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ABSTRACT OF THE DISSERTATION

Essays on Forecasting Methods in High-Frequency Financial Econometrics

By WEIJIA PENG

Dissertation Director:

Norman Rasmus Swanson

This dissertation studies methodologies on forecasting methods in high-frequency financial

econometrics. The dissertation consists of three chapters. In the first chapter, I develop

novel latent uncertainty measures (i.e., latent factors) using both high dimensional and high

frequency financial data as well as multi-frequency macroeconomic data. In particular, I

introduce three factors which capture macroeconomic fundamentals, market uncertainty,

and financial market stress. These factors are analyzed in a series of forecasting exper-

iments. In the second chapter of my dissertation, I investigate importance of co-jumps

for predicting equity return volatility. In particular, using high frequency financial data, I

disentangle individual sector jumps and multiple sector co-jumps. Using this information,

I construct new jump and co-jump variation measures, which are included in a series of

real-time prediction experiments in order to evaluate the importance of co-jumps when

predicting stock market return volatility. Finally, in my third chapter, I review recent

theoretical and methodological advances in the area of volatility/risk estimation, and in
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testing for jumps and co-jumps, using big data.

In chapter 2, we investigate the importance of co-jumps for predicting sector level

equity return volatility. For our analysis we use the co-jump tests based on Barndorff-

Nielsen and Shephard (2004), Jacod and Todorov (2009), and the jump test introduced in

Huang and Tauchen (2005), in order to classify jumps in sector-level S&P500 exchanged-

traded funds (ETF) as either idiosyncratic jumps or co-jumps. We find that co-jumps are

more densely populated during the 2008 financial crisis and 2011 debt crisis periods. Also,

co-jumps occur frequently, and have large magnitudes compared with idiosyncratic jumps.

These different types of jumps are analyzed in the context of volatility prediction, using

extensions of Heterogeneous Autoregressive models (i.e., HAR-RV-CJ models). Empirical

results are promising. There are clear marginal predictive gains associated with including

certain types of jumps in HAR regressions; and it is found that the predictive content of

co-jumps is higher than that idiosyncratic jumps. This is not surprising, if one assumes

that idiosyncratic jumps may be “more” exogenously driven, and hence less useful than

co-jumps. In order to shed further light on the estimation of the co-jumps examined in

our prediction experiments, we carry out Monte Carlo experiments that are designed to

examine the relative performance of the three types of widely used co-jump tests (i.e., the

BLT co-jump test of Bollerslev et al. (2008), the JT co-jump test of Jacod and Todorov

(2009) and σ thresholding type tests based on bipower variation). Findings indicate that

the JT co-jump test and the σ threshold test are more powerful, than the BLT co-jump

test. However, there is also a distinct size trade-off when using the alternate tests.

In chapter3, we examine the usefulness of a large variety of machine learning meth-

ods for forecasting daily and monthly sector level equity returns. We also examine the

usefulness of three new latent risk factors that are designed to capture key forecasting
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information associated with financial market stress, market uncertainty, and macroeco-

nomic fundamentals. The factors are variously based on the decomposition (using high

frequency financial data) of the quadratic covariation between two assets into continuous

and jump components, and the extraction of latent factors from mixed frequency state

space models populated with nonparametrically estimated components of quadratic vari-

ation and/or low frequency macroeconomic data. In addition to constructing predictions

using standard machine learning methods such as random forest, gradient boosting, sup-

port vector machine learning, penalized regression, and neural networks, among others, we

also investigate the predictive performance of a group of hybrid machine learning methods

that combine least absolute shrinkage operator and neural network specification methods.

Overall, at the monthly frequency, we find that machine learning methods significantly

improve forecasting performance, as measured using mean square forecast error (MSFE)

and directional predictive accuracy rate (DPAR), relative to the random walk and linear

benchmark alternatives. The “best” method is clearly the random forest method, which

“wins” in almost all permutations at the monthly frequency, across all of the “target”

variables that we predict. It is also worth noting that our hybrid machine learning meth-

ods often outperform individual methods, when forecasting daily data, although predictive

gains associated with the use of any machine learning method are substantially reduced

when forecasting at a daily versus monthly frequency. Finally, the novel uncertainty factors

that we build are present in almost all of our “MSFE-best” and directional “accuracy-best”

models, suggesting that the risk factors constructed using both high frequency financial

data (e.g., 5-minute frequency S&P500 and sector ETF data) and aggregate low frequency

macroeconomic data, are useful for predicting returns.

In recent years, the field of financial econometrics has seen tremendous gains in the

amount of data available for use in modeling and prediction. Much of this data is very

high frequency, and even ‘tick-based’, and hence falls into the category of what might
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be termed “big data”. The availability of such data, particularly that available at high

frequency on an intra-day basis, has spurred numerous theoretical advances in the areas

of volatility/risk estimation and modeling. In chapter 4, we discuss key such advances,

beginning with a survey of numerous nonparametric estimators of integrated volatility.

Thereafter, we discuss testing for jumps using said estimators. Finally, we discuss recent

advances in testing for co-jumps. Such co-jumps are important for a number of reasons.

For example, the presence of co-jumps, in contexts where data has been partitioned into

continuous and discontinuous (jump) components, is indicative of (near) instantaneous

transmission of financial shocks across different sectors and companies in the markets; and

hence represents a type of systemic risk. Additionally, the presence of co-jumps across

sectors, say, suggests that if jumps can be predicted in one sector, then such predictions

may have useful information for modeling variables such as returns and volatility in another

sector. As an illustration of the methods discussed in this paper, we carry out an empirical

analysis of DOW and NASDAQ stock price returns.
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Chapter 1

Introduction

Modeling and analyzing high-frequency financial data have received notable attention in the

field of financial econometrics over the past years. As the advent of ”big data” era rapidly

expands the available information, a group of advanced methods has been evolved to process

these ”big data”. The first part of this dissertation investigates methods for uncovering

jump and co-jump activities among high-frequency financial variables, for the purpose of

volatility forecasting. The second part of this dissertation focuses on the specification and

construction of latent uncertainty measures that are designed to improve the forecasting

accuracy of models used to forecast stock return variables.

In the second chapter entitled ”Co-jumps, Co-jump Tests and Volatility Prediction Us-

ing the S&P 500”, I examine the usefulness of jumps and co-jump variation measures for

volatility forecasting of sector-level equity ETFs. As is well known, adequately accounting

for volatility is crucial for successful portfolio management and risk hedging. Traditional la-

tent volatility forecasting models such as GARCH, ARCH or more recent realized volatility

models mainly use univariate information from the forecast target variable in the specifi-

cation. We instead focus our attention on a new type of cross-sector information called

co-jumps, which are based on price co-movements between the forecasting target variable

and other assets. In our setup, as is standard in the literature, we assume that the log-price

of an asset follows an Ito semi-martingale process, where co-jumps capture simultaneous

jumps (discontinuous) components in multiple assets. Such jumps are meant to represent

systemic risk across multiple assets, sectors, and markets. These co-jumps may be caused

by outside shocks such as big news and changes in economic policy, for example; and they
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can be expected to manifest as shocks that can cause financial market stress and thus influ-

ence market volatility. To identify co-jumps, I utilize extant jump and co-jump tests from

the literature. I additionally carry out Monte Carlo simulations in order to examine relative

performance of the currently most widely used co-jump tests. Perhaps not surprisingly, I

find that co-jumps become more densely populated during the 2008 financial crisis and the

2011 European debt crisis, affirming the severity of financial stress during crisis periods.

Moreover, I show, via a series of forecasting experiments that utilize heterogeneous autore-

gressive (HAR) models, that volatility forecasting accuracy can be significantly improved

when univariate benchmark forecasting models are augments to include co-jump variation

measures that quantify the linkages between stocks, industries and markets.

In the third chapter entitled “Forecasting Sector Level Equity Returns with Big Data

Factors and Machine Learning Models” (joint with Chun Yao), we empirically explore the

usefulness of a variety of machine learning methods for forecasting equity market activity.

In particular, we add to the extant empirical finance literature by forecasting the level

and direction of equity returns using methods including random forest, gradient boosting,

support vector machine learning, penalized regression (shrinkage) and neural network (deep

learning) to forecast (equity) returns. We also evaluate related machine learning classifier

methods including latent discriminant analysis, näıve Bayes, support vector classifier, k-

nearest-neighbors, and gradient boosting. Additionally, we propose and evaluate a group of

hybrid two-step machine learning methods that combine the least absolute shrinkage (lasso)

and neural networks. More specifically, we are interested in predicting daily and monthly

S&P500 and various SPDR sector ETF returns including finance (XLF), technology (XLK),

health care (XLV), and consumer discretionary (XLY). Relative performance of our various

machine learning methods are compared against random walk and linear benchmark models

using conditional Diebold-Mariano tests and Pesaran-Timmermann directional accuracy

tests. Results indicate that machine learning models yield significantly lower mean square
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forecasting error and higher correct directional forecasting rates than linear benchmark

models when forecasting monthly returns for all of the above variables. The random

forest model stands out as the overall best performing model in both level and directional

forecasting, at a monthly level. Interestingly, deep learning methods (such as deep learning

models with three or four hidden layers) outperform shallow learning models (such as deep

learning models with one or two hidden layers) for level and directional prediction. Finally,

the hybrid machine learning models, outperform many individual methods for both level

and directional forecasting.

A key contribution of this paper is our use of big data to construct three latent factors

that are designed to capture key forecasting information including macroeconomic funda-

mentals, market uncertainty, and financial market stress. As an example, our financial

market stress factor is based on quantification of correlation between each sector and the

S&P 500, which is viewed as critical given that price movements in different sectors tend

to show signs of contagion during crisis periods. Our other two factors are constructed

using the state-space model setup discussed in Aruoba et al. (2009). Interestingly, we find

evidence of substantial forecasting improvements when these factors are included in our

different forecasting models, indicating the usefulness of mapping the information in big

datasets into a small number of key latent factors when forecasting at the market and

sector level. Finally, it is worth noting that we also find that a market correlation index

based on discontinuous jump components extracted from our data surges during the 2008

and 2011 financial crisis, and drops when market volatility is relatively low, while a corre-

lation index based on continuous components moves in the opposite direction, except for

the energy sector. This finding points to the potential usefulness of information obtained

by decomposing returns data into jump and continuous components.

In recent years, the field of financial econometrics has seen tremendous gains in the
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amount of data available for use in modeling and prediction. Much of this data is very high

frequency, and even “tick-based”, and hence falls into the category of what might be termed

big data. The availability of such data, particularly that available at high frequency on an

intra-day basis, has spurred numerous theoretical advances in the areas of volatility/risk

estimation and modeling. In the fourth chapter entitled ”Financial Econometrics and

Big Data: A Survey of Volatility Estimators and Tests for the Presence of Jumps and

Co-jumps” (with Arpita Mukherjee, Norman R. Swanson and Xiye Yang, Handbook of

Statistics, Volume 42, 2020), we discuss key such advances, beginning with a survey of

numerous nonparametric estimators of integrated volatility. Thereafter, we discuss testing

for jumps using said estimators. Finally, we discuss recent advances in testing for co-

jumps. Such co-jumps are important for a number of reasons. For example, the presence

of co-jumps, in contexts where data has been partitioned into continuous and discontinuous

(jump) components, is indicative of instantaneous transmission of financial shocks across

different sectors and companies in the markets; and hence represents a type of systemic

risk. Additionally, the presence of co-jumps across sectors, say, suggests that if jumps can

be predicted in one sector, then such predictions may have useful information for modeling

variables such as returns and volatility in another sector. As an illustration of the methods

discussed in this paper, we carry out an empirical analysis of DOW and NASDAQ stock

price returns.
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Chapter 2

Co-Jumps, Co-Jump Tests and Sector Level S&P500

Volatility Prediction

2.1 Introduction

Effective stock volatility prediction remains a key goal for researchers in empirical finance.

It is not surprising, thus, that the development of tests and other tools that can aid in

said prediction remains at the forefront of theoretical research in the area. An example

illustrating the importance of volatility prediction is portfolio management, where agents

utilize such predictions when allocating assets and managing risk. Continuous-time models

(e.g. stochastic volatility and related models) and discrete-time models (e.g. ARCH-

GARCH models) are two important classes of models used to this effect. However, in

certain contexts, these models have proven less than adequate for fitting and predicting

returns and volatility. From the perspective of volatility prediction, this has led to a new

class of models, called Heterogeneous Autoregressive models of Realized Volatility (HAR-

RV). These models incorporate lag terms of volatilities over different time horizons, and

have seen success in various empirical applications.

In this paper, we further explore the usefulness of these models when realized volatil-

ity type measures are decomposed into continuous and discontinuous (jump) components.

In particular, we separate continuous from discontinuous (jump) components, and fur-

ther classify resulting discontinuous components as idiosyncratic (individual asset type)

jumps and multiple asset co-jumps. Our impetus for this decomposition is that while id-

iosyncratic jumps can, in theory, be diversified away in a weighted portfolio, failure to

distinguish between idiosyncratic jumps and co-jumps can lead to dire consequences when
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managing portfolios. An obvious consequence is analogous to the “correlation problem”,

where returns previously thought to evolve independently “line up” when large shocks per-

turb financial markets. Clearly, accurately detecting the number of different co-jumps is

important, and disentangling jumps further, into idiosyncratic jumps and co-jumps may

yield useful information for volatility prediction and in turn for portfolio allocation. In

order to investigate the usefulness of our decomposition, co-jumps and jumps are included

in predictive HAR-type regressions, to assess their relative marginal predictive content.

Finally, given the importance of co-jump tests in our empirical analysis, we additionally

carry out series of Monte Carlo experiments in order to examine the relative performance

of a number of widely used co-jump tests.

In the volatility prediction literature, Andersen et al. (2003b) use realized volatility

and construct a tri-variate VAR model in order to forecast the volatility of daily exchange

rates. Corsi (2004) proposes the HAR-RV model that incorporates multiple frequencies of

volatility in a parsimonious forecasting model. Andersen et al. (2007) separate jumps and

continuous volatility components, and incorporate jumps in the so-called the HAR-RV-CJ

model, for predicting realized volatility. Corsi et al. (2010) introduces the new threshold

multipower variation estimator and a new jump test, and find that jumps play a significant

role in predicting future volatility. Clements et al. (2014) find that incorporating co-jumps

and jump intensities significantly improves predictive accuracy when forecasting realized

volatility of a portfolio index. Finally, Duong and Swanson (2015) explore different jump

variations, including signed jump power variation and truncated power variation, and find

that marginal predictive content varies depending on which estimator is used in prediction

experiments.

We add to the above literature on volatility prediction by specifying and estimating

different versions of the HAR-RV-CJ model that incorporate both jumps and co-jumps
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variables, for the purpose of forecasting S&P 500 sector level ETFs return volatility. Pre-

diction horizons are h = 1 (one-day ahead), h = 5 (1-week ahead) h = 22 (1-month ahead).

Our findings indicate that jumps and co-jumps both play important roles in the volatil-

ity forecasting. However, models with co-jumps results in higher explanatory power than

models with jumps, when carrying out in-sample experiments. Moreover, this result also

obtains when carrying out ex ante forecasting experiments, in which mean square forecast-

ing errors (MSFEs) are used to assess the predictive performance of alternative models.

These results are robust across all nine sector ETFs in the S&P 500, and also across all

prediction horizons. One possible reason for this finding is simply that the magnitude of

the variation and the frequency of occurence of co-jumps are both greater than that asso-

ciated with idiosyncratic (single) jumps. Also, and as might be expected, our findings are

consistent with the hypothesis that idiosyncratic jumps may be “more” exogenously driven,

than co-jumps. Finally, again as should be expected, the number of co-jumps increased

impressively during the 2008 financial crisis and the 2011 European debt crisis, consistent

with the great deal of evidence suggesting that correlation across sectors increases during

times of crisis.

While univariate jump tests have been researched extensively, the co-jump testing lit-

erature used in our empirical analysis is relatively nascent. One strand of the literature

identifies co-jump based on the identification of jumps in a portfolio. For example, Boller-

slev et al. (2008) use powers of observed returns to construct a test statistic for detecting

co-jumps in an equi-weighted index constructed from 40 stocks. Their co-jump test detects

the modest-sized common jumps ignored in the Barndorff-Nielsen and Shephard (2004)

jump testing approach. Another strand uses univariate jump tests to identify co-jump in

multivariate processes (see Gilder et al. (2014)). A third strand develops co-jump tests by

direct examination of multiple price processes (see e.g., Jacod and Todorov (2009), Bandi
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and Reno (2016), Bibinger and Winkelmann (2015) and Caporin et al. (2017)). For ex-

ample, Jacod and Todorov (2009) propose co-jump tests based on two null hypotheses: (i)

there are common jumps in a bivariate process; (ii) there are disjoint jumps in a bivariate

process. Related papers in this literature include: Mancini and Gobbi (2012), Gnabo et al.

(2014), Lahaye et al. (2011) and Dungey et al. (2011). As discussed above, we carry out

Monte Carlo experiments in order to compare tests from these strands of the literature.

These include the JT co-jump test in Jacod and Todorov (2009), BLT co-jump test in

Bollerslev et al. (2008), and the σ thresholding type tests based on bipower variation dis-

cussed in Barndorff-Nielsen and Shephard (2004). As expected, we find that all co-jump

tests perform better (i.e., larger power and more accurate size) under higher sampling

frequencies. More importantly, JT co-jump test and the σ threshold test outperform the

BLT test in terms of power and size, when there is a moderate number of series in the

multivariate data generating process used in our experiments. Finally, it is found that the

truncation approach of Mancini (2009), when implemented using prior weekly and monthly

data to set the truncation level, mitigates the effects of volatility overestimation (when co-

jump intensity is large), and thus mitigates a tendency of tests to under reject, as well as

resulting in better sized tests. This finding is most pronounced when examining the finite

sample performance of the σ threshold test.

The rest of this paper is organized as follows. Section 2.2 introduces the setup for

our empirical analysis. Section 2.3 summarizes the co-jump tests examined in the paper,

and Section 2.4 outlines our jump classification methods. Section 2.5 summarizes the

setup of our forecasting experiments. Section 2.6 reports the results of our Monte Carlo

experiments; and Section 2.7 including a description of the data used in our analysis, and

discusses our empirical findings. Concluding remarks are contained in Section 2.8.
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2.2 Setup

Let Pt be the log-price of an asset at time t. We assume Pt follows an Itô semimartingale

process,

Pt = P0 +

∫ t

0
bsds+

∫ t

0
σsdWs + Jt (2.1)

In the above equation, bs is the drift part. Ws is a standard Brownian motion and Jt is a

pure jump process:

Jt =
∑
s6t

∆Ps (2.2)

Jt is finite and ∆Ps := Ps−Ps−, where Xs− := limu→sXu, represents the possible jump of

the process P at time s. Jump component Jt follows a compound Poisson process (CPP),

Jt =

Nt∑
i=1

Yi (2.3)

Nt is a Poisson process, representing the number of jumps in the interval [0,t]. The jump

magnitudes Yis are iid variables.

Consider a finite time horizon, [0, t] that contains n high-frequency observations of

the log-price process. A typical time horizon is one day. Let ∆ = t/n be the sampling

frequency. The intraday return of equidistant interval is:

ri = Pi∆n − P(i−1)∆n
(2.4)

In the high frequency literature, volatility of log-price is an unobserved variable. Quadratic

variation is utilized to measure the variance of the process Pt. It is widely recognized that

Realized Volatility (RV) is an error free estimator of quadratic variation. Namely:

RVt
u.c.p.−→

∫ t

0
σ2
sds+

∑
s≤T

(∆Xs)
2 = QVt = IVt + JVt, (2.5)
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where u.c.p. denotes convergence in probability, uniformly in time. σ2
s is the intraday

instantaneous volatility and Integrated volatility (IVt) is the variation broken from the

continuous component of the quadratic variation. RV is measured by the sum of intraday

return square:

RVt =
M∑
i=1

r2
i (2.6)

where RVi,t denotes the realized volatility of Pt at day t. There are many estimators of IV

and one of the examples is the multipower variations, which as defined as follows:

IVt =

n∑
i=j+1

|ri|r1 |ri−1|r2 ...|ri−j |rj , (2.7)

where r1, r2, ..., rj are positive, such that
j∑
i=1

ri = k. Barndorff-Nielsen and Shephard (2004)

propose a bipower variation estimation BPVt. Namely,

BPVt = (µ1)−2
n∑
i=2

|ri||ri−1| (2.8)

where µ1 = E(|Z|) = 21/2Γ(1)/Γ(1/2) =
√

2/π, with Z a standard normal random vari-

able, and Γ(·) denotes the gamma function.

2.3 Co-Jump Tests

In this section, we briefly summarize the jump testing methodology used in the sequel.

2.3.1 BLT Co-Jump Test

Bollerslev et al. (2008) propose a BLT test to detect co-jumps in a large ensemble of stocks.

They develop a theoretical foundation which shows how only co-jumps (not idiosyncratic

jumps) can be detected in a large equiweighted index. Let M denote the total number of



11

assets under co-jump detection. The BLT mean cross-product test statistic is defined as:

mcpt,i =
2

M(M − 1)

M−1∑
j=1

M∑
l=j+1

rji r
l
i, i = 1, ..., n, t = 1, ..., T (2.9)

where

rji = P ji∆n
− P j(i−1)∆n

, for j = 1, ...,M (2.10)

Since the mcp-statistic has nonzero mean and is analogous to a U-statistic, the studentized

test statistic is:

zmcp,t,i =
mcpt,i −mcpt

smcp,t
, for i = 1, ..., n and t = 1, ..., T. (2.11)

where

mcpt =
1

n
mcpt =

1

n

n∑
i=1

mcpt,i (2.12)

and

smcp,t =

√√√√ 1

n

n∑
i=1

(mcpt,i −mcpt)2 (2.13)

The null distribution under the null hypothesis of no jump is derived from bootstrapping

the test statistics zmcp,t,i using Monte Caro simulations.

2.3.2 JT Co-Jump Test

Jacod and Todorov (2009) construct two test statistics to identify co-jumps under two

different null hypothesis: i. There is at least one common jump under the null hypothesis;

ii. There is at least one disjoint jump under the null hypothesis. The test statistics are

proposed for detecting co-jumps on bivariate processes for the path of s −→ Ps on [0, t].

Co-jumps among multivariate processes can be detected from the combination of bivariate
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processes. The test statistics of the common jump Φ
(j)
n and disjoint jump Φ

(d)
n are defined

as:

Φ(j)
n =

V (f, k∆n)t
V (f,∆n)t

(2.14)

Φ(d)
n =

V (f,∆n)t√
V (g1,∆n)tV (g2,∆n)t

(2.15)

where k is an integer greater than 1, and ∆n = t
n is the length of equispaced intra-daily

time interval. V (f, k∆n)t is defined as:

V (f, k∆n)t =

[t/k∆n]∑
i=1

f(Pi∆n − P(i−1)∆n
) (2.16)

Where the functions for f(x), g1(x) and g2(x) are defined as:

f(x) = (x1x2)2, g1(x) = (x1)4, g2(x) = (x2)4 (2.17)

They propose asymptotic properties and central limit theorems of these two test statistics

when the mesh ∆n approaches 0. They show that the test statistics for the null hypothesis

with disjoint jumps Φ
(d)
n converges stably in law to 0 on Ω

(d)
T and the null hypothesis with

common jumps Φ
(j)
n converges stably in law to 1 on Ω

(d)
T . Here Ω

(j)
T and Ω

(d)
T are defined

as:

Ω
(j)
T = {ω: on [0, t] the process r1

i r
2
i is not identically 0} (2.18)

Ω
(j)
T = {ω: on [0, t] the processes r1

i and r2
i are (2.19)

not identically 0, but the process r1
i r

2
i is}
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Where rji = P ji∆n
− P j(i−1)∆n

, for j = 1, 2 and i = 1, ..., n. The authors construct critical

regions of the two statistics as:

C(j)
n = {|Φ(j)

n − 1| ≥ c(j)
n } (2.20)

C(d)
n = {Φ(d)

n ≥ c(d)
n } (2.21)

where c
(j)
n = V̂

(j)
n /
√
α and c

(d)
n = V̂

′(d)
n /α. α is the significance level in the test. V̂

(j)
n is

defined as:

V̂ (j)
n =

√
∆n(k − 1)F̂

′n
t

V (f,∆n)t
(2.22)

where F̂
′n
t is:

F̂
′n
t =

2

kn∆n

[t/∆n]−kn−1∑
i=1+kn

∑
m∈In(i)

(r1
i )

2(r2
i )

2 × (r1
i r

2
m + r1

mr
2
i )

21{|ri|>α∆ω
n ,|rm|≤α∆ω

n} (2.23)

where In(i) = In,−(i)∪In,+(i) and In,− = i− kn, i− kn + 1, ..., i− 1 if i > kn and In,+(i) =

i+ 2, i+ 3, ..., i+ kn + 1. V̂
(′d)
n is defined as:

V̂ (′d)
n =

∆nF̂
n
t + Â

′n
T

V (g1,∆n)tV (g2,∆n)t
(2.24)

where F̂nt is:

F̂nt =
2

kn∆n

[t/∆n]−kn−1∑
i=1+kn

∑
m∈In(i)

((r1
i )

2(r2
m)2 + (r1

m)2(r2
i )

2)× 1{|ri|>α∆ω
n ,|rm|≤α∆ω

n} (2.25)

and Â
′n
t is:

Â
′n
t =

1

∆n

t/∆n∑
i=1

f(ri)1{|ri|≤α∆ω
n} (2.26)

The local window kn = 1/
√

∆n and the truncation level of α∆ω
n = 0.03×∆0.49

n .
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2.3.3 σ Threshold Co-Jump Test

Integrated volatility is used to construct thresholds to detect jumps in each univariate

process. To measure integrated volatility , bipower variation is widely used in the literature.

The standardized realized Bipower variation (BPV), introduced by Barndorff-Nielsen and

Shephard (2004), is denoted as:

BVt(∆) ≡ µ−2
1

1/∆∑
j=2

| rj || rj−1 | (2.27)

where µ1 ≡
√

2/π is the mean of the absolute value of standard normally distributed

random variable and ∆ = 1
n . Threshold σ is defined as:

σt =

√
1

( 1
∆ − 1)

×BVt (2.28)

(2.29)

We use σt to calculate the averaged daily standard deviation threshold:

σ =
1

T

T∑
t=1

σt (2.30)

where T is the number of replications of the sample path. In terms of choosing optimal

threshold level, we apply 5σ to identify jumps in each univariate process and then identify

co-jumps among multivariate processes.

2.3.4 Truncation

When applying co-jump tests on simulated price series with co-jumps, we need to pay

special attention to the simulation cases with notably large co-jump intensity. Under large

co-jump intensity, one problem is how to estimate volatility level, which can be overesti-

mated and lead to under rejection of the null of no co-jumps. The truncation approach

introduced here, by incorporating previous weekly or monthly data to set the truncation
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level, can solve the over-estimated volatility problem. To determine the truncation level of

αn, we use the following iteration procedure in Mancini (2009):

• Use Bipower variation to obtain an initial estimate of integrated volatility (IV)

• Set the initial truncation value of αn as

α(0)
n = C × (

1

t
ˆIVt

(0)
)1/2 ×∆ω

n (2.31)

Here C is a tuning parameter range around [1, 6] and should be kept as small as

possible to get the optimal truncation level. ω is set to 0.49.

• With α
(i−1)
n determined, use the truncated version of Bipower variation to obatain

new estimate of IV, denoted by ˆIVi
(i)

. Then let

α(i)
n = C × (

1

t
ˆIVt

(i)
)1/2 ×∆ω

n (2.32)

• Repeat last step until | ˆIVt
(i) − ˆIVt

(i−1) | is smaller than 0.05 ˆIVt
(i−1)

.

2.4 Jump and Co-Jump Classification and Measurement

2.4.1 Jump and Co-Jump Classification

The S&P 500 index has over 500 stock components and most of them are traded on NYSE

and NASDAQ. It can be seen as one of the most common financial indicators of the U.S.

economy. Based on Global Industry Classification Standard(GICS), the S&P 500 index has

11 sectors according to constituent classifications, including consumer discretionary sector,

consumer staples sector, energy sector, financial sector, financial service sector, health care

sector, industrials sector, materials sector, real estate sector, technology sector and utilities

sector. Each sector is composed of different stocks in S&P 500. Table 2.6 shows details

about the 11 sectors in S&P 500 and the number of constituents in each sector.
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In the high-frequency financial econometrics, the return of S&P500 index can be further

decomposed into a continuous component and a jump (discontinuous) component. The

continuous part is usually driven by some fundamental trends in the business cycle, and

the jump part is usually caused by some outside shocks, such as the release of unexpected

economic policy. Müller et al. (1993) propose the Heterogeneous Market Hypothesis, which

argues that variation from jump components are caused by the heterogeneity reaction of

the agents among different markets.

In this paper, we want to further classify the heterogeneity reactions of agents based on

the connection between different markets, and study their effects on the market volatility

separately. Therefore, we classify the jump in each sector as either a co-jump or a single

jump. Co-jumps are defined as jumps occurring simultaneously on more than or equal to

two sectors returns of the S& P 500 index. Single jumps are defined as jumps happening in

only one sector return of the S&P 500 during the intraday time interval. Co-jumps among

different sectors can be viewed as a market ’lining up’, which is usually driven by the

systemic risk among markets. Co-jumps is a measurement of the correlation among different

connected sectors. Single jumps represent sector individual shocks, which is usually driven

by the idiosyncratic risks in each sector. The co-jumps and single jumps cover different

types of risks, and thus influence the market in different channels. Also, since S&P 500 has

11 sectors, we can identify co-jumps among the different number of sectors, ranging from

two sectors co-jumps to 11 sectors co-jumps.

2.4.2 Jump and Co-Jump Measurement

Barndorff-Nielsen and Shephard (2004) prove integrated variance can be estimated by

realized bipower variation(BPV) under special cases and the quadratic variation of the

jump can be calculated by the difference of RV and realized BPV. Followed Andersen et al.
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(2007), the realized bipower variation in general form is:

BV = µ−1
r µ−1

2−r{r
j
n}[r,2−r] (2.33)

where

µr = 2r/2
Γ(1

2(r + 1))

Γ(1
2)

(2.34)

In this paper, we focus on the special case when r = 1, then,

BPVt = (µ1)−2
n∑
i=2

|ri||ri−1| (2.35)

where µ1 = E(|Z|) = 21/2Γ(1)/Γ(1/2) =
√

2/π. The realized bipower variation is an

asymptotic estimation of continuous component variation. Then the jump component

variation is:

Jt = RVt −BVt (2.36)

Since the sampling interval in the empirical analysis is finite (∆>0), Jt can be negative in

some cases. Andersen et al. (2007) suggest to exclude the negative value of the estimates

and truncate the jump measurements at 0,

Jt = max[RVt −BVt, 0] (2.37)

The theoretical framework for jump measurement is based on the increasingly finer sam-

pling interval. Under the finite sampling intervals, there will be some measurement errors.

Andersen et al. (2007) proposes a theoretical framework that treats small jumps as a con-

tinuous component, leaving only large jumps in jump measurement. They identify jumps

variations with the newly proposed method as:

Jt ≡ I[Zt>Φα] · [RVt −BVt], (2.38)
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and new continuous component variations as:

Ci,t ≡ I[Zt 6 Φα] ·RVt + I[Zt>Φα] ·BVt (2.39)

where Φα is the critical value for the ratio-statistic Ztfor the joint bivariate distribution

from Huang and Tauchen (2005),

Zt ≡ ∆−1/2 × [RVt −BVt]RV −1
t

[(µ−4
1 + 2µ−2

1 − 5)max{1, TQtBV −2
t }]1/2

(2.40)

where ∆ is the intraday time interval and TQt denotes standardized realized tripower

quarticity measure:

TQt ≡ ∆−1µ−3
4/3

M−2∑
j=1

| rj |4/3| rj+1 |4/3| rj+2 |4/3 (2.41)

We further classify co-jump and single jumps variations by applying 5σ co-jump test. Thus,

we generate indicators for co-jumps and single jumps as Ico−jump and Isjump. Co-jumps

variations are defined as:

Jco−jumpt = Jt ∗ Ico−jump (2.42)

And single jumps variation are defined as:

Jsumpt = Jt ∗ Isjump (2.43)

The ratio of co-jumps contributions to total variations is calculated as:

ratioco−jump =
Jco−jumpt

RVt
(2.44)

And the ratio of single jumps contributions to total variations is calculated as:

ratioco−jump =
Jsjumpt

RVt
(2.45)



19

2.5 Experimental Setup and Forecasting Methods

Müller et al. (1997) construct a HARCH model from the Heterogeneous Market Hypothesis.

Based on this idea, Corsi (2004) proposes HAR-RV models incorporating different kinds of

market volatilities over different time horizons. One simple version of the HAR-RV model

is:

RV
(d)
t+1d = c+ β(d)RV

(d)
t + β(ω)RV

(ω)
t + β(m)RV

(m)
t + ωt+1d, (2.46)

Andersen et al. (2007) separate jumps from continuous part and design a new HAR-RV-CJ

prediction model that incorporates jumps and lag terms of realized volatilities and jumps

over different time horizons. The multiperiod jump measurement is defined as the average

value of jumps over time h:

Jt,t+h = h−1[Jt+1 + Jt+2 + ...+ Jt+h] (2.47)

The multiperiod continuous part measurement is defined as the average value of continuous

component over time h:

Ct,t+h = h−1[Ct+1 + Ct+2 + ...+ Ct+h] (2.48)

The HAR-RV-CJ model is shown as:

RVt,t+h = β0 + βcdCt + βcwCt−5,t + βcmCt−22,t + βjdJt (2.49)

+βjwJt−5,t + βjmJt−22,t + εt,t+h

where Ct is the continues component and Jt is the discontinuous part for jumps. Ct, Ct−5

and Ct − 22 are lag term estimators for h = 1, h = 5 and h = 22.

In this paper, we extend the HAR-RV-J model by classifying co-jumps (CJt) and sin-

gle jumps (SJt), and then incorporated co-jumps and single jumps into the HAR-RV-CJ

models.
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Specification 1: HAR-RV-CJ model with co-jumps (CJt):

RVt,t+h = β0 + βcdCt + βcwCt−5,t + βcmCt−22,t + βjdCJt + βjwCJt−5,t + βjmCJt−22,t + εt,t+h

Specification 2: HAR-RV-SJ model with single jumps (SJt):

RVt,t+h = β0 + βcdCt + βcwCt−5,t + βcmCt−22,t + βjdSJt + βjwSJt−5,t + βjmSJt−22,t + εt,t+h

Specification 3: HAR-RV-SJ model with single jumps (SJt) and co-jumps (CJt):

RVt,t+h = β0 + βcdCt + βcwCt−5,t + βcmCt−22,t + βjdSJt + βjwSJt−5,t + βjmSJt−22,t

+βjdCJt + βjwCJt−5,t + βjmCJt−22,t + εt,t+h

To explore casualty effects of jumps, lag terms of jumps are incorporated into the HAR-

RV-CJ model. The lag terms for co-jumps are CJt, CJt−5 and CJt−22. The lag terms for

single jumps are SJt, SJt−5 and SJt−22. These lag terms are added into HAR-RV-CJ

model, which explains daily, weekly and monthly lag regression terms. Standard deviation

and logarithmic form are also used under prediction horizons h=1 for one day, 5 for one

week and 22 for one month. We use a rolling window size 200 to estimate MSFEs in each

sector constituents in the S&P 500 market.

2.6 Monte Carlo Experiments

Monte Carlo experiments were carried out in order to evaluate the finite sample properties

of: (i) The BLT co-jump test under the null of co-jumps; (ii) The 5σ threshold under

the null hypothesis of co-jumps; (iii) The JT1 test under the null hypothesis of co-jumps;

and (vi) All three co-jump tests with truncation approach under the null hypothesis of

co-jumps.

1We choose test statistic Φdn in the JT test
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The Data Generating Process (DGP)2 of each component is specified as :

dlnX
(i)
t = µdt+

√
V

(i)
t dW

(i)
1,t + dJ

(i)
t , (2.50)

dV
(i)
t = κv(θv − V (i)

t )dt+ ζ

√
V

(i)
t dW

(i)
2,t (2.51)

where in the expression above the volatility is described as a square-root process. Leverage

effects for X(i) are characterized by corr(dW
(i)
1 , dW

(i)
2 ) = ρ. The jump component J

(i)
t is

simulated as a compound Poisson process Nt with intensity λi:

J
(i)
t =

Nt∑
j=1

Yj (2.52)

where Yj are independently and identically drawn from a normal distribution. We also

consider the microstruction noise in our Monte Carlo experiments. Following Zhang et al.

(2005), the observed return process is assumed to be in the form:

Yti = Xti + εti (2.53)

where Xt is the real price of an asset. εti is independent identically distributed with

Eεti = 0 and var(εti) = Eε2. We also assume εti is independent with X
(i)
t process. The

modeling setup does not require εti existing for every ti. Therefore, we only add noise with

observations under specific sampling frequency. Under the null hypothesis of co-jumps, we

simulate a single jump and add it to all simulated asset prices as co-jumps among multiple

assets prices.

Table 2.1 shows the parameter settings in the Monte Carlo experiments. We follow the

parameter settings from Huang and Tauchen (2005) and Corradi et al. (2015), with larger

jump intensity. This is because jump intensity varies largely before and post-financial crisis

and one of our Monte Carlo simulation objectives is to compare these test performances

2We simulate observations using the Milstein discretization scheme.
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before and after this period. Table 2.2 shows details for each data generating process

with 1000 replications. We simulate N = 10 processes for each DGP. The two intra-daily

sampling frequencies: ∆ = 1/78 and ∆ = 1/390 represent 5-minute and 1-minute sampling

frequencies.

Table 2.3 shows the empirical power of co-jump tests. The significance level is set as

10% for all co-jump tests. The σ threshold method and the JT co-jump test have larger

powers compared to the BLT co-jump test. As noted in the table 2.3, the range of empirical

power of the BLT test is from 0.996 to 0.910, while the range of σ threshold is from 1.000

to 0.968 and the JT test is from 1.000 to 0.995. Jump intensity affects the empirical power

of the co-jump tests negatively. In BLT co-jump test, σ threshold, and JT co-jump test,

increasing jump intensity lowers the empirical power of co-jump tests. For example in DGP

1 and 2, as jump intensity λ increases from 0.3 to 2.0, the empirical power of BLT co-jump

test drops from 0.983 to 0.963, and σ threshold drops from 1.000 to 0.999, and JT test drops

from 1.000 to 0.997. Adding microstructure noise into the DGP process generally reduces

the empirical power. For example, the power of the BLT co-jump test with microstructure

noise (e.g. DGP 2) is slightly larger than the DGPs without microstructure noise(e.g.

DGP 18). Additionally, the empirical power of all co-jump tests is positively associated

with jump magnitude (e.g DGPs 5 and 7, DGPs 6 and 8). Table 2.14 shows the empirical

power of three co-jump tests under the truncation approach. The truncation approach

does not affect the power of the JT co-jump test, and generally increases the empirical

power of σ threshold method.

Table 2.5 shows the empirical size of co-jump tests. The nominal size is set as 10% for

all three co-jump tests. The BLT test has the largest size compared with all other co-jump

tests under all DGPs. For example in DGP12, the empirical size for the BLT test is 0.0613,

which is the largest value compared with the empirical size of 0.0002 in the σ threshold,
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and 0.0000 in the JT co-jump test. Jump intensity affects the empirical size of the co-jump

tests in different directions. In the BLT co-jump test, increasing jump intensity lowers

the empirical size of co-jump tests, while the effect is reversed in the σ threshold and JT

co-jump test. Adding microstructure noise into the DGP process increases the empirical

size in most cases. For example, the size of the BLT co-jump test without microstructure

noise (e.g. DGP 17) is smaller than the DGPs with microstructure noise(e.g. DGP 1).

Additionally, the empirical power of all co-jump tests is negatively associated with jump

magnitude (e.g DGPs 5 and 7, DGPs 6 and 8). Table 2.6 shows the empirical size of

co-jump tests with the truncation approach. The truncation approach does not affect the

empirical size of the JT co-jump test, but it lowers the empirical size of the σ threshold

method.

2.7 Empirical Findings

2.7.1 Data Description

The data for SPDR S&P 500 ETF and 9 sectors ETFs cover the periods from January 1st,

2006 to December 31st, 2013 for a total of 2013 days. For measuring the price variation

of the S&P 500 index, SPDR S&P 500 ETF is selected. The sources of 93 sectors ETFs

daily observations and SPDR S&P 500 ETF are from Trade and Quote Database (TAQ)

through Wharton Research Data Service(WRDS). We select trade data ranging from 9:30

am to 4 pm on a regular day and ignore time outside this range. Outliers are eliminated

from our dataset.

3Data from Financial Service and Real Estate sector are not available from WRDS.
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For sampling frequency, the current literature discussed the performance under sam-

pling of different frequencies. Hansen and Lunde (2006) demonstrates a kernel-based esti-

mator for integrated variance dominates realized volatility for considering the characteris-

tics of market microstructure noise. Bandi and Russell (2008) shows market microstruc-

ture noise bias can be reasonably reduced by variance reduction from appropriately high-

frequency sampling. We use the 30-second sampling frequency and the total observations

for a day with 30-second sampling frequency is 780. We clean the high-frequency data and

apply the truncation approach in section 2.3.4 to eliminate the microstructure noise. The

previous tick method derived from Gençay et al. (2001) is used to filter out price data.

2.7.2 Co-Jumps in the S&P 500

Table 2.7 shows summary statistics for single jumps and co-jumps over nine sectors in the

S&P 500, including material sector (XLB), energy sector (XLE), financial sector (XLF),

industrial sector (XLI), technology sector (XLK), consumer staple sector (XLP), utility

sector (XLU), health care sector (XLV), and consumer discretionary sector (XLY). The

second and fifth rows show proportions of single jumps and co-jumps4 over total numbers of

single jumps and co-jumps. It is noteworthy that proportions for co-jumps are always larger

than single jumps among all sectors. The financial sector (XLF) has the largest proportions

of 67.18% which suggests the financial sector has closer linkage with other sectors. The

utility sector has the smallest proportions of 54.79%. Co-jump magnitudes are also larger

than single jumps, based on the mean and standard deviations of co-jumps and single jumps

variations. This is consistent since co-jumps are usually caused by larger shocks happening

simultaneously among multiple sectors. Single jumps are usually caused by relatively

smaller shocks. In this way, co-jumps usually have larger magnitude compared with single

4The proportions exclude those negative values to ensure all of the estimates for single jump and co-jumps
parts are nonnegative.
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jumps in terms of shock sizes. The financial sector has both the largest magnitude and

proportion for co-jumps.

Multiple sectors in S&P 500 market become closely correlated in recent times. The

2008-2009 financial crisis and the 2011 European debt crisis are examples to show these

market linkages. Figure 2.1 shows total co-jump numbers in S&P 500 market from 2006

to 2013. From top to bottom panels are the number of three-sector co-jumps, four-sector

co-jumps, five-sector co-jumps, six-sector co-jumps, seven-sector co-jumps, eight-sector co-

jumps, and nine-sector co-jumps. We can see clearly that 2008 and 2011 have the largest

number of co-jumps compared with other periods. This confirms the observations that co-

jumps happen more frequently during crisis periods when markets become more correlated.

Figure 2.2 plots co-jump and single jump contribution to total variation from the year

2006 to 2013 for each sector5. We identify co-jumps variation between the post and pre-

financial crisis periods and further find co-jumps are more linked with the 2008 financial

crisis and 2011 European debt crisis. Co-jumps have larger variation when compared with

single jumps among all nine sectors. Co-jumps also have higher total variation during

the 2008 financial crisis and the 2011 European Debt crisis, which also reflects market

correlation increasing during crisis periods. These sector co-jumps tend to happen when

the market is influenced by some large exogenous shocks.

2.7.3 Co-Jumps in Realized Volatility Prediction

Table 2.9-2.17 shows the in-sample HAR-RV-CJ prediction regressions with co-jumps and

single jumps over different sectors in S&P 500 market. We only report the tables for energy,

financial and technology sectors here. For coefficients of the continuous part variations,

most coefficients are statistically significant for βcd, βcw and βcm. For coefficients of single

5We use a 21-day moving average to smooth out the variations
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jumps variations, most of the coefficients are statistically insignificant for βjd and βjm. The

coefficient of co-jumps variations βjd is statistically significant for all models at prediction

horizon h = 1. In comparing R2, the logarithmic model fits better than standard deviation

modes. Standard deviation models fit better than linear models. R-square in our sector

ETFs prediction regression is significantly high, even most cases are over 0.7. R-square for

HAR models with co-jumps is larger than HAR models with single jumps. This suggests

that co-jumps are relatively more important in the context of volatility prediction when

compared with single jumps. Co-jumps reflect market co-movement which is not contained

in individual single jumps and therefore contains more market information. The financial

sector has the largest in sample R-square compared with other sectors, which suggests the

financial market is more connected with other sectors in the S&P 500 market.

Tables 2.18, 2.19 and 2.20 show the square root of mean forecasting error (MSFE),

In-Sample R2 and Out-of-Sample R2 for HAR-RV-CJ models with co-jumps and single

jumps. Rolling window size 200 is used to estimate MSFEs in each sector constituents in

S&P 500 market. Results show that HAR models with co-jumps outperform HAR models

with single jumps over all sectors, in terms of MSFEs, regardless of prediction horizon and

model formation. The MSFE difference between co-jumps and single jumps is larger in

the financial sector compared with other sectors, which indicates the co-jumps are more

densely populated among the financial sector and also with a larger magnitude. Square

root model wins over the linear model and the log model based on the MSFEs. Linear

models outperform the log models.

2.8 Concluding Remarks

In this paper, I investigate the importance of co-jumps for predicting equity return volatil-

ity. In particular, using high-frequency financial data, I disentangle individual sector jumps
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and multiple sector co-jumps. Using this information, I construct new jumps and co-jumps

variation measures, which are included in a series of real-tome prediction experiments to

evaluate the importance of co-jumps when prediction stock market return volatility. Addi-

tionally, Monte Calor simulations are utilized to conduct power and size analysis to evaluate

the performance of three widely used co-jump tests. Different scenarios including various

jump intensities, jump magnitudes, microstructure noise, and significance levels are dis-

cussed in the paper. The co-jump test is further utilized to identify co-jumps and single

jumps among nine sectors in the S&P 500 market, using the sectors ETFs price data. We

extend the HAR-RV forecasting models by including co-jumps and single jumps variations

and show the usefulness of co-jumps variation in the context of volatility prediction. These

interesting findings provide a guideline for design trading strategies in the stock markets.
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Table 2.1: Monte Carlo Experiments - Parameter Settings*

Jump Intensity λ =
{

0.3, 2.0
}

Microstructure Noise ε ∼ i.i.d. N(0, 0.00052)

Leverage Effect ρ =
{

0,−0.5
}

Jump Distribution σjump =
{

0.5, 2.5
}

Sampling Frequency ∆n =
{

1
78 ,

1
390

}
Other Parameters µ, κv, θv, ζ,N =

{
0.05, 5, 0.16, 0.5, 10

}
*Notes: N is the number of simulation series. 1

78 is five-minute
sampling frequency and 1

390 is one-minute sampling frequency. See
section 2.6 for complete details.
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Table 2.2: Monte Carlo Experiments -Data Generating Process*

ε λ ρ σjump ∆n µ κv θv ζ N

DGP1 + 0.3 -0.5 0.5 1
390 0.05 5 0.16 0.5 10

DGP2 + 2.0 -0.5 0.5 1
390 0.05 5 0.16 0.5 10

DGP3 + 0.3 -0.5 2.5 1
390 0.05 5 0.16 0.5 10

DGP4 + 2.0 -0.5 2.5 1
390 0.05 5 0.16 0.5 10

DGP5 + 0.3 0.0 0.5 1
390 0.05 5 0.16 0.5 10

DGP6 + 2.0 0.0 0.5 1
390 0.05 5 0.16 0.5 10

DGP7 + 0.3 0.0 2.5 1
390 0.05 5 0.16 0.5 10

DGP8 + 2.0 0.0 2.5 1
390 0.05 5 0.16 0.5 10

DGP9 + 0.3 0.0 0.5 1
78 0.05 5 0.16 0.5 10

DGP10 + 2.0 0.0 0.5 1
78 0.05 5 0.16 0.5 10

DGP11 + 0.3 0.0 2.5 1
78 0.05 5 0.16 0.5 10

DGP12 + 2.0 0.0 2.5 1
78 0.05 5 0.16 0.5 10

DGP13 + 0.3 -0.5 0.5 1
78 0.05 5 0.16 0.5 10

DGP14 + 2.0 -0.5 0.5 1
78 0.05 5 0.16 0.5 10

DGP15 + 0.3 -0.5 2.5 1
78 0.05 5 0.16 0.5 10

DGP16 + 2.0 -0.5 2.5 1
78 0.05 5 0.16 0.5 10

DGP17 - 0.3 -0.5 0.5 1
390 0.05 5 0.16 0.5 10

DGP18 - 2.0 -0.5 0.5 1
390 0.05 5 0.16 0.5 10

DGP19 - 0.3 -0.5 2.5 1
390 0.05 5 0.16 0.5 10

DGP20 - 2.0 -0.5 2.5 1
390 0.05 5 0.16 0.5 10

DGP21 - 0.3 0.0 0.5 1
390 0.05 5 0.16 0.5 10

DGP22 - 2.0 0.0 0.5 1
390 0.05 5 0.16 0.5 10

DGP23 - 0.3 0.0 2.5 1
390 0.05 5 0.16 0.5 10

DGP24 - 2.0 0.0 2.5 1
390 0.05 5 0.16 0.5 10

DGP25 - 0.3 0.0 0.5 1
78 0.05 5 0.16 0.5 10

DGP26 - 2.0 0.0 0.5 1
78 0.05 5 0.16 0.5 10

DGP27 - 0.3 0.0 2.5 1
78 0.05 5 0.16 0.5 10

DGP28 - 2.0 0.0 2.5 1
78 0.05 5 0.16 0.5 10

DGP29 - 0.3 -0.5 0.5 1
78 0.05 5 0.16 0.5 10

DGP30 - 2.0 -0.5 0.5 1
78 0.05 5 0.16 0.5 10

DGP31 - 0.3 -0.5 2.5 1
78 0.05 5 0.16 0.5 10

DGP32 - 2.0 -0.5 2.5 1
78 0.05 5 0.16 0.5 10

*Notes: + denotes the Monte Carlo experiments with microstructure
noise and - denotes the Monte Carlo experiments without microstruc-
ture noise. We simulate N = 10 processes for the Data Generating
Process (DGP). Simulated jumps are added to 10 processes at the same
interval as co-jumps. There are a total of 36 DGPs.
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Table 2.3: Monte Carlo Experiments -
Co-jump Test (Empirical Power)*

BLT Test σ Threshold JT Test

DGP1 0.980 1.000 1.000
DGP2 0.950 0.999 0.997
DGP3 0.993 1.000 1.000
DGP4 0.959 1.000 0.998
DGP5 0.980 1.000 1.000
DGP6 0.954 0.999 0.995
DGP7 0.993 1.000 1.000
DGP8 0.957 1.000 0.998
DGP9 0.959 1.000 1.000
DGP10 0.881 0.968 0.999
DGP11 0.976 1.000 1.000
DGP12 0.916 0.999 1.000
DGP13 0.969 1.000 1.000
DGP14 0.876 0.969 1.000
DGP15 0.973 1.000 1.000
DGP16 0.898 0.999 1.000
DGP17 0.980 1.000 1.000
DGP18 0.951 0.999 0.995
DGP19 0.993 1.000 1.000
DGP20 0.960 1.000 0.998
DGP21 0.980 1.000 1.000
DGP22 0.953 0.999 1.000
DGP23 0.993 1.000 1.000
DGP24 0.957 1.000 0.998
DGP25 0.959 1.000 1.000
DGP26 0.880 0.968 0.999
DGP27 0.976 1.000 1.000
DGP28 0.894 0.999 1.000
DGP29 0.969 1.000 1.000
DGP30 0.876 0.969 1.000
DGP31 0.973 1.000 1.000
DGP32 0.898 0.999 1.000

*Notes: Table 2.3 shows the empirical power of
BLT, JT and σ threshold co-jump tests. The sig-
nificance level is set as 10% for all co-jump tests.
In all experiments, we perform 1000 Monte Carlo
replications. For complete details, refer to Sec-
tion 2.6.
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Table 2.4: Monte Carlo Experiments -
Co-jump Test (Empirical Power) with

Truncation Approach*

BLT Test σ Threshold JT Test

DGP1 0.973 1.000 1.000
DGP2 0.952 0.9995 0.997
DGP3 0.993 1.000 1.000
DGP4 0.961 1.000 0.998
DGP5 0.973 1.000 1.000
DGP6 0.957 0.999 0.995
DGP7 0.990 1.000 1.000
DGP8 0.958 1.000 1.000
DGP9 0.952 1.000 1.000
DGP10 0.879 0.969 0.999
DGP11 0.983 1.000 1.000
DGP12 0.928 0.999 1.000
DGP13 0.959 1.000 1.000
DGP14 0.884 0.972 1.000
DGP15 0.976 1.000 1.000
DGP16 0.905 0.999 1.000
DGP17 0.973 1.000 1.000
DGP18 0.953 0.9995 0.995
DGP19 0.993 1.000 1.000
DGP20 0.961 1.000 1.000
DGP21 0.973 1.000 1.000
DGP22 0.957 0.999 0.997
DGP23 0.990 1.000 1.000
DGP24 0.958 1.000 0.998
DGP25 0.952 1.000 1.000
DGP26 0.880 0.970 0.999
DGP27 0.980 1.000 1.000
DGP28 0.906 0.999 1.000
DGP29 0.959 1.000 1.000
DGP30 0.883 0.972 1.000
DGP31 0.973 1.000 1.000
DGP32 0.905 0.999 1.000

*Notes: See notes in Table 2.3. Table 2.3 shows
the empirical power of BLT, JT and σ thresh-
old co-jump tests with the truncation approach.
All Monte Carlo simulation data are truncated
based on the truncation approach in section
2.3.4.
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Table 2.5: Monte Carlo Experiments -
Co-jump Test (Empirical Size)*

BLT Test σ Threshold JT Test

DGP1 0.0805 0.0000 0.0000
DGP2 0.0358 0.00001 0.0000
DGP3 0.0817 0.0000 0.0000
DGP4 0.0349 0.00001 0.0000
DGP5 0.0809 0.0000 0.0000
DGP6 0.0361 0.00001 0.0000
DGP7 0.0822 0.0000 0.0000
DGP8 0.0351 0.00001 0.0000
DGP9 0.0849 0.0000 0.0000
DGP10 0.0366 0.00002 0.0000
DGP11 0.0864 0.0000 0.0000
DGP12 0.0613 0.00002 0.0000
DGP13 0.0858 0.0000 0.0000
DGP14 0.0376 0.00002 0.0000
DGP15 0.0870 0.0000 0.0000
DGP16 0.0353 0.00002 0.0000
DGP17 0.0805 0.0000 0.0000
DGP18 0.0359 0.00001 0.0000
DGP19 0.0817 0.0000 0.0000
DGP20 0.0349 0.00001 0.0000
DGP21 0.0810 0.0000 0.0000
DGP22 0.0362 0.00001 0.0000
DGP23 0.0822 0.0000 0.0000
DGP24 0.0352 0.00001 0.0000
DGP25 0.0848 0.0000 0.0000
DGP26 0.0366 0.00002 0.0000
DGP27 0.0864 0.0000 0.0000
DGP28 0.0351 0.00002 0.0000
DGP29 0.0857 0.0000 0.0000
DGP30 0.0376 0.00002 0.0000
DGP31 0.0870 0.0000 0.0000
DGP32 0.0353 0.00002 0.0000

*Notes: Table 2.5 shows the empirical size of
BLT, JT and σ threshold co-jump tests. The
nominal size is set as 10% for all co-jump tests.
In all experiments, we perform 1000 Monte Carlo
replications. For complete details, refer to Sec-
tion 2.6.
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Table 2.6: Monte Carlo Experiments -
Co-jump Test (Empirical Size) with

Truncation Approach*

BLT Test σ Threshold JT Test

DGP1 0.0820 0.0000 0.0000
DGP2 0.0358 0.00001 0.0000
DGP3 0.0761 0.0000 0.0000
DGP4 0.0354 0.00001 0.0000
DGP5 0.0822 0.0000 0.0000
DGP6 0.0361 0.00001 0.0000
DGP7 0.0765 0.0000 0.0000
DGP8 0.0356 0.00001 0.0000
DGP9 0.0844 0.0000 0.0000
DGP10 0.0368 0.00002 0.0000
DGP11 0.0898 0.0000 0.0000
DGP12 0.0612 0.00001 0.0000
DGP13 0.0850 0.0000 0.0000
DGP14 0.0375 0.00002 0.0000
DGP15 0.0910 0.0000 0.0000
DGP16 0.0350 0.00002 0.0000
DGP17 0.0820 0.0000 0.0000
DGP18 0.0358 0.00001 0.0000
DGP19 0.0762 0.0000 0.0000
DGP20 0.0354 0.00001 0.0000
DGP21 0.0822 0.0000 0.0000
DGP22 0.0362 0.00001 0.0000
DGP23 0.0765 0.0000 0.0000
DGP24 0.0357 0.00001 0.0000
DGP25 0.0845 0.0000 0.0000
DGP26 0.0369 0.00002 0.0000
DGP27 0.0898 0.0000 0.0000
DGP28 0.0348 0.00002 0.0000
DGP29 0.0850 0.0000 0.0000
DGP30 0.0375 0.00002 0.0000
DGP31 0.0907 0.0000 0.0000
DGP32 0.0350 0.00002 0.0000

*Notes: See notes in Table 2.5. Table 2.6 shows
the empirical size of BLT, JT and σ thresh-
old co-jump tests with the truncation approach.
All Monte Carlo simulation data are truncated
based on the truncation approach in section
2.3.4.
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Table 2.7: Sectors Classification in S&P500 Index*

Sector Classification number of constituents
Consumer Discretionary (GICS Consumer Discretionary Sector) 87

Consumer Staples (GICS Consumer Staples Sector) 36
Energy (GICS Energy Sector) 38

Financial (GICS Financials Sector) 92
Financial Services (GICS Financials Sector excluding the Real Estate Industry Group, but including Mortgage REITs) 64

Health Care (GICS Health Care Sector) 56
Industrials (GICS Industrials Sector) 68

Materials (GICS Materials Sector) 26
Real Estate (GICS Real Estate Industry Group excluding Mortgage REITs) 28

Technology (GICS Information Technology Sector & Telecommunication Services Sector) 68 & 5
Utilities (GICS Utilities Sector) 29

*Notes: Number of constituents denotes the number of stocks in each sector.

Table 2.8: Descriptive Statistics for Single Jumps and Co-jumps*

Sector XLB XLE XLF XLI XLK XLP XLU XLV XLY

Single jump

Prop. 0.3936 0.3327 0.3282 0.3861 0.3664 0.4354 0.4521 0.4318 0.4005
Mean 0.0487 0.0451 0.0533 0.0482 0.0430 0.0471 0.0484 0.0453 0.0447

St. dev. 0.0526 0.0517 0.0635 0.0446 0.0445 0.0814 0.0423 0.0346 0.0411

Co-jump

Prop. 0.6064 0.6673 0.6718 0.6139 0.6336 0.5646 0.5479 0.5682 0.5995
Mean 0.0886 0.0984 0.1291 0.0917 0.0820 0.0833 0.0930 0.0837 0.0812

St. dev. 0.1314 0.1858 0.2039 0.1170 0.1152 0.0814 0.1171 0.0877 0.1163

*Notes: Single jump and co-jump are detected through a 5σ threshold test. Prop denotes proportions of each
jump/co-jump type over the total number of co-jumps and jumps. Mean and St. dev denotes mean and standard
deviation for single jumps and co-jumps variations. XLB is material select sector ETF; XLE is energy select
sector ETF; XLF is financial select sector EFT; XLI is industrial select sector EFT; XLK is technology select
sector EFT; XLP is consumer staples select sector EFT; XLU is utility sector ETF; XLV is health care sector
ETF and XLY is consumer discretionary sector ETF.
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Table 2.9: Energy Sector Prediction Regression Results with Co-jumps*

RVt,t+h RV
1/2
t,t+h log(RVt,t+h)

h h=1 h=5 h=22 h=1 h=5 h=22 h=1 h=5 h=22

β0 0.014 0.023 0.026 0.017 0.035 0.044 -0.123 -0.227 -0.358
(0.006) (0.014) (0.030) (0.009) (0.019) (0.046) (0.032) (0.066) (0.157)

βcd 0.476 0.308 0.177 0.422 0.298 0.137 0.375 0.282 0.122
(0.061) (0.063) (0.089) (0.041) (0.043) (0.052) (0.030) (0.036) (0.039)

βcw 0.273 0.256 0.084 0.419 0.369 0.107 0.389 0.273 0.040
(0.111) (0.113) (0.201) (0.077) (0.100) (0.139) (0.049) (0.082) (0.103)

βcm 0.170 0.325 0.675 0.098 0.240 0.701 0.159 0.308 0.619
(0.076) (0.130) (0.178) (0.060) (0.097) (0.145) (0.040) (0.078) (0.122)

βjd 0.234 0.191 0.118 0.085 0.074 0.058 0.573 0.364 0.304
(0.067) (0.084) (0.087) (0.018) (0.031) (0.023) (0.114) (0.185) (0.176)

βjw 0.359 0.314 0.308 0.040 -0.009 0.038 0.455 0.455 0.824
(0.160) (0.180) (0.110) (0.039) (0.063) (0.068) (0.248) (0.395) (0.435)

βjm -0.072 -0.067 -0.338 0.072 0.089 -0.136 -0.004 0.134 -0.667
(0.104) (0.204) (0.186) (0.036) (0.064) (0.084) (0.175) (0.392) (0.531)

R2 0.780 0.627 0.371 0.761 0.621 0.406 0.769 0.632 0.427
adjR2 0.779 0.626 0.369 0.760 0.619 0.404 0.769 0.631 0.425

*Notes: Table 2.9 shows the in-sample regression results with co-jumps for the energy sector (XLE).
Entries in parenthesis show the corresponding t statistics of the coefficients. Results are reported for
linear, square root and log HAR-RV-CJ models at daily (h = 1), weekly (h = 5) and monthly (h = 22)
prediction horizons. See sections 2.4 and 2.5 for further details.

Table 2.10: Energy Sector Prediction Regression Results with Single Jumps*

RVt,t+h RV
1/2
t,t+h log(RVt,t+h)

h h=1 h=5 h=22 h=1 h=5 h=22 h=1 h=5 h=22

β0 -0.046 -0.034 -0.005 -0.045 -0.021 0.032 0.082 -0.055 -0.362
(0.016) (0.026) (0.032) (0.020) (0.033) (0.051) (0.053) (0.081) (0.112)

βcd 0.519 0.345 0.182 0.448 0.321 0.146 0.392 0.294 0.126
(0.071) (0.065) (0.081) (0.043) (0.044) (0.053) (0.031) (0.037) (0.039)

βcw 0.570 0.495 0.261 0.496 0.391 0.160 0.456 0.326 0.106
(0.154) (0.155) (0.218) (0.081) (0.094) (0.145) (0.050) (0.079) (0.106)

βcm 0.215 0.364 0.518 0.186 0.344 0.590 0.181 0.339 0.573
(0.101) (0.123) (0.195) (0.059) (0.082) (0.130) (0.042) (0.071) (0.113)

βjd -0.006 0.121 0.004 0.031 0.035 0.023 0.241 0.448 0.116
(0.072) (0.101) (0.116) (0.017) (0.020) (0.023) (0.249) (0.269) (0.283)

βjw -0.066 -0.456 0.373 -0.014 -0.045 -0.015 0.083 -0.268 -0.148
(0.370) (0.634) (0.928) (0.040) (0.072) (0.083) (0.784) (1.240) (1.603)

βjm 0.112 1.340 3.035 -0.001 0.112 0.308 0.343 2.084 7.163
(0.693) (1.459) (1.473) (0.077) (0.143) (0.179) (1.313) (2.704) (3.655)

R2 0.666 0.551 0.378 0.732 0.605 0.413 0.746 0.616 0.429
adjR2 0.666 0.549 0.377 0.731 0.604 0.411 0.745 0.615 0.427

*Notes:See notes to table 2.9.
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Table 2.11: Energy Sector Prediction Regression Results with Single Jumps and Co-jumps*

RVt,t+h RV
1/2
t,t+h log(RVt,t+h)

h h=1 h=5 h=22 h=1 h=5 h=22 h=1 h=5 h=22

β0 0.012 0.018 0.016 0.014 0.029 0.035 -0.166 -0.307 -0.520
(0.006) (0.143) (0.030) (0.009) (0.020) (0.048) (0.036) (0.072) (0.127)

βcd 0.473 0.305 0.164 0.421 0.295 0.131 0.373 0.279 0.117
(0.061) (0.061) (0.079) (0.041) (0.042) (0.049) (0.030) (0.036) (0.038)

βcw 0.270 0.248 0.076 0.412 0.359 0.097 0.387 0.272 0.040
(0.108) (0.111) (0.179) (0.076) (0.099) (0.134) (0.048) (0.082) (0.102)

βcm 0.149 0.280 0.581 0.085 0.219 0.667 0.148 0.285 0.571
(0.073) (0.116) (0.178) (0.057) (0.094) (0.147) (0.040) (0.076) (0.121)

βsjumpjd 0.095 0.204 0.054 0.056 0.055 0.039 0.450 0.591 0.240

(0.055) (0.120) (0.112) (0.017) (0.023) (0.025) (0.229) (0.289) (0.290)

βsjumpjw 0.220 -0.217 0.541 0.001 -0.039 -0.012 0.521 0.143 0.278

(0.225) (0.534) (0.881) (0.032) (0.063) (0.078) (0.569) (1.067) (1.525)

βsjumpjm 0.463 1.727 2.910 0.100 0.205 0.297 1.055 3.141 7.315

(0.376) (1.138) (1.311) (0.059) (0.140) (0.179) (0.965) (2.322) (3.382)

βco−jumpjd 0.233 0.190 0.099 0.090 0.079 0.060 0.580 0.369 0.266

(0.067) (0.080) (0.072) (0.018) (0.029) (0.022) (0.110) (0.179) (0.152)

βco−jumpjw 0.357 0.286 0.282 0.040 -0.015 0.034 0.443 0.384 0.668

(0.158) (0.173) (0.095) (0.038) (0.059) (0.063) (0.242) (0.368) (0.387)

βco−jumpjm -0.043 0.011 -0.189 0.090 0.123 -0.083 0.075 0.329 -0.225

(0.102) (0.181) (0.119) (0.035) (0.063) (0.078) (0.175) (0.359) (0.411)
R2 0.637 0.636 0.406 0.764 0.627 0.418 0.771 0.637 0.441

adjR2 0.635 0.635 0.403 0.763 0.625 0.415 0.770 0.635 0.439

*Notes:See notes to table 2.9.
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Table 2.12: Financial Sector Prediction Regression Results with Co-jumps*

RVt,t+h RV
1/2
t,t+h log(RVt,t+h)

h h=1 h=5 h=22 h=1 h=5 h=22 h=1 h=5 h=22

β0 0.007 0.012 0.027 0.013 0.020 0.044 -0.143 -0.192 -0.326
(0.004) (0.009) (0.021) (0.006) (0.014) (0.031) (0.032) (0.071) (0.152)

βcd 0.548 0.355 0.307 0.506 0.287 0.253 0.434 0.215 0.214
(0.060) (0.096) (0.080) (0.039) (0.062) (0.057) (0.029) (0.042) (0.042)

βcw 0.380 0.428 0.022 0.355 0.410 0.050 0.327 0.388 0.079
(0.107) (0.145) (0.238) (0.065) (0.108) (0.166) (0.046) (0.082) (0.123)

βcm 0.060 0.198 0.609 0.112 0.270 0.638 0.142 0.273 0.507
(0.072) (0.128) (0.294) (0.048) (0.090) (0.197) (0.036) (0.073) (0.136)

βjd 0.254 0.055 0.029 0.087 0.019 0.025 0.568 0.143 0.103
(0.060) (0.068) (0.057) (0.019) (0.022) (0.019) (0.107) (0.128) (0.123)

βjw 0.001 0.018 0.012 0.008 0.028 0.006 0.016 0.134 -0.038
(0.083) (0.166) (0.204) (0.022) (0.060) (0.085) (0.157) (0.338) (0.532)

βjm 0.123 0.211 0.126 0.043 0.032 -0.035 0.320 0.486 0.611
(0.093) (0.220) (0.347) (0.032) (0.079) (0.146) (0.198) (0.457) (0.677)

R2 0.818 0.686 0.532 0.847 0.740 0.591 0.848 0.752 0.611
adjR2 0.817 0.685 0.530 0.846 0.739 0.590 0.848 0.751 0.610

*Notes:See notes to table 2.9.
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Table 2.13: Financial Sector Prediction Regression Results with Single Jumps*

RVt,t+h RV
1/2
t,t+h log(RVt,t+h)

h h=1 h=5 h=22 h=1 h=5 h=22 h=1 h=5 h=22

β0 -0.014 0.002 0.031 -0.013 0.011 0.069 0.022 -0.038 -0.167
(0.006) (0.009) (0.017) (0.009) (0.015) (0.029) (0.032) (0.057) (0.105)

βcd 0.655 0.365 0.298 0.560 0.295 0.267 0.467 0.222 0.218
(0.065) (0.095) (0.083) (0.042) (0.061) (0.055) (0.030) (0.042) (0.042)

βcw 0.474 0.473 0.043 0.400 0.453 0.054 0.359 0.417 0.085
(0.131) (0.151) (0.210) (0.074) (0.100) (0.150) (0.048) (0.076) (0.116)

βcm 0.068 0.306 0.699 0.112 0.276 0.602 0.152 0.303 0.557
(0.098) (0.133) (0.206) (0.056) (0.085) (0.153) (0.038) (0.066) (0.119)

βjd 0.019 0.030 -0.111 0.019 0.016 -0.016 0.335 0.157 -0.311
(0.102) (0.114) (0.077) (0.021) (0.024) (0.024) (0.218) (0.262) (0.262)

βjw 0.034 -0.094 -0.169 0.021 0.001 0.060 0.171 -0.269 0.208
(0.236) (0.282) (0.466) (0.035) (0.052) (0.077) (0.603) (0.832) (1.230)

βjm -0.431 -0.817 -1.519 -0.017 -0.057 -0.275 0.472 -0.134 -2.717
(0.277) (0.476) (1.071) (0.041) (0.079) (0.167) (0.803) (1.477) (3.132)

R2 0.788 0.679 0.539 0.835 0.737 0.597 0.838 0.746 0.609
adjR2 0.787 0.678 0.537 0.835 0.737 0.596 0.838 0.745 0.608

*Notes:See notes to table 2.9.
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Table 2.14: Financial Sector Prediction Regression Results with Single Jumps and Co-jumps*

RVt,t+h RV
1/2
t,t+h log(RVt,t+h)

h h=1 h=5 h=22 h=1 h=5 h=22 h=1 h=5 h=22

β0 0.007 0.017 0.039 0.011 0.026 0.069 -0.153 -0.191 -0.302
(0.004) (0.008) (0.022) (0.007) (0.037) (0.029) (0.032) (0.073) (0.152)

βcd 0.542 0.345 0.290 0.503 0.285 0.254 0.433 0.213 0.213
(0.061) (0.093) (0.078) (0.039) (0.056) (0.055) (0.030) (0.042) (0.042)

βcw 0.378 0.430 0.028 0.350 0.411 0.045 0.323 0.391 0.002
(0.107) (0.143) (0.219) (0.064) (0.161) (0.150) (0.046) (0.082) (0.121)

βcm 0.069 0.218 0.648 0.124 0.267 0.625 0.147 0.272 0.504
(0.072) (0.126) (0.275) (0.048) (0.205) (0.153) (0.036) (0.073) (0.135)

βsjumpjd 0.152 0.063 -0.097 0.056 0.025 -0.008 0.606 0.231 -0.275

(0.100) (0.114) (0.082) (0.020) (0.027) (0.024) (0.210) (0.277) (0.274)

βsjumpjw -0.060 -0.120 -0.183 -0.005 0.058 0.060 -0.074 -0.363 0.093

(0.185) (0.274) (0.451) (0.032) (0.072) (0.077) (0.504) (0.814) (1.212)

βsjumpjm -0.181 -0.626 -1.424 -0.013 -0.273 -0.275 0.712 -0.004 -2.624

(0.210) (0.412) (1.004) (0.034) (0.168) (0.167) (0.669) (1.340) (3.109)

βco−jumpjd 0.262 0.059 0.025 0.095 0.019 0.023 0.611 0.160 0.079

(0.061) (0.069) (0.058) (0.019) (0.020) (0.023) (0.107) (0.131) (0.123)

βco−jumpjw -0.003 0.011 -0.001 0.006 0.003 -0.015 0.013 0.113 -0.069

(0.083) (0.167) (0.198) (0.023) (0.085) (0.083) (0.160) (0.343) (0.527)

βco−jumpjm 0.118 0.201 0.107 0.035 -0.020 0.308 0.284 0.493 0.662

(0.094) (0.221) (0.332) (0.035) (0.149) (0.179) (0.198) (0.465) (0.655)
R2 0.849 0.687 0.541 0.848 0.598 0.597 0.838 0.752 0.613

adjR2 0.849 0.686 0.539 0.847 0.596 0.413 0.746 0.751 0.611

*Notes:See notes to table 2.9.
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Table 2.15: Technology Sector Prediction Regression Results with Co-jumps*

RVt,t+h RV
1/2
t,t+h log(RVt,t+h)

h h=1 h=5 h=22 h=1 h=5 h=22 h=1 h=5 h=22

β0 0.003 0.010 0.023 0.005 0.019 0.052 -0.116 -0.219 -0.432
(0.005) (0.012) (0.027) (0.009) (0.020) (0.044) (0.055) (0.116) (0.282)

βcd 0.576 0.273 0.223 0.486 0.248 0.157 0.403 0.232 0.117
(0.059) (0.114) (0.088) (0.040) (0.060) (0.058) (0.031) (0.038) (0.044)

βcw 0.426 0.614 0.285 0.410 0.482 0.232 0.360 0.315 0.164
(0.097) (0.280) (0.240) (0.059) (0.155) (0.164) (0.047) (0.104) (0.112)

βcm 0.023 0.107 0.463 0.108 0.249 0.547 0.158 0.326 0.484
(0.081) (0.189) (0.176) (0.051) (0.119) (0.130) (0.042) (0.094) (0.123)

βjd 0.119 0.049 0.014 0.037 0.026 0.016 0.459 0.155 0.180
(0.045) (0.046) (0.036) (0.014) (0.015) (0.014) (0.146) (0.147) (0.132)

βjw 0.063 -0.007 0.108 0.022 -0.024 0.025 0.241 0.288 0.403
(0.128) (0.211) (0.160) (0.025) (0.055) (0.048) (0.300) (0.569) (0.623)

βjm 0.077 0.131 -0.222 0.017 0.030 -0.122 0.158 0.275 -0.205
(0.105) (0.245) (0.345) (0.028) (0.068) (0.106) (0.281) (0.693) (1,038)

R2 0.721 0.573 0.353 0.744 0.603 0.399 0.736 0.597 0.405
adjR2 0.721 0.572 0.351 0.743 0.602 0.397 0.736 0.595 0.403

*Notes:See notes to table 2.9.
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Table 2.16: Technology sector Prediction Regression Results with Single Jumps*

RVt,t+h RV
1/2
t,t+h log(RVt,t+h)

h h=1 h=5 h=22 h=1 h=5 h=22 h=1 h=5 h=22

β 0 -0.015 -0.002 0.028 -0.020 0.004 0.065 0.068 -0.061 -0.360
(0.006) (0.011) (0.015) (0.011) (0.020) (0.030) (0.045) (0.088) (0.152)

βcd 0.631 0.298 0.227 0.509 0.265 0.166 0.424 0.238 0.121
(0.065) (0.118) (0.089) (0.042) (0.061) (0.061) (0.032) (0.038) (0.044)

βcw 0.535 0.637 0.372 0.453 0.467 0.260 0.407 0.353 0.217
(0.120) (0.223) (0.240) (0.066) (0.131) (0.167) (0.047) (0.089) (0.119)

βcm 0.041 0.184 0.303 0.127 0.287 0.425 0.174 0.354 0.470
(0.090) (0.168) (0.237) (0.057) (0.104) (0.162) (0.043) (0.078) (0.111)

βjd 0.028 0.036 0.017 0.025 0.012 0.010 0.460 0.236 0.139
(0.047) (0.056) (0.035) (0.014) (0.018) (0.015) (0.243) (0.317) (0.238)

βjw -0.084 0.048 -0.300 -0.029 -0.014 -0.062 -0.713 -0.729 -1.581
(0.099) (0.203) (0.241) (0.023) (0.040) (0.060) (0.555) (0.921) (1.266)

βjm 0.165 -0.030 0.435 0.052 0.056 0.104 1.514 1.602 4.147
(0.123) (0.249) (0.526) (0.031) (0.062) (0.153) (0.707) (1.390) (2.598)

R2 0.711 0.570 0.352 0.740 0.603 0.397 0.731 0.595 0.408
adjR2 0.710 0.569 0.350 0.739 0.602 0.395 0.730 0.593 0.406

*Notes:See notes to table 2.9.
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Table 2.17: Technology Sector Prediction Regression Results with Single Jumps and Co-jumps*

RVt,t+h RV
1/2
t,t+h log(RVt,t+h)

h h=1 h=5 h=22 h=1 h=5 h=22 h=1 h=5 h=22

β 0 0.001 0.009 0.021 -0.001 0.013 0.046 -0.150 -0.247 -0.480
(0.005) (0.011) (0.024) (0.009) (0.019) (0.039) (0.057) (0.122) (0.306)

βcd 0.578 0.276 0.220 0.487 0.247 0.154 0.405 0.231 0.114
(0.059) (0.113) (0.088) (0.040) (0.060) (0.060) (0.030) (0.037) (0.044)

βcw 0.425 0.608 0.302 0.402 0.480 0.239 0.361 0.319 0.179
(0.098) (0.277) (0.238) (0.058) (0.154) (0.163) (0.046) (0.103) (0.112)

βcm 0.017 0.106 0.453 0.118 0.254 0.545 0.150 0.317 0.465
(0.082) (0.189) (0.178) (0.051) (0.119) (0.129) (0.042) (0.094) (0.124)

βsjumpjd 0.071 0.055 0.021 0.045 0.024 0.018 0.643 0.295 0.203

(0.241) (0.059) (0.038) (0.015) (0.019) (0.016) (0.243) (0.323) (0.242)

βsjumpjw -0.0001 0.080 -0.271 -0.019 -0.020 -0.057 -0.482 -0.729 -1.344

(0.101) (0.213) (0.281) (0.023) (0.040) (0.068) (0.541) (0.948) (1.375)

βsjumpjm 0.137 -0.009 0.354 0.045 0.060 0.086 1.563 1.734 4.114

(0.117) (0.260) (0.583) (0.031) (0.062) (0.159) (0.672) (1.407) (2.770)

βco−jumpjd 0.124 0.053 0.015 0.047 0.031 0.019 0.514 0.179 0.193

(0.046) (0.047) (0.036) (0.015) (0.016) (0.015) (0.149) (0.152) (0.136)

βco−jumpjw 0.060 -0.004 0.090 0.019 -0.027 0.013 0.189 0.239 0.286

(0.132) (0.215) (0.170) (0.026) (0.057) (0.055) (0.311) (0.584) (0.660)

βco−jumpjm 0.089 0.134 -0.203 0.015 0.033 -0.109 0.261 0.386 0.046

(0.107) (0.251) (0.365) (0.029) (0.070) (0.111) (0.289) (0.714) (1.110)
R2 0.722 0.570 0.354 0.746 0.604 0.400 0.739 0.598 0.410

adjR2 0.721 0.551 0.351 0.744 0.602 0.398 0.737 0.596 0.407

*Notes:See notes to table 2.9.
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Table 2.18: rMSFEs of HAR-RV-CJ models*

rMSFEs
Sector Linear Models Square Root Models Log Models

Case h=1 h=5 h=22 h=1 h=5 h=22 h=1 h=5 h=22

XLB I 0.0442 0.0588 0.0708 0.0486 0.0619 0.0734 0.2277 0.2813 0.3397
II 0.0469 0.0610 0.0727 0.0488 0.0624 0.0757 0.2304 0.2843 0.3464
III 0.0438 0.0587 0.0713 0.0485 0.0624 0.0744 0.2272 0.2820 0.3424

XLE I 0.0476 0.0647 0.0772 0.0525 0.0667 0.0792 0.2309 0.2913 0.3552
II 0.0552 0.0704 0.0805 0.0524 0.0673 0.0809 0.2349 0.2960 0.3617
III 0.0472 0.0647 0.0785 0.0522 0.0673 0.0808 0.2303 0.2923 0.3585

XLF I 0.0486 0.0664 0.0789 0.0517 0.0662 0.0804 0.2349 0.2956 0.3640
II 0.0523 0.0692 0.0833 0.0520 0.0669 0.0826 0.2391 0.2988 0.3691
III 0.0488 0.0679 0.0842 0.0517 0.0668 0.0831 0.2349 0.2972 0.3707

XLI I 0.0480 0.0619 0.0742 0.0505 0.0635 0.0782 0.2470 0.3026 0.3794
II 0.0499 0.0628 0.0750 0.0509 0.0636 0.0788 0.2495 0.3053 0.3844
III 0.0475 0.0619 0.0762 0.0502 0.0635 0.0792 0.2451 0.3029 0.3839

XLK I 0.0380 0.0486 0.0584 0.0450 0.0559 0.0665 0.2339 0.2859 0.3495
II 0.0393 0.0494 0.0594 0.0451 0.0559 0.0687 0.2360 0.2887 0.3511
III 0.0380 0.0490 0.0599 0.0449 0.0561 0.0676 0.2333 0.2869 0.3520

XLP I 0.0302 0.0351 0.0421 0.0406 0.0470 0.0553 0.2372 0.2740 0.3245
II 0.0328 0.0359 0.0410 0.0428 0.0474 0.0548 0.2522 0.2802 0.3243
III 0.0299 0.0346 0.0413 0.0399 0.0464 0.0547 0.2343 0.2705 0.3225

XLU I 0.0422 0.0489 0.0583 0.0467 0.0541 0.0648 0.2413 0.2794 0.3391
II 0.0429 0.0496 0.0614 0.0472 0.0543 0.0673 0.2463 0.2817 0.3448
III 0.0420 0.0499 0.0614 0.0464 0.0547 0.0666 0.2405 0.2820 0.3459

XLV I 0.0353 0.0427 0.0521 0.0435 0.0517 0.0640 0.2386 0.2841 0.3495
II 0.0372 0.0434 0.0514 0.0451 0.0522 0.0639 0.2477 0.2886 0.3498
III 0.0351 0.0426 0.0515 0.0434 0.0515 0.0637 0.2371 0.2830 0.3467

XLY I 0.0401 0.0526 0.0647 0.0464 0.0589 0.0729 0.2392 0.2957 0.3716
II 0.0411 0.0530 0.0634 0.0466 0.0585 0.0729 0.2407 0.2962 0.3707
III 0.0396 0.0521 0.0637 0.0460 0.0588 0.0722 0.2372 0.2937 0.3693

*Notes: Table 2.18 reports the Root mean square forecasting errors for different sectors using the HAR-
RV-CJ models. Linear models, square root models and log models over horizon h=1, h=5 and h=22 are
compared in this table. I is the case with only co-jumps; II is with only single jumps; III is with both
co-jumps and single jumps. Forecasting errors for models with only co-jumps(case I) are always smaller
than models with single jumps(case II). The ranking of forecasting errors with both co-jumps and single
jumps(case III) changes among different sectors when compared with other cases.
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Table 2.19: In-Sample R2 of HAR-RV-CJ models*

In-Sample R2

Sector Linear Models Square Root Models Log Models
Case h=1 h=5 h=22 h=1 h=5 h=22 h=1 h=5 h=22

XLB I 0.785 0.631 0.399 0.787 0.651 0.451 0.777 0.2813 0.467
II 0.759 0.617 0.395 0.779 0.648 0.444 0.769 0.2843 0.466
III 0.788 0.633 0.403 0.790 0.653 0.452 0.779 0.2820 0.469

XLE I 0.780 0.650 0.371 0.761 0.621 0.406 0.769 0.632 0.427
II 0.666 0.646 0.378 0.732 0.605 0.413 0.746 0.616 0.429
III 0.783 0.651 0.406 0.764 0.627 0.418 0.771 0.637 0.441

XLF I 0.818 0.686 0.532 0.847 0.740 0.611 0.848 0.752 0.611
II 0.788 0.679 0.539 0.835 0.737 0.597 0.838 0.746 0.609
III 0.818 0.687 0.541 0.848 0.740 0.598 0.849 0.752 0.613

XLI I 0.765 0.620 0.407 0.781 0.651 0.451 0.769 0.644 0.449
II 0.753 0.618 0.402 0.777 0.651 0.447 0.764 0.644 0.449
III 0.768 0.623 0.407 0.784 0.654 0.453 0.773 0.649 0.452

XLK I 0.721 0.573 0.353 0.744 0.603 0.399 0.736 0.597 0.405
II 0.711 0.570 0.352 0.740 0.603 0.397 0.731 0.595 0.408
III 0.722 0.574 0.354 0.746 0.604 0.400 0.739 0.598 0.410

XLP I 0.710 0.547 0.316 0.718 0.589 0.383 0.697 0.590 0.401
II 0.689 0.527 0.319 0.699 0.581 0.388 0.672 0.577 0.410
III 0.713 0.553 0.328 0.725 0.599 0.391 0.704 0.601 0.418

XLU I 0.737 0.582 0.334 0.739 0.607 0.384 0.713 0.593 0.393
II 0.727 0.0496 0.329 0.731 0.608 0.378 0.701 0.594 0.391
III 0.740 0.586 0.336 0.743 0.610 0.384 0.717 0.599 0.394

XLV I 0.673 0.534 0.314 0.697 0.572 0.358 0.691 0.568 0.369
II 0.652 0.526 0.317 0.681 0.565 0.365 0.672 0.559 0.374
III 0.676 0.536 0.323 0.701 0.576 0.367 0.696 0.573 0.382

XLY I 0.783 0.653 0.471 0.799 0.681 0.505 0.786 0.676 0.512
II 0.766 0.640 0.454 0.792 0.680 0.510 0.780 0.673 0.513
III 0.785 0.657 0.478 0.802 0.687 0.514 0.791 0.682 0.522

*Notes: Table 2.19 shows In-sample R2 of HAR-RV-CJ models. I is the case with only co-jumps;
II is with only single jumps; III is with both co-jumps and single jumps. In-Sample R2 for HAR
models with only co-jumps is usually larger than with only single jumps.
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Table 2.20: Out-of-Sample R2 of HAR-RV-CJ models*

Out-of-Sample R2

Sector Linear Models Square Root Models Log Models
Case h=1 h=5 h=22 h=1 h=5 h=22 h=1 h=5 h=22

XLB I 0.6548 0.3816 0.0679 0.6574 0.4375 0.1818 0.6655 0.4846 0.2285
II 0.6106 0.3333 0.0150 0.6539 0.4288 0.1304 0.6573 0.4732 0.1976
III 0.6595 0.3834 0.0531 0.6581 0.4297 0.1598 0.6668 0.4820 0.2161

XLE I 0.6372 0.3266 0.0031 0.6188 0.3804 0.1264 0.6558 0.4496 0.1815
II 0.5134 0.2031 -0.0401 0.6202 0.3702 0.0896 0.6438 0.4317 0.1512
III 0.6434 0.3270 0.0121 0.6222 0.3698 0.0903 0.6576 0.4456 0.1662

XLF I 0.6415 0.3279 0.0564 0.6501 0.4234 0.1530 0.6707 0.4763 0.2070
II 0.5852 0.2692 -0.0517 0.6462 0.4116 0.1044 0.6589 0.4647 0.1845
III 0.6385 0.2968 -0.0756 0.6503 0.4136 0.0947 0.6707 0.4703 0.1775

XLI I 0.6028 0.3400 0.0554 0.6484 0.4453 0.1585 0.6626 0.4930 0.2038
II 0.5709 0.3189 0.0341 0.6426 0.4423 0.1460 0.6557 0.4836 0.1830
III 0.6110 0.3383 0.0032 0.6535 0.4451 0.1382 0.6676 0.4917 0.1849

XLK I 0.5637 0.2804 -0.0301 0.5879 0.3587 0.0957 0.6047 0.4050 0.1152
II 0.5330 0.2564 -0.0688 0.5855 0.3593 0.0367 0.5978 0.3935 0.1071
III 0.5641 0.2684 -0.0850 0.5903 0.3548 0.0659 0.6069 0.4012 0.1025

XLP I 0.4774 0.2934 -0.0127 0.4997 0.3264 0.0693 0.5176 0.3546 0.0931
II 0.3830 0.2611 0.0400 0.4426 0.3144 0.0836 0.4546 0.3250 0.0941
III 0.4891 0.3131 0.0257 0.5167 0.3443 0.0877 0.5290 0.3706 0.1041

XLU I 0.4196 0.2171 -0.1134 0.4847 0.3065 -0.0040 0.5086 0.3384 0.0171
II 0.3990 0.1967 -0.2355 0.4733 0.2995 -0.0836 0.4882 0.3276 -0.0162
III 0.4244 0.1867 -0.2355 0.4921 0.2915 -0.0596 0.5119 0.3260 -0.0225

XLV I 0.5674 0.3644 0.0558 0.5881 0.4153 0.1052 0.5938 0.4226 0.1249
II 0.5180 0.3431 0.0809 0.5562 0.4038 0.1086 0.5622 0.4044 0.1236
III 0.5701 0.3662 0.0796 0.5899 0.4206 0.1148 0.5989 0.4272 0.1391

XLY I 0.6398 0.3793 0.0679 0.6545 0.4430 0.1527 0.6542 0.4707 0.1697
II 0.6212 0.3691 0.1066 0.6518 0.4510 0.1546 0.6499 0.4689 0.1739
III 0.6488 0.3908 0.0972 0.6604 0.4463 0.1703 0.6600 0.4781 0.1801

*Notes: Table 2.20 shows Out-of-sample R2 of HAR-RV-CJ models. I is the case with only co-jumps; II is
with only single jumps; III is with both co-jumps and single jumps. In-Sample R2 for HAR models with only
co-jumps is usually larger than with only single jumps.
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Figure 2.1: Number of Daily Sector Co-jump*

*Notes: Figure 2.1 shows the number of different sectors co-jumps from the year 2006 to 2013. The co-jump test is carried
out using a significance level of α = 0.1. From top to bottom panels are the number of three-sector co-jumps, four-sector

co-jumps, five-sector co-jumps, six-sector co-jumps, seven-sector co-jumps, eight-sector co-jumps, and nine-sector co-jumps.
The number of sector co-jumps is in the range from 0 to 40. The shadowed period in the figure is known as the 2007-2008

financial crisis.
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Figure 2.2: Co-jump and Single Jump Contribution to Total Variation*

*Notes: Figure 2.2 shows co-jumps and single jumps contribution to total variations among each sector in S&P 500 market.
The results are taken a 22-day (monthly) moving average. The co-jump test is carried out using a significance level of
α = 0.1. From top to bottom panels are the material sector, energy sector, financial sector, industrial sector, technology
sector, consumer staple sector, utility sector, health care sector and consumer staple sectors. The shadowed period in the

figure is known as the 2007-2008 financial crisis.
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Chapter 3

Forecasting Sector Level Equity Returns Using Big Data

Factors and Machine Learning Models

3.1 Introduction

The equity risk premium is one of the most widely studied topics in finance, and is crucial

to both the understanding of the financial market and portfolio management. A small

group of early key works in this area include Fama and French (1992), Fama and French

(2015), Welch and Goyal (2007) and Rapach and Zhou (2013), who identify characteristics

that have correlation with the equity returns and develop time series models useful for

forecasting equity risk premia.

Since the advent of the ”big data” era, research into this field of empirical finance has

grown ever more rapidly, and numerous researchers have developed and championed the

use of ever more sophisticated models for understanding the equity risk premium. In this

paper, we add to this nascent literature by examining the marginal predictive content of a

large number of machine learning methods for daily and monthly market and sector level

equity returns. The novel feature of the modeling approach that we take in this paper

is that we not only utilize multi-frequency and multi-dimensional datasets, but we also

create a group of latent economic factors including market correlation indices, volatility

risk measures, and macro risk factors. This paper, thus, adds to the literature on equity

returns forecasting in two ways. First, we build on the work of Aruoba et al. (2009), Bloom

(2009), Jurado et al. (2015), Aı̈t-Sahalia and Xiu (2016) and others by introducing a class

of multi-frequency macroeconomic/financial volatility risk factors and market correlation

risk indices that are aimed at measuring market uncertainty. Our state space models are
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specified in one of two ways, referring to Yao (2019). First, volatility risk factors are speci-

fied and estimated using a state space model that includes latent components of quadratic

variation, including realized variance (RVt), truncated realized variance (TRVt), bi-power

variation (BPVt), and jump variation (JVt); and also mixed frequency macroeconomic

indicators.1 Alternatively, macroeconomic risk factors are specified and estimated using

a state space model that only includes mixed frequency macroeconomic indicators such

as interest rates, employment, and production. Finally, we also construct and evaluate

market correlation risk indices (or “correlation risk” factors), which are based on estimates

of quadratic covariation constructed using high frequency market and sector level returns

data. The construction of these indices follows Aı̈t-Sahalia and Xiu (2016), who decom-

pose the quadratic covariation between two assets into continuous and jumps components

using high-frequency asset price data, and construct the continuous correlation indices by

measuring the correlation between continuous returns, and jump correlation indices using

the correlation between jump returns. 2

Second, we utilize a large number of potentially interesting machine learning methods to

allow for a rich variety of model specifications, when forecasting returns. We thus build on

previous literature that discusses the difficulties in predicting equity returns, particularly

at higher frequencies, such as daily returns (see e.g. Christoffersen and Diebold (2006)). In

general, a large machine learning related literature has developed in recent years in the field

of financial econometrics. For instance, Hutchinson et al. (1994) develop a nonparametric

method for estimating the pricing formula of a derivative asset using neural network models.

Rapach et al. (2013) applies adaptive elastic net estimation to predict monthly stock returns

1All of our measures of integrated volatility are extracted from high frequency S&P500 data.

2Related papers that utilize mixed-frequency state space models include Mariano and Murasawa (2003),
Frale et al., Aruoba et al. (2009) and Marcellino et al. (2016). None of these papers, however, include
multiple frequencies of the same latent variable, as is done in this paper. Additionally, see Ghysels et al.
(2007) for an introduction to the alternative approach of using MIDAS for mixed frequency modeling.
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in industrialized countries. Other related work includes, but not limit to, Harvey and Liu

(2018), Kim and Swanson (2016) and Swanson and Xiong (2017). More recently, in an

interesting paper, Gu et al. (2018) conduct a comprehensive study using machine learning

methods to predict individual stock risk premia and construct investment portfolios.

More specifically, we evaluate machine learning methods including random forest, gra-

dient boosting, support vector machine, penalized regressions and neural network (deep

learning). Additionally, we evaluate machine learning classifier models including latent

discriminant analysis, naive Bayes, support vector classifier, k-nearest-neighbors, random

forest, and deep learning. Finally, we propose a group of hybrid machine learning models

based on a two-step method that combines the least absolute shrinkage operator (lasso)

and neural network methods. As discussed above, our objective is to forecast returns and

indicators of directional change. Specifically, we predict both level and directional changes

of daily and monthly returns for a variety of target variables, including the S&P500 (SPY)

and four SPDR sector ETFs: financials (XLF), technology (XLK), health care (XLV), and

consumer discretionary (XLY).3 The predictors that we use in our analysis include both

a small set of mixed frequency variables (for use in our state space models) as well as

a variety of other predictors that have been examined previously by Neely et al. (2014),

Fama and French (2015) and Welch and Goyal (2007).

Our experimental findings are based on the construction of 1-day and 1-month ahead

predictions, formed using rolling and recursive estimation window strategies, for the sample

period from 2009 - 2017. Our one-month-ahead forecasts are calculated by aggregating daily

forecasts for each month. We also construct two types of directional forecasts. The first

type is derived from our returns forecasts, in the sense that returns forecasts are classified

3The SPY is the largest exchange-traded fund in the world which is designed to track the S&P 500 stock
market index. The XLF, XLK, XLV, and XLY are designed to represent the financial sector, technology
sector, healthcare sector, and consumer discretionary sector of the S&P 500 index. The four selected sectors
are the largest four S&P 500 sectors, by market cap, as of April 2019, according to Fidelity Research.
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as “upward signals” if forecasts are positive, and are otherwise classified as “downward

signals”. The second type is constructed by utilizing machine learning classifiers to directly

generate directional predictions. Our main findings are summarized as follows.

First, based on mean square forecasting error (MSFE) and directional predictive accu-

racy rates (DPAR), machine learning models yield forecasts that are significantly superior

to the random walk and linear regression benchmark forecasts, when predicting monthly

returns. Not surprisingly, though, daily results indicate little to choose between our al-

ternative models. Indeed, it is only when we aggregate daily predictions to form monthly

predictions, that machine learning methods dominate, for all target assets (i.e. different

sector returns), regardless of estimation window strategy.

Second, the random forest method is clearly the preferred machine learning approach.

These results are statistically significant (when forecasting monthly returns), and prevail

for all of our target variables and estimation strategies. Moreover, these results continue to

hold regardless of the set of predictor variables utilized in our different models (we evaluate

predictor sets both with and without the latent uncertainty factors discussed above).

Third, “deep” learning models outperform “shallow” learning models. For instance,

deep learning models with two to four hidden layers have statistically smaller MSFEs and

higher DPARs than shallow learning models with only one hidden layer. Again, this result

holds across all windowing strategies used to estimate our models, and for all targets and

predictor sets.

Fourth, hybrid machine learning models, which combine lasso and neural network mod-

els, often outperform individual models based on both the MSFE and the DPAR. For ex-

ample, these models usually yield smaller MSFEs and higher DPARs than models based

on solely the lasso or neural networks.

Fifth, all three novel risk factors, including market correlation indices, volatility risk
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factors, and macro risk factors, are shown to contain significant marginal predictive content.

In particular, “MSFE-best” and “DPAR-best” forecasting models yield significantly smaller

MSFEs and higher DPARs than models without risk factors. Moreover, for the majority of

our machine learning models that are not “MSFE-best” or “DPAR-best” best, these three

types of factors also prove to be useful.

Sixth, the market as well as all of the sectors that we analyze have different levels of

sensitivity to input information, in the form of the predictor set used when constructing the

“MSFE-best” or “DPAR-best” model. For the S&P500, a broad range of predictor sets,

including sets consisting of (i) all variables, (ii) all variables except macro variables, and (iii)

all variables except one of our uncertainty factors have marginal predictive content, when

used as machine learning inputs. The exception is our set of “technical variables”, which

includes trading volume and price trend indicators. When these variables are excluded from

the set of predictor variables, MSFEs and DPARs generally improve, for all of our target

variables. This may be because useful predictive information contained in our technical

variables is also included in our latent uncertainty factors. However, even if this is the case,

it is clear from our findings that our latent uncertainty factors have further information

embedded in them that is also useful for predicting returns.

Finally, it is worth noting that our correlation indices based on jump variation surges

during 2008 and 2011, and drops when market volatility is stable, while our correlation

indices based on continuous variation moves in the opposite direction, except for the energy

sector. This suggests that the rise in correlation across markets and sectors is largely driven

by co-jump behavior. Moreover, When exiting the financial crisis period around 2008,

volatility risk factors generally move together across all of the sectors that we analyze in

our experiments, including the market (i.e., the S&P500).
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The rest of this paper is organized as follows. Section 3.2 summarizes our setup, includ-

ing a discussion of the latent uncertainty factors that we examine. Section 3.3 discusses

our experiment setup and briefly outlines all of the machine learning methods used in the

sequel. Finally, Section 3.4 contains a description of the data used in our experiments, and

summarizes our empirical findings, and Section 3.5 concludes.

3.2 Market Correlation Indices, Volatility Risk Factors, and Macroeco-

nomic Risk Factors

In this section, we outline the methodology used in the construction of risk factors4 and

market correlation indices analyzed in the sequel. We first introduce the measurements of

high-frequency volatility and continuous and jump volatility parts, and layout the construc-

tion of correlation indices. We then turn to the state space framework used to estimate

our volatility risk and macroeconomic risk factor, and address temporal aggregation and

missing observations problems while working with mixed-frequency series.

3.2.1 High frequency measures of volatility and jump risk

Let Xt be the log-price of an asset at time t. Assume that the log-price process follows a

jump-diffusion model (hence, almost surely, its paths are right continuous with left limits).

Namely,

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdBs +

∑
s≤t

∆Xs. (3.1)

In the above expression, B is a standard Brownian motion and ∆Xs := Xs −Xs−, where

Xs− := limu↑sXu, represents the possible jump of the process X, at time s.

4We use the notation and setup as in Yao (2019)
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Consider a finite time horizon, [0, t] that contains n high-frequency observations of the

log-price process. A typical time horizon is one day. Let ∆n = t/n be the sampling

frequency. Then intra-daily returns can be expressed as ri,n = Xi∆n −X(i−1)∆n
.

A well-established result in the high frequency econometrics literature is that realized

volatility is a consistent estimator of the total quadratic variation. Namely,

RVt =
n∑
i=1

r2
i,n

u.c.p.−→
∫ t

0
σ2
sds+

∑
s≤T

(∆Xs)
2 = QVt = IVt + JVt, (3.2)

where
u.c.p.−→ denotes convergence in probability, uniformly in time. There are many estima-

tors of integrated volatility (IVt), which is the variation due to the continuous component

of quadratic variation (QVt). For example, multipower variations are defined as follows:

Vt =

n∑
i=j+1

|ri,n|r1 |ri−1,n|r2 ...|ri−j,n|rj , (3.3)

where r1, r2, ..., rj are positive, such that
j∑
i=1

ri = k, say. An important special case of this

estimator is bipower variation (BPVt), which was introduced by Barndorff-Nielsen and

Shephard (2004). Namely,

BPVt = (µ1)−2
n∑
i=2

|ri,n||ri−1,n| (3.4)

where µ1 = E(|Z|) = 21/2Γ(1)/Γ(1/2) =
√

2/π, with Z a standard normal random vari-

able, and where Γ(·) denotes the gamma function. Another useful estimator is truncated

bipower variation (TBPVt), which combines the truncation method proposed by Mancini

(2009) and the bipower variation (BPVt) estimator discussed above. Namely,

TBPVt = (µ1)−2
n∑
i=2

|ri,n||ri−1,n|, ri,n = ri,n1{|ri,n|<αn}, (3.5)

where αn = α∆$
n , $ ∈ (0, 1

2). Similarly, truncated realized variance (TRVt) is defined as

TRVt =

n∑
i=1

r2
i,n. (3.6)
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Finally, jump variation (JVt) can be estimated as JVt = RV t−BPV t or JVt = RV t−

TBPV t, for example. In the sequel, we shall utilize RVt, TRVt, BPVt and JVt = RV t −

BPV t.

Under certain regularity conditions 5, BPVt, TBPVt and TRVt are consistent estimators

of unobserved integrated volatility IVt :=

∫ t

0
σ2
sds, and JVt is the consistent estimator

of jump volatility. Moreover, it is also well-established that these estimators converge

stably in law at the rate
√

1/∆n, or equivalently,
√
n. Let T be the total number of such

representative finite time horizon [0, t] (e.g., day, week, month or quarter). If ∆nT → 0,

then the impact of estimating the latent volatility and jump risk factors are asymptotically

negligible, since the parameters in our state space model converge at rate
√
T .

3.2.2 Market correlation indices

In the high frequency literature, previous research focusing on covariation under multi-

variate settings has focused mainly on solving three challenges: i) High frequency data

tends to be severely contaminated with the microstructure noise; ii) non-synchronous high

frequency data lead to estimation bias when constructing covariation measures; and iii)

covariation matrices must be positive semi-definite in order to guarantee the existence of

stable inverses thereof. Notably, Aı̈t-Sahalia and Xiu (2016) address these issues, and de-

velop estimators to decompose quadratic covariation between two assets into continuous

and jump components.

Following Aı̈t-Sahalia and Xiu (2016), the quadratic covariation between Xi and Xj

is equal to the sum of continuous component quadratic covariation and jump component

5See papers cited above and Jacod and Protter (2011) and Aı̈t-Sahalia and Jacod (2014) for details
about regularity conditions.
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covariation:

[Xi, Xj ]t = [Xi, Xj ]
c
t + [Xi, Xj ]

d
t , (3.7)

where [Xi, Xj ]t is the quadratic covariation between Xi and Xj , [Xi, Xj ]
c
t is the continuous

quadratic covariation component, and [Xi, Xj ]
d
t is the quadratic covariation associated with

the discontinuous (jump) component of a process. Andersen et al. (2003b) propose realized

measures of quadratic covariation, named realized covariance, that are based on the sum

of the product of intra-day returns between two assets:

covi,j(t;n) =
n∑
k=1

ri,k,t × rj,k,t (3.8)

where covi,j(t;n) denotes the realized covariance between asset i and asset j, at day t.

Here, ri,k,t is the intra-daily return of asset i at time interval k, during day t. Realized

covariance is an error free estimator of quadratic covariation [Xi, Xj ]t, when the length of

each intra-daily interval approaches 0 (i.e. the number of intra-daily intervals n → ∞).

Namely,

lim
n→∞

covi,j(t;n) = [Xi, Xj ]t (3.9)

In Aı̈t-Sahalia and Xiu (2016), the correlation, ρci,j , between asset Xi and asset Xj , which

is derived from the continuous component is:

ρci,j =
[Xi, Xj ]

c√
[Xi, Xi]

√
[Xj , Xj ]

(3.10)

The correlation, ρdi,j , between asset Xi and asset Xj , which is derived from the jump

component is:

ρdi,j =
[Xi, Xj ]

d√
[Xi, Xi]

√
[Xj , Xj ]

(3.11)

where [Xi, Xi] and [Xj , Xj ] denote the quadratic variations of assets Xi and Xj , respec-

tively. The quadratic variation in the above formulae is estimated using realized volatility,
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as in equation (2). The jump component of quadratic covariation, [Xi, Xj ]
d, is equal to∑

s≤t ∆Xi,s∆X
T
j,s, where ∆Xi,s represents the jump in Xi, at time s.

In our empirical experiments, we estimate [Xi, Xj ]
d using a “jump-test” approach.

Namely, the realized covariance associated with jumps is:

covi,j(t;n)d =
n∑
k=1

(ri,k,t ∗ Ijump,i,k,t)× (rj,k,t ∗ Ijump,j,k,t). (3.12)

The jump indicators, Ijump,i,k,t and Ijump,j,k,t, are identified using the Lee and Mykland

(2007) jump test. More specifically, Lee and Mykland (2007) use the ratio of realized

returns to estimated instantaneous volatility, and construct a nonparametric jump test to

identify the exaxt timing of jumps at the intra-day level. The test statisic which identifies

whether there is a jump during the interval (t+ l/n, t+ (l + 1)/n) is:

L(t+(l+1)/n) =
Xt+(l+1)/n −Xt+l/n

̂σt+(l+1)/n

, (3.13)

where

̂σt+(l+1)/n
2 ≡ 1

K − 2

l−2∑
i=l−K+1

|Xt+(i+1)/n −Xt+i/n || Xt+i/n −Xt+(i−1)/n|. (3.14)

Here K is the window size of a local movement of the process. We choose K = 10 and use

the 5-minute sampling frequency (i.e., the number of intra-day observations, n, equals 78).

These authors show that

maxl∈Ān |L(t+(l+1)/n)| − Cn
Sn

→ ε, as ∆t→ 0, (3.15)

where ε has a cumulative distribution function P (ε ≤ x) = exp(−e−x),

Cn =
(2logn)1/2

c
− logπ + log(logn)

2c(2logn)1/2
and Sn =

1

c(2logn)1/2
(3.16)

c ≈ 0.7979 and Ān is the set of l ∈ {0, 1, ..., n}, so that there are no jumps in (t+ l/n, t+

(l+ 1)/n]. We choose a 10% significance level when applying this test. If the test statistic,
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L(t+(l+1)/n), lies in the critical region of the null distribution at 10% significance level, then

we reject the null hypothesis that there is no jump during (t+ l/n, t+ (l + 1)/n], and the

jump indicator, Ijump, is set equal to 1. Otherwise, the jump indicator is set equal to 0.

Finally, the continuous component of quadratic covariation is estimated as the difference

between realized covariance and discontinuous (jump) realized covariance. Namely,

covi,j(t;n)c = covi,j(t;n)− covi,j(t;n)d (3.17)

3.2.3 Volatility risk factors

Using the state space model setup in Yao (2019), the variable yt = (y1
t , y

2
t , y

3
t , y

4
t ) corre-

sponding to data measured at 4 different time horizons, including daily (denoted by d),

bi-daily (denoted by 2d), tri-daily (denoted by 3d), and weekly (denoted by w). In our

setup, yt is alternately set equal to TRVt. The latent risk factor that we are interested

in extracting is called MFvolt . Finally, the elements of yt, which are aggregated, are flow

variables. Therefore, we include three aggregated state variables, i.e., C1
t , C2

t and C3
t , to

address the aggregation issues discussed above. The state space model is:

Observation Equation:


ydt

y2dt

y3dt

ywt

 =


β1 0 0 0 1 0 0 0

0 β2 0 0 0 1 0 0

0 0 β3 0 0 0 1 0

0 0 0 β4 0 0 0 1





MFvol
t

C1
t

C2
t

C3
t

u1t

u2t

u3t

u4t
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State Equation:

MFvolt+1

C1
t+1

C2
t+1

C3
t+1

u1
t+1

u2
t+1

u3
t+1

u4
t+1



=



ρ 0 0 0 0 0 0 0

ρ ψ1
t+1 0 0 0 0 0 0

ρ 0 ψ2
t+1 0 0 0 0 0

ρ 0 0 ψ3
t+1 0 0 0 0

0 0 0 0 η1 0 0 0

0 0 0 0 0 η2 0 0

0 0 0 0 0 0 η3 0

0 0 0 0 0 0 0 η4





MFvolt

C1
t

C2
t

C3
t

u1
t

u2
t

u3
t

u4
t



+



1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1





e1
t

e2
t

e3
t

e4
t

e5
t


,

where the error terms eit
i.i.d∼ N(0, σ2

i ), with i = 1, ..., 5.

As mentioned above, the three aggregated variables in the state vector, C1
t , C2

t and

C3
t , are designed to handle bi-daily, tri-daily and weekly updating of our volatility series,

respectively. Also, ψ1, ψ2 and ψ3 are binary-valued parameters for the aggregated state

variables, and are defined as follows:

ψ1
t =


0, if t is an odd number

1, otherwise,

,

for the bi-daily updating series;

ψ2
t =


0, if t is the first day of every three days

1, otherwise,

,

for the tri-daily updating series; and
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ψ3
t =


0, if t is the first day of every week

1, otherwise,

for the weekly series.

In the above observation equation, only the highest frequency variable, ydt , is directly

connected with the factor, MFvolt , via β1. The three other volatility variables are connected

with MFvolt via the aggregated state variables (i.e, C1
t , C2

t and C3
t ) and via β2, β3 and β4.

Coupled with the setup of the binary-valued parameters (i.e., ψ1, ψ2 and ψ3) in the state

equation, this ensures the proper inter-temporal aggregation of the flow variables in the

system. and refreshes the quantity at the beginning of each period. Finally, the ut are

stochastic disturbance terms, and are assumed to follow autoregressive processes, as in

Aruoba et al. (2009). In the state equation, the first four state variables are connected

with MFvolt via ρ. Of these four state variables, the last three (i.e., C1
t , C2

t and C3
t ) are

defined such that their previous values are added to ρMFvolt whenever flow aggregation is

required.

3.2.4 Macroeconomic risk factors

We again begin with yt = (y1
t , y

2
t , y

3
t , y

4
t ). In this section, the data are measured at daily

(denoted by d), weekly (denoted by w), monthly (denoted by m), and quarterly (denoted by

w) frequencies. This allows us to construct a “benchmark” risk factor corresponding to the

business conditions index analyzed by Aruoba et al. (2009). In particular, following Aruoba

et al. (2009), we use four macroeconomic variables with different sampling frequencies,

including: (1) the daily yield curve spread (y1
t ), defined to be the difference between the

10-year U.S. Treasury bond yield and the 3-month Treasury bill yield; (2) weekly initial

claims for unemployment insurance (y2
t ); (3) nonfarm payroll employment (y3

t ); and (4)

quarterly gross domestic product (y4
t ). The corresponding state-space model used to extract
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our risk factor, called MFmact is: Observation equation:

y1
t

y2
t

y3
t

y4
t


=



β1 0 0 1

0 β2 0 0

β3 0 0 0

0 0 β4 0





MFmac
t

C1
t

C2
t

u1
t


+



0 0 0

γ2 0 0

0 γ3 0

0 0 γ4




y2
t−W

y3
t−M

y4
t−Q

+



0

w2
t

w3
t

w4
t


.

State equation:

MFmac
t+1

C1
t+1

C2
t+1

u1
t+1


=



ρ 0 0 0

ρ ψ1
t+1 0 0

ρ 0 ψ2
t+1 0

0 0 0 γ1





MFmac
t

C1
t

C2
t

u1
t


+



1 0

1 0

1 0

0 1


 e1

t

e2
t

 ,

where the error terms eit
i.i.d∼ N(0, σ2

i ), with i = 1, 2.

The variables in this model include observed variables, the yt; our latent risk factor,

MFmact ; aggregate state variables, C1
t and C2

t ; and stochastic disturbance terms, u1
t , w

2
t ,

w3
t , and w4

t . Note that in this model, only y2
t and y4

t are flow variables in this model,

and hence there are only two aggregate state variables. Accordingly, we also define two

binary-valued variables ψ1 and ψ2 for these aggregated state variables. Namely,

ψ1
t =


0, if t is the first day of the week

1, otherwise,

and

ψ2
t =


0, if t is the first day of the quarter

1, otherwise.

3.2.5 Technical indicators

Technical indicators have been widely used by practitioners in asset pricing applications.

Two key papers discussing different technical indicators include Fama and Blume (1966)
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and Brock et al. (1992). These papers explore the usefulness of various technical indicators,

including filter rules, moving averages, and momentum, when designing trading strategies.

Neely et al. (2014) shows the usefulness of technical indicators for predicting the equity

risk premium. These authors analyze 14 common technical indicators.

In our experiments, we use two types of technical indicators, including moving average

indicators and volume-based trend indicators, following Neely et al. (2014). The moving

average technical indicators are derived by using moving-average (MA) rules to generate

long or short signals at the end of each trading day, t. Namely, define:

Dt =


1 if P

MA(k)
t > P

MA(s)
t

0 otherwise

(3.18)

where

P
MA(q)
t =

1

q

q−1∑
i=0

Pt−i for q = k, s (3.19)

Here Dt = 1 represents the long signal and Dt = 0 represents the short signal at day t. We

use 30-, 90-, and 120-day moving-averages of asset prices, Pt, in our experiments.6 This

allows us to obtain potentially useful price trend indicators. The values for q are thus set

equal to 30, 90, 120, representing monthly, quarterly, and semiannually time periods, and

yielding three price trend indicators. Table 3.1A lists the technical indicators in detail.

Our volume-based trend indicators are constructed by combining trading volume and

prices in order to identify volume trends in the market. The daily “net ”” volume is defined

as:

Vnet,t = Vt × St (3.20)

6Here Pt is the asset price, measured at the end of each trading day, t
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where Vt is the trading volume at day, t. The dummy variable, St, is:

St =


1 if Pt > Pt−1

−1 otherwise.

(3.21)

We use the “net” volume, Vnet,t, to generate the trading signals Dt, where:

Dt =


1 if V

MA(k)
net,t > V

MA(s)
net,t

0 otherwise

(3.22)

with

V
MA(q)
net,t =

1

q

q−1∑
i=0

Vnet,t−i for q = k, s (3.23)

Here Dt = 1 represents the “long” signal and Dt = 0 represents the “short” signal, on

day t. We utilize 30-, 90-, and 120-day moving averages of the “net” volume in order to

construct our volume-based trend indicators. The parameters q is thus set as 30, 90, 120

to represent monthly, quarterly, and semiannually time periods.

3.3 Experiment Setup

In this section, we introduce our experimental setups and models used to predict asset

returns. First, we detail the splitting of sample data into validation, training and test

parts. The validation dataset is established to estimate hyperparameters in machine learn-

ing models and avoid potential overfitting problem. Second, we show specific setups of

forecasting models we use in the experiment. For example, in machine learning models,

we discuss the tuning process of hyperparameter, the objective function of the model, and

parameter estimation algorithm or solver.

In our empirical experiment, forecast targets are the return of the following financial as-

sets: SPY (SPDR S&P 500 ETF Trust), XLF (Financial Select Sector SPDR Fund), XLK
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(Technology Select Sector SPDR Fund), XLV (Health Care SPDR), and XLY (Consumer

Discretionary SPDR). The SPY is the largest exchange-traded fund in the world which is

designed to track the S&P 500 stock market index. The XLF, XLK, XLV and XLY are

designed to represent the financial sector, technology sector, healthcare sector, and con-

sumer discretionary sector of the S&P 500 index. We forecast one-day-ahead daily returns

and directional changes for each target asset using both rolling and recursive estimation

windows. The rolling window size is T = 500. We denote daily returns of targeted assets at

day t as ri,t, where i corresponds to one of the five sectors mentioned earlier. We also cal-

cualte one-month-ahead forecasts by aggregating daily forecasts. Finally, as as mentioned

above, we also construct two types of directional forecasts. The first type is derived from

our returns forecasts, in the sense that returns forecasts are classified as “upward signals”

if forecasts are positive, and are otherwise classified as “downward signals”. The second

type is constructed by utilizing machine learning classifiers to directly generate directional

predictions.

3.3.1 Linear models

We use a random walk model as our main benchmark. Namely, forecasts are constructed

using:

rt+1 = a+ εt+1 (3.24)

where εt+1 is a stochastic disturbance term, and a is constant. In our experiments, a

is estimated under both rolling and recursive data windows. For the rolling scheme, the

window size T = 500. For the recursive scheme, a is constructed using asset returns from

t = 251th − t∗, where t∗ denotes the last trading day prior to the period being forecasted.

We also estimate linear models with the following specification:

rt+1 = c+ α′Wt + εt+1, (3.25)
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where ri,t+1 is the “target” forecast variable of interest (i.e. daily returns for SPY, XLF,

XLK, XLV, and XLY), and the forecast horizon is one-day-ahead. Wt contains explanatory

variables at time t, and α is a conformably defined coefficient vector. Wt consists one-

day-lagged returns, ri,t, and exogenous variables including macroeconomic and financial

volatility (risk) factors, and market correlation indeices; as well as the macroeconomic and

technical indicators outlined in Table 3.1A. For details regarding the variables in Wt, refer

to Table 3.2. Models are estimated using least squares.

3.3.2 Penalized linear models

We utilize two varieties of penalized regression - ridge regression and Least absolute shrink-

age operator (lasso)type regression.

Ridge regression

Ridge regression is introduced by Hoerl and Kennard (1970). Estiamtion involves solving

the following problem:

minL(λ, α) =
T∑
t=1

[rt+1 − c− α′Wt]
2 + λ|α′|2 + λc2 (3.26)

where α = (α1, ..., αp) and λ ≥ 0. Here |α′|2 =
∑p

j=1 α
2
j . The tuning parameter, λ, controls

the amount of shrinkage.

Lasso regression

Lasso regression is introduced by Tibshirani (1996). Estimation involves solving the fol-

lowing problem:

minL(λ, α) =
T∑
t=1

[rt+1 − c− α′Wt]
2 + λ|α′|+ λ|c| (3.27)
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where α = (α1, ..., αp) and λ ≥ 0. Here |α′| =
∑p

j=1 |αj |. We optimize the tuning parame-

ter, λ, using the training’ sample, as discussed above.

3.3.3 Logistic regression

Logistic regression is used in several areas including, for example, the bioassay, epidemiol-

ogy, and machine learning fields. In a key paper, Cox (1966) introduces the multinomial

logistic regression model. The purpose of these models is to estimate the probability that

categorical response variables, say rt+1, belong to a particular category via use of a linear

probability model. In particular, probabilities based on logistic regression are calculated

using the logistic function:

P (rt+1 = m|Wt) =
exp(cm + α′mWt)

1 +
∑M−1

n=1 exp(cn + α′nWt)
,m = 1, ...,M − 1,

P (rt+1 = M |Wt) =
1

1 +
∑M−1

n=1 exp(cn + α′nWt)
,

(3.28)

where M = 2 in our directional prediction accuracy experiments. Maximum likelihood is

used to estimate θ = {c1, α
′
1}; and the likelihood function is

l(θ) =
∏
t

P (rt+1 = 1|Wt)
∏
t

(1− P (rt+1 = 2|Wt)) (3.29)

To maximize this likelihood function, we use the liblinear algoritm discussed in Fan et al.

(2008).

3.3.4 Linear discriminant analysis

Linear discriminant analysis (LDA) was introduced by Fisher (1936). LDA is useful

because it is more stable than logistic regression, when the distribution of predictors,

Wt = {W1,t, ...,Wp,t}, is approximately normal. The idea is to model the distribution of

Wt from each class of response variable, rj,t+1, say (in our experiments, j = 1, ..., 5 as
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discussed above), separately and then use Bayes theorem to update P (rj,t+1 = m|Wt).

Suppose that πm represents the prior probability of rj,t+1 belonging to the class, m, where∑M
m=1 πm = 1. The probability density function of Wt belonging to class m is fm(Wt).

Bayes’ theorem then implies that:

P (rj,t+1 = m|Wt) =
fm(Wt)πm∑M
m=1 fm(Wt)πm

, (3.30)

Linear discriminant analysis models the density function fm(Wt) as a multivariate Gaussian

process. Namely:

fm(Wt) =
1

(2π)(p/2)|Σm|1/2
e−

1
2

(Wt−µm)TΣ−1
m (Wt−µm) (3.31)

where µm is the mean of Wt for the mth class, and Σm is the covariance matrix common

to all m classes. Finally, it is worth noting that the log-ratio of the conditional probability

density function between two classes is:

log
P (rj,t+1 = l|Wt)

P (rk,t+1 = m|Wt)
= log

fl(Wt)

fm(Wt)
+ log

πl
πm

= log
πl
πm
− 1

2
(µl + µm)TΣ−1(µl + µm)

+W T
t Σ−1(µk − µl),

(3.32)

which is linear in Wt.

3.3.5 Naive Bayes classifier

The Naive Bayes classifier was first introduced in the pattern recognition field by Duda

(1973). More recent machine learning papers in the area include Langley (1993) and Fried-

man et al. (1997). The naive Bayes model assumes input variables Wt = {Wt,1, ...,Wt,p}

are independent in each class of the response variable rj,t+1 = 1, ...,M . Namely:

fm(Wt) =

p∏
k=1

fmk(Wt,k), (3.33)
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where fm(Wt) is the probability density function of Wt in class rj,t+1 = m. As the LDA

model, the log-ratio of the conditional probability density function between two classes is:

log
P (rt+1 = l|Wt)

P (rt+1 = m|Wt)
= log

πlfl(Wt)

πmfm(Wt)
= log

πl
∏p
k=1 flk(Wt,k)

πm
∏p
k=1 fmk(Wt,k)

= log
πl
πm

+

p∑
k=1

log
flk(Wt,k)

fmk(Wt,k)
.

(3.34)

3.3.6 Support vector machines

Support vector machines (SVMs) were first proposed by Vapnik and Chervonenkis (1964).

A key recent paper in this area is Cortes and Vapnik (1995). A key impetus for this

machine learning method is that linearity is a strict assumption, and may yield poor

approximations in high-dimensional and high-frequency data environments. This has led

to the introduction of various “learning methods”, of which SVMs are an example.

SVMs utilize hyperplanes in order to delineate boundaries for the separation of obser-

vations into different categories. The idea is to find “optimal” separating boundaries that

effectively categorize data and maximize the distance from the closest observations to the

boundary. While several other techniques such as the Latent Dirichlet allocation (LDA)

also incorporate a similar idea, support vector machine/regression models are interesting

because estimation only requires a small percentage of the data (i.e., to construct so-called

“support vectors”). Rather than depending on all sample data, as in the case of LDA,

optimization hinges on the use of these support vectors, which are easy to construct using

big data and are robust to overfitting problems.

Without loss of generality, define a hyperplane for a p-dimensional dataset as:

c+ α1Wt,1 + · · ·+ αpWt,p = 0,

where Wt = (Wt,1, · · · ,Wt,p)
′, for observations t = 1, ..., T . These hyperplanes are used in
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the following classification rule:

If c+ α1Wt,1 + · · ·+ αpWt,p > 0, then dt = 1

and

If c+ α1Wt,1 + · · ·+ αpWt,p < 0, then dt = −1

Optimal separating boundaries are obtained by maximizing the margin around the

boundary, say M . Under separability, M denotes a certain “minimal distance” of data

points from the boundary. Under nonseparability, a small number of data points may be

misclassified, in the sense that they reside on the other side of the boundary. In this setup,

ξt is defined to be the magnitude of any miscalssification. If there is none, then ξt = 0.

Otherwise, ξt = equals the distance from the data points to the hypoerplane, with ξt >

0. An additional constraint ”
∑N

i=1 ξt 6 constant” controls the level of missclassification

allowed. The objective function used to estimate the parameters in a support vector

machine is:

max
c,α,||α,c||=1

M

s.t. dt(c+ α1Wt,1 + · · ·+ αpWt,p) ≥M(1− ξt),
(3.35)

where || · || denotes the Euclidean norm. Support vector regression extends the idea of

support vector machines into a regression framework. Rather than focusing on the dis-

tance of support vectors to hyperplanes, under, support vector regression minimizes the

error between fitted and true observational values. For example, using the simplest linear

regression where f(Wt) = c+α1Wt,1 + · · ·+αpWt,p, support vector regression incorporates

the error term rj,t+1 − f(Wt) into its objective function. Following Cortes and Vapnik

(1995), the objective function for support vector regression can be written as:

min
c,α

N∑
i=1

V (rj,t+1 − f(Wt)) + λ|α|2 + λc2 (3.36)
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where λ is a tuning parameter. Here:

Vm(ε) =


0, if |ε| < m

|ε| −m, otherwise.

(3.37)

Notably, regardless of the specification of Vm(ε), solutions for the optimal values of c and

α are a linear combination of kernel functions, K(Wt,W
′
t) =

∑p
n=1 hn(Wt)hn(W ′t). We

utilize three different kernels in our experiments, including:

• linear kernel: K(Wt,W
′
t) =

∑p
n=1Wt,nWt,n

• polynomial kernel: K(Wt,W
′
t) = (1 +

∑p
n=1Wt,nWt,n)d

• radial kernel: K(Wt,W
′
t) = exp(−γ||Wt −W ′t ||2)

Therefore, the hyperparameters that we estimate with our training dataset include: 1) λ

in linear kernel; 2) λ and d in polynomial kernel; and 3)λ and γ in radial kernel.7

3.3.7 Random forest methods

The random forest machine learning method was first introduced by Breiman (2001). Like

other tree-based statistical learning techniques, it is based on specifying “subsections” of

the predictor space, Wt. Tree-based methods use the mean of response of variable rj,t

under each subsection to construct forecasts. The procedure used to develop subsections

resembles the structure of the tree, and each subsection of data is therefore also called a

tree node.

The first step of tree-based methods involves bootstrapping the sample data. Then,

within each bootstrapped sample, the tree-based algorithm tries to find the best “split”

7All machine learning methods utilized in our experiments involve three distinct sample periods, includ-
ing: (i) a training dataset (used for the estiamtion of hypoerparameters), (ii) a forecasting model estimation
period, and (iii) and ex-ante forecasting period.
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of the predictor Wt using the criteria of least squares. Hence, the space of predictors and

response variable is partitioned into m = 1, 2, · · · , M regions/tree nodes. More specifically,

for each tree node, R1(m, c) = {Wt,m|Wt,m < c} and R2(m, c) = {Wt,m|Wt,m ≥ c}, the

parameters m and c are determined by solving the following problem:

min
∑

t:Wt∈R1(m,c)

(rj,t+1 − r̂R1)2 +
∑

t:Wt∈R2(m,c)

(rj,t+1 − r̂R2)2 (3.38)

where r̂R1 is predicted value of response variable rj,t+1 and equals the mean of rj,t+1 in the

sample data associated with R1. Here, r̂R2 is defined analogously.

The major difference between random forest and other tree-based methods, in partic-

ular bagging, is the additional constraint requiring the choice of m from only a subset

of the p predictors, which is randomly chosen, and usually consists of
√
p of the original

predictors. This design avoids the problem of correlation among fitted trees, when one

or a few predictors dominate other predictors. For further discussion, see Friedman et al.

(2001).

The algorithm that we utilize in order to carry out random forest regression is:

1. Draw B bootstrap samples from the data.

2. For each bootstrap sample b, where b = 1, 2, · · · , B:

(a) Choose a subset of variables from the p predictors.

(b) Find the optimal variable m and corresponding cutoff value c that yield the lowest sum

squared prediction error.

(c) Partition the data at Wt with cutoff value c.

(d) Recursively repeat the above procedures until a minimal tree node size, say nmin is

reached.

3. Make predictions based on developed trees, called Tb(Wt), using:

r̂B(Wt) =
1

B

B∑
b=1

Tb(Wt).
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Within each boostrap, observations are independently drawn from the training sample,

with replacement. The number of observations in each boostrap is the same as in the

traning sample. We use a validation (training) dataset to conduct cross validation and

tune the hyperparameter B, for values of B = {100, 200, 300, 400}.

In a classification setting, the objective loss function is different than in the regression

framework above. Classification models often use an alternative approach based on the

“classification error rate”, which measures the fraction of training observations which are

not classified as belonging to the majority class, within a specific region. However, use of

the Gini index for model specification is preferable in our context, because classification

error rates are not sufficiently sensitive for our tree-based model. The Gini index is denoted

as:

L =

N∑
n=1

p̂mn(1− p̂mn) (3.39)

where p̂mn is the proportion of training observations in the mth region that belongs to the

nth class (n = 1, 2, · · · , N). Under the binary classification case, N=2.

Hyperparameters that we estimate for our random forests are the maximum depth of

the tree, the minimum number of samples required to split an internal node, the minimum

number of bootstrap samples required to be at a tree node, the number of predictors to

consider when looking for the best split, and the number of trees.
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3.3.8 Gradient tree boosting

The gradient boosting method is developed in Friedman (2001) for regression and classifi-

cation. The objective loss function89 is:

ˆL(f) =

N∑
i=1

L(rt+1, f(Wt)) (3.40)

Here we use l2 penalty for the loss function L(.). f(.) is a sum of regression trees:

fM (Wt) =

M∑
m=1

K(Wt;κ) (3.41)

Where each K(Wt;κ) represents a regression tree and κ is the parameter in the model.

One solution to this loss function is to estimate the tree K(Wt;κ) at mth iteration to fit

the negative gradient:

κ̂m = argmin
κ

(−gm −K(Wt;κ))2 (3.42)

where the components of the gradient gm are:

gim = [
∂L(rt+1, f(Wt))

∂f(Wt)
]f(Wt)=fm−1(Wt), i = 1, ..., N (3.43)

The following summarizes the gradient tree boosting algorithm:

1. Start f0(Wt) = argminθ
∑N

i=1 L(rt+1, θ).

2. For m = 1 to M :

(a). For i = 1, 2, ..., N compute:

sim = −[
∂L(rt+1, f(Wt))

∂f(Wt)
]f=fm−1 (3.44)

8We use the notation in Friedman et al. (2001)

9The loss function for gradient boosting classification is same as in the random forest.
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(b). Train a regression tree with target sim to get the terminal regions Sjm, j =

1, 2, ...Jm.

(c). For j = 1, 2, ...Jm compute:

θ̂jm = argmin
θ

∑
Wt∈Sjm

L(rt+1.fm−1(Wt) + θ) (3.45)

(d). Update fm(Wt) = fm−1(Wt) + λ
∑Jm

j=1 θjmI(Wt ∈ Sjm)

3. Output f̂(Wt) = fM (Wt)

In the hyperparameter estimation, the learning rate λ shrinks the contribution of each

tree. M captures the number of booting stages in the estimation. We also tune other vari-

ables including min sample split10, min samples leaf11 and max depth12 during the cross-

validation.

3.3.9 Neural networks

Neural network models build on a set of nonlinear functions mimicking the neural architec-

ture of brains. The earliest neural networks trace back to Rosenblatt (1958) and McCulloch

and Pitts (1943), where propositional logic models and probabilistic models are proposed to

describe nervous system activity, information storage, and organization in the brain. Since

these early papers, neural networks and their applications have been studied extensively

across numerous disciplines. A key paper in this area is Hornik et al. (1989), who prove that

multilayer feed-forward networks are “universal approximators”, in the sense that as long

as the complexity of the network is allowed to grow (i.e., increasing the number of so-called

10The minimum number of samples required to split an internal node.

11The minimum number of samples required to be at a leaf node.

12The maximum number of nodes in the tree.
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“hidden units”) with the sample size, then a network can estimate an arbitrary function,

arbitrarily well. Not surprisingly, given this result, recent work shows that networks with

multiple hidden layers are often better approximators than models with one hidden layer

(see e.g, He et al. (2016)). IN this paper we utilize the traditional “feed-forward” neural

network model of the variety discussed in Hornik et al. (1989).

Let Wt denote the “inputs” to the neural network. A hidden layer is defined as:

Gm = f(c+ α′Wt), (3.46)

where Wt = (Wt,1, ...,Wt,p). The nonlinear function, f(·), is called the activation function,

and we utilize four such functions in our experiments, with choice amongst them carried

out using cross validation. These include:

Identity Function:f(Wt) = Wt

Sigmoid Function:f(Wt) = 1/(1 + exp(−Wt))

Hyperbolic Tan Function:f(Wt) = tanh(Wt)

Rectified Linear Unit Function:f(Wt) = max(0,Wt)

The output rj,t+1 given as:

rj,t+1 = g(θ0s + θMs G), m = 1, ...,M (3.47)

where G = (G1, G2, ..., GM ). We incorporate up to four hidden layers in our experiments,

and the number of neurons (variables) in each layer is selected according to the geometric

pyramid rule (see Masters (1993)).

In our classification variant of this model, we use cross-entropy, L, as the loss function,

where:

L = −
M∑
m=1

p̂mnlogp̂mn, (3.48)
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with p̂mn defined to be the proportion of training observations in the mth region arising

from the nth class. The output function, g(·), in our classification method is the Softmax

function13. For parameter estimation, we use least squares with quasi-Newton numerical

optimization, and the parameter α is tuned during cross-validation.

3.3.10 K-nearest-neighbor classifiers

The nearest neighbor classification method was first proposed by Cover and Hart (1967)

in the field of pattern recognition. This nonparametric method performs clustering based

on minimum distance measures. Given an unclassified point, W0, and k points, Wt, t =

1, ..., N , in a training dataset are selected based on the closest distance to W0, and then

the point W0 is classified. Distance, dl is measured using the standard Euclidean norm:

dl = ‖Wt −W0‖ (3.49)

The number of neighbors, k, is dependent on a tuning parameter which is calibrated using

cross-validation.

3.3.11 Hybrid machine learning methods

We also explore the usefulness of a hybrid class of models that combines the lasso with

neural networks. These hybrid models are based on a two step specification method. In

the first step, the lasso is utilized to predict the forecasting target using the model:

rj,t+1 = c+ α′Wt + εt+1 (3.50)

with specification achieved by minimizing the following function:

L(λ, α) = |rt+1 − c− α′Wt|2 + λ|α′|2. (3.51)

13See Bridle (1990).
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In the second step, the residual, εt+1, estimated using this minimizer is deployed as our

forecasting target, and neural networks are estimated. In this step, we carry out two types

of experiments, based on the use different input variables, Wt. In the first type, Wt is the

same as that used in the lasso. In the second type, Zt is instead used as the input into

the networks, where Zt is the subset of Wt obtained by utilizing the lasso as a variable

selection device.

3.3.12 Experimental setup and forecast evaluation

All forecasting models are estimated using three difference rolling window sizes, and all

models and parameters are re-estimated/re-specified prior to the construction of each new

daily forecast.14 Additionally, and as discussed above, monthly forecasts are formed by

aggregating daily forecasts. Forecasting performance is evaluated using mean squarefore-

cast error (MSFE), where MSFE = 1
T

∑T
t=1(rj,t − r̂j,t)2, with r̂j,t denoting a prediction.

Comparative model accuracy is evaluated using the Diebold and Mariano (DM) test (see

Diebold and Mariano (1995)). The null hypothesis of equal predictive accuracy of two

forecasting models, say f and g, in this test is:

Ho : E[l(εft+h)]− E[l(εgt+h)] = 0, (3.52)

where εft+h is the prediction error in model f , εgt+h is the prediction error in model g, and

l(·) is the quadratic loss function. If we assume there is no parameter estimation error(i.e.,

P/R → 0, where P + R = T , P denotes the number of ex-ante forecasts, and R is the

length of the rolling window, or the initial length of the recursive window), and also under

an assumption that the models are nonnested, then DMP = d̄
σ̂d̄

, where d̄ = P−1
∑P

t=1 dt has

a standard normal limiting distribution (here σ̂d̄t is a heteroskedasticity and autocorrelation

14Papers discussing the use of rolling and recursive estimation windows include Clark and McCracken
(2009), Rossi and Inoue (2012), and the papers cited therein.
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robust estimator of the standard deviation of d̄), and dt = (ε̂ft )2−(ε̂gt )
2 are estimates of true

forecasting errors εft+h and εgt+h. Details concerning appropriate critical values for cases in

which parameter estiamtion error is not assumed to be negligible, asympotitcally, and/or

in which models are nested are contained in Corradi and Swanson (2006) and McCracken

(2000).

We adopt the Pesaran and Timmermann (1992) test to check the independence of our

directional forecasts (namely, we construct classical chi-square tests of independence). In

this context, we consider confusion matrices defined as follows:15

Predicted

up down

A
ct

u
al

up n1 n2

down n3 n4

(3.53)

Here n1 (n4) is the number of correct forecasts of upward (downward) return forecasts and

n2 (n3) is the number of incorrect forecasts of upward (downward) movement in returns.

Next, define:

pactu =
n1 + n2

n1 + n2 + n3 + n4
, qactu =

pactu(1− pactu)

n1 + n2 + n3 + n4
, (3.54)

ppred =
n1 + n3

n1 + n2 + n3 + n4
, qpred =

ppred(1− ppred)
n1 + n2 + n3 + n4

, (3.55)

The null hypothesis of Peseran-Timmermann (PT) test is that the model provides no value

in directional forecasting. The test statistic is:

PT =
ptrue − p√
v − w

→ N(0, 1), (3.56)

where

ptrue =
n1 + n4

n1 + n2 + n3 + n4
, p = pactuppred + (1− pactu)(1− ppred) (3.57)

15See Swanson and White (1997) for details.
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and

v =
p(1− p)

n1 + n2 + n3 + n4
, w = (2ppred − 1)2qactu + (2pactu − 1)2qpred + 4qactuqpred. (3.58)

The PT test is a one-sided test and the critical region is the upper tail of the standard

normal distribution.

In addition, we report point direction forecasting performance using directional predic-

tive accuracy rates (DPAR). The DPAR is defined as:

DPAR =
Number of correct forecasts

Totol number of forecasts
=

n1 + n4

n1 + n2 + n3 + n4
(3.59)

We impose a simple “filter” on our forecasts in order to address the occasional occur-

rence of so-called “nonsense” forecasts, as discussed in Swanson and White (1997). Namely,

if the one day change associated with a daily prediction exceeds the 90% percent of the

average change observed during the past 22 trading days (i.e., one month), then the fore-

cast from random walk model in Section 3.2 is used in place of the associated model based

prediction.

Finally, correlation indices, macro risk factors, and volatility risk factors are 30-day

moving averages. This smoothing was found to yield superior results relative to the use of

un-smoothed uncertainty measures in our experiments.16

3.4 Empirical Results

3.4.1 Data

Our analysis is based on the use of 4 different datasets: 5-minute frequency equity price

data, trading volume data, widely used macroeconomic predictors (as detailed in Welch

16In the prediction of SPY, all correlation indices are incorporated in the model. In the prediction of
XLF, XLK, XLY, and XLV, only corresponding correlation indices are incorporated in the prediction model.
See Data Section for further detials.
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and Goyal (2007)), and additional macroeconomic variables. Table 3.1A and Table 3.1B

summarize the predictors and the prediction targets. Technical indicators, correlation

indices, volatility risk factor, and all forecasting targets are derived from the 5-minute

high-frequency price dataset, which is extracted from Trade and Quote (TAQ) database.17

The trading volume dataset used to compute technical indicators is obtained from Yahoo

Finance. The macroeconomic predictors include book to market ratio of the Dow Jones

Industrial Average, net equity expansion and dividend-price ratios for S&P 500 index are

from the dataset detailed in Welch and Goyal (2007). Our additional macroeconomic

variables, including, for example, default spreads, term spreads, and the consumer price

index are obtained from the FRED-MD database of Federal Reserve Bank of St.Louis.

More specifically, the macroeconomic variables that are used to build our macro risk

factor, MFmact , are obtained from the FRED-MD database of Federal Reserve Bank of

St.Louis, and include (1) the daily yield curve spreads, defined as the difference between

the 10-year U.S. Treasury bond yield and the 3-month Treasury bill yield; (2) weekly initial

claims for unemployment insurance; (3) the monthly number of nonfarm payroll employees;

and (4) quarterly gross domestic product. All of these variables are log differenced in all

calculations, in order to ensure stationarity, and are then standardized, with the exception

of yield spreads, which are standardized, but not log-differenced. The fourth row in Table

3.1A and the third row in Table 3.1B show the transformations used in conjunction with

our macroeconomic variables.

The daily financial variable log-returns that make up our target set of variables to

be forecasted include: SPY (SPDR S&P 500 ETF Trust), XLF (Financial Select Sector

SPDR Fund), XLK (Technology Select Sector SPDR Fund), XLY (Consumer Discretionary

SPDR), and XLV (Health Care SPDR). All data cover the period from Jan 03, 2006 to

17Data obtained from Wharton Research Data Service (WRDS).
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Dec 31, 2017, with high frequency financial variables measured at intra-day and daily

frequencies, and macroeconomic data measures at daily, weekly, monthly, and quarterly

frequencies.

3.4.2 Forecasting results

Table 3.1C lists all forecasting models in the experiments, both for level and directional

prediction. Table 3.2 and Table 3.3 report 1-step-ahead daily relative MSFEs of all fore-

casting models, using a rolling and a recursive window. The random walk model is used

as a benchmark to generate relative MSFEs for all machine learning models. The monthly

aggregate relative MSFEs of all forecasting models are tabulated in Table 3.4 (rolling win-

dow) and Table 3.5 (recursive window). We calculate the monthly aggregate return by

summing over all 1-step-ahead daily return predictions. Table 3.6 (rolling window) and

Table 3.7 (recursive window) contain the directional predictive accuracy rate based on 1-

step-ahead daily level forecasting results. The directional accuracy rate based on monthly

aggregate level forecasting results are shown in Table 3.8 (rolling window) and Table 3.9.

Notably, direction forecasting results in Table 3.6-3.9 are directly derived from level predic-

tion results. For example, returns forecasts are classified as “upward signals” if forecasts

are positive, and are otherwise classified as “downward signals”. The forecasting period of

all tables is from Jun 2009 - Dec 2017 with a total of 2129 observations. We summarize

the main empirical findings in the following:

First, machine learning models yields significantly smaller MSFEs and higher DPARs

than the benchmark random walk model at monthly frequency. For example, monthly

relative MSFEs results in Table 3.4 and Table 3.5 suggest most machine learning models

outperform benchmark in all scenarios. Similarly, in Table 3.8 and Table 3.9, in terms of

DPARs at a monthly frequency, machine learning models also stand out to be the best
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”DPARs” model. It is also noteworthy that some entries in Tables 3.4, 3.5, 3.8 and 3.9 are

starred, especially for random forest and boosting models, indicating these machine learning

models are statistically significantly different from benchmark, based on application of DM

test and PT test discussed in Section 3.2. However, in Tables 3.2, 3.3, 3.6 and 3.7 at daily

frequency, machine learning models show little improvement in terms MSFEs, and they

perform slightly better under the measurement of DPARs, as for each given forecasting

target and predictors, the best DPARs models are always machine learning models.

Second, the random forest model ”wins” over other machine learning and benchmark

models in both level and directional forecasting at monthly frequency. Evidently, almost all

entries in bold 18 are listed under the random walk models in Tables 3.4, 3.5, 3.8 and 3.9.

In terms of level forecasting, random forest stands out to be the best MSFEs model in 19 of

30 cases (Table 3.4) and 14 of 30 cases (Table 3.5). Also in terms of direction forecasting,

random forest dominates other machine learning and benchmark models in 23 of 30 cases

(Table 3.8), and 19 over 30 cases (Table 3.9). In particular, the lowest relative MSFEs for

random forest model reaches 0.5503 (Table 3.5), and the highest DPARs achieves 0.8350

(Table 3.8). Note that other machine learning models including boosting and support

vector regressions also prove to be the MSFEs and DPARs best models a few times in the

forecasting ”horse race”.

Third, deep learning models outperform shallow learning models in both level and di-

rection predictions. In Tables 3.2-3.5, deep learning models with 2-4 hidden layers have

lower MSFEs than shallow learning models with only one hidden layer across different

choices of predictors and forecasting targets. In Tables 3.6-3.9, DPARs of deep learning

models with 2-4 hidden layers are significantly higher than the DPARs of shallowing learn-

ing models with one hidden layer. Deep learning models are more efficient in capturing the

18The entires with smallest relative MSFEs and largest DPARs in each row are denoted in bold
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data pattern and more accurate in forecasting the target variable.

Fourth, hybrid machine learning models, which combine lasso and neural network mod-

els, outperform individual models in both level and direction forecasting. As shown in Table

3.4 and Table 3.5, at monthly frequency, hybrid models have smaller MSFEs than individ-

ual lasso or neural network models in 23 of 30 cases (Table 3.4), and in 17 of 30 cases (Table

3.5). Moreover, directional prediction results show hybrid models ”win” over individual

lasso or neural network models in 22 of 30 cases (Table 3.8), and 19 of 30 cases (Table 3.9).

Fifth, all three risk factors, including market correlation indices, volatility risk factors,

and macro risk factors, have significant marginal predictive content. In Figure 3.8, adding

the volatility factor to our forecasting models reduces relative MSFEs by 3.2%-18.3% for

different forecasting targets (SPY, XLF, XLK, XLY, and XLV). Adding the macro factor

reduces relative MSFEs by 0.8%-22.5%, for the different target variables. Finally, adding

the correlation indices leads to relative MSFE reductions of 1.7%-28.8%. These findings

hold when monthly aggregate relative directional predictive accuracy rates (DPARs) are

analyzed, as shown in Figure 3.9. In Figure 3.9, we see that adding the volatility factor

leads to 1.3%-10.3% DPAR increases, while adding the macro factor increases DPARs by

1.3%-11.4%. Finally, adding correlation indices increase DPARs by 1.3%-8.9%, with an

exception of SPY, for which no gains are noted.

Sixth, each sector generally has a different sensitivity to the input information. We

evaluate the contribution of different inputs by comparing MSFEs and DPARs using the

leave-one-out scheme within each type of model. Each round, we leave one of the following

five categories of predictors out of the model: 1) macro variables 2) technical variables 3)

volatility risk factors 4) macro risk factors and 5) market correlation indices. Details about

the predictors in each category can be found in Table 3.1B. First examining Tables 3.4-3.5,

under the MSFEs best model- random forest, for the SPY, leaving inputs such as macro
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variables, factors for uncertainty, market correlation and macroeconomic condition, induces

larger MSFEs than original model having all variables, except technical indicators. This

evidence is also confirmed in terms of DPARs results shown in Tables 3.8-3.9, with only

one exception for correlation index. For XLF and XLY, as shown in Tables 3.4, 3.5, 3.8 and

3.9, leaving any type of inputs yields larger MSFEs and lower DPARs than original model

having all variables. For XLK, removing macro variables or macro condition factor leads to

larger MSFEs (Tables 3.4-3.5), and removing macro variables, technical variables or macro

condition factor yields lower DPARs (Tables 3.8-3.9). Finally, for XLV, leaving macro

variables and technical variables leads to larger MSFEs (Tables 3.4-3.5), and removing any

type of inputs induces lower DPARs (Tables 3.8-3.9).

Figure 3.1-3.3 show the continuous component correlation indices and the jump compo-

nent correlation indices of energy sector (XLE) and S&P500 (SPY), finance sector (XLF)

and SPY, industrial sector (XLI) and SPY, technology sector (XLK) and SPY, health care

sector (XLV) and SPY, and consumer discretionary sector (XLY) and SPY from 2006:01

- 2017:12. The jump correlation index surges during the 2008 and 2011 financial crisis,

and drops when the market volatility is low. However, the energy market correlation in-

dex behaves differently comparing with the other four sectors. One sensible explanation is

energy market depends more on the balance of supply and demand in energy commodities

while less related to the financial market condition. Interestingly, the correlation index

based on the continuous part behaves oppositely to the correlation index calculated by

jump components.

Figure 3.4 depicts the volatility risk factors of the S&P 500 market (MF TRVt ), financial

sector (MFXLFt ), technology sector (MFXLKt ), health care sector (MFXLVt ), and con-

sumer discretionary sector (MFXLYt ). During the Great Recession, the financial sector

volatility risk factor positions higher than risk factors of all other sectors, and shows a
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unique two-peak shape corresponding to the period of December 2008 and April 2009.

The second peak is extremely contrasting since volatility factors calmed down significantly

among all other sectors during the time. These two peaks can match back to historical

events, as the first peak points to the big market tumble at the beginning of December

2008, with S&P 500 down 9% and financial sector fell the most by 17%, and the second

peak relates to a big bull market rally from March to May 2009 with financial stocks strik-

ingly went up 150%, explaining the unique second peak in the financial section volatility

risk factor.

3.5 Concluding Remarks

In this paper, we extensively study the performance of machine learning individual mod-

els, as well as hybrid machine learning models, in the sector-level equity return forecasting,

including random forest, boosting, support vector machine, penalized regression, logistic

regression, latent discriminant analysis, naive Bayes classifier, k-nearest-neighbor classifier,

neural network, and hybrid models. The impetus of our study is to analyze a number of

new finance and macro-oriented latent measures of uncertainty, and to assess their marginal

predictive content. These measures are constructed using high frequency and high dimen-

sional financial data, as well as mixed frequency macroeconomic indicators. Out-of-sample

forecasting experiments are carried out for the following financial assets: SPY (SPDR S&P

500 ETF Trust), XLF (Financial Select Sector SPDR Fund), XLK (Technology Select Sec-

tor SPDR Fund), XLV (Health Care SPDR), and XLY (Consumer Discretionary SPDR).

We analyze both level and directional predictions at daily and monthly frequencies. Re-

sults from our empirical experiments are promising. Machine learning models, especially

the random forest model, achieve significantly higher directional accuracy rates and lower

mean square forecasting errors than the random walk benchmark. Moreover, various of
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our new latent uncertainty measures deliver significant marginal predictive content, which

is particularly useful for forecasting at a monthly frequency. All categories of predictors

show contributions to both level and directional forecasting.
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Table 3.1A: Predictor Variables*

Predictor Name Category Description Xt Frequency

T10Y3M

Macro Variables

term spread: 10-year treasury constant maturity minus 3-month treasuty
constant maturity

Xt Daily

defauspr default spread: the difference between BAA and AAA-rated corporate bond
yields

Xt Daily

b/m ratio of book value to market value of the Dow Jones Industrial Average Xt Monthly

ntis Net Equity Expansion: the ratio of 12-month moving sums of net issues by
NYSE listed stocks divided by the total end-of-year market capitalization of
NYSE stocks.

Xt Monthly

Diff CPIAUCSL Consumer Price Index ln(Xt)− ln(Xt−1) Monthly

D/P Dividend Price ratio of S&P 500 index xt = log(Dt)− log(Pt) Daily

indi 30 90

Technical Indicators

30-day trading volume indicator Xt Daily

indi 90 120 90-day trading volume indicator Xt Daily

indi 30 120 120-day trading volume indicator Xt Daily

MA 30 90 30-day price trend indicator Xt Daily

MA 90 120 90-day price trend indicator Xt Daily

MA 30 120 120-day price trend indicator Xt Daily

XLECorr ma

Correlation Index

continuous part price correlation index between enery sector(XLE) and SPY Xt Daily

XLFcorr ma continuous part price correlation between financial sector(XLF) and SPY Xt Daily

XLICorr ma continuous part price correlation index between industry sector(XLI) and SPY Xt Daily

XLKCorr ma continuous part price correlation index between technology sector(XLK) and SPY Xt Daily

XLVCorr ma continuous part price correlation index between health care sector(XLV) and SPY Xt Daily

XLYCorr ma continuous part price correlation index between consumer discretionary sec-
tor(XLY) and SPY

Xt Daily

XLEJump ma Jump part price correlation index between enery sector(XLE) and SPY Xt Daily

XLFJump ma Jump part price correlation between financial sector(XLF) and SPY Xt Daily

XLIJump ma Jump part price correlation index between industry sector(XLI) and SPY Xt Daily

XLKJump ma Jump part price correlation index between technology sector(XLK) and SPY Xt Daily

XLVJump ma Jump part price correlation index between health care sector(XLV) and SPY Xt Daily

XLYJump ma Jump part price correlation index between consumer discretionary sec-
tor(XLY) and SPY

Xt Daily

MF TRV Volatility Risk Factor Multi-frequency financial volatility risk factor Xt Daily

MFmact Macro Risk Factor Macroeconomic factor Xt Daily

Return lag Lag Term lag one day of prediction target return Xt−1 Daily

*Note: Table 3.1A shows all predictors in the forecasting models for the period 2006:01-2017:12. All predictors are divided into six categories, which is
shown in the second column. Data transformations used in forecasting experiments are given in the fourth column of the table. See Section 3.2 and 3.3
for further details.
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Table 3.1B: Target Forecast Variables*

Target Name Description Xt Frequency

SPY SPDR S&P 500 ETF Trust ln(Xt)− ln(Xt−1) Daily

XLF Financial Sector SPDR Fund ln(Xt)− ln(Xt−1) Daily

XLK Technology Sector SPDR Fund ln(Xt)− ln(Xt−1) Daily

XLY Consumer Discretionary SPDR ln(Xt)− ln(Xt−1) Daily

XLV Health Care SPDR ln(Xt)− ln(Xt−1) Daily

*Notes: This table reports the prediction targets. Data transformations used in forecasting experiments are given in the third column
of the table. See Section 3.3 for further details.
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Table 3.1C: Models Used in Forecasting Experiments*

Method Description

Level Forecasting

Benchmark Random Walk

Linear Linear regression

SVR rbf Support vector regresion with radial basis function kernel

SVR lin Support vector regresion with linear kernel

SVR poly Support vector regresion with polynomial kernel

RanForest Random forest regression

Boosting Gradient boosting regression

Lasso Lasso regression

Ridge Ridge regression

Nnet1 Neural network regression with one hidden layer

Nnet2 Neural network regression with twp hidden layers

Nnet3 Neural network regression with three hidden layers

Nnet4 Neural network regression with four hidden layers

Hybrid1 A hybrid mode of Lasso and Nnet1 with selected variables

Hybrid2 A hybrid mode of Lasso and Nnet2 with selected variables

Hybrid3 A hybrid mode of Lasso and Nnet3 with selected variables

Hybrid4 A hybrid mode of Lasso and Nnet4 with selected variables

Hybrid5 A hybrid mode of Lasso and Nnet1 with All variables

Hybrid6 A hybrid mode of Lasso and Nnet2 with All variables

Hybrid7 A hybrid mode of Lasso and Nnet3 with All variables

Hybrid8 A hybrid mode of Lasso and Nnet4 with All variables

Direction Forecasting

Logit Logistic regression

LDA Linear discriminant analysis

NB Naive bayes classifier

SVC RBF Support vector classification with radial basis function kernel

SVC lin Support vector classification with linear kernel

SVC poly Support vector classification with polynomial kernel

KNN K-nearest neighbors algorithm

Boosting Gradient boosting classification

RanForest Random forest classification

Nnet1 Neural network classification with one hidden layer

Nnet2 Neural network classification with two hidden layers

Nnet3 Neural network classification with three hidden layers

Nnet4 Neural network classification with four hidden layers

*Notes: This table reports the models in forecasting experiments. Complete details for all models are given in Section
3.3.
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Table 3.2: 1-Step-Ahead Daily Relative MSFEs of All Forecasting Models (Rolling
Window)*

Linear SVRrbf SVRlin SVRpoly RanForest boosting lasso ridge NN1 NN2 NN3 NN4 hybrid1 hybrid2 hybrid3 hybrid4 hybrid5 hybrid6 hybrid7 hybrid8

SPY

All Variables 1.2077*** 1.7704*** 1.1303*** 1.2676*** 1.0366*** 1.1504*** 0.9995 1.0541*** 1.5332*** 1.3431*** 1.0253*** 0.9993 1.0037 1.0079 1.0009 0.9987 1.1088*** 1.0129 1.0046 0.9998

Drop Macro Variables 1.1528*** 1.0984*** 1.095*** 1.2324*** 1.0314** 1.2492*** 0.9995 1.0344*** 1.2886*** 1.2190*** 1.0025 1.0007* 1.0124** 1.0089* 1.0061 0.9994 1.1604*** 1.0973*** 0.9989 1.0000

Drop technical Variables 1.1869*** 1.0644*** 1.1026*** 1.0516*** 1.0856*** 1.5325*** 0.9995 1.0326*** 1.3756*** 1.1605*** 1.0085* 1.8679*** 1.0029 1.0072 1.0054 1.0018 1.0516*** 1.0213** 1.0016 1.2696***

Drop Volatility factor 1.1987*** 1.0897*** 1.1193*** 1.1592*** 1.0200** 1.1308*** 0.9994 1.0515*** 4.2393*** 1.279*** 1.0138*** 1.3581*** 1.0132** 1.0060* 1.0069** 1.0068 1.9241*** 1.0394*** 1.0039 1.0518**

Drop Macro Factor 1.1991*** 1.7923*** 1.1525*** 1.1309*** 1.0183** 1.4545*** 1.0002 1.0481*** 1.6493*** 1.3019*** 1.0141*** 0.9998 1.0059** 1.0168*** 0.9972 1.0007* 1.1324*** 1.0224*** 1.0004 0.9994

Drop Correlation index 1.1680*** 1.1115*** 1.0959*** 1.06*** 1.0223** 1.2094*** 0.9995 1.0529*** 1.6683*** 1.1513*** 1.0115** 0.9998 1.0141*** 1.0070* 1.0024 1.0003 1.2129*** 1.0204** 0.9999 0.9987

XLF

All Variables 1.2234*** 1.0897*** 1.0849*** 1.0626*** 1.0525*** 1.1453*** 1.0017 1.0781*** 1.1496*** 1.2958*** 1.0463*** 1.1017*** 1.0227*** 1.0275*** 1.0062** 1.0084** 1.0524*** 1.1137*** 1.0214** 1.0226***

Drop Macro Variables 1.0932*** 1.0779*** 1.0661*** 1.1795*** 1.028*** 1.1493*** 1.0017 1.0607*** 1.0734*** 1.0277*** 1.0239*** 1.1391*** 1.0141*** 1.0070** 1.0042* 1.0200*** 1.0344*** 1.0047 1.0097** 1.0423***

Drop technical Variables 1.1324*** 1.0338*** 1.0367*** 1.0226*** 1.0904*** 1.1737*** 1.0005 1.0312*** 1.0756*** 1.0713*** 1.0023 1.0604*** 1.0077* 1.0042 1.0079*** 1.0070** 1.0366*** 1.0249** 1.0081** 1.0094**

Drop Volatility factor 1.2243*** 1.2762*** 1.0803*** 1.2180*** 1.0309*** 1.1586*** 1.0003 1.0782*** 1.0979*** 1.0557*** 0.9996 1.1466*** 1.0157*** 1.0100** 1.0010 1.0183*** 1.059*** 1.0212*** 1.0003 1.0211**

Drop Macro Factor 1.2139*** 1.0819*** 1.0760*** 1.0596*** 1.0313*** 1.1528*** 1.0028** 1.0822*** 1.1366*** 1.0839*** 1.0435*** 2.7153** 1.0208*** 1.0184*** 1.0005 1.0182*** 1.0301** 1.0330*** 1.0295*** 1.1065***

Drop Correlation index 1.2058*** 1.0876*** 1.0800*** 1.0631*** 1.0246*** 1.1374*** 1.0017 1.0763*** 1.0698*** 1.0231** 1.1251*** 1.0272*** 1.0106** 1.0055 1.0209*** 0.9978 1.0325*** 1.0106* 1.0187*** 1.0193***

XLK

All Variables 1.1195*** 1.0637*** 1.0737*** 1.039*** 1.0196*** 1.2742*** 1.0002 1.0608*** 1.2355*** 1.207*** 1.0064** 0.9995 1.0018 1.0006 0.9998 1.0003 1.0265*** 1.0750*** 1.0012 0.9998

Drop Macro Variables 1.0652*** 1.0489*** 1.0421*** 1.0294*** 1.024*** 1.1828*** 1.0002 1.0413*** 1.0639*** 1.0965*** 1.0060 1.0000 1.0064 0.9999 0.9994 1.0003 1.0100* 1.0114** 1.0013 1.0004

Drop technical Variables 1.0651*** 1.0257*** 1.0397*** 1.0161** 1.0245*** 1.1583*** 1.0002 1.0184*** 1.0575*** 1.0988*** 1.0042 1.001 0.9995 1.0066** 1.0005 1.0002 1.0111** 1.0356*** 1.0054** 0.9999

Drop Volatility factor 1.1177*** 1.0440*** 1.0516*** 1.0314*** 1.0213*** 1.2149*** 1.0001 1.0567*** 1.1596*** 1.0768*** 1.0006 1.0015*** 1.0110* 1.0018 1.0017 1.0001 1.0219*** 1.0174*** 1.0047** 1.0001

Drop Macro Factor 1.1126*** 1.0573*** 1.0731*** 1.0392*** 1.0175*** 1.4152*** 1.0000 1.0581*** 1.2087*** 1.2515*** 1.0023 1.1242*** 1.0008 1.0012 0.9995 1.0022 1.0188*** 1.0434*** 1.0027** 1.0023

Drop Correlation index 1.1138*** 1.0621*** 1.0693*** 1.1387*** 1.0529*** 1.3824*** 1.0002 1.0608*** 1.1406*** 1.1016*** 1.0357*** 1.1165*** 1.0084** 1.0027 0.9989 1.0292*** 1.0189*** 1.0192*** 0.9989 1.0191***

XLY

All Variables 1.1453*** 1.0769*** 1.1102*** 1.0737*** 1.0465*** 1.1069*** 1.0010 1.0724*** 1.2696*** 1.1585*** 1.0587*** 0.9994 1.0170*** 1.0154*** 1.0022 1.0011* 1.1153*** 1.0253*** 1.0078* 1.0011

Drop Macro Variables 1.0537*** 1.0663*** 1.0478*** 1.0401*** 1.0735*** 1.1008*** 1.0010 1.0433*** 1.0843*** 1.0771*** 1.0123*** 1.0002 1.0100** 1.0119*** 1.0035* 1.0011* 1.0138** 1.0139*** 1.0002 1.0012*

Drop technical Variables 1.0799*** 1.0351*** 1.0610*** 1.0307*** 1.0192*** 1.0994*** 1.0005 1.0246*** 1.2612*** 1.0887*** 1.1074*** 1.0002 1.0096*** 1.0006 1.0140** 1.0004 1.0690*** 1.0310*** 1.0102** 1.0003

Drop Volatility factor 1.1477*** 1.0642*** 1.1014*** 1.0615*** 1.0253*** 1.0991*** 1.0006 1.0714*** 1.8243*** 1.1428*** 1.0062** 1.2808*** 1.0108* 1.0079*** 0.9998 1.0518*** 1.2371*** 1.0157** 1.0016 1.0581***

Drop Macro Factor 1.1374*** 1.0622*** 1.1144*** 1.0622*** 1.0421*** 1.0883*** 1.0006 1.0719*** 1.2166*** 1.1413*** 1.1840*** 1.0002 1.0112*** 1.0032 1.0010 1.0008 1.0200*** 1.0201*** 1.0456*** 1.0013**

Drop Correlation index 1.1430*** 1.0752*** 1.1019*** 1.0740*** 1.0294*** 1.1325*** 1.0010 1.0725*** 1.1388*** 1.0933*** 1.0139*** 1.2876*** 1.0065* 1.0105*** 1.0035* 1.0100*** 1.0317*** 1.0179*** 1.0054* 1.0477***

XLV

All Variables 1.0904*** 1.0499*** 1.0596*** 1.1656*** 1.0251*** 1.1955*** 1.0000 1.0426*** 2.5925*** 1.4951*** 1.0005 1.0004 1.0012* 1.0011 1.0001 1.0000 0.9999 1.0016 1.0001 0.9999*

Drop Macro Variables 1.0622*** 1.0459*** 1.0333*** 1.0269*** 1.0325*** 1.1757*** 1.0000 1.038*** 1.1325*** 1.0622*** 1.0155*** 1.0003 1.0012* 1.0011 1.0001 1.0000 0.9999 1.0016 1.0001 0.9999*

Drop technical Variables 1.0584*** 1.0238*** 1.0176** 1.0154** 1.0301*** 1.1875*** 1.0000 1.0154*** 1.2394*** 1.0946*** 1.0091** 1.0653*** 1.0012* 1.0011 1.0001 1.0000 0.9999 1.0016 1.0001 0.9999*

Drop Volatility factor 1.0847*** 1.0493*** 1.036*** 1.0339*** 1.0555*** 1.2246*** 1.0000 1.0371*** 1.2447*** 1.121*** 1.0079*** 0.9996 1.0012* 1.0011 1.0001 1.0000 0.9999 1.0016 1.0001 0.9999*

Drop Macro Factor 1.0936*** 1.0475*** 1.0502*** 1.022*** 1.0355*** 1.2327*** 1.0000* 1.0397*** 1.2465*** 2.4683*** 1.0082*** 1.0007* 1.0012* 1.0011 1.0001 1.0000 0.9999 1.0016 1.0001 0.9999*

Drop Correlation index 1.0762*** 1.2771*** 1.0365*** 1.1761*** 1.0323*** 1.2265*** 1.0000 1.0415*** 1.1636*** 1.0452*** 1.0191*** 1.0465*** 1.0012* 1.0011 1.0001 1.0000 0.9999 1.0016 1.0001 0.9999*

*Notes: See notes to Table 3.1A. Table 3.2 reports the 1-step-ahead relative mean square forecasting error (MSFE) of market sector ETFs with rolling window size 500. Forecasts are daily, for the period 2009:6-2017:12. Tabulated relative MSFEs

are calculated such that numerical values less than unity indicates the alternative model has lower point MSFE than the random walk benchmark model. Entries in bold denote models with lowest relative MSFE for a given forecasting target and

predictors. Starred entries denote rejection of the null of equal predictive accuracy, based on the application of Diebold and Mariano (1995) (DM) test. All machine learning models are tested against the random walk benchmark, based on MSFE

loss. Significance levels for the test are reported as ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, and ∗p < 0.1, where p is the p−value corresponding to DM test statistics.
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Table 3.3: 1-Step-Ahead Daily Relative MSFEs of All Forecasting Models (Recursive
Window)*

Linear SVRrbf SVRlin SVRpoly RanForest boosting lasso ridge NN1 NN2 NN3 NN4 hybrid1 hybrid2 hybrid3 hybrid4 hybrid5 hybrid6 hybrid7 hybrid8

SPY

All Variables 1.1616*** 1.7658*** 1.0666*** 1.221*** 1.0094* 1.0455*** 0.9991 1.0404*** 1.3753*** 1.2400*** 1.0219*** 1.0003 1.0016 1.0076** 1.0067* 0.9989 1.2382*** 1.0969*** 1.0181*** 0.9993

Drop Macro Variables 1.0805*** 1.0588*** 1.0463*** 1.1630*** 1.0064* 1.0656*** 0.9991 1.019*** 1.5325*** 1.4164*** 1.036*** 1.0007 1.1077*** 1.0455*** 1.0081* 0.9986 1.2673*** 1.2595*** 1.0182*** 1.0007

Drop technical Variables 1.1531*** 1.0438*** 1.0610*** 1.0283*** 1.0658*** 1.4103*** 0.9991 1.0311*** 1.2795*** 1.1489*** 1.0183*** 1.8884*** 1.0031 1.0064 1.0085** 1.0099*** 1.1486*** 1.0604*** 1.0174*** 1.3809***

Drop Volatility factor 1.1592*** 1.0537*** 1.0592*** 1.0923*** 1.0026 1.0471*** 0.9991 1.0337*** 3.4572*** 1.3582*** 1.0005 1.1905*** 1.0774*** 1.0413*** 1.0019 1.0404*** 2.7528*** 1.2012*** 1.0167*** 1.1285***

Drop Macro Factor 1.1534*** 1.7902*** 1.0719*** 1.0881*** 1.0017 1.3266*** 1.0003*** 1.0338*** 2.1067*** 1.2658*** 1.0113** 1.0001 1.0030 1.0062** 0.9990 1.0001 1.1328*** 1.0271*** 0.9994 0.9999

Drop Correlation index 1.1270*** 1.0726*** 1.0435*** 1.0232*** 1.0056* 1.0661*** 0.9991 1.0358*** 1.5577*** 1.1924*** 1.0251*** 0.9990 1.1031*** 1.0319*** 1.0042 0.9984 1.4183*** 1.1044*** 1.007* 0.9988

XLF

All Variables 1.1840*** 1.0586*** 1.0534*** 1.037*** 1.0538*** 1.0630*** 1.0018* 1.0689*** 1.1587*** 1.3453*** 1.1048*** 1.0638*** 1.0108** 1.0253*** 1.0045** 1.0176*** 1.0348*** 1.1682*** 1.0190** 1.0188***

Drop Macro Variables 1.0491*** 1.0493*** 1.0392*** 1.1066*** 1.0086*** 1.0569*** 1.0016 1.0429*** 1.0961*** 1.0614*** 1.0389*** 1.0918*** 1.0023 1.0170*** 1.0027 1.0382*** 1.0487*** 1.0059 1.0103** 1.0124

Drop technical Variables 1.1118*** 1.0261*** 1.0252*** 1.0182*** 1.0813*** 1.0998*** 1.0009 1.0287*** 1.1098*** 1.0513*** 1.0189*** 1.0137*** 1.0102** 1.0094** 1.0048** 1.0074* 1.0600*** 1.0547*** 1.0035 1.0043

Drop Volatility factor 1.1809*** 1.2085*** 1.0517*** 1.2064*** 1.0155*** 1.0746*** 1.0005 1.0665*** 1.1476*** 1.1086*** 1.0027 1.0648*** 1.0243*** 1.0049 0.9986 1.0082 1.0671*** 1.0170** 1.0029 1.0493***

Drop Macro Factor 1.1778*** 1.0578*** 1.0486*** 1.0392*** 1.0171*** 1.0830*** 1.0025*** 1.0666*** 1.1085*** 1.1244*** 1.0591*** 1.3106*** 1.0162*** 1.0107** 1.0044** 1.0113*** 1.0650*** 1.0615*** 1.0201*** 1.1819***

Drop Correlation index 1.1687*** 1.0582*** 1.0462*** 1.0373*** 1.0035 1.0757*** 1.0018* 1.0673*** 1.0897*** 1.0585*** 1.0489** 1.0038 1.0128*** 1.0126*** 1.0239*** 1.0122*** 1.0373*** 1.0250*** 1.0170*** 1.0105***

XLK

All Variables 1.0696*** 1.0339*** 1.0374*** 1.0165*** 1.0034 1.1304*** 1.0001** 1.0247*** 1.1609*** 1.4002*** 1.0050 1.0009* 1.0015 1.0019 1.0002 1.0003** 1.0195*** 1.0514*** 1.0013 1.0004*

Drop Macro Variables 1.0243*** 1.0313*** 1.0197*** 1.0168*** 1.0078*** 1.0500** 1.0001** 1.0162*** 1.0682*** 1.1659*** 1.0145*** 1.0000 1.0027 1.0023 1.0012 1.0002 1.0119*** 1.0057 1.0020 0.9999

Drop technical Variables 1.0486*** 1.0167** 1.0152** 1.0072 1.0025 1.0658*** 1.0001** 1.0121*** 1.0997*** 1.0685*** 1.0099*** 1.0312*** 1.0031** 1.0021 1.0013 1.0004 1.0147*** 1.0130** 1.0026* 1.0001

Drop Volatility factor 1.0682*** 1.0306*** 1.0229*** 1.0131** 1.0072*** 1.092*** 1.0000 1.0237*** 1.1590*** 1.1779*** 1.0169*** 1.0014*** 1.0022 1.0024** 0.9992 1.0003 1.0304*** 1.0165*** 1.0000 0.9999

Drop Macro Factor 1.0677*** 1.0325*** 1.0354*** 1.0144*** 1.0033 1.2668*** 1.0001*** 1.0234*** 1.1008*** 1.1787*** 1.0133*** 1.087*** 1.0012*** 1.0005*** 0.9998 1.0009** 1.0055* 1.0170* 0.9994 1.0095

Drop Correlation index 1.0689*** 1.0370*** 1.0318*** 1.0834*** 1.0576*** 1.1796*** 1.0001** 1.0250*** 1.1549*** 1.0475*** 1.0445*** 1.0955*** 1.0034** 1.0039** 1.0011 1.0118*** 1.0126** 1.0119** 1.0051* 1.0149**

XLY

All Variables 1.0860*** 1.0493*** 1.0604*** 1.0311*** 1.0443*** 1.0381*** 1.0005 1.0360*** 1.4131*** 1.1167*** 1.1025*** 0.9993 1.0144*** 1.0046 1.0019 1.0004 1.1698*** 1.0172*** 1.0154*** 1.0009*

Drop Macro Variables 1.0284*** 1.0346*** 1.0246** 1.0177** 1.0559*** 1.0407*** 1.0004 1.0216*** 1.1148*** 1.1730*** 1.0228*** 1.0005 1.0065** 0.9997 0.9984 1.0003 1.0132** 1.0156** 1.0020 1.0004

Drop technical Variables 1.0582*** 1.0193*** 1.0312*** 1.0136** 1.0032 1.0400*** 1.0004 1.0164*** 1.2477*** 1.1056*** 1.0720*** 1.0018*** 1.0087*** 0.9996 1.0027 1.0003 1.0981*** 1.0313*** 1.0161** 0.9999

Drop Volatility factor 1.0838*** 1.0374*** 1.0619*** 1.0260*** 1.0065 1.0347*** 0.9999 1.0346*** 1.5831*** 1.1435*** 1.0076*** 1.1433*** 1.0053 1.0025 1.0009 1.0350*** 1.2985*** 1.0511*** 1.0036* 1.0396***

Drop Macro Factor 1.0836*** 1.0409*** 1.0579*** 1.0271*** 1.0323*** 1.0451*** 1.0005* 1.0347*** 1.1708*** 1.1666*** 1.4072*** 1.0000 1.0017 1.0054** 1.0004 1.0006* 1.0248*** 1.0046 1.0203*** 1.0005

Drop Correlation index 1.0919*** 1.0468*** 1.0511*** 1.0318*** 1.0104** 1.0568*** 1.0005 1.0416*** 1.1296*** 1.1119*** 1.0087** 1.0701*** 1.0041* 1.0019 1.0007 1.0028 1.0332*** 1.0134*** 1.0084*** 1.0429***

XLV

All Variables 1.0513*** 1.0231*** 1.0237*** 1.0894*** 1.0058** 1.0761*** 0.9997 1.0191*** 2.0021*** 1.5009*** 1.0089** 0.9999 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997

Drop Macro Variables 1.0260*** 1.0219*** 1.0058* 1.0043 1.0114*** 1.1138*** 0.9997 1.0149*** 1.1256*** 1.1804*** 1.0111** 1.0010 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997

Drop technical Variables 1.0440*** 1.0060 1.0107* 1.0050 1.0059* 1.0794*** 0.9997 1.0090** 1.2063*** 1.1386*** 1.0098** 1.0289*** 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997

Drop Volatility factor 1.0489*** 1.0153** 1.0192*** 1.0131** 1.0520*** 1.0786*** 0.9997 1.0177*** 1.1400*** 1.1987*** 1.0056* 1.0005 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997

Drop Macro Factor 1.0531*** 1.0191*** 1.0178*** 1.0078 1.0167*** 1.0814*** 0.9997 1.0180*** 1.1165*** 1.8097*** 1.0048 0.9998 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997

Drop Correlation index 1.0453*** 1.1823*** 1.0171** 1.0969*** 1.0074* 1.092*** 0.9997 1.0187*** 1.1471*** 1.0324*** 1.0140*** 1.0166*** 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997

*Notes: See notes in table 3.2. Recursive window size 500.
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Table 3.4: Monthly Aggregate Relative MSFEs of All Forecasting Models (Rolling
Window)*

Linear SVRrbf SVRlin SVRpoly RanForest boosting lasso ridge NN1 NN2 NN3 NN4 hybrid1 hybrid2 hybrid3 hybrid4 hybrid5 hybrid6 hybrid7 hybrid8

SPY

All Variables 1.7483*** 0.8873*** 1.1617*** 0.9068*** 0.7677*** 0.9405*** 0.9748* 1.2326*** 1.3868*** 1.2175*** 1.0273** 1.0027 0.9634 0.9687* 0.9831 0.9967 1.1062** 1.006 1.0035 0.9868

Drop Macro Variables 1.2639*** 0.9889*** 0.8629*** 0.8879*** 0.8048*** 0.5709*** 0.9748* 0.9726*** 0.9959*** 1.0992*** 1.0007 1.0009 0.9801 0.969 1.0213** 0.9831 1.0051*** 1.0923 1.0119 0.9849

Drop technical Variables 1.8221*** 1.0555*** 1.2425*** 1.0566*** 0.6262*** 0.7587*** 0.9748* 1.1983*** 1.1527*** 1.1437*** 1.0475 1.0038*** 0.9719 1.0121 0.9798 0.9839 1.0158** 0.9678 0.9924 1.1093**

Drop Volatility factor 1.6141*** 0.8772*** 1.107*** 0.887*** 0.7921*** 0.9105*** 0.9638** 1.243*** 2.6349*** 1.2478*** 1.0216** 0.9687*** 0.9569** 0.9436 1.0256 0.9671 1.4345*** 1.1083* 0.971 0.946

Drop Macro Factor 1.8599*** 0.8122*** 1.2382*** 0.8328*** 0.8202*** 0.7496*** 1.0031** 1.1774** 1.4029*** 1.1068*** 1.0262 1.0026 1.0061*** 1.0353*** 1.0025 1.0032*** 0.9373*** 0.9991** 0.9969* 1.0038

Drop Correlation index 2.49*** 0.9818*** 1.3913*** 1.0922*** 0.8292* 0.9451*** 0.9748* 1.3533*** 0.996*** 1.1156*** 0.9946** 1.0056 0.9942*** 0.9271 0.9951 0.994 0.8969*** 0.9989* 0.9883 0.9798

XLF

All Variables 3.099*** 1.0838*** 1.2804*** 1.2063*** 0.6448*** 0.8643*** 1.0061 1.6261*** 1.2243*** 1.1551*** 1.0017 1.0397** 1.0986** 1.0483 1.0178* 1.0291 1.1412*** 1.1386* 1.0066 1.0179*

Drop Macro Variables 1.4752*** 1.1046*** 1.1567*** 0.8887*** 0.8056* 0.9705*** 1.0061 1.3305*** 1.0023*** 0.994 1.0346 1.0608*** 1.0593* 1.0362 1.0157 1.0748** 1.0516** 1.0073* 0.9984 1.0565**

Drop technical Variables 2.2144*** 0.9684*** 0.9947** 0.9555*** 0.6043*** 1.0068*** 0.9776 1.2519*** 0.8767*** 1.0276*** 1.0008** 1.0098*** 0.9876 0.9715 0.9909 0.9724 0.9904 0.9582 0.9904 0.9809

Drop Volatility factor 3.1517*** 0.9783*** 1.2784*** 0.9667*** 0.7103*** 0.9502*** 0.9790 1.6939*** 1.1423*** 1.0099*** 1.0039 0.9828*** 1.0868* 0.998 0.9864 0.9849 1.153*** 0.9668 0.9855 0.9998

Drop Macro Factor 3.1485*** 0.9962*** 1.1717*** 1.1858*** 0.6957** 1.0179*** 1.0377** 1.7524*** 0.964*** 1.0581** 1.014** 1.7497*** 1.208** 1.0697* 1.0347 1.2017*** 1.112 1.0969 1.0252* 1.3216***

Drop Correlation index 3.2623*** 1.0604*** 1.2862*** 1.2242*** 0.7691*** 0.9230*** 1.0061 1.6155*** 1.0802*** 0.9242 1.0045** 1.0002*** 1.0539 1.0408* 1.0637 1.0263 1.081* 1.0503 1.0011** 1.0024*

XLK

All Variables 1.7044*** 0.8886*** 1.1048*** 1.0398*** 0.8423* 0.7639*** 0.9876 1.3904*** 1.1089*** 0.9331*** 0.9848 0.9982*** 0.9888 0.9924 0.9958 0.9895 1.0169*** 1.0592** 0.9884 0.9879

Drop Macro Variables 1.3333*** 1.0526*** 1.1428*** 1.0932*** 0.9527*** 0.7625*** 0.9876 1.2627*** 1.1250** 1.0593*** 1.013*** 0.9998 1.0101** 0.9924 1.0018* 0.9925 1.0034** 0.9802 0.9960 0.9884

Drop technical Variables 1.4983*** 0.8304* 1.0297*** 0.9009 0.8569*** 0.7406*** 0.9876 1.0661*** 0.9699** 1.0506** 1.0107 1.0004 0.991 0.9879 0.9926 0.9914 1.0336** 0.9594 0.9949 0.9888

Drop Volatility factor 1.7496*** 0.982*** 1.0792*** 1.0228*** 0.8017*** 0.7876*** 0.9856 1.4733*** 1.2542*** 1.0244** 0.9946 0.9998 0.9837 0.9621 0.986 0.9919 1.0268*** 0.9702* 1.006** 0.989

Drop Macro Factor 1.726*** 0.9079*** 1.1431*** 1.0093*** 0.8521* 0.7989*** 1.0011 1.4353*** 1.0806*** 1.1249*** 1.0051 0.9868** 1.0016 1.0012 0.9965* 1.0081 0.9406* 0.9953*** 1.0022** 0.9906

Drop Correlation index 1.7010*** 0.9152*** 1.2148*** 0.9635*** 0.6808*** 0.8260*** 0.9876 1.4094*** 1.0847*** 1.0001*** 1.0045** 1.0239*** 0.9813 0.9854 0.9857 0.9690 1.0026 0.9793* 0.9772* 1.0147**

XLY

All Variables 1.9525*** 1.2327*** 1.7358*** 1.615** 0.6864*** 0.9469** 1.0039** 1.7071*** 1.1996*** 0.992*** 1.0255*** 1.0007 1.0687* 1.0094** 1.0011 0.9992 0.9918*** 1.0293** 0.9817 0.9973

Drop Macro Variables 1.2435*** 1.0929** 1.3126** 1.2753** 0.801*** 0.8964*** 1.0039** 1.3240** 1.0950*** 1.097** 1.0039* 1.0009 1.0005 0.9798 1.0096 1.0029 1.0126 0.9716 1.0019 0.9972**

Drop technical Variables 1.6683*** 1.0035*** 1.3086*** 1.1205*** 0.8449 0.9455*** 0.9932* 1.2081* 1.2139*** 0.9679 1.015*** 0.9998 0.9873 0.9916 1.0011** 0.9933 0.9897*** 0.9406** 0.9889 0.9947

Drop Volatility factor 2.1121*** 1.323*** 1.6931*** 1.5638** 0.8077 0.9571* 0.9968 1.8705*** 1.7701*** 1.1164*** 1.0002 1.1238*** 1.0383* 0.9849 0.9884 1.0456 1.1911*** 0.9968* 0.9942 1.0756**

Drop Macro Factor 2.063*** 1.2558*** 1.8644*** 1.5697*** 0.7739** 0.9409*** 1.0091* 1.7579*** 1.4218*** 0.9893*** 1.0016*** 1.0018 1.0572 1.0295 1.0113 1.0053 1.0099 1.0521* 0.9775 1.0076

Drop Correlation index 2.0376*** 1.2363*** 1.6822*** 1.5612** 0.7667* 0.9291*** 1.0039** 1.6987*** 1.076*** 1.0547*** 1.0017 1.1186*** 1.0254 0.9952* 0.9899 1.0743* 1.0587*** 0.9467* 0.9868 0.9763***

XLV

All Variables 1.3759*** 0.8621*** 1.1091*** 1.0236*** 0.8885*** 0.8131*** 1.0000* 1.1223*** 2.3288*** 1.4233*** 1.0000 0.9972 1.0017** 0.9998** 0.9999 1.0001 0.997 1.0176** 0.9999** 0.9998

Drop Macro Variables 1.2741*** 0.91*** 1.0541*** 1.0096*** 0.8939*** 0.6793*** 1.0000* 1.1034*** 1.0395*** 1.0102*** 1.0114 1.0026 1.0017** 0.9998** 0.9999 1.0001 0.997 1.0176** 0.9999** 0.9998

Drop technical Variables 1.3406*** 0.9177* 1.011** 0.9671** 0.8529*** 0.7487*** 1.0000* 1.0365** 1.1495*** 1.0012** 0.9864* 1.0092 1.0017** 0.9998** 0.9999 1.0001 0.9970 1.0176** 0.9999** 0.9998

Drop Volatility factor 1.3607*** 0.9791*** 0.9702** 1.0172** 0.7275*** 0.8929*** 1.0000* 1.1463*** 1.1242*** 1.1446*** 0.9932 0.9995 1.0017** 0.9998** 0.9999 1.0001 0.9970 1.0176** 0.9999** 0.9998

Drop Macro Factor 1.4677*** 0.8734*** 1.1071*** 0.8639 0.7806** 0.8591*** 1.0000* 1.1205*** 1.1533*** 1.1805*** 1.0100* 1.006** 1.0017** 0.9998** 0.9999 1.0001 0.9970 1.0176** 0.9999** 0.9998

Drop Correlation index 1.3237*** 0.8424*** 0.9701*** 1.0138*** 0.8536* 0.7947*** 1.0000* 1.111*** 1.0608*** 1.0251*** 1.0011** 1.0068 1.0017** 0.9998** 0.9999 1.0001 0.9970 1.0176** 0.9999** 0.9998

*Notes: See notes in Table 3.2. We calcualte the one-month-ahead forecasting results by aggregating daily forecasts during each month, i.e., summing all daily forecasting results within the same month to generate monthly
forecasts. Table 3.4 reports aggregate monthly relative MSFEs of all forecasting models, comparing with the random walk benchmark.



93

Table 3.5: Monthly Aggregate Relative MSFEs of All Forecasting Models (Recursive
Window)*

Linear SVRrbf SVRlin SVRpoly RanForest boosting lasso ridge NN1 NN2 NN3 NN4 hybrid1 hybrid2 hybrid3 hybrid4 hybrid5 hybrid6 hybrid7 hybrid8

SPY

All Variables 1.9681*** 0.8833*** 0.9901*** 1.0111*** 0.8542 0.8708 0.9709 1.3027*** 1.2143*** 1.1665*** 1.001* 1.0025* 0.9742 1.0006 0.9917 0.9815 1.2746*** 0.9868*** 1.0184* 0.9769

Drop Macro Variables 1.272*** 0.9329*** 0.9279*** 0.8272*** 0.8977 0.7821** 0.9709 1.0239** 1.2364*** 1.1399*** 0.9701 0.9986 1.1602*** 0.9988** 0.992 0.9877 1.1481*** 1.0659*** 1.0204** 0.9876

Drop technical Variables 2.0196*** 1.0371*** 0.9898*** 1.0002** 0.6678*** 1.1757*** 0.9709 1.3048*** 0.979*** 1.0239*** 0.9999 1.4895*** 0.9643 1.0265 1.0065 0.9651 1.0006*** 0.9985*** 0.9485 1.0378***

Drop Volatility factor 2.1402*** 0.8054*** 1.0078*** 0.8201*** 0.9139 0.9217* 0.9626 1.2509*** 2.4901*** 1.2854*** 1.0039** 1.0283* 1.1142*** 0.9454 0.9808 0.9728 2.2817*** 0.9384*** 0.9836*** 0.9907

Drop Macro Factor 1.9558*** 0.7929*** 1.0047*** 0.8779*** 0.9228 0.7932*** 1.0031** 1.221** 1.7081*** 1.2742*** 0.9989*** 1.0029 1.0286** 1.0016 1.0007 1.0041*** 0.9654** 1.0523** 0.9897 1.0035

Drop Correlation index 2.5*** 0.8749*** 1.0022** 0.9772** 0.9392* 1.0503 0.9709 1.4531*** 1.5625*** 1.0748*** 1.0135 0.9967 1.0652*** 1.0759** 0.9926 0.989 1.0905*** 1.0423*** 0.9595 0.981

XLF

All Variables 3.4172*** 1.1973*** 1.2687*** 1.2315*** 0.6482*** 0.9754 1.0101 1.9073*** 1.328*** 1.159*** 1.098*** 1.018 1.1792** 1.1414*** 1.0191 1.0715*** 1.1125 1.0738*** 1.032* 1.0319

Drop Macro Variables 1.6088*** 1.067*** 1.1449*** 1.091*** 0.9687 1.0436*** 1.0154 1.5658*** 1.1494*** 1.0893*** 1.082*** 0.9522*** 1.0553 0.9977 1.0125 1.133* 1.0966*** 1.0357** 1.0669 1.0106**

Drop technical Variables 2.1866*** 1.0298** 1.0206** 1.0268*** 0.5503*** 0.9247** 0.9894 1.297*** 0.9492** 1.0018** 1.0233 0.9953 1.0091 0.987 0.9995 0.9855* 0.9817*** 0.9627** 0.9984 0.9923

Drop Volatility factor 3.3743*** 0.978*** 1.3112*** 1.088*** 0.7939* 0.8742** 0.9837 1.8959*** 1.2773*** 1.0765*** 0.9932 0.9896** 1.0616** 1.0067 0.985* 1.0005* 1.1601*** 1.064** 0.9912 1.0119

Drop Macro Factor 3.3947*** 1.1572*** 1.3094*** 1.2388*** 0.8363* 1.0022** 1.0303** 1.9457*** 1.3884*** 1.0384*** 1.1048** 1.6947*** 1.2049*** 1.0367 1.0452** 1.1877** 1.2393*** 1.2078*** 1.0289 1.3555***

Drop Correlation index 3.4324*** 1.1755*** 1.2549*** 1.2602*** 0.9109 0.8559*** 1.0101 1.9036*** 1.1143*** 1.0365*** 1.0335 1.0045 1.0371 1.0218 1.0644** 1.0084* 1.0671*** 0.9779 1.0396 1.0156

XLK

All Variables 1.5220*** 0.8708** 1.0934*** 0.9974 0.948 0.9317*** 0.9992 1.2491*** 1.1656*** 1.1179*** 1.0223 1.0013 0.9893 0.9976 0.9981 0.9999 0.9279* 0.9955 0.9938 0.9993*

Drop Macro Variables 1.2517** 0.9799*** 0.9743** 1.0062** 0.9818** 0.9027*** 0.9992 1.22** 1.1047** 1.0603*** 0.9656 1.0005* 1.0032* 0.9942 1.002 0.9995 0.965 0.9955 0.9932 1.0002**

Drop technical Variables 1.2645*** 0.8654** 0.9821 0.8782* 0.9343 0.8222** 0.9992 1.0819*** 1.0475*** 1.0613 0.9955 0.9958 0.9948 1.0033 0.9995 0.9988 1.0295** 0.9884** 1.0082 1.0013

Drop Volatility factor 1.5860*** 0.9533*** 1.0267*** 0.9842** 0.9536 0.9382*** 0.9980 1.2934*** 1.2783*** 1.2113*** 1.0230*** 1.0005** 1.0171* 0.9963 0.9988 0.9982 1.0246*** 0.9861 0.9964 0.9993

Drop Macro Factor 1.7095*** 0.9769*** 1.0286*** 0.9313* 0.9523 0.7848*** 1.001*** 1.3137*** 1.1496*** 1.1982*** 1.0255** 1.0066 1.0084*** 1.0020 1.0019 1.0028 1.0180 1.0287 1.0045 1.0048

Drop Correlation index 1.6708*** 0.898** 1.0887 0.8555*** 0.6804*** 0.8291*** 0.9992 1.2568*** 1.1443*** 0.9979 1.0614* 1.0489*** 0.999 0.9969 1.0052** 0.9999 1.0279 0.9924 1.001 1.016*

XLY

All Variables 1.8408*** 1.247** 1.4264*** 1.2182* 0.7092*** 1.0117 0.996 1.4409*** 1.3534*** 0.9925*** 1.0879*** 1.0005 1.0358 1.0055 1.0095* 0.9972 1.3947*** 0.9633 0.9973 1.0014**

Drop Macro Variables 1.4291* 1.1673*** 1.3200 1.2383 0.8173*** 0.9661 0.9971 1.4108* 1.2135*** 1.0906*** 1.0117 1.0017 1.0008 0.9978 0.9927 0.9974 0.9833 0.9909** 1.0214 0.9957

Drop technical Variables 1.5498** 0.9578* 1.0905 0.9874 0.9136 0.9025** 0.9958 1.1403** 1.0781*** 1.0088 1.0577*** 1.0019* 1.0134 1.0018 0.9843* 0.9937 1.029*** 0.9831** 0.9915** 1.0009

Drop Volatility factor 1.8591*** 1.1862 1.4617*** 1.2741* 0.8657 0.993 0.9886 1.5085*** 1.1874*** 1.0351*** 0.9740 1.1356*** 1.0255 0.9942 0.9883 1.0374 1.3065*** 1.1439*** 1.0038*** 0.9725**

Drop Macro Factor 1.9584*** 1.2437*** 1.4269*** 1.2023* 0.7152 1.0108 1.0061 1.4936** 1.1139*** 1.1534*** 1.1574*** 0.9982 1.0154 0.9985 1.0006 1.0027 1.0222*** 0.9720 1.1087 1.0042*

Drop Correlation index 1.8895*** 1.2432*** 1.2797** 1.1906* 0.8684 0.9070 0.9960 1.5130*** 1.3423*** 1.0424*** 1.0063 1.1475*** 0.9809 1.0275 1.0024 1.0159 1.1031** 1.0059 1.0163** 1.0321***

XLV

All Variables 1.2423*** 0.8312*** 0.9675* 0.9169*** 0.9525 0.8542*** 1.0072 1.0179*** 1.7498*** 1.1977*** 1.0334** 1.0066 1.0072 1.0072 1.0072 1.0072 1.0072 1.0072 1.0072 1.0072

Drop Macro Variables 1.1639*** 0.9274*** 0.9506 0.9449 0.9414*** 0.8815*** 1.0072 1.0673*** 1.0983*** 1.2340*** 1.0010 1.0017 1.0072 1.0072 1.0072 1.0072 1.0072 1.0072 1.0072 1.0072

Drop technical Variables 1.2367*** 0.8732 0.9604* 0.8502 0.9637 0.8748*** 1.0072 1.009* 1.0065*** 1.0218*** 0.9790 1.0077 1.0072 1.0072 1.0072 1.0072 1.0072 1.0072 1.0072 1.0072

Drop Volatility factor 1.1876*** 0.8643*** 0.9080 0.8853 0.7271*** 0.8821*** 1.0072 1.009*** 1.0662*** 1.1857*** 0.9798 1.0032 1.0072 1.0072 1.0072 1.0072 1.0072 1.0072 1.0072 1.0072

Drop Macro Factor 1.3455*** 0.7981*** 0.9466 0.8646 0.8776** 0.9106 1.0072 1.0427*** 1.0530*** 1.4495*** 0.9957 0.9985 1.0072 1.0072 1.0072 1.0072 1.0072 1.0072 1.0072 1.0072

Drop Correlation index 1.2112*** 0.8075*** 0.8876 0.8921*** 0.9425 0.8690 1.0072 1.0343*** 1.1448*** 1.0012** 1.0105 1.0123 1.0072 1.0072 1.0072 1.0072 1.0072 1.0072 1.0072 1.0072

*Notes: See notes in Table 3.4. Recursive window size 500.
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Table 3.6: Directional Predictive Accuracy Rate Based on 1-Step-Ahead Daily Level
Forecasting Results (Rolling Window)*

RandomWalk Linear SVRrbf SVRlin SVRpoly RanForest boosting lasso ridge NN1 NN2 NN3 NN4 hybrid1 hybrid2 hybrid3 hybrid4 hybrid5 hybrid6 hybrid7 hybrid8

SPY

All Variables 0.5303 0.5082 0.4899 0.5233 0.5228 0.5092 0.512 0.542 0.4951 0.4847 0.4974 0.4941 0.5369 0.5378 0.535 0.5369 0.5420 0.5416 0.5355 0.5420 0.5444

Drop Macro Variables 0.5303 0.4941 0.5082 0.5129 0.5106 0.5228 0.4979 0.542 0.5021 0.4984 0.4852 0.5223 0.5317 0.5326 0.5425 0.5359 0.5430 0.5270 0.5326 0.5378 0.5383

Drop technical Variables 0.5303 0.5106 0.5242 0.5294* 0.5355 0.5059 0.5049 0.5420 0.4998 0.5106 0.5190* 0.5209 0.5115 0.5364 0.5364 0.5378 0.5416 0.5326 0.5406 0.5355 0.5322

Drop Volatility factor 0.5303 0.5031 0.5167 0.5195 0.5176 0.5298 0.5153 0.5402 0.4913 0.5040 0.4974 0.5078 0.5059 0.5373 0.5402 0.5345 0.5383 0.5359 0.5312 0.5392 0.5359

Drop Macro Factor 0.5303 0.5035 0.4984 0.5214 0.5181 0.5195 0.5035 0.5303 0.5002 0.5012 0.5101 0.5031 0.5233 0.5317 0.5331 0.5364 0.5303 0.5355 0.5336 0.5355 0.5298

Drop Correlation index 0.5303 0.5129 0.5218 0.5364** 0.5322 0.5171 0.5073 0.5420 0.4951 0.5049 0.4937 0.504 0.5275 0.5369 0.5373 0.5388 0.5406 0.5411 0.5359 0.5373 0.5402

XLF

All Variables 0.5045 0.5124 0.5012 0.5073 0.5101 0.4782 0.5106 0.5059 0.5007 0.4847 0.4951 0.4913 0.4814 0.5073 0.5031 0.5087 0.5204 0.5148 0.5139 0.5129 0.5092

Drop Macro Variables 0.5045 0.4955 0.4838 0.5134 0.5016 0.4988 0.4927 0.5059 0.5007 0.4974 0.5110 0.4918 0.4927 0.5012 0.5059 0.5031 0.5110 0.5101 0.5157 0.5096 0.5106

Drop technical Variables 0.5045 0.5134 0.5035 0.5049 0.5002 0.4819 0.4979 0.5054 0.5087 0.5031 0.5096 0.5073 0.4965 0.5148 0.5059 0.5045 0.5096 0.5049 0.5228 0.5082 0.5054

Drop Volatility factor 0.5045 0.5162 0.4918 0.5016 0.4984 0.4890 0.5026 0.5049 0.4984 0.4941 0.4960 0.5308* 0.5021 0.5082 0.5063 0.5087 0.5068 0.5162 0.5129 0.5124 0.5073

Drop Macro Factor 0.5045 0.4998 0.4890 0.5106 0.5068 0.4852 0.4998 0.5040 0.4885 0.4984 0.5012 0.4922 0.4674 0.4998 0.5054 0.5059 0.5045 0.5157 0.5106 0.5134 0.5016

Drop Correlation index 0.5045 0.5204 0.4937 0.5181 0.5068 0.5040 0.5059 0.5059 0.5035 0.5106 0.5247 0.4988 0.5021 0.5026 0.5092 0.5049 0.511 0.5143 0.5195 0.5016 0.5002

XLK

All Variables 0.5406 0.5237* 0.5279 0.5524*** 0.5270 0.5200 0.4960 0.5434 0.5298 0.5002 0.5087 0.5171 0.5388 0.5402 0.5458 0.5425 0.5449 0.5552** 0.543 0.5383 0.5420

Drop Macro Variables 0.5406 0.5157 0.5186 0.5218 0.5228 0.5115 0.5087 0.5434 0.5233 0.5181 0.4937 0.5237 0.5411 0.5373 0.5416 0.5416 0.5444 0.5439 0.5420 0.5463 0.5439

Drop technical Variables 0.5406 0.5355*** 0.5364* 0.5345** 0.5251 0.5195 0.5073 0.5434 0.5171 0.5233 0.5059 0.5350 0.5378 0.5430 0.5416 0.5463 0.5420 0.5463 0.5378 0.5481 0.5383

Drop Volatility factor 0.5406 0.5218 0.5265 0.5317** 0.5176 0.5139 0.5167 0.5434 0.5284* 0.5106 0.5124 0.5247 0.5397 0.5434 0.5406 0.5406 0.5467 0.5444 0.5449 0.5420 0.5388

Drop Macro Factor 0.5406 0.5195 0.5359* 0.5383*** 0.5341* 0.5294 0.5092 0.5406 0.5308 0.4927 0.5002 0.5383 0.5322 0.5458 0.5402 0.5434 0.543 0.5481 0.5449 0.5425 0.5463

Drop Correlation index 0.5406 0.5261 0.5265 0.5486*** 0.5204 0.5223 0.511 0.5434 0.5345* 0.5007 0.5120 0.5143 0.4927 0.5388 0.5425 0.5420 0.5430 0.5486 0.5420 0.5463 0.5420

XLY

All Variables 0.5355 0.5303** 0.5176 0.5303* 0.5289 0.5087 0.5096 0.5369 0.5148 0.5176 0.4829 0.5153 0.5355 0.5326 0.5284 0.5355 0.5383 0.5373 0.5308 0.5392 0.5341

Drop Macro Variables 0.5355 0.5218 0.5153 0.519 0.5233 0.5209 0.5101 0.5369 0.5153 0.5073 0.5124 0.5082 0.5308 0.5341 0.5308 0.5373 0.5392 0.5294 0.5383 0.5303 0.5378

Drop technical Variables 0.5355 0.5289** 0.5204 0.519 0.5157 0.5153 0.5167 0.5312 0.5129 0.4941 0.5054 0.5115 0.5373 0.5261 0.5364 0.5322 0.5331 0.5326 0.5279 0.5303 0.5317

Drop Volatility factor 0.5355 0.5223 0.5190 0.5157 0.5312 0.5265 0.5162 0.5373 0.5195 0.4998 0.4857 0.5237 0.5002 0.5322 0.5341 0.5373 0.5308 0.5336 0.5359 0.535 0.5322

Drop Macro Factor 0.5355 0.5223* 0.5214 0.5110 0.5218 0.5101 0.5120 0.5378 0.5063 0.4974 0.4979 0.5082 0.5317 0.5359 0.5378 0.5345 0.5383 0.5364 0.5364 0.5341 0.5364

Drop Correlation index 0.5355 0.5326** 0.5218 0.5289 0.5242 0.5162 0.5233* 0.5369 0.5148 0.5101 0.5016 0.5171 0.5016 0.5359 0.5336 0.5303 0.5341 0.5270 0.5416 0.5303 0.5303

XLV

All Variables 0.5228 0.5082 0.4866 0.5082 0.4852 0.504 0.5045 0.5228 0.4852 0.4908 0.4861 0.5359* 0.5148 0.5214 0.5228 0.5228 0.5228 0.5233 0.5223 0.5228 0.5228

Drop Macro Variables 0.5228 0.4932 0.5035 0.4918 0.5016 0.5045 0.5012 0.5228 0.4941 0.5031 0.5063 0.5124 0.5242 0.5214 0.5228 0.5228 0.5228 0.5233 0.5223 0.5228 0.5228

Drop technical Variables 0.5228 0.5031 0.504 0.5204 0.5068 0.5059 0.5087 0.5228 0.5021 0.5021 0.5059 0.5279 0.5186 0.5214 0.5228 0.5228 0.5228 0.5233 0.5223 0.5228 0.5228

Drop Volatility factor 0.5228 0.5031 0.4998 0.5078 0.4974 0.5007 0.5031 0.5228 0.4904 0.5181 0.5134 0.5148 0.5298 0.5214 0.5228 0.5228 0.5228 0.5233 0.5223 0.5228 0.5228

Drop Macro Factor 0.5228 0.5124 0.4922 0.5082 0.5016 0.5045 0.5162 0.5228 0.4899 0.4974 0.5049 0.5073 0.5195 0.5214 0.5228 0.5228 0.5228 0.5233 0.5223 0.5228 0.5228

Drop Correlation index 0.5228 0.5082 0.5176 0.5148 0.489 0.5068 0.4960 0.5228 0.4838 0.4955 0.5054 0.5195 0.5176 0.5214 0.5228 0.5228 0.5228 0.5233 0.5223 0.5228 0.5228

*Notes: Table 3.6 reports the 1-step-head directional predictive accuracy rate (DPAR) of market sector ETFs With rolling window size 500, for the period 2009:6-2017:12. All DPARs are derived from level forecasting results. If the
forecasted return is positive, then it is classified as an upward direction, otherwise as a downward direction. Entries in bold denote models with highest directional accuracy rate for a given forecasting target and predictors. Starred
entries denote rejection of the null of no information about the direction of change forecasting, based on Pesaran and Timmermann (1992) (PT) test. Significance levels for the test are reported as ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, and
∗p < 0.1, where p is the p−value corresponding to PT test statistics.



95

Table 3.7: Directional Predictive Accuracy Rate Based on 1-Step-Ahead Daily Level
Forecasting Results (Recursive Window)*

RandomWalk Linear SVRrbf SVRlin SVRpoly RanForest boosting lasso ridge NN1 NN2 NN3 NN4 hybrid1 hybrid2 hybrid3 hybrid4 hybrid5 hybrid6 hybrid7 hybrid8

SPY

All Variables 0.4988 0.4951 0.4937 0.5242 0.5256 0.5378 0.5364* 0.5129 0.4908 0.4946 0.496 0.4852 0.4979 0.5106 0.5218 0.5129 0.5181 0.496 0.5228 0.5214 0.5171

Drop Macro Variables 0.4988 0.4814 0.5068 0.5265 0.5012 0.5289 0.5045 0.5129 0.4946 0.5124* 0.4918 0.4861 0.4843 0.5040 0.5106 0.5181 0.5251 0.5073 0.5092 0.5021 0.5045

Drop technical Variables 0.4988 0.5059 0.5388** 0.5355 0.5350 0.5298** 0.5242* 0.5129 0.5082 0.5087 0.4725 0.5035 0.4969 0.5200 0.5214 0.5200 0.4998 0.5209 0.5106 0.5139 0.5171

Drop Volatility factor 0.4988 0.4819 0.5139 0.5237 0.5181 0.5331 0.5326 0.5139 0.4852 0.5007 0.4965 0.511 0.4927 0.5167 0.5063 0.5186 0.5176 0.5298 0.5026 0.5176 0.5157

Drop Macro Factor 0.4988 0.4937 0.4974 0.5195 0.5237 0.5388 0.5218* 0.4988 0.4890 0.4843 0.4955 0.5059 0.5087 0.5021 0.5035 0.5002 0.4984 0.5063 0.5031 0.5073 0.4993

Drop Correlation index 0.4988 0.4955 0.5026 0.5171 0.5209 0.5153 0.5181 0.5129 0.4767 0.5012 0.5129 0.4730 0.4988 0.5186 0.5143 0.5270 0.5214 0.5092 0.5054 0.5190 0.5204

XLF

All Variables 0.4998 0.5021 0.5082 0.5016 0.5049 0.4791 0.5148 0.4974 0.4979 0.4852 0.5002 0.4908 0.4918 0.4998 0.5026 0.4965 0.4960 0.5012 0.5026 0.4979 0.5021

Drop Macro Variables 0.4998 0.5026 0.4951 0.4984 0.5049 0.5035 0.5134 0.4974 0.5063 0.4937 0.5035 0.5054 0.4974 0.5007 0.4899 0.4998 0.4960 0.4993 0.5012 0.4871 0.4993

Drop technical Variables 0.4998 0.5031 0.5087 0.4946 0.4974 0.4829 0.4965 0.4974 0.4904 0.5068 0.5026 0.4871 0.4946 0.5026 0.4974 0.5035 0.5007 0.4960 0.5059 0.5040 0.4979

Drop Volatility factor 0.4998 0.5035 0.5078 0.5049 0.4969 0.5040 0.5134 0.4974 0.5002 0.4955 0.5016 0.4960 0.5031 0.5007 0.4988 0.5026 0.4988 0.4941 0.5063 0.4960 0.5026

Drop Macro Factor 0.4998 0.4998 0.4908 0.5007 0.5031 0.4969 0.5082 0.504 0.5016 0.5106 0.4937 0.4984 0.4829 0.4932 0.5059 0.4922 0.4988 0.5002 0.4965 0.5016 0.5021

Drop Correlation index 0.4998 0.5045 0.5101 0.5045 0.5115 0.5124 0.5078 0.4974 0.5035 0.5181 0.4922 0.5016 0.5092 0.4927 0.5016 0.4998 0.4993 0.5082 0.5115 0.4984 0.4965

XLK

All Variables 0.5369 0.5223 0.5256 0.5251 0.5303 0.5477 0.5265 0.5359 0.5218 0.5171 0.4899 0.5204 0.5326 0.5425 0.5430 0.5458 0.5364 0.5416 0.5500 0.5463 0.5350

Drop Macro Variables 0.5369 0.4998 0.5265 0.5355 0.5420 0.5265 0.5228 0.5359 0.5031 0.5063 0.4979 0.5162 0.5289 0.5458 0.5383 0.5420 0.5369 0.5420 0.5472 0.5458 0.5364

Drop technical Variables 0.5369 0.5237 0.5373 0.5406 0.5312 0.5458 0.5364 0.5359 0.5124 0.4998 0.5200 0.5242 0.5331 0.5406 0.5378 0.5350 0.5392 0.5449 0.5430 0.5439 0.5350

Drop Volatility factor 0.5369 0.5294 0.5275 0.5233 0.5115 0.5463 0.5223 0.5359 0.5214 0.4937 0.4876 0.4984 0.5350 0.5392 0.5434 0.5411 0.5373 0.5434 0.5402 0.5486 0.5463

Drop Macro Factor 0.5369 0.5016 0.5317 0.5115 0.5265 0.5458 0.4960 0.5369 0.5082 0.5298** 0.5026 0.4974 0.5350 0.5359 0.5359 0.5388 0.5388 0.5411 0.5449 0.5402 0.5383

Drop Correlation index 0.5369 0.5214 0.527 0.5265 0.5242 0.5251 0.5031 0.5359 0.5157 0.4899 0.5063 0.5120 0.4941 0.5453 0.5359 0.5378 0.5430 0.5481 0.5449 0.551 0.5500

XLY

All Variables 0.5294 0.5195 0.5186 0.5200 0.5265 0.5162 0.5383 0.5294 0.5167 0.5031 0.5124 0.5167 0.5279 0.5265 0.5284 0.5279 0.5317 0.5388 0.5345 0.5326 0.5275

Drop Macro Variables 0.5294 0.5303** 0.5228 0.5326 0.5345 0.5284** 0.5294 0.5298 0.5209 0.4941 0.4974 0.4955 0.5265 0.5270 0.5326 0.5308 0.5294 0.5397 0.5341 0.5345 0.5275

Drop technical Variables 0.5294 0.5087 0.5298 0.5298 0.5298 0.5341 0.5336 0.5294 0.5035 0.5007 0.4988 0.5284 0.5190 0.5350 0.5265 0.5350 0.5303 0.5308 0.5284 0.5350 0.5312

Drop Volatility factor 0.5294 0.5204 0.52 0.5223 0.5223 0.5336 0.535 0.5294 0.5124 0.5209* 0.5026 0.5078 0.4908 0.5322 0.5294 0.5303 0.535 0.5303 0.5308 0.527 0.5406

Drop Macro Factor 0.5294 0.5162 0.5096 0.5153 0.5223 0.5261 0.5373 0.5294 0.5096 0.5031 0.5031 0.5026 0.5233 0.5364 0.5359 0.5308 0.5275 0.5350 0.5392 0.5364 0.5303

Drop Correlation index 0.5294 0.5317** 0.5251 0.5284 0.5317 0.5312 0.5256 0.5294 0.5148 0.5162 0.5261** 0.5181 0.5129 0.5308 0.5242 0.5308 0.5312 0.5383 0.5289 0.5317 0.5284

XLV

All Variables 0.5228 0.5045 0.5045 0.5035 0.4955 0.5275 0.5261 0.5186 0.5063 0.4969 0.4918 0.5002 0.5115 0.5186 0.5186 0.5186 0.5186 0.5186 0.5186 0.5186 0.5186

Drop Macro Variables 0.5228 0.4857 0.5096 0.4984 0.5040 0.5087 0.5021 0.5186 0.4904 0.4984 0.5101 0.5040 0.5106 0.5186 0.5186 0.5186 0.5186 0.5186 0.5186 0.5186 0.5186

Drop technical Variables 0.5228 0.5007 0.511 0.5186 0.5242 0.5247 0.5214 0.5186 0.5171 0.5035 0.4984 0.5045 0.512 0.5186 0.5186 0.5186 0.5186 0.5186 0.5186 0.5186 0.5186

Drop Volatility factor 0.5228 0.5026 0.512 0.5134 0.5139 0.5049 0.5214 0.5186 0.504 0.5186 0.5059 0.5256 0.5171 0.5186 0.5186 0.5186 0.5186 0.5186 0.5186 0.5186 0.5186

Drop Macro Factor 0.5228 0.4922 0.5209 0.5101 0.5101 0.5233 0.5233 0.5186 0.4974 0.5115 0.4927 0.519 0.52 0.5186 0.5186 0.5186 0.5186 0.5186 0.5186 0.5186 0.5186

Drop Correlation index 0.5228 0.5153 0.5110 0.5237 0.5031 0.5181 0.5214 0.5186 0.5087 0.5087 0.5026 0.5143 0.5167 0.5186 0.5186 0.5186 0.5186 0.5186 0.5186 0.5186 0.5186

*Notes: See notes to Table 3.6. Recursive window size 500.
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Table 3.8: Directional Predictive Accuracy Rate Based on Monthly Aggregate Level
Forecasting Results (Rolling Window)*

RandomWalk Linear SVRrbf SVRlin SVRpoly RanForest boosting lasso ridge NN1 NN2 NN3 NN4 hybrid1 hybrid2 hybrid3 hybrid4 hybrid5 hybrid6 hybrid7 hybrid8

SPY

All Variables 0.5922 0.6117*** 0.7184*** 0.6117** 0.6214** 0.7573*** 0.6408*** 0.6019 0.5825* 0.5049 0.5534 0.6019 0.5922 0.6019 0.6117 0.5922 0.6117 0.5922 0.5825 0.5922 0.6117

Drop Macro Variables 0.5922 0.6117** 0.6602*** 0.6505*** 0.6019* 0.6893*** 0.7476*** 0.6019 0.5825 0.5825* 0.5049 0.6117 0.5922 0.6214 0.6117 0.5922 0.6117 0.5922 0.5534 0.6019 0.6019

Drop technical Variables 0.5922 0.5922** 0.6796*** 0.6699*** 0.6796*** 0.8058*** 0.7573*** 0.6019 0.6117** 0.5534 0.5243 0.5825 0.4854 0.6117 0.6019 0.6214 0.6117 0.6019 0.6408* 0.5922 0.5728

Drop Volatility factor 0.5922 0.6117*** 0.6602*** 0.6214** 0.6311** 0.7476*** 0.6602*** 0.6117 0.6019** 0.4466 0.5437 0.6214 0.5534 0.6214 0.6019 0.5825 0.6117 0.6019 0.5825 0.6019 0.5922

Drop Macro Factor 0.5922 0.5922** 0.7379*** 0.6602*** 0.6602*** 0.6796*** 0.7379*** 0.5922 0.5728 0.5243 0.5146 0.6019 0.6019 0.6019 0.5922 0.5922 0.6019 0.6117 0.5825 0.5922 0.5922

Drop Correlation index 0.5922 0.6117*** 0.6408*** 0.5922 0.6019 0.7864*** 0.767*** 0.6019 0.5534 0.5922 0.5631 0.6019 0.6019 0.6117 0.6117 0.6117 0.6019 0.5922 0.6019 0.5825 0.6019

XLF

All Variables 0.6019 0.6311*** 0.6505*** 0.5922** 0.534 0.835*** 0.7087*** 0.6019 0.5825* 0.5437 0.6019* 0.6311** 0.5922 0.6214 0.6019 0.6019 0.5922 0.6214 0.6408* 0.5534 0.6311*

Drop Macro Variables 0.6019 0.5534 0.6505*** 0.5728 0.6602*** 0.6408* 0.6602*** 0.6019 0.5243 0.5922* 0.5534 0.5534 0.5146 0.6311* 0.6505** 0.5922 0.5825 0.6019 0.6214 0.5922 0.6019

Drop technical Variables 0.6019 0.5825** 0.699*** 0.5825** 0.5825** 0.7864*** 0.5922* 0.6019 0.6019** 0.6214** 0.5825 0.6214 0.5534 0.6408** 0.6214 0.6117 0.5728 0.6505** 0.6699*** 0.6117 0.6214

Drop Volatility factor 0.6019 0.6019** 0.6214* 0.5631 0.5922 0.7573*** 0.6699*** 0.6019 0.5534 0.5922 0.6408** 0.5728 0.6214** 0.6214* 0.5825 0.5922 0.6214* 0.6117 0.6214 0.6019 0.5825

Drop Macro Factor 0.6019 0.5922** 0.6311** 0.5631 0.5825 0.7767*** 0.6893*** 0.6117 0.5534 0.5437 0.5825 0.6117 0.4951 0.6602** 0.6408* 0.6117 0.6505** 0.6505** 0.6408* 0.5922 0.6117

Drop Correlation index 0.6019 0.5728* 0.6311** 0.6019** 0.5534 0.7670*** 0.6796*** 0.6019 0.6019** 0.5049 0.5825 0.5534 0.5631 0.6505** 0.6214* 0.6214* 0.6214 0.6408** 0.6311* 0.6019 0.6019

XLK

All Variables 0.6117 0.6311*** 0.6699*** 0.6699*** 0.6699*** 0.7087*** 0.7184*** 0.6311 0.6408*** 0.6117* 0.5728 0.6505 0.6117 0.6214 0.6214 0.6408 0.6311 0.6408 0.6699* 0.6505 0.6311

Drop Macro Variables 0.6117 0.5534 0.6408* 0.6214 0.6311* 0.6408* 0.6990*** 0.6311 0.5631 0.5534 0.5728 0.6602* 0.6214 0.6311 0.6214 0.6311 0.6311 0.6505 0.6408 0.6408 0.6311

Drop technical Variables 0.6117 0.6214** 0.6311 0.699*** 0.6602*** 0.6990*** 0.7184*** 0.6311 0.5728* 0.5825 0.6311 0.6311 0.6311 0.6311 0.6311 0.6311 0.6311 0.6408 0.6408 0.6117 0.6311

Drop Volatility factor 0.6117 0.5922** 0.6214* 0.6311*** 0.6311*** 0.7184*** 0.7184*** 0.6311 0.5825* 0.5243 0.6214 0.6408 0.6214 0.6311 0.6311 0.6311 0.6311 0.6311 0.6408 0.6408 0.6311

Drop Macro Factor 0.6117 0.6602*** 0.6505** 0.7184*** 0.6117 0.699*** 0.6408*** 0.6214 0.6311* 0.534 0.5146 0.6505 0.5825 0.6214 0.6117 0.6117 0.6311 0.6602 0.6408 0.6311 0.6602

Drop Correlation index 0.6117 0.6214** 0.6602** 0.6699*** 0.6602*** 0.7476*** 0.6893*** 0.6311 0.6311** 0.5728 0.6019 0.5728 0.5825 0.6117 0.6311 0.6214 0.6214 0.6505 0.6602 0.6408 0.6214

XLY

All Variables 0.5922 0.534 0.5534 0.5728 0.534 0.7573*** 0.6408*** 0.5728 0.534 0.5825 0.5728 0.5631 0.5922 0.5825 0.5922 0.5922 0.5728 0.6117 0.6019 0.5922 0.5922

Drop Macro Variables 0.5922 0.5243 0.5534 0.6019 0.5825 0.7184*** 0.7087*** 0.5728 0.5243 0.5922 0.5825 0.6019 0.5922 0.5922 0.5825 0.5825 0.5728 0.5922 0.5825 0.5922 0.5728

Drop technical Variables 0.5922 0.5728 0.5534 0.5631 0.5534 0.6893*** 0.6796*** 0.5825 0.5631 0.534 0.5825 0.5049 0.5922 0.5922 0.6117 0.5922 0.5825 0.6019 0.6117 0.6019 0.5825

Drop Volatility factor 0.5922 0.5437 0.5728 0.534 0.5243 0.7087*** 0.6699*** 0.5728 0.5049 0.5534 0.5728 0.5922 0.5728 0.5922 0.5922 0.5922 0.5922 0.6019 0.6019 0.5728 0.6311

Drop Macro Factor 0.5922 0.5922** 0.5437 0.5922* 0.5631 0.7379*** 0.6408*** 0.5922 0.4951 0.5534 0.5631 0.6019 0.5922 0.5631 0.5922 0.5728 0.5825 0.5728 0.5825 0.5922 0.5825

Drop Correlation index 0.5922 0.5146 0.5437 0.5437 0.5437 0.7087*** 0.6893*** 0.5728 0.5243 0.5825 0.5534 0.5728 0.5534 0.5922 0.6019 0.5728 0.5728 0.5825 0.6311 0.6019 0.5825

XLV

All Variables 0.6214 0.6505*** 0.6699** 0.6699*** 0.6505** 0.7670*** 0.7282*** 0.6214 0.6311** 0.466 0.5631 0.6505 0.6505 0.6214 0.6214 0.6214 0.6214 0.6214 0.6117 0.6214 0.6214

Drop Macro Variables 0.6214 0.5243 0.6505 0.6214 0.6602** 0.6990*** 0.6602** 0.6214 0.5922 0.6699*** 0.6214 0.5631 0.6408 0.6214 0.6214 0.6214 0.6214 0.6214 0.6117 0.6214 0.6214

Drop technical Variables 0.6214 0.6214* 0.6699* 0.6505* 0.6311 0.7573*** 0.7476*** 0.6214 0.6602*** 0.6311* 0.6408* 0.6505 0.6408 0.6214 0.6214 0.6214 0.6214 0.6214 0.6117 0.6214 0.6214

Drop Volatility factor 0.6214 0.6311** 0.6311 0.6214 0.5437 0.7476*** 0.7282*** 0.6214 0.6408** 0.5534 0.5437 0.6214 0.6505 0.6214 0.6214 0.6214 0.6214 0.6214 0.6117 0.6214 0.6214

Drop Macro Factor 0.6214 0.6117*** 0.699*** 0.6214* 0.5631 0.7573*** 0.7282*** 0.6214 0.6214** 0.5631 0.5825* 0.6214 0.6214 0.6214 0.6214 0.6214 0.6214 0.6214 0.6117 0.6214 0.6214

Drop Correlation index 0.6214 0.6311** 0.699*** 0.6408* 0.6311** 0.7573*** 0.7087*** 0.6214 0.6311** 0.5825 0.5825 0.6117 0.6019 0.6214 0.6214 0.6214 0.6214 0.6214 0.6117 0.6214 0.6214

*Notes: See notes to Table 3.6. We calcualte the one-month-ahead forecasting results by aggregating daily forecasts during each month, i.e., summing all daily forecasting results within the same month to generate monthly forecasts. All DPARs are
derived from monthly aggregate results. If the monthly aggregate return is positive, then it is classified as an upward direction, otherwise as a downward direction.
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Table 3.9: Directional Predictive Accuracy Rate Based on Monthly Aggregate Level
Forecasting Results (Recursive Window)*

RandomWalk Linear SVRrbf SVRlin SVRpoly RanForest boosting lasso ridge NN1 NN2 NN3 NN4 hybrid1 hybrid2 hybrid3 hybrid4 hybrid5 hybrid6 hybrid7 hybrid8

SPY

All Variables 0.5146 0.4951 0.6893*** 0.6019 0.6602*** 0.6796*** 0.6699*** 0.5437 0.5728** 0.4757 0.3883 0.5728** 0.5243 0.5728 0.5243 0.5922 0.5631 0.4951 0.5146 0.5049 0.5437

Drop Macro Variables 0.5146 0.5049 0.6505*** 0.6117 0.5922 0.6408** 0.6796*** 0.5437 0.5340 0.4951 0.5049 0.5340 0.5049 0.5340 0.5534 0.5146 0.5631 0.5534 0.4951 0.5049 0.5243

Drop technical Variables 0.5146 0.5146 0.6117* 0.6311* 0.6117 0.8155*** 0.6699*** 0.5437 0.5922*** 0.5825** 0.5049 0.4563 0.4757 0.5825 0.5534 0.5534 0.5728 0.5437 0.4951 0.534 0.5146

Drop Volatility factor 0.5146 0.4660 0.6699*** 0.6311** 0.6505*** 0.6408** 0.6699*** 0.5437 0.5534** 0.4369 0.4563 0.4757 0.5437 0.5049 0.5049 0.5437 0.5534 0.6019* 0.5728 0.5340 0.5631

Drop Macro Factor 0.5146 0.4757 0.7184*** 0.5922 0.6505** 0.6019 0.6893*** 0.5146 0.5728** 0.5437* 0.4951 0.5243 0.5146 0.5146 0.5243 0.5049 0.5146 0.5243 0.5146 0.5146 0.5146

Drop Correlation index 0.5146 0.4563 0.6602*** 0.5728 0.6019 0.6214 0.6408** 0.5437 0.4854 0.4757 0.5437 0.5146 0.5146 0.4757 0.5631 0.5728 0.5534 0.5437 0.5146 0.5243 0.5728

XLF

All Variables 0.5243 0.5243 0.4951 0.5340 0.5437 0.8058*** 0.6019 0.5243 0.4466 0.5243 0.6019*** 0.5049 0.5728 0.5437 0.5340 0.534 0.5728 0.5146 0.5340 0.5437 0.5437

Drop Macro Variables 0.5243 0.5049 0.5825 0.5922 0.6505** 0.6408*** 0.6505*** 0.5243 0.4466 0.5049 0.4466 0.4466 0.5728* 0.5340 0.5146 0.5243 0.5049 0.5146 0.5146 0.4951 0.5437

Drop technical Variables 0.5243 0.5437 0.5631 0.5340 0.5243 0.7767*** 0.5243 0.5243 0.534 0.4563 0.4563 0.5146 0.4854 0.5243 0.5631 0.5340 0.5534 0.5728 0.5146 0.5437 0.534

Drop Volatility factor 0.5243 0.5243 0.6408*** 0.5631 0.6602*** 0.699*** 0.6019 0.5243 0.4369 0.4757 0.4466 0.534 0.5631 0.5437 0.5340 0.534 0.5146 0.5243 0.5243 0.5340 0.5243

Drop Macro Factor 0.5243 0.5049 0.4563 0.534 0.5631 0.6893*** 0.5728 0.5340 0.4272 0.4951 0.5437 0.4563 0.4660 0.5146 0.5437 0.5146 0.5049 0.4854 0.5243 0.5437 0.5049

Drop Correlation index 0.5243 0.4854 0.5146 0.5243 0.5631* 0.5922 0.5825 0.5243 0.4563 0.4854 0.4466 0.5340 0.5922** 0.5437 0.5534 0.5534 0.5146 0.5146 0.5243 0.5534 0.5437

XLK

All Variables 0.6117 0.5437 0.6699*** 0.5922 0.6214 0.6602 0.6602** 0.6311 0.4660 0.6019* 0.5340 0.6019 0.6117 0.6408 0.6311 0.6311 0.6311 0.6505 0.6214 0.5922 0.6408

Drop Macro Variables 0.6117 0.4660 0.6505 0.6602 0.6699* 0.6505 0.699*** 0.6311 0.4272 0.5534 0.4563 0.6408 0.6214 0.6214 0.6117 0.6117 0.6311 0.6311 0.6408 0.6117 0.6214

Drop technical Variables 0.6117 0.5631 0.6408* 0.6214 0.6311 0.6893*** 0.6893*** 0.6311 0.5437 0.5922* 0.5243 0.6019 0.6019 0.6311 0.6214 0.6408 0.6214 0.6505 0.6408 0.6214 0.6019

Drop Volatility factor 0.6117 0.5243 0.6214* 0.5728 0.5728 0.6699* 0.6117 0.6311 0.4563 0.4369 0.466 0.5922 0.6214 0.6311 0.6408 0.6311 0.6311 0.6408 0.6117 0.6117 0.6408

Drop Macro Factor 0.6117 0.5049 0.6796*** 0.5534 0.6117 0.6699* 0.6893*** 0.6117 0.4563 0.5825 0.5825 0.6214 0.5631 0.6117 0.6117 0.6117 0.6214 0.6408 0.6311 0.6117 0.6214

Drop Correlation index 0.6117 0.4757 0.6505** 0.6117 0.6699*** 0.7670*** 0.6796*** 0.6311 0.4951 0.4854 0.5631 0.5049 0.6408** 0.6408 0.6214 0.6311 0.6408 0.6019 0.6699* 0.6505 0.6408

XLY

All Variables 0.5825 0.5437 0.5243 0.5534 0.5825 0.767*** 0.6019 0.5728 0.5049 0.5437 0.5049 0.5340 0.5922 0.5728 0.5631 0.5825 0.5728 0.5728 0.6117 0.5631 0.5631

Drop Macro Variables 0.5825 0.4369 0.5631 0.5437 0.5534 0.699*** 0.6408* 0.5728 0.4175 0.5340 0.5146 0.5534 0.5728 0.5728 0.5631 0.5728 0.5728 0.6117 0.6019 0.5728 0.5631

Drop technical Variables 0.5825 0.5922* 0.5631 0.5825 0.6117 0.6505* 0.6214 0.5728 0.5631 0.5340 0.5049 0.5825 0.5631 0.5825 0.5825 0.5728 0.5728 0.5922 0.6214 0.6019 0.5631

Drop Volatility factor 0.5825 0.5631 0.5146 0.534 0.5534 0.6311 0.6019 0.5728 0.4951 0.5631 0.5243 0.6019 0.5049 0.5825 0.5728 0.5534 0.5825 0.5825 0.5728 0.5534 0.5922

Drop Macro Factor 0.5825 0.5049 0.5049 0.6019 0.5631 0.7379*** 0.5534 0.5728 0.5146 0.4563 0.4466 0.4757 0.5728 0.5922 0.5922 0.5825 0.5728 0.6019 0.6019 0.5922 0.5728

Drop Correlation index 0.5825 0.4854 0.5631 0.6311* 0.5631 0.6311 0.6214 0.5728 0.5049 0.4466 0.5437 0.5631 0.5146 0.5728 0.5534 0.5728 0.5825 0.5825 0.5825 0.5631 0.5631

XLV

All Variables 0.6214 0.6019 0.7087*** 0.6408** 0.6602** 0.7282*** 0.7087** 0.6117 0.5922 0.5243 0.534 0.6117 0.6019 0.6117 0.6117 0.6117 0.6117 0.6117 0.6117 0.6117 0.6117

Drop Macro Variables 0.6214 0.5146 0.6505 0.6019 0.5922 0.6602 0.6699 0.6117 0.5437 0.5534 0.5146 0.6214 0.6019 0.6117 0.6117 0.6117 0.6117 0.6117 0.6117 0.6117 0.6117

Drop technical Variables 0.6214 0.5728 0.6408* 0.6602** 0.6311 0.7087** 0.699* 0.6117 0.6408** 0.5340 0.5728 0.5922 0.5728 0.6117 0.6117 0.6117 0.6117 0.6117 0.6117 0.6117 0.6117

Drop Volatility factor 0.6214 0.5922 0.6699** 0.6214 0.5922 0.7573*** 0.7087** 0.6117 0.6117* 0.5825 0.6311* 0.6602* 0.6311 0.6117 0.6117 0.6117 0.6117 0.6117 0.6117 0.6117 0.6117

Drop Macro Factor 0.6214 0.5437** 0.7282*** 0.6214** 0.6019 0.7282*** 0.7184*** 0.6117 0.6214*** 0.5631 0.4660 0.5922 0.6117 0.6117 0.6117 0.6117 0.6117 0.6117 0.6117 0.6117 0.6117

Drop Correlation index 0.6214 0.6408* 0.6505** 0.6796*** 0.6602** 0.6990* 0.7087** 0.6117 0.6214 0.5146 0.5631 0.6214 0.6117 0.6117 0.6117 0.6117 0.6117 0.6117 0.6117 0.6117 0.6117

*Notes: See notes to Table 3.8. Recursive window size 500.
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Figure 3.6: Monthly Aggregate Relative MSFEs For Machine Leaning Models (Rolling Window Size)*

*Notes: Figure 3.6 shows the relative mean square forecasting error (MSFE) for machine learning models. Relative
MSFEs are calculated such that numerical values less than unity indicates the alternative model has lower point MSFE
than the random walk benchmark model. The panels from top to bottom display different forecasting targets including
SPY (S&P 500 ETF), XLF (financial sector ETF), XLK (technology sector ETF), XLY (consumer discretionary sector

ETF), and XLV (health care sector ETF). Results in each panel are obtained in Table 3.4 under the row of All Variables.
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Figure 3.7: Monthly Aggregate Relative DPARs for Machine Leaning Models (Rolling Window Size)*

*Notes: Figure 3.7 shows the relative directional prediction accuracy rate (DPARs) for machine learning models. Relative
DAPRs are calculated such that numerical values less than unity indicates the alternative model has lower DPAR than
the random walk benchmark model. The panels from top to bottom display different forecasting targets including SPY

(S&P 500 ETF), XLF (financial sector ETF), XLK (technology sector ETF), XLY (consumer discretionary sector ETF),
and XLV (health care sector ETF). Results in each panel are obtained in Table 3.8 under the row of All Variables.
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Figure 3.8: Monthly Aggregate Relative MSFEs Due to the Factors (Recursive Window Size)*

*Notes: See notes to Figure 3.6. Figure 3.8 shows the relative mean square forecasting error (MSFE) of forecasting
models with factors. The benchmark model is the same forecasting models but without factors. The results in each panel

are obtained from Table 3.5. Within each forecasting target (SPY, XLF, XLK, XLY, and XLV), we navigate to the
MSFEs best machine learning model and further analyze the contribution of adding each factor.
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Figure 3.9: Monthly Aggregate Relative DPARs Due to the Factors (Rolling Window Size)*

*Notes: See notes in Figure 3.7. Figure 3.9 shows the relative directional prediction accuracy rate (DPARs) of forecasting
models with factors. The benchmark model is the same forecasting models but without factors. The results in each panel

are obtained from Table 3.9. Within each forecasting target (SPY, XLF, XLK, XLY, and XLV), we navigate to the
DPARs best machine learning model and further analyze the contribution of adding each factor.
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Chapter 4

Financial Econometrics and Big Data: A Survey of

Volatility Estimators and Tests for the Presence of Jumps

and Co-Jumps

4.1 Introduction

The importance of integrated volatility, jumps and co-jumps in the financial econometrics

literature and in terms of successful risk management by investors is quite obvious now,

given the amount of research that has gone into this field. Measures of integrated volatility

are crucial given the advent of numerous volatility based derivative products traded in

financial markets while tests for jumps are essential in modeling and predicting volatility

and returns. Tests of co-jumps on the other hand are meaningful indicators of transmission

of financial shocks across different sectors, companies and markets. The rationale behind

this chapter is to discuss some of recent advances in jump and co-jump testing methodology

and measurement of integrated volatility, and the properties thereof, in a way which would

help both researchers and practitioners in application of such econometric methods in

finance. We begin by surveying the most widely used integrated volatility measures, jump

and co-jump tests, followed by an empirical analysis using high frequency intra-day stock

prices of DOW 30 companies and ETFs.

Daily integrated volatility is unobservable. Econometricians have developed numerous

measures which estimate price fluctuations in a variety of ways. One of the earliest mea-

sures is the Realized Volatility in Andersen et al. (2001). However this measure does not

separate jump variation from variation due to continuous components. Barndorff-Nielsen
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and Shephard (2004) use the product of adjacent intra-day returns to develop jump ro-

bust measures Bipower and Tripower Variations. One of the more recent techniques of

separating out the jump component is the truncation methodology which essentially elim-

inates returns which are above a given threshold as in Corsi et al. (2010) & Aı̈t-Sahalia

et al. (2009). One important caveat of high-frequency data is the existence of market mi-

crostructure noise which creates a bias in the estimation procedure. Zhang et al. (2005),

Zhang et al. (2006) and Kalnina and Linton (2008) solved this problem with noise robust

volatility estimators.

In Duong and Swanson (2011), the authors find that 22.8% of the days during the 1993-

2000 period had jumps while 9.4% of the days during the 2001-2008 period had jumps.

The existence of jumps in financial markets is obvious, which has led many researches

to develop techniques which can test for jumps. Jump diffusion is pivotal in analyzing

asset movement in financial econometrics and developing jump tests to identify jumps has

been the focus for many theoretical econometricians in past few years. Using the ratio

of Bipower Variation and estimated quadratic variation, Barndorff-Nielsen and Shephard

(2006) construct a non parametric test for the existence of jumps. Lee and Mykland (2007)

on the other hand propose tests to detect the exact timing of jumps at the intra-day level

while Jiang and Oomen (2008) provide a “swap variance” approach to detect the presence

of jumps. Instead of the more widely use “fixed time span” tests, Corradi et al. (2014)

and Corradi et al. (2018) develop “long time span” jump test, building on earlier work by

Aı̈t-Sahalia (2002).

Co-jump tests which are instrumental in identifying systemic risk across multiple sec-

tors and markets are relatively new in the literature. Co-jumps reflect market correlation

and have important implication for portfolio management and risk hedging. There are

tests which utilize univariate jump tests to identify co-jumps among multivariate processes
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(Gilder et al. (2014)), while co-jump tests can also be directly applied to multiple price

processes (see, e.g., Jacod and Todorov (2009), Bandi and Reno (2016), Bibinger and

Winkelmann (2015) and Caporin et al. (2017)). Gnabo et al. (2014) propose a co-jump

test based on bootstrapping methods, Bandi and Reno (2016) develop a nonparametric

infinitesimal moments method to detect co-jumps between asset returns and volatilities

and Caporin et al. (2017) build a co-jump test based on the comparison between smoothed

realized variance and smoothed random realized variation.

As an illustration of the aforementioned testing methodologies and estimation proce-

dures, an empirical analysis is carried out using high frequency intra-day stock prices of six

DOW 30 companies and ETFs which include The Boeing Company (BA), Exxon Mobile

Corporation (XOM), Johnson & Johnson (JNJ), JPMorgan Chase & Co. (JPM), Microsoft

Corporation (MSFT) and Walmart Inc. (WMT) and two SPDR sector ETFs XLE & XLK.

We use three jump tests; ASJ test (Aı̈t-Sahalia et al. (2009)), BNS test Barndorff-Nielsen

and Shephard (2006) and LM test (Lee and Mykland (2007)). In terms of co-jump tests

we use, JT test (Jacod and Todorov (2009)), BLT test ( Bollerslev et al. (2008)) and GST

coexceedance rule (Gilder et al. (2014)). For estimation of integrated volatility we make

use of Realized Volatility (Andersen et al. (2001)), Bipower Variation and Tripower Vari-

ation (Barndorff-Nielsen and Shephard (2004)), Truncated Realized Volatility (Aı̈t-Sahalia

et al. (2009)), MedRV and MinRV (Andersen et al. (2012)). In our findings, we report

the volatility movement of the different stocks and ETFs, percentage of days identified as

having jumps and co-jumps, kernel density plots of the different jump and co-jump test

statistics as well the proportion of jump variation to the total variation in the asset prices.

The important empirical findings can be summarized as follows. Over the entire sample

period JPMorgan has the highest and Johnson & Johnson has the lowest mean estimated

integrated volatility. Amongst all the volatility measures, Bipower Variation reports the
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lowest mean volatility estimate while Realized Volatility reports the highest mean volatility

estimate for any given stock or ETF. This can be explained by the fact that in the presence

of frequent jumps, Realized Volatility overestimates integrated volatility. All individual

stocks achieve their highest volatility in the fourth quarter of 2008 during the financial

crisis. XLK sector ETF has the largest percentage of jump days (38%) and ratio of jump to

total variation (45%) among all other ETFs and individual stocks. BNS jump test detected

more jumps and reported a lager percentage of jump days when compared with the other

two jump tests. When the sampling frequency is reduced from 1-minute to 5-minute, the

ASJ jump test reports lesser number of jumps as well as smaller proportion of jump to

total variation in the sample data. We detect co-jumps between Exxon & JPMorgan,

Exxon & Microsoft, Exxon & XLE, JPMorgan & Microsoft, Microsoft & XLK and XLE

& XLK through JT co-jump test and the GST co-exceedance rule. The results show that

the percentage of co-jump days range from 0.4%-2.5% for JT co-jump test and from 2.8%-

9.5% for the GST co-exceedance rule. The higher percentage of co-jump days in case of the

co-exceedance rule, which uses the results at the intersection of BNS and LM jump tests,

could be because the test has a large false rejection rate. We use BLT co-jump test to

detect co-jumps among six stocks including Boeing, Exxon, Johnson&Johnson, JPMorgan,

Microsoft and Walmart. The percentage of co-jumps days is 0.2% during financial crisis

period and 0.1% after financial crisis period.

The rest of the paper is organized as follows. Section 4.2 gives the theoretical back-

ground and setup. Sections 4.3, 4.4 and 4.5 give detailed descriptions of the different

integrated volatility measures, jump tests and co-jump tests respectively. Section 4.6 dis-

cusses the empirical methodology and reports the findings. Finally Section 4.7 concludes.
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4.2 Setup

We represent the log-price of a financial asset at continuous time t, as Yt. It is assumed

that the log-price is a Brownian semimartingale process with jumps and it can be denoted

as1:

Yt = Y0 +

∫ t

0
µsds+

∫ t

0
σsdWs + Jt (4.1)

In (4.1) µs the drift term is a predictable process, σs the diffusion term is a cádlág process,

Ws is a standard Brownian motion and Jt is a pure jump process. Jt can be defined as the

sum of all discontinuous log price movements up to time t,

Jt =
∑
s≤t

∆Ys (4.2)

When this jump component is a finite activity jump process, i.e. a compound poisson

process (CPP), then

Jt =

Nt∑
j=1

ξj (4.3)

where Nt is a poisson process with intensity λ, the jumps occur at the corresponding times

given as (τj)j=1,..,Nt and ξj refers to i.i.d random variables measuring the size of jumps at

time τj . The finite activity jump assumption has been widely used in financial econometrics

literature. Log-price Yt can be decomposed into a continuous Brownian component Y c
t and

a discontinuous component Y d
t (due to jumps). The “true variance” of process Yt can be

given as,

QVt = [Y, Y ]t = [Y, Y ]ct + [Y, Y ]dt (4.4)

where QV stands for quadratic variation. The variation due to the continuous component

is

[Y, Y ]ct =

∫ t

0
σ2
sds, (4.5)

1We follow the setup and notation as in Corradi et al. (2011) and Mukherjee and Swanson (2018)
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and the variation due to the discontinuous jump component is

[Y, Y ]dt =

Nt∑
j=1

ξ2
j (4.6)

Integrated volatility which is the continuous part of QV is denoted as

IVt =

∫ t

t−1
σ2
sds, t = 1, ..., T (4.7)

where IV is the (daily) integrated volatility at day t. Since IV is unobservable, different

realized measures of integrated volatility are used as its substitute. The presence of market

frictions in high frequency financial data has been documented in recent literature. To take

care of this, the observed log price process X can then be given as

X = Y + ε (4.8)

where Y is the latent log price and ε captures market microstructure noise. We consider

M equi-spaced intradaily observations for each of T days for process X which leads to a

total of MT observations, i.e.

Xt+j/M = Yt+j/M + εt+j/M , t = 0, .., T & j = 1, ..,M (4.9)

where ε follows a zero mean independent process. The intradaily return or increment of

process X follows,

∆jX = Xt+(j+1)/M −Xt+j/M (4.10)

The noise containing realized measure, RM of the integrated volatility is computed using

process X given in (4.9) and can be expressed as the sum of IV and measurement error

N , i.e.

RMt,M = IVt +Nt,M (4.11)

RM can be used to estimate IV if kth moment of the measurement error decays to zero

at a fast enough rate or there exists a sequence bM with bM →∞ such that E(|Nt,M |k) =

O(b
−K/2
M ), for some k ≥2.
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4.3 Realized Measures of Integrated Volatility

Volatility measures variation in the asset prices and thus can be regarded as an indicator

of risk. Accurate volatility estimation is very important in both asset allocation and risk

management. Since volatility is inherently unobservable, the first two types of parametric

models developed to estimate the latent volatility were continuous time (e.g. stochastic

volatility) and discrete time models (e.g. ARCH-GARCH models). However, these para-

metric models have been proven to be misspecified in capturing volatilities implied by

option pricing and other financial return variables. With the availability of high frequency

data, a series of nonparametric models have been proposed to examine integrated volatil-

ity at intra-day level. Andersen et al. (2001) first introduce a nonparametric volatility

measure, termed Realized Volatility by summing over intra-day squared returns. The au-

thors showed that Realized Volatility is an error free estimator of integrated volatility in

the absence of noise and jumps. When the sampling frequency of the data is relatively

high, microstructure noise creates a bias in the volatility estimation procedure. Zhang

et al. (2005), Zhang et al. (2006) and Kalnina and Linton (2008) solve this problem with

microstructure noise robust estimators based on sub-sampling with multiple time scales.

Barndorff-Nielsen et al. (2008) and Barndorff-Nielsen et al. (2011) on the other hand, use

kernel based estimators to account for the microstructure noise in finely sampled data.

When estimating integrated volatility in the presence of jumps within the underlying price

process, jump components should be separated from the quadratic variation. Barndorff-

Nielsen et al. (2003), Barndorff-Nielsen and Shephard (2004) provide asymptotically unbi-

ased integrated volatility estimators, the bipower and tripower variations, which are robust

to the presence of jumps. Aı̈t-Sahalia et al. (2009) propose a threshold method to identify

and truncate jumps and further develop a consistent non-parametric jump robust estimator

of the integrated volatility. Corsi et al. (2010) introduce threshold bipower variation by
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combining the concepts from Barndorff-Nielsen et al. (2003) and Mancini (2009). Jacod

et al. (2014) estimate local volatility by using the empirical characteristic function of the

return and then remove bias due to jump variation. When combining both jumps and

microstructure noise in the price process, Fan and Wang (2007) propose a wavelet-based

multi-scale approach to estimate integrated volatility. Podolskij et al. (2009) design mod-

ulated bipower variation, an estimator that filters the impact of microstructure noise then

use bipower variation for volatility estimation. Andersen et al. (2012) use the concept of

“nearest neighbor truncation” to establish jump and noise robust volatility estimators. On

the other hand Brownlees et al. (2016) create truncated two scaled realized volatility by

adopting a jump signaling indicator as in Mancini (2009) and noise robust sub-sampling

as in Zhang et al. (2005). In addition to the above mentioned work, discussion regarding

nonparametric estimation of integrated volatility and functionals of volatility can also be

found in Barndorff-Nielsen et al. (2006), Mykland and Zhang (2009), Todorov and Tauchen

(2012), Hautsch and Podolskij (2013), Jacod et al. (2013), Jing et al. (2014) and Jacod

et al. (2017). What follows in the next section, is a detailed review of 12 of the most

commonly used integrated volatility measures.2

4.3.1 Realized Volatility (RV)

Realized Volatility or RV as developed in Andersen et al. (2001) is one of the first empirical

measures that used high-frequency intra-day returns to compute daily return variablility

without having to explicitly model the intra-day data. The authors show that under

suitable conditions RV is an unbiased and highly efficient estimator of QV as in (4.4). By

extension it can be shown that in the absence of jumps or when jumps populate the data

infrequently, RV converges in probability to IV as M −→∞. It should also be noted that

2We follow the notation and description as in Mukherjee and Swanson (2018)
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RV has been used widely as part of the HAR-RV forecasting models. Here

RVt,M =

M−1∑
j=1

(Xt+(j+1)/M −Xt+j/M )2 (4.12)

4.3.2 Realized Bipower Variation (BPV)

In Barndorff-Nielsen and Shephard (2004), the authors demonstrate that they could un-

tangle the continuous component of quadratic variation from its discontinuous component

(jumps). This led them to develop Realized Bipower Variation (BPV ), one of the first

asymptotically unbiased estimators of IV which was robust to the presence of price jumps.

It takes the following form

BPVt,M = (µ1)−2
M−1∑
j=2

|∆jX||∆j−1X| (4.13)

where ∆jX is the same as in (4.10) and µ1 = 2
1
2

Γ(1)

Γ( 1
2

)
.

4.3.3 Tripower Variation (TPV)

The Realized Bipower Variation does not allow the consistency of the IV estimate to be

impacted by finite activity jumps. However it is subject to finite sample jump distortions

or upward bias. To counter this problem, BPV is generalized to Tripower Variation in

Barndorff-Nielsen and Shephard (2004), by utilizing products of the (lower order) power

of three adjacent intra-day returns. Theoretically speaking, although Tripower Variation

(TPV ) is more efficient, it is also more vulnerable to microstructure noise of the high

frequency return data compared to BPV . TPV can be given as

TPVt,M = (µ 2
3
)−3

M−1∑
j=3

|∆jX|2/3|∆j−1X|2/3|∆j−2X|2/3 (4.14)

where ∆jX is the same as in (4.10) and µ 2
3

= 2
1
3

Γ( 5
6

)

Γ( 1
2

)
.
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4.3.4 Two Scale Realized Volatility (TSRV)

It is found that when the sampling interval of the asset prices is small, microstructure

noise issues become more prominent and Realized Volatility ceases to function as a robust

volatility estimator. Due to the bias introduced by the market microstructure noise in

the finely sampled data, initially longer time horizons are preferred by econometricians.

It is found that ignoring microstructure noise works well for intervals more 10 minutes.

However sampling over lower frequencies does not quantify and correct the noise effect on

volatility estimation. As a solution, Two Scale Realized Volatility (TSRV ) is introduced

in Zhang et al. (2005) by combining estimators obtained over two time scales, avg and M .

It forms an unbiased and consistent, microstructure noise robust estimator of IV in the

absence of jumps. It takes the following form

TSRVt,M = [X,X]avg − 1

K
[X,X]M (4.15)

where

[X,X]mi =

mi−1∑
j=1

(Xt+((j+1)K+i)/M −Xt+(jK+i)/M )2, i = 1, ..,K & mi =
M

K
(4.16)

[X,X]avg =
1

K
ΣK
i=1[X,X]mi (4.17)

[X,X]M =
M−1∑
j=1

(Xt+(j+1)/M −Xt+j/M )2 (4.18)

K = cM2/3 is the number of subsamples, M
K is subsmaple size, c > 0 is a constant and M

is the number of equispaced intra daily observations.

4.3.5 Multi Scale Realized Volatility (MSRV)

The TSRV estimator though has many desirable properties, is not efficient. The rate of

convergence for TSRV is not satisfactory, it converges to the true volatility (IV in the
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absence of jumps) only at the rate of M−1/6. The Multi Scale Realized Volatility (MSRV )

is proposed in Zhang et al. (2006). This is a microstructure noise robust measure which

converged to IV (in the absence of jumps) at the rate of M−1/4. While TSRV uses two

time scales, MSRV on the other hand uses N different time scales. MSRV takes the

following form

MSRVt,M =
N∑
n=1

an[X,X](M,Kn), n = 1, .., N (4.19)

where

an = 12
n

N2

n/N − 1/2− 1/(2N)

1− 1/N2
,

N∑
n=1

an = 1 &
N∑
n=1

an/n = 0 (4.20)

[X,X](M,Kn) =
1

Kn

Kn∑
l=1

mn,l−1∑
j=1

(Xt+((j+1)Kn+l)/M −Xt+(jKn+l)/M )2 (4.21)

Here l = 1, ..,Kn & mn,l = M
Kn

. We take N = 3,K1 = 1,K2 = 2,K3 = 3.

4.3.6 Realized Kernel (RK)

Barndorff-Nielsen et al. (2008) introduce Realized Kernel (RK) which as the name suggests

is a realized kernel type consistent measure of IV in the absence of jumps. It is robust to

endogenous microstructure noise and for particular choices of weight functions it can be

asymptotically equivalent to TSRV and MSRV estimators, or even more efficient. RK

can be given as

RKt,M = γ0(X) +
H∑
h=1

κ(
h− 1

H
){γh(X) + γ−h(X)} (4.22)

where

γh(X) =

M−1∑
j=1

(Xt+(j+1)/M −Xt+j/M )(Xt+(j+1−h)/M −Xt+(j−h)/M ) (4.23)

Here c is a constant. For our analysis we take a Turkey-Hanning2 kernel which gives

κ(x) = sin2{π/2(1− x)2} and H = cM1/2.
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4.3.7 Truncated Realized Volatility (TRV)

Truncated Realized Volatility (TRV ) is one of the first volatility measures that tried to

estimate IV by identifying when price jumps greater than an adequately defined threshold

occurred as in Aı̈t-Sahalia et al. (2009). The truncation level for the jumps are chosen in

a data-driven manner; the cutoff level α (given below) is set equal to a particular number

times estimated standard deviations of the continuous part of the semimartingale. The

price jump robust measure can be given as

TRVt,M =
M−1∑
j=1

|∆jX|21{|∆jX|≤α∆$
M} (4.24)

where

α = 5

√√√√M−1∑
j=1

|∆jX|21{|∆jX|≤∆
1/2
M }

(4.25)

Here $ = 0.47. ∆M = 1/M

4.3.8 Modulated Bipower Variation (MBV)

Modulated Bipower Variation (MBV ) as in Podolskij et al. (2009) consistently estimates

IV and is robust to both market microstructure noise and finite activity jumps. It takes

the following form

MBVt,M =
(c1c2/µ

2
1)mbvt,M − ϑ2ω̂

2

ϑ1
(4.26)

where

ϑ1 =
c1(3c2 − 4 +max((2− c2)3, 0))

3(c2 − 1)2
, ϑ2 =

2min((c2 − 1), 1)

c1(c2 − 1)2
(4.27)

mbvt,M = ΣB
b=1|X̄

(R)
b ||X̄

(R)
b+1| (4.28)

X̄
(R)
b =

1

M/B −R+ 1
Σ
bM/B−R
j=(b−1)M/B(Xt+(j+R)/M −Xt+j/M ) (4.29)

Here c1 = 2, c2 = 2.3, R ≈ c1M
0.5, B = 6, µ1 = 0.7979, ω̂2 = 1

2MRVt,M , RVt,M is given by

(4.12).



119

4.3.9 Threshold Bipower Variation (TBPV)

Corsi et al. (2010) introduce a jump robust measure, Threshold Bipwer Variation (TBPV )

which is constructed by combining the concepts of Realized Bipower Variation and Thresh-

old Realized Variance (Mancini (2009). The authors show that TBPV is robust to the

choice of threshold function (v as given below).

TBPVt,M = µ−2
1

M−1∑
j=2

|∆j−1X||∆jX|I{|∆j−1X|2≤υj−1}I{|∆jX|2≤υj} (4.30)

where

υj = c2
υV̂j (4.31)

V̂ z
j =

ΣL
i=−Lκ( iL)(∆j+iX)2I{(∆j+iX)2≤c2υV̂

z−1
j+i }

ΣL
i=−Lκ( iL)I{(∆j+iX)2≤c2υV̂

z−1
j+i }

. (4.32)

and ∆jX is given by (4.10). Here we take L = 25, cυ = 3, V̂ 0 = +∞. υj is the threshold

for removal of large returns at each j. V̂ z
j gives estimated local variance in the presence of

jumps at each iteration z for any j. Large returns are removed at each iteration according

to {(∆jX)2 ≤ c2
υV̂

z−1
j } and the estimated variance at that iteration is multiplied by c2

υ to

get the threshold for the next iteration. When large returns cannot be removed any more,

the iterations stop. Typically z is taken to be 2.

4.3.10 Subsampled Realized Kernel (SRK)

Barndorff-Nielsen et al. (2011) constructed Subsampled Realized Kernel (SRK) by com-

bining the concepts of subsmapling (Zhang et al. (2005)) and realized kernels (Barndorff-

Nielsen et al. (2008)). The main benefit of subsampling in this context is that it can

overpower the inefficiency that stems from the poor selection of kernel weights that might

be the case in Realized Kernel. SRK takes the following form

SRKt,M =
1

S

S∑
s=1

Ks(X) (4.33)
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where

Ks(X) = γs0(X) +

H∑
h=1

κ(
h− 1

H
){γsh(X) + γs−h(X)} (4.34)

γsh(X) =

M
S∑
j=1

xsjx
s
j−h (4.35)

xsj = Xt+(j+ s−1
S

)/M −Xt+(j+ s−1
S
−1)/M (4.36)

Here the smooth Turkey-Hanning2 kernel function gives κ(x) = sin2{π/2(1−x)2}, S = 13

and H = 3.

4.3.11 MedRV & MinRV

As alternatives to Realized Bipower Variation and Tripower Variation, Andersen et al.

(2012) provide two alternative measures MedRV and MinRV which are robust to jumps

and/or microstructure noise by using “nearest neighbor truncation”. The basic concept

behind these new measures is that the neighboring returns control the level of truncation

of absolute returns. On one hand where MinRV compares and takes the minimum of two

adjacent absolute returns, MedRV takes the median of three adjacent absolute returns

and carries out two-sided truncation. Unlike the typical truncated realized measures as in

Corsi et al. (2010), these new measures do not have to deal with the selection of an ex-ante

threshold.

MinRVt,M =
π

π − 2
(

M

M − 1
)

M−1∑
j=1

min(|∆jX|, |∆j+1X|)2 (4.37)

MedRVt,M =
π

6− 4
√

3 + π
(

M

M − 2
)
M−1∑
j=2

med(|∆j−1X|, |∆jX|, |∆j+1X|)2 (4.38)

where ∆jX is given by (4.10).



121

4.4 Jump Testing

Jump diffusion has been increasingly important in characterizing dynamic movement of

asset prices. Early studies about jump diffusions can be seen in Andersen et al. (2002),

Chernov et al. (2003), Pan (2002), and Eraker et al. (2003). Differentiating jumps from

continuous process is particularly useful because it has implications for both researchers

and practitioners in financial econometrics. Thus, a strand of literature has addressed

the methodologies to identify jumps in the discretely sampled financial data. Aı̈t-Sahalia

(2002) rely on the transition density to test the existence of jumps under the option pricing

model. Focusing on the risk-neutral dynamics of the underlying option prices, Carr and

Wu (2003) propose a method to use the convergence rates of option prices to distinguish

jumps from continuous process. Johannes (2004) propose a jump test to identify jump-

induced misspecification. However, these tests only use limited low frequency data. With

availability of high frequency data, the mechanism behind jump testing methodology has

evolved. Barndorff-Nielsen and Shephard (2006) use the ratio of bipower variation and

realized quadratic variation to construct a nonparametric test for the existence of jumps.

Huang and Tauchen (2005) design extensive Monte Carlo experiments to evaluate the

properties of newly proposed jump tests (see Andersen et al. (2003a), Barndorff-Nielsen

and Shephard (2004), and Barndorff-Nielsen and Shephard (2006)). Lee and Mykland

(2007) propose tests to detect the exact timing of jumps at the intra-day level while Jiang

and Oomen (2008) provide a “swap variance” approach to detect the presence of jumps.

Mancini (2009) and Corsi et al. (2010) devise unique threshold or truncation techniques

in their testing methodology. Aı̈t-Sahalia et al. (2009) compare two higher order realized

power variations to develop a test statistic for the null hypothesis of no jumps. On the

other hand Podolskij and Ziggel (2010) combine the concepts truncated power variation

and wild boostrap to propose a threshold-based jump test. In most of the above mentioned
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papers, the presence of realized jumps is tested over a “fixed time span”. Corradi et al.

(2014) and Corradi et al. (2018) proposed a “long time span” jump test instead, building

on earlier work by Aı̈t-Sahalia (2002). More related work on jump tests, self-excitation

and mutual excitation in realized jumps can be found in Lee et al. (2013), Dungey et al.

(2016), and Boswijk et al. (2018). In the next section we discuss six different jump tests

which arise from different branches of the jump testing literature.

4.4.1 Barndorff-Nielsen and Shephard Test (BNS)

To test for the existence of jumps in the sample path of asset prices, Barndorff-Nielsen and

Shephard (2006) propose non-parametric Hausman (1978) type tests using the difference

between Realized Quadratic Variation, an estimator of integrated volatility which is not

robust to jumps, and Realized Bipower Variation, which is a jump robust estimator of

integrated volatility. Realized Quadratic Variation is considered to be the same as Realized

Volatility (RV). The adjusted jump ratio test statistic can be given as:

BNS =
M1/2√

ϑmax(1, QPV
(µ2

1BPV )2 )
(1− BPV

RV
)
d−→ N(0, 1) (4.39)

where BPV is the same as in (4.13), RV is the same as in (4.12), ϑ =((π2/4) + π - 5) ≈

0.6090. The realized quadpower variation QPV is used to estimate integrated quarticity

(
∫ t

0 σ
4
sds) and can be given as:

QPV = M
M∑
j=4

|∆jX||∆j−1X||∆j−2X||∆j−3X|
d−→ µ4

1

∫ t

0
σ4
sds (4.40)

The authors show that the null hypothesis of no jumps is rejected if the test statistic BNS

is significantly positive.
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4.4.2 Lee and Mykland Test (LM)

Lee and Mykland (2007) use the ratio of realized return to estimated instantaneous volatil-

ity, and further construct a nonparametric jump test to detect the exact timing of jumps

at the intra-day level. The test statistic which identifies whether there is a jump during

(t+ j/M, t+ (j + 1)/M ] can be given as:

L(t+(j+1)/M) =
Xt+(j+1)/M −Xt+j/M

̂σt+(j+1)/M

(4.41)

where

̂σt+(j+1)/M
2 ≡ 1

K − 2

j−2∑
i=j−K+1

|Xt+(i+1)/M −Xt+i/M || Xt+i/M −Xt+(i−1)/M | (4.42)

Here K is the window size of a local movement of the process. It is chosen in a way such

that the effect of jumps on volatility estimation is eliminated. The authors suggest a value

of K = 10 when the sampling frequency is 5-minute. Thus, it can be asymptotically shown

that

maxj∈ĀM |L(t+(j+1)/M)| − CM
SM

→ ε, as ∆t→ 0, (4.43)

where ε has a cumulative distribution function P (ε ≤ x) = exp(−e−x),

CM =
(2logM)1/2

c
− logπ + log(logM)

2c(2logM)1/2
and sM =

1

c(2logM)1/2
(4.44)

M is the number of intradaily observations, c ≈ 0.7979 and ĀM is the set of j ∈ {0, 1, ...,M}

so that there are no jumps in (t+ j/M, t+ (j + 1)/M ].

4.4.3 Jiang and Oomen Test (JO)

Jiang and Oomen (2008) compare a jump sensitive variance measure to realized volatility

in order to test for jumps. Their idea is based on the fact that in the absence of jumps the
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accumulated difference between the simple return and log return (called the swap variance)

captures one-half of the integrated volatility in the continuous time limit. Consequently it

can be stated, in the absence of jumps the difference between swap variance and realized

volatility should be zero, while in the presence of jumps the same difference reflects the

replication error of variance swap thus detecting jumps. The swap variance can be given

as

SVt,M = 2

M−1∑
j=1

(∆jP −∆jX) (4.45)

where Y = log(P ) and Y is the same as in (4.1). ∆jP =
Pt+(j+1)/M

Pt+j/M
− 1 and ∆jX is the

same as in (4.10). The three different swap variance tests proposed by the authors can be

given as

(i) The difference test:

M

ΩSV
(SVt,M −RVt,M )

d−→ N(0, 1) (4.46)

(ii) The logarithmic test:

BPVt,MM

ΩSV
(log(SVt,M )− log(RVt,M ))

d−→ N(0, 1) (4.47)

(iii) The ratio test:

BPVt,MM

ΩSV
(1−

RVt,M
SVt,M

)
d−→ N(0, 1) (4.48)

where ΩSV =µ6

9

M3µ−p
6/p

M−p+1

∑M−p
j=1

∏p
k=0 |∆j+kX|6/p for p ∈ {1, 2, ...}, µz = E(|x|z) for z ∼

N(0, 1).

4.4.4 Aı̈t-Sahalia and Jacod Test (ASJ)

In Aı̈t-Sahalia et al. (2009), the authors develop a testing methodology for jumps in the

(log) price process by comparing two higher order realized power variations with different

sampling intervals, k∆ and ∆ respectively. In this context ∆ = 1
M , M is the number of
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intra-daily observations and k is a given integer. The pth order realized power variation

can be given as

B̂(p,∆) =

M−1∑
j=1

|Xt+(j+1)/M −Xt+j/M |p (4.49)

The ratio of the two realized power variations with different sampling intervals takes the

following form

Ŝ(p, k,∆) =
B̂(p, k∆)

B̂(p,∆)
(4.50)

The corresponding jump test statistic can then be defined as,

ASJ =
k(p/2)−1 − Ŝ(p, k,∆)√

Vt,M

d−→ N(0, 1) (4.51)

where Vt,M can be estimated using either a truncation technique as in

V̂t,M = ∆
Â(2p,∆)M(p, k)

Â(p,∆)2
(4.52)

where

Â(2p,∆) =
∆1−p/2

µp

M−1∑
j=1

|Xt+(j+1)/M −Xt+j/M |p1{|Xt+(j+1)/M−Xt+j/M |≤α∆$} (4.53)

or using multipower variation as in

V̂t,M = ∆
M(p, k)Ā(p/([p] + 1), 2[p] + 2,∆)

Ā(p/([p] + 1), [p] + 1,∆)2
(4.54)

where

Ā(r, q,∆) =
∆1−qr/2

µqr

M−q+1∑
j=q

q−1∏
i=0

|Xt+(j+i)/M −Xt+(j+i−1)/M |r, (4.55)

M(p, k) =
1

µ2
p

(kp−2(1 + k)µ2p + kp−2(k − 1)µ2
p − 2kp/2−1 − µk,p) (4.56)

and µr = E(|U |r) and µk,p = E(|U |p|U +
√

(k − 1)V |p|) for U, V ∼ N(0, 1). The null

hypothesis of no jumps is rejected when the test statistic ASJ is significantly positive.
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4.4.5 Podolskij and Ziggel Test (PZ)

In Podolskij and Ziggel (2010) the concept of truncated power variation is used to construct

test statistics which diverge to infinity if jumps are present and have a normal distribution

otherwise. The jump testing procedure in this paper is valid (under weak assumptions)

for all semi-martingales with absolute continuous characteristics and general models for

the noise processes. The methodology followed by the authors is a modification of that

proposed in Mancini (2009). In particular they consider,

T (X, p) = M
p−1

2

M−1∑
j=1

|Xt+(j+1)/M −Xt+j/M |p(1− ηi1{|Xt+(j+1)/M−Xt+j/M |≤α∆$}) (4.57)

where {ηi}i∈[1,1/∆] is a sequence of positive i.i.d random variables. The test statistic has

the following form

PZ =
T (X, p)

V ar∗(η)Â(2p,∆)

d−→ N(0, 1) (4.58)

where Â(2p,∆) is the same as in (4.53).

4.4.6 Corradi, Silvapulle and Swanson Test (CSS)

Building on previous work by Aı̈t-Sahalia (2002), Corradi et al. (2018) design “long time

span” jump tests based on realized third moments or “tricity” for the the null hypothesis

that the probability of a jump is zero. This jump testing methodology is used to detect

jumps by examining the “jump intensity” parameter in the data generating process rather

than realized jumps over a “fixed time span”. This test is of immense value when one is

interested in using jump diffusion processes for valuation problems like options pricing and
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default modeling. Let,

µ̂3,T,∆ =
1

T

n−1∑
j=1

(Xt+(j+1)/M −Xt+j/M −
Xt+n/M −Xt+1/M

n
)3

− 1

T+

n+−1∑
j=1

(Xt+(j+1)/M −Xt+j/M −
Xt+n+/M −Xt+1/M

n+
)31{|Xt+(j+1)/M −Xt+j/M | ≤ τ(∆)}

(4.59)

where we have n+ observations over an increasing time span of T+, a shrinking discrete

sampling interval ∆ = 1
M , so that n+ = T+

∆ , T+ →∞ and ∆→ 0. τ(∆) is the truncation

parameter and one example for the choice of such truncation can be given as follows. If σs

as in (4.1) is a square root process, so that all moments exist, we can set τ(∆) = c∆η with

2
7 < η < 1

2 . The authors define n = T
∆ = n+ − T+−T

∆ , with T+ > T and T+

T → ∞. Then,

the test statistic for the null hypothesis of no jumps can be given as

CSS =
T 1/2

∆
µ̂3,T,∆

d−→ N(0, ω0) (4.60)

where ω0 is defined in Corradi et al. (2018). Since, under the alternative hypothesis of

positive jump intensity, the variance of the statistic is of larger order, it is difficult to

construct a variance estimator which is consistent under all hypotheses. The authors use

a threshold variance estimator, which removes the contribution of the jump component

thus developing an estimator for the variance of CSS which is consistent under the null

hypothesis of no jumps. Thus we have

σ̂2
CSS =

1

∆2

n−1∑
j=0

(Xt+(j+1)/M−Xt+j/M−
Xt+n/M −Xt+1/M

n
)31{|Xt+(j+1)/M−Xt+j/M | ≤ τ(∆)}

(4.61)

Thus the t-statistic version of the jump test is

tCSS =
CSS

σ̂CSS
(4.62)
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4.5 Co-jump Testing

While univariate jump tests have been researched extensively, the study of co-jump tests

has started growing only recently. One branch of literature proposes co-jump tests through

identifying jumps in a portfolio. For example, Bollerslev et al. (2008) use observed return

product to construct a test statistic for detecting co-jumps in an equiweighted index con-

structed from 40 stocks. Their co-jump test detects the modest-sized common jumps ig-

nored in the Barndorff-Nielsen and Shephard (2004) jump test approach. Another branch

uses univariate jump tests to identify co-jump among multivariate process. For example,

Gilder et al. (2014) propose a co-exceedance rule to identify co-jumps by using univariate

jump tests. Their Monte Carlo results show that the co-exceedance rule has similar power

to the co-jump test proposed by Bollerslev et al. (2008). The third strand develops co-

jump tests which can be directly applied to multiple price processes (see, e.g., Jacod and

Todorov (2009), Bandi and Reno (2016), Bibinger and Winkelmann (2015) and Caporin

et al. (2017)). Jacod and Todorov (2009) propose co-jump tests based on two null hy-

potheses: (i) there are common jumps in a bivariate process; (ii) there are disjoint jumps

in a bivariate process. Mancini and Gobbi (2012) construct threshold estimators for inte-

grated covariation from the realized covariation and show that the central limit theorem

and robustness to nonsynchronous data still hold under different scenarios. Gnabo et al.

(2014) propose a co-jump test based on bootstrapping methods. Bandi and Reno (2016)

develop a nonparametric infinitesimal moments method to detect co-jumps between asset

returns and volatilities. Bibinger and Winkelmann (2015) propose a spectral estimation

method to detect co-jumps in multivariate high-frequency data in the presence of market

microstructure noise and asynchronous observations. Caporin et al. (2017) build a co-jump

test on the comparison between smoothed realized variance and smoothed random real-

ized variation. More related literature about co-jumps can also be seen in Lahaye et al.
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(2011) and Dungey et al. (2011). In the following section, we discuss five most widely used

co-jump tests in details. 3

4.5.1 BLT Co-jump Testing

Bollerslev et al. (2008) propose a mcp test to detect co-jumps in a large ensemble of stocks.

They develop a theoretical foundation which shows how only co-jumps (not idiosyncratic

jumps) can be detected in a large equiweighted index. Let n denote the total number of

assets under co-jump detection. The mcp mean cross-product test statistic is defined as:

mcpt,j =
2

n(n− 1)

n−1∑
i=1

n∑
l=i+1

∆jX
i∆jX

l, j = 1, ...,M − 1, t = 1, ..., T (4.63)

where

∆jX
i = Xi

t+(j+1)/M −X
i
t+j/M , for i = 1, ..., n (4.64)

Since the mcp-statistic has nonzero mean and is analogous to a U-statistic, the studentized

test statistic is:

zmcp,t,j =
mcpt,j −mcpt

smcp,t
, for j = 1, ...,M − 1 and t = 1, ..., T. (4.65)

where

mcpt =
1

M − 1
mcpt =

1

M − 1

M−1∑
j=1

mcpt,j (4.66)

and

smcp,t =

√√√√ 1

M − 1

M−1∑
j=1

(mcpt,j −mcpt)2 (4.67)

The null distribution under the null hypothesis of no jump is derived from bootstrapping

the test statistics zmcp,t,j under Monte Caro simulations.

3We follow the notation and description as in Peng (2018)
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4.5.2 JT Co-jump Testing

Jacod and Todorov (2009) construct two test statistics to identify co-jumps under two

different null hypothesis: i. There is at least one common jump under the null hypothesis;

ii. There is at least one disjoint jump under the null hypothesis. The test statistics are

proposed for detecting co-jumps on bivariate processes for the path of s −→ Xs on [0, t].

Co-jumps among multivariate processes can be detected from the combination of bivariate

processes. The test statistics of the common jump Φ
(j)
n and disjoint jump Φ

(d)
n are defined

as:

Φ(j)
n =

V (f, k∆n)t
V (f,∆n)t

(4.68)

Φ(d)
n =

V (f,∆n)t√
V (g1,∆n)tV (g2,∆n)t

(4.69)

where k is an integer greater than 1, and ∆n = t
M is the length of equispaced intra-daily

time interval. V (f, k∆n)t is defined as:

V (f, k∆n)t =

[t/k∆n]∑
j=1

f(X(j+1)k/M −Xjk/M ) (4.70)

Where the functions for f(x), g1(x) and g2(x) are defined as:

f(x) = (x1x2)2, g1(x) = (x1)4, g2(x) = (x2)4 (4.71)

They propose asymptotic properties and central limit theorems of these two test statistics

when the mesh ∆n approaches 0. They show that the test statistics for the null hypothesis

with disjoint jumps Φ
(d)
n converges stably in law to 0 on Ω

(d)
T and the null hypothesis with

common jumps Φ
(j)
n converges stably in law to 1 on Ω

(d)
T . Here Ω

(j)
T and Ω

(d)
T are defined

as:
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Ω
(j)
T = {ω: on [0, t] the process ∆jX

1∆jX
2 is not identically 0} (4.72)

Ω
(j)
T = {ω: on [0, t] the processes ∆jX

1 and ∆jX
2 are (4.73)

not identically 0, but the process ∆jX
1∆jX

2 is}

Where ∆jX
i = Xi

(j+1)/M −X
i
j/M , for i = 1, 2 and j = 1, ...,M − 1. The authors construct

critical regions of the two statistics as:

C(j)
n = {|Φ(j)

n − 1| ≥ c(j)
n } (4.74)

C(d)
n = {Φ(d)

n ≥ c(d)
n } (4.75)

4.5.3 MG Threshold Co-jump Test

Mancini and Gobbi (2012) use a threshold rh to estimate each co-jump as:

∆jX
1∆jX

2 −∆jX
11{(∆jX1)2≤rh}∆jX

21{(∆jX2)2≤rh}, (4.76)

Where h is the length of observations interval and h = t
M for every j = 1, ...,M . Threshold

rh is defined by a deterministic function from h→ rh, with the following properties:

lim
h→0

rn = 0 and lim
h→0

(hlog
1

h
)/rh = 0.

The threshold rh depends on an unknown realized instantaneous volatility path. Monte

Carlo simulations are used under different models to select a reasonable threshold. For

example, in the model of stochastic volatility and finite compound Poisson jump part,

the optimal choice of threshold is rh = 0.33ÎCt,Mh
0.99, where the integrated covariation

estimator ÎCt,M is derived by Mancini (2001):

ÎCt,M = ṽ
(M)
1,1 (X1, X2)t, (4.77)
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where

ṽ
(M)
1,1 (X1, X2)t = h−3

∑
j:tj≤t

∆jX
11{(∆jX1)2≤rh}∆jX

21{(∆jX2)2≤rh}, (4.78)

4.5.4 GST Co-exceedance Rule

Gilder et al. (2014) propose a co-exceedance based co-jump detection method by applying

univariate jump tests to individual stocks to identify co-jumps. They select three univari-

ate jump tests in Barndorff-Nielsen and Shephard (2006), Lee and Mykland (2007) and

Andersen et al. (2010). The co-jumps are detected as intersection between ABD jump

test results and BNS jump test results (ABD∩BNS), intersection between ABD jump test

results and LM jump test results (ABD∩LM), intersection between BNS jump test results

and LM jump test results (BNS∩LM), and the intersection among three jump tests results

(ABD∩LM∩BNS).

The nonparametric BNS jump test and LM jump test have been discussed in subsection

4.4.1 and subsection 4.4.2 respectively. The ABD jump test in Andersen et al. (2010)

is the sequential BNS test which first identifies jump days through BNS test and then

calculates the maximum intra-day return as the jump level. Gilder et al. (2014) modified

the maximum intra-day return during jump days into:

max
(
| ∆jX | /

√
ŝWSD,j

2 ·∆ ·BPVt
)
, forj = 1, ...,M − 1 (4.79)

where ∆jX = Xt+(j+1)/M − Xt+j/M for t = 1, ..., T and ∆ = 1
M . Here ŝWSD,j

2
is the

weighted standard deviation (WSD) estimator proposed by Boudt et al. (2011).

Comparisons between co-exceedance rule for co-jump detection and BLT co-jump test

are made under extensive Monte Carlo simulations. The results show that intra-day co-

exceedance based detection method has similar power to that of the BLT co-jump test

both on large and small co-jumps.
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4.5.5 CKR Co-jump Testing

The test statistics in Caporin et al. (2017) is derived from the difference between smoothed

realized variance (S̃RV ) and smoothed randomized realized variance (SRRV ). The SRRV

is denoted as:

SRRV (Xi) =
M∑
j=1

| ∆jX
i |2 ·K

(
∆jX

i

H i
∆j ,M

)
· ηij , (4.80)

i = 1, ..., n, (4.81)

where K(·) is a differentiable kernel function with bounded first derivative almost every-

where in R having the following properties:

K(0) = 1, 0 ≤ K(·) ≤ 1, and lim
x→∞

K(| x |) = 0 (4.82)

And H is the bandwidth which is denoted as:

H i
∆j ,M = hM · σ̂∆j

i

√
t

M
(4.83)

where hM is the bandwidth parameter and σ̂∆j

i is the point estimator of the local standard

deviation of ith asset. ηij is an n×M matrix independent and identically distributed variable

such that E[ηij ] = 1 and V ar[ηij ] = Vη ≤ ∞. Vη is set to 0.0025 in the application of the

test.

Another estimator (S̃RV ) is written in the form as:

S̃RV
n
(Xi) =

M∑
j=1

| ∆jX
i |2 ·

(
K

(
∆jX

i

H i
∆j ,M

)
+ πnk=1

(
1−K

(
∆jX

k

Hk
∆j ,M

))
(4.84)

The proposed test statistics takes the form:

SM,n =
1

Vη

M∑
i=1

(
SRRV (Xi)− S̃RV

n
(Xi)

)2

SQ(Xi)
, (4.85)
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where

SQ(Xi) =
M∑
j=1

| ∆jX
i |4 ·K2

(
∆jX

i

H i
∆j ,M

)
, i = 1, ..., n (4.86)

The asymptotic behavior of the Sn,N is described as:

SM,n
d−→ χ2(n), on Ω

n
T

SM,n
p−→ +∞, on Ω

MJ,n
T

Where Ω
n
T and Ω

MJ,n
T is defined as:

Ω
MJ,n
T =

{
ω ∈ Ω | Πn

i=1(∆Xj)t is not identically 0

}
,

Ω
n
T = Ω/Ω

MJ,n
T

4.6 Empirical Experiments

4.6.1 Data Description

The empirical experiments are conducted with six stocks and two ETFs. The six individ-

ual stocks which include the Boeing Company (BA), Exxon Mobile Corporation (XOM),

Johnson & Johnson (JNJ), JPMorgan Chase & Co. (JPM), Microsoft Corporation (MSFT)

and Walmart Inc.(WMT), have the highest weight in their corresponding SPDR market

sector ETFs such as XLI (industrial sector), XLE (energy sector), XLV (healthcare sector),

XLF (finance sector), XLK (technology sector) and XLP (consumer staples sector). The

two SPDR sector ETFs chosen are the energy and technology sector ETFs, XLE & XLK.

The dataset is obtained from the Trade and Quote Database (TAQ) of Wharton Research

Data Service (WRDS) and it covers the period from January 1st, 2006 to December 31st,

2013 for a total of 2013 days. We select trade data ranging from 9:30 am to 4 pm on

regular trading days. Overnight transactions are excluded from our dataset. We mainly
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use a 5-minute sampling frequency to eradicate the effect of market microstructure noise

in the data which yields 78 total observations per day. We also use a 1-minute sampling

frequency in specific cases which yields 390 observations per day. It should be noted that

all empirical experiments are carried out on the logarithmic values of the stock and ETF

prices.

4.6.2 Methodology

Our empirical experiment consists of three sections; (i) integrated volatility measures, (ii)

jump tests and (iii) co-jump tests. For each of the different parts, we conduct analysis

involving the most widely used measures and tests respectively. A detailed description of

the different measures & tests used and the empirical methodologies thereof is given as

follows.

Firstly we use six different measures to estimate Integrated Volatility for all the stocks

and ETFs; (1) Realized Volatility (4.3.1), (2) Bipower Variation (4.3.2), (3) Tripower Vari-

ation (4.3.3), (4) Truncated Realized Volatility (4.3.7), (5) MedRV & (6) MinRV (4.3.11).

Secondly to test for price jumps in the data three different jump tests are used; (1) ASJ

jump test (4.4.4), (2) BNS jump test (4.4.1), (3) LM jump test (4.4.2). Lastly co-jump

tests are carried out using (1) JT co-jump test (4.5.2), (2) BLT co-jump test (4.5.1) and

(3) GST coexceedance rule (4.5.4).

Estimation of integrated volatility, BNS and LM jump tests as well as all the co-jump

tests are carried out using 5 minute data where ∆ is set to 1
78 . However for the ASJ jump

test, both 1-minute (∆ = 1
390) and 5-minute frequencies are used as a basis for comparative

study.
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When conducting analysis using jump tests, we calculate the percentage of days iden-

tified as having jumps. For both the BNS and ASJ tests, it can be given as:

Percentage of Jump Days =
100

∑T
i=1 I(Zi > cα)

T
% (4.87)

where I(·) is the jump indicator function, cα is the critical value at α significance level and

Zi is the BNS or ASJ jump test statistics. For the LM jump test on the other hand it can

be derived as:

Percentage of Jump Days =
100

∑T
i=0 I(∃t ∈ i, | Lt |> cα)

T
% (4.88)

where Lt is the LM jump test statistic at the intra-day level within a particular day, t

refers to the 78 intra-day intervals and cα is the critical value at α significance level.

Once jumps are detected, we follow Andersen et al. (2007) and Duong and Swanson

(2011) to construct risk measures by separating out the variation due to daily jump com-

ponent and the continuous components. This is done by using volatility measures RV and

TPV . It can be given as

Variation due to Jump Component = JVt = max[RVt − TPVt, 0] ∗ Ijump,t (4.89)

Consequently the ratio of jump to total variation for all three jump tests can be calculated

as,

Ratio of Jump Varitaion to Total Variation =
JVt
RVt

(4.90)

For BLT co-jump test, the percentage of days identified as having co-jumps is calculated

using,

Percentage of Co-Jump Days =
100

∑T
i=0 I(∃j, zmcp,i,j < cmcp,α,l ∪ zmcp,i,j > cmcp,α,r)

T
%(4.91)

where cmcp,α,l and cmcp,α,r are left and right tail critical values derived from bootstrapping

the null distribution. α is the significance level. For the JT co-jump test, the percentage
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of days identified as having co-jumps is calculated as:

Percentage of Co-Jump Days =
100

∑T
i=0 I(Φ

(d)
n ≥ c(d)

n )

T
% (4.92)

In the co-exceedance rule proposed by Gilder et al. (2014), we use the BNS jump test

and the LM jump test to identify co-jumps. The percentage of days identified as having

co-jumps can be given as:

Percentage of Co-Jump Days =
100

∑T
i=0 I(| Zi |≥ Φα) ∗ I(∃t ∈ i, | Lt |> cα)

T
% (4.93)

where Zi is the BNS jump test statistic and Lt is the LM jump test statistic.

In addition to reporting the findings of our empirical experiment on the entire sample,

we also conduct analysis after splitting the data set into two periods. The first sample

consists of the period from January 2006 to June 2009 and the second sample consists of

the period from July 2009 to December 2012. This is done to inspect whether the jump

activity in the stocks and the ETFs changes considerably over time. The break date of our

sample (June 2009) roughly corresponds to the end of the business cycle contraction after

the financial crisis as given by NBER.

4.6.3 Findings

Table 4.1 gives the summary statistics for integrated volatility which is estimated using

six volatility measures RV , BPV , TPV , MedRV , MinRV and TRV . The sample period

considered for the six stocks and the two ETFs is January 2006 - December 2013. The mean,

standard deviation, minimum and maximum values are all in terms of 10−4. Amongst all

the stocks and ETFs, JPMorgan seems to have undergone maximum price fluctuations

across the sample period as it displays the highest mean and max values across all the

volatility measures. On the other hand Johnson & Johnson and XLK appear to be tied

in terms of having undergone least amount of price fluctuations as they display the lowest
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mean and max volatility estimates. Amongst all the volatility measures, Bipower Variation

reports the lowest mean volatility estimate while Realized Volatility reports the highest

mean volatility estimate for any given stock or ETF. This can be explained by the fact that

in the presence of frequent jumps, Realized Volatility overestimates integrated volatility.

To get a clearer idea of how volatility differs across the stocks and ETFs, we turn to figures

(4.1) - (4.2) which display the estimated volatility for the stocks Boeing and Exxon with

respect to the six aforementioned volatility measures. Similar figures for 4 other stocks and

2 ETFs have not been given for the purpose of brevity and can be provided upon request.

In general stocks and ETFs achieve their highest volatility in the fourth quarter of 2008

during the financial crisis with a few exceptions. For XLE, in case of all four volatility

measures apart from TPV and TRV , volatility reaches its peak in the second quarter of

2009. For XLK on the other hand, only in case RV the volatility peak is reached in the

first quarter of 2008 while for the other measures it is the fourth quarter of 2008.

We now look at tables (4.2 - 4.5) which display the descriptive statistics of the three

jump tests. For the ASJ jump test we consider both 5-minute and 1-minute frequencies

while for the BNS and the LM jump tests we only consider 5-minute frequency. Panel A

in the tables refers to the pre-financial crisis sample period, January 2006 - June 2009 and

Panel B refers to the post crisis period July 2009 - December 2012. In case of the ASJ

jump tests, we find noticeable differences between 5-minute (table 4.2) and 1 minute (table

4.3) frequencies. Overall the mean value of the statistics is higher for the 1-minute data

compared to the 5 minute frequency suggesting that more jumps would be identified in the

1-minute case. The skewness values are all negative irrespective of the sample period, type

of stock and frequency of sampling suggesting that the ASJ test statistics are left-skewed.

Panel A for both frequencies appear to have overall higher mean and max values again

suggesting more jump activity in the financial crises period. In case of the BNS test (4.4)

the skewness values are all positive, which suggests all BNS test statistics are right-skewed
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and have a long right tail. The kurtosis values are all above 3, which indicates the empirical

distribution of BNS test statistics is leptokurtic. For the LM test (table 4.5), a window

size of k = 50 is chosen. The mean of LM test statistics is around 0, while the max and

min value of test statistics are far from 0, even reaching 1726.992 and -2124.609.

Tables (4.6 - 4.8) denote the percentage of days identified as having jumps for the

ASJ, BNS and LM jump tests. For all jump tests α = 0.1 and 0.05 significance levels are

considered. In case of the ASJ jump test (table 4.6), it appears that Johnson & Johnson

has the largest percentage of jump days for post-June 2009 period (panel B). However for

the pre-June 2009 period (panel A), only with 5-minute frequency, Johnson & Johnson

attains the highest jump day percentage. While for 1-minute frequency XLK seems to

lead the race. XLE on the other hand has the lowest percentage of jump days across all

significance levels, sample periods and sampling frequencies. In case of the BNS jump test

(table 4.7) XLK has the largest percentage of jump days for the crisis (panel A) period

while Microsoft displays the highest percentage in the post-crisis (panel B) period. Overall

for all the stocks and ETFs for both ASJ and BNS tests, panel A displays relatively

higher jump activity than panel B which shows that jumps happen more frequently during

financial crisis period, when compared with post financial crisis period. Table (4.8) shows

the percentage of jump days and jump proportions for the LM test. The percentage of

jump days is very large, reaching 90% in some cases. This is because LM jump test detects

whether there is jump at each interval per day4 and a day is classified as a jump day if a

jump occurs on any of the 5-minute (78 observations) intervals. The jump proportion is

calculated by the total number of test statistics which indicate jumps divided by the total

number of test statistics across all intra-day intervals for the entire sample period. The

jump proportions are much lower, close to 1%. It is noteworthy that both percentage of

4Refer to equation (93)
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jump days and jump proportions are larger during post financial crisis period (panel B).

One reason for this may be, the fact that the LM test detects more small and moderate

jumps when compared with the ASJ and BNS tests and these types of jumps are more

likely to happen during post financial crisis period.

To graphically illustrate the level of jump activity we turn to figures (4.3 - 4.5), which

display the ASJ and BNS test statistic values for the days identified as having jumps for

Boeing and Exxon across the sample period January 2006 - December 2013. Once again

similar figures for other stocks and ETFs have not been given for the purpose of brevity

and would be available upon request. The significance level considered is 5%. For the ASJ

test, the analysis is carried out for both 5 (figure 4.3) and 1 minute (figure 4.4) frequencies.

As is evident from the figures, with a higher sampling frequency of 1-minute, more jumps

are detected across all stocks and ETFs in comparison to 5-minute frequency. In case of the

BNS test both XLK and Johnson & Johnson appear to have the relatively higher degree

of jump activity compared to the other stocks in the pre-June 2009 period, a result which

evidently aligns with what we deduced from table (4.7).

Figures (4.6 - 4.8) contain the kernel density plots of ASJ, BNS and LM test statistics.

In case of the ASJ test statistics (4.6), it appears that the distribution is left-tailed or

negatively skewed. On the other hand the underlying distribution for the BNS test statistic

(4.7) appears to be skewed right. The LM test statistics (4.8) display a high kurtosis and

a long tail. All these results are consistent with what we found from tables (4.2-4.5).

When analyzing the average ratio of jump variation to total variation, we compare the

results between the ASJ test, BNS test and LM test. For all three tests given in tables

4.9, 4.10 and 4.11, ratio of jump variation to total variation is larger during financial crisis

than post financial crisis and this result is robust across all significance levels. The tech

sector ETF XLK has the largest jump variation ratio amongst all stocks. The BNS jump
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test is more likely to detect large jumps, especially during financial crisis period which is

why the jump variation ratio reported by it is larger than the other tests.

Table (4.12) contains percentage of days identified as having co-jumps under both JT

co-jump test and the co-exceedance rule between BNS jump test and LM jump test. Co-

jumps are detected in case of each of the following pairwise stock combinations, including

Exxon & JPMorgan, Exxon & Microsoft, Exxon & XLE, JPMorgan & Microsoft, Microsoft

& XLK and XLE & XLK. The range of percentage of co-jump days in JT co-jump test

is from 0.454% to 2.955%, while the range for the co-exceedance rule is from 2.838% to

9.545%. One reason for the larger percentage range in co-exceedance rule could be the fact,

that the intersection results between two jump tests lead to a large false rejection rate. The

percentage of co-jump days in JPMorgan & Microsoft, Microsoft & XLK and XLE & XLK

is larger during the financial crisis period than post financial crisis period and this result is

robust across the different significance levels and types of co-jump tests. In Table (4.13),

we detect co-jumps among the six stocks (Boeing, Exxon, Johnson&Johnson, JPMorgan,

Microsoft and Walmart), using the BLT co-jump test as in Bollerslev et al. (2008). As is

clear from the table, the percentage of co-jump days as per the BLT test is small, ranging

from 0.114% to 0.454%.

We now turn to discuss graphical representation of co-jumps. Figures have only been

given for co-jumps between pairs Exxon & JPMorgan, Exxon & Microsoft. Figures in-

volving co-jumps between other stock combinations are available upon request. Figure

(4.9) denotes the kernel density plot of JT co-jump test. Overall the distribution of the

test statistics appears to be heavily right tailed. Figure (4.11) shows the JT test statis-

tics of co-jump days from year 2006 to 2013. It is clear that co-jumps are less densely

populated when compared with jump days. When comparing how co-jumps are scattered
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between financial crisis period and post financial crisis period, there is no significant differ-

ence amongst Exxon & JPMorgan, Exxon & Microsoft. On the other hand more frequent

co-jumps are visible during the financial crisis period in Microsoft & XLK and XLE &

XLK. Figure (4.12) shows the days which have co-jumps as per the co-exceedance rule.

The results show there is not much significant difference on how co-jumps are distributed

between financial crisis and post financial crisis period.

Finally, figures (4.10) and (4.13) show the empirical findings from BLT co-jump tests.

Figure (4.10) denotes the kernel density plot of empirical BLT test statistics. The dis-

tribution of the test statistics is evidently positively skewed. Figure (4.13) shows the

daily return, daily closing price, realized variance, bipower variation and co-jump days for

equi-weighted stock index. In Bollerslev et al. (2008), the authors show that detection of

co-jumps among multiple stocks is equivalent to detecting co-jumps in an equi-weighted

index composed by the same underlying stocks. Here we test co-jumps among six stocks,

including Boeing, Exxon, Johnson&Johnson, JPMorgan, Microsoft and Walmart. The last

panel of figure 4.13 shows the number of co-jump days at α = 10% significance level. There

are only 9 co-jump days among six stocks from year 2006 to 2013.

4.7 Conclusion

In this chapter, we review some of the most recent literature on integrated volatility mea-

sures, jump and co-jump tests. We then select a small subset of these measures and tests

to conduct an empirical investigation with intra-day TAQ data of six individuals stocks

and two ETFs. This study helps to reveal how the general volatility movement, jump

and co-jump activity amongst the stocks vary across different types of tests and sampling

frequencies.

We find that the occurrence of jumps is more frequent during and before the financial
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crisis period, i.e. January 2006 - June 2009 compared to the post financial crisis period,

i.e. July 2009 - December 2013. All individual stocks apart from the ETFs reach their

peak volatility in the fourth quarter of 2008. Overall, the incidence of co-jumps is lesser

compared to jumps over the entire sample period i.e. January 2006 - December 2013.

Additionally there is not much significant difference in terms of distribution of co-jumps

between financial crisis and post financial crisis period.
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Table 4.1: Descriptive Statistics of Integrated Volatility Measures: Sample period Jan
2006 - Dec 2013

Volatility Measures RV BPV TPV MedRV MinRV TRV

Mean 2.68 1.24 2.29 2.38 2.46 2.60
Standard Deviation 4.35 2.10 3.95 4.10 4.29 4.32

Boeing Min 0.21 0.10 0.15 0.19 0.20 0.21
Max 60.05 28.47 58.80 62.83 65.26 60.05
Skewness 6.50 6.66 6.81 7.13 7.00 6.63
Kurtosis 61.54 62.81 66.26 73.91 70.90 63.35

Mean 2.15 1.01 1.89 1.98 2.02 2.10
Standard Deviation 5.30 2.65 4.94 5.47 5.75 5.08

Exxon Min 0.10 0.04 0.07 0.08 0.09 0.10
Max 131.00 72.39 140.95 156.49 166.62 131.00
Skewness 12.17 14.05 15.01 15.47 15.91 12.89
Kurtosis 223.33 301.42 346.86 357.84 374.71 254.66

Mean 1.05 0.47 0.85 0.90 0.93 1.00
Standard Deviation 2.37 1.06 1.94 2.07 2.12 2.30

Johnson & Johnson Min 0.07 0.02 0.03 0.05 0.05 0.07
Max 52.86 22.84 46.48 42.82 43.33 52.86
Skewness 11.36 10.44 11.25 10.99 10.61 11.76
Kurtosis 186.83 157.67 195.54 173.99 162.96 203.20

Mean 5.85 2.76 5.11 5.26 5.41 5.80
Standard Deviation 13.99 65.23 12.00 12.24 12.49 13.96

JP Morgan Min 0.13 0.05 0.09 0.11 0.10 0.13
Max 244.81 118.46 213.02 214.80 235.11 244.81
Skewness 8.06 7.74 7.48 7.34 7.42 8.10
Kurtosis 100.06 94.76 88.59 85.07 90.95 101.07

Mean 2.29 1.07 1.95 2.07 2.12 2.24
Standard Deviation 3.71 1.82 3.49 3.62 3.67 3.69

Microsoft Min 0.16 0.06 0.10 0.13 0.14 0.14
Max 62.08 34.69 66.05 54.42 65.94 62.08
Skewness 7.32 7.98 8.14 7.44 7.76 7.44
Kurtosis 82.10 99.39 10.17 79.17 91.30 83.96

Mean 1.57 0.71 1.31 1.37 1.40 1.51
Standard Deviation 2.95 1.32 2.53 2.53 2.48 2.86

Walmart Min 0.13 0.57 0.10 0.12 0.11 0.13
Max 71.09 31.41 63.15 60.95 53.54 71.09
Skewness 10.74 10.07 10.93 10.19 8.76 11.02
Kurtosis 190.00 172.43 205.05 180.79 130.01 204.82

Mean 2.82 1.35 2.49 2.70 2.74 2.72
Standard Deviation 7.35 3.45 5.77 8.52 8.42 6.00

XLE Min 0.10 0.04 0.08 0.08 0.08 0.10
Max 193.76 80.53 123.39 278.12 266.10 129.66
Skewness 14.29 12.30 10.14 20.21 18.81 10.39
Kurtosis 296.35 215.74 151.36 577.77 511.09 161.29

Mean 1.46 0.65 1.19 1.28 1.30 1.38
Standard Deviation 3.18 1.41 2.72 2.69 2.78 2.81

XLK Min 0.07 0.02 0.04 0.06 0.05 0.07
Max 61.21 24.11 49.50 40.78 41.31 49.62
Skewness 8.88 7.92 8.53 7.52 7.72 7.83
Kurtosis 117.31 87.29 103.04 76.99 79.80 89.51

*Notes: Table 4.1 gives the descriptive statistics of the different integarted volatility measures.
Mean, standard deviation, min and max values are all in terms of 10−4.
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Table 4.2: Descriptive Statistics of ASJ Jump Test: 5-minute sampling frequency

Boeing Exxcon Johnson&Johnson JP Morgan Microsoft Walmart XLE XLK

Panel A

Mean 0.042 0.177 0.256 0.088 0.149 0.185 0.016 0.164
st.dev 1.239 1.118 1.166 1.229 1.189 1.188 1.243 1.113

skewness -1.129 -1.149 -1.293 -1.236 -1.150 -1.340 -1.182 -1.134
kurtosis 4.120 4.459 4.739 4.814 4.253 4.752 4.612 4.583

max 2.413 2.648 2.330 2.427 2.530 2.666 2.938 2.526
min -5.374 -4.383 -4.681 -5.833 -4.319 -4.363 -5.746 -4.361

Panel B

Mean -0.053 0.093 -0.009 -0.056 0.109 0.0541 -0.018 0.063
st. dev 1.291 1.168 1.302 1.273 1.182 1.146 1.192 1.158

Skewness -1.074 -1.216 -1.211 -1.009 -1.079 -0.840 -1.150 -1.195
Kurtosis 3.743 4.465 4.342 3.636 4.046 3.402 4.535 4.808

Max 2.210 2.301 2.431 2.300 2.563 2.367 2.783 2.495
Min -5.095 -4.495 -5.685 -4.624 -4.437 -3.963 -5.770 -5.658

*Notes: Table 4.2 gives the descriptive statistics of ASJ jump test at 5-minute frequency. Panel A
covers the financial crisis period from Jan 2006 - June 2009 and Panel B covers the post fiancial

crisis period from July 2009 - Dec 2012.

Table 4.3: Descriptive Statistics of ASJ Jump Test: 1-minute sampling frequency

Boeing Exxcon Johnson&Johnson JP Morgan Microsoft Walmart XLE XLK

Panel A

Mean 0.399 0.404 0.587 0.391 0.612 0.453 0.125 0.756
st. dev 1.455 1.345 1.414 1.315 1.300 1.358 1.371 1.385

Skewness -0.896 -0.776 -1.627 -1.035 -1.05 -0.845 -0.347 -1.071
Kurtosis 4.378 5.219 10.193 6.531 5.650 4.770 3.682 9.357

Max 4.723 5.138 4.538 4.105 5.457 4.998 4.548 6.183
Min -6.235 -6.387 -11.076 -8.702 -5.554 -5.755 -4.864 -8.529

Panel B

Mean 0.236 0.348 0.430 0.249 0.532 0.317 0.066 0.643
st. dev 1.400 1.281 1.504 1.335 1.247 1.503 1.321 1.111

skewness -1.100 -1.122 -0.884 -1.294 -1.029 -1.279 -0.711 -0.568
Kurtosis 5.678 7.305 4.546 7.522 5.3471 7.099 3.819 4.707

Max 4.244 4.867 5.120 4.198 4.684 3.505 4.265 5.429
Min -8.733 -9.165 -6.190 -9.994 -5.867 -10.974 -4.813 -3.816

*Notes: Table 4.3 gives the descriptive statistics of ASJ jump test at 1-minute frequency. See
notes of Table 4.2.



146

Table 4.4: Descriptive Statistics of BNS Jump Test

Boeing Exxcon Johnson&Johnson JP Morgan Microsoft Walmart XLE XLK

Panel A

Mean 0.878 0.771 1.098 0.854 0.867 0.859 0.599 1.415
st.dev 1.511 1.327 1.665 1.434 1.320 1.401 1.327 1.693

Skewness 1.030 0.618 1.151 0.951 0.602 0.801 0.780 1.315
Kurtosis 4.903 3.749 4.851 4.518 3.500 4.068 4.169 6.395

Max 7.791 6.631 8.661 7.352 5.811 6.662 6.947 10.731
Min -2.513 -2.341 -2.693 -2.364 -2.299 -2.505 -2.640 -2.695

Panel B

Mean 0.688 0.667 0.876 0.558 0.880 0.918 0.572 0.814
st.dev 1.406 1.328 1.450 1.249 1.406 1.535 1.228 1.275

Skewness 0.983 0.572 0.837 0.574 0.647 0.925 0.615 0.525
Kurtosis 5.400 3.557 3.646 3.652 3.428 4.215 3.711 3.530

Max 9.340 6.964 7.128 5.486 7.008 7.549 5.807 6.909
Min -2.485 -2.546 -2.006 -2.750 -2.417 -2.137 -2.225 -2.244

*Notes: Table 4.4 gives the descriptive statistics of BNS jump test at 5-minute frequency. See
notes of Table 4.2.

Table 4.5: Descriptive Statistics of LM Jump Test

Boeing Exxcon Johnson&Johnson JP Morgan Microsoft Walmart XLE XLK

Panel A

Mean 0.595 4.436 -1.662 -0.676 3.987 0.181 2.202 2.347
st.dev 42.865 50.142 101.707 47.879 66.636 52.002 37.687 72.997

Skewness 0.911 2.909 0.675 0.850 1.267 -0.146 2.714 0.316
Kurtosis 15.591 31.900 16.875 25.186 13.907 10.491 41.367 14.882

Max 386.170 602.678 1008.160 525.995 585.419 314.852 472.919 509.147
Min -309.16 -185.941 -615.524 -354.424 -289.795 -343.618 -189.563 -570.747

Panel B

Mean -0.110 0.295 0.076 0.137 0.097 0.636 -0.051 0.042
st.dev 42.450 47.158 67.736 33.483 42.875 61.795 43.314 54.955

Skewness -0.465 -0.251 -0.635 1.958 1.035 0.138 -0.451 0.128
Kurtosis 67.346 29.672 49.711 165.139 92.97 76.991 48.134 30.865

Max 1047.900 1192.159 1455.508 1320.357 1726.992 1529.471 1288.848 1571.141
Min -1275.319 -764.818 -1789.208 -1399.492 -1064.302 -2124.609 -881.903 -881.418

*Notes: Table 4.5 gives the descriptive statistics of LM jump test at 5-minute frequency. See
notes of Table 4.2.
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Table 4.6: Percentage of days identified as having jumps - ASJ Jump Test

Name Panel A: Jan 2006 - Jun 2009 Panel B: July 2009 - Dec 2012
1 min 5 min 1 min 5 min

Significance level 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10

Boeing 15.79 27.95 3.29 10.79 10.89 23.38 2.27 9.98
Exxon 12.61 22.84 3.63 11.47 9.76 21.11 2.72 8.74
Johnson & Johnson 19.88 32.04 4.77 14.09 16.00 27.80 3.40 10.44
JP Morgan 12.38 24.20 3.52 11.36 10.32 18.84 3.06 8.05
Microsoft 17.04 31.70 3.52 11.36 14.18 25.42 4.08 11.12
Walmart 15.11 27.61 3.52 11.59 13.16 24.85 3.74 9.53
XLE 10.22 17.84 3.06 9.43 7.60 13.96 2.27 7.94
XLK 20.45 34.31 3.63 10.68 15.20 26.44 2.83 9.19

*Notes: Table 4.6 gives the percentage of days identified as having jumps by the ASJ test at both
5 minute and 1 minute sampling frequencies. Jumps are tested at α = 0.05 and α = 0.1

significance level. Percentage of days is calculated using the equation 4.87 in section 4.6.2. Panel
A covers the financial crisis period from Jan 2006 - June 2009 and Panel B covers the post fiancial

crisis period from July 2009 - Dec 2012.

Table 4.7: Percentage of Days Identified as having Jumps - BNS Jump Test

Name Panel A: Jan 2006 - Jun 2009 Panel B: July 2009 - Dec 2012
Signifiance Level 0.05 0.10 0.05 0.10

Boeing 20.68 27.73 16.69 23.04
Exxcon 17.95 26.25 15.78 23.27

Johnson&Johnson 24.09 30.23 20.43 25.88
JP Morgan 19.89 25.23 12.83 19.64
Microsoft 18.86 25.23 21.45 27.70
Walmart 19.77 27.38 20.66 26.67

XLE 15.11 21.36 12.71 19.41
XLK 30.00 38.18 17.93 25.54

*Notes: Table 4.7 shows percentage of days identified as having jumps by BNS test at 5
minute sampling frequency. See notes of Table 4.6.
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Table 4.8: Percentage of days identified as having jumps and Jump Proportion - LM Jump Test

Name Panel A: Jan 2006 - Jun 2009 Panel B: July 2009 - Dec 2012
Jump proportion % of Jump days Jump proportion % of Jump days

Signifiance Level 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10
Boeing 1.06 1.07 82.39 83.41 1.14 1.15 88.99 89.56
Exxcon 1.10 1.11 85.45 86.36 1.17 1.17 90.92 91.49

Johnson&Johnson 1.15 1.15 89.55 89.89 1.21 1.21 94.32 94.55
JP Morgan 1.03 1.04 80.45 80.91 1.11 1.12 86.83 87.29
Microsoft 1.15 1.15 89.66 89.66 1.16 1.17 90.47 91.15
Walmart 1.11 1.12 86.36 87.05 1.19 1.19 92.51 92.74

XLE 1.03 1.05 80.45 81.93 1.17 1.18 91.60 92.30
XLK 1.06 1.07 82.84 83.41 1.14 1.14 88.88 89.22

*Notes: Table 4.8 shows percentage of days identified as having jumps and jump proportion as per the
LM test at 5 minute sampling frequency. Percentage of days is calculated using the equation 4.88 in

section 4.6.2. See notes of Table 4.6.

Table 4.9: Average Ratio of Jump Variation to Total Variation - ASJ Jump Test

Name Panel A: Jan 2006 - June 2009 Panel B: July 2009 - Dec 2012
1 min 5 min 1 min 5 min

Significance level 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10

Boeing 3.74 6.14 0.70 2.38 2.14 4.08 0.32 1.68
Exxon 2.86 4.28 0.44 1.63 1.55 3.02 0.26 1.03
Johnson & Johnson 5.21 8.09 0.99 2.87 3.49 5.96 0.64 2.17
JP Morgan 2.97 5.21 0.55 2.16 1.56 2.90 0.42 1.14
Microsoft 4.59 8.05 0.50 2.07 3.30 5.47 0.96 2.20
Walmart 3.50 6.30 0.53 2.18 2.93 5.33 0.86 1.81
XLE 2.08 3.35 0.34 1.39 1.44 2.40 0.24 1.05
XLK 10.78 16.96 1.27 3.40 4.69 7.88 0.54 1.74

Notes*: Table 4.9 gives the average ratio of jump varaition to total variation as per the ASJ test
using both 5 minute and 1 minute sampling frequencies. Jump ratio is calculated using the

equation 4.90 in section 4.6.2. Panel A covers the financial crisis period from Jan 2006 - June
2009 and Panel B covers the post fiancial crisis period from July 2009 - Dec 2012.
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Table 4.10: Average Ratio of Jump Variation to Total Variation - BNS Jump Test

Name Panel A: Jan 2006 - Jun 2009 Panel B: July 2009 - Dec 2012
Signifiance Level 0.05 0.10 0.05 0.10

Boeing 37.87 34.36 6.10 8.58
Exxcon 32.00 28.44 6.93 7.67

Johnson&Johnson 42.46 39.93 9.30 11.09
JP Morgan 36.81 33.75 5.99 8.13
Microsoft 36.44 33.26 8.92 9.76
Walmart 36.60 33.43 7.91 8.87

XLE 33.00 30.08 4.37 5.64
XLK 44.63 41.78 12.75 14.70

*Notes: Table 4.10 shows average ratio of jump variation to total variation as per the BNS
test using 5 minute frequency. See notes of Table 4.9.

Table 4.11: Average Ratio of Jump Variation to Total Variation - LM Jump Test

Name Panel A: Jan 2006 - Jun 2009 Panel B: July 2009 - Dec 2012
Signifiance Level 0.05 0.10 0.05 0.10

Boeing 17.72 17.79 14.59 14.87
Exxcon 14.65 14.58 12.59 12.62

Johnson&Johnson 21.53 21.53 19.34 19.4
JP Morgan 17.41 17.36 13.92 13.93
Microsoft 17.57 17.57 15.59 15.60
Walmart 17.68 17.56 15.22 15.23

XLE 13.58 13.56 10.98 11.17
XLK 25.45 25.35 21.33 21.41

*Notes: Table 4.11 shows the average ratio of jump variation to total variation as per the LM
test using 5 minute frequency. See notes of Table 4.9.
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Table 4.12: Percentage of Days Identified as having Co-jumps - GST Co-exceedance Rule

Panel A: Jan 2006 - Jun 2009 Panel B: July 2009 - Dec 2012
JT Test LM&BNS Test JT Test LM&BNS Test

Significance Level 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10

Exxon&JPMorgan 1.364 1.818 3.864 7.159 1.703 1.816 2.838 5.335
Exxon & Microsoft 0.795 0.909 3.295 6.818 1.022 1.476 3.519 5.675

Exxon & XLE 1.136 1.59 3.977 7.386 1.93 2.497 3.746 8.059
JPMorgan & Microsoft 1.136 1.363 3.409 5.682 1.135 1.249 2.951 5.335

Microsoft & XLK 2.500 2.955 6.136 9.545 1.022 1.362 4.767 7.491
XLE & XLK 2.045 2.386 4.773 8.295 0.454 0.568 3.065 6.129

*Notes: Table 4.12 shows the percentage of days identified as having co-jumps. Co-jumps are
detected at α = 0.05 and α = 0.1 significance level. Both JT co-jump test and co-exceedance rule

between BNS test and LM test are used to test co-jumps. Panel A covers the financial crisis period
from Jan 2006 - June 2009 and Panel B covers the post fiancial crisis period from July 2009 - Dec

2012. The test statistics are calculated at 5-minute frequency.
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Table 4.13: Percentage of Days Identified as
having Co-jumps - BLT test

Panel Panel B
Significance Level 0.05 0.1 0.05 0.1

BLT Test 0.227 0.341 0.114 0.454

*Notes: See notes to Table 4.12. Table 4.13 shows the
percentage of days identified as having co-jumps from
BLT co-jump tests. Co-jumps are detected among six
stocks: Boeing, Exxon, JohnsonJohnson, JPMorgan,

Microsoft and Walmart.
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Figure 4.1: Integrated Volatility Measures - Boeing

Notes*: Figure 4.1 displays volatility of Boeing across the sample period Jan 2006 - Dec 2013
using 5-minute sampling frequency with respect to six different integrated volatility measures

which include RV, BPV, TPV, MedRV, MinRV and TRV.
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Figure 4.2: Integrated Volatility Measures - Exxon

Notes*: Figure 4.2 displays volatility movement of Exxon. See notes of Figure 4.1.
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Figure 4.3: ASJ Jump Test Statistics of Days Identified as having Jumps: 5-minute
sampling frequency

*Notes: Figure 4.3 displays the scatter plot for ASJ test statistics for days identified as having
jumps using 5-minute sampling frequency. We consider the following stocks and ETFs: Boeing &

Exxon for the sample period Jan 2006 to Dec 2013.
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Figure 4.4: ASJ Jump Test Statistics of Days Identified as having Jumps: 1-minute
sampling frequency

*Notes: Figure 4.4 displays the scatter plot for ASJ test statistics for days identified as having
jumps using 1-minute sampling frequency. See notes of figure 4.3.
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Figure 4.5: BNS Jump Test Statistics of Days Identified as having Jumps

*Notes: Figure 4.5 displays the scatter plot for BNS test statistics for days identified as having
jumps using 5-minute sampling frequency. See notes of figure 4.3.
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Figure 4.6: Kernel Density Plots for ASJ Test Statistics

Notes*: Figure 4.6 displays the kernel density plot of ASJ jump test statistics using 5-minute
sampling frequency. See notes of figure 4.3.
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Figure 4.7: Kernel Density Plot of BNS Jump Test Statistics

Notes*: Figure 4.7 displays the kernel density plot of BNS jump test statistics using 5-minute
sampling frequency. See notes of figure 4.3.
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Figure 4.8: Kernel Density Plot of LM Jump Test Statistics

Notes*: Figure 4.8 displays the kernel density plot of LM jump test statistics using 5-minute
sampling frequency. See notes of figure 4.3.
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Figure 4.9: Kernel Density Plot of JT Co-jump Test Statistics

*Notes: Figure 4.9 displays the kenel density plot of JT co-jump test using 5-minute sampling
frequency. The co-jumps are tested for the pairs Exxon & JPMorgan and Exxon & Microsft for

the sample period Jan 2006-Dec 2013.
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Figure 4.10: Kernel Density Plot of empirical observed BLT Statistics

*Notes: Figure 4.10 displays the kernel density plot of the empirical observed BLT co-jump test
statistics using 5-minute sampling frequency for the sample period Jan 2006-Dec 2013.
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Figure 4.11: JT Co-jump Test Statistics of Days Identified as Having Co-jumps

*Notes: Figure 4.11 displays the co-jump days test statistics of JT test for the sample period Jan
2006 to Dec 2013 using sampling frequency of 5-minute.
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Figure 4.12: LM & BNS Test Statistics for Days Having Co-jumps

*Notes: Figure 4.12 displays the co-jump days identified from co-exceedance rule between LM jumps test and BNS
jump test for the pairs Exxon & JPMorgan and Exxon & Microsoft. 5-minute sampling frequency is considered for

sample period Jan 2006-Dec 2013.
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Figure 4.13: Daily Return, Daily Closing Price, Realized Variance, Bipower Variation and
Co-jump Days for Equi-weighted Stock Index

*Notes: Figure 4.13 displays the daily return, daily closing price, realized variance, bipower
variation and co-jump days for equi-weighted stock index. The co-jump days in the last panel are
detected through BLT co-jump tests at α = 0.1 significance level from Jan 2006 to Dec 2013. The
equi-weighted stock index is composed of six stocks (Boeing, Exxon, JohnsonJohnson, JPMorgan,

Microsoft and Walmart) with equal weights.
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