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The recent decade saw the rapid increase of data size and frequency available for economic

and financial analysis. This also brings the opportunity to gain new insights into the

interplay between uncertainty, financial markets, and the macro economy, utilizing recent

advances in high-frequency financial econometrics, as well as in macroeconometrics.

In Chapter 2, we introduce a class of multi-frequency macroeconomic and financial

volatility risk factors. The factors are designed to measure uncertainty, and are latent

variables extracted from a state space model that includes multiple different frequencies of

non-parametrically estimated components of quadratic variation. When forecasting growth

rates of monthly frequency macroeconomic variables, including housing starts, industrial

production and nonfarm payroll employment, use of the new risk factors results in significant

improvements in predictive performance.

Additionally, when used to forecast corporate yields, the risk factors result in monoton-

ically increasing predictive accuracy gains, as one moves from predicting bonds with higher

ratings to predicting bonds with lower ratings. This is consistent with the existence of

a natural pricing channel wherein financial risk is more important, predictively, for lower

grade bonds. Although the above results are promising, it should be noted that there are
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exceptions. In particular, we find that when forecasting personal consumption, consumer

sentiment and price growth rates, the use of simple daily volatility measures often yield

superior predictions. Nevertheless, the preponderance of evidence presented in this paper

points to impressive predictive gains associated with the use of the new volatility risk fac-

tors. Finally, it is worth noting that a variety of other risk factors, including the Aruoba

et al. (2009b) business conditions index as well as a new financial-macroeconomic risk factor

based on our multi-frequency approach often also contain marginal predictive content for

the variables that we examine, although their inclusion does not reduce the importance of

our multi-frequency volatility risk factor.

In Chapter 3, we examine the usefulness of a large variety of machine learning meth-

ods for forecasting daily and monthly sector level equity returns. We also examine the

usefulness of three new latent risk factors that are designed to capture key forecasting in-

formation associated with financial market stress, market uncertainty, and macroeconomic

fundamentals. The factors are variously based on the decomposition (using high frequency

financial data) of the quadratic covariation between two assets into continuous and jump

components, and the extraction of latent factors from mixed frequency state space mod-

els populated with nonparametrically estimated components of quadratic variation and/or

low frequency macroeconomic data. In addition to constructing predictions using standard

machine learning methods such as random forest, gradient boosting, support vector ma-

chine learning, penalized regression, and neural networks, among others, we also investigate

the predictive performance of a group of hybrid machine learning methods that combine

least absolute shrinkage operator and neural network specification methods. Overall, at the

monthly frequency, we find that machine learning methods significantly improve forecasting

performance, as measured using mean square forecast error (MSFE) and directional predic-

tive accuracy rate (DPAR), relative to the random walk and linear benchmark alternatives.

The “best” method is clearly the random forest method, which “wins” in almost all per-

mutations at the monthly frequency, across all of the “target” variables that we predict. It

is also worth noting that our hybrid machine learning methods often outperform individual
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methods, when forecasting daily data, although predictive gains associated with the use of

any machine learning method are substantially reduced when forecasting at a daily versus

monthly frequency. Finally, the novel uncertainty factors that we build are present in al-

most all of our “MSFE-best” and directional “accuracy-best” models, suggesting that the

risk factors constructed using both high frequency financial data (e.g., 5-minute frequency

S&P500 and sector ETF data) and aggregate low frequency macroeconomic data, are useful

for predicting returns.

In Chapter 41, we evaluate the development of new tests and methods used in the

evaluation of time series forecasts and forecasting models remains as important today as it

has been for the last 50 years. Paraphrasing what Sir Clive W.J. Granger (arguably the

father of modern day time series forecasting) said in the 1990s at a conference in Svinkloev,

Denmark, ‘OK, the model looks like an interesting extension, but can it forecast better

than existing models.’ Indeed, the forecast evaluation literature continues to expand, with

interesting new tests and methods being developed at a rapid pace. In this chapter, we

discuss a selected group of predictive accuracy tests and model selection methods that have

been developed in recent years, and that are now widely used in the forecasting literature.

We begin by reviewing several tests for comparing the relative forecast accuracy of different

models, in the case of point forecasts. We then broaden the scope of our discussion by

introducing density-based predictive accuracy tests. We conclude by noting that predictive

accuracy is typically assessed in terms of a given loss function, such as mean squared

forecast error or mean absolute forecast error. Most tests, including those discussed here,

are consequently loss function dependent, and the relative forecast superiority of predictive

models is therefore also dependent on specification of a loss function. In light of this fact,

we conclude this chapter by discussing loss function robust predictive density accuracy tests

that have recently been developed using principles of stochastic dominance.

1This chapter is published in “Macroeconomic Forecasting in the Era of Big Data” (Fuleky (2020)) as a
chapter entitled “Forecasting Evaluation” (Cheng et al. (2020)).
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Chapter 1

Introduction

In the second chapter, entitled “Measuring Uncertainty Using Mixed Frequency Macroeco-

nomic and Financial Volatility Risk Factors”, we introduce a new class of latent macroeco-

nomic and financial risk (or volatility) factors, based on the use of high dimensional, high

frequency, and multi-frequency data. My objective is to add to the large and relatively

nascent literature exploring the construction of and uses for measures of uncertainty in the

context of financial and macroeconomic forecasting (see e.g. Jurado et al. (2015a) and Baker

et al. (2016)). The latent factors that we propose are extracted from a state space model

that includes multiple different frequencies of non-parametrically estimated components

of quadratic variation, all of which are extracted from high frequency financial data. The

state space model may (or may not) also contain (multi-frequency) macroeconomic variables

such as initial job claims and income growth rates, for example. By carrying out a series

of ex-ante forecasting experiments, we demonstrate that when forecasting growth rates of

monthly frequency macroeconomic variables, including housing starts, industrial production

and nonfarm payroll employment, use of the new uncertainty measures results in significant

improvement in predictive accuracy. Additionally, when used to forecast corporate yields,

the uncertainty measures result in monotonically increasing predictive accuracy gains, as

one moves from predicting bonds with higher ratings to predicting bonds with lower ratings.

This is consistent with the existence of a natural pricing channel wherein financial risk is

more important, predictively, for lower grade bonds.

The third chapter, entitled “Forecasting Sector Level Equity Returns with Latent Risk

Factors and Machine Learning”(joint with Weijia Peng), develops additional new uncer-

tainty measures based on the use of multi-frequency macroeconomic data and high fre-

quency financial data. In particular, in this paper, we explore the usefulness of various

new uncertainty measures constructed using methodology related to that discussed above,
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in the context of forecasting sector level asset returns. In this context, we explore the use-

fulness of a large number of machine learning, shrinkage and dimension reduction methods

when specifying prediction models, with the objective of not only ascertaining the marginal

predictive content of our new uncertainty measures, but also providing new evidence of

the usefulness of said methods. In this sense, we add not only to the recent literature

on both uncertainty measures (and their uses in finance), but also to the nascent litera-

ture on empirical asset pricing using machine learning (see e.g. Gu et al. (2018)). More

specifically, we use big data to construct three different categories of latent uncertainty

or risk factors, including ones based on macroeconomic fundamentals, market (financial)

volatility, and financial market sector contagion. Using these new measures, we perform an

extensive set of prediction experiments, in which we predict both returns and directional

movements of daily and monthly returns for the S&P500 and various SPDR sector ETFs,

including finance (XLF), technology (XLK), health care (XLV), and consumer discretionary

(XLY). Relative performance of our various machine learning methods is then compared

against random walk and linear benchmark models using conditional Diebold-Mariano and

Pesaran-Timmermann directional accuracy tests. The machine learning methods that we

utilize include random forest, gradient boosting, support vector machine learning, penalized

regression (shrinkage) and neural networks (deep learning). We also evaluate related ma-

chine learning classifier methods including latent discriminant analysis, nave Bayes, support

vector classifier, k-nearest-neighbors, and gradient boosting. Additionally, we propose and

evaluate a group of hybrid two-step machine learning methods that combine least absolute

shrinkage (lasso) and neural network methods. Interestingly, we find evidence of substantial

forecasting improvement when our latent uncertainty factors are included in our different

forecasting models, indicating the usefulness of mapping the information in big datasets

into a small number of key latent factors, when forecasting at market and sector levels.

Our results also indicate that models constructed using machine learning methods yield

significantly lower mean square forecast errors and higher directional accuracy ratesthan

various benchmark linear models. Moreover, the random forest method dominates all other
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machine learning methods. Finally, our hybrid machine learning methods often outperform

non-hybrid methods.

In the fourth chapter, entitled “Forecasting Evaluation”, coauthored with Mingmian

Chen and Norman R. Swanson and published in Macroeconomic Forecasting in the Era of

Big Data, Springer, Cham, 2020, 495-537, we discuss a select group of recently developed

predictive accuracy tests and model selection methods, focusing primarily on those tests

and methods that are becoming widely used in the forecasting literature. We begin by

reviewing several tests for comparing the relative forecast accuracy of different models, in

the case of point forecasts. We then broaden the scope of our discussion by introducing

density-based predictive accuracy tests. We conclude by noting that predictive accuracy

is typically assessed in terms of a given loss function, such as mean squared forecast error

or mean absolute forecast error. Most tests, including those discussed in the paper, are

consequently loss function dependent, and the relative forecast superiority of predictive

models istherefore also dependent on specification of a loss function. In light of this fact,

we conclude by discussing loss function robust predictive density accuracy tests that have

recently been developed using principles of stochastic dominance. These tests are potentially

important, as they do not require the specification of a loss function when comparing models.

Thus, a model selected as best remains so, irrespective of the loss function an investigator

is interested in using.
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Chapter 2

Measuring Uncertainty Using Mixed Frequency

Macroeconomic and Financial Volatility Risk Factors

2.1 Introduction

The impact of uncertainty on macroeconomic activity has drawn considerable attention

from researchers, practitioners, and policy makers in recent years. This is in no small part

due to the severity of the recent Great Recession of 2008. Other factors, such as recent

slowdowns in business spending and industrial activity associated with uncertainty due to

trade disputes and monetary policy outlooks have also led to interest in refining extant

measures of uncertainty used to gauge economic conditions.1 In this vein, several models

have been proposed to explain the relationship between uncertainty and economic activity.

For example, in a key recent paper in this literature, Bloom (2009) argues that higher

uncertainty expectations cause firms to shrink their production and then freeze reallocations

across industrial networks, ultimately resulting in productivity growth decreases. In a

related paper, Basu and Bundick (2017) introduce a theoretical model that demonstrates

how uncertainty shocks can affect aggregate demand. Jurado et al. (2015b) takes a different

approach, and proposes a class of uncertainty measures that exploit data rich environments.

In this paper, we build on the above literature, and in particular on the work of Ju-

rado et al. (2015b), by introducing a class of multi-frequency macroeconomic and financial

volatility risk factors that are aimed at measuring market uncertainty. The new risk fac-

tors are latent variables extracted from state space models that include multiple different

frequencies of macroeconomic and financial variables, as well as multiple different frequen-

cies of non-parametrically estimated components of quadratic variation. For this reason,

1For example, in his September 2019 FOMC meeting press conference opening remarks, Federal Reserve
Chair Powell said “... elevated uncertainty is weighing on U.S. investment and exports. Our business
contacts around the country have been telling us that uncertainty about trade policy has discouraged them
from investing in their businesses.”(FOMC (2019))



5

our models include data frequencies ranging from 5-minutes to quarterly. The state space

models are specified in one of two ways. First, they may be specified solely using latent

components of quadratic variation, including continuous and jump component variation

measures extracted from high frequency S&P500 data. Alternatively, they may be specified

using quadratic variation components as well as additional observed variables, including

macroeconomic indicators such as interest rates, employment, and production. Related pa-

pers that utilize mixed-frequency state space models include Mariano and Murasawa (2003),

Frale et al. (2008), Aruoba et al. (2009b) and Marcellino et al. (2016). None of these papers,

however, include multiple frequencies of the same latent variable, as is done in this paper.2

Our objective is thus to add to the large nascent literature exploring measures of un-

certainty using financial data. For instance, we build on the work of Bloom (2009) and

Basu and Bundick (2017), who examine uncertainty measures based on the VIX and the

VXO, respectively. In other recent work, Gilchrist et al. (2014) examines the importance

of realized volatility from a micro-level firm-specific asset return dataset. Carriero et al.

(2016) incorporates both volatility uncertainty measures and “target” forecasting variables

in a VAR setting. Other papers employ factor and state space models to build measures of

uncertainty. For example, Jo and Sekkel (2017) use forecasting errors from macroeconomic

indicators in the Survey of Professional Forecasters and extract common factors using a

stochastic volatility model, and Carriero et al. (2015) builds a Bayesian model to extract

latent factors.3 Another important paper in this area which is closely related to ours is

Chauvet et al. (2015). These authors implement a dynamic factor model to extract com-

mon components from realized volatilities of stocks and bonds. The main difference between

our approach and that of Chauvet et al. (2015) is that while they include high frequency

2An interesting alternative method for handling mixed-frequency data is the mixed data sampling (MI-
DAS) approach proposed by Ghysels et al. (2007). The idea underlying this method is to establish a
regression relation between a low-frequency variable and a set of higher-frequency variables that are aggre-
gated by dynamic weighting functions. Following this idea, Andreou et al. (2013) demonstrate how daily
financial data can be incorporated into a forecasting model for quarterly GDP.

3Other authors investigate uncertainty measures constructed using more exotic data. For example, Bach-
mann et al. (2013) use survey data regarding firms’ business conditions and equate forecast “disagreement”
with uncertainty. Baker et al. (2016) develop a policy uncertainty index based on the frequency of news
coverage in leading newspapers.



6

based measures of uncertainty in their analysis, all factors are estimated using data of the

same frequency. Our multi-frequency approach instead builds on the work of Corsi (2009),

where the use of heterogeneous autoregressive realized volatility models is motivated by

arguing that agents with different decision horizons react to, and cause, different volatility

dynamics. In particular, it is argued that there are short-term traders with daily (or higher)

trading frequencies, medium-term investors who typically rebalance their positions weekly,

and long-term investors who induce low frequency volatility dynamics. Our approach is

to consider frequencies of daily, bi-daily, tri-daily, and weekly, in order to capture effects

associated with short-term and medium-term agents.

Finally, we would be remiss if we did not cite the key paper by Aruoba et al. (2009b), in

which a business conditions index is constructed by extracting a latent factor from macroe-

conomic variables of different observational frequencies. Both of these last two papers utilize

a state space modeling framework in order to estimate their latent factors. We do likewise.

The main difference between our approach and that of Aruoba et al. (2009b) is that they do

not include nonparametric measures of uncertainty constructed using high frequency data.

Instead, they analyze a model that includes macroeconomic indicators. In order to compare

our results with theirs, we include a variant of our model which nests their model.

Our key findings can be summarized as follows. First, when our multi-frequency volatil-

ity risk factors are incorporated into the forecasting models for macroeconomic variables

including housing starts, industrial production and nonfarm payroll employment, we observe

substantial and significant improvements in predictive performance, relative to benchmark

models including simple autoregressive models, as well as mixed frequency models driven

solely by macroeconomic indicators. Moreover, the largest predictive gains are associated

with models that include factors constructed using both macroeconomic and high frequency

financial data, as opposed to purely financial or purely macroeconomic factors. These results

confirm the existence of financial-macroeconomic linkages discussed in Bloom (2009), where

uncertainty influences credit conditions as well as a firm’s expansion decisions. They also

highlight the potential predictive usefulness of the new uncertainty measures introduced in
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this paper.

Second, an interesting pattern emerges when using our multi-frequency volatility risk

factors to forecast corporate bond yields. In particular, the risk factors result in mono-

tonically increasing predictive accuracy gains (as measured by mean square forecast error

(MSFE)), as one moves from predicting bonds with higher ratings to predicting bonds with

lower ratings. This is consistent with the existence of a natural pricing channel wherein

financial risk is more important, predictively, for lower grade bonds. For example, models

that include risk factors are generally associated with 30% to 40% MSFE drops for bonds

with ratings lower than BB; are associated with 10% to 20% drops for A and BBB rated

bonds; and are associated with no drops for AAA and AA rated bonds. Summarizing, the

highest rated investment grade bonds seem to act as ’safe haven’, in the sense that they

show little dependence on volatility.

Third, four different measure of volatility are used in our analysis, including realized

volatility (RVt), truncated realized volatility (TRVt), bi-power variation (BPVt), and jump

variation (JVt = RV t − BPV t). In our forecasting experiments, TRVt is clearly the most

effective measure to use when constructing multi-frequency volatility risk factors. This is

perhaps not surprising, given the difficulties noted in the financial econometrics literature

associated with extracting useful predictive content from jump variation measures. It is

also not surprising, thus, that we find little predictive content in factors constructed using

JVt.

Fourth, we provide empirical evidence that multi-frequency volatility risk factors react

more quickly to changing economic conditions than macroeconomic factors. This is par-

ticularly apparent when observing the behavior of these risk factors after the recession of

2008.
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2.2 Volatility, Macroeconomic, and Macroeconomic-volatility Risk Fac-

tors

In this section, we outline the methodology used in the construction of the risk factors

analyzed in the sequel. We begin by summarizing the method that we use to address

temporal aggregation as well as missing observations. We then briefly review the high

frequency measures of volatility used, followed by a detailed explanation of the state space

modeling framework implemented in order to estimate multi-frequency volatility risk factors,

macroeconomic risk factors, and “mixed” volatility-macroeconomic risk factors.

2.2.1 Inter-temporal Aggregation

As discussed in Aruoba et al. (2009b) and Aruoba et al. (2009a) various issues regarding the

temporal aggregation of variables of different frequencies, as well as stock and flow features

of the variables that we examine are worth mentioning.

First, note that observed values of the flow variables are accumulated over past periods,

while stock variables reflect quantities at a particular point in time. This is important,

because in our state space modeling framework, we incorporate latent flow variable factors.

For example, if the state space system is evolving at a daily frequency, and observed values of

a monthly flow variable are accumulated value over past 30 days or so. As the state variable

or risk factor that we interested in is evolving on daily basis, each time this monthly flow

variable updates it introduces a ’shock’ to the factor, unless flow variable observations are

properly introduced into the system. This is done by introducing a new latent variable that

sums past flow values across the period at which the flow variable is observed.

For a stock variable, the above complication does not arise. In particular, the observed

value for a stock variable can simply be expressed as a function of the current state factor,

possibly lags, and a stochastic disturbance term. As an example, let Ft denote the state

factor at time t, and define

yst = β1Ft + ut,
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where Ft is a latent factor, and ut is a stochastic disturbance term. In this equation, the

stock variable, yst .

On the other hand, and as discussed above, a flow variable instead reflects a quantity

that is aggregated throughout the observational time interval. Thus, a flow variable can be

defined as follows:

yft =

Kj−1∑
i=0

yft−i,

where indices i and j denote the ith time point within the jth observational interval, and

Kj is the length of the interval between two observational time points (i.e., time points for

which observations are available - namely, between the (j − 1)th and jth time points).

Since the value of flow variable is inter-temporally accumulated over a given period of

time, we can thus form a state vector that sums all lags of states during the correspond-

ing period, hence addressing inter-temporal aggregation. However, given that our highest

sampling frequency is daily, when the flow variable is monthly or quarterly, this approach

will result in the specification of a very large state vector containing all lags across the flow

variable sampling frequency. For example, to represent all lags of quarterly real GDP in

a daily updating system, roughly 120 lags of the state variable need to be included in our

system. This would lead to a system with so many parameters that convergence under

maximum likelihood estimation would be difficult to achieve. For this reason, we instead

implement the aggregated states approach of Aruoba et al. (2009a) in order to account for

flow variables in our system. Namely, we define

yft = βCt + γyft−M + wt,

where Ct is a latent state variable defined specifically for flow variables, M is the observa-

tional lag length, and the wt are serially uncorrelated error terms. Here, Ct sums over its

past values within the observational period of the flow variables. Namely,

Ct+1 = ψt+1Ct + ρFt,

where
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ψt =


0, if t is the first observation of the period

1, otherwise,

and where ψt is an indicator that controls for the observational frequency of the flow variable.

Hence, if a flow variable is updated at time t, then the value of Ct+1 will be refreshed to be

0 + ρFt, while if a flow variable is not updated at time t, then Ct+1 = Ct + ρFt, and thus

includes its past value in the sum.

2.2.2 High frequency measures of volatility and jump risk

Let Xt be the log-price of an asset at time t. Assume that the log-price process follows a

jump-diffusion model (hence, almost surely, its paths are right continuous with left limits).

Namely,

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdBs +

∑
s≤t

∆Xs.

In the above expression, B is a standard Brownian motion and ∆Xs := Xs −Xs−, where

Xs− := limu↑sXu, represents the possible jump of the process X, at time s.

Consider a finite time horizon, [0, t] that contains n high-frequency observations of the

log-price process. A typical time horizon is one day. Let ∆n = t/n be the sampling

frequency. Then intra-daily returns can be expressed as ri,n = Xi∆n −X(i−1)∆n
.

A well-established result in the high frequency econometrics literature is that realized

volatility is a consistent estimator of the total quadratic variation. Namely,

RVt =
n∑
i=1

r2
i,n

u.c.p.−→
∫ t

0
σ2
sds+

∑
s≤T

(∆Xs)
2 = QVt = IVt + JVt,

where
u.c.p.−→ denotes convergence in probability, uniformly in time. There are many estima-

tors of integrated volatility (IVt), which is the variation due to the continuous component

of quadratic variation (QVt). For example, multipower variations are defined as follows:

Vt =
n∑

i=j+1

|ri,n|r1 |ri−1,n|r2 ...|ri−j,n|rj ,
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where r1, r2, ..., rj are positive, such that
j∑
i=1

ri = k, say. An important special case of

this estimator is bipower variation (BPVt), which was introduced by Barndorff-Nielsen and

Shephard (2004). Namely,

BPVt = (µ1)−2
n∑
i=2

|ri,n||ri−1,n|

where µ1 = E(|Z|) = 21/2Γ(1)/Γ(1/2) =
√

2/π, with Z a standard normal random variable,

and where Γ(·) denotes the gamma function. Another useful estimator is truncated bipower

variation (TBPVt), which combines the truncation method proposed by Mancini (2009)

and the bipower variation (BPVt) estimator discussed above. Namely,

TBPVt = (µ1)−2
n∑
i=2

|ri,n||ri−1,n|, ri,n = ri,n1{|ri,n|<αn},

where αn = α∆$
n , $ ∈ (0, 1

2). Similarly, truncated realized variance (TRVt) is defined as

TRVt =

n∑
i=1

r2
i,n.

Finally, jump variation (JVt) can be estimated as JVt = RV t −BPV t or JVt = RV t −

TBPV t, for example. In the sequel, we shall utilize RVt, TRVt, BPVt and JVt = RV t −

BPV t.

Under certain regularity conditions (refer to the above cited papers and Jacod and

Protter (2011) and Aı̈t-Sahalia and Jacod (2014) for details), all BPVt, TBPVt and TRVt are

consistent estimators of the integrated volatility IVt :=
∫ t

0 σ
2
sds. Hence, the corresponding

JVt estimators are also consistent. Moreover, it is also well-established that these estimators

converge stably in law at the rate
√

1/∆n, or equivalently,
√
n. Let T be the total number of

such representative finite time horizon [0, t] (e.g., day, week, month or quarter). If ∆nT → 0,

then the impact of estimating the latent volatility and jump risk factors are asymptotically

negligible, since the parameters in our state space model converge at rate
√
T .

2.2.3 Volatility risk factors

In order to extract pure volatility risk factors we utilize a standard state space model. The

model that we implement is closest to that used in Chauvet et al. (2015), and also follows
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Aruoba et al. (2009b), although the latter authors do not consider volatility measures in their

analysis. While Chauvet et al. (2015) implement a very interesting strategy for extracting

a latent volatility factor from various different realized stock and bond volatility measures,

we instead focus solely on SP500 returns in our analysis and consider a model incorporating

different frequencies of volatility. In this sense, the structure of our model resembles that

of a heterogeneous autoregressive realized volatility type model of the variety introduced

in Corsi (2009) and Corsi and Renò (2012). The approach, thus, is meant to capture the

heavy persistence in volatility. Moreover, we consider various different volatility estimators,

including RVt, TRVt, BPVt, and JVt.

Summarizing, the variable yt = (y1
t , y

2
t , y

3
t , y

4
t ) corresponds to data measured at 4 dif-

ferent time horizons, including daily (denoted by d), bi-daily (denoted by 2d), tri-daily

(denoted by 3d), and weekly (denoted by w). In our setup, yt is alternately set equal to

RVt, TRVt, BPVt, or JVt. The latent risk factor that we are interested in extracting is called

MFvolt . Finally, the elements of yt, which are aggregated, are flow variables. Therefore, we

include three aggregated state variables, i.e., C1
t , C2

t and C3
t , to address the aggregation

issues discussed above. The state space model is:

Observation Equation:


ydt

y2dt

y3dt

ywt

 =


β1 0 0 0 1 0 0 0

0 β2 0 0 0 1 0 0

0 0 β3 0 0 0 1 0

0 0 0 β4 0 0 0 1





MFvol
t

C1
t

C2
t

C3
t

u1t

u2t

u3t

u4t
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State Equation:

MFvolt+1

C1
t+1

C2
t+1

C3
t+1

u1
t+1

u2
t+1

u3
t+1

u4
t+1



=



ρ 0 0 0 0 0 0 0

ρ ψ1
t+1 0 0 0 0 0 0

ρ 0 ψ2
t+1 0 0 0 0 0

ρ 0 0 ψ3
t+1 0 0 0 0

0 0 0 0 η1 0 0 0

0 0 0 0 0 η2 0 0

0 0 0 0 0 0 η3 0

0 0 0 0 0 0 0 η4





MFvolt

C1
t

C2
t

C3
t

u1
t

u2
t

u3
t

u4
t



+



1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1





e1
t

e2
t

e3
t

e4
t

e5
t


,

where the error terms eit
i.i.d∼ N(0, σ2

i ), with i = 1, ..., 5.

As mentioned above, the three aggregated variables in the state vector, C1
t , C2

t and

C3
t , are designed to handle bi-daily, tri-daily and weekly updating of our volatility series,

respectively. Also, ψ1, ψ2 and ψ3 are binary-valued parameters for the aggregated state

variables, and are defined as follows:

ψ1
t =


0, if t is an odd number

1, otherwise,

,

for the bi-daily updating series;

ψ2
t =


0, if t is the first day of every three days

1, otherwise,

,

for the tri-daily updating series; and

ψ3
t =


0, if t is the first day of every week

1, otherwise,

for the weekly series.
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In the above observation equation, only the highest frequency variable, ydt , is directly

connected with the factor, MFvolt , via β1. The three other volatility variables are connected

with MFvolt via the aggregated state variables (i.e, C1
t , C2

t and C3
t ) and via β2, β3 and

β4. Coupled with the setup of the binary-valued parameters (i.e., ψ1, ψ2 and ψ3) in the

state equation, this ensures the proper inter-temporal aggregation of the flow variables in

the system. and refreshes the quantity at the beginning of each period. Finally, the ut

are stochastic disturbance terms, and are assumed to follow autoregressive processes, as in

Aruoba et al. (2009b). In the state equation, the first four state variables are connected

with MFvolt via ρ. Of these four state variables, the last three (i.e., C1
t , C2

t and C3
t ) are

defined such that their previous values are added to ρMFvolt whenever flow aggregation is

required.

In the state space model given above, as well as the state space models discussed in

subsequent sections, we make straightforward modifications to account for missing values.

Namely, the state vector is assumed to remain constant when missing values as a result of our

mixed-frequency setup are encountered. In particular, we denote a mixed-frequency dataset

as y∗t . Thus, the observed vector of data in the above model is actually y∗t = [ydt , y
2d
t , y

3d
t , y

w
t ]′.

Under a standard state space model setup, the observation vector y∗t = yt, as there are no

missing values. More generally, let yt be the same dimension as y∗t , and connect these

variables using a mapping matrix, Mt, such that y∗t = Mtyt, and the elements of Mt equal

1 if the corresponding value in y∗t is non-missing and equal 0 for missing values. Then, we

can use a standard estimation algorithm for the mixed-frequency dataset y∗t . Namely, let

St be a m × q vector of state variables. For t = 1, · · · , T , the compact form of the above

state space model can be written as:

y∗t = H∗t St

St+1 = ASt +Bηt,

where ηt
i.i.d.∼ N(0, Q). According to Anderson and Moore (2012), when the observation

yt becomes available in the standard state space model, the joint distribution between

yt −E(yt|yt−1) and St would update St|t and the state equation would then yield St+1. By
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incorporating the mapping from yt to y∗t , we can apply the estimation procedure used in

the standard state space model to our mixed-frequency dataset. More specifically, we have

y∗t = Mtyt, H∗t = MtHt, β∗t = Mtβt.

Then similar to the standard state space model, we obtain the following joint distribu-

tion:  St

y∗t − E(y∗t |y∗t−1)

 ∼ N
 St|t−1

0

 ,

 PtH
∗′
t PtH

∗′
t

PtH
∗′
t Vt

 ,
where Pt denotes the variance of St given y∗t−1, and Vt denotes the variance of y∗t−E(y∗t |y∗t−1).

(Refer to Anderson and Moore (2012) for a detailed derivation of mean, covariance and

variance in the above discussion.)

From the joint distribution of these variables, we obtain:

αt|t = St + PtH
∗′
t F
−1
t [y∗t − E(y∗t |y∗t−1)]

Pt|t = Pt + PtH
∗′
t F
−1
t HtP

′
t .

According to the state equation, we can then estimate the next step state vector as:

αt+1 = Aαt|t

Pt+1 = APtA
′ +BQB′

Alternatively, when yt has missing values due to different updating frequencies, the state

vector will not update and instead adheres to the following law of motion:

αt+1 = Aαt

Pt+1 = APtA
′ +BQB′.

2.2.4 Macroeconomic risk factors

We again begin with yt = (y1
t , y

2
t , y

3
t , y

4
t ). In this section, the data are measured at daily

(denoted by d), weekly (denoted by w), monthly (denoted by m), and quarterly (denoted
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by w) frequencies. This allows us to construct a “benchmark” risk factor corresponding

to the business conditions index analyzed by Aruoba et al. (2009b).4 In particular, fol-

lowing Aruoba et al. (2009b), we use four macroeconomic variables with different sampling

frequencies, including: (1) the daily yield curve spread (y1
t ), defined to be the difference be-

tween the 10-year U.S. Treasury bond yield and the 3-month Treasury bill yield; (2) weekly

initial claims for unemployment insurance (y2
t ); (3) nonfarm payroll employment (y3

t ); and

(4) quarterly gross domestic product (y4
t ). The corresponding state space model used to

extract our risk factor, called MFmact is:

Observation equation:

y1
t

y2
t

y3
t

y4
t


=



β1 0 0 1

0 β2 0 0

β3 0 0 0

0 0 β4 0





MFmac
t

C1
t

C2
t

u1
t


+



0 0 0

γ2 0 0

0 γ3 0

0 0 γ4




y2
t−W

y3
t−M

y4
t−Q

+



0

w2
t

w3
t

w4
t


.

State equation:

MFmac
t+1

C1
t+1

C2
t+1

u1
t+1


=



ρ 0 0 0

ρ ψ1
t+1 0 0

ρ 0 ψ2
t+1 0

0 0 0 γ1





MFmac
t

C1
t

C2
t

u1
t


+



1 0

1 0

1 0

0 1


 e1

t

e2
t

 ,

where the error terms eit
i.i.d∼ N(0, σ2

i ), with i = 1, 2.

The variables in this model include observed variables, the yt; our latent risk factor,

MFmact ; aggregate state variables, C1
t and C2

t ; and stochastic disturbance terms, u1
t , w

2
t ,

w3
t , and w4

t . Note that in this model, only y2
t and y4

t are flow variables in this model,

and hence there are only two aggregate state variables. Accordingly, we also define two

binary-valued variables ψ1 and ψ2 for these aggregated state variables. Namely,

ψ1
t =


0, if t is the first day of the week

1, otherwise,

4A 6-variable variant of this index is updated regularly on the Philadelphia Federal Reserve Bank website.
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and

ψ2
t =


0, if t is the first day of the quarter

1, otherwise.

2.2.5 Macroeconomic-volatility and macroeconomic-volatility square roots

risk factors

In order to construct our third variety of risk factors, we combine macroeconomic and

volatility variables. The basic notion behind this risk factor is that convoluting both types

of data may yield a more complete picture of the interaction between risks directly affecting

macroeconomic variables, and risks that are transmitted through financial market volatility.

Namely, we are interested in ascertaining the usefulness of combining uncertainty measures

of the variety analyzed by Bloom (2009) with those analyzed by Chauvet et al. (2015), as

well as Aruoba et al. (2009b).

We begin with yt = (y1
t , y

2
t , y

3
t , y

4
t , y

5
t ). Here, y1

t is alternatively set equal to daily

RVt, TRVt, BPVt or JVt. The rest of the observed variables in our model are the same

as those use when constructing MFmact . Namely, they are: (1) the daily yield curve

spread (y2
t ), defined to be the difference between the 10-year U.S. treasury bond yield

and the 3-month treasury bond yield; (2) weekly initial claims for unemployment in-

surance (y3
t ); (3) nonfarm payroll employment (y4

t ); and (4) quarterly gross domestic

product (y5
t ). The risk factor extracted in this setup depends on the definition of y1

t .

Namely, we extract, first, macroeconomic-volatility risk factors MF convt = MFmac−RVt ,

MFmac−TRVt , MFmac−BPVt , or MFmac−JVt , for each of y1
t equal to RVt, TRVt, BPVt or JVt,

respectively; and second, macroeconomic-volatility square roots risk factors MF conv−sqt =

MFmac−RV−sqt , MFmac−TRV−sqt , MFmac−BPV−sqt , or MFmac−JV−sqt , for each of y1
t equal

to the square roots of RVt, TRVt, BPVt or JVt, respectively. The state space model is:
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Observation equation:

y1
t

y2
t

y3
t

y4
t

y5
t


=



β0 0 0 0 1

β1 0 0 1 0

0 β2 0 0 0

β3 0 0 0 0

0 0 β4 0 0





MF conv
t

C1
t

C2
t

u1
t

u0
t


+



0 0 0

0 0 0

γ2 0 0

0 γ3 0

0 0 γ4




y3
t−W

y4
t−M

y5
t−Q

+



0

0

w2
t

w3
t

w4
t


.

State equation:

MFconv
t+1

C1
t+1

C2
t+1

u1
t+1

u0
t+1


=



ρ 0 0 0 0

ρ ψ1
t+1 0 0 0

ρ 0 ψ2
t+1 0 0

0 0 0 γ1 0

0 0 0 0 γ0





MFconv
t

C1
t

C2
t

u1
t

u0
t


+



1 0 0

1 0 0

1 0 0

0 1 0

0 0 1




e1
t

e2
t

e3
t

 ,

where the error terms eit
i.i.d∼ N(0, σ2

i ), with i = 1, 2, 3.

The variables in this model include observed variables, the yt; our latent risk factor,

MF convt ; aggregate state variables, C1
t and C2

t ; and stochastic disturbance terms, u1
t , u

0
t ,

w2
t , w

3
t , and w4

t . As above, only y2
t and y4

t are flow variables in this model, and hence

there are only two aggregate state variables. Accordingly, we also define two binary-valued

variables ψ1 and ψ2 for these aggregated state variables. Namely,

ψ1
t =


0, if t is the first day of the week

1, otherwise

and

ψ2
t =


0, if t is the first day of the quarter

1, otherwise

.

2.3 Experimental Setup

In our forecasting experiments we evaluate the predictive content of the risk factors discussed

in Section 2. This is done by forecasting the following monthly macroeconomic variables: in-

dustrial production (IP), nonfarm payroll employees (PAYEMS), housing starts (HOUST),

personal consumption expenditures (PCE), the University of Michigan consumer sentiment
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index (SENTI), and core consumption price index (CPI) which excludes food and energy.

Additionally, we predict a number of financial variables, including monthly effective yields

for Fitch-rated AAA, AA, A, BBB, BB, B, and CCC corporate bonds. Prior to carry-

ing out experiments, all macroeconomic data are log-differenced, and all financial data are

differenced.

A summary of forecasting models used in our experiments is given below, and further

details are contained in Table 3.2.

Autoregressive (AR) Models:

An AR model is used as a benchmark, and is specified as follows:

yt+h = c+ α′Wt + εt+h, (2.1)

where yt is the “target” forecast variable of interest, h denotes the forecast horizon, Wt con-

tains autoregressive lags, and α a conformably defined coefficient vector. Lags are chosen

anew, prior to the construction of each monthly forecast, using both the Akaike Informa-

tion Criterion (AIC) and the Schwarz Information Criterion (SIC). Tabulated mean square

forecast errors (MSFEs) reported in the sequel are for the case with lags selected using the

AIC. Results for the SIC case were qualitatively the same, and are available upon request.

Autoregressive Models with Risk Factors:

Let Ft denote latent risk factors, which belong to the union of MF volt , MFmact , and

MF convt (see Section 2 for complete details). We estimate the following factor augmented

forecasting model:

yt+h = c+ α′Wt + ρ′Ft + εt+h,

where Ft includes either 1 or 2 risk factors, and may include lags of Ft. The rest of the

terms in this model are defined as described above. Lags (of Ft and yt) are again chosen

using both the AIC.

Autoregressive Models with Daily Volatility Measures:

In addition to estimating models with multi-frequency volatility risk factors, we also

estiamted models using standard daily quadratic variation component measures, including
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RVt, TRVt, BPVt and JVt. Let Xt denote any one of these volatility measures, as well as

lags thereof. We estimate the following volatility augmented forecasting model:

yt+h = c+ α′Wt + γ′Xt + εt+h.

All terms in this model are as defined above, and lags are again selected using the AIC.

Autoregressive Models with Risk Factors and Daily Volatility Measures:

Combining the two previous specifications, we also estimate the following forecasting

model:

yt+h = c+ α′Wt + ρ′F xt + γ′Xt + εt+h,

Again, all terms in this model are as defined above, and lags are again selected using the

AIC.

As mentioned above, although some components in the vector process y are estimates

obtained from high frequency data, as long as the sampling interval length ∆n shrinks to

zero fast enough, their associated estimation errors have asymptotically negligible effects on

all the parameters of interest. An alternative and possibly more convincing argument goes

as follows. We can view those high frequency estimates as observed quantities associated

with the latent factors in the state equation. Then the high frequency estimation errors

are naturally embedded in the residuals of the observation equation. Since those high

frequency estimation errors converge to zero, they are definitely bounded in probability,

hence perfectly in line with our assumption on the residuals.

All forecasts are constructed using rolling windows of data consisting of either 36 or

72 months of observations, and all coefficients and lag specifications are re-estimated prior

to the construction of each new prediction. Hence, our forecasting period is July 2009 -

December 2018 (i.e. 67 monthly forecasts). For an analysis of the use of rolling versus

recursive and alternative windowing techniques in the context of forecasting, see Clark

and McCracken (2009) and Hansen and Timmermann (2012) and Rossi and Inoue (2012).

Estimation is carried out using maximum likelihood, and forecasts are generated for horizons

h = 1, 2, 3, and 6.
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As mentioned above, results are evaluated by comparing mean square forecast error

(MSFEs). These statistics are additionally analyzed using conditional Diebold and Mariano

(1995b) predictive accuracy tests of the variety developed by Giacomini and White (2006).

The null hypothesis of the test is: H0 : E[L(ε
(1)
t+h)] − E[L(ε

(2)
t+h)] = 0, where the ε

(i)
t+h is the

prediction error of model i, for i = 1, 2. In our analysis, L(·) is a quadratic loss function.

The test statistic that we utilize is:

DMP = P−1
P∑
t=1

dt+h
σ̂d̄

,

where dt+h = [ε̂
(1)
t+h]2 − [ε̂

(2)
t+h]2, d̄ denotes the mean of dt+h, σ̂d̄ is a heteroskedasticity

and autocorrelation consistent estimate of the standard deviation of d̄, and P denotes the

number of ex ante predictions used to construct the test statistic.5 If the DMP statistic has

a negative value, Model 1 is preferred to Model 2. If the test rejects the null hypothesis, the

difference between Model 1 and Model 2 is statistically significant. In the sequel, we assume

that the test statistic is asymptotically N(0,1), following Giacomini and White (2006). It

should be noted, though, that the unconditional variant of the test proposed by Diebold and

Mariano (1995b) requires modified critical values in cases where models being compared are

nested (see McCracken (2000b) and Corradi and Swanson (2006c) for complete details). For

an interesting discussion of alternative approaches to assessing forecasting performance, see

Rossi and Sekhposyan (2011).

In addition to comparing MSFEs, we also compare the directional predictive accuracy

of our different models. This is done by examining contingency tables, as in Swanson

and White (1995). To this end, we first code the directional movement assocaited with a

prediction as 1 (for positive incremental changes) and -1 (for negative incremental changes).

Namely, define:

5Giacomini and White (2006) also discuss a Wald version of this test statistic, which we do not utilize in
this paper.
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Dactual
t+h =


1 yactualt+h − yactualt ≥ 0

−1 yactualt+h − yactualt < 0

Dpred
t+h =


1 ypredt+h − y

actual
t ≥ 0

−1 ypredt+h − y
actuall
t < 0

where h denotes the forecast horizon. The classical contingency table associated with these

directional prediction signals is:

actual

down up

predicted
down d1 d2

up d3 d4

Here d1 (d4) is the number of correct forecasts of downward (upward) movements and

d2 (d3) is the number of incorrect forecasts of downward (upward) movements. Define

N1 = d1 + d3, N2 = d2 + d4, and N = N1 + N2. The null hypothesis is that there is

no predictive information in our forecasts concerning the direction of change in yt+h. One

appropriate test for this hypothesis is thus the classical chi-square test of independence (see

e.g., Pesaran and Timmermann (1994)). When reporting the results of this test, we also

report the so-called directional accuracy rate, defined as (d1 + d4)/N . A higher rate, thus,

indicates a higher probability of successfully predicting the direction of change.

2.4 Data

Various data are utilized in this paper, at frequencies ranging from 5-minutes to quarterly.

However, our state space models, from which latent factors are extracted uses only daily,

monthly and quarterly data. For daily data, the sample period is January 03, 2006 to

December 31, 2018. For weekly data, the sample period is the first week of January 2006

through the last week of December 2018. For monthly and quarterly data, we collect

observations for the period January 2009 - December 2018.
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A number of our models utilize daily nonparametric volatility estimators of components

of the quadratic variation of the S&P500, in addition to various daily macroeconomic and

financial variables. These volatility estimators are constructed using 5-minute SPY (SPDR

S&P 500 ETF Trust) transaction prices, which were downloaded from the TAQ database.

Our macroeconomic variables and bond yields are obtained from the FRED-MD database

at the St. Louis Federal Reserve Bank. More specifically, the following macroeconomic

variables were collected for use in our state space models: (1) the daily yield curve spread,

defined as the difference between the 10-year U.S. Treasury bond yield and the 3-month

Treasury bill yield; (2) weekly initial claims for unemployment insurance; (3) the monthly

number of nonfarm payroll employees; and (4) quarterly gross domestic product. All of

these variables are log differenced in all calculations in order to induce stationarity, and

then standardized, with the exception of yield spreads, which are standardized.

Additionally, the following monthly macroeconomic variables were used as “target” vari-

ables in our forecasting experiments: industrial production (IP), the monthly number of

total nonfarm payroll employees (PAY), housing starts (HS), personal consumption ex-

penditures (PCE), the University of Michigan consumer sentiment index (SI), and core

consumption price index (CPI), which excludes food and energy. The first three targets are

key measurements related to business spending and residential investment activities, while

the last three targets are direct reflections of consumption sector as well as price level. All

of these variables are also log differenced in all calculations in order to induce stationarity,

except for the housing starts and sentiment index as suggested by the FRED-MD database

appendix to respectively take log and perform first order difference.

Finally, we also collected various corporate bond yield series for use as additional “tar-

get” variables in our forecasting experiments. These data consist of effective monthly bond

yields for Fitch-rated AAA to CCC bonds (see Table 2 for details). The source of these data

is the ICE Benchmark Administration Limited (IBA), and they are available at from the

FRED database of the Federal Reserve Bank of St. Louis. All data are seasonally adjusted,

and are differenced prior to our analysis. Details and transformations of macroeconomic
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and financial variables used in our research is listed in Table 2.1.

2.5 Empirical Findings

Tables 2.3 and 2.4 list relative MSFE (relative to the AR benchmark) for the case where

the target variable is IP in our prediction experiments. Directional predictive accuracy

results for IP are given in Tables 2.5 and 2.6. In these four tables, there are two distinct

sample periods reported on. The first sample period is 2006:1-2018:12. For this period,

h = 1 to h = 6-month ahead predictions are calculated for the period 2012:1-2018:12,

and rolling windows of either 36 or 72 observations are utilized in model estimation. The

second sample period is 2009:1-2018:12. For this period, 1 to 6-month ahead predictions are

calculated for the period 2015:1-2018:12, and rolling windows of either 36 or 72 observations

are utilized in model estimation. In Tables 2.3 and 2.4, the “MSFE-best” or“directional

accuracy rate-best” models are denoted in bold, and starred entries indicate rejection of the

Giacomini-White null hypothesis of equal predictive accuracy (in Tables 2.3 and 2.4, where

all comparisons use our AR model as the benchmark, against which the models list in the

first column of entries in the tables are compared). In Tables 2.5 and 2.6, the “directional

accuracy rate-best” models are denoted in bold, and starred entries indicate rejection of the

null hypothesis of statistical independence.6 In addition, MSFE and directional accuracy

rate results for all 13 target variables (see Table 3.2) are summarized in Tables 2.7 - 2.10. In

these tables, only the “MSFE-best” models are listed, for a forecast horizon, window length,

and sample period. Finally, Table 3.5 contains relative MSFEs analogous to those reported

in Tables 2.3 and 2.4, except that a small subset of the most widely successful models listed

in Table 2 are reported on, for all of the corporate bond yields analyzed in our experiments.

The rest of this section summarizes our findings based on the results presented in these

tables.

6Analogous detailed findings for all of our other 12 target variables are reported separately in an appendix,
for the sake of brevity.
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2.5.1 Variables related to business spending and investment

Our macroeconomic indicators related to business spending and residential investment in-

clude housing starts (HS), industrial production (IP) and nonfarm payroll employment

(PAY). Our experimental findings for these variables are summarized in Tables 2.3 - 2.6,

Tables 2.7 - 2.10, and in the appendix. Our conclusions based on analysis of these results

are as follows.

First, for HS and IP, out-of-sample MSFEs significantly decrease in various factor aug-

mented models, including RV, TRV, BPV, and JV, for example. Consider HS (see Tables

2.3 to 2.6). For our longer sample beginning in January 2006 (called Sample 1), use of the

BPV model results in MSFE decreases (relative to the AR benchmark) of 10.3% when h=2

and w=36, and drops by 22.1%, when h=2 and w=72. Notice that the longer rolling win-

dow yields substantially lower MSFEs for the BPV model, which is our MSFE-best model.

This finding characterizes many of our target variables, as evidenced upon inspection of 2.7

and 2.8, in which MSFE-best models are summarized, across all forecast horizons, windows,

and sample periods. Interestingly, the maximum MSFE reduction of 53.7%, and is achieved

for the TRV model, when h=6. In our shorter sample beginning in January 2009 (called

Sample 2), RV, TRV, and BPV volatility factor augmented models again appreciably reduce

MSFEs, for h=1 or 2, and w=36 or 72. Here, RV volatility factor augmented models reduce

MFSE the most (15.8% when h=2 and w=36). Interestingly, our macro-volatility “con-

volution factor” augmented models also yield forecasting improvements, when w=72. For

instance, the use of CMTRV1 decreases the MSFE by 7.3%, relative to the AR benchmark.

Turning to IP, we note that our findings are qualitatively the same as those reported for

HS, although MSFE reductions are at most 7%, across all horizons, windows, and sample

periods.

As an aid to understanding the difference between the different risk factors in our anal-

ysis, we also provide a series of figures plotting the factors. In particular, refer to Figures

2.1 - 2.4 where all of the factors utilized in our experiments are plotted across our longer

sample period (i.e. Sample 1). Notice, for example, that the macroeconomic factor plotted
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in Figure 2.1 is very different from the volatility risk factors plotted in Figures 2.2 - 2.4.

Second, for PAY, macro-volatility “square root convolution factors” (i.e., see models

CMJV2, CMTRV2, CMBPV2, and CMJV2), lead to substantial reductions in MSFEs for

both our shorter and longer sample periods. For example, for Sample 1, CMRV2, CMTRV2,

and CMBPV2 augmented models result in MSFE decreases of 8.8%, 8%, and 3.2%, when

h=1 and w=36; and CMTRV2 and CMBPV2 models result in MSFE decreases of 9.2% and

8.4%, when h=1 and w=72. For Sample 2, the strong results for our CMRV2, CMTRV2,

and CMBPV2 models are replicated, as MSFE reductions are all greater than 10% (i.e.,

MSFE decreases are 17.2%, 15.6%, and 9.8%, for w=36, and MSFE decreases are 7.8%,

13.6%, and 11.6% for w=72, respectively).

Third, directional prediction results are also promising, indicating significant predictive

accuracy gains, particularly for models with macro-volatility factors and “square root” fac-

tors (i.e., models CMJV1, CMTRV1, CMBPV1, CMJV1, CMJV2, CMTRV2, CMBPV2,

and CMJV2). Still, it is worth noting that models associated with the largest directional

accuracy rates are not always the same as those associated with the smallest relative MS-

FEs. For example, for HS, the directional accuracy “best”model is CMTRV2, in which the

directional forecasting accuracy rate is 76.7%, for Sample 2 and h=1, which occurs when

w=72. On the other hand, the analogous “MSFE-best” model is CMJV1. Nevertheless,

the overall conclusion from inspection of this group of target variables is that volatility type

factors are very useful for reducing MSFE and for increasing directional predictive accuracy,

when considering business spending and residential investment related variables. Moreover,

our “convolution” type factors appear to perform the best.

2.5.2 Variables related to consumer spending

Our macroeconomic indicators related to consumer spending include the consumer senti-

ment index (SI), the consumer price index (CPI), and personal consumption expenditures

(PCE). Results from our prediction experiments using these variables are gathered in Tables

2.7 - 2.10, as well as in the appendix. Our conclusions based on analysis of these results are
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as follows.

First, the “MSFE-best” models often include factor augmented models. However, unlike

the case of HS, IP, and PAY, where a large number of augmented models yield lower MSFEs

than our benchmark AR model, we only observe occasional MSFE improvements for CPI,

PCE, and SI. Still, even in the worst performing scenarios, such as in the case of CPI,

there is some indication that risk factors may be useful. For example, for CPI at the h=5

horizon, the MRV model results in MSFE reductions of 9.6% (for w=36) and 5.1% (for

w=72), under Sample 1 and MSFE reductions of 4.4% (w=36) and 5.4% (w=72), under

Sample 2. Additionally, for SI at the h=1 horizon, the MBPV model results in MSFE

reductions of 6.6% and 14.7%, for Sample 1 and Sample 2, respectively, when w=72.

Second, directional forecast accuracy rates are comparable to rates achieved for our

business spending and residential investment variables, when factor augmented models are

utilized for directional prediction. Still, as evidenced in Tables 2.7 and 2.8, AR models do

sometimes yield the highest directional forecast accuracy rates. Given that this also occurs

when predicting the direction of change for HS, IP, and PAY, we have evidence that risk

factors are more useful for predicting absolute magnitudes of our variables than turning

points. Drilling down into our findings more deeply, note that for CPI, our RV, TRV, and

BPV models, as well as our factors or MRV, MTRV, and MBPV models generally result in

around 5% to 6% increases in directional predictive accuracy, relative to the AR benchmark,

when h=5 and w=72, for both Sample 1 and Sample 2. For PCE, the MRV, MTRV,

and MBPV models yield increases in directional accuracy of comparable (and greater)

magnitudes, when h=5 and w=72, under both sample periods.

2.5.3 Corporate bond yields

In our experiments, we also investigate the importance of market uncertainty on the corpo-

rate bond market, using yield series for AAA, AA, A, BBB, BB, and B rated bonds. Results

for these experiments are gathered in Tables 2.7 - 2.10 and Table 3.5. Our conclusions based

on analysis of these results are as follows.
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First, it is very clear upon inspection of the MSFEs in Table 3.5 that predictive accuracy

associated with the use of our risk factors increases as the quality of the bond deteriorates.

The greatest gains associated with the use of our risk factors are associated with predicting

junk bonds, while the is little to gain by using risk factors at all when predicting AAA

rated bonds. Take the case of w = 36, which is reported in Table 3.5. Here, bonds with B

and CCC ratings show the largest MSFE reductions from amongst all bonds, when the RV,

TRV, and BPV factor augmented models are utilized. For example, for CCC-rated bond

yield forecasting, the TRV model results in MSFE reductions of 9.3%, 22.4%, and 13.9%,

for h=4 to 6, respectively, under Sample 1; and results in MSFE reductions of 12.9%, 35.6%,

and 35.8% under Sample 2. For B-rated bonds, the TRV model results in MSFE reductions

of 22.5%, 25.3%, and 12.4%, for h=4 to 6, respectively, under Sample 2.

However, predictive gains deteriorate as the investment quality of the bond improves.

For example, for BB rated bonds under Sample 2, the TRV model results in MSFE reduc-

tions of 16.8%, 11.1%, and 3.3%, for h=4 to 6, respectively. All of these percentages are

lower than the analogous percentages for CCC and B-rated bonds. The same result holds

when comparing BBB versus BB-rated bonds, and A versus BBB-rated bonds etc. Thus,

we have strong evidence of the usefulness of our risk factors for predicting corporate bond

yields that involve financial risk, as might be expected.

Second, notice that the fourth row of entries in each panel of Table 3.5 are for the JV

model. In this model, the only risk factor is our jump variation type factor. Needless to

say, results are less than starling in these case. Apparently, jump-based risk factors are of

little use when predicting corporate bond yields, and instead our risk factors that capture

the continuous components of quadratic variation yield the most promising results.

2.6 Concluding Remarks

In this paper three macroeconomic and financial volatility risk factors are developed. The

new risk factors are latent variables extracted from state space models that include multiple

different frequencies of macroeconomic and financial variables, as well as multiple different
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frequencies of non-parametrically estimated components of quadratic variation. The state

space models are specified in one of two ways. First, they may be specified solely using

latent components of quadratic variation, including continuous and jump component vari-

ation measures extracted from high frequency S&P500 data. Alternatively, they may be

specified using quadratic variation components as well as additional observed variables,

including macroeconomic indicators such as interest rates, employment, and production.

Finally, three types of risk factors are constructed. One type involves extracting volatility

factors using only high frequency financial data, one type involves using only low frequency

macroeconomic data, and onte type involves using both high frequency and low frequency

data.

Our key findings can be summarized as follows. First, our multi-frequency financial and

financial-macroeconomic volatility risk factors yield significantly improved predictions for

a number of variables including housing starts, industrial production and nonfarm payroll,

relative to benchmark models including simple autoregressive models, as well as mixed fre-

quency models driven solely by macroeconomic indicators. Second, the same risk factors are

useful for predicting low-grade corporate bond yields; but not high-grade corporate bond

yields, which underscores the importance of the investment grade of bonds in withstand-

ing turbulent market conditions, as might be expected. Third, four different measures of

volatility are used in our analysis, including realized volatility (RVt), truncated realized

volatility (TRVt), bi-power variation (BPVt), and jump variation (JVt = RV t−BPV t). In

our forecasting experiments, TRVt is clearly the most effective measure to use when con-

structing volatility risk factors. Moreover, factors constructed using JVt fare quite poorly

in our prediction experiments.
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Table 2.1: Macroeconomic and Financial Variables

Name Frequency Description Treatment

SPY Daily SPDR S&P 500 ETF Trust Price ∆log(xt)

SPR Daily Yield Curve Spread no transformation

(10-year Treasury Bond Yield Minus 3-month Yield)

IC Weekly Initial Claims for Unemployment Insurance ∆log(xt)

PAY Monthly Number of Employees on Non-agricultural Payrolls ∆log(xt)

GDP Quarterly Real Gross Domestic Product ∆log(xt)

IP Monthly Industrial Production Index ∆log(xt)

HS Monthly Housing Starts log(xt)

PCE Monthly Personal Consumption Expenditures ∆log(xt)

SI Monthly University of Michigan Consumer Sentiment Index ∆xt
CPI Monthly Consumer Price Index Less Food and Energy ∆log(xt)

AAA Monthly US Corporate AAA Effective Yield ∆xt
AA Monthly US Corporate AA Effective Yield ∆xt
A Monthly US Corporate A Effective Yield ∆xt

BBB Monthly US Corporate BBB Effective Yield ∆xt
BB Monthly US High Yield BB Effective Yield ∆xt
B Monthly US High Yield B Effective Yield ∆xt

CCC Monthly US High Yield CCC or Below Effective Yield ∆xt

*Notes: SPY data is downloaded from the WRDS Trade and Quotes (TAQ) database. All remaining series are
obtained from the FRED-MD database of the St. Louis Federal Reserve Bank and are seasonally adjusted. Bond
classifications from AAA to CCC are based on S&P500 and Fitch standards.
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Table 2.2: Forecasting Models

Model Description

Benchmark Model:
Autoregression (AR) yt+h = c+

∑r
i=1 αiyt−i + εt

Macroeconomic Factor Augmented Model:
MAC: AR+ MFmac yt+h = c+

∑r
i=1 αiyt−i + ρ1MFmac

t + εt

Volatility Factor Augmented Models:
RV: AR+ MFRV yt+h = c+

∑r
i=1 αiyt−i + ρ3MFRVt + εt

TRV: AR+ MFTRV yt+h = c+
∑r
i=1 αiyt−i + ρ3MFTRVt + εt

BPV: AR+ MFBPV yt+h = c+
∑r
i=1 αiyt−i + ρ3MFBPVt + εt

JV: AR+ MFJV yt+h = c+
∑r
i=1 αiyt−i + ρ3MFJVt + εt

Macro-Volatility Convolution Factor Augmented Models:

CMRV1: AR+ MFmac−RV yt+h = c+
∑r
i=1 αiyt−i + ρ2MFmac−RVt + εt

CMTRV1: AR+ MFmac−TRV yt+h = c+
∑r
i=1 αiyt−i + ρ2MF mac-TRV

t + εt
CMBPV1: AR+ MFmac−BPV yt+h = c+

∑r
i=1 αiyt−i + ρ2MFmac−BPVt + εt

CMJV1: AR+ MFmac−JV yt+h = c+
∑r
i=1 αiyt−i + ρ2MFmac−JVt + εt

CMRV2: AR+ MFmac−RV sqrt yt+h = c+
∑r
i=1 αiyt−i + ρ2MFmac−RV sqrtt + εt

CMTRV2: AR+ MFmac−TRV sqrt yt+h = c+
∑r
i=1 αiyt−i + ρ2MF mac-TRVsqrt

t + εt
CMBPV2: AR+ MFmac−BPV sqrt yt+h = c+

∑r
i=1 αiyt−i + ρ2MFmac−BPV sqrtt + εt

CMJV2: AR+ MFmac−JV sqrt yt+h = c+
∑r
i=1 αiyt−i + ρ2MFmac−JV sqrtt + εt

Volatility Augmented Models:
VRV: AR+RV yt+h = c+

∑r
i=1 αiyt−i + γRVt + εt

VTRV: AR+ TRV yt+h = c+
∑r
i=1 αiyt−i + γTRVt + εt

VBPV: AR+BPV yt+h = c+
∑r
i=1 αiyt−i + γBPVt + εt

VJV: AR+ JV yt+h = c+
∑r
i=1 αiyt−i + γJVt + εt

Macroeconomic Factor and Volatility Factor Augmented Models:
MRV: AR+ MFmac + MFRV yt+h = c+

∑r
i=1 αiyt−i + ρ1MFmac

t + ρ2MFRVt + εt
MTRV: AR+ MFmac + MFTRV yt+h = c+

∑r
i=1 αiyt−i + ρ1MFmac

t + ρ2MFTRVt + εt
MBPV: AR+ MFmac + MFBPV yt+h = c+

∑r
i=1 αiyt−i + ρ1MFmac

t + ρ2MFBPVt + εt
MJV: AR+ MFmac + MFJV yt+h = c+

∑r
i=1 αiyt−i + ρ1MFmac

t + ρ2MFJVt + εt

Macroeconomic Factor and Volatility Augmented Models:
MVRV: AR+ MFmac +RV yt+h = c+

∑r
i=1 αiyt−i + ρ1MFmac

t + γRVt + εt
MVTRV: AR+ MFmac + TRV yt+h = c+

∑r
i=1 αiyt−i + ρ1MFmac

t + γTRVt + εt
MVBPV: AR+ MFmac +BPV yt+h = c+

∑r
i=1 αiyt−i + ρ1MFmac

t + γBPVt + εt
MVJV: AR+ MFmac + JV yt+h = c+

∑r
i=1 αiyt−i + ρ1MFmac

t + γJVt + εt

*Notes: For the AR model, the number of lags, r, is determined using the AIC (results for the case where the SIC is instead used
are qualitatively the same). All MF volatility risk factors are constructed as detailed in Section 2. In this table, MFmac denote
purely macroeconomic risk factors, while MFRV , MFTRV , MFBPV , and MFJV denote volatility risk factors based on the use of
RV , TRV , BPV , and JV estimators, respectively. Here, RV , TRV , BPV , and JV correspond to realized volatility, truncated
realized volatility, bi-power variation, and the jump component of quadratic variation, respectively. Additionally, MFmac−RV ,
MFmac−TRV , MFmac−BPV , and MFmac−JV are convolution factors that combine macroeconomic variables and one of either RV ,
TRV , BPV , and JV in formulating the risk factor. Finally, MFmac−RV sqrt, MFmac−TRV sqrt, MFmac−BPV sqrt, MFmac−JV sqrt

are of the same, but use square roots of RV, TRV, BPV, and JV estimators in their construction.
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Table 2.3: Ex-Ante Relative MSFEs for Housing Starts (Sample 1: 2006:1 - 2018:12)

Model
Forecast horizon

1-month 2-month 3-month 4-month 5-month 6-month

rolling window size = 36

AR 1.000 1.000 1.000 1.000 1.000 1.000

AR+ MFmac 1.173*** 1.092*** 1.104*** 1.027 0.981*** 0.938***

AR+ MFRV 0.93*** 0.897*** 0.999*** 1.006 1.037 1.038***

AR+ MFTRV 0.93*** 0.902*** 1.015 1.013 1.043 1.04***

AR+ MFBPV 0.931*** 0.897*** 1.012 1.002** 1.036 1.035***

AR+ MFJV 2.277*** 2.178*** 2.01*** 1.726*** 1.747*** 1.602***

AR+ MFmac−RV 0.999*** 1.096*** 1.161*** 1.028*** 1.004* 0.968***

AR+ MFmac−TRV 1.019 1.003* 0.998*** 1.004* 1.058*** 1.047

AR+ MFmac−BPV 0.997*** 1.096** 1.158*** 1.033*** 1.032*** 0.967***

AR+ MFmac−JV 1.011 1.133*** 1.078*** 1.022 0.979*** 0.952***

AR+ MFmac−RV sqrt 0.992*** 0.974*** 1.011 0.982*** 1.079*** 1.031

AR+ MFmac−TRV sqrt 0.991*** 0.989*** 1.055*** 1.004* 1.062*** 1.044

AR+ MFmac−BPV sqrt 1.007 1.02 1.016 0.992*** 1.076*** 1.059

AR+ MFmac−JV sqrt 1.014 0.991*** 1.048*** 1.031*** 0.962*** 0.963***

AR+RV 1.04*** 1.022 1.052 1.041*** 1.037*** 0.983***

AR+ TRV 1.037*** 1.021 1.053 1.041*** 1.038*** 0.985***

AR+BPV 1.043*** 1.023 1.058 1.049*** 1.043*** 0.982***

AR+ JV 1.044* 0.952*** 0.999*** 0.998*** 0.962*** 0.964***

AR+ MFmac + MFRV 1.152*** 1.09*** 1.165*** 1.321*** 1.194*** 1.208***

AR+ MFmac + MFTRV 1.151*** 1.091*** 1.181*** 1.336*** 1.199*** 1.218***

AR+ MFmac + MFBPV 1.146*** 1.075*** 1.16*** 1.326*** 1.194*** 1.193***

AR+ MFmac + MFJV 1.253*** 1.254*** 1.096 1.174*** 1.252*** 1.286***

AR+ MFmac +RV 1.272*** 1.197*** 1.116*** 1.129*** 1.005* 1.037

AR+ MFmac + TRV 1.272*** 1.2*** 1.115*** 1.132*** 1.016 1.04

AR+ MFmac +BPV 1.272*** 1.196*** 1.119*** 1.129*** 1.011 1.032

AR+ MFmac + JV 1.253*** 1.156*** 1.103*** 1.016 1.029 1.085

rolling window size = 72

AR 1.000 1.000 1.000 1.000 1.000 1.000

AR+ MFmac 0.925*** 0.851*** 0.841*** 0.7*** 0.623*** 0.591***

AR+ MFRV 0.849*** 0.78*** 0.711*** 0.569*** 0.484*** 0.479***

AR+ MFTRV 0.852*** 0.798*** 0.724*** 0.561*** 0.477*** 0.463***

AR+ MFBPV 0.855*** 0.779*** 0.71*** 0.567*** 0.482*** 0.477***

AR+ MFJV 1.081 1.061 1.034 0.796*** 0.63*** 0.559***

AR+ MFmac−RV 0.92*** 0.882*** 0.841*** 0.76*** 0.709*** 0.741***

AR+ MFmac−TRV 0.889*** 0.883*** 0.884*** 0.832*** 0.872*** 0.881***

AR+ MFmac−BPV 0.916*** 0.877*** 0.833*** 0.754*** 0.704*** 0.749***

AR+ MFmac−JV 0.906*** 0.892*** 0.88*** 0.812*** 0.756*** 0.792***

AR+ MFmac−RV sqrt 0.91*** 0.922*** 0.919*** 0.853*** 0.875*** 0.857***

AR+ MFmac−TRV sqrt 0.873*** 0.868*** 0.856*** 0.834*** 0.875*** 0.812***

AR+ MFmac−BPV sqrt 0.866*** 0.877*** 0.899*** 0.866*** 0.872*** 0.832***

AR+ MFmac−JV sqrt 0.922*** 0.915*** 0.911*** 0.805*** 0.721*** 0.77***

AR+RV 0.922*** 0.836*** 0.766*** 0.753*** 0.642*** 0.664***

AR+ TRV 0.917*** 0.837*** 0.764*** 0.753*** 0.629*** 0.66***

AR+BPV 0.923*** 0.837*** 0.764*** 0.754*** 0.637*** 0.667***

AR+ JV 0.938*** 0.863*** 0.883*** 0.794*** 0.698*** 0.723***

AR+ MFmac + MFRV 0.886*** 0.806*** 0.785*** 0.66*** 0.607*** 0.615***

AR+ MFmac + MFTRV 0.887*** 0.813*** 0.789*** 0.668*** 0.607*** 0.616***

AR+ MFmac + MFBPV 0.884*** 0.804*** 0.782*** 0.655*** 0.605*** 0.61***

AR+ MFmac + MFJV 1.011 0.894*** 0.801*** 0.712*** 0.631*** 0.658***

AR+ MFmac +RV 0.93*** 0.823*** 0.838*** 0.706*** 0.627*** 0.639***

AR+ MFmac + TRV 0.928*** 0.825*** 0.842*** 0.706*** 0.627*** 0.633***

AR+ MFmac +BPV 0.93*** 0.82*** 0.834*** 0.699*** 0.626*** 0.64***

AR+ MFmac + JV 0.92*** 0.88*** 0.839*** 0.727*** 0.629*** 0.632***

*Notes: This table reports mean square forecast errors (MSFEs) relative to the AR benchmark
model. The forecasting model is given in the first column (see Table 2 for a description of the
models). Starred entries indicate rejections of the Giacomini and White (2006) test of conditional
predictive accuracy. In particular, ***, **, and * indicate rejection at the 1%, 5%, and 10% levels,
respectively. The entire sample period used in the forecasting experiment is 2006:1-2018:12, and
ex-ante rolling window MSFEs correspond to predictions made for the period 2012:1 to 2018:12.
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Table 2.4: Ex-Ante Relative MSFEs for Housing Starts (Sample 2: 2009:1 - 2018:12)

Model
Forecast horizon

1-month 2-month 3-month 4-month 5-month 6-month

rolling window size = 36

AR 1.000 1.000 1.000 1.000 1.000 1.000

AR+ MFmac 1.231*** 1.114** 1.166 0.97*** 0.967*** 0.969***

AR+ MFRV 0.954*** 0.842*** 0.944*** 0.924*** 1.193*** 1.064

AR+ MFTRV 0.95*** 0.846*** 0.981*** 0.938*** 1.205*** 1.061

AR+ MFBPV 0.958*** 0.847*** 0.952*** 0.91*** 1.187*** 1.05

AR+ MFJV 2.977*** 3.567*** 3.028*** 1.923*** 2.313*** 2.173***

AR+ MFmac−RV 1.121*** 1.191*** 1.304*** 1.056*** 1.147*** 0.924***

AR+ MFmac−TRV 1.03 0.993*** 0.927*** 1.074*** 1.05*** 0.99***

AR+ MFmac−BPV 1.122*** 1.181*** 1.296*** 1.074*** 1.149*** 0.92***

AR+ MFmac−JV 1.121*** 1.267*** 1.148*** 0.988*** 1.083*** 0.936***

AR+ MFmac−RV sqrt 0.958*** 0.995*** 0.944*** 1.023 1.114*** 0.986***

AR+ MFmac−TRV sqrt 0.994*** 0.984*** 1.081 1.052*** 1.061*** 1.009

AR+ MFmac−BPV sqrt 1.003* 0.987*** 0.97*** 1.03 1.098*** 0.988***

AR+ MFmac−JV sqrt 1.058** 0.969*** 1.189*** 1.008 0.997*** 0.94***

AR+RV 1.117*** 1.145*** 1.262*** 1.023 1.047 1.007

AR+ TRV 1.107*** 1.136*** 1.259*** 1.021 1.045 1.008

AR+BPV 1.125*** 1.153*** 1.279*** 1.032 1.061 1.012

AR+ JV 1.137*** 0.818*** 0.989*** 1.058*** 0.966*** 0.972***

AR+ MFmac + MFRV 1.231*** 1.123 1.259*** 1.479*** 1.474*** 1.637***

AR+ MFmac + MFTRV 1.232*** 1.121 1.316*** 1.512*** 1.476*** 1.652***

AR+ MFmac + MFBPV 1.231*** 1.099 1.243*** 1.489*** 1.473*** 1.588***

AR+ MFmac + MFJV 1.127 0.993*** 1.048 1.024 1.212 1.513***

AR+ MFmac +RV 1.383*** 1.393*** 1.226*** 1.219** 1.105 1.155

AR+ MFmac + TRV 1.379*** 1.399*** 1.224*** 1.224** 1.107 1.156

AR+ MFmac +BPV 1.389*** 1.4*** 1.225*** 1.217* 1.102 1.148

AR+ MFmac + JV 1.235*** 1.245*** 1.296*** 1.028 1.095 1.345***

rolling window size = 72

AR 1.000 1.000 1.000 1.000 1.000 1.000

AR+ MFmac 1.064 1.043 1.03 1.02 1.05 0.949***

AR+ MFRV 0.989*** 0.963*** 0.998*** 1.001** 0.994*** 0.971***

AR+ MFTRV 0.985*** 0.97*** 1.001** 0.974*** 0.997*** 0.972***

AR+ MFBPV 1.014 0.958*** 0.994*** 0.996*** 0.992*** 0.971***

AR+ MFJV 1.42*** 1.447*** 1.356*** 1.239*** 1.192*** 1.117***

AR+ MFmac−RV 1.037 0.95*** 0.978*** 0.965*** 0.958*** 0.98***

AR+ MFmac−TRV 1.033 0.927*** 1.022*** 0.951*** 0.975*** 1.033

AR+ MFmac−BPV 1.043 0.952*** 0.98*** 0.963*** 0.956*** 0.962***

AR+ MFmac−JV 0.938*** 0.958*** 1.009 1.049 0.991*** 1.079***

AR+ MFmac−RV sqrt 0.989*** 0.994*** 1.028*** 0.999*** 1.004 1.048

AR+ MFmac−TRV sqrt 0.971*** 0.974*** 1.036*** 0.979*** 1.004 0.979***

AR+ MFmac−BPV sqrt 0.988*** 0.947*** 1.038*** 0.963*** 0.984*** 1.028

AR+ MFmac−JV sqrt 0.955*** 0.943*** 1.024*** 1.036* 0.983*** 1.083***

AR+RV 0.999*** 1.008 0.956*** 1.017 0.949*** 0.984***

AR+ TRV 0.997*** 1.002** 0.958*** 1.021 0.952*** 1.001**

AR+BPV 1.002* 1.014 0.955*** 1.016 0.947*** 0.993***

AR+ JV 1.019 0.961*** 1.026 0.998*** 1.006 1.032*

AR+ MFmac + MFRV 1.106* 1.027 1.049 1.053 1.087 0.982***

AR+ MFmac + MFTRV 1.105* 1.032 1.053 1.056 1.091 0.987***

AR+ MFmac + MFBPV 1.106* 1.022 1.046 1.049 1.085 0.981***

AR+ MFmac + MFJV 1.267*** 1.332*** 1.188*** 1.222*** 1.141* 1.144

AR+ MFmac +RV 1.147*** 0.991*** 1.04 0.984*** 1.06 0.986***

AR+ MFmac + TRV 1.141*** 0.99*** 1.042 0.985*** 1.058 1.009*

AR+ MFmac +BPV 1.153*** 0.993*** 1.04 0.984*** 1.057 0.988***

AR+ MFmac + JV 1.008* 1.087 0.976*** 1.026 1.008* 0.983***

*Notes: See notes to Table 2.3. The entire sample period used in the forecasting experiment is
2006:1-2018:12, and ex-ante rolling window MSFEs correspond to predictions made for the period
2015:1 to 2018:12.
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Table 2.5: Ex-ante Directional Accuracy Rates for Housing Starts (Sample 1: 2006:1 -
2018:12)

Model
Forecast horizon

1-month 2-month 3-month 4-month 5-month 6-month

rolling window size = 36

AR 65.8%*** 70.9%*** 67.1%*** 73.4%*** 65.8%*** 59.5%*

AR+ MFmac 62%*** 65.8%*** 65.8%*** 69.6%*** 67.1%*** 64.6%***

AR+ MFRV 65.8%*** 73.4%*** 60.8%* 68.4%*** 69.6%*** 55.7%

AR+ MFTRV 65.8%*** 73.4%*** 62%** 69.6%*** 70.9%*** 54.4%

AR+ MFBPV 65.8%*** 73.4%*** 60.8%* 69.6%*** 70.9%*** 55.7%

AR+ MFJV 48.1% 49.4% 55.7% 57% 55.7% 55.7%

AR+ MFmac−RV 64.6%*** 69.6%*** 59.5%** 70.9%*** 63.3%*** 64.6%***

AR+ MFmac−TRV 69.6%*** 70.9%*** 65.8%*** 75.9%*** 67.1%*** 58.2%

AR+ MFmac−BPV 64.6%*** 69.6%*** 59.5%** 70.9%*** 63.3%*** 64.6%***

AR+ MFmac−JV 67.1%*** 68.4%*** 67.1%*** 70.9%*** 63.3%*** 62%**

AR+ MFmac−RV sqrt 68.4%*** 69.6%*** 68.4%*** 75.9%*** 67.1%*** 60.8%**

AR+ MFmac−TRV sqrt 70.9%*** 69.6%*** 67.1%*** 75.9%*** 67.1%*** 57%

AR+ MFmac−BPV sqrt 69.6%*** 69.6%*** 67.1%*** 75.9%*** 67.1%*** 58.2%

AR+ MFmac−JV sqrt 68.4%*** 67.1%*** 62%** 67.1%*** 65.8%*** 64.6%***

AR+RV 65.8%*** 67.1%*** 60.8%** 67.1%*** 69.6%*** 57%

AR+ TRV 63.3%*** 67.1%*** 60.8%** 67.1%*** 69.6%*** 55.7%

AR+BPV 64.6%*** 67.1%*** 62%** 67.1%*** 69.6%*** 57%

AR+ JV 68.4%*** 68.4%*** 63.3%** 74.7%*** 68.4%*** 60.8%**

AR+ MFmac + MFRV 59.5%** 63.3%*** 62%** 68.4%*** 67.1%*** 62%**

AR+ MFmac + MFTRV 58.2%* 63.3%*** 62%** 67.1%*** 67.1%*** 62%**

AR+ MFmac + MFBPV 60.8%** 63.3%*** 63.3%** 67.1%*** 67.1%*** 62%**

AR+ MFmac + MFJV 60.8%** 55.7% 62%** 64.6%*** 64.6%*** 68.4%***

AR+ MFmac +RV 57%* 65.8%*** 65.8%*** 67.1%*** 67.1%*** 67.1%***

AR+ MFmac + TRV 57%* 65.8%*** 65.8%*** 65.8%*** 67.1%*** 67.1%***

AR+ MFmac +BPV 57%* 65.8%*** 65.8%*** 67.1%*** 65.8%*** 67.1%***

AR+ MFmac + JV 62%** 65.8%*** 65.8%*** 74.7%*** 68.4%*** 63.3%**

rolling window size = 72

AR 72.2%*** 69.6%*** 63.3%*** 58.2%** 48.1% 48.1%

AR+ MFmac 70.9%*** 73.4%*** 70.9%*** 70.9%*** 63.3%*** 64.6%***

AR+ MFRV 70.9%*** 74.7%*** 67.1%*** 79.7%*** 73.4%*** 68.4%***

AR+ MFTRV 72.2%*** 74.7%*** 68.4%*** 79.7%*** 73.4%*** 70.9%***

AR+ MFBPV 70.9%*** 74.7%*** 67.1%*** 79.7%*** 73.4%*** 67.1%***

AR+ MFJV 64.6%*** 60.8%** 65.8%*** 74.7%*** 63.3% 68.4%***

AR+ MFmac−RV 72.2%*** 73.4%*** 75.9%*** 64.6%*** 57%* 53.2%

AR+ MFmac−TRV 74.7%*** 72.2%*** 69.6%*** 63.3%*** 53.2% 57%*

AR+ MFmac−BPV 72.2%*** 73.4%*** 73.4%*** 64.6%*** 57%* 50.6%

AR+ MFmac−JV 74.7%*** 72.2%*** 69.6%*** 58.2%** 53.2% 51.9%

AR+ MFmac−RV sqrt 73.4%*** 69.6%*** 65.8%*** 65.8%*** 54.4% 58.2%*

AR+ MFmac−TRV sqrt 73.4%*** 72.2%*** 69.6%*** 64.6%*** 50.6% 55.7%

AR+ MFmac−BPV sqrt 73.4%*** 72.2%*** 69.6%*** 65.8%*** 51.9% 57%*

AR+ MFmac−JV sqrt 72.2%*** 70.9%*** 67.1%*** 59.5%*** 58.2%** 55.7%

AR+RV 74.7%*** 78.5%*** 70.9%*** 60.8%*** 62%** 60.8%**

AR+ TRV 74.7%*** 78.5%*** 70.9%*** 60.8%*** 62%** 60.8%**

AR+BPV 74.7%*** 77.2%*** 70.9%*** 60.8%*** 62%** 58.2%*

AR+ JV 73.4%*** 75.9%*** 68.4%*** 60.8%*** 60.8%** 60.8%**

AR+ MFmac + MFRV 68.4%*** 72.2%*** 70.9%*** 73.4%*** 62%** 62%***

AR+ MFmac + MFTRV 68.4%*** 74.7%*** 70.9%*** 73.4%*** 63.3%*** 60.8%**

AR+ MFmac + MFBPV 68.4%*** 73.4%*** 70.9%*** 73.4%*** 64.6%*** 62%***

AR+ MFmac + MFJV 63.3%*** 72.2%*** 67.1%*** 70.9%*** 62%*** 58.2%**

AR+ MFmac +RV 65.8%*** 74.7%*** 70.9%*** 70.9%*** 62%** 62%***

AR+ MFmac + TRV 65.8%*** 74.7%*** 69.6%*** 70.9%*** 62%*** 60.8%**

AR+ MFmac +BPV 65.8%*** 74.7%*** 70.9%*** 72.2%*** 62%** 62%***

AR+ MFmac + JV 67.1%*** 75.9%*** 70.9%*** 72.2%*** 62%** 62%***

*Notes: See notes to Table 2.3. Entries in this table are direction accuracy rates, and starred entries
denote rejection of the directional accuracy test based on the contingency tables discussed in Section
3 and Pesaran and Timmermann (1994).
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Table 2.6: Ex-ante Directional Accuracy Rates for Housing Starts (Sample 2: 2009:1 -
2018:12)

Model
Forecast horizon

1-month 2-month 3-month 4-month 5-month 6-month

rolling window size = 36

AR 62.8% 76.7%*** 79.1%*** 72.1%*** 65.1%** 65.1%**

AR+ MFmac 65.1% 69.8%*** 72.1%*** 76.7%*** 72.1%*** 69.8%***

AR+ MFRV 62.8% 79.1%*** 69.8%*** 69.8%*** 74.4%*** 62.8%**

AR+ MFTRV 62.8% 79.1%*** 72.1%*** 69.8%*** 76.7%*** 60.5%*

AR+ MFBPV 62.8%** 79.1%*** 69.8%*** 69.8%*** 76.7%*** 62.8%**

AR+ MFJV 41.9% 46.5% 53.5% 58.1% 62.8%* 55.8%

AR+ MFmac−RV 62.8%** 69.8%*** 67.4%*** 74.4%*** 60.5%* 74.4%***

AR+ MFmac−TRV 69.8%*** 72.1%*** 76.7%*** 76.7%*** 67.4%*** 67.4%***

AR+ MFmac−BPV 62.8%** 69.8%*** 67.4%*** 74.4%*** 60.5%* 74.4%***

AR+ MFmac−JV 65.1%** 67.4%*** 76.7%*** 72.1%*** 60.5%* 69.8%***

AR+ MFmac−RV sqrt 69.8%*** 69.8%*** 79.1%*** 76.7%*** 67.4%*** 67.4%***

AR+ MFmac−TRV sqrt 72.1%*** 69.8%*** 76.7%*** 76.7%*** 67.4%*** 65.1%**

AR+ MFmac−BPV sqrt 69.8%*** 72.1%*** 81.4%*** 76.7%*** 67.4%*** 67.4%***

AR+ MFmac−JV sqrt 67.4%** 72.1%*** 69.8%*** 72.1%*** 65.1%** 69.8%***

AR+RV 65.1%** 69.8%*** 69.8%*** 72.1%*** 72.1%*** 62.8%**

AR+ TRV 65.1%** 69.8%*** 69.8%*** 72.1%*** 72.1%*** 60.5%*

AR+BPV 62.8%* 69.8%*** 69.8%*** 72.1%*** 72.1%*** 62.8%**

AR+ JV 69.8%*** 72.1%*** 72.1%*** 74.4%*** 69.8%*** 67.4%***

AR+ MFmac + MFRV 58.1% 62.8%** 67.4%*** 72.1%*** 67.4%*** 69.8%***

AR+ MFmac + MFTRV 58.1% 62.8%** 67.4%*** 69.8%*** 67.4%*** 69.8%***

AR+ MFmac + MFBPV 60.5%* 62.8%** 69.8%*** 69.8%*** 67.4%*** 69.8%***

AR+ MFmac + MFJV 60.5%* 60.5%* 67.4%*** 67.4%*** 69.8%*** 72.1%***

AR+ MFmac +RV 55.8% 67.4%*** 74.4%*** 67.4%** 69.8%*** 76.7%***

AR+ MFmac + TRV 55.8% 67.4%*** 74.4%*** 65.1%** 69.8%*** 76.7%***

AR+ MFmac +BPV 55.8% 67.4%*** 74.4%*** 67.4%*** 67.4%*** 76.7%***

AR+ MFmac + JV 62.8%** 67.4%*** 72.1%*** 79.1%*** 72.1%*** 72.1%***

rolling window size = 72

AR 74.4%*** 74.4%*** 79.1%*** 74.4%*** 62.8%* 62.8%**

AR+ MFmac 67.4%*** 69.8%*** 76.7%*** 74.4%*** 62.8%* 69.8%***

AR+ MFRV 72.1%*** 69.8%*** 74.4%*** 76.7%*** 67.4%*** 67.4%***

AR+ MFTRV 72.1%*** 69.8%*** 76.7%*** 76.7%*** 67.4%*** 67.4%***

AR+ MFBPV 72.1%*** 69.8%*** 74.4%*** 76.7%*** 67.4%*** 65.1%***

AR+ MFJV 58.1%** 60.5%* 72.1%*** 79.1%*** 58.1% 65.1%**

AR+ MFmac−RV 76.7%*** 74.4%*** 81.4%*** 79.1%*** 62.8%* 65.1%**

AR+ MFmac−TRV 74.4%*** 72.1%*** 81.4%*** 76.7%*** 60.5% 65.1%***

AR+ MFmac−BPV 76.7%*** 74.4%*** 76.7%*** 79.1%*** 62.8%* 65.1%**

AR+ MFmac−JV 76.7%*** 69.8%*** 72.1%*** 72.1%*** 65.1%** 65.1%***

AR+ MFmac−RV sqrt 76.7%*** 69.8%*** 81.4%*** 79.1%*** 62.8%* 65.1%***

AR+ MFmac−TRV sqrt 76.7%*** 69.8%*** 81.4%*** 76.7%*** 58.1% 65.1%***

AR+ MFmac−BPV sqrt 76.7%*** 72.1%*** 81.4%*** 79.1%*** 60.5% 65.1%***

AR+ MFmac−JV sqrt 74.4%*** 67.4%*** 72.1%*** 74.4%*** 65.1%** 65.1%***

AR+RV 76.7%*** 76.7%*** 79.1%*** 74.4%*** 67.4%*** 65.1%**

AR+ TRV 76.7%*** 76.7%*** 79.1%*** 74.4%*** 67.4%*** 65.1%**

AR+BPV 76.7%*** 74.4%*** 79.1%*** 74.4%*** 67.4%*** 60.5%*

AR+ JV 74.4%*** 74.4%*** 76.7%*** 76.7%*** 67.4%*** 69.8%***

AR+ MFmac + MFRV 60.5%* 72.1%*** 74.4%*** 76.7%*** 62.8%* 69.8%***

AR+ MFmac + MFTRV 60.5%* 72.1%*** 74.4%*** 76.7%*** 62.8%* 69.8%***

AR+ MFmac + MFBPV 60.5%* 72.1%*** 74.4%*** 76.7%*** 65.1%** 69.8%***

AR+ MFmac + MFJV 60.5%** 69.8%*** 74.4%*** 76.7%*** 67.4%*** 65.1%**

AR+ MFmac +RV 60.5% 72.1%*** 76.7%*** 76.7%*** 62.8%* 69.8%***

AR+ MFmac + TRV 60.5% 72.1%*** 74.4%*** 76.7%*** 62.8%* 67.4%***

AR+ MFmac +BPV 60.5% 72.1%*** 76.7%*** 79.1%*** 62.8%* 69.8%***

AR+ MFmac + JV 62.8%** 72.1%*** 76.7%*** 79.1%*** 62.8%* 67.4%***

*Notes: See notes to Table 2.5.
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Table 2.7: Best Models in Ex-Ante Relative MSFEs (Sample 1: 2006:1 - 2018:12)

Targets
Forecast horizon

1-month 2-month 3-month 4-month 5-month 6-month

rolling window size = 36

HS RV RV CMTRV1 CMRV2 CMJV2 MAC

0.93*** 0.897*** 0.998*** 0.982*** 0.962*** 0.938***

IP CMTRV1 MVJV MVRV MAC CMJV2 TRV
0.98667*** 0.93895*** 0.95182*** 1.0098 0.97259*** 0.99748***

PAY CMRV2 VBPV MAC CMTRV1 MAC VJV

0.912*** 1.024 0.978*** 0.926*** 0.956*** 1.01*

CPI VJV VJV CMJV2 CMJV2 CMRV2 VBPV

1.025*** 0.998*** 0.995*** 0.972*** 0.904*** 1.024
PCE CMRV2 CMBPV1 VJV CMJV2 VJV CMJV2

1.008 1*** 1.02 0.986*** 0.943*** 0.973***

SI MVRV CMJV2 VRV MAC CMTRV2 CMJV2

1.006 0.998*** 1.028*** 1.022 1.012 0.965***

AAA VJV CMBPV2 TRV BPV TRV MAC
1.0065 0.98697 0.87274 0.8946 0.99271 0.97587

AA VJV CMTRV2 BPV VJV VJV CMTRV1
0.90654 0.99637 0.91598 0.89562 0.97354 1.0031

A VJV CMTRV1 BPV VJV VJV CMTRV1
0.98338 0.97003 0.91351 0.85667 0.99297 1.0158

BBB VJV VJV CMJV2 VJV BPV CMTRV1
0.99678 1.0118 0.94862 0.93972 0.98152 0.93416

BB CMTRV1 MAC CMJV2 CMJV2 VJV CMJV1
1.0498 1.0286 0.94474 0.98845 0.94701 0.88478

B VJV VJV CMJV1 VJV CMJV2 CMJV2
1.0539 0.99583 0.9106 0.82958 0.96374 0.94034

CCC VBPV CMJV2 CMJV1 TRV BPV CMJV2
1.0079 0.99705 0.95569 0.90124 0.77627 0.8299

rolling window size = 72

HS RV BPV BPV TRV TRV TRV

0.849*** 0.779*** 0.71*** 0.561*** 0.477*** 0.463***

IP MAC CMRV2 MVBPV MVRV MVRV MVRV
0.95362*** 0.9852*** 0.88961*** 0.9239*** 0.95624*** 0.9122***

PAY MAC VTRV VJV VTRV VBPV RV

0.832*** 0.931*** 0.837*** 0.795*** 0.788*** 0.678***

CPI CMRV1 CMTRV2 CMBPV2 CMRV1 CMRV2 CMJV2

0.98*** 1*** 1.007 0.993*** 0.949*** 1.001**

PCE CMBPV2 CMTRV2 MVRV MVTRV MVBPV MAC

0.977*** 1.008 0.991*** 1.025 0.948*** 0.952***

SI CMBPV1 CMJV2 CMBPV2 CMJV1 CMTRV2 CMTRV1

0.946*** 1.001 0.991*** 1.008 0.984*** 0.985***

AAA MRV MAC CMJV1 MBPV MVBPV MVBPV
0.86201 0.94152 0.94201 0.90781 0.88774 0.86193

AA MTRV TRV MVJV VJV MVRV VTRV
0.91194 0.85887 0.87634 0.8722 0.89221 0.90176

A MTRV TRV MVJV VJV VTRV VBPV
0.97151 0.91153 0.92619 0.93121 0.92312 0.90901

BBB MAC MTRV MVJV VJV CMJV2 CMTRV2
1.0113 0.92004 0.89056 0.88122 0.969 0.90507

BB MVJV MVJV MVJV VJV CMJV1 CMJV1
1.0122 1.0111 0.88293 0.97694 0.94214 0.88274

B MAC CMJV2 CMJV2 CMBPV2 CMJV1 CMJV2
0.97675 0.98626 0.91961 0.98139 0.94611 0.90126

CCC MAC MVRV TRV CMTRV1 CMJV1 CMTRV1
0.93422 0.90557 0.9944 0.96925 0.93447 0.96305
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Table 2.8: MSFE-Best Models (Sample 2: 2009:1 - 2018:12)

Targets
Forecast horizon

1-month 2-month 3-month 4-month 5-month 6-month

rolling window size = 36

HS TRV VJV CMTRV1 BPV VJV CMBPV1

0.95*** 0.818*** 0.927*** 0.91*** 0.966*** 0.92***

IP CMTRV1 MVJV MVRV CMRV2 CMJV2 TRV
0.93117*** 0.87597*** 0.95576*** 1.0175 0.9749*** 0.97453***

PAY CMRV2 VJV CMRV1 CMTRV1 MAC CMJV2

0.828*** 1.04 0.996*** 0.91*** 0.993*** 0.994***

CPI CMJV2 VJV CMTRV2 CMJV1 CMRV1 VBPV

1.015*** 0.988*** 0.986*** 0.946*** 0.954*** 1.043
PCE CMRV2 CMRV2 CMJV2 CMJV2 VRV CMTRV1

0.992*** 0.977*** 1.011 1.016 0.992*** 0.962***

SI CMJV2 CMJV2 VJV CMJV2 CMTRV2 CMJV2

1.036 1.013*** 1.012 1.028*** 0.993*** 0.976***

AAA CMJV2 CMTRV1 VJV VJV CMJV2 CMJV2
0.99522 0.93567 0.90953 0.95673 0.9595 0.98716

AA BPV TRV BPV VJV VJV CMTRV2
0.99941 0.95162 0.85747 0.8146 0.84053 0.93124

A CMJV2 TRV BPV VJV VJV TRV
1.009 0.93303 0.8267 0.708 0.8238 0.92889

BBB CMTRV1 VJV BPV BPV BPV CMTRV1
1.0232 1.0067 0.97528 0.82123 0.85947 0.84668

BB VBPV TRV CMJV2 MTRV BPV CMJV2
0.85991 1.0043 0.9211 0.88011 0.87015 0.77122

B VRV CMJV2 MTRV MTRV MTRV CMJV2
0.94503 0.93527 0.85066 0.72681 0.66881 0.82391

CCC VBPV CMJV2 TRV TRV BPV BPV
0.99349 0.96359 0.88827 0.84801 0.64426 0.64237

rolling window size = 72

HS CMJV1 CMTRV1 VBPV CMTRV1 VBPV MAC

0.938*** 0.927*** 0.955*** 0.951*** 0.947*** 0.949***

IP MAC TRV MVBPV VRV CMJV1 MVJV
0.95002*** 0.96174*** 0.97213*** 0.96263*** 0.96238*** 0.93786***

PAY CMTRV2 CMJV2 CMRV2 CMJV2 MRV VTRV

0.864*** 1.048* 0.975*** 0.957*** 0.902*** 0.953***

CPI CMRV1 CMTRV2 CMBPV2 CMRV2 CMRV2 TRV

0.97*** 0.993*** 0.985*** 0.983*** 0.946*** 0.995***

PCE MVJV CMTRV2 MVRV MVBPV MVBPV MAC

0.979*** 0.994*** 0.934*** 0.962*** 0.894*** 0.858***

SI CMBPV1 CMJV2 CMBPV2 MAC CMRV2 CMTRV1

0.853*** 1*** 0.982*** 0.948*** 0.987*** 0.943***

AAA MTRV MTRV CMBPV2 MBPV MVBPV MJV
0.88002 0.94108 0.94533 0.89043 0.86167 0.89758

AA VJV MTRV MTRV BPV BPV VRV
0.87022 0.84778 0.88517 0.78887 0.85026 0.91993

A VJV MJV TRV TRV BPV MTRV
0.89387 0.85091 0.80556 0.72695 0.81355 0.88302

BBB VJV MJV TRV TRV TRV BPV
0.96114 0.82558 0.84309 0.78041 0.81628 0.86507

BB VBPV CMJV2 VTRV VJV CMJV1 CMJV2
0.84221 0.91287 0.89463 0.87601 0.91901 0.83331

B VBPV CMJV2 MVJV VJV CMJV2 CMJV2
0.83521 0.93668 0.92042 0.86939 0.89025 0.84088

CCC MAC MVTRV MTRV VTRV BPV CMJV2
0.94713 0.89172 0.97729 0.92905 0.9243 0.96774

*Notes: See notes to Table 2.3. Results are analogous to those depicted in Table 2.7, except that
Sample 2 is used instead of Sample 1 in all prediction experiments.
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Table 2.9: Best Models in Ex-ante Directional Accuracy Rate (Sample 1: 2006:1 - 2018:12)

Targets
Forecast horizon

1-month 2-month 3-month 4-month 5-month 6-month

rolling window size = 36

HS CMTRV2 RV CMRV2 CMTRV1 TRV MJV

70.9%*** 73.4%*** 68.4%*** 75.9%*** 70.9%*** 68.4%***

IP CMJV1 CMTRV1 CMBPV2 MJV MVRV MRV

72.2% *** 73.4% *** 65.8% *** 72.2% *** 74.7% *** 64.6% **

PAY MVJV CMTRV2 MVJV MAC MAC CMRV2

78.5%*** 81%*** 72.2%*** 72.2%*** 75.9%*** 75.9%***

CPI BPV MAC BPV CMBPV1 RV BPV

72.2%*** 81%*** 81%*** 83.5%*** 82.3%*** 77.2%***

PCE JV MTRV CMTRV1 JV BPV MAC

75.9%*** 74.7%*** 74.7%*** 81%*** 77.2%*** 72.2%***

SI CMJV2 MAC CMBPV1 MAC CMRV2 CMRV2

75.9%*** 72.2%*** 75.9%*** 75.9%*** 73.4%*** 74.7%***

rolling window size = 72

HS CMTRV1 VRV CMRV1 RV RV TRV

74.7%*** 78.5%*** 75.9%*** 79.7%*** 73.4%*** 70.9%***

IP CMTRV2 BPV CMBPV2 MVRV MJV JV

75.9% 70.9% *** 69.6% *** 78.5% *** 75.9% *** 65.8% *

PAY VTRV VRV MJV MVTRV RV MAC

79.7%*** 77.2%*** 77.2%*** 77.2%*** 73.4%*** 79.7%***

CPI CMJV1 VRV CMJV2 CMRV2 MRV MJV

69.6%*** 81%*** 79.7%*** 78.5%*** 81%*** 78.5%***

PCE CMTRV1 CMBPV1 VRV VRV MTRV VRV

77.2%*** 70.9%*** 74.7%*** 78.5%*** 75.9%*** 72.2%***

SI CMJV2 MRV VBPV MAC CMRV2 CMJV1

75.9%*** 68.4%*** 79.7%*** 73.4%*** 73.4%*** 70.9%***

*Notes: See notes to Table 2.8. This table is analogous to Table 2.8, except that directional
accuracy rates are tabulated, with starred entries denoting rejection of the independence null (see
footnote to Table 2.5 for further details).
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Table 2.10: Best Models in Ex-ante Directional Accuracy Rate (Sample 2: 2009:1 -
2018:12)

Targets
Forecast horizon

1-month 2-month 3-month 4-month 5-month 6-month

rolling window size = 36

HS CMTRV2 RV CMBPV2 MVJV TRV MVRV

72.1%*** 79.1%*** 81.4%*** 79.1%*** 76.7%*** 76.7%***

IP CMTRV1 CMJV2 CMRV1 MVRV MVRV MRV

72.1%*** 76.7%*** 67.4%* 76.7%*** 86%*** 65.1%*

PAY TRV TRV TRV MAC MVJV CMJV2

83.7%*** 86%*** 72.1%*** 72.1%*** 81.4%*** 81.4%***

CPI BPV MAC BPV BPV RV MAC

72.1%*** 81.4%*** 81.4%*** 79.1%*** 81.4%*** 79.1%***

PCE JV MTRV CMTRV1 JV CMRV2 MAC

81.4%*** 72.1%*** 72.1%*** 79.1%*** 79.1%*** 72.1%***

SI VJV JV CMRV2 MAC MVRV CMRV1

79.1%*** 74.4%*** 74.4%*** 79.1%*** 76.7%*** 72.1%***

rolling window size = 72

HS CMRV1 VRV CMRV1 JV RV MAC

76.7%*** 76.7%*** 81.4%*** 79.1%*** 67.4%*** 69.8%***

IP CMTRV2 MAC RV MRV JV JV

74.4% 74.4%*** 67.4%*** 76.7%*** 81.4%*** 67.4%
PAY CMBPV2 CMJV1 CMRV1 CMJV2 MAC RV

86%*** 86%*** 81.4%*** 74.4%*** 79.1%*** 83.7%***

CPI VRV CMJV2 CMJV2 MAC JV MJV

74.4%*** 81.4%*** 83.7%*** 74.4%*** 81.4%*** 81.4%***

PCE CMTRV1 MAC VRV MAC MRV MAC

81.4%*** 69.8%*** 69.8%*** 79.1%*** 76.7%*** 72.1%***

SI CMTRV1 MRV VBPV MAC CMRV2 VRV

76.7%*** 74.4%*** 79.1%*** 79.1%*** 74.4%*** 72.1%***

*Notes: See notes to Table 2.8. Results are analogous to those depicted in Table 2.8, except
that Sample 2 is used instead of Sample 1 in all prediction experiments.
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Table 2.11: Ex-Ante Relative MSFEs for Corporate Bond Yields

Model
Forecast horizon

1-month 2-month 3-month 4-month 5-month 6-month

Sample 1: 2006:1 - 2018:12

AR 1.000 1.000 1.000 1.000 1.000 1.000

AAA

1.029 1.028 0.873*** 0.896*** 0.999*** 1.084***

1.031 1.024 0.873*** 0.897*** 0.993*** 1.085***

1.03 1.029 0.876*** 0.895*** 1*** 1.087***

1.921*** 1.922*** 1.706*** 1.533*** 1.429*** 1.601***

AA

1.039 1.001*** 0.916*** 0.962*** 1.03 1.079

1.039 1*** 0.921*** 0.968*** 1.036 1.086

1.039 1*** 0.916*** 0.959*** 1.026 1.077

1.796*** 1.817*** 1.922*** 2.094*** 1.892*** 2.09***

A

1.08*** 1.007* 0.935*** 1.007* 1.054 1.093

1.081*** 1.006* 0.938*** 1.01* 1.06 1.098

1.082*** 1.008* 0.914*** 1.004** 1.051 1.102

1.902*** 1.877*** 2.045*** 2.26*** 2.301*** 2.217***

BBB

1.136*** 1.053 0.966*** 0.951*** 1.001*** 1.052

1.138*** 1.055 0.974*** 0.959*** 1.01* 1.062

1.137*** 1.077*** 0.958*** 0.943*** 0.982*** 1.044

3.204*** 2.601*** 2.156*** 2.441*** 3.105*** 3.087***

BB

1.584*** 1.237*** 1.051 1.102 1.154* 1.137*

1.594*** 1.244*** 1.083 1.119 1.165** 1.137*

1.602*** 1.238*** 1.046 1.096 1.148 1.141*

3.016*** 2.633*** 2.647*** 3.26*** 3.587*** 3.16***

B

1.794*** 1.191*** 0.983*** 0.967*** 1.064 1.17***

1.816*** 1.188*** 0.991*** 0.978*** 0.985*** 1.18***

1.805*** 1.197*** 0.982*** 0.955*** 1.056 1.168***

4.167*** 2.991*** 2.461*** 3.115*** 3.966*** 3.654***

CCC or below

1.569*** 1.327*** 1.059 0.909*** 0.783*** 0.89***

1.591*** 1.331*** 0.973*** 0.901*** 0.794*** 0.879***

1.568*** 1.336*** 1.041 0.917*** 0.776*** 0.861***

3.939*** 4.188*** 4.223*** 2.619*** 2.781*** 3.27***

Sample 2: 2009:1 - 2018:12

AR 1.000 1.000 1.000 1.000 1.000 1.000

AAA

1.128 1.097 0.94*** 1.016 1.049 1.065

1.132 1.09 0.942*** 1.017 1.028 1.057

1.125 1.1 0.945*** 1.019 1.058 1.076

2.264*** 2.55*** 2.235*** 2.013*** 2.027*** 2.164***

AA

1.001*** 0.954*** 0.861*** 0.864*** 0.943*** 0.941***

1*** 0.952*** 0.864*** 0.868*** 0.945*** 0.946***

0.999*** 0.954*** 0.857*** 0.858*** 0.939*** 0.938***

1.967*** 1.972*** 2.006*** 2.194*** 1.738*** 1.988***

A

1.056 0.937*** 0.867*** 0.875*** 0.897*** 0.93***

1.053 0.933*** 0.868*** 0.875*** 0.897*** 0.929***

1.057 0.939*** 0.827*** 0.874*** 0.893*** 0.948***

2.325*** 2.018*** 2.226*** 2.153*** 2.232*** 2.023***

BBB

1.154*** 1.031 0.981*** 0.831*** 0.891*** 0.957***

1.156*** 1.033 0.99*** 0.838*** 0.899*** 0.967***

1.149*** 1.059 0.975*** 0.821*** 0.859*** 0.942***

5.195*** 3.54*** 2.623*** 2.685*** 3.748*** 3.86***

BB

1.217*** 1.005* 0.93*** 0.94*** 0.877*** 0.811***

1.215*** 1.004* 0.971*** 0.961*** 0.888*** 0.812***

1.227*** 1.006 0.923*** 0.927*** 0.87*** 0.814***

2.943*** 2.236*** 2.518*** 3.642*** 3.968*** 2.558***

B

1.519*** 0.989*** 0.88*** 0.765*** 0.874*** 0.87***

1.53*** 0.983*** 0.882*** 0.775*** 0.747*** 0.876***

1.526*** 0.997*** 0.878*** 0.751*** 0.865*** 0.872***

4.508*** 2.832*** 2.324*** 3.361*** 4.406*** 3.452***

CCC or below

1.278*** 1.127*** 0.997*** 0.861*** 0.649*** 0.672***

1.29*** 1.12* 0.888*** 0.848*** 0.659*** 0.654***

1.294*** 1.139*** 0.977*** 0.871*** 0.644*** 0.642***

3.667*** 3.555*** 4.292*** 2.561*** 2.617*** 2.916***

*Notes: See notes to Table 2.3. This table reports results for a select set of models that include
those that are “MSFE-best”, relative to the AR benchmark, for the corporate bond yield target
variables examined in our prediction experiments. See Section 3 for a discussion of these variables,
and Section 4 for a summary of these empirical results. Entries in the table are in blocks of 4 rows
for each variable. The four rows contain MSFE for the following models, in this order: RV, TRV,
BPV, and JV, as depicted in Table 2.2.
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Chapter 3

Forecasting Sector Level Equity Returns Using Big Data

Factors and Machine Learning Models

Note: This chapter is coauthored with Weijia Peng.

3.1 Introduction

The equity risk premium is one of the most widely studied topics in finance, and is crucial

to both the understanding of the financial market and portfolio management. A small

group of early key works in this area include Fama and French (1992), Fama and French

(2015), Welch and Goyal (2007) and Rapach and Zhou (2013), who identify characteristics

that have correlation with the equity returns and develop time series models useful for

forecasting equity risk premia.

Since the advent of the ”big data” era, research into this field of empirical finance has

grown ever more rapidly, and numerous researchers have developed and championed the

use of ever more sophisticated models for understanding the equity risk premium. In this

paper, we add to this nascent literature by examining the marginal predictive content of a

large number of machine learning methods for daily and monthly market and sector level

equity returns. The novel feature of the modeling approach that we take in this paper

is that we not only utilize multi-frequency and multi-dimensional datasets, but we also

create a group of latent economic factors including market correlation indices, volatility risk

measures, and macro risk factors. This paper, thus, adds to the literature on equity returns

forecasting in two ways. First, we build on the work of Aruoba et al. (2009b), Bloom (2009),

Jurado et al. (2015b), Aı̈t-Sahalia and Xiu (2016) and others by introducing a class of multi-

frequency macroeconomic/financial volatility risk factors and market correlation risk indices

that are aimed at measuring market uncertainty. Our state space models are specified in

one of two ways, referring to Yao (2019). First, volatility risk factors are specified and
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estimated using a state space model that includes latent components of quadratic variation,

including realized variance (RVt), truncated realized variance (TRVt), bi-power variation

(BPVt), and jump variation (JVt); and also mixed frequency macroeconomic indicators.1

Alternatively, macroeconomic risk factors are specified and estimated using a state space

model that only includes mixed frequency macroeconomic indicators such as interest rates,

employment, and production. Finally, we also construct and evaluate market correlation risk

indices (or “correlation risk” factors), which are based on estimates of quadratic covariation

constructed using high frequency market and sector level returns data. The construction of

these indices follows Aı̈t-Sahalia and Xiu (2016), who decompose the quadratic covariation

between two assets into continuous and jumps components using high-frequency asset price

data, and construct the continuous correlation indices by measuring the correlation between

continuous returns, and jump correlation indices using the correlation between jump returns.

2

Second, we utilize a large number of potentially interesting machine learning methods to

allow for a rich variety of model specifications, when forecasting returns. We thus build on

previous literature that discusses the difficulties in predicting equity returns, particularly

at higher frequencies, such as daily returns (see e.g. Christoffersen and Diebold (2006)). In

general, a large machine learning related literature has developed in recent years in the field

of financial econometrics. For instance, Hutchinson et al. (1994) develop a nonparametric

method for estimating the pricing formula of a derivative asset using neural network models.

Rapach et al. (2013) applies adaptive elastic net estimation to predict monthly stock returns

in industrialized countries. Other related work includes, but not limit to, Harvey and Liu

(2018), Kim and Swanson (2016) and Swanson and Xiong (2017). More recently, in an

interesting paper, Gu et al. (2018) conduct a comprehensive study using machine learning

methods to predict individual stock risk premia and construct investment portfolios.

1All of our measures of integrated volatility are extracted from high frequency S&P500 data.

2Related papers that utilize mixed-frequency state space models include Mariano and Murasawa (2003),
Frale et al. (2008), Aruoba et al. (2009b) and Marcellino et al. (2016). None of these papers, however,
include multiple frequencies of the same latent variable, as is done in this paper. Additionally, see Ghysels
et al. (2007) for an introduction to the alternative approach of using MIDAS for mixed frequency modeling.
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More specifically, we evaluate machine learning methods including random forest, gra-

dient boosting, support vector machine, penalized regressions and neural network (deep

learning). Additionally, we evaluate machine learning classifier models including latent

discriminant analysis, naive Bayes, support vector classifier, k-nearest-neighbors, random

forest, and deep learning. Finally, we propose a group of hybrid machine learning models

based on a two-step method that combines the least absolute shrinkage operator (lasso)

and neural network methods. As discussed above, our objective is to forecast returns and

indicators of directional change. Specifically, we predict both level and directional changes

of daily and monthly returns for a variety of target variables, including the S&P500 (SPY)

and four SPDR sector ETFs: financials (XLF), technology (XLK), health care (XLV), and

consumer discretionary (XLY).3 The predictors that we use in our analysis include both a

small set of mixed frequency variables (for use in our state space models) as well as a variety

of other predictors that have been examined previously by Neely et al. (2014), Fama and

French (2015) and Welch and Goyal (2007).

Our experimental findings are based on the construction of 1-day and 1-month ahead

predictions, formed using rolling and recursive estimation window strategies, for the sample

period from 2009 - 2017. Our one-month-ahead forecasts are calculated by aggregating daily

forecasts for each month. We also construct two types of directional forecasts. The first

type is derived from our returns forecasts, in the sense that returns forecasts are classified

as “upward signals” if forecasts are positive, and are otherwise classified as “downward

signals”. The second type is constructed by utilizing machine learning classifiers to directly

generate directional predictions. Our main findings are summarized as follows.

First, based on mean square forecasting error (MSFE) and directional predictive accu-

racy rates (DPAR), machine learning models yield forecasts that are significantly superior

to the random walk and linear regression benchmark forecasts, when predicting monthly

3The SPY is the largest exchange-traded fund in the world which is designed to track the S&P 500 stock
market index. The XLF, XLK, XLV, and XLY are designed to represent the financial sector, technology
sector, healthcare sector, and consumer discretionary sector of the S&P 500 index. The four selected sectors
are the largest four S&P 500 sectors, by market cap, as of April 2019, according to Fidelity Research.
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returns. Not surprisingly, though, daily results indicate little to choose between our al-

ternative models. Indeed, it is only when we aggregate daily predictions to form monthly

predictions, that machine learning methods dominate, for all target assets (i.e. different

sector returns), regardless of estimation window strategy.

Second, the random forest method is clearly the preferred machine learning approach.

These results are statistically significant (when forecasting monthly returns), and prevail

for all of our target variables and estimation strategies. Moreover, these results continue to

hold regardless of the set of predictor variables utilized in our different models (we evaluate

predictor sets both with and without the latent uncertainty factors discussed above).

Third, “deep” learning models outperform “shallow” learning models. For instance,

deep learning models with two to four hidden layers have statistically smaller MSFEs and

higher DPARs than shallow learning models with only one hidden layer. Again, this result

holds across all windowing strategies used to estimate our models, and for all targets and

predictor sets.

Fourth, hybrid machine learning models, which combine lasso and neural network mod-

els, often outperform individual models based on both the MSFE and the DPAR. For

example, these models usually yield smaller MSFEs and higher DPARs than models based

on solely the lasso or neural networks.

Fifth, all three novel risk factors, including market correlation indices, volatility risk

factors, and macro risk factors, are shown to contain significant marginal predictive content.

In particular, “MSFE-best” and “DPAR-best” forecasting models yield significantly smaller

MSFEs and higher DPARs than models without risk factors. Moreover, for the majority of

our machine learning models that are not “MSFE-best” or “DPAR-best” best, these three

types of factors also prove to be useful.

Sixth, the market as well as all of the sectors that we analyze have different levels of

sensitivity to input information, in the form of the predictor set used when constructing the

“MSFE-best” or “DPAR-best” model. For the S&P500, a broad range of predictor sets,

including sets consisting of (i) all variables, (ii) all variables except macro variables, and (iii)
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all variables except one of our uncertainty factors have marginal predictive content, when

used as machine learning inputs. The exception is our set of “technical variables”, which

includes trading volume and price trend indicators. When these variables are excluded from

the set of predictor variables, MSFEs and DPARs generally improve, for all of our target

variables. This may be because useful predictive information contained in our technical

variables is also included in our latent uncertainty factors. However, even if this is the case,

it is clear from our findings that our latent uncertainty factors have further information

embedded in them that is also useful for predicting returns.

Finally, it is worth noting that our correlation indices based on jump variation surges

during 2008 and 2011, and drops when market volatility is stable, while our correlation

indices based on continuous variation moves in the opposite direction, except for the energy

sector. This suggests that the rise in correlation across markets and sectors is largely driven

by co-jump behavior. Moreover, When exiting the financial crisis period around 2008,

volatility risk factors generally move together across all of the sectors that we analyze in

our experiments, including the market (i.e., the S&P500).

The rest of this paper is organized as follows. Section 3.2 summarizes our setup, includ-

ing a discussion of the latent uncertainty factors that we examine. Section 3.3 discusses

our experiment setup and briefly outlines all of the machine learning methods used in the

sequel. Finally, Section 3.4 contains a description of the data used in our experiments, and

summarizes our empirical findings, and Section 3.5 concludes.

3.2 Market Correlation Indices, Volatility Risk Factors, and Macroeco-

nomic Risk Factors

In this section, we outline the methodology used in the construction of risk factors4 and

market correlation indices analyzed in the sequel. We first introduce the measurements of

4We use the notation and setup as in Yao (2019)
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high-frequency volatility and continuous and jump volatility parts, and layout the construc-

tion of correlation indices. We then turn to the state space framework used to estimate

our volatility risk and macroeconomic risk factor, and address temporal aggregation and

missing observations problems while working with mixed-frequency series.

3.2.1 High frequency measures of volatility and jump risk

Let Xt be the log-price of an asset at time t. Assume that the log-price process follows a

jump-diffusion model (hence, almost surely, its paths are right continuous with left limits).

Namely,

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdBs +

∑
s≤t

∆Xs. (3.1)

In the above expression, B is a standard Brownian motion and ∆Xs := Xs −Xs−, where

Xs− := limu↑sXu, represents the possible jump of the process X, at time s.

Consider a finite time horizon, [0, t] that contains n high-frequency observations of the

log-price process. A typical time horizon is one day. Let ∆n = t/n be the sampling

frequency. Then intra-daily returns can be expressed as ri,n = Xi∆n −X(i−1)∆n
.

A well-established result in the high frequency econometrics literature is that realized

volatility is a consistent estimator of the total quadratic variation. Namely,

RVt =
n∑
i=1

r2
i,n

u.c.p.−→
∫ t

0
σ2
sds+

∑
s≤T

(∆Xs)
2 = QVt = IVt + JVt, (3.2)

where
u.c.p.−→ denotes convergence in probability, uniformly in time. There are many estima-

tors of integrated volatility (IVt), which is the variation due to the continuous component

of quadratic variation (QVt). For example, multipower variations are defined as follows:

Vt =

n∑
i=j+1

|ri,n|r1 |ri−1,n|r2 ...|ri−j,n|rj , (3.3)

where r1, r2, ..., rj are positive, such that
j∑
i=1

ri = k, say. An important special case of

this estimator is bipower variation (BPVt), which was introduced by Barndorff-Nielsen and
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Shephard (2004). Namely,

BPVt = (µ1)−2
n∑
i=2

|ri,n||ri−1,n| (3.4)

where µ1 = E(|Z|) = 21/2Γ(1)/Γ(1/2) =
√

2/π, with Z a standard normal random variable,

and where Γ(·) denotes the gamma function. Another useful estimator is truncated bipower

variation (TBPVt), which combines the truncation method proposed by Mancini (2009)

and the bipower variation (BPVt) estimator discussed above. Namely,

TBPVt = (µ1)−2
n∑
i=2

|ri,n||ri−1,n|, ri,n = ri,n1{|ri,n|<αn}, (3.5)

where αn = α∆$
n , $ ∈ (0, 1

2). Similarly, truncated realized variance (TRVt) is defined as

TRVt =

n∑
i=1

r2
i,n. (3.6)

Finally, jump variation (JVt) can be estimated as JVt = RV t −BPV t or JVt = RV t −

TBPV t, for example. In the sequel, we shall utilize RVt, TRVt, BPVt and JVt = RV t −

BPV t.

Under certain regularity conditions 5, BPVt, TBPVt and TRVt are consistent estimators

of unobserved integrated volatility IVt :=

∫ t

0
σ2
sds, and JVt is the consistent estimator

of jump volatility. Moreover, it is also well-established that these estimators converge

stably in law at the rate
√

1/∆n, or equivalently,
√
n. Let T be the total number of such

representative finite time horizon [0, t] (e.g., day, week, month or quarter). If ∆nT → 0,

then the impact of estimating the latent volatility and jump risk factors are asymptotically

negligible, since the parameters in our state space model converge at rate
√
T .

3.2.2 Market correlation indices

In the high frequency literature, previous research focusing on covariation under multivariate

settings has focused mainly on solving three challenges: i) High frequency data tends to be

5See papers cited above and Jacod and Protter (2011) and Aı̈t-Sahalia and Jacod (2014) for details about
regularity conditions.
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severely contaminated with the microstructure noise; ii) non-synchronous high frequency

data lead to estimation bias when constructing covariation measures; and iii) covariation

matrices must be positive semi-definite in order to guarantee the existence of stable inverses

thereof. Notably, Aı̈t-Sahalia and Xiu (2016) address these issues, and develop estimators to

decompose quadratic covariation between two assets into continuous and jump components.

Following Aı̈t-Sahalia and Xiu (2016), the quadratic covariation between Xi and Xj

is equal to the sum of continuous component quadratic covariation and jump component

covariation:

[Xi, Xj ]t = [Xi, Xj ]
c
t + [Xi, Xj ]

d
t , (3.7)

where [Xi, Xj ]t is the quadratic covariation between Xi and Xj , [Xi, Xj ]
c
t is the continuous

quadratic covariation component, and [Xi, Xj ]
d
t is the quadratic covariation associated with

the discontinuous (jump) component of a process. Andersen et al. (2003) propose realized

measures of quadratic covariation, named realized covariance, that are based on the sum of

the product of intra-day returns between two assets:

covi,j(t;n) =

n∑
k=1

ri,k,t × rj,k,t (3.8)

where covi,j(t;n) denotes the realized covariance between asset i and asset j, at day t.

Here, ri,k,t is the intra-daily return of asset i at time interval k, during day t. Realized

covariance is an error free estimator of quadratic covariation [Xi, Xj ]t, when the length of

each intra-daily interval approaches 0 (i.e. the number of intra-daily intervals n → ∞).

Namely,

lim
n→∞

covi,j(t;n) = [Xi, Xj ]t (3.9)

In Aı̈t-Sahalia and Xiu (2016), the correlation, ρci,j , between asset Xi and asset Xj , which

is derived from the continuous component is:

ρci,j =
[Xi, Xj ]

c√
[Xi, Xi]

√
[Xj , Xj ]

(3.10)
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The correlation, ρdi,j , between asset Xi and asset Xj , which is derived from the jump com-

ponent is:

ρdi,j =
[Xi, Xj ]

d√
[Xi, Xi]

√
[Xj , Xj ]

(3.11)

where [Xi, Xi] and [Xj , Xj ] denote the quadratic variations of assets Xi and Xj , respec-

tively. The quadratic variation in the above formulae is estimated using realized volatility,

as in equation (2). The jump component of quadratic covariation, [Xi, Xj ]
d, is equal to∑

s≤t ∆Xi,s∆X
T
j,s, where ∆Xi,s represents the jump in Xi, at time s.

In our empirical experiments, we estimate [Xi, Xj ]
d using a “jump-test” approach.

Namely, the realized covariance associated with jumps is:

covi,j(t;n)d =

n∑
k=1

(ri,k,t ∗ Ijump,i,k,t)× (rj,k,t ∗ Ijump,j,k,t). (3.12)

The jump indicators, Ijump,i,k,t and Ijump,j,k,t, are identified using the Lee and Mykland

(2007) jump test. More specifically, Lee and Mykland (2007) use the ratio of realized

returns to estimated instantaneous volatility, and construct a nonparametric jump test to

identify the exaxt timing of jumps at the intra-day level. The test statisic which identifies

whether there is a jump during the interval (t+ l/n, t+ (l + 1)/n) is:

L(t+(l+1)/n) =
Xt+(l+1)/n −Xt+l/n

̂σt+(l+1)/n

, (3.13)

where

̂σt+(l+1)/n
2 ≡ 1

K − 2

l−2∑
i=l−K+1

|Xt+(i+1)/n −Xt+i/n || Xt+i/n −Xt+(i−1)/n|. (3.14)

Here K is the window size of a local movement of the process. We choose K = 10 and use

the 5-minute sampling frequency (i.e., the number of intra-day observations, n, equals 78).

These authors show that

maxl∈Ān |L(t+(l+1)/n)| − Cn
Sn

→ ε, as ∆t→ 0, (3.15)

where ε has a cumulative distribution function P (ε ≤ x) = exp(−e−x),

Cn =
(2logn)1/2

c
− logπ + log(logn)

2c(2logn)1/2
and Sn =

1

c(2logn)1/2
(3.16)
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c ≈ 0.7979 and Ān is the set of l ∈ {0, 1, ..., n}, so that there are no jumps in (t + l/n, t +

(l+ 1)/n]. We choose a 10% significance level when applying this test. If the test statistic,

L(t+(l+1)/n), lies in the critical region of the null distribution at 10% significance level, then

we reject the null hypothesis that there is no jump during (t + l/n, t + (l + 1)/n], and the

jump indicator, Ijump, is set equal to 1. Otherwise, the jump indicator is set equal to 0.

Finally, the continuous component of quadratic covariation is estimated as the difference

between realized covariance and discontinuous (jump) realized covariance. Namely,

covi,j(t;n)c = covi,j(t;n)− covi,j(t;n)d (3.17)

3.2.3 Volatility risk factors

Using the state space model setup in Yao (2019), the variable yt = (y1
t , y

2
t , y

3
t , y

4
t ) corre-

sponding to data measured at 4 different time horizons, including daily (denoted by d),

bi-daily (denoted by 2d), tri-daily (denoted by 3d), and weekly (denoted by w). In our

setup, yt is alternately set equal to TRVt. The latent risk factor that we are interested

in extracting is called MFvolt . Finally, the elements of yt, which are aggregated, are flow

variables. Therefore, we include three aggregated state variables, i.e., C1
t , C2

t and C3
t , to

address the aggregation issues discussed above. The state space model is:

Observation Equation:


ydt

y2dt

y3dt

ywt

 =


β1 0 0 0 1 0 0 0

0 β2 0 0 0 1 0 0

0 0 β3 0 0 0 1 0

0 0 0 β4 0 0 0 1





MFvol
t

C1
t

C2
t

C3
t

u1t

u2t

u3t

u4t
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State Equation:

MFvolt+1

C1
t+1

C2
t+1

C3
t+1

u1
t+1

u2
t+1

u3
t+1

u4
t+1



=



ρ 0 0 0 0 0 0 0

ρ ψ1
t+1 0 0 0 0 0 0

ρ 0 ψ2
t+1 0 0 0 0 0

ρ 0 0 ψ3
t+1 0 0 0 0

0 0 0 0 η1 0 0 0

0 0 0 0 0 η2 0 0

0 0 0 0 0 0 η3 0

0 0 0 0 0 0 0 η4





MFvolt

C1
t

C2
t

C3
t

u1
t

u2
t

u3
t

u4
t



+



1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1





e1
t

e2
t

e3
t

e4
t

e5
t


,

where the error terms eit
i.i.d∼ N(0, σ2

i ), with i = 1, ..., 5.

As mentioned above, the three aggregated variables in the state vector, C1
t , C2

t and

C3
t , are designed to handle bi-daily, tri-daily and weekly updating of our volatility series,

respectively. Also, ψ1, ψ2 and ψ3 are binary-valued parameters for the aggregated state

variables, and are defined as follows:

ψ1
t =


0, if t is an odd number

1, otherwise,

,

for the bi-daily updating series;

ψ2
t =


0, if t is the first day of every three days

1, otherwise,

,

for the tri-daily updating series; and

ψ3
t =


0, if t is the first day of every week

1, otherwise,

for the weekly series.
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In the above observation equation, only the highest frequency variable, ydt , is directly

connected with the factor, MFvolt , via β1. The three other volatility variables are connected

with MFvolt via the aggregated state variables (i.e, C1
t , C2

t and C3
t ) and via β2, β3 and

β4. Coupled with the setup of the binary-valued parameters (i.e., ψ1, ψ2 and ψ3) in the

state equation, this ensures the proper inter-temporal aggregation of the flow variables in

the system. and refreshes the quantity at the beginning of each period. Finally, the ut

are stochastic disturbance terms, and are assumed to follow autoregressive processes, as in

Aruoba et al. (2009b). In the state equation, the first four state variables are connected

with MFvolt via ρ. Of these four state variables, the last three (i.e., C1
t , C2

t and C3
t ) are

defined such that their previous values are added to ρMFvolt whenever flow aggregation is

required.

3.2.4 Macroeconomic risk factors

We again begin with yt = (y1
t , y

2
t , y

3
t , y

4
t ). In this section, the data are measured at daily

(denoted by d), weekly (denoted by w), monthly (denoted by m), and quarterly (denoted by

w) frequencies. This allows us to construct a “benchmark” risk factor corresponding to the

business conditions index analyzed by Aruoba et al. (2009b). In particular, following Aruoba

et al. (2009b), we use four macroeconomic variables with different sampling frequencies,

including: (1) the daily yield curve spread (y1
t ), defined to be the difference between the 10-

year U.S. Treasury bond yield and the 3-month Treasury bill yield; (2) weekly initial claims

for unemployment insurance (y2
t ); (3) nonfarm payroll employment (y3

t ); and (4) quarterly

gross domestic product (y4
t ). The corresponding state-space model used to extract our risk

factor, called MFmact is: Observation equation:

y1
t

y2
t

y3
t

y4
t


=



β1 0 0 1

0 β2 0 0

β3 0 0 0

0 0 β4 0





MFmac
t

C1
t

C2
t

u1
t


+



0 0 0

γ2 0 0

0 γ3 0

0 0 γ4




y2
t−W

y3
t−M

y4
t−Q

+



0

w2
t

w3
t

w4
t


.



57

State equation:

MFmac
t+1

C1
t+1

C2
t+1

u1
t+1


=



ρ 0 0 0

ρ ψ1
t+1 0 0

ρ 0 ψ2
t+1 0

0 0 0 γ1





MFmac
t

C1
t

C2
t

u1
t


+



1 0

1 0

1 0

0 1


 e1

t

e2
t

 ,

where the error terms eit
i.i.d∼ N(0, σ2

i ), with i = 1, 2.

The variables in this model include observed variables, the yt; our latent risk factor,

MFmact ; aggregate state variables, C1
t and C2

t ; and stochastic disturbance terms, u1
t , w

2
t ,

w3
t , and w4

t . Note that in this model, only y2
t and y4

t are flow variables in this model,

and hence there are only two aggregate state variables. Accordingly, we also define two

binary-valued variables ψ1 and ψ2 for these aggregated state variables. Namely,

ψ1
t =


0, if t is the first day of the week

1, otherwise,

and

ψ2
t =


0, if t is the first day of the quarter

1, otherwise.

3.2.5 Technical indicators

Technical indicators have been widely used by practitioners in asset pricing applications.

Two key papers discussing different technical indicators include Fama and Blume (1966)

and Brock et al. (1992). These papers explore the usefulness of various technical indicators,

including filter rules, moving averages, and momentum, when designing trading strategies.

Neely et al. (2014) shows the usefulness of technical indicators for predicting the equity risk

premium. These authors analyze 14 common technical indicators.

In our experiments, we use two types of technical indicators, including moving average

indicators and volume-based trend indicators, following Neely et al. (2014). The moving

average technical indicators are derived by using moving-average (MA) rules to generate



58

long or short signals at the end of each trading day, t. Namely, define:

Dt =


1 if P

MA(k)
t > P

MA(s)
t

0 otherwise

(3.18)

where

P
MA(q)
t =

1

q

q−1∑
i=0

Pt−i for q = k, s (3.19)

Here Dt = 1 represents the long signal and Dt = 0 represents the short signal at day t. We

use 30-, 90-, and 120-day moving-averages of asset prices, Pt, in our experiments.6 This

allows us to obtain potentially useful price trend indicators. The values for q are thus set

equal to 30, 90, 120, representing monthly, quarterly, and semiannually time periods, and

yielding three price trend indicators. Table 3.1A lists the technical indicators in detail.

Our volume-based trend indicators are constructed by combining trading volume and

prices in order to identify volume trends in the market. The daily “net ”” volume is defined

as:

Vnet,t = Vt × St (3.20)

where Vt is the trading volume at day, t. The dummy variable, St, is:

St =


1 if Pt > Pt−1

−1 otherwise.

(3.21)

We use the “net” volume, Vnet,t, to generate the trading signals Dt, where:

Dt =


1 if V

MA(k)
net,t > V

MA(s)
net,t

0 otherwise

(3.22)

with

V
MA(q)
net,t =

1

q

q−1∑
i=0

Vnet,t−i for q = k, s (3.23)

6Here Pt is the asset price, measured at the end of each trading day, t
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Here Dt = 1 represents the “long” signal and Dt = 0 represents the “short” signal, on day t.

We utilize 30-, 90-, and 120-day moving averages of the “net” volume in order to construct

our volume-based trend indicators. The parameters q is thus set as 30, 90, 120 to represent

monthly, quarterly, and semiannually time periods.

3.3 Experiment Setup

In this section, we introduce our experimental setups and models used to predict asset re-

turns. First, we detail the splitting of sample data into validation, training and test parts.

The validation dataset is established to estimate hyperparameters in machine learning mod-

els and avoid potential overfitting problem. Second, we show specific setups of forecasting

models we use in the experiment. For example, in machine learning models, we discuss

the tuning process of hyperparameter, the objective function of the model, and parameter

estimation algorithm or solver.

In our empirical experiment, forecast targets are the return of the following financial

assets: SPY (SPDR S&P 500 ETF Trust), XLF (Financial Select Sector SPDR Fund), XLK

(Technology Select Sector SPDR Fund), XLV (Health Care SPDR), and XLY (Consumer

Discretionary SPDR). The SPY is the largest exchange-traded fund in the world which is

designed to track the S&P 500 stock market index. The XLF, XLK, XLV and XLY are

designed to represent the financial sector, technology sector, healthcare sector, and consumer

discretionary sector of the S&P 500 index. We forecast one-day-ahead daily returns and

directional changes for each target asset using both rolling and recursive estimation windows.

The rolling window size is T = 500. We denote daily returns of targeted assets at day t as

ri,t, where i corresponds to one of the five sectors mentioned earlier. We also calcualte one-

month-ahead forecasts by aggregating daily forecasts. Finally, as as mentioned above, we

also construct two types of directional forecasts. The first type is derived from our returns

forecasts, in the sense that returns forecasts are classified as “upward signals” if forecasts are

positive, and are otherwise classified as “downward signals”. The second type is constructed

by utilizing machine learning classifiers to directly generate directional predictions.



60

3.3.1 Linear models

We use a random walk model as our main benchmark. Namely, forecasts are constructed

using:

rt+1 = a+ εt+1 (3.24)

where εt+1 is a stochastic disturbance term, and a is constant. In our experiments, a

is estimated under both rolling and recursive data windows. For the rolling scheme, the

window size T = 500. For the recursive scheme, a is constructed using asset returns from

t = 251th − t∗, where t∗ denotes the last trading day prior to the period being forecasted.

We also estimate linear models with the following specification:

rt+1 = c+ α′Wt + εt+1, (3.25)

where ri,t+1 is the “target” forecast variable of interest (i.e. daily returns for SPY, XLF,

XLK, XLV, and XLY), and the forecast horizon is one-day-ahead. Wt contains explanatory

variables at time t, and α is a conformably defined coefficient vector. Wt consists one-

day-lagged returns, ri,t, and exogenous variables including macroeconomic and financial

volatility (risk) factors, and market correlation indeices; as well as the macroeconomic and

technical indicators outlined in Table 3.1A. For details regarding the variables in Wt, refer

to Table 3.2. Models are estimated using least squares.

3.3.2 Penalized linear models

We utilize two varieties of penalized regression - ridge regression and Least absolute shrink-

age operator (lasso)type regression.

Ridge regression

Ridge regression is introduced by Hoerl and Kennard (1970). Estiamtion involves solving

the following problem:

minL(λ, α) =

T∑
t=1

[rt+1 − c− α′Wt]
2 + λ|α′|2 + λc2 (3.26)
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where α = (α1, ..., αp) and λ ≥ 0. Here |α′|2 =
∑p

j=1 α
2
j . The tuning parameter, λ, controls

the amount of shrinkage.

Lasso regression

Lasso regression is introduced by Tibshirani (1996). Estimation involves solving the follow-

ing problem:

minL(λ, α) =

T∑
t=1

[rt+1 − c− α′Wt]
2 + λ|α′|+ λ|c| (3.27)

where α = (α1, ..., αp) and λ ≥ 0. Here |α′| =
∑p

j=1 |αj |. We optimize the tuning parameter,

λ, using the training’ sample, as discussed above.

3.3.3 Logistic regression

Logistic regression is used in several areas including, for example, the bioassay, epidemiology,

and machine learning fields. In a key paper, Cox (1966) introduces the multinomial logistic

regression model. The purpose of these models is to estimate the probability that categorical

response variables, say rt+1, belong to a particular category via use of a linear probability

model. In particular, probabilities based on logistic regression are calculated using the

logistic function:

P (rt+1 = m|Wt) =
exp(cm + α′mWt)

1 +
∑M−1

n=1 exp(cn + α′nWt)
,m = 1, ...,M − 1,

P (rt+1 = M |Wt) =
1

1 +
∑M−1

n=1 exp(cn + α′nWt)
,

(3.28)

where M = 2 in our directional prediction accuracy experiments. Maximum likelihood is

used to estimate θ = {c1, α
′
1}; and the likelihood function is

l(θ) =
∏
t

P (rt+1 = 1|Wt)
∏
t

(1− P (rt+1 = 2|Wt)) (3.29)

To maximize this likelihood function, we use the liblinear algoritm discussed in Fan et al.

(2008).
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3.3.4 Linear discriminant analysis

Linear discriminant analysis (LDA) was introduced by Fisher (1936). LDA is useful be-

cause it is more stable than logistic regression, when the distribution of predictors, Wt =

{W1,t, ...,Wp,t}, is approximately normal. The idea is to model the distribution of Wt from

each class of response variable, rj,t+1, say (in our experiments, j = 1, ..., 5 as discussed

above), separately and then use Bayes theorem to update P (rj,t+1 = m|Wt). Suppose that

πm represents the prior probability of rj,t+1 belonging to the class, m, where
∑M

m=1 πm = 1.

The probability density function of Wt belonging to class m is fm(Wt). Bayes’ theorem

then implies that:

P (rj,t+1 = m|Wt) =
fm(Wt)πm∑M
m=1 fm(Wt)πm

, (3.30)

Linear discriminant analysis models the density function fm(Wt) as a multivariate Gaussian

process. Namely:

fm(Wt) =
1

(2π)(p/2)|Σm|1/2
e−

1
2

(Wt−µm)TΣ−1
m (Wt−µm) (3.31)

where µm is the mean of Wt for the mth class, and Σm is the covariance matrix common

to all m classes. Finally, it is worth noting that the log-ratio of the conditional probability

density function between two classes is:

log
P (rj,t+1 = l|Wt)

P (rk,t+1 = m|Wt)
= log

fl(Wt)

fm(Wt)
+ log

πl
πm

= log
πl
πm
− 1

2
(µl + µm)TΣ−1(µl + µm)

+W T
t Σ−1(µk − µl),

(3.32)

which is linear in Wt.

3.3.5 Naive Bayes classifier

The Naive Bayes classifier was first introduced in the pattern recognition field by Duda

(1973). More recent machine learning papers in the area include Langley (1993) and Fried-

man et al. (1997). The naive Bayes model assumes input variables Wt = {Wt,1, ...,Wt,p}
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are independent in each class of the response variable rj,t+1 = 1, ...,M . Namely:

fm(Wt) =

p∏
k=1

fmk(Wt,k), (3.33)

where fm(Wt) is the probability density function of Wt in class rj,t+1 = m. As the LDA

model, the log-ratio of the conditional probability density function between two classes is:

log
P (rt+1 = l|Wt)

P (rt+1 = m|Wt)
= log

πlfl(Wt)

πmfm(Wt)
= log

πl
∏p
k=1 flk(Wt,k)

πm
∏p
k=1 fmk(Wt,k)

= log
πl
πm

+

p∑
k=1

log
flk(Wt,k)

fmk(Wt,k)
.

(3.34)

3.3.6 Support vector machines

Support vector machines (SVMs) were first proposed by Vapnik and Chervonenkis (1964).

A key recent paper in this area is Cortes and Vapnik (1995). A key impetus for this machine

learning method is that linearity is a strict assumption, and may yield poor approximations

in high-dimensional and high-frequency data environments. This has led to the introduction

of various “learning methods”, of which SVMs are an example.

SVMs utilize hyperplanes in order to delineate boundaries for the separation of obser-

vations into different categories. The idea is to find “optimal” separating boundaries that

effectively categorize data and maximize the distance from the closest observations to the

boundary. While several other techniques such as the Latent Dirichlet allocation (LDA)

also incorporate a similar idea, support vector machine/regression models are interesting

because estimation only requires a small percentage of the data (i.e., to construct so-called

“support vectors”). Rather than depending on all sample data, as in the case of LDA,

optimization hinges on the use of these support vectors, which are easy to construct using

big data and are robust to overfitting problems.

Without loss of generality, define a hyperplane for a p-dimensional dataset as:

c+ α1Wt,1 + · · ·+ αpWt,p = 0,

where Wt = (Wt,1, · · · ,Wt,p)
′, for observations t = 1, ..., T . These hyperplanes are used in
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the following classification rule:

If c+ α1Wt,1 + · · ·+ αpWt,p > 0, then dt = 1

and

If c+ α1Wt,1 + · · ·+ αpWt,p < 0, then dt = −1

Optimal separating boundaries are obtained by maximizing the margin around the

boundary, say M . Under separability, M denotes a certain “minimal distance” of data

points from the boundary. Under nonseparability, a small number of data points may be

misclassified, in the sense that they reside on the other side of the boundary. In this setup,

ξt is defined to be the magnitude of any miscalssification. If there is none, then ξt = 0. Oth-

erwise, ξt = equals the distance from the data points to the hypoerplane, with ξt > 0. An

additional constraint ”
∑N

i=1 ξt 6 constant” controls the level of missclassification allowed.

The objective function used to estimate the parameters in a support vector machine is:

max
c,α,||α,c||=1

M

s.t. dt(c+ α1Wt,1 + · · ·+ αpWt,p) ≥M(1− ξt),
(3.35)

where || · || denotes the Euclidean norm. Support vector regression extends the idea of

support vector machines into a regression framework. Rather than focusing on the distance

of support vectors to hyperplanes, under, support vector regression minimizes the error be-

tween fitted and true observational values. For example, using the simplest linear regression

where f(Wt) = c+ α1Wt,1 + · · ·+ αpWt,p, support vector regression incorporates the error

term rj,t+1 − f(Wt) into its objective function. Following Cortes and Vapnik (1995), the

objective function for support vector regression can be written as:

min
c,α

N∑
i=1

V (rj,t+1 − f(Wt)) + λ|α|2 + λc2 (3.36)

where λ is a tuning parameter. Here:

Vm(ε) =


0, if |ε| < m

|ε| −m, otherwise.

(3.37)
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Notably, regardless of the specification of Vm(ε), solutions for the optimal values of c and α

are a linear combination of kernel functions, K(Wt,W
′
t) =

∑p
n=1 hn(Wt)hn(W ′t). We utilize

three different kernels in our experiments, including:

• linear kernel: K(Wt,W
′
t) =

∑p
n=1Wt,nWt,n

• polynomial kernel: K(Wt,W
′
t) = (1 +

∑p
n=1Wt,nWt,n)d

• radial kernel: K(Wt,W
′
t) = exp(−γ||Wt −W ′t ||2)

Therefore, the hyperparameters that we estimate with our training dataset include: 1) λ in

linear kernel; 2) λ and d in polynomial kernel; and 3)λ and γ in radial kernel.7

3.3.7 Random forest methods

The random forest machine learning method was first introduced by Breiman (2001). Like

other tree-based statistical learning techniques, it is based on specifying “subsections” of

the predictor space, Wt. Tree-based methods use the mean of response of variable rj,t under

each subsection to construct forecasts. The procedure used to develop subsections resembles

the structure of the tree, and each subsection of data is therefore also called a tree node.

The first step of tree-based methods involves bootstrapping the sample data. Then,

within each bootstrapped sample, the tree-based algorithm tries to find the best “split”

of the predictor Wt using the criteria of least squares. Hence, the space of predictors and

response variable is partitioned into m = 1, 2, · · · , M regions/tree nodes. More specifically,

for each tree node, R1(m, c) = {Wt,m|Wt,m < c} and R2(m, c) = {Wt,m|Wt,m ≥ c}, the

parameters m and c are determined by solving the following problem:

min
∑

t:Wt∈R1(m,c)

(rj,t+1 − r̂R1)2 +
∑

t:Wt∈R2(m,c)

(rj,t+1 − r̂R2)2 (3.38)

where r̂R1 is predicted value of response variable rj,t+1 and equals the mean of rj,t+1 in the

sample data associated with R1. Here, r̂R2 is defined analogously.

7All machine learning methods utilized in our experiments involve three distinct sample periods, including:
(i) a training dataset (used for the estiamtion of hypoerparameters), (ii) a forecasting model estimation
period, and (iii) and ex-ante forecasting period.



66

The major difference between random forest and other tree-based methods, in particular

bagging, is the additional constraint requiring the choice of m from only a subset of the

p predictors, which is randomly chosen, and usually consists of
√
p of the original predic-

tors. This design avoids the problem of correlation among fitted trees, when one or a few

predictors dominate other predictors. For further discussion, see Friedman et al. (2001).

The algorithm that we utilize in order to carry out random forest regression is:

1. Draw B bootstrap samples from the data.

2. For each bootstrap sample b, where b = 1, 2, · · · , B:

(a) Choose a subset of variables from the p predictors.

(b) Find the optimal variable m and corresponding cutoff value c that yield the lowest sum

squared prediction error.

(c) Partition the data at Wt with cutoff value c.

(d) Recursively repeat the above procedures until a minimal tree node size, say nmin is

reached.

3. Make predictions based on developed trees, called Tb(Wt), using:

r̂B(Wt) =
1

B

B∑
b=1

Tb(Wt).

Within each boostrap, observations are independently drawn from the training sample,

with replacement. The number of observations in each boostrap is the same as in the

traning sample. We use a validation (training) dataset to conduct cross validation and tune

the hyperparameter B, for values of B = {100, 200, 300, 400}.

In a classification setting, the objective loss function is different than in the regression

framework above. Classification models often use an alternative approach based on the

“classification error rate”, which measures the fraction of training observations which are

not classified as belonging to the majority class, within a specific region. However, use of

the Gini index for model specification is preferable in our context, because classification

error rates are not sufficiently sensitive for our tree-based model. The Gini index is denoted
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as:

L =

N∑
n=1

p̂mn(1− p̂mn) (3.39)

where p̂mn is the proportion of training observations in the mth region that belongs to the

nth class (n = 1, 2, · · · , N). Under the binary classification case, N=2.

Hyperparameters that we estimate for our random forests are the maximum depth of

the tree, the minimum number of samples required to split an internal node, the minimum

number of bootstrap samples required to be at a tree node, the number of predictors to

consider when looking for the best split, and the number of trees.

3.3.8 Gradient tree boosting

The gradient boosting method is developed in Friedman (2001) for regression and classifi-

cation. The objective loss function89 is:

ˆL(f) =
N∑
i=1

L(rt+1, f(Wt)) (3.40)

Here we use l2 penalty for the loss function L(.). f(.) is a sum of regression trees:

fM (Wt) =
M∑
m=1

K(Wt;κ) (3.41)

Where each K(Wt;κ) represents a regression tree and κ is the parameter in the model. One

solution to this loss function is to estimate the tree K(Wt;κ) at mth iteration to fit the

negative gradient:

κ̂m = argmin
κ

(−gm −K(Wt;κ))2 (3.42)

where the components of the gradient gm are:

gim = [
∂L(rt+1, f(Wt))

∂f(Wt)
]f(Wt)=fm−1(Wt), i = 1, ..., N (3.43)

The following summarizes the gradient tree boosting algorithm:

8We use the notation in Friedman et al. (2001)

9The loss function for gradient boosting classification is same as in the random forest.



68

1. Start f0(Wt) = argminθ
∑N

i=1 L(rt+1, θ).

2. For m = 1 to M :

(a). For i = 1, 2, ..., N compute:

sim = −[
∂L(rt+1, f(Wt))

∂f(Wt)
]f=fm−1 (3.44)

(b). Train a regression tree with target sim to get the terminal regions Sjm, j =

1, 2, ...Jm.

(c). For j = 1, 2, ...Jm compute:

θ̂jm = argmin
θ

∑
Wt∈Sjm

L(rt+1.fm−1(Wt) + θ) (3.45)

(d). Update fm(Wt) = fm−1(Wt) + λ
∑Jm

j=1 θjmI(Wt ∈ Sjm)

3. Output f̂(Wt) = fM (Wt)

In the hyperparameter estimation, the learning rate λ shrinks the contribution of each

tree. M captures the number of booting stages in the estimation. We also tune other vari-

ables including min sample split10, min samples leaf11 and max depth12 during the cross-

validation.

3.3.9 Neural networks

Neural network models build on a set of nonlinear functions mimicking the neural architec-

ture of brains. The earliest neural networks trace back to Rosenblatt (1958) and McCulloch

and Pitts (1943), where propositional logic models and probabilistic models are proposed to

describe nervous system activity, information storage, and organization in the brain. Since

these early papers, neural networks and their applications have been studied extensively

10The minimum number of samples required to split an internal node.

11The minimum number of samples required to be at a leaf node.

12The maximum number of nodes in the tree.
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across numerous disciplines. A key paper in this area is Hornik et al. (1989), who prove that

multilayer feed-forward networks are “universal approximators”, in the sense that as long

as the complexity of the network is allowed to grow (i.e., increasing the number of so-called

“hidden units”) with the sample size, then a network can estimate an arbitrary function,

arbitrarily well. Not surprisingly, given this result, recent work shows that networks with

multiple hidden layers are often better approximators than models with one hidden layer

(see e.g, He et al. (2016)). IN this paper we utilize the traditional “feed-forward” neural

network model of the variety discussed in Hornik et al. (1989).

Let Wt denote the “inputs” to the neural network. A hidden layer is defined as:

Gm = f(c+ α′Wt), (3.46)

where Wt = (Wt,1, ...,Wt,p). The nonlinear function, f(·), is called the activation function,

and we utilize four such functions in our experiments, with choice amongst them carried

out using cross validation. These include:

Identity Function:f(Wt) = Wt

Sigmoid Function:f(Wt) = 1/(1 + exp(−Wt))

Hyperbolic Tan Function:f(Wt) = tanh(Wt)

Rectified Linear Unit Function:f(Wt) = max(0,Wt)

The output rj,t+1 given as:

rj,t+1 = g(θ0s + θMs G), m = 1, ...,M (3.47)

where G = (G1, G2, ..., GM ). We incorporate up to four hidden layers in our experiments,

and the number of neurons (variables) in each layer is selected according to the geometric

pyramid rule (see Masters (1993)).

In our classification variant of this model, we use cross-entropy, L, as the loss function,

where:

L = −
M∑
m=1

p̂mnlogp̂mn, (3.48)
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with p̂mn defined to be the proportion of training observations in the mth region arising

from the nth class. The output function, g(·), in our classification method is the Softmax

function13. For parameter estimation, we use least squares with quasi-Newton numerical

optimization, and the parameter α is tuned during cross-validation.

3.3.10 K-nearest-neighbor classifiers

The nearest neighbor classification method was first proposed by Cover and Hart (1967) in

the field of pattern recognition. This nonparametric method performs clustering based on

minimum distance measures. Given an unclassified point, W0, and k points, Wt, t = 1, ..., N ,

in a training dataset are selected based on the closest distance to W0, and then the point

W0 is classified. Distance, dl is measured using the standard Euclidean norm:

dl = ‖Wt −W0‖ (3.49)

The number of neighbors, k, is dependent on a tuning parameter which is calibrated using

cross-validation.

3.3.11 Hybrid machine learning methods

We also explore the usefulness of a hybrid class of models that combines the lasso with

neural networks. These hybrid models are based on a two step specification method. In the

first step, the lasso is utilized to predict the forecasting target using the model:

rj,t+1 = c+ α′Wt + εt+1 (3.50)

with specification achieved by minimizing the following function:

L(λ, α) = |rt+1 − c− α′Wt|2 + λ|α′|2. (3.51)

In the second step, the residual, εt+1, estimated using this minimizer is deployed as our

forecasting target, and neural networks are estimated. In this step, we carry out two types

13See Bridle (1990).
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of experiments, based on the use different input variables, Wt. In the first type, Wt is the

same as that used in the lasso. In the second type, Zt is instead used as the input into the

networks, where Zt is the subset of Wt obtained by utilizing the lasso as a variable selection

device.

3.3.12 Experimental setup and forecast evaluation

All forecasting models are estimated using three difference rolling window sizes, and all

models and parameters are re-estimated/re-specified prior to the construction of each new

daily forecast.14 Additionally, and as discussed above, monthly forecasts are formed by

aggregating daily forecasts. Forecasting performance is evaluated using mean squarefore-

cast error (MSFE), where MSFE = 1
T

∑T
t=1(rj,t − r̂j,t)2, with r̂j,t denoting a prediction.

Comparative model accuracy is evaluated using the Diebold and Mariano (DM) test (see

Diebold and Mariano (1995a)). The null hypothesis of equal predictive accuracy of two

forecasting models, say f and g, in this test is:

Ho : E[l(εft+h)]− E[l(εgt+h)] = 0, (3.52)

where εft+h is the prediction error in model f , εgt+h is the prediction error in model g, and

l(·) is the quadratic loss function. If we assume there is no parameter estimation error(i.e.,

P/R → 0, where P + R = T , P denotes the number of ex-ante forecasts, and R is the

length of the rolling window, or the initial length of the recursive window), and also under

an assumption that the models are nonnested, then DMP = d̄
σ̂d̄

, where d̄ = P−1
∑P

t=1 dt has

a standard normal limiting distribution (here σ̂d̄t is a heteroskedasticity and autocorrelation

robust estimator of the standard deviation of d̄), and dt = (ε̂ft )2− (ε̂gt )
2 are estimates of true

forecasting errors εft+h and εgt+h. Details concerning appropriate critical values for cases in

which parameter estiamtion error is not assumed to be negligible, asympotitcally, and/or

in which models are nested are contained in Corradi and Swanson (2006c) and McCracken

(2000b).

14Papers discussing the use of rolling and recursive estimation windows include Clark and McCracken
(2009), Rossi and Inoue (2012), and the papers cited therein.
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We adopt the Pesaran and Timmermann (1992) test to check the independence of our

directional forecasts (namely, we construct classical chi-square tests of independence). In

this context, we consider confusion matrices defined as follows:15

Predicted

up down

A
ct

u
al

up n1 n2

down n3 n4

(3.53)

Here n1 (n4) is the number of correct forecasts of upward (downward) return forecasts and

n2 (n3) is the number of incorrect forecasts of upward (downward) movement in returns.

Next, define:

pactu =
n1 + n2

n1 + n2 + n3 + n4
, qactu =

pactu(1− pactu)

n1 + n2 + n3 + n4
, (3.54)

ppred =
n1 + n3

n1 + n2 + n3 + n4
, qpred =

ppred(1− ppred)
n1 + n2 + n3 + n4

, (3.55)

The null hypothesis of Peseran-Timmermann (PT) test is that the model provides no value

in directional forecasting. The test statistic is:

PT =
ptrue − p√
v − w

→ N(0, 1), (3.56)

where

ptrue =
n1 + n4

n1 + n2 + n3 + n4
, p = pactuppred + (1− pactu)(1− ppred) (3.57)

and

v =
p(1− p)

n1 + n2 + n3 + n4
, w = (2ppred − 1)2qactu + (2pactu − 1)2qpred + 4qactuqpred. (3.58)

The PT test is a one-sided test and the critical region is the upper tail of the standard

normal distribution.

In addition, we report point direction forecasting performance using directional predic-

tive accuracy rates (DPAR). The DPAR is defined as:

DPAR =
Number of correct forecasts

Totol number of forecasts
=

n1 + n4

n1 + n2 + n3 + n4
(3.59)

15See Swanson and White (1997) for details.
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We impose a simple “filter” on our forecasts in order to address the occasional occurrence

of so-called “nonsense” forecasts, as discussed in Swanson and White (1997). Namely, if the

one day change associated with a daily prediction exceeds the 90% percent of the average

change observed during the past 22 trading days (i.e., one month), then the forecast from

random walk model in Section 3.2 is used in place of the associated model based prediction.

Finally, correlation indices, macro risk factors, and volatility risk factors are 30-day

moving averages. This smoothing was found to yield superior results relative to the use of

un-smoothed uncertainty measures in our experiments.16

3.4 Empirical Results

3.4.1 Data

Our analysis is based on the use of 4 different datasets: 5-minute frequency equity price

data, trading volume data, widely used macroeconomic predictors (as detailed in Welch and

Goyal (2007)), and additional macroeconomic variables. Table 3.1A and Table 3.1B sum-

marize the predictors and the prediction targets. Technical indicators, correlation indices,

volatility risk factor, and all forecasting targets are derived from the 5-minute high-frequency

price dataset, which is extracted from Trade and Quote (TAQ) database.17 The trading

volume dataset used to compute technical indicators is obtained from Yahoo Finance. The

macroeconomic predictors include book to market ratio of the Dow Jones Industrial Aver-

age, net equity expansion and dividend-price ratios for S&P 500 index are from the dataset

detailed in Welch and Goyal (2007). Our additional macroeconomic variables, including,

for example, default spreads, term spreads, and the consumer price index are obtained from

the FRED-MD database of Federal Reserve Bank of St.Louis.

More specifically, the macroeconomic variables that are used to build our macro risk

16In the prediction of SPY, all correlation indices are incorporated in the model. In the prediction of XLF,
XLK, XLY, and XLV, only corresponding correlation indices are incorporated in the prediction model. See
Data Section for further detials.

17Data obtained from Wharton Research Data Service (WRDS).
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factor, MFmact , are obtained from the FRED-MD database of Federal Reserve Bank of

St.Louis, and include (1) the daily yield curve spreads, defined as the difference between

the 10-year U.S. Treasury bond yield and the 3-month Treasury bill yield; (2) weekly initial

claims for unemployment insurance; (3) the monthly number of nonfarm payroll employees;

and (4) quarterly gross domestic product. All of these variables are log differenced in all

calculations, in order to ensure stationarity, and are then standardized, with the exception

of yield spreads, which are standardized, but not log-differenced. The fourth row in Table

3.1A and the third row in Table 3.1B show the transformations used in conjunction with

our macroeconomic variables.

The daily financial variable log-returns that make up our target set of variables to

be forecasted include: SPY (SPDR S&P 500 ETF Trust), XLF (Financial Select Sector

SPDR Fund), XLK (Technology Select Sector SPDR Fund), XLY (Consumer Discretionary

SPDR), and XLV (Health Care SPDR). All data cover the period from Jan 03, 2006 to Dec

31, 2017, with high frequency financial variables measured at intra-day and daily frequencies,

and macroeconomic data measures at daily, weekly, monthly, and quarterly frequencies.

3.4.2 Forecasting results

Table 3.1C lists all forecasting models in the experiments, both for level and directional

prediction. Table 3.2 and Table 3.3 report 1-step-ahead daily relative MSFEs of all fore-

casting models, using a rolling and a recursive window. The random walk model is used as

a benchmark to generate relative MSFEs for all machine learning models. The monthly ag-

gregate relative MSFEs of all forecasting models are tabulated in Table 3.4 (rolling window)

and Table 3.5 (recursive window). We calculate the monthly aggregate return by summing

over all 1-step-ahead daily return predictions. Table 3.6 (rolling window) and Table 3.7

(recursive window) contain the directional predictive accuracy rate based on 1-step-ahead

daily level forecasting results. The directional accuracy rate based on monthly aggregate

level forecasting results are shown in Table 3.8 (rolling window) and Table 3.9. Notably, di-

rection forecasting results in Table 3.6-3.9 are directly derived from level prediction results.
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For example, returns forecasts are classified as upward signals if forecasts are positive, and

are otherwise classified as downward signals. The forecasting period of all tables is from

Jun 2009 - Dec 2017 with a total of 2129 observations. We summarize the main empirical

findings in the following:

First, machine learning models yields significantly smaller MSFEs and higher DPARs

than the benchmark random walk model at monthly frequency. For example, monthly

relative MSFEs results in Table 3.4 and Table 3.5 suggest most machine learning models

outperform benchmark in all scenarios. Similarly, in Table 3.8 and Table 3.9, in terms of

DPARs at a monthly frequency, machine learning models also stand out to be the best

”DPARs” model. It is also noteworthy that some entries in Tables 3.4, 3.5, 3.8 and 3.9 are

starred, especially for random forest and boosting models, indicating these machine learning

models are statistically significantly different from benchmark, based on application of DM

test and PT test discussed in Section 3.2. However, in Tables 3.2, 3.3, 3.6 and 3.7 at daily

frequency, machine learning models show little improvement in terms MSFEs, and they

perform slightly better under the measurement of DPARs, as for each given forecasting

target and predictors, the best DPARs models are always machine learning models.

Second, the random forest model ”wins” over other machine learning and benchmark

models in both level and directional forecasting at monthly frequency. Evidently, almost

all entries in bold 18 are listed under the random walk models in Tables 3.4, 3.5, 3.8 and

3.9. In terms of level forecasting, random forest stands out to be the best MSFEs model

in 19 of 30 cases (Table 3.4) and 14 of 30 cases (Table 3.5). Also in terms of direction

forecasting, random forest dominates other machine learning and benchmark models in 23

of 30 cases (Table 3.8), and 19 over 30 cases (Table 3.9). In particular, the lowest relative

MSFEs for random forest model reaches 0.5503 (Table 3.5), and the highest DPARs achieves

0.8350 (Table 3.8). Note that other machine learning models including boosting and support

vector regressions also prove to be the MSFEs and DPARs best models a few times in the

forecasting ”horse race”.

18The entires with smallest relative MSFEs and largest DPARs in each row are denoted in bold
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Third, deep learning models outperform shallow learning models in both level and direc-

tion predictions. In Tables 3.2-3.5, deep learning models with 2-4 hidden layers have lower

MSFEs than shallow learning models with only one hidden layer across different choices

of predictors and forecasting targets. In Tables 3.6-3.9, DPARs of deep learning models

with 2-4 hidden layers are significantly higher than the DPARs of shallowing learning mod-

els with one hidden layer. Deep learning models are more efficient in capturing the data

pattern and more accurate in forecasting the target variable.

Fourth, hybrid machine learning models, which combine lasso and neural network mod-

els, outperform individual models in both level and direction forecasting. As shown in

Table 3.4 and Table 3.5, at monthly frequency, hybrid models have smaller MSFEs than

individual lasso or neural network models in 23 of 30 cases (Table 3.4), and in 17 of 30

cases (Table 3.5). Moreover, directional prediction results show hybrid models ”win” over

individual lasso or neural network models in 22 of 30 cases (Table 3.8), and 19 of 30 cases

(Table 3.9).

Fifth, all three risk factors, including market correlation indices, volatility risk factors,

and macro risk factors, have significant marginal predictive content. In Figure 3.8, adding

the volatility factor to our forecasting models reduces relative MSFEs by 3.2%-18.3% for

different forecasting targets (SPY, XLF, XLK, XLY, and XLV). Adding the macro factor

reduces relative MSFEs by 0.8%-22.5%, for the different target variables. Finally, adding

the correlation indices leads to relative MSFE reductions of 1.7%-28.8%. These findings

hold when monthly aggregate relative directional predictive accuracy rates (DPARs) are

analyzed, as shown in Figure 3.9. In Figure 3.9, we see that adding the volatility factor

leads to 1.3%-10.3% DPAR increases, while adding the macro factor increases DPARs by

1.3%-11.4%. Finally, adding correlation indices increase DPARs by 1.3%-8.9%, with an

exception of SPY, for which no gains are noted.

Sixth, each sector generally has a different sensitivity to the input information. We

evaluate the contribution of different inputs by comparing MSFEs and DPARs using the

leave-one-out scheme within each type of model. Each round, we leave one of the following
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five categories of predictors out of the model: 1) macro variables 2) technical variables 3)

volatility risk factors 4) macro risk factors and 5) market correlation indices. Details about

the predictors in each category can be found in Table 3.1B. First examining Tables 3.4-3.5,

under the MSFEs best model- random forest, for the SPY, leaving inputs such as macro

variables, factors for uncertainty, market correlation and macroeconomic condition, induces

larger MSFEs than original model having all variables, except technical indicators. This

evidence is also confirmed in terms of DPARs results shown in Tables 3.8-3.9, with only

one exception for correlation index. For XLF and XLY, as shown in Tables 3.4, 3.5, 3.8

and 3.9, leaving any type of inputs yields larger MSFEs and lower DPARs than original

model having all variables. For XLK, removing macro variables or macro condition factor

leads to larger MSFEs (Tables 3.4-3.5), and removing macro variables, technical variables or

macro condition factor yields lower DPARs (Tables 3.8-3.9). Finally, for XLV, leaving macro

variables and technical variables leads to larger MSFEs (Tables 3.4-3.5), and removing any

type of inputs induces lower DPARs (Tables 3.8-3.9).

Figure 3.1-3.3 show the continuous component correlation indices and the jump compo-

nent correlation indices of energy sector (XLE) and S&P500 (SPY), finance sector (XLF)

and SPY, industrial sector (XLI) and SPY, technology sector (XLK) and SPY, health care

sector (XLV) and SPY, and consumer discretionary sector (XLY) and SPY from 2006:01 -

2017:12. The jump correlation index surges during the 2008 and 2011 financial crisis, and

drops when the market volatility is low. However, the energy market correlation index be-

haves differently comparing with the other four sectors. One sensible explanation is energy

market depends more on the balance of supply and demand in energy commodities while less

related to the financial market condition. Interestingly, the correlation index based on the

continuous part behaves oppositely to the correlation index calculated by jump components.

Figure 3.4 depicts the volatility risk factors of the S&P 500 market (MF TRVt ), financial

sector (MFXLFt ), technology sector (MFXLKt ), health care sector (MFXLVt ), and consumer

discretionary sector (MFXLYt ). During the Great Recession, the financial sector volatility
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risk factor positions higher than risk factors of all other sectors, and shows a unique two-

peak shape corresponding to the period of December 2008 and April 2009. The second peak

is extremely contrasting since volatility factors calmed down significantly among all other

sectors during the time. These two peaks can match back to historical events, as the first

peak points to the big market tumble at the beginning of December 2008, with S&P 500

down 9% and financial sector fell the most by 17%, and the second peak relates to a big

bull market rally from March to May 2009 with financial stocks strikingly went up 150%,

explaining the unique second peak in the financial section volatility risk factor.

3.5 Concluding Remarks

In this paper, we extensively study the performance of machine learning individual models,

as well as hybrid machine learning models, in the sector-level equity return forecasting,

including random forest, boosting, support vector machine, penalized regression, logistic

regression, latent discriminant analysis, naive Bayes classifier, k-nearest-neighbor classifier,

neural network, and hybrid models. The impetus of our study is to analyze a number of

new finance and macro-oriented latent measures of uncertainty, and to assess their marginal

predictive content. These measures are constructed using high frequency and high dimen-

sional financial data, as well as mixed frequency macroeconomic indicators. Out-of-sample

forecasting experiments are carried out for the following financial assets: SPY (SPDR S&P

500 ETF Trust), XLF (Financial Select Sector SPDR Fund), XLK (Technology Select Sec-

tor SPDR Fund), XLV (Health Care SPDR), and XLY (Consumer Discretionary SPDR).

We analyze both level and directional predictions at daily and monthly frequencies. Re-

sults from our empirical experiments are promising. Machine learning models, especially

the random forest model, achieve significantly higher directional accuracy rates and lower

mean square forecasting errors than the random walk benchmark. Moreover, various of our

new latent uncertainty measures deliver significant marginal predictive content, which is

particularly useful for forecasting at a monthly frequency. All categories of predictors show

contributions to both level and directional forecasting.
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Table 3.1A: Predictor Variables*

Predictor Name Category Description Xt Frequency

T10Y3M

Macro Variables

term spread: 10-year treasury constant maturity minus 3-month treasuty
constant maturity

Xt Daily

defauspr default spread: the difference between BAA and AAA-rated corporate bond
yields

Xt Daily

b/m ratio of book value to market value of the Dow Jones Industrial Average Xt Monthly

ntis Net Equity Expansion: the ratio of 12-month moving sums of net issues by
NYSE listed stocks divided by the total end-of-year market capitalization of
NYSE stocks.

Xt Monthly

Diff CPIAUCSL Consumer Price Index ln(Xt)− ln(Xt−1) Monthly

D/P Dividend Price ratio of S&P 500 index xt = log(Dt)− log(Pt) Daily

indi 30 90

Technical Indicators

30-day trading volume indicator Xt Daily

indi 90 120 90-day trading volume indicator Xt Daily

indi 30 120 120-day trading volume indicator Xt Daily

MA 30 90 30-day price trend indicator Xt Daily

MA 90 120 90-day price trend indicator Xt Daily

MA 30 120 120-day price trend indicator Xt Daily

XLECorr ma

Correlation Index

continuous part price correlation index between enery sector(XLE) and SPY Xt Daily

XLFcorr ma continuous part price correlation between financial sector(XLF) and SPY Xt Daily

XLICorr ma continuous part price correlation index between industry sector(XLI) and SPY Xt Daily

XLKCorr ma continuous part price correlation index between technology sector(XLK) and SPY Xt Daily

XLVCorr ma continuous part price correlation index between health care sector(XLV) and SPY Xt Daily

XLYCorr ma continuous part price correlation index between consumer discretionary sec-
tor(XLY) and SPY

Xt Daily

XLEJump ma Jump part price correlation index between enery sector(XLE) and SPY Xt Daily

XLFJump ma Jump part price correlation between financial sector(XLF) and SPY Xt Daily

XLIJump ma Jump part price correlation index between industry sector(XLI) and SPY Xt Daily

XLKJump ma Jump part price correlation index between technology sector(XLK) and SPY Xt Daily

XLVJump ma Jump part price correlation index between health care sector(XLV) and SPY Xt Daily

XLYJump ma Jump part price correlation index between consumer discretionary sec-
tor(XLY) and SPY

Xt Daily

MF TRV Volatility Risk Factor Multi-frequency financial volatility risk factor Xt Daily

MFmact Macro Risk Factor Macroeconomic factor Xt Daily

Return lag Lag Term lag one day of prediction target return Xt−1 Daily

*Note: Table 3.1A shows all predictors in the forecasting models for the period 2006:01-2017:12. All predictors are divided into six categories, which is
shown in the second column. Data transformations used in forecasting experiments are given in the fourth column of the table. See Section 3.2 and 3.3 for
further details.

Table 3.1B: Target Forecast Variables*

Target Name Description Xt Frequency

SPY SPDR S&P 500 ETF Trust ln(Xt)− ln(Xt−1) Daily

XLF Financial Sector SPDR Fund ln(Xt)− ln(Xt−1) Daily

XLK Technology Sector SPDR Fund ln(Xt)− ln(Xt−1) Daily

XLY Consumer Discretionary SPDR ln(Xt)− ln(Xt−1) Daily

XLV Health Care SPDR ln(Xt)− ln(Xt−1) Daily

*Notes: This table reports the prediction targets. Data transformations used in forecasting experiments are given in the third column of
the table. See Section 3.3 for further details.
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Table 3.1C: Models Used in Forecasting Experiments*

Method Description

Level Forecasting

Benchmark Random Walk

Linear Linear regression

SVR rbf Support vector regresion with radial basis function kernel

SVR lin Support vector regresion with linear kernel

SVR poly Support vector regresion with polynomial kernel

RanForest Random forest regression

Boosting Gradient boosting regression

Lasso Lasso regression

Ridge Ridge regression

Nnet1 Neural network regression with one hidden layer

Nnet2 Neural network regression with twp hidden layers

Nnet3 Neural network regression with three hidden layers

Nnet4 Neural network regression with four hidden layers

Hybrid1 A hybrid mode of Lasso and Nnet1 with selected variables

Hybrid2 A hybrid mode of Lasso and Nnet2 with selected variables

Hybrid3 A hybrid mode of Lasso and Nnet3 with selected variables

Hybrid4 A hybrid mode of Lasso and Nnet4 with selected variables

Hybrid5 A hybrid mode of Lasso and Nnet1 with All variables

Hybrid6 A hybrid mode of Lasso and Nnet2 with All variables

Hybrid7 A hybrid mode of Lasso and Nnet3 with All variables

Hybrid8 A hybrid mode of Lasso and Nnet4 with All variables

Direction Forecasting

Logit Logistic regression

LDA Linear discriminant analysis

NB Naive bayes classifier

SVC RBF Support vector classification with radial basis function kernel

SVC lin Support vector classification with linear kernel

SVC poly Support vector classification with polynomial kernel

KNN K-nearest neighbors algorithm

Boosting Gradient boosting classification

RanForest Random forest classification

Nnet1 Neural network classification with one hidden layer

Nnet2 Neural network classification with two hidden layers

Nnet3 Neural network classification with three hidden layers

Nnet4 Neural network classification with four hidden layers

*Notes: This table reports the models in forecasting experiments. Complete details for all models are given in Section
3.3.
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Table 3.2: 1-Step-Ahead Daily Relative MSFEs of All Forecasting Models (Rolling
Window)*

Linear SVRrbf SVRlin SVRpoly RanForest boosting lasso ridge NN1 NN2 NN3 NN4 hybrid1 hybrid2 hybrid3 hybrid4 hybrid5 hybrid6 hybrid7 hybrid8

SPY

All Variables 1.2077*** 1.7704*** 1.1303*** 1.2676*** 1.0366*** 1.1504*** 0.9995 1.0541*** 1.5332*** 1.3431*** 1.0253*** 0.9993 1.0037 1.0079 1.0009 0.9987 1.1088*** 1.0129 1.0046 0.9998

Drop Macro Variables 1.1528*** 1.0984*** 1.095*** 1.2324*** 1.0314** 1.2492*** 0.9995 1.0344*** 1.2886*** 1.2190*** 1.0025 1.0007* 1.0124** 1.0089* 1.0061 0.9994 1.1604*** 1.0973*** 0.9989 1.0000

Drop technical Variables 1.1869*** 1.0644*** 1.1026*** 1.0516*** 1.0856*** 1.5325*** 0.9995 1.0326*** 1.3756*** 1.1605*** 1.0085* 1.8679*** 1.0029 1.0072 1.0054 1.0018 1.0516*** 1.0213** 1.0016 1.2696***

Drop Volatility factor 1.1987*** 1.0897*** 1.1193*** 1.1592*** 1.0200** 1.1308*** 0.9994 1.0515*** 4.2393*** 1.279*** 1.0138*** 1.3581*** 1.0132** 1.0060* 1.0069** 1.0068 1.9241*** 1.0394*** 1.0039 1.0518**

Drop Macro Factor 1.1991*** 1.7923*** 1.1525*** 1.1309*** 1.0183** 1.4545*** 1.0002 1.0481*** 1.6493*** 1.3019*** 1.0141*** 0.9998 1.0059** 1.0168*** 0.9972 1.0007* 1.1324*** 1.0224*** 1.0004 0.9994

Drop Correlation index 1.1680*** 1.1115*** 1.0959*** 1.06*** 1.0223** 1.2094*** 0.9995 1.0529*** 1.6683*** 1.1513*** 1.0115** 0.9998 1.0141*** 1.0070* 1.0024 1.0003 1.2129*** 1.0204** 0.9999 0.9987

XLF

All Variables 1.2234*** 1.0897*** 1.0849*** 1.0626*** 1.0525*** 1.1453*** 1.0017 1.0781*** 1.1496*** 1.2958*** 1.0463*** 1.1017*** 1.0227*** 1.0275*** 1.0062** 1.0084** 1.0524*** 1.1137*** 1.0214** 1.0226***

Drop Macro Variables 1.0932*** 1.0779*** 1.0661*** 1.1795*** 1.028*** 1.1493*** 1.0017 1.0607*** 1.0734*** 1.0277*** 1.0239*** 1.1391*** 1.0141*** 1.0070** 1.0042* 1.0200*** 1.0344*** 1.0047 1.0097** 1.0423***

Drop technical Variables 1.1324*** 1.0338*** 1.0367*** 1.0226*** 1.0904*** 1.1737*** 1.0005 1.0312*** 1.0756*** 1.0713*** 1.0023 1.0604*** 1.0077* 1.0042 1.0079*** 1.0070** 1.0366*** 1.0249** 1.0081** 1.0094**

Drop Volatility factor 1.2243*** 1.2762*** 1.0803*** 1.2180*** 1.0309*** 1.1586*** 1.0003 1.0782*** 1.0979*** 1.0557*** 0.9996 1.1466*** 1.0157*** 1.0100** 1.0010 1.0183*** 1.059*** 1.0212*** 1.0003 1.0211**

Drop Macro Factor 1.2139*** 1.0819*** 1.0760*** 1.0596*** 1.0313*** 1.1528*** 1.0028** 1.0822*** 1.1366*** 1.0839*** 1.0435*** 2.7153** 1.0208*** 1.0184*** 1.0005 1.0182*** 1.0301** 1.0330*** 1.0295*** 1.1065***

Drop Correlation index 1.2058*** 1.0876*** 1.0800*** 1.0631*** 1.0246*** 1.1374*** 1.0017 1.0763*** 1.0698*** 1.0231** 1.1251*** 1.0272*** 1.0106** 1.0055 1.0209*** 0.9978 1.0325*** 1.0106* 1.0187*** 1.0193***

XLK

All Variables 1.1195*** 1.0637*** 1.0737*** 1.039*** 1.0196*** 1.2742*** 1.0002 1.0608*** 1.2355*** 1.207*** 1.0064** 0.9995 1.0018 1.0006 0.9998 1.0003 1.0265*** 1.0750*** 1.0012 0.9998

Drop Macro Variables 1.0652*** 1.0489*** 1.0421*** 1.0294*** 1.024*** 1.1828*** 1.0002 1.0413*** 1.0639*** 1.0965*** 1.0060 1.0000 1.0064 0.9999 0.9994 1.0003 1.0100* 1.0114** 1.0013 1.0004

Drop technical Variables 1.0651*** 1.0257*** 1.0397*** 1.0161** 1.0245*** 1.1583*** 1.0002 1.0184*** 1.0575*** 1.0988*** 1.0042 1.001 0.9995 1.0066** 1.0005 1.0002 1.0111** 1.0356*** 1.0054** 0.9999

Drop Volatility factor 1.1177*** 1.0440*** 1.0516*** 1.0314*** 1.0213*** 1.2149*** 1.0001 1.0567*** 1.1596*** 1.0768*** 1.0006 1.0015*** 1.0110* 1.0018 1.0017 1.0001 1.0219*** 1.0174*** 1.0047** 1.0001

Drop Macro Factor 1.1126*** 1.0573*** 1.0731*** 1.0392*** 1.0175*** 1.4152*** 1.0000 1.0581*** 1.2087*** 1.2515*** 1.0023 1.1242*** 1.0008 1.0012 0.9995 1.0022 1.0188*** 1.0434*** 1.0027** 1.0023

Drop Correlation index 1.1138*** 1.0621*** 1.0693*** 1.1387*** 1.0529*** 1.3824*** 1.0002 1.0608*** 1.1406*** 1.1016*** 1.0357*** 1.1165*** 1.0084** 1.0027 0.9989 1.0292*** 1.0189*** 1.0192*** 0.9989 1.0191***

XLY

All Variables 1.1453*** 1.0769*** 1.1102*** 1.0737*** 1.0465*** 1.1069*** 1.0010 1.0724*** 1.2696*** 1.1585*** 1.0587*** 0.9994 1.0170*** 1.0154*** 1.0022 1.0011* 1.1153*** 1.0253*** 1.0078* 1.0011

Drop Macro Variables 1.0537*** 1.0663*** 1.0478*** 1.0401*** 1.0735*** 1.1008*** 1.0010 1.0433*** 1.0843*** 1.0771*** 1.0123*** 1.0002 1.0100** 1.0119*** 1.0035* 1.0011* 1.0138** 1.0139*** 1.0002 1.0012*

Drop technical Variables 1.0799*** 1.0351*** 1.0610*** 1.0307*** 1.0192*** 1.0994*** 1.0005 1.0246*** 1.2612*** 1.0887*** 1.1074*** 1.0002 1.0096*** 1.0006 1.0140** 1.0004 1.0690*** 1.0310*** 1.0102** 1.0003

Drop Volatility factor 1.1477*** 1.0642*** 1.1014*** 1.0615*** 1.0253*** 1.0991*** 1.0006 1.0714*** 1.8243*** 1.1428*** 1.0062** 1.2808*** 1.0108* 1.0079*** 0.9998 1.0518*** 1.2371*** 1.0157** 1.0016 1.0581***

Drop Macro Factor 1.1374*** 1.0622*** 1.1144*** 1.0622*** 1.0421*** 1.0883*** 1.0006 1.0719*** 1.2166*** 1.1413*** 1.1840*** 1.0002 1.0112*** 1.0032 1.0010 1.0008 1.0200*** 1.0201*** 1.0456*** 1.0013**

Drop Correlation index 1.1430*** 1.0752*** 1.1019*** 1.0740*** 1.0294*** 1.1325*** 1.0010 1.0725*** 1.1388*** 1.0933*** 1.0139*** 1.2876*** 1.0065* 1.0105*** 1.0035* 1.0100*** 1.0317*** 1.0179*** 1.0054* 1.0477***

XLV

All Variables 1.0904*** 1.0499*** 1.0596*** 1.1656*** 1.0251*** 1.1955*** 1.0000 1.0426*** 2.5925*** 1.4951*** 1.0005 1.0004 1.0012* 1.0011 1.0001 1.0000 0.9999 1.0016 1.0001 0.9999*

Drop Macro Variables 1.0622*** 1.0459*** 1.0333*** 1.0269*** 1.0325*** 1.1757*** 1.0000 1.038*** 1.1325*** 1.0622*** 1.0155*** 1.0003 1.0012* 1.0011 1.0001 1.0000 0.9999 1.0016 1.0001 0.9999*

Drop technical Variables 1.0584*** 1.0238*** 1.0176** 1.0154** 1.0301*** 1.1875*** 1.0000 1.0154*** 1.2394*** 1.0946*** 1.0091** 1.0653*** 1.0012* 1.0011 1.0001 1.0000 0.9999 1.0016 1.0001 0.9999*

Drop Volatility factor 1.0847*** 1.0493*** 1.036*** 1.0339*** 1.0555*** 1.2246*** 1.0000 1.0371*** 1.2447*** 1.121*** 1.0079*** 0.9996 1.0012* 1.0011 1.0001 1.0000 0.9999 1.0016 1.0001 0.9999*

Drop Macro Factor 1.0936*** 1.0475*** 1.0502*** 1.022*** 1.0355*** 1.2327*** 1.0000* 1.0397*** 1.2465*** 2.4683*** 1.0082*** 1.0007* 1.0012* 1.0011 1.0001 1.0000 0.9999 1.0016 1.0001 0.9999*

Drop Correlation index 1.0762*** 1.2771*** 1.0365*** 1.1761*** 1.0323*** 1.2265*** 1.0000 1.0415*** 1.1636*** 1.0452*** 1.0191*** 1.0465*** 1.0012* 1.0011 1.0001 1.0000 0.9999 1.0016 1.0001 0.9999*

*Notes: See notes to Table 3.1A. Table 3.2 reports the 1-step-ahead relative mean square forecasting error (MSFE) of market sector ETFs with rolling window size 500. Forecasts are daily, for the period 2009:6-2017:12. Tabulated relative MSFEs are

calculated such that numerical values less than unity indicates the alternative model has lower point MSFE than the random walk benchmark model. Entries in bold denote models with lowest relative MSFE for a given forecasting target and predictors.

Starred entries denote rejection of the null of equal predictive accuracy, based on the application of Diebold and Mariano (1995a) (DM) test. All machine learning models are tested against the random walk benchmark, based on MSFE loss. Significance

levels for the test are reported as ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, and ∗p < 0.1, where p is the p−value corresponding to DM test statistics.
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Table 3.3: 1-Step-Ahead Daily Relative MSFEs of All Forecasting Models (Recursive
Window)*

Linear SVRrbf SVRlin SVRpoly RanForest boosting lasso ridge NN1 NN2 NN3 NN4 hybrid1 hybrid2 hybrid3 hybrid4 hybrid5 hybrid6 hybrid7 hybrid8

SPY

All Variables 1.1616*** 1.7658*** 1.0666*** 1.221*** 1.0094* 1.0455*** 0.9991 1.0404*** 1.3753*** 1.2400*** 1.0219*** 1.0003 1.0016 1.0076** 1.0067* 0.9989 1.2382*** 1.0969*** 1.0181*** 0.9993

Drop Macro Variables 1.0805*** 1.0588*** 1.0463*** 1.1630*** 1.0064* 1.0656*** 0.9991 1.019*** 1.5325*** 1.4164*** 1.036*** 1.0007 1.1077*** 1.0455*** 1.0081* 0.9986 1.2673*** 1.2595*** 1.0182*** 1.0007

Drop technical Variables 1.1531*** 1.0438*** 1.0610*** 1.0283*** 1.0658*** 1.4103*** 0.9991 1.0311*** 1.2795*** 1.1489*** 1.0183*** 1.8884*** 1.0031 1.0064 1.0085** 1.0099*** 1.1486*** 1.0604*** 1.0174*** 1.3809***

Drop Volatility factor 1.1592*** 1.0537*** 1.0592*** 1.0923*** 1.0026 1.0471*** 0.9991 1.0337*** 3.4572*** 1.3582*** 1.0005 1.1905*** 1.0774*** 1.0413*** 1.0019 1.0404*** 2.7528*** 1.2012*** 1.0167*** 1.1285***

Drop Macro Factor 1.1534*** 1.7902*** 1.0719*** 1.0881*** 1.0017 1.3266*** 1.0003*** 1.0338*** 2.1067*** 1.2658*** 1.0113** 1.0001 1.0030 1.0062** 0.9990 1.0001 1.1328*** 1.0271*** 0.9994 0.9999

Drop Correlation index 1.1270*** 1.0726*** 1.0435*** 1.0232*** 1.0056* 1.0661*** 0.9991 1.0358*** 1.5577*** 1.1924*** 1.0251*** 0.9990 1.1031*** 1.0319*** 1.0042 0.9984 1.4183*** 1.1044*** 1.007* 0.9988

XLF

All Variables 1.1840*** 1.0586*** 1.0534*** 1.037*** 1.0538*** 1.0630*** 1.0018* 1.0689*** 1.1587*** 1.3453*** 1.1048*** 1.0638*** 1.0108** 1.0253*** 1.0045** 1.0176*** 1.0348*** 1.1682*** 1.0190** 1.0188***

Drop Macro Variables 1.0491*** 1.0493*** 1.0392*** 1.1066*** 1.0086*** 1.0569*** 1.0016 1.0429*** 1.0961*** 1.0614*** 1.0389*** 1.0918*** 1.0023 1.0170*** 1.0027 1.0382*** 1.0487*** 1.0059 1.0103** 1.0124

Drop technical Variables 1.1118*** 1.0261*** 1.0252*** 1.0182*** 1.0813*** 1.0998*** 1.0009 1.0287*** 1.1098*** 1.0513*** 1.0189*** 1.0137*** 1.0102** 1.0094** 1.0048** 1.0074* 1.0600*** 1.0547*** 1.0035 1.0043

Drop Volatility factor 1.1809*** 1.2085*** 1.0517*** 1.2064*** 1.0155*** 1.0746*** 1.0005 1.0665*** 1.1476*** 1.1086*** 1.0027 1.0648*** 1.0243*** 1.0049 0.9986 1.0082 1.0671*** 1.0170** 1.0029 1.0493***

Drop Macro Factor 1.1778*** 1.0578*** 1.0486*** 1.0392*** 1.0171*** 1.0830*** 1.0025*** 1.0666*** 1.1085*** 1.1244*** 1.0591*** 1.3106*** 1.0162*** 1.0107** 1.0044** 1.0113*** 1.0650*** 1.0615*** 1.0201*** 1.1819***

Drop Correlation index 1.1687*** 1.0582*** 1.0462*** 1.0373*** 1.0035 1.0757*** 1.0018* 1.0673*** 1.0897*** 1.0585*** 1.0489** 1.0038 1.0128*** 1.0126*** 1.0239*** 1.0122*** 1.0373*** 1.0250*** 1.0170*** 1.0105***

XLK

All Variables 1.0696*** 1.0339*** 1.0374*** 1.0165*** 1.0034 1.1304*** 1.0001** 1.0247*** 1.1609*** 1.4002*** 1.0050 1.0009* 1.0015 1.0019 1.0002 1.0003** 1.0195*** 1.0514*** 1.0013 1.0004*

Drop Macro Variables 1.0243*** 1.0313*** 1.0197*** 1.0168*** 1.0078*** 1.0500** 1.0001** 1.0162*** 1.0682*** 1.1659*** 1.0145*** 1.0000 1.0027 1.0023 1.0012 1.0002 1.0119*** 1.0057 1.0020 0.9999

Drop technical Variables 1.0486*** 1.0167** 1.0152** 1.0072 1.0025 1.0658*** 1.0001** 1.0121*** 1.0997*** 1.0685*** 1.0099*** 1.0312*** 1.0031** 1.0021 1.0013 1.0004 1.0147*** 1.0130** 1.0026* 1.0001

Drop Volatility factor 1.0682*** 1.0306*** 1.0229*** 1.0131** 1.0072*** 1.092*** 1.0000 1.0237*** 1.1590*** 1.1779*** 1.0169*** 1.0014*** 1.0022 1.0024** 0.9992 1.0003 1.0304*** 1.0165*** 1.0000 0.9999

Drop Macro Factor 1.0677*** 1.0325*** 1.0354*** 1.0144*** 1.0033 1.2668*** 1.0001*** 1.0234*** 1.1008*** 1.1787*** 1.0133*** 1.087*** 1.0012*** 1.0005*** 0.9998 1.0009** 1.0055* 1.0170* 0.9994 1.0095

Drop Correlation index 1.0689*** 1.0370*** 1.0318*** 1.0834*** 1.0576*** 1.1796*** 1.0001** 1.0250*** 1.1549*** 1.0475*** 1.0445*** 1.0955*** 1.0034** 1.0039** 1.0011 1.0118*** 1.0126** 1.0119** 1.0051* 1.0149**

XLY

All Variables 1.0860*** 1.0493*** 1.0604*** 1.0311*** 1.0443*** 1.0381*** 1.0005 1.0360*** 1.4131*** 1.1167*** 1.1025*** 0.9993 1.0144*** 1.0046 1.0019 1.0004 1.1698*** 1.0172*** 1.0154*** 1.0009*

Drop Macro Variables 1.0284*** 1.0346*** 1.0246** 1.0177** 1.0559*** 1.0407*** 1.0004 1.0216*** 1.1148*** 1.1730*** 1.0228*** 1.0005 1.0065** 0.9997 0.9984 1.0003 1.0132** 1.0156** 1.0020 1.0004

Drop technical Variables 1.0582*** 1.0193*** 1.0312*** 1.0136** 1.0032 1.0400*** 1.0004 1.0164*** 1.2477*** 1.1056*** 1.0720*** 1.0018*** 1.0087*** 0.9996 1.0027 1.0003 1.0981*** 1.0313*** 1.0161** 0.9999

Drop Volatility factor 1.0838*** 1.0374*** 1.0619*** 1.0260*** 1.0065 1.0347*** 0.9999 1.0346*** 1.5831*** 1.1435*** 1.0076*** 1.1433*** 1.0053 1.0025 1.0009 1.0350*** 1.2985*** 1.0511*** 1.0036* 1.0396***

Drop Macro Factor 1.0836*** 1.0409*** 1.0579*** 1.0271*** 1.0323*** 1.0451*** 1.0005* 1.0347*** 1.1708*** 1.1666*** 1.4072*** 1.0000 1.0017 1.0054** 1.0004 1.0006* 1.0248*** 1.0046 1.0203*** 1.0005

Drop Correlation index 1.0919*** 1.0468*** 1.0511*** 1.0318*** 1.0104** 1.0568*** 1.0005 1.0416*** 1.1296*** 1.1119*** 1.0087** 1.0701*** 1.0041* 1.0019 1.0007 1.0028 1.0332*** 1.0134*** 1.0084*** 1.0429***

XLV

All Variables 1.0513*** 1.0231*** 1.0237*** 1.0894*** 1.0058** 1.0761*** 0.9997 1.0191*** 2.0021*** 1.5009*** 1.0089** 0.9999 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997

Drop Macro Variables 1.0260*** 1.0219*** 1.0058* 1.0043 1.0114*** 1.1138*** 0.9997 1.0149*** 1.1256*** 1.1804*** 1.0111** 1.0010 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997

Drop technical Variables 1.0440*** 1.0060 1.0107* 1.0050 1.0059* 1.0794*** 0.9997 1.0090** 1.2063*** 1.1386*** 1.0098** 1.0289*** 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997

Drop Volatility factor 1.0489*** 1.0153** 1.0192*** 1.0131** 1.0520*** 1.0786*** 0.9997 1.0177*** 1.1400*** 1.1987*** 1.0056* 1.0005 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997

Drop Macro Factor 1.0531*** 1.0191*** 1.0178*** 1.0078 1.0167*** 1.0814*** 0.9997 1.0180*** 1.1165*** 1.8097*** 1.0048 0.9998 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997

Drop Correlation index 1.0453*** 1.1823*** 1.0171** 1.0969*** 1.0074* 1.092*** 0.9997 1.0187*** 1.1471*** 1.0324*** 1.0140*** 1.0166*** 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997

*Notes: See notes in table 3.2. Recursive window size 500.
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Table 3.4: Monthly Aggregate Relative MSFEs of All Forecasting Models (Rolling
Window)*

Linear SVRrbf SVRlin SVRpoly RanForest boosting lasso ridge NN1 NN2 NN3 NN4 hybrid1 hybrid2 hybrid3 hybrid4 hybrid5 hybrid6 hybrid7 hybrid8

SPY

All Variables 1.7483*** 0.8873*** 1.1617*** 0.9068*** 0.7677*** 0.9405*** 0.9748* 1.2326*** 1.3868*** 1.2175*** 1.0273** 1.0027 0.9634 0.9687* 0.9831 0.9967 1.1062** 1.006 1.0035 0.9868

Drop Macro Variables 1.2639*** 0.9889*** 0.8629*** 0.8879*** 0.8048*** 0.5709*** 0.9748* 0.9726*** 0.9959*** 1.0992*** 1.0007 1.0009 0.9801 0.969 1.0213** 0.9831 1.0051*** 1.0923 1.0119 0.9849

Drop technical Variables 1.8221*** 1.0555*** 1.2425*** 1.0566*** 0.6262*** 0.7587*** 0.9748* 1.1983*** 1.1527*** 1.1437*** 1.0475 1.0038*** 0.9719 1.0121 0.9798 0.9839 1.0158** 0.9678 0.9924 1.1093**

Drop Volatility factor 1.6141*** 0.8772*** 1.107*** 0.887*** 0.7921*** 0.9105*** 0.9638** 1.243*** 2.6349*** 1.2478*** 1.0216** 0.9687*** 0.9569** 0.9436 1.0256 0.9671 1.4345*** 1.1083* 0.971 0.946

Drop Macro Factor 1.8599*** 0.8122*** 1.2382*** 0.8328*** 0.8202*** 0.7496*** 1.0031** 1.1774** 1.4029*** 1.1068*** 1.0262 1.0026 1.0061*** 1.0353*** 1.0025 1.0032*** 0.9373*** 0.9991** 0.9969* 1.0038

Drop Correlation index 2.49*** 0.9818*** 1.3913*** 1.0922*** 0.8292* 0.9451*** 0.9748* 1.3533*** 0.996*** 1.1156*** 0.9946** 1.0056 0.9942*** 0.9271 0.9951 0.994 0.8969*** 0.9989* 0.9883 0.9798

XLF

All Variables 3.099*** 1.0838*** 1.2804*** 1.2063*** 0.6448*** 0.8643*** 1.0061 1.6261*** 1.2243*** 1.1551*** 1.0017 1.0397** 1.0986** 1.0483 1.0178* 1.0291 1.1412*** 1.1386* 1.0066 1.0179*

Drop Macro Variables 1.4752*** 1.1046*** 1.1567*** 0.8887*** 0.8056* 0.9705*** 1.0061 1.3305*** 1.0023*** 0.994 1.0346 1.0608*** 1.0593* 1.0362 1.0157 1.0748** 1.0516** 1.0073* 0.9984 1.0565**

Drop technical Variables 2.2144*** 0.9684*** 0.9947** 0.9555*** 0.6043*** 1.0068*** 0.9776 1.2519*** 0.8767*** 1.0276*** 1.0008** 1.0098*** 0.9876 0.9715 0.9909 0.9724 0.9904 0.9582 0.9904 0.9809

Drop Volatility factor 3.1517*** 0.9783*** 1.2784*** 0.9667*** 0.7103*** 0.9502*** 0.9790 1.6939*** 1.1423*** 1.0099*** 1.0039 0.9828*** 1.0868* 0.998 0.9864 0.9849 1.153*** 0.9668 0.9855 0.9998

Drop Macro Factor 3.1485*** 0.9962*** 1.1717*** 1.1858*** 0.6957** 1.0179*** 1.0377** 1.7524*** 0.964*** 1.0581** 1.014** 1.7497*** 1.208** 1.0697* 1.0347 1.2017*** 1.112 1.0969 1.0252* 1.3216***

Drop Correlation index 3.2623*** 1.0604*** 1.2862*** 1.2242*** 0.7691*** 0.9230*** 1.0061 1.6155*** 1.0802*** 0.9242 1.0045** 1.0002*** 1.0539 1.0408* 1.0637 1.0263 1.081* 1.0503 1.0011** 1.0024*

XLK

All Variables 1.7044*** 0.8886*** 1.1048*** 1.0398*** 0.8423* 0.7639*** 0.9876 1.3904*** 1.1089*** 0.9331*** 0.9848 0.9982*** 0.9888 0.9924 0.9958 0.9895 1.0169*** 1.0592** 0.9884 0.9879

Drop Macro Variables 1.3333*** 1.0526*** 1.1428*** 1.0932*** 0.9527*** 0.7625*** 0.9876 1.2627*** 1.1250** 1.0593*** 1.013*** 0.9998 1.0101** 0.9924 1.0018* 0.9925 1.0034** 0.9802 0.9960 0.9884

Drop technical Variables 1.4983*** 0.8304* 1.0297*** 0.9009 0.8569*** 0.7406*** 0.9876 1.0661*** 0.9699** 1.0506** 1.0107 1.0004 0.991 0.9879 0.9926 0.9914 1.0336** 0.9594 0.9949 0.9888

Drop Volatility factor 1.7496*** 0.982*** 1.0792*** 1.0228*** 0.8017*** 0.7876*** 0.9856 1.4733*** 1.2542*** 1.0244** 0.9946 0.9998 0.9837 0.9621 0.986 0.9919 1.0268*** 0.9702* 1.006** 0.989

Drop Macro Factor 1.726*** 0.9079*** 1.1431*** 1.0093*** 0.8521* 0.7989*** 1.0011 1.4353*** 1.0806*** 1.1249*** 1.0051 0.9868** 1.0016 1.0012 0.9965* 1.0081 0.9406* 0.9953*** 1.0022** 0.9906

Drop Correlation index 1.7010*** 0.9152*** 1.2148*** 0.9635*** 0.6808*** 0.8260*** 0.9876 1.4094*** 1.0847*** 1.0001*** 1.0045** 1.0239*** 0.9813 0.9854 0.9857 0.9690 1.0026 0.9793* 0.9772* 1.0147**

XLY

All Variables 1.9525*** 1.2327*** 1.7358*** 1.615** 0.6864*** 0.9469** 1.0039** 1.7071*** 1.1996*** 0.992*** 1.0255*** 1.0007 1.0687* 1.0094** 1.0011 0.9992 0.9918*** 1.0293** 0.9817 0.9973

Drop Macro Variables 1.2435*** 1.0929** 1.3126** 1.2753** 0.801*** 0.8964*** 1.0039** 1.3240** 1.0950*** 1.097** 1.0039* 1.0009 1.0005 0.9798 1.0096 1.0029 1.0126 0.9716 1.0019 0.9972**

Drop technical Variables 1.6683*** 1.0035*** 1.3086*** 1.1205*** 0.8449 0.9455*** 0.9932* 1.2081* 1.2139*** 0.9679 1.015*** 0.9998 0.9873 0.9916 1.0011** 0.9933 0.9897*** 0.9406** 0.9889 0.9947

Drop Volatility factor 2.1121*** 1.323*** 1.6931*** 1.5638** 0.8077 0.9571* 0.9968 1.8705*** 1.7701*** 1.1164*** 1.0002 1.1238*** 1.0383* 0.9849 0.9884 1.0456 1.1911*** 0.9968* 0.9942 1.0756**

Drop Macro Factor 2.063*** 1.2558*** 1.8644*** 1.5697*** 0.7739** 0.9409*** 1.0091* 1.7579*** 1.4218*** 0.9893*** 1.0016*** 1.0018 1.0572 1.0295 1.0113 1.0053 1.0099 1.0521* 0.9775 1.0076

Drop Correlation index 2.0376*** 1.2363*** 1.6822*** 1.5612** 0.7667* 0.9291*** 1.0039** 1.6987*** 1.076*** 1.0547*** 1.0017 1.1186*** 1.0254 0.9952* 0.9899 1.0743* 1.0587*** 0.9467* 0.9868 0.9763***

XLV

All Variables 1.3759*** 0.8621*** 1.1091*** 1.0236*** 0.8885*** 0.8131*** 1.0000* 1.1223*** 2.3288*** 1.4233*** 1.0000 0.9972 1.0017** 0.9998** 0.9999 1.0001 0.997 1.0176** 0.9999** 0.9998

Drop Macro Variables 1.2741*** 0.91*** 1.0541*** 1.0096*** 0.8939*** 0.6793*** 1.0000* 1.1034*** 1.0395*** 1.0102*** 1.0114 1.0026 1.0017** 0.9998** 0.9999 1.0001 0.997 1.0176** 0.9999** 0.9998

Drop technical Variables 1.3406*** 0.9177* 1.011** 0.9671** 0.8529*** 0.7487*** 1.0000* 1.0365** 1.1495*** 1.0012** 0.9864* 1.0092 1.0017** 0.9998** 0.9999 1.0001 0.9970 1.0176** 0.9999** 0.9998

Drop Volatility factor 1.3607*** 0.9791*** 0.9702** 1.0172** 0.7275*** 0.8929*** 1.0000* 1.1463*** 1.1242*** 1.1446*** 0.9932 0.9995 1.0017** 0.9998** 0.9999 1.0001 0.9970 1.0176** 0.9999** 0.9998

Drop Macro Factor 1.4677*** 0.8734*** 1.1071*** 0.8639 0.7806** 0.8591*** 1.0000* 1.1205*** 1.1533*** 1.1805*** 1.0100* 1.006** 1.0017** 0.9998** 0.9999 1.0001 0.9970 1.0176** 0.9999** 0.9998

Drop Correlation index 1.3237*** 0.8424*** 0.9701*** 1.0138*** 0.8536* 0.7947*** 1.0000* 1.111*** 1.0608*** 1.0251*** 1.0011** 1.0068 1.0017** 0.9998** 0.9999 1.0001 0.9970 1.0176** 0.9999** 0.9998

*Notes: See notes in Table 3.2. We calcualte the one-month-ahead forecasting results by aggregating daily forecasts during each month, i.e., summing all daily forecasting results within the same month to generate monthly
forecasts. Table 3.4 reports aggregate monthly relative MSFEs of all forecasting models, comparing with the random walk benchmark.
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Table 3.5: Monthly Aggregate Relative MSFEs of All Forecasting Models (Recursive
Window)*

Linear SVRrbf SVRlin SVRpoly RanForest boosting lasso ridge NN1 NN2 NN3 NN4 hybrid1 hybrid2 hybrid3 hybrid4 hybrid5 hybrid6 hybrid7 hybrid8

SPY

All Variables 1.9681*** 0.8833*** 0.9901*** 1.0111*** 0.8542 0.8708 0.9709 1.3027*** 1.2143*** 1.1665*** 1.001* 1.0025* 0.9742 1.0006 0.9917 0.9815 1.2746*** 0.9868*** 1.0184* 0.9769

Drop Macro Variables 1.272*** 0.9329*** 0.9279*** 0.8272*** 0.8977 0.7821** 0.9709 1.0239** 1.2364*** 1.1399*** 0.9701 0.9986 1.1602*** 0.9988** 0.992 0.9877 1.1481*** 1.0659*** 1.0204** 0.9876

Drop technical Variables 2.0196*** 1.0371*** 0.9898*** 1.0002** 0.6678*** 1.1757*** 0.9709 1.3048*** 0.979*** 1.0239*** 0.9999 1.4895*** 0.9643 1.0265 1.0065 0.9651 1.0006*** 0.9985*** 0.9485 1.0378***

Drop Volatility factor 2.1402*** 0.8054*** 1.0078*** 0.8201*** 0.9139 0.9217* 0.9626 1.2509*** 2.4901*** 1.2854*** 1.0039** 1.0283* 1.1142*** 0.9454 0.9808 0.9728 2.2817*** 0.9384*** 0.9836*** 0.9907

Drop Macro Factor 1.9558*** 0.7929*** 1.0047*** 0.8779*** 0.9228 0.7932*** 1.0031** 1.221** 1.7081*** 1.2742*** 0.9989*** 1.0029 1.0286** 1.0016 1.0007 1.0041*** 0.9654** 1.0523** 0.9897 1.0035

Drop Correlation index 2.5*** 0.8749*** 1.0022** 0.9772** 0.9392* 1.0503 0.9709 1.4531*** 1.5625*** 1.0748*** 1.0135 0.9967 1.0652*** 1.0759** 0.9926 0.989 1.0905*** 1.0423*** 0.9595 0.981

XLF

All Variables 3.4172*** 1.1973*** 1.2687*** 1.2315*** 0.6482*** 0.9754 1.0101 1.9073*** 1.328*** 1.159*** 1.098*** 1.018 1.1792** 1.1414*** 1.0191 1.0715*** 1.1125 1.0738*** 1.032* 1.0319

Drop Macro Variables 1.6088*** 1.067*** 1.1449*** 1.091*** 0.9687 1.0436*** 1.0154 1.5658*** 1.1494*** 1.0893*** 1.082*** 0.9522*** 1.0553 0.9977 1.0125 1.133* 1.0966*** 1.0357** 1.0669 1.0106**

Drop technical Variables 2.1866*** 1.0298** 1.0206** 1.0268*** 0.5503*** 0.9247** 0.9894 1.297*** 0.9492** 1.0018** 1.0233 0.9953 1.0091 0.987 0.9995 0.9855* 0.9817*** 0.9627** 0.9984 0.9923

Drop Volatility factor 3.3743*** 0.978*** 1.3112*** 1.088*** 0.7939* 0.8742** 0.9837 1.8959*** 1.2773*** 1.0765*** 0.9932 0.9896** 1.0616** 1.0067 0.985* 1.0005* 1.1601*** 1.064** 0.9912 1.0119

Drop Macro Factor 3.3947*** 1.1572*** 1.3094*** 1.2388*** 0.8363* 1.0022** 1.0303** 1.9457*** 1.3884*** 1.0384*** 1.1048** 1.6947*** 1.2049*** 1.0367 1.0452** 1.1877** 1.2393*** 1.2078*** 1.0289 1.3555***

Drop Correlation index 3.4324*** 1.1755*** 1.2549*** 1.2602*** 0.9109 0.8559*** 1.0101 1.9036*** 1.1143*** 1.0365*** 1.0335 1.0045 1.0371 1.0218 1.0644** 1.0084* 1.0671*** 0.9779 1.0396 1.0156

XLK

All Variables 1.5220*** 0.8708** 1.0934*** 0.9974 0.948 0.9317*** 0.9992 1.2491*** 1.1656*** 1.1179*** 1.0223 1.0013 0.9893 0.9976 0.9981 0.9999 0.9279* 0.9955 0.9938 0.9993*

Drop Macro Variables 1.2517** 0.9799*** 0.9743** 1.0062** 0.9818** 0.9027*** 0.9992 1.22** 1.1047** 1.0603*** 0.9656 1.0005* 1.0032* 0.9942 1.002 0.9995 0.965 0.9955 0.9932 1.0002**

Drop technical Variables 1.2645*** 0.8654** 0.9821 0.8782* 0.9343 0.8222** 0.9992 1.0819*** 1.0475*** 1.0613 0.9955 0.9958 0.9948 1.0033 0.9995 0.9988 1.0295** 0.9884** 1.0082 1.0013

Drop Volatility factor 1.5860*** 0.9533*** 1.0267*** 0.9842** 0.9536 0.9382*** 0.9980 1.2934*** 1.2783*** 1.2113*** 1.0230*** 1.0005** 1.0171* 0.9963 0.9988 0.9982 1.0246*** 0.9861 0.9964 0.9993

Drop Macro Factor 1.7095*** 0.9769*** 1.0286*** 0.9313* 0.9523 0.7848*** 1.001*** 1.3137*** 1.1496*** 1.1982*** 1.0255** 1.0066 1.0084*** 1.0020 1.0019 1.0028 1.0180 1.0287 1.0045 1.0048

Drop Correlation index 1.6708*** 0.898** 1.0887 0.8555*** 0.6804*** 0.8291*** 0.9992 1.2568*** 1.1443*** 0.9979 1.0614* 1.0489*** 0.999 0.9969 1.0052** 0.9999 1.0279 0.9924 1.001 1.016*

XLY

All Variables 1.8408*** 1.247** 1.4264*** 1.2182* 0.7092*** 1.0117 0.996 1.4409*** 1.3534*** 0.9925*** 1.0879*** 1.0005 1.0358 1.0055 1.0095* 0.9972 1.3947*** 0.9633 0.9973 1.0014**

Drop Macro Variables 1.4291* 1.1673*** 1.3200 1.2383 0.8173*** 0.9661 0.9971 1.4108* 1.2135*** 1.0906*** 1.0117 1.0017 1.0008 0.9978 0.9927 0.9974 0.9833 0.9909** 1.0214 0.9957

Drop technical Variables 1.5498** 0.9578* 1.0905 0.9874 0.9136 0.9025** 0.9958 1.1403** 1.0781*** 1.0088 1.0577*** 1.0019* 1.0134 1.0018 0.9843* 0.9937 1.029*** 0.9831** 0.9915** 1.0009

Drop Volatility factor 1.8591*** 1.1862 1.4617*** 1.2741* 0.8657 0.993 0.9886 1.5085*** 1.1874*** 1.0351*** 0.9740 1.1356*** 1.0255 0.9942 0.9883 1.0374 1.3065*** 1.1439*** 1.0038*** 0.9725**

Drop Macro Factor 1.9584*** 1.2437*** 1.4269*** 1.2023* 0.7152 1.0108 1.0061 1.4936** 1.1139*** 1.1534*** 1.1574*** 0.9982 1.0154 0.9985 1.0006 1.0027 1.0222*** 0.9720 1.1087 1.0042*

Drop Correlation index 1.8895*** 1.2432*** 1.2797** 1.1906* 0.8684 0.9070 0.9960 1.5130*** 1.3423*** 1.0424*** 1.0063 1.1475*** 0.9809 1.0275 1.0024 1.0159 1.1031** 1.0059 1.0163** 1.0321***

XLV

All Variables 1.2423*** 0.8312*** 0.9675* 0.9169*** 0.9525 0.8542*** 1.0072 1.0179*** 1.7498*** 1.1977*** 1.0334** 1.0066 1.0072 1.0072 1.0072 1.0072 1.0072 1.0072 1.0072 1.0072

Drop Macro Variables 1.1639*** 0.9274*** 0.9506 0.9449 0.9414*** 0.8815*** 1.0072 1.0673*** 1.0983*** 1.2340*** 1.0010 1.0017 1.0072 1.0072 1.0072 1.0072 1.0072 1.0072 1.0072 1.0072

Drop technical Variables 1.2367*** 0.8732 0.9604* 0.8502 0.9637 0.8748*** 1.0072 1.009* 1.0065*** 1.0218*** 0.9790 1.0077 1.0072 1.0072 1.0072 1.0072 1.0072 1.0072 1.0072 1.0072

Drop Volatility factor 1.1876*** 0.8643*** 0.9080 0.8853 0.7271*** 0.8821*** 1.0072 1.009*** 1.0662*** 1.1857*** 0.9798 1.0032 1.0072 1.0072 1.0072 1.0072 1.0072 1.0072 1.0072 1.0072

Drop Macro Factor 1.3455*** 0.7981*** 0.9466 0.8646 0.8776** 0.9106 1.0072 1.0427*** 1.0530*** 1.4495*** 0.9957 0.9985 1.0072 1.0072 1.0072 1.0072 1.0072 1.0072 1.0072 1.0072

Drop Correlation index 1.2112*** 0.8075*** 0.8876 0.8921*** 0.9425 0.8690 1.0072 1.0343*** 1.1448*** 1.0012** 1.0105 1.0123 1.0072 1.0072 1.0072 1.0072 1.0072 1.0072 1.0072 1.0072

*Notes: See notes in Table 3.4. Recursive window size 500.
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Table 3.6: Directional Predictive Accuracy Rate Based on 1-Step-Ahead Daily Level
Forecasting Results (Rolling Window)*

RandomWalk Linear SVRrbf SVRlin SVRpoly RanForest boosting lasso ridge NN1 NN2 NN3 NN4 hybrid1 hybrid2 hybrid3 hybrid4 hybrid5 hybrid6 hybrid7 hybrid8

SPY

All Variables 0.5303 0.5082 0.4899 0.5233 0.5228 0.5092 0.512 0.542 0.4951 0.4847 0.4974 0.4941 0.5369 0.5378 0.535 0.5369 0.5420 0.5416 0.5355 0.5420 0.5444

Drop Macro Variables 0.5303 0.4941 0.5082 0.5129 0.5106 0.5228 0.4979 0.542 0.5021 0.4984 0.4852 0.5223 0.5317 0.5326 0.5425 0.5359 0.5430 0.5270 0.5326 0.5378 0.5383

Drop technical Variables 0.5303 0.5106 0.5242 0.5294* 0.5355 0.5059 0.5049 0.5420 0.4998 0.5106 0.5190* 0.5209 0.5115 0.5364 0.5364 0.5378 0.5416 0.5326 0.5406 0.5355 0.5322

Drop Volatility factor 0.5303 0.5031 0.5167 0.5195 0.5176 0.5298 0.5153 0.5402 0.4913 0.5040 0.4974 0.5078 0.5059 0.5373 0.5402 0.5345 0.5383 0.5359 0.5312 0.5392 0.5359

Drop Macro Factor 0.5303 0.5035 0.4984 0.5214 0.5181 0.5195 0.5035 0.5303 0.5002 0.5012 0.5101 0.5031 0.5233 0.5317 0.5331 0.5364 0.5303 0.5355 0.5336 0.5355 0.5298

Drop Correlation index 0.5303 0.5129 0.5218 0.5364** 0.5322 0.5171 0.5073 0.5420 0.4951 0.5049 0.4937 0.504 0.5275 0.5369 0.5373 0.5388 0.5406 0.5411 0.5359 0.5373 0.5402

XLF

All Variables 0.5045 0.5124 0.5012 0.5073 0.5101 0.4782 0.5106 0.5059 0.5007 0.4847 0.4951 0.4913 0.4814 0.5073 0.5031 0.5087 0.5204 0.5148 0.5139 0.5129 0.5092

Drop Macro Variables 0.5045 0.4955 0.4838 0.5134 0.5016 0.4988 0.4927 0.5059 0.5007 0.4974 0.5110 0.4918 0.4927 0.5012 0.5059 0.5031 0.5110 0.5101 0.5157 0.5096 0.5106

Drop technical Variables 0.5045 0.5134 0.5035 0.5049 0.5002 0.4819 0.4979 0.5054 0.5087 0.5031 0.5096 0.5073 0.4965 0.5148 0.5059 0.5045 0.5096 0.5049 0.5228 0.5082 0.5054

Drop Volatility factor 0.5045 0.5162 0.4918 0.5016 0.4984 0.4890 0.5026 0.5049 0.4984 0.4941 0.4960 0.5308* 0.5021 0.5082 0.5063 0.5087 0.5068 0.5162 0.5129 0.5124 0.5073

Drop Macro Factor 0.5045 0.4998 0.4890 0.5106 0.5068 0.4852 0.4998 0.5040 0.4885 0.4984 0.5012 0.4922 0.4674 0.4998 0.5054 0.5059 0.5045 0.5157 0.5106 0.5134 0.5016

Drop Correlation index 0.5045 0.5204 0.4937 0.5181 0.5068 0.5040 0.5059 0.5059 0.5035 0.5106 0.5247 0.4988 0.5021 0.5026 0.5092 0.5049 0.511 0.5143 0.5195 0.5016 0.5002

XLK

All Variables 0.5406 0.5237* 0.5279 0.5524*** 0.5270 0.5200 0.4960 0.5434 0.5298 0.5002 0.5087 0.5171 0.5388 0.5402 0.5458 0.5425 0.5449 0.5552** 0.543 0.5383 0.5420

Drop Macro Variables 0.5406 0.5157 0.5186 0.5218 0.5228 0.5115 0.5087 0.5434 0.5233 0.5181 0.4937 0.5237 0.5411 0.5373 0.5416 0.5416 0.5444 0.5439 0.5420 0.5463 0.5439

Drop technical Variables 0.5406 0.5355*** 0.5364* 0.5345** 0.5251 0.5195 0.5073 0.5434 0.5171 0.5233 0.5059 0.5350 0.5378 0.5430 0.5416 0.5463 0.5420 0.5463 0.5378 0.5481 0.5383

Drop Volatility factor 0.5406 0.5218 0.5265 0.5317** 0.5176 0.5139 0.5167 0.5434 0.5284* 0.5106 0.5124 0.5247 0.5397 0.5434 0.5406 0.5406 0.5467 0.5444 0.5449 0.5420 0.5388

Drop Macro Factor 0.5406 0.5195 0.5359* 0.5383*** 0.5341* 0.5294 0.5092 0.5406 0.5308 0.4927 0.5002 0.5383 0.5322 0.5458 0.5402 0.5434 0.543 0.5481 0.5449 0.5425 0.5463

Drop Correlation index 0.5406 0.5261 0.5265 0.5486*** 0.5204 0.5223 0.511 0.5434 0.5345* 0.5007 0.5120 0.5143 0.4927 0.5388 0.5425 0.5420 0.5430 0.5486 0.5420 0.5463 0.5420

XLY

All Variables 0.5355 0.5303** 0.5176 0.5303* 0.5289 0.5087 0.5096 0.5369 0.5148 0.5176 0.4829 0.5153 0.5355 0.5326 0.5284 0.5355 0.5383 0.5373 0.5308 0.5392 0.5341

Drop Macro Variables 0.5355 0.5218 0.5153 0.519 0.5233 0.5209 0.5101 0.5369 0.5153 0.5073 0.5124 0.5082 0.5308 0.5341 0.5308 0.5373 0.5392 0.5294 0.5383 0.5303 0.5378

Drop technical Variables 0.5355 0.5289** 0.5204 0.519 0.5157 0.5153 0.5167 0.5312 0.5129 0.4941 0.5054 0.5115 0.5373 0.5261 0.5364 0.5322 0.5331 0.5326 0.5279 0.5303 0.5317

Drop Volatility factor 0.5355 0.5223 0.5190 0.5157 0.5312 0.5265 0.5162 0.5373 0.5195 0.4998 0.4857 0.5237 0.5002 0.5322 0.5341 0.5373 0.5308 0.5336 0.5359 0.535 0.5322

Drop Macro Factor 0.5355 0.5223* 0.5214 0.5110 0.5218 0.5101 0.5120 0.5378 0.5063 0.4974 0.4979 0.5082 0.5317 0.5359 0.5378 0.5345 0.5383 0.5364 0.5364 0.5341 0.5364

Drop Correlation index 0.5355 0.5326** 0.5218 0.5289 0.5242 0.5162 0.5233* 0.5369 0.5148 0.5101 0.5016 0.5171 0.5016 0.5359 0.5336 0.5303 0.5341 0.5270 0.5416 0.5303 0.5303

XLV

All Variables 0.5228 0.5082 0.4866 0.5082 0.4852 0.504 0.5045 0.5228 0.4852 0.4908 0.4861 0.5359* 0.5148 0.5214 0.5228 0.5228 0.5228 0.5233 0.5223 0.5228 0.5228

Drop Macro Variables 0.5228 0.4932 0.5035 0.4918 0.5016 0.5045 0.5012 0.5228 0.4941 0.5031 0.5063 0.5124 0.5242 0.5214 0.5228 0.5228 0.5228 0.5233 0.5223 0.5228 0.5228

Drop technical Variables 0.5228 0.5031 0.504 0.5204 0.5068 0.5059 0.5087 0.5228 0.5021 0.5021 0.5059 0.5279 0.5186 0.5214 0.5228 0.5228 0.5228 0.5233 0.5223 0.5228 0.5228

Drop Volatility factor 0.5228 0.5031 0.4998 0.5078 0.4974 0.5007 0.5031 0.5228 0.4904 0.5181 0.5134 0.5148 0.5298 0.5214 0.5228 0.5228 0.5228 0.5233 0.5223 0.5228 0.5228

Drop Macro Factor 0.5228 0.5124 0.4922 0.5082 0.5016 0.5045 0.5162 0.5228 0.4899 0.4974 0.5049 0.5073 0.5195 0.5214 0.5228 0.5228 0.5228 0.5233 0.5223 0.5228 0.5228

Drop Correlation index 0.5228 0.5082 0.5176 0.5148 0.489 0.5068 0.4960 0.5228 0.4838 0.4955 0.5054 0.5195 0.5176 0.5214 0.5228 0.5228 0.5228 0.5233 0.5223 0.5228 0.5228

*Notes: Table 3.6 reports the 1-step-head directional predictive accuracy rate (DPAR) of market sector ETFs With rolling window size 500, for the period 2009:6-2017:12. All DPARs are derived from level forecasting results. If the
forecasted return is positive, then it is classified as an upward direction, otherwise as a downward direction. Entries in bold denote models with highest directional accuracy rate for a given forecasting target and predictors. Starred
entries denote rejection of the null of no information about the direction of change forecasting, based on Pesaran and Timmermann (1992) (PT) test. Significance levels for the test are reported as ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, and ∗p < 0.1,
where p is the p−value corresponding to PT test statistics.
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Table 3.7: Directional Predictive Accuracy Rate Based on 1-Step-Ahead Daily Level
Forecasting Results (Recursive Window)*

RandomWalk Linear SVRrbf SVRlin SVRpoly RanForest boosting lasso ridge NN1 NN2 NN3 NN4 hybrid1 hybrid2 hybrid3 hybrid4 hybrid5 hybrid6 hybrid7 hybrid8

SPY

All Variables 0.4988 0.4951 0.4937 0.5242 0.5256 0.5378 0.5364* 0.5129 0.4908 0.4946 0.496 0.4852 0.4979 0.5106 0.5218 0.5129 0.5181 0.496 0.5228 0.5214 0.5171

Drop Macro Variables 0.4988 0.4814 0.5068 0.5265 0.5012 0.5289 0.5045 0.5129 0.4946 0.5124* 0.4918 0.4861 0.4843 0.5040 0.5106 0.5181 0.5251 0.5073 0.5092 0.5021 0.5045

Drop technical Variables 0.4988 0.5059 0.5388** 0.5355 0.5350 0.5298** 0.5242* 0.5129 0.5082 0.5087 0.4725 0.5035 0.4969 0.5200 0.5214 0.5200 0.4998 0.5209 0.5106 0.5139 0.5171

Drop Volatility factor 0.4988 0.4819 0.5139 0.5237 0.5181 0.5331 0.5326 0.5139 0.4852 0.5007 0.4965 0.511 0.4927 0.5167 0.5063 0.5186 0.5176 0.5298 0.5026 0.5176 0.5157

Drop Macro Factor 0.4988 0.4937 0.4974 0.5195 0.5237 0.5388 0.5218* 0.4988 0.4890 0.4843 0.4955 0.5059 0.5087 0.5021 0.5035 0.5002 0.4984 0.5063 0.5031 0.5073 0.4993

Drop Correlation index 0.4988 0.4955 0.5026 0.5171 0.5209 0.5153 0.5181 0.5129 0.4767 0.5012 0.5129 0.4730 0.4988 0.5186 0.5143 0.5270 0.5214 0.5092 0.5054 0.5190 0.5204

XLF

All Variables 0.4998 0.5021 0.5082 0.5016 0.5049 0.4791 0.5148 0.4974 0.4979 0.4852 0.5002 0.4908 0.4918 0.4998 0.5026 0.4965 0.4960 0.5012 0.5026 0.4979 0.5021

Drop Macro Variables 0.4998 0.5026 0.4951 0.4984 0.5049 0.5035 0.5134 0.4974 0.5063 0.4937 0.5035 0.5054 0.4974 0.5007 0.4899 0.4998 0.4960 0.4993 0.5012 0.4871 0.4993

Drop technical Variables 0.4998 0.5031 0.5087 0.4946 0.4974 0.4829 0.4965 0.4974 0.4904 0.5068 0.5026 0.4871 0.4946 0.5026 0.4974 0.5035 0.5007 0.4960 0.5059 0.5040 0.4979

Drop Volatility factor 0.4998 0.5035 0.5078 0.5049 0.4969 0.5040 0.5134 0.4974 0.5002 0.4955 0.5016 0.4960 0.5031 0.5007 0.4988 0.5026 0.4988 0.4941 0.5063 0.4960 0.5026

Drop Macro Factor 0.4998 0.4998 0.4908 0.5007 0.5031 0.4969 0.5082 0.504 0.5016 0.5106 0.4937 0.4984 0.4829 0.4932 0.5059 0.4922 0.4988 0.5002 0.4965 0.5016 0.5021

Drop Correlation index 0.4998 0.5045 0.5101 0.5045 0.5115 0.5124 0.5078 0.4974 0.5035 0.5181 0.4922 0.5016 0.5092 0.4927 0.5016 0.4998 0.4993 0.5082 0.5115 0.4984 0.4965

XLK

All Variables 0.5369 0.5223 0.5256 0.5251 0.5303 0.5477 0.5265 0.5359 0.5218 0.5171 0.4899 0.5204 0.5326 0.5425 0.5430 0.5458 0.5364 0.5416 0.5500 0.5463 0.5350

Drop Macro Variables 0.5369 0.4998 0.5265 0.5355 0.5420 0.5265 0.5228 0.5359 0.5031 0.5063 0.4979 0.5162 0.5289 0.5458 0.5383 0.5420 0.5369 0.5420 0.5472 0.5458 0.5364

Drop technical Variables 0.5369 0.5237 0.5373 0.5406 0.5312 0.5458 0.5364 0.5359 0.5124 0.4998 0.5200 0.5242 0.5331 0.5406 0.5378 0.5350 0.5392 0.5449 0.5430 0.5439 0.5350

Drop Volatility factor 0.5369 0.5294 0.5275 0.5233 0.5115 0.5463 0.5223 0.5359 0.5214 0.4937 0.4876 0.4984 0.5350 0.5392 0.5434 0.5411 0.5373 0.5434 0.5402 0.5486 0.5463

Drop Macro Factor 0.5369 0.5016 0.5317 0.5115 0.5265 0.5458 0.4960 0.5369 0.5082 0.5298** 0.5026 0.4974 0.5350 0.5359 0.5359 0.5388 0.5388 0.5411 0.5449 0.5402 0.5383

Drop Correlation index 0.5369 0.5214 0.527 0.5265 0.5242 0.5251 0.5031 0.5359 0.5157 0.4899 0.5063 0.5120 0.4941 0.5453 0.5359 0.5378 0.5430 0.5481 0.5449 0.551 0.5500

XLY

All Variables 0.5294 0.5195 0.5186 0.5200 0.5265 0.5162 0.5383 0.5294 0.5167 0.5031 0.5124 0.5167 0.5279 0.5265 0.5284 0.5279 0.5317 0.5388 0.5345 0.5326 0.5275

Drop Macro Variables 0.5294 0.5303** 0.5228 0.5326 0.5345 0.5284** 0.5294 0.5298 0.5209 0.4941 0.4974 0.4955 0.5265 0.5270 0.5326 0.5308 0.5294 0.5397 0.5341 0.5345 0.5275

Drop technical Variables 0.5294 0.5087 0.5298 0.5298 0.5298 0.5341 0.5336 0.5294 0.5035 0.5007 0.4988 0.5284 0.5190 0.5350 0.5265 0.5350 0.5303 0.5308 0.5284 0.5350 0.5312

Drop Volatility factor 0.5294 0.5204 0.52 0.5223 0.5223 0.5336 0.535 0.5294 0.5124 0.5209* 0.5026 0.5078 0.4908 0.5322 0.5294 0.5303 0.535 0.5303 0.5308 0.527 0.5406

Drop Macro Factor 0.5294 0.5162 0.5096 0.5153 0.5223 0.5261 0.5373 0.5294 0.5096 0.5031 0.5031 0.5026 0.5233 0.5364 0.5359 0.5308 0.5275 0.5350 0.5392 0.5364 0.5303

Drop Correlation index 0.5294 0.5317** 0.5251 0.5284 0.5317 0.5312 0.5256 0.5294 0.5148 0.5162 0.5261** 0.5181 0.5129 0.5308 0.5242 0.5308 0.5312 0.5383 0.5289 0.5317 0.5284

XLV

All Variables 0.5228 0.5045 0.5045 0.5035 0.4955 0.5275 0.5261 0.5186 0.5063 0.4969 0.4918 0.5002 0.5115 0.5186 0.5186 0.5186 0.5186 0.5186 0.5186 0.5186 0.5186

Drop Macro Variables 0.5228 0.4857 0.5096 0.4984 0.5040 0.5087 0.5021 0.5186 0.4904 0.4984 0.5101 0.5040 0.5106 0.5186 0.5186 0.5186 0.5186 0.5186 0.5186 0.5186 0.5186

Drop technical Variables 0.5228 0.5007 0.511 0.5186 0.5242 0.5247 0.5214 0.5186 0.5171 0.5035 0.4984 0.5045 0.512 0.5186 0.5186 0.5186 0.5186 0.5186 0.5186 0.5186 0.5186

Drop Volatility factor 0.5228 0.5026 0.512 0.5134 0.5139 0.5049 0.5214 0.5186 0.504 0.5186 0.5059 0.5256 0.5171 0.5186 0.5186 0.5186 0.5186 0.5186 0.5186 0.5186 0.5186

Drop Macro Factor 0.5228 0.4922 0.5209 0.5101 0.5101 0.5233 0.5233 0.5186 0.4974 0.5115 0.4927 0.519 0.52 0.5186 0.5186 0.5186 0.5186 0.5186 0.5186 0.5186 0.5186

Drop Correlation index 0.5228 0.5153 0.5110 0.5237 0.5031 0.5181 0.5214 0.5186 0.5087 0.5087 0.5026 0.5143 0.5167 0.5186 0.5186 0.5186 0.5186 0.5186 0.5186 0.5186 0.5186

*Notes: See notes to Table 3.6. Recursive window size 500.
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Table 3.8: Directional Predictive Accuracy Rate Based on Monthly Aggregate Level
Forecasting Results (Rolling Window)*

RandomWalk Linear SVRrbf SVRlin SVRpoly RanForest boosting lasso ridge NN1 NN2 NN3 NN4 hybrid1 hybrid2 hybrid3 hybrid4 hybrid5 hybrid6 hybrid7 hybrid8

SPY

All Variables 0.5922 0.6117*** 0.7184*** 0.6117** 0.6214** 0.7573*** 0.6408*** 0.6019 0.5825* 0.5049 0.5534 0.6019 0.5922 0.6019 0.6117 0.5922 0.6117 0.5922 0.5825 0.5922 0.6117

Drop Macro Variables 0.5922 0.6117** 0.6602*** 0.6505*** 0.6019* 0.6893*** 0.7476*** 0.6019 0.5825 0.5825* 0.5049 0.6117 0.5922 0.6214 0.6117 0.5922 0.6117 0.5922 0.5534 0.6019 0.6019

Drop technical Variables 0.5922 0.5922** 0.6796*** 0.6699*** 0.6796*** 0.8058*** 0.7573*** 0.6019 0.6117** 0.5534 0.5243 0.5825 0.4854 0.6117 0.6019 0.6214 0.6117 0.6019 0.6408* 0.5922 0.5728

Drop Volatility factor 0.5922 0.6117*** 0.6602*** 0.6214** 0.6311** 0.7476*** 0.6602*** 0.6117 0.6019** 0.4466 0.5437 0.6214 0.5534 0.6214 0.6019 0.5825 0.6117 0.6019 0.5825 0.6019 0.5922

Drop Macro Factor 0.5922 0.5922** 0.7379*** 0.6602*** 0.6602*** 0.6796*** 0.7379*** 0.5922 0.5728 0.5243 0.5146 0.6019 0.6019 0.6019 0.5922 0.5922 0.6019 0.6117 0.5825 0.5922 0.5922

Drop Correlation index 0.5922 0.6117*** 0.6408*** 0.5922 0.6019 0.7864*** 0.767*** 0.6019 0.5534 0.5922 0.5631 0.6019 0.6019 0.6117 0.6117 0.6117 0.6019 0.5922 0.6019 0.5825 0.6019

XLF

All Variables 0.6019 0.6311*** 0.6505*** 0.5922** 0.534 0.835*** 0.7087*** 0.6019 0.5825* 0.5437 0.6019* 0.6311** 0.5922 0.6214 0.6019 0.6019 0.5922 0.6214 0.6408* 0.5534 0.6311*

Drop Macro Variables 0.6019 0.5534 0.6505*** 0.5728 0.6602*** 0.6408* 0.6602*** 0.6019 0.5243 0.5922* 0.5534 0.5534 0.5146 0.6311* 0.6505** 0.5922 0.5825 0.6019 0.6214 0.5922 0.6019

Drop technical Variables 0.6019 0.5825** 0.699*** 0.5825** 0.5825** 0.7864*** 0.5922* 0.6019 0.6019** 0.6214** 0.5825 0.6214 0.5534 0.6408** 0.6214 0.6117 0.5728 0.6505** 0.6699*** 0.6117 0.6214

Drop Volatility factor 0.6019 0.6019** 0.6214* 0.5631 0.5922 0.7573*** 0.6699*** 0.6019 0.5534 0.5922 0.6408** 0.5728 0.6214** 0.6214* 0.5825 0.5922 0.6214* 0.6117 0.6214 0.6019 0.5825

Drop Macro Factor 0.6019 0.5922** 0.6311** 0.5631 0.5825 0.7767*** 0.6893*** 0.6117 0.5534 0.5437 0.5825 0.6117 0.4951 0.6602** 0.6408* 0.6117 0.6505** 0.6505** 0.6408* 0.5922 0.6117

Drop Correlation index 0.6019 0.5728* 0.6311** 0.6019** 0.5534 0.7670*** 0.6796*** 0.6019 0.6019** 0.5049 0.5825 0.5534 0.5631 0.6505** 0.6214* 0.6214* 0.6214 0.6408** 0.6311* 0.6019 0.6019

XLK

All Variables 0.6117 0.6311*** 0.6699*** 0.6699*** 0.6699*** 0.7087*** 0.7184*** 0.6311 0.6408*** 0.6117* 0.5728 0.6505 0.6117 0.6214 0.6214 0.6408 0.6311 0.6408 0.6699* 0.6505 0.6311

Drop Macro Variables 0.6117 0.5534 0.6408* 0.6214 0.6311* 0.6408* 0.6990*** 0.6311 0.5631 0.5534 0.5728 0.6602* 0.6214 0.6311 0.6214 0.6311 0.6311 0.6505 0.6408 0.6408 0.6311

Drop technical Variables 0.6117 0.6214** 0.6311 0.699*** 0.6602*** 0.6990*** 0.7184*** 0.6311 0.5728* 0.5825 0.6311 0.6311 0.6311 0.6311 0.6311 0.6311 0.6311 0.6408 0.6408 0.6117 0.6311

Drop Volatility factor 0.6117 0.5922** 0.6214* 0.6311*** 0.6311*** 0.7184*** 0.7184*** 0.6311 0.5825* 0.5243 0.6214 0.6408 0.6214 0.6311 0.6311 0.6311 0.6311 0.6311 0.6408 0.6408 0.6311

Drop Macro Factor 0.6117 0.6602*** 0.6505** 0.7184*** 0.6117 0.699*** 0.6408*** 0.6214 0.6311* 0.534 0.5146 0.6505 0.5825 0.6214 0.6117 0.6117 0.6311 0.6602 0.6408 0.6311 0.6602

Drop Correlation index 0.6117 0.6214** 0.6602** 0.6699*** 0.6602*** 0.7476*** 0.6893*** 0.6311 0.6311** 0.5728 0.6019 0.5728 0.5825 0.6117 0.6311 0.6214 0.6214 0.6505 0.6602 0.6408 0.6214

XLY

All Variables 0.5922 0.534 0.5534 0.5728 0.534 0.7573*** 0.6408*** 0.5728 0.534 0.5825 0.5728 0.5631 0.5922 0.5825 0.5922 0.5922 0.5728 0.6117 0.6019 0.5922 0.5922

Drop Macro Variables 0.5922 0.5243 0.5534 0.6019 0.5825 0.7184*** 0.7087*** 0.5728 0.5243 0.5922 0.5825 0.6019 0.5922 0.5922 0.5825 0.5825 0.5728 0.5922 0.5825 0.5922 0.5728

Drop technical Variables 0.5922 0.5728 0.5534 0.5631 0.5534 0.6893*** 0.6796*** 0.5825 0.5631 0.534 0.5825 0.5049 0.5922 0.5922 0.6117 0.5922 0.5825 0.6019 0.6117 0.6019 0.5825

Drop Volatility factor 0.5922 0.5437 0.5728 0.534 0.5243 0.7087*** 0.6699*** 0.5728 0.5049 0.5534 0.5728 0.5922 0.5728 0.5922 0.5922 0.5922 0.5922 0.6019 0.6019 0.5728 0.6311

Drop Macro Factor 0.5922 0.5922** 0.5437 0.5922* 0.5631 0.7379*** 0.6408*** 0.5922 0.4951 0.5534 0.5631 0.6019 0.5922 0.5631 0.5922 0.5728 0.5825 0.5728 0.5825 0.5922 0.5825

Drop Correlation index 0.5922 0.5146 0.5437 0.5437 0.5437 0.7087*** 0.6893*** 0.5728 0.5243 0.5825 0.5534 0.5728 0.5534 0.5922 0.6019 0.5728 0.5728 0.5825 0.6311 0.6019 0.5825

XLV

All Variables 0.6214 0.6505*** 0.6699** 0.6699*** 0.6505** 0.7670*** 0.7282*** 0.6214 0.6311** 0.466 0.5631 0.6505 0.6505 0.6214 0.6214 0.6214 0.6214 0.6214 0.6117 0.6214 0.6214

Drop Macro Variables 0.6214 0.5243 0.6505 0.6214 0.6602** 0.6990*** 0.6602** 0.6214 0.5922 0.6699*** 0.6214 0.5631 0.6408 0.6214 0.6214 0.6214 0.6214 0.6214 0.6117 0.6214 0.6214

Drop technical Variables 0.6214 0.6214* 0.6699* 0.6505* 0.6311 0.7573*** 0.7476*** 0.6214 0.6602*** 0.6311* 0.6408* 0.6505 0.6408 0.6214 0.6214 0.6214 0.6214 0.6214 0.6117 0.6214 0.6214

Drop Volatility factor 0.6214 0.6311** 0.6311 0.6214 0.5437 0.7476*** 0.7282*** 0.6214 0.6408** 0.5534 0.5437 0.6214 0.6505 0.6214 0.6214 0.6214 0.6214 0.6214 0.6117 0.6214 0.6214

Drop Macro Factor 0.6214 0.6117*** 0.699*** 0.6214* 0.5631 0.7573*** 0.7282*** 0.6214 0.6214** 0.5631 0.5825* 0.6214 0.6214 0.6214 0.6214 0.6214 0.6214 0.6214 0.6117 0.6214 0.6214

Drop Correlation index 0.6214 0.6311** 0.699*** 0.6408* 0.6311** 0.7573*** 0.7087*** 0.6214 0.6311** 0.5825 0.5825 0.6117 0.6019 0.6214 0.6214 0.6214 0.6214 0.6214 0.6117 0.6214 0.6214

*Notes: See notes to Table 3.6. We calcualte the one-month-ahead forecasting results by aggregating daily forecasts during each month, i.e., summing all daily forecasting results within the same month to generate monthly forecasts. All DPARs are
derived from monthly aggregate results. If the monthly aggregate return is positive, then it is classified as an upward direction, otherwise as a downward direction.
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Table 3.9: Directional Predictive Accuracy Rate Based on Monthly Aggregate Level
Forecasting Results (Recursive Window)*

RandomWalk Linear SVRrbf SVRlin SVRpoly RanForest boosting lasso ridge NN1 NN2 NN3 NN4 hybrid1 hybrid2 hybrid3 hybrid4 hybrid5 hybrid6 hybrid7 hybrid8

SPY

All Variables 0.5146 0.4951 0.6893*** 0.6019 0.6602*** 0.6796*** 0.6699*** 0.5437 0.5728** 0.4757 0.3883 0.5728** 0.5243 0.5728 0.5243 0.5922 0.5631 0.4951 0.5146 0.5049 0.5437

Drop Macro Variables 0.5146 0.5049 0.6505*** 0.6117 0.5922 0.6408** 0.6796*** 0.5437 0.5340 0.4951 0.5049 0.5340 0.5049 0.5340 0.5534 0.5146 0.5631 0.5534 0.4951 0.5049 0.5243

Drop technical Variables 0.5146 0.5146 0.6117* 0.6311* 0.6117 0.8155*** 0.6699*** 0.5437 0.5922*** 0.5825** 0.5049 0.4563 0.4757 0.5825 0.5534 0.5534 0.5728 0.5437 0.4951 0.534 0.5146

Drop Volatility factor 0.5146 0.4660 0.6699*** 0.6311** 0.6505*** 0.6408** 0.6699*** 0.5437 0.5534** 0.4369 0.4563 0.4757 0.5437 0.5049 0.5049 0.5437 0.5534 0.6019* 0.5728 0.5340 0.5631

Drop Macro Factor 0.5146 0.4757 0.7184*** 0.5922 0.6505** 0.6019 0.6893*** 0.5146 0.5728** 0.5437* 0.4951 0.5243 0.5146 0.5146 0.5243 0.5049 0.5146 0.5243 0.5146 0.5146 0.5146

Drop Correlation index 0.5146 0.4563 0.6602*** 0.5728 0.6019 0.6214 0.6408** 0.5437 0.4854 0.4757 0.5437 0.5146 0.5146 0.4757 0.5631 0.5728 0.5534 0.5437 0.5146 0.5243 0.5728

XLF

All Variables 0.5243 0.5243 0.4951 0.5340 0.5437 0.8058*** 0.6019 0.5243 0.4466 0.5243 0.6019*** 0.5049 0.5728 0.5437 0.5340 0.534 0.5728 0.5146 0.5340 0.5437 0.5437

Drop Macro Variables 0.5243 0.5049 0.5825 0.5922 0.6505** 0.6408*** 0.6505*** 0.5243 0.4466 0.5049 0.4466 0.4466 0.5728* 0.5340 0.5146 0.5243 0.5049 0.5146 0.5146 0.4951 0.5437

Drop technical Variables 0.5243 0.5437 0.5631 0.5340 0.5243 0.7767*** 0.5243 0.5243 0.534 0.4563 0.4563 0.5146 0.4854 0.5243 0.5631 0.5340 0.5534 0.5728 0.5146 0.5437 0.534

Drop Volatility factor 0.5243 0.5243 0.6408*** 0.5631 0.6602*** 0.699*** 0.6019 0.5243 0.4369 0.4757 0.4466 0.534 0.5631 0.5437 0.5340 0.534 0.5146 0.5243 0.5243 0.5340 0.5243

Drop Macro Factor 0.5243 0.5049 0.4563 0.534 0.5631 0.6893*** 0.5728 0.5340 0.4272 0.4951 0.5437 0.4563 0.4660 0.5146 0.5437 0.5146 0.5049 0.4854 0.5243 0.5437 0.5049

Drop Correlation index 0.5243 0.4854 0.5146 0.5243 0.5631* 0.5922 0.5825 0.5243 0.4563 0.4854 0.4466 0.5340 0.5922** 0.5437 0.5534 0.5534 0.5146 0.5146 0.5243 0.5534 0.5437

XLK

All Variables 0.6117 0.5437 0.6699*** 0.5922 0.6214 0.6602 0.6602** 0.6311 0.4660 0.6019* 0.5340 0.6019 0.6117 0.6408 0.6311 0.6311 0.6311 0.6505 0.6214 0.5922 0.6408

Drop Macro Variables 0.6117 0.4660 0.6505 0.6602 0.6699* 0.6505 0.699*** 0.6311 0.4272 0.5534 0.4563 0.6408 0.6214 0.6214 0.6117 0.6117 0.6311 0.6311 0.6408 0.6117 0.6214

Drop technical Variables 0.6117 0.5631 0.6408* 0.6214 0.6311 0.6893*** 0.6893*** 0.6311 0.5437 0.5922* 0.5243 0.6019 0.6019 0.6311 0.6214 0.6408 0.6214 0.6505 0.6408 0.6214 0.6019

Drop Volatility factor 0.6117 0.5243 0.6214* 0.5728 0.5728 0.6699* 0.6117 0.6311 0.4563 0.4369 0.466 0.5922 0.6214 0.6311 0.6408 0.6311 0.6311 0.6408 0.6117 0.6117 0.6408

Drop Macro Factor 0.6117 0.5049 0.6796*** 0.5534 0.6117 0.6699* 0.6893*** 0.6117 0.4563 0.5825 0.5825 0.6214 0.5631 0.6117 0.6117 0.6117 0.6214 0.6408 0.6311 0.6117 0.6214

Drop Correlation index 0.6117 0.4757 0.6505** 0.6117 0.6699*** 0.7670*** 0.6796*** 0.6311 0.4951 0.4854 0.5631 0.5049 0.6408** 0.6408 0.6214 0.6311 0.6408 0.6019 0.6699* 0.6505 0.6408

XLY

All Variables 0.5825 0.5437 0.5243 0.5534 0.5825 0.767*** 0.6019 0.5728 0.5049 0.5437 0.5049 0.5340 0.5922 0.5728 0.5631 0.5825 0.5728 0.5728 0.6117 0.5631 0.5631

Drop Macro Variables 0.5825 0.4369 0.5631 0.5437 0.5534 0.699*** 0.6408* 0.5728 0.4175 0.5340 0.5146 0.5534 0.5728 0.5728 0.5631 0.5728 0.5728 0.6117 0.6019 0.5728 0.5631

Drop technical Variables 0.5825 0.5922* 0.5631 0.5825 0.6117 0.6505* 0.6214 0.5728 0.5631 0.5340 0.5049 0.5825 0.5631 0.5825 0.5825 0.5728 0.5728 0.5922 0.6214 0.6019 0.5631

Drop Volatility factor 0.5825 0.5631 0.5146 0.534 0.5534 0.6311 0.6019 0.5728 0.4951 0.5631 0.5243 0.6019 0.5049 0.5825 0.5728 0.5534 0.5825 0.5825 0.5728 0.5534 0.5922

Drop Macro Factor 0.5825 0.5049 0.5049 0.6019 0.5631 0.7379*** 0.5534 0.5728 0.5146 0.4563 0.4466 0.4757 0.5728 0.5922 0.5922 0.5825 0.5728 0.6019 0.6019 0.5922 0.5728

Drop Correlation index 0.5825 0.4854 0.5631 0.6311* 0.5631 0.6311 0.6214 0.5728 0.5049 0.4466 0.5437 0.5631 0.5146 0.5728 0.5534 0.5728 0.5825 0.5825 0.5825 0.5631 0.5631

XLV

All Variables 0.6214 0.6019 0.7087*** 0.6408** 0.6602** 0.7282*** 0.7087** 0.6117 0.5922 0.5243 0.534 0.6117 0.6019 0.6117 0.6117 0.6117 0.6117 0.6117 0.6117 0.6117 0.6117

Drop Macro Variables 0.6214 0.5146 0.6505 0.6019 0.5922 0.6602 0.6699 0.6117 0.5437 0.5534 0.5146 0.6214 0.6019 0.6117 0.6117 0.6117 0.6117 0.6117 0.6117 0.6117 0.6117

Drop technical Variables 0.6214 0.5728 0.6408* 0.6602** 0.6311 0.7087** 0.699* 0.6117 0.6408** 0.5340 0.5728 0.5922 0.5728 0.6117 0.6117 0.6117 0.6117 0.6117 0.6117 0.6117 0.6117

Drop Volatility factor 0.6214 0.5922 0.6699** 0.6214 0.5922 0.7573*** 0.7087** 0.6117 0.6117* 0.5825 0.6311* 0.6602* 0.6311 0.6117 0.6117 0.6117 0.6117 0.6117 0.6117 0.6117 0.6117

Drop Macro Factor 0.6214 0.5437** 0.7282*** 0.6214** 0.6019 0.7282*** 0.7184*** 0.6117 0.6214*** 0.5631 0.4660 0.5922 0.6117 0.6117 0.6117 0.6117 0.6117 0.6117 0.6117 0.6117 0.6117

Drop Correlation index 0.6214 0.6408* 0.6505** 0.6796*** 0.6602** 0.6990* 0.7087** 0.6117 0.6214 0.5146 0.5631 0.6214 0.6117 0.6117 0.6117 0.6117 0.6117 0.6117 0.6117 0.6117 0.6117

*Notes: See notes to Table 3.8. Recursive window size 500.
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Figure 3.6: Monthly Aggregate Relative MSFEs For Machine Leaning Models (Rolling Window Size)*

*Notes: Figure 3.6 shows the relative mean square forecasting error (MSFE) for machine learning models. Relative
MSFEs are calculated such that numerical values less than unity indicates the alternative model has lower point MSFE
than the random walk benchmark model. The panels from top to bottom display different forecasting targets including
SPY (S&P 500 ETF), XLF (financial sector ETF), XLK (technology sector ETF), XLY (consumer discretionary sector

ETF), and XLV (health care sector ETF). Results in each panel are obtained in Table 3.4 under the row of All Variables.
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Figure 3.7: Monthly Aggregate Relative DPARs for Machine Leaning Models (Rolling Window Size)*

*Notes: Figure 3.7 shows the relative directional prediction accuracy rate (DPARs) for machine learning models. Relative
DAPRs are calculated such that numerical values less than unity indicates the alternative model has lower DPAR than
the random walk benchmark model. The panels from top to bottom display different forecasting targets including SPY

(S&P 500 ETF), XLF (financial sector ETF), XLK (technology sector ETF), XLY (consumer discretionary sector ETF),
and XLV (health care sector ETF). Results in each panel are obtained in Table 3.8 under the row of All Variables.
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Figure 3.8: Monthly Aggregate Relative MSFEs Due to the Factors (Recursive Window Size)*

*Notes: See notes to Figure ??. Figure 3.8 shows the relative mean square forecasting error (MSFE) of forecasting models
with factors. The benchmark model is the same forecasting models but without factors. The results in each panel are

obtained from Table 3.5. Within each forecasting target (SPY, XLF, XLK, XLY, and XLV), we navigate to the MSFEs
best machine learning model and further analyze the contribution of adding each factor.
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Figure 3.9: Monthly Aggregate Relative DPARs Due to the Factors (Rolling Window Size)*

*Notes: See notes in Figure 3.7. Figure 3.9 shows the relative directional prediction accuracy rate (DPARs) of forecasting
models with factors. The benchmark model is the same forecasting models but without factors. The results in each panel

are obtained from Table 3.9. Within each forecasting target (SPY, XLF, XLK, XLY, and XLV), we navigate to the
DPARs best machine learning model and further analyze the contribution of adding each factor.
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Chapter 4

Forecast Evaluation

Note: This chapter is coauthored with Mingmian Cheng and Norman Swanson, and pub-

lished in “Macroeconomic Forecasting in the Era of Big Data” (Fuleky (2020)) as a chapter

entitled “Forecasting Evaluation” (Cheng et al. (2020)).

Part I: Forecast Evaluation Using Point Predictive Accuracy Tests

In this section, our objective is to review various commonly used statistical tests for com-

paring the relative accuracy of point predictions from different econometric models. Four

main groups of tests are outlined: (i) tests for comparing two non-nested models, (ii) tests

for comparing two nested models, (iii) tests for comparing multiple models, where at least

one model is non-nested, and (iv) tests that are consistent against generic alternative mod-

els. The papers cited in this section (and in subsequent sections) contain references to a

large number of papers that develop alternative related tests.

Of note is that the tests that we discuss in the sequel assume that all competing models

are approximations to some unknown underlying data generating process, and are thus

potentially misspecified. The objective is to select the “best” model from amongst multiple

alternatives, where “best” refers to a given loss function, say.

4.1 Comparison of two non-nested models

The starting point of our discussion is the Diebold-Mariano (DM: Diebold and Mariano

(2002)) test for the null hypothesis of equal predictive accuracy between two competing

models, given a pre-specified loss function. This test sets the groundwork for many sub-

sequent predictive accuracy tests. The DM test assumes that parameter estimation error

is asymptotically negligible by positing that the number of observations used for in-sample
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model estimation grows faster than the number of observations used in out-of-sample fore-

cast evaluation. Parameter estimation error in DM tests, which are often also called DM-

West tests, is explicitly taken into account of in West (1996), although at the cost of

requiring that the loss function is differentiable.

To fix ideas and notation, let ui,t+h = yt+h−fi(Zti , θ
†
i ) be the h-step ahead forecast error

associated with the i-th model, fi(·, θ†i ), where the benchmark model is always denoted as

“model 0”, i.e. f0(·, θ†0). As θ†i and thus ui,t+h are unknown, we construct test statistics

using θ̂i,t and ûi,t+h = yt+h − fi(Zti , θ̂i,t), where θ̂i,t is an estimator of θ†i constructed using

information in Zti from time periods 1 to t, under a recursive estimation scheme, or from

t−R+1 to t, under a rolling-window estimation scheme. Hereafter, for notational simplicity,

we only consider the recursive estimation scheme, and the rolling-window estimation scheme

can be treated in an analogous manner. To do this, split the total sample of T observations

into two sub-samples of length R and n, i.e. T = R+ n, where only the last n observations

are used for forecast evaluation. At each step, we first estimate the model parameters as

follows,

θ̂i,t = arg min
θi

1

t

t∑
j=1

q(yj − fi(Zj−1
i , θi)), t ≥ R (4.1)

These parameters are used to parameterize the prediction model, and an h-step-ahead

prediction (and prediction error) is constructed. This procedure is repeated by adding

one new observation to the original sample, yielding a new h-step-ahead prediction (and

prediction error). In such a manner, we can construct a sequence of (n−h+1) h-step ahead

prediction errors. For a given loss function, g(·), the null hypothesis of DM test is specified

as,

H0 : E(g(u0,t+h)− g(u1,t+h)) = 0

against

HA : E(g(u0,t+h)− g(u1,t+h)) 6= 0

Of particular note here is that the loss function g(·) used for forecast evaluation may not be

the same as the loss function q(·) used for model estimation in Equation (4.1). However, if
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they are the same (e.g. models are estimated by ordinary least square (OLS) and forecasts

are evaluated by a quadratic loss function, say), parameter estimation error is asymptotically

negligible, regardless of the limiting ratio of n/R, as T →∞.

Define the following statistic,

Ŝn(0, 1) =
1√
n

T−h∑
t=R−h+1

(g(û0,t+h)− g(û1,t+h))

then,

Ŝn(0, 1)− Sn(0, 1) = E(∇θ0g(u0,t+h))
1√
n

T−h∑
t=R−h+1

(θ̂0,t+h − θ†0)

− E(∇θ1g(u1,t+h))
1√
n

T−h∑
t=R−h+1

(θ̂1,t+h − θ†1) + op(1)

(4.2)

The limiting distribution of the right-hand side of Equation (4.2) is given by Lemma 4.1 and

Theorem 4.1 in West (1996). From Equation (4.2), we can immediately see that if g(·) = q(·),

then E(∇θig(ui,t+h)) = 0 by the first order conditions, and parameter estimation error is

asymptotically negligible. Another situation in which parameter estimation error vanishes

asymptotically is when n/R→ 0, as T →∞.

Without loss of generality, consider the case of h = 1. All results carry over to the case

when h > 1. The DM test statistic is given by,

D̂Mn =
1√
n

1

σ̂n

T−1∑
t=R

(g(û0,t+1)− g(û1,t+1))

with

σ̂n =Ŝgg + 2ΠF̂
′
0Â0Ŝh0h0 + 2ΠF̂

′
1Â1Ŝh1h1Â1F̂1

− 2Π(F̂
′
1Â1Ŝh1h0Â0F̂0 + F̂

′
0Â0Ŝh0h1Â1F̂1)

+ Π(Ŝ
′
gh1
Â1F̂1 + F̂

′
1Â1Ŝgh1)

where for i, j = 0, 1, Π = 1− ln(1+π)
π , and qt(θ̂i,t) = q(yt − fi(Zt−1

i , θ̂i,t)),

Ŝhihj =
1

n

ln∑
τ=−ln

wτ

T−ln∑
t=R+ln

∇θqt(θ̂i,t)∇θqt+τ (θ̂j,t)
′
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Ŝghi =
1

n

ln∑
τ=−ln

wτ

T−ln∑
t=R+ln

(
g(û0,t)− g(û1,t)−

1

n

T−1∑
t=R

(g(û0,t+1)− g(û1,t+1))

)

×∇θqt+τ (θ̂i,t)
′

Ŝgg =
1

n

ln∑
τ=−ln

wτ

T−ln∑
t=R+ln

(
g(û0,t)− g(û1,t)−

1

n

T−1∑
t=R

(g(û0,t+1)− g(û1,t+1))

)

×

(
g(û0,t+τ )− g(û1,t+τ )− 1

n

T−1∑
t=R

(g(û0,t+1)− g(û1,t+1))

)
with wτ = 1− τ

ln−1 , and

F̂i =
1

n

T−1∑
t=R

∇θig(ûi,t+1), Âi =

(
− 1

n

T−1∑
t=R

∇2
θi
q(θ̂i,t)

)−1

Assumption 1.1: (yt, Z
t−1), with yt scalar and Zt−1 an <ζ-valued (0 < ζ <∞) vector, is

a strictly stationary and absolutely regular β-mixing process with size −4(4 +ψ)/ψ, ψ > 0.

Assumption 1.2: (i) θ† is uniquely identified (i.e. E(q(yt, Z
t−1, θi))) > E(q(yt, Z

t−1, θ†i )))

for any θi 6= θ†i ); (ii) q(·) is twice continuously differentiable on the interior of Θ, and for

Θ a compact subset of <%; (iii) the elements of ∇θq and ∇2
θq are p-dominated on Θ, with

p > 2(2 + ψ), where ψ is the same positive constant as defined in Assumption 1.1; and (iv)

E(−∇2
θq) is negatively definite uniformly on Θ.

PROPOSITION 1.1 (From Theorem 4.1 in West (1996)): With Assumptions 1.1 and

1.2, also, assume that g(·) is continuously differentiable, then, if as n → ∞, ln → ∞ and

ln/n
1/4 → 0, then as n, R→∞, under H0,

D̂Mn
d−→ N(0, 1)

Under HA,

Pr(n−1/2|D̂Mn| > ε)→ 1, ∀ε > 0
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It is immediate to see that if either g(·) = q(·) or n/R → 0, as T → ∞, the estimator

σ̂n collapses to Ŝgg. Note that the limiting distribution of DM test obtains only for the

case of short-memory series. Corradi et al. (2001) extends the DM test to the case of co-

integrated variables and Rossi (2005) to the case of series with high persistence. Finally,

note that the two competing models are assumed to be non-nested. If they are nested, then

u0,t+h = u1,t+h under the null, and both
∑T−h

t=R−h+1(g(û0,t+h)− g(û1,t+h)) and σ̂n converge

in probability to zero at the same rate if n/R → 0. Therefore the DM test statistic does

not converge in distribution to a standard normal variable under the null. Comparison of

nested models is introduced in the next section.

4.2 Comparison of two nested models

There are situations in which we may be interested in comparing forecasts from nested

models. For instance, one of the driving forces behind the literature on out-of-sample

comparison of nested models is the seminal paper by Meese and Rogoff (1983), who find

that no models driven by economic fundamentals can beat a simple random walk model, in

terms of out-of-sample predictive accuracy, when forecasting exchange rates. The models

studied in this paper are nested, in the sense that parameter restrictions can be placed on

the more general models that reduce these models to the random walk benchmark studied

by these authors. When testing out-of-sample Granger causality, alternative models are

also nested. Since the DM test discussed above is valid only when the competing models

are non-nested, we introduce alternative tests that address testing among nested models.

4.2.1 Clark and McCracken tests for nested models

Clark and McCracken (2001) (CMa) and Clark and McCracken (2003) (CMb) propose

several tests for nested linear models, under the assumption that prediction errors follow

martingale difference sequences (this rules out the possibility of dynamic misspecification

under the null for these particular tests), where CMa tests are tailored for the case of

one-step-ahead forecasts, and CMb tests for the case of multi-step-ahead forecasts.
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Consider the following two nested models. The restricted model is,

yt =

q∑
j=1

βjyt−j + εt

and the unrestricted model is,

yt =

q∑
j=1

βjyt−j +
k∑
j=1

αjxt−j + ut (4.3)

The null hypothesis of CMa tests is formulated as,

H0 : E(ε2t )− E(u2
t ) = 0

against

HA : E(ε2t )− E(u2
t ) > 0

We can immediately see from the null and the alternative hypotheses that CMa tests

implicitly assume that the restricted model cannot beat the unrestricted model. This is the

case when the models are estimated by OLS and the quadratic loss function is employed

for evaluation.

CMa propose the following three different test statistics,

ENC − T = (n− 1)1/2 c

(n−1
∑T−1

t=R (ct+1 − c))1/2

ENC −REG = (n− 1)1/2 n−1
∑T−1

t=R (ε̂t+1(ε̂t+1 − ût+1))

(n−1
∑T−1

t=R (ε̂t+1 − ût+1)2n−1
∑T−1

t=R ε̂
2
t+1 − c)1/2

ENC −NEW = n
c

n−1
∑

t=1 û
2
t+1

where ct+1 = ε̂t+1(ε̂t+1 − ût+1), c = n−1
∑T−1

t=R ct+1, and ε̂t+1 and ût+1 are OLS residuals.

Assumption 2.1: (yt, xt) are strictly stationary and strong mixing processes, with size

−4(4+δ)
δ , for some δ > 0, and E(y8

t ) and E(x8
t ) are both finite.

Assumption 2.2: Let zt = (yt−1, ..., yt−q, xt−1, ..., xt−q) and E(ztut|Ft−1) = 0, where

Ft−1 is the σ-field up to time t − 1, generated by (yt−1, yt−2, ..., xt−1, xt−2, ...). Also,
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E(u2
t |Ft−1) = σ2

u.

Note that Assumption 2.2 assumes that the unrestricted model is dynamically correct and

that ut is conditionally homoskedastic.

PROPOSITION 2.1 (From Theorem 3.1–3.3 in Clark and McCracken (2001)): With

Assumptions 2.1 and 2.2, under the null, (i) if as T → ∞, n/R → π > 0, then ENC − T

and ENC − REG converge in distribution to Γ1/Γ2 where Γ1 =
∫ 1

(1+π)−1 s
−1W

′
sdWs and

Γ2 =
∫ 1

(1+π)−1 W
′
sWsds, with Ws a k-dimensional standard Brownian motion (here k is

the number of restrictions or the number of extra regressors in the unrestricted model).

ENC −NEW converges in distribution to Γ1. (ii) If as T →∞, n/R→ 0, then ENC − T

and ENC − REG converge in distribution to N(0, 1). ENC −NEW converges in proba-

bility to 0.

Therefore, as T → ∞ and n/R → π > 0, all three test statistics have non-standard

limiting distributions. Critical values are tabulated for different k and π in CMa. Also

note that the above proposition is valid only when h = 1, i.e. the case of one-step ahead

forecasts, since Assumption 2.2 is violated when h > 1. For this case, CMb propose a

modified test statistic for which MA(h− 1) errors are allowed. Namely, they propose using

the following statistic:

ENC − T ′ =(n− h+ 1)1/2×

(n− h+ 1)−1
∑T−h

t=R ĉt+h

((n− h+ 1)−1
∑j

j=−j
∑T−h

t=R+jK( j
M )(ĉt+h − c)(ĉt+h−j − c))1/2

,

where K(·) is a kernel and 0 ≤ K( j
M ) ≤ 1, with K(0) = 1 and M = o(n1/2), and j does

not grow with the sample size. Therefore, the denominator of ENC − T ′ is a consistent

estimator of the long-run variance when E(ctct+|k|) = 0 for all |k| > h. Of particular note is

that although ENC − T ′ allows for MA(h− 1) errors, dynamic misspecification under the

null is still not allowed. Also note that, when h = 1, ENC − T ′ is equivalent to ENC − T .
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Another test statistic suggested in CMb is a DM-type test with nonstandard critical

values that are needed in order to modify the DM test in order to allow for the comparison

of nested models. The test statistic is:

MSE − T ′ =(n− h+ 1)1/2×

(n− h+ 1)−1
∑T−h

t=R d̂t+h

((n− h+ 1)−1
∑j

j=−j
∑T−h

t=R+jK( j
M )(d̂t+h − d)(d̂t+h−j − d))1/2

where d̂t+h = û2
t+h − ε̂2t+h and d = (n− h+ 1)−1

∑T−h
t=R d̂t+h.

Evidently, this test is a standard DM test, although it should be stressed that the

critical values used in the application of this variant of the test are different. The limiting

distributions of the ENC−T ′ and MSE−T ′ are provided in CMb, and are non-standard.

Moreover, for the case of h > 1, the limiting distributions contain nuisance parameters, so

that critical values cannot be tabulated directly. Instead, CMb suggest a modified version

of the bootstrap method in Kilian (1999) to carry out statistical inference. For this test, the

block bootstrap can also be used to carry out inference (see Corradi and Swanson (2007)

for details.)

4.2.2 Out-of-sample tests for Granger causality

CMa and CMb tests do not take dynamic misspecification into account under the null. Chao

et al. (2001) (CCS) propose out-of-sample tests for Granger causality allowing for possible

dynamic misspecification and conditional heteroskedascity. The idea is very simple. If the

coefficients αj , j = 1, ..., k in Equation (4.3) are all zeros, then residuals εt+1 are uncorrelated

with lags of x. As a result, including regressors xt−j , j = 1, ..., k does not help improve

predictive accuracy, and the unrestricted model does not outperform the restricted model.

Hereafter, for notational simplicity, we only consider the case of h = 1. All results can

be generalized to the case of h > 1. Formally, the test statistic is,

mn = n−1/2
T−1∑
t=R

ε̂t+1Xt,
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where Xt = (xt, xt−1, ..., xt−k−1)
′
. The null hypothesis and the alternative hypothesis are

formulated as,

H0 : E(εt+1xt−j) = 0, j = 0, 1, ..., k − 1

HA : E(εt+1xt−j) 6= 0, for some j

Assumption 2.3: (yt, xt) are strictly stationary and strong mixing processes, with size

−4(4+δ)
δ , for some δ > 0, and E(y8

t ) and E(x8
t ) are both finite. E(εtyt−j) = 0, j = 1, 2, ..., q.

PROPOSITION 2.2 (From Theorem 1 in Chao et al. (2001)): With Assumption 2.3, as

T →∞, n/R→ π, 0 ≤ π <∞, (i) under the null, for 0 < π <∞,

mn
d−→ N(0,Ξ)

with

Ξ =S11 + 2(1− π−1ln(1 + π))F
′
MS22MF−

(1− π−1ln(1 + π))(F
′
MS12 + S

′
12MF )

where F = E(YtX
′
t), M = plim(1

t

∑t
j=q YjY

′
j )−1, and Yj = (yj−1, ..., yj−q)

′
. Furthermore,

S11 =

∞∑
j=−∞

E((Xtεt+1 − µ)(Xt−jεt−j+1 − µ)
′
)

S22 =
∞∑

j=−∞
E((Yt−1εt)(Yt−j−1εt−j)

′
)

S12 =

∞∑
j=−∞

E((εt+1Xt − µ)(Yt−j−1εt−j)
′
)

where µ = E(Xtεt+1). In addition, for π = 0,

mn
d−→ N(0, S11)

(ii) Under the alternative,

lim
n→∞

Pr(|n−1/2mn| > 0) = 1
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COROLLARY 2.1 (From Corollary 2 in Chao et al. (2001)): With Assumption 2.3, as

T →∞, n/R→ π, 0 ≤ π <∞, lT →∞, lT /T 1/4 → 0, (i) under the null, for 0 < π <∞,

m
′
nΞ̂−1mn

d−→ χ2
k

with

Ξ̂ = Ŝ11 + 2(1− π−1ln(1 + π))F̂
′
M̂Ŝ22M̂F̂

− (1− π−1ln(1 + π))(F̂
′
M̂Ŝ12 + Ŝ

′
12M̂F̂ )

where F̂ = n−1
∑T

t=R YtX
′
t , M̂ = (n−1

∑T−1
t=R YtY

′
t )r−1, and

Ŝ11 =
1

n

T−1∑
t=R

(ε̂t+1Xt − µ̂1)(ε̂t+1Xt − µ̂1)
′

+
1

n

lT∑
t=τ

wτ

T−1∑
t=R+τ

(ε̂t+1Xt − µ̂1)(ε̂t+1−τXt−τ − µ̂1)
′

+
1

n

lT∑
t=τ

wτ

T−1∑
t=R+τ

(ε̂t+1−τXt−τ − µ̂1)(ε̂t+1Xt − µ̂1)
′

Ŝ12 =
1

n

lT∑
τ=0

wτ

T−1∑
t=R+τ

(ε̂t+1−τXt−τ − µ̂1)(Yt−1ε̂t)
′

+
1

n

lT∑
τ=1

wτ

T−1∑
t=R+τ

(ε̂t+1Xt − µ̂1)(Yt−1−τ ε̂t−τ )
′

Ŝ22 =
1

n

T−1∑
t=R

(Yt−1ε̂t)(Yt−1ε̂t)
′

+
1

n

lT∑
τ=1

wτ

T−1∑
t=R+τ

(Yt−1ε̂t)(Yt−1−τ ε̂t−τ )
′

+
1

n

lT∑
τ=1

wτ

T−1∑
t=R+τ

(Yt−1−τ ε̂t−τ )(Yt−1ε̂t)
′

with wτ = 1− τ
lT+1 . In addition, for π = 0,

m
′
nŜ
−1
11 mn

d−→ χ2
k
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(ii) Under the alternative, m
′
nŜ
−1
11 mn diverges at rate n.

Note that a “nonlinear” variant of the above CCS test has also been developed by the

same authors. In this generic form of the test, one can test for nonlinear Granger causality,

for example, where the alternative hypothesis is that some (unknown) function of the xt can

be added to the benchmark linear model that contains no xt in order to improve predictive

accuracy. This alternative test is thus consistent against generic nonlinear alternatives.

Complete details of this test are given in the next section.

4.3 A predictive accuracy test that is consistent against generic alterna-

tives

The test discussed in the previous subsection is designed to have power against a given

(linear) alternative; and while it may have power against other alternatives, it is not designed

to do so. Thus, it is not consistent against generic alternatives. Tests that are consistent

against generic alternatives are sometimes called portmanteau tests, and it is this sort of

extension of the out-of-sample Granger causality test discussed above that we now turn our

attention to. Broadly speaking, the above consistency has been studied in the consistent

specification testing literature (see Bierens (1990), Bierens and Ploberger (1997), De Jong

(1996), Hansen (1996a), Lee et al. (1993) and Stinchcombe and White (1998)).

Corradi and Swanson (2002) draw on both the integrated conditional moment (ICM)

testing literature of Bierens (1990) and Bierens and Ploberger (1997) and on the predictive

accuracy testing literature; and propose an out-of-sample version of the ICM test that is

consistent against generic nonlinear alternatives. This test is designed to examine whether

there exists an unknown (possibly nonlinear) alternative model with better predictive power

than the benchmark model, for a given loss function. A typical example is the case in which

the benchmark model is a simple autoregressive model and we want to know whether includ-

ing some unknown functions of the past information can produce more accurate forecasts.

This is the case of nonlinear Granger causality testing discussed above. Needless to say,
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this test can be applied to many other cases. One important feature of this test is that

the same loss function is used for in-sample model estimation and out-of-sample predictive

evaluation (see Granger (1993) and Weiss (1996)).

Consider the following benchmark model,

yt = θ†1yt−1 + ut,

where θ†1 = arg minθ1∈Θ1 E(q(yt − θ1yt−1)). The generic alternative model is,

yt = θ†2,1(γ)yt−1 + θ†2,2(γ)ω(Zt−1, γ) + υt

where

θ†2(γ) = (θ†2,1(γ), θ†2,2(γ))
′

= arg min
θ2∈Θ2

E(q(yt − θ2,1(γ)yt−1 − θ2,2(γ)ω(Zt−1, γ))).

The alternative model is “generic” due to the term ω(Zt−1, γ), where the function ω(·) is

a generically comprehensive function, as defined in Bierens (1990) and Bierens and Ploberger

(1997). The test hypotheses are:

H0 : E(g(ut)− g(υt)) = 0

HA : E(g(ut)− g(υt)) > 0

By definition, it is clear that the benchmark model is nested within the alternative model.

Thus the former model can never outperform the latter. Equivalently, the hypotheses can

be restated as,

H0 : θ†2,2(γ) = 0

HA : θ†2,2(γ) 6= 0

Note that, given the definition of θ†2(γ), we have that

E
(
g
′
(υt)×

(
−yt,−ω(Zt−1, γ)

)′)
= 0

Hence, under the null, we have that θ†2,2(γ) = 0, θ†2,1(γ) = θ†1 and E(g
′
(ut)ω(Zt−1, γ)) = 0.

As a result, the hypotheses can be once again be restated as,

H0 : E(g
′
(ut)ω(Zt−1, γ)) = 0
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HA : E(g
′
(ut)ω(Zt−1, γ)) 6= 0

The test statistic is given by

Mn =

∫
mn(γ)2φ(γ)dγ

with

mn(γ) = n−1/2
T−1∑
t=R

g
′
(ût + 1)ω(Zt, γ)

where
∫
φ(γ)dγ = 1, φ(γ) ≥ 0, and φ(γ) is absolutely continuous with respect to Lebesgue

measure.

Assumption 4.1: (i) (yt, Z
t) is a strictly stationary and absolutely regular strong mixing

sequence with size −4(4 +ψ)/ψ, ψ > 0; (ii) g(·) is three times continuously differentiable in

θ, over the interior of Θ, and ∇θg, ∇2
θg, ∇θg

′
, ∇2

θg
′

are 2r-dominated uniformly in Θ, with

r ≥ 2(2 + ψ); (iii) E(−∇2
θg(θ)) is negative definite, uniformly in Θ; (iv) ω(·) is a bounded,

twice continuously differentiable function on the interior of Γ and ∇γω(Zt, γ) is bounded

uniformly in Γ; (iv) ∇γ∇θg
′
(θ)ω(Zt, γ) is continuous on Θ × Γ, Γ a compact subset of <d

and is 2r-dominated uniformly in Θ× Γ, with r ≥ 2(2 + ψ).

Assumption 4.2: (i) E(g
′
(yt − θ†1yt−1)) < E(g

′
(yt − θ1yt−1)),∀θ 6= θ†; (ii) infγ E(g

′
(yt −

θ†2,1(γ)yt−1 + θ†2,2(γ)ω(Zt−1, γ))) < E(g
′
(yt − θ2,1(γ)yt−1 + θ2,2(γ)ω(Zt−1, γ))), ∀θ 6= θ†(γ).

Assumption 4.3: T = R+ n, and as T →∞, n/R→ π, with 0 ≤ π <∞.

PROPOSITION 4.1 (From Theorem 1 in Corradi and Swanson (2002)): With Assump-

tions 4.1–4.3, the following results hold: (i) Under the null,

Mn
d−→
∫
Z(γ)2φ(γ)dγ

where Z is a Gaussian process with covariance structure,

K(γ1, γ2) = Sgg(γ1, γ2) + 2Πµγ1A
†ShhA

†µγ2

+ Πµ
′
γ1
A†Sgh(γ2) + Πµ

′
γ2
A†Sgh(γ1)
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with µγ1 = E(∇θ1(g
′
(ut)ω(Zt, γ1))), A† = (−E(∇2

θ1
q(ut)))

−1, and

Sgg(γ1, γ2) =
∑
j

E(g
′
(us+1)ω(Zs, γ1)g

′
(us+j+1)ω(Zs+j , γ1))

Shh =
∑
j

E(∇θ1q(us)∇θ1q(us+j)
′
)

Sgh(γ1) =
∑
j

E(g
′
(us+1)ω(Zs, γ1)∇θ1q(us+j)

′
)

and γ, γ1 and γ2 are generic elements of Γ.

(ii) Under the alternative, for ε > 0 and δ < 1,

lim
n→∞

Pr

(
n−δ

∫
mn(γ)2φ(γ)dγ > ε

)
= 1

The limiting distribution under the null is a Gaussian process with a covariance structure

that reflects both the time dependence and the parameter estimation error. Therefore the

critical values cannot be tabulated. Valid asymptotic critical values can be constructed

by using the block bootstrap for recursive estimation schemes, as detailed in Corradi and

Swanson (2007). In particular, define,

θ̃∗1,t = arg min
θ1

1

t

t∑
j=2

[g(y∗j − θ1y
∗
j−1)− θ′1

1

T

T∑
i=2

∇θg(yi − θ̂1yi−1)]

Then the bootstrap statistic is,

M∗n =

∫
m∗n(γ)2φ(γ)dγ

where

m∗n(γ) = n−1/2
T−1∑
t=R

(
g
′
(u∗t )ω(Z∗,t, γ)− T−1

T−1∑
i=1

g
′
(ût)ω(Zi, γ)

)

Assumption 4.4: For any t, s and ∀i, j, k = 1, 2, and for ∆ <∞,

(i) E( sup
θ,γ,γ+

|g′(θ)ω(Zt−1, γ)∇kθg
′
(θ)ω(Zs−1, γ+)|4) < ∆
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where ∇kθ(·) denotes the k-th element of the derivative of its argument with respect to θ.

(ii) E(sup
θ
|∇kθ(∇iθg(θ))∇jθg(θ)|4) < ∆

and

(iii) E(sup
θ,γ
|g′(θ)ω(Zt−1, γ)∇kθ(∇

j
θg(θ))|4) < ∆

PROPOSITION 4.2 (From Proposition 5 in Corradi and Swanson (2007)): With As-

sumptions 4.1–4.4, also assume that as T → ∞, l → ∞, and l/T 1/4 → 0, then as

T, n,R→∞,

Pr

(
sup
δ

∣∣∣∣ ∗Pr(

∫
m∗n(γ)2φ(γ)dγ ≤ δ)− Pr(

∫
mn(γ)2φ(γ)dγ ≤ δ)

∣∣∣∣ > ε

)
→ 0

The above proposition justifies the bootstrap procedure. For all samples except a set

with probability measure approaching zero, M∗n mimics the limiting distribution of Mn

under the null, ensuring asymptotic size equal to α. Under the alternative, M∗n still has a

well defined limiting distribution, while Mn explodes, ensuring unit asymptotic power.

In closing, note that θ̃∗1,t can be replaced with θ∗1,t if parameter estimation error is

assumed to be asymptotically negligible. In this case, critical values are constructed via

standard application of the block bootstrap.

4.4 Comparison of multiple models

The predictive accuracy tests that we have introduced to this point are all used to choose

between two competing models. However, an even more common situation is when multiple

(more than two) competing models are available, and the objective is to assess whether there

exists at least one model that outperforms a given “benchmark” model. If we sequentially

compare each of the alternative models with the benchmark, we induce the so-called “data
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snooping” problem, where sequential test bias results in the size of our test increasing to

unity, so that the null hypothesis is rejected with probability one, even when the null is true.

In this subsection, we review several tests for comparing multiple models and addressing

the issue of data snooping.

4.4.1 A reality check for data snooping

White (2000) proposes a test called the “reality check”, which is suitable for comparing

multiple models. We use the same notation as that used when discussing the DM test,

except that there are now multiple alternative models, i.e. model i = 0, 1, 2, ...,m. Recall

that i = 0 denotes the benchmark model. Define the following test statistic,

Ŝn = max
i=1,...,m

Ŝn(0, i) (4.4)

where

Ŝn(0, i) =
1√
n

T−1∑
t=R

(g(û0,t+1)− g(ûi,t+1)), i = 1, ...,m

The reality check tests the following null hypothesis:

H0 : max
i=1,...,m

E(g(u0,t+1)− g(ui,t+1)) ≤ 0

against

HA : max
i=1,...,m

E(g(u0,t+1)− g(ui,t+1)) > 0

The null hypothesis states that no competing model amongst the set of m alternatives

yields more accurate forecasts than the benchmark model, for a given loss function; while

the alternative hypothesis states that there is at least one alternative model that outper-

forms the benchmark model. By jointly considering all alternative models, the reality check

controls the family-wise error rate (FWER), thus circumventing the issue of data snooping,

i.e. sequential test bias.

Assumption 3.1: (i) fi(·, θ†i ) is twice continuously differentiable on the interior of Θi and

the elements of ∇θifi(Zt, θi) and ∇2
θi
fi(Z

t, θi) are p-dominated on Θi, for i = 1, ...,m, with
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p > 2(2 + ψ), where ψ is the same positive constant defined in Assumption 1.1; (ii) g(·)

is positively valued, twice continuously differentiable on Θi, and g(·), g′(·), and g
′′
(·) are

p-dominated on Θi, with p defined in (i); and

(iii) let cii = limT→∞Var
(
T−1/2

∑T
t=1(g(u0,t+1)− g(ui,t+1))

)
, i = 1, ...,m, define analo-

gous covariance terms, cji, j, i = 1, ...,m, and assume that cji is positive semi-definite.

PROPOSITION 3.1 (Parts (i) and (iii) are from Proposition 2.2 in White (2000)): With

Assumptions 1.1, 1.2 and 3.1, then under the null,

max
i=1,...,m

(
Ŝn(0, i)−

√
nE (g(u0,t+1)− g(ui,t+1))

)
d−→ max

i=1,...,m
S(0, i)

where S = (S(0, 1), ..., S(0,m))
′

is a zero mean Gaussian process with covariance matrix

given by V , with V an m×m matrix, and: (i) If parameter estimation error vanishes, then

for i = 0, ...,m,

V = Sgigi =
∞∑

τ=−∞
E (g(u0,1)− g(ui,1)) (g(u0,1+τ )− g(ui,1+τ ))

(ii) If parameter estimation error does not vanish, then

V =Sgigi + 2Πµ
′
0A
†
0C00A

†
0µ0 + 2Πµ

′
iA
†
iCiiA

†
iµi

− 4Πµ
′
0A
†
0C0iA

†
iµi + 2ΠSgiq0A

†
0µ0 − 2ΠSgiqiA

†
iµi

where

Cii =
∞∑

τ=−∞
E(∇θiqi(y1+s, Z

s, θ†i ))(∇θiqi(y1+s+τ , Z
s+τ , θ†i ))

′

Sgiqi =

∞∑
τ=−∞

E ((g(u0,1)− g(ui,1))) (∇θiqi(y1+s+τ , Z
s+τ , θ†i ))

′

A†i = (E(−∇2
θi
qi(yt, Z

t−1, θ†i )))
−1, µi = E(∇θig(ui,t+1)), and Π = 1 − π−1ln(1 + π). (iii)

Under the alternative, Pr(n−1/2|Sn| > ε)→ 1 as n→∞.

Of particular note is that since the maximum of a Gaussian process is not Gaussian,

in general, the construction of critical values for inference is not straightforward. White
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(2000) proposes two alternatives. The first is a simulation-based approach starting from a

consistent estimator of V , say V̂ . With V̂ , for each simulation s = 1, ..., S, one realization

is drawn from m-dimensional N(0, V̂ ) and the maximum value over i = 1, ...,m is recorded.

Repeat this procedure for S times, with a large S, and use the (1 − α)-percentile of the

empirical distribution of the maximum values. A main drawback to this approach is that we

need to first estimate the covariance structure V . However, if m is large and the prediction

errors exhibit a high degree of heteroskedasticity and time dependence, the estimator of V

becomes imprecise and thus the inference unreliable, especially in finite samples. The second

approach relies on bootstrap procedures to construct critical values, which overcomes the

problem of the first approach. We resample blocks of g(û0,t+1) − g(ûi,t+1), and for each

bootstrap replication b = 1, ..., B, we calculate

Ŝ∗(b)n (0, i) = n−1/2
T−1∑
t=R

(g∗(û0,t+1)− g∗(ûi,t+1)) (4.5)

and the bootstrap statistic is given by

S∗n = max
i=1,...,m

|Ŝ∗(b)n (0, i)− Ŝn(0, i)|

the (1−α)-percentile of the empirical distribution of B bootstrap statistics is then used for

inference. Note that in White (2000), parameter estimation error is assumed to be asymp-

totically negligible. In light of this, Corradi and Swanson (2007) suggest a “re-centering”

bootstrap procedure in order to explicitly handle the issue of non-vanishing parameter es-

timation error, when constructing critical values for this test. The new bootstrap statistic

is defined as,

S∗∗n = max
i=1,...,m

S∗∗n (0, i)

where

S∗∗n (0, i) =n−1/2
T−1∑
t=R

[(g(y∗t+1 − f0(Z∗,t, θ̃∗0,t))− g(y∗t+1 − fi(Z∗,t, θ̃∗i,t)))

− 1

T

T−1∑
j=1

(g(yj+1 − f0(Zj , θ̂0,t))− g(yj+1 − fi(Zj , θ̂i,t)))]
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Note that S∗∗n (0, i) is different from the standard bootstrap statistic in Equation (4.5), which

is defined as the difference between the statistic constructed using original samples and that

using bootstrap samples. The (1−α)-percentile of the empirical distribution of S∗∗n can be

used to construct valid critical values for inference in the case of non-vanishing parameter

estimation error. Proposition 2 in Corradi and Swanson (2007) establishes the first order

validity for the recursive estimation scheme and Corradi and Swanson (2006a) outline the

approach to constructing valid bootstrap critical values for the rolling window estimation

scheme. Finally, note that Corradi and Swanson (2007) explain how to use the simple block

bootstrap for constructing critical values when parameter estimation error is assumed to

be asymptotically negligible. This procedure is perhaps the most obvious method to use

for constructing critical values as it involves simply resampling the original data, carrying

out the same forecasting procedures as used using the original data, and then constructing

bootstrap statistics. These bootstrap statistics can be used (after subtracting the original

test statistic from each of them) to form an empirical distribution which mimics the dis-

tribution of the test statistic under the null hypothesis. Finally, the empirical distribution

can be used to construct critical values, which are the (1−α)-quantiles of said distribution.

From Equation (4.4) and Proposition 3.1, it is immediate to see that the reality check

can be rather conservative when a many alternative models are strictly dominated by the

benchmark model. This is because those “bad” models do not contribute to the test statis-

tic, simply because they are ruled out by the maximum, but contribute to the bootstrap

statistics. Therefore, when many inferior models are included, the probability of rejecting

the null hypothesis is actually smaller than α. Indeed, it is only for the least favorable case,

in which E(g(u0,t+1)− g(ui,t+1)) = 0,∀i, that the distribution of Ŝn coincides with that of

max
i=1,...,m

(
Ŝn(0, i)−

√
nE (g(u0,t+1)− g(ui,t+1))

)
We introduce two approaches for addressing the conservative nature of this test below.

4.4.2 A test for superior predictive ability

Hansen (2005) proposes a modified reality check called the superior predictive ability (SPA)
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test that controls the FWER and addresses the inclusion of inferior models. The SPA test

statistic is defined as,

Tn = max

{
0, max
i=1,...,m

Ŝn(0, i)√
ν̂i,i

}
where ν̂i,i = 1

B

∑B
b=1

(
1
n

∑T−1
t=R ((g(û0,t+1)− g(ûi,t+1))− (g(û∗0,t+1)− g(û∗i,t+1)))2

)
.

The bootstrap statistic is then defined as,

T ∗(b)n = max

0, max
i=1,...,m

{
n−1/2

∑T−1
t=R (d̂

∗(b)
i,t − d̂i,t1{d̂i,t≥−AT,i})√

ν̂i,i
}


where d̂

∗(b)
i,t = g(û∗0,t+1)− g(û∗i,t+1), d̂i,t = g(û0,t+1)− g(ûi,t+1), and AT,i = 1

4T
−1/4

√
ν̂i,i.

The idea behind the construction of SPA bootstrap critical values is that when a com-

peting model is too slack, the corresponding bootstrap moment condition is not re-centered,

and the bootstrap statistic is not affected by this model. Therefore, the SPA test is less

conservative than the reality check. Corradi and Distaso (2011) derive a general class of

SPA tests using the generalized moment selection approach of Andrews and Soares (2010)

and show that Hansen’s SPA test belongs to this class. Romano and Wolf (2005) propose

a multiple step extension of the reality check which ensures tighter control of irrelevant

models.

4.4.3 A test based on sub-sampling

The conservative property of the reality check can be alleviated by using the sub-sampling

approach to constructing critical values, at the cost of sacrificing power in finite samples.

Critical values are obtained from the empirical distribution of a sequence of statistics con-

structed using subsamples of size b̃, where b̃ grows with the sample size, but at a slower rate

(see Politis et al. (1999)).

In the context of the reality check, as n→∞, b̃→∞, and b̃/n→ 0, define

S
n,a,̃b

= max
i=1,...,m

S
n,a,̃b

(0, i), a = R, ..., T − b̃− 1

where

S
n,a,̃b

(0, i) = b̃−1/2
a+b̃−1∑
t=a

(g(û0,t+1)− g(ûi,t+1))
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We obtain the empirical distribution of T − b̃ − 1 statistics, S
n,a,̃b

, and reject the null if

the test statistic Ŝn is greater than the (1− α)-quantile of the empirical distribution. The

advantage of the sub-sampling approach over the bootstrap is that the test has correct

size when maxi=1,...,mE(g(û0,t+1)− g(ûi,t+1)) < 0 for some i, while the bootstrap approach

delivers a conservative test in this case. However, although the sub-sampling approach

ensures that the test has unit asymptotic power, the finite sample power may be rather

low, since S
n,a,̃b

diverges at rate
√
b̃ instead of

√
n, under the alternative. Finally, note that

the sub-sampling approach is also valid in the case of non-vanishing parameter estimation

error because each statistic constructed using subsamples properly mimics the distribution

of actual statistic.

Part II: Forecast Evaluation Using Density Based Predictive Accuracy

Tests

Note: Much for this part are drawn from Corradi and Swanson (2006c), Corradi and Swan-

son (2004), and Corradi and Swanson (2013). Norman Swanson is one of the coauthors of

this chapter.

In Part I, we introduced a variety of tests designed for comparing models based on point

forecast accuracy. However, there are many practical situations in which economic decision

making crucially depends not only on conditional mean forecasts (e.g. point forecasts), but

also on predictive confidence intervals or predictive conditional distributions (also called

predictive densities). One such case, for instance, is when value at risk (VaR) measures

are used in risk management for assessment of the amount of projected financial losses

due to extreme tail behavior, e.g. catastrophic events. Another common case is when

economic agents are undertaking to optimize their portfolio allocations, in which case the

joint distribution of multiple assets is required to be modeled and fully understood. The

purpose of this section is to discuss recent tests for comparing (potentially misspecified)

conditional distribution models.
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4.5 The Kullback-Leibler information criterion approach

A well-known measure of distributional accuracy is the Kullback-Leibler Information Cri-

terion (KLIC). Using the KLIC involves simply choosing the model which minimizes the

KLIC (see, e.g., White (1982), Vuong (1989), Gianni and R (2007), Kitamura (2002)). Of

note is that White (1982) shows that quasi maximum likelihood estimators minimize the

KLIC, under mild conditions. In order to implement the KLIC, one might choose model 0

over model 1, if

E(ln f0(yt|Zt, θ†0)− ln f1(yt|Zt, θ†1)) > 0

For the i.i.d case, Vuong (1989) suggests using a likelihood ratio test for choosing the

conditional density model that is closer to the “true” conditional density, in terms of the

KLIC. Gianni and R (2007) suggests using a weighted version of the likelihood ratio test

proposed in Vuong (1989) for the case of dependent observations, while Kitamura (2002)

employs a KLIC-based approach to select among misspecified conditional models that satisfy

given moment conditions. Furthermore, the KLIC approach has recently been employed

for the evaluation of dynamic stochastic general equilibrium models (see e.g., Schorfheide

(2010), Fernández-Villaverde and Rubio-Ramı́Rez (2004), and Chang et al. (2002)). For

example, Fernández-Villaverde and Rubio-Ramı́Rez (2004) show that the KLIC-best model

is also the model with the highest posterior probability.

The KLIC is a sensible measure of accuracy, as it chooses the model which on average

gives higher probability to events which have actually occurred. Also, it leads to simple

likelihood ratio type tests which have a standard limiting distribution and are not affected

by problems associated with accounting for parameter estimation error. However, it should

be noted that if one is interested in measuring accuracy over a specific region, or in mea-

suring accuracy for a given conditional confidence interval, say, this cannot be done in as

straightforward manner using the KLIC. For example, if we want to evaluate the accuracy

of different models for approximating the probability that the rate of inflation tomorrow,

given the rate of inflation today, will be between 0.5% and 1.5%, say, we can do so quite
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easily using the square error criterion, but not using the KLIC.

4.6 A predictive density accuracy test for comparing multiple misspeci-

fied models

Corradi and Swanson (2005) (CSa) and Corradi and Swanson (2006b) (CSb) introduce a

measure of distributional accuracy, which can be interpreted as a distributional generaliza-

tion of mean square error. In addition, Corradi and Swanson (2005) apply this measure to

the problem of selecting amongst multiple misspecified predictive density models. In this

section we discuss these contributions to the literature.

Consider forming parametric conditional distributions for a scalar random variable, yt,

given Zt, where Zt = (yt−1, ..., yt−s1 , Xt, ..., Xt−s2+1), with s1, s2 finite. With a little abuse

of notation, now we define the group of conditional distribution models, from which one

wishes to select a “best” model, as

{Fi(u|Zt, θ†i )}i=1,...,m,

and define the true conditional distribution as

F0(u|Zt, θ0) = Pr(yt+1 ≤ u|Zt)

Assume that θ†i ∈ Θi, where Θi is a compact set in a finite dimensional Euclidean space,

and let θ†i be the probability limit of a quasi maximum likelihood estimator (QMLE) of the

parameters of the conditional distribution under model i. If model i is correctly specified,

then θ†i = θ0. If m > 2, follow White (2000). Namely, choose a particular conditional

distribution model as the “benchmark” and test the null hypothesis that no competing

model can provide a more accurate approximation of the “true” conditional distribution,

against the alternative that at least one competitor outperforms the benchmark model.

Needless to say, pairwise comparison of alternative models, in which no benchmark need be

specified, follows as a special case.

In this context, measure accuracy using the above distributional analog of mean square

error. More precisely, define the mean square (approximation) error associated with model
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i, in terms of the average over U of E
(

(Fi(u|Zt, θ†i )− F0(u|Zt, θ0))2
)

, where u ∈ U, and U

is a possibly unbounded set on the real line, and the expectation is taken with respect to

the conditioning variables. In particular, model 1 is more accurate than model 2, if∫
U
E((F1(u|Zt, θ†1)− F0(u|Zt, θ0))2 − (F2(u|Zt, θ†2)− F0(u|Zt, θ0))2)φ(u)du < 0

where
∫
U φ(u)du = 1 and φ(u)du ≥ 0, ∀u ∈ U ∈ <.

This measure integrates over different quantiles of the conditional distribution. For any

given evaluation point, this measure defines a norm and it implies a standard goodness

of fit measure. Note that this measure of accuracy leads to straightforward evaluation of

distributional accuracy over a given region of interest, as well as to straightforward evalu-

ation of specific quantiles. A conditional confidence interval version of the above condition

which is more natural to use in applications involving predictive interval comparison follows

immediately, and can be written as

E
(

((F1(ū|Zt, θ†1)− F1(u|Zt, θ†1))− (F1(ū|Zt, θ0)− F1(u|Zt, θ0)))2

−((F2(ū|Zt, θ†2)− F2(u|Zt, θ†2))− (F1(ū|Zt, θ0)− F1(u|Zt, θ0)))2
)
≤ 0

Hereafter, F1(·|·, θ†1) is taken as the benchmark model, and the objective is to test

whether some competitor model can provide a more accurate approximation of F0(·|·, θ0)

than the benchmark.The null and the alternative hypotheses are:

H0 : max
i=2,...,m

∫
U
E((F1(u|Zt, θ†1)− F0(u|Zt, θ0))2

−(Fi(u|Zt, θ†i )− F0(u|Zt, θ0))2)φ(u)du ≤ 0

versus

HA : max
i=2,...,m

∫
U
E((F1(u|Zt, θ†1)− F0(u|Zt, θ0))2

−(Fi(u|Zt, θ†i )− F0(u|Zt, θ0))2)φ(u)du > 0,

where φ(u) ≥ 0 and
∫
U φ(u) = 1, u ∈ U ∈ <, U possibly unbounded. Note that for a given

u, we compare conditional distributions in terms of their (mean square) distance from the
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true distribution. We then average over U. As discussed above, a possibly more natural

version of the above hypotheses is in terms of conditional confidence intervals evaluation,

so that the objective is to ”approximate” Pr(u ≤ Yt+1 ≤ ū|Zt), and hence to evaluate a

region of the predictive density. In that case, the null and alternative hypotheses can be

stated as:

H ′0 : max
i=2,...,m

E(((F1(u|Zt , θ†1)− F1(u|Zt , θf
1))

−(F0(u|Zt, θ0)− F0(u|Zt, θ0)))2

−((Fi(u|Zt, θ†i )− Fi(u|Z
t, θ†i ))

−(F0(u|Zt, θ0)− F0(u|Zt, θ0)))2) ≤ 0

versus

H ′A : max
i=2,...,m

E(((F1(u|Zt , θ†1)− F1(u|Zt , θf
1))

−(F0(u|Zt, θ0)− F0(u|Zt, θ0)))2

−((Fk(u|Zt, θ†i )− Fi(u|Z
t, θ†i ))

−(F0(u|Zt, θ0)− F0(u|Zt, θ0)))2) > 0

Alternatively, if interest focuses on testing the null of equal accuracy of two conditional

distribution models, say F1 and Fi, we can simply state the hypotheses as:

H ′′0 :

∫
U
E((F1(u|Zt, θ†1)− F0(u|Zt, θ0))2

− (Fi (u|Zt, θ†i )− F0(u|Zt, θ0))2)φ(u)du = 0

versus

H ′′A :

∫
U
E((F1(u|Zt, θ†1)− F0(u|Zt, θ0))2

− (Fi (u|Zt, θ†i )− F0(u|Zt, θ0))2)φ(u)du 6= 0,

or we can write the predictive density (interval) version of these hypotheses.
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Of course, we do not know F0(u|Zt) . However, it is easy to see that

E((F1(u|Zt, θ†1)−F0(u|Zt, θ0))2 − (Fi(u|Zt, θ†i )− F0(u|Zt, θ0))2)

= E((1{yt+1 ≤ u} − F1(u|Zt, θ†1))2)

− E ((1{yt+1 ≤ u} − Fi (u|Zt, θ†i ))
2),

(4.6)

where the right-hand side of Equation (4.6) does not require any knowledge of the true

conditional distribution.

The intuition behind Equation (4.6) is very simple. First, note that for any given u,

E(1{yt+1 ≤ u}|Zt) = Pr(yt+1 ≤ u|Zt) = F0(u|Zt, θ0) . Thus, 1{yt+1 ≤ u} −

Fi(u|Zt, θ†i ) can be interpreted as an “error” term associated with computation of the

conditional expectation under Fi. Now, for i = 1, ...,m:

µ2
i (u) = E( (1{yt+1 ≤ u} − Fi (u|Zt, θ†i ))

2)

= E(((1{yt+1 ≤ u} − F0(u|Zt, θ0))− (Fi(u|Zt, θ†i )− F0(u|Zt, θ0)))2)

= E((1{yt+1 ≤ u} − F0(u|Zt, θ0))2) + E ((Fi (u|Zt, θ†i )− F0(u|Zt, θ0))2),

given that the expectation of the cross product is zero (which follows because 1 {yt+1 ≤

u} − F0(u|Zt, θ0) is uncorrelated with any measurable function of Zt). Therefore,

µ2
1(u)− µ2

i (u) = E( (F1 (u|Zt, θ†1)− F0(u|Zt, θ0))2)

− E ((Fi (u|Zt, θ†i )− F0(u|Zt, θ0))2)

(4.7)

The statistic of interest is

Zn,j = max
i=2,...m

∫
U
Zn,u,j(1, i)φ(u)du, j = 1, 2,

where for j = 1 (rolling estimation scheme),

Zn,u,1(1, i) =
1√
n

T−1∑
t=R

((1{yt+1 ≤ u} − F1(u|Zt, θ̂1,t,rol))
2

− (1{yt+1 ≤ u} − Fi(u|Zt, θ̂i,t,rol))
2)
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and for j = 2 (recursive estimation scheme),

Zn,u,2(1, i) =
1√
n

T−1∑
t=R

((1{yt+1 ≤ u} − F1(u|Zt, θ̂1,t,rec))
2

− (1{yt+1 ≤ u} − Fi(u|Zt, θ̂i,t,rec))
2),

where θ̂i,t,rol and θ̂i,t,rec are defined as:

θ̂i,t,rol = arg min
θ∈Θ

1

R

t∑
j=t−R+1

q(yj , Z
j−1, θ), R ≤ t ≤ T − 1

and

θ̂i,t,rec = arg min
θ∈Θ

1

t

t∑
j=1

q(yj , Z
j−1, θ), t = R,R+ 1, R+ n− 1

As shown above and in Corradi and Swanson (2005), the hypotheses of interest can be

restated as:

H0 : max
i=2,...,m

∫
U

(µ2
1(u)− µ2

i (u))φ(u)du ≤ 0

versus

HA : max
i=2,...,m

∫
U

(µ2
1(u)− µ2

i (u))φ(u)du > 0

where µ2
i (u) = E( (1{yt+1 ≤ u} − Fi (u|Zt, θ†i ))2).

Assumption 6.1: (i) θ†i is uniquely defined,

E(ln(fi(yt, Z
t−1, θi))) < E(ln(fi(yt, Z

t−1, θ†i ))),

for any θi 6= θ†i ; (ii) ln fi is twice continuously differentiable on the interior of Θi, and ∀Θi

a compact subset of <%(i); (iii) the elements of ∇θi ln fi and ∇2
θi

ln fi are p-dominated on

Θi, with p > 2(2 +ψ), where ψ is the same positive constant as defined in Assumption 1.1;

and (iv) E(−∇2
θi

ln fi) is negatively definite uniformly on Θi.

Assumption 6.2: T = R+ n, and as T →∞, n/R→ π, with 0 < π <∞.
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Assumption 6.3: (i) Fi(u|Zt, θi) is continuously differentiable on the interior of Θi and

∇θiFi(u|Zt, θ
†
i ) is 2r-dominated on Θi, uniformly in u, r > 2, ∀i;1 and (ii) let

vii(u) = plimT→∞Var
( 1√

T

T∑
t=s

(((1{yt+1 ≤ u} − F1(u|Zt, θ†1))2 − µ2
1(u))

−((1{yt+1 ≤ u} − Fi(u|Zt, θ†i ))
2 − µ2

i (u))
)
, ∀i

define analogous covariance terms, vj,i(u), j, i = 2, ...,m, and assume that [vj,i(u)] is positive

semi-definite, uniformly in u.

PROPOSITION 6.1 (From Proposition 1 in Corradi and Swanson (2006b)): With As-

sumptions 1.1, 6.1–6.3, then

max
i=2,...,m

∫
U

(Zn,u,j (1 , i)−
√
n(µ2

1(u)− µ2
i (u)))φU (u)du

d−→ max
i=2,...,m

∫
U
Z1,i,j(u)φU (u)du

where Z1,i,j(u) is a zero mean Gaussian process with covariance Ci,j(u, u
′)(j = 1 corre-

sponds to rolling and j = 2 to recursive estimation schemes), equal to:

E(
∞∑

j=−∞
((1{ys+1 ≤ u} − F1(u|Zs, θ†1))2 − µ2

1(u))× ((1{ys+j+1 ≤ u′}

−F1(u′|Zs+j , θ†1))2 − µ2
1(u′))) + E(

∞∑
j=−∞

((1{ys+1 ≤ u} − Fi(u|Zs, θ†i ))
2 − µ2

i (u))

× ((1{ys+j+1 ≤ u′} − Fi(u′|Zs+j , θ†i ))
2 − µ2

i (u
′)))− 2E(

∞∑
j=−∞

((1{ys+1 ≤ u}

−F1(u|Zs, θ†1))2 − µ2
1(u))× ((1{ys+j+1 ≤ u′} − Fi(u′|Zs+j , θ†i ))

2 − µ2
i (u

′
)))

+4Πjmθ†1
(u)′A(θ†1)× E(

∞∑
j=−∞

∇θ1 ln f1(ys+1|Zs, θ†1)∇θ1 ln f1(ys+j+1|Zs+j , θ†1)′)

×A(θ†1)m
θ†1

(u′) + 4Πjmθ†i
(u)′A(θ†i )× E(

∞∑
j=−∞

∇θi ln fi(ys+1|Zs, θ†i )

1We require that for j = 1, ..., pi, E(∇θFi(u|Zt, θ†i ))j ≥ Dt(u), with supt supu∈<E(Dt(u)2r) <∞.
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×∇θi ln fi(ys+j+1|Zs+j , θ†i )
′)×A(θ†i )mθ†i

(u′)− 4Πjmθ†1
(u, )′A(θ†1)

×E(

∞∑
j=−∞

∇θ1 ln f1(ys+1|Zs, θ†1)∇θi ln fi(ys+j+1|Zs+j ×A(θ†i )mθ†i
(u′)

−4CΠjmθ†1
(u)′A(θ†1)× E(

∞∑
j=−∞

∇θ1 ln f1(ys+1|Zs, θ†1)× ((1{ys+j+1 ≤ u}

−F1 (u|Zs+j , θ†1))2 − µ2
1(u))) + 4CΠjmθ†1

(u)′A(θ†1)× E(

∞∑
j=−∞

∇θ1 ln f1(ys+1|Zs, θ†1)

×((1{ys+j+1 ≤ u} − Fi(u|Zs+j , θ†i ))
2 − µ2

i (u)))− 4CΠjmθ†i
(u)′A(θ†i )

×E(

∞∑
j=−∞

∇θi ln fi(ys+1|Zs, θ†i )
′ × ((1{ys+j+1 ≤ u} − Fi(u|Zs+j , θ†i ))

2 − µ2
i (u)))

+4CΠjmθ†i
(u)′A(θ†i )× E(

∞∑
j=−∞

∇θi ln fi(ys+1|Zs, θ†i )
′ × ((1{ys+j+1 ≤ u}

−F1(u|Zs+j , θ†1))2 − µ2
1(u)))

with

m
θ†i

(u)′ = E(∇θiFi(u|Z
t, θ†i )

′(1{yt+1 ≤ u} − Fi(u|Zt, θ†i )))

and

A(θ†i ) = A†i = (E(−∇2
θi

ln fi(yt+1|Zt, θ†i )))
−1

and for j = 1 and n ≤ R, Π1 = (π − π2

3 ) , CΠ1 = π
2 , and for n > R, Π1 = (1 − 1

3π ) and

CΠ1 = (1− 1
2π ). Finally, for j = 2, Π2 = 2(1− π−1 ln(1 + π)) and CΠ2 = 0.5Π2.

From this proposition, note that when all competing models provide an approximation

to the true conditional distribution that is as (mean square) accurate as that provided by

the benchmark (i.e. when
∫
U (µ2

1(u)− µ2
i (u))φ(u)du = 0,∀i), then the limiting distribution

is a zero mean Gaussian process with a covariance kernel which is not nuisance parameter

free. Additionally, when all competitor models are worse than the benchmark, the statistic

diverges to minus infinity at rate
√
n. Finally, when only some competitor models are worse

than the benchmark, the limiting distribution provides a conservative test, as ZP will always

be smaller than maxi=2,...,m

∫
U (Zn,u (1, i)−

√
n(µ2

1(u)−µ2
i (u)))φ(u)du, asymptotically. Of

course, when HA holds, the statistic diverges to plus infinity at rate
√
n.
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For the case of evaluation of multiple conditional confidence intervals, consider the statis-

tic:

Vn,τ = max
i=2,...,m

Vn,u,u,τ (1, i)

where

Vn,u,u,τ (1, i) =
1√
n

T−1∑
t=R

((1{u ≤ yt+1 ≤ u} − (F1(u|Zt, θ̂1,t,τ )

−F1(u|Zt, θ̂1,t,τ )))2 − (1{u ≤ yt+1 ≤ u} − (Fi(u|Zt, θ̂i,t,τ )− Fi(u|Zt, θ̂i,t,τ )))2)

where s = max{s1, s2}, τ = 1, 2, and θ̂i,t,τ = θ̂i,t,rol for τ = 1 , and θ̂i,t,τ = θ̂k,t,rec for τ = 2.

We then have the following result,

PROPOSITION 6.2 (From Proposition lb in Corradi and Swanson (2006b)): With As-

sumptions 1.1, 6.1–6.3, then for τ = 1,

max
i=2,...m

(Vn,u,u,τ (1 , i) −
√
n(µ2

1 − µ2
i ))

d−→ max
i=2,...m

Vn,i,τ (u, u)

where Vn,i,τ (u, u) is a zero mean normal random variable with covariance cii = vii+pii+cpii,

where vii denotes the component of the long-run variance matrix we would have in absence

of parameter estimation error, pii denotes the contribution of parameter estimation error

and cpii denotes the covariance across the two components. In particular:

vii = E

∞∑
j=−∞

(((1{u ≤ ys+1 ≤ u} − (F1(u|Zs, θ†1)− F1(u|Zs, θ†1)))2 − µ2
1)

× ((1{u ≤ ys+1+j ≤ u} − (F1(u|Zs+j , θ†1)− F1(u|Zs+j , θ†1)))2 − µ2
1))

+E

∞∑
j=−∞

(((1{u ≤ ys+1 ≤ u} − (Fi(u|Zs, θ†i )− Fi(u|Z
s, θ†i )))

2 − µ2
i )

× ((1{u ≤ ys+1+j ≤ u} − (Fi(u|Zs+j , θ†i )− Fi(u|Z
s+j , θ†i )))

2 − µ2
i ))

−2E

∞∑
j=−∞

(((1{u ≤ ys+1 ≤ u} − (F1(u|Zs, θ†1)− F1(u|Zs, θ†1)))2 − µ2
1)

× ((1{u ≤ ys+1+j ≤ u} − (Fi(u|Zs+j , θ†i )− Fi(u|Z
s+j , θ†i )))

2 − µ2
i ))
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Also,

pii = 4m′
θ†1
A(θ†1)E(

∞∑
j=−∞

∇θ1 ln fi(ys+1|Zs, θ†1)∇θ1 ln fi(ys+1+j |Zs+j , θ†1)′)×A(θ†1)m
θ†1

+4m′
θ†i
A(θ†i )E(

∞∑
j=−∞

∇θi ln fi(ys+1|Zs, θ†i )∇θi ln fi(ys+1+j |Zs+j , θ†i )
′)×A(θ†i )mθ†i

−8m′
θ†1
A(θ†1)E(∇θ1 ln f1(ys+1|Zs, θ†1)∇θi ln fi(ys+1+j |Zs+j , θ†i )

′)×A(θ†i )mθ†i

Finally,

cpii = −4m′
θ†1
A(θ†1)E(

∞∑
j=−∞

∇θ1 ln f1(ys+1|Zs, θ†1)

× ((1{u ≤ ys+j ≤ u} − (F1(u|Zs+j , θ†1)− F1(u|Zs+j , θ†1)))2 − µ2
1)

+8m′
θ†1
A(θ†1)E(

∞∑
j=−∞

∇θ1 ln f1(ys|Zs, θ†1)

× ((1{u ≤ ys+1+j ≤ u} − (Fi(u|Zs+j , θ†i )− Fi(u|Z
s, θi)))

2 − µ2
i ))

−4m′
θ†i
A(θ†i )E(

∞∑
j=−∞

∇θi ln fi(ys+1|Zs, θ†i )

× ((1{u ≤ ys+j ≤ u} − (Fi(u|Zs+j , θ†i ) − Fi(u|Z
s+j , θ†i )))

2 − µ2
i ))

with

m′
θ†i

= E(∇θi(Fi(u|Z
t, θ†i ) − Fi(u|Z

t, θ†i ))

× (1{u ≤ yt ≤ u} − (Fi(u|Zt, θ†i )− Fi(u|Z
t, θ†i ))))

and

A(θ†i ) = (E(− ln∇2
θi
fi(yt|Zt, θ†i )))

−1

An analogous result holds for the case where τ = 2, and is omitted for the sake of brevity.

Due to the contribution of parameter estimation error, simulation error, and the time

series dynamics to the covariance kernel (see Proposition 6.1), critical values cannot be

directly tabulated. As a result, block bootstrap techniques are used to construct valid

critical values for statistical inference. In order to show the first order validity of the

bootstrap, the authors derive the limiting distribution of appropriately formed bootstrap

statistics and show that they coincide with the limiting distribution given in Proposition 6.1.
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Recalling that as all candidate models are potentially misspecified under both hypotheses,

the parametric bootstrap is not generally applicable in our context. Instead, we must

begin by resampling b blocks of length l, bl = T − 1. Let Y∗t = (∆ logX∗t , ∆ logX∗t−1) be

the resampled series, such that Y∗2,..., Y∗l+1, Y ∗l+2,..., Y ∗T−l+2,..., Y∗T equals YI1+1,..., YI1+l,

YI2+1,..., YIb+1,..., YIb+T , where Ij , i = 1,..., b are independent, discrete uniform random

variates on 1,..., T − 1 + 1. That is, Ij = i, i = 1,..., T − l with probability 1/(T − l).

Then, use Y ∗t to compute θ̂∗j,T and plug in θ̂∗j,T in order to simulate a sample under model

j, j = 1,..., m. Let Yj,n(θ̂∗j,T ), n = 2,..., S denote the series simulated in this manner. At

this point, we need to distinguish between the case where δ = 0 (vanishing simulation error)

and δ > 0 (non-vanishing simulation error). In the former case, we do not need to resample

the simulated series, as there is no need to mimic the contribution of simulation error to

the covariance kernel. On the other hand, in the latter case we draw b̃ blocks of length l̃

with b̃l = S − 1 , and let Y∗j,n(θ̂∗j,T ) , j = 1,..., m, n = 2,..., S denote the resampled series

under model j. Notice that Y ∗j,2(θ̂∗j,T ),..., Y∗j,l+1(θ̂∗j,T ),..., Y∗j,S(θ̂∗j,T ) is equal to Y
j,Ĩ1

(θ̂∗j,T ),...,

Y
j,Ĩ1+l

(θ̂∗j,T ) ..., Y
j,Ĩb1+l

(θ̂∗j,T ) where Ĩi, i = 1,..., b̃ are independent discrete uniform random

variates on 1,..., S − l̃. Also, note that for each of the m models, and for each bootstrap

replication, we draw b̃ discrete uniform random variates (the Ĩi) on 1, . . . , S− l̃, and that

draws are independent across models. Thus, in our use of notation, we have suppressed the

dependence of Ĩi on j.

Thereafter, form bootstrap statistics as follows:

Z∗n,τ = max
i=2,...m

∫
U
Z∗n,u,τ (1, i)φ(u)du,

where for τ = 1 (rolling estimation scheme), and for τ = 2 (recursive estimation scheme):

Z∗n,u,τ (1, i) =
1√
n

T−1∑
t=R

(((1{y∗t+1 ≤ u} − F1(u|Z∗,tθ̃∗1,t,τ ))2

− (1{y∗t+1 ≤ u} − Fi(u|Z∗,tθ̃∗i,t,τ ))2)

− 1

T

T−1∑
j=s+1

((1{yj+1 ≤ u} − F1(u|Zi, θ̂1,t,τ ))2 − (1{yj+1 ≤ u} − Fi(u|Zj , θ̂i,t,τ ))2))
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Note that each bootstrap term, say 1{y∗t+1 ≤ u}−Fi(u|Z∗,t, θ̃∗i,t,τ ) , t ≥ R, is re- centered

around the (full) sample mean 1
T

∑T−1
j=s+1(1{yj+1 ≤ u} − Fi (u|Zj , θ̂i,t,τ ))2. This is

necessary as the bootstrap statistic is constructed using the last n resampled observations,

which in turn have been resampled from the full sample. In particular, this is necessary

regardless of the ratio n/R. If n/R→ 0, then we do not need to mimic parameter estimation

error, and so could simply use θ̂1,t,τ instead of θ̃∗1,t,τ , but we still need to recenter any

bootstrap term around the (full) sample mean.

Note that re-centering is necessary, even for first order validity of the bootstrap, in the

case of over-identified generalized method of moments (GMM) estimators [see, e.g., Hall

and Horowitz (1996), Andrews (2002), Andrews (2004), Inoue and Shintani (2006)]. This

is due to the fact that, in the over-identified case, the bootstrap moment conditions are not

equal to zero, even if the population moment conditions are. However, in the context of

m-estimators using the full sample, re-centering is needed only for higher order asymptotics,

but not for first order validity, in the sense that the bias term is of smaller order than T−1/2.

Namely, in the case of recursive m-estimators the bias term is instead of order T−1/2 and so

it does contribute to the limiting distribution. This points to a need for re-centering when

using recursive estimation schemes.

For the confidence interval case, define:

V ∗n,τ = max
i=2,...m

, V ∗nu,u,τ (1, i)

and

V ∗n,u,u,τ (1, i) =
1√
n

T−1∑
t=R

((1{u ≤ y∗t+1 ≤ u} − (F1(u|Z∗t, θ̃∗1,t,τ )− F1(u|Z∗t, θ̃∗1,t,τ )))2

− (1{u ≤ y∗t+1 ≤ u} − (Fi(u|Z∗t, θ̃∗i,t,τ )− F1(u|Z∗t, θ̃∗i,t,τ )))2)

− 1

T

T−1∑
j=s+1

((1{u ≤ yi+1 ≤ u} − (F1(u|Zj , θ̂1,t,τ )− F1(u|Zj , θ̂1,t,τ )))2

− (1{u ≤ yj+1 ≤ u} − (Fi(u|Zj , θ̂i,t,r)− F1(u|Zj , θ̂i,t,τ )))2)

where, as usual, τ = 1, 2. The following results then hold,
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PROPOSITION 6.3 (From Proposition 6 in Corradi and Swanson (2006b)): With As-

sumptions 1.1, 6.1–6.3, also, assume that as T → ∞, l → ∞, and that l
T 1/4 → 0. Then, as

T, n and R→∞, for τ = 1, 2:

Pr (sup
v∈<
|
∗

Pr
T

( max
i=2,...m

∫
U
Z∗n,u,τ (1 , i)φ(u)du ≤ v)

−Pr ( max
i=2,...,m

∫
U
Zµn,u,τ (1 , i)φ(u)du ≤ v)| > ε) → 0,

where Zµn,u,τ (1, i) = Zn,u,τ (1, i) −
√
n(µ2

1(u) − µ2
i (u)), and where µ2

1(u) − µ2
i (u) is defined

as in Equation (4.7).

PROPOSITION 6.4 (From Proposition 7 in Corradi and Swanson (2006b)): With As-

sumptions 1.1, 6.1–6.3, also assume that as T → ∞, l → ∞, and that l
T 1/4 → 0. Then, as

T, n and R→∞, for τ = 1, 2:

Pr (sup
v∈<
|
∗

Pr
T

( max
i=2,...m

, V ∗n,u,u,τ (1, i) ≤ v)

−Pr ( max
i=2,...m

, V µ
n,u,u,τ (1, i) ≤ v)| > ε) → 0

where V µ
n,u,u,τ (1 , i) = Vn,u,u,τ (1 , i)−

√
n(µ2

1(u)− µ2
i (u)).

The above results suggest proceeding in the following manner. For brevity, consider

the case of Z∗n,τ . For any bootstrap replication, compute the bootstrap statistic, Z∗n,τ .

Perform B bootstrap replications (B large) and compute the quantiles of the empirical

distribution of the B bootstrap statistics. Reject H0, if Zn,τ is greater than the (1 − α)th-

percentile. Otherwise, do not reject. Now, for all samples except a set with probability

measure approaching zero, Zn,τ has the same limiting distribution as the corresponding

bootstrapped statistic when E(µ2
1(u) − µ2

i (u)) = 0,∀i, ensuring asymptotic size equal to

α. On the other hand, when one or more competitor models are strictly dominated by

the benchmark, the rule provides a test with asymptotic size between 0 and α. Under the

alternative, Zn,τ diverges to (plus) infinity, while the corresponding bootstrap statistic has

a well defined limiting distribution, ensuring unit asymptotic power.
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From the above discussion, we see that the bootstrap distribution provides correct

asymptotic critical values only for the least favorable case under the null hypothesis; that is,

when all competitor models are as good as the benchmark model. When maxi=2,...,m

∫
U (µ2

1(u)−

µ2
i (u))φ(u)du = 0, but

∫
U (µ2

1(u)− µ2
i (u))φ(u)du < 0 for some i, then the bootstrap critical

values lead to conservative inference. An alternative to our bootstrap critical values in this

case is the construction of critical values based on subsampling, which is briefly discussed

in Section 4.3. Heuristically, construct T − 2bT statistics using subsamples of length bT ,

where bT /T → 0. The empirical distribution of these statistics computed over the various

subsamples properly mimics the distribution of the statistic. Thus, subsampling provides

valid critical values even for the case where maxi=2,...,m

∫
U (µ2

1(u) − µ2
i (u))φ(u)du = 0, but∫

U (µ2
1(u) − µ2

i (u))φ(u)du < 0 for some i. This is the approach used by Whang et al.

(2004), for example, in the context of testing for stochastic dominance. Needless to say, one

problem with subsampling is that unless the sample is very large, the empirical distribution

of the subsampled statistics may yield a poor approximation of the limiting distribution of

the statistic. Another alternative approach for addressing the conservative nature of our

bootstrap critical values is the Hansen’s SPA approach (see Section 4.2 and Hansen (2005)).

Hansen’s idea is to recenter the bootstrap statistics using the sample mean, whenever the

latter is larger than (minus) a bound of order
√

2T log log T . Otherwise, do not recenter the

bootstrap statistics. In the current context, his approach leads to correctly sized inference

when maxi=2,...,m

∫
U (µ2

1(u) −µ2
i (u))φ(u)du = 0, but

∫
U (µ2

1(u) − µ2
i (u))φ(u)du < 0 for some

i. Additionally, his approach has the feature that if all models are characterized by a sample

mean below the bound, the null is “accepted” and no bootstrap statistic is constructed.

Part III: Forecast Evaluation Using Density Based Predictive Accuracy

Tests That Are Not Loss Function Dependent: The Case of Stochastic

Dominance

All predictive accuracy tests outlined in previous two parts of this chapter are loss functions

dependent, i.e. loss functions such as mean squared forecast error (MSFE) and mean
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absolute forecast error (MAFE) must be specified prior to test construction. Evidently,

given possible misspecification, model rankings may change under different loss functions.

In the following section, we introduce a novel criterion for forecast evaluation that utilizes

the entire distribution of forecast errors, is robust to the choice of loss function, and ranks

distributions of forecast errors via stochastic dominance type tests.

4.7 Robust forecast comparison

Jin et al. (2017) (JCS) introduce the concepts of general-loss (GL) forecast superiority and

convex-loss (CL) forecast superiority and develop tests for GL (CL) superiority that are

based on an out-of-sample generalization of the tests introduced by Linton et al. (2005).

The JCS tests evaluate the entire forecast error distribution and do not require knowledge

or specification of a loss function, i.e. tests are robust to the choice of loss function. In

addition, parameter estimation error and data dependence are taken into account, and

heterogeneity that is induced by distributional change over time is allowed for.

The concepts of general-loss (GL) forecast superiority and convex-loss (CL) forecast

superiority are defined as follow:

(1) For any two sequences of forecast errors u1,t and u2,t, u1,t general-loss (GL) outper-

forms u2,t, denoted as u1 �G u2, if and only if E(g(u1,t)) ≤ E(g(u2,t)), ∀g(·) ∈ GL(·), where

GL(·) are the set of general loss functions with properties specified in Granger (1999); and

(2) u1,t convex-loss (CL) outperforms u2,t, denoted as u1 �C u2, if and only if E(g(u1,t)) ≤

E(g(u2,t)), ∀g(·) ∈ CL(·), where CL(·) are the set of general loss functions which in addition

are convex.

These authors also establish linkages between GL(CL) forecast superiority and first(second)

order stochastic dominance, allowing for the construction of direct tests for GL(CL) forecast

superiority. Define

G(x) = (F2(x)− F1(x))sgn(x),

where sgn(x) = 1, if x ≥ 0, and sgn(x) = −1, if x < 0. Here, Fi(x) denotes the cumulative
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distribution function (CDF) of ui, and

C(x) =

∫ x

−∞
(F1(t)− F2(t))dt1{x<0} +

∫ ∞
x

(F2(t)− F1(t))dt1{x≥0}

Assumption 7.1: g(·) : < → <+ is continuously differentiable, except for finitely many

points, with derivative ∇g(·), such that ∇g(z) ≤ 0, ∀z ≤ 0 and ∇g(z) ≥ 0, ∀z ≥ 0.

PROPOSITION 7.1 (From Propositions 2.2 and 2.3 in Jin et al. (2017)): With Assump-

tion 7.1, E(g(u1,t)) ≤ E(g(u2,t)), ∀g(·) ∈ GL(·), if and only if G(x) ≤ 0, ∀x ∈ X , where X is

the union of the supports of all forecast errors. Further, if
∫ x
−∞(F1(t)− F2(t))dt1{x<0} and∫∞

x (F2(t) − F1(t))dt1{x≥0} are well defined for each x ∈ X , then E(g(u1,t)) ≤ E(g(u2,t)),

∀g(·) ∈ CL(·) if and only if C(x) ≤ 0, ∀x ∈ X .

The above proposition establishes a clear mapping between GL (CL) forecast superiority

and first (second) order stochastic dominance. Intuitively, if we construct a graph that

contains a plot of G(x) against x. When u1 �G u2, we expect all points lie below or on the

zero line. Similarly, if we construct a graph that contains a plot of C(x) against x. When

u1 �C u2, we expect all points lie below or on the zero line as well.

The hypotheses tested in JCS are:

H0 : max
i=1,...,m

E(g(u0,t+1)− g(ui,t+1)) ≤ 0

versus

HA : max
i=1,...,m

E(g(u0,t+1)− g(ui,t+1)) > 0

Given Proposition 7.1, the above hypotheses can be restated as

HTG
0 = HTG−

0 ∩HTG+
0 :

(
max

i=1,...,m
(F0(x)− Fi(x)) ≤ 0, ∀x ≤ 0

)
∩
(

max
i=1,...,m

(Fi(x)− F0(x)) ≤ 0, ∀x > 0
)
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versus

HTG
A = HTG−

A ∪HTG+
A :

(
max

i=1,...,m
(F0(x)− Fi(x)) > 0, for some x ≤ 0

)
∪
(

max
i=1,...,m

(Fi(x)− F0(x)) > 0, for some x > 0
)

for the case of GL forecast superiority. Similarly, for the case of CL forecast superiority, we

have that:

HTC
0 = HTC−

0 ∩HTC+
0 :

(
max

i=1,...,m

∫ x

−∞
(F0(x)− Fi(x)) ≤ 0, ∀x ≤ 0

)
∩
(

max
i=1,...,m

∫ ∞
x

(Fi(x)− F0(x)) ≤ 0, ∀x > 0
)

versus

HTC
A = HTC−

A ∪HTC+
A :

(
max

i=1,...,m

∫ x

−∞
(F0(x)− Fi(x)) > 0, for some x ≤ 0

)
∪
(

max
i=1,...,m

∫ ∞
x

(Fi(x)− F0(x)) > 0, for some x > 0
)

Of note is that the above null (alternative) is the intersection (union) of two different

null (alternative) hypotheses because of a discontinuity at zero. The test statistics for GL

forecast superiority are constructed as follows:

TG+
n = max

i=1,...,k
sup
x∈X+

√
nĜi,n(x)

and

TG−n = max
i=1,...,k

sup
x∈X−

√
nĜi,n(x)

with

Ĝi,n(x) =
(
F̂0,n(x)− F̂i,n(x)

)
sgn(x)

where F̂i,n(x) denotes the empirical CDF of ui, with

F̂i,n(x) = n−1
T∑
t=R

1{ui,t≤x}

Similarly, the test statistics for CL forecast superiority are constructed as follows:

TC+
n = max

i=1,...,k
sup
x∈X+

√
nĈi,n(x)
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and

TC−n = max
i=1,...,k

sup
x∈X−

√
nĈi,n(x)

with

Ĉi,n(x) =

∫ x

−∞

(
F̂0,n(x)− F̂i,n(x)

)
dx1{x<0} −

∫ ∞
x

(
F̂i,n(x)− F̂0,n(x)

)
dx1{x≥0}

=
1

n

n∑
t=1

{
[(u0,t − x)sgn(x)]+ − [(ui,t − x)sgn(x)]+

}
,

where [z]+ = max{0, z}.

Note that in order to reduce computation time, it may be preferable to construct ap-

proximations to the suprema in statistics TG+, TG−, TC+ and TC− by taking maxima

over some smaller grid of points, XN = {x1, ..., xN}, where N < n. Theoretically, the dis-

tribution theory is unaffected by using this approximation, as the set of evaluation points

becomes dense in the joint support. We now require the following assumptions.

Assumption 7.2: (i) {(yt, Zti )′} is a strictly stationary and α-mixing sequence with mixing

coefficient α(l) = O(l−C0), for some C0 > max{(q − 1)(q + 1), 1 + 2/δ}, with i = 0, ...,m,

where q is an even integer that satisfies q > 3(gmax + 1)/2. Here, gmax = max{g0, ..., gm}

and δ is a positive constant;

(ii) For i = 0, ...,m, fi(Z
t
i , θi) is differentiable a.s. with respect to θi in the neighborhood

Θ†i of θ†i , with sup
θ∈Θ†0

||∇θfi(Zti , θi)||2 <∞;

(iii) The conditional distribution of ui,t given Zti has bounded density with respect to the

Lebesgue measure a.s., and ||ui,t||2+δ <∞, ∀i.

Assumption 7.2*: (i) {(yt, Zti )′} is a strictly stationary and α-mixing sequence with mix-

ing coefficient α(l) = O(l−C0), for some C0 > max{rq/(r − q), 1 + 2/δ}, with i = 0, ...,m,

and r > q > gmax + 1;

(ii) For i = 0, ...,m, fi(Z
t
i , θi) is differentiable a.s. with respect to θi in the neighborhood

Θ†i of θ†i , with sup
θ∈Θ†0

||∇θfi(Zti , θi)||r <∞;

(iii) ||ui,t||r <∞, ∀i.
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Assumption 7.3: ∀ i and t, θ̂i,t satisfies θ̂i,t − θ†i = Bi(t)Hi(t), where Bi(t) is a ni × Li

matrix and Hi(t) is Li × 1, with the following:

(i) Bi(t)→ Bi a.s., where Bi is a matrix of rank ni;

(ii) Hi(t) = t−1
∑t

s=1 hi,s, R
−1
∑t

s=t−R+1 hi,s and R−1
∑R

s=1 hi,s for the recursive, rolling

and fixed schemes, respectively, where hi,s = hi,s(θ
†
i );

(iii) E(hi,s(θ
†
i ) = 0; and

(iv) ||hi,s(θ†i )||2+δ <∞, for some δ > 0.

Assumption 7.4: (i) The distribution function of forecast errors, Fi(x, θi) is differentiable

with respect to θi in a neighborhood Θ†i of θ†i , ∀i;

(ii) ∀i, and ∀ sequences of positive constants {ξn : n ≥ 1},

such that ξn → 0, supx∈X sup
θ: ||θ−θ†i ||≤ξn

||∇θFi(x, θ)sgn(x)−∆†i (x)|| = O(ξηn), for some

η > 0, where ∆†i (x) = ∇θFi(x, θ†i )sgn(x);

(iii) supx∈X ||∆
†
i (x)|| <∞,∀i.

Assumption 7.4*: (i) Assumption 5.4 (i) holds;

(ii) ∀i, and ∀ sequences of positive constants {ξn : n ≥ 1},

such that ξn → 0, supx∈X sup
θ: ||θ−θ†i ||≤ξn

||∇θ{
∫ x
−∞ Fi(t, θ)dt1{x<0}+

∫∞
x (1−Fi(x, θ))dt1{x≥0}}−

Λ†i (x)|| = O(ξηn), for some η > 0, where

Λ†i (x) = ∇θ{
∫ x

−∞
Fi(t, θ

†
i )dt1{x<0} +

∫ ∞
x

(1− Fi(x, θ†i ))dt1{x≥0}};

(iii) supx∈X ||Λ
†
i (x)|| <∞,∀i.

Assumptions 7.2* and 7.4* are needed for testing HTC
0 . Note that the first and third

assumptions parallel those imposed by Linton et al. (2005), with the uniform continuity

conditions in Assumptions 7.4 and 7.4* strengthened. Assumption 7.2 is needed in order to

verify the stochastic equicontinuity of the empirical process, for a class of bounded functions
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that appears in the TGn test. Assumption 7.2* introduces a trade-off between mixing sizes

and moment conditions, and is used to verify the stochastic equicontinuity result for the

possibly unbounded functions that appear in the TCn test. For further details, see Hansen

(1996b). Assumptions 7.4 and 7.4* differ in the amount of smoothness required. For the

CL forecast superiority test, less smoothness is required. Finally, it is worth stressing that

Assumptions 7.3 and 7.5 are identical to Assumptions 1 and 2 in McCracken (2000a), re-

spectively.

PROPOSITION 7.2 (From Theorem 3.1 in Jin et al. (2017)): (i) With Assumptions 4.3,

7.2–7.4, under HTG−
0 ,

TG−n
d−→ max

i=1,...,m
sup
x∈Bg−i

[g̃i(x) + ∆i0(x)′Biυi0 −∆10(x)′B1υ10], if TG− = 0

−→ −∞, if TG− < 0

Under HTG+
0 ,

TG+
n

d−→ max
i=1,...,m

sup
x∈Bg+i

[g̃i(x) + ∆i0(x)′Biυi0 −∆10(x)′B1υ10], if TG+ = 0

−→ −∞, if TG+ < 0

where Bg−i = {x ∈ X− : F0(x) = Fi(x)} and Bg+i = {x ∈ X+ : F0(x) = Fi(x)}, and(
g̃i(·), υi0, υ10

)′
is a mean zero Gaussian process with covariance function given by

Ωg
i (x1, x2) = lim

T→∞
E


υgi,n(x1, θ

†
i )− υ

g
0,n(x1, θ

†
0)

√
nH i,n

√
nH0,n




υgi,n(x2, θ
†
i )− υ

g
0,n(x2, θ

†
0)

√
nH i,n

√
nH0,n


′

with H i,n = n−1
∑T

t=RHi(t), and υgi,n(x, θ) is an empirical process defined as

υgi,n(x, θ) =
1√
n

T∑
t=R

{1{ui,t+τ (θ)≤x} − Fi(x, θ)}sgn(x)
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(ii) With Assumptions 7.2*, 7.3, 7.4* and 7.5, under HTC−
0 ,

TC−n
d−→ max

i=1,...,m
sup
x∈Bc−i

[c̃i(x) + Λi0(x)′Biυi0 − Λ10(x)′B1υ10], if TC− = 0

−→ −∞, if TC− < 0

Under HTC+

0 ,

TC+
n

d−→ max
i=1,...,m

sup
x∈Bc+i

[c̃i(x) + Λi0(x)′Biυi0 − Λ10(x)′B1υ10], if TC+ = 0

−→ −∞, if TC+ < 0

where Bc−i = {x ∈ X− :
∫ x
−∞(Fi(x) − F0(x))dx1{x<0}} and Bc+i = {x ∈ X+ :

∫∞
x (F0(x) −

Fi(x))dx1{x≥0}}. Similarly,
(
c̃i(·), υi0, υ10

)′
is a mean zero Gaussian process with covariance

function given by

Ωc
i (x1, x2) = lim

T→∞
E


υci,n(x1, θ

†
i )− υc0,n(x1, θ

†
0)

√
nH i,n

√
nH0,n




υci,n(x2, θ
†
i )− υc0,n(x2, θ

†
0)

√
nH i,n

√
nH0,n


′

where υci,n(x, θ) is an empirical process defined as

υci,n(x, θ) =
1√
n

T∑
t=R

{∫ x

−∞
[1{ui,t+τ (θ)≤s} − Fi(s, θ)]ds1{x<0}

−
∫ ∞
x

[1{ui,t+τ (θ)≤s} − Fi(s, θ)]ds1{x≥0}

}

The asymptotic null distributions of TG+
n (TG−n ) and TC+

n (TC−n ) depend on the true

model parameters and the distribution functions, Fi(·), i = 1, ...,m, which implies that the

asymptotic critical values for TG+
n (TG−n ) and TC+

n (TC−n ) cannot be tabulated. Therefore,

the stationary bootstrap is used to approximate the asymptotic null distributions of our

test statistics. (Note that the block bootstrap can also be used, as discussed in subsequent

research by Corradi, Sin and Swanson.) The objective is to utilize bootstrap procedure
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that mimics the asymptotic null distribution in the least favorable case, where F0(x) =

... = Fm(x), ∀x ∈ X .

Define the bootstrap statistic as:

TG∗+n = max
i=1,...,k

sup
x∈X+

√
n
(
Ĝ∗i,n(x)− Ĝi,n(x)

)
with

Ĝ∗i,n(x) =
(
F̂ ∗0,n(x)− F̂ ∗i,n(x)

)
sgn(x)

where F̂ ∗i,n(x) denotes the empirical CDF of resampled ui, i.e. u∗i . TG
∗−
n , TC∗+n and TC∗−n

can be defined analogously.

Assumption 7.6: The smoothing parameter, Sn, determining the mean block length in

stationary bootstrap satisfies 0 < Sn < 1, Sn → 0 and nS2
n →∞, as n→∞.

Assumption 7.7: For any arbitrary ni × 1 vector, λi, with λ
′
iλi = 1, and ∀i, we have (i)

Pr
[

lim sup
t≥R

n1/2 |λ′i(θ̂i,t − θ
†
i )|

(λ
′
iΣiλiloglog(λ

′
iΣiλi)n)1/2

= 1
]

= 1

for the recursive scheme, where Σi = Bi[limT→∞Var(n−1/2
∑T

t=R+1Hi(t))]B
′
i.

(ii)

Pr
[

lim sup
t≥R

R1/2 |λ′i(θ̂i,t − θ
†
i )|

(λ
′
iΣiλiloglog(λ

′
iΣiλi)R)1/2

= 1
]

= 1

for the rolling scheme, where Σi = Bi[limT→∞Var(R−1/2
∑T

t=R+1Hi(t))]B
′
i.

PROPOSITION 7.3 (From Corollary 3.3 in Jin et al. (2017)): With Assumptions 7.2–7.4,

7.6 and 7.7, and that (n/R)loglogR→ 0, as T →∞, then

ρ
(
L[ max
i=1,...,m

sup
x∈X+

√
n(Ĝ∗i,n(x)− Ĝi,n(x))|U1, ..., UT+τ ],

L[ max
i=1,...,m

sup
x∈X+

√
n(Ĝi,n(x)−Gi(x))]

)
n−→ 0
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and

ρ
(
L[ max
i=1,...,m

sup
x∈X−

√
n(Ĝ∗i,n(x)− Ĝi,n(x))|U1, ..., UT+τ ],

L[ max
i=1,...,m

sup
x∈X−

√
n(Ĝi,n(x)−Gi(x))]

)
n−→ 0

where ρ is any metric metrizing weak convergence, L[·] denotes the probability law of the

corresponding Hilbert space valued random variable, and Ut = (yt, Z
t
0, ..., Z

t
m)′.

Therefore, the asymptotic null distribution of TG+
n (TG−n ) can be approximated by

TG∗+n − TG+
n (TG∗−n − TG−n ). Arguments in favor of using the stationary bootstrap with

TC+
n and TC−n are similar.

To conduct inference, use the following approach due to Holm (1979). Define qG
+

n,Sn
(1−α)

and qG
−

n,Sn
(1−α) to be the (1−α)-th sample quantile of TG∗+n and TG∗−n , respectively. Then,

estimate bootstrap p-values, pG
+

B,n,Sn
= 1

B

∑B
s=1(TG∗+n ≥ TG+

n ), and finally use the following

rules.

Rule TG: Reject HTG
0 at level α, if min

{
pG

+

B,n,Sn
, pG

−
B,n,Sn

}
≤ α/2;

Rule TC: Reject HTG
0 at level α, if min

{
pC

+

B,n,Sn
, pC

−
B,n,Sn

}
≤ α/2;

Note that Holm bounds are equivalent to Bonferroni bounds when there are only two

hypotheses. From Proposition 7.3, it follows immediately that this test,when implemented

using the stationary bootstrap, has asymptotically correct size only in the least favorable

case, under the null, and is asymptotically biased towards certain local alternatives.

PROPOSITION 7.4 (From Theorem 4.1 in Jin et al. (2017)): With Assumptions 4.3,

7.2–7.4, under HTG
A ,

Pr(TG+
n > qG

+

n,Sn(1− α))→ 1, as T →∞

and

Pr(TG−n > qG
−

n,Sn(1− α))→ 1, as T →∞
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The above proposition ensures unit asymptotic power under the alternative. Similar

arguments apply to TC+
n and TC−n as well. For details of the power of TG+

n (TG−n ) and

TC+
n (TC−n ) tests against a sequence of contiguous local alternatives converging to the null,

at rate n−1/2, see Jin et al. (2017).
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