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 Railroads play a key role in the transportation infrastructure and economic 

development of the United States, and safety is of the utmost importance. Railroad safety 

is mainly affected by infrastructure, rolling stock, and human factors. Over the past decade, 

relatively less research has been undertaken to mitigate the human-factor-caused railroad 

incident risk despite considerable efforts and improvements in the infrastructure and rolling 

stock. The human errors in railroads may result in injuries or fatalities, infrastructure and 

rolling stock damages, and environmental impacts. This dissertation presents a 

methodological framework for railroad human-factor-caused safety risk management that 

encompasses risk assessment and mitigation. First, accident/incident data and information 

should be collected and used to identify safety risks, undesired human factor-related events, 

and risk management objectives. Second, risk assessment should be conducted to evaluate 

safety risks and contributing factors. The third step is to develop and evaluate effective risk 

mitigation strategies based on the risk analysis results. The proposed safety risk 

management framework is applied to two human-factor-caused risk scenarios: restricted-
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speed train accidents and trespassing events, both of which collectively constitute over 95% 

of all rail-related fatalities.  

 First, in terms of restricted-speed safety research, the dissertation consists of a 

collection of historical restricted-speed train accidents, quantitative and qualitative safety 

risk analysis, PTC-based accident risk mitigation with a proposed Concept of Operations, 

and a Monte Carlo simulation-based quantitative assessment of mitigation strategies. 

Second, in terms of trespassing research, the dissertation focuses on Artificial-Intelligence-

aided trespassing data detection and location-specific trespassing data analysis, as well as 

specific trespassing safety strategies and proactive risk management.  
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CHAPTER 1  

INTRODUCTION 

 

1.1 General Overview 

Passenger and freight rail services play a crucial role in the economic prosperity of 

the United States. In the vast railroad network, safety is of the utmost importance and train 

accident may result in injuries or fatalities, infrastructure and rolling stock damages, and 

environmental impacts. Railroad safety is affected by infrastructure, rolling stock, and 

human factors. In particular, the great majority of train accidents resulted from either 

human factors or track related failures (FRA, 2007). Over the past decade, train safety has 

improved remarkably due to the considerable efforts and improvements in railroad 

infrastructure and rolling stock. Researchers, in cooperation with policymakers and 

railroads, constantly promote advanced technologies and operational enforcements to 

improve railroad safety. However, little work has been undertaken to mitigate the human-

factor-caused railroad incident risk. Human errors in railroad operations may result in 

injuries or fatalities, infrastructure and rolling stock damages, and environmental impacts, 

and are one major target area for further improving railroad safety. This knowledge gap is 

the motivation for this dissertation, which develops a methodological framework for 

railroad human-factor-caused safety risk management.  

As a safeguard against human error, Positive Train Control (PTC) is expected to 

prevent train accidents attributable to human error by slowing or stopping trains 
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automatically. PTC is designed to prevent train-to-train collisions, derailments caused by 

excessive speeds, unauthorized incursions into work zones, and movements of trains 

through misaligned railroad switches. However, even with fully implemented and 

functioning PTC systems, there are two types of high-consequence human-factor-related 

incident risks, which are restricted-speed train accidents and trespassing events. These 

events cannot be reduced due to regulation exemptions and lack of functionality in current 

PTC systems. As defined by current regulations (49 CFR 236 Subpart G), restricted speed 

is a speed that will permit stopping within one-half the range of vision, but not exceeding 

20 miles per hour. In the United States, restricted speed operation is a common type of train 

operation that is found on virtually every mile of automatic blocks and extensively exists 

in terminals and yards. National Transportation Safety Board (NTSB) issued a report in 

2012, highlighting five collisions due to restricted speed violations (NTSB, 2012). One of 

them led to two fatalities and more than $8 million damage cost. More recently, a Long 

Island Rail Road (LIRR) passenger train collided with the platform in the Atlantic Terminal, 

New York, on January 4, 2017 and led to 108 injuries and around $5.3 million in damage 

costs (NTSB, 2018a).  However, current regulations do not require PTC to perform its 

functions when a train is traveling under restricted speeds. Besides, PTC would not prevent 

incidents due to trespassing on right-of-way or highway-rail crossing, where the vast 

majority of rail-related fatalities occur. 

This dissertation demonstrates human-factor-related railroad safety risk 

managements in two major human-factor-caused accident scenarios, restricted-speed train 

operations and trespassing events. These events constitute over 95% of all rail-related 

fatalities. These two also represent two different aspects of human errors, of which 
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restricted-speed train accidents are mostly attributed to disengaged or inattentive train 

engineers and trespassing events predominantly pertain to noncompliant behaviors and 

poor judgment from pedestrians and highway users. Both are highlighted in the recent 

reports from the Federal Railroad Administration (FRA) and Congress. Based upon the 

2015 Fixing Americas Surface Transportation (FAST) Act, the Federal Railroad 

Administration (FRA, 2016a) issued the Safety Advisory 2016-03 that aims at the 

mitigation and investigation of human-factor-related accidents, of which train operating 

with stub-end tracks are one focus. Congressional Research Service (CRS) remarked that 

trespassing risk occurrence has not been reduced because most rail-related fatalities are 

caused by trespassing while PTC systems cannot prevent these accidents/incidents. 

In summary, this dissertation presents a methodological framework for human-

factor-caused safety risk management. The dissertation specifically studies two major 

human-factor-caused train accident scenarios: restricted-speed train accidents and 

trespassing events. Two state-of-the-art technologies, PTC and Artificial Intelligence (AI) 

with computer vision, are implemented to contribute to the development of research 

innovations and technology solutions. Ultimately, this dissertation aims to promote railroad 

safety and achieve better-informed rail safety practices. 

 

1.2 Research Background 

Railroads are a safe and reliable mode of transportation. Train accident rates have 

declined considerably over the past decade. However, a train accident may result in injuries 

or fatalities, infrastructure and rolling stock damages, and environmental impacts. The US 

freight rail network consists of nearly 140,000 miles with 1.74 trillion ton-miles of traffic 
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annually (FRA, 2015; AAR, 2017a). This vast railroad network is crucial to the American 

economy, and consequently its safety is of great importance. Based on previous train 

accident analyses, derailments and collisions are common accident types (Barkan et al., 

2003; Liu et al., 2011, 2012, 2013, 2016a; Li et al., 2018). Previous studies have analyzed 

the overall safety trends of derailments and collisions. Furthermore, infrastructure or 

equipment failures as derailment causes have been studied (Liu, 2011; 2012) but there is 

no study specific to analyzing human-factor-caused accident risks and this research aims 

to fill this knowledge gap.  

Human factors are major causes of freight-train accidents (derailments and 

collisions) on mainlines resulting in a total of 1,510 accidents with 551 casualties and 9,214 

derailed cars in the period of 2000 to 2016 (FRA, 2007; Madigan, et. al., 2016; Zhang et 

al., 2019a). Human factor accidents occur due to a number of factors that degrade the 

operators’ performance. Studies of factors influencing human performance can be found 

in prior literature (Kyriakidis et al., 2015; Zhang et al., 2014). Similar analyses have been 

performed in other industries, such as oil and gas (Theophilus, 2017), maritime 

transportation (Chen et al., 2013; Yildirum et al., 2017), aviation (Low and Yang, 2018), 

metro systems (Chen et al., 2018), etc. Human factors involving the physical and 

organizational characteristics of train operators have been studied in order to optimize and 

apply a human factor analysis and classification system (HFACS) to the railroad industry 

(Reinach, 2006; Madigan et al., 2016). The HFACS methodology has also been used to 

study the potential root causes of railroad accidents in Indonesia (Iridiastadi, 2012). 

However, there has been relatively limited prior work focusing on human-error-caused 

train safety risk management in the United States. 
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Nationwide implementation of Positive Train Control (PTC) is underway in the 

United States. As a safeguard against human error, PTC is expected to prevent train 

accidents attributable to human error, by slowing or stopping trains automatically. PTC is 

designed to prevent: 

• Train-to-train collisions; 

• Derailments caused by excessive speeds; 

• Unauthorized incursions into work zones; and 

• Movements of trains through misaligned railroad switches. 

Complying with the requirements of Subpart I in the Code of Federal Regulations 

(CFR, 2011), the territory of PTC implementation and operation includes Class I railroads, 

main lines servicing over 5 million gross tons (MGT) annually and over which toxic- or 

poisonous-by-inhalation hazardous materials are transported, and main lines involving 

intercity and commuter passenger trains. The full implementation of PTC would involve 

around over 60,000 route miles (AAR, 2017; FRA, 2017b). The large-scale, network-level 

PTC implementation affects the U.S. rail industry in several aspects, in terms of 

implementation cost, operational impact, and safety effectiveness (FRA, 2009; Van Dyke 

and Case, 2010; Peters and Frittelli, 2012; Zhao and Ioannou, 2015: AAR, 2017). As a 

federal mandate, PTC technology has been studied in federal regulations and industry 

reports (RSAC, 1999; FRA, 2009; Van Dyke and Case, 2010; Peters and Frittelli, 2012; 

GAO, 2015; AAR, 2017). 

PTC systems must meet the functionality requirements established by the Rail 

Safety Improvement Act (RSIA) of 2008 in terms of capability to prevent accidents 

resulting from the activity or inactivity of train operators. PTC is not a single technology. 



 

 

6 

Instead, it is a suite of performance standards. Railroads are allowed to install different 

PTC technologies in their respective systems once approved by the FRA. PTC integrates 

various components (Figure 1. 1), namely the locomotive computer, wayside device, 

communication network, and back office (APTA, 2015; AAR, 2017). The locomotive 

computer is an onboard piece of equipment that accepts speed restriction information and 

movement authority so that these data can be compared against the train's location to ensure 

compliance. The wayside device on the side of the track is capable of monitoring and 

reporting switch position and signal status to locomotive computers and the back office. 

The back office is a centralized office for the communication and coordination of train 

orders, speed restrictions, train information, track authorities, crew sign-in and sign-off, 

and bulletins, as well as specialized data to and from the wayside and train operational and 

safety data (GAO, 2015). Integrated with these components, PTC systems use a 

combination of communication networks, GPS (or transponders), and fixed wayside signal 

devices to send and receive data about the location, direction, and speed of trains. Back 

offices process these data in real time and provide movement authority and speed 

restriction information to locomotive computers. Then locomotive computers accept the 

information and compare it against the train’s condition to ensure safety compliance. 

Whenever a train crew fails to properly operate within specified safety parameters, PTC 

systems automatically apply the brakes and bring the train to a stop. 
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Figure 1. 1. Schematic Illustration of A General PTC System 

 

The current regulation (49 CFR 236 Subpart I) does not require PTC to perform its 

functions when a train is traveling under restricted speeds. Transportation Economics & 

Management Systems, Inc. (TERMS) (2017) argued that the defined 20-mph restricted 

speed might be too fast and should be reduced to 10-mph since this would solve most of 

the problems related to PTC exemptions. Nonetheless, there has been little analysis yet 

showing the rationality of either the 20-mph or 10-mph restricted speed. To the authors’ 

knowledge, no published studies pertain to the evaluation of PTC implementation below 

restricted speeds. It calls for research to better understand the safety benefits, cost, and 

operational impact of PTC enforcement at or below restricted speeds. Eventually, the 

regulators and railroad industry can use this type of analysis to evaluate whether PTC 
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implementation should be extended to restricted speeds (if so, what is the threshold for 

restricted speed), and whether there exist more cost-justified risk reduction alternatives.  

Furthermore, trespassing accidents/incidents account for the majority of rail-related 

fatalities. The U.S. railroad system is comprised of approximately 830 railroads, 134,000 

miles of track, and 210,000 railroad crossings (FRA, 2018d). Trespassing accidents along 

rights-of-way (ROWs) and at highway-rail grade crossings constitute over 90% of rail-

related deaths over the past ten years (FRA, 2018d). More specifically, there were 855 

trespass-related fatalities in 2017, which demonstrates an increase of 18 percent from 2012 

(FRA, 2018d). In addition to fatalities, these incidents resulted in other serious 

consequences, such as nonfatal injuries, train derailments, hazardous material spillage, 

train delays, and traffic congestion. From 2012 to 2016, trespassing accidents cost the 

United States approximately $43 billion (FRA, 2019a) that does not cover indirect costs 

(e.g., emotional distress or productivity losses).  

 

1.3 Dissertation Organization and Research Objectives 

The objective of this study is to develop a systematic methodological framework 

for railroad human-factor-caused safety risk management that encompasses both risk 

assessment and mitigation of human factor risks to mitigate train accidents caused by 

human factors and promote railroad safety. To achieve this primary objective, this 

dissertation analyzes the safety risk of these common, critical scenarios of rail-related 

human errors and proposed effective risk mitigation strategies based upon two emerging 

technologies, PTC systems and AI with computer vision. 

This dissertation includes five chapters (Figure 1. 2).  
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Figure 1. 2.  Framework for This Dissertation 

The specific objective of each chapter is as follows: 

1. Introduction (Chapter 1) 

a. Introduce the background, motivations, objectives, and problems to 

address 

b. Briefly introduce the contents of each chapter and clarify the 

contributions to the field of railroad safety and human error risk 

management  

2. Methodological Framework for Railroad Human Factor Risk Management 

(Chapter 2) 

a. Develop a systematic framework for human-factor-related safety risks 

in train operations 

Model Application and Calibration

Chapter 2 Methodological Framework

Chapter 3 
Restricted-Speed 

Accident

Chapter 4 
Trespassing

Risk 
Identification

Safety Risk Management for 
Railroad Human Factors 

Risk 
Analytics

Risk 
Mitigation

Chapter 5 Future Research Insights
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b. Present methodologies and tools commonly used in railroad human-

factor-related accident data collection, data analysis, and mitigation 

3. Risk Management for Restricted-Speed Train Accidents (Chapter 3) 

a. Conduct empirical and statistical analyses of restricted-speed accidents 

in quantitative and qualitative ways 

b. Propose a Concept of Operations for the implementation of PTC 

systems to prevent restricted-speed accidents 

c. Develop a quantitative assessment of PTC-based risk mitigation in 

terms of incremental costs, safety benefits and operational impact 

assessment with Monte Carlo simulation 

4. Risk Management for Trespassing Events (Chapter 4) 

a. Identify the trespassing risk and causal factors 

b. Develop effective AI-aided technology to collect trespassing events 

from both live stream and archive videos in fixed cameras 

c. Analyze the large volumes of collected trespassing data with developed 

technology in the case study  

d. Propose data-driven, effective prevention strategies  

5. Future Research and Insights (Chapter 5) 

 

1.4 Contribution Summary 

The potential contributions of this dissertation are summarized below, 

1. Contributions to academics and researchers 
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a. Propose a methodological framework for railroad human-factor-caused 

safety risk management  

b. Provide a full-spectrum introductory view of restricted-speed train 

operations, as one of emerging critical issues in the age of PTC, and 

other PTC challenges 

c. Develop both empirical analysis and statistical models to advance the 

understanding of restricted-speed accident probability, severity, and risk 

d. Provide an AI-aided methodology to collect trespassing event from big 

data that overcome the limitations from data quality and uncertainty 

e. Develop specific trespassing safety strategies and proactive risk 

management 

2. Contributions to government, policymakers, and rail industry 

a. Propose a cost-effective, reliable end-of-track collision prevention 

strategy with PTC system 

b. Present collaboration opportunities to develop policies and practices 

that can optimize the use of PTC technology and advance rail safety 

c. Provide a risk-based approach with expected value and Conditional 

Value at Risk to evaluate rail transportation safety  

d. Provide a reference for the evaluation of cost-benefit analysis and 

operational impacts 

e. Present policymakers, railway practitioners, and academic researchers 

with valid references for safety options and future work directions, and 

ultimately enhance railroad safety 
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CHAPTER 2 

METHODOLOGICAL FRAMEWORK FOR RAILROAD HUMAN 

FACTOR RISK MANAGEMENT 

Partially adapted from 
Zhang, Z., Turla, T., & Liu, X. (2019). Analysis of human-factor-caused freight train 

accidents in the United States. Journal of Transportation Safety & Security, 1-29. 
 
 

 

Railroads play a key role in the transportation infrastructure and economic 

development of the United States, and safety is of the utmost importance. In the United 

States, train accident analysis has primarily focused on derailment, hazardous material 

releases, and highway-rail grade-crossing accidents (Anderson and Barkan, 2004; Liu et 

al., 2011; Chadwick et al., 2014; Liu, 2016a; Liu, 2016b). However, much less research 

has evaluated train risk and safety for human-factor-caused train accidents, in spite of the 

fact that human errors are the most common causes of accidents and rail-related fatalities 

on U.S. railroads and can result in extensive risks potentially.    

This chapter aims to describe a methodological framework for railroad human 

factor risk management (Figure 2.1). In general, risk assessment is defined as the processes 

that identify hazards and risk factors, analyze and evaluate the risks associated with those 

hazards, and determine appropriate ways to control risk. Safety risk management models 

have also been developed in various fields, such as aviation (Lee, 2006), underground 

engineering (Qian and Lin, 2016), and construction site safety (Hallowell, 2008). The 
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benefits of systematic risk management include but are not limited to: improvement of 

operational effectiveness and efficiency, better understanding of the need to identify and 

treat risks, effective allocation of resources for risk mitigation, and a reliable basis for 

decision making and resource planning. Regarding railroad human factor safety risks, the 

proposed three-step methodological framework aims to assess the risks associated with 

identified hazards as well as risks from human factors, and to develop and implement 

effective and appropriate mitigations in train operations.  

  

 

Figure 2. 1. Schematic Flow Chart in Railroad Human Factor Risk Management  

 

2.1 Risk Identification and Data Collection 

The first step in safety risk management includes problem definition and data 

preparation. Essential data and information are collected and assembled to identify the 

safety risk scope, risk characteristics, and risk management objective.  

Data source preparation and data collection can contribute to the data-driven risk 

analysis and management. In the United States, railroad accident data is documented and 

also publicly accessible from the FRA’s Rail Equipment Accident (REA) database. The 

FRA publishes train accident data based on reports submitted by railroads operating in the 

United States. Railroads are required to submit accident reports for all accidents that exceed 

a specific monetary threshold for damage and loss. The reporting threshold for the REA is 

Risk Identification Risk Assessment Risk Mitigation

– Human factor-caused 
accident/incident data

– Risks and undesired events 
from human factors

– Probability and severity
– Human factor safety risks
– Risk distribution by key factors

– Effective prevention strategies
– Countermeasures in engineering, 

training, or education
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periodically adjusted for inflation and increased from $6,600 in 2001 to $10,500 in 2016 

(FRA, 2017a). The REA database records comprehensive circumstances regarding the 

accidents under over 50 different fields, including operational factors, environmental 

factors, train characteristics, damage conditions, and other information necessary for 

accident analysis and prevention.  

In addition to accident data, traffic volume is used to calculate derailment rate, 

which is defined as the number of derailments normalized by traffic volume (Anderson and 

Barkan, 2004; Liu, 2016b). Train-miles and car-miles are two common traffic metrics, each 

of which corresponds to certain types of accident causes. Schafer and Barkan (2008) found 

that some accident causes are more related to train-miles, including most human-error 

failures. On the other hand, the causes of most equipment failure and infrastructure failure 

are more closely related to car-miles. One publicly accessible traffic volume data source is 

the FRA Operational Safety Database.  

In terms of lessons learned from literature, a review of relevant literature is able to 

support the identification of railroad human factor safety risks. Firstly, the scope of 

involved literature is clarified. This study mostly focuses on literature in English from 2000 

to 2019 with qualitative and quantitative analysis in railroad human factors. It considers 

studies not only from the United States but also those of different countries all over the 

world. Secondly, major databases, such as those provided by major publishers including 

Science Direct, Emeralds, Scopus, and IEEE Xplore, to search for related articles were 

used in the literature collections. In addition to the journals, conference proceedings, and 

dissertations, the e-libraries from either federal governments or official railroad 

organizations (e.g., International Union of Railways) are another source of literature that 
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was utilized. In the third stage, railroad human factor-related keywords, such as “railroad 

accident”, “human factor”, and “human error”, are identified and used together to capture 

the synthesis of existing literature related to this study purpose. Fourthly, this literature 

review aims to discuss the definition, contributing factors, and existing countermeasures 

of railroad human factors. Per the contents of each literature, relevant full-text literature 

satisfying the eligibility are further studied and contribute to the risk identification. 

 

2.2 Risk Assessment  

2.2.1 Accident frequency and severity 

Figure 2. 2 demonstrates the frequency distribution of accidents on mainlines from 

the FRA Rail Equipment Accident database. Although there is a declining trend for train 

accidents with all causes combined, human-factor-caused train accidents account for over 

one third of all FRA-reportable accidents.  

There are several measures of train accident severity, such as the number of 

casualties (Lin et al., 2014), damage costs to rolling stock and infrastructure (Liu et al., 

2010), and the number of cars derailed, a common metric in the studies of derailment 

(Barkan et al., 2003; Liu et al., 2012). In this study, two proxy variables are employed to 

measure the severity of human-factor-caused accidents, which are the number of casualties 

and the damage costs. Other proxies for accident consequence, such as business losses and 

environmental impacts, vary among accidents and this information is not reported to FRA, 

and was therefore excluded from the analysis herein. The number of casualties is the 

summation of injuries and fatalities. In terms of consequences measured by reportable 

damage costs (damages to track infrastructure, equipment and signals), inflation is taken 
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into consideration and the damage cost each year is also adjusted to the 2016 dollar-value 

using the GDP deflator (World Bank, 2017).  

 

Figure 2. 2. Distribution of FRA-Reportable Accidents on Mainlines from 2008 to 

2017 

 

2.2.2 Accident risk  

Several previous studies have defined risk as the combination of possible 

consequences and associated probabilities (Aven and Renn, 2009). In the field of railroad 

safety, accident risk is measured by the combination of expected accident frequency and 

expected accident consequences (Liu, 2016a). Using this risk measure, this research 

defines annual human-factor-caused accident risk as the expected number of casualties or 

damage costs during a year in total. As shown in the mathematical equation below 

(Equation 2-1), the risk is equivalent to the expected summations of either casualties or 

damage costs (accident severity, 𝑋!") for all restricted-speed accidents in one year (accident 

severity, 𝑁):  
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𝑅#! = 𝐸('𝑋!")
$

"%#

																																																								(2 − 1) 

Where 

𝑖  = . 1,						using	number	of	casualties	as	accident	severity	metric		2,						using	damage	costs	as	accident	severity	metric																		 

𝑅#!= annual accident risk (mean) based on the severity metric used;   

𝑁  = number of accidents in one year; and 

𝑋!" = accident severity, either in casualty or damage cost.  

 

Both accident frequency (N) and severity (Xij) are random variables. Using the 

Law of Total Expectation (Weiss, 2006), Equation (2-2) can be expanded as follows:  

𝐸('𝑋!")
$

"%#

= 𝐸 B𝐸('𝑋!"|𝑁 = 𝑛)
$

"%#

E																																																(2 − 2) 

Then equation can be further written as:  

𝐸('𝑋!")
$

"%#

= 𝐸 B𝐸('𝑋!"|𝑁 = 𝑛)
$

"%#

E = 𝐸F𝑁𝐸G𝑋!"HI = 𝐸(𝑁)𝐸G𝑋!"H											(2 − 3) 

The annual accident risk is numerically equal to the product of expected accident 

frequency and expected severity. E(𝑁), as the expected value of accident frequency, can 

be calculated using a developed regression model, given traffic volume in each year. E(𝑋!"), 

as the expected value of accident severity, is equal to the mean value of empirical accident 

severity.  

One limitation of using the expected consequence (mean value) to represent the risk 

is that it does not fully represent the low-probability-high-consequence characteristics of 
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train accidents. For example, most human-factor-caused accidents occurred with no 

casualties, yet some resulted in over 20 casualties. The mean value alone does not fully 

represent the potential of high-impact accidents. To account for the “heavy-tail” (long-tail) 

effect in risk analysis, alternative risk measures have been developed. They are referred to 

as “spectral risk measures” (SRM), particularly Value at Risk (VaR) or Conditional Value 

at Risk (CVaR), which have primarily been employed in financial engineering (Soleimani 

et al., 2014), social sciences (Cotter and Dowd, 2006), highway hazardous materials 

transportation (Toumazis and Kwon, 2016), and, recently, rail transport of hazardous 

materials (Hosseini and Verma, 2017). These prior studies have found that VaR and CVaR 

are useful alternative risk measures to capture the “worst-case-average” of accident 

consequences.  To our knowledge, there has been no prior study applying alternative risk 

measures to the analysis of railroad accident risk.  

The VaR is the 𝛼 -quantile 𝛼 ∈ (0,1)  of a distribution. CVaR, also known as 

Expected Shortfall (ES), is basically the weighted average of all outcomes exceeding the 

confidence interval of a dataset sorted from worst to best. For example, 𝐶𝑉𝑎𝑅&.() of the 

number of casualties is the mean (average) of all the numbers of casualties within the worst 

5% of train accidents in terms of number of casualties. Overall, VaR gives a range of 

potential losses and CVaR gives an average expected loss within the most severe accidents. 

Equations 2-4 and 2-5 give the mathematical formulas for VaR and CVaR, respectively, 

and 𝛼 is set as 95%.  

𝑉𝑎𝑅*(𝑋) = min{𝑥: 𝑃(𝑋 ≤ 𝑥) ≥ 𝛼}																																					(2 − 4) 

𝐶𝑉𝑎𝑅*(𝑋) = Ε[𝑥|𝑥 ≥ 𝑉𝑎𝑅*(𝑋)]																																					(2 − 5) 



 

 

19 

Previous studies stated that VaR does not account for the losses/consequences 

beyond the threshold amount indicated by the measure (Rockafellar and Uryasev, 2000). 

It also has undesirable mathematical characteristics, such as a lack of subadditivity and 

convexity. In addition, VaR is difficult to optimize when it is calculated from scenarios 

(Rockafellar and Uryasev, 2000). As an alternative measure of risk, CVaR displays 

superior properties in comparison to VaR, such as being positively homogeneous, convex, 

and monotonic (Rockafellar and Uryasev, 2000). Thus, the following analysis employs 

CVaR as an alternative risk measure. However, the analysis can be adapted to VaR or other 

spectral risk measures as well.  

This chapter considers 𝐶𝑉𝑎𝑅()%, which represents the mean of the 5% most severe 

(in terms of either damage costs or casualties) train accidents. The annual risk is defined as 

follows:  

𝑅,! = 𝐶𝑉𝑎𝑅()% ^'𝑋!"

$

"%#

_																																														(2 − 6) 

Where 

𝑖  = .1,							using	number	of	casualties	as	accident	severity	metric		2,							using	damage	cost	as	accident	severity	metric																		   

𝑅,! = annual accident risk (spectral risk measure) based on severity metric used;   

𝑁  = number of accidents in a specific year; and 

𝑋!" = accident severity (e.g., casualty or damage cost). 

 

2.3 Risk Mitigation and Countermeasures 

Risk mitigation strategies and countermeasures can be developed based on risk 

assessment. For example, in the fault tree analysis, the bottom leaves are basic events and 
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represent the lowest-level events which may contribute to the occurrence of the top event. 

The identification of human factors behind a specific accident can contribute to the 

development of prevention strategies.  

2.3.1 Near miss analysis  

FRA initiated a partnership with National Aeronautics and Space Administration (NASA) 

and is working on a research project called Confidential Close Call Reporting System 

(C3RS), to better understand the events called “close calls”, which could have resulted in 

accidents but fortunately did not yet. This program facilitates anonymous reporting of 

unsafe railroad conditions. With this closed participation system, railroad employees will 

be able to report human-factor-related safety issues voluntarily and confidentially, which 

may have been ignored before. These reports involve incremental unsafe conditions and 

descriptions of human errors in railroad industry and then be analyzed by a Peer Review 

Team (PRT) comprising labor, management, and FRA representatives. The system can 

provide understanding of the impacts of aforementioned company-level factors in human 

error accidents, such as periodic train operation education, working schedule, and engineer 

fatigue monitoring program, and could also promote the enhancement of these factors. 

Similarly, Rail Safety and Standards Board (RSSB) also maintains the “Close Calls” 

reported by railroad personnel in the accident database that is used in the analysis with 

Safety Risk Model (Van Gulijk et al., 2015). To achieve convenient user interfaces, the 

workers in Great Britain (GB) railroads can use mobile applications to make a close call 

report, which is freeform text report. Van Gulijk et al. (2015) disclosed that over a period 

of two years, approximately 150,000 entries were collected and saved into the GB’s Close 
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Call Database. The big data can be extracted and contribute to added value for safety and 

risk domain. 

2.3.2 Appropriate medical program for safety-sensitive personnel 

Among the NTSB railroad accident reports that investigated human-factor-caused 

accidents in the last five years, the violation of operating rules due to crewmembers’ human 

error is one primary cause. In particular, human error due to physical condition (e.g., vision 

problems and sleep disorders) is identified as one root cause behind restricted-speed 

accidents. For example, in the investigation of a head-on collision of two Union Pacific 

Railroad freight trains in 2012, NTSB (2013) concluded this human-factor-caused accident 

resulted from the engineer’s inability to see and correctly interpret the restricting signals. 

In both the NJT train accident at Hoboken Terminal in 2016 and the Long Island Rail Road 

(LIRR) train accident at Atlantic Terminal in 2017, the investigation results indicated that 

both engineers in both human-factor-caused accidents were operating trains despite their 

fatigue due to untreated obstructive sleep apnea (OSA). Consequently, NTSB has 

suggested an appropriate, comprehensive medical program to ensure that employees in 

safety-sensitive positions should follow medical standards to be fit for duty. Accounting 

for vision issues in medical tests, NTSB (2013) suggested the implementation of a 

validated, reliable, and comparable color vision field test. Railroads should establish an 

acceptable medical program involving this vision test and ensure that personnel in safety-

sensitive positions have sufficient color discrimination to perform safely. As for 

crewmembers who fail the color vision test, it would be advisable to restrict such 

crewmembers from working in yard assignments or unsignaled territory (NTSB, 2013). 
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2.3.3 Implementation of alerters  

Inattentive behaviors from crew members are one common causal factor behind 

human-factor-caused accidents. Such accident risk can be mitigated through an alerter, 

which can be implemented in the locomotive cab to promote the engineer’s attentiveness 

through both audible alarms and visual alarms. With this safety device in the locomotive 

cab, if the system detects no control activity from the engineer in a predetermined time, 

both kinds of alarms are activated to prompt a response. Ultimately, the engineer’s 

inattentiveness may be mitigated to some degree. 

2.3.4 Train engineer education and training 

A variety of strategies and practices are being implemented in the railroads. For 

example, Rowe (2012) presented the development of train driver training simulator that 

has the ability to train multiple drivers simultaneously and to review performance in detail. 

In this effective simulator, essential tasks (e.g., being able to look around while driving, 

taking power/applying brakes) are included. Both normal and abnormal driving were 

documented in a full task list and analyzed with the task assessment observations. To 

mitigate train engineer fatigue risk, a real-time online prototype driver-fatigue monitor was 

proposed by Ji et al. (2004). In this non-intrusive monitoring, it uses prototype computer 

vision system for real-time video images of the driver and monitors driver’s vigilance. 

 

2.4 Evaluations of Risk Mitigation 

An ex-ante evaluation of proposed risk mitigation strategies and countermeasures 

provides a comprehensive assessment. These follow-up assessment results can help 

railroads and policy makers evaluate trade-offs among proposed risk mitigation actions and 
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also support the comparisons with alternative transportation investments/strategies. Three 

lines of inquiry can be covered in these assessment of risk mitigations: 

1) What are the estimated safety benefits of human-factor-caused accident reduction? 

2) What are the anticipated incremental costs of the proposed strategies or 

countermeasure? Would they be higher or lower than safety costs in service life? 

3) What are the quantitative operational impacts if the proposed strategies are in 

service in real-world train operations? 

2.4.1 Cost-benefit analysis 

The proposed risk mitigation strategies offer potential safety benefits because it can 

reduce the corresponding human-factor-caused accident risk. Meanwhile, the installation 

and maintenance of these countermeasures are costly and increase capital and operating 

expenses. A benefit-cost analysis involves estimated safety benefits, incremental costs, net 

present value (NPV), and the benefit-cost ratios associated with proposed risk mitigation 

strategies. The main purpose of this systematic process of identifying and quantifying 

expected benefits and costs is to help provide decision-makers with economic information, 

evaluate trade-offs, and also serve as a reference for comparisons with alternative 

transportation investments. 

The methodological framework for this benefit-cost analysis is based upon Benefit-

Cost Analysis Guidance for Rail Projects published by the FRA (2016). The calculations 

are based on this FRA guidance, railroad experts’ experience, and additional reference 

materials. Specifically, the safety benefits from the prevention of human-factor-caused 

accidents are estimated in monetary value with historical accident data and the estimation 

approach developed by FRA used in the PTC ruling making process (AAR, 2011; Peters 
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and Frittelli, 2012). The train accident information summarized here are from the FRA Rail 

Equipment Accident (REA) database. In terms of incremental cost, this research mainly 

uses the unit cost information based upon the collected survey from railroad experts and 

also involves the proposed countermeasures. In addition, the sensitivity of the cost-benefit 

ratio to certain variables can be developed to evaluate the uncertainties and variations 

behind the assessment results.   

Analysis Period 

FRA (2016) pointed out that the selection of an approximate analysis period is a 

fundamental consideration in any benefit-cost analysis (BCA). An analysis period is 

employed to capture these dynamics behind service-life safety benefits and costs. The FRA 

(2016) recommended that “the analysis period of a BCA consist of the full construction 

period of the project, plus at least 20 years after the completion of construction during 

which the full operational benefits and costs of the project can be reflected in the BCA.” 

In this study of PTC economic analysis (FRA, 2009), 20 years is used as service life and a 

20-year analysis of the costs and benefits associated with nationwide PTC implementation. 

As a similar topic, this study develops benefit-cost analysis with 20-year projected railroad 

safety benefits and 20-year costs as the objective variables in total. 

Meanwhile, there are uncertainties about the future about how travel markets and 

patterns may shift, whether the PTC components used in the maintenance would be 

manufactured by the vendors. As a result, an exceedingly long-term analysis may lose 

reliability and perhaps even meaning. Therefore, the FRA (2016b) also recommends that 

“project sponsors generally avoid analysis periods extending beyond 40 years of full 

operations.” 
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Converting nominal dollars into constant dollars 

Monetary values of safety benefits and costs are used in the BCA and measured by 

the dollars. As a study involving a long-term period, it is essential to use constant dollars, 

instead of nominal dollars that are defined as the dollars without adjustment to reflect the 

effects of inflation. Due to the inflations in the real world, the purchasing power of dollars 

varies from year to year. For example, 1,000 dollars in 2009 will be expected to buy more 

goods of the same average quality than would 1,000 dollars in 2017.   

In the study of inflation dynamics, Gali and Gertler (1999) measured inflation with 

the percent change in the Gross Domestic Product (GDP) deflator.  To convert the nominal 

dollars into constant dollars, the GDP deflator is one general method and used in previous 

studies (FRA, 2009; 2016). The GDP deflators capture the changes in the value of a dollar 

over time by considering changes in the prices of all goods and services in the U.S. 

economy and are the data is collected from the World Bank (2018).  

Table 2. 1. 2000-2017 U.S. GDP Deflators Provided by the World Bank (2018) 

Year GDP Deflator Year GDP Deflator 
2000 80.90 2009 98.79 
2001 82.74 2010 100.00 
2002 84.01 2011 102.07 
2003 85.69 2012 103.95 
2004 88.05 2013 105.62 
2005 90.88 2014 107.52 
2006 93.67 2015 108.69 
2007 96.12 2016 110.07 
2008 98.05 2017 112.05 

 

This study uses the dollar in 2017 as the unit in the estimations of safety benefits 

and costs in BCA. The GDP deflator is taken into consideration and the monetary values 

in each year are adjusted to 2017 dollars using the GDP inflator (World Bank, 2018). 
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Discount rate 

The benefit-cost analysis uses the discount rate in the calculation of the benefits 

and costs that occur at different time points. The discount rate adjusts for the time value of 

money and allows for safety benefits, as well as following costs, to be valued in equivalent 

units. These equivalent units are called present values and are independent when they occur. 

The time value of money expresses the principle that costs and benefits that occur sooner 

in time are more highly valued than those that occur in the more distant future (FRA, 

2016b). The discount rates of 7 percent and 3 percent per year are employed in both FRA 

reports (FRA, 2009; 2016) and would also be employed in this study. The calculations of 

safety benefits and costs with discount rate are as following equations are shown:  

𝑃𝑉_𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠 =
𝐹𝑉-./.0!12
(1 + 𝑑)! 																																																															(2 − 7) 

𝑃𝑉_𝐶𝑜𝑠𝑡𝑠 =
𝐹𝑉34212
(1 + 𝑑)! 																																																																						(2 − 8) 

Where: 

𝑃𝑉_𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠 and 𝑃𝑉_𝐶𝑜𝑠𝑡𝑠 are the present discounted value in constant dollars;  

𝐹𝑉_𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠 and 𝐹𝑉_𝐶𝑜𝑠𝑡𝑠 are the future discounted value in constant dollars; 

and  

d = annual discount rate; this study uses 3% and 7%. 

 

2.4.2 Operational impact assessment 

Operational impact analysis can be achieved with either qualitative assessment 

from expertise or quantitative assessment with simulation processes. Firstly, in the 
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quantitative assessment, each scenario is analyzed based on the proposed risk mitigation 

strategies and deep expertise. Secondly, the quantitative analysis employs a statistical 

simulation tool (e.g., Monte Carlo simulation) to quantitatively evaluate the impact on train 

operations, which may have a certain level of capacity impacts per expertise. A generic 

model of a known rail line is used to conduct this quantitative simulation under controlled 

conditions to determine any operational impacts on terminal capacity and operations. These 

contribute to a full assessment of operational impact in proposed risk mitigation actions. 

Train braking algorithm is one general principle in operational impact assessment. 

CE-205 is one passenger train safe braking standard adopted by Amtrak (National 

Railroad Passenger Corporation) and commuter railroads (e.g., Caltrain, SunRail) in the 

United States (12-14). The CE-205 braking distance curve is based on the average 

performance of 1.1 mph per second deceleration rate. This rate is de-rated by 25% for 

safety factor to 0.88 mph per second in the calculation of stopping distances. In addition, 

the 8-second delay time is taken into account due to cab signal delay, brake propagation 

delay, and engineer reaction delay. The equation of CE-205 stopping distance is shown in 

Figure 2. 3. For example, if a train traveling with 20 mph applies brake and stops, the 

stopping distance is 568.032 ft. In the braking curves developed by Mokkapati and Pascoe 

(2011), the stopping distance with an 8-second delay is 270.73+29.34*8=505.45 ft. This 

braking algorithm is for train operation on level tangent track.  



 

 

28 

 

Figure 2. 3. CE-205 Braking Distance Curve 

 

The above CE-205 braking algorithm is for train operations without a PTC system, 

in which the train engineer is responsible for speed reduction and positive train stop (PTS). 

In terms of braking applied by the PTC systems, the brake delay time in the PTC-induced 

braking algorithm is expected to be shorter than manual operation. Mokkapati and Pascoe 

(15) concluded that the brake delay time is related to locomotive positions and train length: 

𝑇𝑑	 = 𝐶𝐹 ∗ (0.0013 ∗ (𝑇𝑟𝑎𝑖𝑛	𝐿𝑒𝑛𝑔𝑡ℎ) 	+ 	1.8322	𝑠)		       (2−9) 

Where, 

Td = the brake propagation delay time (seconds); 

CF – the correction factor (e.g., 1.11 for the passenger trains with the locomotives 

at head end only and 1.08 for the push-pull passenger trains); and 

Train length – the length of the entire train in feet. 
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Taking one passenger train consisting of 6 cars (1 locomotive at head end and 5 

passenger cars) with a train length of 491 ft (1 × 66ft + 5 × 85ft) as an example, the brake 

delay time in PTC-induced brake algorithm would be 2.74 seconds.  
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CHAPTER 3 

MODEL CALIBRATION AND APPLICATION WITH RESTRICTED 

SPEED TRAIN ACCIDENTS 

Adapted from 
Zhang, Z., & Liu, X. (2019). Safety risk analysis of restricted-speed train accidents in the 

United States. Journal of Risk Research, 1-19. 
 

Zhang, Z., Liu, X., & Holt, K. (2019). Prevention of end-of-track collisions at passenger 
terminals via Positive Train Control. Transportation Research Record: Journal of the 

Transportation Research Record, 2673(9), 471-479. 
 

Zhang, Z., Liu, X., & Holt, K. (2020). Prevention of End-of-Track Collisions in 
Passenger Terminals via Positive Train Control: Benefit-Cost Analysis and Operational 

Impact Assessment. Transportation Research Record: Journal of the Transportation 
Research Record, 20-04977  

 
 
 
3.1 Introduction 

Restricted speed is defined as a speed that will permit stopping within one-half the 

range of vision, but not exceeding 20 miles per hour (FRA, 2011a). Besides the federal 

regulations, railroad operating rules also set forth definitions of movements at restricted 

speeds. At present, most Class I railroads (a group of the largest railroads operating in the 

U.S., with each railroad’s annual operating revenue over $433 million) use one of two 

“standard” rulebooks: the Northeast Operating Rules Advisory Committee (NORAC) 

rulebook, and the General Code of Operating Rules (GCOR). In these two guides, GCOR 

(2010) has almost the same definition of restricted speed as 49 CFR 236 Subpart G, while 

NORAC (2018) provides a stricter requirement in interlocking. More specifically, 
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restricted speeds in NORAC are required to not exceed 20 mph outside interlocking limits 

or 15 mph within interlocking limits.  

However, railroad restricted speed is not a simple numerical value. Train movement 

must be made at a speed that allows for stopping within half the range of vision short of a 

variety of hazards, such as other trains, engines, railroad cars, stop signals, men or 

equipment fouling the track, as well as obstructions (GCOR, 2010; NORAC, 2018). Coplen 

(1999) pointed out that the violation of restricted speed rules was one of the most common 

types of rule compliance problems on U.S. railroads. Several rear-end train collisions 

occurring in 2011 and 2012, in which crewmembers failed to operate their trains under the 

required restricted speeds, were discussed by NTSB (2012) and the U.S. Federal Railroad 

Administration (FRA, 2012). One of them, a rear-end collision of two BNSF Railway 

(BNSF) trains in 2011, led to two fatalities and more than $8 million in estimated damage 

costs. The probable cause was the failure of the crew to comply with the signal indication 

and to stop short of the train because they had fallen asleep (NTSB, 2012). More recently, 

one end-of-track collision at Hoboken Terminal in New Jersey, September 29, 2016, 

occurred at restricted speeds and has provoked concerns from the public and rail industry. 

It led to one fatality, 110 injuries, and around $6 million in damage costs to the train, track, 

and facility. One probable cause was the failure of this train’s engineer to stop the train 

after entering Hoboken Terminal with excessive speed (NTSB, 2018a). 

Apart from human errors that can contribute to the occurrence of restricted-speed 

accidents, environmental conditions and terrain along the railway are also contributing 

factors in some accidents. More specifically, the range of vision, as one key part in the 

definition of restricted speed, varies with some key physical features in advance of the train, 



 

 

32 

such as a descending grade or a reduced visibility due to severe weather conditions. In 

some cases, the sensitive range of vision can result in trains not being stopped short of an 

obstruction or a switch not being properly lined, leading to an accident. Restricted speed is 

imposed on train movements under several conditions, such as: 

1) At Automatic signals when the block ahead is occupied, a switch is not properly 

lined, or a defect detector is alarmed (either as a Stop and Proceed or Restricting as 

the least permissive aspect), 

2) At Interlocking signals where the Call-On function (a two-step process which 

allows the dispatcher to display a signal into an occupied block) is enabled or where 

the Restricting aspect can be displayed, 

3) At the end of PTC territory for mainline track exclusions and terminals,  

4) Routes into non-signaled passing sidings, 

5) Moves from PTC territory to yard limits which are defined by the yard limit signs 

at each end of the yard, and 

6) En route failure of PTC system. 

 

Restricted speed can be found on virtually every mile of PTC territory where 

Automatic Block Signaling (ABS) is used as the underlying train control system. In these 

systems, the most restrictive signal is Stop and Proceed at Restricted Speed, or Restricting. 

This applies to both interlocking and automatic signals, respectively. In interlocking, 

signals do not automatically display Restricting. Instead, interlocking signals have to be 

requested by the dispatcher and may require the use of a Call-On function. 

Other areas with restricted speeds include areas approaching and within terminals.  



 

 

33 

Normally covered under a Mainline Track Exclusion Addendum (MTEA) (49 CFR 

Regulation 236.1019) waiver for non-PTC operation, this can be the result of insufficient 

Safe Braking Distance (SBD) to the end of the track from the Maximum Authorized Speed 

(MAS), operating practice, or limitations on signal aspects within the terminal. Similarly, 

trains are required to move at restricted speed while entering the yard limit area, which is 

defined by the yard limit signs. 

Another common use of restricted speed is the most permissive aspect for 

movements in non-signaled sidings. In addition, similar to cab signals, when on-board PTC 

equipment fails during normal operations along the railroad, trains will operate at restricted 

speed until either the failure is corrected or other operating methods are imposed. Besides, 

there are some rare train operations under restricted speed and they are not discussed 

separately here. The proposed Concept of Operations in this study can be adapted to these 

rare restricted speed areas with few changes. 

Although there is an increasing concern with restricted-speed operations and 

accidents, to our knowledge, there has been very limited analysis of restricted-speed train 

accident risk in the United States in the prior literature. This knowledge gap has motivated 

the development of this study, in which restricted-speed accident data is statistically 

analyzed for quantitative risk analysis. Due to the complexity of this subject and the content 

limit of this research, this chapter focuses on restricted-speed train accidents that are due 

to crewmembers’ failure to comply with restricted speed rules, instead of all other causes 

(e.g., track, mechanical, signaling, and other human errors), in the United States.  
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3.2 Restricted-Speed Accident Risk Identification and Data Collection 

In the United States, restricted-speed operation is a common type of train operation, 

which is on virtually every mile of the Absolute Block System (ABS) and extensively 

employed within terminals and yards. However, relying on train engineers to make 

operational decisions also introduces human-error-caused risk. For example, the National 

Transportation Safety Board (NTSB) issued a report in 2012 highlighting five rear-end 

collisions due to violations of restricted speeds (NTSB, 2012). In all five collisions, 

crewmembers failed to operate their trains at the required restricted speed.  

Based on prior studies in accident risks (Nuclear Regulatory Commission, 1990; 

Aven and Renn, 2009; Liu, 2016a), the risk of restricted-speed accidents in this research is 

defined as the combination of expected accident frequency and expected accident severity. 

For example, the annual restricted-speed accident risk can be modeled as the product of the 

annual expected number of restricted-speed accidents and the expected accident 

consequences per accident. The risk analysis method and information garnered from it can 

potentially provide new insights into railroad safety and risk management related to 

restricted-speed operations. In addition to using the expected consequence (mean value) to 

represent the risk, this research also develops alternative risk measures (specifically the 

Conditional Value at Risk), to characterize low-probability-high-consequence restricted-

speed train accidents under certain circumstances. Apart from a macro-level analysis of 

nationwide restricted-speed accidents, Fault Tree Analysis is also developed based upon 

specific accidents in order to explore the characteristics of individual accident cases. This 

developed qualitative analysis can contribute to identifying contributing factors. This study 

uses accident data for all types of accidents associated with the violation of restricted 
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speeds from 2000 to 2016. The accident data employed in this study comes from the FRA’s 

Rail Equipment Accident (REA) database and traffic volume data source is the FRA 

Operational Safety Database. Accident narratives and causes are employed as the criteria 

to identify restricted-speed accidents. Narrative is a field in which a short text description 

of the accident was provided by the railroad correspondent. In these accidents’ narratives, 

keywords such as “restricted speed” or “restricting signal” are adopted to collect restricted-

speed accidents. In terms of accident causes, they were compiled into two fields of FRA’s 

REA database, namely CAUSE and CAUSE2. CAUSE is defined as the primary cause of 

an accident and CAUSE2 is a contributing cause of the accident. Both CAUSE and 

CAUSE2 use a cause code (a coded variable with 389 values) in each field. Either of them 

having a restricted-speed-related cause code would mostly indicate a restricted-speed 

accident. Per railroad expert judgments, three cause codes, H603, H605, and H607, have a 

straightforward relationship with restricted-speed accidents due to human error (FRA, 

2017b) and are used in our data collection. The definitions of yard limits and interlocking 

are stated in the Operating Rules (GCOR, 2010; NORAC, 2018) and Federal Regulations 

(FRA, 2011a). Yard limits are the main track area between yard limit signs and designated 

in the Timetable or special instructions. The leading end of movement within yard limits 

must operate under restricted speeds. Interlocking is an arrangement of signals that are 

interconnected by means of electric circuits, so that train movements over all routes are 

governed by signal indications succeeding each other in the proper sequence. 

In addition, this chapter manually reviews the accident narratives to verify that the 

included accidents were indeed due to violation of restricted-speed operating rules (e.g., 

operating the train above 20 mph in the restricted speed territory). A general flowchart for 
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restricted-speed accident data collection is presented in Figure 3.1. In the restricted-speed 

accident dataset, 887 restricted-speed train accidents were identified and collected from 

2000 to 2016 for the following empirical and statistical risk analysis. These 887 restricted-

speed accidents include both freight-train accidents and passenger-train accidents on all 

types of tracks (e.g., main, yard, siding, and industry). Selected high-consequence 

restricted-speed accidents are listed in Appendix A. 

 

 

Figure 3. 1. Restricted-Speed Accident Collections 

 

Based on the FRA data from 2000 to 2016, on average, there were 52 restricted-

speed accidents per year in the United States. In the 17-year study period, those restricted-

speed accidents have led to ten fatalities and 512 injuries. If the reportable damage cost 

(damages to track infrastructure, equipment, and signals) is adjusted to 2016 dollars using 

the GDP deflator (World Bank, 2017) with the consideration of inflation, the total cost of 

damage is around $146 million (at the 2016 dollar-value) in this period. Most of those 

restricted-speed accidents occurred in the form of either derailments or collisions, each 

accounting for 39%, respectively. Other accident types, such as obstruction by objects on 
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the track (e.g., bumper blocks, standing track inspector, standing ballast regulator), 

accounted for 22% of restricted-speed train accidents. The statistical analysis of accident 

frequency, severity, and risk (measured by casualty or damage cost) will be discussed in 

the following subsections (Figure 3. 2). 

  

Figure 3. 2. Flowchart of Implemented Methodology 

 

3.3 Restricted-Speed Accident Risk Analysis 

3.3.1 Accident rate 

Figure 3. 3 compares the empirical accident rate for restricted-speed train accidents 

with two other leading accident causes on U.S freight railroads: broken rails and track 

geometry failures. While broken rails were the leading accident cause in the United States 

for the last 17 years, the rate for this cause has declined steeply, dropping by around 50%. 

A significant safety improvement has also been observed for track-geometry-failure-

caused accidents. The reduction in the rate of infrastructure-caused accidents is not 
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surprising. Over the past two decades, the U.S. railroad industry has invested extensively 

in advanced track detection technologies and risk-based maintenance strategies to increase 

infrastructure quality (Barkan et al., 2003). The graph shows no apparent indication that 

the rate of restricted-speed accidents has been either increasing or decreasing over the last 

17 years. As a result of this dissimilar temporal trend, the rate of restricted-speed accidents 

has surpassed that of track-geometry-defect-caused accidents since 2013.  

 

 

Figure 3. 3. Temporal Trend in Accident Rates for Three Accident Groups in the 

United States, 2000-2016 

 

A statistical model can be developed to estimate the restricted-speed train accident 

rate. Based on a prior study, this study accounts for two potential contributing factors, the 

year and annual traffic exposure (Liu, 2016b). The year variable represents the temporal 
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change in the frequency of restricted-speed train accidents given certain traffic exposure. 

The annual traffic exposure variable tests whether and how the count of restricted-speed 

accidents varies with traffic volume in a given year. First, a Negative Binomial regression 

(NB) model is applied. As a generalization of Poisson regression, the NB model is for 

modeling count variables and also relaxes the assumption that the variance is equal to the 

mean made by the Poisson model. The NB model has been extensively applied to accident 

rate analysis for both highway transportation (Mitra and Washington, 2007) and railway 

transportation (Liu et al., 2017) and showed promising results with an acceptable goodness-

of-fit. Therefore, this research employs it to model the number of restricted-speed accidents 

in the United States. Specifically, as shown in Equation 3-1 and Equation 3-2, the observed 

number of accidents (Y) is assumed to follow a Poisson distribution, in which the 

coefficient, λ, is assumed to follow a Gamma distribution. Thus, the NB model is also 

called the Poisson-Gamma mixture model (Hosmer et al., 2013). From this, the estimated 

number of accidents can be formulated as expG∑ 𝑏5𝑋56
5%& H𝑀. The basic framework is as 

follows (Liu et al., 2017): the model output is the number of accidents given traffic 

exposure, and the predictor variables are influencing factors that affect the accident rate. 

 

𝑌~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆)                        (3-1) 

𝜆~𝐺𝑎𝑚𝑚𝑎 �𝑓, 0
7
�                        (3-2) 

𝑚 = expG∑ 𝑏5𝑋56
5%& H𝑀                         (3-3) 

Where  

Y = observed number of restricted-speed accidents; 

m = estimated number of restricted-speed accidents; 
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𝑏5 = 𝑝89 parameter coefficient; 

𝑋5 = 𝑝89 explanatory variable; 

𝑀 = traffic exposure (e.g., train miles); and  

f = inverse dispersion parameter. 

 

In the study of restricted-speed accidents, it is assumed that accidents occur 

stochastically across the total traffic for a specific year with a Negative Binomial 

distribution, with a mean count per year (yi) as a function of year index and traffic volume:  

𝑦! = exp	(𝛼 + 𝛽 × 𝑇! + 𝛾 ×𝑀!)𝑀!                    (3-4) 

Where  

𝑦! = expected number of restricted-speed accidents in year 𝑖; 

𝑇! = year index; 

𝑀! = million train miles in year 𝑖; and 

𝛼, 𝛽, 𝛾 = parameter coefficients. 

 

Three parameter coefficients, 𝛼 , 𝛽 , and 𝛾 , are estimated using the method of 

maximum likelihood (ML) (Hosmer et al., 2013). The model (4) has been fitted to the 

2000-2016 restricted-speed accidents to estimate these three unknown parameter 

coefficients. The P-value of a parameter estimator represents the statistical significance of 

a predictor variable using the Wald test (Hilbe, 2007). A generally acceptable rule is that 

if a predictor variable has a P-value smaller than 5%, this variable is statistically significant. 

This model tests whether the restricted-speed accident rate changes with time. If the P-

value of the index year is smaller than 0.05 and the coefficient is positive, it indicates that 



 

 

41 

accident rate increases with time (indicating diminishing safety). Otherwise, the accident 

rate reduces over time. If the P-value is greater than 0.05, it illustrates that there is no 

statistically significant trend in the accident rate during the study period. The analysis 

shows that there is an insignificant temporal change in the train accident rate under 

restricted speeds (P > 0.05). On the contrary, the parameter coefficient for the variable 

traffic exposure is significantly positive (γ =0.003, P < 0.05). This value illustrates that 

traffic exposure has a significant effect on the restricted-speed accident rate. A larger traffic 

volume is associated with a higher accident frequency. Using variables selections and 

updated modeling, a “final” model is 𝑦! = exp	(−4.067 + 0.003 × 𝑀!)𝑀! . Table 3.1 

shows the regression results and the last column is the P-value of a parameter estimator. 

 

Table 3. 1.  Parameter Estimates of Accident Frequency under Restricted Speeds, 

2000-2016 

Parameter Estimate 
Standard 

Error 

Wald 

Chi-Square 
P-value 

α -4.067      0.656 -6.251 <0.001 

𝛾 0.003 0.001 2.420 0.016 

 

A Pearson’s test (Agresti and Kateri, 2011) is developed to evaluate the goodness-

of-fit of the regression model. The test shows that the P-value is greater than 0.05 (P-value 

= 0.1432, degree of freedom = 16). Thus, the developed model adequately fits the empirical 

data in this study. The analysis shows that there is a non-linear relationship between the 

restricted-speed accident rate (yi/Mi) and traffic volume (train miles, Mi) (Equation 3-5). 

When traffic exposure increases, the restricted-speed accident rate per train-mile also 
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increases, probably due to the increased opportunities for train encounters (Nayak et al., 

1983). 

𝜕(𝑦! 𝑀!
� )

𝜕(𝑀!)
=
𝜕(exp	(−16.380 + 0.003𝑀!)

𝜕(𝑀!)
= 0.003 × exp(−16.380 + 0.003𝑀!)

> 0																																																																																																																	(3 − 5) 

A sensitivity analysis is conducted here to estimate the restricted-speed accident 

rate given different traffic levels. If there is an annual 3% decrease of baseline traffic 

volume (the average traffic volume for 2000-2016, i.e. 647.5 million train miles), the 

number of accidents per million train miles will decrease from 0.076 to 0.073, which 

comprises a 5% accident rate reduction. Inversely, an annual 3% increase in baseline traffic 

volume can lead to a 5% accident rate boost in restricted-speed accidents. 

 

3.3.2 Restricted-speed accident severity 

Table 3.2 shows the distribution of the severity of restricted-speed accidents 

measured by casualties or damage cost per accident each year. A Wald-Wolfowitz runs test 

is used to check whether a dataset comes from a random process (Liu, 2016a). When the 

P-value in the test is greater than 0.05, one may conclude that there is no statistically 

significant temporal trend in the studied period. In the case of this particular study, the 

result of the runs test indicates that there is no significant temporal trend for either casualty 

(P-value = 0.605) or damage cost (P-value = 0.301). The annual fluctuation in accident 

severity is largely due to random variations. Therefore, the following risk analysis uses the 

average restricted-speed accident severities, which are 0.545 casualties per accident and 

around $165,000 in damages per accident. 

Table 3. 2. Restricted-Speed Accident Severity per Accident, 2000-2017 
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3.3.3 Accident risk analysis 

The accident risks are summarized in Figure 3. 4. It is not surprising that accident 

risks calculated according to CVaR95% are always greater than mean value risks since 

CVaR stands for the 5% worst cases and provides insights into potentially high-severity 

accidents under restricted speeds. A Wald-Wolfowitz runs test was used again to test 

whether various accident risks follow any significant temporal trends. The statistical test 

results indicate that the accident risks for both two measures, 𝑅#! (mean) and 𝑅,! (CVaR), 

have no significant temporal trends in the study period.  

 

Casualties
per accident

2000 0.943 169,925               
2001 0.250 120,911               
2002 0.244 85,691                 
2003 0.674 109,047               
2004 0.914 86,093                 
2005 0.918 163,999               
2006 0.271 157,169               
2007 2.517 174,517               
2008 0.524 80,146                 
2009 0.500 86,738                 
2010 0.028 99,607                 
2011 0.349 126,784               
2012 0.182 415,308               
2013 0.489 456,671               
2014 0.208 187,795               
2015 0.164 117,877               
2016 0.082 166,087               
Average 0.545 164,963               
Standard error 0.142 26,241                 
P-value in runs test 0.605 0.301

Year Damage cost per accident 
(in 2016 $)
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(a) Accident risk in casualty 

 
(b) Accident risk in damage cost  

Figure 3. 4. Annual Restricted-Speed Accident Risk in Mean and CVaR, 2000-2016 

 

In the period, on average, the annual restricted-speed accident risk totals 32 

casualties or $8.61 million in damage costs to infrastructure and rolling stock. By contrast, 

on average, the worst 5% of restricted-speed accidents are expected to cause 108 casualties 

or $14.13 million in damage costs annually. Furthermore, the ratio of CVaR to mean value 

in casualties is over 3, which is larger than the ratio of CVaR to mean value in damage 
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costs. This indicates that accident risk measured by casualties may have a more significant 

“heavy-tail” in the worst accident consequences. This is also consistent with the empirical 

analysis, in which 85% of restricted speed accidents led to zero casualties whereas some 

severe accidents led to dozens of casualties. The risk analysis implies that the use of 

alternative risk measures can provide additional insights into certain types of low-

probability-high-consequence restricted-speed train accidents. Depending on the question 

under consideration and decision makers’ attitudes toward risk, specific risk measures can 

be used. Also, when potential risk mitigation strategies are evaluated and compared, using 

different risk measures could provide information about a specific strategy’s effect on the 

risk profile, in terms of either overall average or worst-case scenarios.  

 

3.3.4 Qualitative Analysis with Fault Tree Analysis 

In this research, the co-occurrence of two intermediate events, which are a signal 

displaying a restricted-speed indication and the failure to comply with restricted-speed 

indication, would lead to restricted-speed accidents. These two intermediate events 

represent two primary determinants, in which each consists of a series of basic events. A 

signal displaying a restricted-speed indication can be deducted into four major restricted-

speed scenarios, including Automatic Block Signal (ABS), interlocking, non-signaled 

siding, and terminal area. For example, restricted speed is imposed on ABS where the block 

ahead is occupied, a switch is not properly lined, or a defect detector is alarmed. 

Interlocking involves restricted speed operation where the Call-On function is enabled. 

Diverging either into non-signaled sidings from the signaled main track, or into the 

signaled main track from non-signaled sidings is one common form of restricted-speed 
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operations. Moreover, the Mainline Track Exclusion Addendum (MTEA) at terminal 

stations requires restricted-speeds operations. In terms of failure to comply with restricted-

speed indications, three major event groups exist, including equipment failure, 

environmental conditions, and human error. Rolling stock failure, such as brake failure, 

may fail to stop the train short of the stopping point. In terms of environmental conditions, 

low visibility due to severe weather conditions (e.g., heavy snow, dense fog) and low 

adhesion due to vegetation or extreme environmental conditions (e.g., snow, ice) may be 

contributing factors. As for the human error, crewmembers’ physical condition problems 

(e.g., use of alcohol, sleep issue, deteriorating vision), inattentive behaviors (e.g., texting), 

or communication problems (e.g., miscommunication or lack of communication between 

crews and dispatchers) may result in rule violation and thus an accident (Zhang et al., 

2018b). In 错误!未找到引用源。 3. 5, the bottom leaves of the fault tree are basic events 

and represent the lowest-level events that may contribute to the occurrence of the top event. 

To clarify, the Fault Tree Analysis covers not only the human factor as the primary cause 

but also equipment failure and environmental conditions as potential contributing causes 

in some cases.   
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Figure 3. 5. Fault Tree for Train Accidents under Restricted Speeds 

 

3.4 Restricted-Speed Accident Risk Mitigation with PTC Systems 

Faced with unchanged restricted-speed accident risk in the last 17 years, it is not 

only important but crucial to develop and implement safety strategies at restricted-speed 

train operations. Based upon the findings from the above Fault Tree Analysis and reference 

information from multiple NTSB investigation reports (NTSB, 2012; 2018a; 2018b), This 

chapter focuses on the implementation of Positive Train Control (PTC) systems to 

effectively and reliably mitigate restricted speed train accident risks. 

In order to confront human intervention failures in some cases, advanced train 

control systems such as Positive Train Control can be implemented to enforce positive 

stops and thereby prevent restricted-speed accidents. Positive Train Control (PTC) is a 

communication-based/processor-based train control system that is capable of reliably and 
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functionally preventing train accidents attributable to human error. By integrating the 

locomotive computer, wayside device, communication network, and back office, the PTC 

system can compare train real-time conditions against movement authority and speed 

restriction information to ensure train safety. Whenever a train crew fails to properly 

operate within specified safety parameters, the PTC system automatically applies the 

brakes and brings the train to a positive stop (Zhang et al., 2018a). 

Federal regulations (FRA, 2011b) designate train operations at restricted speeds as 

a regulatory exemption from the PTC requirement and accordingly state that the PTC 

system is not required to perform its functions when a train is traveling under restricted 

speeds. For example, in both the NJT accident at Hoboken Terminal and LIRR accident at 

Atlantic Terminal, trains operating on terminating tracks were excluded from PTC 

installation. Meanwhile, NTSB reports (NTSB, 2013; 2018a; 2018b) pointed out that some 

restricted-speed accidents would have been prevented if a PTC system had been installed 

and used. Therefore, it is imperative that implemented mechanisms can automatically stop 

a train before the occurrence of such accidents, even if the engineer is negligent or 

disengaged, in order to promote the safety of restricted-speed operations. PTC may be a 

feasible option to achieve this function. Its cost-effectiveness in preventing restricted-speed 

accidents shall be carefully evaluated in a separate study. 

 

3.4.1 Concept of Operations for PTC enforcement at restricted speed train 

operations 

In order to confront human intervention failures in some cases, advanced train 

control systems such as Positive Train Control can be implemented to enforce positive 
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stops and thereby prevent restricted-speed accidents. Positive Train Control (PTC) is a 

communication-based/processor-based train control system that is capable of reliably and 

functionally preventing train accidents attributable to human error. Through integrating the 

locomotive computer, wayside device, communication network, and back office, the PTC 

system can compare train real-time conditions against movement authority and speed 

restriction information to ensure train safety. Whenever a train crew fails to properly 

operate within specified safety parameters, the PTC system automatically applies the 

brakes and brings the train to a positive stop (Zhang et al., 2018a). 

Trains operating in PTC territory will accept a signal indicating restricting speeds 

as any other signal.  While operating under restricted speeds, train speeds will be enforced 

at no greater than 20 mph (or 15 mph).  This section gives detailed descriptions of how the 

proposed systems should operate and interact with its users and its external interfaces under 

a given set of circumstances. Seven major restricted speed scenarios are analyzed and 

proposed with each modification in the Concept of Operations. All of these individual parts 

contribute to comprehensible train operation under restricted speeds.  Table 3. 3 gives a 

summary of the proposed modifications for each restricted-speed scenario. Major types of 

equipment are covered in this table, which excludes software in Back Office and 

locomotives. Detailed illustrations of the Concept of Operations are attached in Appendix 

B. In particular, substantial modifications are required in the train operations at stub-end 

terminals, in which end-of-track collision risks commonly exist with severe consequence. 

The following sections place an emphasis on the end-of-track collision risk and its 

mitigation at stub-end terminals. 
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Table 3. 3. Equipment Needed in Proposed Modifications (Excluding Software)  

Scenarios   I-ETMS ACSES 

Stub end terminal Station track mapping, WIU Transponders  

Through terminal Station track mapping Nothing else needed 

Non-signaled siding track mapping, WIUs (hand switch only) Nothing else needed 

Interlocking Nothing else needed Nothing else needed 

ABS - Alarmed defect detector Nothing else needed Nothing else needed 

ABS - Occupied block ahead Nothing else needed Nothing else needed 

ABS - Misaligned switch Nothing else needed Nothing else needed 

CTC Nothing else needed Nothing else needed 

Yard limits Track mapping, WIU (optional) Nothing else needed 

 

Apart from the aforementioned equipment, rear-end protection is also needed in 

some cases, such as interlocking, occupied block ahead in ABS. To prevent a rear-end 

collision, the following train would have to know the limits of movement based on the 

position of the rear of the train ahead.  Rear-end protection would require a device, such as 

GPS, on the rear of the train with some means to stop the following train before a collision 

occurs. This would be a major upgrade to the current PTC system. PTC types in current 

operations do not identify the position of the end of trains nor do they confirm the integrity 

of trains.  As such, there is no way to determine where the stopping point should be for 

trains operating within an occupied block.  This type of train tracking is required for stand-

alone systems and would require an extensive re-design of existing PTC systems that are 

considered outside the scope of this research. Otherwise, in blocks that are known to be 

occupied, trains would be enforced to a stop at the entrance of the block and await 

instructions before proceeding.  
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3.4.2 End-of-track collision at stub-end terminals  

In the United States, there are over 35 passenger terminals with multiple 

terminating tracks ending at bumping posts and/or platforms (NTSB, 2018a). At these 

passenger terminals, the engineers’ behavior plays a key role to safely stop the train before 

reaching the end of track. However, human errors and noncompliant behaviors (e.g. 

disengaged, incapacitated, or inattentive) may result in accidents. Train operations at stub-

end terminals are one of the common restricted-speed scenarios in the United States. In the 

Safety Advisory 2016-03, train operations in terminals with stub end tracks are highlighted 

and “stress to passenger and commuter railroads the importance of taking action to help 

mitigate human factor accidents, assist in the investigation of such accidents, and enhance 

the safety of operations in stations and terminals with stub end tracks” (FRA, 2016). 

Bumping post is a safety device placed at the end of terminating track to stop 

unauthorized movement and can provide limited protection for low impacts. Passenger 

stations commonly comprise multiple platforms and crowded people that are exposed to 

potential hazards resulting from noncompliant train operations. For example, New York 

Penn Station is the busiest passenger transportation facility in the United States and 

involves 21 tracks and 11 island platforms. It has a ridership of over 300,000 on the average 

weekday in 2016, among which LIRR contributes to around a ridership of 233,000 (LIRR, 

2017).  

In the past decade, there have been a series of end-of-track collisions in passenger 

terminals. For example, LIRR trains caused 15 collisions with bumping posts at passenger 

stations in New York between 1996 and 2010 and NJT also reported seven end-of-track 

collision accidents in the last 10 years (NTSB, 2018a). Most recently. the New Jersey 
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Transit (NJT) train accident at Hoboken Terminal (Figure 3. 6.a), New Jersey, on 

September 29, 2016, led to one fatality, 156 injuries, and around $6 million in damage 

costs. A similar end-of-track collision occurred at the Long Island Rail Road (LIRR) at the 

Atlantic Terminal (Figure 3. 6.b), New York, on January 4, 2017. The engineers in both 

accidents failed to stop trains before reaching the end of tracks at passenger terminals. A 

macro-level analysis of nationwide end-of-track collisions is summarized in Appendix A. 

The National Transportation Safety Board (NTSB) (2018a) stated that the safety issues 

identified from these two accidents also exist throughout the United States at many intercity 

passenger and commuter train terminals. 

 

       

              (a) NJT Accident    (b) LIRR Accident 

Figure 3. 6. Train Accidents of in Terminus Stations (NTSB, 2018a) 

 

In spite of the potential risk and the increasing concerns, to the authors’ knowledge, 

limited prior research has been conducted on end-of-track collisions at terminals in the 

United States. To narrow the knowledge gap, this section conducts an analysis of end-of-

track collisions and presents an end-of-track collision prevention strategy through the 
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proposed PTC enforcement. In a special investigation report covering both the NJT 

accident at Hoboken Terminal and the LIRR accident at Atlantic Terminal (NTSB, 2018a), 

the NTSB pointed out one safety recommendation that “requires intercity passenger and 

commuter railroads to implement technology to stop a train before reaching the end of 

tracks” (R-18-001). Additionally, Moturu and Utterback (2018) stated that PTC can be one 

mitigation technique against end-of-track collisions. However, these studies contain 

conceptual oversights and there is a lack of detailed studies in specific modifications (e.g., 

what is needed and how to implement it) if the PTC system was enforced at passenger 

terminals. This knowledge gap has motivated the development of this chapter. The primary 

research objective of this chapter is to analyze the potential implementation of PTC to 

prevent end-of-track collisions at passenger terminals, with a focus on the Concept of 

Operations. 

 

Concept of Operations with ACSES Enforcement on Terminating Tracks 

In the ACSES-type PTC system, a set of transponders (two transponders in one set) 

located right before MTEA (Figure 3. 7.a) mark the end of the full ACSES territory at the 

end of a main track. When the train reaches this point, this set of transponders would inform 

the onboard ACSES system that it is entering “Out of ACSES Territory” and the ACSES 

system would go into a dormant state. The ACSES system being deactivated does not 

enforce any stop or speeds, but the ATC system enforces restricted speed at 20 mph or 15 

mph (NORAC, 2018). The ATC system integrates with cab signals and involves speed 

enforcement. Specifically, with the ATC system, if the train movement violates speed 

requirements, an audible alarm would be activated. If the alarm is not acknowledged and 
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no brake is applied, a penalty brake application would be made automatically to reduce 

train speed. Although the maximum authorized speed at terminal tracks can be enforced by 

the active ATC system, a train moving under that maximum speed could still cause a 

collision. For example, a train moving at 5-mph can still cause an end-of-track collision, 

which cannot be prevented by the ATC alone. Thus, a safe positive (absolute) stop before 

the end of track continues to depend on the engineer’s compliant behavior.  

The proposed solution is to divide the terminal area into two zones and to install 

additional transponder sets at the second zone, as shown in Figure 3. 7.b. The first 

transponder set (T1 in Figure 3. 7.b) causes the train system to re-enter ACSES territory 

and provides positive train stop (PTS) information, identifying the end of the platform track 

as the stop target. In addition, it provides linking distance information to the next 

transponder set (T2). The first transponder set should be located at a distance greater or 

equal to the braking distance needed to stop the train safely. The second transponder set 

(T2 in Figure 3. 7.b) provides not only a PTS with the distance to the bumping post, but 

also the redundancy to the first set, resulting in better stopping accuracy.  
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(a) Without ACSES enforcement 

 

(b) With ACSES enforcement  

Figure 3. 7. Stub-End Terminal (a) without ACSES and (b) with ACSES  

As the train reads the first transponder set T1 in Zone 2, the ACSES system 
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target, such as a bumping post. If the system determines that sufficient braking distance 

exists at a given moment, the train operation will continue to be commanded by the 

engineer. If there is insufficient stopping distance, the active ACSES system will release a 

warning, which, if ignored by the locomotive engineer, would cause the system to slow the 

train so the train can safely stop short of reaching the end of the terminating track. When 

the train changes its direction and departs from the terminal, it will read the transponders 

T2 and T1 in the reverse direction. The message in these transponder sets for this direction 

will tell the train system that it is leaving ACSES territory until it reaches the location 

where ACSES territory with full supervision begins (Figure 3. 7.b).  

 

Concept of Operations with I-ETMS Enforcement on Terminating Tracks 

The I-ETMS system employs GPS navigation to track train movements and real-

time location. In practice, many passenger terminals (e.g., Chicago Union Station) are 

either underground or are surrounded by crowded buildings that make reception of GPS 

signals difficult or impossible. As a result, it is challenging for the I-ETMS system to 

enforce a positive stop relying solely on GPS.  

The proposed Concept of Operations is to map all the terminating tracks to obtain 

the distance between a point where the train can obtain a good GPS signal and the end of 

the track (Figure 3. 8.b). The distances from that point to each bumping post need to be 

measured over every possible route because there can be multiple routes with dissimilar 

route lengths.  
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(a) Without I-ETMS enforcement 

 

(b) With I-ETMS enforcement  

Figure 3. 8. A Simplified Stub-End Terminal (a) without I-ETMS and (b) with I-

ETMS Enforcement 
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When the I-ETMS system loses GPS signal, the distance that the train has traveled 

can be continuously measured through counting pulses from wheel sensors, which is 

known as “Dead Reckoning.” In addition to the traveled distance, the system should also 

know the distance to the bumping post. Therefore, it is essential to know the position of 

every switch in order to recognize which route the train would take and to determine how 

far to travel before enforcing a positive stop. To achieve this, the Wayside Interface Unit 

(WIU) would be required to be installed at the terminal to monitor all the switches within 

the terminal. The onboard system would query the WIU to obtain switch position 

information via data radio. Having obtained the determined route, the I-ETMS system 

receives the permissible distance that it can travel before reaching the bumping post. 

Correspondingly, the I-ETMS can calculate a braking profile based upon real-time train 

speed and the remaining distance to the stop target, and then a positive stop can be achieved 

before the end of the track.  

The proposed PTC enforcement on terminating tracks may have certain engineering 

challenges, such as the close proximity of signals and switches in the terminal areas, the 

complexity of track-work, potential false penalty hits, and the reliability of transponder 

function for slow train movements. The studies of these engineering challenges, as well as 

the aforementioned cost-benefit analysis and operational impacts, are ongoing and will be 

presented in the future. In addition to end-of-track collisions, the prevention of train-to-

train collisions in terminals may be a potential research area. If PTC is used to prevent this 

type of accident, the following train would need to know where the rear end of the lead 

train is located to calculate a braking profile to enforce a positive stop before hitting the 

rear end of the lead train. However, the current PTC systems cannot fully achieve these 
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functions. Therefore, future research might be worth developing implementable 

technologies to locate both the head end and rear end of each train, in support of train-to-

train collision prevention. This enhanced positioning technology can also support the 

development of “moving block” systems.   

 

3.5 Assessment of PTC-Based Risk Mitigation via Benefit-Cost Analysis 

The developed benefit-cost analysis model in this section and operational impact 

assessment method in the following section can serve as methodological references for the 

economic analysis and operating capacity of other rail projects, respectively. Nationwide 

safety benefits and costs with the PTC enforcement at stub-end terminals (Zhang et al., 

2019c) are estimated and compared against each other with two metrics: Net Present Value 

(NPV) and benefit-cost ratio.  

 

3.5.1 Safety benefits of end-of-track collision prevention  

Overview and accident data pool 

The primary benefit of PTC implementation at stub-end terminals is the safety 

benefits or savings expected to accrue from the reduction in the number and severity of 

casualties arising end-of-track train collisions that would occur on equipped with PTC 

systems. Business benefits are also one common benefit in transportation project but in this 

research, the business benefits are excluded from the estimations of benefits due to two 

preliminary facts. Firstly, FRA (2009) recognized that the general PTC installation in the 

United States has uncertainty in the likelihood of business benefits and thus has not 

assumed any business benefits, beyond those from railroad accident prevention. Secondly, 
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the operational impact study indicates that the PTC implementations at stub-end terminals 

have a negligible impact on the capacity.  

Therefore, in the BCA, benefits indicate the safety benefits related to accident 

preventions would accrue from a decrease in damages to property such as locomotives, 

railroad cars, and track, environmental damage, track closures, and evacuations. Benefits 

more difficult to monetize--such as the avoidance of hazardous material accident related 

costs incurred by Federal, state, and local governments and impacts to local businesses--

will also result. These safety benefit categories were taken into account in the previous 

FRA study of PTC safety benefits (FRA, 2009). In the study of end-of-track collisions, 

these categories are still referred and covered in the calculation of safety benefits.  

The safety benefits of end-of-track collisions are estimated in monetary value with 

historical accident data and the estimation approach developed by FRA used in the PTC 

ruling making process (Peters and Frittelli, 2012; GAO, 2013; AAR, 2017). The train 

accident information summarized here is from the Rail Equipment Accident (REA) 

database of the U.S. Federal Railroad Administration (FRA). In the FRA REA database, 

railroads are required to submit reports of accidents that exceed a monetary threshold for 

damage and loss (e.g., $10,500 in 2017) and the FRA compiles train accident data based 

on train accident reports. In addition to the basic accident information listed in Table 3. 4, 

more comprehensive information can be found in the FRA REA database, including 

operational factors, environmental factors, train characteristics, detailed damage states, and 

narratives. 

 

 



 

 

61 

Table 3. 4. End-of-Track Collisions in the United States, 2001-2017[1] 

Date Location [2] Railroad[3] Speed 
(mph) Injury Fatality Damage 

Cost 
Jan. 4, 2017 Atlantic Terminal, NY LIRR 12 112 0 $5,348,864 

Sept. 29, 2016 Hoboken Terminal, NJ NJT 21 156 1 $6,012,000 

Mar. 7, 2016 Port Washington Station, NY LIRR 2 0 0 $1,713,104 

Jun. 2, 2015 Hoboken Terminal, NJ NJT 3 1 0 $23,802 

Jan. 6, 2014 LaSalle Street Station, IL NIRC 7 0 0 $25,554 

Sept. 23, 2012 Jamaica Station, NY LIRR 2 2 0 $12,000 

Feb. 21, 2012 Port Washington Station, NY LIRR 3 0 0 $42,334 

Jun. 8, 2011 Princeton Station, NY NJT 16 1 0 $53,500 

May 8, 2011 Hoboken Terminal, NJ PATH 13 35 0 $352,617 

Mar. 21, 2011 Port Jefferson Station, NY LIRR 12 2 0 $110,283 

Jan. 27, 2011 New Canaan Station, CT MNCW 7 0 0 $51,500 

Jun. 27, 2010 Port Washington Station, NY LIRR 0 0 0 $10,500 

April 12, 2010 Grand Central Terminal, NY MNCW 1 0 0 $31,500 

Oct. 21, 2009 33rd Street Terminal, NY PATH 6 2 0 $328,000 

Jun. 12, 2009 Washington Union Station,  ATK 3 0 0 $19,500 

Mar. 2, 2009 New Canaan Station, CT MNCW 1 0 0 $20,000 

Jun. 20, 2008 Far Rockaway, NY LIRR 3 0 0 $20,500 

Jul. 8, 2007 Penn Station, NY NJTR 10 1 0 $90,600 

Nov. 4, 2005 Port Washington Station, NY LIRR 5 0 0 $15,800 

Oct. 31, 2005 Hempstead Station, NY LIRR 3 0 0 $11,600 

Aug. 13, 2004 Grand Central Terminal, NY MNCW 11 3 0 $50,000 

Dec. 7, 2003 New Canaan Station, CT MNCW 5 0 0 $28,674 

Feb. 18, 2003 Port Washington Station, NY LIRR 5 0 0 $7,900 

Dec. 14, 2002 Hoboken Terminal, NJ NJTR 0 0 0 $80,000 

May 19, 2001 San Francisco Station, CA PCMZ 2 0 0 $8,500 

April 9, 2001 Flatbush Terminal, NY LIRR 2 0 0 $8,210 

Notes:  
[1] Data sources: FRA REA database and NTSB railroad accident reports. 
[2] Location: CA: California; CT: Connecticut; IL: Illinois; NJ: New Jersey; NY: New York. 
[3] Railroad: LIRR: Long Island Rail Road; NJT: New Jersey Transit; MNCW: Metro-North Commuter Railroad; NIRC: 
Northeast Illinois Regional Commuter Railroad; PCMZ: Caltrain Commuter Railroad.  
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This section estimates the rail safety benefits for the period of 2001 – 2017, a span 

of 17 years. The estimate is based on a pool of 26 end-of-track collisions manually 

identified from the FRA REA database. As shown in Table 3. 4, the collected 26 end-of-

track collisions occurring between 2001 and 2017 had led to 316 casualties (injuries and 

fatalities) and over $14,476,832 in damage costs to infrastructure and rolling stock only. In 

terms of either casualties or damage cost, the most severe accidents (the LIRR train 

accident at Atlantic Terminal and the NJT train accident at Hoboken Terminal) took place 

in the last two years and each led to over one hundred casualties and over $5 million in 

damage costs to rolling stock and infrastructure. Around 90% of these end-of-track 

collisions occurred on the east coast, such as Connecticut, New York, and New Jersey. 

 

Methodology with cost factors 

To estimate gross safety benefit, the estimation structure is plotted in Figure 3. 9. 

The categories include casualties, equipment damage, track and right-of-way damage, 

damage of the right-of-way, evacuations, wreck clearing, and train delays. (Figure 3. 9). 

The cost factors are the basis for the safety benefit estimations and are referred to the FRA 

report (FRA, 2009). For example, FRA (2009) estimated the cost of passenger train delays 

based on “285 passengers per train (a national average), an average duration of blockage 

of 2 hours (which implies passenger trains per day/12 are affected), an average per train 

delay of 15 minutes, and an average value of passenger time of $25 per hour”. Then the 

average cost of passenger train delay was estimated at $148 (=285 × $25 × (#
:
) × (,:

,
)) in 

1998 dollars, or $179 in 2009 dollars equivalently, which must be multiplied by the number 

of passenger trains per day. It was assumed that 33 trains per day and then the cost factor 
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for train delay would be $5,907 per accident. The amount in each cost factor is in 2009 

dollars adapted from FRA (2009) and these cost units are typical values in general. The 

estimated safety benefits for PPAs below restricted speeds in 2009 constant dollars would 

be adjusted into 2017 constant dollars below. 

To clarify, in addition to statistics from FRA 2009 report, the latest value of a 

statistical life (VSL) was provided in the FRA report (FRA, 2016b), in which VSL was set 

as $9.6 million. But in this section, to simplify the calculation of the total safety benefits 

involving train delay costs, right-of-way damage costs, evacuation costs, and so on, the 

unit cost of fatality is still using FRA 2009 report. The developed calculation method here 

can be adapted to any updated values if unit costs of all fields are provided or suggested.       

 

 

Figure 3. 9. Methodology for Estimating PTC Safety Benefit in End-of-Track 

Collisions (Adapted from FRA 2009) 
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Using the above methodology and collected end-of-track collisions from 2001 to 

2017, the safety benefits (without adjustment) of end-of-track collisions can be estimated 

in 2009 constant dollars. Before the adjustment, the total safety benefit of preventing all 

restricted-speed-PPAs is approximately $62.0 million during this 17-year period (in 2009 

dollars). From 2001 to 2017, there was one fatality caused by end-of-track collision, which 

was New Jersey Transit train accident at Hoboken Terminal in 2016.  

Furthermore, in the prior PTC economic analysis (FRA, 2009), the reduction factor 

is considered and assumes that 25% of the estimated PPA safety benefits would be reduced 

through countermeasures that are already instituted. As reliable enforcement, it assumes 

that there is no reduction in PTC effectiveness in terms of preventing end-of-track 

collisions. Therefore, with 75% of PPA benefit reduction by other countermeasures, the 

estimated safety benefit would be discounted by 75%. In addition, current cost information 

uses the 2009 dollars as the unit. The inflation is taken into consideration and the damage 

cost in each year is also adjusted to 2017 dollars using the GDP inflator (World Bank, 

2018), which was 98.793 in 2009 and 112.2 in 2017. The considerations of these two 

factors can be presented with the below equation: 

𝐵" =	𝑏! ∗ 𝛼 ∗
𝛽"
𝛽!
																																																																								(3 − 6) 

Where 

𝐵"         = safety benefits in year 𝑗. In this study, year 𝑗 = 2017; 

𝑏!         = safety benefits without adjustment in year 𝑖. In the previous part, year 𝑖 = 

2009; 

𝛼          = reduction factor due to the mitigated risks by other countermeasures; 

𝛽", 𝛽"   = GDP inflator number is year 𝑖 and year 𝑗; 
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Furthermore, the potential temporal trend was analyzed with the Wald-Wolfowitz 

runs test, a non-parametric statistical test that checks a randomness hypothesis for a two-

value data sequence and has been employ in the previous studies (Liu, 2016; Zhang et al., 

2019b). A Wald-Wolfowitz runs test shows that there is no significant temporal trend for 

safety benefits per year (P-value = 0.605). As a result, the expected annual savings due to 

end-of-track collisions are the average safety benefits per year based on the historical 

accident records, 2001-2017. In summary, the total safety benefit of preventing end-of-

track collisions at stub-end terminals is approximately $52.8 million (in 2017 dollars) 

during this 17-year period. The expected annual savings due to end-of-track collisions 

prevention with PPA is $3.1 million (in 2017 dollars).  

 

20-year projected safety benefits 

In the prior PTC economic analysis, FRA (2009) considered some reduction factors 

and a phase-in schedule of safety benefits. The 20-year projected railroad safety benefits 

were estimated using 7 percent and 3 percent discount rate, which adjusts for the time value 

of money and allows for safety benefits, as well as following costs, to be valued in 

equivalent units. These equivalent units are called present values and are independent when 

they occur. The time value of money expresses the principle that costs and benefits that 

occur sooner are more highly valued than those that occur in the more distant future (FRA, 

2016b). The discount rates of 7 percent and 3 percent per year are mentioned in both FRA 

reports (FRA, 2009; 2016). This section updates the total safety benefits using the collected 

end-of-track collisions from 2001 to 2017. The reduction factors and discount rates are 

from those used in FRA’s prior study (FRA, 2009).  
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Also, the safety benefits will be phased-in as PTC systems are installed and applied 

with a promising service life. An estimated phase-in schedule of benefits comes from FRA 

(2009), based on the original deadline in 2015. Here, it assumes that the installations of 

PTC systems at terminals take 2 years with the identical phase-in percent (50%). Based on 

the above-mentioned safety benefit reduction factors and the phase-in schedule, 20-year 

projected safety benefits are calculated in Table 3. 5. In summary, the 20-year safety benefit 

of preventing end-of-track collisions at stub-end terminals is $33.7 million (2017 dollars, 

using 7% discount rate) and $46.0 million (2017 dollars, using 3% discount rate). The 

annual safety benefits are $1.7 million (2017 dollars, using 7% discount rate) and $2.3 

million (2017 dollars, using 3% discount rate). 

 

Table 3. 5. 20-Year Phase in Analysis of PTC Benefits in End-of-Track Collisions (in 

2017 Dollars) 

 

Discount Rate 3,107,124                     3107124.349 47400000 47400000

Year
Phase In
Percent Discount Factor Annual Benefit

Discounted 
Annual Benefit Discount Factor Annual Benefit

Discounted 
Annual Benefit

2019 50% 0.86 $1,553,562 $1,343,676 0.94 $1,553,562 $1,461,747

2020 100% 0.80 $3,107,124 $2,499,237 0.91 $3,107,124 $2,835,789

2021 100% 0.75 $3,107,124 $2,324,291 0.89 $3,107,124 $2,750,715

2022 100% 0.70 $3,107,124 $2,161,590 0.86 $3,107,124 $2,668,193

2023 100% 0.65 $3,107,124 $2,010,279 0.83 $3,107,124 $2,588,148

2024 100% 0.60 $3,107,124 $1,869,559 0.81 $3,107,124 $2,510,503

2025 100% 0.56 $3,107,124 $1,738,690 0.78 $3,107,124 $2,435,188

2026 100% 0.52 $3,107,124 $1,616,982 0.76 $3,107,124 $2,362,132

2027 100% 0.48 $3,107,124 $1,503,793 0.74 $3,107,124 $2,291,268

2028 100% 0.45 $3,107,124 $1,398,528 0.72 $3,107,124 $2,222,530

2029 100% 0.42 $3,107,124 $1,300,631 0.69 $3,107,124 $2,155,854

2030 100% 0.39 $3,107,124 $1,209,587 0.67 $3,107,124 $2,091,179

2031 100% 0.36 $3,107,124 $1,124,916 0.65 $3,107,124 $2,028,443

2032 100% 0.34 $3,107,124 $1,046,171 0.63 $3,107,124 $1,967,590

2033 100% 0.31 $3,107,124 $972,939 0.61 $3,107,124 $1,908,562

2034 100% 0.29 $3,107,124 $904,834 0.60 $3,107,124 $1,851,306

2035 100% 0.27 $3,107,124 $841,495 0.58 $3,107,124 $1,795,766

2036 100% 0.25 $3,107,124 $782,591 0.56 $3,107,124 $1,741,893

2037 100% 0.23 $3,107,124 $727,809 0.54 $3,107,124 $1,689,637

2038 100% 0.22 $3,107,124 $676,863 0.53 $3,107,124 $1,638,948
Total 9.46 $28,054,461 14.31 $42,995,393

7% 3%Discount Rates
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3.5.2 Cost calculations of PTC implementation at stub-end terminals  

PTC installation cost at stub-end terminals 

The above calculation of safety benefits covers the nationwide stub-end terminals 

in the United States. Equivalently, the incremental cost of proposed PTC enforcement at 

terminal stations should also be estimated at the national scale. Firstly, the unit costs (e.g., 

labor costs, material costs) are based on discussions with railroad experts and vendors over 

the course of risk experience in estimating PTC component costs. Secondly, the collected 

unit costs involve a lower end and higher cost in order to take account of cost variations. 

For example, the higher end costs are used for the conditions with more difficulties in 

practices. More detailed unit cost information and explanations are presented in Task 4. 

Cost Calculation of PTC Implementation under Restricted Speeds.  

• Track mapping cost (for I-ETMS only). The track mapping cost in Table 3.6 

covers the collection of data points, preparation of GIS database, and preparation 

of sub-division files. The collected unit cost information also acknowledges the 

floating elements of track mapping. More specifically, at the terminal stations, the 

number of possible routes and the complexity of terminating tracks lead to the 

fluctuation in the track mapping cost; on open road, number of switches and number 

of highway-rail grade crossings would have an effect on the exact track mapping 

cost per track mile. In summary, and the low end and high end for terminating track 

mapping are $7,500 and 20,000, respectively. 
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Table 3. 6. Incremental Cost Information for Track Mapping 

Track Mapping 
Cost Per Track Mile 

Low High 

Terminals $7,500 $20,000 

 

• WIU (for I-ETMS only) and transponder (for ACSES only). The cost 

information of three categories of WIUs, stand-alone WIU, integrated WIU at 

intermediate location (Int. Loc.), and integrated WIU at control point (CP), are 

summarized in Table 3.7. Each type of WIU involves three major parts, namely 

cost, miscellaneous material, and labor fee to install. In particular, the labor to 

install a WIU is floating and driven by the amount of design, wiring, and testing 

that is required. For example, the larger the terminal, the more switches there are 

and hence the more wiring and testing needed. For those locations where the signal 

system is run by a vital microprocessor controller, there is less wiring to be done. 

In conclusion, the total cost of a stand-alone WIU are from $25,500 to $31,500, 

integrated WIU (intermediate location) are from $12,000 to $15,000, and integrated 

WIU (control point) are from $17,000 and $21,000. In some cases of requesting 

additional WIUs, radio tower may be also needed with $20,000 in material part and 

$4,000 in labor fee. Similarly, the overall cost of transponder covers material cost 

of transponder, miscellaneous materials, and labor to install and ranges from $3,300 

to $3,600 due to the varying location and complexity of transponder installation 

(Table 3.7).  
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Table 3. 7. Incremental Cost Information for WIU and Transponder 

Type of Hardware Cost Ea. Misc. Mtl. 
Labor to Install Total 

Low High Low High 

Stand Alone WIU $12,000 $1,500 $12,000 $18,000 $25,500 $31,500 

Integrated WIU  

(Int. Loc.) 
$6,000 $1,000 $5,000 $8,000 $12,000 $15,000 

Integrated WIU  

(CP) 
$8,000 $1,000 $8,000 $12,000 $17,000 $21,000 

Transponder $2,500 $500 $300 $600 $3,300 $3,600 

Notes: Cost Ea.: Unit cost for each hardware; Misc. Mtl.: Cost for miscellaneous materials. 

 

• Design cost. The construction of database and measurements are essential in the 

design of PTC implementation at stub-end terminals. In I-ETMS-type terminals, 

design cost mainly involves the preparation of sub-division file with necessary 

measurement. In the ACSES-type terminal, some design work is needed to plug the 

collect information and program into the transponder. The design cost per railroad 

experts’ judgment is estimated as $50,000 in terminals with less than 5 terminating 

tracks and $100,000 in the terminals with over 5 terminating tracks.  

• Test cost. In addition to equipment, material, and labor to install the hardware, train 

testing is necessary in most cases once the implementation is done. In the testing 

train, crew and train are needed to run the practical test and the cost is around $6,000 

per shift. 

• Maintenance cost. Based upon both prior FRA report (FRA, 2009) and railroad 

experts’ experience, the annual maintenance costs are assumed to be 10%~15% of 

installed system costs at the end of the previous year. 
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In NTSB accident report (NTSB, 2018), it pointed out that there are at least 35 

passenger train terminals with multiple tracks that end at a bumping post and/or platform, 

and all of the terminal operators have requested an exclusion from applying a positive train 

control (PTC) system. However, no literature provides detailed, exact count for the number 

of stub-end terminals, as well as the numbers of terminating tracks in each terminal in the 

nationwide railroad system. Using 45 as the number of stub-end terminals, in which PTC 

systems are proposed to enforce their functions, an approximate cost amount can be derived 

that can provide a loose reference information. As Figure 3. 10 shows, the ACSES-type 

PTC system and I-ETMS-type PTC system are considered with their approximate 

parameters. In this case study, the gross installation cost for 39 ACSES systems and 6 I-

ETMS systems is estimated at $6.9 million to $7.4 million. To be clarified, these 

installation cost amounts do not involve maintenance cost, which is correlated with the 

number of years.  

An Excel-based calculator is developed to estimate the gross incremental 

installation cost (without maintenance cost) for both ACSES-type PTC system and I-

ETMS-type PTC system. A nationwide PTC implementation cost at stub-end terminals can 

be easily calculated once the exact number of stub-end terminals with detailed parameters 

being accessible with this calculator. Moreover, any railroad or Corridor can also derive its 

cost estimations via this calculator and essential parameters, such as the number of stub-

end terminals, number of terminating tracks in each terminal, the length of terminating 

tracks, etc. 
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Figure 3. 10.  Installation Cost Calculator for Multiple Stub-End Terminals 

 

20-year projected PTC implementation cost with maintenance cost 

This section calculates a life cycle cost over a service life of 20 years. The length 

of this service life (20 years) is based on an FRA study of PTC economic analysis in 2009. 

Annual maintenance costs are assumed to be 10%~15% of installed system costs at the end 

of the previous year. 10% is used in the low-end cost estimation and 15% is used in the 

high-end cost estimation. Similar to previous safety benefit calculations, the net present 

value is considered in cost calculation and thus the discounted life-cycle costs are 

calculated using both 3% and 7% annual discount factors, which is consistent with previous 

FRA study (FRA, 2009).  

 

 

 

 

Cost Calculator for PTC Enforcement at Stub-End Terminals Updated by November 2018

Required Inputs

Scenarios Quantity Number of Tracks
Total Length of 

Tracks 
(mile)

Train Testing 
(shift)

Number of 
WIU needed Type of WIU

Additional 
Radio Tower is 

Needed?

24 4 2.5 2

15 8 5 2

3 4 2..5 2 1 Stand Alone WIU NO

3 8 5 2 1 Stand Alone WIU NO

Outcomes

High End

Stub End Terminal with 
ACSES System

6,278,400                           

Stub End Terminal with 
I-ETMS System

1,161,000                           

Total 7,439,400                           6,862,950                            

Required

Null

Outcome

Scenarios
Cost ($)

Low End

6,019,200                            

843,750                               

Stub End Terminal with 
I-ETMS System

Stub End Terminal with 
ACSES System
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Table 3. 8. 20-Year Service Life Cost of PTC Implementation at Stub-End 

Terminals 

(a) Lower-End 

 
(b) Higher-End 

 

Discount 
Factor Annual Cost Discounted 

Annual Cost
Discount 
Factor Annual Cost Discounted 

Annual Cost

2019 50% $3,086,100 $308,610 1.00 $3,394,710.00 $3,394,710 1.00 $3,394,710.00 $3,394,710

2020 100% $3,086,100 $617,220 0.93 $3,703,320.00 $3,444,088 0.97 $3,703,320.00 $3,592,220

2021 100% $0 $617,220 0.87 $617,220.00 $536,981 0.94 $617,220.00 $580,187

2022 100% $0 $617,220 0.82 $617,220.00 $506,120 0.92 $617,220.00 $567,842

2023 100% $0 $617,220 0.76 $617,220.00 $469,087 0.89 $617,220.00 $549,326

2024 100% $0 $617,220 0.71 $617,220.00 $438,226 0.86 $617,220.00 $530,809

2025 100% $0 $617,220 0.67 $617,220.00 $413,537 0.84 $617,220.00 $518,465

2026 100% $0 $617,220 0.62 $617,220.00 $382,676 0.81 $617,220.00 $499,948

2027 100% $0 $617,220 0.58 $617,220.00 $357,988 0.79 $617,220.00 $487,604

2028 100% $0 $617,220 0.54 $617,220.00 $333,299 0.77 $617,220.00 $475,259

2029 100% $0 $617,220 0.51 $617,220.00 $314,782 0.74 $617,220.00 $456,743

2030 100% $0 $617,220 0.48 $617,220.00 $296,266 0.72 $617,220.00 $444,398

2031 100% $0 $617,220 0.44 $617,220.00 $271,577 0.70 $617,220.00 $432,054

2032 100% $0 $617,220 0.41 $617,220.00 $253,060 0.68 $617,220.00 $419,710

2033 100% $0 $617,220 0.39 $617,220.00 $240,716 0.66 $617,220.00 $407,365

2034 100% $0 $617,220 0.36 $617,220.00 $222,199 0.64 $617,220.00 $395,021

2035 100% $0 $617,220 0.34 $617,220.00 $209,855 0.62 $617,220.00 $382,676

2036 100% $0 $617,220 0.32 $617,220.00 $197,510 0.61 $617,220.00 $376,504

2037 100% $0 $617,220 0.30 $617,220.00 $185,166 0.59 $617,220.00 $364,160

2038 100% $0 $617,220 0.28 $617,220.00 $172,822 0.57 $617,220.00 $351,815
Total 11.33 $12,640,666 15.32 $15,226,817

7% 3%
Installed Costs Maintenance 

CostsYear
Phase 

In
Percent

Discount 
Factor

Annual 
Cost

Discounted 
Annual Cost

Discount 
Factor Annual Cost

Discounted 
Annual Cost

2019 50% $4,068,450 $610,268 1.00 $4,678,717.50 $4,678,718 1.00 $4,678,718 $4,678,718

2020 100% $4,068,450 $1,220,535 0.93 $5,288,985.00 $4,918,756 0.97 $5,288,985 $5,130,315

2021 100% $0 $1,220,535 0.87 $1,220,535.00 $1,061,865 0.94 $1,220,535 $1,147,303

2022 100% $0 $1,220,535 0.82 $1,220,535.00 $1,000,839 0.92 $1,220,535 $1,122,892

2023 100% $0 $1,220,535 0.76 $1,220,535.00 $927,607 0.89 $1,220,535 $1,086,276

2024 100% $0 $1,220,535 0.71 $1,220,535.00 $866,580 0.86 $1,220,535 $1,049,660

2025 100% $0 $1,220,535 0.67 $1,220,535.00 $817,758 0.84 $1,220,535 $1,025,249

2026 100% $0 $1,220,535 0.62 $1,220,535.00 $756,732 0.81 $1,220,535 $988,633

2027 100% $0 $1,220,535 0.58 $1,220,535.00 $707,910 0.79 $1,220,535 $964,223

2028 100% $0 $1,220,535 0.54 $1,220,535.00 $659,089 0.77 $1,220,535 $939,812

2029 100% $0 $1,220,535 0.51 $1,220,535.00 $622,473 0.74 $1,220,535 $903,196

2030 100% $0 $1,220,535 0.48 $1,220,535.00 $585,857 0.72 $1,220,535 $878,785

2031 100% $0 $1,220,535 0.44 $1,220,535.00 $537,035 0.70 $1,220,535 $854,375

2032 100% $0 $1,220,535 0.41 $1,220,535.00 $500,419 0.68 $1,220,535 $829,964

2033 100% $0 $1,220,535 0.39 $1,220,535.00 $476,009 0.66 $1,220,535 $805,553

2034 100% $0 $1,220,535 0.36 $1,220,535.00 $439,393 0.64 $1,220,535 $781,142

2035 100% $0 $1,220,535 0.34 $1,220,535.00 $414,982 0.62 $1,220,535 $756,732

2036 100% $0 $1,220,535 0.32 $1,220,535.00 $390,571 0.61 $1,220,535 $744,526

2037 100% $0 $1,220,535 0.30 $1,220,535.00 $366,161 0.59 $1,220,535 $720,116

2038 100% $0 $1,220,535 0.28 $1,220,535.00 $341,750 0.57 $1,220,535 $695,705
Total 11.33 $21,070,503 15.32 $26,103,175

Installed Costs Maintenance 
Costs

7% 3%
Year

Phase 
In

Percent
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Using the calculated amounts in the above section as an example, the 20-year 

projected PTC implementation cost can be derived. Table 3.8.a and Table 3.8.b present 

low-end service costs and high-end service costs, respectively. In addition, a phase-in 

schedule is also assumed that the installations of PTC systems at terminals take 2 years 

with the identical phase-in percent (50%). Based on the installation cost, maintenance cost, 

and the phase-in schedule, 20-year projected costs are calculated in Table 3.8. In summary, 

the 20-year low-end costs of PTC implementations at stub-end terminals are $12.6 million 

(2017 dollars, using 7% discount rate) and $15.2 million (2017 dollars, using 3% discount 

rate). The 20-year high-end costs of PTC implementations at stub-end terminals are $21.1 

million (2017 dollars, using 7% discount rate) and $26.1 million (2017 dollars, using 3% 

discount rate).  The maintenance costs exceed the initial procurement costs over the 20-

year period, as shown in Table 3.8. 

 

3.5.3 Cost-benefit analysis 

Cost-Benefit analysis results in ratio and NPV 

To evaluate the benefit-cost analysis, two metrics are used here: Net Present Value 

(NPV) and benefit-cost ratio. NPV is equal to the benefits minus costs over a specified 

service life (e.g., 20 years) and the benefit-cost ratio is equal to the benefits divided by the 

costs. These two major outputs were employed in previous studies. For example, the FRA 

developed GradeDec, a highway-rail crossing investment analysis tool to provide grade 

crossing investment decision support (FRA, 2018b).  

In this research, the NPV of PTC implementation at stub-end terminals is calculated 

as the sum of the safety benefits of reduced end-of-track collisions, minus the total cost 



 

 

74 

associated with the PTC installation and maintenance over the service years (20-year) 

during which the safety benefits and costs are expected to accrue. This measure has been 

used in the previous study of the benefit-cost analysis of infrastructure improvement for 

derailment prevention (Liu et al., 2010) and the benefit-cost analysis of heavy haul railway 

track upgrade (Liu et al., 2011). As shown in the below equation, the monetary values of 

benefits and costs were discounted to constant (year 2017) dollars: 

𝑁𝑃𝑉 ='
𝐵! − 𝐶!
(1 + 𝑑)! ='

𝐵!
(1 + 𝑑)! −

;

!%&

'
𝐶!

(1 + 𝑑)! 																																											(3 − 7)
;

!%#

;

!%#

 

 Where: 

Y= time span over which the NPV is calculated; In this study, Y=20; 

𝐵! = safety benefits of reduced end-of-track collisions in year I; 

𝐶! = Costs of PTC implementation at stub-end terminals in year i; and 

d = annual discount rate; this study uses 3% and 7%; 

The benefit-cost ratio (BCR) is also an indicator used in the cost-benefit analysis. 

It was used in the calculation of nationwide PTC economic analysis (FRA, 2009) and can 

be calculated via Equation 3-8: 

𝐵𝐶𝑅 =
∑ 𝐵!;
!%&

∑ 𝐶!;
!%&

																																																																																		(3 − 8) 

Where: 

𝐵! = safety benefits of reduced end-of-track collisions in year i ; 

𝐶! = Costs of PTC implementation at stub-end terminals in year i; and 

Y= time span over which the NPV is calculated; In this study, Y=20. 
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With two indicators that were commonly used in cost-benefit analysis, the analysis 

results were summarized in Table 3.9.  

Table 3. 9. Cost-Benefit Analysis of PTC Implementation in Stub-End Terminals 

 
7% Discount Rate 3% Discount Rate 

20-year total 
values 

Annualized 
values 

20-year total 
values 

Annualized 
values 

Safety Benefits $33,650,157 $1,682,508 $46,047,583 $2,302,379 

Incremental 
Costs 

Low End $12,640,666 $632,033 $15,226,817 $761,341 

High End $21,070,503 $1,053,525 $26,103,175 $1,305,159 

NPV 
Low End $12,579,654 $628,983 $19,944,408 $997,220 

High End $21,009,491 $1,050,475 $30,820,765 $1,541,038 

Benefit-
Cost Ratio 

Low End 1.7 1.7 1.8 1.8 

High End 2.8 2.8 3.1 3.1 

 

The average annual NPV would be around $0.8 million (2017 dollars, using 7% 

discount rate) and $1.3 million (2017 dollars, using 3% discount rate). In other words, the 

benefit-cost analysis shows the safety benefits exceed the installation costs and 

maintenance costs for a 20-year service life. Moreover, the benefit-cost ratio is around 2 or 

even more, which indicates that the 20-year safety benefits would be approximately 2 times 

the 20-year costs. To conclude, the PTC implementation at stub-end terminals yields a 

significant economic advantage (benefits higher than costs), provided that it is kept for a 

reasonable lifetime (e.g., 20 years or longer). It was also noticed that the total costs are 

“recovered” in terms of benefits in around 5 years. In other words, starting from the 5th 
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year of PTC implementation at stub-end terminals, the total safety benefits would be 

greater than total costs (summation of installation and corresponding maintenance costs). 

Per the developed cost calculator in this study, either the number of stub-end 

terminals or the parameters in each scenario can be updated based on more practical data 

or railroad-specific data information in the future. The cost-to-benefit analysis only 

provides an exemplary case for the nationwide PTC enforcement at stub-end terminals. 

 

Sensitivity analysis 

Developed BCA will include some level of uncertainty attributable to the use of 

preliminary cost estimates, difficulty of modeling future traffic levels, or use of other 

imperfect data and incompletely understood parameters. When describing the assumptions 

employed, BCA should identify those that are subject to especially large uncertainty and 

emphasize which of them has the greatest potential influence on the outcome of the BCA. 

If key data elements are uncertain, the BCA should include a sensitivity analysis 

illustrating how its results would change if it employed alternative values for those 

elements. In this section, a sensitivity analysis is developed to investigate the impacts of 

discount rate, service life, and maintenance costs on the NPV calculation and benefit-cost 

ratio. FRA guidance (FRA, 2016b) suggested that the benefit-cost analysis should include 

a sensitivity analysis if key data elements are uncertain. This study uses the aforementioned 

nationwide PTC implementation as an example and takes the previous results as a base 

case. A sensitivity analysis is applied to illustrate how its results would change if this 

analysis employed alternative values for those elements (e.g., discount rate, service life, 
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and maintenance costs). Also, the section simplifies the cost outputs via a medium value, 

instead of presenting both low end and high end. 

The above base cases use 3% and 7% as two discount rates, which are referred to 

two FRA reports (FRA, 2009; 2016). It is evident that the use of different discount rates 

has a substantial impact on the results (Figure 3.11). Lower discount rate would have a 

larger annualized NPV. A 3% discount rate resulted in a positive, larger NPV at any service 

life within 20-40 years considered. On the other hand, a 15% discount rate still has positive 

NPV but the values of NPV are relatively smaller. 

 

Notes: To simplify the sensitivity analysis, the cost part takes the mean value of high-end 

cost and low-end cost.  

Figure 3. 11. Sensitivity Analysis of NPV Affected by Discounted Rate 

Also, with more extended study time period (service life), the annualized NPV 

decreases steadily. This is consistent for all discount rates considered in this sensitivity 

analysis.  It indicates that the economic advantages of PTC implementation at stub-end 
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terminals are decreasing (but still positive) for a longer service life perspective, but the 

relative metric in terms of the comparison between safety benefits and costs is stable or 

even increasing a little.  

The above analysis assumes the annual maintenance costs to be 10%~15% of 

installed system costs at the end of the previous year. This subsection considers 6 different 

ratios of maintenance cost to installation costs, namely 5%, 15%, 20%, 30%, 35%, and 

40%. The use of different maintenance cost ratio has a substantial impact on the results 

(Figure 3. 12). A lower maintenance costs ratio would have a larger annualized NPV and 

larger benefit-cost ratio, relatively. A 5% maintenance costs rate resulted in a positive, 

larger NPV at any service life within the 20-40 years considered. The use of a 20% discount 

rate still has positive NPV but the values of both the NPV are relatively smaller. On the 

other hand, the use of a 40% discount rate shows a negative NPV, which indicates that the 

total benefits in a service life would be lower than total costs once the annual maintenance 

cost is equal or greater than 40% of installed PTC costs. 

Overall, with a more extended study time period (service life), annualized NPV 

decreases steadily. This indicates that the economic advantages/disadvantages of PTC 

implementation at stub-end terminals decrease with a longer service life perspective. 

Moreover, higher maintenance cost ratios are also studied and when the maintenance cost 

ratio is larger than 36%, the NPV would be a negative value. This indicates that when the 

annual maintenance cost is larger than 36% of installed PTC costs, the total benefits in a 

service life would be lower than total costs. 
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Notes: the cost part takes the mean value of high-end cost and low-end cost.  

Figure 3. 12. Sensitivity Analysis of NPV Affected by Maintenance Cost Ratio 

 

3.6 Assessment of PTC-Based Risk Mitigation via Operational Impact Analysis 

This section studies the operational impacts of operating practices based upon the 

proposed restricted speed PTC enforcement. According to the design and procurement of 

all improvements or modifications to PTC from the Concept of Operations document 

developed in the previous subsection, an operational impact assessment for ACSES and/or 

I-ETMS is conducted in this research. Several scenarios will be studied to fully describe 

the operational impact on capacity and run-time for each case.  

Firstly, in the macro-level assessment, each scenario is analyzed based on the 

proposed Concept of Operations and deep expertise in PTC technology. Secondly, the 

quantitative analysis employs statistical simulation tool (e.g., Monte Carlo simulation) to 

quantitatively evaluate the impact of PTC on operations at stub-end terminals, which may 
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have a certain level of capacity impacts per expertise. A generic model of a known rail line 

is used to conduct this quantitative simulation under controlled conditions to determine any 

operational impacts on terminal capacity and operations. These two steps contribute to a 

full assessment of operational impact in PTC enforcement at restricted speeds. A 

Washington Union Station-based case study demonstrates a practical evaluation of the 

“without PTC enforcement” and “with PTC enforcement”. 

 

3.6.1 Monte Carlo simulation process 

The quantitative operational impact analysis of terminal capacity can be achieved 

with Monte Carlo simulation involving the aforementioned key principles. One simulation 

is the imitation of the real-world process of a train operation over time in the stub-end 

passenger terminal. The simulation method can serve well as a representation of the 

dynamic behavior of a system by moving it from state to state in accordance with pre-

defined constraints, and a considerably large iteration of simulation (e.g., 1,000,000 or 

more) can consider the stochasticity that exists in the practical train operations within the 

service life. As a very early study in the quantitative analysis of terminal train operational 

impact, train operating duration on terminating track is employed as the key assessment 

criterion based on prior research (Woodburn, 2017). Time operation duration can 

demonstrate both actual train arrival time and train delay incurred en route via comparing 

the actual to the planned since this is closely linked to network capability and resilience. 

Furthermore, considering the variations and uncertainties (e.g., engineer attentiveness, 

brake efficiency, environment conditions, rail adhesion, system processing speed), the 

Monte Carlo simulation takes account of these by assuming the brake delay time and 
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steady-state brake rate follows Normal Distributions. The mean value of these factors in 

Normal Distribution would follow the aforementioned braking algorithms and the variance 

would be justified based upon railroad expertise. This study mainly investigates and 

compares three scenarios: terminal operation without PTC system (benchmark), terminal 

operation with an ACSES-type PTC system, and terminal operation with an I-ETMS-type 

PTC system.  

 

Base case simulations  

In the base case, the train approaching into terminal is operated by the train engineer 

and no train control system can apply penalty brake even if the train movement is 

noncompliant. These simulations are executed based on the train operational methods 

currently used in the terminating stations. In general, three major phases are involved in 

this base case, which are train movement under restricted speeds (without slowing down, 

𝑡<_>), brake delay involving reaction time (𝑡<_?) and steady-state braking duration (𝑡<_2) 

(Figure 3. 13.a). Then the total time duration for a train approaching into the terminal and 

stopping at the targeted point before bumping post is 𝑡<: 

 

𝑡< = ' 𝑡<_!
!∈{>,?,2}

																																																					 

(3-9) 
Where 

𝑡<_! = time durations for engineer operation; and 

𝑖 = 𝑟 for train operation under restricted speed and before applying brake; 𝑖 = 𝑑 for 

brake delay; 𝑖 = 𝑠 for steady-state brake. 



 

 

82 

I-ETMS-type PTC system involved terminal simulations 

Similarly, the proposed I-ETMS system in terminating station would be monitored 

with respect to its speed limits and authority. Only if any violation in the event of human 

errors happens, the PTC would apply the braking enforcement to stop the train safely before 

hitting the bumping posts. In addition, this practical operational impact analysis section 

also takes the PTC component reliability into account. Three main types of I-ETMS 

component failure are covered and are likely to result in different scenarios. The occurrence 

of onboard locomotive system failure would lead to the failure of PTC braking application. 

In this case, the train movement would still be controlled by the engineer. If WIU or data 

radio fails, the onboard system would not know the exact distance to the bumping post and 

would have to take the worst-case (shortest) distance. Therefore, the train approaching 

terminal with WIU failure or data radio failure is consist of four phases, which are train 

movement under restricted speed (𝑡D_>), reaction time (𝑡D_?), effective braking time with 

steady-state brake (𝑡D_2), restarting & second movement time (𝑡D_>.). 
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														𝑖𝑓	𝑡𝑟𝑎𝑖𝑛	𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛	𝑖𝑠	𝑐𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑡	𝑜𝑟
𝑃𝑇𝐶	ℎ𝑎𝑠	𝑓𝑎𝑖𝑙𝑢𝑟𝑒	

(𝑒𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔	𝑊𝐼𝑈	𝑓𝑖𝑎𝑙𝑢𝑟𝑒	𝑜𝑟	𝑟𝑎𝑑𝑖𝑜	𝑓𝑎𝑖𝑙𝑢𝑟𝑒)	
𝑖𝑓	𝑃𝑇𝐶	𝑒𝑛𝑓𝑜𝑐𝑒𝑠	𝑤𝑖𝑡ℎ	𝑊𝐼𝑈	𝑓𝑎𝑙𝑢𝑟𝑒	

𝑜𝑟	𝑟𝑎𝑑𝑖𝑜	𝑓𝑎𝑖𝑙𝑢𝑟𝑒
𝑖𝑓	𝑃𝑇𝐶	𝑒𝑛𝑓𝑜𝑟𝑐𝑒𝑠	𝑑𝑢𝑒	𝑡𝑜	
𝑛𝑜𝑛𝑐𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑡	𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟	

 

(3-10) 
Where 

𝑡<_! = time durations for engineer operation;  

𝑡D_! = time durations for I-ETMS enforcing brake; and 
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𝑖 = 𝑟 for train operation under restricted speed and before applying brake; 𝑖 = 𝑑 for 

brake delay; 𝑖 = 𝑠 for steady-state brake. 

 

ACSES-type PTC system involved terminal simulations 

These simulations are executed by involving proposed PTC enforcement at stub-

end terminal. With a reliable PTC system, the train movement would be monitored with 

respect to its speed limits and authority. If any violation in the event of human errors 

happens, the PTC systems (e.g., ACSES system) would apply the braking enforcement to 

stop the train safely before hitting the bumping posts. On the other side, the train 

movements would be operated by train engineer if noncompliant behavior is detected. In 

other words, the train stopping before the end of terminating track would rely on the 

engineer’s operation.  

In addition to the first condition in Figure 3. 13.b, the ACSES component failures 

(e.g., transponder failure, onboard transponder antenna failure, and onboard computer 

failure) also play a key role in the simulation of ACSES’s operational impact. As 

introduced before, the occurrence of any ACSES-type PTC system component failures 

would cut off PTC system and train stopping at targeted point still relies on the locomotive 

engineer. Figure 3. 13.b depicts the process of train stopping at designated point for two 

cases, namely train stopping at targeted point with ACSES function (no component failure) 

and train stopping operated by engineer because of either compliant train movement or 

ACSES system involving component failure(s). The total time operation duration in 

ACSES-involved terminal (𝑡F) has two conditions: 
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(a) Terminal Train Operation without PTC (Base Case) 

 

 
(b) Terminal Operation with ACSES-Type PTC  (c) Terminal Operation with I-ETMS -Type PTC 

Figure 3. 13.  Flowchart of Train Movements in the Terminal Areas (a) without 

PTC System; (b) with ACSES System; and (c) with I-ETMS System 
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(3-11) 
Where 

𝑡_! = time durations for engineer operation; 

𝑡F_! = time durations for ACSES enforcing brake; and 

𝑖 = 𝑟 for restricted speed operation; 𝑖 = 𝑑 brake delay; 𝑖 = 𝑠 steady-state brake. 

 

Time duration assumptions with uncertainties 

The time length in each zone involves uncertainties and depends on various factors. 

For example, the reaction time varies with the degree of engineer’s attentiveness. The time 

length of effective braking time depends on the total weight of the train, brake shoe friction, 

track adhesion, and other factors. Therefore, each stochastic time length is assumed to 

follow a certain statistical distribution (Table 3.10). For example, it assumes that the brake 

propagation delay time follows Normal distribution. Train brake applied by PTC systems 

will have 𝑇?calculated in the above equation as the mean value in the Normal distribution, 

while train engineer applying the brake will have greater mean value and variance due to 

longer reaction time and larger uncertainties from manual operation. For restarting and the 

second movement in terminal with I-ETMS system, the time length varies with the track 

length difference between the targeted track and the shortest track that is implemented as 

worst-case distance if PTC equipment fails. 
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Table 3. 10. Statistical Distribution Assumptions for Time Length  

Type Distribution Effecting factors 

Without 
PTC 
system 

Brake delay time  𝑡!_#  ~ Normal 
distribution Engineer’s attentiveness; etc. 

Steady-state braking 
time  

tE_s ~ Normal 
distribution The efficiency of braking, etc. 

With PTC 
system 

Brake delay time  𝑡$_#, 𝑡%_#   ~ Normal 
distribution 

PTC system processing speed and 
signal transmitting speed; etc. 

Steady-state braking 
time  

tA_s , tI_s ~ Normal 
distribution 

Remaining distance from PTC being 
in function to end of track; 
environment (e.g., adhesion), etc. 

Restarting & 2nd 
movement time, for I-
ETMS only 

tI_re ~ Uniform 
distribution   

The speed to raising air pressure in 
the brake pipe; time to compare 
stopping point against targeted point, 
the track length error between real 
track and shortest track, etc. 

 

3.6.2 Case Study in Operational Impact Assessment 

To explicitly disclose the operational impact assessment of PTC enforcement at 

stub-end terminal, this section develops a case study based upon the track layout and train 

operations at Washington Union Station. Washington Union Station is a major railroad 

terminal station and involves 22 tracks, 13 of which are terminating tracks. It mainly 

provides services for Amtrak, Maryland Area Regional Commuter Rail (MARC), and 

Virginia Railway Express (VRE). Amtrak operates around 85 trains daily that consist of 

primarily Northeast Corridor services (e.g., Acela Express and Regional trains), serving 

over 5 million passengers in 2017 (Amtrak, 2018). The track layout of Washington Union 

Station is as shown in Figure 3.14. 
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Figure 3. 14. Washington Union Station Track Layout 

 

For the trains that approach into the terminal station, it also refers to the train 

schedule in Washington Union Station, which mainly provides ridership for Amtrak and 

MARC (Maryland Area Regional Commuter). It assumes 300 trains approaching the 

terminal daily. The analysis of the terminal explicitly examines simulated operations 

covering a 50-year period (equivalent to 5,475,000 train operations) in the terminal. During 

this period, the time durations needed from passing the last signal bridge (Bridge H in 

Figure 3.14) to stopping safely before the end of tracks are simulated and captured with 

Monte Carlo simulation. In this example, it is assumed that the maximum authorized speed 

(MAS) is 15mph (22ft/s), which is the maximum speed after entering Washington Union 

Station. The Washington Union Station involves 13 terminating tracks, where the starting 

point is K Signal Bridge. The track lengths of terminating track with MTEA vary between 

2,460 ft and 2,760 ft in this case study. 
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In addition to the assumption in the distribution of time lengths, the probability of 

a specific scenario occurrence is also listed in Table 3.11. Some assumed probabilities are 

based on experts’ experience and previous study (FRA, 2014). For example, the rate of 

PTC failure to enforce braking (failures per 1,000 hours of train operation) was assumed 

to range from 0.0606 to 0.606 in an FRA report (FRA, 2014) that studied PTC risk 

assessment. But it does not provide direct reference information about PTC component 

failure. In addition, to the authors’ knowledge, quite limited published reports or studies 

that are publicly accessible discuss the PTC component failure or PTC reliability. The 

probability of failed on-board computer, WIU, or radio in PTC system would be assumed 

to have the same magnitudes with previous research in FRA report (2014). In addition, 

they are also partially based upon railroad expertise. Specifically, it assumes that the 

probability of an on-board computer being failed is 0.0001 per PTC enforcement in train 

approaching terminal and the probability of a WIU or radio being failed is 0.0001 per PTC 

enforcement in train approaching terminal too. In particular, the probability of transponder 

failure (0.00001) is even lower than other components due to the redundancy provided by 

the second set. Although, to the authors’ knowledge, there is no publicly available 

information about complete PTC component reliability. Railroads and vendors can easily 

update and achieve their practical operational impact assessment results with their own 

PTC component reliability data and the assessment tool developed in this research. 

Moreover, the probability of the train taking the shortest terminal track in terminal is 

calculated based upon the track lengths in the terminal, which is equal to 0.1538= (2/13). 
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Table 3. 11. Assumptions in the Occurrence of Specific Scenarios  

(a) In I-ETMS 

Parameters Definition Assumed 
Values 

P11 The probability of a train being compliant with operation rule (e.g., 
following 15mph as MAS) 0.95 

1- P11 The probability of a train being incompliant with operation rule  0.05 

P21 The probability of an on-board computer in I-ETMS system being 
failed (for “practical” I-ETMS only) 0.0001 

P22 The probability of a WIU or radio in I-ETMS system being failed 
(for “practical” I-ETMS only) 0.0001 

1- P21 -P22 The probability of no failure in I-ETMS system (for “practical” I-
ETMS only) 0.9998 

P31 
The probability of the train taking the shortest terminal track in 
terminal 0.1538 

1-P31 The probability of the train not taking the shortest terminal track in 
terminal 0.8462 

 
(b) In ACSES 

Parameters Definition Assumed 
Values 

P11 The probability of a train being compliant with operation rule (e.g., 
following 15mph as MAS) 0.95 

1- P11 The probability of a train being incompliant with operation rule  0.05 

P211 
The probability of ACSES system with transponder failure (for 
“practical” ACSES only) 

0.00001 

P212 
The probability of ACSES system with other component failure(s), 
such as onboard computer failure, onboard transponder antenna 
failure (for “practical” ACSES only) 

0.0002 

1- P21 The probability of no component failure in ACSES (for “practical” 
ACSES only) 

0.99979 

 
 

Statistics of simulation results 

Following the aforementioned assumptions in time length, tracks, and train 

information, as well as drawn flowchart in train operations, a 50-year terminal operation in 

the calculation of total time needed to stop a train safely in the terminal areas is developed 

and summarized in Table 3.12. Here it assumes that this terminal has 300 trains 

approaching into terminal every day and equivalently 5,475,000 trains every year. Based 
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on the simulation results, the five objective scenarios (namely without PTC, with perfect 

ACSES, with practical ACSES, with perfect I-ETMS, and with practical I-ETMS) have 

quite similar mean time lengths (around 86 seconds). But the maximum traveling times in 

terminal track have obvious difference, which are 196.4 seconds for terminal with practical 

I-ETMS system, 94.2 seconds for terminal without PTC, and 95.3 seconds for other 

scenarios. It indicates that the time length distribution for terminal with practical I-ETM 

system may have “heavy-tail” characteristics and significantly small part of samples have 

a high value. CVaR has primarily been employed in financial engineering (Soleimani et al., 

2014), social sciences (Cotter and Dowd, 2006), highway hazardous materials 

transportation (Toumazis and Kwon, 2016), and recently rail transport of hazardous 

materials (Hosseini and Verma, 2017) and has been proven as a useful alternative risk 

measure to capture the “worst-case” or “largest-case” of a certain scenario.  

CVaR is the weighted average of all outcomes exceeding the confidence interval 

(𝛼-quantile and 𝛼 ∈ (0,1)) of a dataset sorted from worst to best. For example, CVaR(99%) 

of the time length is the mean (average) of all the numbers of casualties within the longest 

1% of train operation in terminal tracks in terms of time length.         

In this study, 𝛼 is set as 99.995% and the CVaR (99.995%) represents the average 

of the longest 0.005% of train operating time in terminals (around 550 train operation 

simulations). According to the results listed in Table 3.12, the longest 0.005% of train 

operating time in terminals without PTC is 93.9s, which is smaller than that in terminals 

with practical I-ETMS systems subjected to potential component failure (148.2s). Other 

scenarios, such as an ACSES system, or a “perfect” I-ETMS system without failure, have 

similar operation duration (95.1s) with the benchmark.  
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Table 3. 12. Train Operating Time Duration (in Second) at Washington Union 

Station-alike Terminal with CE-205 Braking Curve 

Scenarios Mean Min CVaR 
(99.995%) Max 

Terminal without PTC (benchmark)  86.1s 78.1s 93.9s 94.2s 

Terminal 
with ACSES 

“Perfect” system without 
component failure 86.1s 78.1s 95.1s 95.3s 

“Practical” system with 
probable component 
failure 

86.1s 78.1s 95.1s 95.3s 

Terminal 
with I-
ETMS 

“Perfect” system without 
component failure 86.1s 78.1s 95.1s 95.3s 

“Practical” system with 
probable component 
failure 

86.2s 78.1s 148.2s 196.4s 

Notes: [1] Train operation duration time indicates the time length that the train spends on 

terminating tracks, from passing Signal Bridge H to stopping at the targeted point. 

 

Mean Time to Train Approaching Delay in Terminal with I-ETMS 

With a special interest in the distribution of train approaching durations in the 

terminals with “practical” I-ETMS that is subject to probable component failure(s), the 

means time to train approaching delay is investigated in this section. It is found that the 

probability that train traveling time in terminal with PTC is between 100 seconds and 160 

seconds is 2.28 × 10GH (Table 3.13). It indicates that on average, one of 438,000 train 

movements in terminals (equivalently 4.0-year train operations) needs 100 - 160 seconds. 

In other words, such train operation occurs once in 4.0 years. For more severe delayed train 

approaching, the probability with over 160 seconds in travel time is only 1.92 × 10!". It 

means that such severe delayed train approaching would take place every 5 years in 

approximate. Although the likelihood of such “slow” train operation at terminal is quite 

small, it is able to block the path of other trains and delay them from either entering or 
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leaving their tracks. In busy passenger terminals such as Washington Union Station, the 

delay impacts could be significant, although the occurrence probability is quite low. 

 

Table 3. 13. Long-Tail Operating Time Length in Terminal with I-ETMS 

Frequency Type 
Simulated Time Interval 

[100s, 160s] [160s, +∞] 

Frequency per train operation 2.28 × 10!" /train operations  
1.92 × 10!" /train 

operations  

Frequency per year 0.25 /year 0.22 /year 

Mean time to such time 

duration 
4.0 years 4.8 years 

Note: Here it assumes that this terminal has 300 trains approaching into terminal every day and 

equivalently 109,500 trains every year. 

Above simulation results focus on a single, independent event of a train entering 

terminal with PTC that is likely to have equipment failure. In practice, WIU failure or radio 

failure could last for several minutes or even hours and can lead to consistent abnormal 

train operation status, in which PTC is able to take the worst-case distance and be delayed 

from reaching a point within the platform area where it would be able to discharge 

passengers. This practical situation can be even more serious for the train operation in busy 

passenger terminals.   

Sensitivity analysis of PTC component failure 

In this section, a preliminary sensitivity analysis of PTC component failure is 

conducted with two motivations: 

a) To account for the uncertainties and variations of PTC component failure 

probabilities, in particular under a variety of vendors offering nationwide PTC 

components.   
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b) To understand how changes in practice or failure prevention technology mitigation 

affect the overall operational impact and terminal capacity.  

Considering the relatively significant impact of system component failure in I-

ETMS, this section would focus on the terminal with “practical” I-ETMS only. In the 

previous case study, it assumes that both the probability of an on-board computer in the I-

ETMS system being failed and the probability of a WIU failure and/or radio failure in the 

I-ETMS system being failed is 0.0001 and the probability of no failure in I-ETMS system 

is then 0.9998. In addition, this chapter also considers 0.00001, 0.00002, 0.00005, 0.0002, 

0.0005, 0.001, 0.01, and 0.1. The distributions of train operating time duration at terminals 

are summarized in Figure 3.15. For I-ETMS with onboard computer failure (Figure 3.15.a), 

the three measurements (e.g., mean, CVaR, and max) almost remain constant in general 

while the probability of onboard computer failure changes between 0.00001 and 0.1. 

However, considering the major effect is from the probability of WIU failure and/or radio 

failure, this chapter concentrates on the sensitivity analysis of train terminal operating time 

duration with varying probabilities of WIU failure and/or radio failure. According to 

simulation results (Figure 3.15.b), the probability of WIU failure and/or radio failure does 

not have an impact on the mean value of train operating time duration, while it does have 

some effect on the “worst-case” measures (e.g., CVaR and Max). For example, when the 

probability of WIU failure and/or radio failure is only 0.001 (10 times of original case), the 

CVaR (99.995%) and maximum value would increase 14.6% (#H(.IG#:I.,
#:I.,

) and 3.3% 

(,&,.(G#(H.:
#(H.:

), respectively. While for the probability of WIU failure and/or radio failure 

being 0.00001 (0.1 times of original case), the CVaR (99.995%) and maximum value 

would decrease 19.6% (##(.#G#:I.,
#:I.,

) and 6.7% (#IJ.,G#(H.:
#(H.:

), respectively. In particular, while 
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the probability of WIU failure and/or radio failure is assumed to be 0.00001, values of 

CVaR (99.995%) are quite close to the value of terminal without PTC systems. It indicates 

that even for the worst 110 train operating time durations, their average value is quite close 

to the benchmark and the operational impact would be significantly minor compared with 

the original case study. However, the maximum value for any value of probability of WIU 

failure or radio failure is still quite large (over 160 seconds). To further study these most 

severe cases, the mean time to frequency is also investigated here.  

If the “moderate delay” is defined as train terminal operation duration between 100 

second and 160 seconds and the “severe delay” is defined as train terminal operation 

duration over 160 seconds, Table 3.14 summaries the distributions of mean time to these 

delayed train terminal operations under different probabilities of WIU failure or radio 

failure. When the probability of WIU failure or radio failure is 0.001 or even higher, the 

mean time to either moderate delay or severe delay is lower than 1 year approximately, 

which is significantly more frequent than the original case (probability = 0.0001). In 

addition, as the probability of WIU failure or radio failure is reduced to 0.00001, the mean 

time to either moderate delay or severe delay would be decades of years, which is a 

substantially rare event. It highlights the lower probability of WIU failure or radio failure, 

the longer mean time to train delayed operations at terminals with proposed PTC system. 

In other words, it highlights that the probability of WIU failure or radio failure has a distinct 

impact on the mean time to train delays and lower failure probability (equivalently high 

reliability) would essentially have more rare train delay events and significantly reduce 

adverse operational impacts. 
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(a) Onboard computer failure probability 

 

(b) WIU failure or radio failure probability 

Figure 3. 15. Sensitivity Analysis for Train Operating Duration (in Second) Affected 

by (A) Onboard Computer Failure Probability (b) WIU Failure or Radio Failure 

Probability 

This sensitivity analysis of train terminal operations under the varying probability 

of WIU failure or radio failure would serve as a reference for interested railroads and 
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vendors with comparative information in the impact of PTC terminal enforcement that is 

subject to component failure.  

 

Table 3. 14. Statistics of Train Operating Time Duration (in Second) under Varying 

Probabilities of WIU Failure or Radio Failure  

Probability of WIU 

Failure or Radio 

Failure 

Mean 

Value 

CVaR 

(99.995%) 

Maximum 

Value 

Mean Time to Train Delay 

Moderate Delay 

[100s, 160s] 

Severe Delay 

[160s, +∞] 

0.1 86.4s 192.7 206.1 0.004 year 0.005 year 

0.01 86.2s 185.5 203.5 0.03 year 0.07 year 

0.001 86.2s 169.6 203.1 0.4 year 0.5 year 

0.0005 86.2s 163.4 197.4 0.8 year 1.1 year 

0.0002 86.2s 158.5 196.0 2.1 years 2.5 years 

0.0001  86.2s 148.2s 196.4 4.0 years 4.8 years 

0.00005 86.2s 131.8 191.4 8.4 years 8.9 years 

0.00002 86.2s 121.9 188.6 19.1 years 23.8 years 

0.00001 86.1s 119.3 182.7 35.7 years 44.4 years 

Without PTC system 

(benchmark) 
86.1s 93.9s 94.2s - - 

Explanation of the operational impact analysis results 

Negligible operational impacts from the “perfect” PTC system enforcement at stub-

end terminals may potentially result from low probability of noncompliant train operations, 

rare component failure, and insignificant difference between engineer-induced braking 

curve and PTC-induced braking curve simultaneously. In passenger terminal stations, train 

speed is low due to restricted speed rules. Thus, the impact of PTC braking curve 

characteristics as mentioned in above section would be little during train operations at 

terminus stations.  
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In real-world PTC systems, component failure may occur, although it is rare event. 

In ACSES and I-ETMS systems, PTC component failure would cut off PTC function and 

leave the engineer in command of train movement under the Concept of Operations, except 

for the failure of WIU and/or failed radio. The I-ETMS system with failed WIU and/or 

radio can still enforce restricted speeds and prevent the train from hitting the bumping post. 

However, since WIU and radio are employed to monitor and transmit the position 

information of the switches, the failure would result in missing the planned route and the 

exact distance to bumping post. As a result, it would take the worst-case distance, or the 

shortest distance, to the bumping post as the braking curve calculation.  This can lead to 

stop enforcement well short of the targeted point. In general, the train would be delayed 

from reaching a point within the platform area to be able to discharge passengers. In 

addition, this delay increases the time that the train would occupy individual track segments 

and the end of the train would be blocking the path of other trains, delaying them from 

either entering or leaving their tracks, which is likely to lead to congestion. In busy 

passenger terminals such as Washington Union Station or during rush hour periods, the 

delay impacts could be relatively significant. However, simulation analysis demonstrates 

that the adverse impact could not be significant to terminal operation in general, since 

WIU/radio failure resulting in taking the non-shortest track is such a rare event. Stopping 

well short of the targeted point requires the simultaneous occurrence of three events at least: 

noncompliant train movement, WIU/radio failure, and taking the longer terminating track. 

Thus, the probability of all three events occurring is extremely low. Furthermore, PTC with 

very high reliability (low component failure probability) would notably reduce the 

occurrence of train delay and minimize the adverse operational impacts. 
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3.7 Chapter Summary 

This chapter presents preliminary assessments of the safety benefits, incremental 

costs, and operational impacts of PTC implementation at stub-end terminals that aims to 

prevent end-of-track collisions and enhance the safety levels at passenger terminals. The 

quantitative analysis consists of two major parts: benefit-cost analysis and operational 

impact assessment. The nationwide benefit-cost analysis concludes that taking 20 years as 

the service life, the annualized NPV is around $0.8 million (2017 dollars, using 7% 

discount rate) and around $1.2 million (2017 dollars, using 3% discount rate). The benefit-

cost ratio is 1.7~2.8 (using 7% discount rate) and 1.8~3.1 (using 3% discount rate). In other 

words, the safety benefits may exceed the incremental costs if PTC is enforced to prevent 

end-of-track collisions over a 20-year period under specified circumstances and 

assumptions. The potential reason is that major PTC components have already been 

installed to achieve PTC functions in active territories, while the proposed PTC 

implementation aims to extend PTC functions to terminus stations with limited increments. 

Quantitative operational impact assessment is achieved with Monte Carlo simulation and 

considers two key potential factors: train braking curve and PTC component failure. The 

case study discloses that compared to “without PTC implementation”, the operational 

impact in PTC enforcement should be negligible, except for the rare occurrence of WIU 

failure or radio failure in the I-ETMS-type PTC system that would result in a stop well 

short of the targeted point and potentially delay both onboard passengers and 

inbound/outbound trains. 
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CHAPTER 4 

ARTIFICIAL-INTELLIGENCE-AIDED TRESPASSING RISK 

MANAGEMENT  

Partially Adapted from 
Zhang, Z., Xu, J., Liu, X. and Zaman, A. (2020). Artificial Intelligence-Aided Railroad 

Trespassing Data Analysis: Methodology and A Case Study. (Working Paper) 
 

Zhang, Z., Casazza A., Liu, X., Turla, T. (2019). Railroad Trespassing Risk 
Management: A Literature Review. In Proceedings of the American Railway Engineering 

and Maintenance of Way Association Annual Meeting, Minneapolis, MN. 
 
 

4.1 Introduction 

Train derailments and collisions are well-publicized events and have received 

significant attention from researchers and policymakers seeking to reduce their occurrence. 

Less attention has been devoted to trespassing, despite trespassing making up the majority 

of rail-related fatalities when compared to derailments and collisions combined. The U.S. 

railroad system is comprised of approximately 830 railroads, 134,000 miles of track, and 

210,000 railroad crossings (FRA, 2018d). Trespassing accidents along right-of-way (ROW) 

and at highway-rail grade crossings constituted over 90% of rail-related deaths over the 

past ten years (FRA, 2018d). More specifically, there were 855 trespass-related fatalities 

in 2017, which demonstrates an increase of 18 percent from 2012 (FRA, 2018d). In 

addition to fatalities, these incidents resulted in other serious consequences, such as 

nonfatal injuries, train derailments, hazardous material spillage, train delays, and traffic 

congestion. From 2012 to 2016, trespassing accidents cost the United States approximately 
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$43 billion (FRA, 2019a), a sum that does not cover indirect costs (e.g., emotional distress 

or productivity losses). The FRA (2016a) concluded that the vast majority of trespassing 

deaths each year are preventable if effective countermeasures are implemented. 

Amongst the limited studies of railroad trespassing, most researchers encountered 

challenges due to limited data resources and uncertain data quality. The vast majority of 

publicly available data refers to trespassing casualties or grade crossing accidents, and not 

to incidents. For example, the FRA published severe trespassing accident data reported by 

railroads, such as casualty-involved trespassing data in Form 6180.55A and collisions at 

grade crossings in Form 6180.57. However, the majority of rail trespassing behaviors do 

not lead to injuries, fatalities, or even accidents, and are not typically recorded in the FRA 

accident database, due to the absence of immediate harms. However, the FRA (2014) 

pointed out that more data on incidents that do not result in casualties would be valuable 

to railroad safety researchers. While the accident/incident reports submitted to the FRA by 

railroads have proven to be extremely helpful to railroad researchers, the study of 

trespassing near-miss events can bring incremental benefits.  Not all trespassing events 

cause damage, but they indicate certain behaviors that may lead to severe consequences if 

they occur repeatedly. Learning from these trespass events, using statistical analysis and 

behavioral analysis, is critical for determining how to better educate the public on 

trespassing safety, how to better enforce laws, and how to engineer safer areas to prevent 

trespassing on railroad tracks. The increasing availability of video data within the rail 

industry makes the collection of trespassing data more feasible.   

There are two types of video surveillance systems: Closed Circuit Television 

(CCTV) cameras that are known as analog and IP cameras that are also known as network 
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cameras. Both CCTV cameras and IP cameras can be found throughout railroads, 

observing yards, bridges, grade crossings, and stations, and both can transmit video to their 

desired destination. Deployment of camera systems continues to increase in the United 

States, following the 2015 Fixing Americas Surface Transportation (FAST) Act, which 

mandated the installation of cameras throughout passenger railroads to promote safety 

objectives (Congress, 2015a). Based on the Fast Act, the Safety Advisory 2016-03 issued 

by the FRA (2016a) contains recommendations related to inward-facing and outward-

facing cameras to help mitigate human factor accidents. In addition, the Transportation 

Security Authority (TSA) provided funding for surveillance and sensors in transit and 

passenger rail areas recognized as being higher risk (Elias et al., 2016). For example, 

Caltrain in Palo Alto, California has installed CCTV cameras at safety-critical grade 

crossings to actively monitor and prevent illegal incursions through an integrated alert 

system (Palo Alto Online, 2018).  various types of security monitoring systems were 

developed in Korea. Park and Lee (2010) presented a novel security monitoring system to 

detect critically dangerous situations, such as when a passenger falls from the station 

platform or when a passenger walks on rail tracks. These systems provide valuable sources 

of video big data for railroads, but making full use of the data accurately and efficiently is 

challenging. Most camera systems are reviewed manually by railroad crews, train police, 

or local police, which is labor-intensive and expensive. Limited resources and operator 

fatigue (Dee et al., 2008) can potentially lead to missing trespassing events.  To address 

this challenge and also to leverage the untapped potential of the big data in railroad 

trespassing prevention, this research develops a novel Artificial Intelligence (AI)-aided 

algorithm that is capable of localizing and identifying trespassing events in both archival 
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video data and live video streams with acceptable processing speed and accuracy. You 

Only Look Once (YOLO), an emerging, state-of-the-art object detection algorithm 

developed by Redmon (2016, 2018), is utilized in the trespassing detection methodology 

to achieve high-accuracy trespassing detection with relatively low computation time. With 

this practice-ready technology, over two months of video data from one highway-rail grade 

crossing are processed and over 3,000 trespassing events are detected and analyzed in this 

study. These detected events, along with recorded trespassing video clips, can contribute 

to the development of practical trespassing risk mitigation strategies. Furthermore, a 

developed AI-based trespassing detection tool can be adapted to other trespassing-critical 

locations (e.g., grade crossing, right-of-way) throughout the railroad system to support 

railroad safety decisions and ultimately save lives.   

The ultimate contribution of this chapter is to mitigate the safety risks from 

trespassing accidents, which account for a large proportion of rail-related deaths and 

injuries, with an economical, autonomous method. To achieve this, this research consists 

of the following parts: 

1) Develop a deep learning-based algorithm to automatically detect trespassing events 

from archive videos and live streaming videos in a cost-effective and reliable way 

2) Establish a practice-ready tool that can implement this methodology with low 

computational costs and high efficiency 

3) Collect and analyze the trespassing events from studied videos and locations to 

understand trespassing characteristics and violators’ characteristics  

4) Propose the preliminary safety strategies and educational information to increase 

the safety level in specific grade crossings or rights-of-way  
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This study focuses on two general railroad trespassing areas: grade crossing and the 

ROW. Thus, a trespasser in this study is considered to be any person who enters or remains 

on railroad property that he or she is not legally authorized to access, including railroad 

equipment or facilities located on or near railroad property and rights-of-way (ROW). The 

trespassers can be pedestrians, bicyclists, cars, trucks, or other categories of highway users. 

The application of the detection methodology developed in this study would serve to 

improve the safety of the train crew, rail passengers, and road users, protect the general 

population and environment from the risks associated with hazmat shipments, and aid in 

the relief of congestion by reducing the number of incidents and delays due to those 

incidents.  

 

4.2 Literature Review 

4.2.1 Trespassing on railroad property 

To the authors’ knowledge, most trespass-related studies typically use publicly 

accessible accident data, as well as demographic and economic data. However, Stanchak 

and DaSilva (2014) concluded that much of the academic literature on trespassing risk is 

inconclusive because of the issues caused by limited data resources and uncertain data 

quality. Although FRA accident data (e.g., FRA Form 6180.55A - Railroad Casualties and 

FRA Form 6180.57 – Highway Rail Accidents) and demographic and economic data are 

extensively used, the much greater volume of trespass incidents, near-miss events, and 

unsafe acts are not well studied. Accidents only account for a small portion of the data that 

is needed in safety risk analysis. Meanwhile, near misses and unsafe acts can play a 
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significant role in safety. The definitions of accident, incident, and near miss are clarified 

below: 

o Accident: an unwanted, undesired, unplanned event, which results in a loss of some 

kind (personal injury or property damage); 

o Incident: an unplanned, undesired event that adversely affects completion of a task; 

o Near miss: incidents where no property was damaged and no personal injury was 

sustained, but where, given a slight shift in time or position, damage and/or injury 

could easily have occurred.  

An accident is an event with a harmful outcome and a near miss is an event resulting 

in no harm. Thus, this study only presents accidents and near misses that have obvious 

differences to avoid confusion. The near-miss management system is considered a critical 

component of a safety management system. The level of railway safety against trespassing, 

which has been so far achieved by assessing the historical data using various factors, as 

well as the existing safety programs and reduction strategies, are not adequate, and could 

be improved by some innovative future research directions, such as intelligent 

transportation systems (ITS), which could detect any unsafe conditions on the tracks or 

rights-of-way (Dong, et al., 2011). The distribution of causes of near misses with different 

levels of severity was presented by Wright and Van der Schaaf (2004). They focused on 

testing the common hypothesis that there exists a similarity in the severity of accidents and 

near misses. The results indicated no significant differences in the severity outcomes, 

which is slightly in favor of the hypothesis, but is specific to its domain data. However, 

there are many fewer publications focused on detecting near-miss events for any mode of 

transportation. There is a definite need for an increase in research analyzing near-miss 
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trespassing accidents with behavioral analysis, in order to figure out how to prevent 

highway-rail grade crossing and right-of-way accidents more efficiently. Even after a 

person attempts to trespass, if the near-miss detection systems work efficiently enough and 

if there is enough time to react, casualties can be prevented.  

Ultimately, recorded near-miss events can provide detailed characteristics of 

trespassing for behavioral risk analysis. Even though forms of noncompliance have been 

hypothesized, a lack of actual behaviors captured at the time of violation has hindered 

further study. In the study of Signal Detection Theory in grade crossing, Raslear (2015) 

raised the concern that models have only been tested against limited data and there is a 

need for more information about motorist behavior. Thus, the detected near-miss data via 

either AI-based technology or “Close Calls” can be used to support the development of a 

specific behavior risk analysis that can contribute to identifying the factors that prompt 

such noncompliant decisions and establish a comprehensive framework for evaluating the 

impact of proposed countermeasures. 

Overall, there is a definite need for research analyzing near-miss events in order to 

figure out how to mitigate highway-rail grade crossing and right-of-way risks more 

efficiently. A near-miss management system is considered as a critical component of a 

railroad safety management system. However, there are fewer publications focused on 

near-miss events due to the lack of near-miss data and the lack of a data collection 

methodology. There are only four near miss-involved literatures (Figure 4.1), which are 

limited in scope due to considerable costs of data collection. To overcome this limitation, 

a generic methodology aiming to collect trespassing events (including near misses) and 

reinforce trespassing risk reduction is proposed in this research. 
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Figure 4. 1. Pyramid Chart for Trespassing Events in Fatal Accident, Nonfatal 

Accident, Incident, and Near Miss 

 

4.2.2 Railroad trespassing detection technologies and methodologies 

Previous studies have employed various technologies to detect trespassing over 

railroad infrastructure in the past decade. DaSilva et al. (2012) demonstrated an automated 

prototype railroad infrastructure security system installed at a bridge in Pittsford, New 

York (Figure 4.2).  This location was selected due to its numerous accounts of trespassing 

and fatalities. The key component of this system is the dual-technology motion detector 

that combines stereo Doppler microwave technology with a passive infrared sensor. 

Although this motion sensor can be activated by an approaching trespasser, the system still 

needs attendants to observe videos from the installed camera and determine whether there 

is indeed a trespasser. A similar trespass detection sensor was developed and installed in 

Brunswick, Maine (Volpe Center, 2017). However, these technologies are based on the 

conglomeration of several devices which makes them susceptible to component failure, 

resulting in downtime (DaSilva et al., 2012). 

Trespassing events with fatal injuries
• publicly available (e.g., in U.S.)
• small proportion of trespass
• direct insight of fatality prevention 

Trespassing events without injuries but have the 
potential to do so
• few database 
• enormous percentage of trespass
• significant for the identification of contributing 

factors, statistical analysis, trending evaluation 

Trespassing events without or with minor injuries 
but are observed
• not publicly accessible
• large events with insight of contributing factors

Trespassing events with non-fatal injuries
• publicly available (e.g., in U.S.)
• small proportion of trespass
• insight of casualty prevention and accident reduction 

Fatal accident

Definitions and Features
George, 2008; Hu et al., 2010; 
Silla and Luoma, 2012; FRA, 2013; 
Savage, 2016; Wang et al., 2016; 
Zhang et al., 2018a; Frittelli, 2018

References

Hu et al., 2010; Chadwick et al., 
2014; Wang et al., 2016; Zhang et 
al., 2018

Horton et al., 2009; Hu et al., 
2010

da Silva et al., 2012; Frittelli, 
2018; Zaman et al., 2019; 
Ngamdung, 2019
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In one recent study of an overpass bridge going over a grade crossing (Ngamdung, 

2019), the overpass utilization was collected using an automated pedestrian counter, while 

the pedestrian trespass under the bridge was manually coded based on video data. However, 

the manual counting of trespassing events for 100 hours of video is expected to have 

considerable labor costs. Meanwhile, in one recent study on railroad trespassing, Topel 

(2019) concluded that manual detection from surveillance is labor-intensive and expensive, 

and instead suggested automated detection as one way to potentially reduce the need for 

human monitors. In order to detect and collect trespassing events in an efficient, reliable 

way, an Artificial Intelligence-based trespassing detection methodology is proposed in this 

research to detect trespassing events from vast amounts of video data. 

 

 

Figure 4. 2. Pole Configured with Monitoring and Detection Components from 

DaSilva et al. (2012) 
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4.3 Overview and Identification of Trespassing Safety Risk 

Railroad Trespassing is defined as an event when any unauthorized person or 

vehicle enters or remains on a railroad right-of-way, equipment, or facility (FRA, 2018d). 

Railroads own their rights-of-way and have a reasonable expectation of operating on their 

property without the presence or interference of unauthorized persons. Pedestrians and 

motorists are only permitted on railroad property where an authorized crossing (either 

roadway or pedestrian) intersects with the railroad right-of-way at a grade crossing, 

provided that highway traffic control signals and other signages are obeyed. Railroads have 

continuously struggled with the issue of trespassing at highway-rail grade crossings and 

rights-of-way (ROW), which can have serious consequences, such as fatalities and injuries, 

train derailments, hazardous material spillages, train delays, and traffic congestion. There 

are two types of trespasses in the United States: 

• In the case of trespass along ROW, trespassers are illegally on private railroad 

property without permission. They are most often pedestrians who walk across 

or along railroad tracks as a shortcut to another destination. Some trespassers 

are loitering or engaged in recreational activities such as jogging, hunting, 

bicycling, snowmobiling, or operating off-road, all-terrain vehicles (ATV) 

(FRA, 2016c).  

• In the case of trespass at highway-rail grade crossings, where a public or private 

road, street, sidewalk, or pathway intersects railroad tracks at the same level, 

such sites can include passive crossbucks, flashing lights, two-quadrant gates, 

long gate arms, and median barriers, in various combinations. Lights and/or 

gates are activated by circuits wired to the track (track circuits). Any movement 
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over the grade crossing zones while the red signal is flashing would be 

identified as a trespassing violation and may bring hazards to trains and 

highway users. The highway users include automobiles, buses, trucks, 

motorcycles, bicycles, farm vehicles, pedestrians, and all other modes of 

surface transportation, motorized and un-motorized. 

 

Prior research has largely focused on evaluating common countermeasures and 

understanding the factors that influence trespassing. The solutions to prevent trespassing 

accidents/incidents fall under the traditional safety concept of the 3 E’s (Engineering, 

Enforcement, Education) (Chadwick et al., 2014). In terms of influencing factors, the 

occurrence of trespassing events is correlated with several organizational factors, 

environmental factors, personal factors, and psychological factors. A trespassing accident 

can occur due to a number of organizational, environmental, social environmental, personal, 

and psychological factors. Per the collected influencing factors in trespassing studies, they 

can be categorized into four major groups: pre-crash behavior, crash characteristics, mental 

health, and environments. Table 4.1 presents a summary of cited references. In particular, 

age and gender are most widely studied in the literature. Compared to females and seniors, 

most fatalities from trespassing are young males, who tend to lack awareness of potential 

dangers in a specific traffic situation (George, 2008; Silla and Luoma, 2012; FRA, 2013). 
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Table 4. 1. Literature by Influencing Factors 

Factor Observation References  

Weather 
Fewest accidents occurred during the harsh 
cold weather and accidents seem most 
prevalent in summer. 

Savage, 2007; Stanchak 
and da Silva, 2014; 
Savage, 2016 

Age 

In New Zealand, 50% of train-related 
pedestrian deaths and 40% of injuries involved 
people aged between 10 and 19 years. 

Lobb et al., 2003 

In the U.S., most fatalities in rail-pedestrian 
crashes were young people.   

Caird et al., 2002; 
George, 2008; FRA, 
2013; Savage, 2016; 
FRA, 2018d 

In Finland, the largest age group at each 
location was adults, followed by youngsters 
and children. 

Silla and Luoma, 2012; 

Gender The vast majority of decedents in railroad-
trespasser incidents continue to be male. 

Caird et al., 2002; 
Raub, 2007 ; George, 
2008; Silla and Luoma, 
2012; FRA, 2013 

Race 
81 percent of decedents in the current study are 
White, which is 9 percent higher than the 
national average. 

FRA, 2013 

Alcohol and/or 
Drugs 

At least 52.4 percent of all incidents involved 
alcohol and/or drugs. 

FRA, 2008; George, 
2008; Silla and Luoma, 
2012; FRA, 2013 

Use of headphones 
or other electronic 
devices 

Trespassers who are wearing headphones or 
talking on cell phones are more likely to 
sustain fatal injuries. 

Wali et al., 2018  

Walking, sitting, 
or lying on or near 
the railroad tracks 

Most fatal train crashes happened when 
individuals were walking, sitting, or lying on 
or near the railroad tracks. 

Savage, 2007 

Traffic flow and 
waiting time 

Higher traffic flow and longer waiting times at 
the highway-rail grade crossings may also be 
responsible for restless behavior, thus 
motivating the intention to trespass. 

Stefanova et al., 2015 

Travel time and/or 
distance 

A potential decrease in travel time and/or 
distance also motivates trespassers. Skladana et al., 2018 

Time 

A majority of fatalities were observed on 
weekends at night-time. 

Radbo and Anderson, 
2005; Savage, 2007 

Summer has the highest percentage of 
trespassing incidents. FRA, 2018d 

Physical act 
The actions with the highest average 
percentage of incidents across all three years 
are walking and lying down. 

FRA, 2018d 



 

 

111 

Based on historical data analysis, the FRA (2013) concluded that the reported 

decedents’ mean age at time of death was 37.9 years; two out of every three railroad 

trespassing fatalities involved individuals between the ages of 20 and 49. Meanwhile, the 

average age of victims may be younger in New Zealand where 50% of train-related 

pedestrian deaths and 40% of injuries involved people between 10 and 19 years of age 

(Lobb et al., 2003). In addition, it is noted that alcohol and drug use is one causal factor 

which has received much focus. George (2008) and the FRA (2008; 2013) concluded that 

over half of all incidents involved alcohol and/or drugs. In particular, only around 29% of 

the fatalities reported were free from the influence of both alcohol and drugs (FRA, 2008). 

Although the information only specifies the presence of alcohol/drugs, but not the exact 

cause, the FRA (2008) has clarified that the percentage of alcohol/drug use seems to be 

higher among suicide fatalities when compared to other trespassers. 

 

4.4 Trespassing Collection Methodology with AI-Aided Detection 

4.4.1 Methodology 

Overview of You Only Look Once (YOLO) 

You Only Look Once (YOLO) uses features learned by a single deep convolutional neural 

network to detect objects. Most deep learning-based object detection algorithms, such as 

the R-CNN family, have a complex detection pipeline, in which bounding box generation, 

object classification, duplicate detection elimination, and bounding box refining and 

rescoring are executed sequentially. Instead, YOLO sees the entire image or video frame 

and implicitly encodes contextual information about classes as well as their appearance 

(Redmon et al., 2016). In this algorithm, object detection is redefined as a regression 
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problem to spatially separate bounding boxes and associated class probabilities with one 

single Convolutional Neural Network. The generic architecture of YOLO and R-CNN are 

presented in Figure 4.3. 

 

(a) YOLO      (b) R-CNN 
Notes: In R-CNN, DCNN is for pre-training and CNN is fine-tuned for region features.  

Figure 4. 3. Architecture for Object Detection in (a) YOLO and (b) R-CNN 

(Altenberger and Lenz, 2018) 

 

YOLO’s performance as a single-stage detector can be extremely fast compared to 

other deep learning-based methods and can be good for real-time processing with limited 

computational resources. In addition to its fast real-time processing ability, YOLO assesses 

the whole image during training and test time and thus it implicitly encodes contextual 

information about classes as well as their appearance, instead of limiting the classifier to 

the specific region and missing the larger context, as occurs when using some R-CNN 

family methods. Overall, YOLO leads to fewer false positives in background areas and 

Redmon et al. (2016) stated that YOLO demonstrates less than half the number of 

background errors compared to Fast R-CNN. Further, YOLO reasons globally about the 

image or frame when making a prediction. Unlike sliding window or region proposal-based 

DCNN

Region proposal

CNN

Box offset regressor

SVM / Softmax
classifier
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techniques, YOLO has access to the whole image when predicting boundaries. With the 

additional context, YOLO demonstrates fewer false positives in background areas. After 

the updates from YOLO to YOLOv3, the accuracy of YOLO’s algorithm has improved 

significantly and can achieve a similar accuracy level to the most advanced, complex 

methods. Therefore, in this study, YOLO’s fast speed in video/image processing and 

detection prediction can satisfy the need for real-time object detection, as well as archive 

videos, with stable accuracy. The following sections will introduce the basic principles of 

YOLO. For more details on this object detection method, refer to Redmon et al (2016). 

 

Unified detection 

YOLO applies a single neural network to features from the entire image to predict 

each bounding box across all classes simultaneously. In general, to enable end-to-end 

training and real-time speeds with reasonable precision, YOLO divides the input image 

into an 𝑆 × 𝑆 grid. Each of these grid cells (the total number of which is 𝑆,) predicts 𝐵 

Boundary boxes and detects one object only, regardless of the number of boundary boxes. 

Each boundary box has five elements, which are 𝑥, 𝑦, 𝑤, ℎ, and the confidence score. 

Specifically,  𝑥 and 𝑦 are the coordinates of the box center relative to the bounds of the 

grid cell and 𝑤 and ℎ are the bounding box width and height normalized by the image 

width and height, respectively. The confidence score reflects the level of confidence that 

the bounding box contains an object and how accurate the box is that it predicts. It is 

defined as Pr(𝑂𝑏𝑗𝑒𝑐𝑡) ∗ 𝐼𝑂𝑈5>.?1>K1L, in which IOU is the intersection over the union between 

the predicted box and the ground truth. Hence, if no object exists in the cell, the confidence 

score should be 0, otherwise it would be equal to IOU.  The ultimate objective for each 
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grid cell is to predict the class probabilities per grid cell in an image. Class-specific 

confidence scores can be calculated as the product of the bounding box confidence score 

and conditional class probability, 

 

𝐹𝑖𝑛𝑎𝑙	𝑠𝑐𝑜𝑟𝑒 = 	Pr(𝐶𝑙𝑎𝑠𝑠!) ∗ 𝐼𝑂𝑈5>.?1>K1L = Pr(𝐶𝑙𝑎𝑠𝑠!|𝑂𝑏𝑗𝑒𝑐𝑡) ∗ Pr(𝑂𝑏𝑗𝑒𝑐𝑡) ∗ 𝐼𝑂𝑈5>.?1>K1L 

(4-1) 

Where:  

Pr(𝐶𝑙𝑎𝑠𝑠!) is the probability that the object belongs to 𝐶𝑙𝑎𝑠𝑠!; 

Pr(𝐶𝑙𝑎𝑠𝑠!|𝑂𝑏𝑗𝑒𝑐𝑡) is the probability that the object belongs to	𝐶𝑙𝑎𝑠𝑠!, given that 

an object is present; and 

Pr(𝑜𝑏𝑗𝑒𝑐𝑡) is the probability that the bounding box contains an object.  

 

Network design and feature extractor 

The network in YOLOv1 has 24 convolutional layers followed by 2 fully connected 

layers (FC). The figure below presents the network design in the creation of YOLO by 

Redmon et al. (2016), which uses PASCAL VOC (2015) as the evaluation detection dataset. 

It assumes that the number of grid cell 𝑆, is 7,, the number of bounding boxes for each 

grid cell is 2, and the number of classifiers is 20. Then, the final prediction is a 7 × 7 × 30 

tensor (as shown in Figure 4. 4). 
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Figure 4. 4. Feature Extractor of YOLOv1 (Redmon et al., 2016) 

 

Improvements in YOLOv3  

Although YOLOv1 is a powerful tool for real-time object detection, it has some 

limitations. For example, YOLOv1 still lags behind some state-of-the-art detection 

methods in terms of accuracy and it struggles to precisely localize some objects, especially 

small ones. To overcome these major drawbacks in YOLO, YOLOv2 (Redmon and 

Farhadi, 2017) and YOLOv3 (Redmon and Farhadi, 2018) proposed some updates to 

YOLO. The primary AI system in this study is YOLOv3, which is the third, most recent 

object detection algorithm in the YOLO family. Considering the similarity between YOLO 

and YOLOv3, this section will not introduce YOLOv3 from scratch. Instead, Figure 4.3 

demonstrates the major updates to YOLOv3 from YOLOv2. For example, in terms of 

classification, instead of using the softmax function and mean square error in calculating 

the classification loss, YOLOv3 uses independent logistic classifiers and binary cross-

entropy loss for each label, in order to calculate the probability that an input belongs to a 
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specific label. This can reduce the computation complexity from the softmax function. For 

more detailed updates to YOLOv3, refer to Redmon and Farhadi (2018). 

 

 

Figure 4. 5. Updates from YOLO, YOLOv2, to YOLOv3 

 

One of the major updates in YOLOv3 is the use of Darknet-53 as feature extractor. 

Redmon and Farhadi (2018) point out that Darknet-53 is more powerful in terms of 

accuracy and more efficient in terms of operation speed, than ResNet, such as ResNet-101. 

Compared to the Darknet-19 that is used in YOLOv2, using Darknet-53 can achieve small 

object detections, as well as more accurate detections with deeper layers. YOLOv2 

commonly struggles with small object detections, due to the loss of fine-grained features 

as the layers downsample the input. However, Darknet-53, used in YOLOv3, has only one 

global average pooling layer before the input, along with 53 convolutional layers. For the 

improvement of accuracy and processing speed, a residual block, consisting of several 

convolutional layers and shortcut paths, is employed to add up the old features and to make 

it easier for the network to learn the features stably, especially for deep networks. Appendix 

C presents the loss function used in YOLOv3. 
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Common Objects in Context (COCO) 

YOLO and common R-CNNs are compatible with existing, large-scale training 

datasets, such as the Common Objects in Context (COCO) dataset.  This dataset consists 

of over 200,000 labeled images of everyday scenes, built for use in object recognition 

research, and gives computer vision algorithms valuable training data to recognize 

commonly seen objects, such as people, cars and trains (Lin et al., 2014). These features, 

coupled with YOLO, allow for rapid deployment of AI to object recognition tasks. 

A key part of Mask R-CNN’s performance is the training dataset, which allows it 

to recognize objects.  The COCO dataset, consisting of more than 200,000 labeled images 

of everyday scenes, built for use in object recognition research, was utilized for this 

purpose.  It is selected because of its depth (over 330,000 images and over 200,000 labeled 

images), diversity (80 object categories) and timeliness through its continual growth and 

refinement (Lin et al., 2014). Additionally, the COCO dataset includes pre-generated 

boundaries around recognized images, allowing for better object recognition. By providing 

the YOLO with this dataset, it can recognize people, cars, trains and other objects within 

the ROI.   

 

4.4.2 YOLO-Based Trespassing Detection Framework 

There are five major phases in trespassing detection with YOLO and computer 

vision: video frame input, region of interest designation, YOLO-based object detection, 

object tracking, and output collection and follow-up actions. Figure 4. 6 presents a 

systematic illustration of this detection technology. The developed detection tool can be 

applied to two safety-critical scenarios: right-of-way and highway-rail grade crossings.  
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• Railroad right-of-way is defined as railroad property with no intersection or 

crossing. For trespassing along right-of-way, any unauthorized movements of 

people or vehicles within the right-of-way would be deemed illegal at any moment 

and identified as trespass violations.  

• A highway-rail grade crossing is the intersection between the highway and railway, 

where active signals are commonly installed to alert highway users to an 

approaching train. Trespassing at a highway-rail grade crossing is defined as when 

pedestrians and vehicles enter the crossing zone while the signal lights are activated, 

though the highway users’ behaviors in other cases would be permissible. 

 

Figure 4. 6 General AI Framework for Railroad Trespass Detection 
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4.4.2.1 Configurations 

Detection of trespassing events in video feeds involves a wide variety of configurations of 

environmental variables and technical features from either live data streams or archived 

videos of railroads (Table 4. 2). An AI-based methodology built for trespass detection must 

have several fundamental performance qualities.  

Table 4. 2. Essential Configurations in Trespassing Detection 

Configuration Factors Brief Requirements Influencing Aspects 

Video frame rate GPU computation ability, 

measured in frame per 

second, should be greater 

than the video frame rate in 

order to guarantee at least 

real-time processing. 

Video quality 

Graphics Processing Unit 

(GPU) computation ability 

GPU types and 

computation ability 

Center locations of red 

signals  

Provide the exact pixel 

information in one frame 

where the signals are located  

Grade crossing design 

and red signal 

installations 

Pixel size of red signal (e.g., 

𝟕 × 𝟕) 

Red signal lamp size 

and video quality 

Threshold 𝜶 for gray color 

difference between two red 

signal lamps  

The absolute intensity 

difference between the two 

red signal lamps is greater 

than 𝛼 for both daytime and 

nighttime. In general, 𝛼 is 

set as 0.3. 

Video color quality, red 

signal brightness 

Region of Interest in grade 

crossing 

The location of the polygon 

in each frame 

Grade crossing location 

and design 

Region of Interest in ROW ROP location in video 

frame 
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Video input preparations 

The first step of the developed AI framework is to import either live video streams 

or archival video data. Frames are extracted from videos and processed as the input image 

in the AI framework. Instead of reading every frame within a video, the algorithm should 

be tuned in order to achieve an optimal trade-off between processing speed and accuracy. 

To be processed in real time or an even shorter time, the number of frames per second in 

tuned videos should be smaller than the number of frames/images that the graphics 

processing unit (GPU) is able to process in one second. Accuracy should be maintained 

with a sufficient number of frames.  

 

Designation of ROI 

The region of interest (ROI) is defined as the area that pedestrians and highway 

users are prohibited from entering. In right-of-way, zones involving rail track and ballast 

should be identified as the ROI and any intrusion without railroad permission is forbidden. 

In terms of highway-rail grade crossing cases, the ROI is defined as the part of the road 

and rail intersection where highway users are prohibited from entering during flashing red 

stop signals. To designate the ROI in trespassing cases, a user can sequentially select the 

outer limits of the trespass area in the static image of the video. Since this study focuses on 

videos from fixed cameras only, one pre-defined ROI, as an enclosed polygon, is 

practicable for all image processing in one location.  
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Activated signal light detection  

In highway-rail grade crossing trespass detection, one precondition is the 

identification of activated red signals. From the computer vision perspective, the 

identification of a red signal can be achieved with red pixel values in one small zone where 

the red signals are located. Zhang et al. (2018b) provided a red signal indication method, 

in which the intensity difference of two lamps emitting red lights in the stop signal was the 

reference for stop signal detection. More specifically, two small square windows in RGB 

(red, green, blue) color scale are extracted from the left signal lamp and the right signal 

lamp, respectively (Figure 4.7). The equation below is used to convert two signal lamps’ 

RGB into grayscale: 

 

Φ(𝑥MN-) = 𝑥NMF; = (0.2989) × 𝑥M + (0.5870) × 𝑥N + (0.1140) × 𝑥-                   (4-2) 

where 𝑥M, 𝑥N , 𝑥-, 𝑥NMF; are color values for red, green, blue, and gray, respectively.   

 

If the absolute intensity difference 𝛿  between the two lamps is greater than a 

threshold (𝛼), the status of the signal light is identified as “on,” while correspondingly the 

status is identified as being “off” if the absolute intensity difference 𝛿 is smaller than the 

threshold. The threshold 𝛼 of color difference can be configured based upon training video 

data. Previous studies (Zhang et al., 2018c; Zaman et al., 2018; 2019) have proven that this 

method is feasible in the testing of trespassing detection algorithms for both daytime and 

nighttime conditions.  
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Figure 4. 7. Intensity Difference of Stop Signal (Zhang et al., 2018c) 

 

 

4.4.2.2 YOLO-based trespass detection 

Trespasses along rights-of-way and at highway-rail grade crossings are two 

trespassing scenarios. Along the right-of-way, any unauthorized pedestrians or vehicles 

detected in the ROI are deemed to be trespassing. On the other hand, the highway-rail grade 

crossing will only trigger trespass event detection if the signal lights and crossing gates are 

activated. This categorization represents the two fundamentally different types of locations 

where trespassing occurs.  Both scenarios are analyzed using the same generalized trespass 

detection framework, except for the fact that the trigger of the signal light serves as a 

precondition for highway-rail grade crossing.  

With pre-defined ROI and red signal identification, the YOLO-based algorithm can 

analyze frames of the live video feed or archival video data. A key part of YOLO’s 

performance is the training dataset, which allows it to recognize objects. This study uses 

COCO, a large-scale object detection dataset, for the training data. The COCO dataset 

includes over 330,000 images, more than 200,000 labeled images, and 80 object categories. 
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Due to its depth, diversity, and continuous growth and refinement, the COCO dataset has 

been employed in object recognition research and gives computer vision algorithms 

valuable training data to recognize commonly seen objects (Lin et al., 2014). These features 

coupled with YOLO allow for the rapid deployment of AI in object recognition tasks. 

As shown in the conceptual diagram of trespassing detection, the YOLOv3 network 

is fed with input images, which are frames from live video streams, and outputs tensors 

with bounding box coordinates and objectness scores. The dimension of an output tensor 

is: 

𝑆 × 𝑆 × [𝐵 × (5 + 𝐶)]               (4-3) 

Where  

𝑆 × 𝑆 is the scale of input images; 

𝐵 is the number of boxes that each grid predicts (e.g., 3); 

5 is the box coordinates (𝑡𝑥, 𝑡𝑦, 𝑡𝑤, 𝑡ℎ) and objectness score (the level of certainty); 

and 

𝐶 is the number of classes (e.g., person, car, truck). 

 

In addition to convolutional layers, residual blocks are used for better feature 

learning. A residual block consists of several convolutional layers and shortcut paths. 

Different from a classic CNN network, which learns features one by one, residual blocks, 

with the residual added to certain hoc layers, can add up an old feature with a simplified 

learning feature. This makes it easier for the YOLOv3, with very deep networks, to learn 

the features stably without a complete complex feature.   
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In general, to execute a detection, the image (a certain frame from the video stream) 

is divided into a grid of 𝑆 × 𝑆 (left image). Each one of the 𝑆, cells will predict 𝑁 possible 

bounding boxes and the objectness score (the level of certainty) of each of them, such that 

𝑆 × 𝑆 × 𝐵 boxes are generated and calculated. The vast majority of these boxes will have 

a very low probability, which is the reason why the algorithm proceeds to delete the boxes 

that are below a certain minimum threshold of probability. The remaining boxes are passed 

through a non-max suppression, which eliminates possible duplicate objects and thus only 

leaves the most exact of them (Figure 4. 8). 

 

 

Figure 4. 8. Conceptual Trespassing Detection System Using Artificial Intelligence 
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4.4.2.3 Object tracking 

A limitation of the YOLO network is that it cannot inherently remember and track 

objects from frame to frame. Detection results from the YOLO network can only provide 

the detected object information from each individual image (frame). It is a challenge to 

distinguish these “new” objects from the “old” objects that also exist in the previous frames, 

which comprises the huge discrepancy between image processing and video analysis. The 

distinct consequence of erroneous categorization is that the number of trespassing 

occurrences increases rapidly due to recurrent counting of objects in frames. Therefore, the 

proper categorization of detected objects is crucial to ensure detection accuracy in 

trespassing video analysis. 

Object tracking is based on the position of objects. The position of each object in 

one frame is recorded and a mask window including all possible positions where objects 

may appear in the next frame is predicted using a Kalman Filter (Kalman, 1960). In the 

next frame, if there is an object detected in the predicted area from the last frame, these 

two detected objects are identified as the same object. This process is repeated for each 

analyzed frame of video to maintain continuous object tracking. If the predicted location is 

out of ROI, it means that this object has already left the ROI or the image. Consequently, 

the algorithm can stop tracking it and then generate output for this detected object. 

 

4.4.2.4 Trespassing detection outputs 

If an illegal object is detected within the ROI, a subroutine of the AI will execute 

the commands with several outputs (Figure 4. 8). A clip of the trespass event is recorded 

and metadata (e.g., trespassing type, time, video file name, etc.) is stored in a trespass event 
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database. This metadata is automatically generated by the AI, demonstrating that the 

context of the image can be extracted and interpreted. Trespass data can provide valuable 

information about hazardous environments and trespassing behaviors that can inform 

education, enforcement and engineering strategies for trespass prevention. Additionally, 

the aggregation of these trespass events has the potential to enhance future railroad risk 

analyses. Furthermore, in the implementation of AI-based trespassing detection technology, 

combining computer vision techniques and the YOLO algorithm, detection accuracy can 

be increased through configuration and testing. Additional datasets, including diverse 

environmental conditions (e.g. rain, snow, day, night and fog) and distortions (e.g., video 

artifacts, shadows) should be tested to verify its performance under varying circumstances. 

 

4.5 Trespassing Data Collection Framework Application  

This section aims to develop a location-specific case study with large volumes of 

trespassing data that are automatically detected and collected by the AI-aided technology. 

Data analyses are developed to quantitatively support railroads and railroad communities 

in better understanding trespassing behaviors and influencing factors, and thus to develop 

efficient countermeasures in the selected grade crossing location. In addition, such grade 

crossing video data is also accessible from railroads and online resources. For example, the 

VirtualRailFan, a web portal recording live camera videos at grade crossings and rights-

of-way from 66 cameras in 22 states, provides live streaming 24 hours a day, 7 days a week 

with high definition (HD) video cameras. In this chapter, both automatic detection 

technology and trespassing data analysis play a critical reference role for trespassing 

prevention and mitigation in terms of engineering, education, and law enforcement.  
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4.5.1 Overview of selected grade crossing 

To validate the functionality of the proposed AI-based trespassing detection 

technique, a grade crossing located in New Jersey is selected as a case study, although the 

developed methodology can also be applied to rights-of-way. The selected crossing 

experiences about 110 activations per day, with the majority being commuter trains. One 

train station with three parking lots, two to the west of the train tracks and one to the east, 

are adjacent to the grade crossing. Several restaurants, markets, and two schools are located 

along the busy downtown street (Figure 4.9). Trespassing in the selected grade crossing is 

commonplace and fatalities have occurred in the past decade. Per the FRA Form 6180.57 

(FRA, 2019b), at least four grade crossing accidents have occurred at the selected grade 

crossing since 2010, two of which led to fatalities (Table 4. 3). Per observations from 

videos and field visits, grade crossing trespasses occur there every day.  

 

 

Figure 4. 9. Aerial View of Selected Grade Crossing  

 

Most violations do not involve damage or injuries, and accidents are (fortunately) 

too few to provide a significant statistical sample to support decision making about 
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investing in safety improvements. However, the few accidents that have occurred were 

preceded by trespassing, and gathering data on near misses will dramatically increase the 

data available to formulate solutions to this problem.  This lack of data is the prime 

motivation for the AI-aided trespassing detection methodology developed in this research.   

Table 4. 3. 2010-2016 Four Grade Crossing Trespass Accidents in Selected Location 

from FRA 6180.57 Database  

Date 
August 4, 

2010 
May 21, 2010 

September 15, 

2012 

June 9, 2016 

Time 7:43 AM 11:52 AM 12:00 PM 6:45 AM 

Weather Condition Cloudy Clear Clear Clear 

Train Speed 29 mph 40 mph 70 mph 68 mph 

Highway User(s) Pedestrian Truck Auto Pedestrian 

Circumstance of 

Accident 

Rail 

equipment 

struck 

highway user 

Rail equipment 

struck highway 

user 

Rail equipment 

struck highway 

user 

Rail equipment 

struck highway 

user 

Action of highway 

user 

NA [1] Stopped on 

crossing 

Stopped on 

crossing 

Went around the 

gates 

Number of 

fatalities 

1 0 0 1 

Notes: [1] NA: No relevant information in the database. 

 

4.5.2 AI-aided detection technology configuration and processing 

Video data preparation and computing devices 

During the data collection, one IP camera is mounted on a utility pole located 

approximately 30 feet northwest of the grade crossing, as shown in Figure 4. 10. The 

camera’s view can cover all activities in the grade crossing, as well as at least 5 feet on 

either side of this location.  
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Figure 4. 10. IP Camera Placement at Selected Location 

 

In this case study, 1,632 hours (68 days) of raw video data is processed to support 

the AI-aided methodology validation, data collection, and trespassing risk analysis. The 

video data is in MP4 format with 30 frames per second and a resolution of 1920 pixels by 

1080 pixels. With limited data availability, three time periods are studied in an aim to cover 

diverse season conditions. The periods are as follows:   

o April 19-25, 2018 (7 days) 

o September 2018 (30 days) 

o January 2019 (31 days) 

Two computing devices are used in this study. One is a NVIDIA Jetson TX2 

developer kit that is equipped with Pascal GPU with 256-CUDA cores and 8 GB memory 

capacity. The other device is the more powerful GPU – NVIDIA Tesla V100-DGXS, in 

which 5120-CUDA cores work with 32GB memory capacity. Per the pre-test, the 

processing speeds of the Jetson TX2 and NVIDIA Tesla V100 are around 0.45 seconds per 

image and 0.06 seconds per image, respectively, with the developed YOLO-based 

algorithm. Therefore, to achieve reliable real-time object detection from Ramsey video 
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data, the video frame reading rates for the two processing tools should be about 2 frames 

per second and 16 frames per second, respectively, so that trespassing events in the videos 

can be detected with acceptable accuracy.   

 

ROI and red signal 

In the grade crossing case study, only pedestrians and vehicles that entered the ROI 

after the signal lights would trigger the detection of trespassing events. In other words, red 

signals are used in the algorithm to differentiate between legal passes and illegal passes. 

The selected grade crossing employs proactive, advanced grade crossing systems, in which 

flashing red lights and gates are equipped to warn and block highway users. As shown in 

Figure 4. 11, ROI in the crossing is represented by the polygon with blue lines. The right-

of-way around the grade crossing is excluded in this case study due to an explicit focus on 

grade crossing risk. In this 1920×1080 video frame, the borders of ROI can be drawn 

through connecting a series of endpoints: (914, 556), (143, 720), (252, 767), (148, 790), 

(776, 933), (919, 861), (1245, 900), (1563, 954). 

The on/off state of the stop signal is derived by focusing on the stop signal post. 

The stop signal consists of a left lamp and a right lamp with a size of 3×3 pixels emitting 

red light (Figure 4. 11). In this 1920 × 1080 video frame, the centers of left red signal and 

right red signal are (380, 1551) and (380, 1601).  The on/off state of the red signal is 

identified based on the error of two median values of the lamps’ gray color values. 

Accounting for both daytime and nighttime conditions, the intensity difference threshold 

of α has been fixed at 0.3 after trial and error. 
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Figure 4. 11. ROI and Identification of Red Signals in Grade Crossing 

 

4.5.3 YOLO algorithm configuration 

The computing device, NVIDIA Jetson TX2 developer kit, is able to process one 

video frame in 0.45 seconds. The video frame reading rate is tuned to 2 frames per second 

in order to achieve a non-later than real-time processing ability.  

Video frames 

The size of input images in this YOLOv3 model is first resized to 416 x 416. 

Therefore, the algorithm needs to resize the original frames while preprocessing. Channels 

are set to 3, which indicates that this model processes 3-channel RGB input images. 

Batch hyper-parameter 

The batch parameter indicates the batch size used during training and testing. In 

this case study, the training batch size is 64 and the test batch size is 1. This means that 64 

images are used in one iteration to update the parameters of the neural network and the test 

only uses 1 image.  

Grade Crossing ROI

Left signal on

Right signal on
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Subdivisions 

It is challenging for GPU to process a batch size of 64 or more with common 

memory. Fortunately, Darknet allows the specification of a variable, called subdivision, 

which processes a fraction of the batch size at one time on the GPU. In this research, the 

training subdivision is 16 and the testing subdivision is set to 1. 

Learning rate 

The parameter learning rate controls how aggressively the algorithm should learn 

based on the current batch of data. Typically, this is a number between 0.01, 0.001, and 

0.0001. This research uses 0.001 as the learning rate. 

COCO classification 

Regarding COCO classification, there are 80 classes in the COCO dataset. This 

research focuses on 6 of them: ‘person’, ‘bicycle’, ‘car’, ‘motorbike’, ‘bus’ and ‘truck’. 

4.5.4 Trespassing data collection and algorithm validation 

Trespassing data collection and preparation  

In the raw video data covering two months and one week, over three thousand 

trespassing events are detected and corresponding video clips are documented. The basic 

information pertaining to these collected trespasses, such as date and time, or the classifiers 

of trespassing violators (e.g., pedestrian, car, truck, bus), are recorded automatically by the 

AI tool. Several fields, such as daylight period and weather conditions, can be recorded via 

public data sources (e.g., https://weather.com), and traffic volume in terms of vehicles and 

pedestrians can also be recorded using a computer vision-based algorithm and raw videos.  
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Table 4. 4. Recorded Fields in Trespassing Database 

Field Name Definition Type 

Year Time in Year, 2018 and 2019 Numerical 

Month Time in month, April, September, and January Numerical 

Week Time in week, Monday, Tuesday, Wednesday, 

Thursday, Friday, Saturday, and Sunday 

Categorical 

Hour Time in hour, 0 to 24 Numerical 

Weather Weather conditions, including clear, cloudy, rain, fog, 

snow 

Categorical 

Daylight Period Daylight period conditions, including dawn, day, dusk, 

dark 

Categorical 

Pedestrian Number of pedestrian violators in trespassing event Numerical 

Car Number of car violators in trespassing event Numerical 

Truck Number of truck violators in trespassing event Numerical 

Bus Number of bus violators in trespassing event Numerical 

Motorcycle  Number of motorcycle violators in trespassing event Numerical 

Bicycle Number of bicycle violators in trespassing event Numerical 

Vehicle Number of vehicle violators in trespassing event (e.g., 

car, truck, bus, motorcycle, etc.) 

Numerical 

Before / After  Violation before train coming or after train passing Categorical 

Gate Angle Position of gate(s) during trespassing measured by the 

angle with ground. 0 degree indicates a fully closed gate 

and 90 degree indicates an open gate. 

Numerical 

Male Number of male trespassers Numerical 

Female Number of female trespassers Numerical 

Gender Gender of trespasser, male, female, or both Categorical 

Food Trespasser with food or not Categorical 

Cell Trespasser with cell phone or not Categorical 

Headphone Trespasser with headphones or not Categorical 

Violation Way The way violator violates, including around pedestrian 

gates, under pedestrian gates, around vehicle gates, 

under vehicle gates, or other 

Categorical 

Narratives Short words to describe the violation event Text 
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Further, additional information (e.g., violator gender, gate angle, use of cell phone 

or headphones) regarding trespassing events may be essential. To automatically detect 

these, a combination of high-resolution/frame rate cameras and more sophisticated and 

computationally complex deep learning AI is required. However, on average, around 35 

trespassing events are documented in one-day’s raw video and manually watching it only 

takes 6 minutes (=350	𝑠𝑒𝑐𝑜𝑛𝑑𝑠 = 	35	𝑐𝑙𝑖𝑝𝑠	 × 10	𝑠𝑒𝑐𝑜𝑛𝑑𝑠	𝑝𝑒𝑟	𝑐𝑙𝑖𝑝), which is only 0.4% 

of the one-day raw video duration (1,440 minutes). Therefore, the developed AI-aided tool 

can perform as a decision support tool and the generated video clips can contribute to 

additional information with efficient usage of railroad resources. Future research can focus 

on developing advanced functions to record these additional fields in a cost-effective way. 

Table 4.4 summarizes variables recorded in the trespassing database. 

Algorithm validation  

In this study, in addition to the raw video data, a grade crossing data supplier 

manually watched the same video segments from April as the developed system and 

recorded 407 trespassing events.  This data is used to validate the accuracy of the AI-aided 

trespassing detection tool.  

In the AI-based algorithm outputs, 422 trespassing clips are originally detected. 

After the manual check, 407 of these are validated as true trespasses and 15 are false 

trespasses. This means that all trespasses manually collected were detected by the 

developed AI algorithm without any missed detections, while several false detections were 

generated. Sensitivity and precision are common for computer vision detection in the 

literature (Le et al., 2016; Alsalam, et al., 2017) and are employed to evaluate the algorithm 

developed in this research. Sensitivity, measured by the proportion of actual positives 
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(trespassing events) that are correctly identified, is 100% (= :&O
:&O

), and the precision is 96.4% 

(= :&O
:&OP#)

). Through watching trespassing clips from April, September, and January, some 

potential reasons behind false positives are extreme weather conditions that affect the video 

quality (Figure 4. 12. a) and sunlight noises on signal faces (Figure 4. 12. b). Future work 

would focus on the mitigation of noises from red signals and camera via hardware actions 

and algorithm enforcement. Only the positive trespasses in the selected location are 

covered in the following analysis.  

     

Figure 4. 12. False Detections Due to (a) Extreme Weather and (b) Noises from 

Sunlight 

 

4.6 Trespassing Safety Risk Analysis with Case Study 

4.6.1 Exploratory data analysis overview 

With the implementation of the AI-aided algorithm, 3,004 positive trespassing 

events were captured and recorded in the current database from two-months-and-one-

week’s worth of raw video data. A detailed summary of the trespassing database is 

presented in Table 4.5. On average, there were 158 trespassing pedestrians and 74 

trespassing vehicles per day in the studied period. In terms of solely the collected traffic 

volumes, the traffic counts of vehicles have similar values (around 25,000 per week) for 
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the three time periods selected, while the pedestrian counts have significant differences. 

September and April have much greater numbers of pedestrians per week (18,000 and 

13,000 respectively), which are around one-and-a-half times that in January (around 9,000 

per week).  

Based upon the number of trespasses (e.g., frequency, pedestrians, and vehicles) 

per day between different months, April and September 2018 have more frequent daily 

trespassing events and greater numbers of daily trespass pedestrians and vehicles than 

January 2019. For example, compared to September 2018, the number of trespass 

pedestrians per day and the number of trespass vehicles per day decrease 28% (=	#,(G#I&
#I&

) 

and 33% (=	)(GII
II

) in January 2019, respectively. One potential reason is that winter is 

expected to involve fewer outdoor activities. Based on the collected traffic information, the 

total number of pedestrians at this location in January (38,792) is half of that in September 

(73,100). In the previous trespassing accident study, Savage (2016) similarly observed that 

fewer trespassing accidents occurred during winter months. Another potential justification 

for the majority declining trend in the number of trespass vehicles is a safety action taken 

by the New Jersey Department of Transportation (NJDOT). In November 2018, the anti-

gridlock box design, a road marking meaning DO NOT BLOCK, was painted at the 

intersection between the highway and roadway. This is consistent with the results showing 

that the number of trespass vehicles per 1,000 vehicle traffic counts in January (19) is 

significantly smaller than that in April (23) or September (25), as represented in Table 4.5.  

In particular, the pedestrian trespass rate, defined as the number of trespassing pedestrians 

per 1,000 pedestrians, in January (103) is higher than that in September 2018 (74). This 

discrepancy discloses that the relatively smaller number of daily trespass pedestrians in 
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January 2019 mainly results from the much lower pedestrian volume in the cold season, 

which was also pointed out by Savage (2016). However, the likelihood of each pedestrian 

trespassing this grade crossing in the colder weather would be greater than during warmer 

seasons. To the authors’ knowledge, no prior study has investigated the trespass pedestrian 

rate during colder weather, potentially as a result of limited data. However, through the 

study of pedestrian street crossing behavior and safety in Toronto under different weather 

conditions, Li and Fernie (2010) concluded that pedestrians were more likely to violate the 

“Don’t Walk” signal and became riskier in inclement winter weather. 

Table 4. 5. Summary of Trespassing Events in Two Months and One Week 

 

Count Percentage Count Percentage Count Percentage Count Percentage

Total Number of Trespassing              407 100%           1,614 100%              983 100%             3,004 100%

Number of Trespassings per Day                 58                54                 32                   44 

By Daylight (Total Number)

Dark                 35 8.5%              121 7.5%              443 45.1%                602 18.0%

Dawn                 25 6.2%                95 5.9%                 30 3.0%                152 4.6%

Day              309 75.8%           1,317 81.6%              423 43.1%             2,077 62.3%

Dusk                 39 9.5%                81 5.0%                 87 8.8%                210 6.3%

By Train Occurance (Total Number)

Before Train Passing              125 30.6%              455 28.2%              353 36.0% 944               31.1%

After Train Passing              282 69.4%           1,159 71.8%              629 64.0% 2,097            68.9%

Total Number of Trespass Pedestrians           1,342 100%           5,404 100%           3,997 100%           10,743 100%

Number of Trespass Pedestrians per Day              192              180              129                158 

Number of Trespass Pedestrians per 1,000
Pedestrians              105                74              103                   86 

By Gender (Total Number)

Female              450 33.5%           1,640 30.4%           1,167 29.2%             3,257 30.3%

Male              892 66.5%           3,764 69.6%           2,831 70.8%             7,486 69.7%

Total Number of Trespass Vehicles              577 100%           2,635 100%           1,822 100%             5,033 100%

Number of Trespass Vehicles per Day                 82                88                 59                   74 

Number of Trespass Vehicles per 
1,000 Vehicles                 23                25                 19                   22 

By Vehicle Type (Total Number)

Car              511 88.7%           2,289 86.9%           1,691 92.8%             4,491 81.8%

Bicycle                 65 11.3%              285 10.8%                 84 4.6%                434 7.9%

Truck 0 0.0%                42 1.6%                 42 2.3%                   84 1.5%

Bus 0 0.0%                14 0.5%                   3 0.2%                   17 0.3%

Motorcycle 0 0.0%                  6 0.2%                   2 0.1%                     8 0.1%

Total Traffic Count of Pedestrians         12,804        73,100         38,792         124,695 

Total Traffic Count of Vehicles         25,233      105,811         95,676         226,720 

Janaury, 2019 SumApril 19-25, 2018 September, 2018
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4.6.2 Distribution by daylight period 

Assuming a 24-hour cycle, the majority of overall trespass events occurred during 

the daytime (62.3%). In particular, the percentages of trespassing events during the daytime 

are over 75% for both April and September. However, January data shows close trespassing 

frequency in daytime, as compared to dark time. These results are related to daylight period 

lengths and traffic volume in different seasons. Based upon the daylight periods and night 

periods of these months in the selected location, daylight lengths in April and September 

are around 13 hours, which is over one-and-a-half times the length of night periods in these 

two months (around 8 hours). However, January has a longer night period (11.20 hours) 

than daylight period (9.55 hours). Regarding traffic volume, around 80% of pedestrians 

and 74% of vehicles traveled through this grade crossing during the daylight period, while 

night periods accounted for only 10% of pedestrians and 15% of vehicles for April and 

September combined. However, in January, only around half of pedestrian and vehicle 

traffic occurred during daylight periods and nights involved 30% of traffic volumes. More 

detailed distributions are demonstrated in the following heat map.  

 

4.6.3 Distribution before or after train passes 

Table 4.5 shows that 68.9% of trespassing events at this grade crossing occurred 

after the train passed through the grade crossing, whereas only 31.1% of trespassing events 

occurred before the train passed. This shows that most trespassing incidents at this location 

occur while the gates are ascending.  Prior study revealed that 50% of respondents believed 

it was safe to trespass (Silla and Luoma, 2012). This could indicate that people who trespass 

in a selected location may have a false sense of security, assuming that it is safe to trespass 
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after the train passes. However, the selected grade crossing has multiple tracks and several 

videos show the second train coming on the adjacent tracks right after the first one. Overall, 

the data shows that the main problem is the majority of people trespassing after the train 

passes. To ensure their own safety, trespassing violators should wait until the gates are 

fully open. This can also serve as one potential education material in safety improvement 

in New Jersey and other areas. 

 

4.6.4 Distribution by gender 

Out of 10,743 trespass pedestrians, 7,486 (69.7%) of them are deemed male, while 

only 30.3% of trespass pedestrians are female, per the manual identifications. Similar 

conclusions were also drawn in previous studies. In investigations of trespasses, George 

(2008) and Silla and Luoma (2012) pointed out that the vast majority of railroad-trespasser 

accident fatalities are males.  

Meanwhile, the distribution of men and women walking through this grade crossing 

is also potentially one key factor. Although there is a lack of gender distribution in the 

grade crossing uses and the computational cost of automatic recognition of pedestrians’ 

genders with AI is considerable, the population distribution by gender in this county is 

publicly available and there are more women than men in general. Based on the statistics 

from the U.S. Census Bureau (2019), this county has 452,201 males (48%) and 481,371 

females (52%).  Overall, men are more than twice as likely to trespass at this grade crossing 

as female pedestrians in general, while no clear evidence supports that gender difference 

significantly contributes to skewing the results towards more men trespassing.   
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(a) Trespassers     (b) Local County Population 

Figure 4. 13. Distribution of Male vs. Female in (a) Trespassers and (b) Local 

County (U.S. Census Bureau, 2019) 

 

4.6.5 Distribution by vehicle type 

The distribution of trespass vehicles shows that cars are the most common vehicle 

type, accounting for over 80% of all trespassing vehicles. Bicycles are the second largest 

trespassing vehicle type in the recorded trespassing events. Although only 17 buses are 

detected and recorded in grade crossing violations, each trespassing bus represents a 

significant risk, particularly school buses providing services for three schools located 

around this grade crossing.  

 

4.6.6 Distribution by gate angle and before/after train passes 

Figure 4. 14 shows the angle of the gate as trespassing incidents occurred before 

the train crossed. From the value of the gate bar’s “Open” angle, it is clear that many 

trespassers were already crossing when the warning lights activated. The graph also shows 

that a large portion of travelers were willing to trespass as the gates were closing, likely 

considering it safe at that point. Furthermore, 33 trespassers exhibited dangerous behavior 
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by crossing as the gate was closed before the train arrived. This population is particularly 

worrisome, as they are the most probable trespassers to be struck by a train. 

This graph shows the angle of the gate as trespassing incidents occurred after the 

train crossed.  Here, it is evident that trespassers are in a rush to cross the tracks after the 

train passes, as there is a clear jump in violations at 31-60 degrees. While trespassers may 

believe it safe, it is not. The Ramsey grade crossing contains two tracks. This means that 

while one train may have passed, another train may be arriving on the adjacent tracks. 

Trespassing violators should wait until the gates are fully open, to completely ensure their 

safety.  

 

 

Figure 4. 14. Distribution of Trespassing Events by Gate Angles and Before/After 

Train Passes 
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The charts above exhibit violator behavior in differing weather conditions. When 

there was rain, fewer violators crossed the gate when it lowered to an angle below 60 

degrees, compared to clearer weather patterns. This implies that people are more cautious 

about trespassing across the grade crossing during worse weather conditions. Rain 

understandably increases the risk of slipping on the tracks, cars skidding, and other 

unforeseeable consequences. Violators showed that they understood the riskier nature of 

trespassing in poor weather and chose to wait rather than take the risk. 

 

4.6.7 Distribution by time of the day and day of the week 

Frequencies of Trespass, Trespass Pedestrian, and Trespass Vehicle  

An in-depth analysis of the distributions of trespasses by the time of the day and 

the day of the week is conducted. Three heatmaps in Figure 4. 15 show a breakdown of the 

number of trespassing events, the number of trespassing pedestrians, and the number of 

trespassing vehicles in a one-hour interval, respectively. Three main findings are concluded 

below: 

• In terms of the hour of the day, 5 PM – 6 PM involves the largest proportion of 

trespassing events (12%), trespassing pedestrians (18%), and trespassing vehicles 

(13%). For a broader time period, a majority of trespassing events occurred 

between 3 PM and 7 PM, involving larger numbers of trespassing vehicles and 

pedestrians. This trend is consistent with a previous study, in which the FRA 

(2018d) investigated the percentage of trespass fatalities and concluded that the 

highest percentage of trespass fatalities occur in the evening commute hours, 

between 4:00 pm and 8:00 pm (23%). In this case study, one hypothesis is that in 
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the timeframe from 4 PM to 7 PM, many commuters are making their way back to 

their respective homes by train. Since two major parking lots are located on the 

west side of the rail track and New York-bound trains also move on the west track 

of this double-track line, most commuters can take the train from the same side in 

the morning rush hour and do not need to walk through intersections. On the other 

hand, during evening commute hours, most people arrive at the train station and 

need to walk through this grade crossing to get to the parking lots. 

• In terms of day of the week, Saturday has the greatest number of trespassing events 

(21%), trespassing pedestrians (24%), and trespassing vehicles (21%). A similar 

conclusion was also drawn in previous studies regarding trespassing accidents 

resulting in fatalities. The FRA (2018) stated that Saturday accounts for the highest 

percentage of trespass fatalities (17%) and the trespass distribution may not strictly 

follow common work and commuting schedules.  

 

Moreover, the overall trend of trespassing vehicles is identical to trends of trespassing 

events in general. It indicates that the number of trespassing vehicles per violation event 

has insignificant variations. In terms of trespassing pedestrians per event, each trespassing 

event from 5 PM to 7 PM would involve a larger group of violating pedestrians than any 

other timestamp. The Kolmogorov–Smirnov test (KS test) is used here to validate the 

similarity of these three continuous distributions. The P-value of trespassing events and 

trespassing pedestrians is much smaller than 0.05, which indicates that there is a significant 

difference between these two distributions, while the KS test for trespassing events and 

trespassing vehicles shows the two have close distributions (P-value = 0.06943).  
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(a) Trespassing Events  

 

(b) Trespassing Pedestrians 

 

(c) Trespassing Vehicles  

Figure 4. 15. Trespass Distribution by Time and Day  

 

Rates of Trespass Pedestrian and Trespass Vehicle  

Figure 4. 16 illustrates the distribution of the trespassing pedestrian rate and 

trespassing vehicle rate by the hour of the day and day of the week. The trespassing 

pedestrian rate is defined as the number of trespassing pedestrians per 1,000 pedestrians in 

this location and similarly, the trespassing vehicle rate is defined as the number of 

trespassing vehicles per 1,000 vehicles. For the time of day, each hour within daylight 

Day/Time 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 Sum

Monday 2 1 2 0 0 1 1 3 16 9 15 8 24 25 37 7 16 11 9 3 6 2 9 3 207

Tuesday 1 1 0 0 0 5 8 30 22 14 26 25 34 30 31 52 42 47 19 22 28 9 5 6 454

Wednesday 3 7 1 0 2 1 11 25 30 18 31 17 31 30 31 43 36 55 35 18 24 14 9 7 475

Thursday 5 5 0 0 2 5 15 28 26 19 18 23 19 31 27 44 34 74 48 20 23 18 10 10 501

Friday 1 6 1 0 1 0 19 31 25 23 23 24 20 31 19 40 16 63 35 22 26 9 0 11 442

Saturday 3 12 6 2 2 1 9 32 42 26 19 33 37 36 22 55 53 100 49 51 19 10 6 5 628

Sunday 3 2 1 0 0 0 2 10 22 10 32 12 27 19 47 7 31 10 28 5 10 1 11 9 296

Sum 18 34 11 2 7 13 64 157 182 118 162 140 190 199 212 250 227 361 222 140 134 62 49 50 3004

Day/Time 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 Sum

Monday 6 3 4 0 0 1 1 25 34 31 67 25 82 104 108 7 71 34 13 15 13 1 25 10 684

Tuesday 1 1 0 0 0 10 19 92 52 22 43 55 61 65 95 111 76 209 153 160 104 36 21 12 1398

Wednesday 6 13 1 0 0 3 21 98 76 49 70 33 47 46 96 116 85 310 283 110 110 49 21 15 1656

Thursday 4 7 0 0 6 7 30 77 58 52 27 43 27 59 55 126 83 317 350 219 101 95 27 24 1794

Friday 9 7 1 0 6 0 46 77 92 42 56 79 46 128 52 102 31 384 230 163 92 44 0 64 1751

Saturday 6 34 22 4 1 3 16 74 99 82 46 86 70 93 92 271 162 604 305 295 82 47 16 43 2555

Sunday 24 9 3 0 0 0 1 15 47 16 83 56 80 79 157 19 67 47 74 12 30 3 44 37 905

Sum 56 76 33 4 13 25 135 458 458 294 391 377 412 574 655 753 574 1905 1409 974 531 276 154 205 10743

Day/Time 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 Sum

Monday 3 1 2 0 0 1 3 7 25 20 41 17 26 43 75 10 28 23 30 6 13 1 11 6 392

Tuesday 1 0 0 0 0 5 11 47 32 28 45 40 63 56 53 82 64 60 39 49 40 13 6 3 737

Wednesday 3 6 0 0 3 2 10 35 53 35 44 31 36 51 58 83 82 110 69 30 40 14 14 5 814

Thursday 5 5 0 0 1 3 15 42 52 38 34 30 20 52 44 85 77 127 91 36 39 16 15 11 838

Friday 1 5 1 0 2 0 25 39 39 30 31 32 30 49 26 82 28 133 66 33 25 13 0 11 701

Saturday 6 13 7 1 3 3 7 70 65 30 31 51 75 52 49 94 97 171 82 77 28 16 8 6 1042

Sunday 6 2 0 0 0 0 6 17 43 16 53 14 41 32 97 14 51 11 59 2 11 0 18 16 509

Sum 25 32 10 1 9 14 77 257 309 197 279 215 291 335 402 450 427 635 436 233 196 73 72 58 5033
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periods (e.g., 7 AM-8 PM) has a similar trespassing rate for pedestrians and vehicles. This 

indicates that although evening time has rush traffic and greater trespassing frequency, the 

trespassing pedestrian rate and trespassing vehicle rate per unit traffic volume (1,000 

pedestrians and vehicles, respectively) mostly do not have significant variations. However, 

1 AM-2 AM on Saturday has an extremely large trespassing pedestrian rate (344 per 1,000 

pedestrians). This may result from relatively small population sizes in both trespassing 

events and pedestrian traffic volume during this time slot. Meanwhile, it is also noted that 

there is a pub adjacent to the grade crossing which closes at 2 AM on Saturdays. This may 

be a potential reference for trespassing prevention education.  

 
(a) Trespassing Pedestrian Rate per 1,000 Pedestrians 

 
(b) Trespassing Vehicle Rate per 1,000 Vehicles 

Figure 4. 16. Trespass Rate Distribution by Time and Day in (a) Pedestrians and (b) 

Vehicles 

 

Day/Time 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00

Monday 51 10 10 0 0 5 9 95 58 31 42 14 43 59 59 5 57 12 7 10 19 5 127 41 44

Tuesday 11 5 0 0 0 30 30 90 60 27 40 43 47 53 45 55 53 76 77 137 152 63 66 85 94

Wednesday 67 46 10 0 0 9 29 72 67 53 85 34 52 50 70 84 64 99 128 83 151 110 89 129 117

Thursday 5 10 0 0 17 11 39 45 42 50 28 39 24 55 31 58 46 77 111 117 125 161 84 111 91

Friday 37 30 6 0 55 0 37 41 49 23 31 48 36 113 26 39 16 96 81 99 118 98 0 114 85

Saturday 39 344 92 59 78 17 31 58 64 54 28 47 42 71 37 89 83 146 104 142 73 71 40 92 122

Sunday 104 32 9 0 0 0 3 24 60 17 82 40 43 42 64 9 42 11 21 7 34 6 142 100 48

29 33 16 3 12 10 30 56 56 36 44 38 41 62 47 51 51 76 75 87 93 77 77 97 86

Day/Time 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 Sum

Monday 7 2 2 0 0 2 7 12 23 19 26 9 14 24 36 5 13 9 14 3 10 1 16 13 13

Tuesday 3 0 0 0 0 7 11 36 20 19 28 21 35 31 28 32 25 19 16 26 32 12 10 9 23

Wednesday 9 15 0 0 6 3 13 36 44 26 31 20 23 31 35 37 34 37 30 17 31 12 21 14 27

Thursday 8 12 0 0 4 4 14 28 29 24 22 18 11 30 25 41 35 37 33 17 28 11 17 20 25

Friday 2 10 3 0 14 0 20 27 24 20 21 21 18 32 16 34 11 41 26 16 18 10 0 19 21

Saturday 10 20 10 3 10 4 5 41 34 17 17 28 42 29 25 32 35 50 30 33 17 10 8 8 27

Sunday 8 3 0 0 0 0 7 11 28 9 32 7 20 16 41 6 21 4 22 1 8 0 19 23 14

Sum 7 9 3 0 4 3 11 28 29 19 25 18 23 27 30 27 25 29 25 16 20 8 13 16 21
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4.7 Trespassing Safety Risk Mitigation Countermeasures 

For a case study of one grade crossing in New Jersey, the developed AI-aided 

automated trespassing detection technology has processed two months and one week of 

raw video data efficiently and with an acceptable level of accuracy. On average, there are 

around 45 unsafe trespassing acts occurring in this location, which sees over 100 train 

passes every day. The analysis of these 3,004 trespassing events presents the distribution 

of key factors, such as gender, hour of the day, day of the week, violation type, before or 

after train passes, as well as their correlations. The results presented in this research are 

consistent with previous studies, and with newly identified trends in this location-specific 

case. In addition to highway-rail grade crossing trespassing detection, the developed AI-

aided tool can also detect trespasses at rights-of-way without red signal identification as a 

prerequisite. 

While there are a limited number of false positives in the application of the 

developed AI-aided tool, the collected trespassing events and preliminary analysis can be 

informative for proactive safety actions in engineering, education, and law enforcement (3 

E’s) and could even save lives. The statistical valuing of a life at over $9 million, a value 

employed by the railroad industry (FRA, 2016b), justifies the significance of such safety 

practices. Below are three trespassing mitigation strategies per the analysis of the collected 

trespassing events. 

 

4.7.1 Law enforcement at peak trespassing hours 

To reduce the number of trespassers in this location through law enforcement, it is 

recommended to post police officers at the railroad crossing during peak trespassing hours. 
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Having police officers at the crossing can deter pedestrians and vehicles from trespassing.  

According to previous explanatory analyses, most trespasses occurred from 3 PM to 7 PM 

on Thursday and Saturday (24% of trespassing pedestrians and 17% of trespassing vehicles 

for the whole week). Specifically, these 8-hours of police officer duty per week could put 

177 pedestrians and 89 vehicles expected to be trespassers within view of law enforcement, 

and a majority of them would be anticipated to behave compliantly under these conditions. 

Considering that more trespasses occur during warm and clear weather, more law 

enforcement could be placed at the grade crossing during summer and/or clear days. With 

an increased budget, law enforcement could be present from 3 PM - 7 PM for the whole 

week, which would account for and possibly prevent around half of all trespassing 

pedestrians and vehicles.  

 

4.7.2 Engineering with pedestrian channelization 

At this location, some pedestrians can go around or under the gates and 217 

trespasses were also observed with fully closed gates (horizontal gates). This population is 

particularly worrisome as they are the most probable trespassers to be struck by a train. 

The usage of a swing gate at the four corners would prohibit pedestrians from crossing in 

an unsafe way and provide a set route for them to follow (Figure 4. 17).  When the red 

signal comes on, the gates will lock from the outside of the tracks so that people cannot 

enter. The gates will also have a push-bar on the inside (track side) that will allow 

pedestrians who are already on the tracks when the red signal activates to exit at all times. 

This will also force pedestrians to look at the tracks before they cross to ensure it is safe. 

An example of a swing gate is shown below. The FRA (2008) concluded that the use of 
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swing gates in Salt Lake City’s light rail system has reduced incidents related to passenger 

inattention to trains around transit stations. However, swing gates are more beneficial in 

pedestrian-only crossings, while in this selected crossing, they cannot absolutely prevent 

all trespassing pedestrians. Instead, swing gates may result in more trespassing pedestrian 

violations via the gaps between or under vehicle gates. Thus, the installation of longer 

automatic gate arms and vehicle gate skirts can serve as supplementary solutions. A 

previous study (Chase et al., 2013) has proven that pedestrian gate skirts can reduce the 

number of pedestrian violations while the gates are descending and horizontal. Similarly, 

vehicle gate skirts are expected to prevent pedestrians who avoid existing pedestrian gate 

skirts and choose to violate by going under vehicle gates. These additional engineering 

actions can also contribute to the prevention of trespassing pedestrians and even trespassing 

vehicles.  

 

     

(a)     (b)     (c) 

Notes: Images: (b) California Public Utilities Commission, Pedestrian-Rail Crossings in 

California (c) Chase et al., 2013.  

Figure 4. 17. Gate Options (a) Prototype Gate at the Selected Location; (b) Swing 

Gate in California; and (c) Gate Arm and Skirt at Knoxville, TN 
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4.7.3 Target-specific education  

The analysis of collected trespassing events provides a clear reference for education 

among school bus drivers and local authorities, as well as education actions during winter 

and at the adjacent pub. In the studied period, there were several school buses violating red 

signals at the grade crossing (Figure 4. 18. a). This is a serious issue since two schools are 

located near the grade crossing and school buses regularly travel through it. These 

noncompliant actions put young students at high risk. Besides, the violations might have a 

potentially adverse impact on school students, in particular the ones riding regularly 

trespassing buses.  

The trespassing data included a total of thirteen police car violations and one 

ambulance violation (Figure 4. 18. b and c). It is important to emphasize that incoming 

trains cannot make positive stops for local authorities, even in the case of local emergencies. 

It is the police’s responsibility to protect the people; however, they should not be doing it 

in a way that puts their own lives at risk. One recent minor accident occurred when a Texas 

deputy's vehicle was hit by a train while responding to a call (FOX NEWS, 2019). With 

basic education regarding grade crossing safety, officers are able to strictly follow the rules, 

which can help prevent unnecessary accidents and save lives. The higher trespassing 

pedestrian rate in January discloses that on average, pedestrians walking through this 

location have a greater likelihood of trespassing in colder seasons, despite the traffic 

volume being lower. Thus, more safety education can be delivered in winter to reduce the 

possibility of individual violations. Moreover, the previous analysis also acknowledged 

that 1 AM-2 AM on Saturday has the greatest trespassing pedestrian rate, which is 

potentially related to an adjacent pub which closes at 2AM. Specialized education can be 
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provided in cooperation with this pub via educational flyers, warning information on the 

front-door board, and verbal reminders from waiters, addressed particularly to drunk 

people at closing time. 

 
(a)  

 
(b)  

  
(c)  

Notes: Low authority vehicles (e.g., police cars and ambulance) are manually masked. 

Figure 4. 18. Trespassing with (a) School Bus; (b) Police Cars; and (c) Ambulance 
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4.8 Discussions and Conclusions 

This research presents a state-of-the-art AI-aided methodology with high-accuracy 

fast-processing railroad trespassing detection capabilities for both highway-rail grade 

crossings and rights-of-way. The applications of YOLO and computer vision in trespassing 

detection have been validated in around 1,632 hours of video with reasonable accuracy. 

Around 3,000 trespassing violations are detected and recorded during the analyzed period. 

In the location-specific case study, the collected trespassing database discloses that a 

majority of trespassing events occurred from 4 PM-7 PM, on Saturday out of all days of 

the week, and after train passing. In particular, 1 AM-2 AM on Saturday has the largest 

trespass pedestrian rate. Although the number of males and females are identical in the 

local area, male trespassers are twice as likely to trespass as their female counterparts. 

Accordingly, potential mitigation solutions are proposed from engineering, enforcement, 

and education perspectives. Although the evaluations of proposed countermeasures are 

limited to accessible data and ongoing collaboration, the number of trespass vehicles per 

day can support the follow-up evaluation of one engineering action conducted in November 

2018. Compared to September 2018, the number of trespass vehicles per day decreased 33% 

(=	)(GII
II

) in January 2019. Based on the collected traffic information, the total number of 

vehicles at this location in January (95,676) is almost identical to the number in September 

(105,811). One potential justification for the majority declining trend in the number of 

trespass vehicles is a safety action taken by the New Jersey Department of Transportation 

(NJDOT). In November 2018, the anti-gridlock box design, a road marking meaning DO 

NOT BLOCK, was painted at the intersection between the highway and roadway. This is 

also consistent with results showing that the number of trespass vehicles per 1,000 vehicle 
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traffic counts in January (19) was significantly smaller than that in April (23) or September 

(25), as represented in Table 4. 5错误!未找到引用源。. Meanwhile, it is acknowledged 

that additional factors may have potential impact on these differences but cannot be 

investigated due to data limitation.  More follow-up quantitative assessments of proposed 

countermeasures can be conducted in future research with sufficient data.  

Overall, this AI-based trespassing detection can contribute to harnessing the 

potential of big video data to obtain a better understanding of real-world trespassing 

behaviors and characteristics with the collection of near-miss events. The development of 

informed risk-mitigation strategies can enhance the safety of rail passengers and road users 

and aid in the relief of congestion by reducing the number of accidents and incidents.  

Firstly, future work would focus on accuracy promotion by mitigating noise from 

sunlight on signal faces and extreme weather conditions. For example, the identification of 

closing grade crossings can involve decreasing gates as one additional trigger. Secondly, 

in addition to the use of a fixed camera at a grade crossing or along right-of-way, a forward-

facing camera in the locomotive can also be employed for trespassing prevention. With the 

camera mounted in the locomotive, trespassing events along the rail line can be detected 

via the developed AI-aided tool and recorded in a database that would potentially advance 

understanding of human factors in railroad safety research.  
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CHAPTER 5 

FUTURE RESEARCH AND INSIGHTS 

 

This chapter highlights several directions for future work and research activities 

that are related to the subjects covered in this dissertation. 

5.1 Accident Prevention in Obstacle and Intrusion Detections 

A key part of YOLO performance is the training dataset which allows it to 

recognize objects.  The developed AI algorithm focuses on the detection of pedestrians and 

vehicles (e.g., cars, trains, trucks, buses) at a grade crossing or right-of-way. The object 

classes are pre-defined in the AI algorithm with the COCO dataset, which consists of many 

labeled images of everyday scenes, built for use in object recognition research.  It was 

selected because of its depth (330,000 Images), diversity (80 object categories) and 

timeliness due to its continual growth and refinement.  

In addition to trespassing behaviors, there are also other intrusion behaviors (e.g., 

livestock) and obstacles (e.g., fallen cargo from trucks, fallen trees). Per the FRA REA 

database, there were 1,106 FRA-reportable obstruction accidents from 2000 to 2017 in the 

United States. There are three major types of obstructions and their frequencies are 

summarized below. 
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Table 5. 1. FRA-Reportable Obstruction Accidents from 2000 to 2017 

FRA Cause Code Frequency Descriptions 

M402 279 Object or equipment on or fouling track (motor vehicle – 

other than highway-rail crossing) 

M403 5 Object or equipment on or fouling track (livestock) 

M404 310 Object or equipment on or fouling track- other than above 

 

5.2 Trespassing Risk Mitigation Research Integrated with Intelligent 

Transportation Systems 

An increase in railroad freight shipments makes the rail network operate at 

continuously higher loads and increases the system’s exposure factor. These developments 

emphasize the need for automatic continuous monitoring of the rail network with the 

capability of notifying the train operator and/or railroad dispatcher of any impending 

dangers and the ability of automatically controlling the locomotive. PTC systems are 

integrated with the command, control, communications, and information systems for 

controlling train movements with safety, security, precision, and efficiency. PTC has the 

potential to be deployed across the rail industry, which uses about 21,000 locomotives 

throughout the country. However, it would not prevent incidents due to trespassing on 

railroads’ right-of-way or at highway-rail grade crossings. 

Although preventing grade-crossing incidents is not specifically addressed in the 

PTC mandate of RSIA08, CRS (2018) pointed out that this could be achieved technically 

within the PTC framework by installing sensors at crossings that would engage the brakes 

of an oncoming train if a crossing gate is not working properly or if a vehicle is detected 

on the tracks. While this may require further investment and costs on the part of the 

railroads, it may also offer more significant gains in terms of safety than just train collision 
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prevention. Therefore, Congress has requested that the FRA study the effectiveness of PTC 

technology in preventing grade-crossing incidents once PTC is implemented (FAST Act, 

2015). A similar introduction of this potential implementation was presented as one of the 

major critical issues and research opportunities in the age of PTC by Zhang et al. (2018b). 

Peters and Frittelli (2012) demonstrated that PTC can be integrated with highway 

Intelligent Transportation Systems (ITS) to reduce highway-rail grade crossing risks. In 

particular, PTC-connected vehicle technology, with which trains and cars would be able to 

share location information, movement information, and communicate with each other, 

could be one possible future direction for research. Additionally, the FRA (2017) worked 

with a variety of organizations to develop the standards for the deployment of grade 

crossing warnings in PTC systems. In summary, more research is needed to develop and 

implement ITS technology for grade-crossing safety improvement in the age of PTC 

systems and ITS. 
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APPENDIX A 

SELECTED RESTRICTED-SPEED ACCIDENTS 

Table A. 1. Selected High-Consequence Restricted-Speed Accidents, 2000-2016 [1] 

Date State Railroad 
[2] 

Speed 
(mph) Fatality Injury Damage 

Cost 

Number 
of Cars 

Derailed 
09/30/2000 New York ATK 10 0 10 $183,574 2 
10/31/2000 Arizona BNSF 1 1 3 $3,708,100 7 
07/18/2003 California UP 10 0 8 $558,168 1 
08/15/2003 New York MNCW 12 0 10 $135,572 1 
04/19/2004 New York ATK 10 0 31 $80,000 1 
08/30/2004 New Jersey NJTR 14 0 4 $24,000 1 
11/29/2004 Florida CSX 33 1 2 $817,777 15 
10/15/2005 Arizona UP 17 1 46 $2,379,170 0 
01/18/2006 Alabama NS 53 0 3 $2,534,100 10 
10/13/2007 Indiana NICD 14 0 4 $2,100,000 0 
11/30/2007 Illinois ATK 33 0 136 $1,719,000 1 
02/07/2008 Washington DC MACZ 12 0 8 $183,000 0 
06/27/2008 California ACEX 9 0 7 $18,872 1 
11/14/2008 California BNSF 11 0 5 $71,300 0 
01/27/2009 Pennsylvania SEPA 30 0 20 $700,000 0 
04/17/2011 Iowa BNSF 22 2 2 $2,276,952 4 
05/24/2011 North Carolina CSX 48 2 2 $1,457,301 11 
01/06/2012 Indiana CSX 44 0 2 $2,549,805 6 
06/24/2012 Oklahoma UP 63 3 1 $11,729,623 27 
05/25/2013 Missouri BNSF 23 0 7 $8,686,769 13 
06/27/2013 New York CSX 20 0 2 $2,406,203 21 
09/25/2013 Texas BNSF 46 0 6 $3,744,754 11 
04/06/2014 Texas UP 18 0 2 $2,301,504 1 
09/29/2016 New Jersey NJTR 21 1 110 $6,012,000 1 
10/08/2016 New York LI 50 0 0 $3,200,000 2 

Notes: [1] Data sources: FRA REA database and NTSB railroad accident reports. 
[2] Railroad Codes: ATK: Amtrak; BNSF: BNSF Railway Co.; UP: Union Pacific RR Co.; MNCW: Metro-

North Commuter RR Co.; NJTR: New Jersey Transit Rail Operations; CSX: CSX Transportation; NS: 
Norfolk Southern Corp.; NICD: Northern Indiana Commuter Transportation District; MACZ: MARC Train 
Service; ACEX: Altamont Commuter Express Authority; SEPA: Southeastern Pennsylvania Transportation 
Authority; LI: Long Island Rail Road. For updates, please refer to 
http://safetydata.fra.dot.gov/OfficeofSafety/publicsite/downloads/auxrr.aspx.   
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Table A. 2 presents a sample of recent end-of-track collisions at U.S. terminals from 

2011 to 2017. The train accident information summarized here is drawn from two data 

sources, the FRA Rail Equipment Accident (REA) database (FRA, 2018a) and railroad 

accident reports by the NTSB. In addition to the basic accident information listed in Table 

A. 2, more comprehensive information can be found in the FRA REA database, including 

operational factors, environmental factors, train characteristics, damage costs, and 

narratives. Additionally, NTSB railroad accident reports describe the major findings of 

NTSB investigations including accident details, factual data analysis, the (probable) cause 

of the accident, and safety recommendations. Instead of covering all railroad accidents, 

only the accidents with a significant loss of life, physical damage, important issues to 

public safety, or particular public interest are involved in the NTSB investigations (NTSB, 

2018b) and then compiled into NTSB accident reports. 

As shown in Table A. 2, from 2011 to 2017, eleven end-of-track collisions are 

collected from the FRA REA database and NTSB investigation reports. In the United States, 

over 35 passenger terminals have multiple terminating tracks ending at bumping posts 

and/or platforms (NTSB, 2018a) and each of them has a large number of train stops every 

day. For example, the Chicago Union Station provides ridership for Amtrak and Metra. Per 

the publicly accessible train schedules, hundreds of trains enter Chicago Union Station and 

other major terminal hubs every day. This large traffic exposure poses the potential risk of 

end-of-track collisions, although the probability is (fortunately) low. Possible end-of-track 

collisions may bring hazards to the onboard passengers, train crews, and bystanders, and 

cause high-impact damage to rolling stock, wayside equipment, and terminal infrastructure. 

Specifically, the selected eleven end-of-track collisions occurring between 2011 and 2017 
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have led to 310 casualties (injuries and fatalities) and over $13,745,548 total in damage 

costs. In terms of either casualties or damage cost, the most severe accidents (the LIRR 

train accident at Atlantic Terminal and the NJT train accident at Hoboken Terminal) took 

place in the last two years and each led to over 100 casualties and over $5 million in damage 

costs to rolling stock and infrastructure. Both end-of-track collisions were caused by 

operational violations by the engineers, who both had Obstructive Sleep Apnea (OSA) 

(NTSB, 2018b). Furthermore, the NSTB (2018b) also stated that the safety issues presented 

by the NJT accident and the LIRR accident could be pervasive in other commuter 

passenger train terminals and intercity passenger train terminals in the U.S. 

Table A. 2. Selected End-of-Track Collisions in the United States, 2011-2017 [1] 

Date Location [2] Railroad 
[3] 

Speed 
(mph) Injury Fatality Damage 

Cost 
Jan. 4, 2017 Atlantic Terminal, NY LIRR 12 112 0 $5,348,864 
Sept. 29, 
2016 Hoboken Terminal, NJ NJT 21 156 1 $6,012,000 

Mar. 7, 2016 Port Washington Station, 
NY LIRR 2 0 0 $1,713,104 

Jun. 2, 2015 Hoboken Terminal, NJ NJT 3 1 0 $23,802 

Jan. 6, 2014 LaSalle Street Station, IL NIRC 7 0 0 $25,554 
Sept. 23, 
2012 Jamaica Station, NY LIRR 2 2 0 $12,000 

Feb. 21, 2012 Port Washington Station, 
NY LIRR 3 0 0 $42,334 

Jun. 8, 2011 Princeton Station, NY NJT 16 1 0 $53,500 

May 8, 2011 Hoboken Terminal, NJ PATH 13 35 0 $352,617 
Mar. 21, 
2011 Port Jefferson Station, NY LIRR 12 2 0 $110,283 

Jan. 27, 2011 New Canaan Station, CT MNCW 7 0 0 $51,500 
Notes:  

[1] Data sources: FRA REA database and NTSB railroad accident reports. 

[2] Location: CT: Connecticut; IL: Illinois; NJ: New Jersey; NY: New York. 

[3] Railroad: LIRR: Long Island Rail Road; NJT: New Jersey Transit; MNCW: Metro-North Commuter 

Railroad; NIRC: Northeast Illinois Regional Commuter Railroad; PATH: Port Authority Trans-Hudson. 
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APPENDIX B 

RECORDED FIELDS IN TRESPASSING DATABASE 

B.1. Through Terminal Area 

In Figure B. 1, the station tracks are non-PTC tracks.  With an I-ETMS system, 

these tracks could be mapped and the PTC system would enforce restricted speed as long 

as the train occupied either station track (Figure B. 1.b). With an ACSES system, 

transponders at each end of the main tracks would be used to cut in/out the ACSES system 

in almost all terminal areas. Then the ATC system will be active and enforce restricted 

speed within through terminal. Thus, no additional hardware equipment is needed here.  

 

(a) Without modifications in I-ETMS 

 

(b) With modifications in I-ETMS 
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(c) Without modifications in ACSES 

 

(d) With modifications in ACSES 

Figure B. 1. Scenarios in Through Terminal (a) without I-ETMS; (b) with I-ETMS; 

(c) without ACSES; and (d) with ACSES  

 

B.2. Non-Signaled Siding 

  
(a)  Without modifications in I-ETMS 

Terminal
Restricted speed area

Transponders Transponders

Terminal
Restricted speed area

Transponders Transponders
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(b) With modifications in I-ETMS 

 
(c) Without modifications in ACSES 

 
(d) With modifications in ACSES 

Figure B. 2. Scenarios in Non-Signaled Siding with Hand-Operated Switch (a) 

without I-ETMS; (b) with I-ETMS; (c) without ACSES; and (d) with ACSES  

 

In the case of a siding track with hand-operated switches, tracks could be mapped 

and the I-ETMS system would remain engaged.  Restricted speed would be enforced while 

the train occupies the mapped track. A WIU would also be needed at a hand-operated 

switch location to monitor the switch conditions. (Figure B. 2.b). In the case of an ACSES 

system, transponders would be existing in PTC system. The ATC system would enforce 

the restricted speed and no additional hardware would be necessary for speed enforcement 
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(Figure B. 2. d). In addition, existing transponders are used to prevent the train from 

entering the main track without authorization. 

  
(a) Without modifications in I-ETMS 

  
(b) With modifications in I-ETMS 

 
(c) Without modifications in ACSES 

 
(d) With modifications in ACSES 

Figure B. 3. Scenarios in Non-Signaled Siding with Power-Operated Switch  

(a) without I-ETMS; (b) with I-ETMS; (c) without ACSES; and (d) with ACSES 

 

In the case of a siding track with power operated switches, it could also be mapped 

Passing siding (non-signaled)

Restricted speed area

Mainlines

Control Point Control Point

Passing siding (non-signaled)

Restricted speed area

Mainlines

Control Point Control Point



 

 

176 

and the PTC system would remain engaged.  Restricted speed would be enforced while the 

train occupies the mapped track. A WIU would already be installed at a power-operated 

switch location and no need for additional WIUs at control points, in which absolute signals 

are controlled by a control operator. (Figure B. 3.b). In the case of an ACSES system, 

transponders would be existing in PTC system. The ATC system would enforce the 

restricted speed and no additional hardware would be necessary for speed enforcement 

(Figure B. 3. d).  

 

B.3. Interlocking 

  

(a) I-ETMS (no modifications needed) 

 

(b) ACSES (no modifications needed) 

Figure B. 4. Interlocking with Occupied Yard in (a) I-ETMS and (b) ACSES 
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Interlocking is an interconnection of signals and signal appliances such that their 

movements must succeed each other in a predetermined sequence (NORAC, 2011). In the 

interlocking rules, signals cannot be displayed simultaneously on conflicting routes. Figure 

B. 4 shows a situation where both trains may have restricted speed enforcement and Call-

On function enabled. In interlocking, power-operated switches are used and WIUs would 

already be installed. An I-ETMS system would require no additional hardware to enforce 

restricted speed into the yard tracks (Figure B. 4.a). An ACSES system with ATC would 

enforce restricted speed into the yard or non-PTC track due to restricted speed in the cab. 

WIUs and transponders that have been installed can provide necessary information ahead, 

such as cutting ACSES out/in. Thus, no additional equipment is needed in either I-ETMS 

or ACSES. 

 

B.4. Automatic Block Signaling  

Defect Detector Alarmed 

  

(a) I-ETMS (no modifications needed) 

 

(b) ACSES (no modifications needed) 

Figure B. 5. ABS with Alarmed Defect Detector in (a) I-ETMS and (b) ACSES 
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Restricted speed area

Transponders



 

 

178 

In this scenario, the train is slowed down by the signal system at the APPROACH 

signal (Figure B. 5).  A STOP signal would be displayed at the entrance of the block where 

the defect was detected.  The defect detector could be a slide fence detector, high-water 

detector, or fire detector for a wooden deck bridge or a broken rail. In such cases, the defect 

detector or broken rail would cause the signal governing the entrance to block to display 

STOP.  The signal in approaching to the stop signal would display APPROACH and the 

PTC system would enforce a speed reduction that would allow the train to come to a safe 

stop at the stop signal.  The PTC system should enforce the restricted speed as the train 

passes the red signal.  The restricted speed would be enforced until the next signal.  In an 

I-ETMS system, WIU is needed to get information about the status of the signal while 

approaching signal. 49 CFR 236 Subpart I require that defect detectors which are integrated 

into the signal or train control system be integrated into the PTC system. Thus, there would 

be a WIU at each signal already so that the signal indication could be enforced (Figure B. 

5.a).  In this case, the on-board computer would have to enforce the restricted speed until 

a more favorable signal is reached. In the case of the ACSES system equipped with ATC, 

the restricted speed would be enforced until the train was beyond the point where the defect 

occurred (Figure B. 5.b). 
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Occupied Block Ahead 

 

(a) I-ETMS (no modifications needed) 

  

(b) ACSES (no modifications needed) 

Figure B. 6. ABS with Occupied Block Ahead in (a) I-ETMS and (b) ACSES 

 

In Figure B. 6, where there is a train in the block ahead, the signal system will react 

in the same manner as above.  Most railroads allow a train to pass an ABS signal displaying 

STOP with the restricted speed. The second train could collide with the first train at the 

restricted speed.  One of the alternatives to prevent this is to avoid restricted speed 

operations in the occupied block. A positive stop could be enforced at each ABS stop signal 

and permission would have to be received from the dispatcher to continue.  This may 

prevent many rear-end collisions. To provide a positive prevention of a rear-end collision, 

an end of train device would be necessary to determine the location of the rear of the first 

train.  The PTC system would have to have the capability to safely stop the second train 

before the collision with the first train.   
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Switch Improperly Lined 

 

(a) I-ETMS (no modifications needed) 

  

(b) ACSES (no modifications needed) 

Figure B. 7. ABS with Improperly Switch (a) I-ETMS and (b) ACSES 

 

In the last sub-case in ABS, an open hand-operated switch in the block would cause 

the signal governing entry into the block to display STOP.  The PTC system would enforce 

restricted speed, but the engineer may not be paying attention or may not be able to 

determine the position of the switch.  A WIU would already be placed at the signal location 

to provide information to the train (Figure B. 7.b). With the switch open or in an 

undetermined position, the PTC system could enforce STOP before the train passes the 

signal.  Thus, no additional equipment is needed in either I-ETMS or ACSES to enforce 

restricted speed. 
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Restricted speed area
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B.5. Centralized Traffic Control 

 

(a) I-ETMS (no modifications needed) 

 

(b) ACSES (no modifications needed) 

Figure B. 8. Restricted-Speed Scenarios in CTC (a) I-ETMS and (b) ACSES 

 

Centralized Traffic Control (CTC) consists of interlocking and automatic blocks, 

thus aforementioned restricted speed scenarios and proposed modifications in the above 

two subsections are also feasible in CTC. In CTC territory (Figure B. 8), the PTC system 

will enforce absolute stop signals at the control points (refer to interlockings) or blocks.  

Most freight railroads allow trains to pass signals displaying Stop and proceed at the 

restricted speed.  Most passenger railroads require a stop first and then the train may 

proceed at restricted speed. Others (especially freight railroads) allow trains to proceed at 

restricted speed without first bringing the train to a stop.  This is commonly done where 

heavy freight trains are operating on upgrades where it may be hard to re-start the train 

after coming to a full stop.  An ACSES system with ATC would enforce restricted speed 

in the cab.  
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B.6. Yard Limits 

 

(a) Without modifications in I-ETMS 

 

(b) With modifications in I-ETMS 

 

(c) ACSES (no modifications needed) 

Figure B. 9. Yard Limits (a) without I-ETMS; (b) with I-ETMS; and (c) in ACSES 

 

In Figure B. 9, a train is moving from PTC territory to yard limit which is defined 

by the yard limit signs at each end of the yard.  When the train enters the yard limit area, 

the PTC system will disengage and will not enforce any speeds.  By operating rule, 
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railroads require trains to move at restricted speed within yard limits. 

To achieve the enforcement of restricted speed in I-ETMS system, the tracks must 

be mapped and designated as restricted speed tracks in the track database.  With the tracks 

mapped, the I-ETMS system will remain engaged and will enforce restricted speed until 

the train leaves yard limits. Meanwhile, all the yard tracks do not have to be mapped. For 

example, the two main tracks in Figure B. 9 could be mapped and since the adjacent tracks 

are less than 50 ft. from the main tracks, the GPS system can’t distinguish that the train 

might not be on the main track.  In that case, the system would continue to enforce restricted 

speed of both main tracks and yard tracks within yard limits, once if main tracks are 

mapped.  If the railroad only wanted to enforce restricted speed on the main tracks, then a 

WIU would have to be installed at each end of the yard to monitor the switch leaving the 

main track. The I-ETMS system would disengage when the train left the main track. Since 

ACSES is used mostly by passenger railroads, this situation would be rare.  However, even 

if it occurs, the ATC system would enforce restricted speed through the yard limit area and 

no WIU would be required. 
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APPENDIX C 

LOSS FUNCTION IN YOLO 

YOLO predicts multiple bounding boxes per grid cell. To compute the loss for the 

true positive, it only wants one of them to be responsible for the object. For this purpose, 

the algorithm selects the one with the highest IOU (intersection over union) with the ground 

truth. This strategy leads to specialization among the bounding box predictions. Each 

prediction gets better at predicting certain sizes and aspect ratios. 

YOLO uses a sum-squared error between the predictions and the ground truth to 

calculate loss. The loss function composes of the classification lost, the localization loss 

(errors between the predicted boundary box and the ground truth), and the confidence loss 

(the objectness of the box). The classification loss at each cell is the squared error of the 

class conditional probabilities for each class: 

'𝕀!
4Q"

R&

!%&

' (𝑝!(𝑐) − 𝑝S¡(𝑐)),
T∈TUV22.2

 

(C-1) 

𝕀!
4Q" = 1 if an object appears in cell 𝑖, otherwise 0. 

𝑝S¡(𝑐) denotes the conditional class probability for class 𝑐 in cell 𝑖.  

 

The localization loss measures the errors in the predicted boundary box locations 

and sizes. It only counts the box responsible for detecting the object. 
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Where  

𝕀!"
4Q" = 1 if the 𝑗th boundary box in cell 𝑖 is responsible for detecting the object, otherwise 

0. 

𝜆T44>? increases the weight for the loss in the boundary box coordinates 

It does not want to weight absolute errors in large boxes and small boxes equally. 

i.e. a 2-pixel error in a large box is the same for a small box. To partially address this, 

YOLO predicts the square root of the bounding box width and height instead of the width 

and height. In addition, to put more emphasis on the boundary box accuracy, it multiplies 

the loss by λcoord (default: 5). If an object is detected in the box, the confidence loss 

(measuring the objectness of the box) is: 
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Where  

𝐶¦! is the box confidence score of the box 𝑗 in cell 𝑖. 

𝕀!"
4Q"= 1 if the 𝑗th boundary box in cell 𝑖 is responsible for detecting the object, otherwise 

0. 
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If an object is not detected in the box, the confidence loss is: 
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Where  

𝕀!"
/44Q" is the complement of 𝕀!"

4Q" 

𝐶¦! is the box confidence score of the box 𝑗 in cell 𝑖. 

𝜆/44Q" weights down the loss when detecting background. 

 

Most boxes do not contain any objects. This causes a class imbalance problem, i.e. 

the algorithm trains the model to detect background more frequently than detecting objects. 

To remedy this, the algorithm weights this loss down by a factor λnoobj (default: 0.5). The 

final loss adds localization, confidence and classification losses together. 
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