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ABSTRACT OF THE DISSERTATION

ESSAYS IN EMPIRICAL ASSET PRICING

By Hao Chang

Dissertation Director:

Professor Yangru Wu and Professor Rong Chen

This dissertation includes four essays on empirical asset pricing as well as the applica-

tion of state-space models in this area. The first essay seeks to reconcile the debate about the

price effect of risk-neutral skewness (RNS) on stocks. We document positive predictabil-

ity from short-term skewness, consistent with informed trading, and negative predictability

from long-term skewness, consistent with skewness preference. A term spread on RNS

captures different information from long- and short-term contracts, resulting in stronger

predictability. The quintile portfolio with the lowest spread outperforms that with highest

spread by 14.64% annually. The information difference between short- and long-term op-

tions explains the pricing difference of their RNS, providing a potential resolution to the

debate.

The second essay uses a novel sequential Monte Carlo method, the mixture Kalman

filter (MKF), to detect periodically collapsing rational bubbles in stock prices. The stock-

dividend-bubble system is expressed in a state-space model with Markov regime switching.

We apply the MKF to estimate the model for simulated and actual stock data. Our method-

ology captures the bubble dynamics more successfully than the model without regime-

switching, and identifies major bubble collapsing episodes in our sample period.
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The third essay explains why the correlation between oil price and 10-year TIPS break-

even inflation increased dramatically after the financial crisis. We develop a shadow-rate

no-arbitrage term structure model to fit nominal yields, TIPS yields and inflation forecasts,

and estimate it using the Extended Kalman Filter. Based on the model estimation, we

provide empirical evidences showing that the puzzle is because when interest rates bind

at the zero lower bound, investors doubt the effectiveness of monetary policy to control

deflation. We justify this mechanism theoretically under a general equilibrium framework.

The last essay develops an arbitrage-free Nelson-Siegel term structure model with eco-

nomic factors, estimates the model using the Kalman Filter and reveals the information

content of treasury term premium through model decomposition. We find foreign carry

trades and cross-border investments have been the key drivers of negative treasury term

premium in recent years due to monetary divergence. This poses challenges to conventional

term structure models using US-exclusive macro variables to explain treasury dynamics.
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Chapter 1

The Information Content of the Term Structure of
Risk-Neutral Skewness

(Jointly with Paul Borochin and Yangru Wu)

1.1 Introduction

The behavioral and rational models of Brunnermeier et al. (2007), Mitton and Vorkink

(2007), and Barberis and Huang (2008), in which investors exhibit a preference for secu-

rities with positive skewness, have motivated a large empirical literature on whether posi-

tively skewed securities are overpriced and earn negative average excess returns. As most

historical estimates of skewness provide poor forecasts of future skewness (Boyer et al.,

2010), empirical studies commonly use option data to estimate investor expectations of

skewness.

To date, existing studies have produced mixed evidence for whether option-implied

risk-neutral skewness carries a positive or negative premium in the cross-section of equity

returns. Consistent with skewness preference theory, Conrad et al. (2013) find a negative

relation between risk-neutral skewness (RNS) and future equity returns. This approach

implicitly assumes that option and stock markets reflect the same information and that

option-implied skewness proxies for expected underlying skewness. Thus, positive option-

implied skewness combined with skewness preference among investors in the underlying

asset leads to low expected returns.

This assumption is challenged by findings of information differences between the op-

tion and equity markets. Ait-Sahalia et al. (2001) demonstrate that the risk-neutral density
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estimated from the S&P 500 options is different from a density inferred from historical

index returns, suggesting that the option market includes a “peso problem” jump dynamic

unobserved in the underlying asset. Consistent with an information difference between two

markets, other studies contradict Conrad et al. (2013) by demonstrating that RNS can pos-

itively predict future stock returns (Xing et al., 2010; Bali and Murray, 2013; Stilger et al.,

2017; Bali et al., 2019). While Bali and Murray (2013) focus on the returns of a hedged as-

set with skewness exposure, part of their analysis confirms a positive relationship between

RNS and the underlying asset. Stilger et al. (2017) suggest that the difference between the

Conrad et al. (2013) results and others are driven by the aggregation of RNS across time

periods. In this study, we consider the role of the option maturity horizon in defining the

relationship of RNS with the cross-section of underlying returns.

Xing et al. (2010) suggest that informed option traders purchase out-of-the-money

(OTM) put options before downward jumps in the underlying stock, which drives up the

volatility of OTM puts and consequently leads to a steeper slope of the implied volatility

function translating to a more negative RNS per Bakshi et al. (2003). Furthermore, Stilger

et al. (2017) find this trading activity mainly concentrates on stocks that are perceived as

relatively overpriced by investors and costly to sell short. Therefore, hedging demand for

underlying positions or speculation on pessimistic expectations causes informed investors

to buy OTM puts or sell OTM calls, also pushing down RNS. As information is transmitted

from the option market to the stock market, these relatively overpriced stocks with low RNS

subsequently underperform, producing a positive relation between RNS and future realized

equity returns. Bali et al. (2019) find that option-implied skewness is positively related to

future expected returns from analyst forecasts and implied cost of capital calculations.

Our study contributes to this ongoing debate between two empirical views on RNS by

considering its term structure: we find that short-term options have more informed traders

consistent with the view that positive RNS predicts positive underlying returns because it

reflects market beliefs. We also find that long-term options have more uninformed hedgers
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consistent with the skewness preference view that positive RNS predicts negative underly-

ing returns because it results in overbidding. We build the intuition for the potential to rec-

oncile informed trading and skewness preference using a multi-period equilibrium model

where investors have heterogeneous skewness preferences and information sets, detailed in

Section 1.2.

Importantly, our theoretical results show that when there is a small proportion of in-

formed investors, the risk premium for RNS is negative. In this case, RNS is predominantly

determined by uninformed investors’ expected skewness for assets. Uninformed investor

preferences thus result in more demand and lower subsequent return for positively-skewed

assets. Conversely, when the proportion of informed traders increases, the RNS risk pre-

mium turns positive. In this case, RNS reflects informed traders’ superior information

about the true skewness of assets. Thus for a stock with higher RNS, its true skewness

should be higher than what uninformed investors expect. When the information becomes

public afterwards, the demand for the stock increases, pushing up its price and generating

a positive relation between RNS and subsequent return.

We empirically test whether the direction of RNS return predictability varies with the

maturity of the options used to compute it. In other words, we test the predictability of

the underlying returns across the term structure of RNS, as we hypothesize that the propor-

tion of informed traders may vary across options with different maturities. If differently

informed investor types have different maturity preferences and thereby produce market

segmentation across option maturities, the resulting RNS estimated across different matu-

rity horizons may contain distinct information sets. While we cannot directly map trades

to investor types, we can conjecture that informed traders may prefer to use short-term op-

tions due to lower costs while hedgers may need longer-maturity contracts. Our findings

confirm this conjecture.

We use the OptionMetrics Volatility Surface file from 1996 to 2015 to calculate monthly
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RNS at the 1-, 3-, 6-, 9-, and 12- month maturities for a large sample of U.S. stocks. We

estimate RNS for each security at each time horizon using the model-free method of Bak-

shi et al. (2003) and analyze the cross-sectional predictive relationship between the RNS at

different maturities with subsequent monthly underlying returns. The results indicate that

this relationship exhibits a monotonic pattern, which is significantly positive for the short-

term (1 month), insignificant for the middle-term (6 months), and significantly negative for

the long-term (12 months). In particular, a strategy that is long the equal-weighted quin-

tile portfolio with the highest 1-month RNS and short the equal-weighted quintile portfolio

with the lowest 1-month RNS yields a risk-adjusted1 return (alpha) of 0.95% per month

with a t-statistic of 5.78, while the same strategy based on 12-month RNS produces a corre-

sponding alpha of -0.56% per month with a t-statistic of -2.52. The positive predictability of

future equity returns from short-term RNS is consistent with informed trading (Xing et al.,

2010) and hedging (Stilger et al., 2017) interpretations, while the negative predictability

from the long-term RNS is consistent with skewness preference (Bali and Murray, 2013;

Conrad et al., 2013).

Since the short-term RNS has positive predictive power for returns while long-term

RNS has the opposite, we capture the different information sets on the two ends of the

RNS term structure by constructing a term spread of RNS defined as 12-month RNS minus

1-month RNS. We demonstrate that this spread effectively combines the two information

sources and yields even stronger negative return predictability for the underlying asset using

a portfolio sorting approach. A trading strategy that is long the equal-weighted quintile

portfolio with the highest term spread and short the equal-weighted quintile portfolio with

the lowest term spread yields an alpha of -1.22% per month with a t-statistic of -6.61 after

controlling for the Fama and French 3 factors, Carhart momentum factor, and Pastor and

Stambaugh (2003) liquidity factor. We confirm these results with a Fama and MacBeth

1We use the FFCP5 benchmark model that combines the Fama and French (1993) beta, size, and book-to-
market factors, the Carhart (1997) momentum factor, and the Pastor and Stambaugh (2003) liquidity factor.
Alternative benchmarks produce similar results.
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(1973) cross-sectional regression.

To further explore the extent of the information impounded in the term structure of

RNS, we test whether short- and long-term RNS have differing predictive power for firms’

standardized unexpected earnings (SUE) using a Fama and MacBeth (1973) regression.

We find that the short-term RNS is a positive predictor of SUE, suggesting that it captures

option traders’ superior information about earnings. Simultaneously, we find that long-

term RNS is a negative predictor of SUE, consistent with overvaluation due to skewness

preference. As a robustness check for the information content of RNS across different ma-

turities, we also test its ability to predict future stock price crashes. Consistent with the

previous results, we find a significantly negative (positive) relationship between the short-

term (long-term) RNS and future price crashes. Notably, the predictive power of short-term

RNS persists for at least 6 months. Furthermore, consistent with Stilger et al. (2017), we

demonstrate that the positive predictability of future equity returns from short-term RNS

is strongest for overpriced and short-sale constrained underlying stocks, indicating that the

short-term RNS reflects hedging demand. In addition, we provide some direct evidence

showing that the long-term RNS reflects skewness preference. We compare long-term

RNS with two recent well-known physical skewness measures exhibiting negative predic-

tive power for equity returns consistent with the skewness preference literature, maximum

daily return over the previous month (MAX) (Bali et al., 2011) and expected idiosyncratic

skewness (EIS) (Boyer et al., 2010). We find that our long-term RNS measure not only

has strong positive correlation with these physical skewness proxies, but also complements

them in identifying low expected return stocks with lottery-like payoffs.

We find that the term structure of RNS is largely explained by two principal factors,

a level and a slope, similar to findings for the yield term structure by Nelson and Siegel

(1987), Litterman and Scheinkman (1991) and Christensen et al. (2011). The RNS term

structure slope factor, which is most significantly related to both cross-sectional and time-

series stock returns, is significantly related to the Welch and Goyal (2008) macroeconomic
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state variables for the equity premium in vector autoregressive models.

We help to reconcile the ongoing debate about the direction of the skewness anomaly

by demonstrating the existence of a term structure of RNS and its differential information

content across option maturities. We find evidence consistent with informed trader prefer-

ence for hedging underlying stock positions or speculating by trading short-term options.

This interpretation is intuitive for several reasons. First, mispricing in the stock market can

be corrected over a short time horizon (Bali et al., 2011). Second, short-term options are

more sensitive to the variation of the underlying stock’s price, thus providing more protec-

tion to hedgers or a more leveraged position to speculators. Third, the short-term option

market is usually more liquid and thus imposes lower trading costs.

The RNS implied by short-term options deviates away from the expected skewness

of the underlying stock due to informed trading. As the option term increases, informed

traders have monotonically decreasing hedging/speculating demand for the corresponding

option contracts due to increasingly unfavorable timing, exposure, and liquidity character-

istics. Being increasingly less affected by informed trading, these longer-term options more

closely mirror the distribution of the underlying stock. As a consequence, the skewness im-

plied by the long-term options tends to reflect the equity market’s expected skewness of the

underlying stock and carries a negative risk premium. These patterns are consistent with

Holowczak et al. (2006), who find that the informativeness of option prices increases when

option trading activity generates net sell or buy pressure on the underlying stock and even

more so when the pressure coincides with deviations between the stock and options prices.

Thus, the price effect of RNS across its term structure is determined by a combination of

informed option traders’ hedging/speculative demand and the equity market’s expectations

about the skewness of the underlying stock.

The remainder of this paper is organized as follows. Section 1.2 provides the theoret-

ical motivation for this research. Section 1.3 describes the data and variable construction.
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Section 1.4 documents the differing explanatory power of the short- and long-term RNS

on the cross-section of equity returns. Section 1.5 illustrates a novel anomaly, the term

spread of RNS, that captures the difference in the information content of RNS at different

maturities. Section 1.6 examines the information content in the term structure of RNS by

relating it to earning surprises, price crashes, and investors’ hedging demands. Section 1.7

identifies an RNS term structure similar to that of interest rates, and finds that the “slope”

factor has a significant relation with macroeconomic variables related to expected equity

returns. Section 1.8 concludes.

1.2 Theoretical Model

In this section we use an equilibrium model to show how informed trading and skew-

ness preference can be reconciled with each other and can lead to different pricing effects

on future stock returns. Our model builds on the equilibrium asset pricing model of Mit-

ton and Vorkink (2007), who use a one-period economy with two type of investors with

heterogeneous preference for skewness to generate the negative risk premium of skewness.

The first type, which is referred as a “Traditional Investor”, has a mean-variance utility

function. The second type, the “Lotto Investor”, has identical preferences to the traditional

investor over mean and variance but also has preference for skewness. We extend Mitton

and Vorkink (2007) by changing the one-period economy to a multi-period economy and

dividing the lotto investor type into two subtypes, the “Informed Lotto Investor” and “Unin-

formed Lotto Investor”. Informed lotto investors are able to estimate the skewness of risky

securities more accurately than uninformed ones. By making these extensions, we bring

the role of informed trading into the asset pricing framework and demonstrate its ability to

generate a positive skewness risk premium.

Following Mitton and Vorkink (2007), we assume that the investable universe consists

of three risky assets and a riskless bond that pays an interest rate r per period. V denotes the
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covariance matrix of the three risky assets one period ahead. In addition, the distribution of

asset returns are allowed to be skewed. In a departure from Mitton and Vorkink (2007), we

assume that there are n periods in the economy and that all risky securities pay off at time

n. The current time is time 0. In this example we set n = 10 without loss of generality.

The future wealth of each investor type is denoted as W and its mean, variance and

skewenss are E(W ), V ar(W ) and Skew(W ). We assume all types of investors know V.

At a certain time t, they believe the distribution of asset returns are i.i.d in each of the

remaining periods from time t to time n.

The “Traditional investor” has a standard quadratic utility function over wealth

U(W ) = E(W )− 1

2τ
V ar(W ), (1.1)

where W is the future wealth and τ (τ > 0) is the coefficient of risk aversion. The “In-

formed Lotto investor” has a mean-variance-skewness utility function:

U(W ) = E(W )− 1

2τ
V ar(W ) +

1

3φ
Skew(W ). (1.2)

Here φ (φ > 0) is the coefficient controlling preference for skewness. A preference for

positive skewness is indicated by positive values of φ. Here we assume the informed Lotto

investors know the true value for the idiosyncratcic skewness and coskewness of all risky

assets so they can estimate Skew(W ) precisely.

The third investor type, the “Uninformed Lotto investor”, has the same utility function

but his/her estimate for the idiosyncratic skewness of a stock may be biased. Therefore,

this type’s estimate for the third moment of the future wealth, ̂Skew(W ), which measures

the downside risk of his/her future wealth, may deviate from its true value Skew(W ). The
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corresponding preference is given by

U(W ) = E(W )− 1

2τ
V ar(W ) +

1

3φ
̂Skew(W ). (1.3)

For simplicity, we assume every uninformed lotto investor believes his/her skewness

estimate is correct and he/she doesn’t know about the existence of informed lotto investors.

We further assume that traditional investors don’t care about the third moment of their

wealth distribution when making investment decision. Thus, whether or not they are in-

formed about the skewness of the joint distribution of risky assets has no effect on asset

prices and asset holdings of this investor type in equilibrium.

Let X
(t)
j =

[
x

(t)
j,1, x

(t)
j,2, x

(t)
j,3

]′
be an 3 × 1 vector that denotes every j-th type investor’s

dollar amount in each of the three risky assets at time t. Let R(t,n) =
[
R

(t,n)
1 , R

(t,n)
2 , R

(t,n)
3

]′
denote the average return of each period from time t to time n in equilibrium. The wealth

these investments generate at time n isW (n)
j = W

(t)
j (1+(n−t)r)+X

(t)
j

′
(n−t)(R(t,n)−r1).

Here W (t)
j represents every j-th type investor’s endowment at time t. For simplicity, we

assume simple interest in this economy.

The objective of each investor type is to maximize his/her utility function, such as

equation (1.1), (1.2) or (1.3), subject to their budget constraint. In the spirit of Mitton and

Vorkink (2007), a traditional investor’s demand function is given by,

X
(t)
T = τ ((n− t)V)−1 (n− t)(R(t,n) − r1) = τV−1(R(t,n) − r1). (1.4)

Here subscript T signifies traditional investors. As the distribution of 3 risky assets are

believed to be i.i.d, (n− t)V are believed to be the covariance matrix of 3 risky assets from

time t to time n.
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For an informed lotto investor, the solution is described by the following equation,

(n− t)(R(t,n) − r1)− 1

τ
(n− t)VX

(t)
IL

+
1

φ

[(
x

(t)
IL,1(n− t)M1 + x

(t)
IL,2(n− t)M2 + x

(t)
IL,3(n− t)M3

)
X

(t)
IL

]
= 0, (1.5)

where subscript IL signifies informed lotto investors and M1, M2, and M3 are matrices

defined as

Mi =



Mi11 Mi12 · · · Mi1n

Mi21 Mi22 · · · Mi2n

...
... . . . ...

Min1 Min2 · · · Minn


(1.6)

with i = 1, 2, ..., n and where arbitratry elements of Mi, denoted as Mijk, is denoted as

Mijk = E
[
(Ri − R̄i)(Rj − R̄j)(Rk − R̄k)

]
and R̄i = E [Ri]. Ri is the return of Asset i in

one period. Three general types of skewness elements exist in the ‘M ’ skewness matrices:

Miii, which represents the idiosyncratic skewness of Asset ‘i’, Miik, which represents the

curvilinear interaction of Asset ‘i’ and ‘j’, and Mijk, which represents the triplicate product

moment of the Assets ‘i’, ‘j’ and ‘k’. The above equation (1.5) can be simplified as,

(R(t,n) − r1)− 1

τ
VX

(t)
IL +

1

φ

[(
x

(t)
IL,1M1 + x

(t)
IL,2M2 + x

(t)
IL,3M3

)
X

(t)
IL

]
= 0. (1.7)

Here we assume informed lotto investors know M1, M2, and M3. While uninformed lotto

investors may not have such information. Their estimation of M1, M2, and M3 at time t

are denoted as M̂
(t)
1 , M̂

(t)
2 , and M̂

(t)
3 . Therefore, for uninformed lotto investor, the solution

is implied by the following equation,

(R(t,n) − r1)− 1

τ
VX

(t)
UL +

1

φ

[(
x

(t)
UL,1M̂

(t)
1 + x

(t)
UL,2M̂

(t)
2 + x

(t)
UL,3M̂

(t)
3

)
X

(t)
UL

]
= 0. (1.8)

We assume without loss of generality that the total investment in each risky asset at time
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0 is D = 100, and that the total number of investors is N = 300. Among all investors, the

proportion of traditional investors and informed lotto investors are PT and PIL, respectively.

Therefore, the proportion of uninformed lotto investors is PUL = 1−PT −PIL. We fix the

the proportion of traditional investors to be 1/2, i.e., PT = 1/2. And by default we set the

proportion of each type of lotto investors to be 1/4, i.e., PIL = PUL = 1/4. To clear the

market, at time t, we have the following conditions:

X
(t)
T NPT + X

(t)
ILNPIL + X

(t)
ULN(1− PT − PIL) = D1. (1.9)

By solving equations (1.4), (1.7), (1.8), and (1.9), we can obtain the equilibrium return

from time t to time n for 3 risky assets, R(t,n), and the equilibrium holdings for risky assets

of one investor of all types, X
(t)
T , X

(t)
UL and X

(t)
IL.

Table 1.1 presents the parameters we use to obtain the numerical solutions to our the-

oretical equilibrium model. Following Mitton and Vorkink (2007), we use the same pa-

rameters of the risk-aversion and skewness preference parameters (τ, φ) and the covariance

matrix (V) elements, and we assume that the return distributions of Assets 1 and 3 are

completely characterized by the first two moments (i.e., no skewness). Asset 1 represents a

large-cap stock with low variance and high average correlation to other stocks, and Asset 3

represents a small-cap stock with high variance and low average correlation to other stocks.

However, the return distribution of Asset 2 is allowed to be skewed, and its skewness is al-

lowed to be idiosyncratic, which is equivalent to setting Mijk = 0 for all i, j, k except for

the case i = j = k = 2.

We assume the information aboutMijk is known to all investors, with the exception that

informed and uninformed lotto investors may have a different understanding of the value

of M222, i.e., these two types of investors may have different opinions about how skewed

the return distribution of Asset 2 is. Given these specifications, equation (1.7) and (1.8) can
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be simplified as,

(R(t,n) − r1)− 1

τ
VX

(t)
IL +

1

φ
[0,M222x

(t)
IL,2

2
, 0]′ = 0, (1.10)

and

(R(t,n) − r1)− 1

τ
VX

(t)
UL +

1

φ
[0, M̂

(t)
222x

(t)
UL,2

2
, 0]′ = 0. (1.11)

We assume that at time 0, informed lotto investors learnt the true value of M222, while

the uninformed lotto investors are not able to do this until time 1. The uninformed lotto

investors’ estimation for M222 at time 0 is denoted as M̂ (0)
222. Under this framework, we can

study the role of informed trading in determining the equilibrium return of assets from time

0 to time 1, R(0,1), especially the equilibrium return of Asset 2, R(0,1)
2 .

We compute R(0,1) in two steps. First, at time 0, we solve the equilibrium average

one-period return of risky assets from time 0 to time n, R(0,n). Second, at time 1, we solve

the average one-period return from time 1 to time n, R(1,n). Then R(0,1) is computed as

R(0,1) = nR(0,n) − (n− 1)R(1,n).

The RNS of Asset 2 at time 0 can be proxied by the idiosyncratic skewness of Asset

2 implied by the equilibrium asset prices, assuming all lotto investors, including both in-

formed and uninformed, have the same information. We denote the RNS of Asset 2 by

M̃222. It satisfies the following equation,

(R(t,n) − r1)− 1

τ
VX

(t)
L +

1

φ
[0, M̃

(t)
222x

(t)
L,2

2
, 0]′ = 0, (1.12)

where X
(t)
L is the average holding of each lotto investor, which can be calculated as X

(t)
L =(

PIL
PIL+PUL

)
X

(t)
IL +

(
PUL

PIL+PUL

)
X

(t)
UL. Therefore, M̃ (t)

222 is given by

M̃
(t)
222 = φ

[
1

τ
VX

(t)
L − (R(t,n) − r1)

]
2

/x
(t)
L,2

2
. (1.13)
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Our main focus is to study relationship between the RNS of Asset 2 at time 0, M̃ (0)
222,

and the subsequent return of Asset 2 from time 0 to time 1, R(0,1)
2 under different scenar-

ios. To begin with, we study the special scenario where M̂0
222 = M222, i.e., uninformed

investors know the true value of the idiosyncratic skewness of Asset 2 at time 0. In this

case, uninformed lotto investors and informed lotto investors have the same demand for

each risky asset in equilibrium and can be classified as the same type of investors, which is

the “Lotto Investor” in Mitton and Vorkink (2007). Thus we expect a negative correlation

between M̃ (0)
222 and R(0,1)

2 , as suggested by Mitton and Vorkink (2007). The asset returns

and asset holdings of one investor of each type given different RNS values are shown in

the Figure 1.1. We can see that as the RNS of Asset 2 increases, lotto investors have more

demand for holding Asset 2 and the return of Asset 2 decreases.

The above relation between RNS and subsequent return of Asset 2 also holds when

the change of RNS is purely driven by the change of skenwess estimate of uninformed

lotto investors, while the true value of skewness is fixed. For example, let us set the true

value of Asset 2’s skewness to be 0.1, i.e., M222 = 0.1, and let uninformed lotto investors’

skewness estimate M̂ (0)
222 vary from -0.3 to 0.3. Then the corresponding asset returns and

asset holdings of one investor of each type given different RNS values are shown in Figure

1.2. In this case, when RNS increases, the skewness estimate of uninformed lotto investors

increases, so the demand for holding Asset 2 from uninformed lotto investors increases

and Asset 2 tends to be overpriced. Therefore, the return of Asset 2 goes down. At the

same time, the demand for holding Asset 2 from informed lotto investors and traditional

investors decreases.

When the change of RNS is purely driven by the change of true value of skewness

and the skewness estimate of uninformed lotto investors is fixed, the informed trading may

play a dominant role and result in a positive relationship between RNS and stock return.

For example, let us set the skewness estimate of uninformed lotto investors to be 0.1, i.e.,

M̂
(0)
222 = 0.1, and set the true value of skewness M222 to vary from -0.3 to 0.3, then the
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corresponding asset returns and asset holdings of one investor of each type given different

RNS values are shown in the Figure 1.3. In this case, when RNS increases, the true value

of skewness increases, so the demand for holding Asset 2 from informed lotto investors in-

creases and that from uninformed lotto investors and traditional investors decreases. When

the buying demand from informed lotto investors becomes large enough, the RNS reflects

the predictive information for the true skewness. Higher RNS suggests that true skewness

should be higher, so there should be more demand for Asset 2 after uninformed lotto in-

vestors realize the true skewness of Asset 2 at time 1. Correspondingly its price goes up at

time 1. Because of their superior information, informed lotto investors buy Asset 2 from

other investors in advance (at time 0) and make profits when its price increases at time 1.

In reality, the change of RNS can be driven by the changes of both true skewness and

uninformed lotto investors’ skewness estimate. So its relation with future stock return

can be either positive or negative, depending on how much effects the inside information

has on trading in equilibrium, e.g., how much the proportion of informed traders is. To

study this question, we let the proportion of informed lotto investors change and check

the correlation between RNS and future stock return. And we generate RNS series by

changing both true skewness value and uninformed lotto investors’ skewness estimate. In

particular, we generate M̂ (0)
222 by the uniform distribution between -0.15 to 0.15 and M222

by the uniform distribution between -0.3 to 0.3. We keep the proportion of lotto investors

to be 50%, but let the proportion of informed lotto investors over all lotto investors change

from 0 to 100%. Given specific values of M̂ (0)
222, M222 and the proportion of informed lotto

investors, we compute the RNS at time 0 and return from time 0 to time 1 for Asset 2.

Therefore, given a certain proportion of lotto investors, we can compute the correlation

between RNS and Asset 2’s subsequent return. The correlation against the proportion of

informed lotto investors over all lotto investors is shown in the Figure 1.4.

Based on Figure 1.4, when there is a small proportion of informed lotto investors, the

relation between RNS and subsequent asset return is negative. This is because given a small
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number of informed lotto investors, RNS is predominately driven by the skewness estimate

of uninformed lotto investors. Thus it mainly reflects the skewness estimate of uninformed

investors as well as the their demand for holding Asset 2. In this case, informed traders

successfully hide their inside information in asset prices. When the proportion increases

to some threshold (16%), the correlation becomes positive and continues to increase when

the proprotion increases. This results from the fact that as the number of informed lotto

investors increases, RNS starts to reflect the informed traders’ predictive information about

Asset 2’s skewness. The correlation reaches the peak when the proportion of informed

traders arrives at a certain point (67%). After that if the number of informed traders con-

tinue to increase, the correlation decreases. The correlation becomes negative after the pro-

portion exceeds 88%, because as most of lotto investors are informed lotto investors, their

belief about Asset 2’s skewness tends to become “public information” rather than ”inside

information”, and skewness preference starts to dominate the relation between RNS and

stock return again. When the proportion reaches 100%, all lotto investors are “informed

investors” and the true skewness of Asset 2 becomes completely public. Thus there is no

ground for informed trading, and the correlation drops to a very negative value, which is

close to -1 in this example.

For simplicity, we do not formally bring options into this equilibrium model. If we

extend the model by formally adding options at different moneyness, we can expect to

obtain similar findings as options provide more vehicles for hedging or speculation and

help to back out the implied skewness of stocks. Our empirical findings in the remaining

part of this essay about the negative risk premium of the long-term RNS are consistent

with the negative relation between RNS and future stock return when the proportion of

informed investors is small as shown in Figure 1.4. Furthermore, our findings about the

positive risk premium of short-term RNS in the remaining part of this essay are consistent

with the positive relation between RNS and future stock return when informed traders

are more prevalent, as shown in Figure 1.4. These empirical results are consistent with the
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theoretical equilibrium, as we will demonstrate that short-term RNS contains more accurate

firm-specific information than long-term RNS does.

1.3 Data and Variable Construction

We first describe the data and the methods used to compute risk-neutral skewness across

different maturities, as well as other firm characteristics for each individual stock. Our

sample is from January 1996 to December 2015.

1.3.1 Risk-Neutral Skewness

On the last trading day of each month, firm i’s option-implied skewness for a given ma-

turity is calculated using the model-free methodology of Bakshi et al. (2003). To compute

the RNS τ periods ahead, we need to use the authors’ method to compute the τ -period value

of payoffs to the second, third, and fourth power of the underlying stock’s risk neutral log

returns. To implement this approach in practice, OTM call and put options with continuous

strikes expiring in τ periods would be required. However, traded options are available only

at irregular strikes and maturities, and thus option-implied risk-neutral skewness measures

at a constant maturity are unlikely to be observed since option maturities decay daily but

contracts are issued at weekly frequency at most. To deal with this data issue, studies using

risk-neutral moments (see, e.g., Bakshi et al., 2003, Conrad et al., 2013, and Stilger et al.,

2017) aggregate daily options data that falls in a window of time to maturity τ , computing

RNS for a horizon equal to the mean of maturities within the group. For example, Stilger

et al. (2017) use daily prices for all OTM options with τ between 10 and 180 days to cal-

culate option-implied skewness with an average maturity across different stocks of 86.56

trading days. If more than one contract with different τs are available for options with

a specific strike price, the authors choose the option with the smallest τ . We denote this

method as “maturity bin” method.
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One drawback of the “maturity bin” method is that options with different moneyness

have different maturities within each bin, which cause the implied risk-neutral density with

an average τ to actually contain information for horizons different from τ . For instance,

suppose that the spot price is $100, and of contracts falling in the τ bin from 10 to 180 days,

the shortest available maturity for an OTM put option with strike price $80 is 30 days, while

that for OTM call option with strike price $120 is 150 days. By using the “maturity bin”

method, information impounded in the one-month put and five-month call options would

be reflected in the option-implied risk-neutral density with an average τ close to 3 months.

Since the main purpose of this paper is to explicitly investigate information differences

across the term structure of RNS, this method prevents a clean decomposition by maturity.

To mitigate this issue, we instead use standardized option implied volatilities in the

Volatility Surface file from OptionMetrics. The file contains the interpolated volatility

surface for each security on each day, obtained using a kernel smoothing algorithm. The

Volatility Surface file encompasses information on standardized call and put options with

maturity of 30, 60, 91, 122, 152, 182, 273, 365, 547, and 730 calendar days, at deltas of

0.20, 0.25, 0.30, 0.35, ..., 0.75, and 0.80 (with similar but negative deltas for puts). A

standardized option is included only if enough traded option prices are available on that

date to accurately interpolate the required values. The traded options data is first organized

by maturity and moneyness and then interpolated by a kernel smoother to generate an

implied volatility value at each of the specified interpolation grid points. In addition to

option price information such as implied volatility, option premium, and strikes, a measure

of the accuracy of the implied volatility calculation, denoted as dispersion, is also provided

for each security/maturity/moneyness combination. A larger dispersion indicates a less

accurate interpolation.

We use all standardized OTM options maturing in 30, 91, 152, 273, and 365 days to

calculate RNS for 1, 3, 6, 9, and 12 months respectively, denoted as RNS1M, RNS3M,

RNS6M, RNS9M and RNS12M. The OTM call (put) options are options with deltas of
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0.45 (-0.45), 0.40 (-0.40), 0.35 (-0.35), 0.30 (-0.30), 0.25 (-0.25), and 0.20 (-0.20). To opti-

mally execute the tradeoff between excluding less accurate data while keeping the sample

as large as possible, we filter out stocks of which at least one implied volatility for a money-

ness/maturity combination has a dispersion measure that is larger than 0.22. In unreported

robustness checks, we have examined filtering rules with different dispersion thresholds

and found that both stricter and looser rules produce results similar to those reported in

the subsequent analysis. In addition, we only keep securities that have traded options with

non-missing trading volume and non-zero open interests from the OptionMetrics price data

file. Finally, we use the trapezoidal rule to compute the integrals to evaluate the quadratic,

cubic, and quartic contracts following Bakshi et al. (2003).

Of the five resulting maturities, we define the 1-month and 12-month to be the short-

term and long-term RNS, respectively. To integrate the different information contained

in these two variables we also define the term spread of RNS (RNSTS) as the difference

between the long-term and short-term RNS.

1.3.2 Other Firm Characteristics

To compute portfolio returns and stocks’ idiosyncratic volatilities, we collect daily and

monthly stock returns, market values and trading volumes from the Center for Research

in Security Prices (CRSP). We calculate market value (MV) as the the closing share price

times the number of shares outstanding. We obtain the annual book value of the firm from

COMPUSTAT and then compute the book-to-market ratio (BM) as the the ratio between

book value and market value. We also compute a series of control variables such as stock

illiquidity (ILLIQ) proxied by Amihud’s (2002) price impact ratio, stock return momentum

(MOM) and reversal (REV).

2The mean (95% quantile) for the dispersions of implied volatility for 1, 3, 6, 9, and 12 months are 0.0320
(0.1250), 0.0196 (0.0706), 0.0162 (0.0556), 0.0138 (0.0486) and 0.0132 (0.0463) respectively.
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To test the firm-specific information impounded into the RNS at different maturities,

we construct two variables representing significant firm-specific events. One is the stan-

dardized earnings surprise variable (SUE), which is defined as the actual earnings minus

analysts’ forecast scaled by end-of-quarter price following Livnat and Mendenhall (2006).

The other is the monthly price crash indicator (CRASH), which equals one for a firm-year

that experiences one or more crash days during the month, and zero otherwise. A crash is

defined as a 3-σ negative daily return relative to daily historical volatility based on Hutton

et al. (2009), Kim et al. (2011a) and Kim et al. (2011b) and detailed in Appendix 1.A.

To control for option liquidity and price pressure issues, we also collect data on op-

tion volume and open interests from the option price file in IvyDB’s OptionMetrics. To

proxy for the hedging demand of options we construct three measures: the put-to-all option

volume ratio (PAOV), the aggregate open interest ratio (AOI), and the Zmijewski (1984)

Z-score, following Stilger et al. (2017). In addition, we use the maximum daily return

over the last month (MAX) and expected idiosyncratic skewness (EIS) as proxies for stock

overvaluation and lottery-like payoffs, and idiosyncratic volatility (IVOL) relative to the

Fama and French (1993) model as a proxy for short-sale constraint. The construction of

firm characteristics and option measures is detailed in Appendix 1.A.

1.3.3 Summary Statistics

Table 1.2 presents summary statistics for the RNS of different maturities, the term

spread of RNS, option volume and open interests, as well as all firm-specific characteristics.

We report the number of firm/month observations, means, medians, standard deviations as

well as 5th and 95th percentiles across stocks during the sample period.

Carr and Wu (2003) and Foresi and Wu (2005) observe that the risk-neutral distribution

of index returns becomes more negatively skewed as option maturity increases. We find

this pattern also exists for individual stocks. Table 1.2 shows that the mean and median
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of RNS become more negative with maturity. To the extent that the RNS reflects investor

beliefs, this is consistent with expectations of higher probability of disaster or crash events

in individual equities. One possible reason is that as the time horizon increases, risk-averse

investors require larger compensation for bearing crash risk. Since the risk-neutral density

is the product of the risk premium and physical density adjusted by risk-free rate, the long

term risk-neutral density becomes more negative than short term risk-neutral density does.

An alternative explanation is that the short-term density contains different information than

the long-term.

Table 1.3 shows the correlation among our main variables. The lower triangular of

the correlation matrix presents Pearson correlations between each pair, while the upper

triangular of the correlation matrix reports the non-parametric Spearman correlation matrix.

As maturity increases, the corresponding RNS has less correlation with 1-month RNS.

For example, as maturity increases from 3 months to 12 months, the Pearson (Spearman)

correlation between the corresponding skewness and RNS1M decreases from 0.50 (0.54)

to 0.25 (0.30). This is consistent with a divergence between the information contents in the

short-term and long-term risk-neutral skewness.

1.4 RNS Term Structure and Return Predictability

We demonstrate that the RNS of different maturities has differential predictive power

for future returns of the underlying asset. We then consider how this difference in pre-

dictability matches the contradictory results in the empirical literature, advancing a poten-

tial way to reconcile the negative predictability consistent with skewness preference (Con-

rad et al., 2013; Bali and Murray, 2013) with the positive predictability consistent with

informed trading (Xing et al., 2010) and hedging demand (Stilger et al., 2017).

We document the differential predictive power of short- vs long-term RNS using a port-

folio sorting approach. Each month, we rank all sample firms in ascending order according
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to their RNS estimates on the last trading day and assign them to quintile portfolios. This

sorting procedure results in 5 equal-weighted portfolios per RNS measure. Since we have

five observations in the RNS term structure, we obtain a total of 25 portfolios, with returns

sampled at monthly frequency over the period February 1996 through December 2015. We

fit common benchmark models to the portfolios to test for abnormal performance indica-

tive of predictive power across the RNS term structure. The t-values in the estimations are

computed using Newey-West standard errors with five lags to account for possible autocor-

relation and conditional heteroscedasticity.

In Table 1.4, we present the results of abnormal portfolio returns relative to our bench-

marks for equal-weighted portfolios across the RNS term structure. Panels A, B, C, D, and

E report abnormal returns over the subsequent month of the portfolios sorted by 1-, 3-, 6-,

9-, and 12-month RNS, respectively. We use five standard asset pricing models as bench-

marks: the Capital Asset Pricing Model (CAPM), the Fama and French 3-factor model

(FF3) (Fama and French, 1992; Fama and French, 1993), the Fama and French 5-factor

(FF5) model (Fama and French, 2015), the Carhart 4-factor model (Carhart, 1997), and the

Fama and French 3-factor, Carhart momentum factor, and Pastor and Stambaugh (2003)

liquidity factor (FFCP5) model.

Panel A of Table 1.4 reports the performance of portfolios sorted by 1-month RNS

(RNS1M). Portfolio returns illustrate a strong positive relation between 1-month RNS and

future stock returns over the subsequent month. A zero-cost trading strategy that longs the

highest quintile and shorts the lowest quintile portfolio exhibits significant positive alphas

relative to the CAPM, FF3, FF5, FFC4 and FFCP5 models at the 1% level. In particu-

lar, the zero-cost high-low strategy has significantly positive monthly alphas relative to all

benchmark models ranging from 0.83% (9.96% annualized) relative to FF3 model to 0.95%

(11.4% annualized) relative to FFCP5 model. In addition, as we move from the lowest to

highest RNS1M quintile portfolio, we find that there is a monotonic increase in abnormal

performance. These results provide preliminary evidence that RNS calculated using the
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short-term 1-month standardized options has the same predictability as the skewness mea-

sure documented in Xing et al. (2010) and Stilger et al. (2017). The positive predictive

power for future abnormal returns suggests that our 1-month RNS might contain informed

option investors’ speculative or hedging demand.

Panel B of Table 1.4 reports the performance of portfolios sorted by 3-month RNS

(RNS3M). Portfolio returns have a weak positive relation between 3-month RNS and future

stock returns over the subsequent month. While the zero-cost trading strategy that longs

the highest quintile and shorts the lowest quintile portfolio exhibits positive and significant

alphas for some models, it is insignificant for others. In addition, the scale of alphas is much

lower than that of alphas produced by 1-month RNS. These results show that as option

maturity increases, the positive relation between RNS and future stock returns becomes

weaker.

Panel C of Table 1.4 reports the performance of portfolios sorted by 6-month RNS

(RNS6M). Portfolio returns exhibit a weak relation between 6-month RNS and future stock

returns over the subsequent month. The zero-cost hedging strategy results in insignificant

alphas for all models except the FF3. Thus, as the option maturity increases to 6 months,

the positive relation between RNS and future stock returns disappears.

A notable reversal occurs in Panel D of Table 1.4. Here we report the performance

of portfolios sorted by 9-month RNS (RNS9M). Portfolio returns show a negative relation

between 9-month RNS and future stock returns. The zero-cost strategy that longs the high-

est quintile and shorts the lowest quintile portfolio exhibits negative alphas, significant for

all models except the FF5. These results show that as the term increases to 9 months, the

relation between RNS and future stock returns becomes negative.

Finally, Panel E of Table 1.4 reports the performance of portfolios sorted by 12-month

RNS (RNS12M). Portfolio returns illustrate a strong negative relation between 12-month

RNS and future stock returns over the subsequent month. The zero-cost trading strategy
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that longs the highest and shorts the lowest quintile portfolio exhibits significantly negative

alphas for all benchmark models, ranging from -0.46% (-5.52% annualized) at the 5%

significance level relative to the FF5 model to -0.86% (-10.32% annualized) at the 1%

significance level relative to the FF3 model.

This significant negative predictability is a sharp reversal from the positive predictabil-

ity at the short end of the term structure of RNS and the insignificant predictability at its

middle. Its significance is a proof that these results are not driven by data quality issues po-

tentially introduced by the illiquidity of long-term option contracts. If the data were simply

becoming less reliable for high option maturities, we would expect to see a continuation

of insignificant predictive power at the long end of the term structure. These results also

provide preliminary evidence that RNS calculated from 12-month standardized options is

consistent with skewness preference.

Taken together, we find that short-term RNS positively predicts future stock returns,

which is consistent with the prior empirical findings on skewness proxying for informed

trading (Xing et al., 2010) and hedging demand (Stilger et al., 2017), while long-term RNS

predicts negative future stock returns which matches the empirical findings on skewness

preference (Conrad et al., 2013; Bali and Murray, 2013). The variability of the results one

gets depending on the maturity of options one uses points to a potential resolution of the

contradiction between these two sets of empirical findings. One potential explanation for

this phenomenon is that investors use short-term options to hedge or speculate based on

their information advantage. We will investigate the validity of this explanation in Section

1.6.

1.5 The Term Spread of RNS

Section 1.4 documents the different predictive directions of long- and short-term RNS

for future stock returns. To capture these different sources of information from both long-
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and short-term RNS, we construct a new variable, the term spread of RNS (RNSTS), which

is defined as 12-month RNS minus 1-month RNS. As shown in Table 1.3, RNSTS is posi-

tively related with RNS12M and negatively related with RNS1M by construction. Combin-

ing the negative predictive power of RNS12M and the opposite of the positive predictive

power of RNS1M for future returns as shown in Section 1.4, RNSTS should borrow infor-

mation from both ends of the term structure and serve as a significantly negative predictor

of future returns. In this section, we use both portfolio sorting and cross-sectional regres-

sion methodologies to show that the term spread possesses much stronger predictive power

for future equity returns than either the short-term or the long-term RNS in isolation.

1.5.1 Portfolio Sorts

In this subsection, we test the ability of the term spread of RNS (RNSTS) to integrate

information from both ends of the RNS term structure using a portfolio sorting approach.

Each month we rank all sample firms in ascending order according to their RNSTS mea-

sured on the last trading day, and assign them into RNSTS quintiles. We then employ

this ranking to construct an equal-weighted portfolio for each quintile over the subsequent

month, forming 5 portfolios with returns sampled at the monthly frequency over the period

February 1996 through December 2015. We fit the CAPM, FF3, FF5, FFC4, and FFCP5

benchmarks and compute alpha t-values using Newey-West standard errors with five lags

to control for possible autocorrelation and conditional heteroscedasticity in returns.

In Table 1.5, we present the equal-weighted portfolio performance of monthly quintile

portfolio based on RNSTS, the long-short term spread on RNS. From the table, Portfolio

returns illustrate a strong negative relation between the term spread and future portfolio

returns over the subsequent month. The zero-cost trading strategy that longs the highest

quintile and shorts the lowest quintile portfolio exhibits negative alphas relative to all five
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models which are significant at the 1% level. The zero-cost strategy has significantly neg-

ative monthly alphas ranging from -1.07% (-12.84% annualized) relative to the FF5 model

to -1.33% (-15.96% annualized) relative to the FF3 model. As we move from the lowest

to highest RNSTM quintile portfolio, we find that there is a monotonic decrease in per-

formance. These results support our conjecture that the term spread of RNS combines

price-relevant information from the short- and long-term RNS resulting in improved neg-

ative predictability on future stock returns. Consistent with this, the scale of the abnormal

returns produced by this new anomaly variable is greater than that of the 1-month RNS and

12-month RNS individually. Notably, they are also greater than most existing anomalies in

the general asset pricing literature.

1.5.2 Fama-MacBeth Regression

Next, we conduct Fama and MacBeth (1973) cross-sectional regressions to confirm the

return predictability of RNSTS, defined as the 1-month to 12-month term spread of RNS,

while controlling for other confounding variables including market beta, firm size, book-to-

market ratio, momentum, reversal, idiosyncratic volatility and illiquidity. We also control

for characteristics of the underlying stock, its lagged price per share and return, as well as

option liquidity characteristics, its volume and open interest. Table 1.6 reports the cross-

sectional coefficients for monthly excess stock returns on lagged term spread of RNS and

a set of firm characteristics during the period 1996-2015.

Model (1) regresses the cross-section of monthly returns only on the term spread of

RNS, RNSTS. Consistent with prior results, the term spread has a cross-sectional coeffi-

cient of -0.0100 which is significant at the 1% level, confirming the previously observed

negative predictability. To control for RNSTS incorporating the effects of other known

predictive variables, model (2) controls for market beta, firm size, book-to-market ratio,

momentum, reversal and the Amihud (2002) illiquidity measure. The magnitude of the
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coefficient on the RNSTS term spread becomes smaller at -0.0071 but still remains signif-

icant at the 1% level. This result further confirms the unique information content of the

term spread of RNS in predicting stock returns relative to known predictive variables.

Model (3) further controls for trading characteristics of the underlying, its lagged price

per share, return and idiosyncratic volatility. Model (4) controls for option liquidity by

including option volume and open interest over the past month. The magnitudes of the co-

efficients of the term spread RNSTS become somewhat smaller still at -0.0066, but remain

highly significant at the 1% level.

To summarize, both the portfolio sorting and cross-sectional regression strategies demon-

strate robust negative predictability of returns from the term spread of RNS. Furthermore,

this predictive effect is much stronger than that of using only short- or long-term RNS,

indicating that the divergent information in two RNS measures is integrated by the term

spread. In the next section, we further examine the firm-specific information that drives

these patterns.

1.6 The Information Content of the RNS Term Structure

Given the opposite directions of return predictability stemming from short- and long-

term risk neutral skewness, we next consider how this predictability may come about. In

this section we examine the relationship between these two RNS measures and firms’ earn-

ing surprises, likelihood of price crashes, and investors hedging demand. These results,

taken with those in Section 1.4 and Section 1.5, help to complete the explanation we ad-

vance for the difference in return predictability across the RNS term structure. Specifically,

these results all point to it being caused by differences in information sets of customers

that drive demand for options at different points of the maturity continuum, resulting in

differential return predictability across the RNS term structure.
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1.6.1 Earnings Surprises and the Term Structure of RNS

The predictability of stock returns from short-term RNS is consistent with the informed

trading argument in Xing et al. (2010). We explore whether option traders’ superior infor-

mation about firm fundamentals becomes impounded into the short-term RNS and thereby

causes the positive predictive relationship between short-term RNS and firm performance.

To do this, we follow Xing et al. (2010) and conduct cross-sectional regressions to test

whether short-term RNS is a reliable predictor of earnings surprises, since this is a com-

mon and frequent source of news about the firm.

We use standardized unexpected earnings (SUE) to measure earnings surprises. SUE is

defined as actual earnings minus the most recent analysts’ forecast all scaled by stock price

following Livnat and Mendenhall (2006). Since the earnings data usually becomes avail-

able within the next quarter, at each month, we regress the cross-section of next quarter’s

SUEs on short-term RNS after controlling for long-term RNS and other variables. We then

aggregate all firm-specific coefficients of each month following the Fama and MacBeth

(1973) procedure and compute Newey-West standard errors with five lags.

Table 1.7 reports the cross-sectional coefficients for short-term RNS in explaining the

cross-section of SUEs over the next quarter, controlling for long-term RNS and a set of firm

characteristics, during the period 1996-2015. Model (1) regresses quarterly SUE on long-

and short-term RNS without controls. Consistent with Xing et al. (2010), the short-term

RNS has a positive cross-sectional coefficient of 0.0010 at the 5% significance level. To

isolate the potential effects of other predictive variables, model (2) adds market beta, firm

size, book-to-market ratio, momentum, reversal and the Amihud (2002) illiquidity measure

as controls. The coefficient on short-term RNS remains the same in both magnitude and

significance. Model (3) and Model (4) add stock and option trading characteristics respec-

tively. For both models, the coefficients of the short-term of RNS remain unchanged and

significant at 1% level. This positive predictive relationship suggests that option informed
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traders with private information about an upcoming negative SUE hedge this downside risk

(Stilger et al., 2017) or speculate (Xing et al., 2010) by buying short-term OTM puts or

selling short-term OTM calls. This increases the slope of the implied volatility function,

and therefore decreases the short-term RNS causing a positive relationship with SUEs.

In addition, Table 1.7 shows that coefficients of long-term RNS for all regression mod-

els are significantly negative, which suggests that negative long-term skewness predicts

higher future SUEs. This predictability is similar in direction to that of future stock re-

turns from long-term RNS, consistent with the skewness preference theory that implies a

negative risk premium for positive skewness. The long-term RNS’s similar predictabilities

on both future stock returns and earnings surprises is consistent with comovement in these

two quantities. In other words, it is evidence that the negative risk premium theorized by

skewness preference is driven by firm fundamentals.

1.6.2 Future Price Crashes and the Term Structure of RNS

We next examine the different information sets in long- and short-term RNS by con-

sidering their ability to predict the probability of a price crash. To do this we construct a

monthly price crash dummy for each firm, an indicator variable that equals one for a firm-

month that contains one or more crash days, and zero otherwise. Following Hutton et al.

(2009), Kim et al. (2011a) and Kim et al. (2011b), we define crash days as those in which

the firm experiences daily returns that are 3.09 (0.1% for normal distribution) standard

deviations below the mean daily return over the prior year.3

We again use the cross-sectional regression approach by first conducting a monthly

logistic regression of the future monthly price crash dummy on current short- and long-term

RNS, controlling for a set of firm characteristics. We then aggregate coefficients across all

months and compute the Newey-West standard errors with five lags for each coefficient.

3See Appendix 1.A for details.
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In Table 1.8, Column (1) reports the cross-sectional coefficients for the next month’s price

crash indicator on current month short- and long-term RNS.

Consistent with prior results, the coefficient of short-term RNS is significantly nega-

tive at the 1% level. This suggests that expectations of more negative news by informed

traders impounded in a more negative short-term RNS predicts that future price crashes

happen with greater probability. In addition, the coefficient of long-term RNS is signif-

icantly positive at the 1% level. This is consistent with skewness preference, according

to which investors require lower return for holding stocks with higher skewness. Given

the mechanical relationship of lower returns with higher probability of price crashes, the

positive relation between long-term RNS and future price crashes is as expected.

To examine how long these predictabilities on price crash will hold, we perform the

Fama and MacBeth (1973) cross-sectional regression of price crash indicator variables two

through six months ahead on short- and long-term RNS in the current month in Columns

(2) through (6) respectively. Among all these regressions, the coefficients of short-term

RNS remain significantly negative, indicating that the predictive power of short-term RNS

for avoiding price crashes persists for at least 6 months. The coefficients on long-term

RNS become insignificant, suggesting that the skewness preference effect of low expected

returns only persists for one month.

These results are consistent with Bates (1996), confirming the relation between short-

term RNS and jump processes. As emphasized by Cont and Tankov (2003) (Ch. 15.6),

strong skewness and smiles at short maturities can be generated by jump processes. We

next turn to the information content of long-term RNS regarding the underlying return

processes.
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1.6.3 Hedging Demand and the Term Structure of RNS

The prior results demonstrate that short-term RNS contains unique information about

future firms’ stock and fundamental performance, which suggests that informed traders

express their beliefs about underlying stocks primarily in the short-term option market.

In this section, following Stilger et al. (2017), we provide direct evidence that investors’

hedging demand for short-term options is reflected in the short-term RNS. This isolates

hedging demand as one of the drivers of the positive predictability of stock returns from

short-term RNS.

Following Bollen and Whaley (2004) and Garleanu et al. (2009), Stilger et al. (2017)

conjecture a mechanism by which hedging demand for options results in the positive rela-

tionship between their RNS estimate and future stock returns. They provide some tests for

the validity of this channel, the first of which is to consider whether stocks characterized

by higher hedging demand exhibit a more negative RNS value. The intuition is that higher

hedging demand for downside risk pushes up the price of the OTM put option (Garleanu

et al., 2009), which results in a more negatively skewed risk-neutral density. The second

test is whether the underperformance of the portfolio with the lowest RNS stocks is driven

by stocks that are relatively overpriced, which would be another driver of hedging or specu-

lative demand. The third test is whether the the underperformance of the portfolio with the

lowest RNS stocks is driven by stocks that are too hard to sell short, also driving demand

for options as an alternative to shorting. In this section, we conduct these tests for both

short- and long-term RNS measure.

Table 1.9 tests whether stocks characterized by higher hedging demand exhibit more

negative RNS values. Following Stilger et al. (2017), three measures are used as hedging

demand proxies: the ratio between aggregate put option volume and total option volume

(PAOV) (Taylor et al., 2009), the aggregate open interest across all options (AOI) (Hong

and Yogo, 2012), and the Z-score of Zmijewski (1984) (ZD) capturing default risk. In
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order to match the 1-month maturity of short-term RNS, only options with maturity from

10 to 45 days are used to calculate the PAOV and AOI. Analogously, in order to match the

12-month maturity of long-term RNS only options with maturity from 319 to 456 days are

used to calculate these two measures. Panel A of Table 1.9 reports the time-series average

of 1-month RNS for quintile portfolios sorted by investor hedging demand. As each of the

three hedging demand measures increases, short-term RNS decreases monotonically.

Panel B of Table 1.9 reports the time-series average of the 12-month RNS for quintile

portfolios sorted by investor hedging demand. As each of the three hedging demand mea-

sures increases, both short- and long-term RNS decrease monotonically. This pattern is sta-

tistically significant, as the average short- and long-term RNS in highest hedging demand

quintile is lower than that in lowest quintile at the 1% significance level. This confirms

that options with higher hedging demand have more negative RNS values as suggested by

Stilger et al. (2017).

Panel A-1 of Table 1.10 tests whether the underperformance of stocks with the lowest

1-month RNS (RNS1M) is driven by relative overpricing. It reports the performance of

double sorted portfolios by 1-month RNS and proxies for overvaluation for the sample

period from 1996 to 2015. We use the maximum daily stock returns over the previous

month (MAX) (Bali et al., 2011) and the expected idiosyncratic skewness (EIS) (Boyer

et al., 2010) as the overvaluation proxies. At the end of each month, we sort all stocks into

tercile portfolios in ascending order by RNS1M. Within each RNS1M tercile portfolio, we

create another set of tercile portfolios in ascending order based on the overvaluation proxy.

We find that among three portfolios of stocks with the lowest 1-month RNS, the portfolios

with highest MAX (EIS) underperform the portfolio with lowest MAX (EIS) by 1.0012

(0.9030)% per month at the 1% significance level. The underperformance of the portfolio

with the lowest 1-month RNS stocks is driven by the stocks exhibiting the highest degree

of overpricing.
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Panel A-2 of Table 1.10 tests whether short-sale constraints drive the underperformance

of the low 1-month RNS stocks. It reports the performance of double sorted portfolios by

1-month RNS and a proxy for short-selling constraint for the sample period from 1996 to

2015. The short-selling constraint is proxied by idiosyncratic volatility (IVOL) following

Wurgler and Zhuravskaya (2002). At the end of each month, we sort stocks into tercile

portfolios in ascending order by RNS1M. Within each RNS1M tercile portfolio, we further

sort the constituents into tercile portfolios in ascending order based on the short-selling

constraint. We find that among three portfolios of stocks with the lowest 1-month RNS,

the portfolio with highest short-selling constraint underperforms the portfolio with lowest

maximum return by 0.9498% per month at the 1% significance level. This indicates the

underperformance of the portfolio with the lowest 1-month RNS stocks is also driven by

stocks that are hard to short.

The results of these three tests in panel A of Table 1.9 and panel A of Table 1.10

show that hedging demand and short-sale constraint drive the return predictability of short-

term RNS. Combined with the findings in previous two subsections, we have established

evidence that short-term RNS contains both predictive information about the performance

of the firm, and is positively related to hedging demand. This supports the conclusion that

informed traders use short-term options to hedge downside risks or speculate on underlying

stocks that are relatively overpriced and hard to short.

Although the long-term RNS decreases with measures of hedging demand in Panel B

of Table 1.9, its behavior is inconsistent with hedging demand as shown in Panel B of Ta-

ble 1.10. The hedging demand interpretation implies a positive relation between RNS and

future stock return, inconsistent with the negative relation observed for long-term RNS.

To further investigate the relation between long-term RNS and overvaluation as well as

short-sale constraint, Panel B-1 of the Table 1.10 reports the performance of double sorted

portfolios by 12-month RNS and overvaluation proxies (MAX and EIS), while Panel B-2

reports that for double sorts by 12-month RNS and short-selling constraint (IVOL). We find
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the underperformance of the highest long-term RNS portfolio is mainly caused by stocks

that are overpriced and hard to short. For example, within the tercile portfolios with high-

est MAX, EIS, and IVOL, the highest 12-month RNS tercile portfolio underperforms the

lowest 12-month RNS tercile portfolio by 1.0015%, 0.7335%, and 0.9257%, respectively.

These results indicate that investors rarely use long-term options to hedge risk, which is

consistent with long-term options being inappropriate hedging or speculative instruments

if overpricing is corrected in the short term (Bali et al., 2011). Another possible reason for

hedgers’ reluctance in using long-term options is that long-term options have lower delta

than short-term options do, which make them provide less downside protection to hedgers

and less exposure to the underlying for speculators. Finally, investors face more trading

costs when hedging through long-term options, which are usually less liquid than the their

short-term counterparts.

1.6.4 Skewness Preference and Informed Trading

Under the assumption of common information across the stock and option markets and

the consequent absence of informed speculators and hedgers, both the short-term and long-

term RNS would reflect the equity market participants’ expected risk-neutral skewness for

the stock. The RNS across all maturities would thus bear the negative risk premium implied

by skewness preference. The significance of hedging demand and short-sale constraint

proxies in the short-term RNS portfolio performance is consistent with the activities of

informed hedgers and speculators. The positive relationship between short-term RNS and

future returns suggests that their participation in the short-term option market impounds

new material information in the short-term RNS resulting in different information sets and

risk premia across the RNS term structure.

The results in Panel E of Table 1.4, Table 1.7 and Table 1.8 all suggest that long-term

RNS carries a negative risk premium, consistent with skewness preference. This provides
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indirect evidence that long-term RNS is a good proxy of the underlying stocks’ expected

skewness. Panel B-1 of Table 1.10 provides additional evidence. The maximum daily

return over the previous month (MAX) and expected idiosyncratic skewness (EIS) can also

be interpreted as two physical skewness measures which proxy for lottery-like payoffs and

bear negative risk premium implied by skewness preference theory. Panel B-1 of Table

1.10 shows these two measures are negatively priced in the cross-section of stock returns,

consistent with Bali et al. (2011) and Boyer et al. (2010). These results also show that the

underperformance of the highest physical skewness portfolio, whether in terms of MAX or

EIS, is concentrated in stocks with the highest long-term RNS.

For example, in the tercile portfolios with the highest MAX and EIS, the highest 12-

month RNS portfolio underperforms the lowest 12-month RNS portfolio by 1.0015% and

0.7335%, respectively. The double-sorted highest MAX (EIS) and highest long-term RNS

portfolio underperform the double-sorted lowest MAX (EIS) and lowest long-term RNS

portfolio by 1.301% (0.9487%) per month. The performance of double-sorted portfolios

shows that the physical skewness measure and long-term risk-neutral skewness measure not

only have the same function in pricing stock returns, but also complement each other. By

combining both long-term risk-neutral and physical skewness measures, we construct the

portfolio that carries the most negative risk premium consistent with skewness preference

for its lottery-like payoffs.

To further demonstrate the relation between the term structure of RNS and the physical

skewness measure, Panels A and B of Table 1.11 show the average MAX and EIS of quin-

tile portfolios sorted by short-term and long-term RNS. These two panels show both long-

and short-term RNS have positive relation with physical skewness measure; however, sorts

on long-term RNS produce a greater variation in physical skewness. For example, the quin-

tile portfolio with the highest 12-month RNS has 0.0485 (t-statistic=33.12) higher average

MAX and 0.5810 (t-statistic=13.78) higher average EIS than the quintile portfolio with the

lowest 12-month RNS, while the corresponding MAX and EIS spreads for 1-month RNS
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are only 0.0099 and 0.2225 with lower t-statistics. This is consistent with the patten ob-

served in Table 1.3: as the maturity increases, the Pearson correlation between RNS and

MAX (EIS) increases from 0.05 (0.14) to 0.28 (0.35). These results are consistent with

the interpretation of long-term RNS as the more accurate representation of the underlying

stocks’ expected skewness. This difference between short-term and long-term RNS un-

derscores the importance of stochastic volatility and volatility asymmetries in underlying

return processes necessary to represent a term structure of the volatility surface and long-

term skewness (Bates, 1996; Barndorff-Nielsen, 1997; Barndorff-Nielsen and Shephard,

2001; Carr et al., 2003; Nicolato and Venardos, 2003).

1.7 The Factor Structure of the RNS Term Structure

The difference in predictive coefficients between short-term and long-term RNS for the

cross-section of returns observed in the preceding analysis implies that the term structure

of RNS itself contains information about the future distribution of the underlying asset. To

map this information content more formally, we conduct a factor analysis on the RNS term

structure to reduce its dimensionality and to identify the number of distinct informative

signals it contains. In doing so, we rely on prior insights from the interest rate term structure

literature.

1.7.1 The RNS Slope Factor and the Cross-section of Returns

Significant works in this literature, such as Nelson and Siegel (1987), Litterman and

Scheinkman (1991) and Christensen et al. (2011), find that yield curves are usually ex-

plained by the level, slope, and curvature factors. In the same spirit, we perform a factor

analysis on RNS measures across five fixed maturities at the 1, 3, 6, 9, and 12-month hori-

zons of all firm-month observations to check whether a similar factor structure exists.

We present the loadings of three extracted factors on five RNS measures in Figure 1.5.
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The first factor can be explained as the level factor of the RNS term structure, as it loads

positively on RNS of all terms. That is, an increase in the first factor tends to push up

the level of RNS of all maturities, though it affects the long-term RNS more. The second

factor has a positive loading on long-term RNS and a negative loading on short-term RNS,

thus it can be treated as the slope factor, which has a similar meaning to the term spread of

RNS. The increase of this slope factor tends to push up the long-term RNS and push down

the short-term RNS, creating the term spread of RNS identified earlier. The third factor

indicates the curvature of the RNS term structure because its loading on RNS is positive

only when the horizon of RNS reaches 6 month. The increase of third factor tends to push

up the middle-term RNS. We observe that the first two factors capture a total of 79.19% of

the variation of the RNS term structure, explaining 68.16% and 11.03% of it respectively.

The third factor explains only 1.71% of the variation in RNS term structure, indicating it is

unlikely to be meaningful.

We next explore how prior-month values of the RNS term structure factors affect the

current month’s cross-sectional excess underlying returns, summarizing the outcome in

Table 1.12. We consider several specifications, each with additional levels of controls.

Model (1) considers the explanatory power of the factors in isolation. Model (2) controls for

firms’ beta (BETA), market value (MV), book-to-market ratio (BM), momentum (MOM),

one-month reversal (REV),stock illiquidity proxied by Amihud (2002) price impact ratio

(ILLIQ). Model (3) additionally controls for lagged stock’s return (RET), price per share

(PRICE), and idiosyncratic volatility (IVOL). Model (4) additionally controls for option

trading volume (OPVOL) and open interest (OPEN).

Consistent with prior results, we find that the values of the level and slope factors

from the preceding month have opposite and significant coefficients in the cross-section

of excess returns at the 10% and 1% levels respectively. This explanatory power is robust

to the inclusion of size, value, systematic risk, liquidity, momentum, and reversal controls

defined above. The level factor has positive loadings on short-term RNS and long-term
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RNS, which have opposite pricing effects. The positive coefficient of the level factor on

future stock returns, significant at the 10% level, suggests that the short-term RNS’s positive

effect weakly dominates the long-term RNS’s negative effect. The negative cross-sectional

coefficient of the slope factor, significant at the 1% level, further confirms the similarity

between itself and the term spread of RNS. The curvature factor does not appear to be priced

in the cross-section of excess returns, which is consistent with its insignificant contribution

in explaining the variability of the RNS term structure and the negligible effect of middle-

term RNS on future equity returns. Among the three factors, the slope factor exhibits the

most significant predictive power on the cross-section of stock returns, indicating that the

slope factor captures the majority of the price information in the RNS term structure. This

analysis further confirms the importance of the term spread measure of RNS in explaining

the cross-section of equity returns.

1.7.2 An Economic State Variable Interpretation of the RNS Slope

Factor

The results in Table 1.12 above suggest that the RNS term structure slope factor con-

tains information about future stock returns similar to the RNS term spread. In this section

we establish the economic foundation for this factor using a vector autoregression (VAR)

analysis of macroeconomic state variables following the approach of Petkova (2006). We

include macroeconomic state variables that have a relation to the equity premium as de-

scribed in Welch and Goyal (2008).4 The VAR model uses monthly values of the equal-

weighted average of SLOPE,5 the RNS term structure slope factor across all optionable

stocks, MKTRP, the market risk premium as the S&P 500 return net of the risk-free rate,

EP, the log ratio of trailing 12-month S&P 500 earnings to current S&P price, TERM,

4We are grateful to Amit Goyal for providing these data on his website at http://www.hec.unil.ch/agoyal/.
5Substituting a value-weighted version of SLOPE in the analysis produces similar results, which we omit

for brevity.
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the term spread as the yield difference between long-term Treasury bonds and short-term

bills, and DEF, the default spread as the yield difference between BAA and AAA-related

corporate bond yields. We present the output of the VAR model in Table 1.13.

We observe that SLOPE is negatively related to last month’s MKTRP with a coefficient

of -0.0503, and positively related to the last month’s TERM and DEF spreads with coeffi-

cients of 0.1845 and 1.1063, all significant at the 1% level. It is furthermore weakly related

to last month’s EP ratio with a coefficient of 0.0037 significant at the 10% level, and auto-

correlated with a coefficient of 0.5653, statistically significant at the 1% level. Last month’s

SLOPE is also a predictor of both TERM and DEF spreads with coefficients of 0.0494 and

0.0173, both significant at the 1% level. These results suggest that the SLOPE factor only

reacts to last month’s market returns, but both predicts and is predicted by last month’s

bond term and default spreads.

To understand the economic magnitude, we estimate the implied risk premium for the

SLOPE factor. Based on the time series of monthly SLOPE, the standard deviation is

0.0187. According to Model (4) in Table 1.12, the coefficient of the SLOPE factor in

predicting next month return is -0.0742. Therefore, the estimated risk premium for a one

standard deviation in SLOPE is -1.67% per year (= −0.0742× 0.0187× 12).

Furthermore, we can estimate the impact of each economic factor on the SLOPE risk

premium based on Table 1.13. In particular, one standard deviation’s increase of MKTRP

(0.0426) results in a change of -0.0021 (−0.0503× 0.0426) in SLOPE. From Model (4) in

Table 1.12, the estimated risk premium for a one standard deviation in the MKTRP factor

is 0.19% (−0.0021× (−0.0742)×12). Similarly, we estimate the risk premiums caused by

a one standard deviation in the TERM and DEF factors to be -0.21% and -0.42% per year,

respectively.

To better understand which components of the SLOPE factor drive its relation with the

Welch and Goyal (2008) state variables, we also estimate VAR models with equal-weighted
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RNS at each of our five constant maturities in Tables 1.14 through 1.18. Since the SLOPE

factor is a linear combination of RNS at these maturities, this allows us to see which part of

the term structure of RNS drives the factor’s sensitivity to macroeconomic state variables.

The results in these tables show that the one-month (12-month) RNS is positively (neg-

atively) related to last month’s MKTRP at the 5% statistical significance level, suggesting

that short-term option investors bet on continuation of trends whereas long-term ones bet

on reversals. Last month’s values of TERM have a relation to current short-term 1-month

and 3-month RNS, with positive coefficients with statistical significance at the 5% level.

This is consistent with informed traders in the short-term market taking bullish positions

due to a positive signal about future economic growth. In contrast, only long-term 6-, 9-,

and 12-month RNS have a relation to future TERM spreads with positive coefficients sig-

nificant at the 1% level. Consistent with skewness preference theory, positive skewness

expectations imply a high demand for stocks. This shift away from long-term bonds to

stocks leads to an increase in the long-term bond yield and subsequently a high TERM

yield spread. Furthermore, only the one-month RNS component of SLOPE is significantly

related to the DEF spread. A high credit risk environment appears to lead short-term op-

tion investors to form a bearish market expectation, as indicated by the negative coefficient

of DEF in predicting 1-month RNS at the 1% significance level. On the other hand, one-

month RNS can negatively predict the DEF spread at the 5% significance level, consistent

with previous evidence that short-term option traders may have superior information about

the future.

These results suggest that the SLOPE factor of the RNS term structure, and therefore

the RNS term spread itself, have a statistically significant relation to macroeconomic state

variables that provides intuition for its ability to explain cross-sectional and time-series

equity returns.
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1.8 Conclusion

This paper contributes to the ongoing debate in the skewness pricing literature about

the direction of the relationship between individual stock risk-neutral skewness (RNS) and

future underlying asset returns. Specifically, we identify differences in the information

content across the term structure of RNS.

Using a large sample of stock and options data from 1996 to 2015, we document pos-

itive predictability of future stock returns from short-term RNS, which is consistent with

the informed trading and hedging demand literature (Xing et al., 2010; Stilger et al., 2017;

Bollen and Whaley, 2004; Garleanu et al., 2009), and negative predictability from long-

term RNS, which supports the skewness preference theory (Brunnermeier et al., 2007; Mit-

ton and Vorkink, 2007; Barberis and Huang, 2008; Bali and Murray, 2013; Conrad et al.,

2013).

Using this information we create a new return predictor, the term spread of RNS, which

is defined as the long-term RNS minus short-term RNS. This predictor is constructed to

capture information sets at both ends of the RNS term structure. The quintile portfolio with

the highest RNS term spread underperforms the quintile portfolio with the lowest spread by

19.32% per year after controlling for common risk factors. The magnitude and robustness

of this anomalous return suggests that the RNS term spread serves its designed purpose of

integrating information distributed across the RNS term structure.

We further test the information differences across the RNS term structure by providing

evidence that the short-term RNS is a positive predictor of future firms’ earnings surprise

and a negative predictor of future stock price crashes. The long-term RNS reverses the

direction of predictability.

Additionally, we find that the positive predictability of equity returns from the short-

term RNS is strongest for stocks that have high hedging or speculative demand from in-

formed option traders consistent with Stilger et al. (2017). This evidence suggests that these
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informed market participants mainly trade short-term options, which produces the differ-

ent (similar) information sets between the short-term (long-term) skewness expectations in

the option and equity markets. As a result, the short-term RNS impounds more informed

trades and thereby positively predicts stock returns, while the long-term RNS carries the

negative risk premium associated with the more accurate measure of expected underlying

asset skewness as implied by skewness preference.

To provide more direct evidence that long-term RNS proxies for the underlying stocks’

expected skewness, we compare it with two well-known physical skewness measures bear-

ing negative risk premia. We find that the long-term RNS measure has a strong positive

correlation with these two measures. In addition, both physical and long-term RNS mea-

sures complement each other in identifying stocks with the most negative risk premium for

lottery-like payoffs.

A factor analysis of the RNS term structure, inspired by prior work in the factor struc-

ture of bond yields curves by Nelson and Siegel (1987), Litterman and Scheinkman (1991)

and Christensen et al. (2011), confirms the existence of two distinct informational com-

ponents priced in the cross-section of excess returns. We find a level factor that is priced

positively consistent with our findings for the short-term RNS, and a slope factor that is

priced negatively consistent with our findings for the RNS term spread. We find that the

RNS term structure slope factor, which is most significantly related to both cross-sectional

and time-series stock returns, is significantly related to macroeconomic state variables for

the equity premium.

Our finding of the maturity-varying directionality of return predictability from RNS

helps resolve the ongoing debate between two strands of the skewness pricing literature:

one documenting the positive relationship between risk-neutral skewness and future stock

returns following the informed trading and hedging literature, and the other documenting

a negative relationship following the skewness preference theory. Our results confirm the



- 42 -

validity of both hypotheses, with the RNS from short-term options producing a positive

relationship with future returns consistent with superior information, and the RNS from

long-term options producing a negative one consistent with skewness preference.
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Appendix

1.A Definitions of Variables

The definitions of the variables are detailed as follows. The corresponding summary

statistics are presented in Table 1.2.

• BKM1M: Risk-neutral (option-implied) skewness with 1 month to expiration. With

standardized OTM options maturing in 30 days of firm i on the last day of month t,

BKM1M is estimated using the model-free methodology of Bakshi et al. (2003) and

the trapezoidal rule (see section III.A in Bali and Murray, 2013).

• BKM3M: Risk-neutral (option-implied) skewness with 3 month to expiration. With

standardized OTM options maturing in 91 days of firm i on the last day of month t,

BKM3M is estimated using the model-free methodology of Bakshi et al. (2003) and

the trapezoidal rule (see section III.A in Bali and Murray, 2013).

• BKM6M: Risk-neutral (option-implied) skewness with 6 month to expiration. With

standardized OTM options maturing in 152 days of firm i on the last day of month t,

BKM6M is estimated using the model-free methodology of Bakshi et al. (2003) and

the trapezoidal rule (see section III.A in Bali and Murray, 2013).

• BKM9M: Risk-neutral (option-implied) skewness with 9 month to expiration. With

standardized OTM options maturing in 273 days of firm i on the last day of month t,

BKM9M is estimated using the model-free methodology of Bakshi et al. (2003) and

the trapezoidal rule (see section III.A in Bali and Murray, 2013).
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• BKM12M: Risk-neutral (option-implied) skewness with 12 month to expiration. With

standardized OTM options maturing in 365 days of firm i on the last day of month

t, BKM12M is estimated using the model-free methodology of Bakshi et al. (2003)

and the trapezoidal rule (see section III.A in Bali and Murray, 2013).

• BKMTS: The term spread of risk-neutral skewness, which is defined as the difference

between long-term skewness (BKM12M) and short-term skewness (BKM1M).

• BETA: The coefficient on market risk premium from the regression of excess monthly

stock returns on market risk premium over last 60 months.

• MV: The market cap. The market cap is computed as the closing share price times

the number of shares outstanding (in thousands).

• BM: The book to market ratio. Here the annual book value of the latest available is

employed.

• MOM: Momentum for firm i is calculated as its cumulative stock return from the end

of month t− 12 to the end of month t− 1.

• REV: Reversal for firm i is calculated as its stock return from the end of month t− 1

to the end of month t.

• IVOL: Idiosyncratic volatility is defined as the standard deviation of residuals of

daily firm-level residuals of the Fama and French (1993) three-factor model regres-

sion over the past 60 months.

• SUE: The standardized earnings surprise variable, SUE, is defined actual earning

minus analysts’ forecast, scaled by stock price, based on Livnat and Mendenhall

(2006).

• CRASH: The monthly price crash measure is defined as the indicator variable that

equals one for a firm-year that experience one or more crash days during the month,
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and zero otherwise. Based on Hutton et al. (2009), Kim et al. (2011a) and Kim et al.

(2011b), crash days in a given month are days in which the firm experiences firm-

specific daily returns 3.09 (0.1% for normal distribution) standard deviation below

the mean firm-specific daily returns over the entire year. Here the firm-specific daily

return is defined as the natural log of one plus the residual return from the regression,

ri,t = ai + b1irm,t−2 + b2irm,t−1 + b3irm,t + b4irm,t+1 + b5irm,t+2 + εi,t, where ri,t

is the return on stock i on day t and rm,t is the return on the CRSP value-weighted

market index on day t.

• MAX: The maximum of daily returns for firm i during the month t.

• OPVOL: The total volumes of traded options for the underlying firm i on the last

trading day of month t.

• OPEN: The total open interests of traded options for the underlying firm i on the last

trading day of month t.

• PAOV: The put-to-all option volume ratio on a given trading day is the ratio of the

total volume across all put options for a given maturity divided by the total volume

across all options for a given maturity. We use 1-month PAOV to proxy hedging

demand for short-term options. And traded options with maturity from 10 to 45

days are used to compute 1-month PAOV. We use 12-month PAOV to proxy hedging

demand for long-term options. And traded options with maturity from 319 to 456

days are used to compute 12-month PAOV.

• EIS: Expected idiosyncratic skewness for firm i in the end of the month t is the

forecast of expected idiosyncratic skewness observed at the end of month t for the

distribution of daily returns over months t + 1 through t + 60, calculated using the

same method in Boyer, Mitton, and Vorkink (2010). We first compute idiosyncratic

skewness, ISKEW, for each firm-month observation by calculating the skewness of
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residuals of daily firm-level residuals of the Fama and French (1993) three-factor

model regression over the past 60 months. The variable ISKEWi,t is set to be miss-

ing at the end of month t if the number of observable returns is less than 250. We

then estimate cross-sectional regressions separately at the end of each month t in our

sample, ISKEWi,t = βt0 + βt1ISKEWi,t−60 + βt1IVOLi,t−60 + γtXi,t−60 + εi,t, where

Xi,t−60 is a vector of additional firm-specific variables observable at the end of month

t − 60. These variables include the momentum from the end of month t − 60 − 12

through the end of month t − 60 − 1, the sum of daily turnover for firm i over the

month t− 60− 12, dummy variable indicating firm i in the bottom tercile ranked by

size at the end of month t−60, dummy variable indicating firm i in the middle tercile

ranked by size at the end of month t − 60, and dummies for 16 of the 17 industries

defined by Ken French to create the “17 Industry Portfolios” on his website. We then

use the regression parameters from the above regression, along with information ob-

servable at the end of each month t, to estimate expected idiosyncratic skewness for

firm i, Et[ISKEWi,t+60] = βt0 + βt1ISKEWi,t + βt1IVOLi,t + γtXi,t.

• AOI: The aggregate open interest ratio of firm i on a given trading day is the ratio of

the sum of open interests across all firm i’s options for a given maturity divided by

the sum of open interest across all firms with the same maturity on that day. We use

1-month AOI to proxy hedging demand for short-term options. And traded options

with maturity from 10 to 45 days are used to compute 1-month AOI. We use 12-

month AOI to proxy hedging demand for long-term options. And traded options

with maturity from 319 to 456 days are used to compute 12-month AOI.

• ZD: Zmijewski (1984) Z-score, which measures the default risk of firm i, is computed

as Z = −4.3−4.5Net Income
Total Asset +5.7 Total Debt

Total Asset−0.004 Current Asset
Current Liability . ZD is used as one proxy

of hedging demand for short-term options.
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Table 1.1: Model Parameter Values

This table shows the parameters we use to solve the numerical solutions of our theoretical
equilibrium model. Among them, we use the same parameters of the risk-aversion and
skewness preference parameters (τ, φ) and the covariance matrix (V) elements as in Mitton
and Vorkink (2007).

Parameter Variable Value
Risk-aversion coefficient τ 2.50
Skewness-preference coefficient φ 2.50
Variance of Asset 1 returns σ2

1 0.20
Variance of Asset 2 returns σ2

2 0.35
Variance of Asset 3 returns σ2

3 0.25
Correlation coefficient, Assets 1 and 2 ρ1,2 0.08
Correlation coefficient, Assets 1 and 3 ρ1,3 0.15
Correlation coefficient, Assets 2 and 3 ρ2,3 0.10
Number of periods n 10
Total number of investors N 300
Total investment on each asset at time 0 D 100
The proportion of traditional investors PT 1/2
The default proportion of informed lotto investors PIL 1/4
The default proportion of uninformed lotto investors PUL 1/4
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Table 1.2: Descriptive Statistics

This table provides the descriptive statistics of risk-neutral skewness with different maturi-
ties, the term spread of risk-neutral skewness, as well as of the firm-specific variables that
are used in subsequent analysis. The sample consists of 358,974 firm-month combinations
based on the information in OptionMetrics, Compustat and CRSP from Jan 1996 through
December 2015. The definitions for these variables are introduced in Appendix 1.A.

Variables N P5 P50 P95 Mean STD
RNS 1M 358,974 -0.7279 -0.3357 0.1951 -0.3119 0.2784
RNS 3M 358,974 -0.7796 -0.4461 -0.1381 -0.4512 0.1915
RNS 6M 358,974 -0.8905 -0.4955 -0.2443 -0.5232 0.1937
RNS 9M 358,974 -1.0040 -0.5210 -0.2380 -0.5599 0.2299
RNS 12M 358,974 -1.1137 -0.5381 -0.2064 -0.5878 0.2720
RNS TS 358,974 -0.9063 -0.2269 0.2339 -0.2759 0.3475
BETA 288,446 0.2611 1.1412 2.6880 1.2614 0.7190
MV 358,974 164,348 1,342,039 26,650,990 6,908,144 14,789,417
BM 284,960 0.0718 0.3737 1.2991 0.5041 0.4020
MOM 349,259 -0.5031 0.0949 1.1231 0.1858 0.5019
REV 284,748 -0.6250 0.4621 4.5214 1.0741 1.8103
IVOL 358,818 0.0119 0.0258 0.0518 0.0282 0.0121
SUE 106,045 -0.0070 0.0005 0.0078 0.0001 0.0057
CRASH 354,986 0.0000 0.0000 1.0000 0.1004 0.3005
MAX 358,843 0.0171 0.0467 0.1389 0.0589 0.0387
EIS 270,289 -0.3331 0.2803 1.2306 0.3363 0.4610
OPVOL 358,974 0 66 7,026 1,738 3,975
OPEN 358,974 126 3,740 173,143 39,759 87,253
ZD 282,978 -3.9591 -1.6712 0.7976 -1.6251 1.4717
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Table 1.4: Portfolios Formed on Risk-Neutral Skewness of Different Maturities

Panels A, B, C, D and E present abnormal return over the following month of quintile port-
folios sorted by 1-, 3-, 6-, 9-, and 12-month risk neutral skewness, respectively. 5 standard
asset pricing models are used as benchmarks, which include Capital Asset Pricing Model
(CAPM), Fama and French (1993) 3-factor model (FF3), Fama and French (2015) 5-factor
model (FF5), Fama and French (1993) 3 factors plus Carhart (1997) momentum factor 4-
factors model (FFC4) and Fama and French (1993) 3 factors, Carhart (1997) momentum
factor plus Pastor and Stambaugh (2003) liquidity factor 5-factor model (FFCP5). In each
panel, alphas of equal-weighted portfolios are reported. All returns are monthly based esti-
mates without annualization. T-statistics computed using Newey-West standard errors with
five lags are in parentheses. ***, ** and * indicate 1%, 5%, and 10% significance levels,
respectively.

Panel A: Alpha of Portfolios Sorted by 1-month RNS

Quintile CAPM Alpha FF3 Alpha FF5 Alpha FFC4 Alpha FFCP5 Alpha

Low -0.33 -0.46 -0.61 -0.40 -0.40
2 -0.20 -0.31 -0.40 -0.23 -0.23
3 -0.00 -0.11 -0.19 -0.02 -0.01
4 0.06 -0.08 -0.18 0.04 0.04
High 0.54 0.37 0.23 0.55 0.55
High-Low 0.87*** 0.83*** 0.85*** 0.95*** 0.95***
t-stat. (5.03) (5.32) (4.86) (5.79) (5.78)

Panel B: Alpha of Portfolios Sorted by 3-month RNS

Quintile CAPM Alpha FF3 Alpha FF5 Alpha FFC4 Alpha FFCP5 Alpha

Low -0.00 -0.12 -0.30 -0.09 -0.09
2 -0.06 -0.19 -0.34 -0.10 -0.10
3 -0.11 -0.22 -0.30 -0.13 -0.13
4 -0.03 -0.15 -0.22 -0.03 -0.03
High 0.27 0.09 0.00 0.31 0.31
High-Low 0.27 0.21 0.31* 0.40** 0.40**
t-stat. (1.29) (1.23) (1.67) (2.30) (2.31)
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Panel C: Alpha of Portfolios Sorted by 6-month RNS

Quintile CAPM Alpha FF3 Alpha FF5 Alpha FFC4 Alpha FFCP5 Alpha

Low 0.11 0.00 -0.22 0.02 0.02
2 0.12 -0.02 -0.24 0.05 0.05
3 0.05 -0.09 -0.21 -0.00 -0.00
4 0.00 -0.12 -0.13 0.01 0.01
High -0.20 -0.37 -0.35 -0.12 -0.12
High-Low -0.32 -0.37** -0.13 -0.14 -0.14
t-stat. (-1.25) (-2.09) (-0.70) (-0.74) (-0.75)

Panel D: Alpha of Portfolios Sorted by 9-month RNS

Quintile CAPM Alpha FF3 Alpha FF5 Alpha FFC4 Alpha FFCP5 Alpha

Low 0.18 0.07 -0.16 0.09 0.09
2 0.18 0.05 -0.20 0.09 0.09
3 0.19 0.04 -0.10 0.12 0.12
4 -0.02 -0.16 -0.20 -0.03 -0.03
High -0.44 -0.59 -0.49 -0.31 -0.31
High-Low -0.62** -0.67*** -0.32 -0.40* -0.40*
t-stat. (-2.01) (-3.14) (-1.63) (-1.91) -1.94)

Panel E: Alpha of Portfolios Sorted by 12-month RNS

Quintile CAPM Alpha FF3 Alpha FF5 Alpha FFC4 Alpha FFCP5 Alpha

Low 0.22 0.12 -0.14 0.13 0.13
2 0.23 0.10 -0.17 0.14 0.14
3 0.22 0.07 -0.10 0.14 0.14
4 0.01 -0.13 -0.16 -0.01 -0.01
High -0.60 -0.75 -0.59 -0.43 -0.43
High-Low -0.82*** -0.86*** -0.46** -0.56*** -0.56***
t-stat. (-2.43) (-3.63) (-2.12) (-2.47) (-2.52)
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Table 1.5: Portfolios Formed on the Term Spread of Risk-Neutral Skewness

Panel A, B, C, D and E present abnormal return over the following month of quintile portfo-
lios sorted by the difference between 12- and 1-month risk neutral skewness, respectively. 5
standard asset pricing models are used as benchmarks, which include Capital Asset Pricing
Model (CAPM), Fama and French (1993) 3-factor model (FF3), Fama and French (2015)
5-factor model (FF5), Fama and French (1993) 3 factors plus Carhart (1997) momentum
factor 4-factors model (FFC4) and Fama and French (1993) 3 factors, Carhart (1997) mo-
mentum factor plus Pastor and Stambaugh (2003) liquidity factor 5-factor model (FFCP5).
In each panel, alphas of equal-weighted portfolios are reported. All returns are monthly
based estimate without annualization. T-statistics computed using Newey-West standard
errors with five lags are in parentheses. ***, ** and * indicate 1%, 5%, and 10% signifi-
cance levels, respectively.

Alpha of Portfolios Sorted by Term Spread of RNS

Quintile CAPM Alpha FF3 Alpha FF5 Alpha FFC4 Alpha FFCP5 Alpha

Low 0.57 0.42 0.19 0.52 0.52
2 0.36 0.23 0.02 0.30 0.30
3 0.13 0.01 -0.14 0.08 0.09
4 -0.22 -0.34 -0.35 -0.24 -0.24
High -0.75 -0.91 -0.87 -0.70 -0.70
High-Low -1.32*** -1.33*** -1.07*** -1.22*** -1.22***
t-stat. (-5.69) (-7.21) (-6.56) (-6.52) (-6.61)
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Table 1.6: Fama-MacBeth Cross-Sectional Regressions of Monthly Excess Stock Returns on
Lagged Term Spread of RNS

This table reports the Fama-MacBeth coefficients of cross-sections of monthly excess stock
returns on lagged term spread of risk-neutral skewness (RNSTS) and a set of firm charac-
teristics during the period 1996-2015. RNSTS is calculated as the difference between long-
term (12-month) and short-term (1-month) risk-neutral skewness. Models (2) controls for
firms’ beta (BETA), market value (MV), book-to-market ratio (BM), momentum (MOM),
one-month reversal (REV),stock illiquidity proxied by Amihud (2002) price impact ratio
(ILLQ). Model (3) additionally controls for lagged stock’s return (RET), price per share
(PRICE), and idiosyncratic volatility (IVOL). Model (4) additionally controls for option
trading volume(OPVOL) and open interest(OPEN). T-statistics computed using Newey-
West standard errors with five lags are in parentheses. ***, ** and * indicate 1%, 5%, and
10% significance levels, respectively.

(1) (2) (3) (4)

INTERCEPT 0.0062 0.0239 *** 0.0213 * 0.0244 **
(1.45) (2.37) (1.79) (2.13)

RNSTS -0.0100*** -0.0071*** -0.0065*** -0.0066***
(-3.83) (-4.43) (-4.40) (-4.38)

BETA 0.0005 0.0004 0.0004
(0.23) (0.22) (0.22)

log(MV) -0.0011* -0.0008 -0.0010*
(-1.91) (-1.40) (-1.79)

BM 0.0004 -0.0002 -0.0002
(0.28) (-0.11) (-0.15)

MOM 0.0001 -0.0004 -0.0004
(0.05) (-0.19) (-0.17)

REV -0.0002 -0.0003 -0.0003
(-0.81) (-1.07) (-1.03)

ILLIQ*104 -0.4827* -0.4665* -0.4463
(-1.69) (-1.66) (-1.50)

RET -0.0219*** -0.0211***
(-4.35) (-4.23)

PRICE*10−2 -0.0035 -0.0036
(-1.34) (-1.33)

IVOL 0.0078 -0.0078
(0.06) (-0.06)

OPVOL*10−4 -0.0015
(-1.20)

OPEN*10−4 0.0002 *
(1.91)

R-squared 0.0069 0.0740 0.0886 0.0912
Observations 358,802 235,652 235,652 234,418
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Table 1.7: Fama-MacBeth Cross-Sectional Regressions of Quarterly SUE on Lagged RNS of
Different Maturities

This table reports the Fama-MacBeth coefficients of cross-sections of the quarterly
standardized earnings surprise (SUE) on lagged short-term(1 month) risk-neutral skew-
ness(RNS1M), long-term(12 month) risk-neutral skewness(RNS12M), and a set of firm
characteristics during the period 1996-2015. RNSTS is calculated as the difference be-
tween long-term (12-month) and short-term (1-month) risk-neutral skewness. Models (2)
controls for firms’ beta (BETA), market value (MV), book-to-market ratio (BM), momen-
tum (MOM), one-month reversal (REV),stock illiquidity proxied by Amihud (2002) price
impact ratio (ILLQ). Model (3) additionally controls for lagged stock’s return (RET), price
per share (PRICE), and idiosyncratic volatility (IVOL). Model (4) additionally controls for
option trading volume (OPVOL) and open interest (OPEN). T-statistics computed using
Newey-West standard errors with five lags are in parentheses. ***, ** and * indicate 1%,
5%, and 10% significance levels, respectively.

(1) (2) (3) (4)

INTERCEPT -0.0028*** 0.0022 0.0069 ** 0.0067 **
(-3.14) (1.17) (2.20) (1.96)

RNS1M 0.0010 ** 0.0011 *** 0.0011 *** 0.0011 ***
(2.07) (2.36) (2.50) (2.51)

RNS12M -0.0052*** -0.0033*** -0.0026*** -0.0027***
(-3.43) (-2.89) (-2.55) (-2.63)

BETA -0.0001 0.0003 * 0.0003 **
(-0.44) (1.87) (2.10)

log(MV) -0.0001 -0.0002* -0.0002
(-1.02) (-1.74) (-1.42)

BM -0.0042** -0.0045** -0.0045**
(-2.32) (-2.28) (-2.26)

MOM 0.0002 0.0007 *** 0.0008 ***
(0.81) (3.70) (3.65)

REV -0.0001 0.0000 0.0000
(-1.28) (0.51) (0.51)

ILLIQ*104 -0.0030 0.0071 -0.0274
(-0.02) (0.05) (-0.20)

RET 0.0028 *** 0.0029 ***
(3.72) (3.77)

PRICE*10−2 -0.0017*** -0.0018***
(-2.89) (-3.02)

IVOL -0.0998*** -0.1022***
(-3.07) (-3.08)

OPVOL*10−4 -0.0001
(-0.90)

OPEN*10−4 -0.0000
(-0.24)

R-squared 0.0066 0.0415 0.0491 0.0510
Observations 313,726 210,267 210,267 209,383



- 55 -

Table 1.8: Fama-MacBeth Cross-Sectional Logistic Regressions of Monthly Stock Price Crash
on Lagged RNS of Different Maturities

This table reports the Fama-MacBeth coefficients of cross-sectional logistic regressions of
monthly price crash on lagged 1 month risk-neutral skewness (RNS1M), 12 month risk-
neutral skewness (RNS12M), and a set of firm characteristics during the period 1996-2015.
RNSTS is calculated as the difference between long-term (12 month) and short-term (1
month) risk-neutral skewness. Model (1), (2), ..., and (6) regress 1-, 2-, ..., and 6-month
ahead price crash dummy on independent variables, respectively. T-statistics computed
using Newey-West standard errors with five lags are in parentheses. ***, ** and * indicate
1%, 5%, and 10% significance levels, respectively.

(1) (2) (3) (4) (5) (6)

INTERCEPT -1.3512*** -1.3701*** -1.4917*** -1.5043*** -1.4829*** -1.3554***
(-6.86) (-6.99) (-7.89) (-8.10) (-6.92) (-6.48)

RNS 1M -0.1048*** -0.0926*** -0.0866*** -0.0981*** -0.1124*** -0.0958***
(-4.08) (-3.49) (-2.72) (-2.98) (-3.36) (-2.87)

RNS 12M 0.2181 *** 0.0904 0.0663 0.0584 0.0622 -0.0005
(3.95) (1.38) (1.18) (1.08) (1.09) (-0.01)

BETA -0.0362* -0.0215 -0.0242 -0.0200 -0.0203 -0.0186
(-1.89) (-1.09) (-1.44) (-1.03) (-1.09) (-1.03)

log(MV) -0.0418*** -0.0505*** -0.0469*** -0.0494*** -0.0509*** -0.0593***
(-3.19) (-4.04) (-3.88) (-4.01) (-3.81) (-4.22)

BM -0.2443*** -0.2520*** -0.2502*** -0.2441*** -0.2348*** -0.2468***
(-7.29) (-7.60) (-7.09) (-7.33) (-6.95) (-7.31)

MOM 0.0951 *** 0.0450 * -0.0011 -0.0110 -0.0184 -0.0520***
(3.86) (1.89) (-0.05) (-0.49) (-1.02) (-2.38)

REV 0.0013 -0.0036 -0.0074 -0.0121* -0.0109* -0.0095
(0.19) (-0.49) (-1.12) (-1.95) (-1.68) (-1.32)

ILLIQ*106 -0.6637*** -0.7444*** -0.6917*** -0.7648*** -0.8078*** -0.8891***
(-4.63) (-5.84) (-4.95) (-5.68) (-6.48) (-5.44)

RET -0.4508*** -0.0330 0.1539 -0.0442 0.1876 ** 0.1374
(-4.17) (-0.43) (1.60) (-0.49) (2.25) (1.56)

PRICE*10−2 -0.0182 0.0587 0.0838 0.1144 * 0.1145 * 0.1046
(-0.30) (1.05) (1.41) (1.87) (1.76) (1.55)

IVOL -3.4572*** -1.0521 0.8302 2.2693 2.3300 1.7347
(-2.38) (-0.74) (0.55) (1.52) (1.51) (1.16)

OPVOL*10−4 0.1100 * -0.3021*** -0.1945*** -0.2159** -0.3850*** -0.3328***
(1.93) (-2.73) (-3.25) (-2.23) (-2.93) (-2.71)

OPEN*10−4 -0.0131*** -0.0016 -0.0040 -0.0062 -0.0034 -0.0036
(-3.39) (-0.61) (-1.11) (-1.16) (-0.68) (-0.97)

Observations 232,506 231,038 229,499 227,795 226,154 224286
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Table 1.9: Average Short- and Long-term Risk-Neutral Skewness of Quintile Portfolios Sorted
by Hedging Demand

This table reports the time-series average of the average RNS for quintile portfolios sorted
by investor hedging demand. Three measures are used as hedging demand proxies, includ-
ing the ratio of aggregate put option volume to total option volume (PAOV), the aggregate
open interest across all options (AOI), and the Z-score of Zmijewski (1984) (ZD) to cap-
ture default risk. In order to match 1 month maturity of short-term RNS, only options with
maturity from 10 to 45 days are used to calculate the PAOV and AOI. Correspondingly,
in order to match 12 month maturity of long-term RNS, only options with maturity from
319 to 456 days are used to calculate these two measures. The difference in average RNS
between highest and the lowest hedging demand quintile portfolios are presented in the sec-
ond to last line. T-statistics computed using Newey-West standard errors with five lags are
in parentheses. ***, ** and * indicate 1%, 5%, and 10% significance levels, respectively.

Panel A: Short-term RNS and hedging demand

Quintile Put-to-all Volume Ratio Aggregate Open Interest Z score Default Risk

Low -0.3012 -0.2503 -0.2878
2 -0.3433 -0.2954 -0.3037
3 -0.3623 -0.3257 -0.3190
4 -0.3750 -0.3495 -0.3310
High -0.3671 -0.3750 -0.3235
Q5-Q1 -0.0658*** -0.1247*** -0.0358***
T (-17.31) (-13.18) (-11.11)

Panel B: Long-term RNS and hedging demand

Quintile Put-to-all Volume Ratio Aggregate Open Interest Z score Default Risk

Low -0.5702 -0.5938 -0.5296
2 -0.5963 -0.6049 -0.5636
3 -0.5934 -0.6164 -0.6034
4 -0.6161 -0.6221 -0.6459
High -0.6216 -0.6395 -0.6142
Q5-Q1 -0.0514*** -0.0456*** -0.0845***
T (-5.26) (-2.68) (-8.01)
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Table 1.10: Double Sorted Portfolios by Hedging Demand and RNS of Different Terms

In this table, Panels A and B report the performance of double sorted portfolios by 1-month
Risk-Neutral Skewness and 12-month Risk-Neutral Skewness respectively with overvalu-
ation and short-sale constraint proxies for the sample period from 1996 to 2015. Stock
overvaluation is proxied by the maximum daily stock returns over the last month (MAX)
and expected idiosyncratic skewness (EIS). Short-sale constraint is proxied by idiosyn-
cratic volatlity (IVOL). In the end of each month, stocks are sorted into tercile portfolios
in ascending order by RNS. Within each RNS tercile portfolio, stocks are further sorted
to tercile portfolios in ascending order based on the overvaluation or short-sale constraint
proxies. We report abnormal returns relative to the Fama and French (1993) model. T-
statistics computed using Newey-West standard errors with five lags are in parentheses.
***, ** and * indicate 1%, 5%, and 10% significance levels, respectively.

Panel A: Short-term RNS

Panel A-1: Stock Overvaluation

MAX low MAX medium MAX high Difference

RNS1M low 0.0265 -0.2370** -0.9747*** -1.0012***
(0.24) (-1.96) (-6.28) (-5.54)

RNS1M medium 0.2063* -0.0927 -0.6049*** -0.8112***
(1.68) (-0.63) (-3.29) (-4.10)

RNS1M high 0.6129*** 0.2044 -0.1857 -0.7986***
(4.14) (1.18) (-0.98) (-4.65)

Difference 0.5864*** 0.4414*** 0.7890***
(5.14) (3.10) (5.14)

EIS low EIS medium EIS high Difference

RNS1M low 0.1384 -0.1986 -0.7646*** -0.9030***
(1.29) (-1.51) (-4.31) (-4.86)

RNS1M medium 0.2697** 0.0147 -0.4366** -0.7063***
(2.06) (0.10) (-2.29) (-3.52)

RNS1M high 0.4841*** 0.3557** 0.1408 -0.3433*
(3.46) (2.11) (0.74) (-1.81)

Difference 0.3457*** 0.5542*** 0.9054***
(3.17) (4.06) (4.77)

Panel A-2: Short-selling Constraint

IVOL low IVOL medium IVOL high Difference

RNS1M low 0.0430 -0.3288*** -0.9068*** -0.9498***
(0.42) (-2.62) (-5.49) (-5.01)

RNS1M medium 0.2723** -0.1077 -0.6559*** -0.9282***
(2.33) (-0.74) (-3.51) (-4.69)

RNS1M high 0.4527*** 0.3098* -0.1317 -0.5844***
(3.33) (1.83) (-0.60) (-2.84)

Difference 0.4098*** 0.6387*** 0.7751***
(3.99) (4.70) (4.50)



- 58 -

Panel B: Long-term RNS

Panel B-1: Stock Overvaluation

MAX low MAX medium MAX high Difference

RNS12M low 0.2995*** 0.0800 -0.0110 -0.3105***
(2.60) (0.70) (-0.08) (-3.03)

RNS12M medium 0.3008** -0.0259 -0.2003 -0.5010***
(2.20) (-0.18) (-1.36) (-3.81)

RNS12M high 0.0425 -0.5328*** -1.0125*** -1.0550***
(0.23) (-2.47) (-3.73) (-4.98)

Difference -0.2570 -0.6129*** -1.0015***
(-1.40) (-2.76) (-3.64)

EIS low EIS medium EIS high Difference

RNS12M low 0.2152** 0.0290 0.1269 -0.0883
(2.25) (0.24) (0.87) (-0.66)

RNS12M medium 0.4113*** 0.0003 -0.0224 -0.4337***
(2.89) (0.00) (-0.16) (-2.86)

RNS12M high 0.0876 -0.2413 -0.6066*** -0.6942***
(0.45) (-1.33) (-2.68) (-3.72)

Difference -0.1275 -0.2704 -0.7335***
(-0.60) (-1.38) (-3.66)

Panel B-2: Short-selling Constraint

IVOL low IVOL medium IVOL high Difference

RNS12M low 0.2567*** 0.0964 0.0143 -0.2424**
(2.44) (0.76) (0.11) (-2.07)

RNS12M medium 0.1932 -0.0118 -0.1064 -0.2996*
(1.51) (-0.08) (-0.70) (-1.93)

RNS12M high -0.1346 -0.4556* -0.9114*** -0.7768***
(-0.66) (-1.93) (-3.39) (-2.89)

Difference -0.3913** -0.5519** -0.9257***
(-2.16) (-2.29) (-3.40)
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Table 1.11: Average Physical Skewness Measure of Quintile Portfolios Sorted by Short- and
Long-term RNS

This table reports the time-series average of the average Physical Skewness measure for
quintile portfolios sorted by short- and long-term RNS. We measure physical skewness us-
ing maximum daily return over the last month (MAX) and expected idiosyncratic skewness
(EIS). The differences in average physical skewness between the highest and the lowest
RNS portfolios are presented in the second to last line. T-statistics computed using Newey-
West standard errors with five lags are in parentheses. ***, ** and * indicate 1%, 5%, and
10% significance levels, respectively.

Panel A: Short-term RNS and Physical Skewness Measure

RNS1M Quintile Max Daily Return Expected Idiosyncratic Skewness

Low 0.0524 0.2485
2 0.0582 0.2871
3 0.0621 0.3248
4 0.0638 0.3956
High 0.0623 0.4710
Q5-Q1 0.0099*** 0.2225***
T (11.91) (12.02)

Panel B: Long-term RNS and Physical Skewness Measure

RNS12M Quintile Max Daily Return Expected Idiosyncratic Skewness

Low 0.0382 0.1077
2 0.0479 0.1981
3 0.0575 0.3022
4 0.0687 0.4301
High 0.0866 0.6887
Q5-Q1 0.0485*** 0.5810***
T (33.12) (13.78)
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Table 1.12: Fama-MacBeth Cross-Sectional Regressions of Monthly Excess Stock Returns on
Lagged RNS Term Structure Factors

This table reports the Fama-MacBeth coefficients of cross-sectional regressions of monthly
excess stock returns on lagged factors of the RNS term structure during the period 1996-
2015. We perform a factor analysis of the RNS term structure across five fixed maturities at
the 1, 3, 6, 9, and 12-month horizons for each firm-month observation. Model (1) considers
the explanatory power of the factors in isolation. Model (2) controls for firms’ beta (BETA),
market value (MV), book-to-market ratio (BM), momentum (MOM), one-month reversal
(REV),stock illiquidity proxied by Amihud (2002) price impact ratio (ILLIQ). Model (3)
additionally controls for lagged stock’s return (RET), price per share (PRICE), and id-
iosyncratic volatility (IVOL). Model (4) additionally controls for option trading volume
(OPVOL) and open interest (OPEN). T-statistics computed using Newey-West standard er-
rors with five lags are in parentheses. ***, ** and * indicate 1%, 5%, and 10% significance
levels, respectively.

(1) (2) (3) (4)

INTERCEPT 0.0101 0.0239 *** 0.0228 * 0.0254 **
(1.59) (2.42) (1.93) (2.24)

Factor 1 0.0189 * 0.0128 0.0132 * 0.0134 *
(1.89) (1.57) (1.70) (1.74)

Factor 2 -0.1063*** -0.0786*** -0.0745*** -0.0742***
(-3.33) (-3.99) (-4.30) (-4.24)

Factor 3 0.2775 0.1493 0.1668 0.1635
(1.48) (1.25) (1.57) (1.54)

BETA 0.0000 0.0002 0.0001
(0.02) (0.10) (0.08)

log(MV) -0.0007 -0.0006 -0.0007*
(-1.23) (-1.01) (-1.29)

BM 0.0004 -0.0001 -0.0001
(0.27) (-0.06) (-0.09)

MOM 0.0004 -0.0003 -0.0003
(0.17) (-0.13) (-0.11)

REV -0.0002 -0.0003 -0.0003
(-0.85) (-1.05) (-1.00)

ILLIQ*104 -0.5456* -0.5341* -0.5058*
(-1.90) (-1.89) (-1.69)

RET -0.0204*** -0.0196***
(-4.04) (-3.90)

PRICE*10−2 -0.0027 -0.0027
(-1.01) (-1.01)

IVOL -0.0011 -0.0172
(-0.01) (-0.15)

OPVOL*10−4 -0.0017
(-1.35)

OPEN*10−4 0.0002 *
(1.86)

R-squared 0.0243 0.0795 0.0927 0.0953
Observations 358,802 235,652 235,652 234,418
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Table 1.13: RNS Term Structure Slope Factor and Macroeconomic Variables

This table reports coefficients from a monthly vector autoregressive model of the slope
factor of the RNS term structure (SLOPE) along with macroeconomic variables related to
equity expected returns. Here MKTRP is the S&P 500 return net of the T-bill rate, EP is
the log ratio of trailing 12-month S&P 500 earnings to current S&P price, TERM is the
term spread as the difference between long-term T-Bonds and short-term T-Bills, and DEF
is the default spread as the difference between long-term corporate bonds and T-Bonds.
T-statistics are in parentheses. ***, ** and * indicate 1%, 5%, and 10% significance levels,
respectively.

SLOPE MKTRP EP TERM DEF

SLOPEt−1 0.5653 *** -0.2273 0.2894 0.0494 *** 0.0173 ***
(9.92) (-0.91) (0.67) (3.02) (2.81)

MKTRPt−1 -0.0503*** 0.0611 0.3624 *** 0.0029 -0.0094***
(-3.35) (0.92) (3.17) (0.67) (-5.83)

EPt−1 0.0037 * 0.0055 0.9304 *** -0.0010* 0.0005 **
(1.91) (0.63) (62.32) (-1.83) (2.46)

TERMt−1 0.1845 *** 0.1733 1.5078 *** 0.9385 *** -0.0077
(3.13) (0.67) (3.36) (55.59) (-1.21)

DEFt−1 1.1063 *** 0.2494 -10.5121*** -0.0745 0.9321 ***
(4.44) (0.23) (-5.54) (-1.04) (34.73)

INTERCEPT 0.0152 *** 0.0256 -0.1654 *** -0.0031* 0.0019 ***
(2.70) (1.04) (-3.87) (-1.92) (3.07)

Observations 238 238 238 238 238
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Table 1.14: One-Month RNS and Macroeconomic State Variables

This table reports coefficients from a vector autoregressive model of equal-weighted av-
erage RNS along with macroeconomic state variables related to equity expected returns.
Here MKTRP is the S&P 500 return net of the T-bill rate, EP is the log ratio of trailing 12-
month S&P 500 earnings to current S&P price, TERM is the term spread as the difference
between long-term T-Bonds and short-term T-Bills, and DEF is the default spread as the
difference between long-term corporate bonds and T-Bonds. T-statistics are in parentheses.
***, ** and * indicate 1%, 5%, and 10% significance levels, respectively.

RNS1M MKTRP EP TERM DEF

RNS1Mt−1 0.5473 *** 0.07167 -0.0360 -0.0009 -0.0030**
(9.70) (1.43) (-0.41) (-0.27) (-2.40)

MKTRPt−1 0.1881 ** 0.0635 0.3600 *** 0.0024 -0.0096***
(2.54) (0.96) (3.14) (0.55) (-5.91)

EPt−1 -0.0085 0.0048 0.9320 *** -0.0007 0.0006 ***
(-0.90) (0.56) (63.57) (-1.23) (2.90)

TERMt−1 0.6256 ** -0.0357 1.6865 *** 0.9607 *** 0.0043
(2.23) (-0.14) (3.90) (57.93) (0.70)

DEFt−1 -3.0290*** 0.2085 -9.9785*** 0.0619 0.9567 ***
(-2.92) (0.23) (-6.23) (1.01) (42.04)

INTERCEPT -0.1530*** 0.0414 -0.1689*** -0.0021 0.0014 **
(-4.83) (1.47) (-3.45) (-1.12) (2.02)

Observations 238 238 238 238 238
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Table 1.15: Three-Month RNS and Macroeconomic State Variables

This table reports coefficients from a vector autoregressive model of equal-weighted av-
erage RNS along with macroeconomic state variables related to equity expected returns.
Here MKTRP is the S&P 500 return net of the T-bill rate, EP is the log ratio of trailing 12-
month S&P 500 earnings to current S&P price, TERM is the term spread as the difference
between long-term T-Bonds and short-term T-Bills, and DEF is the default spread as the
difference between long-term corporate bonds and T-Bonds. T-statistics are in parentheses.
***, ** and * indicate 1%, 5%, and 10% significance levels, respectively.

RNS3M MKTRP EP TERM DEF

RNS3Mt−1 0.8402 *** 0.0741 -0.1887 ** 0.0046 -0.0005
(22.85) (1.51) (-2.23) (1.42) (-0.40)

MKTRPt−1 0.0656 0.0655 0.3539 *** 0.0026 -0.0096***
(1.33) (0.99) (3.12) (0.59) (-5.85)

EPt−1 -0.0069 0.0053 0.9286 *** -0.0006 0.0006 ***
(-1.09) (0.63) (63.73) (-1.04) (2.99)

TERMt−1 0.4774 ** -0.1740 2.2710 *** 0.9435 *** 0.0012
(2.21) (-0.60) (4.57) (49.18) (0.17)

DEFt−1 -0.7976 0.0619 -10.8816*** 0.0997 0.9795 ***
(-1.22) (0.07) (-7.25) (1.72) (44.97)

INTERCEPT -0.0966*** 0.0589 -0.2577 *** 0.0006 0.0020 *
(-3.67) (1.67) (-4.26) (0.26) (2.32)

Observations 238 238 238 238 238
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Table 1.16: Six-Month RNS and Macroeconomic State Variables

This table reports coefficients from a vector autoregressive model of equal-weighted av-
erage RNS along with macroeconomic state variables related to equity expected returns.
Here MKTRP is the S&P 500 return net of the T-bill rate, EP is the log ratio of trailing 12-
month S&P 500 earnings to current S&P price, TERM is the term spread as the difference
between long-term T-Bonds and short-term T-Bills, and DEF is the default spread as the
difference between long-term corporate bonds and T-Bonds. T-statistics are in parentheses.
***, ** and * indicate 1%, 5%, and 10% significance levels, respectively.

RNS6M MKTRP EP TERM DEF

RNS6Mt−1 0.9592 *** 0.0436 -0.1369** 0.0070 *** 0.0005
(41.46) (1.14) (-2.09) (2.82) (0.49)

MKTRPt−1 -0.0047 0.0662 0.3504 ** 0.0029 -0.0100***
(-0.12) (1.00) (3.09) (0.68) (-5.81)

EPt−1 -0.0033 0.0043 0.9310 *** -0.0006 0.0006 **
(-0.65) (0.51) (64.17) (-1.09) (3.08)

TERMt−1 0.1257 -0.1878 2.4628 *** 0.9165 *** -0.0033
(0.63) (-0.57) (4.33) (42.30) (-0.40)

DEFt−1 0.0080 -0.3478 -9.8772*** 0.0808 0.9833 ***
(0.02) (-0.43) (-7.04) (1.51) (48.34)

INTERCEPT -0.0339 0.0495 -0.2514*** 0.0030 0.0026 ***
(-1.58) (1.40) (-4.15) (1.29) (2.98)

Observations 238 238 238 238 238
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Table 1.17: Nine-Month RNS and Macroeconomic State Variables

This table reports coefficients from a vector autoregressive model of equal-weighted av-
erage RNS along with macroeconomic state variables related to equity expected returns.
Here MKTRP is the S&P 500 return net of the T-bill rate, EP is the log ratio of trailing 12-
month S&P 500 earnings to current S&P price, TERM is the term spread as the difference
between long-term T-Bonds and short-term T-Bills, and DEF is the default spread as the
difference between long-term corporate bonds and T-Bonds. T-statistics are in parentheses.
***, ** and * indicate 1%, 5%, and 10% significance levels, respectively.

RNS9M MKTRP EP TERM DEF

RNS9Mt−1 0.9843 *** 0.0320 -0.0770 0.0066 *** 0.0005
(51.46) (1.05) (-1.47) (3.35) (0.73)

MKTRPt−1 -0.0465 0.0666 0.3515 ** 0.0032 -0.0095***
(-1.12) (1.01) (3.08) (0.73) (-5.80)

EPt−1 -0.0025 0.0037 0.9328 *** -0.0007 0.0006 **
(-0.47) (0.44) (64.07) (-1.30) (3.05)

TERMt−1 -0.0322 -0.1883 2.2700 *** 0.9043 *** -0.0050
(-0.15) (-0.54) (3.80) (40.24) (-0.58)

DEFt−1 0.0635 -0.5170 -9.4206*** 0.0489 0.9809 ***
(0.12) (-0.63) (-6.65) (0.92) (48.03)

INTERCEPT -0.0151 0.0443 -0.2171*** 0.0032 0.0027 **
(-0.72) (1.33) (-3.78) (1.50) (3.28)

Observations 238 238 238 238 238
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Table 1.18: Twelve-Month RNS and Macroeconomic State Variables

This table reports coefficients from a vector autoregressive model of equal-weighted av-
erage RNS along with macroeconomic state variables related to equity expected returns.
Here MKTRP is the S&P 500 return net of the T-bill rate, EP is the log ratio of trailing 12-
month S&P 500 earnings to current S&P price, TERM is the term spread as the difference
between long-term T-Bonds and short-term T-Bills, and DEF is the default spread as the
difference between long-term corporate bonds and T-Bonds. T-statistics are in parentheses.
***, ** and * indicate 1%, 5%, and 10% significance levels, respectively.

RNS12M MKTRP EP TERM DEF

RNS12Mt−1 0.9885 *** 0.0255 -0.0487 0.0057 *** 0.0006
(54.61) (1.03) (-1.14) (3.55) (0.83)

ofMKTRPt−1 -0.1063** 0.0664 0.3536 ** 0.0032 -0.0095***
(-2.19) (1.00) (3.09) (0.74) (-5.80)

EPt−1 -0.0018 0.0033 0.9336 *** -0.0008 0.0006 ***
(-0.29) (0.39) (63.87) (-1.47) (3.00)

TERMt−1 -0.0621 -0.1843 2.1304 *** 0.9008 *** -0.0057
(-0.24) (-0.53) (3.55) (40.10) (-0.66)

DEFt−1 -0.0259 -0.6123 -9.2889*** 0.0259 0.9787 ***
(-0.04) (-0.73) (-6.42) (0.48) (47.01)

INTERCEPT -0.0085 0.0410 -0.1985*** 0.0029 0.0027 ***
(-0.37) (1.30) (-3.65) (1.42) (3.48)

Observations 238 238 238 238 238
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Figure 1.1: Asset Returns and Demands when there is No Informed Trading

This figure plots asset returns and demands of each type of investor when there is no in-
formed trading. In this case, uninformed lotto investors and informed ones are classified as
the same type of investors. We set M̂222 = M222.

Figure 1.2: Asset Returns and Demands when RNS is Driven by the Expected Skewness of
Uninformed Lotto Investors

This figure plots asset returns and demands when RNS is driven by the expected skewness
of uninformed lotto investors. We set M222 = 0.1 and let M̂ (0)

222 vary from -0.3 to 0.3.
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Figure 1.3: Asset Returns and Demands when RNS is Driven by the True Value of Skewness

This figure plots asset returns and demands when RNS is driven by the true value of skew-
ness. We set M̂222 = 0.1 and let M222 vary from -0.3 to 0.3.

Figure 1.4: Correlation between RNS and Subsequent Asset Returns

This figure plots the correlation between RNS and subsequent asset returns given different
proportion of informed lotto investors over all lotto investors.
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Figure 1.5: Factor Analysis of RNS across Different Maturities

This figure shows the loadings of three factors obtained from the factor analysis of RNS
with five maturities. All firm-month observations are used for factor analysis. The blue,
orange and green solid line indicates the loadings on 1-month RNS, 3-month RNS, 6-month
RNS, 9-month RNS and 12-month RNS of the first, second, and third factor, respectively.
The percentage of variance explained by each factor is presented in the legend.
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Chapter 2

Estimating Periodically Collapsing Rational Bubbles with
the Mixture Kalman Filter

(Jointly with Rong Chen, Liang Wang and Yangru Wu)

2.1 Introduction

Bubbles have long intrigued people and gained growing interests. Many economists be-

lieve that stock prices are too volatile to be attributed to market fundamentals, connecting

the unexplained term to bubbles has become one practical and reasonable way of modeling

(Shiller, 1981; Tirole, 1982; Diba and Grossman, 1988; Campbell and Shiller, 1988; Froot

and Obstfeld, 1991). A speculative bubble refers to the deviation of an asset’s price from

its fundamental value because the holders believe that they can resell the asset at an even

higher price in the future. One type of bubbles which is extensively studied in the literature

is rational bubbles, which assume that investors have rational expectations, identical infor-

mation and homogeneous beliefs. Bubbles are often accompanied with periodically bursts,

typically followed by dramatic price increases (Brunnermeier, 2009).

The literature has discussed econometric detection of rational bubbles with one impor-

tant testable implication that bubbles should exhibit explosive behavior. To be specific,

bubbles have to grow in expectations at the required rate of return of the asset, as is implied

by the rational expectations assumption. One strand of literature utilizes cointegration and

unit-root tests to examine whether the stock price is more explosive than its fundamental

(Hamilton and Whiteman, 1985; Diba and Grossman, 1988). Evans (1991) criticizes this

approach by arguing that it fails to detect the explosive bubbles with periodical collapses.
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This issue is resolved by Phillips et al. (2011), who propose a recursive testing procedure.

Another strand, which this research belongs to, is to directly formulate the existence of

bubbles (West, 1987) and estimate bubbles as a latent variable in a state-space model using

Kalman filter Wu (1997). However, the linear specification implies a constant growth, a

pattern which is inconsistent with the inherent non-linear characteristics of the real-world

data. This non-linearity is believed to origin from the periodical switching regimes of the

underlying economic conditions.

This research adopts a conditional dynamic linear system (Harrison and West, 1999) to

directly study the bubble process with regime-switching. We allow two or three regimes

that switch by Markovian transition probability matrices while keeping the system condi-

tionally linear and Gaussian given a regime. With a two-regime model, we specify an ex-

plosive regime in which a bubble grows faster than the asset’s required rate of return, and a

collapsing regime in which the bubble bursts. With a three-regime specification, we add a

benchmark regime in which a bubble grows at the discount rate. In order to satisfy the ra-

tional expectations condition, the bubble process is required to grow unconditionally at the

required rate of return. The regime-switching bubble has also been studied by Al-Anaswah

and Wilfling (2011), but our model specification is different from and more realistic than

theirs. Al-Anaswah and Wilfling (2011) generates bubbles’ periodically collapsing patterns

by assuming the asset’s required rate of return to follow a Markov-switching process and

constraining the growth rate of bubbles equal to the required rate of return under either

regime. In reality, bubbles’ growth rate is much more volatile than the required rate of

return, as advocated by Blanchard and Watson (1982) and Evans (1991), both of whom

assume a constant required rate of return and a stochastic bubble component. Therefore,

we formulate the bubble’s growth rate as a Markov-switching process while fixing the dis-

count rate. Furthermore, the estimated required rate of return in Al-Anaswah and Wilfling

(2011) is unrealistic, i.e., the rate can either exceed 100% when bubbles grow or fall into

the negative territory when bubbles collapse. However, with our model specification, the
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estimated rate lies in a plausible region.

Our asset-bubble system is expressed as a state-space model with regime switching and

estimated by a novel sequential Monte Carlo (SMC) method, the mixture Kalman filter

(MKF), proposed by Chen and Liu (2000). This methodology is advantageous over the

existing estimation methods that have been applied to estimate the state space model with

regime switching in the finance and economics literature. The first existing method is the

Markov Chain Monte Carlo (MCMC) Gibbs sampling method (Kim and Nelson, 1999),

with applications such as Xiang and Zhu (2013). Different from this method, our MKF

is not subject to Bayesian bias from the prior belief of the unknown parameters. Second,

the MKF is a likelihood-based approach so the associated model selection rules such as

AIC, BIC and likelihood ratio tests can be implemented to test whether our model per-

forms better than linear model. Third, MCMC-based algorithms are prohibitively costly

when performing online estimation of states and parameters (Gamerman and Lopes, 2006).

The second existing method is the approximate MLE method (see Chapter 5 of Kim and

Nelson (1999) for details), which approximately collapses the mixture of M×M Gaussian

densities into a mixture ofM Gaussian densities at the end of each iteration (M is the num-

ber of regimes), with applications include Chauvet (1998) and Al-Anaswah and Wilfling

(2011). The inaccuracy of their likelihood estimate increases since the approximation error

accumulates as time steps increase. As an SMC method, our MKF has been proved theo-

retically to return an unbiased likelihood estimate, making the parameter estimation more

reliable.

We first examine the efficacy of our method by applying it to artificial stock and periodi-

cally collapsing bubble data simulated by Evans (1991) model. Then the method is applied

to the U.S. stock market indices including the S&P 500 and the NASDAQ. With the as-

sociated likelihood-based model selection techniques, the proposed model with regime-

switching fit the bubble process more accurately, which indicates a Markov-switching

structure in the actual stock bubbles. Furthermore, the estimated model provides a filtered
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probability series of different regimes, among which the filtered probability of collapsing

regime can be used to date stamp major historical bubble collapses successfully for the last

three decades.

In addition to the literature about bubble testing and estimation of state space model

with regime switching, we also contribute to another strand of literature, which uses the

SMC method (particle filter) to estimate flexible asset pricing models. The particle fil-

ter methodology can be used for filtering and estimation of non-linear non-Gaussian state

space models and are becoming increasingly popular in asset pricing. For example, Li and

Zinna (2018) and Bardgett et al. (2018) use the particle filter to estimate derivative pric-

ing models with jumps. However, high computational cost of the particle filter in general

hinders its broad application. As a special type of particle filter, the MKF marginalizes out

the linear component of the state variable and focuses its full attention on the space of the

regime indicator. By performing importance sampling for the regime indicator and running

Kalman filter given the regime, the MKF updates the posterior distribution of state vari-

able sequentially. By combining the merits of the general particle filter and the traditional

Kalman filter, the MKF exhibits both estimation accuracy and computational efficiency. To

our knowledge, our paper is the first work that applies MKF in finance and this method can

be broadly used in estimating latent-factor asset pricing models that are partially linear and

conditionally Gaussian.

The remainder of this article is organized as follows. Section 2.2 reviews the classic

rational bubble model with the specification of a linear state-space form and its estimation

method, the Kalman filter. Section 2.3 is devoted to the elaboration of the rational stock

bubble model with periodically collapsing. 2.4 introduces the mixture Kalman filtering

technique, a parameter estimation strategy for the state-space model with regime switch-

ing. Section 2.5 reports the estimation results in both simulated and actual data. Section

2.6 extends the model to a three-regime version and discuss its implications. Section 2.7

concludes.
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2.2 Classic Rational Bubble Model

In this section, we first introduce the classic model for the joint dynamics of a stock

and its bubble component, based on the rational bubble theory. Then we provide its linear

state-space form and review the corresponding estimation strategy, the Kalman filter.

2.2.1 Model Specification

Consider the standard linear rational expectations model of stock price determination,

[Et(Pt+1 +Dt+1)− Pt] /Pt = r, (2.2.1)

where Pt is the real stock price at the beginning of period t, Dt+1 is the real dividend paid

from the beginning to the end of period t, Et is the mathematical expectations conditional

on information available at time t, and r is the required real rate of return, r > 0. The

market-fundamentals solution to (2.2.1) is

P f
t =

∞∑
j=1

(1 + r)−j EtDt+j. (2.2.2)

The entire class of solutions is given by Pt = P f
t +Bt, where Bt is the rational bubble that

satisfies the rational expectation condition

Bt = (1 + r)−1 EtBt+1 (2.2.3)

To avoid the problem of obtaining negative theoretical stock prices, in line with Wu

(1997), we express the above present value model in terms of natural logarithms of price

and dividend. After transforming the model in natural logarithm terms and taking linear
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approximation (Campbell and Shiller, 1988), equation (2.2.1) can be written as,

q = κ+ ρEtpt+1 + (1− ρ)Etdt+1 − pt, (2.2.4)

where q is the required log gross return rate and ρ is the average ratio of the stock price to

the sum of the stock price and the dividend, 0 < ρ < 1. In addition, κ = −log(ρ) − (1 −

ρ)log(1/ρ− 1), pt = log(Pt), and dt = log(Dt).

The unique forward-looking and no-bubble solution to (2.2.4), denoted by pft , is given

by

pft = (κ− q)/(1− ρ) + (1− ρ)
∞∑
i=1

ρi−1Et(dt+i), (2.2.5)

provided that the following transversality condition holds,

lim
i→∞

ρiEt(pt+i) = 0. (2.2.6)

Equation (2.2.5) is the present value relation which states that the log stock price is equal to

the present value of expected future log dividend streams. Notice that if the transversality

condition is violated, then (2.2.5) is only a particular solution to (2.2.4). Nevertheless, the

transversality is usually hard to be satisfied in the real market. To fill this gap, a general

solution to (2.2.4) brings in a bubble term which represents the difference between the stock

price and its fundamental value,

pt = (κ− q)/(1− ρ) + (1− ρ)
∞∑
i=1

ρi−1Et(dt+i) + bt = pft + bt, (2.2.7)

where bt = limi→∞ ρ
iEt(pt+i), which satisfies the rational expectations condition,

Et(bt+1) =
1

ρ
bt = (1 + g)bt, (2.2.8)

where g = 1
ρ
− 1 = exp(d− p) > 0 is the growth rate of the bubble component in the
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log stock price. Here d− p is the average log dividend-price ratio. In equation (2.2.7),

the no-bubble solution pft is exclusively determined by dividends and is often called the

market-fundamental solution, while bt can be driven by events extraneous to the market

and is referred to as a rational speculative bubble component in the log stock price. The

existence of a bubble causes the actual stock price to deviate from its market-fundamental

value. Under the rational expectation condition (2.2.8), the bubble component in the log

stock price, bt, exhibits explosive behavior with a non-negative expected growth rate of g,

which implies that the bubble in the original stock price, Bt, grows in expectation at the

required rate of return, which is shown in (2.2.3).

It is well-known that the log dividends are non-stationary, we specify the model in its

difference form. Taking the first difference of (2.2.7) yields

∆pt = (1− ρ)
∞∑
i=1

ρi−1 [Et(dt+i)− Et−1(dt−1+i)] + ∆bt = ∆pft + ∆bt. (2.2.9)

To obtain a parsimonious specification, the log dividends can be assumed to follow an

ARIMA(h,1,0) process as,

∆dt = µ+
h∑
j=1

ϕj∆dt−j + δt, (2.2.10)

where δt is an i.i.d. error term and is distributed as N(0, σ2
δ ). The autoregressive order h in

(2.2.10) is to be determined by the data.

Equation (2.2.10) can be written in the companion form,

Yt = U + AYt−1 + νt, (2.2.11)

where Yt = (∆dt,∆dt−1, ...,∆dt−h+1)′, U = (µ, 0, 0, ..., 0)′, and νt = (δt, 0, 0, ..., 0)′ are
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all h-vectors. In addition, A =



ϕ1 ϕ2 · · · ϕh−1 ϕh

1 0 · · · 0 0

0 1 · · · 0 0

...
...

...
...

...

0 0 · · · 1 0


is a h× h matrix. Therefore,

equation (2.2.9) becomes

∆pt = ∆dt +M∆Yt + ∆bt, (2.2.12)

where M = fA(I − A)−1[I − (1 − ρ)A(I − ρA)−1] is an h-row vector. Here f =

(1, 0, 0, ..., 0) is an h-row vector and I is an h× h identity matrix.

When estimating the stock price equation (2.2.12), we are confronted with the problem

that the bubble component bt is unobservable. In fact, bt is also the only one unobserved

series. Instead of directly estimating the bubble using equation (2.2.12), a more efficient

way is to build up a state-space model which utilizes both the information from the mea-

surement equation (2.2.12) and the stochastic dynamics of the bubble series.

A linear rational speculative bubble is assumed to have an AR(1) process,

bt =
1

ρ
bt−1 + ηt, (2.2.13)

where the innovation ηt is serially uncorrelated and have zero mean and finite variance

σ2
η . It is also assumed that ηt is uncorrelated with the dividend innovation, δt in equation

(2.2.10). The above process is a straightforward and parsimonious specification satisfying

the rational expectations condition (2.2.8). The AR(1) coefficient, 1/ρ, is larger than 1

since it is equal to 1 plus the non-negative growth rate, g. The randomness of the bubble

process is exclusively driven by the Gaussian innovation ηt.
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2.2.2 The Linear State-space Form and the Kalman Filter

In a companion form, the above bubble-dividend-stock system can be written as the

following state space model,

xt = Hxt−1 +Wwt, (2.2.14)

zt = Gxt +Dgt + V vt, (2.2.15)

where

xt = (bt, bt−1)′ is the 2× 1 vector of unobserved variable referred to as state variables;

zt = (∆dt,∆pt)
′ is the 2× 1 vector of observable output variables;

gt = (1,∆dt,∆dt−1, ...,∆dt−h)
′ is (h+ 1)× 1) vector of observable input variables;

H =

 1/ρ 0

1 0

, G =

 0 0

1 −1

, W =

 ση 0

0 0

, V =

 σδ 0

1 0

;

D =

 µ 0 ϕ1 ϕ2 · · · ϕh−1 ϕh

0 1 +m1 m2 −m1 m3 −m2 · · · mh −mh−1 −mh

, where mi is

the i-th component of the h× 1 vector M ; and

wt and vt are i.i.d 2× 1 standard normal random vectors.

The above model is linear and Gaussian with one regime, thus it is referred to as the

one-regime model in subsequent analysis. Given observed stock prices and dividends,

latent bubbles can be filtered by the Kalman filter (Kalman, 1960). Let xt|τ denote the best

linear mean-squared estimate of xt given all observed data up to time τ , we obtain xt|τ and

its covariance matrix via the following equations,
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xt+1|t = Hxt|t,

Pt+1|t = HPt|tH
′ +WW ′,

St+1|t = GPt+1|tG
′ + V V ′,

xt+1|t+1 = xt+1|t + Pt+1|tG
′S−1
t+1|t(zt+1 −Gxt+1|t −Dgt+1),

Pt+1|t+1 = Pt+1|t − Pt+1|tG
′S−1
t+1|tGxt+1|t,

(2.2.16)

where Pt+1|t = E[(xt+1−xt+1|t)(xt+1−xt+1|t)
′] and Pt+1|t+1 = E[(xt+1−xt+1|t+1)(xt+1−

xt+1|t+1)′] are the error covariance matrices for 0 6 t 6 T − 1.

The unknown parameters θ, θ = [ρ, µ, ϕ, ση, σδ]
′, can be estimated by maximizing the

following log likelihood function,

L(θ|z, g) = −T
2

log(2π)−1

2

T∑
t=1

log|St|t−1|−
1

2

T∑
t=1

(zt−Gxt|t−1−Dgt)′S−1
t|t−1(zt−Gxt|t−1−Dgt).

(2.2.17)

2.3 Rational Bubble Model with Regime Switching

Many economic and financial data exhibit non-linear features with multiple regimes.

This is also the case for stock bubbles. Economists characterize rational asset bubbles as

those generated by extraneous events or rumors and driven by self-fulfilling expectations.

One important implication of a bubble is that once it is initiated, it will grow, rapidly ex-

plode and eventually collapse, as described by Blanchard (1979), Blanchard and Watson

(1982) and Evans (1991). Because the linear process in equation (2.2.13) does not capture

the changing dynamics of observed data, we consider the following two-regime specifica-

tion to describe the evolution of the bubble process.
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2.3.1 A Two-regime Model

In this subsection, we introduce the model with two regimes. The bubble process is

given by,

bt+1 =


(1 + g1)bt + η

(1)
t , η

(1)
t ∼ N(0, σ2

η1
) if λt = 1,

(1 + g2)bt + η
(2)
t , η

(2)
t ∼ N(0, σ2

η2
) if λt = 2,

(2.3.1)

where the regime-indicator λt (λt = 1, 2) is specified by a first-order Markov-process with

the time-invariant transition-probability matrix

P =

 p11 1− p11

1− p22 p22

 . (2.3.2)

Here the transition probability from regime i to j is given by pij = Pr[λt = j|λt−1 = i].

The above transitional probability matrix implies that the unconditional probabilities of

the two regimes are given by

π1 =
1− p22

2− p11 − p22

, π2 =
1− p11

2− p11 − p22

. (2.3.3)

To satisfy the rational expectations condition (2.2.8), we impose the following con-

straint on the parameters

(1 + g1)π1 + (1 + g2)π2 = (1 + g) = 1/ρ, g2 < g < g1. (2.3.4)

The unknown parameters include µ, ϕ, ση,σδ,ρ, g2, p11 and p22. By (2.3.3) and (2.3.4),

given ρ, g2, p11 and p22, g1 can be uniquely determined.

Regime 1 is defined as the explosive regime since its growth rate g1 is greater than g,

which implies that the bubble component in the stock price, Bt, grows at a rate higher than

the stock’s required rate of return r. Regime 2 is defined as the collapsing regime since
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its growth rate g2 is less than g, which implies that Bt grows at a rate lower than r. In

this two-regime Markov-switching system, the collapsing regime captures the downward

shift of the bubble process. The conditional volatilities of bt under different regimes can

be different. However, for parameter parsimony, we assume that they are the same in the

subsequent analysis.

Our model specification is different from and more realistic than that in Al-Anaswah

and Wilfling (2011), who generate the periodically collapsing pattern of bubbles by mak-

ing 1/ρ vary under different regimes. This implies that the asset’s required rate of return

switches across regimes. In the real world, asset bubbles exhibit much higher volatili-

ties than the discount rate, as pointed out by Blanchard and Watson (1982) and Evans

(1991). These researchers assume a constant discount rate while allowing the bubble pro-

cess changes over time. Thus we model the bubble’s growth rate as a Markov-switching

process while assuming a constant required rate of return.

Empirically, Al-Anaswah and Wilfling (2011)’s estimated 1/ρ can sometimes be smaller

than 0.5 for the U.S. market and larger than 2 for Japan, Indonesia and Malaysia, implying a

negative required rate of return for the U.S. market and rates larger than 100% for the other

three markets, respectively. In fact, as the average ratio of stock price to the sum of stock

price and dividend, ρ should be close to but a little smaller than 1 (Campbell and Shiller,

1988), implying an expected 1/ρ slightly larger than 1. To get a reasonable estimate, we

restrict ρ in a region, of which the lower and upper bounds are equal to the 75% and the

125% of the average ratio of the stock price to the sum of the stock price and the dividend

in the full sample, respectively. Then we estimate the model parameters by Maximaum

Likelihood.
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2.3.2 The Piecewise Linear State-space Form with Regime Switching

The periodically collapsing bubble-dividend-stock system can be expressed as the fol-

lowing state space model with regime switching,

xt = Hλtxt−1 +Wλtwt, (2.3.5)

zt = Gxt +Dgt + V vt, (2.3.6)

where

xt = (bt, bt−1)′ is the 2× 1 vector of unobserved variable referred to as state variables;

zt = (∆dt,∆pt)
′ is the 2× 1 vector of observable output variables;

gt = (1,∆dt,∆dt−1, ...,∆dt−h)
′ is the (h+ 1)× 1 vector of observable input variables;

H =

 aλt 0

1 0

, G =

 0 0

1 −1

, W =

 σηλt 0

0 0

, V =

 σδ 0

1 0

; and

D =

 µ 0 ϕ1 ϕ2 · · · ϕh−1 ϕh

0 1 +m1 m2 −m1 m3 −m2 · · · mh −mh−1 −mh

 .

2.4 Estimation with the Mixture Kalman Filter

2.4.1 States Filtering

The state-space model with regime switching poses a significant change for states fil-

tering and parameter estimation. According to the state transition equation (2.3.5) with

regime switching, the state distribution is now a mixture of Gaussian. p(xt|zt) can no

longer be calculated in closed form as in Kalman filter. Numerical methods, such as Monte

Carlo approximation techniques, will be needed to estimate p(xt|zt). Chen and Liu (2000)

propose a Rao-Blackwellised sequential Monte Carlo method, called the mixture Kalman
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filter (MKF), and demonstrate the consistency and efficiency in dealing with the condi-

tional dynamic linear system. The MKF marginalizes out the linear state variables and

uses the sequential Monte Carlo method to approximate the regime indicator. Then given

a trajectory of regime indicators, the Kalman filter can be implemented to filter the linear

state variables. By doing so, the MKF can achieve a much smaller Monte Carlo variation

than that of a sequential Monte Carlo method applied directly to the full state space. Fur-

thermore, the MKF provides an unbiased estimate of the likelihood function, which is used

for parameter estimation and model evaluation.

The MKF goes as follows: Let zt = (z1, ..., zt) be the sequence of observations and

Λt = (Λ1, ...,Λt) be the sequence of regime indicators. Let λt and λs be realizations of Λt

and Λs, respectively. We observe that

p(xt|zt) =

∫
p(xt|λt, zt)p(λt|zt)dλt, (2.4.1)

where p(xt|λt, zt) ∼ N{µt(λt),Σt(λt)}, in which {µt(λt),Σt(λt)} can be obtained by

running the Kalman filter with a given trajectory Λt. The main idea of the MKF is to use a

weighted Monte Carlo sample of the indicators,

St = {(λ(1)
t , w

(1)
t ), ..., (λ

(m)
t , w

(m)
t )}, (2.4.2)

to represent the distribution p(Λt|zt). In detail, we sample λ(j)
t , j = 1, ...,m from a pre-

selected trial distribution q(λt|zt,xt) and assign w(j)
t = p(λt|zt)/q(λt|zt,xt). The target

distribution p(xt|zt) is approximated by the mixture of Gaussian distribution

1

Wt

m∑
j=1

w
(j)
t N{µt(λ

(j)
t ),Σt(λ

(j)
t )}, (2.4.3)

where Wt =
∑m

j=1 w
(j)
t . For any integrable function h(·), we can estimate the quantity of
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interest E{h(xt)|zt} as

Ê{h(xt)|zt} =
1

Wt

m∑
j=1

w
(j)
t

∫
h(x)φ{x;µt(λ

(j)
t ),Σt(λ

(j)
t )}dx, (2.4.4)

where φ is the Gaussian density function.

Let KF(j)
t = (µt(λ

(j)
t ),Σt(λ

(j)
t )) record the posterior mean and covariance matrix of

xt, conditional on zt and a given trajectory λ(j)
t , which can be obtained by the Kalman

filter. Then the MKF updating scheme consists of recursive applications of the following

steps.

For j = 1, ...,m:

(a) generate λ(j)
t+1 from its predicative distribution p(λt+1|λ(j)

t ,KF(j)
t , yt+1);

(b) obtain KF(j)
t+1 by a one-step Kalman filter, conditional on {KF(j)

t , zt+1, λ
(j)
t+1},

Pt+1 = Hλt+1ΣtH
′
λt+1

+Wλt+1W
′
λt+1

,

St+1 = GPt+1G
′ + V V ′,

µt+1 = Hλt+1µt + Pt+1G
′S−1
t+1(zt+1 −GHλt+1µt −Dgt+1),

Σt+1 = Pt+1 − Pt+1G
′S−1
t+1GPt+1;

(2.4.5)

(c) update the new weight as w(j)
t+1 = w

(j)
t × u

(j)
t+1, where

u
(j)
t+1 =

p(λ
(j)
t , λ

(j)
t+1|zt+1)

p(λ
(j)
t |zt)p(λ

(j)
t+1|λ

(j)
t ,KF(j)

t , yt+1)

∝ p(zt+1|KF(j)
t )

=
∑
i∈I

p(zt+1|Λt+1 = i,KF(j)
t )p(Λt+1 = i|λ(j)

t ).

(2.4.6)

Here I is the set of possible values of Λt, i.e., I = {1, 2} for the two-regime model.

Specifically, the MKF updating step (c) can be implemented by the following steps:
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(c.1) for each Λt+1 = i, i ∈ I , run the Kalman filter to obtain

v
(j)
i ∝ p(zt+1|Λt+1 = i,KF(j)

t )p(Λt+1 = i|λ(j)
t ), (2.4.7)

where p(Λt+1 = i|λ(j)
t ) is the prior transition probability for the indicator and p(zt+1|Λt+1 =

i,KF(j)
t ) is a by-product of the Kalman filter

p(zt+1|z,λt, λt+1) ∼ N(GHλt+1µt +Dgt+1, St+1), (2.4.8)

(c.2) sample a λ(j)
t+1 from the set I , with probability proportional to v(j)

t ,

(c.3) let KF(j)
t+1 be the one with Λt+1 = λ

(j)
t+1,

(c.4) the new weight is w(j)
t+1 = w

(j)
t

∑
i∈{1,2} v

(j)
i .

(d) (resampling-rejuvenation) if the coefficient of variance of thewt+1 exceeds a thresh-

old value, resample a new set of KFt+1 from {KF(1)
t , ...,KF(m)

t } with probability propor-

tional to the weights w(j)
t+1.

2.4.2 Parameter Estimation

Given all parameters and times series of observable input and output variables, the log

likelihood of a state-space model with regime switching is obtained by runing the MKF. It

has an explicit formula as follows,

l̂(θ|z, g) = log
( m∑
j=1

w
(j)
T

)
, (2.4.9)

where θ is the vector including all parameters. Therefore, we can estimate θ by maximizing

this function.

The above objective function is discontinous and noisy since it is calculated based on

simulation. So the traditional gradient-based method can not be used for optimization. We
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adopt the Covariance Matrix Adaptation Evolution Strategy (CMA-ES)1 (Hansen, 2006),

an evolutionary algorithm for difficult non-linear non-convex black-box optimisation prob-

lems in continuous domain, to do maximum likelihood estimation. This method is feasible

on non-smooth and even non-continuous problems, as well as on multimodal and/or noisy

problems. Compared with other optimization methods that handle non-continuous and

noisy problems, such as stochastic approximation, one advantage of the CMA-ES is that it

fast converges to the global optimal solution.

2.4.3 Model Evaluation

The log-likelihood can be used to compute several criteria for model selection, for

example, Akaike information criterion (AIC) (Akaike, 1974) given by

AIC = 2k − 2l̂, (2.4.10)

where k is the number of parameters. AIC can be directly used to measure the goodness of

fit for a model. The smaller AIC, the better the model fits the data. Another tool of model

evaluation is Bayesian Information Criterion (BIC) (Schwarz, 1978), which is defined as

BIC = log(n)k − 2l̂, (2.4.11)

where n is the number of data points. When fitting models, it is possible to increase the

likelihood by adding parameters, but doing so may result in overfitting. Both BIC and AIC

attempt to resolve this problem by introducing a penalty term for the number of parameters

in the model. The penalty term is larger in BIC than in AIC when the sample size is larger

than 7.

1The matlab, python, C++ and R source codes can be downloaded from Nikolaus Hansen’s website:
http://cma.gforge.inria.fr/cmaesintro.html.
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In addition, we can also use the likelihood ratio test (LR test) for comparing the good-

ness of fit of two models —- a null model against an alternative model. Suppose model

M1 has parameters θ = (θ(1), θ(2)) while its subset model M0 has parameters θ = (0, θ(2)).

l0(M0) and l1(M1) are their maximums of log likelihood. Then the α level test to reject M0

in favor of M1 is D = 2{l1(M1)− l0(M0)} > cα, where cα is the (1− α) quantile of χ2
k.

2.5 Estimation Results and Empirical Analysis

In this section we apply both the one-regime model with the Kalman filter and our pro-

posed two-regime model with the MKF to both simulated observations and actual US stock

data. In order to obtain the former, we simulate the stock price, dividend, and bubble ob-

servations following Evans (1991). For the latter, we study the S&P-500 and the NASDAQ

indices for the past three decades.

2.5.1 Bubble Estimation for the Simulated Data

2.5.1.1 Simulation by the Evans (1991) Process

We follow Evans (1991) to simulate periodically collapsing bubbles and the associated

stock price and dividend series. Bubbles are assumed to follow the process,

Bt+1 =


(1 + r)Btut+1, if Bt ≤ α,[
δ + 1+r

π
(Bt − δ

1+r
)ξt+1

]
ut+1, if Bt > α,

(2.5.1)

where δ and α are positive parameters such that 0 < δ < (1 + r)α. {ut} is a sequence of

non-negative exogenous i.i.d lognormal variables withEt(ut+1) = 1. Here we assume {ut}

to be i.i.d. lognormally distributed and scaled to have unit mean, i.e., ut = exp(yt − τ2

2
)

with {yt} being i.i.d. N(0, τ 2). {ξt} is an exogenous i.i.d Bernoulli process independent of

{ut} with Pr(ξt = 0) = 1 − π and Pr(ξt = 1) = π for 0 < π < 1. The data-generating
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process for the dividend follows a pure random walk, Dt = Dt−1 + εt, where {εt} is a

Gaussian white-noise process with mean zero and variance σ2
ε . Thus the fundamental stock

price is P F
t =

∑∞
j=1 (1 + r)−j EtDt+j = Dt/r, and the stock price is Pt = P F

t +Bt.

Table 2.1 lists three sets of parameters for simulating the Evans (1991)’s data. The first

set of parameters in column 1 is identical to that in Evans (1991). When we simulate the

bubble process, Bt is scaled up by a factor of 20 in order to make the simulated bubbles

generate about 75% of the variance of stock price changes, in line with Evans (1991). The

second set of parameters in column 2 is equal to the first set except that π is 0.6, decreasing

from 0.85 in the first set. A smaller π means a higher probability for bubbles to collapse in

each period. The third set of parameters in column 3 is the same as the first set except that

α is 0.5, decreasing from 1 in the first set. A smaller value of α relative to δ generates more

frequent eruptions. For each parameter specification, we simulate one trajectory for model

comparison.

2.5.1.2 Bubble Estimation

The left, central and right panels in Figure 2.1 show the estimated bubbles Bt in three

stock price series simulated by the Evans model with the first, second and third parame-

ter specifications, respectively. The Bt estimated by the one-regime switching model (in

dashed red line) and that estimated by the two-regime model (in dashed blue line) are shown

in the upper part of each panel. Bt is transformed from bt, which is the filtered bubble com-

ponent in the log simulated stock price. The simulated stock price (P ), real fundamental

price (dividend divided by the discount rate, D/r), and bubbles (B × 20) are presented

in green, magenta and black solid lines, respectively. The lower part of each panel shows

the filtered probabilities of the collapsing regime (in blue solid line) estimated from the

two-regime model.

Using our mixture Kalman filter, we can filter out the bubble series and estimate the
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probability of bubble collapsing. For all three simulated series, we can see that the es-

timated bubbles of the two-regime model track the simulated bubbles fairly well during

most of the sample period. Furthermore, we superimpose bubbles estimated by the one-

regime model and find that the two-regime model estimates bubbles more accurately than

the one-regime model. Because of the nature of filtering methods, both models estimate

bubbles with relatively large tracking errors in the early part of sample. Take the first Evans

process as an example. During the first 30 time periods, bubbles estimated by both models

deviate from the simulated bubbles by relatively big margin. After that, bubbles estimated

by the two-regime model are very close to the simulated bubbles. In contrast, the estimated

bubbles of the one-regime model tend to overshoot the actual bubbles when bubbles ex-

plode and undershoot when bubbles collapse. The fundamental reason behind this is that

our specification of the regime-switching bubble process is more consistent with the nature

of the periodically collapsing one.

To formally conduct the comparison of two models, we compute the Root Mean Square

Error (RMSE) between simulated bubbles and the estimated bubbles for each simulated

Evans process (see Table 2.8). We can see that the RMSE of the two-regime model is much

lower than that of the one-regime model, suggesting that our regime-switching model can

estimate bubbles more accurately.

When major bubbles collapse, the filtered probability of collapsing (in solid blue line)

increases dramatically from 0 to nearly 1, suggesting that it can be used as a powerful

tool to judge whether a collapse happens. In practise, this insight is useful to understand

the current state of the market and update our belief about future based on the estimated

transition probability. However, the one-regime model does not provide such important

information.

One feature of the simulated Evans bubble series, which aligns the equation (2.5.1), is

that collapses are relatively sudden and strong. The Evans process approximates the reality
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by creating a threshold (α), under which the bubble is rationally growing. However once

the bubble grows out of the threshold, it starts to explode faster than the rational growing

speed and be accompanied with a probability (1-π) to collapse to a certain low level, after

which the bubble continues to survive again. From the first parameter specification to the

second one, we reduce π from 0.85 to 0.60, which implies that the probability of collapsing

increases. Consistent with this model setup, we can observe that there are more frequent

collapses in the central panel than in the left panel. The same pattern is also observed when

we reduce the threshold α from 1 (in the left panel) to 0.5 (in the right panel).

Table 2.2, 2.3 and 2.4 show the model evaluation statistics, estimated parameters and

implied parameters of the one-regime and two-regime models for the simulated data series

using the first, second, and third model specifications of the Evans process, respectively.

The upper panel of each table includes several model evaluation criteria, including the

log likelihood, AIC and BIC, for each model. In addition, we report the likelihood ratio

tests (LRT) of the two-regime model over the one-regime model. The p−value of LRT is

presented in parentheses. For the parameter estimation, we report both the estimated pa-

rameter and standard errors (in parentheses) in the middle panel. Moreover, some implied

parameters, which are helpful for us to understand the bubble process, are presented in the

bottom panel. The parameters include the expected growth rate of bt (g), the growth rate of

bt under two regimes (g1 and g2), as well as the steady probabilities of two two regimes (π1

and π2).

A quick glance at the model selection criteria reveals that the model with two regimes

are more preferable. For example, for the process 1 in Table 2.2, after the number of

regimes increase from 1 to 2, the log likelihood increases from 388.21 to 646.04, while

the AIC (BIC) decreases from -764.42 (-744.69) to -1274.08 (-1244.48). The LRT of the

two-regime model over the one-regime model is significant at the 1% level. Based on the

estimated and implied parameters, we find that the estimated growth rate in the collapsing

state (g2 in the two-regime model) is very negative and close to -100% for three simulated
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series, which are consistent with the fact that a bubble in the Evans process drops to a

constant value only in one step when it collapses. Both the transition probability from the

collapsing state to itself and the unconditional probability of the collapsing state are small,

suggesting that the collapsing state is temporary for the Evans process.

2.5.2 Bubble Estimation for the U.S. Data

2.5.2.1 Data

The data we use for estimating stock bubbles are the U.S. stock market indices including

the S&P 500 and NASDAQ indices along with their corresponding dividend series. We

obtain the monthly real S&P 500 and its dividend yield series from the online data of Robert

Shiller 2. We acquire the monthly nominal NASDAQ index and its dividend series from

DataStream, then obtain the real counterparts by adjusting them with the CPI Index, which

is also from the online data of Robert Shiller. Our sample period starts from January 1985

to August 2018, which covers several recent major financial crisis (the 1987 Black Monday,

2000-2002 Dot-com bubble and 2007-2009 financial crisis) in the past three decades. We

choose 1985 as the beginning of the sample period, because at that time the US aggregated

stock price is close to its fundamental value according to Wu (1997).

2.5.2.2 Evidence from the S&P 500 Index

The upper left panel in Figure 2.2 shows the estimated bubbles (in dashed green lines)

in monthly SP500 index, Bt, from 1985.1 to 2018.8 by the two-regime model. Bt is trans-

formed from bt, which is the filtered bubble component in the log real stock price. We

normalize the real stock price and real dividend to 1 in the beginning of the sample period

and present them in green and magenta solid lines. The bottom left panel shows the filtered

2see http://www.econ.yale.edu/ shiller/data.htm
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probabilities of the collapsing regime (in blue solid line) estimated from the two-regime

model.

From the filtered probabilities of the collapsing states of the two-regime model, we can

see that they successfully date stamps major crisis since 1985, including the Black Monday

in 1987, the Dot-com bubble from 2000 to 2002, and the global financial crisis from 2007

to 2009, when there are several jumps towards 1 for filtered probabilities of the collapsing

state, while for most of the sample period, the probabilities remain close to 0.

Table 2.5 shows the summary for estimating the one-regime and two-regime models

using the real price and dividend data of the SP500 index, including model evaluation,

estimated parameters and implied parameters. The structure of the tables is similar to that

of previous Table. By checking the model selection criteria, we can conclude that the

two-regime model outperforms the one-regime model. For example, after the number of

regimes increase from 1 to 2, the log likelihood increases from 2388.32 to 2399.66, while

the AIC (BIC) decreases from -4764.63 (-4740.67) to -4781.31 (-4745.37). The LRT of

the two-regime model over the one-regime model is significant at the 1% level. We find

that the estimated growth rate in the collapsing state (g2 in the two regime model) here

is milder than that of the three Evans processes (-6.5% vs nearly -100%). This indicates

that in reality the crash of bubbles is less abrupt and rapid than that implied by the Evans

process.

2.5.2.3 Evidence from the NASDAQ Index

The upper right and lower right panels in Figure 2.4 show the bubble estimation results

of the two-regime model for the NASDAQ index. Similar to the S&P 500, we can see that

filtered probabilities of the collapsing state can also detect three major crises successfully

over the sample periodt. There appears to be more bubble crashes from 2000 to 2003 for the

NASDAQ index than for the S&P 500. This is consistent with the fact that the NASDAQ
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index includes more small-cap and high-tech stocks, whose prices drop more dramatically

and frequently during the internet bubble period.

Table 2.6 shows the summary for estimating the one-regime and two-regime models

using the real price and dividend data of the NASDAQ index, including model evaluation,

estimated parameters and implied parameters. According to the model selection criteria,

the two-regime model beats the one-regime model. For example, after switching from the

one-regime model to the two-regime model, the log likelihood increases from 750.34 to

767.71, while the AIC (BIC) decreases from -1488.68 (-1464.71) to -1517.42 (-1481.48).

The LRT rejects the one-regime model at the 1% level in flavor of the two-regime model.

We find that the NASDAQ bubbles burst more rapidly than the S&P 500 bubbles in the

collapsing state (g2 is -13.5% instead of -6.5%), which is consistent with a higher volatility

and risk level of the NASDAQ index.

2.6 Extension

The bubble dynamics can be quite complex. Whether the two-regime specification is

sufficient to fully capture its evolution is an empirical issue. In this section, we extend the

model to a three-regime version and discuss its implications.

2.6.1 A Three-regime Model

It might be more realistic to consider a model with three regimes to depict the bubble

dynamics. In the real world, a bubble may start with a period that most investors are ratio-

nal and correspondingly it grows with the stock’s required rate of return. Then gradually

the bubble grows out of control with an “explosive” growth rate larger than the discount

rate, until it breaks down with a “collapsing” growth rate smaller than than the discount

rate. In addition, according to Brunnermeier (2009), after a bubble collapses, it typically
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recovers quickly, with a growth rate probabily greater than the discount rate. In order to

accommodate these patterns, we specify our model as follows,

bt+1 =


(1 + g1)bt + η

(1)
t , η

(1)
t ∼ N(0, σ2

η1
) if λt = 1,

(1 + g2)bt + η
(2)
t , η

(2)
t ∼ N(0, σ2

η2
) if λt = 2,

(1 + g3)bt + η
(3)
t , η

(3)
t ∼ N(0, σ2

η3
) if λt = 3,

(2.6.1)

where g1 = g = 1/ρ− 1 and g3 < g < g2.

Regime 1 is the normal regime since the bt’s growth rate g1 is identical to g, which

implies that the bubble component in the stock price, Bt, grows at the stock’s required rate

of return r. Regime 2 is the exploding regime under which the bt’s growth rate g2 is greater

than g, implying that Bt grows at a rate higher than r. Under Regime 3, Bt grows at a rate

lower than r, implying a bubble is bursting, and this is regarded as a collapsing regime. In

addition, conditional volatilities of bt under different regimes can be different. However,

for parsimony purpose, we assume they are the same in the subsequent analysis.

The transition probability matrix of the three-regime model is

P =


p11 p12 1− p11 − p12

p21 p22 1− p21 − p22

p31 p32 1− p31 − p32

 . (2.6.2)

Following Kim and Nelson (1999), the unconditional probabilities for three regimes are

[
π1 π2 π3

]′
= (Q′Q)

−1
Q′

 03×1

1

 , Q =

 I3×3 − P ′

11×3

 . (2.6.3)

To satisfy the rational expectation condition (2.2.8), we constraint the parameters as
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follows,

gπ1 + g2π2 + g3π3 = 1/ρ− 1 = g. (2.6.4)

In estimation, the unknown parameters include µ, ϕ, ση, σδ, ρ, g3, p11, p12, p21, p22, p31 and

p32. By (2.6.3) and (2.6.4), given ρ, g3 and the transition probability matrix P , g2 can be

uniquely determined.

We use the above model to estimate the bubbles of the U.S. stock market and let the

data determine the optimal parameters. However, when we use this model to estimate the

simulated data, the model can be parsimoniously reduced to a simpler version based on the

characteristics of the underlying structure, with the transition probability matrix as

P =


p11 1− p11 0

0 p22 1− p22

1− p33 0 p33

 . (2.6.5)

The unconditional probabilities of three regimes can be calculated as follows,

π1 =
q−1

11

q−1
11 + q−1

22 + q−1
33

, π2 =
q−1

22

q−1
11 + q−1

22 + q−1
33

, π3 =
q−1

33

q−1
11 + q−1

22 + q−1
33

, (2.6.6)

where qii = 1−pii, i = 1, 2, 3. Based on the rational expectation condition (2.6.4), we can

derive the following parameter constraint,

q22(a1 − a3) = q33(a2 − a1). (2.6.7)

2.6.2 Empirical Results

The left, central and right panels in Figure 2.3 show the estimated bubblesBt (in dashed

blue lines) by the three-regime model in three simulated data series. The lower part of each

panel shows the filtered probabilities of the collapsing regime (in blue solid line) and the
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exploding regime (in red dashed line) estimated from the three-regime model. Similar to the

two-regime model, our three-regime model can estimate bubbles that track the simulated

bubbles fairly well during most of the sample period. To formally conduct the comparison

of two models, (Add RMSE and DM test here.). One advantage of the three-regime model

over the two-regime one is that it provides the filtered probability of the exploding state. It

increases from 0 to 1 gradually before bubbles suddenly collapse, after which it drops to

zero immediately. This phenomenon is consistent with the nature of the Evans process.

Table 2.7 shows the model evaluation statistics, parameter estimation and implied pa-

rameters of the 3-regime models for the three simulated data series. The model selection

criteria reveals that the three-regime model outperforms the two-regime model. For exam-

ple, for the first simulated data, after the number of regimes increase from 2 to 3, the log

likelihood increases from 646.04 to 666.01, while the AIC (BIC) decreases from -1274.08

(-1244.48) to -1312.02 (-1279.14). The LRT of the three-regime model over the two-regime

model is significant at the 1% level. The predominance of the three-regime model stems

from the fact that the the state transitional process is consistent with that of the simulated

data, which recursively follows the order of rational surviving, exploding, and collapsing.

The left and right panels in Figure 2.4 show the estimated Bt (in dashed blue lines) as

well as the filtered probabilities of the collapsing (in blue solid line) and exploding states

(in red dashed line) in the monthly SP500 and NASDAQ indices by the three-regime model,

respectively. Based on these probabilities, we can observe that bubbles not only collapse

after it explodes, but also burst more unexpectedly in real life. More often a crisis happens

while the bubble is still rationally growing. Before the major collapses except Black Mon-

day, most periods are considered as the normal regime. Therefore, the model that forces the

bubble to collapse only after exploding may be too restricted. Furthermore, the estimation

based on the U.S. stock data shows that bubbles can also explode immediately after col-

lapsing, which is consistent with Brunnermeier (2016), who states that periodically bursts

of bubbles are typically followed by dramatic price increases.
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Table 2.9 shows the model evaluation statistics, parameter estimation and implied pa-

rameters of the 3-regime models for the S&P 500 and NASDAQ indices. After switching

from the two-regime model to the three-regime one, the log likelihood increases and AIC

decreases. The LRT rejects the two-regime model in favor of the three-regime model at the

conventional significance levels. However, BIC increases from -4745.37 (-1481.48) to -

4733.03 (-1476.00) for the S&P 500 (NASDAQ) index, indicating some evidence of model

over-fitting.

2.7 Conclusion

The article proposes a new framework for modeling the rational stock bubble process

with periodically collapsing. A set of discrete conditional dynamic linear models is intro-

duced to capture the regime-switching characteristics of speculative bubbles. We formulate

the joint process of stock prices and dividends as well as latent bubbles as a state-space

model with regime-switching. We employ a sequential Monte Carlo method, called the

mixture Kalman Filter, to estimate the model parameters and the unobservable bubble pro-

cess. To our knowledge, our paper is the first to implement this novel methodology in

finance.

Using both simulated observations as well as the U.S. stock data, we demonstrate

the superiority of our state-space model with regime switching over the traditional model

without regime change. Specifically, our model exhibits substantial enhancement in the

goodness-of-fit measured by standard model evaluation criteria. Second, the formal like-

lihood ratio test all rejects the traditional model without regime-switching at conventional

significance levels in favor of our models with regime switching. Third, our model tracks

the actual bubble process more accurately than the traditional model. The DM test demon-

strates that our models outperforms the traditional model in terms of the RMSE of the

bubble estimation. Finally, our model exhibits a strong capability in date stamping of the
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bubble collapsing periods. In particular, our model can successfully capture the major fi-

nancial crises over the past three decades.
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Table 2.1: Parameter Specifications for the Evans Bubble Process

Process 1 Process 2 Process 3
B0 0.5000 0.5000 0.5000
τ2 0.0025 0.0025 0.0025
r 0.0500 0.0500 0.0500
δ 0.5000 0.5000 0.5000
D0 1.3000 1.3000 1.3000
σ2
ε 0.1574 0.1574 0.1574
α 1.0000 1.0000 0.5000
π 0.8500 0.6000 0.8500

Scaling factor of the bubble 20 20 20
Number of observations 100 100 100
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Table 2.2: Estimation Summary of the One-Regime and Two-Regime Models for the Evans
Process 1

This table shows the model evaluation statistics, estimated parameters and implied param-
eters of the one-regime and two-regime models for the simulated data series using the first
specification of the Evans process. The upper panel of each table includes several model
evaluation criteria, including the log likelihood, AIC and BIC, for each model. In addition,
we report the likelihood ratio tests (LRT) of the two-regime model over the one-regime
model. The p−value of LRT is presented in parentheses. For the parameter estimation,
we report both the estimated parameter and standard errors (in parentheses) in the middle
panel. Moreover, some implied parameters, which are helpful for us to understand the
bubble process, are presented in the bottom panel. The parameters include the expected
growth rate of bt (g), the growth rate of bt under two regimes (g1 and g2), as well as the
steady probabilities of two two regimes (π1 and π2).

1-Regime 2-Regimes
Model loglike 388.21 loglike 646.04

Evaluation AIC -764.42 AIC -1274.08
BIC -744.69 BIC -1244.48

LRT over 1R 515.66 (0.0000)

Estimated µ 0.0061 (0.0046) µ 0.0036 (0.0067)
Parameters ψ1 0.0347 (0.0173) ψ1 -0.0526 (0.0128)

ψ2 -0.1474 (0.0212) ψ2 -0.0615 (0.0116)
σδ 0.0926 (0.0027) σδ 0.0937 (0.0047)
ση 0.0885 (0.0016) ση 0.0202 (0.0011)
ρ 0.9702 (0.0081) ρ 0.9702 (0.0023)

1 + g2 0.0000 (0.0243)
p11 0.9437 (0.0016)
p22 0.5952 (0.0359)

Implied r 0.0307 r 0.0307
Parameters g1 g1 0.1741

g2 g2 -1.0000
π1 π1 0.8778
π2 π2 0.1222
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Table 2.3: Estimation Summary of the One-Regime and Two-Regime Models for the Evans
Process 2

This table shows the model evaluation statistics, estimated parameters and implied parame-
ters of the one-regime and two-regime models for the simulated data series using the second
specification of the Evans process. The upper panel of each table includes several model
evaluation criteria, including the log likelihood, AIC and BIC, for each model. In addition,
we report the likelihood ratio tests (LRT) of the two-regime model over the one-regime
model. The p−value of LRT is presented in parentheses. For the parameter estimation,
we report both the estimated parameter and standard errors (in parentheses) in the middle
panel. Moreover, some implied parameters, which are helpful for us to understand the
bubble process, are presented in the bottom panel. The parameters include the expected
growth rate of bt (g), the growth rate of bt under two regimes (g1 and g2), as well as the
steady probabilities of two two regimes (π1 and π2).

1-Regime 2-Regimes
Model loglike 328.45 loglike 530.47

Evaluation AIC -644.90 AIC -1042.95
BIC -625.17 BIC -1013.35

LRT over 1R 404.05 (0.0000)

Estimated µ 0.0094 (0.0068) µ 0.0135 (0.0068)
Parameters ψ1 0.0402 (0.0455) ψ1 -0.0590 (0.0202)

ψ2 -0.0535 (0.0437) ψ2 -0.0018 (0.0179)
σδ 0.0957 (0.0051) σδ 0.0960 (0.0048)
ση 0.1159 (0.0092) ση 0.0349 (0.0010)
ρ 0.9695 (0.0443) ρ 0.9694 (0.0160)

1 + g2 0.0278 (0.0280)
p11 0.8391 (0.0123)
p22 0.4137 (0.0144)

Implied r 0.0314 r 0.0315
Parameters g1 g1 0.3069

g2 g2 -0.9722
π1 π1 0.7847
π2 π2 0.2153



- 102 -

Table 2.4: Estimation Summary of the One-Regime and Two-Regime Models for the Evans
Process 3

This table shows the model evaluation statistics, estimated parameters and implied param-
eters of the one-regime and two-regime models for the simulated data series using the third
specification of the Evans process. The upper panel of each table includes several model
evaluation criteria, including the log likelihood, AIC and BIC, for each model. In addition,
we report the likelihood ratio tests (LRT) of the two-regime model over the one-regime
model. The p−value of LRT is presented in parentheses. For the parameter estimation,
we report both the estimated parameter and standard errors (in parentheses) in the middle
panel. Moreover, some implied parameters, which are helpful for us to understand the
bubble process, are presented in the bottom panel. The parameters include the expected
growth rate of bt (g), the growth rate of bt under two regimes (g1 and g2), as well as the
steady probabilities of two two regimes (π1 and π2).

1-Regime 2-Regimes
Model loglike 369.33 loglike 549.58

Evaluation AIC -726.65 AIC -1081.16
BIC -706.92 BIC -1051.57

LRT over 1R 360.51 (0.0000)

Estimated µ 0.0123 (0.0073) µ -0.0036 (0.0075)
Parameters ψ1 -0.1366 (0.0497) ψ1 -0.0822 (0.0175)

ψ2 -0.0056 (0.0419) ψ2 -0.0579 (0.0181)
σδ 0.1032 (0.0056) σδ 0.1056 (0.0053)
ση 0.0873 (0.0030) ση 0.0297 (0.0016)
ρ 0.9692 (0.2973) ρ 0.9619 (0.0128)

1 + g2 0.1265 (0.0374)
p11 0.9241 (0.0020)
p22 0.2300 (0.1420)

Implied r 0.0318 r 0.0396
Parameters g1 g1 0.1297

g2 g2 -0.8735
π1 π1 0.9102
π2 π2 0.0898
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Table 2.5: Estimation Summary of the One-Regime and Two-Regime Models for the S&P 500
Index

This table shows the model evaluation statistics, estimated parameters and implied param-
eters of the one-regime and two-regime models for the S&P 500 Index. The upper panel
of each table includes several model evaluation criteria, including the log likelihood, AIC
and BIC, for each model. In addition, we report the likelihood ratio tests (LRT) of the
two-regime model over the one-regime model. The p−value of LRT is presented in paren-
theses. For the parameter estimation, we report both the estimated parameter and standard
errors (in parentheses) in the middle panel. Moreover, some implied parameters, which are
helpful for us to understand the bubble process, are presented in the bottom panel. The pa-
rameters include the expected growth rate of bt (g), the growth rate of bt under two regimes
(g1 and g2), as well as the steady probabilities of two two regimes (π1 and π2).

1-Regime 2-Regimes
Model loglike 2388.32 loglike 2399.66

Evaluation AIC -4764.63 AIC -4781.31
BIC -4740.67 BIC -4745.37

LRT over 1R 22.68 (0.0000)

Estimated µ 0.0008 (0.0002) µ 0.0008 (0.0002)
Parameters ψ1 0.7616 (0.0189) ψ1 0.7021 (0.0379)

ψ2 -0.0575 (0.0189) ψ2 0.0010 (0.0181)
σδ 0.0041 (0.0001) σδ 0.0041 (0.0001)
ση 0.0369 (0.0013) ση 0.0317 (0.0012)
ρ 0.9986 (0.0017) ρ 0.9985 (0.0019)

1 + g2 0.9349 (0.0044)
p11 0.9500 (0.0034)
p22 0.3100 (0.1085)

Implied r 0.0014 r 0.0014
Parameters g1 g1 0.0063

g2 g2 -0.0651
π1 π1 0.9324
π2 π2 0.0676
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Table 2.6: Estimation Summary of the One-Regime and Two-Regime Models for the NASDAQ
Index

This table shows the model evaluation statistics, estimated parameters and implied param-
eters of the one-regime and two-regime models for the NASDAQ Index. The upper panel
of each table includes several model evaluation criteria, including the log likelihood, AIC
and BIC, for each model. In addition, we report the likelihood ratio tests (LRT) of the
two-regime model over the one-regime model. The p−value of LRT is presented in paren-
theses. For the parameter estimation, we report both the estimated parameter and standard
errors (in parentheses) in the middle panel. Moreover, some implied parameters, which are
helpful for us to understand the bubble process, are presented in the bottom panel. The pa-
rameters include the expected growth rate of bt (g), the growth rate of bt under two regimes
(g1 and g2), as well as the steady probabilities of two two regimes (π1 and π2).

1-Regime 2-Regimes
Model loglike 750.34 loglike 767.71

Evaluation AIC -1488.68 AIC -1517.42
BIC -1464.71 BIC -1481.48

LRT over 1R 34.74 (0.0000)

Estimated µ 0.0142 (0.0047) µ 0.0140 (0.0046)
Parameters ψ1 -0.7483 (0.0394) ψ1 -0.7532 (0.0069)

ψ2 -0.4969 (0.0391) ψ2 -0.5110 (0.0385)
σδ 0.0935 (0.0033) σδ 0.0929 (0.0032)
ση 0.0964 (0.0034) ση 0.0839 (0.0006)
ρ 0.9994 (0.0032) ρ 0.9994 (0.0036)

1 + g2 0.8653 (0.0100)
p11 0.9253 (0.0037)
p22 0.2790 (0.1334)

Implied r 0.0006 r 0.0006
Parameters g1 g1 0.0146

g2 g2 -0.1347
π1 π1 0.9061
π2 π2 0.0939
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Table 2.7: Estimation Summary of the Three-Regime Model for Three Evans Processes

This table shows the model evaluation statistics, estimated parameters and implied param-
eters of the three-regime models for the three simulated data series using the three specifi-
cations of the Evans process, respectively. The upper panel of each table includes several
model evaluation criteria, including the log likelihood, AIC and BIC, as well as the likeli-
hood ratio tests (LRT) of over the one-regime model and over the two-regime model. The
p−value of LRT is presented in parentheses. For the parameter estimation, we report both
the estimated parameter and standard errors (in parentheses) in the middle panel. Moreover,
some implied parameters, which are helpful for us to understand the bubble process, are
presented in the bottom panel. The parameters include the expected growth rate of bt (g),
the growth rate of bt under three regimes (g1, g2 and g3), as well as the steady probabilities
of three regimes (π1, π2 and π3).

The Evans 1 Process The Evans 2 Process The Evans 3 Process
Model loglike 666.01 loglike 560.34 loglike 565.04

Evaluation AIC -1312.02 AIC -1100.68 AIC -1110.08
BIC -1279.14 BIC -1067.80 BIC -1077.20

LRT over 1R 555.60 (0.0000) LRT over 1R 463.79 (0.0000) LRT over 1R 391.43 (0.0000)
LRT over 2R 39.94 (0.0000) LRT over 2R 59.74 (0.0000) LRT over 2R 30.92 (0.0000)

Estimated µ 0.0044 (0.0067) µ 0.0161 (0.0069) µ -0.0047 (0.0076)
Parameters ψ1 -0.0561 (0.0120) ψ1 -0.0720 (0.0182) ψ1 -0.0907 (0.0000)

ψ2 -0.0656 (0.0108) ψ2 -0.0018 (0.0159) ψ2 -0.0468 (0.0000)
σδ 0.0937 (0.0047) σδ 0.0975 (0.0049) σδ 0.1066 (0.0054)
ση 0.0183 (0.0009) ση 0.0291 (0.0015) ση 0.0275 (0.0000)
ρ 0.9699 (0.0002) ρ 0.9681 (0.0001) ρ 0.9647 (0.0001)

1 + g3 0.0001 (0.0128) 1 + g3 0.0419 (0.0267) 1 + g3 0.1213 (0.0333)
p11 0.9261 (0.0942) p11 0.8518 (0.0100) p11 0.8911 (0.0001)
p22 0.8617 (0.0002) p22 0.6244 (0.0000) p22 0.8580 (0.0001)
p33 0.1119 (0.0688) p33 0.1270 (0.0519) p33 0.0231 (0.1085)

Implied r 0.0311 r -0.0319 r 0.0366
Parameters g1 0.0311 g1 -0.0319 g1 0.0366

g2 0.1916 g2 0.3666 g2 0.1696
g3 -0.9999 g3 -0.9581 g3 -0.8787
π1 0.6182 π1 0.6393 π1 0.5324
π2 0.3304 π2 0.2522 π2 0.4083
π3 0.0514 π3 0.1085 π3 0.0593
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Table 2.8: RMSE of Estimated Bubbles of Three Evans Processes

This table shows the Root Mean Square Error (RMSE) of the one-regime model, two-
regime model and three-regime model in estimating bubbles for three Evans processes.
RMSE is computed as the root mean square deviation from the simulated bubbles to the
estimated bubbles.

The One-regime Model The Two-regime Model The Three-regime Model
The Evans 1 Process 7.0097 3.4249 4.7360
The Evans 2 Process 13.1544 4.6211 4.5836
The Evans 3 Process 18.9142 4.6854 4.6929
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Table 2.9: Estimation Summary of the Three-Regime Model for the S&P 500 and NASDAQ
Indices

This table shows the model evaluation statistics, estimated parameters and implied param-
eters of the three-regime models for the S&P 500 and NASDAQ Indices, respectively. The
upper panel of each table includes several model evaluation criteria, including the log like-
lihood, AIC and BIC, as well as the likelihood ratio tests (LRT) of over the one-regime
model and over the two-regime model. The p−value of LRT is presented in parentheses.
For the parameter estimation, we report both the estimated parameter and standard errors
(in parentheses) in the middle panel. Moreover, some implied parameters, which are helpful
for us to understand the bubble process, are presented in the bottom panel. The parameters
include the expected growth rate of bt (g), the growth rate of bt under three regimes (g1, g2

and g3), as well as the steady probabilities of three regimes (π1, π2 and π3).

S&P 500 NASDAQ
Model loglike 2405.48 loglike 776.96

Evaluation AIC -4784.95 AIC -1527.93
BIC -4733.03 BIC -1476.00

LRT over 1R 34.32 (0.0000) LRT over 1R 53.25 (0.0000)
LRT over 2R 11.64 (0.0202) LRT over 2R 18.51 (0.0010)

Estimated µ 0.0010 (0.0002) µ 0.0137 (0.0047)
Parameters ψ1 0.6951 (0.0185) ψ1 -0.7600 (0.0395)

ψ2 -0.0006 (0.0185) ψ2 -0.4873 (0.0392)
σδ 0.0041 (0.0001) σδ 0.0941 (0.0034)
ση 0.0319 (0.0001) ση 0.0800 (0.0030)
ρ 1.0014 (0.0013) ρ 1.0007 (0.0047)

1 + g3 0.9267 (0.0026) 1 + g3 0.9172 (0.0328)
p11 0.9750 (0.0012) p11 0.9704 (0.0188)
p12 0.0000 (0.0007) p12 0.0002 (0.0061)
p21 0.0000 (0.0000) p21 0.0040 (0.0912)
p22 0.9088 (0.0455) p22 0.3958 (0.1616)
p31 0.4233 (0.0983) p31 0.3208 (0.1331)
p33 0.3996 (0.0765) p33 0.2423 (0.0822)

Implied r 0.0014 r 0.0007
Parameters g1 0.0014 g1 0.0007

g2 0.0399 g2 0.1155
g3 -0.0733 g3 -0.0828
π1 0.8519 π1 0.8638
π2 0.0978 π2 0.0573
π3 0.0503 π3 0.0789
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Figure 2.2: Bubbles of the S&P 500 and NASDAQ Indices Estimated by the One-Regime and
Two-Regime Models

The left and right panels show the estimated bubbles Bt in the S&P 500 and NASDAQ
Indices, respectively. The Bt estimated by the one-regime switching model (in dashed red
line) and that estimated by the two-regime model (in dashed blue line) are shown in the
upper part of each panel. Bt is transformed from bt, which is the filtered bubble component
in the log simulated stock price. We normalize the real stock price and real dividend to 1 in
the beginning of the sample period and present them in green and magenta solid lines. The
lower part of each panel shows the filtered probabilities of the collapsing regime (in blue
solid line) estimated from the two-regime model.
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Figure 2.4: Bubbles of the S&P 500 and NASDAQ Indices Estimated by the Three-Regime
Model

The left and right panels show the estimated bubbles Bt in the S&P 500 and NASDAQ
Indices, respectively. The Bt estimated by the one-regime switching model (in dashed red
line) and that estimated by the three-regime model (in dashed blue line) are shown in the
upper part of each panel. Bt is transformed from bt, which is the filtered bubble component
in the log simulated stock price. We normalize the real stock price and real dividend to 1 in
the beginning of the sample period and present them in green and magenta solid lines. The
lower part of each panel shows the filtered probabilities of the collapsing regime (in blue
solid line) and the exploding regime (in red dashed line) estimated from the three-regime
model.
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Chapter 3

Oil and Inflation Compensation: Evidence from Treasury
Inflation-Protected Security Prices

3.1 Introduction

Since 2008, oil prices and market measures of long-term inflation compensation, such

as 10-year Treasury Inflation-Protected Security (TIPS) Break-even Inflation (BEI), have

moved together much more than they did previously, as can be seen in Figure 3.1. Defined

as the spread between yields on nominal Treasury securities and on TIPS of comparable

maturities, TIPS BEI is often used as a real-time proxy for market participants’ inflation ex-

pectations (IE). Although lower oil prices today may result in lower inflation over the next

several months or even one year, a current decline in oil prices should not reduce inflation

five years or more in the future. It is puzzling that the huge increase of the correlation with

oil prices after the financial crisis is in fact a robust pattern for TIPS BEI at all horizons

from 5 years to 20 years. We provide both empirical and theoretical support to show that

this phenomenon results from nominal interest rates being constrained by the zero lower

bound (ZLB) after crisis.

To begin with, we first explore potential interpretations of the puzzle by performing

a preliminary analysis for the TIPS BEI and oil price data. One possible explanation for

the question is related to the public’s doubt about the effectiveness of monetary policy

around the ZLB. As mentioned by Sussman and Zohar (2015), after financial crisis the

Federal Reserve rapidly cut its target for the short interest rate to near zero to combat

the economic recession; therefore, monetary policy that is constrained by the zero lower
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bound deteriorates the public’s belief in the central bank’s ability to stabilize inflation at

middle- and even long-term horizons. We support this interpretation by documenting the

asymmetric correlation between TIPS BEI and oil prices — TIPS BEI moves more often

with oil prices if oil prices go down than if they go up — when the nominal short rate is

near ZLB. This suggests that the lift of inflation led by the increase of oil prices is rapidly

stabilized by the monetary policy that raises the fed funds rate, thereby the long-term IE

is less affected by instantaneous oil price shocks; however, the decline of inflation caused

by the drop of oil prices can not be mitigated sufficiently because there is no room for the

Federal Reserve to reduce the nominal short rate further as long as it binds at ZLB. As a

result, investors quickly lower their long-term inflation expectations after negative oil price

changes.

Although TIPS BEI is often used as a market measure of IE, it sometimes may not give

a clean read on investors’ inflation expectations as it also reflects the compensations that

risk-averse investors demand for bearing the uncertainty risks of future inflation dynamics.

The risk premiums, also called inflation risk premiums (IRP), are related to the market’s

changing perceptions about the balance of inflation risks or changes in investor risk aver-

sion. Moreover, TIPS yields often exceed risk-free real yields. The spread predominantly

reflects the TIPS liquidity risk premiums (LRP) for TIPS investors to hold securities with

poor liquidity relative to nominal Treasury securities. The combination of IRP and LRP

could potentially drive a notable wedge between TIPS BEI and true IE. Thus the prelimi-

nary analysis based on TIPS BEI data and oil prices is not sufficient to conclude.

To estimate the clean measure of IE, we propose a shadow rate no-arbitrage four fac-

tor term structure model with the following two features. First, we follow D’Amico et al.

(2018) to construct a joint no-arbitrage term structure model for nominal yields and TIPS

yields with a TIPS liquidity specific factor, which helps us to infer liquidity risk premiums

priced in TIPS as a side-product. Second, we follow Wu and Xia (2016) to posit the exis-

tence of a shadow nominal rate that is linear in Gaussian factors, with the actual short-term
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nominal interest rate as the maximum of the shadow rate and zero. Including the ZLB

constraint helps to estimate the IE more accurately, as suggested by Aruoba (2019). We

estimate the model by jointly fitting nominal yields, TIPS yields, inflation rate and survey-

based inflation forecasts at all horizons. We then tease out the liquidity effects of TIPS and

extract the whole term structure of the clean measures of IE and IRP.

We obtain three main findings about the oil price effects on the model-implied IE and

IRP. First, oil prices play a notably positive influence on the whole term structure of IE

only when the nominal short rate is near ZLB. Second, the oil price shocks on IE under

the ZLB regime predominantly stems from negative oil price changes — the oil prices

exhibit asymmetric effects on IE, i.e., IE moves more often with oil prices when oil prices

decrease than when they increase. Third, oil prices have a significantly positive impact on

IRP only when oil prices decrease in an ZLB environment. Accompanied by the fact that

the whole term structure of IRP often remains negative after financial crisis, we conclude

that market participants would like to pay higher premiums for hedging deflation risks

when they expect the monetary policy to be less effective around the ZLB.

Finally, we use a small-scale, closed-economy and new Keynesian dynamical stochastic

general equilibrium (DSGE) model augmented with an oil sector and d a Taylor rule with

the ZLB constraint to study the theoretical effects of ZLB on the relationship between oil

prices and the term structure of IE. We simulate the model to show the correlation increases

when the shadow interest rate decreases. To understand the underlying mechanisms, we

analyze the impulse response functions (IRFs) of oil supply and oil demand shocks on

all macro variables when the nominal short rate binds at ZLB. The IRFs exhibit notable

asymmetric behaviors — both the positive shocks of oil supply and the negative shocks

of oil demand, which result in the decline of oil prices, play a more influential role on

the whole economy than their opposite counterparts do. Both supply-driven oil prices and

demand-driven oil prices exhibit asymmetric and stronger effects under the ZLB regime.

The comparison between the IRFs with ZLB and the counterparts without ZLB illustrates
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that the ZLB is the predominate driver for the strikingly different effects of oil prices on IE

in normal times versus when the nominal interest rate is near its lower bound.

Our contribution is to accomplish the first comprehensive analysis of the oil shocks on

the term structure of IE under the ZLB and the No-ZLB regimes using both a no-arbitrage

term structure model and a DSGE model with the same occasionally binding ZLB con-

straint. We are first to provide both empirical and theoretical evidence to explain different

oil price effects on long-term IE before and after financial crisis. Naturally, our work con-

tributes to three strands of the literature.

First, our paper expands the literature about the effects of oil related shocks on asset

prices. Most papers in this strand mainly discuss the relation between oil and equity re-

turns, such as Kilian and Park (2009), Chiang et al. (2015), Chiang and Hughen (2017) and

Hitzemann (2016). Our research shows that oil shocks are also priced in Treasury bond

markets — oil price changes drive a large part of the variation of the spread between nom-

inal and TIPS yields after financial crisis, and provides sufficient empirical evidence and

theoretical analysis to support our explanation.

Second, our paper extends the literature that employs the no-arbitrage term structure

models to extract useful information such as IE, IRP, and nominal and real term premiums

from nominal and TIPS yields. Examples are Kim and Wright (2005), Abrahams et al.

(2013), D’Amico et al. (2018) and Christensen et al. (2010). However, all these research

use the Gaussian affine term structure model (Duffie and Kan, 1996 and Dai and Singleton,

2000), which potentially allows nominal interest rates to go negative and faces real difficul-

ties in capturing the structural breaks in the ZLB environment. The term structure models

with the ZLB has been rapidly growing recently, such as Bauer and Rudebusch (2016),

Christensen and Rudebusch (2016), Ichiue and Ueno (2007), Kim and Singleton (2012),

Krippner (2012), Kim and Priebsch (2013) and Wu and Xia (2016). However, these mod-

els are mainly applied to fit nominal yields or future short rates only. Our term structure
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model is the first joint model of nominal and TIPS yields with the ZLB constraint and it

can be used to obtain more realistic estimation of variables that are potentially sensitive to

the ZLB.

Finally, the paper fits within the rapidly expanding literature that uses fully nonlinear

New Keynesian DSGE models with an occasionally ZLB binding constraint to analyze the

implications of ZLB constraint on a set of variables, including macroeconomic variables

(Fernández-Villaverde et al., 2015; Gavin et al., 2015; Gust et al., 2017; Nakata, 2017),

the term structure of interest rates (Nakata and Tanaka, 2016), oil shocks on equity returns

(Datta et al., 2018) and oil shocks on economic activity (Bodenstein et al., 2013). Our work

expands the literature by using the New Keynesian model with the ZLB constraint to study

how ZLB exaggerates the effects of oil shocks on the whole term structure of inflation

expectations.

The remainder of this paper is organized as follows. Section 3.2 provides preliminary

empirical evidence showing that the stronger positive effects of oil prices on TIPS BEI after

crisis are caused by the market’s doubt about the effectiveness of monetary policy when

the nominal short rate is around the zero lower bound. Section 3.3 proposes a no-arbitrage

term structure model that describes the joint dynamics of nominal yields, real yields, TIPS

yields, inflation forecasts and show how to use the model to tease out the TIPS liquidity

effects and then extract the clean measure of IE and IRP. Section 3.4 empirically studies

the role of the ZLB in driving the effects of oil prices on IE and IRP. Section 3.5 uses a

small-scale, closed-economy and new-Keynesian dynamical stochastic general equilibrium

model augmented with an oil sector and a Taylor rule with the ZLB constraint to support

our empirical findings. Section 3.6 concludes.
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3.2 Preliminary Empirical Evidence

3.2.1 The Correlation between Oil Prices and TIPS BEI before and

after Crisis

Many researchers and practitioners find that both middle-term (around 5 years) and

long-term (10 years and more) market measures of IE have a strong positive correlation

with oil prices since the onset of the global financial crisis, while the correlation had been

weaker previously. For example, Sussman and Zohar (2015) show that the correlation

between 5-year TIPS BEI and annual rates of oil price changes increases from 0.19 before

crisis to 0.54 after crisis. Badel and McGillicuddy (2015) document a similar pattern for

the correlation between 5-year TIPS BEI and oil price levels. The results keep robust if

the inflation swap rate is employed as the market measure of IE. Elliott et al. (2015) show

a 10% fall in oil prices is associated with a fall of approximately 4 basis points in 5-year

inflation swap rate 5 years from now (5y5y IE) using daily data from January 2009 to July

2015. Darvas and Hüttl (2016) find a 10% increase in oil prices lifts 10-year inflation swap

rates 10 years from now (10y10y IE) by 10 basis points using the weekly data from July

2007 to January 2016.

We use TIPS BEI as the market measure of IE in this paper. To begin our empirical

analysis, we first present the daily dynamics of 10-year TIPS BEI and log oil price for

the pre-crisis sample and post-crisis sample periods in Figure 3.1. We use WTI index

to proxy the oil price level. The pre-crisis sample (upper left panel) starts from January

4, 1999, when TIPS is initially launched, to September 14, 2008. The post-crisis sample

(upper right panel) begins from September 15, 2008, when the market value of global stock

markets evaporated dramatically after Lehman Brothers filed for the biggest bankruptcy in

history, to May 31, 2017. Although 10-year TIPS BEI shows some co-movement with

oil prices before crisis, this pattern is much weaker than that after crisis, when TIPS BEI
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mirrors moves in oil prices. The bottom left panel and bottom right panel show the scatter

plots and OLS regression lines between changes of 10-year TIPS BEI and changes of log

oil price before and after crisis, respectively. It can be easily observed visually that the

positive relationship between two variables is more notable after crisis.

Panel A (Panel B) of Table 3.1 presents how oil price changes affect on TIPS BEI for

5-, 10-, 15-, and 20-year horizons before (after) financial crisis. To avoid the possibility

of spurious regression caused by non-stationary processes, we regress the daily changes

of TIPS BEI on the daily changes of log oil price because their change series are more

stationary than their level series. The regression is as follows,

∆Yt = γ0 + γ1∆ (logWTIt) + εt. (3.2.1)

Here we use TIPS BEI on t-th day as Yt and it can be replaced by different variables in

the following part of this paper. We employ the Newly-West standard errors to compute

T statistics in this regression and all following regressions to overcome the autocorrelation

and heteroskedasticity in the error terms in the models.

Comparing Panel A and Panel B, we find that by switching the sample period from

pre-crisis to post-crisis, the coefficient and T-statistic of log oil price changes are more

than doubled, and the adjusted R square becomes more than quintupled on average across

regressions for all horizons. Take the regression for 10-year TIPS BEI as an example. The

slope of log oil price change is 0.0022 with a T-statistic of 5.5 before crisis, but after crisis,

it increases to 0.0054 with a T-statistic of 17.17. The corresponding adjusted R square

increases from 2.05% to 9.8%. A 1% increase in oil prices lifts 5-, 10-, 15- and 20-year

TIPS BEI by 0.66, 0.54, 0.45 and 0.39 bps after crisis, while previously the corresponding

increase of TIPS BEI are 0.33, 0.22, 0.19 and 0.16 bps. Moreover, the strengthening of

these oil effects right after crisis is greater for TIPS BEI with longer horizons.

To formally test the impact of financial crisis on the relationship between oil prices and
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TIPS BEI, we conduct the following regression, with estimation results shown in Panel C

of Table 3.1.

∆Yt = γ0 + γ1∆ (lnWTIt) + γ21Post + γ3∆ (lnWTIt) · 1Post + εt, (3.2.2)

where 1Post is the post-crisis dummy variable that is 0 before September 15, 2008 and 1

afterwards, and Yt is TIPS BEI for different terms as before. Our interest is the coefficient

of the interaction term ∆ (lnWTIt) · 1Post, which identifies the additional effect of post-

crisis oil price changes. Consistent with previous findings, the regressions for all maturities

have positive coefficients for the interaction term at the significance level 1%.

3.2.2 Potential Explanations and Hypotheses

It makes sense for changes in oil and energy prices to influence short-term IE since they

are obviously an important determinant of inflation in the near term such as the following

several months or 1 year. But why do changes in oil prices have a strong and persistent

impact on the market measure of IE for 5- to 20-year horizons? Researchers have given

some possible interpretations for this question, although none of them provides direct evi-

dence. The first explanation is that the market measures of IE, such as inflation swap rates

and TIPS BEI, don’t provide a clean read on investors’ forecasts on future inflation (Elliott

et al., 2015). In addition to IE, these measures reflect IRP, which is the compensation that

risk-averse investors demand for bearing the uncertainty risks of future inflation dynamics.

Based on this explanation, we propose the following hypothesis:

Hypothesis 1 (H1). The stronger positive effects of oil prices on the long-term market

measure of IE after crisis result from the expansion of oil prices’ impact on the market’s

long-term IRP, not IE.

The second interpretation relates to the public’s doubt about the effectiveness of mon-

etary policy around the zero lower bound (ZLB) (Elliott et al., 2015; Sussman and Zohar,
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2015). Sussman and Zohar (2015) show that both oil prices and inflation reacted quite

strongly to global demand and oil supply shocks. They argue these shocks should not af-

fect long-term IE in the normal times because central banks can, in principle, use standard

monetary policy tools to offset the effect of these shocks on inflation. But after financial

crisis, the Federal Reserve rapidly cut its target for the short interest rate to near zero to

combat economic recession, thus the monetary policy constrained by the zero lower bound

deteriorates the public’s belief in the ability of monetary authorities to stabilize inflation at

middle- and even long-term horizons. Based on this explanation, we propose the following

hypothesis:

Hypothesis 2 (H2). The stronger positive effects of oil prices on the long-term market mea-

sure of IE after crisis are caused by the public’s doubt about the effectiveness of monetary

policy when the nominal short rate is around the zero lower bound.

3.2.3 The Role of Zero Lower Bound

The Hypothesis 1 will be examined in section 3.4, after we obtain clean measures of IE

and IRP in section 3.3 by estimating a joint no-arbitrage term structure model for Treasury

nominal yields, TIPS yields and survey-based inflation forecasts. In this subsection, we

assume TIPS BEI is able to reflect the market’s IE and then conduct econometric tests for

TIPS BEI and oil price data to test Hypothesis 2.

One natural way to test Hypothesis 2 is to examine asymmetric correlations between oil

prices and TIPS BEI — whether TIPS BEI moves more often with oil prices when oil prices

go down than when they go up — when the nominal short rate is close to the ZLB. Under

the ZLB regime, the drop of oil prices leads to the decline of inflation, while the monetary

authorities lose the ability to stabilize long-run inflation because there is no room for the

Fed to further reduce the fed funds rate. Therefore, the oil price effects are transmitted to

the market measure of long-term IE. However, this is not the case when oil prices increase
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because the Fed is capable to raise Fed funds rate to mitigate the increase of inflation. Thus

if Hypothesis 2 holds, when the nominal short rate binds at the ZLB, the escalation of TIPS

BEI caused by the increase of oil prices should be less the the decline of TIPS BEI caused

by the same amount of decrease of oil prices.

Table 3.2 conducts the regression between daily changes of TIPS BEI on daily changes

of log oil price, the dummy variable indicating negative oil price change, and their interac-

tion term, for pre-crisis and post-crisis samples.

∆Yt = γ0 + γ1∆ (lnWTIt) + γ21Neg + γ3∆ (lnWTIt) · 1Neg + εt. (3.2.3)

Here the dummy variable 1Neg is 1 when ∆ (lnWTIt) is negative and 0 when positive. Yt

is TIPS BEI for 5, 10, 15, or 20 years. Our interest is the coefficient of the interaction term

∆ (lnWTIt) · 1Neg, which identifies the additional effects of oil price changes on TIPS

BEI when oil prices decrease. For the post-crisis sample, the coefficients for the interaction

term are significantly positive for 10, 15 and 20 years at the significance level 5%, and

significantly postive for 5 years at the significance level 10%. This justifies the asymmetric

effects of oil prices on TIPS BEI after crisis. A 1% drop of oil prices leads to a decline of

0.84, 0.67, 0.66, and 0.51 bps of TIPS BEI for next 5, 10, 15, and 20 years; however, the

corresponding lift of TIPS BEI rates caused by a 1% increase of oil prices are only 0.51,

0.38, 0.27, and 0.20 bps, suggesting that as term increases, the asymmetry of oil effects

is more salient. For the pre-crsis sample, the coefficients of the interaction term turn to

be negative. The notable structural difference between regression results in two periods

suggests that investors expect that the Fed loses the effective tools to stabilize inflation

when oil prices decrease after financial crisis, during which period the nominal short rate

keeps close to the ZLB in most times.

To clearly estimate the oil price shock on TIPS BEI under different scenarios, we con-

duct regressions with two-way and three-way interactions for the whole sample in Table
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3.3. We create a ZLB dummy 1ZLB, which is equal to 1 when the contemporaneous 3-

month nominal interest rate is smaller than 1% and 0 otherwise. The ZLB dummy is 1 for

9.47% observations in the pre-crisis sample, and for 99.77% observations in the post-crisis

sample. To save space, only regression results for 10-year (Panel A) and 20-year (Panel

B) TIPS BEI are presented. Column (1) regresses the daily changes of TIPS BEI on daily

changes of log oil price. Consistent with previous results, the coefficient of oil shock is sig-

nificantly positive. Column (2) conducts a regression with two-way interactions between

log oil price change and the ZLB dummy,

∆Yt = γ0 + γ1∆ (lnWTIt) + γ21ZLB + γ3∆ (lnWTIt) · 1ZLB + εt. (3.2.4)

As the ZLB dummy and post-crisis dummy are equal in 94.95% of the whole sample, we

can expect that the regression results should be similar to those in Panel C of Table 3.2.

The coefficient of the interaction term is significantly positive at 1% level, suggesting that

the oil’s positive shocks on TIPS BEI is much stronger under the ZLB regime. Column (3)

conducts a regression with two-way interactions between log oil price change and the neg-

ative change dummy, described in equation (3.2.3). The coefficient of the interaction term

is not significant, which is consistent with the opposite asymmetric effects of oil shocks be-

fore and after crisis. Column (4) conducts a regression with three-way interactions among

log oil price change, negative change dummy and ZLB dummy.

∆Yt = γ0 + γ1∆ (Oilt) + γ21ZLB + γ3∆ (Oilt) · 1ZLB + γ41Neg + γ5∆ (Oilt) · 1Neg

+ γ61ZLB · 1Neg + γ7∆ (Oilt) · 1ZLB · 1Neg + εt.

(3.2.5)

The coefficient of the three-variable interaction term is significantly positive at 10% level

for 10 years and at 5% for 20 years, which suggests that the oil’s positive effects on TIPS

BEI is strongest when oil prices drop under the ZLB regime.
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The take-away of this section is that if we assume that TIPS BEI is a reasonable esti-

mate of the market’s IE, Hypothesis 2 holds. To examine hypothesis 1, we estimate clean

measures of Inflation Expectations (IE) and Inflation Risk Premium (IRP) in next section

and then perform similar econometric tests.

3.3 Estimating Inflation Expectation and Risk Premium

3.3.1 The Model

In this subsection, we propose a no-arbitrage term structure model that describes the

joint dynamics of nominal yields, real yields, TIPS yields, inflation and inflation fore-

casts. We then show how to use the model to tease out the TIPS liquidity effects and

extract the clean measure of IE and IRP. This model inherits the merits from the liquidity-

adjusted TIPS pricing model (D’Amico et al., 2018) and the shadow rate term structure

model (SRTSM) (Black, 1995 and Wu and Xia, 2016). The model employs uses a liquidity

factor to capture liquidity risk priced in TIPS, and includes the ZLB constraint for nominal

interest rates.

3.3.1.1 State Factors and Nominal Yields

The Gaussian affine term structure model (GATSM) specifies interest rates as affine

functions of Gaussian state factors (Duffie and Kan, 1996 and Dai and Singleton, 2000),

which potentially allows interest rates to go negative and faces real difficulties in the zero

lower bound (ZLB) environment, i.e., when modeling nominal yields. Both fed funds rate

and most of the nominal yield curve had been constrained at a certain point during the

2009-2015 period. Furthermore, the recent studies by Aruoba and Schorfheide (2015) and

Aruoba (2019) suggest that the real data of inflation dynamics and the estimation of IE

using term structure model is sensitive to ZLB. To capture the structural breaks in the data
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and estimate IE more accurately, we follow Black (1995) and Wu and Xia (2016) to posit

the existence of a shadow nominal rate that is linear in Gaussian factors, with the actual

short-term nominal interest rate the maximum of the shadow rate and zero.

We assume that the nominal short rate rN(Xt) is

rNt = max
(
rNSt , 0

)
, (3.3.1)

where 0 is the lower bound of nominal interest rate, and rNSt is the shadow rate that is

defined as an affine function of the Gaussian state variables,

rNS(Xt) = ρNS0 + ρNS1

′
Xt. (3.3.2)

If the shadow rate rNSt is greater than the lower bound, then rNSt is the nominal short rate; if

the shadow rate rNSt is smaller than the lower bound, the nominal short rate is zero. Under

the physical (P) measure, we assume three state variables have the following dynamics,

dXt = κ(µ−Xt)dt+ ΣdWt. (3.3.3)

Following D’Amico et al. (2018), we employ the following normalization, which are neces-

sary for achieving identification to allow a maximally flexible correlation structure between

the factors

µ = 03×1, κ =


κ11 0 0

0 κ22 0

0 0 κ33

 , Σ =


0.01 0 0

Σ21 0.01 0

Σ31 Σ32 0.01

 . (3.3.4)

The nominal pricing kernel takes the form,

dMN
t /M

N
t = −rN(Xt)dt− λN(Xt)

′dWt, (3.3.5)



- 125 -

where the vector of nominal prices of risk, λN is also assumed to be essentially affine form

(Duffee, 2002),

λN(Xt) = λN0 + ΛNXt, (3.3.6)

where λN0 is a 3× 1 vector and ΛN is a 3× 3 matrix, without any specification.

If there is no ZLB, the shadow rate rNS(Xt) is the nominal short rate and the implied

nominal yield has the standard closed form solution of GATSM proposed in Duffie and Kan

(1996) and Dai and Singleton (2000). The closed-form solution for shadow rate implied

τ−maturity nominal yield at time t is a linear function of state factors,

yNSt,τ = aNSτ + bNSτ
′
Xt, a

NS
τ = −ANSτ /τ, bNSτ = −BNS

τ /τ, (3.3.7)

where ANSτ and BNS
τ are given by equations (3.A.4) and (3.A.5) in Appendix 3.A.

When considering ZLB, the equation (3.3.1) brings nonlinearity into an otherwise lin-

ear system. A closed-form pricing formula for the SRTSM is not available beyond one

factor. Wu and Xia (2016) propose a simple analytical representation for bond prices in the

multifactor SRTSM that provides an excellent approximation and can be applied directly-

time data. Following Wu and Xia (2016), we discretize our model with sampling period h,

construct the nominal forward rate curve fNt,kh,(k+1)h (the forward rate for a loan starting at

t + kh and maturing at t + (k + 1)h, where 0 6 k 6 n − 1) at time t, and then compute

τ−maturity nominal yield yNt,τ , where τ = nh. Wu and Xia (2016) discretize the continu-

ous system at monthly frequency, while we adopt the weekly frequency, h = 1
52

, to reduce

the sampling bias and match the weekly data we use.

Following Wu and Xia (2016), we derive the forward rate at time t for a loan starting

at t+ nh and maturing at t+ (n+ 1)h as

fNt,nh,(n+1)h =
1

h
σQ,Nnh g

(
αNnh + βNnh

′
Xt

σQ,Nnh

)
, (3.3.8)
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where the expressions of
(
σQ,Nnh

)
, αNnh and βNnh are given in Appendix 3.A. The function

g (z) ≡ zΦ (z) + φ (z) consists of a normal cumulative distribution function Φ (.) and

normal probability density function φ (.). All derivations are deferred to Appendix 3.A.

Given the forward rates, the nominal yield yNt,τ with maturity τ = nh at time t can be

easily computed as

yNt,τ=nh =
1

n

n−1∑
k=0

fNt,kh,(k+1)h =
1

nh

n−1∑
k=0

σQ,Nkh g

(
αNkh + βNkh

′
Xt

σQ,Nkh

)
. (3.3.9)

3.3.1.2 Inflation Dynamics and Real Yields

Price level is assumed to follow the log-normal process,

dQt/Qt = rI(Xt)dt+ σ′qdWt + σ⊥q dW
⊥
t , (3.3.10)

where the instantaneous inflation rate rI(Xt) is an affine function of the state variables:

rI(Xt) = ρI0 + ρI1
′
Xt. (3.3.11)

Following D’Amico et al. (2018), the inflation innovation loads not only on shocks that

drive risk factors dWt, but also on an orthogonal shock that is unspanned by yield curve

dynamics dW⊥
t .

At time t, a real bond paying 1 unit of the consumption basket at time T can be deemed

as a nominal asset paying the price level, QT , upon maturity. Therefore, no-arbitrage con-

dition requires the following linkage between the real and nominal pricing kernels,

MR
t = MN

t Qt, (3.3.12)

based on which the instantaneous inflation rate and nominal market price of risks can be

derived.
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The real pricing kernel takes the form,

dMR
t /M

R
t = −rR(Xt)dt− λR(Xt)

′dWt, (3.3.13)

where the vector of real prices of risk, λRt , is further assumed to be essentially affine form,

λR(Xt) = λR0 + ΛRXt, as suggested in Duffee (2002). The coefficient of real market price

of risks are derived as equations (3.B.2) and (3.B.3). The instantaneous real interest rate is

derived as

rR(Xt) = rN(Xt)− rBEI(Xt) = rN(Xt)− ρBEI0 − ρBEI1

′
Xt, (3.3.14)

where ρBEI0 and ρBEI1 are derived as equations (3.B.7) and (3.B.8), respectively. Here

rBEI(Xt) = ρBEI0 + ρBEI1
′
Xt is defined as the instantaneous break-even inflation (BEI)

rate.

If there is no ZLB, the shadow rate rNS(Xt) is the nominal short rate and the corre-

sponding real rate is the real shadow rate, defined as rRS(Xt) = rNS(Xt)− rBEI(Xt). It is

an affine function of the state variables, rRS(Xt) = ρRS0 +ρRS1
′
Xt, where ρRS0 = ρNS0 −ρBEI0

and ρRS1 = ρNS1 −ρBEI1 . The closed-form solution for shadow rate implied τ−maturity real

yield at time t is a linear function of state factors,

yRSt,τ = aRSτ + bRSτ
′
Xt, a

RS
τ = −ARSτ /τ, bRSτ = −BRS

τ /τ, (3.3.15)

where ARSτ and BRS
τ are given by equations (3.B.13) and (3.B.14) in Appendix 3.B.

When considering ZLB, we derive the forward real rate at time t for a loan starting at

t+ nh and maturing at t+ (n+ 1)h as
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fRt,nh,(n+1)h ≈ −
αBEInh

h
− ρBEI1

′
hCQ,R

nh ρBEI1 − βBEInh
′

h
Xt +

1

h
σQ,N,Rnh g

(
αN,Rnh + βN,Rnh

′
Xt

σQ,N,Rnh

)

+ ρNS1

′
CQ,R
nh ρBEI1 hΦ

(
ᾱN,Rnh + βN,Rnh

′
Xt

σQ,N,Rnh

)
, (3.3.16)

where the expressions of all coefficients are given in Appendix 3.B. All derivations are

deferred to Appendix 3.B.

Given the forward real rates, the real yield yNt,τ with maturity τ = nh at time t can be

easily computed as

yRt,τ=nh ≈ −
1

nh

n−1∑
k=0

αBEIkh − h

n
ρBEI1

′
n−1∑
k=0

CQ,R
kh ρBEI1 − 1

nh

n−1∑
k=0

βBEIkh

′
Xt

+
1

nh

n−1∑
k=0

σQ,N,Rkh g

(
αN,Rkh + βN,Rkh

′
Xt

σQ,N,Rkh

)

+
h

n
ρNS1

′
n−1∑
k=0

CQ,R
kh ρBEI1 Φ

(
ᾱN,Rkh + βN,Rkh

′
Xt

σQ,N,Rkh

)
. (3.3.17)

3.3.1.3 TIPS Liquidity Effects

In this subsubsection, we introduce how we take TIPS liquidity effects into account so

as to price TIPS accurately. Existing research (Gürkaynak et al., 2010; Abrahams et al.,

2013; D’Amico et al., 2018; Grishchenko and Huang, 2013) provides adequate evidence

on the existence of a TIPS liquidity factor, which pushes TIPS yields to deviate from the

underlying real yields. The liquidity premium that investors demand for holding TIPS is

mainly captured by the spread between the TIPS yield and the real yield as

Lt,τ = yTIPSt,τ − yRt,τ . (3.3.18)
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Following D’Amico et al. (2018), we assume that the instantaneous rate investors re-

quire to price TIPS is the sum of the instantaneous real short rate and a positive spread, ls.

As a result, the liquidity risk premium can be written as,

Lt,τ = −1

τ
logEQ

t

(
exp

(
−
∫ t+τ

t

(rRs + ls)ds

))
− yRt,τ . (3.3.19)

The instantaneous spread ls is assumed to load on not only three risk factors Xt, but also

a TIPS-specific factor, X̃t, i.e., lt = β′Xt + β̃X̃t, where β̃ is a constant and β is a 3 × 1

constant vector. The TIPS-specific factor, X̃t, is assumed to be orthogonal toXt and follow

an independent Vasicek (1977) process,

dX̃t = κ̃(µ̃− X̃t)dt+ σ̃dW̃t, (3.3.20)

with dWtdW̃t = 03×1. For identification, we set σ̃ = 0.01. By construction, β̃X̃t captures

the TIPS-idiosyncratic component that is contemporaneous orthogonal to the systematic

state variables in the economy. In the end, X̃t is assumed to bear a market price of risk as

λ̃t = λ̃0 + λ̃1X̃t.

The instantaneous TIPS rate is rTIPSt = rRt + lt = rNt − rBEIt + β′Xt + β̃X̃t =

rNt −ρBEI0 − (ρBEI1 −β)′Xt+ β̃X̃t. The instantaneous TIPS BEI rate is defined as rTBEI =

rN − rTIPS = ρBEI0 + (ρBEI1 − β)′Xt − β̃X̃t. As detailed in Appendix 3.C, the forward

TIPS rate at time t for a loan starting at t+ nh and maturing at t+ (n+ 1)h derived as

fTIPSt,nh,(n+1)h ≈ −
αTBEIanh

h
− αTBEIbnh

h
−
(
ρBEI1 − β

)′
hCQ,R

nh

(
ρBEI1 − β

)
− β̃′hC̃Q,R

nh β̃

− βTBEIanh
′

h
Xt −

βTBEIbnh

h
X̃t +

1

h
σQ,N,Rnh g

(
αN,Rnh + βN,Rnh

′
Xt

σQ,N,Rnh

)

+ ρNS1

′
CQ,R
nh

(
ρBEI1 − β

)
hΦ

(
ᾱN,Rnh + βN,Rnh

′
Xt

σQ,N,Rnh

)
. (3.3.21)

All coefficients are detailed in Appendix 3.C. Given the forward TIPS rates, the TIPS yield
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yTIPSt,τ with maturity τ = nh at time t can be easily computed as

yTIPSt,τ=nh ≈ −
1

nh

n−1∑
k=0

αTBEIakh − 1

nh

n−1∑
k=0

αTBEIbkh − h

n

(
ρBEI1 − β

)′ n−1∑
k=0

CQ,R
kh

(
ρBEI1 − β

)
− h

n
β̃′

n−1∑
k=0

C̃Q,R
kh β̃ − 1

nh

n−1∑
k=0

βTBEIakh

′
Xt −

1

nh

n−1∑
k=0

βTBEIbkh X̃t

+
1

nh

n−1∑
k=0

σQ,N,Rkh g

(
αN,Rkh + βN,Rkh

′
Xt

σQ,N,Rkh

)

+
h

n
ρNS1

′
n−1∑
k=0

CQ,R
kh

(
ρBEI1 − β

)
Φ

(
ᾱN,Rkh + βN,Rkh

′
Xt

σQ,N,Rkh

)
. (3.3.22)

3.3.1.4 Break-even Inflation Rate Decomposition

We now introduce how to decompose BEI into IE and IRP. The τ -period BEI, also

called τ -period inflation compensation, is defined as the difference between the τ -period

nominal yield and real yield,

BEIt,τ = yNt,τ − yRt,τ . (3.3.23)

In reality, the real yield can not be observed directly, so an empirical approximation of

the τ -period BEI is the τ -period TIPS BEI, which is defined as the τ -period TIPS yield

minus the τ -period nominal yield. Based on equation (3.3.18), the τ -period TIPS BEI

equals the τ -period BEI minus the τ -period TIPS liquidity risk premium. By estimating

our joint time structure model, we can remove the TIPS liquidity effects and then compute

BEI over different horizons, which are the difference between nominal yields and real

yields at corresponding maturities.

The τ -period BEI can then be decomposed into τ -period IRP and τ -period IE over the

same horizon, i.e.,

BEIt,τ = IEt,τ + IRPt,τ =
1

τ
Et

(∫ t+τ

t

rIsds

)
+ IRPt,τ . (3.3.24)
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The τ -period IE is the expectation of future inflation rates over the next τ -period, while the

corresponding IRP is the premium investors require in order to bear the uncertainty risks

of inflation dynamics over the same horizon.

Because the inflation rate rIt is an affine function of Xt. Therefore, inflation expec-

tations IEt,τ = 1
τ
Et
(∫ t+τ

t
rIsds

)
is also an affine function of Xt, with the closed-form

solution detailed in Appendix 3.D.

3.3.2 Data

The data sample covers the period from January 1999 to May 2017. We collect nom-

inal and TIPS zero-coupon yields from Gürkaynak et al.(2007; 2010) datasets which can

be downloaded from the Federal Reserve Board of Governors research data page.1. The

maturities of TIPS yields include 2, 3, 4, ..., 19 and 20 years, and those of nominal counter-

parts include 1, 2, 3, ..., 29 and 30 years. We expand the cross-section of nominal yields by

adding 3- and 6- month T-bill yields obtained from the economic data website of Federal

Reserve Bank of St. Louis. The large cross-section of zero-coupon yields, which consists

of 32 maturities for nominal and 19 maturities for TIPS bonds, allows us to extract suffi-

cient information from the yield curves. All yields are sampled at weekly frequency2 for a

total of T = 961 time-stamps.

We acquire monthly headline Consumer Price Index for all urban consumers (CPI-

U) from the economic data website of Federal Reserve Bank of St. Louis. We choose

seasonally-adjusted CPI inflation for estimation since our model does not take the season-

ality into account. Because the CPI data is not released weekly, we assume CPI does not

change during the same month and use monthly CPI as the observation for each week,

1See https://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html and
https://www.federalreserve.gov/pubs/feds/2008/200805/200805abs.html.

2To get rid of weekend effects, we sample yields on each Wednesday. If data on Wednesday is missing,
we replace it by that on Thursday or Tuesday.
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without any forward-looking bias.

To reliably estimate the Inflation expectations (IE) and Inflation Risk Premium (IRP),

one key dataset required to be fed into the models is the survey of inflation forecasts. We

obtain 1-year inflation forecasts over the next 1, 5 and 10 years from the Survey of Profes-

sional Forecasters (SPF) dataset issued by the Federal Reserve Bank of Philadelphia. The

survey data is released in the middle month of each quarter. We find the exact release date

for each survey and use the corresponding data as the observations for the first Wednesday

following the release. Consequently, there is only one week having the professional fore-

casts data during each quarter. For other weeks, we set the forecasts as missing data. All

of these forecasts are available each quarter.

Another advantage of feeding the forecasts data into my models is that it helps to over-

come the “small-sample problem”, which means typical data sample used in a dynamic

term structure estimation, for example, 5 to 15 years, results in unreliable estimate of phys-

ical dynamics of interest rate due to the trouble of observing a sufficient number of “mean-

reversions”. As suggested by Kim and Orphanides (2012), the supplement of the survey

forecasts data of 3-month Tbill rates provides additional relevant information to effectively

stabilize the estimation and pin down the P parameters. Therefore, we also add 3-month

Tbill rate forecasts over the next 1 year and 10 years from the SPF dataset to our model.

The first forecast is available each quarter, while second one are is only reported every first

quarter.

For oil price data, we obtain weekly crude oil price by sampling the West Texas In-

termediate (WTI) index on each Wednesday from the economic data website of Federal

Reserve Bank of St. Louis.
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3.3.3 Parameter Estimation and Model Fit

As detailed in Appendix 3.E, our joint model is reorganized as a nonlinear state-space

model with Gaussian measurement errors, because some observable variables, including

nominal yields, inflation forecasts and nominal rate forecasts are all nonlinear functions

of state variables. We linearize these observable equations using the analytical first-order

derivatives in spirit of Wu and Xia (2016), then estimate the system by maximum likeli-

hood methodology using the extended Kalman Filter (EKF). All technical details are pro-

vided in Appendix 3.E. With 29 model parameters and 20 observation standard errors, the

state-space model includes a 5-dimension state transition equation and a 21-dimension ob-

servation equation 3. The large cross-section and time series of observations help to pin

down parameters. We use a sufficient set of starting values for robustness checks to ensure

the parameters we estimate arrives at the global optimum.

Survey forecasts are not available for each week during our sample period, which re-

sults in missing data in the observation equation. In order to handle this issue, we allow the

dimension of the observation equation matches the actual number of observations at each

time (see section 3.4.7 of Harvey (1989) for further details). For identification purpose, we

impose the standard non-negative constraints on κ11, κ22, κ33, κ̃, and λ. In addition, We

normalize σ̃ to be equal to 0.01.

Table 3.4 presents the log likelihood, estimated parameters and standard errors for our

model. All parameters driving the dynamics of nominal yields, inflation and TIPS yields

are significant at 1% level, which suggests our model is easy to be identified using the large

cross-sectional data.

To assess the fitting performance of our model, in Figure 3.2, 3.3, 3.4 and 3.5, we

plot the actual and fitted nominal yields, TIPS yields and survey forecasts of inflation and

3-month Till rates. The root mean squared errors (RMSEs) of the in-sample fitting are

3The first observable variable, the logarithm of CPI, is assumed to be observed without error.
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shown in the title of each plot. These figures show that our model exhibits quite well over-

all fitting performance for nominal and TIPS yields given a large cross section of data for

simultaneous fitting. As a real-time, model-free measure, survey forecasts data contain

useful information for future dynamics and outperform the other forecasting methods in-

cluding the term structure specification (Ang et al., 2007). A visual comparison between

the model-implied expectations and survey-based counterparts show that our model capture

the majority of information, given the large dispersion in survey forecasts.

In Figure 3.6, we also show shows the estimated nominal/real yields (in blue), which

assume there is the ZLB constraint, and the shadow rate implied nominal/real yields yields

(in dashed red), which relaxes the constraint, at maturities of 3 months, 6 months, 1 year,

3 years, 5 years and 10 years. Before the financial crisis, the shadow rate implied yields

almost coincide with observed nominal yields, while after the financial crisis, the shadow

rate implied yields deviates below the actual yields, especially for the short-term yields.

These patterns suggests the necessity to include the ZLB constraint in our model.

3.3.4 TIPS BEI Decomposition

Figure 3.7 shows the decomposition of TIPS BEI, including IE, IRP and IRP, for 10

year, 15 year and 20 year. The upper three panels show IE (in blue), BEI (in red) and

TIPS BEI (in yellow) of three maturities. The level of TIPS BEI is more volatile and often

lower than BEI, indicating that it is not accurate to use TIPS BEI to approximate inflation

compensation because of liquidity risk premium. The further comparison between IE and

BEI shows that IE is stabler than BEI, reflecting the time-varying market prices of inflation

risk.

The middle three panels show IRP of 10, 15 and 20 years. They keep positive in most of

pre-crisis period, suggesting that investors usually demand premia for inflation risk. This is

not the case for many days after financial crisis, when the IRP of all three horizons fall into
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the negative horizon, suggesting that the market would like to pay for hedging deflation

risks.

The bottom three panels show that LRP of 10, 15 and 20 years keep positive and rel-

atively high for the period 1999-2003, 2008-2010, which suggests that investors needs to

pay the price higher than the fair value of TIPS because they are illiquid during these peri-

ods. The high level of LRP in the beginning of the sample indicates the illiquidity of TIPS

when they were just issued to the market. Its downward trend afterwards till 2004 reflects

TIPS liquidity kept improving during this period. The sharp surge of the factor around

2009 suggests TIPS liquidity evaporated during the financial crisis.

3.4 Oil Shocks on IE and IRP

We now examine the Hypothesis 1 and 2 by analyzing oil price shocks on IE and IRP

under ZLB and No-ZLB regimes.

3.4.1 Oil Shocks on IE

We start our analysis from studying the oil’s different shocks on IE before and after

financial crisis. Panel A (Panel B) of Table 3.5 regresses the weekly changes of IE of 5,

10, 15, and 20 years on the weekly changes of log oil price. The regression is described

in equation (3.2.1), where Yt is the IE estimate of each week. By comparing Panel A and

Panel B, we find that before crisis, the coefficient of oil shocks is insignificant; however,

after crisis, the coefficient becomes significant at level 1%, with dramatically increasing

T-statistic and adjusted R square. Take the regression for 10-year IE as an example. The

slope of log return of oil price is zero before crisis, but after crisis, it increases to 0.0016

with a t-statistic of 7.04. The corresponding adjusted R square increases from negative to

8.73%. A 1% increase in oil prices lifts 5-, 10-, 15- and 20-year IE by 0.19, 0.16, 0.13 and
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0.11 bps after crisis, while the corresponding pre-crisis increases of IE are zero. As horizon

increases, the difference between oil effects on IE before and after crisis becomes weaker.

To formally test the post-crisis oil shocks on IE, in Panel C of Table 3.5 we regress the

weekly changes of IE on the weekly changes of log oil price, the post-crisis dummy and

the interaction term, as described in equation (3.2.2), with Yt standing for the IE estimate

of each week. Our interest is the coefficient of the interaction term ∆ (lnWTIt) · 1Post,

which identifies the additional effects of oil price changes after crisis. Consistent with our

previous analysis, all regressions have significantly positive coefficients of the interaction

term at level 1%. All these results reject Hypothesis 1, which states that oil shocks on IE

plays no role in amplifying oil’s positive effects on inflation compensation after crisis.

We then test Hypothesis 2 using the method in section 3.2.3, which examines the asym-

metric effects of oil shocks on IE. Table 3.6 estimate oil shocks on IE under different sce-

narios by conducting regressions with two-way and three-way interactions for the whole

sample. To save space, only regression results for 10-year (Panel A) and 20-year (Panel B)

IE are presented. Column (1) regresses the weekly changes of IE on weekly changes of log

oil price. Consistent with previous results, the coefficient of long oil price changes is sig-

nificantly positive. Column (2) conducts a regression with two-way interactions between

log oil price changes and the ZLB dummy, described in equation (3.2.4). The coefficient of

the interaction term is significantly positive at the 1% level, showing the oil’s positive ef-

fects on IE is much stronger under the ZLB regime. Column (3) conducts a regression with

two-way interactions between log oil price changes and the negative change dummy, de-

scribed in equation (3.2.3). The coefficient of the interaction term is not significant, which

implies that oil shocks exhibit opposite asymmetric effects for the ZLB and No-ZLB sam-

ple points. Column (4) conducts a regression with three-way interactions among log oil

price change, the negative change dummy and the ZLB dummy, as described in equation

(3.2.5). The coefficient of the three-variable interaction term is significantly positive at the

5% level, which suggests that the oil’s positive effects on IE arrive at the peak when oil
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prices drop under the ZLB regime. In other words, when the nominal short rate is close to

ZLB, IE moves more frequently with oil prices when the oil prices go down then when it

go up. This provides the direct evidence to support Hypothesis 2.

3.4.2 Oil Shocks on IRP

Although we have demonstrated that the oil’s positive effects on long-term IRP after

crisis is due to the ZLB constraint of monetary policy, we are interested at how oil prices

affect the investors’ premium for bearing the inflation risks before and after crisis. Panel A

(Panel B) of Table 3.7 regresses weekly changes of IRP of 5, 10, 15, and 20 years on weekly

changes of log oil price. The regression is described in equation (3.2.1), where Yt is the

IRP estimate of each week. By comparing Panel A and Panel B, we find that before crisis,

the coefficient of oil shocks is insignificantly negative; however, after crisis, the coefficient

becomes positive at the significant level 1% except for 5 years, with dramatically increasing

T-statistic and adjusted R square. Take the regression for 10-year IRP as an example. The

slope of log return of oil price is -0.0003 with a t-statistic of -0.91 before crisis, but after

crisis, it increases to 0.0009 with a t-statistic of 3.47. The corresponding adjusted R square

increases from 0.06% to 3.18%. A 1% increase in oil prices lifts 5-, 10-, 15- and 20-year

IRP by 0.04, 0.09, 0.11 and 0.13 bps after crisis, while the corresponding pre-crisis changes

of IRP are negative and negligible. As horizon increases, the difference between oil effects

on IRP before and after crisis becomes more notable.

To formally test the post-crisis oil shocks on IRP, in Panel C of Table 3.7 we regress

the weekly changes of IRP on the weekly changes of log oil price, the post-crisis dummy

and the interaction term, as described in equation (3.2.2), with Yt standing for the IRP

estimate of each week. Our interest is the coefficient of the interaction term ∆ (lnWTIt) ·

1Post, which identifies the additional effects of oil price changes after crisis. Consistent

with our previous analysis, all regressions have significantly positive coefficients for the
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interaction term at the level 1% except for 5 years. These results demonstrate that before

the financial crisis, oil prices have no influences on IRP; while after crisis, oil prices have

notably positive effects on IRP, which helps to exaggerate the oil’s effects on inflation

compensation.

We further examine whether there exists asymmetric effects of oil shocks on IRP under

ZLB and NO-ZLB regimes. Table 3.8 estimate the oil shocks on IRP under different sce-

narios by conducting regressions with two-way and three-way interactions for the whole

sample. To save space, only regression results for 10-year (Panel A) and 20-year (Panel

B) TIPS BEI are presented. Column (1) regresses the weekly changes of IRP on weekly

changes of log oil price. Consistent with previous results, the coefficient of oil shocks is

significantly positive. Column (2) conducts a regression with two-way interactions between

log oil price changes and the ZLB dummy, described in equation (3.2.4). The coefficient

of the interaction term is significantly positive at the 1% level, showing the oil’s positive

effects on IRP are much stronger under the ZLB regime. Column (3) conducts a regression

with two-way interactions between log oil price changes and the dummy of negative oil

price changes, described in equation (3.2.3). The coefficient of the interaction term is not

significant, which implies that oil shocks don’t exhibit asymmetric effects for the mixed

ZLB and No-ZLB sample points. Column (4) conducts a regression with three-way in-

teractions among log oil price change, the negative change dummy and ZLB dummy, as

described in equation (3.2.5). The coefficient of the three-variable interaction term is sig-

nificantly positive at the 5% level, which suggests that the oil prices’ positive effects on

IRP is strongest when oil prices drop under the ZLB regime. In other words, under the

ZLB regime, IRP moves more often with oil prices when the oil price go down then when

it go up. Therefore, the positive effects of oil shocks are asymmetric for both IE and IRP.

In summary, the oil’s positive effects on IRP are only significant when oil prices de-

crease under the ZLB regime. Given the fact that IRP often keeps negative under the ZLB
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regime, we conclude that investors would like to pay higher premiums for hedging long-

term deflation risks when oil price decreases in an ZLB environment.

3.5 General Equilibrium Analysis

In this section we use a small-scale, closed-economy and new-Keynesian DSGE model

augmented with an oil sector and the Taylor rule with the ZLB constraint to study the

theoretical effects of ZLB on the relationship between oil prices and the term structure of

IE.

3.5.1 A DSGE model with Oil and the ZLB Binding Constraint

3.5.1.1 Household

We consider an economy in which the representative household maximizes its utility

at time t by deciding discrete streams of final goods consumption Ct+k, oil consumption

CO
t+k, labor services Nt+k, and real bond holdings Bt+k/Pt+k, where k = 0, 1, 2, ...,∞. Bt

is the holding of nominal risk-free bond and Pt is the price level of final goods. The agent’s

preferences are described by

Et
∞∑
k=0

βk
[
U
(
Ct+k, C

O
t+k, Nt+k, d

O
t+k

)
+ st+kλt+kV

(
Bt+k

Pt+k

)]
, (3.5.1)

where β is the subjective discount factor, dOt+k is the oil demand shock that shifts the house-

hold’s preferences for oil consumption, and st+k is the real bond demand shock that shifts

the household’s preferences for holding risk-free assets. Both dOt+k and st+k follow stochas-

tic and exogenous processes.

We specify the function U by augmenting oil consumption to the GHH utility function
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originally proposed by

U
(
Ct+k, C

O
t+k, Nt+k, d

O
t+k

)
= logQt −

N1+χ
t

1 + χ
, (3.5.2)

where Qt is the consumption bondle

Qt =

[
(1− αC)C

1− 1
ρC

t + αC

(
CO
t

dOt

)1− 1
ρC

] 1

1− 1
ρC

. (3.5.3)

This preference is similar to those used in Bodenstein et al. (2013) and Datta et al. (2018).

We specify the consumption bundle of general consumption good and oil as a CES function,

where αC ∈ (0, 1) describes the relative importance of oil consumption in the economy, and

ρC ∈ (0,∞) is the constant elasticity of substitution. Oil and the general consumption good

are complements for ρC close to zero, while they are substitutes for large ρC . χ ∈ (0, 1) is

the inverse Frisch elasticity of labor supply.

We include the separable utility function V (·) for in the household’s preference to

generate the premium investors would like to pay for holding real bonds, following Smets

and Wouters (2007), Fisher (2015) and Datta et al. (2018). V (·) is positive, increasing and

concave. The stochastic and exogenous variable st capture the time-varying risk premium

of risky assets over save and liquid assets such as treasuries.

The household maximizes (3.5.1) by choosing state contingent paths for Ct+k, CO
t+k,

Nt+k and Bt+k subject to the following sequences of flow budget constraints:

Ct + PO
t C

O
t +Bt/Pt ≤ WtNt +Rt−1Bt−1/Pt + Tt, (3.5.4)

where PO
t is the real price of oil, Wt is the real wage, Rt is the gross nominal one-period

interest rate, and Tt denotes real lump-sum government taxes and transfers.
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Following Datta et al. (2018), we define λt = ∂Ut/∂C̄t, where x̄t represents an ag-

gregate quantity taken as given by the household. By normalizing V (·) and using the

household’s first order conditions, the intertemporal Euler equation is given by

1 = st + Et [Mt+1Rt] , (3.5.5)

where the nominal pricing kernel is

Mt+1 = β
∂Ut+1/∂Ct+1

∂Ut/∂Ct

1

Πt+1

= β

(
Ct+1

Ct

)− 1
ρC

(
Qt+1

Qt

)−1+ 1
ρC 1

Πt+1

. (3.5.6)

Here Πt+1 ≡ Pt+1

Pt
is the gross inflation of the price level of final goods. st is identical to the

spread between the one-period risk-free bond and other assets and its stochastic property

generates time-varying demand shocks for safe and liquid assets. For example, a flight to

safety of investors during financial crisis periods push st to a large value.

In addition, the household’s first order conditions implies the intratemporal conditions

hold that the real price of oil is equal to the marginal rate of substitution between oil and

the general consumption good, i.e.,

PO
t =

∂Ut/∂C
O
t

∂Ut/∂Ct
=

αC
1− αC

(
CO
t

Ct

)− 1
ρC (

dOt
)−1+ 1

ρC , (3.5.7)

and the real wage rate of labor supply is equal to the negative marginal rate of substitution

between labor and the general consumption good, i.e.,

Wt = −∂Ut/∂Wt

∂Ut/∂Ct
=

Nχ
t Q

1− 1
ρC

t

(1− αC)C
− 1
ρC

t

. (3.5.8)
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3.5.1.2 Firms and Production

To produce the composite final goods Yt, perfectly competitive firms aggregate a variety

of intermediate goods Yt(i) using a CES production technology,

Yt =
(∫ 1

0
Yt (i)

θ−1
θ di

) θ
θ−1

,

where θ > 1 and i ∈ [0, 1]. To minimize the production cost,
∫ 1

0
Pt (i)Yt (i) di, where

P (i) is the price of intermediate goods i, we can derive the demand curves for intermediate

goods,

Yt (i) =

(
Pt (i)

Pt

)−θ
Yt. (3.5.9)

The intermediate goods are produced by a continuum of monopolistic competitors in-

dexed by i ∈ [0, 1]. At time t, the producer i choose state contingent streams of Pt (i) and

Yt (i) to maximize the profit,

Et
∞∑
k=0

Mt,t+k

[
(Pt+k (i)−MCt+kPt+k)Yt+k(i)−

ϕ

2

(
Pt+k (i)

Pt+k−1 (i) Π̄
− 1

)2

Yt+kPt+k

]
,

(3.5.10)

whereMt,t+k =
∏k

m=0 Mt+m is the stochastic discount factor that evaluates the period t+k

nominal profit flows at time t. MCt is the real marginal cost function. The cost adjusting

parameter ϕ > 0 determines the degree of price rigidity. As stressed by Rotemberg (1982),

the quadratic adjustment cost ϕ
2

(
Pt(i)

Pt−1(i)Π̄
− 1
)2

Yt accounts for the negative effects of price

changes on the customer-firm relationship, which increases with the size of the price change

and with the overall magnitude of economic output Yt. Following Nakata and Tanaka

(2016), we assume the firms use a simple price indexation on the central bank’s inflation

target Π̄.

We use IOt to denote the aggregate oil inputs for production. The firm i combines

the labor Nt(i) and oil inputs IOt (i) to produce the intermediate good i according to the
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following technology,

Yt (i) = At

[
(1− αY )Nt (i)

1− 1
ρY + αY

(
IOt (i)

)1− 1
ρY

] 1

1− 1
ρY , (3.5.11)

where αY ∈ (0, 1) describes the relative importance of oil inputs in production, and ρC ∈

(0,∞) is the constant elasticity of substitution. Oil inputs and the labor are complements

for ρY close to zero, while they are substitutes for large ρY . At is the stochastic productivity

level. We assume it is stationary and exogenous, capturing stochastic technology shock.

The first-order condition for minimizing production cost, c(Yt(i)) = WtNt (i) +PO
t I

O
t (i),

implies that the input ratio between oil and labor is

IOt
Nt

=
IOt (i)

Nt (i)
=

(
1− αY
αY

PO
t

Wt

)−ρY
(3.5.12)

and the real marginal cost ∂c(Yt(i))/∂Yt(i) is

MCt =
1

At

[
(1− αY )ρW 1−ρY

t + αρY
(
PO
t

)1−ρY
] 1

1−ρY . (3.5.13)

All monopolists are identical and face the same problem, and thus choose the same

price, use the same inputs of oil and labor, and produce the same quantity. In other words,

the symmetric equilibrium holds, Pt(i) = Pt, Nt(i) = Nt, IOt (i) = IOt and Yt(i) =

Yt. Therefore, based on the first-order condition to maximize (3.5.10) and the symmetric

equilibrium, we obtain

Yt

[
ϕ

(
Πt

Π̄
− 1

)
Πt

Π̄
− (1− θ)− θMCt

]
= Et

[
Mt+1Πt+1Yt+1ϕ

(
Πt+1

Π̄
− 1

)
Πt+1

Π̄

]
.

(3.5.14)
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3.5.1.3 Monetary Policy

The central bank follows the Taylor rule with occasionally binding ZLB constraint to

conduct monetary policy, setting the nominal one-period interest rate as,

Rt = max [0, R∗t ] , (3.5.15)

where the nominal shadow rate R∗t satisfies

R∗t = R̄

(
Πt

Π̄

)φΠ
(
Yt
Ȳ

)φy
. (3.5.16)

Here R̄, Π̄ and Ȳ denote the steady state of Rt, Πt and Yt.

3.5.1.4 Market Clearing

In equilibrium, the clearing condition for final goods market is

Yt = Ct +
ϕ

2

[∫ 1

0

(
Pt (i)

Pt−1 (i) Π̄
− 1

)2

di

]
Yt = Ct +

ϕ

2

(
Πt

Π̄
− 1

)2

Yt, (3.5.17)

Yt = At

[
(1− αY )Nt

1− 1
ρY + αY

(
IOt
)1− 1

ρY

] 1

1− 1
ρY . (3.5.18)

The aggregation condition in the oil market requires that the oil demand equals the oil

supply in each period,

SOt = CO
t + IOt , (3.5.19)

where the oil supply SOt is exogenously determined and follows a stationary stochastic

process.
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3.5.1.5 Exogenous Stochastic Processes

The exogenous variables in our model include demand shock for real bond holdings st,

oil demand shock dOt , oil supply shock SOt , and productivity shock At. We assume that

each of them follows a log AR(1) process as follows,

logxt = (1− ρx) logx̄+ ρxlogxt−1 + εx,t, (3.5.20)

where εx,t is i.i.d normal with standard deviation of σx and x̄ represents the steady state

value. We assume all process are independent with each other.

3.5.1.6 Equilibrium Characterization and Model Solution

Given the exogenous processes
{
st, d

O
t , S

O
t , At

}
t≥0

, a monopolistically competitive

equilibrium is defined as a set of endogenous processes including {Qt, Ut, Ct, Nt, Mt,

Rt, Πt, Yt, Wt, CO
t , IOt , PO

t , MCt}t≥0 such that: (1) the household’s problem satis-

fies the F.O.C. (3.5.5), (3.5.6), (3.5.7) and (3.5.8), given the specification of preferences

(3.5.2) with (3.5.3); (2) the intermediate goods’ producers’ problem satisfies the F.O.C.

(3.5.12), (3.5.13) and (3.5.14); (3) monetary policy follows the Taylor rule with ZLB bind-

ing constraint (3.5.15); (4) final goods market satisfies the clearing conditions (3.5.17) and

(3.5.18), and oil market satisfies the clearing conditions (3.5.19). Given 13 equations and

13 endogenous variables, the equilibrium can be uniquely determined.

Adding the occasionally ZLB binding constraint to the monetary policy causes a strong

non-linearity for the DSGE system, and researchers have adopted different methods to ac-

commodate the constraint, Nakata and Tanaka (2016) and Datta et al. (2018) solve and

simulate their DSGE models with ZLB constraint using a brute-force time (policy func-

tion) iteration method in the spirit of Bizer and Judd (1989) and Coleman (1991). The

method’s significant startup costs and a reliance on grid-based method lead to high com-

putational costs and limits the number of state variables. Richter et al. (2014) advocate the
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method with parallel computing and linear interpolation. Guerrieri and Iacoviello (2015)

develop a computationally fast toolkit, “Occbin”, which provides a piecewise perturbation

solution that can handle a large number of state variables. However, the toolkit is not able

to simulate state variables and capture the precautionary behavior caused by the possibility

that a constraint may become binding in the future, as a result of shocks yet unrealized.

We employ the computationally efficient ”dynareOBC” toolkit developed by Holden

(2017) to solve and simulate our model. Holden (2016) derives the first necessary and suf-

ficient conditions for the existence of a unique perfect-foresight solution to an otherwise

linear dynamic model with occasionally binding constraints, given a fixed terminal condi-

tion, and Holden (2017) constructs the corresponding algorithm and extends it to consider

the stochastic simulation and future uncertainty. We use the ”Global” option of the toolkit

to let the household and producers take into account the risk of hitting the bound at all

horizons.

3.5.2 Baseline Model Simulation

In this section, we simulate the baseline model — the full model as outlined above —

to generate data that can be used to study the correlation between oil prices and the term

structure of inflation expectations given different level of interest rates. We first introduce

the parameter choices and then analyze the simulation results.

3.5.2.1 Parameter Choices

Table 3.9 reports all parameters for simulating the baseline model. Most parameters

for the household’s preferences, goods production and monetary policy are in line with

literature. The quarterly subjective discount factor β is fixed at 0.985 and the steady state

for bond preference shock, s̄, is set to be 0.01, in line with Datta et al. (2018). This implies

a 2 percent risk-free real interest rate and a 4 percent annual premium on risky assets over
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the risk-free bond in the steady state. We set the oil share in consumption bundle, αC , to

0.05, and set the the elasticity of substitution ρC between oil and final goods to 0.25, in line

with Ready (2018). Furthermore, we assume the inverse Frisch elasticity, χ, is 0.25, in line

with Nakata and Tanaka (2016).

For production, we assume the oil share in production αY is 0.055 and the elasticity

of substitution ρY between oil and labor is 0.225, following Ready (2018). This suggests

that firms use more oil as an input to production that households consume. The elasticity

of substitution among intermediate goods θ, price adjustment cost ϕ, the steady state of

gross inflation Π̄, and the Taylor rule parameters φπ are all in line with Nakata and Tanaka

(2016). Moreover, all AR(1) coefficients and standard derivation of exogenous shocks are

listed in the Panel D.

3.5.2.2 Simulation Results

Given the above parameters, we simulate our model to analyze the correlation between

oil prices and the term structure of inflation expectations given different level of shadow

interest rates. The simulated real bond preference shocks st play a predominate role in

generating time-varying nominal interest rates with ZLB. Higher st makes the nominal

interest rate lower and closer to ZLB. When st increases to a certain degree or more, the

interest rate binds at ZLB. Using the baseline parameters, the probability that the nominal

interest rate binds at zero, i.e., the shadow rate is lower than 0, is 18%. We compute

the correlation between oil prices and inflation expectations local to a particular value of

annualized shadow rate, r∗ = 400(R∗ − 1), using the nonparametric kernel method. Then

we can analyze how the correlation changes with the shadow rate. This method is in spirit of

Datta et al. (2018), which uses the same methods to demonstrate ZLB causes the increased

correlation between oil prices and equity returns.

We compute the mean of a variable xt, which is the oil price or inflation expectations
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with a specific term, local to a particular value of r∗ based on

µx (r∗) =

∑
iKλ (r∗, r∗i ) xi∑
iKλ (r∗, r∗i )

,

where we set the kernel function Kλ (r∗, r∗i ) to be the standard normal density function of
r∗−r∗i
λ

. λ is the bandwidth parameter. The local variance and covariances are given by

σ2
x (r∗) =

∑
iKλ (r∗, r∗i ) (xi − µx (r∗))2∑

iKλ (r∗, r∗i )
,

σxy (r∗) =

∑
iKλ (r∗, r∗i ) (xi − µx (r∗)) (yi − µy (r∗))∑

iKλ (r∗, r∗i )
.

Finally, we can calculate the local correlation as

corrxy (r∗) =
σxy (r∗)

σx (r∗) σy (r∗)
.

Figure 3.8 shows the local correlation between oil real prices and the term structure of

inflation expectations at different shadow nominal interest rate. The upper left, upper right,

bottom left and bottom right panels shows the oil real prices’ correlation with contempora-

neous inflation rate, 1-year IE, 5-year IE, and 10-year IE local to different nominal shadow

interest rates ranging from -5% to 5%. We choose the bandwidth parameter as λ = 5.

The blue line in each figure shows the local correlation when the ZLB binding constraint is

considered. We can see that when the shadow rate decreases, the local correlations mono-

tonically increases. When the shadow rate changes from 5% to -5%, the local correlation

between oil real price and 10-year IE increases monotonically from 0.35 to 0.7. This is

consistent with the empirical pattern that oil prices have a larger impact on long-term IE

when nominal interest rate is close to or binding at the ZLB. We can also infer that when

nominal rate is at ZLB, the oil price changes should exhibit the asymmetric effects on the

changes of IE at different horizons. As oil prices are an important component of inflation
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and inflation is positively related to shadow rate according to Taylor rule, oil prices have a

positive correlation with shadow interest rate. Therefore, the local correlation, or local beta

between oil and IE is larger when oil prices decrease than that when oil prices increase.

In other words, the decrease of IE caused by the negative change of oil price exceeds the

increase of IE caused by the same positive change of oil price. Thus the simulation of our

baseline model is consistant with the oil effects in empirical findings.

We also simulate the model ignoring the ZLB. That is, we treat the shadow interest

rate as the nominal short rate. The red line in each panel shows the corresponding local

correlation between oil prices and IE at different horizons. We can see all of them are lower

than blue lines and keeps flat for different shadow rates. This further confirms that the ZLB

is the only factor that amplify the oil’s effect on IE and make the effect asymmetric.

3.5.3 Mechanisms

To understand the forces driving the oil prices’ asymmetric effects on long-term IE

at the ZLB, it is useful to perform impulse response function analysis of oil supply and

demand factors, which are two exogenous variables affecting oil prices. By studying how

oil prices and other macro variables such as output, consumption and inflation change with

oil supply or demand factors, we can show the role of ZLB clearly. In our baseline model,

the steady state of annualized nominal interest rate is 4%. In order to push nominal rate

down to ZLB, we need to give an extremely positive impulse on oil supply factor or an

extremely negative impulse on oil demand factor to push down the oil prices as well as

inflation. In order to analyze oil shocks on economy around the ZLB, we create a virtual

environment with steady nominal interest rate at 25 bps by fixing bond preference shock

st at 0.01929, i.e., we set s̄ and σs to 0.01929 and 0, respectively. All other parameters

are still the same with those in the baseline model. We create this extended version of

the baseline model to describe the temporal steady economy in financial crisis period with
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nominal short rate extremely close to ZLB.

3.5.4 Supply-driven Oil Prices

Figure 3.9 shows the impulse responses of two standard deviation of oil supply shocks

(10% change in level) on all macro variables and IE with different horizons. The red solid

line indicates the impulse responses for the 10% positive change of oil supply and the blue

solid line indicates that for the 10% negative change of oil supply. The red dashed line

indicates the impulse responses for the 10% positive change of oil supply if we ignore ZLB

binding constraint in the model. The percentage change of all variables except annualized

nominal interest rate are plotted. For annualized nominal interest rate, we show its impulse

response of level. All impulse responses are reported for horizons ranging from 0 to 5

years.

We first analyze the impulse response functions (IRF) of oil supply shock ignoring the

ZLB constraint. In this case, the IRF of the 10% positive change of oil supply is symmetric

to the IRF of the 10% negative change of oil supply with respect to the steady state because

the model is symmetric around the steady state. When oil supply increases by 10%, both oil

consumption and oil input for production increase. More oil consumption pushes down the

elasticity of substitution between oil consumption and final goods consumption, thus the oil

prices decrease by 20.73%. As oil input is a key component for production, the decreasing

of oil prices reduces the real marginal cost as well as the price level of intermediate and

final goods. Therefore, the inflation decreases. According to the Taylor rule, the Federal

Reserve sets lower nominal short rate to mitigate the reduction of inflation. From Figure 3.9

we can see that the central bank decreases the nominal short rate from 25 bps to -2.09%,

with the help of which the annualized inflation decreases by 47.14%, changing from the

steady state’s value 2% to 1.05%. Correspondingly, IE at different horizons decreases.

Longer the term, less decreases for IE. The 10-year IE decreases only by 5.74%, changing
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from 2% to 1.89%.

Now we discuss how ZLB amplifies the impact of positive changes of oil supply. As the

above case without ZLB, the increases of oil supply pushes down the inflation. Because

of the ZLB constraint, the central bank reduces the nominal short rate from 25 bps and

to 0 instead of -2.09%. The deviation from the Taylor rule exacerbates the reduction of

inflation and IE at all horizons. For example, the inflation decreases by 315.00%, changing

from 2% to -4.3%, and the 10-year IE decreases by 23.69%. We should also notice that

ZLB also exaggerates the reduction of oil prices. Instead of decreasing by 20.73% in above

case, now oil real prices decrease by 37.71%. This is because with the ZLB constraint,

the nominal short rate binds at 0, which is much higher than that without ZLB constraint.

Higher nominal interest rate slows down the increase of final goods production as well as

consumption. As a result, the elasticity of substitution between oil consumption and final

goods consumption becomes lower than that without ZLB. The more decrease of IE than

that of oil real prices makes the sensitivity of IE on oil real price higher that it is when we

ignore the ZLB constraint.

According to the IRFs of oil supply shocks, we plot how inflation and IE of different

terms changes with the supply-driven oil prices in Figure 3.10. The x-axis is the percentage

change deviated from the steady state of oil real price and the y-axis is that of inflation or IE.

The red dashed lines indicate the relation of the variables in our model with ZLB constraint,

while the blue solid line indicates the relation of the variables without the ZLB constraint.

The green solid vertical line indicates the threshold state where the ZLB binds. We can see

that when we ignore the ZLB constraint, the relation between IE/inflation and oil prices is

approximately linear with positive slope. Adding the ZLB constraint causes strong non-

linearity of the relationship and the asymmetric effects of oil price changes on IE/inflation

at the threshold state where the ZLB binds. An additional decrease in the supply-driven oil

prices leads to larger declines in inflation/IE when the policy rate is constrained at the ZLB

than when it is not.
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3.5.5 Demand-driven Oil Prices

Oil demand has a weaker influence on the economy than oil supply does, because oil

demand only affects the household’s preference on oil consumption, while oil supply af-

fects both oil consumption and the production of final goods. To better show the impact of

oil demand shock, in Figure 3.11 we plot the impulse responses of four standard deviation

of oil demand shocks (20% change in level) on all macro variables and IE with different

horizons. The red solid line indicates the impulse responses for the 20% negative change

of oil demand and the blue solid line indicates those for the 20% positive change of oil

demand. The red dashed line indicates the impulse responses for the 20% positive change

of oil demand if we ignore ZLB binding constraint in the model.

We first analyze the impulse response functions (IRF) of oil demand shock ignoring the

ZLB constraint. In this case, the IRF of the 20% negative change of oil demand is exactly

equal to the negative IRF of the 20% positive change of oil supply with respect to the steady

state because the model is symmetric around the steady state. When oil demand decreases

by 20%, oil consumption decreases by 8% and oil real prices decrease by 14%. The the

decreasing of oil prices leads to decline of the inflation. According to the Taylor rule, the

central bank reduces the nominal short rate from 25 bps to -1.1%, with the help of which

the annualized inflation decreases by 25%, changing from the steady state’s value 2% to

1.5%. Correspondingly, IE at different horizons decreases. Longer the term, less decreases

for IE. The 10-year IE decreases only by 3%, changing from 2% to 1.94%.

Now we discuss how ZLB exaggerates the impact of positive changes of oil demand.

As the above case without ZLB, the decrease of oil demand pushes down the inflation.

Because of the ZLB constraint, the central bank reduces the nominal short rate from 25 bps

and to 0 instead of -1.24%. The deviation from the Taylor rule exacerbates the reduction of

inflation and IE at all horizons. For example, the inflation decreases by 110.00%, changing

from 2% to -0.2%, and the 10-year IE decreases by 8%. We should also notice that ZLB
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also exaggerate the reduction of oil prices. Instead of decreasing by 14% in above case, now

oil real prices decreases by 20%. This is because with the ZLB constraint, the nominal short

rate binds at 0, which is much higher than that without ZLB constraint. Higher nominal

interest rate slows down the increase of final goods production as well as consumption. As

a result, the elasticity of substitution between oil consumption and final goods consumption

becomes lower than that without ZLB. The more decrease of IE than that of oil real price

makes the sensitivity of IE on oil real prices higher that it is when we ignore the ZLB

constraint.

According to the IRFs of oil demand shocks, we plot how inflation and IE in different

terms changes with the demand-driven oil prices in Figure 3.12. We can see the demand-

driven oil prices have a similar impact on inflation/IE as the supply-driven oil prices do.

Without ZLB, the relation between IE/inflation and oil prices is approximately linear with

a positive slope, while the relation exhibits strong non-linearity at the threshold state where

the ZLB binds. When the interest rate arrives at zero, the declines in inflation/IE caused

by the additional decrease in the demand-driven oil prices is larger than the increases in

inflation/IE led by the additional increase in the demand-driven oil prices. We also notice

that the effects of demand-driven oil prices are weaker than those of supply-driven oil prices

in both ZLB and NO ZLB cases.

3.6 Conclusion

Starting from late 2008, oil prices have a much stronger co-movement with market

measures of long-term inflation compensation, such as 10-year TIPS BEI, than before. Our

main explanation for this phenomenon is that it results from the ZLB binding constraint

of nominal short rate, which alters dynamic behaviors of the economy. Our argument is

supported by the following observations. First, oil price shocks have a much higher positive

impact on TIPS BEI, model-implied IE and model-implied IRP when the nominal short rate
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is closer to ZLB. Second, the oil effects are strongest when oil prices decrease in a ZLB

environment. These empirical findings suggest that when the monetary policy becomes

less effective to stabilize the economy at ZLB, investors expect long-term inflation is more

subject to short-term oil price changes and would like to pay higher premiums to hedge

long-term deflation risks.

In addition to empirical findings, we also provide theoretical support for our argument

by using a stylized new-Keynesian DSGE model augmented with an oil sector and the

Taylor rule with the ZLB constraint. The model simulation is consistent with empirical

observations. The impulse response functions (IRFs) of oil supply and oil demand shocks

on macroeconomic variables and IE at all maturities clearly present the underlying mecha-

nisms about how the ZLB amplifies the correlation between oil and IE.

Our paper links the literature about oil prices, inflation expectations and risk premiums,

and the ZLB constraint of monetary policy. The simultaneous uses of the shadow-rate

latent variable term structure model and the DSGE model with ZLB constraint help us

to understand the oil effects on the term structure of IE more clearly. In the future, we

are going to extend our DSGE model to calibrate the oil shocks on IRP under ZLB and

No-ZLB regimes. As IRP is approximately equal to the difference between nominal term

premium and real term premium, this future work will help us to understand the role of

ZLB on the relationship between oil prices and on the nominal and real yield curves.
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Appendix

3.A State Factors and Nominal Yields

Given the the state dynamics under the P measure (3.3.3) and the essentially affine form

of the market prices of risks (3.3.6), we can derive the state dynamics under the risk neutral

(Q) measure in the nominal world,

dXt = κQ,N(µQ,N −Xt)dt+ ΣdWQ
t , (3.A.1)

where

κQ,N = κ+ ΣΛN , µQ,N =
(
κQ,N

)−1 (
κµ− ΣλN0

)
. (3.A.2)

If there is no ZLB, the shadow rate rNS(Xt) is the nominal short rate and the implied

nominal yield has the standard closed form solution of GATSM proposed in Duffie and Kan

(1996) and Dai and Singleton (2000). The closed-form solution for shadow rate implied

τ−maturity nominal bond at time t is

PNS
t,τ = EQ,Nt

(
exp

(
−
∫ t+τ

t

rNSu du

))
= exp(ANSτ +BNS

τ

′
Xt), (3.A.3)

where

dANSτ
dτ

= −ρNS0 +BNS
τ

′
(κµ− ΣλN0 ) +

1

2
BNS
τ

′
ΣΣ′BNS

τ , (3.A.4)

dBNS
τ

dτ
= −ρNS1 − (κ+ ΣΛN)′BNS

τ , (3.A.5)

with initial conditions ANS0 = 0 and BNS
0 = 03×1. Nominal yields therefore take the affine
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form,

yNSt,τ = aNSτ + bNSτ
′
Xt, a

NS
τ = −ANSτ /τ, bNSτ = −BNS

τ /τ. (3.A.6)

When considering ZLB, the equation (3.3.1) brings nonlinearity into an otherwise lin-

ear system. A closed-form pricing formula for the SRTSM is not available beyond one

factor. Wu and Xia (2016) propose a simple analytical representation for bond prices in the

multifactor SRTSM that provides an excellent approximation and can be applied directly-

time data. Following Wu and Xia (2016), we discretize our model with sampling period h,

construct the nominal forward rate curve fNt,kh,(k+1)h (the forward rate for a loan starting at

t + kh and maturing at t + (k + 1)h, where 0 6 k 6 n − 1) at time t, and then compute

τ−maturity nominal yield yNt,τ , where τ = nh. Wu and Xia (2016) discretize the continu-

ous system at monthly frequency, while we adopt the weekly frequency, h = 1
52

, to reduce

the sampling bias and match the weekly data we use.

Under the discretized system, rNSt h = ρNS0 h+ ρNS1
′
hXt is the non-annualized shadow

rate from time t to time t+ h. The P dynamics for the state factors is

Xt+h = κµh+ (I3×3 − κh)Xt + Σ
√
hεt+h, (3.A.7)

and the Q dynamics for the state factors in the nominal world is

Xt+h = κQ,NµQ,Nh+
(
I3×3 − κQ,Nh

)
Xt + Σ

√
hεQt+h, (3.A.8)

where εt+h ∼ N(0, I3×3) and εQt+h ∼ N(0, I3×3). The log nominal pricing kernel is

logMN
t+h = −rNt h−

1

2
λNt
′
λNt h− λNt

′√
hεt+h. (3.A.9)

Given the shadow rate implied nominal yield yNSt,τ , the corresponding forward rate at
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time t for a loan starting at t+ nh and maturing at t+ (n+ 1)h is

fNSt,nh,(n+1)h = (n+ 1) yNSt,(n+1)h − nyNSt,nh, (3.A.10)

which is a linear function of state factors.

As derived in Wu and Xia (2016), the forward rate is

fNt,nh,(n+1)h =
1

h
σQ,Nnh g

(
αNnh + βNnh

′
Xt

σQ,Nnh

)
, (3.A.11)

where
(
σQ,Nnh

)2

≡ VarQ,N
(
rNSt+nhh

)
. And EQ,Nt

(
rNSt+nhh

)
= ᾱNnh + βNnh

′
Xt. The function

g (z) ≡ zΦ (z) + φ (z) consists of a normal cumulative distribution function Φ (.) and

normal probability density function φ (.). Its nonlinearity comes from moments of the

truncated normal distribution. The expression for ᾱNnh, αNnh and βNnh are

ᾱNnh ≡ ρN0 h+ ρN1
′
h

(
n−1∑
j=0

((
I3×3 − κQ,Nh

)j))
κQ,NµQ,Nh (3.A.12)

αNnh ≡ ᾱNnh −
1

2
ρN1
′
hCQ,N

nh ρN1 h, (3.A.13)

βNnh
′ ≡ ρN1

′
h
(
I3×3 − κQ,Nh

)n
. (3.A.14)

Here CQ,N
nh is the matrix driving the convexity effects of nominal yields,

CQ,N
nh =

(
n−1∑
j=0

((
I3×3 − κQ,Nh

)j))
ΣΣ′h

(
n−1∑
j=0

((
I3×3 − κQ,Nh

)j))′
. (3.A.15)

The expression for
(
σQ,Nnh

)2

is

(
σQ,Nnh

)2

=
n−1∑
j=0

ρN1
′
h
(
I3×3 − κQ,Nh

)j
ΣΣ′h

((
I3×3 − κQ,Nh

)′)j
ρN1 h. (3.A.16)
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Given the forward rates, the nominal yield yNt,τ with maturity τ = nh at time t can be easily

computed as

yNt,τ=nh =
1

n

n−1∑
k=0

fNt,kh,(k+1)h =
1

nh

n−1∑
k=0

σQ,Nkh g

(
αNkh + βNkh

′
Xt

σQ,Nkh

)
. (3.A.17)

3.B Inflation Dynamics and Real Yields

Applying Ito’s lemma to equation (3.3.12), we have,

dMR
t /M

R
t = dMN

t /M
N
t + dQt/Qt + (dMN

t /M
N
t ) · (dQt/Qt). (3.B.1)

Plug equations (3.3.5), (3.3.10) and (3.3.13) into this equation, the instantaneous real rate

and real market prices of risks can be derived. The coefficient of real market price of risks,

λR(Xt) = λR0 + ΛRXt, are

λR0 = λN0 − σq, (3.B.2)

ΛR = ΛN . (3.B.3)

Given the state dynamics under the P measure (3.3.3) and the above essentially affine

form of the market prices of risks in the real world, we can derive the state dynamics under

the risk neutral (Q) measure in the real world,

dXt = κQ,R(µQ,R −Xt)dt+ ΣdWQ
t , (3.B.4)

where

κQ,R = κ+ ΣΛR, µQ,R =
(
κQ,R

)−1 (
κµ− ΣλR0

)
. (3.B.5)
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The instantaneous real interest rate is derived as

rR(Xt) = rN(Xt)− rI(Xt) + λN0
′
σq +

(
ΛN ′σq

)′
Xt. (3.B.6)

We define the instantaneous break-even inflation (BEI) rate as rBEI(Xt) = rN(Xt) −

rR(Xt). So rBEI(Xt) = rI(Xt)− λN0
′
σq −

(
ΛN ′σq

)′
Xt = ρBEI0 + ρBEI1

′
Xt, where

ρBEI0 = ρI0 − λN0
′
σq, (3.B.7)

ρBEI1 = ρI1 − ΛN ′σq. (3.B.8)

Thus the real interest rate is

rR(Xt) = rN(Xt)− ρBEI0 − ρBEI1

′
Xt. (3.B.9)

If there is no ZLB, the shadow rate rNS(Xt) is the nominal short rate and the corre-

sponding real rate is the real shadow rate, defined as rRS(Xt) = rNS(Xt) − rBEI(Xt). It

is an affine function of the state variables,

rRS(Xt) = ρRS0 + ρRS1

′
Xt, (3.B.10)

where

ρRS0 = ρNS0 − ρBEI0 , (3.B.11)

ρRS1 = ρNS1 − ρBEI1 . (3.B.12)

The closed-form solution for shadow rate implied τ−maturity real bond at time t is
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PRS
t,τ = EQ,Rt

(
exp

(
−
∫ t+τ
t

rRSu du
))

= exp(ARSτ +BRS
τ
′
Xt), where

dARSτ
dτ

= −ρRS0 +BRS
τ

′
(κµ− ΣλR0 ) +

1

2
BRS
τ

′
ΣΣ′BRS

τ , (3.B.13)

dBRS
τ

dτ
= −ρRS1 − (κ+ ΣΛR)′BRS

τ , (3.B.14)

with initial conditions ARS0 = 0 and BRS
0 = 03×1.

When considering ZLB, according to the equation (A1) of Wu and Xia (2016), the non-

annualized forward real rate between t+nh and t+(n+1)h at time t can be approximated

as follows,
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fRt,nh,(n+1)hh

= (n+ 1) yRt,(n+1)hh− ny
R
t,nhh

= −log
(
e−r

R
t hEQ,Rt

[
e−Σn

j=1r
R
t+jhh

])
+ log

(
e−r

R
t hEQ,Rt

[
e−Σn−1

j=1 r
R
t+jhh

])
≈ EQ,Rt

 n∑
j=1

rRt+jhh

− 1

2
VarQ,Rt

 n∑
j=1

rRt+jhh

− EQ,Rt

n−1∑
j=1

rRt+jhh

+
1

2
VarQ,Rt

n−1∑
j=1

rRt+jhh


= EQ,Rt

[
rRt+nhh

]
− 1

2

VarQ,Rt

 n∑
j=1

rRt+jhh

− VarQ,Rt

n−1∑
j=1

rRt+jhh


= EQ,Rt

[
rRt+nhh

]
− 1

2

VarQ,Rt

 n∑
j=1

rRt+jhh

− VarQ,Rt

n−1∑
j=1

rRt+jhh


= EQ,Rt

[
rNt+nhh

]
− EQ,Rt

[
rBEIt+nhh

]
− 1

2

VarQ,Rt

 n∑
j=1

rNt+jhh

+ VarQ,Rt

 n∑
j=1

rBEIt+jhh

− 2CovQ,Rt

 n∑
j=1

rNt+jhh,
n∑
j=1

rBEIt+jhh


+

1

2

VarQ,Rt

n−1∑
j=1

rNt+jhh

+ VarQ,Rt

n−1∑
j=1

rBEIt+jhh

− 2CovQ,Rt

n−1∑
j=1

rNt+jhh,
n−1∑
j=1

rBEIt+jhh


=

EQ,Rt

[
rNt+nhh

]
− 1

2

VarQ,Rt

 n∑
j=1

rNt+jhh

− VarQ,Rt

n−1∑
j=1

rNt+jhh


−

EQ,Rt

[
rBEIt+nhh

]
− 1

2

VarQ,Rt

 n∑
j=1

rBEIt+jhh

− VarQ,Rt

n−1∑
j=1

rBEIt+jhh


− VarQ,Rt

 n∑
j=1

rBEIt+jhh

+ VarQ,Rt

n−1∑
j=1

rBEIt+jhh


+ CovQ,Rt

 n∑
j=1

rNt+jhh,
n∑
j=1

rBEIt+jhh

− CovQ,Rt

n−1∑
j=1

rNt+jhh,
n−1∑
j=1

rBEIt+jhh


= fN,Rt,nh,(n+1)hh− f

BEI
t,nh,(n+1)hh−

VarQ,Rt

 n∑
j=1

rBEIt+jhh

− VarQ,Rt

n−1∑
j=1

rBEIt+jhh


+

CovQ,Rt

 n∑
j=1

rNt+jhh,
n∑
j=1

rBEIt+jhh

− CovQ,Rt

n−1∑
j=1

rNt+jhh,
n−1∑
j=1

rBEIt+jhh

 . (3.B.15)

Here fN,Rt,nh,(n+1)h is the nominal forward rate observed in the real world,

fN,Rt,nh,(n+1)h =
1

h
σQ,N,Rnh g

(
αN,Rnh + βN,Rnh

′
Xt

σQ,N,Rnh

)
, (3.B.16)
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where
(
σQ,N,Rnh

)2

≡ VarQ,R
(
rNSt+nhh

)
. And EQ,Rt

(
rNSt+nhh

)
= ᾱN,Rnh + βN,Rnh

′
Xt. Its nonlin-

earity comes from moments of the truncated normal distribution. The expression for ᾱN,Rnh ,

αN,Rnh and βN,Rnh are

ᾱN,Rnh ≡ ρN0 h+ ρN1
′
h

(
n−1∑
j=0

((
I3×3 − κQ,Rh

)j))
κQ,RµQ,Rh (3.B.17)

αN,Rnh ≡ ᾱN,Rnh −
1

2
ρN1
′
hCN,R

nh ρN1 h, (3.B.18)

βN,Rnh

′ ≡ ρN1
′
h
(
I3×3 − κQ,Rh

)n
. (3.B.19)

Here CQ,R
nh is the matrix driving the convexity effects of real yields,

CQ,R
nh =

(
n−1∑
j=0

((
I3×3 − κQ,Rh

)j))
ΣΣ′h

(
n−1∑
j=0

((
I3×3 − κQ,Rh

)j))′
. (3.B.20)

The expression for
(
σQ,N,Rnh

)2

is

(
σQ,N,Rnh

)2

=
n−1∑
j=0

ρN1
′
h
(
I3×3 − κQ,Rh

)j
ΣΣ′h

((
I3×3 − κQ,Rh

)′)j
ρN1 h. (3.B.21)

The non-annualized forward instantaneou BEI rate fBEIt,nh,(n+1)hh is

fBEIt,nh,(n+1)hh = αBEInh + βBEInh

′
Xt, (3.B.22)

where αBEInh and βBEInh are

αBEInh ≡ ᾱBEInh −
1

2
ρBEI1

′
hCQ,R

nh ρBEI1 h, (3.B.23)

βBEInh

′ ≡ ρBEI1

′
h
(
I3×3 − κQ,Rh

)n
, (3.B.24)

ᾱBEInh ≡ ρBEI0 h+ ρBEI1

′
h

(
n−1∑
j=0

((
I3×3 − κQ,Rh

)j))
κQ,RµQ,Rh. (3.B.25)
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The third term of equation (3.B.15) is as follows,

VarQ,Rt

[
n∑
j=1

rBEIt+jh

]
− VarQ,Rt

[
n−1∑
j=1

rBEIt+jh

]
= ρBEI1

′
hCQ,R

nh ρBEI1 h. (3.B.26)

Similar to the equation (A4) in Wu and Xia (2016), the fourth term of equation (3.B.15) is

as follows,

CovQ,Rt

 n∑
j=1

rNt+jh,
n∑
j=1

rBEIt+jh

− CovQ,Rt

n−1∑
j=1

rNt+jh,
n−1∑
j=1

rBEIt+jh


=

n−1∑
i=1

CovQ,Rt

[
rNt+ih, r

BEI
t+nh

]
+
n−1∑
j=1

CovQ,Rt

[
rNt+nh, r

BEI
t+jh

]
+ CovQ,Rt

[
rNt+nh, r

BEI
t+nh

]
≈

n−1∑
i=1

PrQ,Rt

[
rNSt+ih ≥ 0

]
CovQ,Rt

[
rNSt+ih, r

BEI
t+nh

]
+

n−1∑
j=1

PrQ,Rt

[
rNSt+nh ≥ 0

]
CovQ,Rt

[
rNSt+nh, r

BEI
t+jh

]
+ PrQ,Rt

[
rNSt+nh ≥ 0

]
CovQ,Rt

[
rNSt+nh, r

BEI
t+nh

]
≈ PrQ,Rt

[
rNSt+nh ≥ 0

]CovQ,Rt

 n∑
j=1

rNSt+jh,
n∑
j=1

rBEIt+jh

− CovQ,Rt

n−1∑
j=1

rNSt+jh,
n−1∑
j=1

rBEIt+jh


= Φ

(
ᾱN,Rnh + βN,Rnh

′
Xt

σQ,N,Rnh

)
ρNS1

′
hCQ,Rnh ρBEI1 h. (3.B.27)

Plug equations (3.3.8), (3.B.22), (3.B.26) and (3.B.27) to equation (3.B.15), we can get

fRt,nh,(n+1)hh ≈ σQ,N,Rnh g

(
αN,Rnh + βN,Rnh

′
Xt

σQ,N,Rnh

)
− αBEInh − βBEInh

′
Xt − ρBEI1

′
hCQ,R

nh ρBEI1 h

+ Φ

(
ᾱN,Rnh + βN,Rnh

′
Xt

σQ,N,Rnh

)
ρNS1

′
hCQ,R

nh ρBEI1 h. (3.B.28)

Therefore, the real forward rate at time t for a loan starting at t + nh and maturing at
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t+ (n+ 1)h is

fRt,nh,(n+1)h ≈ −
αBEInh

h
− ρBEI1

′
hCQ,R

nh ρBEI1 − βBEInh
′

h
Xt +

1

h
σQ,N,Rnh g

(
αN,Rnh + βN,Rnh

′
Xt

σQ,N,Rnh

)

+ ρNS1

′
CQ,R
nh ρBEI1 hΦ

(
ᾱN,Rnh + βN,Rnh

′
Xt

σQ,N,Rnh

)
. (3.B.29)

Given the real forward rates, the real yield yRt,τ with maturity τ = nh at time t can be easily

computed as

yRt,τ=nh ≈ −
1

nh

n−1∑
k=0

αBEIkh − h

n
ρBEI1

′
n−1∑
k=0

CQ,R
kh ρBEI1 − 1

nh

n−1∑
k=0

βBEIkh

′
Xt

+
1

nh

n−1∑
k=0

σQ,N,Rkh g

(
αN,Rkh + βN,Rkh

′
Xt

σQ,N,Rkh

)

+
h

n
ρNS1

′
n−1∑
k=0

CQ,R
kh ρBEI1 Φ

(
ᾱN,Rkh + βN,Rkh

′
Xt

σQ,N,Rkh

)
. (3.B.30)

3.C TIPS Liquidity Effects

The risk neutral (Q) dynamics of X̃t in the real world can be derived as follows,

dX̃t = κ̃Q,R(µ̃Q,R − X̃t)dt+ σ̃dW̃Q
t , (3.C.1)

where

κ̃Q,R = κ̃+ λ̃1σ̃, µ̃Q,R =
(
κ̃µ̃− λ̃0σ̃

)
/κ̃Q,R. (3.C.2)

We can split rTBEI = rN − rTIPS = ρBEI0 + (ρBEI1 − β)′Xt− β̃X̃t into two parts. One

is the part that is explained by three common factors, rTBEIa = ρBEI0 + (ρBEI1 − β)′Xt,

and the other part is the TIPS liquidity specific part rTBEIb = β̃X̃t. Because rTBEIb has no

correlation with rNt and rTBEIa, we can derive the non-annualized forward TIPS rate from

nh to (n+ 1)h at time t as follows,
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fTIPSt,nh,(n+1)hh (3.C.3)

≈ EQ,Rt

[
rTIPSt+nh h

]
− 1

2

VarQ,Rt

 n∑
j=1

rTIPSt+jh h

− VarQ,Rt

n−1∑
j=1

rTIPSt+jh h


= EQ,Rt

[
rNt+nhh

]
− EQ,Rt

[
rTBEIat+nh h

]
− EQ,Rt

[
rTBEIbt+nh h

]
− 1

2

VarQ,Rt

 n∑
j=1

rNt+jhh

+ VarQ,Rt

 n∑
j=1

rTBEIat+jh h

− 2CovQ,Rt

 n∑
j=1

rNt+jhh,
n∑
j=1

rTBEIat+jh h


+

1

2

VarQ,Rt

n−1∑
j=1

rNt+jhh

+ VarQ,Rt

n−1∑
j=1

rTBEIat+jh h

− 2CovQ,Rt

n−1∑
j=1

rNt+jhh,
n−1∑
j=1

rTBEIat+jh h


− 1

2
VarQ,Rt

 n∑
j=1

rTBEIbt+jh h

+
1

2
VarQ,Rt

n−1∑
j=1

rTBEIbt+jh h


=

EQ,Rt

[
rNt+nhh

]
− 1

2

VarQ,Rt

 n∑
j=1

rNt+jhh

− VarQ,Rt

n−1∑
j=1

rNt+jhh


−

EQ,Rt

[
rTBEIat+nh h

]
− 1

2

VarQ,Rt

 n∑
j=1

rTBEIat+jh h

− VarQ,Rt

n−1∑
j=1

rTBEIat+jh h


−

EQ,Rt

[
rTBEIbt+nh h

]
− 1

2

VarQ,Rt

 n∑
j=1

rTBEIbt+jh h

− VarQ,Rt

n−1∑
j=1

rTBEIbt+jh h


− VarQ,Rt

 n∑
j=1

rTBEIat+jh h

+ VarQ,Rt

n−1∑
j=1

rTBEIat+jh h


+ CovQ,Rt

 n∑
j=1

rNt+jhh,

n∑
j=1

rTBEIat+jh h

− CovQ,Rt

n−1∑
j=1

rNt+jhh,

n−1∑
j=1

rTBEIat+jh h


− VarQ,Rt

 n∑
j=1

rTBEIbt+jh h

+ VarQ,Rt

n−1∑
j=1

rTBEIbt+jh h


= fN,Rt,nh,(n+1)hh− f

TBEIa
t,nh,(n+1)hh− f

TBEIb
t,nh,(n+1)hh

−

VarQ,Rt

 n∑
j=1

rTBEIat+jh h

− VarQ,Rt

n−1∑
j=1

rTBEIat+jh h


+

CovQ,Rt

 n∑
j=1

rNt+jhh,
n∑
j=1

rTBEIat+jh h

− CovQ,Rt

n−1∑
j=1

rNt+jhh,
n−1∑
j=1

rTBEIat+jh h


−

VarQ,Rt

 n∑
j=1

rTBEIbt+jh h

− VarQ,Rt

n−1∑
j=1

rTBEIbt+jh h

 . (3.C.4)
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Here fTBEIat,nh,(n+1)hh is

fTBEIat,nh,(n+1)hh = αTBEIanh + βTBEIanh

′
Xt, (3.C.5)

where αTBEIanh and βTBEIanh are

αTBEIanh ≡ ᾱTBEIanh − 1

2

(
ρBEI1 − β

)′
hCQ,R

nh

(
ρBEI1 − β

)
h, (3.C.6)

βTBEIanh

′ ≡
(
ρBEI1 − β

)′
h
(
I3×3 − κQ,Rh

)n
, (3.C.7)

ᾱTBEIanh ≡ ρBEI0 h+
(
ρBEI1 − β

)′
h

(
n−1∑
j=0

((
I3×3 − κQ,Rh

)j))
κQ,RµQ,Rh. (3.C.8)

The fourth term of equation (3.C.4) is as follows,

VarQ,Rt

[
n∑
j=1

rTBEIat+jh

]
− VarQ,Rt

[
n−1∑
j=1

rTBEIat+jh

]
=
(
ρBEI1 − β

)′
hCQ,R

nh

(
ρBEI1 − β

)
h.

(3.C.9)

The fifth term of equation (3.C.4) is as follows,

CovQ,Rt

[
n∑
j=1

rNt+jh,
n∑
j=1

rBEIt+jh

]
− CovQ,Rt

[
n−1∑
j=1

rNt+jh,
n−1∑
j=1

rBEIt+jh

]

= Φ

(
ᾱN,Rnh + βN,Rnh

′
Xt

σQ,N,Rnh

)
ρNS1

′
hCQ,R

nh

(
ρBEI1 − β

)′
h. (3.C.10)

The third term of equation (3.C.4) is

fTBEIbt,nh,(n+1)hh = αTBEIbnh + βTBEIbnh

′
X̃t, (3.C.11)
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where αTBEIbnh and βTBEIbnh are

αTBEIbnh ≡ ᾱTBEIbnh − 1

2
β̃′hC̃Q,R

nh β̃h, (3.C.12)

βTBEIbnh

′ ≡ β̃′h
(
1− κ̃Q,Rh

)n
, (3.C.13)

ᾱTBEIbnh ≡ β̃′h

(
n−1∑
j=0

((
1− κ̃Q,Rh

)j))
κ̃Q,Rµ̃Q,Rh. (3.C.14)

Here C̃Q,R
nh is given by

C̃Q,R
nh =

(
n−1∑
j=0

((
1− κ̃Q,Rh

)j))
σ̃2h

(
n−1∑
j=0

((
1− κ̃Q,Rh

)j))′
. (3.C.15)

The last term of equation (3.C.4) is as follows,

VarQ,Rt

[
n∑
j=1

rTBEIbt+jh

]
− VarQ,Rt

[
n−1∑
j=1

rTBEIbt+jh

]
= β̃′hC̃Q,R

nh β̃h. (3.C.16)

Plug equations (3.3.8), (3.B.22), (3.C.9) and (3.C.9) to equation (3.C.4), we can get

fTIPSt,nh,(n+1)hh ≈ σQ,N,Rnh g

(
αN,Rnh + βN,Rnh

′
Xt

σQ,N,Rnh

)
− αTBEIanh − βTBEIanh

′
Xt

−
(
ρBEI1 − β

)′
hCQ,R

nh

(
ρBEI1 − β

)
h

+ Φ

(
ᾱN,Rnh + βN,Rnh

′
Xt

σQ,N,Rnh

)
ρNS1

′
hCQ,R

nh

(
ρBEI1 − β

)
h

− αTBEIbnh − βTBEIbnh

′
X̃t − β̃′hC̃Q,R

nh β̃h. (3.C.17)

Therefore, the forward TIPS rate at time t for a loan starting at t + nh and maturing at

t+ (n+ 1)h is
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fTIPSt,nh,(n+1)h ≈ −
αTBEIanh

h
− αTBEIbnh

h
−
(
ρBEI1 − β

)′
hCQ,R

nh

(
ρBEI1 − β

)
− β̃′hC̃Q,R

nh β̃

− βTBEIanh
′

h
Xt −

βTBEIbnh

h
X̃t +

1

h
σQ,N,Rnh g

(
αN,Rnh + βN,Rnh

′
Xt

σQ,N,Rnh

)

+ ρNS1

′
CQ,R
nh

(
ρBEI1 − β

)
hΦ

(
ᾱN,Rnh + βN,Rnh

′
Xt

σQ,N,Rnh

)
. (3.C.18)

Given the forward TIPS rates, the TIPS yield yTIPSt,τ with maturity τ = nh at time t can be

easily computed as

yTIPSt,τ=nh ≈ −
1

nh

n−1∑
k=0

αTBEIakh − 1

nh

n−1∑
k=0

αTBEIbkh − h

n

(
ρBEI1 − β

)′ n−1∑
k=0

CQ,R
kh

(
ρBEI1 − β

)
− h

n
β̃′

n−1∑
k=0

C̃Q,R
kh β̃ − 1

nh

n−1∑
k=0

βTBEIakh

′
Xt −

1

nh

n−1∑
k=0

βTBEIbkh X̃t

+
1

nh

n−1∑
k=0

σQ,N,Rkh g

(
αN,Rkh + βN,Rkh

′
Xt

σQ,N,Rkh

)

+
h

n
ρNS1

′
n−1∑
k=0

CQ,R
kh

(
ρBEI1 − β

)
Φ

(
ᾱN,Rkh + βN,Rkh

′
Xt

σQ,N,Rkh

)
. (3.C.19)

3.D Inflation Expectation

Given the explicit conditional expectation of future state variables in Vasicek model,

Et (Xt+τ | Xt) = µ + e−κτ (Xt − µ), the closed-form formulas of inflation expectations,

IEt,τ = aIEτ + bIEτ
′
dXt, over next τ period can be derived as,

1

τ
Et

(∫ t+τ

t

rIsds

)
= aIEτ + bIEτ

′
Xt, (3.D.1)

where the factor loadings aIEτ and bIEτ are given by
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aIEτ = ρI0 +
1

τ
ρI1
′
∫ τ

0

(
I − e−κs

)
µds, (3.D.2)

bIEτ =
1

τ

∫ τ

0

e−κ
′sρI1ds. (3.D.3)

3.E The Nonlinear State-Space Form and the Extended Kalman Filter

Let qt = logQt. By applying Ito’s lemma to the equation (3.3.10), the log price level is

given by

dqt =

(
rI(Xt)−

1

2

(
σq
′σq + σ⊥q

2
))

dt+ σ′qdWt + σ⊥q dW
⊥
t . (3.E.1)

We write our model as a nonlinear state space model with an augmented state vector

xt = [q,Xt], which includes the log price level, three systematic state variables and one

TIPS-specific factor. Expressed as the Euler discretization of equations (3.3.3), (3.3.20)

and (3.E.1),, the state equation takes the affine form

xt = Ah +Bhxt−h + εt, (3.E.2)

where

Ah =


(
ρI0 − 1

2

(
σq
′σq + σ⊥q

2
))

h

κµh

κ̃µh

 , Bh =


1 ρI1

′
h 0

03×1 (I3×3 − κh) 01×3

0 01×3 1− κ̃h

 ,

and εt =


σq
′ σ⊥q 0

Σ 0 03×1

01×3 0 σ̃

hεt, εt ∼ N(0, I5×5).

Given the information at time t, the transition equation is deterministic and linear.
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As we sample data at weekly frequency, h is set to be 1/52. we denote the series of

nominal yields as Y N
t = {yNt,τi}

32
i=1, the series of TIPS yields as Y TIPS

t = {yTIPSt,τi
}19
i=1,

the series of inflation forecasts as IEt = {IEt,τi}3
i=1, and the series of 3-month Tbill

rate forecasts as NEt = {NEt,τi}2
i=1. Then the observable vector is written as yt =

[qt, Y
N
t , Y

TIPS
t , IEt, NEt]

′. The observation equation is not linear because Y N
t , Y TIPS

t

and NEt are nonlinear functions of state variables. These functions have closed-form for-

mula and their analytic first-order derivatives can be easily derived, thus we can linearize

the observation equation without any numerical approximation. Therefore, Assuming all

observable variables are observed with Gaussian error, we use the extended Kalman filter,

which applies the Kalman filter by linearizing the nonlinear observation equation at each

step, to compute the log likelihood of the system given a set of parameters, and then find

the optimal parameters by MLE.

Ignoring the measurement errors, the model has 29 unknown parameters. In the 57-

dimension observation equation, all observable variables except log price level qt are ob-

served with error.
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Table 3.1: Oil Price Effects on TIPS BEI before and after Crisis

Panel A (Panel B) regresses the daily changes of TIPS BEI on the daily changes of log oil
price before (after) financial crisis. Panel C regresses the daily changes of TIPS BEI on
the daily changes of log oil price, the post-crisis dummy, and their interaction term. The
post-crisis dummy is set to be 0 before September 15, 2008 and 1 afterwards. We employ
the Newly-West standard errors to compute T statistics to overcome the autocorrelation and
heteroskedasticity in the error terms in the models.

5 year 10 year 15 year 20 year
Panel A: Pre-crisis

const -0.0001 0.0002 0.0001 0.0000
(-0.10) (0.22) (0.16) (0.04)

∆ (lnWTIt) 0.0033 0.0022 0.0019 0.0016
(6.77) (5.50) (4.83) (4.34)

Adjusted R2 0.0370 0.0205 0.0149 0.0121
Panel B: Post-crisis

const 0.0005 0.0001 0.0000 0.0000
(0.52) (0.16) (-0.01) (0.04)

∆ (lnWTIt) 0.0066 0.0054 0.0045 0.0039
(7.99) (9.80) (9.31) (7.86)

Adjusted R2 0.1443 0.1191 0.0846 0.0615
Panel C: Whole sample

const -0.0002 0.0001 0.0001 0.0000
(-0.19) (0.15) (0.11) (0.00)

∆ (lnWTIt) 0.0033 0.0023 0.0019 0.0016
(6.58) (5.46) (4.82) (4.34)

1Post 0.0007 0.0000 -0.0001 0.0000
(0.52) (0.03) (-0.08) (0.03)

∆ (lnWTIt) · 1Post 0.0033 0.0031 0.0026 0.0023
(3.31) (4.54) (4.24) (3.72)

Adjusted R2 0.0932 0.0713 0.0511 0.0394
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Table 3.2: Oil Price Effects on TIPS BEI when Oil Prices Increase and Decrease

This table conducts the regression of daily changes of 5-, 10-, 15-, 20-year TIPS BEI on
daily changes of log oil price, the dummy variable of negative daily changes of log oil
price, and the interaction term for pre-crisis and post-crisis sample periods. We employ the
Newly-West standard errors to compute T statistics to overcome the autocorrelation and
heteroskedasticity in the error terms in the models.

5-year Horizon 10 -year Horizon
Pre-crisis Post-crisis Pre-crisis Post-crisis

const 0.0007 0.0032 0.0000 0.0032
(0.42) (2.12) (0.03) (2.42)

∆ (lnWTIt) 0.0033 0.0051 0.0027 0.0038
(3.97) (6.31) (3.47) (6.13)

1Neg -0.0041 0.0004 -0.0030 -0.0010
(-1.54) (0.13) (-1.24) (-0.44)

∆ (lnWTIt) · 1Neg -0.0013 0.0033 -0.0017 0.0029
(-1.03) (1.66) (-1.49) (2.31)

Adjusted R2 0.0380 0.1492 0.0218 0.1240
15-year Horizon 20-year Horizon

Pre-crisis Post-crisis Pre-crisis Post-crisis
const -0.0003 0.0038 -0.0006 0.0041

(-0.18) (2.70) (-0.40) (2.56)
∆ (lnWTIt) 0.0024 0.0027 0.0022 0.0020

(3.21) (4.26) (3.10) (2.48)
1Neg -0.0024 -0.0025 -0.0017 -0.0027

(-1.01) (-1.10) (-0.73) (-1.14)
∆ (lnWTIt) · 1Neg -0.0017 0.0029 -0.0016 0.0031

(-1.55) (2.23) (-1.55) (2.01)
Adjusted R2 0.0161 0.0899 0.0129 0.0669
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Table 3.3: Oil Price Effects on TIPS BEI under Different Regimes

Panel A (Panel B) conducts four different regressions between the daily changes of 10-
year (20-year) TIPS BEI and the daily changes of log oil price with different controls.
The zero lower bound (ZLB) dummy 1ZLB is set to be 1 when the contemporaneous 3-
month nominal interest rate is below 1% and 0 otherwise. The negative change dummay
1Neg is set to be 1 when the ∆ (lnWTIt) is negative and 0 otherwise. We employ the
Newly-West standard errors to compute T statistics to overcome the autocorrelation and
heteroskedasticity in the error terms in the models.

Panel A: 10 year Horizon
(1) (2) (3) (4)

const 0.0000 -0.0004 0.0012 -0.0002
(0.05) (-0.53) (1.21) (-0.09)

∆ (lnWTIt) 0.0039 0.0026 0.0033 0.0028
(10.31) (5.75) (6.93) (3.43)

1ZLB 0.0009 0.0030
(0.81) (1.43)

∆ (lnWTIt) · 1ZLB 0.0023 0.0009
(3.42) (0.92)

1Neg -0.0013 -0.0024
(-0.70) (-0.90)

∆ (lnWTIt) · 1Neg 0.0007 -0.0010
(0.76) (-0.76)

1ZLB · 1Neg 0.0015
(0.42)

∆ (lnWTIt) · 1Neg · 1ZLB 0.0032
(1.81)

Adjusted R2 0.0616 0.0668 0.0615 0.0678
Panel B: 20 year Horizon

(1) (2) (3) (4)
const 0.0000 -0.0004 0.0016 -0.0010

(-0.09) (-0.64) (1.40) (-0.59)
∆ (lnWTIt) 0.0028 0.0019 0.0021 0.0023

(8.63) (4.72) (3.74) (3.12)
1ZLB 0.0008 0.0048

(0.76) (2.14)
∆ (lnWTIt) · 1ZLB 0.0017 -0.0004

(2.81) (-0.40)
1Neg -0.0017 -0.0014

(-1.02) (-0.55)
∆ (lnWTIt) · 1Neg 0.0009 -0.0013

(0.90) (-1.13)
1ZLB · 1Neg -0.0010

(-0.29)
∆ (lnWTIt) · 1Neg · 1ZLB 0.0039

(2.14)
Adjusted R2 0.0340 0.0368 0.0343 0.0390
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Table 3.4: Parameter Estimates

This table presents all parameters and standard errors (in parenthese) for the model we use
to describe the joint dynamics of nominal yields, inflation, real yields and TIPS yields. We
compute standard errors by calculating the fishier information matrix numerically.

Log likelihood = 276701.58
State Variables Nominal Pricing Kernel Price Level TIPS Liquidity
κ11 0.3802 ρNS0 0.0382

[
ΣΛN

]
11

-0.0098 ρI0 0.0209 β̃ 1.1621
(0.0093) (0.0016) (0.0002) (0.0004) (0.0255)

κ22 0.1067 ρNS1,1 3.0663
[
ΣΛN

]
21

0.2648 ρI1,1 0.0897 κ̃ 0.5333
(0.0039) (0.0691) (0.0187) (0.0032) (0.0058)

κ33 0.8767 ρNS1,2 0.5352
[
ΣΛN

]
31

0.1229 ρI1,2 0.1932 µ̃ 0.0061
(0.0147) (0.0116) (0.0031) (0.0158) (0.0001)

Σ2,1 -0.0173 ρNS1,3 0.6159
[
ΣΛN

]
12

-0.0159 ρI1,3 -0.0962 λ̃0 0.3511
(0.0008) (0.0135) (0.0006) (0.0050) (0.0059)

Σ3,1 -0.0292 λN0,1 0.1088
[
ΣΛN

]
22

-0.1431 σq,1 -0.0024 λ̃1 -0.4328
(0.0010) (0.0032) (0.0038) (0.0002) (0.0085)

Σ3,2 -0.0075 λN0,2 -0.2262
[
ΣΛN

]
32

-0.0913 σq,2 0.0007 β1 -0.5551
(0.0003) (0.0041) (0.0026) (0.0000) (0.0539)

λN0,3 -0.9421
[
ΣΛN

]
13

0.0841 σq,3 0.0002 β2 -0.0626
(0.0385) (0.0020) (0.0000) (0.0067)[

ΣΛN
]
23

0.2236 σ⊥q 0.0080 β3 0.0119
(0.0041) (0.0011) (0.0003)[

ΣΛN
]
33

-0.3834
(0.0125)
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Table 3.5: Oil Price Effects on IE before and after Crisis

Panel A (Panel B) regresses the weekly changes of IE on the weekly changes of log oil
price before (after) financial crisis. Panel C regresses the weekly changes of IE on the
weekly changes of log oil price, the post-crisis dummy, and their interaction term. The
post-crisis dummy is set to be 0 before September 15, 2008 and 1 afterwards. T-statistic
are reported in parentheses. We employ the Newly-West standard errors to compute T
statistics to overcome the autocorrelation and heteroskedasticity in the error terms in the
models.

5 year 10 year 15 year 20 year
Panel A: Pre-crisis

const -0.0006 -0.0005 -0.0004 -0.0003
(-0.52) (-0.55) (-0.55) (-0.55)

∆ (lnWTIt) 0.0000 0.0000 0.0000 0.0000
(-0.13) (-0.05) (-0.02) (-0.01)

Adjusted R2 -0.0019 -0.0020 -0.0020 -0.0020
Panel B: Post-crisis

const -0.0008 -0.0007 -0.0006 -0.0005
(-0.54) (-0.53) (-0.52) (-0.52)

∆ (lnWTIt) 0.0019 0.0016 0.0013 0.0011
(7.11) (7.04) (6.97) (6.93)

Adjusted R2 0.0908 0.0873 0.0856 0.0848
Panel C: Whole sample

const -0.0004 -0.0004 -0.0003 -0.0003
(-0.39) (-0.43) (-0.44) (-0.44)

∆ (lnWTIt) 0.0000 0.0000 0.0000 0.0000
(0.13) (0.20) (0.22) (0.23)

1Post -0.0004 -0.0003 -0.0003 -0.0002
(-0.23) (-0.21) (-0.21) (-0.20)

∆ (lnWTIt) · 1Post 0.0018 0.0016 0.0013 0.0011
(5.02) (5.24) (5.27) (5.27)

Adjusted R2 0.0526 0.0528 0.0522 0.0519
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Table 3.6: Oil Price Effects on IE under Different Regimes

Panel A (Panel B) conducts four different regressions between the weekly changes of 10-
year (20-year) IE on the weekly changes of log oil price with different controls. The zero
lower bound (ZLB) dummy 1ZLB is set to be 1 when the contemporaneous 3-month nomi-
nal interest rate is below 1% and 0 otherwise. The negative change dummay 1Neg is set to
be 1 when the ∆ (lnWTIt) is negative and 0 otherwise. T-statistic are reported in paren-
theses. We employ the Newly-West standard errors to compute T statistics to overcome the
autocorrelation and heteroskedasticity in the error terms in the models.

Panel A: 10 year Horizon
(1) (2) (3) (4)

const -0.0008 -0.0007 -0.0011 -0.0027
(-0.96) (-0.83) (-0.86) (-1.62)

∆ (lnWTIt) 0.0008 0.0000 0.0009 0.0005
(4.64) (0.07) (3.33) (1.32)

1ZLB 0.0003 0.0034
(0.22) (1.32)

∆ (lnWTIt) · 1ZLB 0.0015 0.0006
(5.24) (1.12)

1Neg 0.0010 -0.0003
(0.43) (-0.11)

∆ (lnWTIt) · 1Neg 0.0001 -0.0011
(0.13) (-1.78)

1ZLB · 1Neg 0.0016
(0.38)

∆ (lnWTIt) · 1Neg · 1ZLB 0.0020
(2.33)

Adjusted R2 0.0286 0.0515 0.0268 0.0524
Panel B: 20 year Horizon

(1) (2) (3) (4)
const -0.0005 -0.0005 -0.0008 -0.0017

(-0.96) (-0.76) (-0.91) (-1.48)
∆ (lnWTIt) 0.0006 0.0000 0.0006 0.0004

(4.68) (0.10) (3.35) (1.22)
1ZLB 0.0001 0.0020

(0.14) (1.11)
∆ (lnWTIt) · 1ZLB 0.0011 0.0005

(5.23) (1.25)
1Neg 0.0008 -0.0003

(0.48) (-0.16)
∆ (lnWTIt) · 1Neg 0.0000 -0.0007

(0.12) (-1.73)
1ZLB · 1Neg 0.0014

(0.48)
∆ (lnWTIt) · 1Neg · 1ZLB 0.0014

(2.25)
Adjusted R2 0.0283 0.0505 0.0265 0.0509
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Table 3.7: Oil Price Effects on IRP when Oil Prices Increase and Decrease

Panel A (Panel B) regresses the weekly changes of IRP on the weekly changes of log oil
price before (after) financial crisis. Panel C regresses the weekly changes of IRP on the
weekly changes of log oil price, the post-crisis dummy, and their interaction term. The
post-crisis dummy is set to be 0 before September 15, 2008 and 1 afterwards. T-statistic
are reported in parentheses. We employ the Newly-West standard errors to compute T
statistics to overcome the autocorrelation and heteroskedasticity in the error terms in the
models.

5 year 10 year 15 year 20 year
Panel A: Pre-crisis

const 0.0004 0.0003 0.0002 0.0002
(0.33) (0.27) (0.20) (0.15)

∆ (lnWTIt) -0.0003 -0.0003 -0.0002 -0.0002
(-0.91) (-0.91) (-0.88) (-0.85)

Adjusted R2 0.0005 0.0006 0.0005 0.0002
Panel B: Post-crisis

const -0.0002 -0.0004 -0.0005 -0.0006
(-0.16) (-0.32) (-0.42) (-0.47)

∆ (lnWTIt) 0.0004 0.0009 0.0011 0.0013
(1.52) (3.47) (4.76) (5.42)

Adjusted R2 0.0047 0.0318 0.0553 0.0671
Panel C: Whole sample

const 0.0005 0.0005 0.0004 0.0003
(0.43) (0.39) (0.34) (0.29)

∆ (lnWTIt) -0.0002 -0.0002 -0.0002 -0.0002
(-0.69) (-0.65) (-0.60) (-0.57)

1Post -0.0007 -0.0009 -0.0009 -0.0009
(-0.42) (-0.51) (-0.54) (-0.54)

∆ (lnWTIt) · 1Post 0.0006 0.0011 0.0013 0.0014
(1.48) (2.65) (3.39) (3.77)

Adjusted R2 0.0012 0.0138 0.0252 0.0313
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Table 3.8: Oil Price Effects on IRP under Different Regimes

Panel A (Panel B) conducts four different regressions between the weekly changes of 10-
year (20-year) IRP on the weekly changes of log oil price with different controls. The zero
lower bound (ZLB) dummy 1ZLB is set to be 1 when the contemporaneous 3-month nomi-
nal interest rate is below 1% and 0 otherwise. The negative change dummay 1Neg is set to
be 1 when the ∆ (lnWTIt) is negative and 0 otherwise. T-statistic are reported in paren-
theses. We employ the Newly-West standard errors to compute T statistics to overcome the
autocorrelation and heteroskedasticity in the error terms in the models.

Panel A: 10 year Horizon
(1) (2) (3) (4)

const -0.0001 -0.0004 0.0006 -0.0038
(-0.10) (-0.30) (0.33) (-1.74)

∆ (lnWTIt) 0.0003 -0.0002 0.0003 0.0006
(1.75) (-0.79) (0.78) (1.46)

1ZLB 0.0008 0.0076
(0.44) (2.36)

∆ (lnWTIt) · 1ZLB 0.0011 -0.0005
(2.89) (-0.76)

1Neg -0.0015 0.0011
(-0.58) (0.30)

∆ (lnWTIt) · 1Neg 0.0000 -0.0015
(-0.05) (-1.69)

1ZLB · 1Neg -0.0045
(-0.94)

∆ (lnWTIt) · 1Neg · 1ZLB 0.0024
(2.08)

Adjusted R2 0.0040 0.0144 0.0023 0.0178
Panel B: 20 year Horizon

(1) (2) (3) (4)
const -0.0003 -0.0004 0.0000 -0.0039

(-0.36) (-0.39) (-0.02) (-1.84)
∆ (lnWTIt) 0.0006 -0.0002 0.0005 0.0007

(2.82) (-0.73) (1.78) (1.58)
1ZLB 0.0006 0.0070

(0.35) (2.32)
∆ (lnWTIt) · 1ZLB 0.0014 -0.0001

(4.01) (-0.17)
1Neg -0.0008 0.0005

(-0.32) (0.15)
∆ (lnWTIt) · 1Neg -0.0001 -0.0016

(-0.10) (-1.94)
1ZLB · 1Neg -0.0026

(-0.56)
∆ (lnWTIt) · 1Neg · 1ZLB 0.0027

(2.36)
Adjusted R2 0.0121 0.0314 0.0101 0.0353
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Table 3.9: Parameter for the Baseline Model

All parameters for the household’s preferences, goods production and monetary policy are
in line with literature.

Parameter Description Value
Panel A: Preferences
β Subjective discount factor 0.985
ρC Elasticity of substitution for consumption bundle 0.25
αC Oil Share in consumption bundle 0.05
χ Preference over consumption bundle vs leisure 0.25
Panel B: Production
θ Elasticity of substitution among intermediate goods 6
ϕ Price adjustment cost 80
ρY Elasticity of substitution for production 0.225
αY Oil Share in production 0.055
Panel C: Monetary Policy
φπ Coefficient on inflation in the Taylor rule 2.5
400

(
Π̄− 1

)
Annualized target rate of inflation 0.02

Panel D: Exogenous Shocks
s̄ Steady state for bond preference shock 0.01
ρs AR(1) coefficient for bond preference shock 0.9
σs Standard deviation for bond preference shock 0.25
ρdO AR(1) coefficient for oil demand shock 0.8
σdO Standard deviation for oil demand shock 0.05
ρSO AR(1) coefficient for oil supply shock 0.8
σSO Standard deviation for oil supply shock 0.05
ρA AR(1) coefficient for productivity shock 0.9
σA Standard deviation for productivity shock 0.001
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Figure 3.1: 10-year TIPS BEI and Oil Prices before and after Financial Crisis

This upper left panel shows the daily dynamics of 10-year TIPS BEI and log oil price
for the pre-crisis period (01/04/1999 to 09/14/2008) and the upper right panel shows the
same for post-crisis period (09/15/2008 to 05/31/2017). The bottom left panel and bottom
right panel shows the scatter plots and OLS regression lines between daily changes of two
variables for the pre-crisis and post-crisis sample periods, respectively.
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Figure 3.2: Nominal Yields Fitting

This figure shows the actual (in blue) and fitted (in red) nominal yields with maturities 3
and 6 month, as well as 1, 2, ... , 13 and 14 years. The RMSE of in-sample fitting (in bps)
are shown in the title of each plot.
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Figure 3.3: Nominal Yields Fitting

This figure shows the actual (in blue) and fitted (in red) nominal yields with maturities 15,
16, ..., 29 and 30 years. The RMSE of in-sample fitting (in bps) are shown in the title of
each plot.
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Figure 3.4: TIPS Yields

This figure shows the actual (in blue) and fitted (in red) TIPS yields with maturities 2, 3,
... , 12 and 13 years. The RMSE of in-sample fitting (in bps) of observation equations are
shown in the title of each plot.
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Figure 3.5: TIPS Yields and Survey Forecasts Fitting

This figure shows the actual (in blue) and fitted (in red) TIPS yields with maturities 14, 15,
... , 19 and 20 years, inflation forecasts with maturities 1, 5, and 10 years, and 3-month Tbill
rates forecasts with 1 and 10 years. The RMSE of in-sample fitting (in bps) of observation
equations are shown in the title of each plot.
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Figure 3.6: Shadow Rate Implied Nominal and Real Yields

This figure shows the estimated nominal/real yields (in blue), which assume there is the
ZLB constraint, and the shadow rate implied nominal/real yields yields (in dashed red),
which relaxes the constraint, at maturities of 3 months, 6 months, 1 year, 3 years, 5 years
and 10 years.
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Figure 3.7: Decomposition of TIPS BEI

This figure shows the decomposition of TIPS BEI for 10 year, 15 year and 20 year. The
upper three panels show IE (in blue), BEI (in red) and TIPS BEI (in yellow) of three
maturities. The middle three panels show IRP of three maturities. And the bottom three
panels show LRP of three maturities.
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Figure 3.8: Local Correlation between Oil Real Prices and the Term Structure of Inflation
Expectation

The upper left, upper right, bottom left and bottom right shows the oil real price’s cor-
relation with contemporaneous inflation rate, 1-year IE, 5-year IE, and 10-year IE local to
different nominal shadow interest rates. The blue line shows the local correlation with ZLB
constraint, while the red line shows the result without the binding constraint.
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Figure 3.9: Impulse Response of Oil Supply

This figure shows the impulse responses of two standard deviation of oil supply shocks
(10% change in level) on all macro variables and IE with different horizons. The red solid
line indicates the impulse responses for the 10% positive change of oil supply and the blue
solid line indicates that for the 10% negative change of oil supply. The red dashed line
indicates the impulse responses for the 10% positive change of oil supply if we ignore ZLB
binding constraint in the model. The percentage changes of all variables except annualized
nominal interest rates are plotted. For annualized nominal interest rates, we show their im-
pulse response function for levels. All impulse responses are reported for horizons ranging
from 0 to 5 years.
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Figure 3.10: How Inflation and IE in Different Horizons Changes with Supply-Driven Oil
Prices

This figure shows how inflation and IE in different horizons change with the supply-driven
oil prices. The x-axis is the percentage change deviated from the steady state of oil real
price and the y-axis is that of inflation or IE. The red dashed lines indicate the relation
of the variables in our model with ZLB constraint, while the blue solid line indicate the
relation of the variables without the ZLB constraint. The green solid vertical line indicates
the threshold state where the ZLB binds.
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Figure 3.11: Impulse Response of Oil Demand

This figure shows the impulse responses of two standard deviation of oil demand shocks
(10% change in level) on all macro variables and IE with different horizons. The red solid
line indicates the impulse responses for the 10% negative change of oil demand and the blue
solid line indicates that for the 10% positive change of oil demand. The red dashed line
indicates the impulse responses for the 10% negative change of oil supply if we ignore ZLB
binding constraint in the model. The percentage change of all variables except annualized
nominal interest rates are plotted. For annualized nominal interest rates, we show their
impulse response for levels. All impulse responses are reported for horizons ranging from
0 to 5 years.
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Figure 3.12: How Inflation and IE in Different Horizons Changes with Demand-Driven Oil
Prices

This figure shows how inflation and IE in different horizons changes with the Demand-
driven oil prices. The x-axis is the percentage change deviated from the steady state of oil
real price and the y-axis is that of inflation or IE. The red dashed lines indicate the relation
of the variables in our model with ZLB constraint, while the blue solid line indicate the
relation of the variables without the ZLB constraint. The green solid vertical line indicates
the threshold state where the ZLB binds.
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Chapter 4

The Information Content of Treasury Term Premium
(Jointly with Xiaoyang (Sean) Dong)

4.1 Introduction

As global economies are increasingly financially integrated, nowadays US Treasury

(UST) dynamics are no longer dominated by US fundamentals, but are becoming more

responsive to foreign monetary policies and institutional flows. One of the most striking

puzzles in 2016 was the deep dive of UST term premium into negative territory while the

Fed was raising rates in a tightening cycle. It was the first time in history that the entire

treasury curve was priced with significantly negative term premium throughout short-end

to long-end. Figure 4.1 plots popular measures of 10y zero-yield term premium by Adrian

et al. (2013); Kim and Wright (2005) as well as from our model. The huge drop in early

2016 to deep negative zone is a robust pattern echoed by various model specifications. This

raises the question: what crushed treasury term premium while there were no salient shocks

to either US growth or US inflation? More broadly speaking, what’re the information

contents of modern treasury term premium?

In order to understand the economic drivers behind treasury term premium, we conduct

three layers of decompositions. The first layer of decomposition is to break Nominal Term

Premium (NTP) into Real Term Premium (RTP) and Inflation Term Premium (ITP), so that

we can understand which of the two components dropped a lot. After that, the second layer

of decomposition is to further identify what risks Real & Inflation TP are compensating for

respectively. Based on the risk factor attribution from the second layer, we further delve
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into their major drivers in the third step. To achieve these 3 goals, we need a model with

the following features. First, as term premium is pinned down by yield minus expectation,

we want the model to fit both yields and survey expectations jointly, so that both observ-

ables naturally pin down term premium and hence the estimates are more robust to model-

misspecification. Second, the model is designed with similar Arbitrage-Free Nelson-Siegel

(AFNS) structure as in Christensen et al. (2011), so that all factors have clear economic

meanings. Level corresponds to duration risk; slope corresponds to steepener risk; and

curvature corresponds to monetary policy risk - LSAP/QEs are all concentrated on 2∼10y

which matches with the hump-shape impacts of monetary shocks. On the real-side, we fol-

low D’Amico et al. (2018) to augment the standard affine structure with a liquidity factor,

which helps us to infer liquidity risk premium priced in TIPS as a side-product. Third, after

we extract the factors, we further compare them with flows to reveal their true drivers in

2016.

There’re three major findings from the decompositions. First, Real TP accounts for over

three quarters of Nominal TP variations, while Inflation TP is a slow-moving component

mostly driven by oil price. Second, duration factor is priced with significantly positive risk

price, as investors demand premium for bearing duration risk. Yet monetary factor is priced

with significantly negative risk price, as central banks are willing to pay to lower term

premium. Steepener risk, on the other hand, is barely priced in the Real TP empirically,

which is not too surprising as the slope factor is well-known to drive rates expectation rather

than term premium. Last but not least, the duration factor dynamics have been driven by

foreign flows from Japan and Europe due to monetary divergence during recent years. For

instance, Figure 4.2 shows the striking co-movement between duration-attributed Real TP

and JPY cross-currency basis (which measures foreign hedging demand of $-assets and

hence Japanese flows). In other words, the information contents embedded in treasury

term premium go beyond US fundamentals. The puzzles cannot be resolved if we focus

exclusively on local macro variables but ignoring foreign demands. This explains why
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structural macro models in the literature tend to fit poorly especially for recent samples.

To further demonstrate the role of foreign demand in driving treasury term premium,

we estimate two versions of extended models on top of our Nelson-Siegel structure - one

by adding a US-local macro factor (the Chicago Fed National Activity Index) and one

with a foreign demand factor (JPY cross-currency basis). By comparing out-of-sample

RMSE from 2015 to 2017, we show that the local macro factor model is dominated by

the foreign demand model for maturity longer than 10y. Yet both models fail to beat the

Nelson-Siegel benchmark on the short-end. The main insight from this study suggests that

the prevalence of modern carry trades and cross-border investment flows are becoming an

increasingly important driver of mid/long-end of treasury curves. It could be a bit ambitious

for structural macro models to capture the fine structure of treasury term premium dynamics

without the international flow component.

This paper contributes to three strands of literature. The first one is about the estimation

of Nominal TP, Real TP, Inflation Risk Premium (IRP) and Inflation Expectation (IE) by

using Gaussian affine term structure framework. Kim and Wright (2005) use a three-factor

arbitrage-free term structure to estimate Nominal and Real TP with yields and survey fore-

casts data. By using computationally efficient regression method, Abrahams et al. (2013)

estimate a seven-factor affine model that jointly price TIPS and treasury yields with con-

trolling TIPS’ liquidity effects. Different from these studies, several others mainly focus

on the estimation of IRP and IE. D’Amico et al. (2018) models yields, inflation, and survey

expectation jointly to extract IRP and IE after adjusting for the TIPS-specific liquidity fac-

tor, while Christensen et al. (2010) do similar work without survey forecasts by employing

the AFNS structure. Inheriting all of their advantages, our model is designed to be able to

jointly fit yields and survey forecasts, and grant each factor clear economic meaning. In

addition, we unify the estimation of Nominal, Real and Inflation TP, as well as IRP and IE,

under the same framework by clearly stating the relation between Inflation TP and IRP.
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The second strand of literature this paper speaks to are macro-finance studies, in par-

ticular, estimating interest rate term structure by using macro factors. Ang and Piazzesi

(2003) demonstrate the necessity of adding inflation and economic activity information in

term structure estimation. Pioneered by this study, a number of papers model yield curves

by local macro variables, such as Mönch (2008), Joslin et al. (2013) and Joslin et al. (2014).

Our paper supplements this area by illustrating that in addition to local factors, international

factors are also significantly priced in treasury yields. In particular, we find oil price, which

is driven by global supply and demand shocks, performs as a predominant driver for IE,

IRP, and Inflation TP. In addition, foreign monetary policies and capital flows are priced in

Real TP. These evidences shed light on the necessity of including global macro information

in modeling local yield curve dynamics.

Finally, the paper fits within the rapidly growing literature about the supply and demand

effects on the government bond market. Several studies document that bond yields and

future returns are positively related to the supply factor proxied by the maturity-weighted-

debt-to-GDP ratio (Greenwood and Vayanos, 2014), and negatively associated with the

demand factor resulting from investors’ preferences for specific maturities (Vayanos and

Vila, 2009; Kaminska et al., 2011), central banks’ QE or foreign investor flows. Several

theoretical (Eggertsson and Woodford, 2003) and empirical studies (Krishnamurthy and

Vissing-Jorgensen, 2011) illustrate the positive effect of QE on asset prices and describe

the corresponding channels. The recent study by Koijen et al. (2016) estimates the negative

impact of the ECB’s ongoing asset purchase program on bond yields. Using no-arbitrage

model or regression based methods, a number of other papers (Bernanke et al., 2004; Rude-

busch et al., 2006; Warnock and Warnock, 2009; Beltran et al., 2013; Sierra, 2014; Kohn,

2016; Yan, 2016) demonstrate the importance of the foreign reserve holdings in deter-

mining the US yield curves. Our study provides additional evidences through a novel

exogenous natural experiment, BoJ’s Negative Interest Rate Policies, which squeezed out

Japanese investors from Japanese government bond market to US treasury market. Results
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show that this inflow pushed down treasury yields and resulted in unconventional negative

term premium in 2016.

The remainder of the paper is organized as follows. Section 4.2 introduces our joint

model for pricing nominal, real, and TIPS yields, as well as how we decompose treasury

term premium. Section 4.3 describes the data, estimation methodology, fitting performance

and robustness checks. Section 4.4 digs into the information contents and economic drivers

of treasury term premium by conducting three layers of decompositions. Section 4.5 further

compares two extended models with the benchmark model and demonstrates that foreign

demand indeed plays a vital role. Section 4.6 concludes.

4.2 The Model

In this section, we introduce the no-arbitrage affine term structure model that we em-

ploy to specify the joint dynamics of nominal yields, real yields, TIPS yields and infla-

tion. Our model inherits the advantages from both Arbitrage-Free Nelson Siegel (AFNS)

model (Christensen et al., 2011) and liquidity-adjusted TIPS pricing model (D’Amico et al.,

2018). We then show how to use the model to decompose treasuries’ Nominal Term Pre-

mium into Real TP and Inflation TP.

4.2.1 Economic Factors and Nominal Pricing

This subsection introduces the model we use to price the nominal bonds. Nominal

yields are driven by three Nelson-Siegel factors - level, slope, and curvature - denoted by

Xt = [Lt, St, Ct]
′. The AFNS structure grants each factor clear economic meaning. The

level factor captures duration risk of yield curve level shifts. The slope factor indicates

the steepness of the yield curve. We interpret it as the steepener risk factor, as it charac-

terizes the exposure to slope shifts. The curvature factor determines the hump shape of

yield curves. As Large-Scale Asset Purchase (LSAP) or Quantitiative Easing (QE) mainly
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focuses on the maturity 2∼10 years, the curvature factor is mostly affected by monetary

shocks post-crisis. Hence we interpret the curvature factor as the monetary policy risk

factor.

Christensen et al. (2011) show that the AFNS structure implies that the nominal zero-

coupon yield with maturity τ at time t, yNt,τ , takes the analytical Nelson Siegel form,

yNt,τ = 1 · Lt +
1− e−λτ

λτ
St +

(
1− e−λτ

λτ
− e−λτ

)
Ct + aNτ , (4.2.1)

where the constant term aNτ is given by equation (4.A.7), and the the risk-neutral (Q) dy-

namics of three factors are detailed in (4.A.1) and (4.A.2) in Appendix 4.A.

Under the physical (P) measure, we assume the three state variables have the following

dynamics,

dXt = κ(µ−Xt)dt+ ΣdWt, (4.2.2)

where 3× 3 matrices κ is diagonal, specified in equation (3.3.4) of Appendix 4.A.

The nominal pricing kernel takes the form,

dMN
t /M

N
t = −rN(Xt)dt− λN(Xt)

′dWt, (4.2.3)

where the vector of nominal prices of risk, λN , is further assumed to be essentially affine

form, λN(Xt) = λN0 + ΛNXt, as suggested in Duffee (2002). Given the drift terms under P

and Q measure, λN is uniquely determined. All technical details about the implied λN0 and

ΛN are deferred to Appendix 4.A in equation (4.A.9).
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4.2.2 Inflation and Real Yields

In this subsection, we present how we model the inflation dynamics so as to price real

bonds. Price level is assumed to follow the log-normal process,

dQt/Qt = rI(Xt)dt+ σ′qdWt + σ⊥q dW
⊥
t , (4.2.4)

where the instantaneous inflation rate is linearly driven by the three risk factors, rI(Xt) =

ρI0 + ρI1
′
Xt. The inflation innovation loads on not only shocks that drive risk factors dWt,

but also an orthogonal shock that is unspanned by yield curve dynamics dW⊥
t .

At time t, a real bond paying 1 unit of the consumption basket at time T can be deemed

as a nominal asset paying the price level, QT , upon maturity. Therefore, no-arbitrage con-

dition requires the following linkage between the real and nominal pricing kernels,

MR
t = MN

t Qt. (4.2.5)

By Ito’s lemma, the real pricing kernel is drived as

dMR
t /M

R
t = −rR(Xt)dt− λR(Xt)

′dWt − (·)dW⊥
t , (4.2.6)

where rR(Xt) = ρR0 + ρR1
′
Xt is the instantaneous real risk-free rate and λR(Xt) = λR0 +

ΛRXt is the vector of real prices of risk. The formulas of coefficients are provided in

equations (4.B.4) to (4.B.7) deferred to Appendix 4.B.

As derived in Appendix 4.B, the zero-coupon real yield yNt,τ is given by

yRt,τ = ρR,11 Lt +ρR,21

1− e−λτ

λτ
St +

(
(ρR,21 + ρR,31 )

1− e−λτ

λτ
− ρR,21 e−λτ

)
Ct +aRτ , (4.2.7)

where the constant term aRτ is given by equation (4.B.16).
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4.2.3 TIPS Liquidity Effects

In this subsection, we introduce how our model takes TIPS liquidity effects into account

so as to price TIPS accurately. Existing research (Gürkaynak et al., 2010; Abrahams et al.,

2013; D’Amico et al., 2018; Grishchenko and Huang, 2013) presents sufficient evidences

on the existences of a TIPS liquidity factor, which pushes the TIPS yield to deviate from

the underlying real yield. The liquidity premium that investors demand for holding TIPS is

mainly captured by the spread between the TIPS yield and the real yield as

Lt,τ = yTIPSt,τ − yRt,τ . (4.2.8)

Following D’Amico et al. (2018), we assume that the instantaneous rate investors re-

quire to price TIPS is the sum of the instantaneous real short rate and a positive spread, ls.

As a result, the liquidity risk premium can be written as,

Lt,τ = −1

τ
logEQ

t

(
exp

(
−
∫ t+τ

t

(rRs + ls)ds

))
− yRt,τ . (4.2.9)

The instantaneous spread ls is assumed to load on not only three risk factors Xt, but also

a TIPS-specific factor, X̃t, i.e., lt = β′Xt + β̃X̃t, where β̃ is a constant and β is a 3 × 1

constant vector. The TIPS-specific factor, X̃t, is assumed to be orthogonal toXt and follow

an independent Vasicek (1977) process,

dx̃t = κ̃(µ̃− X̃t)dt+ σ̃dBt, (4.2.10)

with dBtdWt = 03×1. By construction, β̃X̃t captures the TIPS-idiosyncratic component

that is contemporaneous orthogonal to the systematic state variables in the economy. In the

end, X̃t is assumed to bear a market price of risk as λ̃t = λ̃0 + λ̃1X̃t.



- 200 -

As is detailed in Appendix 4.D, the liquidity risk premium Lt,τ has the form

Lt,τ =
[
ãτ + (ahτ − aRτ )

]
+

[
(ahτ − aRτ )′ b̃τ

] Xt

X̃t

 . (4.2.11)

Therefore, the TIPS yields can be computed by yTIPSt,τ = yRt,τ + Lt,τ . We ignore the index-

ation lag of TIPS since D’Amico et al. (2018) demonstrate its effect is negligible. In fact,

we find the indexation lag indeed makes almost no difference to our estimation results.

4.2.4 Theoretical Decomposition of Term Premium

Based on the above model, we now present how to decompose Nominal Term Premium

(NTP) into Real Term Premium (RTP) and Inflation Term Premium (ITP). The Nominal TP

is the compensation that investors require for bearing the risk that future path of the short-

term nominal yield deviates from what they expect. At time t, τ -period NTP is measured

by the spread between τ -period nominal yield, yNt,τ , and the expected average future short

nominal rate, 1
τ
Et

(∫ t+τ
t

rNs ds
)
, i.e.,

NTPt,τ = yNt,τ −
1

τ
Et

(∫ t+τ

t

rNs ds

)
. (4.2.12)

Similarly, Real TP is the excess yield that investors require to hold a long-term real bond

instead of rolling over the investments on short-term real bonds sequentially. Accordingly,

Real TP is defined as,

RTPt,τ = yRt,τ −
1

τ
Et

(∫ t+τ

t

rRs ds

)
. (4.2.13)

We define Inflation TP as the part of Nominal TP that can not be explained by Real TP,

i.e.,

ITPt,τ = NTPt,τ −RTPt,τ . (4.2.14)
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We now establish its relationship with the well-known concepts of Inflation Risk Pre-

mium (IRP) and Inflation Expectation (IE). The difference between the τ -period nominal

yield and real yield is the so called Inflation Compensation, or Break-even Inflation (BEI),

over next τ -period. The BEI can then be decomposed into IE and IRP over the same hori-

zon, i.e.,

BEIt,τ = yNt,τ − yRt,τ =
1

τ
Et

(∫ t+τ

t

rIsds

)
+ IRPt,τ . (4.2.15)

When τ → 0, the equation (4.2.16) exhibits the relationship between instantaneous

nominal rate, real rate, BEI, IE and IRP,

BEIt,0 = rNt − rRt = rIt + IRPt,0. (4.2.16)

Accordingly, using equations (4.2.12) to (4.2.16), we can derive the Inflation TP as

ITPt,τ = IRPt,τ −
1

τ
Et

(∫ t+τ

t

IRPs,0ds

)
. (4.2.17)

Therefore, Inflation TP is equal to the spread between IRP and expected future average

instantaneous IRP, i.e., the term premium of IRP. As the term premium of IE is zero by

design, Inflation TP can also be thought of as the term premium of Inflation Compensation

or BEI.

The affine-Gaussian model provides analytical formulas to interest rate and inflation

expectations, i.e., 1
τ
Et

(∫ t+τ
t

rjsds
)

= ajτ + bjτ
′
Xt, j = N,R, I , where the factor loadings

ajτ and bjτ are detailed in Appendix 4.D. Thus we can use equations (4.2.12) and (4.2.14) to

calculate Nominal, Real, and Inflation TP.
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4.3 Data and Estimation Results

We start this section by introducing how we collect data and estimate the joint model.

Next, we present the results about parameter estimates and overall fitting performance.

Finally, to demonstrate the robustness of the estimation, we compare the filtered state vari-

ables with their observable counterparts and analyze their economic meanings by matching

them with real economic events.

4.3.1 Data

Our data sample covers the period from January 1999 to November 2016. We col-

lect nominal and TIPS zero-coupon yields with all maturities from Gürkaynak et al.(2007;

2010) (hereafter GSW) datasets which can be downloaded from the Federal Reserve Board

of Governors research data page.1. The maturities of TIPS yields include 2, 3, 4, ..., 19,

and 20 years, and those of nominal counterparts include 1, 2, 3, ..., 29, and 30 years. We

expand the cross-section of nominal yields by adding 3- and 6- month yields obtained from

the data website of Federal Reserve Bank of St. Louis. The huge cross-section of zero-

coupon yields, which consists of 32 maturities for nominal and 19 maturities for TIPS

bonds, allows us to extract full information from the yield curves. All yields are sampled

at weekly frequency2 for a total of T = 933 time-stamps.

We acquire monthly headline Consumer Price Index for all urban consumers (CPI-

U) from the economic data website of Federal Reserve Bank of St. Louis. We choose

seasonally-adjusted CPI inflation for estimation since our model does not take the season-

ality into account. Because the CPI data is not released weekly, we assume CPI does not

change during the same month and use monthly CPI as the observation for each week,

1See https://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html and
https://www.federalreserve.gov/pubs/feds/2008/200805/200805abs.html.

2To get rid of weekend effects, we sample yields on each Wednesday. If data on Wednesday is missing,
we replace it by that on Thursday or Tuesday.
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without any forward-looking bias.

To reliably estimate the Nominal and Inflation Term Premium, two key datasets re-

quired to be fed into our model are short-term interest rate and inflation expectation. For

the former, we use 3-month Tbill rate forecasts over the next 1 year and 10 years from the

Survey of Professional Forecasters (SPF) dataset issued by the Federal Reserve Bank of

Philadelphia. For the latter, we obtain 1-year inflation forecasts over the next 1, 5 and 10

years from the same dataset. The survey data is released in the middle month of each quar-

ter. We find the exact release date for each survey and use the corresponding data as the

observations for the first Wednesday following the release. Consequently, there is only one

week having the professional forecasts data during each quarter. For other weeks, we set

the forecasts as missing data. Among the five type of SPF data we select, all are available

each quarter except for 3-month Tbill rate forecasts over the next 10 years, which are only

reported every first quarter.

Another advantage of feeding the forecasts data into our model is that it helps to over-

come the “small-sample problem”, which means typical data sample used in a dynamic

term structure estimation, for example, 5 to 15 years, results in unreliable estimate of phys-

ical dynamics of interest rate due to the trouble of observing a sufficient number of “mean-

reversions”. As suggested by Kim and Orphanides (2012), the supplement of the survey

forecasts data of 3-month Tbill rates provides additional relevant information to effectively

stabilize the estimation and pin down the P parameters.

To investigate the underlying drivers behind each component of treasury term premium,

we collect a series of economic data, ranging from fundamental information to international

capital flows. We obtain weekly crude oil price by sampling the West Texas Intermediate

(WTI) index on each Wednesday from the economic data website of Federal Reserve Bank
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of St. Louis. We use JPY cross-currency basis (JYBS) to measure Japanese investors’ $-

hedging demand. The daily data of JYBS from 2012 to 2016 is collected from Bloomberg3.

In addition, we obtain monthly Japanese treasury holding data in 2016 from the home page

of Treasury International Capital (TIC) System4.

4.3.2 Estimation Strategy

As detailed in Appendix 4.E, our joint model is reorganized as a state-space model,

which can be estimated by maximum likelihood methodology using the Kalman Filter.

With 29 model parameters and 9 observation standard errors, the state-space model in-

cludes a 5-dimension state transition equation and a 57-dimension observation equation.

The large cross-section and time series of observations help to pin down parameters. We

use a sufficient set of starting values for robustness checks to ensure the parameters we

estimate arrives at the global optimum.

Survey forecasts and 2-, 3-, and 4-year TIPS yields are not available for each week

during our sample period, which results in missing data in the observation equation. In

order to handle this issue, we allow the dimension of the observation equation matches the

actual number of observations at each time (see section 3.4.7 of Harvey (1989) for details).

For identification purpose, we impose some standard non-negative constraints on κ11, κ22,

κ33, κ̃, and λ. In addition, We normalize σ̃ to be equal to 0.01.

4.3.3 Parameter Estimates and Model Fit

Table 4.1 presents the log likelihood, estimated parameters and standard errors for our

model. Most of parameters driving the dynamics of nominal yields, inflation and TIPS

3The corresponding Ticker is JYBSC.
4See https://www.treasury.gov/resource-center/data-chart-center/tic/Pages/index.aspx.
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yields are significant at 1% level, which suggests our model is easy to be identified using

the large cross-sectional data.

To assess the fitting performance of our model, in Figure 4.7 to Figure 4.9, we plot the

actual and fitted nominal yields, TIPS yields and survey forecasts. The root mean square

of errors (RMSE) are shown in the upper right corner of each plot. The first number is

the RMSE (in bps) for the sample period excluding the last half-year, while the second

number is the RMSE (in bps) for last 26 weeks, which helps us to evaluate the recent

fitting performance of our model out-of-sample. These figures show that our model exhibits

quite well overall fitting performance given a large cross section of treasury yields for

simultaneous estimation. For nominal and TIPS yields, one noticeable aspect is that as the

maturity increase, the yields are more likely fitted with less pricing errors, which complies

with the error structures we impose (see equation (4.E.4) and (4.E.5)) and the fact that

short-term yields are more difficult to obtain decent fitting performance by Nelson-Siegel

structures. We find our model fit TIPS yields with maturities larger than 5 years very well.

Most of them have RMSE less than 3bps, which indicates the necessity of including TIPS

liquidity factor into the model.

In Figure 4.9, we investigate how closely the model-implied inflation and short rate

expectation mimic survey-based counterparts. As a real-time, model-free measure, survey

forecasts data contain useful information for future dynamics and outperform the other

forecasting methods including the term structure specification (Ang et al., 2007). A visual

comparison between the model-implied expectations and survey-based counterparts show

that our model capture the majority of information in survey forecasts. They exhibit the

same overall trends over the sample period and the pricing errors are fairly small given the

large noise and dispersion in survey forecasts.
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4.3.4 Robustness Check and Factor Economic Meanings

In this subsection, we design two ways to demonstrate the robustness of our estima-

tion results. The first way is to compare whether the filtered state variables have similar

dynamics with their observable counterparts. The second way is to analyze their economic

meanings by matching them with real economic events.

Figure 4.3 shows the dynamics of model-implied duration, steepener, monetary policy,

and TIPS liquidity risk factors. In the upper left panel, the empirical level factor, 30-year

treasury yield, is plotted to be compared with model-implied duration risk factor. The

upper right panel plots both model-implied steepener risk and empirical slope factor, 3-

month minus 30-year nominal yields. The filtered factors are in line with its empirical

observables, which suggests the estimates are quite robust.

The monetary policy risk factor shown in the lower left panel is striking as its dynamics

is thoroughly affected by monetary policies of major central banks in the world. Starting

from November 2008, Fed undertook a form of “unconventional” monetary policy, LSAP,

in three waves, commonly referred as QE1 (announced in late November 2008), OE2 (an-

nounced in November 2010), and QE3 (announced in September 2012). Correspondingly,

from late 2008 to early 2013, the monetary factor dropped continuously, as the large pur-

chase of 2∼10 years treasury bonds put down pressure on middle-term yields. However, in

mid 2013, there was a sharp reversal of the monetary factor. During that period, Fed Chair-

man Ben Bernanke announced that Fed may taper the size of QE (Taper Tantrum), which

imposed upward pressure on middle-term yields. In January 2015, European Central Bank

also launched the asset purchase program. Afterwards European investors’ capital inflows

to UST drove a big drop of the curvature of yield curve in the first half of 2015. In Jan-

uary 2016, the Bank of Japan imposed the Negative Interest Rate Policies, which pushes

another sharp decline of the curvature. All these major monetary events are fully priced in

our monetary factor.
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The lower right panel plots the TIPS liquidity factor, which captures the historical vari-

ation of illiquidity of TIPS market. The high level of liquidity risk factor in the beginning

of the sample indicates the illiquidity of TIPS when they were just issued to the market. Its

downward trend afterwards till 2004 reflects TIPS liquidity kept improving during this pe-

riod. The sharp surge of the factor around 2009 suggests TIPS liquidity evaporated during

the financial crisis. While the recent upward trend of the factor reflects that illiquidity of

TIPS market has been exacerbated by banking regulations after the pass of the Dodd-frank

Act.

The analysis of monetary policy and TIPS liquidity factors indicates that they have clear

economic identification, which also illustrates the robustness of our model.

4.4 Empirical Decomposition of Treasury Term Premium

In this section, we conduct three layers of decompositions to understand the economic

drivers behind treasury term premium. In 4.1, we conduct the first layer of decomposition,

which is to break Nominal TP into Real TP and Inflation TP, by which we find Real TP

has the main contribution to negative treasury term premium. In addition, we document

the highly significant causality between oil price and Inflation TP. In 4.2, the second layer

of decomposition is conducted to show that Real TP are mainly compensating for duration

risk and monetary policy risk. In 4.3, we further delve into the underlying drivers of the

duration factor.

4.4.1 Layer 1: Which TP Is The Major Driver of Nominal TP?

In this subsection, we decompose Nominal TP into Inflation TP and Real TP to examine

which component drove most variations of Nominal TP and hence is the major contributor

of the negative treasury term premium in 2016. In addition, we demonstrate that the main

driver behind Inflation TP is oil price.
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Figure 4.4 shows the dynamics of 10-year Nominal TP, Real TP and Inflation TP, which

are indicated by blue, red, and black lines, respectively. We find that Nominal TP has

much greater co-movement with Real TP rather than Inflation TP. Compared with Real TP,

Inflation TP is a slow-moving component. During the first half of 2016, 10-year Nominal

TP dropped 60bps. We find this dramatic decline was due to a fall in the Real TP, which

dropped 50bps, while Inflation TP only moved 10bps.

Although Real TP is identified as the main contributor for variations of Nominal TP,

before we move to the second layer of decomposition, we are eager to figure out the mech-

anism behind the movement of Inflation TP, which is an important economic indicator of

uncertainty about future inflation. If Inflation TP is positive, investors demand compen-

sation for bearing future inflation risk, while if it is negative, investors pay premium for

hedging future deflation risk. Figure 4.4 shows Inflation TP remains positive or close to

zero for most of periods before the financial crisis, while negative for majority of time after

the crisis, especially after July 2011. This indicates investors’ concern about deflation risk

during recent five years. After Mr. Donald Trump was elected as the new US president

on November 8, 2016, Inflation TP experienced a salient spike, reflecting investors’ expec-

tation that Trump’s economic policies would stimulate inflation and Fed would raise fed

funds rate in the future.

Lots of studies estimate Inflation Risk Premium (IRP) and inflation expectation (IE)

with or without information in the TIPS market (i.e., Ang et al., 2008; Gürkaynak et al.,

2010; Christensen et al. (2010); Haubrich et al., 2012; D’Amico et al., 2018). However, few

of this studies document the economic drivers behind them. A recent study by Wong (2015)

confirms IE is sensitive to oil price shock by using regression methods. Perez-Segura and

Vigfusson (2016) establish the relationship between changes in TIPS Break-even Inflation

(BEI)5 and oil prices. These research enlighten us that oil price may be an potential driver

5TIPS BEI is defined as TIPS yield minus nominal yield, while BEI is defined as real yield minus nom-
inal yield. Therefore, TIPS BEI equals BEI minus TIPS liquidity risk premium. TIPS BEI is an empirical
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for IRP as well as Inflation TP.

To test oil shocks on Inflation TP before and after the financial crisis, we conduct the

following regression as shown in Table 4.2. Let 1Post be the post-crisis dummy variable

that is 0 before December 2007 and 1 afterwards. We run the following regression,

∆Yt = γ0 + γ1∆ (lnWTIt) + γ21Post + γ3∆ (lnWTIt) · 1Post + εt, (4.4.1)

where Yt is IE, IRP or Inflation TP for 5-, 10- or 30- years. Our interest is the coefficient

of the interaction term ∆ (lnWTIt) · 1Post, which identifies the effect of post-crisis shocks

of oil price change. For each regression, Newey-West standard errors with six lags are

reported. Table 4.2 shows that all regressions obtain significantly positive coefficient of

the interaction term at level 1%, which suggests a stronger effect of oil price on Inflation

TP. According to the estimated coefficients, if log oil price decrease by 1%, the implied

Inflation TP over 5-, 10-, and 30-year horizons dropped 0.07 bps, 0.11 bps and 0.24 bps,

respectively. Simply put, we find sufficient evidences that Inflation TP have been mainly

driven by oil price after financial crisis.

4.4.2 Layer 2: What Risk Is Real TP Compensating for?

The second layer of decomposition is to decipher what exact risk real TP is compen-

sating for. Figure 4.5 decomposes the real TP, plotted in purple, into the three risk factors.

First, the steenpener factor’s contribution is almost zero over time, meaning this factor is

not priced at all in Real TP. This result is not surprising as the slope is mostly about rates

expectation rather than term premium. By symmetry, it makes sense that investors price

zero premium for steepener/flattener risks. Regarding the two other factors, duration is

priced with significantly positive risk price, as investors demand premium for bearing du-

ration risk. Monetary factor on the other hand, is priced with significantly negative risk

approximation of BEI.
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price, as central banks are willing to pay to lower TP, so as to stimulate investments and

consumptions during recessions. If we zoom in to the dynamics in early 2016, we can see

that real TP dropped around 50bps from peak to trough, where 25bps was coming from the

monetary factor, and the other 25bps was contributed by duration factor.

The biggest monetary event happened in late January 2016 was Bank of Japan’s Neg-

ative Interest Rate Policies (BoJ NIRP). It was the first time in history that a central bank

pushes policy rate to negative zone. Although the initial move was only 0.1%, NIRP caught

most market participants off guard. This monetary shock quickly spread across global bond

yields, as European investors also started to worry about NIRP (although ECB was still

under ZIRP). From our term premium decomposition, we can see a salient slump of the

monetary factor on the NIRP announcement date, which is clearly unrelated to US funda-

mentals.

More interestingly, the 25bps duration move in early 2016 was at the same magnitude

as the monetary shock, which is very sizeable. So now our question refines to what drove

duration move at the time when there’re no fundamental shocks to either US growth or

inflation. This seems like a puzzle.

4.4.3 Layer 3: What Drove Duration in 2016?

The answer is revealed by the striking co-movement between duration and JPY cross-

currency basis (JYBS), as shown earlier in Figure 4.2. Cross-currency basis measures

foreign investors’ $-hedging demand, which is to hedge $-asset purchases so as to reduce

currency exposure. As treasury yield was commoving up and down along with cross-

currency basis, it means that the $-asset they purchased was presumably US Treasury.

Japan has become the largest holder of UST since late 2016, according to TIC monthly

foreign holding releases. The two major players are Japanese banks and life insurers, who

usually get rid of currency exposure by trading JYBS. So when Japanese treasury purchase
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increases, hedging demand cranks up JYBS (more negative) and the treasury inflow pushes

down yields. Therefore, JYBS serves as a perfect instrument to measure Japanese $-inflows

to the treasury markets. In terms of maturities, Japanese investors usually focus on 10y

treasury. They’re not interested in 5y because the hedging cost is higher than 5y treasury

yields. They’re also not interested in 30y UST because Japanese Government Bond (JGB)

30y yields have always been positive, so it makes more sense to purchase 10y UST as 10y

JGB had negative yields in 2016. If we regress UST 10y yield daily changes on JYBS

daily changes over the past five years, the coefficient is significantly positive with Newey-

West t− stat = 2.10. Quantitatively speaking, when JYBS widens 10bps (becomes more

negative), Japanese inflows push down UST 10y yields by around 1.7bps.

∆Tsy10t = −0.0005 + 0.1703∆JY BSt + εt.

In order to make sure Japanese flows’ price impact is not through other indirect trans-

mission mechanism, Figure 4.6 plots Japanese Treasury Holdings (source from TIC) versus

10y UST yields. In order to tease out clean demand impacts other than fundamental shifts,

we use the trick of 5-10-30 fly6 to track flows on 10y, as fly hedges out level & slope

shifts by design. The massive Japanese inflows in early 2016 were due to investors’ reach-

for-yield after BoJ’s NIRP announcement. The outflows in July7 2016 were triggered by

$-liquidity squeeze due to the Money Market Reform. Figure 4.2 & 4.6 demonstrate that

foreign flows play a central role in driving treasury yields. The deep-dive of treasury term

premium to negative zone in early 2016 and its sharp reversal in summer 2016 was not

about US fundamental shocks, but largely due to foreign flows. Structural models focus-

ing on local US macro variables unfortunately won’t be able to capture the fine structure of

term premium dynamics. Therefore, the main takeaway of this paper is that the information

6The results for 10y raw yields are very similar.
7July was the last month to issue 3m CD/CP before the Oct Reform.
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contents of treasury term premium go beyond US fundamentals.

4.5 Two Extended Models vs. Benchmark

In this section, we estimate two versions of extended models - one with a local macro

factor, and one with a foreign demand measure. The former speaks to the strand of literature

tracing back to Ang and Piazzesi (2003), while the latter is to incorporate the modern

frictional view on supply-demand effects on asset prices (Greenwood and Vayanos, 2014;

Krishnamurthy and Vissing-Jorgensen, 2011).

We follow the macro-term-structure literature to augment the latent Nelson-Siegel fac-

tors with an extra observable state variable. The first extended model adds Chicago Fed

National Activity Index (CFNAI) as a US real-growth factor. CFNAI is a weighted average

of 85 monthly indicators of US national economic activities drawn from four broad cate-

gories of data: production and income; employment, unemployment and hours; personal

consumption and housing; and sales, orders and inventories. We use CFNAI to augment the

CPI growth rate already incorporated in the benchmark model, so that the model captures

observable shocks to both US real growth and inflation. In later discussions, we call this

version “the extended model with US macro”.

The second extended model adds JPY Cross-currency Basis (JYBS) as a foreign in-

stitutional demand factor. JYBS measures foreign demand 8 from both carry trades and

cross-border real investments / corporate issuances hedging demand. The importance of its

role has been clearly illustrated in Figure 4.2 and explained in subsection 4.4.3. In classi-

cal asset pricing theory, demand typically plays no role for no-arbitrage models. However,

modern literature on institutional demand (Koijen et al., 2016; Greenwood and Vayanos,

2014) emphasizes its price impacts in real world due to frictions. So this “extended model

8Note that European demand is also priced in JYBS through no-arbitrage. Otherwise one can always swap
Euro to JPY and then to USD.
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with foreign demand” aims to test the key channel.

The reduced-form extension by adding a fourth factor to the same Gaussian Affine

Term Structure framework is trivial technically. One nice thing about the extended model

with foreign demand is that it could be endogenized by backward engineering an appropri-

ate supply loading structure as in Vayanos and Vila (2009). So our reduced-form extended

model with foreign demand is equivalent to a structural frictional model with preferred-

habitat demand.

In order to judge whether the two extended models beat the benchmark Nelson-Siegel

model, we compare their out-of-sample fitting performance (2015-2017) in Figure 4.109.

As one may expect following the discussions in subsection 4.4.3, the extended model with

foreign demand dominates the other models on maturities longer than 10y, especially for

the longend where it beat the benchmark model by 65demand plays a central role in driving

treasury long-end in recent years due to monetary divergence. Interestingly, both extended

models fail to outperform the benchmark on the short-end, meaning duration, steepener and

monetary factors have already absorbed the macro information and foreign demand plays

little role on short maturities. Recall that U-hedged US Treasury (UST) actually has lower

yield (after hedging cost) than Japanese Government Bonds (JGB) for maturities shorter

than 5y since 2016, as shown in Figure 4.11.

The nominal TP decomposition of the two extended models into real and inflation TP

are very similar to Figure 4.4. However, the real TP factor attribution is quite different from

Figure 4.5. Figure 4.12 plots the estimated decomposition of real TP into factors for the

two extended models. In the left subfigure, we can see that the US macro factor cranks up

real TP during the crisis due to high real uncertainty in 08-09. Yet this macro factor has

been very stable after 2010, explaining little term premium variations since then. In the

right subfigure, on the contrary, the foreign demand factor crushed real TP both during the

9CFNAI releases monthly. To make it comparable, we re-estimate the benchmark model as well as the
two extended models using in-sample month-end data from January 1999 to January 2015.
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crisis and in recent years. This international component works through the inflow channel

via either flight-to-quality or reach-for-yield due to monetary divergence. According to our

estimates shown in the right subfigure, the recent negative term premium is presumably

linked to the foreign inflows thanks to the Zero Interest Rate Policies in Europe and Japan.

Therefore, the main insight from this extension exercise is that foreign demand has been

a key source of friction driving mid/long-end of treasury curves, while adding US-local

macro factors would have little help in explaining the negative term premium puzzle in

2016.

4.6 Conclusions

Traditional structural term structure models often focus on US local macro state vari-

ables, which implicitly assumes that treasury term premium variations are mostly driven by

US fundamentals. This paper delves into its fine structure and challenges this conventional

wisdom by demonstrating that the information contents of treasury term premium is far

richer than just US growth and inflation.

In order to show the full picture, we decompose treasury TP carefully layer by layer.

The first layer of decomposition reveals that Inflation TP only accounts for a minority of

Nominal TP variations and it’s highly correlated with global oil prices. The second layer

further decomposes Real TP into intuitive term structure factor risks: duration is priced

with positive risk price, monetary factor has negative risk price, and yet steepener risk is

barely priced. Finally, in the third layer, we further decipher the driver of the biggest risk

factor (duration) and use cross-currency basis as a perfect instrument to measure foreign

demand.

As a direct empirical application, our model resolves the negative term premium puz-

zle on why TP dropped an astonishing 60bps in early 2016 while Fed was actually in

a tightening cycle. We demonstrate that Bank of Japan’s NIRP and Japanese investors’
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reach-for-yield were the true drivers which crushed 10y treasury term premium by around

50bps.

Simply put, treasury term premium is priced with rich information about monetary

divergence, foreign demand as well as global oil price, which may not be embedded in US

fundamental macro variables. This poses challenges to conventional structural macro term

structure models where the above information is typically ignored.
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Appendix

4.A State Variables, Nominal Pricing Kernel and Nominal Yields

The AFNS model assumes the level (duration risk), slope (steepener risk), and curvature

(monetary policy risk) factors follows a multivariate Gaussian process under Q measure,

dXt = κQ(µQ −Xt)dt+ ΣdWQ
t , (4.A.1)

where WQ
t is an 3× 1 vector of standard Brownian motion. 3× 1 constant vector, µQ, κQ,

and Σ are specified as,

κQ =


0 0 0

0 λ −λ

0 0 λ

 , µQ =


0

0

0

 ,Σ =


σ11 0 0

σ12 σ22 0

σ13 σ23 σ33

 . (4.A.2)

The AFNS model assumes the instantaneous nominal risk-free rate, rN(Xt), is the sum

of the duration and steepener factors. Hence rN(Xt) = ρN0 + ρN1 Xt, where ρN0 = 0

and ρN1 = [1, 1, 0, 0]′. Christensen et al. (2011) show that this structure implies that

nominal zero-coupon yields with maturity τ at time t, yNt,τ , take the analytical Nelson-

Siegel form. In particular, the zero-coupon nominal bond prices are given by PN
t,τ =

EQ
t

(
exp

(
−
∫ t+τ
t

rNs ds
))

= exp
(
ANτ +BN

τ
′
Xt

)
, where BN

τ = [BN,1
τ , BN,2

τ , BN,3
τ ]′ is

the vector of loadings on state variables and takes the form,
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BN,1
τ = −τ, (4.A.3)

BN,2
τ = −1− e−λτ

λ
, (4.A.4)

BN,3
τ = τe−λτ − 1− e−λτ

λ
, (4.A.5)

and the constant term

ANτ =
1

2

∫ τ

0

BN
s

′
ΣΣ′BN

s ds. (4.A.6)

Therefore, nominal yields take the Nelson Siegel form, yNt,τ = − 1
τ
log
(
PN
t,τ

)
= aNτ +

Lt + 1−e−λτ
λτ

St +
(

1−e−λτ
λτ
− e−λτ

)
Ct, where the constant term10,

aNτ = − 1

2τ

∫ τ

0

BN
s

′
ΣΣ′BN

s ds. (4.A.7)

In the P dynamics of nominal state variables shown in equation (4.2.2), 3× 3 constant

matrices κ and 3× 1 constant vector µ are specified as

κ =


κ11 0 0

0 κ22 0

0 0 κ33

 , µ =


µ1

µ2

µ3

 . (4.A.8)

Here we assume the diagonal structure for κ for the purpose of parsimony.

Given the essentially affine form of nominal market price of risk, λN(Xt) = λN0 +

ΛNXt, and the relation between drift terms of Q and P dynamics, κQ(µQ−Xt)+ΣλN(Xt) =

κP (µP −Xt), the implied λN0 and ΛN are derived as,

λN0 = Σ−1(κPµP − κQµQ), ΛN = Σ−1(κQ − κP ). (4.A.9)

10For analytical form, see Appendix 4.B of Christensen et al. (2011).
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4.B Real Pricing Kernel and Real Yields

Using equations (4.2.3), (4.2.4), and applying Ito’s lemma to equation (4.2.5), we derive

the real pricing kernel as,

dMR
t /M

R
t = dMN

t /M
N
t + dQt/Qt + (dMN

t /M
N
t ) · (dQt/Qt)

= −rR(Xt)dt− λR(Xt)
′dWt − (·)dW⊥

t , (4.B.1)

where the real short rate takes the form

rR(Xt) = ρR0 + ρR1
′
Xt, (4.B.2)

the real prices of risk takes the form

λR(Xt) = λR0 + ΛRXt, (4.B.3)

and the coefficients are determined by their nominal counterparts by

ρR0 = ρN0 − ρI0 + λN0
′
σq, (4.B.4)

ρR1 = ρN1 − ρI1 + ΛN ′σq, (4.B.5)

λR0 = λN0 − σq, (4.B.6)

ΛR = ΛN . (4.B.7)

Following Duffie and Kan (1996) and Dai and Singleton (2000), the closed-form solu-

tion for the τ−maturity zero-coupon real bond at time t is PR
t,τ = EQ

t

(
exp

(
−
∫ t+τ
t

rRs ds
))
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= exp(ARτ +BR
τ
′
Xt), where

dARτ
dτ

= −ρR0 +BR
τ

′
(κµ− ΣλR0 ) +

1

2
BR
τ

′
ΣΣ′BR

τ , (4.B.8)

dBR
τ

dτ
= −ρR1 − (κ+ ΣΛR)′BR

τ , (4.B.9)

with initial conditions AR0 = 0 and BR
0 = 03×1.

Based on equation (4.B.7), we have κ + ΣΛR = κ + ΣΛN = κQ, so the ODE system

(4.B.9) can be written as


dBR,1τ

dτ

dBR,2τ

dτ

dBR,2τ

dτ

 =


ρR,11

ρR,21

ρR,21

−


0 0 0

0 λ 0

0 −λ λ




BR,1
τ

BR,2
τ

BR,2
τ

 . (4.B.10)

One can easily check that the unique solution that satisfy this ODE system and its initial

conditions is,

BR,1
τ = −ρR,11 τ, (4.B.11)

BR,2
τ = −ρR,21

1− e−λτ

λ
, (4.B.12)

BR,3
τ = ρR,21 τe−λτ − (ρR,21 + ρR,31 )

1− e−λτ

λ
, (4.B.13)

and the constant term,

ARτ = −ρR0 τ +

∫ τ

0

BR
s

′
(κµ− ΣλR0 )ds+

1

2

∫ τ

0

BR
s

′
ΣΣ′BR

s ds. (4.B.14)
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Finally, real yields therefore take the affine form,

yR{t,τ} = −1

τ
log
(
PR
t,τ

)
= aRτ + ρR,11 Lt + ρR,21

1− e−λτ

λτ
St +

(
(ρR,21 + ρR,31 )

1− e−λτ

λτ
− ρR,21 e−λτ

)
Ct,

(4.B.15)

where

aRτ = ρR0 −
1

τ

∫ τ

0

BR
s

′
(κµ− ΣλR0 )ds− 1

2τ

∫ τ

0

BR
s

′
ΣΣ′BR

s ds. (4.B.16)

The analytical formula for aRτ can be derived in a similar way to Appendix 4.B of Chris-

tensen et al. (2011).

4.C TIPS Liquidity Risk Premium

The TIPS yield is given by

yTIPSt,τ = −1

τ
logEQ

t

(
exp

(
−
∫ t+τ

t

(rRs + ls)ds

))
= −1

τ
logEQ

t

(
exp

(
−
∫ t+τ

t

β̃X̃sds

))
− 1

τ
logEQ

t

(
exp

(
−
∫ t+τ

t

(ρR0 + (ρR1 + β)′XS)ds

))
. (4.C.1)

Based on the property of one-factor Vasicek model, the first component is derived to be

− 1

τ
logEQ

t

(
exp

(
−
∫ t+τ

t

β̃X̃sds

))
= ãτ + b̃τX̃t, (4.C.2)
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in which

ãτ =

(
µ̃∗β̃ − β̃2σ̃2

2κ̃∗2

)(
1− b̃τ

β̃

)
+
σ̃2τ

4κ̃∗
b̃τ , (4.C.3)

b̃τ = β̃
1− exp(-κ̃∗τ )

κ̃∗τ
. (4.C.4)

Here, the risk-neutral µ̃∗and κ̃∗ are given by

µ̃∗ = (κ̃µ̃− σ̃λ̃0)/κ̃∗, κ̃∗ = κ̃+ σ̃λ̃1. (4.C.5)

The second component takes the form

− 1

τ
logEQ

t

(
exp

(
−
∫ t+τ

t

(ρR0 + (ρR1 + β)′)ds

))
= ahτ + bhτ

′
Xt, (4.C.6)

where ahτ and bhτ can be derived through replacing ρR1 to ρR1 + β in equations (4.B.11) to

(4.B.15).

Taken all together, we have

Lt,τ = yTIPSt,τ − yRt,τ

= (ãτ + ahτ ) +

[
bhτ
′
b̃τ

] Xt

X̃t

− aRτ − bRτ ′Xt

=
[
ãτ + (ahτ − aRτ )

]
+

[
(bhτ − bRτ )′ b̃τ

] Xt

X̃t

 . (4.C.7)

4.D Interest Rate and Inflation Expectation

As instantaneous nominal, real, and inflation rates all linearly load on state variables,

given the explicit conditional expectation of future state variables in Vasicek model,

Et (Xt+τ | Xt) = µ+ e−κτ (Xt − µ),
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the closed-form formulas of the expected future rates can be derived as,

1

τ
Et

(∫ t+τ

t

rjsds

)
= ajτ + bjτ

′
Xt, j = N,R, I, (4.D.1)

where the factor loadings ajτ and bjτ are given by

ajτ = ρj0 +
1

τ
ρj1
′
∫ τ

0

(
I − e−κs

)
µds, (4.D.2)

bjτ =
1

τ

∫ τ

0

e−κ
′sρj1ds. (4.D.3)

4.E The Linear State-Space Form and the Kalman Filter

Let qt = logQt. By applying Ito’s lemma to the equation (4.2.4), the log price level is

given by

dqt =

(
rI(Xt)−

1

2

(
σq
′σq + σ⊥q

2
))

dt+ σ′qdWt + σ⊥q dW
⊥
t . (4.E.1)

Denoted by xt = [q,Xt, X̃t]
′ , the state vector in the state-space model includes the log

price level, three systematic state variables and one TIPS-specific factor. Expressed as the

Euler discretization of equations (4.A.1), (4.E.1), and (4.2.10), the state equation takes the

form

xt = Ah +Bhxt−h + εt, (4.E.2)

where

Ah =


(
ρI0 − 1

2

(
σq
′σq + σ⊥q

2
))

h

κµh

κ̃µh

 , Bh =


1 ρI0

′
h 0

03×1 (I3×3 − κh) 01×3

0 01×3 1− κ̃h

 ,
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and εt =


σq
′ σ⊥q 0

Σ 0 03×1

01×3 0 σ̃

hεt, εt ∼ N(0, I5×5).

As we sample data at weekly frequency, h is set to be 1/52. We denote the series of

nominal yields as Y N
t = {yNt,τi}

32
i=1, the series of TIPS yields as Y TIPS

t = {yTIPSt,τi
}19
i=1,

the series of inflation forecasts as IEt = {IEt,τi}3
i=1, and the series of 3-month Tbill

rate forecasts as TEt = {TEt,τi}2
i=1. Then the observable vector is written as yt =

[qt, Y
N
t , Y

TIPS
t , IEt, TEt]

′. Assuming all observable variables are observed with Gaussian

error, we write the observation equation as,

yt = C +Dxt + ηt, (4.E.3)

where

C =



0

aN

aTIPS

aIE

aTE


, D =



1 01×3 0

032×1 bN
′

032×1

019×1 bTIPS
′

03×1 bIE
′

03×1

02×1 bTE
′

02×1


, and ηt =



0

ηNt

ηTIPSt

ηIEt

ηTEt


.

Ignoring the measurement errors, the model has 29 unknown parameters. In the 57-

dimension observation equation, 56 observable variables are observed with error. If we

assume an i.i.d structure for the all measurement errors, the number of parameters would

increase to 85, which magnifies the difficulty of parameter estimation. In order to overcome
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this issue, we use the cross-sectional measurement error structures for Y N
t and Y TIPS

t as

ηNt,τi ∼ N
(

0, δNτi
2
)
, with δNτi = exp(log(0.0015− α1 − γ1τi)), (4.E.4)

ηTIPSt,τi
∼ N

(
0, δTIPSτi

2
)
, with δTIPSτi

= exp(log(0.0015− α2 − γ2τi)), (4.E.5)

where αi and βi (i = 1, 2) are positive. These structures conform to the fact that compared

with long-term counterparts, short-term yields are more difficult to obtain decent fitting

performance by Gaussian affine model. In addition, the standard deviations of all errors are

bounded by 15bps.

For survey forecasts, the measurement errors, ηIEt,τi ∼N
(

0, δIEτi
2
)

and ηTEt,τi ∼N
(

0, δTEτi
2
)

are assumed to follow an i.i.d structure. When maximizing log likelihood, we set up the

upper bounds of δIEτ and δTEτ as 15bps and 25bps, respectively. In total, the state-space

model includes 38 parameters, among which 9 parameters specify the measurement errors.
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Table 4.1: Parameter Estimates

This table presents all parameters and standard errors (in parenthese) for the model we use
to specify the dynamics of nominal yields, inflation and TIPS yields. Standard errors are
computed by numerically calculating fishier information matrix.

Panel A
State Variable Q Parameters State Vriable P parameters Price Level Parameters
λ 0.2874 (0.0105) κ11 0.0952 (0.0330) ρI0 0.0174 (0.0014)
σ1,1 0.0109 (0.0004) κ22 0.2830 (0.1099) ρI1,1 0.1430 (0.0190)
σ1,1 0.0089 (0.0029) κ33 0.6358 (0.1106) ρI1,2 0.1128 (0.0335)
σ1,2 0.0258 (0.0042) µ1 0.1076 (0.0137) ρI1,3 -0.0247 (0.0519)
σ2,2 -0.0042 (0.0023) µ2 -0.0433 (0.0068) σq,1 0.0285 (0.0041)
σ2,3 -0.0310 (0.0017) µ3 -0.0121 (0.0027) σq,2 0.0215 (0.0021)
σ3,3 -0.0225 (0.0030) σq,3 -0.0192 (0.0030)

σ⊥q 0.0157 (0.0134)
Panel B

TIPS Liquidity Premium Measurement Error Parameters Log likelihood
β1 0.0068 (0.0219) α1 0.0000 (Inf) 258,908.5025
β2 -0.1895 (0.0424) γ1 0.0136 (0.0083)
β3 0.4596 (0.0552) α2 0.0000 (Inf)
β̃ 0.2272 (0.0256) γ2 0.1391 (0.0196)
κ̃ 1.2556 (0.0127) δIE1y 0.0015 (0.0032)
µ̃ 0.0282 (0.0003) δIE5y 0.0014 (0.0046)
λ̃0 3.7349 (0.0386) δIE10y 0.0010 (0.0024)
σ̃λ̃1 -1.3102 (0.0204) δTE1y 0.0025 (0.0060)

δTE10y 0.0025 (0.0115)
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Table 4.2: Oil Shocks on IE, IRP and ITP

This table presents all parameters and standard errors for the regression of weekly change of
IE/IRP/ITP on the contemporaneous weekly log WTI return ∆ (lnWTIt), dummy variable
for post-crisis (Post), and the interaction of these two variables. 1Post is a dummy variable
that is 1 if the date is later than November 1, 2007, and 0 otherwise. The standard error
computed using Newey-West standard errors with six lags are provided in parentheses.

Panel A: 5-year Horizon
∆IE ∆IRP ∆ITP

∆ (lnWTIt) 0.0001 (0.0002) -0.0004 (0.0001) -0.0004 (0.0001)
1Post -0.0078 (0.0011) -0.0131 (0.0011) -0.0052 (0.0004)

∆ (lnWTIt) · 1Post 0.0012 (0.0003) 0.0029 (0.0003) 0.0011 (0.0001)
Intercept 0.0237 (0.0008) 0.0019 (0.0005) 0.0018 (0.0002)

Panel B: 10-year Horizon
∆IE ∆IRP ∆ITP

∆ (lnWTIt) -0.0001 (0.0001) -0.0010 (0.0002) -0.0008 (0.0001)
1Post -0.0075 (0.0008) -0.0150 (0.0011) -0.0089 (0.0008)

∆ (lnWTIt) · 1Post 0.0013 (0.0002) 0.0033 (0.0003) 0.0020 (0.0002)
Intercept 0.0253 (0.0005) 0.0045 (0.0006) 0.0035 (0.0004)

Panel C: 30-year Horizon
∆IE ∆IRP ∆ITP

∆ (lnWTIt) -0.0002 (0.0001) -0.0015 (0.0002) -0.0014 (0.0002)
1Post -0.0044 (0.0004) -0.0202 (0.0015) -0.0172 (0.0013)

∆ (lnWTIt) · 1Post 0.0009 (0.0001) 0.0044 (0.0004) 0.0038 (0.0003)
Intercept 0.0271 (0.0002) 0.0024 (0.0008) 0.0006 (0.0007)
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Figure 4.1: Term Premium Drop in 2016 while in Absence of US Fundamental Shocks

Figure 4.2: Japanese Flow was the Major Driver of Term Premium in 2016



- 228 -

Figure 4.3: Factor Economic Meanings

Figure 4.4: 10-Year Term Premium Decomposition



- 229 -

Figure 4.5: Real Term Premium Decomposition

Figure 4.6: Japanese Treasury Holding Co-Moves with 10-Year UST Yields
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Figure 4.7: Fitted Nominal Yields: 3 Month to 14 Years

This figure shows the actual (in blue) and fitted (in red) nominal yields with maturities from
3 month to 14 years. The RMSE of the fitted yields are shown in the upper right corner of
each plot. The first number is the RMSE (in bps) for the sample period excluding last half
a year, while the second number is the RMSE (in bps) for last 26 weeks.
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Figure 4.8: Fitted Nominal Yields: 15 to 30 Years

This figure shows the actual (in blue) and fitted (in red) nominal yields with maturities from
15 to 30 years. The RMSE of the fitted yields are shown in the upper right corner of each
plot. The first number is the RMSE (in bps) for the sample period excluding last half a
year, while the second number is the RMSE (in bps) for last 26 weeks.
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Figure 4.9: Fitted Survey Forecasts: Inflation and 3-Month Tbill Rate

This figure shows the actual (in blue) and fitted (in red) survey forecasts of average future
inflation and 3-month Tbill Rate. The RMSE of the fitted yields are shown in the upper
right corner of each plot. The first number is the RMSE (in bps) for the sample period
excluding last half a year, while the second number is the RMSE (in bps) for last 26 weeks.
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Figure 4.10: 2015-2017 Out-of-Sample Fitting RMSE across the Curve (bps)

Figure 4.11: Spread between ¥-Hedged-UST and JGB (JYBS Maturity-Matched)
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Figure 4.12: Real Term Premium Attribution Comparison
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