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ABSTRACT OF THE DISSERTATION

Talent Recruitment Analytics in the Era of Big Data

By QINGXIN MENG

Dissertation Director: Dr. Hui Xiong

This dissertation aims at developing effective and efficient data mining techniques to

solve varied talent recruitment issues, reforming the overall process with respect to

talent sourcing, screening, matching, and assessment. Intelligent talent recruitment

has gained increasing attention due to the critical talent competitions and intensive

talent mobilities over the years. Previous studies mainly focus on discovering concep-

tual and theoretical topics, while applications for supporting organizational decision

making are still under-explored.

To this end, we propose several approaches purposed to not only help the people

to make intelligent talent-related decisions, but also obtain domain understandings

through a multifaceted data-driven perspective. In particular, we first present a

hierarchical career-path-aware neural network to study individuals’ job mobilities. In

this work, two problems are predicted all together on the basis of one’s historical career

paths: 1) who will the individual’s next employer? 2) How long will the individual

stay with his/her next employer? Several job mobility patterns regarding working

duration, firm types, and etc. are discovered simultaneously. Also, we propose an

intelligent matrix factorization based framework to address job salary benchmarking

tasks. In this work, we consider multiple contextual factors to improve the prediction

accuracy, such as job responsibility, company features, work location, and the time the

ii



job wanted. Furthermore, we put forward a Non-parametric Dirichlet Process-based

graphical model to address the “cold-start” problem for salary benchmarking, which

also has superior interpretability associated with job responsibility and company.
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CHAPTER 1

INTRODUCTION

1.1 Research Background and Motivation

Talent Recruitment (TR) has become a challenging issue in today’s human resource

management due to three main reasons (Farndale, Scullion, & Sparrow, 2010). 1)

There has been increasing global competition for talents, especially highly-skilled tal-

ents (Grant, 2008). 2) The job mobilities happen more frequently during one’s career

life than what had happened decades before. The factors that influence individu-

als in the job search decision-making process are more complicated and multifaceted

(Sullivan & Al Ariss, 2019), such as work-life balance, high-growth environment, and

personal visions. 3) In order to cope with the dynamic and competitive business

environment, the organizations need to train their employees a longer time, and may

bear a big loss if they decide to leave (Lawler, 2017).

Although there exists extensive research underlying the important issues behind

TR in a varied range, most of them focus on theoretical and conceptual development

(Collings, Wood, & Szamosi, 2018; Muriithi & Makau, 2017; Alic et al., 2016; Stone &

Rosopa, 2017); thus organizations cannot make use of them directly. In this disserta-

tion, we aim to develop data-driven methods to address TR related issues, which can

benefit the human resource department in the decision-making process, such as talent
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selecting, assessment and etc. Moreover, our solutions can provide certain domain

interpretability simultaneously.

1.2 Research Summary

Our research involves two TR tasks–job mobility prediction and Job Salary Bench-

marking (JSB)– with three different methodologies. We first outline the major results

of the research and then summarize the overall contributions.

One major effort of my research is to predict job mobility at the individual level.

We propose a hierarchical career-path-aware neural network method to understand

the talents’ job mobilities by learning their historical job-hopping behaviors. In this

work, two main issues regarding job mobility are addressed: 1) who will be the in-

dividual’s next employer; 2) how long will the individual stay with his or her next

employer. Three different levels of information are considered, including personal-

related information, company-related information, and position-related information.

As we know, during one’s career path, one may experience several internal trans-

fers within one company, as well as several external transfers among companies. A

neural network model is designed to capture and understand those internal trans-

fers and external transfers hierarchically; moreover, a delicate attention mechanism

is implemented to obtain model interpretability. This model can effectively iden-

tify both environmental and individual historical patterns that may influence the

decision-making process of talents.

Another major effort of my research involves JSB. JSB is a process by which orga-

nizations acquire and analyze labor market data to determine appropriate compensa-
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tion for their actual and prospective employees. The traditional salary benchmarking

methods are largely based on limited survey data and statistical methods, and they

suffer from un-inferable problems when the data are deficient. However, the lack of

data will be the most common situation in the real world. Another problem is that

most of the previous studies are based on job category, which is too general to meet

the particular requirement of the Compensation and Benefit (C&B) department. To

this end, we propose a fine-grained, automatic JSB system for organizations, where

we construct an expanded salary matrix, and then transform the problem into a Ma-

trix Factorization (MF) task. Four domain-related assumptions associated with job

responsibility, company, work location and time, are first tested then integrated into

the framework to improve the estimation efficiency. Based on the four observations,

we design four corresponding regularizers to optimize the learning process of the basic

MF model.

While the MF-based intelligent salary benchmarking model can effectively esti-

mate the job salary with confounding factors, two main issues remain unsolved. It

suffers from the “cold start” issue for a new company or job position, and limited

model interpretability. Along this line, we design a Nonparametric Dirichlet-Process-

based Latent Factor Model for JSB, namely NDP-JSB, which can jointly model the

latent representations of both company and job position, and then predict job salaries

for each company and job position combination. Moreover, as a probabilistic graphical

model, it can address the “cold-start” issue well, as well as provide deeper interpre-

tation on the estimations, such as the components of skill sets the job emphasizes on,

and the similar companies the model refers to.
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1.3 Contributions

The contributions of our research can be summarized in four aspects. First of all,

the applications provide a unique data-driven perspective for the organizations in the

process of talent management. In particular, for talent job mobility, the understand-

ing of it can benefit talent management operations in a number of ways, such as talent

recruitment, development, and retention. Knowing the potential career paths of an

employee would help executives and department managers in internal promotion de-

cisions to motivate key talents and reduce turnover rates. For example, when hiring

people, recruiters want to know who has the greatest opportunity to accept the offer,

and if there is a high chance of successful hiring, who will stay long. One of the most

interesting problems for job seekers is what is the best route to join their dream com-

pany and positions. Some job seekers may also want to know, based on their previous

working experiences, what’s their next possible move. Also, as a fundamental tool

for attracting, retaining, and motivating employees, salary benchmarking plays an

important role in support of the success of a company’s human resource management

(e.g., maximizing the productivity of the company; minimizing the cost of human cap-

ital in a long-run view). Our framework provides an effective and efficient solution

for studying the overall market data and organizations’ special factors together, and

then offer useful job salary advice. Moreover, the solutions have been demonstrated

effectiveness with extensive experiments on massive real-world datasets.

Secondly, analytical findings related to TR are deserved to be referred to for

future relevant research. We have discovered several interesting patterns related to
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the individual’s job transitions based on data-driven methods. For instance, the longer

an individual stays with an employer, the higher attention (importance) the employer

has; a job appearing in a later position in one’s career path has higher attention and

etc. Also, in the MF-based JSB solution, four domain-related assumptions are first

tested then integrated into the framework to improve the estimation efficiency: 1) If

jobs have similar job responsibilities, their salaries should be closer. 2) If jobs are

opened by two similar companies, their salaries should be closer. 3) If the jobs are

released within a near period, their salaries should be closer. 4) If the work locations

for the two jobs have similar economic conditions, their salaries should be closer. In

the NDP-JSB solution, the model learned five classes for jobs and their corresponding

key skillsets, namely, promotion, front-end, back-end, testing, and administration.

Also, it can identify similar companies from the job market.

Thirdly, the contributions have also stemmed from the degrees of difficulty and

the novelty of the problems. For difficulty, data mining has become popular a decade

ago before it enters the TR area. One of the reasons is the high uncertainty nature

of TR problems. For example, given a picture, what’s in the picture is determined,

and the uncertainty is low. On the contrary, given the previous working experience,

who will be the individual’s next employer is hard to predict, as the uncertainty

is high. The nature of high uncertainty makes the TR problems hard to address.

For novelty, to the extent of my knowledge, among the existing work on individual-

level job mobility prediction, we are the first to conduct dual highly specific tasks of

predicting people’s next employer and the eventual duration. Also, we are the first

to transform the JSB into a matrix completion task, in order to address the sparsity
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problem in existing salary observations. Our research can enlighten other scholars who

want to apply data mining techniques to managerial issues: an effective framework

must be developed based on the well understanding of domain knowledge and a

successful problem abstraction, especially for those problems with high uncertainty.

Last but not least, our methodology is easy to be generalized into other applica-

tion areas. For example, the NDP-JSB model adopted an NDP structure to group

companies with categorical features, and a Latent Dirichlet Allocation structure to

learn the latent factors for job descriptions in the form of texts. In this way, NPD-JSB

can take full advantage of correlations among companies and job descriptions in order

to assign a suitable salary to a (job, company) combination. There exist many prob-

lems with a similar abstract problem structure. For example, to predict the buying

behaviors of users, the information gathered from users is usually categorical, such as

age and gender, while the items are described by texts. The NPD-JSB framework is

an appropriate solution for user-item consumption predictions.

1.4 Overview

Chapter 2 introduces a hierarchical career-path-aware neural network for job mobility

prediction. We will give a detailed explanation of the design art of the hierarchical

sequential structure, and how we formulate the problem of predicting an individual’s

next employer and stay duration. We will describe how we process and select the

features in the model, as well as the details of experimental steps and results.

Chapter 3 presents an MF-based framework to estimate job salaries. Given a

combination of job and company, and multiple contextual information, such as job
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description, company features, work location, and job opening time, we will describe

how we can give lower and upper bound of the salary. The correlations among those

factors are first examined and then integrated into the framework to improve the

performance.

Chapter 4 proposes an NDP-JSB model for the salary benchmarking problem.

We will clarify the mechanisms of the NDP and LDA structures, which are designed

to learn latent factors for company and positions, respectively. As a probabilistic

graphical model, we describe how it can solve the “cold-start” problems with the cor-

responding experimental results. Furthermore, we will present several interpretations

regarding profiling a job salary.
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CHAPTER 2

A HIERARCHICAL CAREER-PATH-AWARE NEURAL NETWORK FOR JOB

MOBILITY PREDICTION

2.1 Introduction

In this chapter, we focus on providing data-driven solutions to the job mobility predic-

tion problem. The importance of job mobility has been widely documented as a key

element of human behaviors by researchers from different areas. For instance, (Topel

& Ward, 1992) claimed that work experience accumulation is mainly attributable to

job changing activities for locating good job matches, especially for young employ-

ees. It has also been found that people have renewed interests in job movements by

which job mobility occurs and results in different career paths (Rosenfeld, 1992). In

addition, evidence has been provided to support the significant relationship between

individual’s decision of migration and job mobility (Bartel, 1979), the connection be-

tween social ties and job changes (Wegener, 1991), the wage effect of cumulative job

mobility (Keith & McWilliams, 1995), and the like.

From the perspective of human resource manager, it is important to understand

the job mobility in the organization level as well as the individual level. The main

purpose of related studies is to support the decision-making process regarding talent

management. Understanding the potential career paths of an employee would help
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executives and department managers in internal promotion decisions to motivate key

talents and reduce the turnover rate. Also, during the recruiting process, employers

may be interested in knowing the probability for candidates to accept the job offers.

Meanwhile, if there is a high chance of hiring, how long will they stay? On the

other hand, from an employee’s viewpoint, people also concern about their career

development and growth for achieving professional success, and a question that may

keep bothering them is: what is the best and fastest career path leading to the success

in professional life?

However, job mobility prediction is not an easy task. Traditional studies of job

mobility were largely based on limited survey data and focused on the empirical

analysis of key factors affecting people’s career paths (Miller, 2011; Vance, 2005). The

rapid development of information technology and the emergence of professional social

networks enable us to collect and analyze large-scale career path data from the real

word. For example, as one of the earliest works in the individual-level job mobility

prediction topics, (H. Xu, Yu, Xiong, Guo, & Zhu, 2015) developed a framework

to predict whether there is a large chance of job change in the next six months for

individuals. (Liu, Zhang, Nie, Yan, & Rosenblum, 2016) proposed a multi-view multi-

task learning approach to predict the promotion in one’s career path. These works

considered work experience and daily activity data in their models, but the target

problems were somehow general and had limited practical applications. Thus, in this

chapter, we propose to address the problem of job mobility prediction by answering

two specific questions: (1) “Who is your next employer?” and (2)“How long will you

work for your next employer?” The first question is regarding the position prediction,
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and the second one tells the eventual duration of your new job.

The main challenges of the proposed prediction tasks are twofold. (1) We need to

handle the dynamic hierarchical nature of career paths for employees, such as internal

job mobilities and external job mobilities. For example, one person may experience

several internal job transfers within a company before he/she hops to a new company.

Both the internal transfers and external job hoppings may influence the direction of

the future of the career path at different levels. Moreover, the data are complex with

heterogeneous forms, including the personal-specific, company-specific, and position-

specific data. For example, the personal self-introductions and company descriptions

are freely structured, some features are categorized, while others are numerical. (2)

The other challenge is to jointly consider the influence between environmental factors

and individual historical patterns. The closeness between companies is one of the

environmental factors. For example, one person working in a bank may have a high

chance to hop to another bank. Meanwhile, tracing back the whole history of one’s

career path, which company or position takes the main role in the decision-making

process, is another important factor we need to figure out.

We provide our solutions to the aforementioned issues and contribute to the lit-

erature in four ways as follows:

• To the best of our knowledge, among the existing work on individual-level job

mobility prediction, we are the first to conduct dual highly specific tasks to

predict people’s next employer and the eventual duration.

• We propose a hierarchical career-path-aware neural network approach to inte-
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grate three levels of information, including personal-specific, company-specific

and position-specific knowledge. The model embeds survival analysis and at-

tention mechanism, which lead to a certain level of interpretability of results.

• For both proposed forecasting tasks, we demonstrate evidence showing the su-

periority of our model in comparison to several well-known benchmarks.

• Our model offers a new way to show data-driven evidence in support of the

connection between specific factors and job mobility. As case studies, new

evidence has been presented to show the impacts of various factors (e.g., job

duration, firm type, etc.) on the job mobility prediction performance.

2.1.1 Data Description

The data were collected from a famous online professional social platform, where

users can build professional profiles introducing their education and work experience,

like a public online curriculum vitae. We summarize the collected features into three

categories, including personal-specific, company-specific, and position-specific data.

Personal-specific information is static and includes freely structured self-description

texts and the number of social connections. Company-specific features (e.g., company

name, type, size, etc.) and position-specific features (e.g., position type, service

duration, etc.) were collected as sequential data to describe the work timeline of the

users. Our data contain both internal and external job transitions in their professional

life. Figure 2.1 shows an example of the hierarchical structure of our data.
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Figure 2.1. An example of the three-layer structure of our job mobility data.

2.2 Preliminary Analysis

How to design an effective framework to model such a hierarchical structure becomes

a key challenge in this job mobility prediction task. To handle the complex data

structure, we formatted those three kinds of features into different levels. The static

personal information were transformed into a vector as one level, while company-

specific and position-specific features were transformed into a sequence of vectors

respectively as the second and the third levels. Each level in the structure contains

useful information that we do not want to mass them up in a simple machine learning

model. Thus, we propose to construct a neural network model to handle the three

level of inputs hierarchically. We will provide detailed discussion in section 2.3.
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The second challenge and the motivation of our model are problem-specific. We

believe the job mobility prediction is a sequential problem and even a long-distance

dependent sequential problem. The decisions in people’s career paths rely on two

groups of factors. The first one refers to the work environmental factors, which

describe the natural connections among company-specific characteristics, such as firm

types. For instance, employees in a bank are highly prone to hop to another bank,

rather than other manufactories. Although we do not have direct features to represent

the similarities between companies, such information will be obtained by learning from

people’s job-hopping patterns. The second group of factors we should consider are

the individual historical factors. In one’s historical career path, she/he might have

served several employers and been occupied in different positions. An effective model

should be able to understand which experiences during the career path play the most

important roles for future decisions. Such information should be captured during the

model training process.

In particular, here we introduce a motivating example of the prediction problem

in Figure 2.2, which is a real case in our sample. Specifically, the person has worked

for three employers, namely “Fannie Mae”, “CGI”, and “BearingPoint”, one after an-

other before he hopped to “Freddi Mac”. If we use the Markov Chain Model, which

only considers the environmental factors to predict the next employer, the result is

“Accenture”. The model considers the last employer “BearingPoint” as an important

reference in the prediction process, given that “Accenture” and “BearingPoint” are

both consulting companies. The result is reasonable as it only considers the envi-

ronmental factors. On the other hand, our model intelligently gave higher attention
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for his first employer “Fanni Mae” than “CGI” and “BearingPoint”, which might

be due to their associated duration. Therefore, it can successfully predict the right

next employer “Freddi Mac”, which is closely tied up with the person’s first employer

“Fannie Mae”. Indeed, “Fannie Mae” and “Freddi Mac” are two large house mortgage

companies. To get the correct predictions, we need to jointly consider the environ-

mental factors as well as the individual historical factors, which can be discovered

from the detailed information of people’s career paths, such as the job duration of

each position.

HCPNN (Long-memory method)

CTMC (Memoryless method)

?Fanni Mae
5 years

 CGI
1 year

BearingPoint
1 year

Career Path

Figure 2.2. The prediction of a real case.

2.2.1 Data Analysis

We also analyzed the characteristics regarding the distribution of our samples. Figure

2.3 (a) demonstrates the distribution of the occurrence number of the firms in our

real-world dataset. As can be seen, 20% of the firms cover about 60% samples in the

data. Figure 2.3 (b) shows the distribution of the job duration, which was split into

21 windows as 0.5 years, 1 year, 1.5 years, ..., 10 years, and more than 10 years. We
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can see that most people stay in one position for 1-3 years, and there is a decreasing

pattern for the longer duration. Interestingly, there is also a “sawtooth” pattern in

the job duration distribution, which may indicate that people try to avoid leaving a

job in the odd number of half years. Also, both the length of company and position

sequence have long tail shape too, as illustrated in Figure 2.3 (c) - (d). Our model

needs to handle the imbalanced distribution for better predictions.
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Figure 2.3. The data distribution of different aspects.
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2.3 Problem and Methodology

In this section, we formulate the job mobility prediction problem based on the data

availability and then discuss the new method we proposed for addressing the problem.

2.3.1 Problem Statement

Let u ∈ U denote a person, c ∈ C denote a company, p ∈ P denote a position,

where U , C and P represent the full set of people, companies, and positions re-

spectively. Given the company sequence
−−→
Q(u), the position sequence

−−−→
B(u), and

the personal-specific information Ω(u), we represent u’s three-layer career path as

S(u) =
{−−→
Q(u),

−−−→
B(u),Ω(u)

}
. The company sequence

−−→
Q(u) can be written as:

−−→
Q(u) = {(c1, c2, ..., cg)|u} , (2.1)

and position sequence
−−−→
B(u) can be written as:

−−−→
B(u) = {(p11, p12, ...), ..., (pg1, ..., pgh)|u} , (2.2)

where pgh describes the h-th position for his g-th employer cg. For example, p24

represents the fourth position in the second company c2 where a person worked.

Then, we formulate our problem as follows:

Problem 1 Given a person’s three-layer career path,

S(u) =
{−−→
Q(u),

−−−→
B(u),Ω(u)

}
, (2.3)

where
−−→
Q(u) stands for company sequence,

−−−→
B(u) stands for position sequence, and Ω(u)

stands for personal information, we want to predict person u’s next employer cg+1 and

the duration dg+1 at cg+1.
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2.3.2 An Overview of the Model

Now we introduce the methodology we proposed for addressing the job mobility pre-

diction problem. The design of our model is rooted in the hierarchical data structure,

and we name it as the hierarchical career-path-aware neural network (HCPNN). The

model includes three main components, namely Internal Job Mobility Representation,

External Job Mobility Representation, and Prediction.

Figure 2.4 illustrates the framework of our HCPNN. Specifically, for the com-

ponent of Internal Job Mobility Representation, we embed the sequential position

features as the inputs to a long short-term memory (LSTM) (Hochreiter & Schmid-

huber, 1997) layer. Then, we apply a local attention mechanism for obtaining the

internal job mobility representation. For the component of External Job Mobility

Representation, we first concatenate sequential company feature embeddings with

the internal job mobility representation, then we feed them into another LSTM layer

for training the external job mobility representation. Meanwhile, we conduct the

embedding process for the personal-specific features, and then we apply the global

attention mechanism to both external job mobility representation and static personal

representation. Following that, we form a hierarchical job mobility neural network,

which has the ability to learn the influences of internal and external job mobility on

their next job decisions. Finally, for different learning tasks, the output from the

HCPNN will be fed into different prediction widgets. As emphasized in the problem

statement, we aim at predicting the next employer as well as the job duration with

the next employer for every person.
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Figure 2.4. The graphical representation of the HCPNN model.
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2.3.3 Technical Details

Here, we introduce the details of Internal Job Mobility Representation, External Job

Mobility Representation, and Prediction components mentioned above.

Internal Job Mobility Representation

The inputs of internal job mobility representation layer are position-specific features

−−−→
B(u). After the embedding, we feed them into an LSTM layer to learn the hidden

representation of the position-specific sequential features. We choose LSTM to handle

this task due to its predictive power, as well as the ability to alleviate the gradient

vanishing problem in long-distance dependent sequential problems. In our framework,

we refer the output of LSTM of this layer as o11, o12, ..., ogh, and then we apply a local-

attention mechanism with these outputs to get the final representation for internal

job mobility. In particular, we propose to add an attention mechanism for obtaining

the model interpretability, on which we rely for result analysis. Also, we use this

mechanism to align the internal job mobility representation b1, b2, ..., bg and company

sequence embeddings c1, c2, ..., cg with the same length.

The attention mechanism tries to capture the degree of attention for representing

the importance of inputs in the learning process. Based on our proposed tasks and the

data structure, we apply the attention technique as follows. For each attention output

bi, we assign attention based on the company sequence inputs before and include ci.

For instance, suppose position sequence p11, p12, p13 is associated with company c1,

and p21 is associated with c2, then we assign the attention value on o11, o12, o13 to get

the attention output b1, and assign attention value on o11, o12, o13, o21 to obtain the
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output b2. In this way, we prevent to use future information to predict the future.

Also, the internal job mobility layer is aligned with the external job mobility layer.

The local attention mechanism can be formulated as follows.

vij = tanh(Waoij + ba),

αij =
exp(vTijua)∑g

i=1

∑h
j=1 exp(vTijua)

,

bg =

g∑
i=1

h∑
j=1

αij(Waoij),

(2.4)

where Wa, ba and ua are training parameters, oij means the i-th company j-th posi-

tion’s hidden states learned from the first LSTM layer, and bg is the output vector

for g-th internal job mobility representation.

External Job Mobility Representation

Similar to the internal job mobility representation, we utilize an LSTM layer and

attention mechanism to model the external job mobility information. First, we con-

catenate the aligned sequential company embedding data c1, c2, ..., cg with the internal

mobility representation b1, b2, ..., bg, then we feed them into another LSTM layer and

obtain the output d1, d2, ..., dg. Personal features Ω is further embedded. Then a

global attention is computed based on both d1, d2, ..., dg and Ω for getting a final

output. The attention technique implemented here not only integrates the personal

information into our framework, but also improves the result interpretability of our

model.
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The Prediction Module

Our job prediction problem contains two major tasks: the next company and the

duration at the next company. For the first one, we formulate it as a classification

task as below. We first feed the output vector learned from the HCPNN model

into a fully-connected layer where the output dimension matches our total company

numbers. Then, we use a softmax activation function to normalize the probabilities

P (c) of each possible company. The process is demonstrated in Figure 2.5.

HCPNN
Output

Fully-
connected Softmax Y_company

Figure 2.5. The process of predicting next employer.

Based on the maximum likelihood estimation, we optimize the loss function for

predicting the next employer, which is formulated as follows. Given a person u, we

maximize

Lucompany =

g∑
i=2

log (P (c = ci)|S(u)) . (2.5)

In the optimization process, we can not predict the first employer c1, as
−−−→
B(u) and

−−→
Q(u) are empty before c1. So we summarize the log-likelihood of company sequence,

start from the second index.

For the second task of predicting job duration, we integrate survival analysis into

our framework. We regard the event a person joins a company as her start life in this

company. And the event of leaving the company as a death event.

Survival analysis has been widely used for estimating the occurrence time of an
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event with censored observations. We denote the probability of an event does not

happen before time t as P (Tsurvival ≥ t), and the instantaneous rate of the occurrence

of the target event at time t as λ(t), so we have

d

dt
P (Tsurvival ≥ t) = −λ(t)P (Tsurvival ≥ t) . (2.6)

To solve the Equation 2.6, we can get

P (Tsurvival ≥ t) = exp

(
−
∫ t

0

λ(τ) dτ

)
. (2.7)

Sometimes, we can only observe the survival event within a period time t, after

time t we cannot continue the observations. This is called right-censored data. And

the probability can be computed by Equation 2.7. And if a target event occurred at

the exact time t′, the probability is computed as

P (Tsurvival = t′) = λ(t′)exp

(
−
∫ t′

0

λ(t) dt

)
, (2.8)

where the meaning of the function can be explained as the joint probability of the

event happening at the exact time t′ and the event does not happen before time t′.

In our problem, we first use a fully-connected layer to transform the output learned

from the HCPNN into k+1 dimension, where the first k dimensions can represent the

individual turnover probability for the segmented time period
[
(0, 1

k
T ), [ 1

k
T, 2

k
T ), ..., [k−1

k
T, T )

]
.

The last dimension denotes the turnover probability after T . Note that T is the

longest observation time in our problem. The larger of k, the higher precision of

the simulation. In this way, we can transform the task of predicting the next dura-

tion to a survival analysis problem. Figure 2.6 illustrates the process of job duration

prediction.
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Figure 2.6. The process of predicting job duration.

The technical details can be summarized as follows. Let λ(τ)|S(u) denote the

individual turnover probability for the next employer under the condition of previous

career path S(u), where τ ∈ (0,+∞). We will use λ(τ) for short in the following. We

have λ(τ) > 0 by definition, so we use the softplus function to constrain the value to

be positive. So the log-likelihood of predicting the duration at the next company can

be computed as:

Luduration = log

(
g∏
i=2

P
(
d = di|S(u)

))

=

g∑
i=2

log

(
λ(di) exp

(
−
∫ di

0

λ(τ) dτ)

))

=

g∑
i=2

log (λ(di))−
g∑
i=2

∫ di

0

λ(τ) dτ.

(2.9)

The reason why the summation starts from index 2 is the same with that we

explained for computing Lucompany. If we split the observation time into two parts,

(0, T ) and (T,+∞), the job-hopping events occurred after time T will be treated as

right-censored data points. The Equation 2.9 can be rewritten as:

Luduration =

g∑
i=2,di<T

log (λ(di))−
g∑

i=2,di<T

∫ di

0

λ(τ) dτ

−
g∑

i=2,di≥T

∫ T

0

λ(τ) dτ.

(2.10)
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By summarizing the loss function for predicting the next employer and job dura-

tion, we get our final loss function as below:

Loss = −
∑
u∈U

(
αLucompany + (1− α)Luduration

)
, (2.11)

where the α is the tuning parameter of these two types of loss functions. Given the

probabilities of P (cg+1|S(u)) and λ(τ)|S(u), it is easy to deduce the most possible

next hopping company to be argmax{P (cg+1|S(u)}. As for the next job duration,

we need to calculate the integration of P (d = τ |S(u)) over time τ ∈ (0,+∞), the

formulation will be

duration =

∫ +∞

0

τ · P (d = τ |S(u)) dτ

=

∫ +∞

0

τ · λ(τ) exp

(
−
∫ τ

0

λ(s) ds

)
dτ.

(2.12)

Since the Equation 2.12 is non-linear, and there is no analytic solution, we can use

simulation to solve the integration problem. We segment the time window t ∈ (0,+∞)

into z intervals, then use the function above to calculate the integration.

2.4 Experiments

In this section, we introduce the details of experiments conducted on a real-world

dataset for validating our HCPNN.

2.4.1 Experimental Setup

The data were collected from a well-known online professional social platform. We

filtered out the samples with the number of the external job transitions less than

four. And we selected those companies having the highest occurrence frequency as

our research targets. The major statistics of the data are summarized in Table 2.1.
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Table 2.1. The statistics of experimental data.

Name value

Number of samples 414,266

Number of companies 1,002

Number of normalized position types 26

Max/min/mean company sequence length 22/4/4.52

Max/min/mean position sequence length 35/4/5.14

Observed time periods 1988.1-2018.11

As described before, our data have three levels, personal-specific features, company-

specific features, and position-specific features. To handle the rich forms of data (free

text, numerical and categorical features), we preprocessed the data with the following

methods. For the free text feature, such as company description and personal self-

introduction, we used the wold2vec (Řeh̊uřek & Sojka, 2010) embedding method to

transform a word into a vector. Then we computed the mean value of the embedding

for every dimension respectively, in this way we got a fixed length of the vector for the

free text of varying length. For the categorical features, the number of types of which

less than ten, we used one hot encoding; for those with the number of types more than

ten, such as company ID, we used a fully-connected layer for the embedding process.

To process the job duration at companies and positions, we first segmented the time

less than ten years by every half year into 20 small windows, and the time larger

than 10 years was set into one category. In this way, the job duration was segmented
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into 21 categories, namely 0.5 years, 1 year, 1.5 years,..., 10 years, and more than 10

years. We segmented job duration in this way because it is hard to predict the exact

leaving time when an employee stays service for more than 10 years. We counted and

normalized the personnel flow in/out/transfer number of every company for every

three years. Thus, given a specific company c and a timestamp m, we can draw the

corresponding flow in/out/transfer value of the company c at the time period m− 1.

We treated them as company-specific features. The features used in our model are

summarized in Table 2.2. After preprocessing of the data, we set up the configuration

of our HCPNN based on our preliminary experiments. The key dimensions and value

settings of the model are reported in Table 2.3.
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Table 2.2. The features used in HCPNN.

Personal Specific Feature

Number of social connections Numerical

Self-introduction Free text

Company Specific Feature

Job duration at the company Numerical

Company personnel flow (in/out/transfer) Numerical

Company description Free text

Company id, Size ,Type, Location, Age Categorical

Position Specific Feature

Duration in the position Numerical

Position type Categorical
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Table 2.3. The network configuration of HCPNN.

Name Dimension/value

duration embedding 10

company id embedding 50

position id embedding 5

company description words embedding 50

personal description words embedding 50

hidden states of company LSTM layer 150

hidden states of position LSTM layer 20

output dimension of local attention layer 20

output dimension of global attention layer 80

dropout probability 0.9

number of samples in a batch 64

the loss tuning parameter α 0.5

segmentation to compute the integration of survival analysis z 21
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2.4.2 Baselines

We compared our model with state-of-the-art techniques, which are listed as fol-

lows: non-sequential models (e.g., Logistic Regression (LR), Random Forest (RF),

and Decision Tree (DT)), sequential models (e.g., Conditional Random Field (CRF)

(Lafferty, McCallum, & Pereira, 2001), Continuous Time Markov Chain (CTMC)

(Anderson, 2012) 1 ) , and the stochastic time series models (e.g., Poisson Process

(PP) (Karr, 2017), Multi-variable Hawkes Process (MHP) (Mei & Eisner, 2017)).

Also, we tested two modified versions of our method HCPNN named HCPOP and

HCPOS. HCPOP model does not contain internal transition representation layer,

while HCPOS does not contain the survival analysis technique, the job duration pre-

diction was treated as a classification problem. We modified the CRF and MHP to

fit our problems, the technique details will be introduced in Appendix A.1.3.

2.4.3 Evaluation Metrics

For predicting the next employer, we use Accuracy@k (Acc@k) and mean reciprocal

rank (MRR) to evaluate the results, where Acc@k = 1
N

∑N
i=1 I(rank(i) ≤ k), and

MRR = 1
N

∑N
i=1

1
rank(i)

, where the N is the total number of predictions, and rank(i)

represents the real label rank in the predicting ranking list. If rank(i) ≤ k, then

I(rank(i) ≤ k) equals one, else equals zero. In this experiment, we set k = 1, 15, 30

respectively. The higher value of Acc@k and MRR, the better performance. For

predicting the job duration, we use mean absolute error MAE = 1
N

∑N
i=1 |pi−ri| and

Root Mean Square Error RMSE = 1
N

√∑N
i=1(pi − ri)2 to evaluate the performances.

1https://github.com/kmedian/ctmc
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pi and ri are the predicted job duration and the real job duration.

2.4.4 The Overall Performance

To validate the effectiveness of our model, we first randomly split the samples by

(0.8/0.1/0.1) as the training/validation/test datasets. And the overall performance

including predicting next employer and job duration respectively. The results of pre-

dicting next employer are reported in Table 2.4. We calculated the improvements of

our model against all the other baselines. We can observe that the tree-based model

are not able to effectively handle this predicting task, and the performances of the

sequential models are better than that of non-sequential models. Our model has the

best performances with significant improvements. For example, we achieved improve-

ments of 231.8%, 160.3%, 121.4%, and 609.1%, in terms of Acc@1, Acc@15, Acc@30,

and MRR, against the DT. Comparing to the best baseline, CTMC, our model also re-

sulted in a consistent superior. To validate the improvement of HCPNN over HCPOP

is statistically significant, we randomly split the data by (0.8/0.2) ten times, and con-

ducted a standard student t-test. As the results, the p-value is very small for both

employer and duration predictions, demonstrating a statistically significant improve-

ment, and validating the importance of internal job mobility representation layer in

our model. More detailed results about t-test are reported in Appendix A.1.4 Table

A.3.

The results of predicting job duration are summarized in Table 2.5. Similar to

Table 2.4, we computed the performance improvement of HCPNN against all the other

baselines. We can observe that the stochastic time series models and the variant of our
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model HCPOS achieved relative better performances, indicating that the task should

be considered as a time series problem. Our model achieved the best performance

with obvious advantages, while HCPOS, which uses the same structure but without

the survival analysis, resulted in worse performance, even comparing it to MHP and

PP. These results confirm the importance of our framework as well as the survival

analysis on the duration prediction task.
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Table 2.5. The overall performance (duration prediction).

Model MAE Improvement RMSE Improvement

DT 3.839 28.8% 5.608 31.3%

RF 4.070 32.8% 5.782 33.4%

LR 3.096 11.7% 4.857 20.7%

CTMC 4.128 33.8% 5.872 34.4%

PP 3.143 13.0% 4.228 8.9%

MHP 3.029 9.7% 4.214 8.6%

HCPOS 3.095 11.7% 4.898 21.4%

HCPOP 2.739 0.2% 3.880 0.7%

HCPNN 2.734 - 3.852 -

The improvement of our HCPNN over HCPOP is statistically significant with

a p-value consistently less than 0.01.

2.4.5 Robustness Analysis

We also conducted additional experiments to confirm the robustness of our method.

We first randomly split the dataset by samples with different training proportion set-

tings (i.e., 90%, 80%, 70%, 60%, and 50%), the results of which are reported in Table

2.6. We can observe that with the training proportion increasing, the performance is

improving as well. Furthermore, we split the dataset by years as well, for instance,

if we set the splitting year as 2005, the whole sample sequences will be truncated by

the year 2005, the points in a sequence before the year 2005 will be used for training,



- 34 -

and the points in the sequence after 2005 will be used for predicting. The results are

shown in Table 2.7. We can observe that with the splitting year approaching recent,

the performance improves. The results of two different splitting settings are stable,

demonstrating the robustness of our model HCPNN.

Table 2.6. The performance on randomly split samples.

Ratio Acc@1 Acc@15 Acc@30 MRR MAE RMSE

0.9 0.074 0.405 0.538 0.157 2.729 3.855

0.8 0.072 0.403 0.534 0.155 2.732 3.892

0.7 0.071 0.401 0.532 0.154 2.722 3.912

0.6 0.070 0.398 0.528 0.152 2.746 3.884

0.5 0.068 0.393 0.524 0.149 2.724 3.919

Table 2.7. The performance on splitting data by years.

Year Acc@1 Acc@15 Acc@30 MRR MAE RMSE

2005 0.042 0.297 0.419 0.106 2.692 3.517

2006 0.041 0.313 0.440 0.109 2.556 3.366

2007 0.043 0.313 0.437 0.109 2.566 3.271

2008 0.045 0.328 0.455 0.115 2.651 3.241

2009 0.046 0.331 0.460 0.116 2.466 2.999

2010 0.048 0.340 0.470 0.120 2.277 2.796
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2.4.6 Attention Analysis

With the attention mechanism, our HCPNN model offers new opportunities to inves-

tigate the importance of considered factors and related patterns in the job-mobility

prediction tasks. Here, we show some examples in which we study the characteristics

of three job-mobility factors, including the job duration, the firm type, the time index

of career paths.

In Figure 2.7 (a) - (b), each column represents a time index which is set to be the

position distance prior to the last job. For example, the last job has a time index

of zero; the one before the last job has a time index of 1, and so forth. Each row

represents the duration of a job, and the color of each grid shows the mean value of

attention. The brighter of the color, the higher attention. The grids in white are

missing values (no observation). Two interesting patterns can be found: (1) The

longer stay with an employer, the higher attention (importance) it has; (2) A job

appearing in a later position in one’s career path has higher attention. Specifically,

we find that 76.8% of the people in our sample have the highest attention weights for

their last jobs.

On the other hand, the firm type also matters. As demonstrated in Figure 2.7 (c)

- (d), an interesting pattern can be found. In general, with the job duration increases,

the importance of an employer increases as well. However, this pattern is reversed for

government-based organizations. That is, the longer people stay in the government,

the less attention it has for the job mobility.
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2.4.7 Individual Effect and Firm Effect

We also find the evidence of the existence of individual effect and organization effect

in the predictions. We showcase the importance of number of social connections

in the job mobility prediction in Figure 2.8. As can be seen, with the number of

social connections increases, the attention increases as well. Moreover, the HCPNN

will pay more attention to personal information when predicting next employer than

predicting job duration. These findings are consistent with (Wegener, 1991) regarding

the relationship between social ties and job mobility. We also evaluate the mean

attention grouped by companies and plot the sorted attention in Figure 2.9, which

appears as a sinh curve. We report the top-10 companies with the highest attention

and compare them to the top-10 companies with highest occurrence number. The

result is listed in Table 2.8. None of those companies overlapped. As can be seen, most

of the top-10 companies with highest attention are emerging high-tech companies,

while the most of the top-10 companies with highest occurrence frequency are relative

old famous companies.

2.4.8 Individual-level Turnover Analysis

To analyze the patterns of turnover probability for individuals, we gathered the

individual-level turnover probability for all samples and plot them in Figure 2.10.

We can observe that with the working years increasing, the instantaneous turnover

probability steady increases too. We also found an interesting phenomenon, which

shows the individual turnover probability follows a “sawtooth” shape. This is con-

sistent with our findings regarding the job duration distribution, as shown in Figure
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2.3 (b). The pattern indicates that people tend to stay with an employer for integer

years rather than odd number of half years. Our model learned this pattern without

any pre-defined constraints.

Table 2.8. Attention on companies.

Top 10 companies with highest attention

Facebook, LinkedIn, SapientNitro, GE Oil & Gas

Amazon Web Services, BBVA Compass bank, inVentiv Health

IndusInd Bank, Societe Generale Corporate and Investment Banking

Everything Everywhere (EE)

Top 10 companies with highest occurrence number

PricewaterhouseCoopers, Deloitte, Microsoft

Oracle, JPMorgan Chase, Bank of America, Citibank

Accenture, Hewlett Packard Enterprise, IBM
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Figure 2.7. The attention analyses of job mobility patterns.
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- 40 -

2.5 Related Work

Career path analysis is a hot topic in management and psychology fields due to its

significant values for guiding the decision-making process of organizations as well

as individuals. Those works were largely based on limited survey data and gave

qualitative analyses of key factors that would influence one’s career path (Miller,

2011; Vance, 2005). Recent years, AI technology has enhanced the development and

re-designed the paradigm of human resource management in many aspects (Meng,

Zhu, Xiao, & Xiong, 2018; Qin et al., 2018; C. Zhu, Zhu, Xiong, Ding, & Xie, 2016;

Shen et al., 2018; H. Xu, Yu, Yang, Xiong, & Zhu, 2016), of the area, career path

analysis is one hot target problem. For example, (L. Li et al., 2017) designed a neural

network framework to predict the next employer and positions together. (H. Li, Ge,

Zhu, Xiong, & Zhao, 2017) proposed a survival analysis to model the promotion and

turnover within one company, which is different from our trans-company analysis.

(H. Xu, Yu, Yang, Xiong, & Zhu, 2018) analyzed the talent flow into and out of the

target organizations, regions, or industries.

The technologies used in our model are associated with recurrent neural networks,

as well as sequential event data analysis. Various recurrent neural network approaches

have been developed to address the time series problem, such as LSTM (Hochreiter

& Schmidhuber, 1997), and Gated Recurrent Unite (GRU)(Cho, Van Merriënboer,

Gulcehre, et al., 2014). These techniques have been widely used due to their strong

performance as well as the ability to capture long-term temporal dependencies, es-

pecially in the text mining and image recognition areas (L. Zhang et al., 2018; Cho,
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Van Merriënboer, Bahdanau, & Bengio, 2014). After that, attention-based model

are introduced to improve the prediction power of RNNs further (Bahdanau, Cho, &

Bengio, 2014; Luong, Sutskever, Le, Vinyals, & Zaremba, 2015). Recent years, se-

quential event data and survival analysis models have been developed to solve various

problems (Ye et al., 2018; Du et al., 2016; Mei & Eisner, 2017). (Jing & Smola, 2017)

applied RNN to model the user return pattern of a musician application. (Ren et

al., 2019) proposed a deep learning model to analyze both censored and uncensored

data. Our research is different from the above works in two aspects. First, we use a

hierarchical LSTM and attention mechanism to model a hierarchical sequence data.

Second, we do not suppose any preliminary assumptions on the form of hazard rate,

as the preliminary assumptions may be against the true nature of the real values.

2.6 Concluding Remarks

In this chapter, we focused on understanding job mobility at an individual level.

Specifically, the goal is to predict the next potential employer of an individual and

how long he/she will stay in the new position. Along with this line, we proposed a

hierarchical career-path-aware neural network for answering these two questions. Our

approach was designed to provide a certain level of interpretability by embedding the

attention mechanism. As shown in our experimental results, our method provided

much better accuracy for both prediction tasks. Finally, based on the assigned atten-

tion, we also provided data-driven evidence to show the importance of various factors

(e.g., job duration, firm type, etc. ) for job mobility prediction.
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CHAPTER 3

INTELLIGENT SALARY BENCHMARKING FOR TALENT RECRUITMENT: A

HOLISTIC MATRIX FACTORIZATION APPROACH

3.1 Introduction

Compensation and Benefits (C&B), one of the most important sub-disciplines of

human resources, plays an indispensable role in attracting, motivating and retaining

talents. A major part of C&B planning is salary benchmarking, which has a goal of

identifying the market pay scales of employees with respect to different job positions.

Indeed, comprehensive and accurate salary benchmarking can help companies to keep

and strengthen their core competitiveness in the market.

Traditional approaches for salary benchmarking rely heavily on the experience

from domain experts and market surveys provided by third-party consulting com-

panies and governmental organizations (Johnson, Riggs, & Downey, 1987; Schau &

Heyward, 1987; Porter, Cordon, & Barber, 2004), such as OECD1 . However, the

rapidly evolving technology and industrial structure result in the variation of posi-

tions and job requirements, leading to the difficulties in timely salary benchmarking

under a dynamic scenario. For example, it is nontrivial for traditional approaches to

timely benchmark salaries in the scenarios where there are millions of job-company

1http://www.oecd.org/
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combinations with respect to many possible work locations and time periods.

Recently, the prevalence of emerging online recruitment services, such as Glass-

door, Indeed and Lagou, provide opportunities to accumulate massive job related-data

from a wide range of companies, and thus enable a new paradigm for salary bench-

marking in a data-driven way. To this end, in this chapter, we propose a method

for intelligent salary benchmarking based on large-scale fine-grained online recruit-

ment data. Specifically, we first construct an expanded salary matrix based on the

recruitment data, in which time-specific job positions and location-specific companies

are represented as rows and columns. In this way, the problem of salary benchmark-

ing can be naturally formalized as a matrix completion task. Along this line, we

develop a Holistic Salary Benchmarking Matrix Factorization (HSBMF) model for

predicting the missing salary information in the salary matrix. Also, by integrating

multiple confounding factors, such as company similarity, job similarity, and spatial-

temporal similarity, the HSBMF model can provide a holistic and dynamic view of

salary benchmarking. Indeed, with the help of HSBMF, we can obtain fine-grained

salary benchmark with respect to different companies, job positions, time periods and

locations. At last, we conduct extensive experiments based on large-scale real-world

recruitment data to validate the effectiveness of our approach in terms of accurately

identifying the market rates for job positions in various contexts.

To be specific, the contributions of this work can be summarized as follows:

• We propose a novel approach HSBMF for large-scale fine-grained job salary

benchmarking based on the massive online recruitment data.
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• We propose and validate four domain assumptions with respect to the recruit-

ment market, and integrate them as confounding constraints into HSBMF,

which can provide a holistic view of salary benchmarking.

• We evaluate the proposed approach with extensive experiments on a large-scale

real-world dataset. The results clearly validate the effectiveness of our approach.

3.2 Preliminary Analysis

In this section, we briefly introduce the recruitment data used in our study and

formalize the problem of fine-grained salary benchmarking. Also, we discuss the

numerical characteristics of the data related to the design of our model.

3.2.1 Data Description

In this chapter, we aim to develop an effective method for salary benchmarking based

on massive online recruitment data. Our data were collected from a major online

recruitment website in China, which consist of more than 700,000 job postings from

more than 50,000 high-tech companies during a three-year time interval. The infor-

mation of each job posting contains posting time, job details (e.g., job title, work

location and job description), company details (e.g., company name, industry cate-

gory, company size, and financial stage), and a scale of expected monthly salary (e.g.,

lower bound and upper bound). More details of the data will be discussed in Sec-

tion 3.4. Indeed, the information similar to our recruitment data is generally available

worldwide. Therefore, the method developed in this chapter should be able to easily

applied to a broader job market.
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One of the most important jobs for C&B is salary benchmarking, which aims at

identifying the appropriate market pay scale for each job position. One intuitive solu-

tion is to predict salary scales with respected to specific job requirements. However,

based on real-world cases, it can be commonly found that companies offer different

pay levels to similar job positions. Even for the same job-company combinations,

salaries vary a lot at the different time and work locations. For example, one cor-

poration may offer quite different salaries to two software developers, of which one

works at New York while the other works at Nashville, even though their work du-

ties are similar. Thus, we believe it is necessary to develop a more delicate salary

benchmarking method to support the decision making process for C&B. An effective

approach for salary benchmarking should be able to handle job positions of different

companies under different contexts, such as work locations and posting time.

Figure 3.1 demonstrates a snippet of salary distribution in our real-world dataset.

We randomly selected eight job positions and companies and plot their salary heatmap

at different locations and time periods. As can be seen, salaries at different time

intervals and locations vary a lot. Unfortunately, due to a large number of job-

company-context combinations, it is impossible to directly obtain all of their salary

observations, even for the massive online recruitment data, as the blank areas pre-

sented in Figure 3.1. Therefore, in this chapter, we propose a novel approach for

fine-grained salary benchmarking to effectively predict expected salaries for unob-

served job-company-context combinations.



- 46 -

Sh
an
gh
ai

Be
ijin
g

Gu
an
gz
ho
u

Ha
ng
zh
ou

Sh
en
zh
en

20
13
H2

20
14
H1

20
14
H2

20
15
H1

20
15
H2 2500

5000

7500

10000

12500

15000

M
on

th
ly
 S
al
ar
y 
(C
N
Y)

(a) Position

Sh
an
gh
ai

Be
ijin
g

Gu
an
gz
ho
u

Ha
ng
zh
ou

Sh
en
zh
en

20
14
H1

20
14
H2

20
15
H1

20
15
H2

2000

4000

6000

8000

10000

12000

M
on

th
ly
 S
al
ar
y 
(C
N
Y)

(b) Company

Figure 3.1. A snippet of salary distribution in our data. Here, each grid represents a

specific job position or company.

3.2.2 Fine-Grained Salary Benchmarking

Traditionally, the problem of salary benchmarking is to estimate the expected salary

level (e.g., the lower/upper bound of salary) of each job position offered by a specific

company. The classical method is straightforward and a common procedure is as

follows. It firstly constructs a job-company salary matrix, where each entry indicates

the corresponding salary. Then, it formalizes the problem as a matrix completion task.

However, an important issue is that the traditional method is usually too general to

satisfy various special needs of C&B professionals, because only the job-company

matrix is considered. To this end, we propose to address the salary benchmarking

problem in a fine-grained manner by considering more contextual information, such as

work locations and posting time. To be specific, we define the problem of fine-grained

salary benchmarking as follows.
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Problem Statement (Fine-Grained Salary Benchmarking): Given a specific

combination of companies, work locations, and posting time, the objective is to esti-

mate the expected salary level of each job position (e.g., estimating the lower/upper

bound of the salary for a software engineer of a company located in NYC in the first

half year of 2017).

To address the problem, we propose an expanded salary matrix by expanding orig-

inal job-company salary matrix with locations and time information. For example,

Figure 3.2 shows the structure of our expanded salary matrix, where the company and

job dimensions are expanded with work locations and posting time respectively. One

motivation for the matrix expanding process is that each company usually has multi-

ple work sites for talent recruitment, while the salary of each job position drifts along

time. A more sophisticated explanation to the design of the salary matrix is highly

related to the data characteristics, and we will provide more detailed discussions in

Section 3.2.3. Along this line, the problem of fine-grained salary benchmarking is

naturally equivalent to the task of estimating missing values in the expanded salary

matrix.

3.2.3 Numerical Characteristics of the Data

Before introducing the technical details of our approach to job salary benchmarking,

here we discuss some important numerical characteristics, which may significantly

affect job salaries and motivate the design of our HSBMF model.

First, we check the relationship between job similarity and salary. Intuitively, po-

sitions with similar job descriptions should have similar salary scales. Therefore, the
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Figure 3.2. The structure of the expanded salary matrix.

similarities between job positions should be negatively correlated to related salary

differences. Following that, we calculate the pair-wise similarities between its job

descriptions and corresponding salary differences, and then compute their Pearson

correlation coefficient (The details of how to calculate the pair-wise similarities will

be introduced in Section 3.3.2.). Figure 3.3 (a) shows the sorted “job similarity-salary

difference” correlations grouped by companies. As can be seen, most of the correla-

tions fall into the negative range, which is consistent with our domain assumption.
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Figure 3.3. The correlation between job/company similarity and salary difference.

Second, we study the relationship between company similarity and job salary.

Intuitively, companies in the same business sector and with comparable sizes should

provide positions with similar rate scales. Thus, the similarities between companies

should have a negative correlation with their salary differences. We follow the similar

approach as discussed before to calculate the “company similarity-salary difference”

correlation for every job position. The result is plotted in Figure 3.3 (b), and we find

it is consistent with our assumption as well.

Third, we investigate the relationship between posting time and salary. We group

the data in two ways for calculating the correlations. Intuitively, the differences of job

salary should have the positive correlation with their posting time intervals. Thus, we

calculate the “time interval-salary differences” Pearson correlation coefficient for every

job position and company respectively and report the results in Table 3.1. We can

observe that the correlations are positive for both grouping methods. Moreover, it can

be found that the correlation grouped by job positions is higher than that grouped by
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companies, indicating a stronger “time interval-salary difference” relationship when

grouping the data by job positions.

Last, we investigate the relationship between work location and job salary. We also

group the data by job positions and companies respectively. Intuitively, the differences

of job salary should hold a positive correlation with the average revenues of their work

locations. To this end, we calculate the Pearson correlation between the government-

released average revenues and corresponding average job salaries in different locations.

The results are report in Table 3.1. The positive values clearly support our domain

assumption. Moreover, the correlations grouped by companies are higher than that

grouped by job positions, suggesting a stronger “location similarity-salary difference”

relationship when grouping the data by companies.

Table 3.1. The Pearson correlation between posting time/work location similarity

and salary difference.

Lower Bound Upper Bound

Grouping Method
Time-Salary Location-Salary Time-Salary Location-Salary

Mean Median Mean Median Mean Median Mean Median

Job Position 0.341 0.802 0.248 0.528 0.281 0.701 0.208 0.465

Company 0.244 0.734 0.328 0.738 0.222 0.697 0.354 0.751

Following the above results, we design the expended salary matrix as demonstrated

in Fig 3.2 (i.e., time-specific job positions and location-specific firms are represented

as rows and columns). In summarize, we identify four confounding factors, including
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job similarity, company similarity, and time-spatial similarities, which have significant

impacts on salary benchmarking. In Section 3.3.2, we will provide technical details

regarding how we calculate those similarities and integrate them into HSBMF model

for higher performance.

3.3 Matrix Factorization for Salary Benchmarking

In this section, we introduce the technical details of our HSBMF model for fine-

grained salary benchmarking. Important mathematical notations used throughout

this chapter are summarized in Table 3.2.

3.3.1 A Basic Model

Matrix Factorization (MF) is among the most widely-used methods for recommen-

dation systems. It aims to factorize an incomplete user-item rating matrix into two

lower rank latent matrices, and use their dot product for estimating the possible rat-

ings of the missing entries. In this work, we follow the idea of biased SVD (bSVD)

for salary benchmarking as suggested by (Koren, 2008; Paterek, 2007). Specifically,

given an entry S(j, c) in expanded salary matrix S, the predictor is equal to

Ŝ(j, c) ≈ µ+Bj(j) +Bc(c) + J(j, :)C(c, :)T , (3.1)

where µ, Bj, Bc denote the global mean of S, the bias vector of job position, and the

bias vector of company, respectively. Furthermore, by adding Frobenius norm regular-

ization terms for avoiding the ill-posed problem (Luo, Zhou, Xia, & Zhu, 2014; Koren

& Bell, 2015), we can formulate the preliminary loss function for salary benchmarking
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as

min : F =
M∑
j=1

N∑
c=1

(Is(j, c) ◦ (S(j, c)− Ŝ(j, c)))2 (3.2)

+λJ ||J ||2F + λC ||C||2F + λBj
||Bj||2F + λBc ||Bc||2F ,

where ◦ means element-wise multiplication of two matrices, and IS is the indicator

matrix of S, which is defined as

IS(j, c) =


1, S(j, c) exists,

0, else.

(3.3)

3.3.2 HSBMF with Holistic Constraints

To further refine the performance of salary benchmarking, we integrate more con-

founding factors as constraints into Equation 3.2, including the company similarity,

job similarity, and spatial-temporal similarity.

The first constraint is to reveal the relationship between job similarity and salary.

Intuitively, job positions with similar job descriptions tend to have similar salary

scales. Thus, we formulate the Job Similarity Regularizer as

RJ =
1

2

M∑
j=1

M∑
j′=1

Sj(j, j
′)||J(j, :)− J(j′, :)||2F

=
M∑
j=1

M∑
j′=1

K∑
k=1

Sj(j, j
′)J(j, k)2 −

M∑
j=1

M∑
j′=1

K∑
k=1

Sj(j, j
′)J(j, k)J(j′, k)

=
K∑
k=1

J(:, k)T (DSj
− Sj)J(:, k)

= tr(JT (DSj
− Sj)J).

(3.4)

where tr(·) represents the matrix trace, and Sj(j, j
′) is the similarity between two job

positions j and j′, which is estimated by the Cosine similarity between the TF-IDF
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vectors of corresponding job descriptions. DSj
is the degree matrix of Sj, which is

defined as

DSj
(u, v) =


∑M

v=1 Sj(u, v), if u = v,

0, else.

(3.5)

Here, we use the job similarity matrix Sj to regularize the learning process of job

position latent matrix J , which guarantees that the components of J will be similar

if their corresponding job descriptions are similar.

Second, we propose another Company Similarity Regularizer, which guar-

antees that similar companies should offer jobs with similar salary levels. Specifically,

the regularizer is formulated as

RC =
1

2

N∑
c=1

N∑
c′=1

Sc(c, c
′)||C(c, :)− C(c′, :)||2F

= tr(CT (DSc − Sc)C),

(3.6)

where Sc(c, c
′) is the similarity between two companies c and c′, which is estimated

by the Jacquard similarities between the basic information of companies, such as

company size, industry category, and financial stage. Similarly, DSc is the degree

matrix of Sc, which is defined as

DSc(u, v) =


∑N

v=1 Sc(u, v), if u = v,

0, else.

(3.7)

In addition to the above constraints, we also propose to explore spatial-temporal

related regularizers. Specifically, we propose a Time-Aware Regularizer to eval-

uate the relationship between posting time and salary. Intuitively, the differences of

salaries should have the positive correlation with their posting time intervals. To this

end, inspired by (Yao et al., 2017; Gao, Tang, Hu, & Liu, 2013), we assume that
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the salary of a job at the current time is influenced by its historical salaries, and the

degree of influences is affected by corresponding time spans. Therefore, we define the

temporal correlation ρ(j, j′) between job j and j′ as

ρ(j, j′) = exp(−α|τj − τj′ |), (3.8)

where α is a positive parameter that controls the temporal evolutionary process, and

τj is the posting time of job position j (note that, in the expanded salary matrix,

every job position is associated with a posting time). Moreover, if α = 0, all job

salaries have equal correlations without considering corresponding time spans. On

the contrary, if α → +∞, salaries of jobs will not have any temporal relationships.

Furthermore, the time-aware regularizer can be defined as

RT =
1

2

M∑
j=1

M∑
j′=1

T (j, j′)||J(j, :)− J(j′, :)||2F

= Tr(JT (DT − T )J),

(3.9)

DT (u, v) =


∑M

v=1 T (u, v), if u = v,

0, else.

(3.10)

T is a temporal transition matrix, which is defined as

T =


1 ρ(1, 2) · · · ρ(1,M)

ρ(2, 1) 1 · · · ρ(2,M)

...
...

...
...

ρ(M, 1) ρ(M, 2)
... 1


MM

. (3.11)

Finally, we introduce the Location-Aware Regularizer to evaluate the rela-

tionship between work locations and salary. Indeed, the salaries of job positions have

positive correlations with the average income levels of their work locations. Thus,
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we define a location awareness matrix L to depict the relationship between two jobs

positions in different work locations, of where ϕ(c, c′) denotes the entry, which can be

computed as follows:

ϕ(c, c
′) = 1− |ASc − ASc′|

max(ASc, ASc′)
, (3.12)

where ASc is the average salary of company c’s location (note that, in the expanded

salary matrix, every company is associated with a specific location). Furthermore,

we define the location-aware regularizer as

RL =
1

2

N∑
c=1

N∑
c′=1

L(c, c′)||C(c, :)− C(c′, :)||2F

= Tr(CT (DL − L)C),

(3.13)

DL(u, v) =


∑N

v=1 L(u, v), if u = v,

0, else.

(3.14)

With above holistic constraints, we can obtain the final loss function of our HS-

BMF model by integrating Equation 3.2 with all regularizers. That is,

min : F =
1

2

( M∑
j=1

N∑
c=1

(Is(j, c) ◦ (S(j, c)− Ŝ(j, c)))2

+ λJ ||J ||2F + λC ||C||2F + λBj
||Bj||2F + λBc ||Bc||2F

+ λSj
tr(JT (DSj

− Sj)J) + λSctr(C
T (DSc − Sc)C)

+ λT tr(J
T (DT − T )J) + λLtr(C

T (DL − L)C)
)
.

(3.15)

In summary, Figure 3.4 shows the graphical representation of the HSBMF model.



- 56 -

S

J C BJ BC !! " " "

SJ T SC L

#$%&'()*+*,-(.*',/0

1*'2$'(.*',/324

526&+*,/72,4

Figure 3.4. The graphical representation of our HSBMF model.

3.3.3 Algorithm Optimization

Here, we introduce how to use the gradient descent approach to learn our HSBMF

model. The goal is to learn the parameters J , C, Bj and Bc. Specifically, with the

partial derivatives of F in (3.15), we have

∂F
∂J(j, k)

= −
∑

c∈IJ (j)

(S(j, c)− Ŝ(j, c))C(c, k) + |IJ(j)|

×
(
λSj (DSj − Sj)J(j, k) + λT (DT − T )J(j, k) + λjJ(j, k)

)
,

∂F
∂C(c, k)

= −
∑

j∈IC(c)

(S(j, c)− Ŝ(j, c))J(j, k) + |IC(c)|

×
(
λSc(DSc − Sc)C(c, k) + λL(DL − L)C(c, k) + λcC(c, k)

)
,

∂F
∂Bj(j)

= −
∑

c∈IJ (j)

((S(j, c)− Ŝ(j, c)) + |IJ(j)|λBjBj(j),
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∂F
∂Bc(c)

= −
∑

j∈IC(c)

((S(j, c)− Ŝ(j, c)) + |IC(c)|λBcBc(c),

where IJ(j) denotes the set of companies at where Is(j, :) existing values, while

IC(c) denotes the set of job positions at where Is(:, c) existing values.

Denoting the learning rate by γ, we get the updating rules of HSBMF as follows:

J(j, k)←J(j, k) + γ
( ∑
c∈IJ (j)

(
S(j, c)− Ŝ(j, c)

)
C(c, k)

−|IJ(j)| ×
(
λSj (DSj − Sj)J(j, k) + λT (DT − T )J(j, k) + λjJ(j, k)

))
,

(3.16)

C(c, k)←C(c, k) + γ
( ∑
j∈IC(c)

(
S(j, c)− Ŝ(j, c)

)
J(c, k)

−|IC(c)| ×
(
λSc(DSc − Sc)C(c, k) + λL(DL − L)C(c, k) + λcC(c, k)

))
,

(3.17)

Bj(j)←Bj(j) + γ
( ∑
c∈IJ (j)

(
S(j, c)− Ŝ(j, c)

)
− |IJ(j)|λBjBj(j)

)
, (3.18)

Bc(c)←Bc(c) + γ
( ∑
j∈IC(c)

(
S(j, c)− Ŝ(j, c)

)
− |IC(c)|λBcBc(c)

)
. (3.19)

Here, we summarize the steps of optimization. First, we extract raw data from

our dataset and construct the expanded salary matrix S, and calculate global mean µ.

Second, we calculate four auxiliary matrices, i.e.,Sj, Sc, T , and L, with corresponding

degree matrices, i.e., DSj
, DSc , DT , and DL. At last, the matrices J , C, Bj and Bc
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are initialized with random values and are updated with gradient decent rules. In

particular, to improve the efficiency, we also introduce two variables AuxiliaryJ ,

AuxiliaryC for avoiding the dot production of large-scale matrices in each iteration.

Specifically, Algorithm 1 describes the detailed optimization process of the HSBMF

model. Note that our software implementation is available from our project website.2

Last, we analyze the computation complexity of algorithm 1. There are three

layers of iterations in the algorithm. If we don’t consider some fast algorithms for

matrix multiplication, steps 3-4 need O(M2+N2)K time. Steps 6-10 need O(K) time.

Steps 12-15 need O(K) time. Steps 6-10 combined with steps 12-15 need O(|IJ ||IC |)K

time, and steps 3-4 combined with steps 6-15 need O
(
(M2 + N2 + |IJ ||IC |) × K ×

Max Iter
)

time, which is the computation complexity of our algorithm.

2https://github.com/homeinsky/Salary-Benchmark-With-Matrix-Factorization
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Table 3.2. The mathematical notations.

Symbol Description

S ∈ RMN The expanded salary matrix

Is ∈ RMN The indicator matrix of S

J ∈ RMK The latent factor matrix of job position

C ∈ RNK The latent factor matrix of company

Sj ∈ RMM The similarity matrix of job position

Sc ∈ RNN The similarity matrix of company

T ∈ RMM The temporal transition matrix

L ∈ RNN The location awareness matrix

Bj ∈ RM1 The bias vector of job position

Bc ∈ RN1 The bias vector of company

JT , CT The transpose matrix of J,C

µ The global mean of expanded salary matrix

γ The learning rate

j, j′ A row in J

c, c′ A row in C
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Algorithm 1 HSBMF Optimization
Input:

S,Sj,Sc,T ,L,DSj
, DSc ,DT ,DL,µ

λj,λc,λSj
,λSc ,λT ,λL,λBj

,λBc ,γ,α

Output: J , C, Bj, Bc

1: Initialize J , C, Bj, Bc with random values

2: while Iterations < Max Iter do

3: AuxiliaryJ =
(
λSj

(DSj
− Sj) + λT (DT − T ) + λj

)
J

4: AuxiliaryC =
(
λSc(DSc − Sc) + λL(DL − L) + λc

)
C

5: for each (j, c) in the S do

6: Ŝ = µ+Bj(j) +Bc(c) + J(j, :)C(c, :)T

7: err = S − Ŝ

8: # update bias Bj and Bc

9: Bj(j) = Bj(j) + γ
(
err − λBj

Bj(j)
)

10: Bc(c) = Bc(c) + γ
(
err − λBcBc(c)

)
11: # update J and C

12: for each k do

13: J(j, k) = J(j, k) + γ
(
err ∗ C(c, k)− AuxiliaryJ(j, k)

)
14: C(c, k) = C(c, k) + γ

(
err ∗ J(j, k)− AuxiliaryC(c, k)

)
15: end for

16: end for

17: end while

18: return C,J ,Bj,Bc
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3.4 Experimental Results

In this section, we evaluate the performance of the HSBMF model for salary bench-

marking.

3.4.1 The Experimental Setup

As introduced in Section 3.2, the real-world dataset was collected from a major on-

line recruitment website in China, which consists of millions of job postings from

thousands of high-tech companies from July 2013 to October 2015. To guarantee the

effectiveness of our experiments, we preprocessed the data with the following steps.

First, we removed the duplicates and structured job postings, and filtered companies

that published less than 20 job postings, and job positions that appeared less than

five times. Second, we only selected five large work locations in our dataset, includ-

ing., “Beijing”, “Shanghai”, “Guangzhou”, “Shenzhen” and “Hangzhou”, since more

than 80% job postings are located in these cities. Third, we grouped the posting

time into 5 time periods, i.e., every half year belongs to one time period. Finally, we

manually normalized different job titles, and grouped the similar titles into the same

job position. After data preprocessing, we kept 132, 061 job postings which belong

to 1, 795 job positions from 1, 788 companies. The sparsity of the expanded salary

matrix is 99.5%. We can observe the companies’ distribution over locations and their

salary differences from Figure 3.5. We also plotted the scatter bubble chart for each

location and time period in Figure 3.6. The five different colors represent five cities.

The bubble scale is proportional to the number of distinct job positions. From the

figure, we can observe that as time approaching recent, the number of distinct job
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(a) Lower Bound (b) Upper Bound

Figure 3.5. The bubble chart of salary, where each bubble represents a company, and

the scale is proportional to the value.

positions and companies arises rapidly in Beijing, while that of the other cities arise

mildly, which means the dataset is unbalanced over locations. The salary of Beijing

increases along with time, and tend to be the highest, yet the salaries in five cites

are close to each other, which are accord with the facts that Beijing has the highest

government-released average revenues, but the differences among the five cities are

small.

In the experiments, the salary range was segmented into several discrete levels

rather than the original values due to the unbalanced long tail distribution of salaries

as shown in Figure 3.7, where we can observe that about 80% data records have

the salary lower bound below 10K per month and 60% data records have the salary
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(a) Lower Bound (b) Upper Bound

Figure 3.6. The scatter bubble chart for each location and time period, where each

bubble represents a time-specific city, and the scale is proportional to the number of

distinct positions.
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Figure 3.7. The salary distribution in our dataset.
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Table 3.3. The segmentation of salary.

Lower Bound (CNY) Upper Bound (CNY)

Level 1 ≤ 5,000 ≤ 9,000

Level 2 (5,000, 8,000] (9,000, 14,000]

Level 3 (8,000, 10,000] (14,000, 20,000]

Level 4 (10,000, 15,000] (20,000, 28,000]

Level 5 > 15,000 > 28,000

upper bound below 20K per month. Specifically, we first sorted the salary values and

calculated their adjacent differences. Then, we chose four points where the adjacent

differences vary dramatically as the segmentation points. After this process, the

lower and upper bound of salaries were both classified into 5 levels, which are shown

in Table 3.3. Note that, in the experiments, we evaluated the performance of HSBMF

on the lower bound and the upper bound of salary, respectively.

3.4.2 Benchmark Methods

To evaluate the performance of HSBMF for salary benchmarking, we chose a number

of state-of-the-art methods for comparisons. Specifically, we chose four popular MF

based approaches, namely SVD, bSVD (Koren, Bell, & Volinsky, 2009), NMF (Luo et

al., 2014), PMF (Mnih & Salakhutdinov, 2008), and a Collaborative Filtering (CF)

based approach as baselines. Those methods are commonly used in recommender

systems and achieved considerable success. We briefly introduce them in the following.

- SVD: Derived from Singular Vector Decompose concept in mathematics, SVD
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is basically used in the early recommender systems.

- bSVD: bSVD refers to SVD with strategy of adding biases in this work.

- NMF: NMF factorizes a matrix into two non-negative lower rank latent matri-

ces.

- PMF: PMF factorizes a matrix into two matrices, which adopt zero-mean

spherical Gaussian priors.

- CF: The basic CF method recommends items based on the similarity of users or

items. In this research, we utilize the company similarity for salary prediction.

In the experiments, we used Root Mean Squared Error (RMSE) and Mean Abso-

lute Error (MAE) to evaluate each approach. Specifically, the two metrics are defined

as

RMSE =

√∑Num
i (Si − Ŝi)2
Num

, (3.20)

MAE =

∑Num
i |Si − Ŝi|
Num

, (3.21)

where Si is the actual salary value, while Ŝi is the estimated salary value, and Num

is the number of test instances.

3.4.3 The Overall Performance

We first evaluated the overall performances of HSBMF model compared with other

baselines. In the experiments, we empirically set latent dimension K = 5 and the
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maximum iteration rounds Max Inter = 100 for all MF based methods. Further-

more, for HSBMF, we set the parameters as λj = 0.02, λc = 0.02, λBj
= 0.02,

λBc = 0.02, λSj
= 1× 10−4, λSc = 1× 10−4, λT = 1× 10−4, λL = 1× 10−4, γ = 0.005,

and α = 2.

To validate the model performance, we also chose two kinds of sampling strate-

gies. The first one is 5-fold cross validation with random 80%-20% splitting. The

other method is only sampling 10% records in the last period as the test data and

other historical data for model training. By sampling data as the second way, we can

evaluate whether HSBMF model consistently outperforms other baselines for pre-

dicting salaries at last period, which is more reasonable and applicable in real-world

scenarios.

Specifically, the overall RMSE and MAE results of different approaches are shown

in Tables 3.4, 3.5, and 3.6 respectively. From the results, we can have the following

observations. First, HSBMF consistently achieves the best performance compared

with other baselines, which validates the effectiveness of integrating more constraints

as side information for salary benchmarking. Second, bSVD is better than SVD and

other baselines, which indicates that adding bias is an effective strategy. Indeed, the

above results clearly validate the performance of HSBMF model for salary bench-

marking.

3.4.4 Evaluation on Model Constraints

In order to evaluate the influences of different constraints, we randomly split the

dataset into 5 folds for 10 times, and conducted a set of experiments by adding
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different regularizer separately. Finally, we compared the average RMSE and MAE

with bSVD, which is the preliminary model of HSBMF, and then calculated the paired

t-test for validating the improvement significance. The experimental results are shown

in Table 3.7. From the table, we can observe that all four constraints can improve

the basic bSVD model. Specifically, job position and company similarity constraints

can improve the model by around 2.0% to 3.0%, while time and location related

constraints can only have slight improvements. It might because that we only use

data records in five work locations and five different time periods, where the average

salary differences are usually very small, which makes HSBMF not sensitive to λT

and λL. Nonetheless, the p-Values in all experiments are very small, demonstrating

that the improvements are statistically significant for all four constraints.

3.4.5 Evaluation on Parameter Sensitivity

As discussed above, since HSBMF is not sensitive to λT and λL, we fixed λT = 2×10−4

and λL = 2×10−4, and evaluated the sensitivity of λSj
and λSc by changing them from

0 to 2× 10−4. Figure 3.8 shows the RMSE and MAE results with parameter tuning.

In the figure, we can observe that the performances of RMSE and MAE consistently

decrease as the increase of these two parameters. When λSj
and λSc are approaching

to 2 × 10−4, the results achieve the best performances. This means the job position

similarity and company similarity are effective factors for salary benchmarking.
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Table 3.4. The RMSE performance of 5-fold cross validation.

Lower Bound

MODEL HSBMF bSVD SVD NMF PMF CF

fold1 0.7763 0.8091 0.8214 0.8316 0.8287 0.8980

fold2 0.7803 0.8135 0.8261 0.8421 0.8334 0.8860

fold3 0.7844 0.8154 0.8312 0.8360 0.8380 0.8912

fold4 0.7702 0.7982 0.8194 0.8264 0.8265 0.8927

fold5 0.7799 0.8111 0.8320 0.8408 0.8277 0.8954

Upper Bound

fold1 0.7750 0.8069 0.8309 0.8368 0.8355 0.9015

fold2 0.7785 0.8007 0.8188 0.8323 0.8375 0.9005

fold3 0.7759 0.8070 0.8249 0.8312 0.8363 0.9012

fold4 0.7738 0.8022 0.8186 0.8293 0.8302 0.8930

fold5 0.7706 0.8033 0.8213 0.8300 0.8283 0.8968

Table 3.5. The MAE performance of 5-fold cross validation.

Lower Bound

MODEL HSBMF bSVD SVD NMF PMF CF

fold1 0.5957 0.6165 0.6156 0.6219 0.6288 0.6880

fold2 0.5990 0.6212 0.6153 0.6277 0.6329 0.6758

fold3 0.6022 0.6234 0.6197 0.6242 0.6349 0.6789

fold4 0.5900 0.6072 0.6078 0.6148 0.6269 0.6760

fold5 0.5981 0.6184 0.6188 0.6262 0.6277 0.6804

Upper Bound

fold1 0.5927 0.6149 0.6184 0.6232 0.6321 0.6784

fold2 0.5914 0.6058 0.6069 0.6151 0.6312 0.6791

fold3 0.5906 0.6109 0.6139 0.6163 0.6298 0.6795

fold4 0.5899 0.6088 0.6082 0.6164 0.6282 0.6757

fold5 0.5857 0.6087 0.6094 0.6158 0.6271 0.6768
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Table 3.6. Predicting salaries of last period.

Lower Bound

MODEL HSBMF bSVD SVD NMF PMF CF

RMSE 0.7122 0.7259 0.7289 0.7259 0.7735 0.8299

MAE 0.5410 0.5418 0.5439 0.5418 0.5690 0.6396

Upper Bound

RMSE 0.7363 0.7529 0.7531 0.7529 0.7896 0.8690

MAE 0.5628 0.5635 0.5638 0.5635 0.5857 0.6718

Table 3.7. Evaluation on different constrains.

MODEL
Lower Bound

RMSE Improvement P-value MAE Improvement P-value

bSVD 0.8095 - - 0.6174 - -

bSVD+Sj 0.7854 2.99% 4.64E-43 0.6025 2.41% 9.49E-39

bSVD+Sc 0.7908 2.32% 1.09E-35 0.6043 2.12% 2.38E-31

bSVD+T 0.8064 0.39% 1.59E-05 0.6153 0.34% 1.21E-04

bSVD+L 0.8043 0.65% 2.76E-12 0.6137 0.59% 6.72E-10

HSBMF 0.7775 3.96% 1.63E-38 0.5947 3.67% 4.27E-31

MODEL
Upper Bound

RMSE Improvement P-value MAE Improvement P-value

bSVD 0.8054 - - 0.6111 - -

bSVD+Sj 0.7822 2.88% 4.03E-41 0.5951 2.61% 2.01E-38

bSVD+Sc 0.7862 2.39% 4.54E-41 0.5978 2.17% 1.33E-39

bSVD+T 0.8016 0.47% 1.41E-07 0.6083 0.46% 1.89E-06

bSVD+L 0.8000 0.68% 2.29E-12 0.6074 0.60% 1.99E-10

HSBMF 0.7778 3.44% 7.56E-37 0.5949 2.66% 5.27E-30
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Figure 3.8. The performance of HSBMF with different parameter settings of λSj
and

λSc .
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3.5 Related Work

We organized our related work into two aspects. We first introduce the works related

to salary benchmarking problems, then we summarize the literature related to our

methodologies.

3.5.1 Job Salary Benchmarking

The tasks of salary benchmarking are quite different for high-level managers such as

CXOs (i.e., CEO, CFO, CTO etc.) from the middle and low level employees. The

discrepancy generally comes from the principals of pricing, and the components of

salaries. The salaries of CXOs are performance-based, and cash salaries are a small

amount of the total incomes, the largest part of them are including bonus, options,

equity or non-equity based incentives and others (Lazar, 2004). Companies’ perfor-

mances and “peer group” effect are two main directions used to explain CEO pays

in current literature (Frydman & Jenter, 2010; Gong & Li, 2013; Brick, Palmon,

& Wald, 2006; Blankmeyer, LeSage, Stutzman, Knox, & Pace, 2011), nonetheless,

seldom works in this field aims on estimating the salary range, their research con-

tributions focused on finding the salary determinants or the possible relationships

between the salaries and managerial manipulations (Peng & Röell, 2014; Peng &

Roell, 2008).

Our research is targeted on pricing of middle and low level employees. Different

from CXOs, skill requirements, companies’ compensation strategy, work location are

key factors determine the salary range of a position. Previous studies intended to

understand what kinds of factors will influence the salary level from the individual
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perspective, such as age, gender, the timing of motherhood etc (Lazar, 2004; Jer-

rim, 2015; Hamlen & Hamlen, 2016; Correll, Benard, & Paik, 2007). There are a

large portion of researches emphasizing on the pay equity (Chang & Hahn, 2006;

Berkowitz, Fraser, Treasure, & Cochran, 1987; Scarpello & Jones, 1996; Terpstra &

Honoree, 2003). Scholars also investigated the effects that compensation was shaped

by peer groups (Blankmeyer et al., 2011; Faulkender & Yang, 2010). (Ferris, Witt,

& Hochwarter, 2001) found high social skill and high general mental ability have

strong explanation in individuals’ job performance and salary levels. Besides, re-

searchers concerned about how to design the compensation structure to boost the

performances of firms and their employees (Bergmann & Scarpello, 2002). Recently

years, data mining techniques have been applied to salary prediction in variety of sce-

narios. (Khongchai & Songmuang, 2016b, 2016a) estimated the students’ income by

their demographic features, and the results can boosting their studying motivations

in return. (Lin et al., 2017) proposed a graphical model for company profiling, the

model has the abilities to estimate salaries. However, it took the employees’ nega-

tive and positive comments into considerations rather than the skill requirements and

responsibilities, where the application scenarios are different with ours.

3.5.2 MF Based Models

MF techniques is widely used in recommender systems, besides that, they also ap-

plied to a broad related areas, such as social network analyses (Xiao, Liu, Liu, &

Xiong, 2017; L. Zhang, Xiao, Liu, Tao, & Deng, 2015), image tagging (Zhou, Che-

ung, Qiu, & Xue, 2011), document clustering (W. Xu, Liu, & Gong, 2003) and so
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on. The early MF model is based on Singular Vector Decomposition(SVD), which is

a well-established technique for identifying latent semantic factors (Adomavicius &

Tuzhilin, 2005). The early SVD-based recommendation systems are prone to distort

the data and lead to the over-fitting problem, since they applied imputation tech-

niques, which fill the missing values and make the rating matrix dense (Kim & Yum,

2005). As a result, researchers suggest only to model the ratings observed, and add

adequate regularizers to avoid over-fitting problems (Paterek, 2007). More recently,

researchers proposed various improvements of MF based recommendations. The most

representative works include biased SVD (bSVD), SVD++, NMF, and PMF. Specif-

ically, bSVD tries to use bias terms for capturing the latent information associated

with users or items (Paterek, 2007; Koren et al., 2009). SVD++ interprets the

data with the effect of “implicit” information of users or items (Koren, 2008). In

addition, NMF also belongs to MF families. However, different from SVD, NMF con-

strains latent factors to be non-negative (Lee & Seung, 1999, 2000). Finally, PMF

places zero-mean spherical Gaussian priors on user and item feature vectors (Mnih

& Salakhutdinov, 2008), which usually passes the estimated values through a logistic

function to bound the range of predictions. In order to solve the recommendation

systems with additional information, researchers proposed context-aware MF mod-

els (Adomavicius & Tuzhilin, 2015), classifying the approaches into three categories:

pre-filtering, post-filtering, and contextual modeling. Item-splitting (Baltrunas &

Ricci, 2009) is one example of pre-filtering methods. It splits the ratings and cor-

responding items into multiple virtual ratings and items based on items’ subcate-

gories. The post-filtering strategy applies filtering or weighting after the traditional
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approaches. (Panniello, Tuzhilin, Gorgoglione, Palmisano, & Pedone, 2009) com-

pared effectiveness and performances of pre-filtering and post-filtering. It states that

the better choice of pre-filtering or post-filtering depending on the specific methods.

The last category is contextual approach, which uses contextual information directly

into a recommender model (Rendle, Gantner, Freudenthaler, & Schmidt-Thieme,

2011; Panniello, Tuzhilin, & Gorgoglione, 2014; H. Zhu et al., 2015; Bao, Cao, Chen,

Tian, & Xiong, 2012; Ge, Liu, Xiong, & Chen, 2011). One well-known method is ten-

sor factorization (TF) proposed by (Karatzoglou, Amatriain, Baltrunas, & Oliver,

2010). It factorizes a three-dimension tensor into three feature matrices and one

core matrix. However, this method has two drawbacks: one is its rapid growth of

parameters and computational complexity; the other is its limited application to cat-

egorical contextual variables. In the paper (Baltrunas, Ludwig, & Ricci, 2011), the

authors demonstrated that MF-based models can have comparable, and even better

performances than TF-based models, especially when data sets are small. Therefore,

in this work, HSBMF is MF-based approach that integrates holistic constraints for

fine-grained salary benchmarking.

3.6 Conclusions

In this chapter, we studied the problem of salary benchmarking through the analyses

of massive online recruitment data. Specifically, we formalized the problem as a

matrix completion task, and then developed a Matrix Factorization (MF) based model

named HSBMF for predicting the missing salary information in the expanded salary

matrix. A unique perspective of HSBMF is that it can provide a holistic and dynamic
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view of salary benchmarking by integrating multiple confounding factors, such as

company similarity, job similarity, and spatial-temporal similarity. Finally, extensive

experiments were conducted on large-scale real-world data, and the results validated

the effectiveness of HSBMF for timely salary benchmarking requirement.



- 76 -

CHAPTER 4

FINE-GRAINED JOB SALARY BENCHMARKING WITH NONPARAMETRIC

DIRICHLET-PROCESS-BASED LATENT FACTOR MODEL

4.1 Introduction

Job salary benchmarking (JSB) refers to the process by which organizations acquire

and analyze labor market data to determine appropriate compensation for their actual

and prospective employees (Blankmeyer et al., 2011). The importance of this job has

been discussed in chapter 3.

Many human resource handbooks summarize general guidance on JSB. For exam-

ple, (Armstrong, 2006; Edwards, Scott, & Raju, 2003) emphasized the importance

of jointly considering internal salary tendencies and external job market rates to ad-

dress the JSB problem. However, they usually offer solutions based on limited data

sources (e.g., questionnaires and survey data) and simple techniques (e.g., job cate-

gory matching and simple statistical models). In practice, it is highly necessary to

have a fine-grained JSB solution to effectively take internal and external factors into

consideration in a unified way. LinkedIn disclosed that the current salary services of

the company (Kenthapadi, Chudhary, & Ambler, 2017; Kenthapadi, Ambler, Zhang,

& Agarwal, 2017) rely on the salary statistics (e.g., 1st quartile, mean, 3rd quartile,

etc.) generated through a Bayesian normal distribution inference. However, such
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methods cannot address the issue of having bias when handling sparse data. Con-

sidering that data sparseness is a common issue in salary data, making predictions

with limited data sources is a key challenge in the JSB problem. To address these

issues above, we developed a Matrix Factorization (MF) based method in Chapter

3. Although the sparseness issue can be handled this way, the model may still fail

in handling salary benchmarking when facing completely new positions or companies

without sufficient historical records, leading to cold start issues. Moreover, classic

MF methods result in low interpretability and hence weaken the practical value in

supporting decision-making for talent management. Explainable insights into the pre-

diction results are appreciated for providing C&B managers information on detailed

and quantified salary-job patterns to support their final salary decisions.

To address the above issues, we handle the JSB problem from a fine-grained

perspective using data-driven techniques while considering the model interpretabil-

ity. We design a nonparametric Dirichlet-process-based latent factor model for JSB

named the NDP-JSB, which jointly considers internal salary tendencies and the ex-

ternal job market rate through an enhanced MF structure. Specifically, a company

representation module is utilized to group companies into different clusters based on

location-specific information, and a position representation module is implemented to

learn the corresponding job latent parameters based on the job description data. Our

model can intelligently refer to similar companies or positions for salary prediction

even if the observable data are deficient. Additionally, we can extract features from

the job representation and company grouping results for further analysis and then

offer certain interpretations for salary prediction.
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In summary, this work contributes to the literature in five ways. First, we provide

a fine-grained solution to the JSB problem, helping employers make smart salary

decisions by analysing companys salary tendency and the job market rate together.

Second, we greatly alleviate the data deficiency problem in JSB tasks by taking ad-

vantage of the deeply mined patterns among companies and job positions. Third, our

method can effectively make predictions for new types of companies when historical

salary observations are lacking. Fourth, our model has the strength of being able to

offer interpretable results to enhance its value in practice, such as showing the share

of a given skill set for a specific job and identifying similar companies for comparison.

Finally, we conduct extensive experiments on a large-scale real-world recruitment

dataset. By comparing our model with state-of-the-art baselines, the results not only

verify the effectiveness of the NDP-JSB model in addressing the JSB problem but

also demonstrate its strength in revealing patterns of job categories and companies.

4.2 Model Overview

In this section, we discuss the overall structure of the method we propose, the final

objective function, model inference, and the updating formulas for optimization.

4.2.1 The Model

To address the JSB problem, we construct a Bayesian graphical probabilistic model,

which including three modules, (1) the Position Representation Module, (2) the Com-

pany Representation Module, and (3) the Salary Prediction Module. First, We utilize

a matrix factorization structure to capture the interactions between the company’s

internal salary policy and the external market pricing in the Salary Prediction Mod-
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ule. In this module, ti denotes the job-related latent factors, and cj denotes the

company-related latent factors, so the predicted salary ŝij can be computed as the

cross product of ti and cj. That is,

ŝij = tTi cj. (4.1)

Second, we use the Position Representation Module and the Company Represen-

tation Module to learn ti and cj, respectively. Specifically, In the Position Represen-

tation Module, we learn the topic distribution ϕi from the job descriptions through

the Latent Dirichlet Allocation (LDA) structure. ti is obtained from the normal dis-

tribution with the mean ϕi. Meanwhile, in the Company Representation Module, we

segment those companies into several clusters based on their features X by applying

a Non-parametric Dirichlet Process (NDP). And, the companies in the same cluster

share the same latent factors. Letting zj be the cluster index of each company j, we

can rewrite the expected salary ŝij in Eq. (4.1) as:

ŝij = tTi czj . (4.2)

In these ways, our model not only considers multiple sources of job- and company-

related information during the learning process, but also are able to ensure that

similar jobs and companies will have similar latent factors.

Although different modules bare different functions, they are connected as a joint

Bayesian probabilistic structure. The parameters in each module are inferred jointly;

thus, the job-related factors ti are affected not only by job descriptions but also the

historical salaries; so do the company-related factors czj . In the following, we will
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Figure 4.1. The graphical representation of the model.

discuss the three modules in detail.

Module 1: Position Representation

In the position representation module, we use an LDA structure to process the job

position data (i.e., the job descriptions). LDA models are heavily used in text informa-

tion retrieval, latent semantic analysis, and text clustering. LDA regards generating

an article as the generation of those words in the article, which includes three steps:

first, for each article i, we generate a topic proportion ϕi from a Dirichlet process

with the prior parameter α. Second, we assign every word win in the article with a

specific topic gin; the topic gin is selected based on topic distribution ϕi. Last, given

topic-word distribution parameters φgin , we generate each word win from the multi-

nomial distribution with the parameters φgin . In this process, words win are known
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variables, the topic proportion ϕ for every article and the topic-word distribution φ

are the latent factors we should learn from the model.

Module 2: Company Representation

In the company representation module, we consider both company’s basic features

and the company’s historical salary observations. The company’s historical salary

observations can bear the compensation tendency information of that company. For

example, compared to small firms, large companies or public corporations usually

have more budgets hence can offer higher salaries to seize the top talents in their

interested fields, while tight-budget start-ups may only offer the salaries bordering on

the average. A way to investigate the discrepancy among companies is to classify them

into different groups. A reasonable principle is that company-related factors within

a group share the same parameters, while parameters in different groups should fit

the similarity relationship. We utilize the NDP to handle the segmentation job.

We choose the stick-breaking view to construct an NDP (Ishwaran & James, 2001).

We first sample θk, k = 1, 2, ...,∞ from a Beta distribution B(1, β). Based on θk, we

obtain a set of parameters πk, k = 1, 2, ...,∞ through the calculation πk = θk
∏k−1

b=1 (1−

θb). After that, we draw the group index z from the multinomial distribution where

the parameters are formed by πk. That is, zj ∼ Multi(1;π1, π2, ..., π∞). Since the

dimension of π is infinite, the possible group numbers, theoretically, can also be

infinite. Meanwhile, we draw the company latent factors ck, k = 1, 2, ...,∞ from a

normal distribution N(0, λ−1c ) for each possible group. In parallel with ck, we draw

another set of parameters ψkd, k = 1, 2, ...,∞, d = 1, 2, ..., D, which are used as base
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parameters of multinomial distributions to generate features X of each company.

That is, company features xjd ∼ Multi(1;ψzj ,d). Based on the above procedures,

we ensure that companies in the same group share the same parameters, and similar

company groups tend to have similar latent factors.

Module 3: Salary Prediction

In the salary prediction module, we follow a matrix factorization formulation. For

a (position i, company j) combination, since we know that the group index of the

company is zj, we retrieve corresponding factors ti and czj , respectively. We first

compute the matrix product of ti and czj , then draw the salary values from the

normal distribution, where the mean value is tTi czj , the variance is h−1ij .

4.2.2 Objective Function

Now, we can specify the objective function based on the proposed framework. In

our model, win, sij, and xjd are visible variables; α, β, λt, λc, hij, and γ are hy-

per parameters that need to be determined before training. Other variables Ω =

(ϕ,G,Φ, T, Z,Θ, C,Ψ) are latent variables need to be trained. We set the maximum

group number of companies equals K, the number of topics equals L, and the dimen-

sion of each company feature equals M . To get the optimal values of those variables,

we maximize the Maximum Posterior Estimation (MPE) of the model. Thus, our job

salary benchmarking problem can be mathematically formalized as follows:
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max: L = log

( ∏
i,j,n,d

P (sij, xjd, win,Ω)

)

=
I∑
i

N∑
n

log (P (win, gin|ϕi, φl)) +
I∑
i

log (P (ϕi|α)) +
I∑
i

log
(
P (ti|ϕi, λ−1t )

)
+
∑
i,j,d

log
(
P (sij, xjd, C, Z,Ψ,Θ|T, λ−1c , β, γ, h−1ij )

)
,

s.t.
L∑
l

ϕil = 1 ∀i,
N∑
n

φln = 1 ∀l,
M∑
m

ψkdm = 1 ∀k, d,

ϕil > 0, φln > 0, gin > 0, 0 < θk < 1, zj > 0, ψkdm > 0.

(4.3)

The complete Bayesian generation process of our model is summarized in Algo-

rithm 2.

4.2.3 Inference

To solve the objective function above, we use the variational inference and projection

gradient descent method jointly. Since the parameters ϕ, G, and Φ are disconnected

with parameters Z, Θ, C, Ψ in the probabilistic graph, we can solve them separately.

We set α = 1 and omit some constants. We denote the last term in Eq. (4.3) by L0,

which is irrelevant to ϕ, G, and Φ. Thus, the objective function can be rewritten as:

max: L ∝ −λt
2

I∑
i

(ti − ϕi)T (ti − ϕi) +
I∑
i

N∑
n

log(
L∑
l

ϕilφlwin
) + L0. (4.4)

The parameters ϕ, G, and Φ can be solved in a similar way as suggested in (Wang

& Blei, 2011). We extract the terms that contain ϕ, G, and Φ as below, and define
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q(gin = l) = g̃inl. Applying Jensen’s inequality, we have

L(ϕi, g, φ) = −λt
2

I∑
i

(ti − ϕi)T (ti − ϕi) +
I∑
i

N∑
n

log(
L∑
l

ϕilφlwin
)

≥ −λt
2

I∑
i

(ti − ϕi)T (ti − ϕi) +
I∑
i

N∑
n

L∑
l

g̃inl(log(ϕilφlwin
)− log g̃inl) = L̄(ϕi, g̃, φ),

(4.5)

where L̄(ϕi, g̃, φ) is the lower bound of L(ϕi, g, φ). We compute the partial derivatives

of L̄ with respect to g̃, φ, and then set derivatives to zeros. Then, we get the updating

formulas for these two parameters when applying the coordinate ascend method.

g̃inl ∝ ϕilφlwin
, (4.6)

and

φlw ∝
I∑
i

N∑
n

g̃inl1[win = w]. (4.7)

Different from g̃ and φ, the derivative function with respect to ϕ is quadratic, so we

solve it by applying the projection gradient descent method (Duchi, Shalev-Shwartz,

Singer, & Chandra, 2008).

Next, we apply the variational inference to compute the Evidence Lower Bound

(ELBO) of L0 and solve the remaining parameters. We define

q(Z,Θ, C,Ψ) =
J∏
j

q(zj)
K∏
k

q(θk)
K∏
k

q(ck)
K∏
k

D∏
d

q(ψkd), (4.8)

where q(zj) represents the multinomial distribution with parameters q(zj = k) =

z̃jk; q(θk) is the Beta distribution with parameters (θ̃k,1, θ̃k,2); q(ck) is the normal

distributions with parameters (µ̃ck , λ̃
−1
ck

); q(ψkd) is the Dirichlet distribution with
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parameters ψ̃kd. The ELBO of L0 can be computed as follows:

L0 ≥
∑
i,j

Eq[log(P (sij|ti, zj, h−1ij , C))] +
J∑
j

Eq[log(P (zj|Θ))] +
K∑
k

Eq[log(P (θk|β))]

+
K∑
k

Eq[log(P (ck|λ−1c ))] +
K∑
k

D∑
d

Eq[log(P (ψkd|γ))] +
J∑
j

D∑
d

Eq[log(P (xjd|zj, ψ∗,d))]

− Eq[log(q(Z,C,Θ,Ψ))].

(4.9)

Now we need to compute all terms in the Eq. (4.9). Here we only show the results,

while the mathematical details are discussed in Appendix A.

Eq(Z,C)

[
log(P (sij|ti, zj, h−1ij , C))

]
= Eq(Z,C)

[
log

(
K∏
k

P (sij|ti, ck, hij)1[zj=k]
)]

=
K∑
k

{
Eq(zj)[1[zj = k]] · Eq(ck)[log(P (sij|ti, ck, hij))]

}
=

K∑
k

{
z̃jk · Eq(ck)[log(P (sij|ti, ck, hij))]

}
=

K∑
k

(z̃jkL1) ,

(4.10)

where

L1 = −hij
2

(
s2ij − 2sijt

T
i µ̃ck + tTi ρkti

)
, (4.11)

and ρk = µ̃ck µ̃
T
ck

+ Λ(λ̃−1ck ). Λ is a function transforming a vector into a matrix that

the diagonal elements equal to the vector values, and leaving the remaining elements

to be zeros.

Eq[log(P (zj|Θ))] =
K∑
k

q(zj > k)Eq[log(1− θk)] + q(zj = k)Eq[log θk], (4.12)
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where

q(zj = k) = z̃jk,

q(zj > k) =
K∑

g=k+1

z̃jg,

Eq[log θk] = Ψ(θ̃k,1)−Ψ(θ̃k,1 + θ̃k,2),

Eq[log(1− θk)] = Ψ(θ̃k,2)−Ψ(θ̃k,1 + θ̃k,2).

In the equations above, Ψ(·) is the Digamma function. The detailed proof can refer

to (Blei, Jordan, et al., 2006).

Eq[log(P (θk|β))] = log(β) + (β − 1)Eq[(1− θk)]. (4.13)

Eq[log(P (ck|λ−1c ))] =
L

2
log(

λc
2π

)− λc
2

(µ̃Tck µ̃ck +
L∑
l

λ̃−1ckl). (4.14)

Eq[log(P (xjd|zj, ψ∗,d))] =
K∑
k

(
z̃jkEq[logψkd,xjd ]

)
. (4.15)

Eq[log(P (ψkd|γ))] =
M∑
m

(γ − 1)Eq[ψkdm]− log B(γ), (4.16)

where the B(·) is Multivariate Beta function, and Eq[ψkdm] = Ψ(ψ̃kdm)−Ψ(
∑

m ψ̃kdm).

Eq[log(q(ck|µ̃ck , λ̃ck))] =
1

2

L∑
l

log(
λ̃ckl
2π

)− L

2
. (4.17)

Eq[log(q(zj|z̃jk))] =
K∑
k

z̃jk log(z̃jk). (4.18)
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Eq[log(q(θk|θ̃k,1, θ̃k,2))] = − log B(θ̃k,1, θ̃k,2)+(θ̃k,1−1)Eq[log θk]+(θ̃k,2−1)Eq[log(1−θk)].

(4.19)

Eq[log(q(ψkd|ψ̃kd))] =
M∑
m

(ψ̃kdm − 1)Eq[logψkdm]− log B(ψ̃kd). (4.20)

4.2.4 Updating Formulas

We substitute all the terms in Eq. (4.3) based on equations described in Section 4.2.3.

After solving the derivatives in the optimization problem, we will get the updating

formulas for all corresponding terms. Note that we only show the result for each

updating formula while the proofs are demonstrated in Appendix B.

1. updating q(θk)

θ̃k,1 = 1 +
J∑
j

z̃jk,

θ̃k,2 = β +
J∑
j

K∑
g=k+1

z̃jg.

(4.21)

2. updating q(ck)

µ̃ck = (TΛ(Hz̃k)T
T + λcIl)

−1(T (H � S)z̃k),

λ̃ck = T � THz̃k + λcIl,

(4.22)

where � denotes matrix Hadamard product.
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3. updating q(zj)

z̃jk ∝ exp

{
Eq[log(θk)] +

k−1∑
g

Eq[log(1− θg)] +
I∑
i

L1 +
D∑
d

Eq[logψkd,xjd ]

}
.

(4.23)

4. updating q(ψ)

ψ̃kdm =
J∑
j

z̃jk1[xjd = m] + γ. (4.24)

5. updating ti

ti = (ρZThi + λt)
−1(µ̃cZ

T (hi � si) + λtϕi). (4.25)

Finally, the overall optimization process is demonstrated in the Algorithm 3.
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Algorithm 2 The generative process of the NDP-JSB.

1: for Each job i do

2: Draw topic proportion ϕi ∼ Dir(α)

3: Draw job latent offset εi ∼ N(0, λ−1t Il)

4: Job latent vector ti = ϕi + εi

5: for Each word win do

6: Draw topic assignment gin ∼Multi(1;ϕi)

7: Draw word win ∼Multi(1;φgin)

8: end for

9: end for

10: Draw θk ∼ Beta(1, β), k = 1, 2, ...,∞.

11: Group proportion πk = θk
∏k−1

b=1 (1− θb), k = 1, 2, ...,∞

12: Draw company factors for every group ck ∼ N(0, λ−1c Il), k = 1, 2, ...,∞

13: Draw company feature distribution parameters for every group ψkd ∼ Dir(γ),

k = 1, 2, ...,∞, d = 1, 2, ..., D

14: for Each company j do

15: Draw group indicator

16: zj ∼Multi(1;π1, π2, ..., π∞), j = 1, 2, ..., J

17: for Each company feature d do

18: xjd ∼Multi(1;ψzj ,d), d = 1, 2, ..., D

19: end for

20: end for

21: for Each (i, j) combination do

22: Salary sij ∼ N(tTi czj , h
−1
ij )

23: end for
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Algorithm 3 The optimization process of the NPD-JSB.
Input:

W , S, H, X, α, β, γ, λc, λt

Output: T , µ̃c, λ̃c, Z̃, ϕ, G̃, φ, Θ̃, ψ̃

1: Initialize T , µ̃c, λ̃c, Z̃, Θ̃, ψ̃ with random values;

Initialize ϕ, G̃, φ with pre-trained vanilla LDA values to save computation time;

and normalize ϕ, G̃, φ, Z̃, ψ̃ to ensure the sum of last dimension equals 1.

2: while Not Converge do

3: Update Θ̃ according to Eq. (4.21)

4: Update ψ̃ according to Eq. (4.24) and normalize ψ̃

5: Update µ̃c, λ̃c according to Eq. (4.22)

6: Update T according to Eq. (4.25)

7: Update Z according to Eq. (4.23) and normalize Z

8: while NOT Converge do

9: Update ϕ according to projection gradient descent method

10: end while

11: Update G̃ according to Eq. (4.6), and normalize the G̃

12: Update φ according to Eq. (4.7), and normalize the φ

13: end while

14: return T , µ̃c, λ̃c, Z̃, ϕ, G̃, φ, Θ̃, ψ̃
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4.3 Data and Experiments

This section discusses data processing, experimental settings, and main results.

4.3.1 Data

The data of this work are based on collected job advertisements from a popular online

recruiting platform. The dataset contains job postings released by high-tech compa-

nies located in five major cities in China, including Beijing, Shanghai, Shenzhen,

Guangzhou, and Hangzhou. The time period of our dataset ranges from July 2013

to October 2015. To avoid noise information, we removed those companies that pub-

lished job positions less than 20 times, and the job titles that are rarely offered in the

market (e.g., appear less than five times in our data). We grouped and normalized

the positions with similar job titles manually. The processes left us 132, 061 job post-

ings which belong to 1, 795 job titles from 1, 788 companies in the data. Since the

real salaries are distributed in a long-tail manner, we used the logarithmic salary in

our model to ensure the values closely follow a normal distribution (see Figure 4.2).

As can be seen, the scattered points of ordered salary values against the theoreti-

cal quantiles are almost in a straight line, indicating a normal distribution is held.

Similar processes can also be found in (Kenthapadi, Ambler, et al., 2017).

4.3.2 Baselines, Settings, and Evaluation Metrics

For validation, since the JSB problem is transformed as a matrix completion task,

we compared our method (NDP-JSB) with five powerful matrix factorization (MF)

methods in terms of prediction accuracy. They are (1) Holistic Salary Benchmarking

Matrix Factorization (HSBMF) (Meng et al., 2018), (2) Singular Vector Decomposi-
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(a) Lower Bound (b) Upper Bound

Figure 4.2. The probability plots of the logarithmic salaries.

tion (SVD) (Koren et al., 2009), (3) Collaborative Topic Model (CTR) (Wang & Blei,

2011), (4) Probabilistic Matrix Factorization (PMF) (Mnih & Salakhutdinov, 2008),

and (5) Nonnegative Matrix Factorization (NMF) (Luo et al., 2014). These methods

are largely used in recommendation systems to address sparse prediction tasks.

In the experiments, we used the Root Mean Squared Error (RMSE) and the Mean

Absolute Error (MAE) to evaluate each approach.
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4.3.3 Overall Performance and Robustness Tests

Now we discuss the overall performance of our model in comparison with the baselines.

We followed the experimental settings L = 5 on job and company latent dimensions in

(Meng et al., 2018). Also, we set the maximum number of company groups K = 60.

Other hyperparameters were set as follows: λt = 1, λc = 1, α = 1, β = 1 and

γ = 1× 105.

When some positions or companies only contain a few observations, it easily results

in overflow and underflow problems in the optimization process. To solve this, we

adopted the imputation technique in our model – randomly selected some companies

or positions of which observations are less than a threshold, and padded salaries

within that companies or positions with mean salaries. After the imputation process,

the salary matrix S will include three kinds of salary instances, namely, real values,

empty values, padding values. Since the padding salaries are unreal and may introduce

larger bias than real values, we should set different scales on the precision parameters

to control the errors brought from imputation. The precision parameter hij can be

formulated as below:

hij =


a, if the value of sij is real,

b, if the value of sij is padded,

0, if the sij is empty.

(4.26)

We illustrate the function of hij here. Since sij is generated from a normal distri-

bution with the variance h−1ij , the model will give a less weight on sij if hij is smaller.

Scilicet, the hij can be regarded as the confidence level we believe the sij is close to

the true value. Intuitively we should assign less confidence on the padded salaries
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than real observations, so we should set a > b. In our experiments, we set a = 5 and

b = 1, and the imputation threshold was set to be 10.

To validate the NDP-JSB’s performance, we randomly split our dataset into 5

folds to conduct the 5-fold cross-validation. The overall RMSE and MAE results of

different approaches are shown in Table 4.1 and 4.2, respectively. NDP-JSB achieve

the best performance compared with all the other baselines consistently, suggesting

NDP-JSB is a strong and robust approach in JSB tasks.

In order to test the robustness NDP-JSB, we held different proportions of the

dataset for testing, i.e., 0.1, 0.2, 0.3, 0.4, and 0.5. The results are reported in Figure

4.3. We can observe that NDP-JSB has the best performance for all different testing

proportions. Also, as the training proportion increasing, the performance of the NDP-

JSB model and all baselines are steadily increasing accordingly, except for PMF. It

suggests that all models are stable, and NDP-JSB is a robust framework with superior

performance. In addition, the PMF model may be subject to the over-fitting problem

and lose some performance if the training proportion is larger than 80%.

4.3.4 Predicting New Company

One problem of MF-based methods is its inability to deal with new company situ-

ations, which is often referenced as “cold-start” problems. For example, a start-up

company wants to hire employees in the job market, or an existing company wants

to set up a branch company in a new city. Due to the lack of historical observations,

those baselines can not make predictions. However, our NDP-JSB can smartly take

advantage of the basic features of the company, and find a group the company may
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Figure 4.3. Robust testing results for the different splitting proportions.

belong to, then provide the estimations. Given only basic company features, the

company group index can be inferred as

z̃jk ∝ exp

{
Eq[log(θk)] +

k−1∑
g

Eq[log(1− θg)] +
D∑
d

Eq[logψkd,xjd ]

}
. (4.27)

Based on the obtained z̃jk, the salary can be estimated by equation (4.2).

To test whether NDP-JSB can give reasonable estimations for a new company, we

randomly selected 0.5% instances that belong to the new companies in our dataset.
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Figure 4.4. The box plots of results for predicting new companies.

We compared the performance with the Collaborative Filtering (CF) method, which

also make use of similarity relationships of company features for salary prediction.

The comparative experiments were conducted 10 times independently. The average

RMSE and MAE were presented in Figure 4.4, in which we can see that NDP-JSB

outperforms CF as we expected. Moreover, the p-values from the t-test are 1.88×10−6

and 1.70× 10−5 for RMSE and MAE, respectively, demonstrating the superiority of

NDP-JSB against CF is statistically significant. The competitive strength comes from

the joint learning process – the model not only can make use of the company features

but also gain extra information from salaries in the job market.

4.4 Case Studies

As a generative model, NDP-JSB can also provide multiple distribution informa-

tion regarding positions and companies; hence, give valuable advice related to salary

benchmarking. Based on case studies, we will show useful findings in three aspects,

including position grouping, company grouping, and job profiling.
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(a) Front-end (b) Back-end (c) Promotion

(d) Support (e) Testing

Figure 4.5. Word clouds for the five job groups.

4.4.1 Position Grouping

In the position representation module, each position is represented by five latent

topics. To understand what are the main characteristics of those topics, we took

the top eight keywords in each topic and demonstrated them in Figure 4.5. As can

be seen, the keywords are skill sets emphasized by different types of professionals,

including “Front-end”, “Back-end”, “Testing”, “Support”, and “Promotion”. Based

on the clustering results, we compared the salary distributions for the five types of

jobs. In Figure 4.6, we can observe that the technical jobs (i.e., front-end, back-end,

and testing) have relatively better compensations. Also, although Promotion jobs

may have relatively lower salaries, their variation range is the largest, suggesting top

promotion people have high potential to earn much.
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Figure 4.6. Salary distributions for the five job groups.

Beijing Shanghai Shenzhen Guangzhou Hangzhou

Baidu

Alibaba

Tencent

Figure 4.7. Grouping results for 3 famous companies.

4.4.2 Company Grouping

In the company representation module, every company was assigned to a group. We

selected three famous companies –“Baidu”, “Alibaba”, and “Tencent”– to study the

rationality of grouping results. These companies are the biggest in the field of Mobile

Internet. They share much in common, and all of them set subsidiaries in the five cites

we study. Based on the domain knowledge, we expect two findings from the clustering

results. First, as the companies are similar in many ways, they are supposed to be

grouped together. Second, the subsidiaries in different cities bear different functions

and deal with different businesses, so the subsidiaries belong to a company should

have different grouping results. We displayed the grouping results in Figure 4.7, in
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Figure 4.8. Grouping results for all companies.

which each block represents a location-specific company, and each color represents a

group ID. The 15 branches are classified into 3 main groups, and each company has

2 to 3 classes across the five cites. The results are consistent with our expectations

and verify the effectiveness of NDP-JSB in terms of company grouping.

The companies are grouped on the basis of the NDP module. One advantage of

NDP is that we do not need to know the group number in advance. NDP will find

the optimal group number on the whole. We displayed the clustering results for all

companies and compared it with another commonly used clustering method K-modes

in Figure 4.8. We set the group number of K-modes equal to the maximum group

number of NDP-JSB. K-modes make use of the company features to perform the

clustering. Every row in the figure represents a group ID, and every point represents

a company. If the points belong to the same group, they will lie in the same row with

the same color. The points in Figure 4.8 (a) are more compacted than Figure 4.8 (b).

NDP-JSB can intelligently figure out the optimal group number is less than 60, while

K-modes is incapable of deciding the reasonable group number by itself.
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Figure 4.9. An example of job profiling.

4.4.3 Job Profiling

NDP-JSB can provide certain explanations along with salary estimations, which can

benefit inexperienced C&B managers for profiling a job. In particular, NDP-JSB can

provide the share of job professionals that each position emphasizes on, as well as other

similar companies in the job market. Those similar companies can be used for further

data sourcing and competition analysis. Figure 4.9 shows an example of job profiling,

which is a real case in our dataset. “Alibaba (Hangzhou)” wanted to hire a Java

Engineer in the job market. Learned from the NDP-JSB, Java Engineer emphasizes

on the professionals of the back-end for around 85% and frond-end for around 15%.

The competitive companies in the job market include “Taobao (Beijing)”, “Yibao

Pay (Shanghai)”, and “Sina Weibo (Hangzhou)”.
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4.5 Related Work

We summarize related work into two categories. We (1) discuss related research on

the job salary benchmarking problem and (2) summarize related methodologies with

data-driven techniques.

4.5.1 Job Salary Benchmarking

Salary estimation has drawn much attention from human resource management due to

its key role in attracting, motivating, retaining talent, as well as in reducing operating

costs for organizations.

Some studies intend to understand the essential factors that influence salary level

from an individual perspective, such as age, gender, and the timing of motherhood

(Lazar, 2004; Jerrim, 2015; Hamlen & Hamlen, 2016; Correll et al., 2007). (Frydman

& Jenter, 2010; Gong & Li, 2013; Brick et al., 2006) tried to understand what deter-

mines the high revenues of CEOs, while (Peng & Röell, 2014; Peng & Roell, 2008)

discovered indications that CEOs intend to raise their revenues through managerial

manipulations. There are also a large number of studies emphasizing pay equity

(Chang & Hahn, 2006; Berkowitz et al., 1987; Scarpello & Jones, 1996; Terpstra &

Honoree, 2003). Still, other researchers investigate the ways compensation is shaped

by peer comparative organizations and individuals (Blankmeyer et al., 2011; Faulk-

ender & Yang, 2010). (Ferris et al., 2001) found that excellent social skills and related

general mental ability serve as strong explanations for individuals job performance

and salary levels. (Khongchai & Songmuang, 2016a, 2016b) predicted students in-

come by examining their demographic features and stated that students would be
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motivated to study hard if they learned about their salary prediction results. In

addition, researchers are concerned about how to design compensation structures to

boost the performance of employees (Bergmann & Scarpello, 2002).

The existing work mainly focused on understanding the determinants of the salary

range, while how to benchmark salary by jointly considering internal compensation

policies and external market pricing from the C&B departments perspective has not

been well addressed. As a widely applied process in practice, some human resource

handbooks (Edwards et al., 2003; Armstrong, 2006) have provided guidance on how

to conduct JSB using surveys and statistical methods, although they emphasize the

importance of designing a self-consistent and justifiable internal compensation struc-

ture; meanwhile, they have not provided a unified solution for internal and external

factors. (Lin et al., 2017) proposed a framework for company profiling that can si-

multaneously predict job salary; however, their framework is based on a dataset of

employees positive and negative comments about their employers; thus, their method

cannot predict salary based on job responsibilities or company information or provide

advice for new startups.

Our NDP-JSB method not only makes effective use of the correlations among

positions and companies but also has the ability to conduct JSB for new companies.

4.5.2 Data-Driven Predictive Models

Our method for addressing the JSB problem can be classified as a probabilistic graphic

model. Probabilistic graphical models use a graph-based representation to encode a

complex distribution over a high-dimensional space, where the nodes in the graph
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represent variables (observable or unobservable), and the edges represent the inter-

actions between them (Koller & Friedman, 2009). Due to their strong ability to

model the complex relationships between features with uncertainty, as well as their

explanatory-friendly characteristics, probabilistic graphical models are broadly used

in a variety of machine learning tasks (Ghahramani, 2015). There are three modules

in our framework, which are associated with the matrix factorization (MF) method,

the topic model, and the non-parametric Dirichlet process. In the following, we will

present multiple relative techniques for them. The MF family is a technique factoriz-

ing a high-dimension sparse matrix S into two lower rank matrices, A and B, and the

cross product Ŝ of A and B is close to the original matrix S. As an early technique in

the MF family, SVD was first proposed to identify latent semantic factors carried in

S, and then it was applied to the recommendation applications due to its effectiveness

in “guessing” the missing values in S by the cross product procedure (Adomavicius &

Tuzhilin, 2005). First, to calculate the distance between S and Ŝ in the optimization

process, the researcher adopts an “imputation” technique in which the missing values

in S are filled by guessing the values. However, the “imputation” technique may

distort the actual distribution and easily lead to overfitting (Kim & Yum, 2005), in

which case, the researcher can replace “imputation” by integrating an auxiliary indi-

cation matrix to mark the positions of the existing values in S. Moreover, (Paterek,

2007) suggested using regularizers to address the overfitting issue by constraining the

values in A and B. After that, (Koren, 2008) proposed a method of integrating the

implicit neighbourhood information in A and B to improve the prediction efficiency

for recommender systems. Another two commonly used MF techniques are NMF and
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PMF. NMF adopts the MF structure but constrains the variables to be non-negative,

demonstrating that the constraints are able to learn the parts-based representations

(Lee & Seung, 1999, 2001). PMF places zero-mean spherical Gaussian priors on

matrices A and B (Mnih & Salakhutdinov, 2008). In our framework, we adopted

the PMF structure in the prediction module because it belongs to the probabilistic

graphical model and is easy to extend in a more complicated graphical structure.

An early developed topic model named pLSI (Hofmann, 2017) is a probabilistic

model with three layers. The first layer is used to generate documents, the sec-

ond layer generates topics of each document, and the last layer describes the word

selection process based on a topic-word occurrence frequency distribution. Later,

(Blei, Ng, & Jordan, 2003) proposed the famous Latent Dirichlet Allocation (LDA)

model, which is similar to pLSI with its three-layer structure. In contrast, LDA places

Dirichlet priors on both document-topic and topic-word distributions, and the refined

architecture is demonstrated to be more effective in learning the document-topic and

topic-word distributions. Afterward, (Wang & Blei, 2011) incorporated LDA into an

MF framework for scientific article recommendations.

Additionally, LDA models have been implemented broadly in the areas of text

mining, document classification (Chen, Xia, Jin, & Carroll, 2015; Pavlinek & Pod-

gorelec, 2017), image recognition (Rasiwasia & Vasconcelos, 2013; Gomez, Patel,

Rusiñol, Karatzas, & Jawahar, 2017), and brand management (Guo, Barnes, & Jia,

2017; Tirunillai & Tellis, 2014). In our model, we adopted the LDA structure to learn

the latent job representations from job descriptions.

The Dirichlet process (DP) is commonly used to generate a set of values to form a
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simplex, and the simplex can be used for the parameters of a multinomial distribution.

As DP is conjugated with the multinomial distribution, we normally place a DP

prior on a multinomial distribution for a Bayesian probabilistic model in practice

due to its mathematics-friendly characteristics. If the parameters of the multinomial

distribution are drawn not from one DP but from more than one DP, namely, it is

a DP mixture, what kind of process can represent the generation procedure of a DP

mixture? (Ferguson, 1973; Antoniak, 1974) provided an answer by proposing the non-

parametric Dirichlet process (NDP). The word non-parametric can be interpreted as

an infinite number of mixtures. The NDP is generated from a base distribution and

a positive parameter. There was no explicit form for the posterior distribution of

the NDP, so the application was limited until (Ishwaran & James, 2001) described it

with a stick-breaking view, and the development of Gibbs and Monte-Carlo Markov

Chain (MCMC) sampling methods enabled it to be solved in an approximate way

(Ishwaran & James, 2001; Neal, 2000). Afterward, (Blei et al., 2006) proposed a

variational inference (VI) technique to solve the algorithms that can mitigate the

computational complexity caused by sampling methods. The NDP has been widely

applied in machine learning tasks, especially for density estimation and clustering

(J. Zhang, Ghahramani, & Yang, 2005; Teh, Jordan, Beal, & Blei, 2005; Dahl, 2006;

Escobar & West, 1995; Nguyen, Gupta, Rana, Li, & Venkatesh, 2016; Xue, Liao,

Carin, & Krishnapuram, 2007; X. Zhang et al., 2018). The merit of NDP in the

clustering task is that people do not need to know the number of clusters, and the

model can learn an optimal number of clusters by itself. In this way, people bypass

the potential error caused by incorrectly pre-defining the number of mixtures. We
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adopted an NDP structure to learn the latent company representations and the VI

technique to solve the algorithms efficiently.

4.6 Conclusions

In this paper, we addressed the job salary benchmarking (JSB) problem from a more

fine-grained and data-driven perspective by modelling large-scale real-world online

recruitment data. Specifically, we designed a non-parametric Dirichlet-process-based

latent factor model for JSB, namely, the NDP-JSB, which can jointly model the la-

tent representations of both company and job position. Our method can effectively

predict job salaries for each company and job position with rich contexts. We evalu-

ated our model with extensive experiments on a large-scale real-world dataset. The

experimental results clearly validated the effectiveness of the NDP-JSB in terms of

salary prediction and also demonstrated its strength in revealing patterns between

job categories and companies, which makes our prediction results more interpretable

and can further benefit the decision-making process of talent management.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

With the development of big data techniques and the cumulation of digital data from

talents, we believe it is an inevitable trend to reform the managerial patterns about

talents, from more subjective to more objective. Along this line, in this dissertation,

we developed a few data-driven techniques for solving the practical issues related to

talent recruitment, such as job mobility prediction and salary benchmarking.

We first developed a neural-network-based model in order to predict an individ-

ual’s future career transitions in terms of the next employer and stay duration by

learning one’s historical working experiences. Also, we proposed a Matrix Factoriza-

tion (MF) based framework to estimate job salaries based on information provided

in the typical job advertisements. Furthermore, we developed a Non-Parametric

Dirichlet (NPD) based model aimed at solving the “cold-start” problems in MF-based

model, and providing more interpretation for Salary Benchmarking tasks.

Here we illustrate several future research directions along with this dissertation.

Job mobility prediction is a valuable research area that deserved to be studied thor-

oughly. We have shed light on job transition at the company level, other possible

research directions include understanding the job transition at the position level.

i.e., 1) How to get a promotion along with a special job track? 2) What factors have

impacts on the individual’s shift of career interests, and etc. Another important topic
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about the position is to compare the job title ranks between different companies.

Talent management involves many important subjects that can be viewed in new

ways and solved under information technology progresses. Along with line, we will

thrive on the way to put forward new methods associated with efficient talent se-

lection, job-person fit, personal career advance lesson recommendation, employee’s

performance prediction, and etc.
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APPENDIX A

REPLICATIONS AND PROOFS

A.1 Experimental settings for replications in Chapter 2

A.1.1 Position Normalization

The position names in the dataset are not standardized, they are not even in one

kind of language. So we used multiple keywords matching method to normalize those

names into 26 categories. The normalized types of positions are listed in Table A.1.

Table A.1. Position name normalization.

Position Types

Accounting Sales Administrative Supporter

Consulting Social Service Engineering Education

Entrepreneurship Finance Health Care Human Resources

Information Technology Law Military Marketing

Media Operation Real Estate Purchaser

Product Management Quality Assurance Researcher Program Management

Arts and Design Business Development

A.1.2 Data Preprocessing

Our dataset contains sequential data with different length. In order to fit to the non-

sequential models (i.e. Logistic regression, Decision Tree and Random Forest), we



- 124 -

have to transform the input features into a vector with a fixed length. To deal with the

problem, we used a Bag-of-Companies model, which is similar to the concept of Bag-

of-words. We ignored the sequential information among companies, and only counted

the occurrence number of each company, and calculated the cumulative duration in

that company. Except for companies and durations, we only recorded the last values

of the sequential features. The non-sequential features remained the same with what

we used in HCPNN. At last, we concatenated all the features into one vector with a

fixed length. In this way, we fit our sequential data to the non-sequential models.

A.1.3 Baseline Setting

We summarize the details of baseline methods, especially the modified CRF and MHP

methods as follows:

• CTMC (Anderson, 2012): It is a stochastic model to describe a series of events

which the state spaces are discrete, yet the time is continuous. It also called

the memoryless process, because the future states are solely dependent on the

present state. This is a model that can predict the next state and the duration

of the next state simultaneously. In our experiment, we set the state to be

working in a specific company.

• PP (Karr, 2017): It defines the occurrence probability of an event over a real-

time line. When the instantaneous occurrence probability λ is a constant, we

call it stationary or homogeneous Poisson Process, which we deployed in this

paper.
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• CRF(Lafferty et al., 2001): It is an undirected graphical and discriminative

model allowing long-distance dependencies and integration of rich features. The

nodes in the graph denote the random variables, while the edges denote the

direct influence or dependency relations between the variables. We used the

linear conditional field in our experiment. We have

P (Y |X) = exp

(∑
i,k

λktk(Yi−1, Yi, X, i) +
∑
i,l

ulsl(Yi, X, i)

)
, (A.1)

where tk(Yi−1, Yi, X, i) denotes the transition probability transferred from Yi−1

to Yi at the sequence position (X, i), which corresponding the transfer probabil-

ities from one company to another company. sl(Yi, X, i) represents the proba-

bility of Yi at the sequence position (X, i). λk and ul are two weight coefficients

for these two functions. In our problem, Yi means a specific company in the

position i. The train process is the same with what is broadly applied in NLP

tasks 1 , but the predicting process is different, since the viterbi algorithm

will use the future information to deduce the historical sequence. To handle

this problem, we used the original definition as described in Equation A.1 to

calculate the probabilities of next employer. More specifically, we used the pa-

rameters sl(Yi, X, i), tk(Yi−1, Yi, X, i) learned from training process, combining

with the known historical company sequence
−−→
Q(u) to calculate the probabilities.

We set the tunning parameters λk and ul to be 1.

• MHP(Mei & Eisner, 2017): We used a multi-variable Hawkes process defined

in (Mei & Eisner, 2017) in this paper with modifications. It assumes the event

1https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/crf
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intensity rate is not only caused by a self-excited rate µ, but also influenced

by the events happened before, and the influence degree is proportional to the

time span between the events and event types. Suppose a company c ∈ C,

where C denotes the whole company set, and we have N companies in total.

We want to simulate the instantaneous occurrence probability λ(τ) over time

(0,∞) by training three parameters, namely self-excited intensity rate µ, the

event influence parameter σ and the time decay parameter δ. To facilitate the

understanding of MHP, we first summarize the notation descriptions and their

dimensions in Table A.2.

The key process of the algorithm can be described in equation:

λcg+1(τ) = µcg+1(τ) +

g∑
i=1

σci,cg+1 exp
(
−δci,cg+1((g + 1)− i)

)
, (A.2)

where λcg+1(τ) is the individual turnover probability when she works for her

(g+1)-th company cg+1. For every person, the turnover probability is influenced

by two factors, one is the self-excited factor of µcg+1(τ), the other is all the

employers he/she worked for before. The influence degree is controlled by the

company type and the time index distance. The longer of the time distance,

the weaker of the influence. The objective function is the maximize the log-

likelihood of predicting duration as describe in Equation 2.10. When we get the

λcg+1(τ) for every person for the next company, we can use the survival analysis

integration function described in Equation 2.12 to compute the expectation of

the duration.



- 127 -

A.1.4 T-test for HCPNN and HCPNO

The results of standard student t-test on comparing HCPNN and HCPNO are sum-

marized in Table A.3.

Table A.2. Notation description in MHP.

Notation Description

i, g ∈ N+ the time index in the company sequence.

ci ∈ C a person’s i-th employer in his/her career path.

λ(τ) the individual turnover probability.

µ ∈ RN the self-excited turnover probability

σ ∈ RNN the intensity influence rate between pair-wised companies

δ ∈ R+NN the time decay parameter between pair-wised companies

Table A.3. The results of standard student t-test with 95% confidence interval.

Model HCPNN HCPOP p-value

Acc@1 0.0726± 0.0004 0.0712± 0.0003 1.3e-5

Acc@15 0.4039± 0.0009 0.3995± 0.0010 4.9e-8

Acc@30 0.5353± 0.0010 0.5308± 0.0009 4.3e-8

MRR 0.1555± 0.0004 0.1534± 0.0004 9.6e-7

MAE 2.7288± 0.0056 2.7357± 0.0043 5.7e-4

RMSE 3.8846± 0.0084 3.8925± 0.0073 1.0e-2
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A.2 Proof of the Variational Inference Process in Section 4.2.3

Before showing the proof of each term in the Evidence Lower Bound (ELBO) of L0,

we first summarize some formulas which will be used in related proofs.

∂(log[B(X)])

∂xi
=

∂

∂xi

(
I∑
i

log[Γ(xi)]− log

[
Γ

I∑
i

xi

])
= Ψ(xi)−Ψ(

∑
i

xi),

(A.2.1)

where X = x1, x2, ..., xI .

If Θ ∼ Dirichlet(α1, α2, ..., αi, ..., αI), where θ is a simplex, then we have

E[log(θi)] =
∂ log(B(α))

∂α
= Ψ(αi)−Ψ(

K∑
k

αk). (A.2.2)

f =
I∑
i

I∑
g=i+1

AiZg =
I∑
i

i−1∑
g

AgZi. (A.2.3)

A.2.1 Proof of Eq. (4.11)

Proof Given that

Eq[ckl] = µ̃ckl ,

Eq[c
2
kl] = µ̃2

ckl
+ λ̃−1ckl ,

(A.2.4)

we have

L1 = −1

2
Eq[hij(sij − tTi ck)2]

= −1

2
hij
{
s2ij − 2sijt

T
i Eq[ck] + Eq[c

T
k tit

T
i ck]

}
= −1

2
hij[s

2
ij − 2sijt

T
i µ̃ck + (tTi µ̃ck)2 +

L∑
l

λ̃−1ck,lt
2
il]

= −1

2
hij

{
s2ij − 2sijt

T
i µ̃ck + tTi [µ̃ck µ̃

T
ck

+ Λ(λ̃−1ck )]ti

}
= −1

2
hij
{
s2ij − 2sijt

T
i µ̃ck + tTi ρkti

}
.

(A.2.5)
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�

A.2.2 Proof of Eq. (4.15)

Proof

Eq[log(P (xjd|zj, ψkd))] = Eq[log

(
K∏
k

P (xjd|ψkd)1[zj=k]
)

]

= Eq[
K∑
k

1[zj = k] · logP (xjd|ψkd)]

=
K∑
k

(
Eq[1[zj = k]] · Eq[logψkd,xjd ]

)
=

K∑
k

z̃jkEq[logψkd,xjd ].

(A.2.6)

�

A.2.3 Proof of Eq. (4.16)

Proof

Eq[log(P (ψkd|γ))] = Eq[log
1

B(γ)

M∏
m

ψγ−1kdm]

=
M∑
m

(γ − 1)Eq[ψkdm]− log B(γ).

(A.2.7)

�

A.2.4 Proof of Eq. (4.18)

Proof

Eq[log(q(zj|z̃j))] = Eq[log
K∑
k

z̃
1[zj=k]
jk ]

=
K∑
k

Eq[1[zj = k]] log(z̃jk)

=
K∑
k

z̃jk log(z̃jk).

(A.2.8)

�
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A.3 Proof of Updating Formulas in Section 4.2.4

This appendix shows the mathematical proof of updating strategies in the optimiza-

tion of our model.

A.3.1 Proof of Eq. (4.21)

Proof We first extract all the terms contain θ̃k and get

L
(
θ̃k

)
=

(
J∑
j

z̃jk − θ̃k,1 + 1

)
Eq[log(θk)] +

(
J∑
j

K∑
g=k+1

z̃jg − θ̃k,2 + β

)
Eq[log(1− θk)]

+ log
(
B(θ̃k,1, θ̃k,2

)
.

(A.3.1)

To present the proof process more concisely, we substitute some terms with simple

notations. They are:

Eq[log(θk)] = f1, Eq[log(1− θk)] = f2,

∂f1

∂θ̃k,1
= f11,

∂f1

∂θ̃k,2
= f12,

∂f2

∂θ̃k,1
= f21,

∂f2

∂θ̃k,2
= f22.

(A.3.2)

And we can get

∂B(θ̃k,1, θ̃k,2)

∂θ̃k,1
= f1,

∂B(θ̃k,1, θ̃k,2)

∂θ̃k,2
= f2. (A.3.3)

Now, we can calculate the deviations of L(θ̃k) with the above substitutional no-

tations. By setting the deviations to zeros, we get(
J∑
j

z̃jk − θ̃k,1 + 1

)
f11 +

(
J∑
j

K∑
g=k+1

z̃jg − θ̃k,2 + β

)
f21 = 0,(

J∑
j

z̃jk − θ̃k,1 + 1

)
f12 +

(
J∑
j

K∑
g=k+1

z̃jg − θ̃k,2 + β

)
f22 = 0.

(A.3.4)
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After solving the equations above, we can get the updating formulas as follows.

θ̃k,1 = 1 +
J∑
j

z̃jk

θ̃k,2 = β +
J∑
j

K∑
g=k+1

z̃jg

(A.3.5)

�

A.3.2 Proof of Eq. (4.22)

Proof We first extract all the terms containing µ̃ck and λ̃ck :

L(µ̃ck) =
I∑
i

J∑
j

z̃jk

(
−hij

2

)[
−2sijt

T
i µ̃ck + (tTi µ̃ck)2

]
− λc

2
µ̃Tck µ̃ck ,

L(λ̃ck) =
I∑
i

J∑
j

z̃jk

(
−hij

2

) L∑
l

λ̃−1cklt
2
il −

λc
2

L∑
l

λ̃−1ckl −
L∑
l

1

2
log
(
λ̃ckl

)
.

(A.3.6)

Then, we calculate the deviations of Eq. (A.3.6):

∂

∂µ̃ck
L (µ̃ck) =

∑
i,j

z̃jkhijsijt
T
i −

(∑
i,j

z̃jkhijt
T
i ti + λc

)
µ̃ck ,

∂

∂λ̃ckl
L(λ̃ckl) =

1

2

((∑
i,j

z̃jkhijt
2
il + λc

)
λ̃−2ckl − λ̃

−1
ckl

)
.

(A.3.7)

By setting the deviations above to be zeros, we can get

µ̃ck =

(∑
i,j

z̃jkhijt
T
i ti + λcIl

)−1(∑
i,j

z̃jkhijsijt
T
i

)

= (TΛ(Hz̃k)T
T + λcIl)

−1(T (H � S)z̃k),

λ̃ckl =
∑
i,j

z̃jkhijt
2
il + λc,

λ̃ck = T � THz̃k + λcIl.

(A.3.8)

�
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A.3.3 Proof of Eq. (4.23)

Proof We extract all the terms containing z̃jk, notice that we use the Eq. (A.2.3)

to change the subscript during the extraction, then we have

L(z̃jk) =
∑
i

z̃jkL1 +
k−1∑
g

z̃jkEq[log(1− θg)]

+ z̃jkEq[log(θg)] +
∑
d

z̃jkEq[logψkd,xjd ]− z̃jk log z̃jk.

(A.3.9)

After that, we calculate the deviations of Eq. (A.3.9), which is

∂

∂z̃jk
L(z̃jk) =

∑
i

L1+
k−1∑
g

Eq[log(1−θg)]+Eq[log(θg)]+
∑
d

Eq[logψkd,xjd ]−log z̃jk−1.

(A.3.10)

By setting the deviation above to zero, we get the updating formula as follows:

z̃jk ∝ exp

{
Eq[log(θk)] +

k−1∑
g

Eq[log(1− θg)] +
I∑
i

L1 +
D∑
d

Eq[logψkd,xjd ]

}
.

(A.3.11)

�

A.3.4 Proof of Eq. (4.24)

Proof We first extract all the terms containing ψ̃kd:

L(ψ̃kdm) =

(
J∑
j

z̃jk1[xjd = m] + γ − ψ̃kdm

)
Eq[logψkdm] + log B(ψ̃kd). (A.3.12)

Then, we calculate the deviation of Eq. A.3.12:

∂

∂ψ̃kdm
L(ψ̃kdm) =

(
J∑
j

z̃jk1[xjd = m] + γ − ψ̃kdm

)
∂Eq[logψkdm]

∂ψ̃kdm
− Eq[logψkdm] +

∂B(ψ̃kd)

∂ψ̃kdm
.

(A.3.13)

From Eq. (A.2.1) and (A.2.2), it is easy to see that

∂

∂ψ̃kdm
L(ψ̃kdm) =

(
J∑
j

z̃jk1[xjd = m] + γ − ψ̃kdm

)
∂Eq[logψkdm]

∂ψ̃kdm
. (A.3.14)
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Finally, we get the updating formula by setting the deviation above to be zero as

follow:

ψ̃kdm =
J∑
j

z̃jk1[xjd = m] + γ. (A.3.15)

�

A.3.5 Proof of Eq. (4.25)

Proof We first extract all the terms containing ti:

L(ti) = −λt
2

(ti − ϕi)T (ti − ϕi) +
J∑
j

K∑
k

z̃jkhij

(
−2sijt

T
i µ̃ck + (tTi µ̃ck)2 +

L∑
l

λ̃−1ck t
2
il

)
.

(A.3.16)

Then, we calculate the deviation of Eq. (A.3.16) and get

∂

∂ti
L(ti) = −λt(ti − ϕi)−

J∑
j

K∑
k

z̃jkhij(−sijµ̃ck + µ̃ck µ̃
T
ck
ti + Λ(λ̃−1ck )ti). (A.3.17)

By setting the deviation above to zero, we get the updating formula

ti =

(
J∑
j

K∑
k

z̃jkhijsijρk + λtIl

)−1( J∑
j

K∑
k

z̃jkhijsijµ̃ck + λtϕi

)

=
(
ρZ̃Thi + λtIl

)−1 (
µ̃cZ̃

T (hi � si) + λtϕi

)
.

(A.3.18)

�


