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ABSTRACT OF THE DISSERTATION

Novel Clustering and Classification Algorithms for Big

Data

By Debopriya Ghosh

Dissertation Directors:

Professors

Michael Katehakis and Javier Cabrera

This dissertation studies two important problems that arise in the analysis of Big Data:

high dimensionality and massive size of pertinent samples.

Unlike traditional datasets where the sample size is moderately large and typically

higher than the number of features, Big Datasets are characterized by both massive

sample size and high dimensionality. These characteristics render the traditional statis-

tical procedures inappropriate for analyzing Big Data. The massive sample size, which

can be in the order of millions or even billions, e.g., in genomics, neuroscience, mar-

keting, and social media, gives rise to intensive computation and reduced scalability.

High dimensionality creates spurious correlation and noise accumulation. It also result

in incidental endogeneity, a phenomenon in which many unrelated covariates are cor-

related with residual noises solely by chance. This causes statistical biases and model

inconsistencies. In order to address these challenges, we develop three novel algorithms

for clustering and classification of Big Data.

In Chapter 2, we present a novel two-way clustering approach by combining model-

based and weighted K-means clustering methods. The two-way approach results in
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small subgroups of binary features that are of size p or less, so that the possible number

of patterns (2p) is small enough to be efficiently handled by clustering algorithms. This

approach can also handle weighted reduced data.

Chapter 3 presents two techniques. First, it derives a weighted probabilistic distance-

based clustering technique adjusted for cluster sizes. Second, it derives a probabilistic

approximation of capacitated clustering problem, where the cluster sizes are specified

as constraints. Both these methods are also capable of handling data that has been

assigned weights.

Finally, in Chapter 4 we introduce an ensemble method called Enriched Random

Forest for high dimensional data (where n << p, n is the number of observations and

p are the features). This algorithm can address situations where the dimension is very

high but only a very small fraction of these features is truly informative. We evaluated

our proposed algorithms both empirically and asymptotically using real and simulated

datasets.
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Chapter 1

Introduction

Big Data has created enormous opportunities for the modern society and businesses.

The ability to process large amounts and variety of data, has pushed the boundaries

of traditional computational methods. For example, in genomics, there have been

more than 5,00,000 microarrays that are made available for researchers. Each of these

arrays contain tens and thousands of molecular expressions. In biomedical engineering,

there have been large terabytes of functional magnetic resonance image (fMRI) data

with each image containing more than 50,000 voxels. Other examples of Big Data

include unstructured text corpus, social media, fiancial time series, e-commerce, retail

transactions, and surveillance data.

Big Data does not come without its share of challenges - “Extracting data is not

same as extracting information”. Massive sample size and high dimensionality intro-

duce unique challenges, including scalability, noise accumulation, spurious correlation,

incidental endogeneity and measurement errors. The performance of traditional statis-

tical methods are largely hindered by these unique challenges and underscore the need

for methods that are faster and efficient.

This dissertation studies two important problems that arise in the analysis of Big

Data. First, the large sample size and second, the high dimensionality. The dissertation

is divided into three parts.

PART I: Background and Motivation

This chapter provides a general description of the dissertation. It briefly describes the

theme of each chapters and the major contributions.

PART II: Clustering Big Data
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This part develops models and algorithms for clustering datasets containing large num-

ber of observations and features. Chapters 2 and 3 present two different approaches for

clustering observations with weights. Assigning weights helps reduce the size of dataset,

thus addressing the scalability issue that arises when dealing with large datasets.

Particularly, chapter 2 describes a two-way clustering approach that combines model-

based and weighted K-means clustering methods. The underlying concept of two way

clustering approach include sampling and data reduction. It also adopts a divide and

conquer strategy by creating small subgroups of the binary features that are of size p

or less, so that the possible number of patterns (2p) is small enough to be efficiently

handled by the traditional clustering approaches. The method has been applied on a

study that assessed the impact of comorbidity on patient health outcomes.

In Chapter 3, we present two clustering techniques that are suitable for large

datasets. First, it derives a weighted probabilistic distance-based technique adjusted

for cluster weights. Second, it derives a probabilistic approximation of capacitated clus-

tering problem, where the cluster sizes are specified as constraints. Both these methods

are capable of handling weighted reduced data.

PART III: Classification on High-Dimensional Data

Here, we introduce a novel ensemble method that works well on high-dimensional data.

In chapter 4, we develop an algorithm called enriched random forest that addresses

the limitations of traditional random forests in setting where number of features is

significantly large compared to the number of observations, and the percentage of truly

informative features is very small.

1.1 Paradigm Shifts

Big Data ushers a new era of empiricism, wherein the volume of data and advanced

data analytics have caused paradigm shifts across multiple disciplines. Such shift has

led to significant progress in development of algorithms that are scalable to massive

high-dimensional data.
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1.2 Clustering Big Data

Clustering algorithms have emerged as powerful meta-learning tool for accurately an-

alyzing massive volume of data generated by modern applications. The main goal of

clustering algorithms is to categorize data into clusters such that objects grouped in

the same cluster are in some sense similar. There is a vast body of literature that focus

on clustering and there has been attempts to analyze and categorize these methods for

large number of applications. But when it comes to Big Data, new challenges are raised

and there is lack of clear consensus amongst practitioners as to which algorithm would

be the most appropriate for a given Big Dataset.

A comprehensive study of clustering algorithms pointed out that no clustering al-

gorithm performs well for all the evaluation criteria. Expectation Maximization (EM)

and fuzzy clustering algorithms performs well on moderate size data with respect to

cluster quality but fail for high-dimensional data. These algorithms suffer from high

computational time requirements. Another problem that often arises is cluster insta-

bility.

Two well known approaches for clustering Big Data include single-machine cluster-

ing and multiple-machine clustering. Single-machine algorithms are based on sampling

and dimension reduction techniques. Sampling attempts to improve speed and scala-

bility by performing clustering on a sample of the datasets and then generalizing to

whole dataset. Dimension reduction techniques project the original dataset to a lower

dimensional space and perform clustering on the projected space.

Multiple-machine clustering techniques have attracted more attention owing to

higher scalability and faster response time. Parallel clustering and MapReduce based

clustering use distributed computing and offer impressive scalability and speed com-

pared to serial counterparts. However, the complexity of implementing these algorithms

is a challenge.

In part II of this dissertation, we considered the single-machine approach and fo-

cused on reducing the large sample size by assigning weights to observations. Say, an

observation has weight two, which would imply that there are two almost identical
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observations in the original dataset. Traditional clustering algorithms when extended

to handle observation weights can improve scalability on large datasets. We also pro-

posed another technique based on divide and conquer approach to tackle the high-

dimensionality problem. We apply a two-way clustering to partition the feature space

in to smaller subspaces and then perform clustering on these subspaces.

1.3 Building Classifiers on Big Data

When applying machine learning algorithms on high-dimensional data, a critical issue

is the “curse of dimensionality”. When data becomes sparser in high-dimension, it

adversely affects the algorithms that were designed for low-dimensional space. Accu-

mulation of noise is also severe in high dimensions and may dominate the true signals.

The discriminative power of the classifiers becomes very low due to too many weak

features. In other words, variable selection becomes increasingly important.

However, in high dimensions variable selection is challenging due to spurious corre-

lation. That means many uncorrelated random variables may have high correlations in

high dimensions. Spurious correlations can give rise to false scientific discoveries and

wrong statistical inferences. Cross-validation methods help to attenuate this problem.

Another subtle issue raised by high-dimensionality is incidental endogeneity. In

regression setting, this would imply that some predictors correlate with the residual

noise. The exogenous assumption that residual noises are uncorrelated is crucial for

model consistency and its violation could result in models being statistically invalid.

Unlike spurious correlation, incidental endogeneity refers to genuine existence of

unintentional correlation among variables due to high-dimensionality. For instance,

spurious correlation could be analogous to finding two identical individuals but have

no genetic relation, where as incidental endogeneity is likened to occasionally running

into an acquaintance in a big city. More generally, endogeneity occurs as a result of

selection biases, measurement error and omitted variables.

Keeping these challenges in mind, in part III, we considered a specific problem of

the high-dimensional setting where the sample size is extremely small compared to the
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feature dimension. Ensemble techniques such as random forests works well in general

high-dimensional datasets. However, when the number of features is extremely large

compared to the number of samples and the percentage of truly informative feature is

very small, performance of traditional random forest significantly decline. Chapter 4

describes the problem in detail and presents an enhanced technique that can address

this problem. We refer to it as Enriched random Forest(ERF).
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Part II:

Clustering Big Data
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Chapter 2

Comorbidity Patterns and its Impact on Health

Outcomes: Two-way Clustering Analysis

A paper appeared in IEE Transactions on Big Data, 2016

Debopriya Ghosh, Javier Cabrera, Tarek N. Adam, Petros Levounis, Nabil R. Adam

Abstract

Comorbidity greatly increases the complexity of managing disease in patients. Approx-

imately 27% of the US population have two or more concurrent comorbid conditions.

Traditional models for assessing the impact of patient demographic and comorbidity

burden on patient health outcomes, represented comorbidity conditions by Charlson

Comorbidity Index. In this paper, we develop a novel two-way clustering approach

combining model-based and weighted K-means clustering methods for characterizing

and summarizing a patient’s comorbid conditions. Our two-way approach helps reduce

the size of the data to a manageable size, thus being practical for big data applications.

Another novel aspect of our approach is the ability to handle weighted observations.

Assigning weights to observations helps reduce the size of the dataset, thus addressing

the scalability challenge of algorithms when dealing with big data. Using the National

Inpatient Sample database for 2008-2013, we evaluate the performance of our approach

by the use of logistic regression and support vector machine models by applying them

to patients whose primary diagnosis is cardiovascular disease. In addition to evaluating

our proposed method using empirical test data, we use asymptotic statistics. Both eval-

uation methods show that the proposed approach improves the prediction of patient

health outcomes; specifically, hospital length of stay.
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2.1 Introduction

Cormorbidity is defined as the presence of one or more medical or psychiatric condi-

tions in addition to an index disease in one patient [1]. Multimorbidity, on the other

hand, refers to the co-occurrence of multiple medical or psychiatric conditions within

one patient without any reference to an index disease. More than one in four Americans

(approximately 27%) have two or more concurrent comorbid conditions, including, for

example arthritis, asthma, chronic respiratory conditions, diabetes, heart disease, hu-

man immunodeficiency virus infection, and hypertension [2]. In addition to comprising

physical and medical conditions, comorbidities also include problems such as substance

use and addiction disorders, mental illness, dementia, neurocognitive impairment disor-

ders, and developmental disorders. The prevalence of comorbidity is substantial among

older adults, even though there are many Americans with comorbid conditions under

the age of 65 years. As the number of comorbid conditions in a patient increases, the

risk of various health outcomes such as mortality, poor functional status, unnecessary

hospitalizations, adverse drug effects, duplicative tests and conflicting medical advice

increases. Resource implications for addressing multiple comorbid conditions are im-

mense. Reports ascertain that 66% of total healthcare spending is directed towards

care for the approximately 27% Americans with comorbid conditions [2].

In the U.S., close to 80% of Medicare spending is devoted to beneficiaries with 4

or more chronic conditions, with costs increasing exponentially as the number of co-

morbid conditions increases [1]. Patients with comorbidity face substantial challenges

related to the out-of-pocket costs for their care, including higher costs for prescription

drugs and total out-of-pocket healthcare. Overall, the population with comorbidity is

characterized by tremendous clinical heterogeneity and substantially varies in the num-

ber of comorbid conditions, severity of illness, and functional limitations. Developing

means for determining homogeneous sub-groups among this heterogeneous population

is viewed as an important step in the effort to improve the health status of the total

population and only recently is beginning to be addressed by researchers. Neither the

treatment of comorbidity nor the impact of comorbidity on patients’ health status over
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time have been well characterized in the literature [2]. Although many long term na-

tional surveys have been conducted worldwide in order to determine the impact and

magnitude of health problems in terms of comorbidity, as well as the role of health pro-

grams and healthcare providers, there is a fundamental lack of knowledge about how to

appropriately measure comorbidity within one patient and quantify the heterogeneity

in comorbidity patterns among patients.

As suggested in [2], research identifying the most common patterns of comorbidity

can help in targeting specific interventions for the specific subgroups and monitoring

the impact of those interventions. In the area of diabetes, for example, Piette et al. [3]

studied the impact of comorbid conditions on diabetes care. Multiple chronic conditions

that are common among patients with diabetes account for much of the morbidity they

face. Health problems that used to be treated in inpatient settings are increasingly

managed within outpatient care, thus straining the provider resources for addressing

diabetes specific management goals. They [3], presented a framework for considering

the ways in which comorbid chronic conditions can influence diabetic patients’ medical

care, self-management, and health outcomes. Such a framework may assist healthcare

systems and researchers in developing more effective models for improving diabetes care

in the context of comorbidities.

In the area of bipolar disorder, Kilbourne et al.[4] pointed out the lack of compre-

hensive population-based studies on the prevalence of general medical comorbidities

among patients with bipolar disorder. Their research, which used the Veterans Admin-

istration National Patient Care Database, focused on treatment of coexisting medical

comorbidities that may reduce the risk of adverse outcomes among patients with bipo-

lar disorder. A better understanding of the burden of general medical conditions is an

important step toward improving outcomes for patients with bipolar disorder. Their

results show that the most prevalent conditions among patients with bipolar disorder

included cardiovascular (e.g., hypertension, 35%), endocrine (e.g., hyperlipidemia, 23%;

diabetes, 17%), and alcohol use disorder (25%).

As mentioned above, a better understanding of comorbid conditions may result in

improved patient health outcomes. A widely used method for assessing a patient’s
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comorbidity is the Charlson Comorbidity Index (CCI) [5], which uses the sum of the

number of diagnosed diseases without any weighting. This method has several limita-

tions [6], including equal scoring of all diagnoses without accounting for the impact of

different diseases’ severity on patient health outcomes; ignoring potentially important

relationships among diseases that might differ from their simple sum, for example the

interaction between chronic obstructive pulmonary disease and congestive heart failure

might exceed the simple sum, whereas cardiovascular disease related to diabetes might

be over weighted in an index that counts both independently, thus resulting in incorrect

realization of the impact of the comorbidity. Furthermore, as numerical indices do not

account for multimorbidity by chance they often require clinical judgment for gathering

information on each medical condition.

Cornell et.al. [7], describes and illustrates the application of cluster analysis to iden-

tify clinically relevant multimorbidity groups. The authors elucidate that application

of cluster analysis involves a sequence of critical methodological and analytic decisions

that influence the quality and meaning of the clusters produced. In their paper they

illustrate the application of cluster analysis to identify multimorbidity clusters in a set

of 45 chronic illnesses in primary care patients (N = 1,327,328), with 2 or more chronic

conditions, served by the Veterans Health Administration. Six clinically useful mul-

timorbidity clusters were identified: a Metabolic Cluster, an Obesity Cluster, a Liver

Cluster, a Neurovascular Cluster, a Stress Cluster and a Dual Diagnosis Cluster. Ng [8]

proposed a new theoretical framework, using a two-way clustering approach to identify

clusters of most significant non-random comorbid conditions and disparities in multi-

morbidity patterns among patients. The author applied a clustering-based approach

to determine the association between multimorbidity patterns and patient health out-

comes and to calculate a multimorbidity score for each patient.

In this paper we address the problem of assessing a patient’s comorbidity. we develop

a novel two-way clustering approach combining model-based and weighted K-means

clustering methods for characterizing and summarizing a patient’s comorbid conditions

that is practical for big data applications. The model based clustering is based on cor-

relation estimates among comorbidities that take into account the occurrence by chance
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of coexisting conditions, controlling for the false discovery rate, thus avoiding spurious

correlation among comorbid conditions. Based on our proposed approach, different

patterns of comorbid conditions in patients are captured through cluster indicators.

These comorbidity cluster indicators are then used to predict patient health outcomes,

specifically, hospital length of stay. These new cluster indicators are used as predictors

in logistic regression and support vector machine models to improve the prediction of

patient health outcomes such as hospital length of stay. Another novel aspect of our

approach is the ability to handle weighted observations. Assigning weights to obser-

vations helps reduce the size of the dataset, thus addressing the scalability challenge

of algorithms when dealing with big data. Furthermore, our two-way approach helps

reduce the big size of the data to a manageable size. Specifically, our approach results

in few small subgroups of comorbid conditions that are of size k or less, so that the

possible number of patient comorbidity patterns 2k is small enough to be easily and effi-

ciently handled by our patient clustering algorithms. Considering available commodity

computing resources, a value of k that is not greater than 16 seems to be best.

The remainder of the paper is organized as follows. A discussion of the related work

is presented in section 2.2. In section 2.3, we discuss the real-world dataset and the de-

tails of the proposed approach. The experimental evaluation of the proposed approach

and discussion of the results are included in sections 2.4 and 2.5. The conclusion and

future work are presented in section 2.6.

2.2 Related Work

The co-occurrence of two or more diseases in a given patient is determined by a num-

ber of factors, including treatment-induced, environmental, or lifestyle-related factors.

Comorbidity can be viewed as disease-disease association. Studying disease-disease as-

sociation contributes towards improving our current knowledge of disease relationships

which may lead to further improvement in disease diagnosis, prognosis, and treatment.

Statistically significant correlations between the underlying structure of biological net-

works and disease comorbidity patterns can be identified through a combination of
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information on cellular interactions, disease-gene associations, and population-level dis-

ease patterns extracted from clinical databases and electronic health records. Network

theory has provided insight into the properties of biological networks, which enabled

addressing some fundamental properties of the genes involved in disease.

Several studies have considered data on shared genes, protein-protein interactions,

and co-expression patterns to identify co-occurrence of two or more diseases in a given

patient. For example, in Charlson et al. [9] the authors identified disease neighborhoods

from protein-protein interaction networks. Using protein level data, one can then iden-

tify coexisting diseases. They developed a novel Disease Module Detection algorithm to

explore the local network neighborhood around a given set of known disease proteins.

Examples of other similar studies are [10]-[18].

Hwang et al. [19] performed supervised co-clustering of phenotypes and genes si-

multaneously by integrating various sources of phenotypic and genomic data as well

as prior knowledge. Their approach enabled discovery of disease classes based on the

molecular underpinnings of the phenotypes and the molecular interactions in a network.

In [20], the authors proposed a phenomenological comorbidity network of diseases

that is based on medical claims data. The network was made up of two layers. The first

layer contains links representing the conditional probability for a comorbidity while links

that contain respective statistical significance are in the second layer. They showed that

the network undergoes dramatic structural changes across the lifetime of patients. To

understand the spreading of diseases at the population level, they introduced a simple

diffusion model and were able to show that patients mostly develop diseases that are

in close network proximity to disorders that they already suffer.

In a study that aimed at finding the groups of ICD-9 diagnosis codes from electronic

health records (EHRs) that can predict the improvement of urinary incontinence of

home health care patients and are also interpretable to domain experts, Dey et al.

[21] proposed two approaches for increasing the interpretability of the obtained groups

of ICD-9 codes. First, they incorporated prior information available from the clinical

classification system. This is followed by incorporating additional types of clinical

information for the same patients, e.g., demographic, behavioral physiological, and
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psychosocial variables (available from survey questions during the hospital visits). They

finally developed a hybrid framework that combines both prior information and the

data-driven clinical information in the predictive model framework. By applying sparse-

canonical correlation analysis they were able to find the relationship between the ICD-9

codes and the clinical survey variables.

To better understand the disease evolving patterns, Liu et al. [22] proposed a novel

graph based representation for patient EHRs, which captures temporal relationships

among distinct medical events. The temporal graph can capture temporal relationships

of the medical events in event sequence, thus it is informative in predictive modeling

as well as other challenging analytics tasks. The temporal graphs provide a summary

of the longitudinal data and as such are resistant to noisy and irregular observations.

Furthermore, by expressing the temporal graphs with the phenotypes, the expressing

coefficients can be used for such applications as patient segmentation, personalized

medicine, and disease diagnosis.

A number of factors including treatment-induced, environmental, or lifestyle re-

lated factors can result in co-occurrence of two or more diseases in a patient. Studying

disease-disease association contributes to identifying correlation among various diseases

to group clinically relevant comorbidities. Disease-disease associations can be identi-

fied based on similarity of clinical phenotypes as well as based on underlying biological

mechanisms of the diseases. The above mentioned studies [9]-[18] used either biological

network datasets or a combination of biological network and clinical datasets. These

studies showed that disease-disease associations predicted by different network based

methods are correlated with associations derived from standard disease classification

systems (ICD-9) and comorbidity data (see section 2.3.4). In contrast, our study uses

clinical datasets only to characterizing and summarizing a patient’s comorbid condi-

tions that are relevant to patient health outcomes. Clinical datasets, specifically similar

to the one we are using in this study, provide patient demographics, health outcomes,

and prevalence of comorbid conditions, it does not, however, provide genetic, proteomic

and metabolic network data, thus not making it possible for us to apply network based

methods to identify correlation among diseases as opposed to using prevalence based
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method. While biological networks are usually incomplete and include noise, clinical

datasets are more prone to selection and ascertainment bias and also capture correla-

tions that are not only attributed to genetic modifications but also treatment induced

and environmental factors.

2.3 Preliminaries

Our proposed approach can be summarized as follows: First we determine the cor-

relation among comorbid conditions. Next, we cluster comorbidities based on those

correlation coefficients and for each cluster of comorbidities we determine the patient

sub-clusters by applying weighted K-means. The result is a set of clusters; each in-

cludes patients who have similar pattern of comorbid conditions. Each of these clusters

is assigned a cluster indicator. We then develop logistic regression and support vec-

tor machine (SVM) models to predict hospital length of stay (LoS). Next, we perform

two sets of experiments; one set where we include in each of the logistic regression

and SVM models the proposed cluster indicators along with the demographic variables.

In the second set of experiments, we replace the proposed cluster indicators with the

traditional CCI.

Here we develop both linear logistic regression models as well as SVM models. On

the one hand, a linear logistic regression model is advantageous in that it enables us

to assess the importance of predictors by statistical significance and to interpret the

model in detail. In addition, for big data with many predictors and noisy response,

linear logistic regression is easier and faster to fit. On the other hand, SVM is the “gold

standard” in prediction, so it is always useful to compare it with logistic regression to

make sure the logistic model is adequate for prediction.

2.3.1 Dataset

For our study we use the National Inpatient Sample (NIS) data, which is available

through Healthcare Cost and Utilization Project (HCUP). Starting with 2012, HCUP

replaced the Nationwide Inpatient Sample with the National Inpatient Sample. The
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NIS uses a redesigned sampling method and contains a sample of all discharges rather

than a sample of all hospitals. The NIS implements an improved sample design for

more accurate representation of national discharge data. In addition, the 2012 NIS

redesign excluded long term acute care hospital data. NIS contains charge information

on all patients, regardless of payer, including persons covered by Medicare, Medicaid,

private insurance, and the uninsured. Hospitals are divided into nine geographical

divisions (i.e., New England, Mid Atlantic, East North Central, West North Central,

South Atlantic, East South Central, West South Central, Mountain, and Pacific) based

on the standard definition developed by the U.S. Bureau of the Census. Hospitals are

also classified according to population density and educational mission into rural, urban

teaching, and urban non-teaching.

In order to perform multi-year or trends analyses using the NIS, the Agency for

Healthcare Research and Quality (AHRQ) developed discharge trend weights associated

with each discharge record. On average the weight associated with a discharge record

is approximately four. Our analysis and results presented in this paper are based on

these weights. Our dataset is made up of approximately 48 million discharge records

(close to 8 million discharge records per year for the years 2008 through 2013). It is

important to note that our dataset is a sample from the total dataset of 192 million

records (4 × 48) in order to balance the sample to make it more representative of the

total dataset, weights are assigned to each discharge record. Hence, having the weights

reduces the size of the dataset. This weighting scheme is similar to the one use by the

US Census Bureau 5% sample [23].

Each dataset record consists of 126 clinical and non-clinical attributes for each visit.

Nonclinical attributes include patient demographics (age at admission, race, and gen-

der), admission date, HCUP hospital identification number, hospital state, hospital

zip code, length of stay in hospital in days (LoS), and total charges. Hospital level

attributes include location of hospital, division, hospital bed size, and teaching sta-

tus of hospital. Clinical attributes include procedures, procedure categories, diagnosis

codes and diagnosis categories. The diagnosis codes are represented using the Inter-

national Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM).
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Each record contains an array of diagnosis codes(15 diagnosis codes prior to 2008 and

25 diagnosis codes from 2009), including principal diagnosis and up to 24 secondary

diagnoses.

2.3.2 Institutional Review Board Approval

This study has been approved by the Rutgers Biomedical and Health Sciences Institu-

tional Review Board. After approval and the completion of a data user agreement, the

datasets were obtained from the Agency for Healthcare Research and Quality. Accord-

ing to the data use agreement, individual cell counts of 10 cannot be reported to avoid

the risk of identification of individual patients.

2.3.3 Selection of Cases

All hospitalizations with a primary ICD-9 diagnosis codes for cardiovascular disease

have been selected for analysis in our study. According to the NIS documentation,

the primary diagnosis refers to the primary reason for hospitalization. For the specific

ICD-9 codes see http://www.icd9data.com/2013/Volume1/default.html

2.3.4 Comorbid Conditions

An estimate of the comorbidity burden among hospitalized patients was derived using

the comorbidity software version 3.7 (written in SAS), which, is one of the software tools

developed as part of the HCUP. We used SAS version 9.4. The 29 comorbid conditions

were as follows [24]: congestive heart failure, valvular disease, pulmonary circulation

disorders, peripheral vascular disease, and hypertension (both uncomplicated and com-

plicated), paralysis, other neurological disorders, chronic pulmonary disease, diabetes

without chronic, diabetes with chronic, hypothyroidism, renal failure, liver disease,

chronic peptic ulcer disease (includes bleeding only if obstruction is also present), HIV

and AIDS (Acquired Immune Deficiency Syndrome), lymphoma, metastatic cancer,

solid tumor without metastasis, rheumatoid arthritis or collagen vascular, coagulation

deficiency, obesity, weight loss, fluid and electrolyte disorders, blood loss anemia, defi-

ciency anemias, alcohol abuse, drug abuse, psychoses, depression.
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2.3.5 Variables Examined

The primary outcome variable of interest is hospital length of stay in days (LoS). The

independent variables of interest include the patient demographics and clinical condi-

tions. The demographic variables are: patient’s age at the time of hospitalization –

race (White, Black, Hispanic, Asian or Pacific Islander, Native American, and other),

payer (Medicare, Medicaid, private including HMO, self-pay, no charge, and other),

patient household income level quartile according to zip code (zip income). The house-

hold income level quartiles are identified by values of 1 to 4, indicating the poorest

to wealthiest populations. These values are derived from ZIP Code-demographic data

obtained from Claritas. These estimates are updated annually; the value ranges vary

by year.

2.4 Two-Way Clustering Approach

Below is an overview of our approach, this is followed by a detailed discussion of each

step.

1. Estimation of Non-random Comorbidities. To estimate the co-occurrences of two

conditions, we need to correct for occurrences by chance, thus avoiding overes-

timation of non-random comorbid conditions. We apply asymmetric version of

weighted Somers’D statistic [5] to provide a quantitative measure of comorbidity

that accounts for co-occurrence of conditions by chance and controls for the false

discovery rate.

2. Clustering of comorbidities. In order to identify the clusters of co-occurring co-

morbidities, we apply model based clustering. Further, to identify distinct comor-

bidity patterns within each of these major clusters we apply weighted K-means.

2.4.1 Estimation of Non-random Comorbidities

In general, the proportion of co-occurrence of comorbid conditions is small relative to co-

occurrence by chance. Employing odds ratio or relative risks to estimate co-occurrence
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(a) Clustering of Comorbid Conditions

(b) Clustering of Patient Comorbidity Patterns

Figure 2.1: Two phase clustering method.
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of comorbid conditions may result in overestimation of nonrandom comorbidity even

though the comorbidity is not strong. To illustrate, consider the observed counts of

Epilepsy and Stroke in the 2007 Australian National Survey of Mental Health and

Wellbeing Dataset (see Table 2.1). As discussed in [5], the odds ratio of epilepsy for

‘(stroke absent)’ is 0.0087 and the odds ratio of epilepsy for ‘(stroke present)’ is 0.0308.

The odds ratio for stroke is 3.556 (ad/bc), which is significant with a 95% confidence

interval of 1.62 to 7.81. For comorbidity, only 7 out of 81 (about8.6%) subjects who

have had a stroke have epilepsy. Similarly, only 7 out of 234 (about 3.0%) subjects with

epilepsy have had a stroke. Thus, association does not necessarily imply comorbidity

since odds ratio does not directly measure the amount of co-occurrence, nor does it

adequately separate non-random comorbidity from random coincidental comorbidity.

Table 2.1: Observed Counts for Epilepsy and Stroke in 2007 Australian National Survey

of Mental Health and Wellbeing Dataset

Epilepsy

Absent Present Total

Stroke Absent a = 8,533 b = 74 R1= 8,607

Present c = 227 d = 7 R2 = 234

Total C1 = 8,760 C2 = 81 N= 8,841

To overcome this overestimation problem, similar to [5], we apply Somers’D statistic

which takes into account the occurrence by chance.

Somers’D statistic [5] explicitly adjusts for expected coincidental comorbidity by

chance. We consider the asymmetric version of Somers’D statistic for measuring the

comorbidity, which is defined as

Somers′D ← s
(PQ)

min(Wr,Wc)
(2.1)

where, P = ad (concordant pairs) ; Q = bc (discordant pairs); Wr = P +Q+ TR and

Wc = P + Q + TC . TR = (ab + cd) and TC = (ac + bd) are the numbers of tied pairs

on row ordinal variables only and column ordinal variables only respectively.
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After computing the pairwise comorbidity measure in terms of the asymmetric ver-

sion of Somers’D, we consider the significance of the multiplicity problem [25] and

determine the cut off value beyond which the pairwise comorbidity is considered sig-

nificant. We apply the Benjamini-Hochberg procedure [25] for controlling for the false

discovery rate (FDR). Considering 29 comorbid conditions, as mentioned above, the

proximity matrix corresponding to the ns = 29(29 − 1)/2 = 406 pairwise Somers’D

statistics among the health conditions is computed. In this study, we set the threshold

value for a significant Somers’D, statistic to the 90th percentile of the p-value.

2.4.2 Measure of Patient Comorbidity

Traditionally, patient comorbidity has been measured using numeric indices that were

originally developed and validated for specific diseases. Examples of such indices in-

clude, the Kaplan index for diabetes, and the Charlson index for the prediction of

mortality (although the Charlson comorbidity index has been adapted for use with

other outcomes, including length of stay). In particular, Charlson comorbidity index

is used to model many public health and pharmaceutical indicators such as cost of

treatment [26], [27]. These indices do not account for comorbidity by chance.

To address these limitations of current methods of measuring comorbidity, we pro-

pose a two-way clustering-based method. In the first phase we apply model-based

clustering to group the 29 comorbid conditions into a set of clusters (major clusters).

To determine the optimal number of clusters, i.e., k, we repeatedly compute the Sil-

houette Statistic (Silhouette width) for each k = 1, 2, · · · , 29 and k is chosen having

maximum Silhouette width. Assuming the data is clustered into k clusters, for each

datum i, let a(i) be the average dissimilarity of i with all other data within the same

cluster. We then define the average dissimilarity of point i to a cluster c as the average

of the distance from i to all points in c. Let b(i) be the lowest average dissimilarity of i

to any other cluster, of which i is not a member. The silhouette statistic can be defined

as:
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s(i)← a(i)− b(i)
max(a(i), b(i))

(2.2)

In the second phase, we identify sub-clusters within each of the major clusters,

where each of these sub-clusters is to be formed through different patterns of comorbid

conditions prevalent among patients. There are two justifications for phase one of the

procedure. First, we want to combine comorbidities that are correlated. Second, our

clustering algorithm compresses the data into unique observations with a weight. For

example, if we have 29 comorbid conditions then there are 22
9

= 536, 870, 912 maximum

number of possible combinations resulting in a very large clustering problem. However,

if we consider a group of 13 comorbidities there will be only 8,192 possible combinations

that are easy to cluster. Again this is one more way that we use to reduce the big size

of the data to a manageable size.

Algorithm 1 Algorithm for Two-way Clustering

Input: C ∈ RN×q, patient comorbidities
Output: CI ∈ RN×k, cluster indicators

Initialization :
1: Define, C ← {C1, C2, ..., CN}, set of patient comorbidities for N patients, where
Ci ← {c1, c2, ..., cq} is the set of comorbid conditions in patient i and cj ∈ {0, 1} ∀
q ← 1, ..., 29

2: Compute the proximity matrix, S ← SomersD(C);

3: Compute the distance matrix, D ← 1− ‖S‖
quantile(‖S‖,0.9) ;

4: CL←MClust(D), where CL← {CL1, CL2, ..., CLk}
5: j ← 1;

LOOP Process
6: for i← 1 to k do
7: cols← {CLi}
8: X ← C[ , cols];
9: P ← weightedKMeans(X,n) where n is the number of clusters;

10: CI[ , j]← P ;
11: j ← j + 1;
12: end for
13: return P

Next we discuss our clustering methodology. We would like to cluster a dataset

with n observations and p variables and each observation has a weight wi that may

represent repeated observations or a case importance. In addition, variables could also

be weighted according to decisive relevance Vj . We want to cluster the n observations
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into k ≤ n clusters. As mentioned above, having unique cases with weights greatly

reduces the size of the dataset. In the era of big data, size and dimensionality reduction

are critical to achieving computational efficiency of learning algorithms. A popular

choice for clustering is the K-means algorithm. Given the presence of weights assigned

to each observation, there is a need for extending the traditional K-means algorithm

such that it can: (i) handle both sample and variable weights, (ii) overcome the large

computational cost of dealing with big data. Here, we develop a modified version of

the K-means algorithm, called the weighted K-means, and apply that to our data. The

weighted K-means (WKM) algorithm is similar to the standard K-means algorithm

except that it incorporates the case and variable weights to the within sum of squares

(WSS) criterion that is minimized.

The basic idea of the WKM clustering algorithm is as follows: Suppose there are K

clusters, k = 1, · · · ,K, and the cluster means are µ1, · · · , µK . Then our new criterion

function is

WSS(k)←
∑
i,j,k

Wi,kVj(xi,j,k − µk,j)2 (2.3)

where µk,j is the jt
h

component of µk, and xi,j,k is the it
h

row and jt
h

column of

the observations belonging to kt
h

cluster, and Wik is the weight corresponding to the

it
h

observation of kt
h

cluster. The working principle of the weighted K-means is same

as that of traditional K-means. Its a partitional clustering algorithm, that iteratively

minimizes the within-cluster variances. Given an initial set of K means µ1, · · · , µK ,

the algorithm proeeds by alternating between two steps:

(i) Assignment step: Each observation is assigned to the nearest cluster, determined

by the distance from cluster centers.

(ii) Update Step: Re-calculate cluster centers for observations assigned to each

cluster.

The algorithm converges when the assignments no longer change. The algorithm

does not guarantee global optimum. The objective function is to minimize the within

cluster sum of squares. For weighted K-means method, the objetive function is thus
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written as,

min
µ1,··· ,µk

∑
i,j,k

Wi.kVj(xi,j,k − µk,j)2 (2.4)

The algorithm stop when the centers no longer change.

This two-way clustering results in assigning each patient to a cluster which is charac-

terized by a unique pattern of co-occurring comorbid conditions. The cluster indicator

serves as a measure of patient comorbidity. Thus, rather than having a numeric in-

dex, the cluster indicator captures the severity and the non-random co-occurrence of

comorbid conditions in a patient.

2.5 Experimental Evaluation

We implemented the proposed approach and used the NIS dataset to evaluate its ef-

fectiveness of capturing patients’ comorbidity patterns as compared to the traditional

CCI when predicting patients’ outcomes.

Using the twenty-nine comorbid conditions, we applied the asymmetric Somers’D

statistic to identify the non-random co-occurring comorbidities. The result of this step,

is a proximity matrix of significant non-random co-occurring comorbid conditions. We

then applied model-based clustering on this proximity matrix. This resulted in three

major clusters of sizes 16, 5, and 8 comorbid conditions each. Each of these clusters

represents a pattern of a set of comorbid conditions that non-randomly occur together.

Our next step was to group patients with similar pattern of comorbidities. For

each of the three major clusters we grouped the patient discharge records according to

the different patterns of co-occurrence of the comorbid conditions making up this clus-

ter. We fragment the dataset into three vertical fragments corresponding to comorbid

conditions making up the three major clusters. The first vertical fragment contained

patient discharge records having the ten comorbid conditions of the first major clus-

ter, the second fragment contained patient discharge records having the six comorbid

conditions of the second major cluster, and the third fragment contained the discharge

records associated with the thirteen comorbid conditions making up the third major
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cluster. Figure 2.1 depicts the three subsets.

We apply weighted K-means to each of the three dataset fragments, resulting in six,

seven, and seven sub-clusters for each of the three major clusters respectively. Here the

six sub-clusters represent six different patterns of co-occurrence of comorbid conditions

among patients. Similarly, the first seven and the second seven sub-clusters. As a result

of this process we are able to identify the pattern of comorbid conditions of each patient

based on the sub-cluster it belongs to. Thus, each discharge record has a sub-cluster

indicator(for short a cluster indicator).

2.5.1 Effect of Comorbidities on Health Outcomes

In order to assess the effectiveness of the proposed measure of comorbidity, we develop

various linear logistic regression and SVM models for predicting patient outcomes,

specifically, hospital length of stay. The models include the standard Charlson co-

morbidity sum index (CCI), as well as our proposed cluster indicators, that represent

specific pattern of comorbid conditions. We group the outcome variable into two or-

dered categories: LoS ≤ 3 days and LoS > 3 days. The cutoff of 3 days was chosen

since it balances the two response groups. Next we perform linear logistic regression

using the package glmnet in R [29] that uses modern penalized optimization in order to

train the model. The second method was SVM implemented by the e1071 R package

[30].

We develop four models separately for three sets of predictors which are (i) All

demographic variables, (ii) CCI, and (iii) Cluster indicators (CI1, CI2, CI3) as follows,

(i) Demographics- M1

(ii) Demographics and CCI- M2

(iii) Demographics and the three cluster indicators- M3

(iv) Demographics, CCI, and the three cluster indicators- M4

To evaluate our models, we apply the holdout approach. Specifically, the dataset

(consisting of 8,00,000 observations) was partitioned by random sampling into training

(75%) and testing (25%) set. We fit the models on the training data and evaluated

the prediction on the test data. The performance of each model was estimated by
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calculating the percentage-correct prediction of LoS group on the test set. Threshold

value of 0.55 was chosen as the optimum probability cutoff for maximum accuracy on

the training set. Further, we compare the performance of the linear logistic regression

models to SVM. Given the large training set we used, only a random sample of 80,000

observations was considered for training and 25,000 observations for testing. In order

to get the best accuracy on the training set, we chose a probability cutoff of 0.58.

Figure 2.2: Hierarchical comparison model to evaluate proposed methodology.

Another way to compare the hierarchy of models in Figure 2.2, is to perform likeli-

hood ratio chi-square tests for pairs of models that are nested one within the other and

evaluate whether the likelihood improvement by adding new variables is statistically

significant. We also compare the sizes of the likelihood ratios in order to identify the

larger differences.

All statistical analyses were performed using R Version 3.1.1 and R Studio Version

0.98.1056 (The R Foundation, Vienna, Austria) statistical software.

2.6 Discussion

Descriptive statistics (frequencies and means) have been used to summarize the preva-

lence of estimates of hospitalizations related to patients whose primary diagnosis is

cardiovascular disease. Table 2.2 includes the number of admissions and average LoS

stratified by age, gender, race, payer, and zip-income. For each of the two LoS groups

(≤ 3 and > 3), the table includes the corresponding number of admissions.

Table 2.3 includes the results of the performance of the different logistic regression
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Table 2.2: Descriptive Statistics

N LoS ≤ 3 > 3 Avg. LoS

Total cases: 1,012,005
Cases Analyzed : 811,923

AGE (yrs.)

≤ 20 3,133 1,753 1,380 4.72

21-40 38,769 27,247 11,522 3.46

41-60 292,014 187,623 104,391 4.08

61-80 453,728 227,660 226,068 5.40

> 80 224,361 101,312 123,049 5.38

GENDER

Male 572,914 318,744 254,170 4.86

Female 439,091 226,851 212,240 5.04

RACE

White 741,120 394,892 346,228 4.96

Black 134,087 76,723 57,364 4.66

Hispanic 76,226 41,608 34,618 4.97

Others 60,572 32,372 28,200 5.23

PAYER

1 584,874 279,911 304,963 5.41

2 69,295 39,444 29,851 5.12

3 258,491 160,499 97,992 4.19

4 64,982 44,324 20,658 3.80

5 6,794 4,452 2,342 3.88

6 27,569 16,965 10,604 4.37

ZIP INCOME

1 300,358 162,984 137,374 4.91

2 263,610 143,307 120,303 4.87

3 238,067 128,083 109,984 4.95

4 209,970 111,221 98,749 5.06

models. It shows that, including the CCI into the models does not improve the per-

formance of the any of the models. On the other hand, when we include the proposed

cluster indicators, we observe a performance improvement in all cases. This demon-

strates the fact that the proposed cluster indicators are able to better capture the

comorbidity patterns as compared to the CCI.
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Table 2.3: Classification Performance of Various Logistic Regression Models

Model Predictor Variables Performance

Training Testing

LoS ≤ 3 LoS > 3 LoS ≤ 3 LoS > 3

(i) Demographics 64% 61% 64% 61%

(ii) Demographics + CCI 64% 61% 65% 61%

(iii) Demographics + Cluster

Indicators

69% 65% 69% 65%

(iv) Demographics + cluster in-

dicators + CCI

69% 65% 69% 65%

Table 2.4 shows similar values to Table 3, indicating that, in this case, SVM perfor-

mance is similar to that of the linear logistic regression models.

Table 2.4: Classification Performance of Various SVM Models

Model Predictor Variables Performance

Training Testing

LoS ≤ 3 LoS > 3 LoS ≤ 3 LoS > 3

(i) Demographics 64% 61% 63% 61%

(ii) Demographics + CCI 64% 60% 64% 61%

(iii) Demographics + Cluster

Indicators

69% 67% 68% 67%

(iv) Demographics + cluster in-

dicators + CCI

69% 67% 68% 66%

As shown in Figure 2.2, Likelihood ratio chi-square tests (LRTs) show that models

M3 and M4 perform better than the rest of the models and M4 is marginally better

than M3.

In addition to the above analysis, we also apply AIC (Akaike Information Criterion)
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to the four linear logistic regression models, as shown in Table 3. AIC estimates the

quality of each model in relation to the other models, thus providing a means for model

selection. Our results of the AIC measure for each of the four models respectively are:

671300, 637858, 627240, 622499. These results show that the linear logistic regression

model that includes the cluster indicators along with CCI has the minimum AIC value.

Also residual variability or deviances for our four models (671046, 637602, 626952,

622789) show a similar pattern as AIC, again confirming that M4 and M3 are very

close compared to the others and are the preferred models. It is important to note

that applying two conceptually different evaluation methods, using empirical test data

(results displayed in tables 2.3 and 2.4), and using asymptotic statistics (results shown

in Figure 2.2) result in the same outcome: the proposed comorbidity cluster indicators

capture information about the patients’ conditions and associated comorbidity patterns

that are relevant to patient health outcomes, thus resulting in a better prediction of

patient health outcomes.

Having established that the preferred model is the one that includes the demo-

graphic variables, CCI, and the cluster indicators, we then examine the contribution

of individual predictors when predicting hospital length of stay. The results of the

corresponding logistic regression model are included in Table 2.5. These results show

that patient demographic variables (race, age, gender, payer, and zip-income) are stat-

ically significant along with clinical conditions as indicated by the cluster indicators

representing comorbidity patterns.
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Table 2.5: Summary of Logistic Regression Model

Intercept Std.Error p-value

RACE

Reference: Cau-

casians

African American -0.021 0.010 0.031 *

Hispanics 0.045 0.012 0.000 ***

Others 0.049 0.013 0.000 ***

AGE 0.014 0.000 0.000 ***

GENDER
Reference: Male

Female 0.042 0.006 0.000 ***

PAYER

Reference: Medicare

Medicaid 0.102 0.014 0.000 ***

Private including

HMO

-0.131 0.009 0.000 ***

Self-pay -0.212 0.015 0.000 ***

No Charge -0.073 0.039 0.061

Others -0.097 0.020 0.000 ***

ZIP INCOME

Reference: $1

-$38,999

$39,000 - $47,999 -0.031 0.008 0.000 ***

$48,000 - $62,999 -0.014 0.009 0.101

$63,000 or more -0.003 0.009 0.761
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Intercept Std.Error p-value

ADMISSION
Reference: Elective

Non-Elective 0.653 0.008 0.000 ***

COMORBIDITY 0.270 0.004 0.000 ***

CLUSTER # Reference: 1

2 0.149 0.012 0.000 ***

3 0.796 0.011 0.000 ***

4 0.302 0.013 0.000 ***

5 0.433 0.010 0.000 ***

6 0.393 0.009 0.000 ***

7 -0.347 0.039 0.000 ***

8 -1.801 0.033 0.000 ***

9 -1.297 0.034 0.000 ***

10 -0.943 0.034 0.000 ***

11 -0.513 0.037 0.000 ***

12 0.414 0.046 0.000 ***

13 -0.040 0.015 0.008 **

14 0.216 0.018 0.000 ***

15 0.080 0.016 0.000 ***

16 0.350 0.020 0.000 ***

17 -0.149 0.015 0.000 ***

18 -0.101 0.018 0.000 ***
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2.7 Conclusion

In this paper, we proposed a novel two-way clustering approach for characterizing and

summarizing a patient’s comorbid conditions. In contrast to the standard Charlson

Comorbidty Index, our proposed comorbidity cluster indicators capture information

about the patient’s condition and associated comorbidity patterns that are relevant

to patient health outcomes. We evaluated our proposed method using both empirical

test data and asymptotic statistics. Our experimental results show that the predictive

model which includes patient demographics, CCI, and cluster indicators achieves 69%

accuracy in predicting hospital length of stay. Our future work will focus on further

improvement in the achieved accuracy of the prediction model. A possible direction to

pursue is to improve our knowledge about disease relationships by combining clinical

data and genetic data (biological networks) to compare and contrast the disease-disease

interactions and disease co-occurrence patterns, and systematically compare significant

disease patterns in clinical data with disease pairs having significant genetic overlap.

Currently, we are in the process of having our code as an R package that will

implement the proposed methodology, thus making it widely available for use by other

researchers.
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MOdule Detection (DIAMOnD) algorithm derived from a systematic analysis of
connectivity patterns of disease proteins in the human interactome”. PLoS Comput
Biol, no. 4 (2015): e1004120

[10] Davis, Darcy A., and Nitesh V. Chawla. “Exploring and exploiting disease in-
teractions from multi-relational gene and phenotype networks”. PloS one 6, no. 7
(2011): e22670.



34
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Chapter 3

Weighted Probabilistic Distance Clustering for Big Data
Debopriya Ghosh, Adi Ben-Israel, Michael N. Katehakis

Big Data introduce statistical and computational challenges. Traditional algorithms

do not scale to massive datasets, rendering them unusable or greatly impeding their

performance. Reducing large sample size can greatly improve the performance of these

algorithms. In this paper, we develop a new probabilistic, iterative method for clus-

tering weighted data, using soft assignments of points to clusters with membership

probabilities depending on distances and cluster sizes. We refer to it as weighted prob-

abilistic distance (w-PDQ) clustering, where Q stands for cluster size. The novel aspect

of the proposed method is the ability to handle weighted reduced data, which makes it

suitable for clustering large datasets. Experiments on simulated and real data demon-

strate that the weighted probabilistic distance clustering approach performs favorably

to other model-based clustering approaches. In addition, the approach is robust to

outliers and computationally efficient as it does not require computing complex density

functions. A R package on the new algorithm is developed for public access.
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3.1 Introduction

The massive sample size and high dimensionality of Big Data introduce unique statis-

tical and computational challenges. Many traditional algorithms that were designed

for moderate sample size do not scale to massive datasets, rendering them unusable or

greatly impeding their performance. For example, in many applications that involve

internet-scale data, containing billions or trillions of data points, even a linear pass of

the entire dataset becomes unaffordable. In such cases, reducing large sample size of

the data to a manageable size can help to improve scalability and performance of the

algorithms.

One common approach for reducing sample size is to use weights in the analysis of

data. The reduced datasets contain observations that are assigned a weight. Lets say

an observation has weight of two, which would mean that the observation counts as two

almost identical observations in the dataset. These weights are referred to as design

weights. It has been noted that as weights primarily adjust means and proportions,

it also increases standard error of the estimates. Large weights (or very small ones)

introduce instability in the data. This is why researchers often trim the weights to not

allow extremely large weights that can increase instability of estimates. But trimming

the weights reduces representativeness of the weighted data. Data analysis methods

that allow effective use of observation weights could therefore handle large sample size

data that are reduced with weights.

In this paper we present a novel approach of clustering weighted data. Clustering

is defined as the task of partitioning the dataset into subsets (clusters), such that data

in each subset are in some sense similar and dissimilar from other subsets. Clustering

is applied in tremendously diverse areas for a multitude of purposes. The clustering

algorithms can be broadly classified into two types – deterministic and probabilistic.

Deterministic algorithms create groups based on measures between objects, or between

objects and centroids. Deterministic clustering is suited for cohesive and well-separated

groups, but fails when the clusters have different geometric forms and overlap. Proba-

bilistic algorithms on the other hand cluster data points based on a probability model.
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Data is assumed to arise from a mixture model, which means that it is viewed as coming

from a finite number of populations, mixed in various proportions. Each population

represents a cluster with its specific characteristics. Probabilistic clustering involves

computing the membership probabilities for each clusters, given a data point. The

cluster having the largest probability is chosen for that data point. In contrast to de-

terministic clustering, probabilistic clustering allows for various geometric properties

through different parameterization of the distributions, or through completely different

distributions among clusters. These methods are also suitable for modeling outliers.

However, with increasing applications of Big Data, traditional approaches of cluster-

ing are no longer effective on large datasets. Lot of researches now focus on clustering

Big Data. In particular, researchers have proposed the idea of clustering weighted-data

in the non-parametric clustering framework to handle large size data. The weighted

data clustering methods first reduce the original dataset to a smaller one by assigning

each selected datum a weight reflecting the number of nearby data, and then cluster

the smaller weighted dataset.

Here, we develop a weighted clustering method called weighted probabilistic dis-

tance (w-PDQ) clustering which adjusts for cluster sizes and observation weights. Our

work extends the previous work of Ben-Israel and Iyigun [1]-[2]. The novel aspect of our

method is the ability to handle weighted data which makes it suitable for clustering Big

Data. Compared to other probabilistic methods, this method is also computationally

less expensive. Firstly, unlike model based clustering which uses expectation maxi-

mization(EM) technique, w-PDQ method makes no assumption on densities and does

not require computation of complex density functions. Secondly, the proposed method

require no switching and works well even with cold start, where as EM methods com-

monly use a preprocessor such as K-means, before starting the EM process to get closer

to the centers.

The remainder of the paper is organized as follows. A discussion of the related work

is presented in section 3.2. In section 3.3, we formulate the problem. The algorithms for

solving the problem are discussed in section 3.4. Empirical evaluations are presented

in Section 3.5. Results and directions for future work are provided in Section 3.6.
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3.2 Related Work

Clustering problem has been studied for years. Earliest approaches were mostly based

on heuristic or geometric procedures that relied on dissimilarity measures between pairs

of observations. There is a vast literature on traditional clustering methods: see for

example Sharma [3], Jain and Dubes [4], and Everitt et al. [5]. The two most popular

traditional clustering methods are: (i) hierarchical clustering based on the distance

between groups; and (ii) K-means based on iterative relocation.

Clustering was also defined in a probabilistic framework, allowing to formalize the

notion of clusters through their probability distribution. One of the main advantages of

probabilistic approach is that it provides a principled statistical approach to clustering.

The first works on finite mixture models were from Scott and Symons [6] and Duda et

al. [7]. Since then, these models have been extensively studied, McLachlan and Basford

[8], McLachlan and Peel [9], and Fraley and Raftery [10]. For comprehensive review see

McNicholas [11].

Another relatively new approach is the Bayesian estimation for mixture models.

the method was first studied by Gilks et al. [12], Gelman and King [13], Verdinelli and

Wasserman [14], and Evans et al. [26]. Key papers in this area include Lavine and

West[24], Diebolt and Robert [25], Escobar and West [15], and Bensmail et al. [16].

As pointed out previously, the clustering methods discussed above were primarily

developed for moderate size data and face challenges while handling Big Data. A

possible way to address the challenges, is to extend these existing methods so that they

can cope with huge workloads of Big Data. Few recent papers indicate that most of the

extensions rely on analyzing samples of Big Data, and vary in how the sample-based

results are used to derive a partition for the overall data. For instance, in [17] Hathaway

et al., developed a density-weighted c-means clustering approach for clustering a smaller,

density-weighted dataset, by weighted reduction of the original data. Another similar

study by Ghosh et al. [18], presented a weighted K-means algorithm for clustering

reduced weighted data.

In this paper, we propose a novel clustering method for weighted data. The method
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is referred to as weighted probabilistic distance (w-PDQ) clustering. It computes cluster

membership probabilities based on the distance of data points to cluster centers, and

directed by the cluster sizes. The proposed method is based on a measure called the

joint distance function (JDF). JDF approximates the data points in its lowest contours

and is harmonic mean of their distances from the cluster centers. Here, we present two

different approaches: (i) when cluster sizes are unknown; and (ii) when cluster sizes are

specified. The latter is known as capacitated problem. Another important feature is

that in situations where the membership probabilities of a point are almost equal for the

different clusters, w-PDQ method applies “power probabilities” to make the probabili-

ties much sharper and eventually resulting in hard assignments. Weighted probabilistic

distance clustering requires specifying the number of clusters. The method provides a

intrinsic validation technique based on cluster uncertainty measure to determine the

optimal number of clusters. To evaluate our method, we applied the w-PDQ clustering

on various synthetic and real-world datasets. We also compared the performance of

w-PDQ algorithm with other state-of-art clustering algorithms.

3.3 Problem Formulation

LetD be a data set containingN data points, D := {(xi, wi) : xi ∈ Rn, wi > 0, i = 1, · · · , N},

where xi is the feature vector of the data point, and wi its weight. The objective is to

partition the data set D into K clusters {Ck : k = 1, · · · ,K}, such that points within

a cluster are in some sense similar, and points in different clusters are dissimilar. The

clusters Ck are typically disjoint sets, i.e.,

D =

K⋃
k=1

Ck (3.1)

Each cluster has a representative point, or center ck, and distances to clusters are

defined as distances to their centers dk(x, ck). In general, the distance functions dk(.)

are different for different clusters. For instance, dk(x, ck) =
√
〈x− ck,Σ−1k (x− ck)〉, is

the Mahalanobis distance corresponding to Ck. In deterministic problems, center ck

of cluster Ck is the point c that minimizes the sum of its weighted distances from all

points in Ck,
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ck := arg min
c

∑
xi∈Ck

wi dk(xi, c). (3.2)

This calculation requires a hard assignment of points to clusters. In probabilistic

assignment, ck is computed as,

ck := arg min
c

N∑
i=1

wi πk(xi) dk(xi, c) (3.3)

where πk(x) is referred to as the “ assignment probability”, i.e., the probability of x

“belonging” to Ck, with (3.2) as a special case for hard assignment. This method allows

soft assignment of points to clusters. A hard assignment is given by probabilities

pk(x) that are all 0 or 1.

Probabilistic approximation of the clustering problem is formulated as follows:-

For a given D and K, find centers {ck : k = 1, · · · ,K} so as to minimize,

min
c1,··· ,ck;π1,·,πk

K∑
k=1

N∑
i=1

wi πk(xi) dk(xi, c) (3.4)

3.4 Algorithms

Probabilistic Clustering algorithms view the data as coming from a mixture model,

where each distribution represents a cluster. The clusters have various geometric prop-

erties obtained through different parameterization of the distributions. In probabilistic

clustering, given a data point, we compute its membership probabilities for each cluster.

The point is assigned to the cluster having the largest probability. Below, we discuss two

state-of-art algorithms for probabilistic clustering and present our proposed algorithm.

3.5 Model Based Clustering

Fraley and Raftery [10] presented the model based clustering method based on finite

Gaussian mixture models. The method implements parameterized Gaussian hierarchi-

cal clustering algorithms and the EM algorithm for parameterized Gaussian mixture

models with the possible addition of a Poisson noise. In the finite mixture model, each
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cluster is represented by a Gaussian,

φk(x|µk,Σk) = (2π)−
p
2 ‖Σk‖−1/2 exp{−1

2
(x− µk)TΣ−1k (x− µk)} (3.5)

where x represents the data, and k specifies a particular cluster. Clusters are ellipsoidal,

centered at the means µk. The covariances Σk determine their geometric features.

The Gaussian finite mixture models are fitted via EM algorithm. EM algorithm

iterates between an “E-step”, which computes a matrix p such that pik is an estimate

of the conditional probability that observation i belongs to group k given the current

parameter estimates, and an “M-step”, which computes maximum likelihood parameter

estimates given p. In the limit, the parameters usually converge to the maximum

likelihood values for the Gaussian mixture model

N∏
i=1

K∑
k=1

πkφk(xi|µk,Σk) (3.6)

and the sums of the columns of p converge to N times the mixing proportions πk, where

N is the number of observations in the data. Here K is the number of groups in the

data, which is assumed to be known for the purposes of the EM algorithm.

3.6 Bayesian Non-parametric Clustering

Bayesian non-parametric mixture models [19] induces a random partition model of the

data points into clusters. The data is assumed to be conditionally i.i.d. with density,

f(x|P ) =

∫
φ(x|θ)dP (θ) (3.7)

where φ(x|θ) is a specified parametric density on the sample space with mixing param-

eter θ ∈ Θ. The model is completed with a prior of the unknown parameter, which

in this case is the unknown mixing measure. In the general setting, parameter P can

be any probability measure on Θ, requiring a non-parametric prior. Typically, the

non-parametric prior has discrete realizations with

P =

∞∑
j=1

wjδθj (3.8)
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where the weights wj and atoms θj are assumed to be independent and θj are i.i.d.

from some base measure P0. Thus, the density is modeled as,

f(x|P ) =
∞∑
j=1

wjφ(x|θ)dP (θ) (3.9)

Since P is discrete, this model induces a latent partitioning C of the data where two

data points belong to the same cluster if they are generated from the same mixture

component. The partition can be represented as C = {Ck : k = 1, · · · ,K}. Let xj =

{xn}n∈Cj , the marginal likelihood of the data D given the partition is,

f(D|C) =
K∏
j=1

m(xj) =
K∏
j=1

∫ ∏
n∈Cj

φ(xn|θ)dP0(θ) (3.10)

The posterior of the partition which reflects the belief and uncertainty in the clus-

tering given the data, is simply proportional to the prior times the marginal likelihood.

p(C|D) ∝ p(C)
K∏
j=1

m(xj) (3.11)

3.7 Weighted Probabilistic Distance (w-PDQ) Clustering

The basic principle of weighted probabilistic distance clustering is based on the following

assumption. We assume for each xi ∈ D and cluster Ck, the probability that x belongs

to Ck given by pk(x) satisfies,

pk(xi) dk(xi)

qk
= D(xi), k = 1, · · · ,K, (3.12)

where, dk(x) denotes dk(x, ck), the distance of x to center ck of the k -th cluster, and qk

is size of the cluster. The cluster membership probabilities {pk(x) : k = 1, · · · ,K}

of a point x depend only on the distances and cluster sizes.

p(x) = f(d(x), q) (3.13)

where p(x) ∈ RK is the vector of probabilities {pk(x)}, d(x) is the vector of distances

{dk(x)}, and q is the vector of cluster sizes {qk}. From the basic principle in (3.12),
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di(x) < dj(x) =⇒ pi(x) > pj(x), and

qi > qj =⇒ pi(x) > pj(x),∀i, j ∈ 1, · · · ,K (3.14)

The cluster membership is more probable when the data point is closer to the cluster

center and larger the cluster. The cluster size qk is absent in (3.12), if it is not relevant.

The weight wi in LHS (3.12) can be interpreted as an observation with weight wi which

is equivalent to wi similar observations, each of weight 1, in the same location. The

distance dk(xi) in (3.12) can be replaced by an increasing function of itself, giving

another principle.

3.7.1 Cluster Membership Probabilties

The cluster membership probabilities, pk(x) := Prob{x ∈ Ck}, k ∈ 1, · · · ,K as-

sumed to depend only on the distances {dk(x) : k = 1, · · · ,K} of the point x from the

cluster centers and the cluster sizes {qk}. From the above principle, and the fact that

probabilities add to 1 we get,

Theorem: Given the cluster centers {c1, · · · , ck}, and distances {dk(x) : k = 1, · · · ,K}

of a data point x from the given centers, the membership probabilities of x are,

pk(x) =

∏
j 6=k

dj(x)

qj

  K∑
i=1

∏
j 6=i

dj(x)

qj

−1 , k = 1, · · · ,K, (3.15)

Proof: Using (3.12) we write for i,k

pi(x) =
(pk(x)dk(x)

qk

)
/
(di(x)

qi

)
(3.16)

Since
∑K

i=1 pi(x) = 1,

pk(x)
K∑
i=1

(dk(x)/qk
di(x)/qi

)
= 1

pk(x) =
1∑K

i=1

(dk(x)/qk
di(x)/qi

) =

∏
j 6=k dj(x)/qj∑K

i=1

∏
j 6=i dj(x)/qj

(3.17)

The probabilities do not depend on the weight of x.
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3.7.2 Power Probabilities

To make the cluster membership probabilities better approximate hard assignments,

we replace (3.12) by

pk(xi) d
ν
k (xi)

qk
= D(xi), k = 1, · · · ,K, (3.18)

with exponent ν ≥ 1, and denote the resulting probabilities and JDF by p
(ν)
k (x) and

D(ν)(x) respectively. These are obtained from (3.15) and (3.24) by replacing every

distance d by d ν . The probabilities p
(ν)
k (x) can be computed by raising (3.17) to the

power ν and normalizing,

p
(ν)
k (x) =

p νk (x)
K∑
j=1

p νj (x)

, k = 1, · · · ,K. (3.19)

Hard assignments can be approximated by the probabilities {p(ν)k }, for sufficiently high

ν. Indeed if d(x, ck) is the unique minimal distance of x from all centers,

d(x, ck)
!

= min {d(x, cj) : j = 1, · · · ,K},

then pk(x) is the unique maximal cluster–membership probability,

pk(x)
!

= max {pj(x) : j = 1, · · · ,K},

and, by (3.19),

lim
ν→∞

p
(ν)
j (x) =


1, j = k,

0, j 6= k,

(3.20)

a hard assignment of x to the kth cluster.

3.7.3 Updating the Exponent ν

If the assignment probabilities are the power probabilities (3.19), we update ν incre-

mentally. As typically the case in gradient methods, the iterations (3.40) make big steps

at first, approaching their fixed points, then the iterations slow down and movement in

each iteration is small. The “fast” iterations are few in number, the number of “slow”

iterations is determined by the stopping criterion.
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Most progress towards identifying the cluster centers occur in the first few iterations.

The slow iterations at the end deal mainly with the assignment problem. With a low

value of ν, the distributions may be far from hard assignments, and require rounding

to the nearest integer, 0 or 1. High values of the exponent ν produce {p(ν)k (x)} that

are close to hard assignments. For this reason, high values of ν are useful in the slow

iterations at the end. In contrast, using high values of ν at the beginning may cause

premature convergence to a sub-optimal solution.

This suggests increasing the exponent ν at each iteration. We use a simple update

here,

ν+ = ν + ∆ (3.21)

where ∆ > 0 is the increment per iteration. If ν0 is the initial exponent, the kth

exponent is ν0 + k∆.

3.7.4 Joint Distance Function

From the basic principle of weighted probabilistic distance clustering we get,

pk(x) =
D(x)

dk(x)/qk
(3.22)

Here, D(x) is a constant and is function of x. Since the probabilities add to 1, from

(3.12)–(3.15) it follows that for any x,

D(x) =

 K∏
j=1

dj(x)

qj

  K∑
`=1

∏
j 6=`

dj(x)

qj

−1 , (3.23)

We call this constant D(x)1 as JDF (Joint Distance Function) at a point x. If the

cluster sizes in (3.24)are not relevant we get,

D(x) =
1

K∑
k=1

1
dk(x)

=

K∏
j=1

dj(x)

K∑̀
=1

∏
j 6=`

dj(x)

(3.24)

=
1

K
H(d1(x), d2(x), · · · , dK(x))
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where H(· · · ) is the harmonic mean of its arguments. Extending to the whole data

set, we obtain JDF of the data set by,

N∑
i=1

D(xi) (3.25)

3.7.5 Probabilistic Assignments

We approximate the clustering problem using a probabilistic model (3.4), replacing

hard assignments by probabilities, called probabilistic (or “soft”) assignment, and

denoted by πk(x), the probability that x is “assigned” to Ck. Assignment probabil-

ities include hard assignments, and the probabilities (3.17), (3.19) as special cases.

Probabilistic assignments {πk(x) : k ∈ 1, · · · ,K} are assumed to have the following

property: If a point x coincides with center ck, i.e.,

if d(x, ck) = 0, then


πk(x) = 1,

πj(x) = 0, j 6= k

(3.26)

3.7.6 Extremal Principle for Probabilities

Equation (3.12) is the optimality condition of the following extremum problem, with the

probabilities {pk(x)} as variables, the distances {dk(x)} and cluster sizes qk assumed

given. At any point xi,

min
p1(xi),··· ,pK(xi)

K∑
k=1

pk(xi)
2 dk(xi)

qk
(3.27)

s.t.
K∑
k=1

pk(xi) = 1.

The Lagrangian of (3.27) is,

L(p, λ) =
K∑
k=1

pk(xi)
2 dk(xi)

qk
− λ

(
K∑
k=1

pk(xi)− 1

)
(3.28)

Differentiating the Lagrangian w.r.t. pk(xi) and zeroing the partial derivatives,

2
pk(xi) dk(xi)

qk
= λ, ∀k (3.29)
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which gives (3.12). We can therefore write (3.27) as

min
p1(xi),··· ,pK(xi)

K∑
k=1

pk(xi)
2 dk(xi)

qk

= D(xi)
K∑
k=1

pk(xi), using (3.12),

= D(xi)

Therefore, problem (3.27) is equivalent to

min D(xi). (3.30)

3.7.7 Extremal Principle for Cluster Sizes

If the cluster sizes need to be determined, they are the minimizers of the following

problem, for the given distances dk(xi, ck) and probabilities πk(xi), i = 1, · · · , N ; k =

1, · · · ,K.

min
q1,··· ,qK

K∑
k=1

N∑
i=1

wi
πk(xi) dk(xi)

qk
(3.31)

s.t.
K∑
k=1

qk = W, (3.32)

The Lagrangian of (3.31) is

L(q, λ) =

K∑
k=1

N∑
i=1

wi
πk(xi) dk(xi)

qk
+ λ

(
K∑
k=1

qk −W

)
(3.33)

Differentiating the Lagrangian w.r.t. qk and zeroing the partial derivatives,

N∑
i=1

wi
πk(xi) dk(xi)

q2k
= λ, ∀k (3.34)

∴ qk =

√√√√ N∑
i=1

wi
λ
πk(xi) dk(xi)

and finally, by (3.32),

qk =

√
N∑
i=1

wi πk(xi) dk(xi)

K∑
j=1

√
N∑
i=1

wi πj(xi) dj(xi)

W (3.35)
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3.7.8 Updating Cluster Centers

As mentioned before, the distance of point x from the cluster Ck is its distance from

the cluster center ck which is denoted as dk(x, c),

dk(x, ck) =
√
〈x− ck,Σ−1k (x− ck)〉, k = 1, · · · ,K, (3.36)

For simplicity we refer to it as dk(x). The gradient of (3.36) w.r.t. ck is

∇ck dk(x, ck) = −Σ−1k
x− ck
dk(x, ck)

, k = 1, · · · ,K. (3.37)

Given the distances dk(xi, ck) and assignment probabilities πk(xi), the centers are the

minimizers of the function,

min
c1,··· ,ck

K∑
k=1

N∑
i=1

wi
πk(xi) dk(xi, ck)

qk
, (3.38)

which is the sum of the objectives (3.27), over all xi. The gradient of the objective

(3.38) w.r.t. ck is, by (3.37),

∇ck
N∑
i=1

wi
πk(xi) dk(xi, ck)

qk
= −Σ−1k

N∑
i=1

wi
πk(xi)

qk dk(xi, ck)
(xi − ck), k = 1, · · · ,K.

(3.39)

Equating the gradient to zero, and simplifying, we get the new center (ck)
+ as a convex

combination of the N data points,

(ck)
+ =

N∑
i=1

λki xi, k = 1, · · · ,K, (3.40)

where the weights λki are

λki =

wi
πk(xi)

dk(xi, ck)
N∑
j=1

wj
πk(xj)

dk(xj , ck)

, k = 1, · · · ,K; i = 1, · · · , N. (3.41)

The weights λki in (3.41) depend on the old centers ck, and therefore (3.40)–(3.41)

give the new centers (ck)
+ interms of the old ones. The λki depend on the observation

weights wi. Suppose, xi is an outlier, it is far from the centers, and therefore all its

weights λki are very small. From (3.40), we can say that the centers (ck)
+ are not

sensitive to outliers.
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3.7.9 Updating Covariance Matrix

In case of Mahalanobis distance, d(x, ck) =
√

(x− ck)TΣ−1k (x− ck), the covariance

matrix Σk of the kth–cluster is updated at each iteration by,

Σk =

N∑
i=1

λki(xi − ck)(xi − ck)T

N∑
i=1

λki

, (3.42)

3.7.10 Cluster Uncertainty

The JDF has the dimension of distance. Normalizing it we get a dimensionless function,

E(x) = KD(x)/
( K∏
j=1

dj(x)
)1/K

(3.43)

with 0/0 interpreted as zero. E(x) is the harmonic mean of the distances divided by

their geometric mean. It follows that 0 ≤ E(x) ≤ 1, with E(x) = 0 if any dj(x) = 0,

i.e., if x is the cluster center, and E(x) = 1 if and only if the distances dj(x) are all

equal.

E(x) can be written using as the geometric mean of the cluster membership prob-

abilities (up to a constant),

E(x) = K
( K∏
j=1

pj(x)
)1/K

(3.44)

The function E(x) represents the uncertainty of classifying the point x. We call E(x)

as cluster uncertainty measure. The cluster uncertainty of the data set is defined

as

E(D) :=
1

N

N∑
i=1

E(xi) (3.45)

E(D) is a monotone decreasing function of K. It decreases from E(D = 1) for K = 1

to E(D) = 0 for K = N , the trivial case where every data point is in a separate cluster.

An intrinsic criterion for determining the optimal k is provided by the rate of decrease

of E(D).
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Initialization: given data set D with N points,

each with weight wi and
∑N

i=1wi = W ,
K the number of clusters
any K centers {ck : k = 1, · · · ,K},
any K cluster sizes {qk > 0 :

∑K
k=1 qk = W},

ε > 0
Iteration:

Step 1 compute distances {dk(x, ck) : k = 1, · · · ,K} for all x ∈ D
Step 2 update the cluster sizes {q+k : k = 1, · · · ,K} (using (3.35))
Step 3 update the centers {c+k : k = 1, · · · ,K} (using (3.40)–(3.41))
Step 4 update the covariance matrix {Σ+

k : k = 1, · · · ,K} (using (3.42))

Step 5 if
∑K

k=1 ‖c
+
k − ck‖ < ε stop

return to Step 1

3.7.11 Weighted PDQ-Algorithm

A schematic description of the algorithm is provided below.

Notes:

(a) If the cluster sizes {qk} are known, they are used as the initial estimates and are

not updated thereafter, in other words Step 2 is absent.

(d) The computations stop (in Step 4) when the centers stop moving, at which point

the cluster membership probabilities may be computed by (3.15). These probabilities

are used afterwards for classifying the data.

(e) Step 3 of the algorithm is a generalization of the Weiszfeld iteration, to several

centers. As in the classical case, to establish convergence it is necessary to modify

the gradient in question, if a center coincides with one of the data points, we apply a

mechanical solution, see [Ref].

3.8 Binder’s Loss

A loss function L(C, Ĉ) measures the loss of estimating the true clustering C with Ĉ.

Since, the true clustering is unknown, the loss is averaged across all possible true clus-

terings, where the loss associated to each potential true clustering is weighted by its

posterior probability. The point estimate C∗ corresponds to the estimate that minimizes
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the posterior expected loss,

C∗ = argmin
Ĉ

E[L(C, Ĉ)|y1:N ] = argmin
Ĉ

∑
C
L(C, Ĉ)p(C|y1:N ) (3.46)

Let nij = |Ci ∩ Ĉj | be the cardinality of the intersection between Ci, the set of data

points in cluster i under C, and Ĉj , the set of data points in cluster j under Ĉ, where

i = 1, · · · , kN , and j = 1, · · · , k̂N . the notation kN , k̂N denotes the number of clusters

in C and Ĉ respectively. Binder’s loss [20]is a quadratic function of the counts nij ,

which for all possible pairs of observations, penalizes the two errors: (i) allocating two

observations to different clusters when they should be in the same cluster; and (ii)

allocating them to the same cluster when they should be in different clusters. It is

written as:

B(C, Ĉ) =
∑
n<n′

l11(Cn = Cn′)1(Ĉn 6= Ĉn′) + l21(Cn 6= Cn′)1(Ĉn = Ĉn′) (3.47)

If the two type of errors are penalized equally, l1 = l2 = 1, then

B(C, Ĉ) =
1

2

( kN∑
i=1

n2i+ +

k̂N∑
j=1

n2+j − 2

kN∑
i=1

k̂N∑
j=1

n2ij

)
, (3.48)

where ni+ =
∑

j nij and n+j =
∑

i nij . Under Binder’s loss with l1 = l2, the optimal

partition C∗ is the partition C which minimizes∑
n<n′

|1(Cn = Cn′)− p2nn′ | (3.49)

or equivalently, the partition c which minimizes∑
n<n′

(1(Cn = Cn′)− p2nn′)2 (3.50)

where pnn′ = P (Cn = Cn′ |y1:N ) is the posterior probability that two observations are

clustered together.

Binder’s loss counts the total number of disagreements (D) in the
(
N
2

)
possible pairs

of observations. The Rand index R(C, Ĉ), which is a widely used cluster comparison

criterion measures the number of agreements (A) in all possible pairs. since D + A =(
N
2

)
, Binder’s loss and rand Index are related as follows:

B(C, Ĉ) = (1−R(C, Ĉ))
(
N

2

)
(3.51)
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3.9 Cluster Validation

A fundamental step for any unsupervised algorithm is to determine the ”right” number

of clusters into which the data may be clustered. In dichotomous situation the answer

K = 2 is obvious, but in general the answer lies between two extremes K = 1 (one

cluster fits all) and K = N (each point is a cluster). Elbow Method is one of the

most popular methods to determine this optimal value of K.

Here, we apply a similar approach on the dataset in example 4, to determine the

value of K based on the CUF mentioned in. We iterate over a range of values of K

and calculate the CUF for each value of K. As seen below??, the value of EK(D)

decreases monotonically with K. The decrease of the uncertainty EK(D) is precipitous

until reaching the “right” value of K and thereafter becomes almost flat.

(a) Data (b) Cluster validation

Figure 3.1: Finding optimal value of “k”

3.10 Empirical Evaluation

We evaluated our method using both simulated and real-world data sets. The purpose

of using simulated datasets was to illustrate how well the algorithms could recover the

parameters of underlying distributions. We constructed several examples with data

simulated from different multivariate normal distributions.

Since our proposed method requires a random initialization, it can sometime lead to

unstable solution. To avoid this, we apply multiple initial configurations. For determin-

ing the optimal partition, we used Binder’s loss that is commonly used in Bayesian
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clustering methods. The optimal partition thus obtained corresponds to the estimate

which minimizes the posterior expected Binder’s loss.

In order to compare different clustering methods, we used KL-Divergence and

adjusted Rand index (ARI) [21]. KL divergence measures the distance between

actual and estimated distributions of the clusters. A smaller value of KL Divergence

indicates better approximation of the true clusters. Rand index compares predicted

classifications with true classes. The ARI corrects Rand index for chance, its expected

value under random classification is 0, and it takes a value of 1 when there is perfect

class agreement.

All computations were performed using R and the CRAN packages mclust, mcclust,

mcclust.ext [22]. The implementation of our w-PDQ algorithm is included in a newly

developed package called PDQClustering made available on github.

3.10.1 Example 1

This dataset is constructed to illustrate the application of w-PDQ clustering on weighted

data. Here (Figure 3.2), we generated containing 200 data points from two different

normal distributions and assigned random weights to these points. Parameters of the

distributions are as follows:

µ1 = (0, 0),Σ1 =

(
0.1 0
0 1

)
, and

µ2 = (3, 0),Σ2 =

(
1 0
0 0.1

)
We initialized the w-PDQ algorithm with 100 different initial configurations, the value

of ε was set to 0.0001 and the value of ν was set to 0.003. Table 3.1 shows the true and

estimated values of the cluster parameters. Binder’s loss for the estimated clustering

was 0.26. Adjusted Rand index was 0.95. KL divergence for cluster 1 and 2 were 0.02

and 0.1 respectively.
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Figure 3.2: Gaussian mixtures with random weights

Table 3.1: True and estimated values of cluster parameters

Parameters True Estimated

Cluster 1
µ1 (0,0) (0,0.1)

Σ1 (0.1,0,0,1) (0.1,0,0,1.2)

Cluster 2
µ2 (3,0) (3.1,0.1)

Σ2 (1,0,0,0.1) (1.2,0,0,0.1)

3.10.2 Example 2

This is an example where the level of differentiation among the true clusters is signif-

icantly low and the clusters tend to overlap. The dataset (Figure 3.3 ) containing 300

data points was simulated from three different multivariate normal distributions having

different covariances.

µ1 = (4, 4),Σ1 =

(
0.25 0.21
0.21 0.25

)
, µ2 = (5, 5),Σ2 =

(
0.25 −0.21
−0.21 0.25

)
, and

µ3 = (6.5, 5),Σ3 =

(
0.25 0.21
0.21 0.25

)
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Figure 3.3: Overlapping Gaussians of equal sizes

(a) ν = 0.2 (b) ν = 0.3

(c) ν = 0.37 (d) ν = 0.38

Figure 3.4: Weighted PDQ clusters for different power probabilities

In this example, a major challenge was to deal with data points that lie in overlap-

ping regions of the clusters. These data points had nearly equal membership probabili-

ties for each cluster. In order to make these probabilities much sharper and eventually
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(a) EM Method

(b) Bayes Method

Figure 3.5: Results of EM and Bayesian clustering methods for overlapping clusters

Table 3.2: True and estimated values of cluster parameters

Parameters True Estimated (w-PDQ) Estimated (EM)

Cluster 1
µ1 (4.0,4.0) (4.0,3.93) (4.05,3.98)

Σ1 (0.25,0.21,0.21,0.25) (0.13,0.1,0.1,0.15) (0.20,0.17,0.17,0.23)

Cluster 2
µ2 (5.0,5.0) (5.03,4.95) (5.03,4.97)

Σ2 (0.25,-0.21,-0.21,0.25) (0.21,-0.20,-0.20,0.25) (0.2,-0.17,-0.17,0.22)

Cluster 3
µ3 (6.5,5.0) (6.62,5.06) (6.62,5.04)

Σ3 (0.25,0.21,0.21,0.25) (0.17,0.14,0.14,0.21) (0.17,0.17,0.17,0.25)

to make hard assignments, we used the power probabilities mentioned above (3.19).

(Figure 3.4) illustrates the clusters obtained for different values of ν. Number of initial

configurations was set to 100 and the value of ε was set to 0.0001. We also applied

model based clustering based on the EM method on this data (Figure 3.5).

The ARIs were 0.91, 0.86 , 0.88, 0.88 respectively. ARI for the EM method was 0.86.

KL divergences for the W-PDQ method were 0.18, 0.03, 0.01 for clusters 1 , 2 , and 3

respectively. For EM method, the KL divergences were 0.17, 0.02, 0.05 for clusters 1,

2, and 3 respectively. However, it was interesting to see the results of Bayesian method

that detected four clusters instead of three based on minimum Binder’s loss.
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3.10.3 Example 3

This dataset (Figure ??) consists of two clusters of unequal sizes. The cluster on the

left consists of 50 data points and the one on right contains 2000 data points. The

points are generated from Normal distributions with parameters:

µ1 = (5, 5),Σ1 =

(
1 0
0 1

)
, and

µ2 = (1, 1),Σ2 =

(
1 0
0 1

)

(a) Original data

(b) w-PDQ Method

(c) EM Method

Figure 3.6: Weighted PDQ clusters for different power probabilities

Here, the clusters are highly imbalanced. The challenge is how well the clustering

algorithms can estimate the true classes. Results of our experiments showed that de-

terministic and Bayesian algorithms either tries to equalize the cluster sizes or end up

estimating all in one cluster. Both w-PDQ and EM methods could closely approximate
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the true clusters. The ARI for EM method was 0.98 and that of w-PDQ method was

0.96. KL divergences for the EM method was 0.02, 0.01 and that for w-PDQ method

was 0.02 and 0.018.

3.10.4 Example 4

This is a simulated dataset containing 200 points from a mixture of four normals. True

clusters are located at (+/− 2,+/− 2) with a standard deviation of 1. The dataset is

provided in the package mcclust. We applied the three methods – EM, Bayesian, and

w-PDQ on the data.

(a) Original data (b) Bayesian method

(c) EM method (d) w-PDQ method

Figure 3.7: Weighted PDQ clusters for different power probabilities

Results are shown in Figure 3.7. We obtained an ARI of 0.86 for Bayesian method,

0.93 for EM method, and 0.93 for w-PDQ method. The Kl divergences for clusters

1, 2, 3, and 4 were, (i) EM method: 0.01, 0.008, 0.01, 0.005; (ii) w-PDQ method:

0.007,0.01,0.012,0.01; (iii) Bayesian method: 0.02, 0.12, 0.1, 0.17.
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3.11 Capacitated Clustering Problem

The capacitated clustering problem (CCP), is a well-known NP-hard combinatorial

optimization problem that partitions a group of N items into K clusters by imposing

constraint on cluster sizes. This class of problems are also referred to as capacitated

facility location problem. The recent work on facility location problems are either based

on linear programming (LP) or local search-based algorithms. Mostly, they asume hard

assignments as opposed to the probailistic assignment to facilities. See[23], where the

authors have used standard LP relaxation to approximate the optimal solution of the

NP hard problem. In order to solve the CCP we have adopted similar objective function,

but applied probabilistic decoposition instead.

Given the dataset D := {(xi, wi) : xi ∈ Rn, wi > 0, i = 1, · · · , N}, containing N

points, our objective is to partition the data set D into K clusters {Ck : k = 1, · · · ,K}

where each cluster has limited capacity Q = {q1, q2, · · · , qk}. This means that there are

constraints on the cluster sizes,

∑
xi∈Ck

wi = qk, k = 1, · · · ,K, (3.52)

where,
K∑
k=1

qk = W (3.53)

Since the cluster sizes are given and remain constant, the approach defined in the

previous sections won’t work. We formulate the problem as follows:

min

K∑
k=1

yk +

N∑
i=1

K∑
k=1

widk(xi)πk(xi) (3.54)

s.t.
∑
k

πk(xi) = 1, ∀i (3.55)

πk(xi) ≤ yk, ∀i, k (3.56)
N∑
i=1

wi πk(xi) ≤ qkyk, ∀k (3.57)

yk ≤ 1, ∀k (3.58)

πk(xi), yk ≥ 0, ∀i, k (3.59)
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Variable yi indicates whether the cluster is available and πk(xi) indicates the probability

of point xi being assigned to the kth cluster. The first constraint says that for a given

point, the cluster membership probabilities should add up to one. The second constraint

says that if point i is assigned to cluster j then it must be available, and constraint 3

indicates that at most qk demand may be assigned to cluster k.

Solving for a given point x, the object function 3.57 simplifies to,

min
∑
k

vi +
∑
k

wdk(x)πk(x) (3.60)

s.t.
∑
k

wπk(x) = w (3.61)

wπk(x) ≤ qkvk, ∀k (3.62)

vk ≤ 1, ∀k (3.63)

πk(x), vk ≥ 0, ∀k (3.64)

Here w is the total demand (weight) of x, wπk(x) is the total demand assigned to

cluster k, and vi indicates if the cluster k is available. At any time the cluster can be

fractionally available that is 0 < vk < 1. From constraint (56), we can write,

vk =
wπk(x)

qk
(3.65)

Now, substituting the variable vi in 3.60 we get,

min
∑
k

(
1

qk
+ dk(x)

)
wπk(x) (3.66)

and substitute the constraints (3.62) and (3.63) by wπk(x) ≤ qk for each k. clearly this

is equivalent to the other formulation. To enforce the cluster size constraints we take

the assignment probabilities as,

πk(x) =

qk
1 + qkdk(x)

K∑
j=1

qj
1 + qjdj(x)

(3.67)

We compute the centers as a convex combination of the N data points,

(ck)
+ =

N∑
i=1

λkixi k = 1, · · · ,K (3.68)
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where the weights λki are

λki =
wiπk(xi)

qk
N∑
j=1

wjπk(xj)

, k = 1, · · · ,K; i = 1, · · · , N (3.69)

This probabilistic decomposition of the capacitated problem ensures that the total

capacity of the clusters are fully utilized. The idea of the probabilistic decomposition

is that every point belongs to every cluster with a certain probability. This allows the

demand of each point to be distributed among the different cluster according to the

membership probabilities. From (3.68) and (3.69) it is expected that the cluster centers

will be pulled towards the points with higher fractional demand.

3.12 Determining the Spatial Clusters of COVID-19 Cases

At the time of this analysis, there were more than 1,50,000 confirmed cases of COVID-

19 in the United States. New York State was the epicenter of the outbreak. We have

gathered seven days of data from the daily reports of COVID-19 cases made available

by Johns Hopkins University Center for Systems Science and Engineering. For our

analysis we just selected the daily records for New York State. The data consists of

daily counts for the 62 counties in New York State.

The goal was to find a given number of clusters, where each cluster was assigned a

fixed capacity. The capacities here indicate the available hospital beds and the cluster

centers could be the location of these hospitals. This data was aggregated to the level

of counties with 62 data points (counties), each assigned a weight that represent the

count of confirmed cases in that county.

We specified the number of clusters to be 5, and set the capacities to be of propor-

tions 0.2, 0.3, 0.2, 0.2, 0.1 respectively. There were 59,648 confirmed cases. Therefore,

the actual capacities rounded to the next integer were 11930, 17895, 11930, 11930 ,

5965. We used Euclidean distance for this problem, since our data were spatial coor-

dinates. Unlike, hard capacitated facility problems, which assigns an observation to

only one cluster our method perform probabilistic decomposition, and thus allow the

demand of an observation to be distributed across different clusters proportionately
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with its membership probabilities.

The probabilistic cluster assignments by our methods resulted in cluster sizes 11930,

17895, 11929, 11930, and 5965. The proportion of confirmed cases was highly skewed

with long tailed distribution . Most of the confirmed cases were reported in neighboring

counties. As such the centers were greatly pulled towards these hot spots.

3.13 Discussion

The results indicate that overall weighted probabilistic distance clustering compares

favorably to the other methods. In example 1, we illustrated how well the proposed

algorithm could approximate the true clusters when applied on weighted data. Both KL

divergences and ARI indicated that the estimated clusters were in fact very close to the

true clusters. Example 2 was a special case when there is some amount of correlation in

the data and also the clusters tend to overlap. Results showed that EM and weighted

PDQ methods could detect the clusters with very high accuracy. Bayesian method

failed to identify the clusters in this case. In example 3, where the dataset consisted

imbalanced clusters, both w-PDQ and EM methods could closely approximate clusters.

The ARIs for both these methods were very close to one. Similar favorable results were

obtained in example 4.

In the capacitated clustering problem, our results verified the assumptions and con-

straints specified. From the data we observe counties such as New York City, Westch-

ester, Nassau, Suffolk, Rockland, and Orange were hard hit by the outbreak of COVID-

19 pandemic. As expected the cluster centers were largely pulled towards these dense

hotspots. To validate our assumptions, we also applied the method on the same dataset

but assigning each counties somewhat comparable number of cases. In this case we

observed the centers to be uniformly distributed across the entire state. Our future

research would focus on expanding this work on much larger dataset, including the

entire tri-state region as more data are available.

When compared to the EM algorithm, w-PDQ algorithm is computationally less

expensive. EM algorithm is based on maximum likelihood, and depends on the density
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functions in the mixture. Weighted PDQ algorithm makes no assumptions about the

densities and avoids the overhead of computing complex density functions. On the

other hand each EM iteration requires K × N function evaluations to evaluate the

density functions, where K is the number of components in the mixture. Because, EM

iterations are computationally expensive, it is common to use another method, e.g., K-

means, as pre-processor, to get closer to the centers before starting EM. The proposed

method require no such switch and works well even with cold start.

In Bayesian framework, an important factor is the choice of priors. A great deal of

work is required for coming up with a prior that’s well reasoned and for appropriately

summarizing the prior. For models involving many variables and when the data cannot

readily be thrown onto a cluster, the Bayesian method could be prohibitively intensive.

To this end, weighted PDQ algorithm is computationally more efficient and require

no such priors. Although Bayesian methods also perform soft-clustering and allow

overlapping clusters, an important limitation is, as the level of differentiation among the

true clusters decreases, the performance of Bayesian clustering methods also decrease.

Weighted PDQ algorithm uses the power probabilities to address such situations. Power

probabilities tend to push the probabilities to the extreme and avoid getting equal

probabilities.

Lastly, we also point out that for many clustering techniques, the objective function

is not convex or quasi-convex, and may have other stationary points. In w-PDQ cluster-

ing however, the JDF is a montonically decreasing function that guarantees convergence

to a minimum, though not necessarily a global minimum.

3.14 Conclusion

In this paper, we proposed a novel approach called weighted probabilistic distance clus-

tering (w-PDQ) for weighted-data. The method is a based on joint distance function,

which is harmonic mean of distances between a point and the different clusters. For

a given point, the probability of belonging to a cluster depends on its distance to the

center and size of the cluster. Unlike other probabilistic clustering methods, w-PDQ
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clustering is non-parametric and model free. This method is suited for large datasets

due to its ability to handle weighted-data. In order to evaluate the proposed method,

we performed several experiments on simulated data and compared its performance

with other methods. Overall, the results indicate our method performs favorably to

other methods. Our future work will focus on extending the method to an incremental

setting such that it could also be applied on streaming data. We also plan to publish

our R package on CRAN repository thus making it widely available for use by other

researchers.



66

References

[1] C. Iyigun and A. Ben-Israel, “Probabilistic distance clustering adjusted for cluster
size,” Probability in the Engineering and Informational Sciences, vol. 22, no. 4,
pp. 603–621, 2008.

[2] C. Iyigun, “Probabilistic distance clustering,” Wiley Encyclopedia of Operations
Research and Management Science, 2010.

[3] S Sharma, Chapter 7 clustering algorithms. applied multivariate techniques, 1996.

[4] A. K. Jain and R. C. Dubes, Algorithms for clustering data. Prentice-Hall, Inc.,
1988.

[5] B. Everitt and S. L. Landau, “M. 2001. cluster analysis,” Arnold, London, 2001.

[6] A. Scott and M. Symons, “Clustering methods based on maximum likelihood,” Bio-
metrics, vol. 27, no. 2, 1971.

[7] R. Duda, P. Hart, and D. Stork, “Pattern classification. 2nd edn wiley,” New
York, vol. 153, 2000.

[8] G. J. McLachlan and K. E. Basford, Mixture models: Inference and applications to
clustering. M. Dekker New York, 1988, vol. 38.

[9] D. Peel and G. J. McLachlan, “Robust mixture modelling using the t distribution,”
Statistics and computing, vol. 10, no. 4, pp. 339–348, 2000.

[10] C. Fraley and A. E. Raftery, “Model-based clustering, discriminant analysis, and
density estimation,” Journal of the American statistical Association, vol. 97, no.
458, pp. 611–631, 2002.

[11] P. D. McNicholas, “Model-based clustering,” Journal of Classification, vol. 33,
no. 3, pp. 331–373, 2016.

[12] H Stein, R Schwarting, G Niedobitek, and F Dallenbach, “Cluster report: Cdw70,”
Oxford University Press, New York, 1989.

[13] A. Gelman and G. King, “Estimating the electoral consequences of legislative re-
districting,” Journal of the American statistical Association, vol. 85, no. 410, pp.
274–282, 1990

[14] I. Verdinelli and L. Wasserman, “Bayesian analysis of outlier problems using the
gibbs sampler,” Statistics and Computing, vol. 1, no. 2, pp. 105–117, 1991.

[15] M. D. Escobar and M. West, “Bayesian density estimation and inference using
mixtures,” Journal of the american statistical association, vol. 90, no. 430, pp.
577–588, 1995.



67

[16] H. Bensmail, G. Celeux, A. E. Raftery, and C. P. Robert, “Inference in model-based
cluster analysis,” Statistics and Computing, vol. 7, no. 1, pp. 1–10, 1997.

[17] R. J. Hathaway and Y. Hu, “Density-weighted fuzzy c-means clustering,” IEEE
Transactions on Fuzzy Systems, vol. 17, no. 1, pp. 243–252, 2008.

[18] D. Ghosh, J. Cabrera, T. N. Adam, P. Levounis, and N. R. Adam, “Comorbidity
patterns and its impact on health outcomes: Two-way clustering analysis,” IEEE
Transactions on Big Data, 2016.

[19] F. A. Quintana, “A predictive view of bayesian clustering,” Journal of Statistical
Planning and Inference, vol. 136, no. 8, pp. 2407–2429, 2006.

[20] D. A. Binder, “Bayesian cluster analysis,” Biometrika, vol. 65, no. 1, pp. 31–38,
1978.

[21] D. Steinley, “Properties of the hubert-arable adjusted rand index.,” Psychological
methods, vol. 9, no. 3, p. 386, 2004.

[22] S. Wade and M. S. Wade, “Package ‘mcclust. ext’,” Journal of Computational
and Graphical Statistics, vol. 16, pp. 526–558, 2015.

[23] R. Levi, D. B. Shmoys, and C. Swamy, “Lp-based approximation algorithms for
capacitated facility location,” in International Conference on Integer Programming
and Combinatorial Optimization, Springer, 2004, pp. 206–218.

[24] M. Lavine and M. West, “A bayesian method for classification and discrimination,”
Canadian Journal of Statistics, vol. 20, no. 4, pp. 451–461, 1992.

[25] J. Diebolt and C. P. Robert, “Estimation of finite mixture distributions through
bayesian sampling,” Journal of the Royal Statistical Society: Series B (Method-
ological), vol. 56, no. 2, pp. 363–375, 1994.

[26] M. Evans, I. Guttman, and I. Olkin, “Numerical aspects in estimating the pa-
rameters of a mixture of normal distributions,” Journal of Computational and
Graphical Statistics, vol. 1, no. 4, pp. 351–365, 1992.



68

Part III:

Classification on

High-Dimensional Data



69

Chapter 4
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Debopriya Ghosh, Javier Cabrera

Abstract

Ensemble methods such as random forest works well on high-dimensional datasets.

However, when the number of features is extremely large compared to the number

of samples and the percentage of truly informative feature is very small, performance

of traditional random forest decline significantly. To this end, we develop a novel

approach that enhance the performance of traditional random forest by reducing the

contribution of trees whose nodes are populated with less informative features. The

proposed method selects eligible subsets at each node by weighted random sampling

as opposed to simple random sampling in traditional random forest. We refer to this

modified random forest algorithm as “Enriched Random Forest”. Using several high-

dimensional micro-array datasets, we evaluate the performance of our approach in both

regression and classification settings. In addition, we also demonstrate the effectiveness

of balanced leave-one-out cross-validation to reduce computational load and decrease

sample size while computing feature weights. Overall, the results indicate that enriched

random forest improves the prediction accuracy of traditional random forest, especially

when relevant features are very few.
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4.1 Introduction

In recent years unprecedented increase in structural and functional analysis of human

genome have presented enormous opportunities and challenges for machine learning

researchers. High-throughput genomic technologies, including gene expression microar-

ray, single nucleotide polymorphism(SNP) array, microRNA array, RNA-seq, ChIP-seq,

and whole genome sequencing enabled us to detect variations that are associated with

risk of diseases with finer resolution than before. In genomic applications, features

usually correspond to genes, protiens (sequences), or single motifs. Let, n denote the

number of training data samples, p the original feature dimension, the raw feature can be

expressed as a set p-dimensional vectors: x(t) = [x1(t), x2(t), ..., xp(t)]
T , t = 1, 2, ..., n.

The feature dimension (p) can be extremely high, where as the sample size (n), is often

severely limited. For example, in gene expression microarray data, features represent

gene expression coefficients corresponding to the abundance of mRNA in a sample, for

a number of patients. Usually, there are very few samples (often less than 100 patients)

and the number of feature for each sample ranges from 6000 to 60,000. In this extreme

of very few observations on very many features, classical regression framework is no

longer applicable. Firstly, due to the small sample size over-fitting will be induced if

all the features are used in classification/regression model. Secondly, the highly cor-

related structure of genomic data violates the independent assumption of traditional

statistical models. Moreover, many biological mechanisms involve gene-gene interac-

tions or gene networks. In high-dimensional setting, it is not realistic to prespecify such

interaction effects in statistical models, especially high-order interactions. Generally, a

small portion of genomic markers are associated with the phenotypes, and performing

feature selection for high-dimensional, correlated, and interactive genomic data require

sophisticated methodology. This leads to the challenge of “large p, small n” paradigm

in biological big data which cannot be addressed by the widely used strategies such as

deep learning employed in other big data areas.

With vast body of feature selection techniques, the need arises to determine which
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technique to use in a given situation. Based on the evaluation criteria, feature se-

lection algorithms are classified into three categories: 1) filter approaches; 2) wrapper

approaches; and 3) embedded approaches. Wrapper approaches include a learning algo-

rithm in the feature subset evaluation step. The learning algorithm is used as a “black

box” by a wrapper to evaluate the goodness of the selected features. Given a classifier

C, and given a set of features F , a wrapper method searches in the space of subsets

of F , using cross-validation to compare the performance of the trained classifier C on

each tested subset. A filter method, on the other hand, is independent of any learning

algorithm. It does not make use of C, but rather attempts to find predictive subsets

of features using simple statistics from the empirical distribution. For example, an al-

gorithm that ranks features based on mutual information between the features and the

class label. Filter algorithms are computationally less expensive and more general than

wrapper algorithms. However, filters ignore the performance of the selected features on

a learning algorithm. Wrapper algorithms achieve better performance than filter algo-

rithms, but they may require orders of magnitude more computation time. In addition,

in wrapper methods, repeated use of cross-validation on a single dataset can lead to

uncontrolled growth in the probability of finding a feature subset that performs well on

the validation data by chance alone. Embedded methods combine feature selection as

well as classifier learning into a single process. Some embedded methods perform fea-

ture weighting based on regularization models with objective functions that minimize

fitting errors and in the mean time force the feature coefficients to be small or exactly

zero. Methods such as penalized regression, tree-based approaches, and boosting have

been applied to handle high-dimensional problems.

As pointed out in literature, an ideal feature selection algorithm should achieve

an optimal trade-off between predictive performance, i.e., the capacity of identifying

the most relevant/predictive features, and stability, i.e., the robustness of results with

respect to changes in dataset composition. In a problem with over 7000 features, filter-

ing methods have significantly smaller computational complexity compared to wrapper

methods. Previous studies that have analyzed microarray data have used filtering meth-

ods. However, it is also possible to exploit prediction-error-oriented wrapper methods
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in context of large feature space. Wrapper methods has the risk of overfitting due to

the reduced number of instances of microarray data and the small ratio between num-

ber of samples and number of features. Regularization methods trim the hypothesis

space (i.e., the combinatorial space of feature subsets) by constraining the magnitude

of parameters.

In this paper, we address the limitations of traditional RFs in high-dimensional

setting, specifically, “large p small n” paradigm. We propose a novel method called

Enriched Random Forest (ERF), that enhances traditional random forest by applying

weighted random sampling, so that the chances of selecting less informative features are

reduced. Odds of trees containing more informative features being included in the forest

increases. Based on our proposed approach, we obtain a higher number of better base

learners, and thus resulting in better fit. Another novel aspect of our approach is the

effectiveness of balanced leave-one-out cross validation to reduce computational load as

well as decrease the sample size while computing feature weights. This work extends

our preliminary work [1], and addresses the future research goals set forth therein.

The remainder of the paper is organized as follows. A discussion of the related

work is presented in section 4.2. In section 4.3, we discuss the details of the proposed

approach. The experimental evaluation of the proposed approach and discussion of

the results are included in sections 4.4 and 4.5. The conclusion and future work are

presented in section 4.6.

4.2 Related Work

Feature selection is extremely important to address the large number of input features

in high-dimensional supervised learning. It aims at selecting a subset of the original

features, eliminating irrelevant and redundant features while achieving the best for

a predetermined objective – the highest prediction accuracy. Feature selection is a

difficult task mainly due to a large search space. For a dataset with p features, total

number of possible solutions is 2p. The task becomes more challenging as p becomes

large and increases complexity of the problems. An exhaustive search for the best
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feature subset of a given dataset is practically impossible in most situations. Another

important challenge of feature selection is to account for feature interaction problems.

There can be two-way, three-way, or complex multi-way interactions among features.

A feature, which is weakly relevant to the target concept by itself, could significantly

improve the accuracy if it is used together with some complementary features. In

contrast, an individually relevant feature may become redundant when used together

with other features. The principal reasons for feature selection in genomics are: (i)

finding co-expressed genes to build metabolic pathways; (ii) biological relevance of

individual genes for clinical diagnosis; and (iii) enhancement of classifier performance.

In addition, feature selection also help data visualization, reduction of measurements,

storage requirements, as well as reduction of data processing time.

Feature selection methods have received much attention in the classification lit-

erature. Xing et al. [19], reported the application of feature selection methods to

classification problem using microarray data. Their approach was a hybrid of filter and

wrapper approaches. The authors applied a sequence of simple filters called Markov

Blanket Filter, to identify feature subsets for each subset cardinality. Cross validation

was performed to compare between the resulting subset cardinalities. All of the classi-

fiers that were studied – generative Gaussian classifier, discriminative logistic regression

classifier, k-NN classifier, performed significantly better in the reduced feature space

than in the original feature space. The proposed method explicitly eliminated redun-

dant features. The study also compared feature selection to regularization methods.

Results showed that explicit feature selection yields classifiers that perform better than

regularization methods. Feature selection and regularization are not mutually exclusive

and it would be worth considering their combinations.

Genomic data sets contain highly correlated variables, many of them being irrele-

vant for classification purpose. Although feature selection methods identify these noisy

variables, it is to be noted that the term relevant is meaningful only in context of the

objective function of the applied classifier. In addition, these data sets present challenge

due to a large number of gene expression values per experiment and a relatively small
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number of experiments. Czekaj et al. [7], demonstrated that the selected subsets of sig-

nificant genes can vary in cardinality, and due to the redundancy (correlation) of genes,

it is possible to select different minimal subsets of genes, necessary for classification.

However, their interpretation ought to be made cautiously.

Guyon et al. [13], addressed the problem of selection of small subsets of genes from

broad patterns of gene expression data. They used backward elimination procedure

in linear Support Vector Machines (SVM), and referred to as SVM recursive feature

elimination (SVM-RFE). Compared to other wrapper methods, SVM-RFE was scalable

and efficient. Nested subsets of features were selected through sequential backward

elimination, starting with all the feature variables and removing one feature at a time.

At each step, the coefficients of the weight vector w of a linear SVM were used to

compute the feature ranking score.The feature with the smallest ranking score was

eliminated. The method was evaluated on two different cancer databases. Significant

improvements were obtained over the baseline methods. The genes found by SVMs

were biologically relevant in contrast to other methods that select genes correlated with

the separation at hand and not relevant to the phenotype. Another similar study [14]

provided an overview of the state-of-art feature selection methods. Sample applications

for genomic signal processing were highlighted. The authors described the notion of

self-supervision and developed a method called vector index adaptative SVM (VIA-

SVM) for selection of features under self-supervision scenario. VIA-SVM was superior

to SVM-RFE in two aspects: (i) it outperformed SVM-RFE at feature selection in low

dimensions; and (ii) it automatically bounded the features within a smaller range. In

addition, VIA-SVM was insensitive to the penalty factor in SVM training and avoids

the need for a cut-off point to stop the feature selection process. Based on several

experiments on microarray and SNPs data, VIA-SVM when combined with some filter

provided substantial dimension reduction with significantly small decline in accuracy.

Multi-classifier systems exploit the strengths of diverse classifier models to obtain

enhanced performance by their combination. This approach is referred as ensemble

learning paradigm and has been extensively covered in pattern recognition and ma-

chine learning literature. In recent years, significant research efforts have explored the
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extension of this paradigm to the feature selection process. Pes et al. [17], studied the

effects and potential benefits of ensemble feature selection in the context of biomarker

discovery from high-dimensional genomic data. They evaluated the effects of a specific

ensemble approach, namely data perturbation. Data perturbation combines multiple

selectors that exploit the same core algorithm but are trained on different perturbed

versions of the original data. In this study, authors showed how the ensemble implemen-

tation improves the overall performance of the selection process, in terms of predictive

accuracy and stability. Their results indicated that the beneficial impact of the en-

semble approach is inversely proportional to the strength of the method. Only the

least stable/effective methods take advantage of computationally expensive ensemble

setting. They also measured the impact of the ensemble approach on final outcome,

i.e., composition of the selected feature subsets. It turned out that different methods,

when used in the ensemble version, tend to produce similar subsets. However, this does

not explain the fact that their accuracy/stability patterns become almost coincident.

In [4], authors developed a framework for feature selection consisting of ensemble

of filters and classifiers. Five filters based on different metrics were used. Each filter

selected a different subset of features which is used to train and test a specific classifier.

The outputs of these classifiers are then combined by simple voting. In this study,

three well known classifiers were used for the classification task: C4.5, naive-Bayes, and

instance based learner (IBL). The idea to use ensemble was to reduce the variability

of selected features by using filters in different classification domains. The proposed

method was evaluated using ten microarray data sets. The results obtained by the

ensemble method achieved the lowest average error for each of the classifiers tested,

showing the adequacy of the ensemble. In some specific cases, there was a filter that

outperformed the ensemble. However, there was no better filter in general and the

ensemble seemed to be the most reliable alternative for feature selection. The ensemble

achieved best average error for the two classifiers C4.5 and IBL. IBL obtained the best

error rates for 7 out of 10 data sets. For naive Bayes classifier, the results obtained

by the ensemble in terms of average error was very close to the one obtained by best

incremental ranked subset (BIRS), a wrapper method with the disadvantage of higher
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computational cost.

Anaissi et al. [3], introduced ensemble SVM-Recursive Feature Elimination (ESVM-

RFE) for gene selection that employ the concepts of ensemble and bagging used in

random forest. The algorithm adopts backward elimination strategy to recursively

eliminate features. The rationale for building ensemble SVM models using randomly

drawn bootstrap samples from training set was to produce different feature rankings

which would be subsequently aggregated as one feature ranking. Features were elimi-

nated based upon the ranking of multiple SVM models instead of one particular model.

The proposed approach also addressed the problem of imbalanced datasets by con-

structing nearly balanced bootstrap sample. The results of this study showed that

ESVM-RFE increased the classification performance on five microarray datasets com-

pared to state-of-art methods. When applied on the childhood leukaemia dataset,

ESVM-RFE obtained average 9% better accuracy than SVM-RFE, and 5% over ran-

dom forest approach. The genes selected by ESVM-RFE were further explored with

Singular Value Decomposition (SVD) and significant clusters were found with the se-

lected data. Another similar approach has been applied by Duan et al. [11] called

multiple SVM-RFE. Unlike, SVM-RFE method, at each step, the method computes

the feature ranking score from statistical analysis of weight vectors of multiple linear

SVMs trained on sub-samples of training data. The results showed that the method

selected better gene subsets than SVM-RFE and improved classification accuracy.

Random forests (RF) is a popular tree-based ensemble learning method that is

highly adaptive to the characteristics of the data and applies to “large p, small n”

problems. RFs also account for correlation as well as interactions among features. Chen

et al. [6], reviewed the applications and progresses of RF for genomic data, including

prediction, classification, variable selection, pathway analysis, genetic association, and

unsupervised learning. The authors pointed out that a rigorous theoretical work of

RF is needed. Its effectiveness in the non-standard small sample size and large feature

space setting is not fully explored. Theoretical analysis should focus on asymptotic

rates of convergence and answer questions, such as determining optimal values for

RF parameters, mtry and nodesize, and provide ways to modify forests for improved
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prediction performance. Also, trees and forests capture a lot of information about the

data not typically available with other methods. Proximity can be used to quantify

nearness of data points in high dimensions. Interactions between variables can be

examined by studying the splitting behavior of the variables. This study discussed in

detail the ways to utilize RFs for successful application to genomic data analysis.

Uriarte et al. [8], investigated the use of RF for classification of microarray data,

including multi-class problems. They developed a new method of gene selection based

on RF. The study used simulated and nine microarray datasets to compare the per-

formance of RF to other classification methods, such as diagonal linear discriminant

analysis (DLDA), k-NN, and SVM. The goal of the method was to yield smaller subsets

of non-redundant genes while preserving predictive accuracy. The proposed method se-

lected genes by iteratively fitting RFs, and at each iteration building a new forest after

discarding the genes with smallest variable importance. The selected set of genes is the

one that produced smallest error rate. The method used bootstrap technique to assess

prediction error rates. Authors did not recalculate variable importance at each step

because it could result in severe over-fitting. After fitting all forests, the out-of-bag

(OOB) error rates of these forests were compared. The method chose the solution with

smallest number of genes whose error rate is within u standard errors of the minimum

error rate of all forests. When u = 0, it selected the genes that lead to the smallest error

rate, and when u = 1, it was similar to “1 s.e. rule” used in classification trees. The

results showed that this method returned small sets of genes compared to alternative

variable selection methods when applied on simulated and real microarray datasets.

The method did not return sets of genes that are highly correlated. It helped identify

which genes have the largest signal to noise ratio and can be used as surrogates for com-

plex processes involving many correlated genes. This study also examined the effects

of changes in the parameters of random forest and the variable selection algorithm. A

similar approach called guided regularized random forest (GRRF) proposed by Deng

et al. [9] performed feature selection based on the importance score from a RF built

on the complete training data complemented with the information gain in a local node.

The trees in GRRF can be highly correlated and cannot be built in parallel. The guided
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random forest (GRF) [10] addressed this limitation by using the importance scores from

an RF and by having each tree built independently of one another.

In another similar study, Nguyen [16] used a two-stage quality based sampling

method in RF for SNP subspace selection in Genome-wide association studies. The

method applied p-value assessment to determine a cut-off point that separated the

informative and non-informative SNPs in two groups. The informative SNPs were fur-

ther subdivided into two groups: highly informative and weak informative SNPs. When

sampling the SNP subspace for building trees for the forest, only those SNPs from the

two subgroups were considered. The feature subspace always contained highly infor-

mative SNPs when used to split a node at a tree. The authors performed extensive

experiments on two genome-wide SNP datasets and 10 gene datasets to demonstrate

the effectiveness of their proposed method. Results indicated that the proposed method

significantly reduced prediction errors and outperformed most state-of-art variants of

RF. The approach enabled to generate more accurate trees with lower prediction error

and also avoid over-fitting.

Ge et al. [12], developed a feature selection algorithm based on correlation measure-

ment, Maximal Information Coefficient (MIC). This method selected features associated

with phenotypes independently of each other and used nearest neighbor classification

algorithm. Comparative study based on 17 datasets indicated that the method per-

formed as well or better than existing methods, and significantly reduced the number

of selected features. The selected features also appeared to have biomedical relevance

to the phenotypes in the literature.

In this paper, we propose a novel method called Enriched Random Forest (ERF),

that performs feature selection by sampling the variables used to partition each node

according to a given set of weights assigned to each variable. As pointed out previously,

in traditional RF, simple random sampling is used for selecting the subset of eligible

features at each node, thus almost all these subsets are likely to contain a preponderance

of non-informative features. To overcome this limitation of traditional RF, ERF applies

weighted random sampling, assigning lower weight to the less informative features. If

the weights of all the variables are set to one then the algorithm becomes standard
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random forest and if the weight of a variable is set to zero then the variable will be

excluded from the training data. To evaluate our method, we applied ERF to various

gene expression dataset and compared its performance to that of traditional RF.

4.3 Enriched Random Forest

4.3.1 Background

Random Forest (RF) proposed by Breiman (2001) adds an additional layer of random-

ness to bagging that builds on large collection of de-correlated trees, and then average

them. In addition to using different bootstrap samples for constructing each tree, in

RF each node is split using the best split among all variables. The performance of RF

is similar to boosting as well as they are simple to train and tune. The essential idea

is to average many noisy but approximately unbiased models, and hence reduce the

variance. Trees are used as the base learner in bagging, since they can capture complex

interaction structures in the data, and if grown sufficiently deep, have relatively low

bias. Also, trees are inherently noisy, so they benefit greatly from averaging.

In bagging, successive trees do not depend on earlier trees. Each tree is constructed

independently using a bootstrap sample of the training data and is identically dis-

tributed (i.d.). Thus, the expectation of an average of B trees is the same as expec-

tation of any one of them. This means the bias of bagged trees is the same as that of

individual trees, and the only improvement can be achieved through variance reduction.

An average of B i.i.d. random variables, each with variance σ2 , has variance 1
Bσ

2. If

the variables are simply i.d. with positive correlation ρ, the variance of the average is:

ρσ2 +
1− ρ
B

σ2 (4.1)

As B increases, the second term diminishes, and the size of the correlation between

pairs of bagged trees limits the benefits of averaging. RF improves variance reduction

by reducing the correlation between the trees without increasing the variance too much.

This is achieved in the tree growing process through random sampling of the predictor

variables. When growing a tree on bootstrapped dataset, before each split, m ≤ p of
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the predictor variables are selected at random as candidate for splitting. For regression,

the default value for m is bp3c and the minimum node size is five. For classification, the

default value for m is b√pc and the minimum node size is one. After B such trees are

grown, the RF predictor (regression) is given by:

f̂Brf (x) =
1

B

B∑
b=1

T (x; Θb) (4.2)

When used for classification, random forest obtain a class vote from each tree, and

then classifies using majority vote.

4.3.2 Out of Bag Samples

An important feature of RFs is its OOB samples. For each observation zi = (xi, yi),

random forest predictor is constructed by averaging only those trees corresponding to

bootstrap samples in which zi did not appear. An OOB error estimate is identical to

that obtained by N-fold cross validation. Hence, unlike many other nonlinear estima-

tors, RF can be fit in one sequence, with cross validation being performed on the way.

Once, the OOB error stabilizes, the training can be terminated.

4.3.3 Variable Importance

RF also use the OOB samples to construct variable importance measure, to measure

the prediction strength of each variable. When the bth tree is grown, the OOB samples

are passed down the tree, and the prediction accuracy is recorded. Then, the values for

the jth variable are randomly permuted in the OOB samples, and the accuracy is again

computed. The decrease in accuracy as a result of this permuting is averaged over all

trees, and is used as a measure of the importance of variable j in the RF.

4.3.4 Limitations of Random Forest

Although traditional RF works well in datasets with many features (large p), when

the percentage of truly informative features is small, such as with DNA microarray

data, its performance tends to decline significantly. In previous studies, Moechars et al.
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[15], and Raghavan et al. [18], illustrated this point using an experiment conducted to

study whether mice whose Slc17A5 gene has been knocked out could be distinguished

from wild type mice at the gene expression level. Gene expression measurements were

taken on newborn (0-day-old) mice as well as on 18-day-old mice. At day 0, there were

no obvious occurrence of any phenotypic variations in the knockout mice but subtle

effects would have already begun at the cellular level. By day 18 phenotypic variations

in the knockout mice are evident with observable morphological alterations such as

defects in myelination. The separation of the 18-day-old mice is straightforward both

physiologically and with gene expression data. On applying traditional RF, an out-of-

bag error rate of less than 10% is obtained. On the other hand, it is a challenge to

seprate the newborn mice, not only physiologically, but even with gene expression data;

the out-of-bag error rate for RF is over 50%.

Let us consider a situation with p features, of which only H are informative. Then,

if at any node m features are selected by resampling randomly with equal weights, the

probability distribution of the number of informative features selected is binomial with

m trials and probability π = H
p . The mean number of informative features selected at

each iteration is µ = πm. Since π is typically very small, so will µ be. For example,

if H = 100, p = 10, 000 and m = p1/2 = 100, the resulting µ is only one informative

feature per node. The trees built using such nodes will have low accuracy and overall

performance of the ensemble will suffer. Thus, in situation like this, traditional RF

algorithm can be considerably enhanced by reducing the contribution of trees whose

nodes are populated by less informative features. To some extent, this can be achieved

by pre-filtering, but here we develop a novel adjustment that has demonstrated superior

performance when applied on high dimensional genomic datasets with too few truly

informative features. We choose eligible subsets for splitting at each node by weighted

random sampling instead of simple random sampling, with the weights tilted in favor

of the informative features. This results in Enriched Random Forest.
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4.3.5 Enriched Random Forest Algorithm

Enriched Random Forest enhances the performance of basic Random Forest method

by reducing the contribution of trees whose nodes are populated by less informative

features. ERF uses weighted random sampling instead of simple random sampling, so

that less informative features are less likely to get selected and the odds of trees con-

taining more informative features being included in the forest increases. Consequently,

the ERF comprises of a higher number of better base learners, resulting in a better fit.

ERF algorithm samples the variables used to partition each node according to a set

of given weights assigned to each variable. If the weight of a variable is zero then the

variable is excluded from the training.

Given a training set X consisting of n observations, an outcome variable Y , and p

features, a tree is constructed as: a feature x and a threshold t that splits X into two

subsets that are maximally distinct according to a specified criterion are selected from

all features of X and all possible values of t. The training set is then split into the two

buckets XL and XR depending on whether or not x < t. This procedure is repeated

with each of XL and XR using another (x, t) combination until no further splitting

is possible. In a random forest, a tree, rather than being trained on the entirety of

the training set, is trained only on a sample of n observations drawn at random with

replacement from the complete set of n observations. Additionally, when determining

which feature to split on at each node, only a subset of m of the p features (usually

m = p1/2) are considered eligible; this subset is drawn at random with out replacement

independently for each node from the complete set of p features. A RF is an ensemble

of R number of such trees, where each tree is called a base learner. For classification,

classes are assigned to test cases by majority vote: when given a test case, each tree

assigns it a class according to its classifier; this information is collated and overall

the forest assigns it the majority class. For regression, the outcome for a test case

is predicted as the average of the values predicted by each tree. ERF uses weighted

random sampling instead of simple random sampling. Weighting is done by scoring each

feature based on its ability to separate the groups, e.g. via a t-test or chi-square test,
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and using these scores to assign weights, wi, so that the features that most separate

the groups are assigned higher weights. Once the weights are determined, at any node,

the subset of m eligible features is selected from the p features using weighted random

sampling with weights wi rather than simple random sampling. Below is an overview

of our approach, followed by a detailed discussion of the feature scoring technique.

1. We split the given n observations with p variables randomly into two samples:

in-bag samples (68% of n) and out-of-bag samples (32% of n).

2. Next, build a tree on the in-bag sample using the Classification and Regression

Trees (CART) algorithm ( or use any alternative splitting criterion) with two

modifications.

(a) To perform the split at each node, we use ”mtry” variables (usually
√
p or

p
3) selected using the weight vector of probabilities W .

(b) The complete tree is built without pruning.

3. We use the tree built using the in-bag samples to predict the outcome variable

for the out-of-bag samples.

4. Steps 1-3 are repeated at least N = 1000 times and the out-of-bag predictions

are stored in a matrix of dimension n × N where the entries for the in-bag ob-

servations of each column are missing values. If the response is categorical, we

calculate for each row the most frequent prediction and assign that prediction to

the observation of that row. In case of continuous response, the predicted value

for each observation/row equals average of that row.

4.3.6 Weighting the Features

The key to ERF is to score each feature based on how well it separates the groups.

Such score is generated by computing the correlation between the predictor variable

and the response when both are of continuous numeric type. If the response is a binary

variable and the predictor is continuous, we test each feature for a group mean effect

using two sample t-test and one-way anova. When both response and predictor are
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categorical, we perform chi-square independence test to determine significant difference

between the expected frequencies and the observed frequencies in one or more categories.

Next, we obtain a p-value from these significance tests, small p-value indicates greater

separation and large p-values indicate less separation. However, to weight using the

p-values themselves would fail to take into account: (i) the multiplicity of tests being

performed; and (ii) the small sample sizes typical of microarray experiments. To adjust

for the multiplicity problem, we compute the weights based on q-values, which are

calculated from the p-values as: qi = mink≥1{min((p/k)pval(k), 1)}, where p(i) and

q(i) are the p-value and q-value associated with the feature with i-th smallest p-value.

The q-values provide false discovery rate (FDR) adjusted measures of significance for

the features and are in the same order as the p-values. In addition, the use of q-

values instead of p-values help lessen the likelihood of overfitting in situations with no

separation of the data into groups. If p-value based weights were used, some genes by

chance would have small p-values and would wrongly be assigned higher weights. This

would result in ERF mistakenly implying a separation. If q-value based weights were

used, all genes would be assigned equal weights and ERF would not find a separation.

The standard way to compute weights of the predictor variable was by computing the

logarithm of q-values. For applying a steeper transformation, we could apply W = 1/Q.

Based on this weighting, features with less separability will get zero weight and features

with high separability will get large weights. To adjust for (ii), we used Conditional

t-test (Ct) [2] instead of usual t-test since it is likely to generate a better ranking of

features. The usual t-test has low power and thus low discriminatory ability when the

sample size is small.

Error rates could be underestimated if the weights are calculated just once based

on all the samples than if they were determined separately for each tree based on only

the in-bag samples. But, this would increase computational burden and render the

weights less well determined than if they had been calculated outside the loop using

all the samples. Here, we also implement another variant of ERF called ERF-CV

that perform balanced leave-one-out cross-validation instead of bagging to lighten the

computational load and to decrease the sample size when determining weights. Let
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Algorithm 2 Algorithm for Enriched Random Forest

Input: A training set S = (x1, y1), ..., (xN , yN ), features F , and the number of trees in
forest B

Output: The learned forest H
1: function Enriched Random Forest (S,F )

Initialisation :
2: H ←− φ

LOOP Process:
3: for i = 1 to B do
4: S(i) ←− A bootstrap sample S
5: hi ←− Randomized Tree Learn (S(i),F )
6: H ←− H ∪ {hi}
7: end for
8: return H
9: end function

10: function Randomized Tree Learn (S(i), F )
11: At each node
12: W ←− Compute Weight (S(i), F )
13: f ←− Subset of F using weighted random sampling
14: Split on best feature in F
15: return The learned tree h
16: end function

J = R/N . In ERF-CV, in J of the R trees,one observation is set aside as out-of-bag

test set, the weights are calculated based on the N−1 in-bag cases and a tree is derived

based on these in-bag cases. The prediction is done on the OOB case. This is repeated

with each of the other cases. Less computation is required for ERF-CV than for ERF

since weights are calculated only N times rather R times.

4.4 Experimental Evaluation

We implemented the proposed approach on different microarray datasets to evaluate its

effectiveness in both regression and classification setting as compared to the traditional

RF.

4.4.1 Regresion

Dataset 1: RNA Data

This dataset contain gene expression of 25000 genes for 100 observations. In such
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high-dimensional datasets, it is supposed that a lot of variables are non-informative and

that there exist unknown groups of highly correlated predictors. Applying the ERF

algorithm, we perform feature selection in way such that the subset of eligible features

at each node contain a preponderance of truly informative features. We split the data

into train and test sets based on i the suggested train and test indices included in the

data file. Here, we compute “pseudo R-squared” as indicated by Breiman (2001) [5].

Generally, explained variance (R2) is defined as: R2 = 1−
∑

((ŷ−ȳ)2)/
∑

((ȳ−y)2), and

takes value between 0 and 1. On the other hand “pseudo R-squared” is defined as: R2 =

1−(Mean Squared Error)/var(y), which, mathematically can produce negative values.

A simple interpretation of negative R2, is that we are better off predicting any given

sample as equal to overall estimated mean, indicating very poor model performance.

In random forests, there is no need for cross-validation or a separate test set to

get an unbiased estimate of the test set error. It is estimated internally. Each tree is

constructed using a different bootstrap sample from the original data. About one-third

of the cases are left out of the bootstrap sample and not used in the construction of the

kth tree. Each case left out in the construction of the kth tree is used to estimate the

error. This are called out-of-bag samples. However, our implementation also provides

the flexibility to carry out cross-validation applying hold-out approach. We compared

our proposed method to traditional random forest using out-of-bag samples as well

as hold-out approach. Table 1. illustrates the performance of enriched random forest

in contrast to traditional RF when applied to the rnadata. Dataset 2: Toxicity Data

Table 4.1: Predictive Performance of ERF and RF on RNA Data

OUT-OF-BAG HOLD-OUT SET

Methods MSE R2 MSE R2

Enriched Random Forest 3.87 0.15 3.46 0.13

Traditional Random Forest 4.70 -0.08 3.86 -0.12

Next, we also applied the method on another similar gene expression data, liver.toxicity,

available in the R package mixOmics. This is a real dataset from a study by Heinloth

et al.(2004), in which four male rats of the inbred strain Fisher 344 were exposed to

different doses of acetaminophen (non toxic dose 50 or 100mg/kg), moderate toxic dose
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(100mg/kg), and severe toxic dose (2000 mg/kg) in a controlled experiment. Necrop-

sies were performed at different hours after exposure (6,18,24, and 48 hours) and the

mRNA from the liver was extracted. In the original study, 10 clinical variables contain-

ing markers of liver injury were measured. However, the dataset used in our analysis

contains: (i) a data frame, called gene, of size 64 rows representing the subjects and

3116 columns representing explanatory variables which are gene expression levels; and

(ii) a vector, called clinic, with 64 rows and 1 column, one of the 10 clinical variables for

the same 64 subjects: more precisely, the variable named ALB.g.dL, which corresponds

to the albumin level. Table 2. illustrates the performance of enriched random forest in

contrast to traditional RF when applied to the liver.toxicity data.

Table 4.2: Predictive Performance of ERF and RF on Liver Toxicity Data

OUT-OF-BAG HOLD-OUT SET

Methods MSE R2 MSE R2

Enriched Random Forest 0.04 0.4 0.02 0.7

Traditional Random Forest 0.05 0.24 0.02 0.62

4.4.2 Classification

Dataset 3: Slc17A5 Data

For classification task, we use the Slc17A5 Day 0, Slc17A5 Day 10, and Slc17A5 Day

18 data. These datasets capture gene expression measurements of 45,101 genes for 12

samples belonging to two separate classes taken on newborn, 10-day-old, and 18-day-

old mice respectively. Slc17A5 Day 0 dataset is the primary dataset for our evaluation.

The Slc17A5 Day 18 dataset, which has unequivocal separation of classes, is used

to assess the performance of ERF when there is strong signal. The Slc17A5 Day 10

dataset captures an intermediate stage. In addition, we also created artificial datasets

by random permutation of the Slc17A5 Day 0, Slc17A5 Day 10, and Slc17A5 Day 18

datasets. These datasets were used to verify that the method is not overfitting. If the

weighting is not done carefully, it is possible to find spurious classifications in datasets

that have no true separation.

In classification, the out-of-bag data is used to get a running unbiased estimate
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of the classification error as trees are added to the forest. Each case left out in the

construction of the kth tree is included in the out-of-bag data to get a classification for

the kth tree . In this way, a test set classification is obtained for each case in about

one-third of the trees. At the end, take the class that got most of the votes every time

case n was in out-of-bag data. The proportion of times the predicted class is not equal

to the true class of n averaged over all cases is the out-of-bag error estimate. Table 3.

display the results of enriched random forest and traditional RF when applied to the

Slc17A5 gene expression measured at day 0, day 10, and day 18.

Table 4.3: Predictive Performance of ERF and RF on
Slc17A5 Gene Expression Data

Day 0 Day 10 Day 18

Methods OOB Err. Rate OOB Err. Rate OOB Err. Rate

ERF 0.08 0 0

Traditional RF 0.58 0.47 0

The results on the permuted datasets are presented in Table 4.

Table 4.4: Predictive Performance of ERF and RF on
Slc17A5 Gene Expression Data

Day 0 Day 10 Day 18

Methods OOB Err. Rate OOB Err. Rate OOB Err. Rate

ERF 0.75 0.73 0.75

Traditional RF 1 0.8 0.83

Dataset 4: SRBCT Data

Our method is also applicable when the response variable has multiple groups. Here, we

applied our proposed method on the SRBCT data available in the R package mixOmics.

This real classification dataset is a small version of the small round blue cell tumors of

childhood data and contains the expression measure of genes measured on 63 samples.

The dataset is composed of: (i) a data frame, called gene, of size 63 × 2308 which

contains the 2308 gene expressions; and (ii) a response factor of length 63, called class,

indicating the class of each sample (4 classes in total). To verify that our method is not

overfitting we performed y-randomization test. The values of response variable (class)

are randomly ascribed (scrambled) to different samples, while the descriptors values
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(genes) are left intact. Scrambled data are then used for training the model. The test

indicate the quality of obtained models in comparison to chance models derived from

random data. The results are displayed in Table 5.

Table 4.5: Predictive Performance of ERF and RF on
SRBCT Gene Expression Data

Original Data Scramled Data

Methods OOB Err. Rate OOB Err. Rate

ERF 0.01 0.67

Traditional RF 0.01 0.75

We also performed similar experiments to compare the performances of ERF-CV

and ERF on original and scrambled Slc17A5 Day 0 and Slc17A5 Day 18 data. ERF

obtained error rates of 0.17 and 0.00 on original Slc17A5 Day 0 and Slc17A5 Day 18

datasets respectively. ERF-CV obtained 0.08 and 0.00 on original day 0 and day 18

data. On the other hand, on scrambled datasets ERF achieved an error rate of 0.83 and

0.68, while ERF-CV obtained 0.75 and 0.42 on day 0 and day 18 datasets respectively.

4.5 Discussion

Enriched Random Forest works best when applied to datasets that have subtle signal. If

the signal were strong or non-existent, both ERF and RF would produce essentially the

same result. Table 1 and 2, display the results of ERF when applied to two such datasets

RNA data and liver.toxicity data. They show that ERF outperforms traditional RF

in terms of Mean Square Error (MSE) and R2. When applied to the RNA data, ERF

achieves out-of-bag MSE of 3.87 in contrast to traditional RF which achieves out-of-

bag MSE of 4.70. The pseudo-R2 of ERF was found to be 0.15 whereas for traditional

RF it was -0.08. In hold-out set approach, ERF and traditional RF obtained MSE

of 3.46 and 3.86 respectively. The pseudo-R2 for ERF and RF were 0.13 and -0.12

respectively. As explained previously, negative value of R2 indicate that we are better

off predicting any given sample as equal to overall estimated mean, indicating very

poor model performance. Therefore, ERF performs well in comparison to traditional

random forest when the percentage of truly informative feature is very small (i.e., the
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signal is subtle). Traditional RF have little or no predictive power in such situation.

Similarly, when applied on liver.toxicity data ERF obtained out-of-bag MSE of 0.04

and pseudo-R2 of 0.4. Traditional RF, on the other hand, obtained out-of-bag MSE

of 0.05 and pseudo-R2 of 0.24. In hold-out set approach, MSE for both ERF and RF

was found to be 0.02, and pesudo-R2 of ERF and RF was found to be 0.7 and 0.6

respectively. When there is true signal in the data, enriched random forest performs

consistently equally or better than standard random forest.

For classification task, we compare the out-of-bag error rates of ERF and traditional

RF on three separate microarray datasets – Slc17A5 Day 0, Slc17A5 Day 10, and

Slc17A5 Day 18. A good classifier should have low out-of-bag error rates for original

datasets and high out-of-bag error rate for scrambled datasets. Table 3, display the

results of ERF and traditional RF on the original Slc17A5 datasets. The out-of-bag

error rates for ERF were 0.08, 0, and 0 when applied to Day 0, Day 10, Day 18 gene

expression measurement data. Traditional RF obtained error rate of 0.58 on Day 0, 0.47

on Day 10, and 0 for Day 18 measurements. At day 0, the phenotypic variations in the

knockout mice were very subtle and mostly at the cellular level. By day 18 phenotypic

variations are evident with observable morphological alterations. The separation of

the 18-day-old mice is therefore more straightforward as the genes are fully expressed.

Day 10 is an intermediate stage in the development process. Table 4, illustrates the

performance of ERF compared to traditional RF on scrambled datasets. The out-of-bag

error rates for ERF were 0.75, 0.73, and 0.75 when applied to day 0, day 10, day 18

measurements data. Traditional RF had error rate of 1, 0.8, and 0.83 on day 0, day 10,

and day 18 data. These high out-of-bag error rates validate that ERF does not overfit

unlike many other classifiers. In case of multiple groups, we evaluated our proposed

approach using the SRBCT gene expression dataset. Our results indicate that both

ERF and traditional RF perform equally well on this dataset, achieving an out-of-bag

error rate of 0.01. To test for overfitting, we performed y-randomization test and found

that the out-of-bag error rate increased significantly – ERF (error rate = 0.67) and RF

(error rate = 0.74).

Our experiments also confirmed that ERF-CV performed equally compared to ERF
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and were both significant improvements over traditional RF. By large, the ERF and

ERF-CV error rates were similar to each other. Thus, ERF-CV could be more useful in

practice since it is less computationally intensive and less prone to small sample sizes.

4.6 Conclusion

In this paper, we proposed a novel approach to enhance the traditional random for-

est algorithm to better perform in “large p, small n” paradigm. In contrast to the

traditional RF, our proposed ERF method uses weighted random sampling to select

subsets that has preponderance of informative features for splitting at each node. We

extensively evaluated the effectiveness of our approach using several high-dimensional

genomic datasets. Our main contribution is two-fold: (i) We applied weighted random

sampling instead of simple random sampling, so that chances of selecting less informa-

tive features are reduced and odds of tree containing more informative features being

included in the forest increases. Overall, our results indicate that ERF outperformed

traditional RF when the signal is subtle. This means that only a small fraction of the

features are truly informative. In case where the signal is strong and the data is eas-

ily separable ERF performed consistently equally and better than traditional RF. (ii)

We also demonstrated how ERF-CV perform balanced leave-one-out cross-validation

instead of bagging to lighten the computational load and decrease the sample size when

determining weights.

We have extended the work of Amartunga et. al [1] which discussed ERF only in

the two-group classification context. Here, we have proposed an extension to the case

of multiple groups. In addition, we incorporated the idea of applying ERF in regression

setting. Our implementation also addresses the challenge associated with variables that

have mixed data types. We have applied appropriate statistical significance tests based

on the data type of the predictor and response variables. Our future work will focus

on further improvement in the achieved accuracy of the prediction model. In multi-

nomial classification, complexity grows as the features that separate any two groups

could differ substantially from the features that separate any two other groups. A pos-

sible direction to pursue is to possibly involve collation of multiple pairwise analyses.
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We conjecture that this idea could be incorporated into other ensemble and machine

learning techniques such as linear discriminant analysis, logistic regression, and SVM.

Currently, we are in the process of having our code as an R package that will

implement the proposed methodology, thus making it widely available for use by other

researchers.
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Dieder and Göhlmann, Hinrich WH and Amaratunga, Dhammika, “The high-level
similarity of some disparate gene expression measures”, Bioinformatics, 23, 22,
3032-3038.Oxford University Press, 2007.

[19] Xing, Eric P. and Jordan, Michael I. and Karp, Richard M., “Feature selection for
high-dimensional genomic microarray data”, ICML, 1, 601-608, 2001.


