 9.7 11.3 26.5 30.0 68.0 75.2
Message Passing[114] - 3.4 4.2 - 21.7 24.4 - 44.8 53.0 - - - - - -
Message Passing+[132] 14.6 20.7 24.5 31.7 34.6 35.4 52.7 59.3 61.3 22.0 27.4 43.4 47.2 75.2 83.6
Frequency[132] 17.7 23.5 27.6 27.7 32.4 34.0 49.4 59.9 64.1 25.3 30.9 40.5 43.7 71.3 81.2
Frequency+Overlap[132] 20.1 26.2 30.1 29.3 32.3 32.9 53.6 60.6 62.2 28.6 34.4 39.0 43.4 75.7 82.9
MotifNet-NOCONTEXT[132] 21.0 26.2 29.0 31.9 34.8 35.5 57.0 63.7 65.6 29.8 34.7 43.4 46.6 78.8 85.9
MotifNet-LeftRight[132] 21.4 27.2 30.3 32.9 35.8 36.5 58.5 65.2 67.1 30.5 35.8 44.5 47.7 81.1 88.3
RelDN, L0 only 20.8 28.1 32.5 36.1 36.7 36.7 66.7 68.3 68.3 30.1 36.4 48.9 50.8 93.7 97.7
RelDN 21.1 28.3 32.7 36.1 36.8 36.8 66.9 68.4 68.4 30.4 36.7 48.9 50.8 93.8 97.8
RelDN (X-101-FPN) 22.5 31.0 36.7 38.2 38.9 38.9 67.2 68.7 68.8 32.6 40.0 51.7 53.6 94.0 97.8

Table 5.7: Comparison with state-of-the-arts on VG. L0 only is the RelDN without our losses. We also
include results of our model with ResNeXt-101-FPN as the backbone for future work reference.

Relationship Phrase Relationship Detection Phrase Detection
free k k = 1 k = 10 k = 70 k = 1 k = 10 k = 70

Recall at 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100
PPRFCN*[135] 14.41 15.72 19.62 23.75 - - - - - - - - - - - -
VTransE* 14.07 15.20 19.42 22.42 - - - - - - - - - - - -
SA-Full*[82] 15.80 17.10 17.90 19.50 - - - - - - - - - - - -
DR-Net*[13] 17.73 20.88 19.93 23.45 - - - - - - - - - - - -
ViP-CNN[55] 17.32 20.01 22.78 27.91 17.32 20.01 - - - - 22.78 27.91 - - - -
VRL[56] 18.19 20.79 21.37 22.60 18.19 20.79 - - - - 21.37 22.60 - - - -
CAI*[146] 20.14 23.39 23.88 25.26 - - - - - - - - - - - -
KL distilation[128] 22.68 31.89 26.47 29.76 19.17 21.34 22.56 29.89 22.68 31.89 23.14 24.03 26.47 29.76 26.32 29.43
Zoom-Net[122] 21.37 27.30 29.05 37.34 18.92 21.41 - - 21.37 27.30 24.82 28.09 - - 29.05 37.34
CAI + SCA-M[122] 22.34 28.52 29.64 38.39 19.54 22.39 - - 22.34 28.52 25.21 28.89 - - 29.64 38.39
RelDN, L0 only (ImageNet) 21.62 26.12 28.59 35.18 19.57 22.61 21.62 26.12 21.62 26.12 26.39 31.28 28.59 35.18 28.59 35.18
RelDN (ImageNet) 21.52 26.38 28.24 35.44 19.82 22.96 21.52 26.38 21.52 26.38 26.37 31.42 28.24 35.44 28.24 35.44
RelDN, L0 only (COCO) 26.67 32.55 33.29 41.25 24.30 27.91 26.67 32.55 26.67 32.55 31.09 36.42 33.29 41.25 33.29 41.25
RelDN (COCO) 28.15 33.91 34.45 42.12 25.29 28.62 28.15 33.91 28.15 33.91 31.34 36.42 34.45 42.12 34.45 42.12

Table 5.8: Comparison with state-of-the-art on VRD (− means unavailable / unknown). Same with
Table 5.7, L0 only is the RelDN without our losses. “Free k” means considering k as a hyper-parameter
that can be cross-validated.

5.5.5 Comparison to State of the Art

OpenImages: We present results compared with top 5 models from the Challenge in Table 5.9.

We surpass the 1st place Seiji by 4.7% on Private set and 2.9% on the full set, which is in fact
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Team ID Public Private Overall
radek 0.289 0.201 0.227
toshif 0.256 0.228 0.237
tito 0.256 0.237 0.243

Kyle 0.280 0.235 0.249
Seiji 0.332 0.285 0.299

RelDN∗ 0.327 0.299 0.308
RelDN 0.320 0.332 0.328

Table 5.9: Comparison with models from OpenImages Challenge. RelDN∗ means using the same entity
detector from Seiji, the champion model. Overall is computed as 0.3*Public+0.7*Private. Note that this
table uses the official mAPrel and mAPphr metrics.

a significant margin considering the low absolute scores and the large amount of test images

(99,999 in total). Even using the same entity detector as Seiji, we noticeable gaps (1.4% and

0.8%) on the two sets.

Visual Genome: Table 5.7 shows that our model is better than state-of-the-arts on all metrics.

It outperforms the previous best, MotifNet-LeftRight, by a 2.4% gap on Scene Graph Detec-

tion (SGDET) with Recall@100 and by a 12.7% gap on Predicate Classification (PRDCLS)

with Recall@50. Note that although our entity detector is better than MotifNet-LeftRight on

mAP at 50% IoU (25.5 vs. 20.0), our implementation of Frequency+Overlap baseline (Re-

call@20: 16.2, Recall@50: 19.8, Recall@100: 21.5) is not better than their version (Re-

call@20: 21.0, Recall@50: 26.2, Recall@100: 30.1), indicating that our better relationship

performance mostly comes from our model design.

We also observe that our losses achieve smaller gains over the standard cross-entropy loss

setup than it does on OpenImages mini. The reasons are two-fold: 1) One of the few dominant

relationship types in the Visual Genome dataset is possessive, e.g., “ear of man”, which has

much fewer entity confusion issues; 2) The Recall@k metric is less strict than mAP. If there

is an image with only one ground truth, then Recall@100 will always be 100% as long as this

ground truth target is within the top 100 model predictions, regardless of the ranking of the

100 outputs. As such, the small improvements in ranking the top 100 will not affect the score.

Nevertheless, the improvements from our loss is still non-trivial and consistent on all metrics

under different values of k.

In addition, we also show results using a better backbone, ResNeXt-101-FPN [113, 58], for

the entity detector in Table 5.7.

VRD: Table 5.8 presents results on VRD compared with state-of-the-art methods. Note that
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only [122] specifically states that they use ImageNet pre-trained weights while others remain

unknown. Therefore, we show results for pre-training on either ImageNet or COCO. Our model

is competitive with those methods when pre-trained on ImageNet, but significantly outperforms

when pre-trained on COCO. The gap between L0 only and the full model is smaller when

pre-trained on ImageNet than on COCO. We believe the stronger localization features from

pre-training on COCO is much easier for our model and losses to leverage.

5.5.6 Qualitative Results

In Figure 5.6 we provide four example images where our losses correct the false predictions

made by the L0 only model. Both the Entity Instance Confusion and the Proximal Relationship

Ambiguity issues are included here. In the fourth row, the L0 only model is confused between

two entity instances, i.e., which person is holding the microphone, while our losses manage

to refer to the correct one. In the third row the relationship between the guitar player and the

drum is ambiguous. Here, the L0 only model fails by predicting a false-positive, but our model

trained with all losses correctly detects no relationship there.

5.6 Summary

In this work we present methods to overcome two major issues in scene graph parsing: Entity

Instance Confusion and Proximal Relationship Ambiguity. We show that traditional multi-class

cross-entropy loss does not take advantage of intrinsic knowledge of structured scene graphs

and is therefore insufficient to handle these two issues. To address that, we propose Graphical

Contrastive Losses which effectively utilize semantic properties of scene graphs to contrast

positive relationships against hard negatives. We carefully design three types of losses to solve

the issues in three aspects. We demonstrate efficacy of our losses by adding it to a model built

with the same pipeline, and we achieve state-of-the-art results on three datasets.
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(a) ground truth (b) L0 only (c) all losses

Figure 5.6: Example images where RelDN with onlyL0 predicts incorrectly while our loss succeeds. For
each image we check the number of its ground truth relationships, then we output the same number of
top predictions from a model to see its ranking accuracy. Red boxes in (b) highlight the false predictions
from RelDN with L0 only and green boxes in (c) highlight the correct ones from RelDN with all losses.
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Figure 5.7: Example images of the 100 image subset with ground truth relationships. The subset contains
five predicates where the Entity Instance Confusion and Proximal Relationship Ambiguity commonly
occur.
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Chapter 6

Video Story Understanding with Character-Aware Relations

Different from short videos and GIFs, video stories contain clear plots and lists of principal

characters. Without identifying the connection between appearing people and character names,

a model is not able to obtain a genuine understanding of the plots. Video Story Question

Answering (VSQA) offers an effective way to benchmark higher-level comprehension abilities

of a model. However, current VSQA methods merely extract generic visual features from

a scene. With such an approach, they remain prone to learning just superficial correlations.

In order to attain a genuine understanding of who did what to whom, we propose a novel

model that continuously refines character-aware relations. This model specifically considers

the characters in a video story, as well as the relations connecting different characters and

objects. Based on these signals, our framework enables weakly-supervised face naming through

multi-instance co-occurrence matching and supports high-level reasoning utilizing Transformer

structures. We train and test our model on the six diverse TV shows in the TVQA dataset, which

is by far the largest and only publicly available dataset for VSQA. Our experiments show that

our approach achieves new state-of-the-art results.

6.1 Introduction

Video stories such as TV shows and movies entertain us and enrich our life. We can easily

understand the plots and become addicted to the acting of protagonists. However, video story

understanding remains a challenging task for artificial intelligence. In this paper, we argue that

characters in two aspects play an important role for a better comprehension of video stories.

On the one hand, characters lie at the intersection of video and text/subtitle modalities. On the

other hand, they are the pivots of plots, embodying who did what to whom.

The task of VSQA is a convincing means of measuring how well a model understands a
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woman,
man,

flower

Objects

Lily,
Marshall

Characters

<woman, 
hold, 

flower>

 Relations

Faster-
RCNN

Naming
Module

Relation 
Detector

….

<Lily, 
hold, 

flower>

Name Replacement

Character-Aware
Relations

Question

“What does Lily hold in hand 
when Ted says Marshall and her 
are getting married?”

Answers

A. Beer      
B. Flower     
C. Cellphone  
D. Pencil  
E. Book

(Ted:) Marshall and Lily are 
getting married!
(<UNKNAME>:) Yeah. Whoo! 
Hell, yeah, look at this.
(Marshall:) Oh, baby, this is it.
(Marshall:) Let's do this thing. 
(<UNKNAME>:) All right. All right.
(Marshall:) Hi.
(Lily:) We're here to get married.

Subtitle

Figure 6.1: Illustration of how fine-granular features may help in VSQA. Character names, visual ob-
jects, and their relationships are all necessary factors in answering this question. Character-aware re-
lationships are detected in video frames, where references to humans such as “woman” and “man” are
replaced with predicted character names, determined by finding the face bounding box that overlaps the
most with the human bounding box.

video. Typically, it is solved in three steps: 1) extracting key features of multimodal contents;

2) fusing those multimodal features; 3) utilizing the fused features to predict the correct an-

swer to a question. For the first step, current state-of-the-art methods [73, 105, 44, 54, 40, 41]

mainly focus on global visual features at the image level. In particular, they consider one or

more frames as input and extract features that provide a holistic representation of the frames.

As a result, a basic understanding of what occurs in the frames is achieved, but substantially

meaningful details may be missed due to the coarse granularity of the global features. Such

details include individual objects, their relationships and attributes, and perhaps more impor-

tantly, the identities of people inside the video. These aspects are often crucial for answering

semantic questions such as “What does Lily hold in hand when Ted says Marshall and her are

getting married?” (Figure 6.1). Here, the flower (object) that Lily (character) is holding (rela-

tionship) are the key factors needed to answer the question, but generic global features usually

have very limited power to capture them. Such limitations motivate us to design a framework

that focuses on fine-grained visual cues and provides richer knowledge of the depicted scenes.
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Several recent works [3, 50, 121] have followed this direction and explored various ap-

proaches to incorporate grounded visual features for questions answering tasks. Despite their

success, the video story setting is quite different in that characters’ identities, especially those

of main actors, tend to matter much more than in static images, since they keep reappearing.

Moreover, video stories involve a much larger number of interactions between characters, such

as “Robin talks to Ted”, or between characters and objects, such as “Lily holds flowers”. It is

very difficult for a model to achieve a genuine understanding of a scene without capturing these

character-involved associations. Therefore, we need a better framework that has the capability

to mine both detailed visual cues about character identities and their relationships.

To address the above issues, we build a VSQA framework accounting for character-centric

relations and a character-aware reasoning network (CA-RN) that combines and connects those

features with reasoning abilities. Our framework consists of two main parts. The first part aims

at building a scene representation for understanding relations between characters and objects so

as to infer what is going on. Through visual relations, we capture two levels of visual semantics:

the entity level and the relation level. At the entity level, we detect characters, objects, and their

attributes via pre-trained object detectors and multi-instance co-occurrence matching based

character identification. At the relation level, the relations between the entities are recognized

within each frame, where human-referring words are replaced with predicted character names.

For the second part, the multi-modal information (including two-level scene representation and

subtitles) are then injected into our Transformer-based CA-RN network, which serves as the

semantic reasoning module.

We train and test our model on the six diverse TV Shows from a large-scale video story

dataset TVQA [50]. In each video clip, there are corresponding subtitles and several multiple

choice questions. The goal of our framework is to correctly predict the right answers to these

questions. The key contributions of this paper can be summarized as follows:

• We propose an end-to-end multi-task framework to mining the face–speaker associations and

conduct multi-modal reasoning at the same time. It enables weakly-supervised face nam-

ing through co-occurrence matching and supports high-level reasoning through Transformer

structures.
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• We propose to utilize character-aware relations as a stronger representation of visual knowl-

edge of scenes. To the best of our knowledge, this is the first attempt to apply such a strategy

to video question answering tasks.

• Experiments on six TV shows confirm that our approach outperforms several state-of-the-art

baselines while also offering explicit explanations, especially for those questions that require

a deep understanding of video scenes.

6.2 Method

The goal of this work is to make use of the co-occurrence of faces in videos and names in

subtitles to continuously refine the detection of character-aware relationships, and finally use

the latter for improved video story understanding. As shown in Figure 4.2, our video story

understanding framework can be trained in an end-to-end manner and consists of two main

modules, one of which predicts the detected face bounding boxes and incorporates character

names into the detected relationships by matching the locations of bounding boxes. As a result,

multiple forms of visual semantics from each frame are extracted and combined together as an

understanding of the scene that the characters are acting in. The other module is a sequential

Transformer-based reasoning pipeline, which takes in the input question, answer options, and

different modalities, and outputs the predicted answer with the highest softmax score. In the

following, we describe the methods to extract character-aware visual semantics and conduct

multi-modal reasoning.

6.2.1 Character-Aware Frame Understanding

Face Detection and Feature Extraction. We utilize a state-of-the-art face detector [143] to

localize faces in each frame and extract their 256-dimensional visual features f ∈ R256 using

LightCNN [112], considering its effectiveness at general face identification, i.e., identifying

different faces of the same person. This is a desirable feature, as we need to distinguish the

faces of different people while neglecting the variance within the various appearances of a

given person.
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(Lily:) We're here to get 
married.

(<UNKNAME>:) Yeah. 
Whoo! Hell, yeah, look at 
this.

(Marshall:) Oh, baby, this is 
it.

(Marshall:) Let's do this 
thing.

….

FFN + Softmax:

Video &
Face bbx.

(Ted:) Marshall and Lily are 
getting married!

Subtitle ….

Face 
feat.

Predict A B C D E

Ground C F

A C A

B B A

C D E F

ALily: BMarshall: CTed: DRobin:

A B A B

EBarney: FUnkname:

Multi-Instance 
Co-occurrence Matching

C C C C C B B B BB B A ABBroadcast

Time

Figure 6.2: An illustration of our weakly-supervised character identification pipeline. The face bound-
ing boxes of all characters are first detected. The extracted face features are then predicted by fully-
connected feed-forward layer and Softmax. After broadcasting the character names in subtitle to be a
distribution sequence that has the same length of predicted name distribution sequence, a weight KL
divergence loss is utilized to conduct multi-instance co-occurrence matching.

Weakly Supervised Character Identification. In order to recognize characters without ex-

plicit face name annotations, we first determine the number k of principal characters in the TV

series (details in Section 6.2.4). Supporting actors are lumped together as an UNKNAME class

here, as they have a smaller impact on the main plot lines. Assume there are n detected faces

in a video clip with features F = {f1, ..., fn}. We first utilize a naming module consisting of

several fully connected feed-forward layers and softmax to get a confidence distribution over

all names in the character list:

pi = softmax(W2ReLU(W1fi + b1) + b2)) (6.1)

where W1, W2, b1, b2 are the weights and biases of fully-connected layers, and pi is the confi-

dence distribution over all names in the character list. By doing so for all detected faces, we can

construct a sequence of predicted character name distributions: P = {p1, p2, ..., pn}. As shown

in Figure 6.2, the speaker names in the subtitle maintain a multi-instance co-occurrence with

the character faces in the video. Inspired by this, we duplicate the current speaker name to be

of the same number as the detected faces in each frame to serve as weak supervision. Note that

if the speaker in the subtitle is UNKNAME, the frame will not have a broadcast operation. The
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ground character name distribution can be represented by G = {gLoc(1), gLoc(2), ..., gLoc(n)},

where the localization function Loc() maps the face bounding box ID to the frame ID, and gl

denotes the one-hot ground name distribution of frame l. Afterwards, the multi-instance co-

occurrence matching can be conducted by a regularized Kullback-Leibler divergence between

predicted and ground character name distributions:

DRKL(P ‖ G) =

L∑
l

min
j∈Fl

P(j) ln
P(j)

G(j)
(6.2)

where Fl is the set of faces in frame l. This loss is similar in spirit to Multiple Instance Learning.

With this, the model learns to assign the speaker name to the corresponding face, which will

minimize the loss.

Regular Visual Object Contexts. We use regular objects and attributes as another form of

visual semantics for each frame, similar to [50]. Specifically, we apply Faster-RCNN [87]

trained on Visual Genome [48] to detect all objects and their attributes. Object bounding boxes

are discarded, as we are targeting pertinent semantic information from the frame.

Incorporating Characters into Visual Semantics. Once we have localized and recognized

character faces and names, as well as regular objects, we append each character name detected

in a given frame to each of the objects detected in the same frame to augment its visual seman-

tics. We found that this simple strategy works very well as shown in Section 6.3.5, due to the

fact that character names are anchors that allow for localizing and disentangling semantic in-

formation. For example, visual objects without names attached, such as “food, wine glass”, are

fairly generic, while “food+Leonard” and “wine glass+Penny” better allow for distinguishing

objects from different frames and associating them with relevant people, and hence provide a

clearer picture of what is included in the scene.

6.2.2 Character-Aware Relation Detection

This component is designed to extract all relationships that involve the main characters in the

scene. We decompose this task into two steps: 1) detecting relationships to build scene graphs;

2) replacing detections of humans in relationships with specific characters.
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General Relation Detection. The relation detection module aims at detecting all related ob-

jects and recognizing their relationships in a video. We use the approach by [137] to detect

relationships in each frame. Specifically, we train the model on the VG200 dataset, which con-

tains 150 objects and 50 predicates, and apply this model on all frames of a given video. The

result is a set of 〈S, P,O〉 triples per frame, where S, P , O represent the subject, predicate,

object, respectively. We only keep the 〈S, P,O〉 triples and discard subject/object boxes since

1) their spatial locations carry little signal about the scene semantics; 2) there are already many

spatial relationships among the VG200 predicates, such as “above” and “under”. Once the

model manages to predict these relations, we immediately know the relative spatial relations

between subjects and objects, which we found is sufficient to describe the scenes. We concate-

nate all the triples in the current frame into a sequence of Nr × 3 (where Nr is the number of

〈S, P,O〉 triples) and feed it to the following modules.

Character Name Replacement. Given all the faces and relations in a scene, we focus on those

relations with human-referring words as subjects or objects, such as “woman” or “man”. For

each of these human bounding boxes, we obtain the face box that overlaps the most with it to

determine the human’s face. Once this matching is done for all human boxes in the frame, we

replace the human-referring words in those relationships with the previously identified charac-

ter names. This makes the relationships more concrete, as we know exactly who is involved in

each relationship. Figure 6.1 shows examples of detected relationships from frames of HIMYM,

where human-referring words are replaced with the specific character names. We show in Sec-

tion 6.3.5 that by applying this name replacement to all relationships, the model is able to

capture details that are strongly associated with the question and thus engender more accurate

answers.

6.2.3 Character-Aware Reasoning Network

As shown in Figure 4.2, CA-RN model works in an end-to-end manner and updating based

on a multi-task loss function. It takes in question, answer options, subtitles, face bounding

boxes, and visual semantics, and then outputs the probabilities of each answer option. Next,

we describe the details of our Transformer-based multi-modal reasoning model.

Encoder. We first embed the input question, answer options, and all modalities (subtitles and
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visual semantics) I = {q, a0−4, s, vo,r} using word and name embeddings. We denote the set

of these embeddings as: E = {eq, ea, es, ev}. They are then fed into a two-layer Transformer

encoder consisting of self-attention with four heads to capture long-range dependencies and a

bottle-neck feed-forward networks to obtain encoded hidden representations:

hj = FFN(Attention(ej)), (6.3)

where j ∈ {q, a, s, v}, FFN is a feed-forward module consisting of two FC layers with ReLU

in between, and the Attention function here is defined as [102]:

Attention(Q,K) = softmax(
QKT

√
dh

)K. (6.4)

Here
√
dh is a scaling factor used to maintain scalars in the order of magnitude and dh is each

head’s hidden dimensionality.

Multi-Modal Decoder. Once all inputs are encoded by the encoder, we utilize sequential

co-attention decoders to fuse their information and generate an updated representation of the

question and answer options. For simplicity, we take visual relations hr and subtitles hs as two

input modalities. The following framework can easily be extended to more input modalities.

As shown in Figure 4.2, the visual relations, question, and answer options are first fed into the a

two-layer four-heads co-attention decoder to acquire context-aware-QA representations. Then,

subtitles and updated QA representations serve as the input for another co-attention decoder

with the same structure. The co-attention decoder can be represented as:

hc→i = FFN(Attention(hi, hc)), (6.5)

where hc→i is the context-aware-QA representation, and hc, hi represent contextual and input

QA hidden representations, respectively. Afterwards, context-aware QA representations for

different question–answer pairs are then concatenated and processed by a self-attention decoder
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w/ ts Test-Public Val
Show BBT Friends HIMYM Grey House Castle All All
NNS-SkipThought [50] - - - - - - 38.29 38.41
NNS-TFIDF [50] - - - - - - 50.79 51.62
Multi-Stream V only [50] - - - - - - 43.69 -
Multi-Stream [50] 70.19 65.62 64.81 68.21 69.70 69.79 68.48 68.85
T-Conv [123] 71.36 66.52 68.58 69.22 67.77 68.65 68.58 68.47
CA-RN (Ours) 71.89 68.02 67.99 72.03 71.83 71.27 70.59 70.37
Human - - - - - - 91.95 93.44

Table 6.1: Results on the TVQA test set for models that use time-stamp annotation (‘w/ ts’). We compare
to other baselines on the six TVQA sub-datasets individually. “V only” means using only global CNN
features without subtitles.

w/o ts Test-Public Val
Show BBT Friends HIMYM Grey House Castle All All
NNS-SkipThought [50] - - - - - - 26.93 27.50
NNS-TFIDF [50] - - - - - - 49.59 50.33
Multi-Stream V only [50] - - - - - - 42.67 -
Multi-Stream [50] 70.25 65.78 64.02 67.20 66.84 63.96 66.46 65.85
T-Conv [123] 67.38 63.97 62.17 65.19 65.38 67.88 65.87 65.85
PAMN [41] 67.65 63.59 62.17 67.61 64.19 63.14 64.61 64.62
ES-MTL [40] 69.60 65.94 64.55 68.21 66.51 66.68 67.05 66.22
CA-RN (Ours) 71.43 65.78 67.20 70.62 69.10 69.14 68.77 68.90
Human - - - - - - 89.41 89.61

Table 6.2: Results on the TVQA test set for models that do not use time-stamp annotations (‘w/o ts’).
We compare to other baselines on the six TVQA sub-datasets individually. “V only” means using only
global CNN features without subtitles.

to get the final representation for softmax calculation:

M = Concati∈{(q,a0),...,(q,a4)}hc→i

pa = softmax(FFN(Attention(M)))

(6.6)

Finally, we are able to predict the answer y with the highest confidence score y = argmaxa∈{a0,...,a4} pa.

Multi-Task Loss Function. The feed-forward network in the naming module and the multi-

modal reasoning module are jointly trained in an end-to-end manner through the following

multi-task loss function:

Lmulti−task = Lcross−entropy + λLmi−co

= −
5∑

c=1

gc log(pc) + λDRKL(P ‖ G),
(6.7)

which combinesLcross−entropy for question answering andLmi−co for multi-instance co-occurrence

matching, linked together by a hyperparameter λ.
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6.2.4 Implementation Details

Principal Character List. We focus on naming the faces of principal characters, since they are

highly correlated to the story-line of TV shows. The number k for the character list for each TV

show is determined in the following three steps: 1) count the occurrences of all speakers in the

subtitles; 2) select all names appearing more than 500 times as principal character candidates;

3) filter out names that make up less than 1/10 of the speakers with the highest occurrence. 4)

An additional UNKNAME class is assigned to all other character names not in the principal

list. Note that we do not rely on external information of who the principal characters are.

Text and Name Embeddings. After parsing the scene into character-aware relations, we have

four types of features to transform into text embeddings: the subtitles, visual semantics, ques-

tions, and the candidate answers. Note that once the visual semantics are extracted, we do

not need any visual features from the frames. Since the character names are different from

their literal meanings (e.g., the character Lily is different from the regular word lily), we uti-

lize two separate embeddings. For ordinary words, we rely on 300-dimensional GloVe word

vectors [81] to embed the words after tokenization. For character names, we train and update

their name embeddings from scratch. In the case of out of vocabulary words, we use averaged

character vectors of the words.

Model Training. Our model is trained with Adam stochastic optimization on Tesla V100

GPUs. The λ in the multi-task loss function is simply set to 1. In the training process, we set

the batch size as 64. The learning rate and optimizer settings are borrowed from [50].

6.3 Experiments

6.3.1 Dataset

The recently released TVQA dataset [50] is a large-scale video question answering dataset

based on 6 popular TV shows: 3 situation comedies (The Big Bang Theory, Friends, How I

Met Your Mother), 2 medical comedies (Grey’s Anatomy, House M.D.), and 1 crime com-

edy (Castle). It consists of 152.5K QA pairs (84.8K what, 17.7K who, 17.8K where, 15.8K

why, 13.6K how questions) from 21.8K video clips, spanning over 460 hours of video. Each

video clip is associated with 7 questions and a dialogue text (consisting of character names
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and subtitles). The questions in the TVQA dataset are designed to be compositional in the for-

mat “[What/How/Where/Why/...] [when/before/after] ” and require both visual and

language comprehension.

6.3.2 Baselines

We consider several baselines for performance comparison.

Nearest Neighbor Search. These baselines (NNS-TFIDF and NNS-SkipThought) are taken

from the original TVQA paper [50]. They compute the cosine similarity between the resulting

vectors to predict the answer.

Multi-Stream. [50] combines information from different modalities with LSTMs and cross-

attention. The results stem from the official TVQA leaderboard.

Temporal Convolution. It has recently been shown that temporal convolutions (T-Conv) [73,

123] can be a strong alternative to traditional RNN layers for question answering. We follow

the structure from [123] and build the T-Conv baseline by replacing the LSTM layers in [50]

with temporal convolutions while keeping other modules unchanged.

PAMN. [41] utilize progressive attention memory to update the belief for each answer. This is

also from the official TVQA leaderboard.

ES-MTL. [40] explores two forms of extra supervision for temporal localization and modality

alignment. This is the strongest baseline from the official TVQA leaderboard without any

additional object-level annotations.

Human Performance. We also give the human results as reported along with the dataset [50]

as a reference to gauge how big the gap is to human intelligence.

6.3.3 Experimental Setup

We use the top-1 accuracy as the only metric, following the official guidelines. There are two

types of settings we can adopt from the official evaluation rules [50]: with time stamps (w/ ts)

and without time stamps (w/o ts), where time stamps refer to ground-truth annotations on the

intervals of the video segments that relate the most to the given questions. The former setting

assumes we have the time stamps in both training and testing, while in the latter case such
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Val Acc.
Method w/ ts w/o ts

Sub 66.23 66.14
Sub + Objs 68.85 67.35
Sub + Rels 67.55 67.16
Sub + Objs nm 69.45 68.13
Sub + Rels nm 68.25 67.85
Sub + Objs + Rels 69.54 68.44
Sub + Objs + Rels nm 69.76 68.64
Sub + Objs nm + Rels 70.20 68.68
Sub + Objs nm + Rels nm 70.37 68.90

Table 6.3: Ablation study both with and without the time stamps. “Sub”, “Objs”, “Rels” and “nm”
represent subtitles, objects, relationships and names, respectively.

Objects:
man, woman, man,
Guitar, chair

Characters:
Raj

Relationships:
<man, play, guitar>

Character-centric 
Relationships:
<Raj, play, guitar>

Q: What instrument is Raj playing when Raj and Howard have their show?

A0: Raj is playing flute
A1: Raj is playing guitar
A2: Raj is playing drums
A3: Raj is playing trumpet
A4: Raj is playing keyboard

man

guitar

chair

woman

man
Raj woman

woman

bottle bottle

man

Robin Ted

Objects:
woman, woman, man,
bottle, bottle

Characters:
Robin, Ted

Relationships:
<woman, hold, bottle>
<man, hold, bottle>

Character-centric 
Relationships:
<Robin, hold, bottle>
<Ted, hold, bottle>

Q: What is Robin holding in her hand when she is talking to Ted about Zoey?

A0: A martini glass
A1: Nachos
A2: Her purse
A3: Marshall's book
A4: A beer bottle

Objects:
man, woman, bag

Characters:
Beckett, Castle

Relationships:
<woman, hold, bag>

Character-centric 
Relationships:
<Beckett, hold, bag>

Q: What is Beckett holding when she walks into Vong 's prison cell ?

A0: A tape recorder
A1: A gun
A2: Plastic bags
A3: Handcuffs
A4: Nothing

woman

bag

man

Beckett

Castle

Objects:
woman, woman, lamp,
Couch, glass

Characters:
Rachel

Relationships:
<woman, hold, glass>
<woman, sitting on, couch>

Character-centric 
Relationships:
<Rachel, hold, glass>
<Rachel, sitting on, couch>

Q: Where sat Rachel when holding a cup ?

A0: Rachel sat on the floor
A1: Rachel sat on a couch
A2: Rachel sat near the oven
A3: Rachel sat close to the door
A4: Rachel sat near the counter

woman
woman

couch

lamp

glass

Rachel

Figure 6.3: Examples of correctly answered questions that benefit from the proposed strategy. Orange
and blue boxes are subjects and objects, while white boxes are objects with no detected relationships.
Boxes with names are our detected characters, which substitute for the human-referring words in the
relationships to obtain a character-aware understanding.

information is not provided. We consider both settings in our comparison with related work.

6.3.4 Comparison to State-of-the-Art

As presented in Tables 6.1 and 6.2, our approach outperforms the best previous method by

1.90/2.01% (absolute) on the val/test set with time stamps, and by 2.68/1.72% (absolute) on

the val/test set without time stamps. Considering that there are 15,253 and 7,623 validation and

test questions, respectively, the largest gains are 15, 253×2.68% = 409 and 7, 623×2.01% =
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153 questions on the two sets, respectively. This establishes the strength of our multi-task

character-aware reasoning network. We believe the reasons behind the performance boost are

the following three: 1) the Transformer structure enables capturing longer dependencies within

and between different modalities compared with traditional RNN structures, especially when

there is a long subtitle. 2) The multi-task framework allows refining the multi-modal reasoning

model and mining the correlation between faces and names at the same time, making the two

tasks contribute to each other. 3) The character-aware relations offer more detailed information

than global CNN features and enable a deeper scene understanding.

6.3.5 Ablation Study

For further analysis, we conduct an ablation analysis on our proposed model both with and

without time stamps in Table 6.3. There are three forms of visual semantics that we incremen-

tally combine together: objects (Objs), relationships (Rels), and character names (nm). We

observe that using subtitles only gives a reasonably good result of 66.23% but is still signif-

icantly worse than approaches with visual semantics. When objects are added (“Sub+Objs”),

the accuracy is boosted by 2.62% (absolute), while additional gains (0.6% absolute) occur with

names added (“Sub+Objs nm”). A further improvement (0.92%) is attained when character-

centric relationships (“Sub+Objs nm+Rels nm”) are integrated, which demonstrates our claim

that character naming is a beneficial factor for better video story understanding. We also pro-

vide results for further settings where we remove one or two forms of visual semantics, as in

“Sub+Rels” and “Sub+Rels nm”. These results are slightly worse than the counterparts us-

ing “Objs” instead of “Rels”, for which we find two main causes: 1) Objects are usually more

diverse than relations, since typically only a small subset of objects are related. 2) Object detec-

tors are generally more accurate than relationship detectors, which makes the “Objs” semantics

more reliable than “Rels”.

6.3.6 Qualitative Results

In Figure 6.3, we present 4 examples of our model’s results based on all forms of visual seman-

tics. In the top right case, the question demands a deep understanding of the scene where Robin

is sitting beside Ted and holding a beer bottle. The character-aware relations are particularly
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Validation w/ ts
Method what(55.62%) who(11.55%) where(11.67%) how(8.98%) why(10.38%) other(1.80%) all(100%)
Sub 63.47 69.40 57.58 71.02 79.91 75.55 66.23
Sub + Rels 64.80 69.07 62.70 72.04 80.67 75.91 67.55
Sub + Rels nm 65.31 72.59 62.02 72.85 80.29 77.01 68.25
Sub + Objs 66.97 69.01 62.98 72.85 79.60 77.74 68.85
Sub + Objs nm 67.57 73.04 62.58 71.02 80.35 78.10 69.45
Sub + Objs + Rels 68.32 68.39 63.88 72.48 79.79 77.74 69.54
Sub + Objs + Rels nm 68.35 71.96 63.31 72.92 78.33 75.55 69.76
Sub + Objs nm + Rels 68.38 73.38 64.21 72.77 79.60 78.10 70.20
Sub + Objs nm + Rels nm 68.62 73.29 64.68 72.42 79.75 77.83 70.37

Table 6.4: The influence of question type for different methods with time stamps. “Sub”, “Objs”, “Rels”
and “nm” represent subtitles, objects, relations and names, respectively.

helpful when the question includes multiple relations, as in the bottom right example, where

Rachel is sitting on a couch and holding a glass at the same time, requiring models to learn this

combination of relations in order to answer the question.

6.4 Analysis on the Influence of Question Type

There are six different question types in the TVQA datasets, which benchmarks the ability

of a model in terms of different reasoning skills. In this section, we present separate results

on the six types of questions, including “what”, “who”, “where”, “how”, “why” and “other”.

According to Table 6.4, we give the ablation study on different methods with time stamps to

show the influence of input feature combinations on different reasoning skills. Compared to the

baseline using only the subtitle (“Sub”), our full model (“Sub + Objs nm + Rels nm”) achieves

significant performance gain on almost all questions, where the top 3 improvements are in

“where”, “what” and “who”, which is as expected since they mostly involve character-aware

relations such as “Where does Sheldon sit on when...?” or “What instrument is Raj playing

when...?” or “Who walks into the room when...?”. It is also worth noticing that all the best

performances for each reasoning skill (marked in bold) are achieved when relations are utilized

as a visual semantic, which demonstrates the efficacy of our core idea, i.e., leveraging relations

between characters for better video story understanding.

6.5 Summary

In this work, we propose character-aware scene understanding for improved Video Story Ques-

tion Answering. Our character-aware reasoning network is trained in a end-to-end multi-task
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style to acquire weakly supervised character identification as well as video story understand-

ing. For the experiments on the six TV shows, our full Subtitle + Objects + Relations + Names

model achieves the best accuracy against all baselines, which confirms the effectiveness of our

multi-task framework and character-aware reasoning model.
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Chapter 7

Conclusions

This dissertation has explored two topics: Scene Graph Parsing and its application on multi-

modal reasoning tasks.

First we presented the relationship proposal networks, an end-to-end model that takes an

image as input and output object pairs that are most likely to be related. The underlying mo-

tivation for this work is to alleviate the intrinsic complexity of relationship candidate, i.e., the

complexity would become quadratic, and thus very expensive, if all pairs of objects have to be

considered for relationship detection. With the proposed network, the number of relationship

proposals, i.e., object pairs to be considered, can be reduced from 90,000 down to 2,000, which

could lead to speed-up at an order of magnitude level. We also experimentally demonstrate that

competitive baselines built upon previous methods could do the same job but show significantly

worse performance, which proves the efficacy and necessity of the proposed method.

Second, we discussed the scenario where the number of object and predicate categories

could be as large as 80,000, and some inherent issues due to this large scale. Our solution

is a model that outputs embeddings instead of discrete relation labels, where the embeddings

encode underlying association between subjects, predicates and objects. We observed that

the traditional cross entropy loss and triplet loss fail to train the network efficiently, and we

designed a new loss called Triplet-Softmax loss that combines these two and successfully drives

the learning process. We conducted sufficient experiments on both the original dataset and the

subset with only infrequent classes, demonstrating that our model is able to achieve our desired

goals with significant advantage over the aforementioned two baselines.

Third, we tackled two problems that exist widely in natural images: 1) when a subject

(or object) is related to an object (or subject), there could be multiple objects (or subjects)

placed in the close proximity with the same category that might confuse the model due to visual
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similarity; 2) when multiple relationships happen within a close distance and they are related

in the same way (i.e., their predicates are the same), the model might be confused on which

subjects are related to which objects due to visual ambiguity. Such issues happen extensively

in natural images but with various visual context, and our goal is to find a universal solution

that considers all possible scenarios. Motivated by that, we designed three types of losses

that deliberately force the model to contrast positive training samples against negatives, where

positive samples are defined as related objects according to the ground-truth. The losses are the

same in terms of the general forms but different only in terms of the constraints given to them.

We extensively conduct experiments that compare models with and without our proposed losses

to show that the losses efficiently improve the models’ performance, especially when the image

suffers the aforementioned two issues badly. We also proposed a brand new model for end-

to-end relationship detection, and together with the proposed losses, the whole system achieve

state-of-the-art relationship detection performance.

Finally, we presented a pipeline that leverages relationships for better video story under-

standing. We show that by using detected relationships as richer input features, the model is

able to conduct visual reasoning more accurately and explicitly. The detected relationships not

only helps the system understand video stories at a deeper level, but also provides knowledge

base for analyzing the whole reasoning process.
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Chapter 8

Future Direction

(a) Previous pipeline

(b) Potential pipeline

Figure 8.1: Illustration of previous common pipeline and the potential future model.

One potential future direction is to reason over scene graphs. Currently state-of-the-art

methods usually gather all detected objects and build a fully connected graph on them and

reason over this graph for question answering. The whole pipeline is illustrated in Figure 8.1.
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Concretely, the mathematical formulation could be:
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where x(t)i represents the feature of node (object) i at iteration t, li, pi,j , lj are the seman-

tic features for detected subject, predicate, object between object i and j. � is element-wise

multiplication and q(t) is the question representation at iteration t. r(t)i,j is the compositional rep-

resentation fused by node and relationship features. β(t)i,j is the graph attention weight between

object i and j. x̃(t)i is the updated node feature obtained by gathering weighted representation

of edges connected to node i. There are two major advantages of this model over the previously

popular one (Figure 8.1a): 1) The new model utilizes scene graphs for visual reasoning, where

both nodes and edges are explicitly detected and represented, therefore the whole reasoning

process is expected to be more interpretable; 2) Scene graphs are usually sparse for because the

number of meaningful relationships (edges) are mostly much less than the square of the num-

ber of objects, therefore all the aforementioned computations can be implemented in sparse

vectors, which prevents memory overflow and enables more complex edge representations. It

is also beneficial to visualize and analyze the information being propagated through the edges

in order to see how the reasoning leads to the correct answer, which I believe is an important

way to understand how AI could better comprehend visual and textual signals.
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