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ABSTRACT OF THE DISSERTATION

Methods of Temporal Differences for Risk-Averse Dynamic
Programming and Learning

By Ümit Emre Köse

Dissertation Director:

Andrzej Ruszczyński

Stochastic sequential decision-making problems are generally modeled and solved as Markov

decision processes. When the decision-makers are risk-averse, their risk-aversion can be incor-

porated into the model using dynamic risk-measures. Such risk-averse Markov decision pro-

cesses can be theoretically solved by specialized dynamic programming methods. However,

when the state space of the system becomes very large, then such methods become impractical.

We consider reinforcement learning with performance evaluated by a dynamic risk mea-

sure for Markov decision processes. We use a linear value function approximation scheme and

construct a projected risk-averse dynamic programming equation that involves this scheme. We

study the properties of this equation. To solve this equation, we propose risk-averse counterparts

of the methods of temporal differences and we prove their convergence with probability one. We

also perform an empirical study on a complex transportation problem where we demonstrate that

the risk-averse methods of temporal differences outperform the well known risk-neutral methods

in terms of average profit over time.
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Chapter 1

Preliminaries

1.1 Introduction

Markov decision processes (MDPs) are well known instruments in modeling and solving se-

quential decision making problems with stochasticity [5, 34, 57]. In the classical sense, the

goal of an MDP is usually to minimize the expected cost over a finite planning horizon or

expected discounted cost over an infinite horizon; there are models minimizing the expected

undiscounted cost over an infinite horizon in problems having a Markov chain with transient

nature [57]. MDPs have various applications such as in stochastic shortest path problems [7]

and optimal stopping problems [18, 25, 26, 57].

Traditional MDP models, although effective for small to medium size problems, suffer from

the curse of dimensionality in problems with large state space. Approximate dynamic program-

ming approaches try to tackle the curse of dimensionality and provide an approximate solution

of an MDP (see [54] for an overview). Such methods usually involve value function approxi-

mations, where the value of a state of the Markov process is approximated by a simple, usually

linear, function of some selected features of the state [6].

Reinforcement learning methods [69, 54] involve simulation or observation of a Markov

process to approximate the value function and learn the corresponding policies. The first stud-

ies attempted to emulate neural networks and biological learning processes, learning by trial

and error [48, 29]. Some learning algorithms, such as Q-Learning [75, 76] and SARSA [61],

follow this idea. One of core approaches in reinforcement learning is the method of temporal

differences [68], known as TD(λ ). It uses differences between the values of the approximate

value function at successive states to improve the approximation, concurrently with the evolu-

tion of the system. TD(λ ) is a continuum of algorithms depending on a parameter λ ∈ [0,1]

which is used to exponentially weight past observations. Consequently, related methods such as
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Q(λ ) [75, 51, 52, 60] and SARSA(λ ) were developed [61, 60]. The methods of temporal dif-

ferences have been proven to converge in the mean in [20] and almost surely by several studies,

with different degrees of generality and precision [51, 21, 73, 36, 74].

We introduce risk models into temporal difference learning. In the extant literature, three

basic approaches to risk aversion in MDPs have been employed: utility functions (see, e.g.,

[37, 38, 17, 22, 31, 4, 39]), mean–variance models (see. e.g., [78, 30, 46, 1, 13]), and entropic

(exponential) models (see, e.g., [35, 47, 8, 19, 24, 43, 4]). Our research is rooted in the theory

of dynamic measures of risk, which has been intensively developed in the last 15 years (see

[66, 58, 59, 32, 14, 63, 3, 53, 41, 40, 15] and the references therein).

In [62], Markov dynamic risk measures were introduced, specially tailored for the MDPs.

It allowed for the development of dynamic programming equations and corresponding solution

methods, generalizing the well-known results for the expected value problems. These ideas were

successfully extended to undiscounted problems in [12, 11], partially observable and history-

dependent systems in [28, 27], and further generalized in [44, 67].

A number of works introduce models of risk into reinforcement learning: exponential util-

ity functions [10, 9] and mean-variance models [71, 56]. Few later studies propose heuristic

approaches involving coherent risk measures and their mean-risk counterparts [16, 70]; these

studies employ policy gradients and use them in actor-critic type algorithms. Distributed policy

gradient methods with risk measures were proposed in [45]. Model-related uncertainties are

discussed in [72].

In this study, we use Markov risk measures of [62] in conjunction with linear approxima-

tions of the value function. We provide a projected risk-averse dynamic programming equation

and the analysis of its properties. We develop the risk-averse methods of temporal differences

in single-step and multi-step case and their convergence analyses. We demonstrate the perfor-

mance of these methods on an empirical study involving a transportation problem.
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1.2 Outline of the Dissertation

The first chapter is dedicated to provide a background and lay the preliminaries of the Markov

decision processes, risk-neutral and risk-averse, and to briefly mention the risk-neutral methods

of temporal differences. In Chapter 2, we develop the risk-averse projected dynamic program-

ming equation with a linear value function approximation, in which we rely on a transition risk

mapping instead of conditional expectation that is used in the risk-neutral case. We utilize the

dual representation of the coherent measures of risk to develop the idea of distortion coefficient

and use it to show the existence of a unique fixed point to the projected dynamic programming

equation. In Chapter 3, we generalize the well-known TD(λ ) algorithm [68] to the risk-averse

case in order to approximately solve the projected risk-averse dynamic programming equation.

Chapter 4 includes a discourse which shows that the risk-averse methods of temporal differ-

ences, for all selections of λ , converge to the fixed point of the projected risk-averse dynamic

programming equation under mild conditions on the degree of risk-aversion inherent to the un-

derlying coherent measure of risk. We compare risk-averse and risk-neutral methods of temporal

differences in Chapter 5 on an empirical study involving a practical transportation problem and

illustrate the ways in which the risk-averse methods outperform the risk-neutral ones. Chapter

6 includes our conclusion and further discussion.

1.3 Markov Decision Processes

Markov Decision Processes (MDPs) are well known tools to model and solve sequential decision

processes under uncertainty [5, 34, 57]. In most of such problems a discrete time setting t =

0,1,2 . . . is assumed. Such a stochastic system, at a given time t, is at a state it within the state

space X with n states, and depending on the action ut taken within the action set U (it) ⊂

U associated with state it , it moves to state it+1 ∈X with probability Pit ,it+1(ut). The action

space U can be interpreted as the space of all possible actions in all possible states. During a

transition, a cost c(it ,ut) depending on the state it and action ut is incurred, where c : X ×U →

R; the cost may also depend on the next state it+1. Markov decision processes can have a finite or

infinite time horizon, and usually the objective is to minimize the total cost in the finite horizon

case, and the discounted total cost in the infinite horizon case. The finite horizon case has the
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objective

JT =E
[ T

∑
t=0

c(it ,ut)
]

(1.1)

whereas in the infinite horizon case the objective is to minimize

J∞ =E
[ ∞

∑
t=0

α
t−1c(it ,ut)

]
, α ∈ (0,1). (1.2)

The key consideration in a Markov decision process is to determine what is called a policy, that

is, a rule determining actions based on the observations gained so far. In the models mentioned

earlier, a Markov policy is optimal. A Markov policy is a collection of rules πt : X → U

that prescribe an action to take at time t for every state in X . Thus, the goal is often to find

a Markov policy that minimizes either (1.1) or (1.2) depending on whether the problem has a

finite or infinite time horizon. Throughout the rest of the dissertation, we will mostly focus on

the infinite horizon case, where the optimal policy is known to be stationary.

Once a Markov policy π is fixed, then the process becomes an ordinary Markov chain, since

the decision is determined by the state. This Markov chain has transition probabilities Pπ
i j =

Pi j(π(i)), i, j ∈X , and cost function cπ(i) = c(i,π(i)), i ∈X . Since we are now dealing with

an infinite horizon setting, it is possible to define a value function vπ : X → V associated with

policy π where V is the space of all real functions that are defined over X . This function stores

the total expected discounted cost that will be observed starting from a state under policy π .

Namely, it is defined as

vπ(i) =E
[ ∞

∑
t=0

α
tc(it ,π(it))

∣∣∣ i0 = i
]
.

The value function defined in such a way satisfies what is called the policy evaluation equation

vπ(i) = cπ(i)+α ∑
j∈X

Pπ
i j vπ( j), i ∈X .

This equation is linear, and if we treat vπ and cπ as vectors, we can write this equation compactly

as

vπ = cπ +αPπvπ . (1.3)

For a given policy π , the value function satisfying the policy evaluation equation, if the state

space is small enough, can be found using traditional dynamic programming methods such as
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value iteration [5]. Then the value function that is found can be used to improve upon the current

policy, and then a new value function can be found which satisfies the policy evaluation equation

under the new policy. This idea is called policy iteration [34]. In a policy iteration scheme, the

premise is to be able to enumerate all of the states in the state space. For a given value function

vπ , the new policy π is constructed with actions that satisfy the following

π(i) ∈ argmin
u∈U (i)

{
c(i,u)+α ∑

j∈X
Pi j(u)vπ( j)

}
, i ∈X .

The traditional value iteration and policy iteration methods assume that we are able to enumerate

the state space X , and they become impractical when the state space is very large.

1.4 Risk-Neutral Approximate Dynamic Programming

The impracticality mentioned at the end of the Section 1.3 is commonly circumvented using

what is called a value function approximation. In a setting where the state space is too large,

one may not be able to express a value function or use it in the iterative methods previously men-

tioned. In this section we recall the well-known risk-neutral approximate dynamic programming

approaches such that their contrast with the novel risk-averse methods are more pronounced.

1.4.1 Projected Dynamic Programming Equation

Instead of mapping every state i ∈X to a real number using a value function, it is possible to

assume that each state i ∈X has a number of relevant features ϕ j(i) ∈R, j = 1, . . . ,m, where

m� n, and that the value vπ(i) of a state can be approximated by a linear combination of its

features:

vπ(i)≈ ṽπ(i) =
m

∑
j=1

r jϕ j(i), i ∈X . (1.4)

From now on, we suppress the superscript π , because most of the considerations focus on eval-

uating a fixed policy. We define the matrix of the features of all states, namely

Φ =



ϕ>(1)

ϕ>(2)
...

ϕ>(n)


.
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Now we can write our approximation as v ≈ ṽ = Φr. The goal is to emulate (1.3) with the

approximate value function. However, we may observe that the right hand side of the equation,

c+αPΦr, may not be represented as a linear combination of the features. Therefore, we need to

project this vector on the subspace spanned by the features, range(Φ). Accordingly, we define

a projection operator, L : V → range(Φ), and formulate the projected dynamic programming

equation:

Φr = L
(
c+ααPΦr

)
. (1.5)

It is assumed that the Markov system under policy π is ergodic, and we denote its vector of sta-

tionary probabilities by q. We define the projection operator using the following scalar product

and the associated norm: 〈v,w〉q = ∑
n
i=1 qiviwi, ‖w‖2

q = 〈w,w〉q. Then

L(w) = argmin
z∈range(Φ)

||z−w||q, w ∈ V . (1.6)

It is also noteworthy to mention that the projection operator L(·) is nonexpansive with respect

to the norm || · ||q.

1.4.2 Risk-Neutral Methods of Temporal Differences

The projected dynamic programming equation (1.5) implies that if r∗ satisfies the aforemen-

tioned equation, it also satisfies the following, by the definition of the projection operator (1.6):

r∗ = argmin
r
||Φr− (c+αPΦr∗)||2q.

The optimality condition for the r∗ that serves as the minimizing argument is that

Φ
T Q[Φr− (c+αPΦr∗] = 0,

Φ
T QΦr−Φ

T Qc−αΦ
T QPΦr∗ = 0,

Φ
T QΦ(I−αP)Φr∗−Φ

T Qc = 0. (1.7)

Let A = ΦT Q(I−αP)Φ and b = ΦT Qc. Then the equation (1.7) can be expressed simply

as Ar∗ = b. It is possible to approximate A and b by simulation by running a trajectory of states
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{it}N+1
t=1 . We can observe that by virtue of the ergodicity of the chain,

Φ
T QΦ≈ 1

N

N

∑
t=1

φ(it)φ T (it),

Φ
T QPΦ≈ 1

N

N

∑
t=1

φ(it)E[φ T (it+1)|it ].

In the risk-neutral method, it is possible to substitute the expected features of the next state with

the observed features of the next state in the observed trajectory, because averaging over many

transitions will recover the expected value. Then it follows that

Φ
T QPΦ≈ 1

N

N

∑
t=1

φ(it)φ T (it+1).

We also have

Φ
T Qc≈ 1

N

N

∑
t=1

φ(it)c(it).

Then we obtain the following estimates:

A≈ AN =
1
N

N

∑
t=1

φ(it)
[
φ

T (it)−αφ
T (it+1)

]
b≈ bN =

1
N

N

∑
t=1

φ(it)c(it).

For a given r, the residuals of the equation have the following form:

ANr−bN =
1
N

N

∑
t=1

φ(it)φ(it)T r−αφ(it)φ T (it+1)−φ(it)c(it)

=
1
N

N

∑
t=1

φ(it)
[
φ

T (it)r−αφ
T (it+1)− c(it)

]︸ ︷︷ ︸
dt

=
1
N

N

∑
t=1

φ(it)dt

where dt is the temporal difference. The residual error can be corrected over a large trajectory

incrementally using the temporal differences. This is the idea that the risk-neutral methods of

temporal differences relies on. The temporal difference updates have the form

rt+1 = rt − γtφ(it)dt ,

where γt is a sufficiently small stepsize parameter with γt → 0. This method is called the risk

neutral TD(0) algorithm, and in its multi-step version, instead of the features of the current
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state, an exponential weighting of all the past states are used to determine the update direction.

This exponential weighting is done with an algorithmic discount parameter λ ∈ [0,1], and the

updates have the form

rt+1 = rt − γtztdt ,

zt = αλ zt−1 +φ(it);

usually z0 is assumed to be zero for simplicity. The multi-step version is called the risk-neutral

TD(λ ) algorithm.

1.5 Risk-Averse Markov Decision Processes

Most real life problems involve risk-averse decision makers. Under risk-aversion, the consider-

ations in Section 1.3 are no longer valid, because every random variable was taken into consid-

eration with its excepted value alone. In [62], in a more general setting in a Polish space X ,

Markov risk measures for cost evaluation in an MDP were introduced. In a finite-horizon setting,

a Markov risk measure evaluates the sequence of discounted costs α tc(it ,ut), t = 0,1,2, . . . ,T ,

under a Markov policy π , in a recursive way. Denoting by ρπ
t,T (i) the risk of the system starting

from state i at time t, we have

ρ
π
t,T (i) = cπ

i +ασi
(
Pπ

i ,ρ
π
t+1,T (·)

)
, i ∈X , t = 0,1, . . . ,T −1, (1.8)

with ρπ
T,T (i) = cπ

i , i ∈X . In equation (1.8), the operator σ : X ×P(X )×V → R, where

P(X ) is the space of probability measures on X and V is the space of bounded functions

on X , is a transition risk mapping. It can be interpreted as risk-averse analog of the condi-

tional expectation. Its first argument is the state i (which we write as a subscript). The second

argument, the vector Pπ
i , is the ith row of the matrix Pπ : the probability distribution of the state

following i under the policy π . The last argument, the function ρπ
t+1,T (·), is the risk of running

the system from the next state in the time interval from t +1 to T . The transition risk mapping

is a special case of a risk form: a generalization of a risk measure introduced in [23] to accom-

modate the dependence of measures of risk on the underlying probability distribution. In the

case of controlled Markov systems, this dependence is germane for the analysis.
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As in [62], we assume that for each i∈X and each Pπ
i ∈P(X ), the transition risk mapping

σi(p, ·), understood as a function its last argument, satisfies the axioms of a coherent measure

of risk [2]. In the axioms below we suppress the argument Pπ
i , focusing on the dependence on

the third argument, a function of a state:

Convexity: σi(αv+(1−α)w)≤ ασi(v)+(1−α)σi(w), ∀α ∈ [0,1], ∀v,w ∈ V ;

Monotonicity: If v≤ w (componentwise) then σi(v)≤ σi(w);

Translation equivariance: σi(v+β1) = σi(v)+β , for all β ∈R;

Positive homogeneity: σi(βv) = βσi(v), for all β ≥ 0.

Under these conditions, one can pass to the limit with T → ∞ in (1.8) and prove the existence

of an infinite-horizon discounted risk measure [62]

ρ
π
0,∞(i) = lim

T→∞
ρ

π
0,T (i), i ∈X .

We still denote its value at state i by vπ(i); it will never lead to misunderstanding. The policy

value vπ(·) satisfies the risk-averse policy evaluation equation:

vπ(i) = cπ(i)+ασi
(
Pπ

i ,v
π(·)
)
, i ∈X .

We introduce the space Q of transition kernels on X , define a vector-valued transition risk

operator σ : Q×V → V , with components σi(Pπ
i , ·), i ∈X , and rewrite the last equation in a

way similar to (1.3):

vπ = cπ +ασ(Pπ ,vπ). (1.9)

The only difference between (1.3) and (1.9) is that the matrix Pπ has been replaced by a convex

operator σπ (which still depends on Pπ ). This operator, although convex, is highly nontrivial to

work with compared to the linear operator Pπ we observe under risk-neutrality. The risk-neutral

case is a special case of (1.9) with σ(P,v) = Pv. References [62, 11, 12, 27] outline the theory,

provide examples and applications.

Coherent risk measures admit a dual representation [64], which in our case can be stated as

follows. For every i ∈X a convex, closed and bounded set Ai(Pπ
i ) of probability measures on

X exists, such that

σi(Pπ
i ,v) = max

µ∈Ai(Pπ
i )
〈µ,v〉, v ∈ V . (1.10)
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In a risk-neutral case, the set Ai(Pπ
i ) = ∂σi(Pπ

i ,0) contains only one element, Pπ
i , but in general

it is larger and has Pπ
i as one of its elements, provided we always have σi(Pπ

i ,v) ≥ Pπ
i v. The

multifunction A : X →P(X )⇒ P(X ) is called the risk multikernel. Every µ ∈ Ai(Pπ
i ) is

absolutely continuous with respect to Pπ
i .

Due to the nonlinearity inherent in transition risk mapping, the equation (1.9) can be solved

by a specialized nonsmooth Newton’s method [62], and the resulting value function vπ can be

used in a policy improvement scheme, in which the new policy π can be constructed as

π(i) ∈ argmin
u∈U (i)

{
c(i,u)+ασi

(
Pu

i ,v
π(·)
)}

, i ∈X (1.11)

where Pu
i is the transition probability distribution from state i under action u. This new policy

π can be used as input for the next value function, vπ . This is the idea behind the risk-averse

policy iteration method. However, this technique to evaluate and improve a policy still requires

us to be able to enumerate all the states, and it becomes impractical when the dimension of the

state space is very large.
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Chapter 2

Projected Risk-Averse Dynamic Programming Equation

The impracticality of evaluating large MDPs using traditional dynamic programming methods

persists in the risk-averse case as well. To circumvent this, we use the value approximation

scheme defined in Section 1.4.1. We define the projected risk-averse dynamic programming

equation as following:

Φr = L
(
c+ασ(P,Φr)

)
. (2.1)

The difference from the risk-neutral projected dynamic progamming operation (1.5) is that we

replace the conditional expectation with the transition risk mapping σ(P, ·), which is a convex

operator. Still following the expected value case, we assume that the Markov system under

policy π is ergodic, and we denote its vector of stationary probabilities by q, and we rely on the

projection operator defined as in (1.6).

The fundamental question is the existence and uniqueness of a solution of equation (2.1).

This can be answered by establishing the contraction mapping property of the right hand side

of (2.1):

D(v) = L
(
c+ασ(P,v)

)
, v ∈ V , (2.2)

which would imply the existence and uniqueness of a solution of the equation

v = Dv. (2.3)

Crucial in this context is the distortion coefficient of the risk multikernel A:

κ = max
{
|µi j− pi j|

pi j
: µi ∈ Ai(Pπ

i ), pi j > 0, i, j ∈X

}
.

By definition, κ ≥ 0, with the value 0 corresponding to the risk-neutral model. We also recall

that for pi j = 0 we always have mi j = 0, for all mi ∈ Ai(Pπ
i ).
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Lemma 1. The transition risk operator satisfies for all w,v ∈ V the inequalities:

‖σ(P,w)−σ(P,v)‖q ≤
√

1+κ ‖w− v‖q, (2.4)

and

‖σ(P,w)−σ(P,v)−P(w− v)‖q ≤ κ ‖w− v‖q. (2.5)

Proof. For brevity, we omit the argument P of σ(P, ·), because it is fixed. For every i = 1, . . . ,n,

by the mean value theorem for convex functions [77, 33], a point v̄(i) = (1−θi)v+θiw exists,

with θi ∈ [0,1], and a subgradient mi ∈ ∂ρi(v̄(i)) exists, such that

σi(w)−σi(v) = 〈mi,w− v〉.

Since the subdifferential ∂ρi(·) ⊆ Ai, we have mi ∈ Ai. Therefore, for a matrix M having mi,

i = 1, . . . ,n, as its rows,

σ(w)−σ(v) = M(w− v). (2.6)

As each mi is a probability vector, Jensen’s inequality with h = w− v, and the equation

q>P = q> yield

‖Mh‖2
q = ∑

i∈X
qi

(
∑

j∈X
mi jh j

)2
≤ ∑

i∈X
qi ∑

j∈X
mi jh2

j

≤ (1+κ) ∑
i∈X

qi ∑
j∈X

pi jh2
j = (1+κ) ∑

j∈X
q jh2

j = (1+κ)‖h‖2
q. (2.7)

The last two relations imply (2.4). In a similar way, it follows from (2.6) that

∥∥σ(P,w)−σ(P,v)−P(w− v)
∥∥2

q = ‖(M−P)h‖2
q ≤ ∑

i∈X
qi

(
∑

j∈X
|mi j− pi j||h j|

)2

≤ κ2
∑

i∈X
qi

(
∑

j∈X
pi j|h j|

)2
≤ κ2

∑
i∈X

qi ∑
j∈X

pi j|h j|2 = κ2 ‖w− v‖2
q,

which is (2.5).

Theorem 2. If α
√

1+κ < 1 then the equation (2.3) has a unique solution v∗.

Proof. We verify that the operator (2.2) is a contraction mapping in the norm ‖·‖q. The orthog-

onal projection L is nonexpansive. The operator P is nonexpansive in the norm ‖ · ‖q as well

(this is a special case of (2.7) with M = P and κ = 0). The transition risk operator σ(·) multi-

plied by α is a contraction by Lemma 1. The assertion follows now from the Banach contraction

mapping theorem.
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If Φ has full column rank, equation (2.1) has a unique fixed point as well.

2.1 Simulation approach

The equation (2.1) cannot be solved using traditional dynamic programming methods due to

the state space being too large. However, it is possible to find r that satisfies (2.1) by means of

sampling and simulation, using a method analogous to the one described in Section 1.4.2. From

(2.1), we infer that

r∗ = argmin
r
||Φr− (c+ασ(Φr∗)||2q.

This implies for r the optimality condition

Φ
T Q[Φr− (c+αρ(Φr∗)] = 0

Φ
T QΦr−Φ

T Qc−αΦ
T Qσ(Φr∗) = 0. (2.8)

We can also state the last equation using the dual representation of σ(·),

Φ
T QΦr−Φ

T Qc−αΦ
T QMΦr∗ = 0.

Let A = ΦT QΦ and b = ΦT Qc. It is possible to approximate A and b by simulation by

running a trajectory of states {it}N
t=1. We know that

A≈ AN =
1
N

N

∑
t=1

φ(it)φ T (it)

b≈ bN =
1
N

N

∑
t=1

φ(it)c(it).

However, the component ΦT Qσ(Φr∗) in (2.8) is not straightforward to simulate. In the risk-

neutral case described in Section 1.4.2, we simulated ΦT QPΦr∗, and we were able to substitute

the expected feature vector of the next state with simply the next state on the trajectory. However,

in order to assess risk, we need r, we cannot simply use features. At each state during the

trajectory, we need to simulate, say K, next states and compute an empirical risk measure σ̃(·)

of the next state. For a given r, we can state

Φ
T Qρ(Φr)≈ 1

N

N

∑
t=1

φ(it)σ̃(φ(it+1)r|it).
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Now let

BNr = Φ
T QMNΦr =

1
N

N

∑
t=1

φ(it)σ̃(φ(it+1)r|it).

Then for a given r, for the residuals of the equation, we can state

(AN−αBN)r−bN =
1
N

N

∑
t=1

φ(it)φ(it)T r−αφ(it)σ̃(φ T (it+1)r|it)−φ(it)c(it)

=
1
N

N

∑
t=1

φ(it)
[
φ

T (it)r−ασ̃(φ T (it+1)r|it)− c(it)
]︸ ︷︷ ︸

dt

=
1
N

N

∑
t=1

φ(it)dt

where dt is the temporal difference. The residual error can be corrected over a large trajec-

tory incrementally using the temporal differences. This idea forms the basis of the risk-averse

methods of temporal differences which are explored in the following sections.
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Chapter 3

The Risk-Averse Methods of Temporal Differences

3.1 The Single-Step Risk-Averse Methods of Temporal Differences

We propose to solve (2.1) by a risk-averse analog of the classical method of temporal differences

[68]. We define v∗ to be the solution of equation (2.3). We know that it exists and is unique, if

α
√

1+κ < 1.

Consider the evolution of the system under policy π , resulting in a random trajectory of

states it , t = 0,1,2 . . . . At each time t, we have an approximation rt of a solution of the equation

(2.1). Let Ft be the σ -algebra defined by all observations gathered up to time t.

The difference between the left and the right hand sides of equation (2.1) with coefficient

values rt and state it is the risk-averse temporal difference:

dt = ϕ
>(it)rt − c(it)−ασit (Pit ,Φrt), t = 0,1,2, . . . . (3.1)

Evidently, it cannot be easily computed or observed; this would require the evaluation of the risk

σit (Pit ,v) and thus consideration of all possible transitions from state it . Instead, we assume that

we can observe a random estimate σ̃it (Pit , ·), such that

σ̃it (Pit ,Φrt) = σit (Pit ,Φrt)+ξt , t = 0,1,2, . . . , (3.2)

with some random errors ξt . The conditions on {ξt} will be specified later. This allows us to

define the observed risk-averse temporal differences,

d̃t = ϕ
>(it)rt − c(it)−ασ̃it (Pit ,Φrt), t = 0,1,2, . . . , (3.3)

and to construct the risk-averse temporal difference method as follows:

rt+1 = rt − γtϕ(it) d̃t , t = 0,1,2, . . . . (3.4)
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Before proceeding to the detailed convergence proof in the stochastic case, we analyze a

deterministic model of the method, in which the errors ξt are ignored and the updates of the

sequence {rt} are averaged over all states (with the distribution q). We define the operator:

U(r) =Ei∼q
[
ϕ(i)

(
ϕ
>(i)r− c(i)−ασi(Pi,Φr)

)]
= Φ

>Q
[
Φr− c−α σ(P,Φr)

]
. (3.5)

The deterministic analog of (3.3)–(3.4) reads:

r̄t+1 = r̄t − γ U(rt), t = 0,1,2, . . . , γ > 0. (3.6)

By the definition of the projection operator L, a point r∗ is a solution of (2.1) if and only if

r∗ = argmin
r

1
2

∥∥Φr−
(
c+ασ(P,Φr∗)

)∥∥2
q.

This occurs if and only if r∗ is a zero of U(·) and thus supports our idea of using the method

(3.3)–(3.4).

Theorem 3. If α
√

1+κ < 1, then γ0 > 0 exists, such that for all γ ∈ (0,γ0) the algorithm (3.6)

generates a sequence {r̄t} convergent to a point r∗ such that U(r∗) = 0.

Proof. We shall show that for sufficiently small γ > 0 the operator I− γU is a contraction. For

arbitrary r′ and r′′, we have

∥∥(r′− γU(r′))− (r′′− γU(r′′))
∥∥2

= ‖r′− r′′‖2

−2γ〈r′− r′′,Φ>QΦ(r′− r′′)〉+2γα
〈
r′− r′′,Φ>Q

[
σ(P,Φr′)−σ(P,Φr′′)

]〉
+ γ

2
∥∥∥Φ
>QΦ(r′− r′′)−αΦ

>Q
[
σ(P,Φr′)−σ(P,Φr′′)

]∥∥∥2
.

The last term (with γ2) can be bounded by γ2C‖Φ(r′− r′′)‖2
q where C is some constant. Then

∥∥(r′− γU(r′))− (r′′− γU(r′′))
∥∥2 ≤ ‖r′− r′′‖2−2γ‖Φ(r′− r′′)‖2

q

+2γα
〈
Φ(r′− r′′),σ(Φr′)−σ(Φr′′)

〉
q + γ

2C‖Φ(r′− r′′)‖2
q.

The scalar product can be bounded by (2.4), and thus

∥∥(r′− γU(r′))− (r′′− γU(r′′))
∥∥2

≤ ‖r′− r′′‖2−2γ‖Φ(r′− r′′)‖2
q +2γα

√
1+κ‖Φ(r′− r′′)‖2

q + γ
2C‖Φ(r′− r′′)‖2

q

= ‖r′− r′′‖2−2γ

(
1−α

√
1+κ+

γC
2

)
‖Φ(r′− r′′)‖2

q.
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Since α
√

1+κ < 1, then using 0 < γ < 2(1−α
√

1+κ)/C, we have

∥∥(r′− γU(r′))− (r′′− γU(r′′))
∥∥2 ≤ ‖r′− r′′‖2− γβ‖Φ(r′− r′′)‖2

q, (3.7)

with some β > 0. In particular, setting r′ = r̄t and r′′ = r∗ for a solution r∗ of (2.1), we obtain

the following relation between the successive iterates of the method (3.6):

‖r̄t+1− r∗‖2 ≤ ‖r̄t − r∗‖2− γβ‖Φ(r̄t − r∗)‖2
q. (3.8)

This immediately proves that the sequence {r̄t} is bounded and Φ r̄t→Φr∗. Every accumulation

point r̂ of {r̄t} must be then a solution of equation (2.1). Substituting this accumulation point

for r∗ in the last inequality, we conclude that r̄t → r̂.

If Φ has full column rank, the solution r∗ is unique, because substituting another solution

for r̄t in (3.6) we obtain rt+1 = rt , which leads to a contradiction in (3.8). The detailed proof in

the stochastic case is provided in Section 4.1.

3.2 The Multi-Step Risk-Averse Methods of Temporal Differences

In the method discussed so far, the residuals are corrected by moving in the direction of the last

feature vector ϕ(it). Alternatively, we may use the weighted averages of all previous observa-

tions, where the highest weight is given to the most recent observation and the weights decrease

exponentially as we look into the past observations. This idea is the core of the well-known

TD(λ ) algorithm [68]. We generalize it to the risk-averse case.

For a fixed policy π , we refer to vπ as v, and to Pπ as P, for simplicity. The multi-step

risk-averse method of temporal differences carries out the following iterations:

zt = λαzt−1 +ϕ(it), t = 0,1,2, . . . , (3.9)

rt+1 = rt − γtzt d̃t , t = 0,1,2, . . . (3.10)

where λ ∈ [0,1], and d̃t is given by (3.3). For simplicity, z−1 is assumed to be the zero vector.

In the risk-neutral case, when σit (Pit ,Φrt) = Pit Φrt , the method reduces to the classical TD(λ ).

Our convergence analysis will use some ideas from the analysis in the previous two sections,

albeit in a form adapted to the version with exponentially averaged features. However, contrary
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to the expected value setting, the method (3.9)–(3.10) will converge to a solution of an equation

different from (2.3), but still relevant for our problem.

We start from a heuristic analysis of a deterministic counterpart of the method, to extract its

drift. In the next section, we make all approximations precise, but we believe that this introduc-

tion is useful to decipher our detailed approach to follow. By direct calculation,

zt =
t

∑
k=0

(λα)t−k
ϕ(ik), (3.11)

and thus

ztdt = Φ
>

t

∑
k=0

(λα)t−keik e
>
it

(
Φrt − c−ασ(P,Φrt)

)
.

Heuristically assuming that rt ≈ r′, we focus on the operator acting on the expected temporal

differences. As each of the observed feature vectors ϕ(ik) affects all succeeding steps of the

method, via the filter (3.9), we need to study the cumulative effect of many steps. We look,

therefore, at the sums

GT =E

[ T

∑
t=0

γt

t

∑
k=0

(λα)t−keik e
>
it

]
.

Changing the order of summation and using the fact that {(λα)t−k}t≥k diminishes very fast, as

compared to {γt}t≥k, we get

GT =E

[ T

∑
k=0

T

∑
t=k

γt(λα)t−keik e
>
it

]
≈E

[ T

∑
k=0

γk

T

∑
t=k

(λα)t−keik e
>
it

]
.

Therefore

GT ≈E
[ T

∑
k=0

γk

T

∑
t=k

(λα)t−keikE
[
e>it
∣∣Fk

]]
=E

[ T

∑
k=0

γk

T

∑
t=k

(λα)t−keik e
>
ik Pt−k

]
=

T

∑
k=0

γkE[diag(eik)
] T

∑
t=k

(λα)t−kPt−k ≈
T

∑
k=0

γkE[diag(eik)
] ∞

∑
t=k

(λα)t−kPt−k

≈ Q
T

∑
k=0

γk

∞

∑
t=k

(λα)t−kPt−k.

The last approximations are possible because λα ∈ [0,1) andE[diag(eik)
]
→ q at an exponential

rate. We now define the multi-step transition matrix,

P = (1−λα)
∞

∑
`=0

(λα)`P`. (3.12)

By construction, P ∈ conv{I,P,P2, . . .}. With these approximations, we can simply write

GT ≈
1

1−λα
QP

T

∑
k=0

γk.
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Define the operators

U(r) = Φ
>QP

[
Φr− c−α σ(P,Φr)

]
, t = 0,1,2, . . . (3.13)

and consider the following deterministic counterpart of (3.9)–(3.10), with γ ∼ γt/(1−λα):

rr+1 = rt − γ U(rt), t = 0,1,2, . . . , γ > 0. (3.14)

Our intention is to show that for sufficiently small γ the method (3.14) converges to a point

r∗ such that U(r∗) = 0. Such a point is also a solution of the following projected multi-step

risk-averse dynamic programming equation:

LPΦr = LP
(
c+ασ(P,Φr)

)
, (3.15)

where L is the projection operator defined in (1.6). The solutions of (3.15) differ from the

solutions of (2.1), unlike in the risk-neutral case (κ = 0). If we replace P with I, (3.15) reduces

to (2.1).

Theorem 4. If α(1+κ)< 1, then γ0 > 0 exists, such that for all γ ∈ (0,γ0) the algorithm (3.14)

generates a sequence {rt} convergent to a point r∗ such that U(r∗) = 0.

Proof. For two arbitrary points r′ and r′′ we have

∥∥∥(r′− γ U(r′)
)
−
(
r′′− γ U(r′′)

)∥∥∥2

= ‖r′− r′′‖2 +2γ

〈
r′− r′′,Φ>QP

[
−Φ(r′− r′′)+ασ(P,Φr′)−ασ(P,Φr′′)

]〉
+ γ

2
∥∥∥Φ
>QPΦ(r′− r′′)−αΦ

>QP
[
σ(P,Φr′)−σ(P,Φr′′)

]∥∥∥2
. (3.16)

We focus on the scalar product in the middle of the right hand side of (3.16):

〈
Φ(r′− r′′),P

[
−Φ(r′− r′′)+ασ(P,Φr′)−ασ(P,Φr′′)

]〉
q

=
〈

Φ(r′− r′′),P
[
−Φ(r′− r′′)+αPΦ(r′− r′′)

]〉
q

+α

〈
Φ(r′− r′′),P

[
σ(P,Φr′)−σ(P,Φr′′)−PΦ(r′− r′′)

]〉
q
. (3.17)
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Setting h = Φ(r′−r′′), we can estimate the first (quadratic) term on the right hand side of (3.17)

by a calculation borrowed from [74, Lem. 8], with h = Φ(r′− r′′):〈
h,P
[
−h+αPh

]〉
q
= (1−αλ )

〈
h,

∞

∑
`=0

(αλ )`P`
[
−h+αPh

]〉
q

= (1−αλ )(1−λ )
〈

h,
∞

∑
k=0

λ
k

k

∑
`=0

α
`P`
[
−h+αPh

]〉
q

= (1−αλ )(1−λ )
〈

h,
∞

∑
k=0

λ
k[

α
k+1Pk+1h−h

]〉
q

= (1−αλ )
〈

h,(1−λ )
∞

∑
k=0

λ
k
α

k+1Pk+1h−h
〉

q

= (1−αλ )
〈

h,
α(1−λ )

1−αλ
PPh−h

〉
q
≤ (α−1)‖h‖2

q.

The last inequality is due to the fact that both P and P are nonexpansive in ‖ · ‖q.

The second (nonsmooth) term on the right hand side of (3.17) can be estimated by (2.5),

again with the use of the nonexpansiveness of P:〈
Φ(r′− r′′),P

[
σ(P,Φr′)−σ(P,Φr′′)−PΦ(r′− r′′)

]〉
q
≤ κ

∥∥Φ(r′− r′′)
∥∥2

q.

The last term on the right hand side of (3.16) (with γ2) can be bounded by γ2C‖Φ(r′− r′′)‖2
q,

where C is some constant. Integrating all these estimates into (3.16), we obtain the inequality

∥∥(I− γ U)(r′)− (I− γ U)(r′′)
∥∥2 ≤ ‖r′− r′′‖2−2γ

(
1−α(1+κ)− γ C

2

)∥∥Φ(r′− r′′)
∥∥2

q.

If α(1+κ)< 1, then using 0 < γ < 2(1−α(1+κ))/C, we obtain:

∥∥(I− γ U)(r′)− (I− γ U)(r′′)
∥∥2 ≤ ‖r′− r′′‖2− γβ‖Φ(r′− r′′)‖2

q, (3.18)

with some β > 0. In particular, setting r′ = r̄t and r′′ = r∗ for a solution r∗ of (2.1), we obtain

the following relation between successive iterates of the method (3.14):

‖rt+1− r∗‖2 ≤ ‖rt − r∗‖2− γβ‖Φ(rt − r∗)‖2
q. (3.19)

This immediately proves that the sequence {rt} is bounded and Φrt→Φr∗. Every accumulation

point r̂ of {rt} must be then a solution of equation (3.15). Substituting this accumulation point

for r∗ in the last inequality, we conclude that the entire sequence {rt} is convergent to r̂.

The proof for the stochastic case is provided in Section 4.2.
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Chapter 4

Convergence Analysis

4.1 Convergence Analysis of the Single-Step Risk-Averse Methods of Temporal

Differences

We shall use the following result on convergence of deterministic nonmonotonic algorithms

[49].

Theorem 5. Let Y ∗ ⊂ Rm. Suppose {rt} ⊂ Rm is a bounded sequence which satisfies the

following assumptions:

A) If a subsequence {rt}t∈K converges to r′ ∈ Y ∗, then ‖rt+1− rt‖→ 0, as t→ ∞ , t ∈K ;

B) If a subsequence {rt}t∈K converged to r′ /∈ Y ∗, then ε0 > 0 would exist such that for all

ε ∈ (0,ε0] and for all k ∈K , the index s(t,ε) = min
{
` ≥ k : ‖r`− rt‖ > ε

}
would be

finite;

C) A continuous function W :Rm→R exists such that if {rt}t∈K converged to r′ /∈Y ∗ then

ε1 > 0 would exist such that for all ε ∈ (0,ε1] we would have

limsup
t∈K

W (rs(t,ε))<W (r′),

where s(t,ε) is defined in B);

D) The set {W (r) : r ∈ Y ∗} does not contain any segment of nonzero length.

Then the sequence {W (rt)} is convergent and all limit points of the sequence {rt} belong to Y ∗.

We define the set of solutions of equation (2.1):

Y ∗ = {r ∈Rm : Φr = v∗},

where v∗ is the unique solution of (2.3), provided α
√

1+κ < 1 We shall show that the method

(3.4) converges to Y ∗, under the above-mentioned condition and some additional conditions on

the stepsizes {γt} and errors {ξt}.
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We define Ft to be the σ -algebra generated by {i0,r0, . . . , it ,rt}, t = 0,1, . . . , and make the

following assumptions about the stepsize and error sequences. We allow the stepsizes to be

random.

Assumption 1. The sequence {γt} is adapted to the filtration {Ft} and such that

(i) γt > 0, t = 0,1, . . . , and limt→∞ γt = 0 a.s.;

(ii) ∑
∞
t=0 γt = ∞ a.s.;

(iii) E∑
∞
t=0 γ2

t < ∞;

(iv) For any ε > 0, lim
t0→∞

sup
{T :∑T

t=t0
γt≤ε}

T

∑
t=t0
|γt − γt+1|= 0 a.s.

Assumption 2. The sequence of errors {ξt}t≥1 satisfies for t = 0,1,2 . . . the conditions

(i) E[ξt |Ft ] = 0 a.s.;

(ii) E[‖ξt‖2 |Ft ]≤ const a.s..

First, we establish an important implication of the ergodicity of the chain. We write ei for

the ith unit vector inRn.

Lemma 6. If the chain {it} is ergodic with stationary distribution q and Assumption 1 is satis-

fied, then

lim
T→∞

∑
T
t=0 γt(eit −q)

∑
T
t=0 γt

= 0, a.s., (4.1)

and for any ε > 0,

lim
t0→∞

sup
T≥t0

∑
T
t=t0 γt(eit −q)

max
(

ε,∑T
t=t0 γt

) = 0, a.s.. (4.2)

Proof. Due to the ergodicity of the chain, the vectors

ν(i) =E

[
∞

∑
t=0

(eit −q)
∣∣∣ i0 = i

]
, i ∈X ,

are finite and satisfy the Poisson equation

ν(i) = ei−q+ ∑
j∈X

Pi jν( j), i ∈X . (4.3)

Consider the sums ∑
T
t=0 γt(eit −q). By the Poisson equation,

eit −q = ν(it)− ∑
j∈X

Pit jν( j) =
[
ν(it)−ν(it+1)

]
+
[
ν(it+1)− ∑

j∈X
Pit jν( j)

]
. (4.4)
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We consider the two components of the right hand side of (4.4), marked with brackets, sepa-

rately. Due to Assumption 1, (i)—(iii), the series

∞

∑
t=1

γt

[
ν(it+1)− ∑

j∈X
Pit jν( j)

]
=

∞

∑
t=1

γt
(
ν(it+1)−E[ν(it+1) |Ft ]

)
is a convergent martingale. Therefore,

lim
T→∞

∑
T
t=0 γt

(
ν(it+1)−Et [ν(it+1)]

)
∑

T
t=0 γt

= 0, a.s.

We now focus on the sums

T

∑
t=0

γt
[
ν(it)−ν(it+1)

]
= γ0ν(i0)+

T

∑
t=1

(γt − γt−1)ν(it)− γT ν(iT+1).

Using Assumption 1(iv) and [65, Lem. A.3], we obtain (4.1)–(4.2).

We can now prove the convergence of the method.

Theorem 7. Suppose the random estimates σ̃it (Pit ,Φrt) satisfy (3.2), Assumptions 1 and 2 are

satisfied, and α
√

1+κ < 1. If the sequence {rt} is bounded with probability 1, then every

accumulation point of the sequence {rt} is an element of Y ∗, with probability 1.

Proof. We use the global Lyapunov function:

W (r) = min
r∗∈Y ∗

‖r− r∗‖2. (4.5)

The direction used in (3.4) at step t can be represented as

ϕ(it)d̃t =U(rt)+∆t , (4.6)

with the operator U(·) defined in (3.5), and

∆t =−αξtϕ(it)+Φ
> diag

(
eit −q

)[
Φrt − c−ασ(P,Φrt)

]
. (4.7)

Our intention is to verify the conditions of Theorem 5 for almost all paths of the sequence {rt}.

For this purpose, we estimate the decrease of the function (4.5) in iteration t. For any r∗ ∈ Y ∗

we have:

‖rt+1− r∗‖2 = ‖rt − γtU(rt)− r∗‖2−2γt〈∆t ,rt − γtU(rt)− r∗〉+ γ
2
t ‖∆t‖2.
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The term involving U(rt) was estimated in the derivation of (3.8). We obtain the inequality

‖rt+1− r∗‖2 ≤ ‖rt − r∗‖2−2γt(1−α
√

1+κ)‖Φ(rt − r∗)‖2
q−2γt〈∆t ,rt − γtU(rt)− r∗〉+Cγ

2
t .

(4.8)

Now we can verify the conditions of Theorem 5 for almost all paths of the sequence {rt}.

Condition A. Due to the boundedness of {rt} the sequence {U(rt)} is bounded as well. In view

of (4.6), it is sufficient to verify that γtξt → 0. By Assumption 2(i), the sequence

ST =
T

∑
t=0

γtξt , T = 0,1,2, . . . , (4.9)

is a martingale. Due to Assumption 2(ii), E[S2
T ] ≤ const ·E[∑T

t=0 γ2
t ]. In view of Assumption

1(ii), by virtue of the martingale convergence theorem, {ST} is convergent a.s., which yields

limt→∞ γtξt = 0.

Condition B. Suppose rk → r′ /∈ Y ∗ for k ∈K (on a certain path ω). If B were false, then for

all ε0 > 0 we could find ε ∈ (0,ε0] and k ∈K such that ‖rt− rk‖ ≤ ε for all t ≥ k. Then for all

k0 ∈K , k0 ≥ k, we have ‖rt − rk0‖ ≤ 2ε for all t ≥ k0. Since r′ is not optimal, we can choose

ε0 > 0 small enough, k0 ∈K large enough, and δ > 0 small enough, so that ‖Φ(rt− r∗)‖2
q > δ

for all t ≥ k0. Then (4.8) yields

‖rT − r∗‖2 ≤ ‖rk0− r∗‖2

+

(
−δ (1−α

√
1+κ)+

∑
T−1
t=k0

γt〈∆t ,rt − γtU(rt)− r∗〉
∑

T−1
t=k0

γt
+C

∑
T−1
t=k0

γ2
t

∑
T−1
t=k0

γt

)
T−1

∑
t=k0

γt . (4.10)

We fix r∗ = ProjY ∗(rk0) and estimate the growth of the sums involving ∆t . We write ∆t = ∆
(1)
t +

∆
(2)
t , where, in view of (4.7),

∆
(1)
t =−αξtϕ(it), ∆

(2)
t = Φ

> diag
(
eit −q

)[
Φrt − c−ασ(P,Φrt)

]
.

Since (4.9) is a convergent martingale and the terms 〈ϕ(it),rt − γtU(rt)− r∗〉 are bounded

and Ft-measurable, we have

lim
T→∞

∣∣∣∑T−1
t=k0

γt〈∆(1)
t ,rt − γtU(rt)− r∗〉

∣∣∣
∑

T−1
t=k0

γt
= 0.

To deal with the sum involving ∆
(2)
t , observe that ‖rt − rk0‖ ≤ 2ε0 and thus

〈∆(2)
t ,rt − γtU(rt)− r∗〉=〈

diag
(
eit −q

)[
Φrk0− c−ασ(P,Φrk0)

]
,Φ(rk0− r∗)

〉
+ht = 〈eit −q,w〉+ht , (4.11)
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where |ht | ≤Cε0 and w is a fixed vector (depending on k0 only). It follows that∣∣∣∣∣T−1

∑
t=k0

γt〈∆(2)
t ,rt − γtU(rt)− r∗〉

∣∣∣∣∣≤C

∥∥∥∥∥T−1

∑
t=k0

γt(eit −q)

∥∥∥∥∥+Cε0

T−1

∑
t=k0

γt . (4.12)

Dividing both sides of (4.12) by ∑
T−1
t=k0

γt and using (4.1), we see that we can choose ε > 0 small

enough and k0 ∈K large enough, so that the entire expression in parentheses in (4.10) is smaller

than −δ (1−α
√

1+κ)/2, if T is large enough. But this yields ‖rT − r∗‖ →−∞, as T → ∞, a

contradiction. Therefore, Condition B is satisfied.

Condition C. The inequality (4.10) remains valid for T = s(k0,ε). By the definition of s(k0,ε),∥∥∥T−1

∑
t=k0

γt(dt +ξt)
∥∥∥≥ ε.

By the convergence of (4.9), and the boundedness of {dt}, a constant C > 0 exists such that for

all sufficiently large k0 and sufficiently small ε , we have
T−1

∑
t=k0

γt ≥ ε/C.

Using (4.2), by a similar argument as in the analysis of Condition B, we can choose ε1 > 0 small

enough that for all k0 ∈K large enough so that the entire expression in parentheses in (4.10) is

smaller than−δ (1−α
√

1+κ)/2. Therefore, for all ε ∈ (0,ε1] and all sufficiently large k0 ∈K

‖rs(k0,ε)− r∗‖2 ≤ ‖rk0− r∗‖2− δ (1−α
√

1+κ)ε
2C

.

We fix r∗ = ProjY ∗(rk0) on the right hand side, and obtain

W (rs(k0,ε))≤ ‖rs(k0,ε)− r∗‖2 ≤W (rk0)−
δ (1−α

√
1+κ)ε

2C
.

Now, the limit with respect to k0→ ∞, k0 ∈K , proves Condition C.

Condition D is satisfied trivially, because W (r∗)≡ 0 for r∗ ∈ Y ∗.

The only question remaining is the boundedness of the sequence {rt}. It is a common issue

in the analysis of stochastic approximation algorithms [42, §5.1]. In our case, no additional

conditions and analysis are needed, because our Lyapunov function (4.5) is the squared distance

to the optimal set. Therefore, a simple algorithmic modification: the projection on a bounded set

Y intersecting with {r ∈Rm : Φr = v∗}, is sufficient to guarantee boundedness. The modified

method (3.4) reads:

rt+1 = ProjY
(
rt − γtϕ(it) d̃t

)
, t = 0,1,2, . . . . (4.13)
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Now, Y ∗ = {r ∈ Y : Φr = v∗} and we require that this set is nonempty. This modification does

not affect our analysis in any meaningful way, because the projection is nonexpansive. In the

proof of Theorem 3, we use the inequality∥∥ProjY (r′− γU(r′))−ProjY (r′′− γU(r′′))
∥∥2 ≤

∥∥(r′− γU(r′))− (r′′− γU(r′′))
∥∥2

and proceed as before. In the proof of Theorem 7, we start from

‖rt+1− r∗‖2 =
∥∥ProjY

(
rt − γt(U(rt)+∆t)

)
− r∗

∥∥2 ≤
∥∥rt − γt(U(rt)+∆t)− r∗

∥∥2
,

and then continue in the same way as before. We did not include projection into the method

originally, because it obscures the presentation. In practice, we have not yet encountered any

need for it.

4.2 Convergence Analysis of the Multi-Step Risk-Averse Methods of Temporal

Differences

We now carry out a detailed analysis of the stochastic method (3.9)–(3.10).

Lemma 8. For any array of uniformly bounded random variables
{

Ak,t
}

k≥0, t≥0

lim
T→∞

∑
T
k=0 ∑

T
t=k γt(λα)t−kAk,t −∑

T
k=0 γk ∑

∞
t=k(λα)t−kAk,t

∑
T
k=0 γk

= 0, a.s.

Proof. Changing the order of summation twice, we obtain

T

∑
k=0

T

∑
t=k+1

|γt − γk|(λα)t−k ≤
T

∑
k=0

T

∑
t=k+1

t

∑
`=k+1

|γ`− γ`−1|(λα)t−k

≤ 1
1−λα

T

∑
k=0

T

∑
`=k+1

|γ`− γ`−1|(λα)`−k =
1

1−λα

T

∑
`=1
|γ`− γ`−1|

`−1

∑
k=0

(λα)`−k

≤ λα

(1−λα)2

T

∑
`=1
|γ`− γ`−1|.

Therefore, with C being the uniform bound on ‖Ak,t‖ and γ max
k = maxt≥k γt , we obtain∥∥∥∥ T

∑
k=0

T

∑
t=k

γt(λα)t−kAk,t −
T

∑
k=0

γk

∞

∑
t=k

(λα)t−kAk,t

∥∥∥∥
≤C

T

∑
k=0

T

∑
t=k+1

|γt − γk|(λα)t−k +C
T

∑
k=0

∞

∑
t=T+1

γt(λα)t−k

≤ Cλα

(1−λα)2

T

∑
`=1
|γ`− γ`−1|+

Cγ max
T+1λα

(1−λα)2 .

Assumption 1(iv) and [65, Lem. A.3] imply the assertion.
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We need another auxiliary result, extending Lemma 6 to our case.

Lemma 9.

lim
T→∞

∑
T
t=0 γt

(
∑

t
k=0(λα)t−keik e

>
it −

1
1−λα

QP
)

∑
T
t=0 γt

= 0 a.s., (4.14)

and for any ε > 0,

lim
t0→∞

sup
T≥t0

∑
T
t=t0 γt

(
∑

t
k=0(λα)t−keik e

>
it −

1
1−λα

QP
)

max
(

ε,∑T
t=t0 γt

) = 0 a.s.. (4.15)

Proof. Consider the sums appearing in the numerator of (9):

T

∑
t=0

γt

t

∑
k=0

(λα)t−keik e
>
it =

T

∑
k=0

eik

T

∑
t=k

(λα)t−k
γte>it , T = 1,2, . . . .

In view of Lemma 8, it is sufficient to consider the sums

ST =
T

∑
k=0

γk eik

∞

∑
t=k

(λα)t−ke>it , T = 1,2, . . . .

We transform the inner sum:

∞

∑
t=k

((λα))t−ke>it =
∞

∑
t=k

(λα)t−k
{ t

∑
`=k+1

[
e>i` Pt−`− e>i`−1

Pt−`+1]+ e>ik Pt−k
}

=
∞

∑
t=k

(λα)t−ke>ik Pt−k +
∞

∑
`=k+1

∞

∑
t=`

(λα)t−k[e>i` Pt−`− e>i`−1
Pt−`+1].

We can thus write ST = S(1)T +S(2)T , with

S(1)T =
T

∑
k=0

γk eik e
>
ik

∞

∑
t=k

(λα)t−kPt−k =
1

1−λα

T

∑
k=0

γk diag(eik)P

and

S(2)T =
T

∑
k=0

γk eik

∞

∑
`=k+1

∞

∑
t=`

(λα)t−k[e>i` Pt−`− e>i`−1
Pt−`+1]

=
1

1−λα

T

∑
k=0

γk eik

∞

∑
`=k+1

(λα)`−k[e>i` − e>i`−1
P
]
P

=
1

1−λα

∞

∑
`=1

min(T,`−1)

∑
k=0

γk eik(λα)`−k[e>i` − e>i`−1
P
]
P.

The second sum is a convergent martingale, becauseE
[
e>i`
∣∣F`−1

]
= e>i`−1

P. Therefore, it satis-

fies (4.14).

Applying Lemma 6 to S(1)T −
1

1−λα
∑

T
k=0 γk diag(q)P, we obtain both assertions.
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Now we can follow the arguments given in Section 4.1 and establish the convergence of the

multi-step method.

Theorem 10. Assume that α(1+κ)< 1, the sequence {rt} is bounded with probability 1, and

the random estimates σ̃it (Pit ,Φrt) satisfy (3.2). Then, with probability 1, every accumulation

point of the sequence {rt} generated by (3.9)–(3.10) is a solution of (3.15).

Proof. We represent the direction used in (3.10) at step t as

zt d̃t =
1

1−λα
U t(rt)+∆

(1)
t +∆

(2)
t ,

with the operator U t(·) defined in (3.13), and

∆
(1)
t =−αztξt ,

∆
(2)
t = ztdt −

1
1−λα

U t(rt).

For any r∗ solving (3.15), with γ t = γt/(1−λα), we have∥∥rt+1− r∗
∥∥2

=
∥∥rt − γ tU t(rt)− r∗

∥∥2−2γ t〈∆(1)
t +∆

(2)
t ,rt − γ tU t(rt)− r∗〉+ γ

2
t

∥∥∆
(1)
t +∆

(2)
t
∥∥2
.

Our intention is to verify the conditions of Theorem 5 for almost all paths of the sequence {rt}.

Condition A. The sequence {zt} is bounded by construction. Since the series (4.9) is a con-

vergent martingale, we conclude that limt→∞ γtzt d̃t = 0.

Conditions B and C: We follow the proof of Theorem 7. The deterministic term involving

U t(rt) can be estimated as in (3.19):∥∥rt − γ tU t(rt)− r∗
∥∥2 ≤

∥∥rt − r∗
∥∥2−2γ t

(
1−α(1+κ)

)∥∥Φ(rt − r∗)
∥∥2

q +Cγ
2
t .

Since {zt} and {rt} are bounded, Assumptions 1 and 2 imply that ∑
∞
t=0 γ t〈∆(1)

t ,rt−γ tU t(rt)−r∗〉

is a convergent martingale.

To analyze the second error term, ∆
(2)
t , we observe that for a vector eik having 1 at position ik

and zero otherwise, the formula (3.11) yields

ztdt =
t

∑
k=0

(λα)t−k
ϕ(ik)

(
ϕ
>(it)rt − c(it)−ασit (Pit ,Φrt)

)
= Φ

>
( t

∑
k=0

(λα)t−keik e
>
it

)(
Φrt − c−ασ(P,Φrt)

)
.
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Subtracting (3.13), we obtain

∆
(2)
t = Φ

>
( t

∑
k=0

(λα)t−keik e
>
it −

1
1−λα

QPt

)[
Φrt − c−ασ(P,Φrt)

]
.

By virtue of Lemma 9, for any ε > 0,

lim
T→∞

∑
T
t=0 γt∆

(2)
t

∑
T
t=0 γt

= 0, lim
t0→∞

sup
T≥t0

∑
T
t=t0 γt∆

(2)
t

max
(

ε,∑T
t=t0 γt

) = 0 a.s..

The remaining analysis is the same as in the proof of Theorem 7. We obtain an inequality

corresponding to (4.10):

‖rT − r∗‖2 ≤ ‖rk0− r∗‖2

+

(
−δ (1−α(1+κ))+

∑
T−1
t=k0

γt〈∆(1)
t +∆

(2)
t ,rt − γ tU(rt)− r∗〉

∑
T−1
t=k0

γ t
+C

∑
T−1
t=k0

γ2
t

∑
T−1
t=k0

γ t

)
T−1

∑
t=k0

γ t ,

with δ > 0. This allows us to verify the conditions of Theorem 5 and prove our assertion fol-

lowing the last steps of the proof of Theorem 7 verbatim.

It is worth mentioning that the convergence condition for the multi-step method: α(1+κ)<

1, is slightly stronger that the condition for the basic method: α
√

1+κ < 1.

Again, as in the case of the basic method, discussed in Section 4.1, the boundedness of

the sequence {rk} is not an issue of concern, because it can be guaranteed by projection on a

bounded set Y . The modified method has the following form:

rt+1 = ProjY
(
rt − γtzt d̃t

)
, t = 0,1,2, . . . . (4.16)

We just need Y to have a nonempty intersection Y ∗ with the set of solutions of (3.15). Due

to the nonexpansiveness of the projection operator, all our proofs remain unchanged with this

modification, as discussed at the end of Section 4.1.
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Chapter 5

Empirical Study

5.1 Sampling-Based Risk Estimation

We first discuss the issue of obtaining stochastic estimates σ̃it (Pit , ·) satisfying (3.2) and As-

sumption 2:

E
[
σ̃it (Pit ,Φrt)

∣∣Ft
]
= σit (Pit ,Φrt), t = 0,1,2, . . . , (5.1)

In the expected value case, where σit (Pit ,Φrt) = Pit Φrt =E
[
ϕ>(it+1)rt

∣∣Ft
]
, we could just use

the approximation value at the next state observed, ϕ>(it+1)rt as the stochastic estimate of the

expected value function. However, due to the nonlinearity of a risk measure with respect to the

probability measure Pit , such a straightforward approach is no longer possible.

Statistical estimation of measures of risk is a challenging problem, for which, so far, only

solutions in special cases have been found [23]. To mitigate this problem, we propose to use

a special class of transition risk mappings which are very convenient for statistical estimation.

For a given transition risk mapping σ i(Pi,v), we sample N conditionally independent transitions

from the state i, resulting in states j1, . . . , jN . This sample defines a random empirical distribu-

tion, PN
i = 1

N ∑
N
k=1 ejk , where ej is the jth unit vector in Rn. Since the sample is finite, we can

calculate the plug-in risk measure estimate,

σ̃
N
i (Pi,v) = σ i(PN

i ,v), (5.2)

by a closed-form expression. One can verify directly from the definition that the resulting

sample-based transition risk mapping

σ
N
i (Pi,v) =E

[
σ i(PN

i ,v)
]
,

satisfies all conditions of a transition risk mapping given in Section 2, if σ i(·, ·) does. The ex-

pectation above is over all possible N-samples. Therefore, if we treat σN
i (·, ·) as the “true” risk
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measure that we want to estimate, the plug-in formula (5.2) satisfies (3.2) and Assumption 2.

In fact, for a broad class of measures of risk σ i(Pi,v), we have a central limit result: σ i(PN
i ,v)

is convergent to σ i(Pi,v) at the rate 1/
√

N, and the error has an approximately normal distribu-

tion [23]. However, we do not rely on this result here, because we work with fixed N. In our

experiments, the sample size N = 4 turned out to be sufficient, and even N = 2 would work well.

5.2 Post-Decision States

An alternative to the modeling approach detailed in Section 2 is to use post-decision states.

As before, we consider a system with n states which belong to set X , and each state has m

features where m << n. At the pre-decision state it , we take decision ut ∈U (it), proceed to the

post-decision state īt+1 and then we observe uncertainty Wt+1. The progression of the system is

illustrated as below:

. . . it−1
ut−1−−→ īt

Wt−→ it
ut−→ īt+1

Wt+1−−→ it+1 . . . , t = 1,2, . . .

Using the same linear approximate value function and feature matrix as in Section 2, we

state the projected risk-averse dynamic programming equation based on post-decision states as

ϕ
>(īt)r = L

(
σīt

(
Pīt ,ut

, c(it ,ut)+αϕ
>(īt+1)r

))
, it , īt+1 ∈X .

The dual representation (1.10) allows us to state the following equivalent equation

ϕ
>(īt)r = L

(〈
Mīt (Pīt ,Φr), c(it ,ut)+αϕ

>(īt+1)r
〉)

, it , īt+1 ∈X

When the process is modeled using the post decision states, the temporal difference updates are

expressed as follows:

dt = ϕ
>(īt)rt −σīt

(
Pīt , c(it ,ut)+αϕ

>(īt+1)rt
)
.

This approach is particularly useful when the action to take at it is determined by an optimization

problem in which the risk measure of the approximate value of the next post decision state īt+1

is involved. It is far easier to evaluate the post decision state īt+1 compared to it , since in that

case we can take the risk measure outside of the optimization problem instead. In the following

section, we are dealing with a problem that exhibits such a feature, and we model it using post-

decision states.
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5.3 Numerical Results

We apply the risk-averse methods of temporal differences to a version of a transportation prob-

lem discussed in [55]. We have 200 vehicles that can be at M = 50 locations. Initially all vehicles

are at the first location. At each time period t, a stochastic demand Dijt for transportation from

location i to location j occurs, i, j = 1, . . . ,M, t = 1,2, . . .. The demand in different time periods

are independent and are observed according to the following distribution

Di jt ∼ round
(

max{0,N(0,8)}
)
, i, j ∈I , i 6= j, t = 1,2, . . .

The vehicles available at location i may be used to satisfy this demand. They may also be moved

empty. The state xt of the system at time t is the M-dimensional integer vector containing the

numbers of vehicles at each location.

For simplicity, we assume that a vehicle can carry a unit demand, and the total demand at

the location i at time t can be satisfied only if xit ≥ ∑
M
j=1 Dijt ; otherwise, the demand may be

only partially satisfied and the excess demand is lost. One can relocate the vehicles empty or

loaded, and we denote the cost of moving a vehicle empty from location i to location j as ce
i j.

Since we stay in a cost minimization setting, we also denote the net negative profit of moving

a vehicle loaded from location i to location j as c`i j. Let ue
ijt be the number of vehicles moved

empty from location i to location j at time t and u`ijt be the number of vehicles that are moved

loaded. For simplicity, let us refer to the combination of ue
t and u`t as ut and denote:

c>ut =
M

∑
i, j=1

(
ce

i ju
e
ijt + c`i ju

`
ijt
)
.

In this problem, the control ut is decided after the state xt and the demand Dt are observed. The

next state is a linear function of xt and ut :

xt+1 = xt −Aut ,

where A can be written in an explicit way by counting the outgoing and incoming vehicles.

We denote by U (xt ,Dt) the set of decisions that can be taken at state xt under demand Dt .

Our approach allows us to evaluate a look-ahead policy defined by a simple linear programming

problem:

uπ
t (xt ,Dt) = argmin

u∈U (xt ,Dt)

{
c>u+απ

>(xt −Au)
}
. (5.3)
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Here, π is the vector of approximate next-state values fully defining the policy. In our case, the

immediate cost c>ut depends on Dt , and thus the risk-averse policy evaluation equation (1.9)

has the following form:

vπ(x) = σ

(
P,c>uπ(x,D)+αvπ

(
x−Auπ(x,D)

))
,

with P denoting the distribution of the demand. Our objective is to evaluate the policy π and

to improve it. As the size of the state space is enormous, we resort to linear approximations

of form (1.4), using the state x as the feature vector: ṽ(xt) = x>t r. The approximate risk-averse

dynamic programming equation (2.1) takes on the form:

r>x = σ

(
P,c>uπ(x,D)+αr>

(
x−Auπ(x,D)

))
. (5.4)

We omit the projection operator, because the feature space has full dimension. Thanks to that,

the multi-step approximate risk-averse dynamic programming equation (3.15) coincides with

(5.4), and all risk-averse methods with λ ∈ [0,1] solve the same equation.

In fact, we can combine the learning and policy improvement in one process, known as the

optimistic approach, in which we always use the current rt as the vector π defining the policy.

As the policy is already improved at every iteration of the trajectory, we are not in need of a

policy iteration algorithm.

We tested the risk-averse and the risk-neutral TD(λ ) methods under the same long simulated

sequence of demand vectors. At every time t, we sampled N = 4 instances of the demand vectors,

and for each instance, we computed the best decisions by (5.3), and the resulting states. Then

we computed the empirical risk measure (5.2) of the approximate value of the next state, and

we used it in the observed temporal difference calculation (3.3):

d̃t = r>t xt −ασ

(
PN ,c>urt (xt ,D)+αr>t

(
xt −Aurt (xt ,D)

))
.

We used the mean–semideviation risk measure [50] as σ(·, ·), which can be calculated in closed

form for an empirical distribution PN with observed transition costs w(1), . . . ,v(N):

σ(PN ,v) = µ +β
1
N

N

∑
j=1

max(0,w( j)−µ), µ =
1
N

N

∑
j=1

w( j), β ∈ [0,1].

We used β = 1, N = 4, and α = 0.95. We used stepsize γ = 10−4 in the temporal difference

updates. In the expected value model (β = 0), we also used N = 4 observations per stage, and
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we averaged them, to make the comparison fair. The choice of N = 4 was due to the use of a

four-core computer, on which the N transitions can be simulated and analyzed in parallel.

We compared the performance of the risk-averse and risk-neutral TD(λ ) algorithms for λ =

0, 0.5, and 0.9, in terms of average profit per stage, on a trajectory with 20,000 decision stages.

The results are depicted in Figure 5.1. We observe that the risk-averse algorithms outperform

their risk-neutral counterparts in terms of the average profit in the long run. We also observe

that the difference in performance is more significant when λ is closer to zero. It would appear

that with risk-averse learning no additional advantage is gained by using λ > 0.

In addition to these results, we used 207 distinct trajectories, each with 200 decision stages,

to compare the performance of the risk-averse and risk-neutral algorithms at the early training

stages in terms of profit per stage. Figure 5.2 shows the empirical distribution function of the

profit per stage of the risk-averse and risk-neutral algorithms at t = 200, for λ = 0, 0.5, and 0.9.

The histograms of these findings can also be seen in Figure 5.3. The results demonstrate that in

the early stages of learning (t = 200), the average profit of the risk-averse algorithm is more likely

to be higher than that of the risk-neutral algorithm, and the difference is very pronounced for

lower values of λ . The first order stochastic dominance relation between empirical distributions

appears to exist.

Although the risk-averse methods aim at optimizing the dynamic risk measure, rather than

the expected value, they outperform the expected value model also in expectation. This may be

due to the fact that the use of risk measures makes the method less sensitive to the imperfections

of the value function approximation.
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(a) λ = 0

(b) λ = 0.5

(c) λ = 0.9

Figure 5.1: Evolution of the average profit per stage.
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(a) λ = 0

(b) λ = 0.5

(c) λ = 0.9

Figure 5.2: Empirical distribution of the average profit at t = 200.
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(a) λ = 0

(b) λ = 0.5

(c) λ = 0.9

Figure 5.3: Histograms of the average profit at t = 200.
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Chapter 6

Conclusion

The curse of dimensionality is inherent to most sequential decision making problems under

uncertainty where risk-averse decision makers are involved. We state the risk-averse projected

dynamic programming equation in which we rely on a linear value function approximation and

employ transition risk mappings, which allows us to incorporate the theory of Markov risk

measures [62] in an approximate dynamic programming scheme. We exploit the insight from the

dual representation of coherent measures of risk to develop the concept of a distortion coefficient

and we use it to establish that the risk-averse projected dynamic programming equation has a

unique fixed point under mild conditions on the degree of risk-aversion.

In order to solve the risk-averse projected dynamic programming equation, we generalize the

well-known TD(λ ) algorithm [68] to the risk-averse case. We accomplish that by developing a

new concept, namely risk-averse temporal difference, in which the observed approximate value

of the next state on the trajectory is replaced by its empirical risk-measure. We analyze the risk-

averse methods of temporal differences in two cases, where λ = 0 and where λ ∈ (0,1] and we

establish the convergence of both algorithms. The multi-step method, where λ ∈ (0,1], requires

slightly more strict conditions on the degree of risk-aversion.

In order to demonstrate the effectiveness of the risk-averse methods of temporal differences,

we use it to learn the optimal allocation of vehicles in a transportation problem discussed in [55].

We run both the risk-averse methods of temporal differences and the well-known risk-neutral

TD(λ ) algorithm in tandem throughout very long trajectories of observed states. We observe

that even when the algorithmic parameters don’t strictly satisfy the convergence conditions, the

risk-averse method outperforms the risk-neutral one for all selections of λ in the long run in

terms of average profit. This difference is more significant when λ is lower. This is expected
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because of the manner the data for the problem is generated. The data is highly variable through-

out the decision stages and is time independent, thus, the advantages of the multi-step method

aren’t as pronounced compared to the basic method where λ = 0. Moreover, in order to com-

pare the performance of the risk-averse and risk-neutral methods, we compare the distributions

of average profit at the end of relatively short trajectories. We observe incontrovertible evidence

indicating that the risk-averse methods stochastically dominate the risk-neutral ones in terms of

accumulated profit.
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