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ABSTRACT 

Background: Antibiotic resistant Staphylococcus aureus (S. aureus) infections are a 

major medical concern due to loss of antibiotic sensitivity. Genome-wide analyses, 

including sequencing and gene expression, identified genes associated with antibiotic 

resistances, such as vraSR whose mutations are associated with vancomycin, daptomycin, 

and oxacillin resistances. Pathway enrichment analysis using Fisher’s Exact Test (FET) 

provides insight into pathway activity, though pathway roles in resistance are not fully 

elucidated. These studies applied a pathway-centric computational approach to examine 

antibiotic resistance (i.e., vraS-driven) and response (i.e., treatment inducible) changes in 

S. aureus. 

Method: This is the first application of Gene Set Enrichment Analysis, which improves 

upon FET by removing gene selection requirements, to obtain pathway signatures 

(i.e., pathways ranked by activity change) from normalized enrichment scores reflecting 

164 individual pathway activities in S. aureus. The pathway panels were obtained (most 

up- or down-regulated pathways separately), for vraS- and graSR-driven resistance 

signatures. A similar process was repeated to examine vancomycin susceptibility 

(i.e., difference in response between resistant and sensitive strains). Pathway activity in 

vraS-driven resistance panels was then examined in various antibiotic (vancomycin, 

oxacillin, or linezolid) susceptibilities to identify commonalities and differences in 

individual pathway activities. One novel pathway was selected and its association to 

antibiotic sensitivity was experimentally verified. 

Results: This approach correlated pathway activity changes, like up-regulated histidine 

biosynthesis, with established genetic associations to antibiotic resistance. Further, 
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pathway activity changes with known associations to vancomycin susceptibility such as 

down-regulated TCA cycle activity was also identified. Both examinations identified 

pathways with no prior association to antibiotic resistance. Inverse correlations between 

pathway activity changes and susceptibility to vancomycin and oxacillin/linezolid were 

seen (pathway activities up-regulated in vancomycin susceptibility were down-regulated 

in linezolid susceptibility) regardless of strain resistance level. Lysine biosynthesis was 

identified as a top candidate pathway for targeting to overcome resistance and verified by 

lysine or aspartate supplementation. Thus, lysine biosynthesis as a co-therapeutic target 

could restore antibiotic efficacy. 

Conclusion: This pathway-centric approach identified pathway activity changes 

associated with antibiotic sensitivity which can be targeted to help reverse antibiotic 

resistance. 
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CHAPTER 1  

INTRODUCTION 

Many cells contain thousands of genes that drive complex molecular interactions 

supporting life. Breakthroughs in high-throughput experimental technology, such as 

microarray and RNA-seq, allow researchers to quickly examine expression of thousands 

of genes for a biological sample to get a broad perspective of cellular activity which 

allows for a comprehensive examination of specific biological processes. This is a 

massive improvement over laboratory techniques like reverse transcriptase-polymerase 

chain reaction (RT-PCR) and Northern blot that only test for a few select genes per 

experiment1. Since inception, microarray technologies have been used extensively to 

examine gene expression, polymorphisms, chromosomal aberrations, and copy number 

variations to answer a wide-variety of scientific inquiries including cancer and antibiotic 

resistance (i.e., loss of sensitivity to an antibiotic therapy) research1,2. Its extensive use 

has generated large volumes of data which need further analysis to elucidate connections 

between observed gene changes and the molecular interactions they impact in order to 

fully understand cellular processes that produce phenotypic variations (i.e., observable 

characteristics or traits). To accomplish this, researchers use statistical methods, such as 

enrichment analysis, to identify pathways (i.e., ordered succession of cell molecular 

interactions leading to change in a cellular process or state) from genes selected for their 

statistical significance (e.g., T-test p-value<0.05) that neglect genes with insignificant 

changes in expression from microarray data. While these methods identify individual 

pathways of scientific interest, they are limited because they consider pathways whose 

enrichment is based on statistically significant genes, missing broader pathway changes 
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(i.e., accumulated via small gene expression changes) which contribute to phenotypic 

variations that result from activity of multiple pathways simultaneously, a perspective 

that is needed to fully understand cellular processes. To overcome this limitation, I used 

Gene Set Enrichment Analysis (GSEA), a well-established computational tool that does 

not neglect genes with insignificant changes when calculating enrichment, to examine 

antibiotic resistance, and was the first to use GSEA on Staphylococcus aureus 

(S. aureus). Further, I was the first to apply a new computational approach using GSEA 

that defines and compares pathway signatures (i.e., pathway lists ranked by activity as 

defined by differential mRNA (i.e., gene) expression) to detect activity changes 

associated with antibiotic resistance. I applied my pathway signature approach to multiple 

resistance studies across different antibiotic classes to identify pathways affecting 

development of antibiotic resistance, which was the first analysis of its kind to the best of 

my knowledge. Finally, I experimentally established biological relevance for one of the 

top pathway candidates identified from my computational approach. 

1.1 Background on Antibiotic Resistance 

Bacteriology, the study of bacteria, is one area of biological exploration where 

mRNA expression data is used extensively, but with limited benefit to humanity’s overall 

understanding of cellular processes, such as antibiotic resistance which was the focus of 

this work. Bacteria are an entire taxonomy domain of single-celled microorganisms that 

are found in most habitats on Earth including soil, water, and within and on humans3. 

Researchers estimate there is at least one bacterium for every human cell in the body4. 

Bacterial species associated with humans have either a mutualist (beneficial) or 

commensal (neutral) relationship with us, while some bacteria are pathogens (harmful to 
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human health)3. Bacterial pathogens cause an average of nearly 14 million infections 

annually5. While much scientific attention is given to true pathogens that can cause 

disease in healthy individuals, such as Yersinia pestis (causative agent of bubonic 

plague), opportunistic pathogens that cause disease in immunocompromised people, such 

as Pseudomonas aeruginosa (common cause of burn infections), are bigger public health 

concerns because they already inhabit most humans in commensal relationships, waiting 

for the human immune system to decline before establishing infection3,6. For this reason, 

opportunistic pathogen infections are an ongoing clinical challenge7.  

To treat infections of true (i.e., able to cause infection in healthy humans) and 

opportunistic pathogens clinically, antibiotics are useful therapeutic agents3. Antibiotics 

have been used for decades as the primary treatment and prevention method for a wide 

variety of communicable diseases and endogenous infections8-11. Over 70 billion 

antibiotic doses are consumed worldwide every year1,12 which save millions of lives11. 

Table 1 lists antibiotics commonly prescribed for bacterial infections, grouping them by 

their mechanisms of action. Cell wall synthesis inhibitors are preferred for treating gram 

positive infections, like those caused by S. aureus, because they target exposed 

peptidoglycan, a polymer consisting of amino acids and sugars that form a mesh-like 

layer unique to the bacterial cell wall3. On the other hand, gram negative bacteria have an 

outer membrane protecting their peptidoglycan layer from the outside environment. Thus, 

for gram negative bacteria, protein synthesis inhibitors are preferred since the ribosomal 

subunit size is different between bacteria and humans. Both bacteria and humans have 

similar cell membrane structure, nucleic acid and folate synthesis processes, thus 

antibiotics that target these cellular components are less desirable3. 
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Table 1. Antibiotics Commonly Used to Treat Bacterial Infections 

Mechanism of 

Actiona,b 

Group Example Antibioticsb,c,d 

Cell wall synthesis 

inhibitors 

β-lactams Penicillin (e.g., methicillin, oxacillin, 

and flucloxacillin) 

Cephalosporin (e.g., ceftobiprole) 

Glycopeptides  Vancomycin 

Protein synthesis 

inhibitors 

30S ribosomal subunit Aminoglycosides (e.g., kanamycin) 

Tetracycline 

50S ribosomal subunit Macrolides (e.g., erythromycin) 

Glycylcyclines (e.g., tigecycline) 

Oxazolidinones (e.g., linezolid) 

Lincosamides (e.g., clindamycin) 

Cell membrane 

depolarizers 

Lipopeptides Daptomycin 

Polymyxin (e.g., colistin) 

Nucleic acid 

synthesis inhibitors 

Quinolones Ciprofloxacin 

Folate synthesis 

inhibitors 

Sulfonamides Trimethoprim-sulfamethoxazole 

Trimethoprims 
a Madigan, M.T. Et al.3 
b Kapoor, G. Et al.13 
c Pantosti, A. Et al.14 
d Velkov, T. Et al.15 

 

Unfortunately, antibiotics are losing their efficacy (i.e., clinical treatment failure) 

due to the rapid emergence of antibiotic resistant infections11,16, a problem regarded as 

one of the 21st century’s major public health concerns by the World Health 

Organization8,9,11,17-19. In the United States alone, almost two million Americans contract 

hospital acquired infections, resulting in 99,000 deaths annually and most of these 

infections involved antibiotic resistant pathogens11,20. Resistant pathogens are not limited 

to clinical-based infections. They are prevalent in the community with over 53 million 

people worldwide possibly who are colonized unknowingly with resistant pathogens, 

posing as a potential risk to self and others21,22. As resistance spreads, predictions of up to 

10 million deaths per year worldwide from antibiotic resistant infections by 2050 have 

been reported23. Besides prolonged hospital stays11,20, increases in mortality rates11,20, 
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long-term disability rates11, and hospitalization for patients24,25, resistant infections 

substantially increase medical costs per patient11,26 resulting in significant economic and 

societal costs21,24,27-29. The estimated annual total economic burden to the United States 

economy is $20 billion in health care costs and $35 billion in lost wages11,20. Finding 

ways to more effectively treat antibiotic resistant infections is critical to improving 

patient outcomes and relieving an already overburdened healthcare system11. 

Of particular concern is antibiotic resistant S. aureus, an opportunistic Gram-

positive bacterial pathogen that causes a varied assortment of infections including 

superficial skin and surgical wound infections, bone and joint infections, food poisoning, 

toxic shock syndrome, pneumonia, endocarditis, and bacteremia14,21,30,31. During the pre-

antibiotic era, prior to the discovery of penicillin, S. aureus patients with bacteremia had 

a mortality rate of more than 80%21,32. The introduction of penicillin and subsequent 

antibiotics dramatically improved patient prognosis21,33. All S. aureus isolates were 

sensitive to penicillin when first introduced in the early 1940s. However, now more than 

90% of human S. aureus isolates are penicillin resistant14,21,31. Methicillin, a 

semisynthetic penicillin derivative, was originally designed in 1959 to overcome the 

spread of penicillin resistance21,31. However, methicillin resistant Staphylococcus aureus 

(MRSA) isolates were found the following year21,34 and today MRSA is a serious threat 

to public health11. MRSA is the second most common cause of bloodstream infections 

worldwide and the most common cause of infective endocarditis in the developed 

world35-37. The Center for Disease Control and Prevention in 2011 estimated 80,000 

invasive MRSA infections and 11,285 related deaths in the United States (around 15% 

mortality rate)21,38. As seen in other bacteria, MRSA infections among the general 
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population (i.e., community-acquired) have steadily increased during the past decade11, 

resulting in S. aureus strains that now exist with resistance to one, two, or more (i.e., 

multi-drug resistant, MDR) antibiotics11,21,39,40. It will not be long before there is an 

untreatable strain of S. aureus41 as is already seen in other infectious bacterial species 

such as Acinetobacter spp. and Klebsiella pneumoniae42,43. 

Several antibiotic resistance mechanisms have been elucidated.  

Table 2 summarizes resistance mechanisms employed by S. aureus and other 

bacterial species. High-level, sudden onset antibiotic resistance typically involves the 

procurement of a detectable genetic marker such as a chromosomal mutation or 

externally-acquired genes that deactivate the antibiotic, often by physical alteration of the 

antibiotic or its target3,14,21,44,45. Further, efflux pumps that remove antibiotics from the 

cell, preventing them from reaching their targets, have been found across bacterial 

species and commonly contribute to multi-drug resistances of antibiotics across all 

mechanisms of action44,46-50. Multi-drug resistance can also arise from accumulation of 

several externally-derived genes and/or chromosomal mutations, each encoding 

resistance to a particular antibiotic51. However, genetic markers are not consistently 

found in multi-drug and low-level (i.e., intermediate) resistances, presenting a challenge 

for treatment management14,44,45. 
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Table 2. Overview of Antibiotic Resistance Mechanisms 

Groupa  Mechanisms of Resistance 

β-lactams • Acquire penicillinase to cleave β-lactam ring to inactive itb,c  

• Mutate penicillin binding proteins so β-lactam ring cannot 

bindb,c 

Glycopeptides • Mutate cell wall so glycopeptides cannot bindb,c,d 

30S ribosomal subunit • Mutate 30S subunit so drug cannot binde 

50S ribosomal subunit • Modify methylation of ribosome to inhibit drug bindingf 

• Mutate 50S subunit so drug cannot bindb 

Lipopeptides • Increase voltage difference across the membraneb,g 

• Mutate membrane proteins that bind drugg 

Quinolones • Mutate DNA gyrase and/or topoisomerase IVb,h 

Sulfonamides • Mutate dihydropteroate synthaseb  

• Use alternative pathways of folate synthesisb  

Trimethoprim • Mutate dihydrofolate reductaseb  

• Use alternative pathways of folate synthesisb  
a Madigan, M.T. Et al.3 
b Pantosti, A. Et al.14 
c Peacock, S.J. Et al.21  
d Gardete, S. Et al.45 
e Chopra, I. Et al.47  
f Quiles-Melero, I. Et al.52 
g Tran, T.T. Et al.53  
h Hooper, D.C. Et al.48 

  

Low-level resistances frequently arise from “persister” cells that survive antibiotic 

exposure and are common in reoccurring infections. Unlike high-level resistant species 

which can flourish in the presence of antibiotic, “persister” cells grow after antibiotic 

treatment has stopped44. Persistence has been observed in most bacterial species, 

particularly for slow growing pathogens such as Mycobacterium tuberculosis (causative 

agent of Tuberculosis) that require months of antibiotic therapy with a high risk of patient 

non-compliance44. Mechanisms used by “persister” cells are not well understood, 

particularly since a small percentage of any bacterial population exists in a transient state 

of resistance meaning “persister” cells may have temporary resistance54. Despite 

producing similar antibiotic resistant phenotypes, there is considerable diversity in which 
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gene mutations are accumulated across resistant bacterial species and resistant strains of 

the same species55,56. While gene mutation studies provide useful information such as the 

effects of mutation on gene expression, a pathway-centric perspective using GSEA can 

identify pathway contributions to antibiotic resistant phenotypes, which complements 

scientific understanding of how variations in accumulated gene mutations contribute to 

the development of antibiotic resistant bacteria44. 

1.2 Statement of the Problem 

Despite science’s understanding of antibiotic resistance mechanisms, humanity 

struggles to control S. aureus and other bacterial infections. Due to increases in the global 

spread of resistant infections like MRSA18 and their development into MDR strains in 

recent decades11, there is a need for new antibiotic therapy options, either with different 

mechanisms of action than those currently in use57 or that suppress existing resistance 

mechanisms to make current therapies useful again58. Not having these options will cause 

significant economic and medical hardships.  

Targeting changes in pathway activities to overcome antibiotic resistance has 

shown promising preliminary outcomes44,59-62. Researchers have been able to restore 

vancomycin efficacy in resistant S. aureus by inhibiting amino sugar and purine 

biosynthesis59, combine cysteine or other small thiols with rifampicin or isoniazid to kill 

“persister” and fully resistant Mycobacterium tuberculosis62, and use exogenous alanine, 

glucose, or glutamate to restore kanamycin function in Edwardsiella tarda and 

Escherichia coli (causative agents of gastrointestinal distress)60,61. Continued exploration 

into pathway activity can provide new co-therapy options for antibiotic resistant 

infections. 
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Pathway activity can be inferred from observing differential changes in mRNA 

expression. Statistical methods, such as pathway enrichment analysis, a common 

technique used for interpreting differentially expressed gene lists by comparing gene list 

membership to memberships of known pathways individually63, have been used to 

identify pathways involved in antibiotic resistance. However, most pathway enrichment 

analysis methods are complicated by selection methods for gene list membership and do 

not consider all pathway activities simultaniously64-69. GSEA improves upon these 

methods by removing the gene selection requirement. Further, by using pathway 

signatures to detect activity changes across all well-established pathways, scientists can 

get a higher-level vantage of cellular processes that contribute to resistance. Pathway-

centric computational approaches, like the one proposed here, can improve how mRNA 

expression is used to interpret pathway activity changes associated with antibiotic 

resistance. When applied to mRNA expression datasets examining resistant and sensitive 

strains, my computational approach could identify pathway targets useful for the 

development of novel co-therapeutic options to clinically combat the worldwide 

antibiotic resistance problem. Without these advancements, antibiotic therapy will 

continue regressing into a post-antibiotic era where common infections, minor injuries, 

and surgeries, once again threaten the lives of billions of people worldwide11,70.  

1.3 Goal and Aims of the Study 

 The overall goal of this study was to elucidate molecular changes associated with 

antibiotic resistance in S. aureus through computational mRNA expression and biological 

pathway activity analyses to identify targetable pathways for co-therapeutic development 

to overcome antibiotic resistance. To do this, I applied a computational approach that 
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uses GSEA to define and compare pathway signatures from S. aureus mRNA expression 

datasets that examine 1) mutation-driven resistance (i.e., comparison of resistant and 

sensitive S. aureus under the same treatment condition to identify the contributions of 

known or established mutations to loss of antibiotic sensitivity)56,71-76, 2) antibiotic 

response (i.e., comparison of S. aureus with and without antibiotic treatment, regardless 

of strain resistance level)77, and 3) antibiotic susceptibility (i.e., difference in treatment 

response between resistant and sensitive strains) to accomplish the following aims: 

• Aim 1: Identify pathway activity changes associated with mutation-driven 

resistance 

• Aim 2: Identify pathway activity changes associated with vancomycin 

susceptibility 

• Aim 3: Compare pathway activity changes associated with mutation-driven 

resistance to pathway activity changes associated with vancomycin, oxacillin, and 

linezolid susceptibilities and responses 

 I used my approach to identify and confirm inferred pathway activity changes 

associated with mutation-driven resistance, and antibiotic susceptibility and response in 

S. aureus, focusing around vancomycin because of its alarming treatment failure rate 

clinically11,56. Pathway activity changes identified for mutation-driven resistance were 

then compared to changes associated with susceptibility and response to one of three 

antibiotics individually (vancomycin, oxacillin, or linezolid) in both sensitive strains and 

strains with varying resistance levels. The purpose of this analysis was to identify 

pathway activity changes occurring via selective pressures from antibiotic exposure56,78-81 

that potentially contribute to developing resistance in sensitive strains. These changes 
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have the potential to restore antibiotic sensitivity if used as a co-therapeutic target. The 

outcome of this work could demonstrate a path to improve clinical outcomes by 

predicting valuable pathway targets for co-therapeutic options to preclude or overcome 

antibiotic resistance in S. aureus. Further, my approach is directly applicable to other 

antibiotic resistant bacterial species and could be instrumental in predicting antibiotic co-

therapies targeting pathway activity changes that can be used to restore the efficacy of 

current antibiotic therapies.  
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CHAPTER 2 

REVIEW OF LITERATURE 

 This work applied a new computational approach based on pathway signatures 

using Gene Set Enrichment Analysis (GSEA) to analyze mRNA expression data to 

determine changes in pathway activities associated with antibiotic resistance in S. aureus. 

This chapter begins with the specifics of known antibiotic resistance mechanisms for 

vancomycin, oxacillin, daptomycin, and linezolid. I then detail the GSEA 

algorithm/software67 used in this work and include a discussion of its benefits and 

challenges. This chapter concludes with an overview of popular pathway databases 

commonly used in pathway enrichment analysis with a discussion on which databases 

were best to use in my study.  

2.1 Review of Experimentally Recognized Antibiotic Resistance Mechanisms 

 This section is a review of antibiotic resistance mechanisms in S. aureus as they 

pertain to my study. Since vancomycin and oxacillin are cell wall synthesis inhibitors, I 

begin with a brief review of cell wall construction for gram positive bacterial species like 

S. aureus. The cell wall is an important cellular structure located outside of the 

cytoplasmic membrane that maintains cell shape and internal osmotic pressure82. 

Bacterial cell walls contain peptidoglycan (PTG), which is unique to bacterial species, 

making them excellent targets for antibiotic therapies3,56,82,83. PTG is comprised of 

strands of alternating glycan sugars, N-acetyl glucosamine (NAG) and N-acetyl muramic 

acid (NAM), crosslinked by amino acid bridges, forming a complex, thick, rigid, three-

dimensional layer that surrounds the entire cell3,82. The enzyme, transpeptidase, creates 

these crosslinks by binding to the D-Alanine:D-Alanine (D-Ala: D-Ala) ends of NAM 
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molecules (Figure 1). Cell wall synthesis inhibitors, such as penicillin, oxacillin, 

methicillin, and vancomycin, prevent transpeptidation resulting in a weak peptidoglycan 

layer3,82. Penicillin and its derivatives, oxacillin and methicillin, use their -lactam ring 

structures to bind transpeptidase, thus preventing transpeptidase binding to D-Ala:D-Ala 

ends for cross-linkage (Figure 1)3,83. Vancomycin binds to D-Ala:D-Ala ends causing 

steric hindrance, preventing the transpeptidase from binding and inhibiting cross-linkage 

(Figure 1)14,19,83. Disrupting cell wall formation stalls bacterial growth or invokes cell 

lysis, thus killing S. aureus cells3,19,83. 

Daptomycin is a cell membrane disrupter that upsets the electrical potential all 

cells produce across their cell membrane that is driven by a charged ion concentration 

gradient. Daptomycin does this by using calcium to insert itself by anionic phospholipid 

phosphatidylglycerols, a common component in cell membranes, then oligomerizing 

before translocating throughout the cell membrane to form an oligomeric pore resulting 

in ion leakage and dissipation of cell membrane potential (Figure 1)84-86. Losing the tight 

control of ion flux that generates cell membrane potential radically alters cellular osmotic 

pressure, often producing lethal consequences for the cell.  

Linezolid is a protein synthesis inhibitor. Protein synthesis inhibition hinders 

protein production for essential cellular metabolic machinery and structural components, 

leading to issues with all cellular processes leading to cell death3. Protein synthesis 

requires the formation of a ribosomal complex consisting of a large and small ribosomal 

subunit sandwiched around mRNA3. Linezolid specifically binds to the peptidyl 

transferase site of the large ribosomal subunit (50S), physically inhibiting formation of 

the initiation complex (Figure 1)87-89. Established resistance mechanisms for all 
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antibiotics discussed here including linezolid circumvent these processes and are 

discussed in the remainder of this section. 

 

Figure 1. Bacterial cell wall synthesis and mechanism of action of antibiotics commonly 

used to treat S. aureus infections: oxacillin, vancomycin, daptomycin, and linezolid 

 

Cell walls are composed of alternating N-acetylmuramic acid (NAM, red hexagon) and 

N-acetyl glucosamine (NAG, green hexagon) sugar layers to form peptidoglycan. 

Transpeptidase (blue oval) cross-links (red line) NAG-NAM sugar layers by the amino 

acid ends (black line) of NAM sugars to give peptidoglycan in bacterial cell walls rigidity 

from osmotic pressure. Cell wall synthesis inhibitor antibiotics inhibit peptidoglycan 

formation. Oxacillin (green circle) acts by binding to transpeptidase so it cannot bind 

NAM ends (red X) to form cross-links. Vancomycin (purple oval) attach to amino acid 

ends, preventing transpeptidase binding and cross-link formation. Daptomycin (purple 

triangle) inserts its itself into the cytoplasmic membrane (dark blue oval) leading to 

oligomerization and eventually pore formation that disrupts membrane integrity. 

Linezolid binds to 50S ribosomal subunits (gray circle), inhibiting it from binding 30S 
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ribosomal subunits (gray oval) and preventing translation complex formation around 

messenger ribonucleic acid (mRNA, black line). Without the ability to produce proteins, 

cellular processes slow to a halt leading to death. 

2.1.1 Vancomycin Resistance 

Vancomycin resistance in S. aureus uses one of two different mechanisms90. 

Vancomycin resistant Staphylococcus aureus (VRSA) infections are characterized by 

high-level minimum inhibitory concentration (MIC) of >16mg/L, sudden-onset resistance 

that arise from acquisition of the Tn1546 transposon from a vancomycin-resistant 

enterococci plasmid during a mixed infection with MRSA14,56,81,83. VRSA is marked by 

van operon, a group of 7 genes that produce modified peptidoglycan precursors 

containing a terminal D-Ala:D-Lac instead of D-Ala:D-Ala while also eradicating 

susceptible wild-type D-Ala:D-Ala ends14,56,81. Vancomycin has a much lower affinity for 

the D-Ala:D-Lac ends than the wild-type D-Ala:D-Ala ends14,56,81, thus conveying the 

observed resistance phenotype. Fortunately, VRSA infections are rare with only 14 

isolates reported in the United States by 201656,91. 

Vancomycin intermediate Staphylococcus aureus (VISA) infections are of greater 

clinical concern with incidences of VISA infections steadily increasing and death tolls in 

the tens of thousands annually56,59. VISA infections lack the van operon and are usually 

associated with low-level resistance (MIC 2-8mg/L)56,92, persistent infection, long 

hospitalizations, and prolonged or failed vancomycin treatment56. They commonly 

develop in MRSA patients treated with vancomycin for an extended period of time82, 

resulting in altered physiology and metabolism to sustain growth during vancomycin 

exposure59,93. Thickened cell walls that are high in uncross-linked peptidoglycan chains 

with the D-Ala:D-Ala ends are associated with intermediate resistance14,94,95. Evidence 
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suggests overproduction of the D-Ala:D-Ala ends in thickened cell walls act as decoys 

blocking vancomycin in external layers and diverting it from reaching its intended 

targets14,96. With continued exposure, the cell wall clogs with trapped vancomycin, 

further hindering vancomycin effectiveness and leading to the development of full 

vancomycin resistance14,97. VISA is usually preceded by an intermediate phenotype, 

heterogenous VISA (hVISA), where the infection is a mixed population of sensitive 

(MIC <2mg/L) and resistant (MIC >4mg/L) cells56. This makes VISA and hVISA 

infections difficult to detect due to the low vancomycin doses needed for testing despite 

variations in testing methods (i.e., E-strip, broth dilution)56. Further, VISA and hVISA 

infections can enter a transient resistance state like other bacterial “persister” infections, 

which is thought to be controlled by ATP depletion triggering entrance into the stationary 

growth phase where cells become metabolically dormant and do not divide54,56,98, making 

them difficult to treat and resulting in frequent reoccurring infections. Taken together, it 

is easy to see why VISA infections are worrisome clinically. 

Further, the mechanisms behind the development of VISA resistance are not 

completely understood14. VISA isolates share phenotypic characteristics, such as 

thickened cell wall, but there is substantial variation across strains in how these traits are 

produced (i.e., types and number of genes mutated and specific mutations used)59,99. 

Table 3 summarizes genes associated with VISA. Most genes associated with VISA are 

part of the “cell wall stimulon”100. Researchers theorize that resistance develops from a 

series of step-wise gene mutations14,56, and the majority of mutations has become 

associated with certain S. aureus lineages101,56. For example, several nonsynonymous 

single-nucleotide polymorphisms associated with VISA phenotype are part of two- and 
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three- component regulatory systems, such as graRS, vraTSR and walKR, which alter 

expression of over 100 cell wall biosynthesis, including genes required to produce D-

Ala:D-Ala ends56,59,72,100,102-104. Over 40 of those genes, termed the “cell wall stimulon”, 

are controlled by vraSR, resulting in cell wall synthesis when induced by cell wall 

damage. Alternatively, active walKR controls expression of autolysins, which are 

proteins needed for cell wall turn-over during division. In vancomycin sensitive strains, 

vraSR remains inactive since it does not detect cell wall damage during vancomycin 

exposure while walKR continues to be active to support cell division, the combination 

resulting in cell lysis. Further, when the cationic antimicrobial peptide (CAMP) switch, 

graSR, is activated it suppresses walKR expression and induces activity of over a dozen 

cell wall synthesis genes, such as vraFG, vraDE, mprF and dltABCD, that overlap and 

complement “cell wall stimulon” activity. Mutations that cause the over-expression of 

vraSR, graSR, and/or several of the cell wall synthesis genes they control (e.g., mprF), 

and/or under-expression of walKR result in increased cell wall thickness and decreased 

cell division (i.e., slow growth), the classic VISA phenotype45,56,73,74,105-107. Further, 

seemingly unrelated mutations that down-regulate activity of global regulators, such as 

rpoB which encodes the RNA polymerase -subunit, are linked to VISA phenotype (i.e., 

increased cell wall thickness)45,56,108-112. This demonstrates the complexity of identifying 

consistent genetic markers behind VISA development and highlights the need for an 

additional perspective.  
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Table 3. Genes Associated with VISA Phenotypes 

Phenotype Genes Role in VISA Phenotype 

Cell wall thickening 

and reduced autolytic 

activity 

graRS Up-regulates over 13 genes including vraFG, 

vraDE, capsule operon, mprF, dltABCD, fmtC, 

mgrA and rot, down-regulates walKR and agr, 

and is associated with nucleotide metabolism 

pbp4 Reduced rates of peptidoglycan cross-linking 

and transpeptidation 

sarA Reduced production of autolysins responsible 

for cell wall recycling mgrA 

clpP Cell wall thickening, slow growth, and 

reduced autolysis stp1 

walKR  

(yycFG) 

Limited walKR activity lowers rates of 

autolysis and increases cell wall thickness 

yycH Lowered expression of autolysis genes 

Up-regulated cell wall 

stimulon 

vraSR Associated with reduced vancomycin 

susceptibility, up-regulates 40 cell wall 

stimulon genes including vraFG and mprF  

vraFG Associated with reduced vancomycin 

susceptibility 

prsA  

isdE  

fmtC (mprF) Increased net negative charge of cell wall and 

reduced peptidoglycan cross-linking 

spoVG Increased capsule production 

capA-capP 

Down-regulated 

global regulators 

arg Attenuation of virulence and reduced 

vancomycin susceptibility rot 

rpoB Associated with reduced vancomycin 

susceptibility  rsbU 

yjbH 

vraT (yvqF) Up-regulates vraSR, reduced vancomycin 

susceptibility 

Decreased Production 

of Virulence Factors 

sbi Altered IgM binding 

spa Observed alterations in opsonization and 

phagocytosis 

Source: Adopted From McGuinness WA, Malachowa N, DeLeo FR (2017). Vancomycin 

Resistance in Staphylococcus aureus. Yale Journal of Biology and Medicine, 102(43), 

pp.269-28156,99,102,113,114. 

 

Researchers are looking at pathway activity in VISA isolates experimentally to 

better comprehend resistance mechanisms and find links between reversable alterations in 

the core metabolism of S. aureus and VISA phenotype107. Changes in acetate catabolism 
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due in part to reduction of tricarboxylic acid (i.e., Kreb’s, citrate, TCA) cycle are 

associated with VISA phenotypes59, suggesting S. aureus may use a variety of metabolic 

changes to develop vancomycin resistance. Increases in wall teichoic acid and 

peptidoglycan precursor biosynthesis, urea cycle, arginine metabolism, nucleotide 

metabolism56 such as purine biosynthesis, and carbon flow through the pentose phosphate 

pathway are associated with VISA phenotypes59,107. This highlights the importance of 

examining pathway changes to fully understand developing vancomycin resistance 

mechanisms.  

2.1.2 Oxacillin Resistance 

 Researchers have characterized two mechanisms S. aureus uses to resist -lactam 

antibiotics (i.e., penicillin and its derivatives). Initial penicillin resistance occurred 

through acquisition of the plasmid-borne bla operon, which contains an extracellular 

enzyme, -lactamase, that inactivates -lactams by hydrolyzing their -lactam rings so 

they can no longer bind transpeptidase14. Methicillin and other next generation -lactams 

(e.g., oxacillin and flucloxacillin) have a semi-synthetic penicillinase-resistant -lactam 

ring14. MRSA is characterized by high-level resistance (MIC >2mg/L) that is associated 

with acquisition of the plasmid-borne mec operon that encodes a mutated transpeptidase 

that lacks -lactam affinity14,19,31. Most cases of -lactam resistance clinically are MRSA, 

though occasionally -lactam resistant strains lacking the mec operon arise from 

chromosomal mutations that alter transpeptidase affinity for -lactam antibiotics21. 

Regardless, oxacillin resistance is relatively well characterized at the genetic level 

compared to resistance to other antibiotics. 
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2.1.3 Daptomycin Resistance 

Despite being a cell membrane disrupter rather than a cell wall synthesis inhibitor 

antibiotic, daptomycin resistance (MIC >1mg/L) often presents in MDR S. aureus strains 

alongside VISA phenotypes with several genes implicated across antibiotic resistance84-

86. The most frequently described mutation associated with daptomycin resistance is in 

mprF. For daptomycin resistance, mprF that encodes an enzyme that attaches lysine to 

phosphatidylglycerol, thus conferring resistance by reducing binding of daptomycin to 

bacterial membranes. However, mutations in mprF are also associated with VISA 

phenotypes56 due to its role in cell wall synthesis under the direction of VISA regulator 

genes like graSR, vraSR and yycFG (also known as walKR)53,115. Evidence in MRSA 

strains suggest that mprF mutations conferring daptomycin resistance are also associated 

with over-expression of vraSR, and inactivation of vraSR alone can increase daptomycin 

sensitivity71,72. Recent work has shown a single missense mutation in mprF can confer 

resistance to daptomycin and vancomycin while improving oxacillin susceptibility104. 

Further, mutations associated with VISA in genes that are not directly related to cell wall 

synthesis, such as rpoB, have been implicated in daptomycin resistance. The diverse and 

often interconnected MDR mechanisms used by S. aureus to overcome daptomycin 

therapy impedes clinical treatment and further supports the need to examine antibiotic 

resistance from a broader pathway activity perspective. 

 Interestingly, daptomycin has structural similarities to cationic antimicrobial 

peptides (CAMPs) made by the mammalian innate immune system from which 

polymyxin antibiotics like colistin (i.e., polymyxin E) are derived86,116,117. Colistin is 

commonly used as a last option, due to human toxicity issues, to treat gram negative 



31 

 

MDR infections118,119. Unfortunately, S. aureus has an intrinsic resistance to polymyxins 

in part because of their affinity for lipopolysaccharide (LPS) which is not found in gram 

positive bacteria15,117,120. However, genes associated with daptomycin resistance, such as 

mprF and graSR, are also associated with intrinsic resistance to CAMPs in S. aureus, 

leading researchers to question the overlap of resistance mechanisms76,116. 

2.1.4 Linezolid Resistance 

 Rarely (<1% of clinical isolates), S. aureus infections develop resistance to 

linezolid (MIC >4mg/L). One mechanism reported involves changing the large ribosomal 

subunit through a single nucleotide chromosomal mutation in the peptidyl transferase 

site14. S. aureus has around five ribosomal RNA encoding genes and three ribosomal 

proteins L3, L4 and L22, encoded by rplC, rplD and rplV genes, respectively, have been 

linked to linezolid resistance52,87,121-123. Researchers theorize that linezolid resistance 

arises from multiple ribosomal subunit mutations, which accumulates based on selective 

pressure from linezolid exposure, likely in a gene-dosage effect (i.e., as mutations accrue 

higher linezolid doses are required for successful treatment)14,52,87,124,125. Another way to 

acquire linezolid resistance is through a plasmid containing genes that confer cross-

resistance to other protein synthesis inhibitors87 . For example, the cfr gene that encodes a 

methyltransferase that modifies an adenosine in the large ribosomal subunit has been 

linked to resistance of phenicol, lincosamide, oxazolidinone, pleuromutilin and 

streptogramin A, commonly referred to as the PhLOPSA phenotype87,126,127. Also, 

linezolid resistance has been linked to acquiring the lmrS gene that encodes a major 

facilitator superfamily protein, an MDR efflux pump49,128. S. aureus uses a variety of 

mechanisms to develop linezolid resistance. 
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2.2 Review of Computationally Identified Antibiotic Resistance Mechanisms 

 While experimental examination has successfully identified several resistance 

mechanisms, substantial expertise and resources are needed to accomplish this, which 

slows clinical progress in treating resistant infections. Use of computational methods, 

such as gene expression and pathway enrichment analyses, can provide insight into 

biological processes, thus focusing experimental efforts and speeding clinical progress. 

Here, I added to the genome sequencing and mutational analysis just reviewed to discuss 

resistance mechanisms identified through gene expression and pathway enrichment 

analyses as they pertain to this work. 

2.2.1 Documented Gene Expression Analysis Findings 

 Most gene expression studies, including those used in this work and described 

earlier, use gene expression analysis to report changes in individual differentially 

expressed genes identified through statistical comparison (e.g., fold change threshold 

and/or T-test p-value). Several experimentally established resistance genes have been 

identified via gene expression analysis, including most of them finding confirmed 

experimentally that I discussed in the prior section76,101,129. For example, gene expression 

analysis in studies examining how graSR mutations affect antibiotic resistance in 

S. aureus have confirmed the association of mprF and the dltABCD operon with 

daptomycin and colistin resistance as determined by fold change ratio difference76,129. 

Another study using gene expression analysis found increased expression of VISA 

associated cell wall stress genes, vraSR, vraFG, vraDE, fmtA, murZ, and tcaA, were 

found in a high level vancomycin and low level daptomycin resistant strain as determined 

by fold change ratio difference101, showing that computational gene expression analysis 
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can identify resistance mechanisms. Gene expression analysis can detect changes in 

operon expression if several genes in the same operon have similar changes, such as the 

vra operon in VISA (vraSR, vraFG, and vraDE). However, operon expression changes 

do not directly correlate with pathway activity changes as an operon can belong to 

multiple pathways130,131. For this, pathway enrichment analysis is needed. 

2.2.2 Documented Pathway Enrichment Analysis Findings 

 For microbiological studies, Fisher’s Exact Test or one of its variants is used to 

calculate the significance of enrichment between the generated gene list and individual 

pathways from a pathway knowledgebase. This analysis can be done at the time of gene 

expression analysis or can be performed post hoc on publicly accessible mRNA 

expression datasets. Few gene expression studies examining antibiotic resistance collect 

differentially expressed genes identified through statistical comparison to generate a gene 

list for pathway enrichment analysis. One such study performed pathway enrichment 

analysis on differentially expressed genes from gene expression data examining 

vancomycin resistant phenotypes (i.e., sensitive and VISA strains, both untreated) using 

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways identified decreased 

expression of quorum sensing genes, supporting experimental findings that agr, an 

accessory gene regulator for a quorum sensing system plays a role in vancomycin 

resistance, and implicating the entire arg pathway in the VISA phenotype. This pathway 

enrichment analysis with KEGG also implicated some new pathways associated with 

vancomycin or linezolid susceptibility (i.e., antibiotic treated versus untreated VISA 

strains), like increased glycine, serine, and threonine metabolism, and decreased quorum 

sensing56,132. KEGG has been further used in pathway enrichment analysis to identify 
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TCA cycle’s role in vancomycin resistance, a finding which is leading to the 

development of new therapeutic co-targets59. In other antibiotics, pathway enrichment 

analysis of oxacillin resistance gene expression datasets using KEGG have found up-

regulation of glycolysis, arginine biosynthesis, and TCA cycle and downregulation of 

pentose phosphate, amino acid and nitrogen metabolism pathways133. Pathway 

enrichment using FET also reported increases in -lactam resistance pathway activity 

including over-expressed antimicrobial resistance proteins, VraF and VraG, in methicillin 

treated S. aureus biofilms and altered glucose metabolism regulation when MRSA was 

treated with water extract from Galla chinensis, a nontoxic Chinese herbal medicine 

thought to have antibacterial properties134,135. Unfortunately, there are no pathway 

enrichment analysis studies examining linezolid resistance in S. aureus, but pathway 

enrichment analysis using FET in other bacterial species, like Enterococcus faecalis, with 

both KEGG and Gene Ontology, another pathway knowledgebase, have identified 

changes in peptidoglycan biosynthesis, valine, leucine, and isoleucine degradation, and 

metabolic processes136. However, these pathway enrichment analyses using Fisher’s 

Exact Test are limited because they compare gene list membership based on differential 

expression with a statistical cut-off to individual pathways, therefore not considering the 

entire genome from a pathway perspective.  

 The number of studies that use GSEA for pathway enrichment analysis in 

microbiology is minute, with only one study that examined macrolide resistance in 

Streptococcus pneumoniae that used GSEA to identify genes of interest between gene 

expression datasets then used FET to detect pathway enrichment in identified genes137. 

This Streptococcus pneumoniae study stated that a substantial percentage of GSEA-
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identified genes using this approach had genome annotation issues (i.e., hypothetical 

proteins), which limited the ability of their approach to detect pathway activity changes 

associated with resistance137. My work here used GSEA to generate pathway signatures, 

an improvement in pathway enrichment analysis compared to prior studies that have been 

performed 1) on S. aureus using FET, and 2) examining antibiotic resistance using GSEA 

in any pathogen. 

2.3 Review of Gene Set Enrichment Analysis 

My study utilized Gene Set Enrichment Analysis (GSEA)67,138 , a method 

originally developed by Subramanian, et al., and a software provided by the Broad 

Institute. GSEA has been used extensively to examine alterations in human pathways, 

single nucleotide polymorphisms, and methylation patterns in cancer67,139 and diabetes138. 

However, only a few microbial projects have used GSEA, primarily being applied to 

examine connections between viruses and cancer growth66,140,141. In this section I 

discussed in detail how GSEA works and its benefits and challenges compared to other 

methods used to select differentially expressed genes and compare them to known 

pathways. 

2.3.1 Method and Software Implementation 

The reader familiar with the GSEA software67,138 may skip directly to section 2.3.2. 

The overall objective of GSEA is to assess whether members of a gene set appear 

enriched at one end of the reference signature. GSEA software begins by creating a 

reference signature, which I defined as a list of items (probes, gene symbols, locus tags, 

or pathways) ranked in order of differential expression or activity from high to low. 

Using a phenotype label file, GSEA identifies which samples in expression dataset 
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correspond to which experimental group. It uses that information to calculate a user 

defined statistic, such as Welch T-test, for between two conditions (i.e., untreated and 

treated) for each item. This statistical score represents how strong of a connection an item 

has to a phenotype. Items are then ranked in order of those statistical values from high to 

low, forming the reference signature. 

GSEA then goes item by item through the reference signature, comparing each 

item to the query gene set, which is an unranked list of items (genes or pathways 

corresponding to the type of item in the reference signature) with knowledge-based 

biological relevance (i.e., pathway or tail of a reference signature from another study). 

GSEA calculates a running-sum statistic, called the enrichment score, which represents 

the extent the query gene set is overrepresented at the top or bottom (i.e., most extreme 

T-scores) of the reference signature. If an item in the reference signature matches an item 

in the query gene set (i.e., hit), the enrichment score changes based on its ranking statistic 

value. The Phit equation is: Phit = ΣgjϵS j<i ǀrjǀ
p/NR, where NR = ΣgjϵS j<i ǀrjǀ

p, gj is the item in 

the reference signature under consideration, S represents the query gene set, j is the 

position of the item being evaluated, i symbolizes the most recent position evaluated in 

the reference signature, rj is the item’s (gj) ranking score (i.e., T-score), and p is 1. To 

consider the weight of each item based on its ranking score, p is set to 1. If p is set to 0, 

as is done in the Kolmogorov-Smirnov statistic, no consideration is given to the ranking 

score of each item. NR becomes a constant for each query gene set, calculated as the sum 

of the absolute value of ranking scores for all hits. If an item in the reference signature 

does not match any item in the query gene set (i.e., miss), the enrichment score changes 

by a constant based on reference signature and query gene set defined as Pmiss = Σgj¢S j<i 1 / 
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(N-NH), where N is the number of items in the reference signature and NH is the number 

of items in the query gene set. 

The maximum enrichment score, abbreviated ES(S), is the maximum deviation 

from Phit-Pmiss to zero with the fewest number of reference signature items. Any hits 

located in that range are defined as leading edge items. Leading edge items are the core 

of the query gene set that contributes most to the enrichment signal. This is illustrated by 

the enrichment plot that GSEA produces (Figure 2). 

Figure 2. Example Enrichment Plot 

 

Source: Adopted From Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, 

Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005). Gene 

set enrichment analysis: a knowledge-based approach for interpreting genome-wide 

expression profiles. Proceedings of the National Academy of Sciences, 102(43), 

pp.15545-1555067. 

 

Significance of the ES(S) is estimated through 1,000 iterations with permutations of 

items from the reference signature. A new ES(S) is calculated per iteration, designated 

ES(S,π) where π represents a number 1 to 1,000. The ES(S,π) from all iterations are 
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plotted to create a histogram (Figure 3), which represents a random distribution of scores. 

As a result, the nominal p-value is the true ES(S) compared to a random distribution of 

scores as calculated using nominal p-value = number of ES(S,π) > ES(S) / number of 

ES(S,π) with the same sign as ES(S), where ES(S) is the true enrichment score and 

ES(S,π) is maximum enrichment score for any one of the 1000 iterations. The positive or 

negative portion of ES(S,π) that matches ES(S)’s sign (+/-) is used. 

Figure 3. Example Histogram 

 

Source: Adopted From Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, 

Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005). Gene 

set enrichment analysis: a knowledge-based approach for interpreting genome-wide 

expression profiles. Proceedings of the National Academy of Sciences, 102(43), 

pp.15545-1555067. 

 

To compare across multiple reference signatures and/or query gene sets, 

maximum enrichment scores are normalized. Particularly, using normalized enrichment 

scores (NES) helps remove the effect of different gene set sizes. The NES(S) formula is 

NES(S) = ES(S) / mean[ES(S,π) with the same sign as ES(S)], where ES(S) is the true 

enrichment score and ES(S,π) is maximum enrichment score for any one of the 1000 
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iterations. Similar to nominal p-value, the portion of ES(S,π) that is appropriate (+/-) to 

that particular ES(S) is used. 

2.3.2 Advantages and Disadvantages of GSEA Compared to Other Methods 

Compared to GSEA, Fisher’s Exact Test (FET)142,143 is predominantly used in 

microbiology for analyzing mRNA expression data because it is easy to perform and 

interpret with no special software or statistical understanding required69. FET determines 

if there are non-random associations between groups. Groups are often created by 

quantifying the interest of each gene, usually with a T-test or ANOVA p-value, then 

counting candidate genes that meet or fall short of an appropriate cut-off 

(i.e., p<0.05)69,144,145. FET uses a 2x2 contingency table to compare the proportion of 

differentially expressed genes from a dataset found in and excluded from a pathway and 

proportion of pathway genes compared to the total number of genes in the database via 

and calculates a p-value using hypergeometric (i.e., sampling without replacement) 

distribution. Results from FET can have substantial variation based on how differentially 

expressed genes are selected and its use on mRNA expression datasets has been criticized 

for 1) ignoring biological knowledge regarding how genes work together144, and 2) being 

unable to detect significance in gene sets containing several members undergoing subtle 

expression changes67. 

Subramanian designed GSEA to overcome some of FET’s shortcomings. By 

using query sets with an established biological relevance, GSEA results keep within a 

biological context67. GSEA is versatile in that query sets can be identified from various 

sources including biological pathways, chromosomal locations, computational analysis of 

genomic information, or signatures from other gene expression studies67,146. Further, 
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Subramanian and colleagues used human cancer datasets to show that GSEA is sensitive 

in identifying gene sets with several members undergoing subtle expression changes that 

are statistically insignificant individually via single gene methods (i.e., T-test) yet may be 

significant collectively67, since GSEA considers all genes in a dataset rather than those 

above a particular cut-off point. However, GSEA has its limitations69,147. It has been 

criticized for detecting gene sets without biological relevance (i.e., false positive)147,148 

and its inability to distinguish gene sets with biological significance (i.e., false 

negative)149. While other algorithms are available to improve GSEA’s error rates, such as 

SAM-GS147, Sub-GSE149, and more recently AbsFilterGSEA148, these programs are less 

readily available and user-friendly, so GSEA remains a popular software for analyzing 

mRNA expression data67,138-141. 

Comparison of GSEA and FET has produced varied results. Irizarry, et al., used 

the same human cancer datasets Subramanian and colleagues used to introduce 

GSEA67,138 to compare GSEA to the 2-test144. The FET and 2-test both compare 

independent, not correlated groups to determine independence between two variables, 

though the 2-test loses accuracy compared to FET because it assumes large sample sizes 

so it uses approximations150. Irizarry and colleagues showed that both GSEA and 2-test 

identified the same gene sets as interesting, but GSEA had several false positives that 

favor small gene sets144. They recommended the use of the 2-test over GSEA for this 

reason, in addition to the 2-test being more user-friendly144. However, Abatangelo and 

associates used cancer expression datasets from human cell cultures and patient samples 

to find that GSEA is better than FET at detecting gene sets with subtle differences in the 

distributions of gene expression levels in a gene set between two phenotypic 
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conditions151. They praised GSEA for its ability to detect true distribution changes 

despite phenotypic differences being caused by a wide range of altered pathways, and did 

not observe GSEA’s limitations151. Meanwhile, Tintle and his colleagues took an interest 

in GSEA for bacterial use, comparing it to FET on both simulation and real expression 

data from Salmonella typhimurium and Escherichia coli. They found FET lacked 

robustness and power compared to GSEA69. Tintle, et al., also saw that GSEA was overly 

sensitive to gene sets with few differentially expressed genes (i.e., false positives), but 

they were unable to predict if this was an inherent flaw with GSEA software147 or if 

adjusting the weight of GSEA’s weighted K-S-like statistic for bacterial datasets would 

overcome this sensitivity issue69. Consideration for potential detection errors will be 

given when interpreting results from my S. aureus work here. 

2.4 Overview of Pathway Databases 

There are several publicly accessible databases that contain pathway information 

that can be applied to genes of interest. Subramanian and colleagues introduced the 

Molecular Signature Database (MSigDB)152-154 when they introduced the GSEA 

software67. MSigDB now houses eight gene set collections with over 10,000 gene sets for 

various human genome characteristics and cellular processes, particularly cancer, 

metabolic, and immunological gene sets154. Reactome is a free, manually curated, peer 

reviewed pathway database, which contains 10,719 human genes which accounts for 53% 

of the 20,338 predicted human protein-coding genes155,156. Unfortunately, MSigDB and 

Reactome do not have gene sets for S. aureus. 

Gene Ontology (GO) is a popular source of cellular information for 

bacteria68,157,158 GO is a comprehensive knowledge base of gene functions and products 
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that was designed to unify the representation of genes and proteins across all species159. 

GO currently includes experimental findings from almost 140,000 published papers and it 

is often used as a part of the genome annotation process157-159. GO classifies gene 

functions along three aspects: molecular function (i.e., molecular activities of gene 

products), cellular component (i.e., where gene products are active), and biological 

process (i.e., pathways and larger processes made up of the activities of multiple gene 

products). GO biological processes consist of multiple molecular activities and must have 

more than one distinct step157,158. GO provides easy, user-friendly enrichment analysis for 

gene lists of interest through collaboration with the Protein Analysis Through 

Evolutionary Relationships (PANTHER) Enrichment Analysis Tool160. 

For bacterial pathways, the Kyoto Encyclopedia of Genes and Genomes (KEGG) 

database is arguably regarded as one of the leading pathway databases in the 

field68,159,161,162. KEGG is an integrated database resource containing manually curated 

fifteen databases broadly categorized into three information categories: systems, 

chemical, and genomic163. The systems information category contains KEGG pathway 

and KEGG module databases. The KEGG pathway database consists of manually drawn 

pathway maps that represent current knowledge of molecular interaction, reaction, and 

relation networks for metabolism, genetic and environmental information processing, 

cellular processes, organismal systems, human diseases, and drug development. KEGG 

modules are an assortment of manually defined functional units used for biological 

interpretation and annotation of sequenced genomes. There are four types of KEGG 

modules: pathway modules, signature modules, structural complexes, and functional 

sets163. Pathway modules embody tighter functional units than KEGG pathways and are 
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therefore closer to actual biological pathways163,164. Signature modules include markers 

of phenotypes, which in the case of S. aureus are exclusively drug resistance gene sets. 

Structural complex modules contain genes that form molecular machineries. Any other 

type of essential gene set not previously categorized falls into the functional sets module 

category. KEGG does not have an easy, user-friendly way to perform enrichment analysis 

on a group of genes. External programs, such as Database for Annotation, Visualization 

and Integrated Discovery (DAVID), have been developed to provide an interface for 

KEGG pathway-based enrichment analysis165,166. 

A lesser known source for bacterial pathway information includes the SEED and 

its associate database, the Pathosystems Resource Integration Center (PATRIC)167-169. In 

2005, the Fellowship for Interpretation of Genomes began the Project to Annotate 1000 

Genomes, resulting in the SEED. Their initial data version in 2005 included 180,177 

proteins with 2,133 different functional roles across 383 different organisms and the 

project has only expanded167. The SEED differs from other resources as it is based on 

expert curated groups of functionally related protein families (i.e., subsystems) that span 

several diverse genomes whose annotations are computationally extended to new 

subsystem members rather than gene-by-gene annotation approaches employed by other 

resources167. This produces more accurate and faster annotations since experts in each 

subsystem oversee initial annotations that are applied across diverse genomes167. The 

SEED constantly assimilates different types of genomic data from a variety of sources, 

including KEGG167,169. In 2011, the SEED developers were commissioned by the 

National Institute of Allergy and Infectious Diseases to apply the subsystem approach to 

annotation to priority disease-causing microbial pathogens, such as S. aureus168,170. 
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PATRIC, an organism-focused resource to provide scientists with genomic information 

for priority pathogens, was the result168,170. Like KEGG, PATRIC does not yet have a 

user-friendly interface for enrichment analysis nor do DAVID or many other external 

programs connect to it. 

To explore these pathway database variations in bacteria, Tintle and his 

colleagues evaluated gene set consistency across pathway databases, including GO, 

KEGG, and the SEED, in 17 diverse bacteria including S. aureus Mu50 (MRSA/VISA) 

strain68,171. While KEGG had the least number of gene sets, it had the largest average 

gene set size68. Using their consistency metrics, differential expression, absolute 

expression, and correlation between expression values, they found GO was more 

consistent than KEGG gene sets, regardless of gene set size or organism differences, but 

the SEED was able to outperform both GO and KEGG in all consistency metrics68. I 

considered pathway database variations in my project, particularly since all 

knowledgebases have been extensively updated since Tintle’s study several years ago 

(2012) including addition of antibiotic resistant pathways in KEGG’s last update162. 

2.5 Conclusion 

Gene mutation studies have revealed several mechanisms associated with 

individual and multiple antibiotic resistances, such as involvement of vraSR and graSR in 

daptomycin, vancomycin and oxacillin resistances. Examination of differential gene 

expression for individual genes can also find changes associated with resistances, such as 

increased expression of vra operon genes (vraSR, vraFG, and vraDE) associated with 

VISA. Pathway enrichment analysis using FET complements differential gene expression 

for individual genes by detecting pathway activity changes associated with antibiotic 
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resistances such as decreased TCA cycle associated with vancomycin intermediate 

resistance. FET is limited by its requirement to select a subset of genes for enrichment 

analysis. GSEA overcomes the limitations of this gene selection requirement by 

considering all genes rather than a subset. My innovative project was the first to apply 

GSEA to examine S. aureus. However, use of GSEA to examine antibiotic resistance in 

Streptococcus pneumoniae by comparing gene expression changes directly was limited 

by incomplete and inaccurate genome annotation66. To overcome this limitation, I used 

GSEA to define pathway signatures derived from comparing mRNA expression datasets 

containing S. aureus samples of antibiotic resistant and sensitive strains with or without 

antibiotic treatment to KEGG pathways. The overall goal of this analysis was to elucidate 

and verify experimentally pathway activity changes associated with antibiotic sensitivity. 
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CHAPTER 3 

ANTIBIOTIC RESISTANCE IN STAPHYLOCOCCUS AUREUS 

3.1 Background 

 Staphylococcus aureus (S. aureus) causes a wide variety of life-threatening 

infections21,59. Despite the discovery of a wide array of antibiotics3,13,14, S. aureus 

infections are a public health threat due to increasing antibiotic resistance (i.e., clinical 

treatment failure)11. The most serious is methicillin resistant Staphylococcus aureus 

(MRSA), which is resistant to the -lactam class of antibiotics, like oxacillin and 

flucloxacillin11,172, that inhibit cell wall synthesis by directly inactivating transpeptidase 

activity21,172. MRSA infections are commonly treated with vancomycin82,90,173, a different 

kind of cell wall synthesis inhibitor that indirectly disables transpeptidase activity by 

binding to its target, D-alanyl-D-alanine carboxyl terminus of cell wall precursor 

molecules45,59,174. Yet, vancomycin treatment is losing favor due to increasing morbidity 

and mortality rates from resistant infections175 and worldwide resistance prevalence176. In 

cases of vancomycin-resistant infections, the protein synthesis inhibitor linezolid is a 

preferred therapy14,177,178. However, clinicians have reported multifocal outbreaks of 

linezolid resistant S. aureus52,87,179 with lethal consequences174,180,181. For linezolid 

resistant S. aureus infections, the cell-membrane-targeting lipopeptide daptomycin is a 

preferred therapy and while rare, daptomycin resistant infections are reported86,116. To 

complicate treatment options further, some S. aureus infections are caused by multi-drug 

resistant (MDR) strains182. Limited treatment options coupled with increasing mortality 

and continued spread of antibiotic resistant S. aureus infections have been major clinical 

challenges for infectious disease management11,183. 
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Antibiotic resistant S. aureus infections are particularly troublesome clinically, in 

part because of an incomplete understanding of individual and shared resistance 

mechanisms. A good example of this is vancomycin resistance. Vancomycin resistant 

Staphylococcus aureus (VRSA) arises from acquisition of the vanA operon via horizontal 

transfer that replaces D-alanyl-D-alanine with D-alanyl-D-lactate carboxyl termini56,78-81 

resulting in sudden high-level (minimum inhibitory concentration >16mg/L) resistance. 

Vancomycin intermediate Staphylococcus aureus (VISA), which lacks the vanA operon, 

are associated with low-level (minimum inhibitory concentration 2-8mg/L) developing 

resistance52,56,184,185 produced from a variety of gene mutations, particularly in cell wall 

synthesis genes like two-component switches, graSR, vraSR, and walKR, and the over 40 

cell wall “simulon” proteins they directly influence, including mprF, arg, and the 

dltABCD operon55,56,99,100,186, with no mutations being consistent across isolates unlike 

vanA operon found in all VRSA strains55,56. VRSA clinical isolates are also MRSA, 

which occurs through acquiring a mutated transpeptidase (mecA)21,172, and maintain high 

level resistance to both vancomycin and methicillin. Some of these isolates also develop 

linezolid resistance via acquisition of lmrS that encode a multi-drug efflux pump49,128 or 

the cfr ribosomal methyltransferase187.  

While the mechanism of vancomycin resistance through the vanA operon is well 

characterized, mechanisms for VISA are not completely understood since it seems that 

the VISA phenotype can arise through independent and different mutations or 

mechanisms. For example, vancomycin and daptomycin resistances may arise either 

independently from different mechanisms or simultaneously through genes alterations in 

shared resistance producing mechanisms, such as graSR, vraSR, and walKR56,101,129. In 
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either case (daptomycin and vancomycin resistance individually or together) there are no 

specific mutations consistent across isolates115,188,189. Cell wall synthesis genes, 

particularly those regulated by vraSR, are implicated in resistances to oxacillin that lack 

mecA74,75. Despite this overlap in their associated genes, a phenotypic “see-saw” effect 

where methicillin resistance reduces when vancomycin resistance increases in VISA 

strains is sometimes observed clinically56,104,190,191. To better understand this complex 

network of genes potentially contributing to the development of antibiotic resistance, 

researchers are now considering a broader perspective based on pathway activity. There 

is an on-going effort to target individual molecular pathways to overcome antibiotic 

resistance44,59-62, such as restoring vancomycin sensitivity in a VISA strain by inhibiting 

amino sugar and purine biosynthesis59. Having robust and comprehensive computational 

approaches that accurately identifies pathway changes on a global genome-wide scale in 

resistant and sensitive S. aureus, as I use in this work, could better direct such 

experimental efforts by revealing phenotypic association44,192.  

Biological pathway analysis is often used to assign functional membership to 

differentially expressed genes67,160,165,193. First, an appropriate, statistical cut-off (e.g., 

T-test p-value) is used to select the most differentially expressed genes in a dataset 

between two phenotypes of interest165. Next, the group of selected genes (i.e., gene set) is 

subjected to statistical techniques, such as Fisher’s Exact Test (FET), which estimates the 

significance of enrichment (i.e., a degree of overlap between a selected gene set and 

established pathways) through an exact p-value estimation method157,158,160,165,194,195. 

Pathway activity changes are defined by enrichment significance (e.g., pathway 

enrichment with over-expressed gene set represents increased pathway activity). Even 
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though FET is well established and successfully applied, this approach is not suited to 

detect cellular processes where a group of genes in a specific pathway undergo subtle 

expression changes and miss statistical cut-offs by a small margin yet play a biologically 

important role69,144,196. To overcome this limitation, Subramanian, et al, at the Broad 

Institute developed Gene Set Enrichment Analysis (GSEA)67,138, an approach widely 

utilized to examine molecular changes in oncology and other human disease 

mechanisms67,138,197-200, but has not been used to examine antibiotic resistance in 

S. aureus. GSEA uses the differential expression levels of all genes in the dataset for 

gene ranking (i.e., signature generation) to estimate enrichment based on a normalized 

running-sum statistic that represents the extent the query gene set is overrepresented (i.e., 

high overlap) in the overall dataset. By considering all genes rather than just those that 

meet a statistical cut-off, GSEA is more sensitive in identifying overlooked gene 

groups67. Therefore, examining antibiotic resistance using a GSEA-based approach, 

particularly when expanding it to identify pathway activity changes directly from mRNA 

expression datasets for multiple pathways simultaneously, as my approach does here, I 

can get a pathway-centric view of resistance and its association with an observed 

phenotype.  

 Here I utilized GSEA to analyze publicly accessible mRNA expression data by 

defining pathways signatures (i.e., pathway lists ranked by activity changes) to elucidate 

molecular changes associated with antibiotic resistance in S. aureus with the goal of 

identifying potential co-therapy targets that increase antibiotic susceptibility. Resistance 

mechanisms driven by known vraS or graSR mutations are reported, so I first used my 

pathway signature approach to detect pathways associated with known mutation-driven 
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resistance (i.e., comparison of resistant and sensitive S. aureus under the same treatment 

condition)56,71-76 since it is easier to see how differential gene expression in some 

pathways may be correlated to resistance, in addition to known and established mutation 

effects. I extended my analysis to identify known and novel pathways associated with 

antibiotic response (i.e., comparison of S. aureus with and without antibiotic treatment, 

regardless of strain resistance level) and susceptibility (i.e., difference in treatment 

response between resistant and sensitive strains) 77 to identify inducible mechanisms that 

could contribute to resistance. I first used my approach to examine vancomycin 

susceptibility, focusing on vancomycin because of its alarming treatment failure rate 

clinically11,56. I then extended my analysis to compare pathway activity changes 

associated with vraS-driven resistance to vancomycin, oxacillin, and linezolid 

susceptibilities and response in a sensitive strain specifically, to uncover novel activity 

changes associated with developing antibiotic resistance. One such pathway is lysine 

biosynthesis for which I experimentally demonstrated biological relevance via alterations 

in antibiotic sensitivity. I showed here that my approach can identify pathways as 

potential co-therapeutic targets. My results are immediately applicable for development 

of co-therapy options to overcome antibiotic resistance in S. aureus. 

3.2.Results 

3.2.1. Pathway Signature Approach Identified Pathway Activity Changes Associated 

with Antibiotic Resistance Driven by vraS and graSR Mutations 

I began by using a dataset that compared a sensitive mutS strain to the antibiotic 

resistant VC40 strain obtained from serial exposure of the mutS strain to vancomycin 

(experimental details of this and all datasets used in this study are provided in 
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APPENDIX A) to define the VC40vsmutS pathway signature (as described in Section 

3.4.2), representing pathway activity changes resulting from vraS mutation contributing 

to antibiotic resistance. GSEA normalized enrichment score (NES), which measures the 

extent of gene enrichment in an individual pathway normalized to account for variations 

in pathway size67, for pathways in the VC40vsmutS pathway signature ranged from 1.79 

to -2.09. From the VC40vsmutS pathway signature, two pathway panels containing the 

20 most differentially active pathways from the positive and negative tails of 

VC40vsmutS (NES >1.24 and <-1.33 for up- and down-regulated pathways panels, 

respectively) were generated. I found pathways containing the genes associated with to 

vraS-driven resistance previously identified from single gene expression analysis101, such 

as histidine biosynthesis (M00026: NES=1.79, GSEA p-value<0.001) from the up-

regulated panel and amino-acyl tRNA biosynthesis (M00359: NES=-2.08, p-

value<0.001; M00360: NES=-2.03, p-value=0.002) and succinate dehydrogenase 

(M00149: NES=-1.56, p-value=0.010) from the down-regulated panel (Table 4). My 

approach also identified several statistically significant pathways with no prior 

association to resistance, such as up-regulated lysine biosynthesis (M00016: NES=1.63, 

p-value=0.021; M00527: NES=1.69, p-value=0.011). I noticed that variations in pathway 

panel size (pathway panels sizes ranging from 15 to 25 pathways) and the use of 

VC40vsmutS pathway signature to define mutation-driven resistance panels did not alter 

these results (APPENDIX B). 
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Table 4. vraS-driven Resistance Pathway Panels 

Panel Signature Module number 

Up VC40 

vsmutS 

Histidine biosynthesis (M00026)*, Osmoprotectant transport 

system (M00209)*, Biotin biosynthesis BioW pathway 

(M00577)*, Lysine biosynthesis via diaminopimelic acid 

aminotransferase (M00527)*, Lysine biosynthesis via succinyl-

diaminopimelic acid (M00016)*, Leucine biosynthesis (M00432), 

Biotin biosynthesis (M00123), D-Methionine transport system 

(M00238), Cationic antimicrobial peptide resistance VraFG 

transporter (M00730), Dissimilatory nitrate reduction (M00530), 

Putative peptide (M00583), Phosphonate (M00223), Betaine 

biosynthesis (M00555), Peptides/nickel (M00239), Cationic 

antimicrobial peptide (M00732), Arabinogalactan 

oligomer/maltooligosaccharide (M00491), Serine biosynthesis 

(M00020), VraS-VraR cell-wall peptidoglycan synthesis 

(M00480), Inosine monophosphate biosynthesis (M00048), 

Cytochrome D ubiquinol oxidase (M00153) 

Down VC40 

vsmutS 

Amino-acyl tRNA biosynthesis prokaryotes (M00360)*, Amino-

acyl tRNA biosynthesis eukaryotes (M00359)*, TCA cycle 

(M00009)*, ABC-2 type (M00254)*, Uridine monophosphate 

biosynthesis (M00051)*, Iron complex (M00240)*, Energy-

coupling factor (M00582)*, Nickel complex (M00440)*, TCA 

first carbon oxidation (M00010)*, Spermidine/ putrescine 

transport system (M00299)*, Succinate dehydrogenase 

prokaryotes (M00149)*, ArlS-ArlR virulence regulation 

(M00716)*, TCA cycle second carbon oxidation (M00011), 

Acylglycerol degradation (M00098)*, Adenine ribonucleotide 

biosynthesis (M00049), Menaquinone biosynthesis (M00116), 

Molybdate transport system (M00189), DNA polymerase III 

complex, bacteria (M00260), Guanine ribonucleotide biosynthesis 

(M00050), Shikimate pathway (M00022) 

Modules listed in order of normalized enrichment score from most to least change in 

pathway activity. * represents Gene Set Enrichment Analysis derived p-value<0.05. Bold 

font indicates a pathway with genetic mutation association to vraS-driven resistance. 

Pathways that have a * but do not have bold font are pathways with no previous 

association with vraS-driven resistance identified from my pathway signature approach. 

 

Next, I demonstrated the ability of my pathway signature approach to detect 

known antibiotic resistance mechanisms in another, non-overlapping datasets that 

examined resistance changes associated with mutations in graSR. Within this category, 

the first dataset compared sensitive strains HG001 (functioning graSR) and SG511 
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(truncated graS) to resistant HG001 and SG511 obtained from serial exposure to 

daptomycin. The second dataset compared a wildtype HG001 (WT, functioning graS) 

and its mutant strain with a deletion of entire graSR genes (graSR). As is common with 

bacterial experiments, these datasets had a small sample size (<5 

samples/condition)201,202, so I was not surprised to observe complete separation (i.e., no 

overlap) of individual samples, representing two distinct sample populations as detailed 

in APPENDIX C, when performing 1) principal component analysis203-205 on all genes or 

pathways, 10 or 100 randomly selected genes, or 20 randomly selected pathways, and 

2) leave one out cross validation using 1000 randomly selected pathway panels whose 

membership excluded pathways from my vraS-driven resistance panels (r2=1.0). Despite 

this sample size limitation, I was able to define two pathway signatures: 1) 

HG001vsSG511 (GSEA NES ranging from 2.22 to -2.01), which embodies the difference 

in resistance mechanisms between strains with different graSR functions, and 

2) WTvsgraSR (NES ranging from 2.34 to -2.19), which represents pathway activity 

changes associated with graSR-driven resistance mechanisms. When examining the most 

differentially active pathways in the HG001vsSG511 and WTvsgraSR pathway 

signatures, I again found pathways with single gene associations to graSR-driven 

resistance reported. For example, for the most differentially active pathways in the 

HG001vsSG511 pathway signature (Table 5), I detected increased KdpD-KdpE 

potassium transport (NES=1.80, GSEA p-value=0.002) and decreased SaeS-SaeR 

staphylococcal virulence regulation (NES=-1.66, p-value=0.002), C5 isoprenoid 

biosynthesis mevalonate pathway (NES=-1.80, GSEA p-value=0.002), and fatty acid 

biosynthesis initiation (NES=-1.63, GSEA p-value=0.018), pathways which had reported 



54 

 

single gene associations of ≥2-fold change in transcriptional levels129. For the most 

differentially active pathways in the WTvsgraSR pathway signature (Table 6), I found 

decreased GraS-GraR cationic antimicrobial peptide transport activity (NES=-1.45, p-

value=0.007) as expected for a signature comparing strains known for their graSR genetic 

variations76. I also found several significant differentially active pathways with known 

graSR-driven resistance, as identified by a ≥1.8-fold change in transcriptional levels and 

a P-value (Z-test) ≤3.5×10−4, such as cationic antimicrobial peptide resistance dltABCD 

operon (NES=-1.88, p-value<0.001), cationic antimicrobial peptide resistance lysyl-

phosphatidylglycerol (L-PG) synthase MprF (NES=-1.56, p-value=0.002), LytS-LytR 

two-component regulatory system (NES=-1.46, p-value=0.006), and cationic 

antimicrobial peptide resistance VraFG transporter (NES=-1.59, p-value=0.002)76. Taken 

together, these results highlight the ability of my pathway signature approach to detect 

known resistance mechanisms. 
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Table 5. Most Differentially Active Pathways Representing the Difference in 

Resistance Mechanisms between Strains with Different graS Functions  

Panel Signature Module number 

Up HG001 

vsSG511 

Oligopeptide (M00439)*, Dissimilatory nitrate reduction 

(M00530)*, Histidine biosynthesis (M00026)*, Lysine 

biosynthesis via diaminopimelic acid aminotransferase 

(M00527)*, Arbutin-like (M00268)*, Manganese/zinc 

(M00792)*, D-methionine transport (M00018)*, -Lactam 

resistance Bla system (M00627)*, Arginine biosynthesis 

(M00844)*, Lysine biosynthesis succinyl-diaminopimelic acid 

(M00016)*, Glycolysis Embden-Meyerhof pathway (M00001)*, 

D-Methionine transport system (M00238)*, Guanine 

ribonucleotide biosynthesis (M00050)*, Urea cycle (M00029)*, 

Nucleotide sugar biosynthesis prokaryotes (M00362)*, KdpD-

KdpE potassium transport (M00454)*, Glycolysis core module 

involving 3-carbon compounds (M00002)*, Reductive pentose 

phosphate cycle (M00166)*, Betaine biosynthesis (M00555)* 

Down HG001 

vsSG511 

Iron complex (M00240)*, Mannitol-specific (M00274)*, AgrC-

AgrA exoprotein synthesis (M00495)*, Biotin biosynthesis BioW 

pathway (M00577)*, Triacylglycerol biosynthesis (M00089)*, C5 

isoprenoid biosynthesis mevalonate pathway (M00095)*, Pentose 

phosphate pathway archaea (M00580)*, Spermidine/ putrescine 

transport system (M00299)*, Biotin biosynthesis (M00123)*, 

Ribosome bacteria (M00178)*, F-type ATPase prokaryotes and 

chloroplasts (M00157)*, Inosine monophosphate biosynthesis 

(M00048)*, SaeS-SaeR staphylococcal virulence regulation 

(M00468)*, Putative ABC (M00211)*, Fatty acid biosynthesis 

initiation (M00082)*, Nickel complex (M00440)*, Zinc 

(M00242)*, ABC-2 type (M00254)*, Galactitol-specific (M00279) 

Modules listed in order of normalized enrichment score from most to least change in 

pathway activity. * represents Gene Set Enrichment Analysis derived p-value<0.05. Bold 

font indicates a pathway with genetic mutation association to the difference in resistance 

mechanisms between strains with different graS functions. Pathways that have a * but do 

not have bold font are pathways with no previous association with graS-driven resistance 

identified from my pathway signature approach. 
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Table 6. Most Differentially Active Pathways Representing graS-driven Resistance 

Panel Signature Module number 

Up WTvs 

graSR 

Lysine biosynthesis via succinyl-diaminopimelic acid (M00016)*, 

Lysine biosynthesis via diaminopimelic acid aminotransferase 

(M00527)*, Threonine biosynthesis (M00018)*, Riboflavin 

biosynthesis (M00125)*, Leucine biosynthesis (M00432)*, 

Histidine biosynthesis (M00026)*, Coenzyme A biosynthesis 

(M00120)*, Urea cycle (M00029)*, Nickel complex (M00440)*, 

Teichoic acid (M00251)*, Arginine biosynthesis (M00844)*, 

Isoleucine biosynthesis (M00570), PhoR-PhoB phosphate 

starvation response (M00434)*, Arbutin-like (M00268), 

Valine/isoleucine biosynthesis (M00019), Biotin biosynthesis 

BioW pathway (M00577), Trehalose-specific II component 

(M00270), BraS-BraR bacitracin transport (M00734), VraS-VraR 

cell-wall peptidoglycan synthesis (M00480), Phosphate (M00222) 

Down WTvs 

graSR 

Inosine monophosphate biosynthesis (M00048)*, Ribosome 

bacteria (M00178)*, Amino-acyl tRNA biosynthesis prokaryotes 

(M00360)*, Cationic antimicrobial peptide resistance dltABCD 

operon (M00725)*, Amino-acyl tRNA biosynthesis eukaryotes 

(M00359)*, RNA polymerase bacteria (M00183)*, Nucleotide 

sugar biosynthesis prokaryotes (M00362)*, Pyrimidine 

deoxyribonuleotide biosynthesis (M00053)*, Guanine 

ribonucleotide biosynthesis (M00050)*, Cytochrome aa3-600 

menaquinol oxidase (M00416)*, Glutathione biosynthesis 

(M00188)*, Cationic antimicrobial peptide resistance VraFG 

transporter (M00730)*, Adenine ribonucleotide biosynthesis 

(M00049)*, Cationic antimicrobial peptide resistance lysyl-

phosphatidylglycerol (L-PG) synthase MprF (M00726)*, 

Glycolysis core module involving three-carbon compounds 

(M00002)*, Manganese/zinc (M00792)*, LytS-LytR two-

component regulatory system (M00492)*, Fatty acid biosynthesis 

initiation (M00082), GraS-GraR cationic antimicrobial peptide 

transport (M00733)*, TCA cycle (M00009) 

Modules listed in order of normalized enrichment score from most to least change in 

pathway activity. * represents Gene Set Enrichment Analysis derived p-value<0.05. Bold 

font indicates a pathway with genetic mutation association to graS-driven resistance. 

Pathways that have a * but do not have bold font are pathways with no previous 

association with graS-driven resistance identified from my pathway signature approach. 

 

Since graSR and vraSR share control of expression for some genes like 

mprF72,206,207, I examined the similarities and differences in pathway activities between 

my vraS-driven resistance panels and HG001vsSG511 and WTvsgraSR pathway 
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signatures. I found significant similarities between my up-regulated vraS-driven 

resistance panel and positive tails from both HG001vsSG511 and WTvsgraSR pathway 

signatures (Figure 4A). I was unable to find similarities for the down-regulated panel 

since the WTvsgraSR pathway signature was borderline significant, although the down-

regulated panel in HG001vsSG511 is significantly enriched does not represent a true 

enrichment. To see how likely NES calculated for my panels could be achieved 

randomly, I re-ran the analysis with 1000 randomly generated 20-pathway panels and 

find statistical significance for the same three of four analyses (Figure 4B), confirming 

the borderline enrichment observed in the down-regulated panel. These results also 

showed enrichment obtained by my up-regulated panel were non-random. 
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Figure 4. Identification of Pathway Activity Change Similarities and Differences 

Associated with vraS- and graSR-driven Resistance 

 
(A) Gene Set Enrichment Analysis (GSEA) show pathway activity change similarities 

and differences between vraS-driven resistance panels (queries) and the HG001vsSG511 

and WTvsgraSR pathway signatures (references). (B) Box and whiskers plots of 

normalized enrichment score (NES) from 1000 randomly generated pathway panels 

(individual queries) compared to the HG001vsSG511 and WTvsgraSR pathway 

signatures (references) illustrate that the NES achieved by comparing reference pathway 

signatures to vraS-driven resistance panels used as query in (A) are among the best NES 

obtained randomly. (C) Receiver operator characteristic curve calculations quantify the 

ability of individual pathways to separate samples by resistance, revealing vraS-driven 

resistance pathways that contribute most to graSR-driven resistance. Stars indicate 

individual pathways with statistically significance in the VC40vsmutS pathway 

signature. AUROC, area under the receiver operator characteristic; ES, enrichment score.  

 
 I examined individual pathway activity changes across resistance datasets by 

examining which pathways contribute most to GSEA calculating a panel’s maximum 

enrichment (i.e., leading-edge pathways, APPENDIX D) between vraS-driven resistance 

panels and HG001vsSG511 and WTvsgraSR pathway signatures. I found histidine 
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biosynthesis (M00026), which has an established association with vraS-driven 

resistance101 and was significant in the VC40vsmutS signature, was also significant in 

both HG001vsSG511 and WTvsgraSR pathway signatures (Table 7). Other panel 

pathways with observed associations to resistance were either 1) inconsistently 

significant across signatures, such as amino-acyl tRNA biosynthesis (M00359/M00360), 

and serine biosynthesis (M00020), or 2) not included in both leading-edges which occurs 

when a pathway has insufficient enrichment for it to contribute to achieving the 

pathway’s maximum enrichment. For example, succinate dehydrogenase (M00149) was 

included in the HG001vsSG511 leading-edge (NES=-1.18, p-value=0.264), but not in the 

WTvsgraSR leading-edge (NES=-0.78, p-value=0.732). Lysine biosynthesis pathways, 

which were significant in VC40vsmutS, were also significant in both HG001vsSG511 

and WTvsgraSR pathway signatures. 

Table 7. Shared Leading-edge Pathways Associated with vraS- and graSR-driven 

Resistance 

Panel Module number VC40vsmutS HG001vsSG511 WTvsgraS 

NES p-val NES p-val NES p-val 

Up Lysine 

biosynthesis via 

succinyl-

diaminopimelic 

acid (M00016) 

1.63 0.021 1.92 <0.001 2.24 <0.001 

Serine 

biosynthesis 

(M00020) 

1.30 0.064 1.47 0.006 1.05 0.442 

Histidine 

biosynthesis 

(M00026) 

1.79 <0.00

1 

2.16 <0.001 1.79 0.002 

Leucine 

biosynthesis 

(M00432) 

1.45 0.074 1.72 0.004 1.80 <0.001 
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Panel Module number VC40vsmutS HG001vsSG511 WTvsgraS 

NES p-val NES p-val NES p-val 

Up Lysine 

biosynthesis via 

diaminopimelic 

acid 

aminotransferase 

(M00527) 

1.69 0.011 2.14 <0.001 2.17 <0.001 

Dissimilatory 

nitrate reduction 

(M00530) 

1.34 0.136 2.21 <0.001 0.95 0.507 

Betaine 

biosynthesis 

(M00555) 

1.36 0.088 1.76 <0.001 0.97 0.587 

Down TCA cycle second 

carbon oxidation 

(M00011) 

-1.49 0.052 -1.15 0.271 -1.43 0.068 

 Adenine 

ribonucleotide 

biosynthesis 

(M00049) 

-1.49 0.053 -1.17 0.272 -1.59 0.005 

 ABC-2 type 

(M00254) 

-1.79 0.004 -1.52 0.019 -1.04 0.401 

 Spermidine/ 

putrescine 

transport system 

(M00299) 

-1.56 0.035 -1.76 0.004 -0.98 0.531 

 Amino-acyl tRNA 

biosynthesis 

eukaryotes 

(M00359) 

-2.08 <0.00

1 

-1.29 0.104 -1.83 0.002 

 Amino-acyl tRNA 

biosynthesis 

prokaryotes 

(M00360) 

-2.03 0.002 -1.26 0.118 -1.93 0.002 

Leading-edge pathways identified through Gene Set Enrichment Analysis (GSEA) on 

vraS-driven resistance panels (query) and HG001vsSG511 and WTvsgraSR signatures 

(references). NES, normalized enrichment score, p-val, GSEA p-value. Bold font 

indicates a pathway with known association to vraS- and graSR-driven antibiotic 

resistance. 

 

Another way to examine individual pathway activity changes across vraS- and 

graSR-driven antibiotic resistance datasets is to calculate area under the receiver operator 
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characteristic (AUROC) curve197,208. I did this for each of the 20 pathways in vraS-driven 

resistance panels individually from NES generated from individual samples that made up 

HG001vsSG511 and WTvsgraSR to examine which pathways contribute most to 

resistance predictions (Figure 4C). I found known resistance pathways, such as histidine 

and serine biosynthesis (M00026 and M00020, respectively) from the up-regulated panel 

and amino-acyl tRNA biosynthesis (M00359/M00360) from the down-regulated panel, 

were among those best (i.e., most consistent across datasets with the appropriate activity 

level, 1.00 and <0.01 for up- and down-regulated, respectively) able to separate samples 

by resistance levels. Lysine biosynthesis pathways (M00016 and M00527) were also 

among the best pathways with other known resistance pathways, indicating their potential 

involvement in resistance. 

3.2.2. Pathway Signature Approach Detects Pathway Activity Changes Associated with 

Vancomycin Susceptibility 

 I extended analysis with my pathway signature approach to another dataset 

dealing with vancomycin susceptibility by repeating the analysis previously described for 

the vraS- and graSR-driven resistance signatures. To do this, I used a dataset that 

compared vancomycin treated and untreated samples of resistant strains (T8 and C1) and 

a sensitive strain (PA). Unfortunately, unlike strains used for the vraS- and graSR-driven 

resistance signatures, there was no additional information about the characteristics of T8, 

C1, and PA strains available. To generate vancomycin susceptibility pathway panels, I 

used data from T8 and PA strains since T8 had a higher resistance level compared to C1, 

to define the T8vsPA pathway signature, and used this signature to generate panels as 

previously described (GSEA NES ranging from 1.32 to 1.77 and -1.51 to -2.29 for up- 
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and down-regulated pathways panels, respectively, Table 8). My vancomycin 

susceptibility panels included several significantly enriched pathways with documented 

gene mutation or pathway activity change associations with the vancomycin resistance 

phenotype. For example, I saw significant up-regulation of the VraSR two component 

system (M00480, NES=1.44, p-value=0.017), which is generally associated with 

resistance56, and borderline significance of the pentose phosphate pathways (M00004: 

NES=1.42, GSEA p-value=0.073; M00006: NES=1.38, p-value=0.035)59,209. I also 

observed significant down-regulation of energy production pathways210-213, such TCA 

cycle (M00009: NES=-1.94, p-value<0.001; M00011:, NES=-1.99, p-value<0.001) and 

F-type ATPase (M00157, NES=-1.66, p-value=0.006), and translation processes214,215, 

like ribosomes (M0178, NES=-2.02, p-value<0.001) and amino-acyl tRNA biosynthesis 

(M00359: NES=-2.28, p-value<0.001; M00360: NES=-2.29, p-value<0.001). Further, I 

detected statistically significant pathways without current associations to the vancomycin 

resistance phenotype, such as increases in amino acid biosynthesis and transport, 

specifically threonine and isoleucine biosynthesis and D-methionine transport (M00018: 

NES=1.54, p-value=0.036; M00570: NES=1.66, p-value=0.008; M00238: NES=1.49, 

p-value=0.046). While lysine biosynthesis pathways were included in the up-regulated 

vancomycin susceptibility panel, they did not reach statistical significance (M00016: 

NES=1.46, p-value=0.063; M00527: NES=1.43, p-value=0.074). 
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Table 8. Vancomycin Susceptibility Pathway Panels 

Panel Signature Module number 

Up T8vsPA Uridine monophosphate biosynthesis (M00051)*, Osmoprotectant 

transport system (M00209)*, Pantothenate biosynthesis 

(M00119)*, Isoleucine biosynthesis (M00570)*, Threonine 

biosynthesis (M00018)*, D-Methionine transport system 

(M00238)*, Oligopeptide (M00439)*, Formaldehyde assimilation 

ribulose monophosphate (M00345)*, Lysine biosynthesis via 

succinyl-diaminopimelic acid (M00016), Energy-coupling factor 

(M00582), VraS-VraR cell-wall peptidoglycan synthesis 

(M00480)*, Lysine biosynthesis via diaminopimelic acid 

aminotransferase (M00527), Pentose phosphate cycle (M00004), 

Pentose phosphate pathway archaea (M00580), Pentose phosphate 

pathway, oxidative phase (M00006)*, Betaine biosynthesis 

(M00555)*, Glyoxylate cycle (M00012)*, Riboflavin biosynthesis 

(M00125), Putative ABC (M00211), Cationic antimicrobial 

peptide resistance VraFG transporter (M00730) 

Down T8vsPA Amino-acyl tRNA biosynthesis prokaryotes (M00360)*, Amino-

acyl tRNA biosynthesis eukaryotes (M00359)*, Dissimilatory 

nitrate reduction (M00530)*, Ribosome bacteria (M00178)*, TCA 

cycle second carbon oxidation (M00011)*, TCA cycle 

(M00009)*, Iron complex (M00240)*, Nickel complex 

(M00440)*, Siroheme biosynthesis (M00846)*, Cystine 

(M00234)*, Fructose-specific (M00273)*, F-type ATPase 

prokaryotes and chloroplasts (M00157)*, Putative peptide 

(M00583)*, Cytochrome aa3-600 menaquinol oxidase (M00416)*, 

Spermidine/ putrescine transport system (M00299)*, Succinate 

dehydrogenase prokaryotes (M00149)*, NreB-NreC dissimilatory 

nitrate/nitrite reduction (M00483)*, Glucose- specific (M00809)*, 

Cytochrome C oxidase (M00154)*, Urea cycle (M00029) 

Modules listed in order of normalized enrichment score from most to least change in 

pathway activity. * represents Gene Set Enrichment Analysis derived p-value<0.05. Bold 

font indicates a pathway with known association to vancomycin intermediate resistance. 

Pathways that have a * but do not have bold font are novel pathways associated with 

vancomycin intermediate resistance identified from my pathway signature approach. 

 

Next, I examined the pathway activity changes captured by my vancomycin 

susceptibility panels in non-overlapping data. To do this, I defined the C1vsPA pathway 

signature (NES ranging from 1.91 to -2.21), which was then used as reference for GSEA 

against the vancomycin susceptibility panels. I found significant similarities between 

vancomycin susceptibility panels and the C1vsPA pathway signature (Figure 5A) that are 
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not randomly generated (Figure 5B). To see if my observed enrichment holds, I generated 

vancomycin susceptibility panels from C1vaPA, as done for T8vsPA,and used them for 

GSEA against the T8vsPA signature as reference, and did not find a substantial change 

(NES=3.30, GSEA p-value<0.001, and NES=-3.31, p-value<0.001; for up- and down-

regulated panels, respectively), supporting the conclusion that both vancomycin 

susceptibility panels obtained with GSEA are truly enriched.  
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Figure 5. Identification of Pathway Activity Change Similarities and Differences 

Associated with Vancomycin Susceptibility 

 
(A) Gene Set Enrichment Analysis (GSEA) show pathway activity change similarities 

between vancomycin (vanco) susceptibility (susc) panels (queries) and the C1vsPA 

pathway signature (reference). (B) Box and whiskers plots of normalized enrichment 

scores (NES) from 1000 randomly generated pathway panels (individual queries) 

compared to the C1vsPA pathway signature (reference) illustrate that the NES achieved 

by comparing reference pathway signatures to vancomycin susceptibility panels used as 

query in (A) are among the best NES obtained randomly. (C) Receiver operator 

characteristic curve calculations quantify the ability of individual pathways to separate 

samples by susceptibility, revealing pathways that contribute most to vancomycin 

susceptibility. Stars indicate individual pathways with statistically significance in the 

T8vsPA pathway signature. AUROC, area under the receiver operator characteristic; ES, 

enrichment score.  
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I then examined identified leading-edge pathways (APPENDIX D) and found 

several significantly enriched pathways shared across leading-edges with established 

genetic or pathway associations to the vancomycin resistance phenotype (Table 9). These 

pathways included up-regulated VraSR two component system and down-regulated TCA 

cycle, ribosomes, and amino-acyl tRNA biosynthesis. Further, I found significantly 

enriched pathways with no current observed association to vancomycin resistance that are 

shared between T8vsPA and C1vsPA (Table 9). These pathways included but are not 

limited to up-regulated threonine biosynthesis and D-methionine transport and down-

regulated iron and nickel complex and nitrate reduction pathways. I also noted that even 

though lysine biosynthesis pathways (M00016 and M00527) were not statistically 

significant in the T8vsPA signature, these pathways achieved statistical significance in 

the C1vsPA signature (M00016: NES=1.85; M00527: NES=1.80, both p-value=0.002). 

Further, isoleucine biosynthesis (M00730), which was significant in the 

T8vsPAsignature, did not achieve statistical significance (NES=1.13, p-value=0.307). 
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Table 9. Significantly Enriched Leading-edge Pathways Associated with 

Vancomycin Susceptibility 

Panel Module number T8vsPA C1vsPA 

NES p-val NES p-val 

Up Threonine biosynthesis 

(M00018) 

1.54 0.036 1.87 0.002 

Osmoprotectant transport 

system (M00209) 

1.72 0.016 1.59 0.026 

D-Methionine transport system 

(M00238) 

1.49 0.046 1.81 0.007 

Oligopeptide (M00439) 1.47 0.049 1.91 <0.001 

VraS-VraR cell-wall 

peptidoglycan synthesis 

(M00480) 

1.44 0.017 1.42 0.028 

Down TCA cycle second carbon 

oxidation (M00011) 

-1.99 <0.001 -1.57 0.024 

 Cytochrome C oxidase 

(M00154) 

-1.51 0.015 -1.43 0.039 

 Ribosome bacteria (M00178) -2.02 <0.001 -1.86 <0.001 

 Iron complex (M00240) -1.79 <0.001 -2.21 <0.001 

 Fructose-specific (M00273) -1.70 <0.001 -1.63 0.009 

 Spermidine/ putrescine 

transport system (M00299) 

-1.57 0.012 -1.48 0.033 

 Amino-acyl tRNA biosynthesis 

eukaryotes (M00359) 

-2.28 <0.001 -2.17 <0.001 

 Amino-acyl tRNA biosynthesis 

prokaryotes (M00360) 

-2.29 <0.001 -2.14 <0.001 

 Nickel complex (M00440) -1.78 <0.001 -1.94 <0.001 

 NreB-NreC dissimilatory 

nitrate/nitrite reduction 

(M00483) 

-1.52 0.038 -1.47 0.041 

 Dissimilatory nitrate reduction 

(M00530) 

-2.08 <0.001 -2.16 <0.001 

 Glucose- specific (M00809) -1.51 0.013 -1.54 <0.001 

Statistically significant leading-edge pathways identified through Gene Set Enrichment 

Analysis (GSEA) on vancomycin susceptibility panels (query) and C1vsPA signatures 

(reference). NES, normalized enrichment score, p-val, GSEA p-value. Italics font 

indicates a pathway with known association to vancomycin intermediate resistance 

lacking the vanA operon. 

 

To support my leading-edge findings, I calculated AUROC curves for each 

pathway individually and found known up-regulated VraSR two component system 

(M00480) and down-regulated translation processes (aminoacyl-tRNA biosynthesis, 
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M00359 and M00360, and ribosome, M00178) and energy production (TCA pathways, 

M00009 and M00011, and F-type ATPase, M00157) were among the best pathways to 

separate samples based on vancomycin susceptibility (Figure 5C). I also found amino 

acid pathways, threonine biosynthesis (M00018), D-methionine transport (M00238), and 

lysine biosynthesis (M00016 and M00527), separate samples well (AUROC=1.00), while 

isoleucine biosynthesis (M00570) did not (AUROC=0.84). 

Next, I expanded my analysis to examine how individual strains respond to 

vancomycin treatment by comparing lists of significantly enriched pathways per each tail 

(APPENDIX E) from one of four pathway signatures between treated and untreated 

samples from the same strain (e.g., PAfromT8treatvsPAfromT8unt). From this analysis, I 

identified several pathways with known genetic associations to the VISA phenotype, such 

as down-regulated TCA cycle, F-type ATPase, amino-acyl tRNA biosynthesis, and 

uridine biosynthesis (Table 10). I found no pathway shared across all four signatures 

when comparing statistically significant up-regulated pathways. The VraSR two 

component system (M00480) was observed in T8treat only though it is borderline 

significant in C1 (NES=1.36, GSEA p-value=0.067) but not in the PA strains 

(0.98<NES<1.27, p-value>0.144). I also found pathways without prior association to 

vancomycin resistance (Table 10), such as up-regulated threonine biosynthesis 

(M00018), D-methionine transport (M00238), and lysine biosynthesis (M00016 and 

M00527) in T8 and C1 but not in the PA strains. Interestingly, I found borderline 

significance in the other lysine biosynthesis pathway (M00527 T8: NES=1.39, p-

value=0.075; C1: NES=1.63, p-value=0.013; PAfromT8: NES=1.21, p-value=0.245; 
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PAfromC1: NES=1.50, p-value=0.031). For the negative tail lists, only the vancomycin 

resistance (VanA, M00651) pathway was statistically significant in all signatures. 
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Table 10. Shared Significantly Enriched Pathways Associated with Vancomycin Response 

Panel Module T8 C1 PAfromT8 PAfromC1 

NES p-val NES p-val NES p-val NES p-val 

Up Lysine biosynthesis via succinyl-diaminopimelic 

acid (M00016) 

1.52 0.032 1.62 0.014 1.35 0.093 1.42 0.061 

Threonine biosynthesis (M00018) 1.74 0.003 1.82 <0.001 1.41 0.093 1.30 0.138 

Methionine transport system (M00238) 1.78 0.003 1.66 0.006 1.24 0.213 1.27 0.160 

Oligopeptide (M00439) 1.91 <0.001 1.74 <0.001 1.22 0.233 1.11 0.348 

Energy-coupling factor (M00582) 1.72 <0.001 1.75 <0.001 1.11 0.331 1.49 0.051 

Iron complex (M00240) -1.12 0.292 -1.88 <0.001 1.71 0.006 1.81 <0.001 

Down TCA cycle second carbon oxidation (M00011) -2.34 <0.001 -1.77 0.010 -0.66 0.911 0.65 0.915 

 F-type ATPase prokaryotes and chloroplasts 

(M00157) 

-1.61 0.036 -1.71 0.029 1.46 0.041 1.00 0.479 

 Amino-acyl tRNA biosynthesis eukaryotes 

(M00359) 

-2.28 <0.001 -2.49 <0.001 -0.69 0.920 1.05 0.439 

 Amino-acyl tRNA biosynthesis prokaryotes 

(M00360) 

-2.39 <0.001 -2.51 <0.001 0.61 0.957 1.13 0.322 

 NreB-NreC dissimilatory nitrate/nitrite reduction 

two-component regulatory system (M00483) 

-1.53 0.024 -1.68 <0.001 0.90 0.659 -1.04 0.412 

 Nickel complex (M00440) -1.98 <0.001 -2.24 <0.001 1.89 <0.001 1.39 0.079 

 Dissimilatory nitrate reduction (M00530) -2.33 <0.001 -2.44 <0.001 -0.80 0.734 -0.93 0.558 

 Uridine monophosphate biosynthesis (M00051) -1.39 0.134 -1.45 0.098 -1.93 <0.001 -2.18 0.003 

 Putative ABC transport system (M00211) -0.73 0.758 -1.26 0.208 -1.87 <0.001 -1.76 0.006 

 ABC-2 type transport system (M00254) -1.22 0.175 -1.34 0.120 -1.71 0.006 -1.74 0.023 

Modules achieving a Gene Set Enrichment Analysis (GSEA) derived p-value<0.05 in across either vancomycin resistant (T8 and C1) 

or sensitive (PAfromT8 and PAfromC1) strains, but not both. Italics font indicates a pathway with known association to vancomycin 

intermediate resistance lacking the vanA operon. NES, normalized enrichment score, p-val, GSEA p-value. 
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3.2.3. Comparison of vraS-driven Resistance Panels to Antibiotic Susceptibility and 

Response Pathway Signatures Identifies Top Pathway Candidates for 

Experimental Examination 

 Next, I extended this comparison to identify similar pathways between vraS-

driven resistance panels and the most differentially active pathways associated with 

oxacillin (1422vs2798 and V3vs923) and linezolid (3577vs378, 5612vs378, 6939vs378, 

and 7210vs378) susceptibility and response in a sensitive strain77 (HG001van, 

HG001fluc, and HG001line for vancomycin, flucloxacillin, and linezolid, respectively). 

By comparing vraS-driven resistance panels to vancomycin susceptibility and response 

pathway signatures, I noticed similarities to both pathway panels that are usually 

significant (Figure 6A) and not likely the result of random chance since their achieved 

NES are frequently significant compared to a random model distribution (Figure 6B). For 

oxacillin and linezolid, I saw a reversal in panel activity in sensitive strain signatures 

(HG001fluc and HG001line, Figure 6A), which I also observed partially in some 

susceptibility signatures, that are not due to random chance (Figure 6B). 
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Figure 6. Pathway Signature Comparison Reveal Similarities and Differences between 

vraS-driven Resistance Panel Activity and Pathway Activity Changes in Antibiotic 

Susceptibilities and Responses 

 
(A) Normalized enrichment score (NES) heat map (left) generated from comparing vraS-

driven resistance panels (queries) to 11 pathway signatures representing vancomycin 

(van), oxacillin (ox), or linezolid susceptibility and response in a sensitive strain 

(references) for Gene Set Enrichment Analysis (GSEA) capture similarities and 

differences calculated via GSEA enrichment plots (right). (B) NES distribution from 

1000 randomly generated pathway panels (individual queries) compared to the 11 

pathway signatures (references) show how likely NES achieved by comparing reference 

pathway signatures to vraS-driven resistance panels are to be random. 

 

 Next, I looked at individual pathway data generated by GSEA across all 11 

comparisons between the vraS-driven resistance panels and 11 susceptibility and 

response pathway signatures to identify pathways to target in future laboratory 

examinations. When considering these computational data to select candidate pathways 
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for future laboratory examinations, I gave priority to up-regulated panel pathways 

because of the reproducibility of their enrichment earlier in my analysis (Figure 4). 

APPENDIX D lists leading-edge pathways identified per GSEA comparison. Table 11 

summarizes pathways shared across dataset leading edges for vancomycin susceptibilities 

and responses that may contribute to developing resistance, and Table 12 does the same 

for oxacillin. No shared pathways were found across linezolid susceptibilities and 

responses. Lysine biosynthesis pathways (M00527 and M00016) had the highest relative 

leading-edge frequency among up-regulated panel pathways with representation across 

antibiotics (Figure 7), and was easy to establish biological relevance experimentally. 

Based on this, I selected lysine biosynthesis for further experimental examination. 
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Table 11. Shared Leading-edge Pathways Associated with Vancomycin Susceptibility 

and Response 

Panel Module number T8vsPA C1vsPA HG001van 

NES p-val NES p-val NES p-val 

Up Lysine biosynthesis via 

succinyl-diaminopimelic 

acid (M00016) 

1.46 0.063 1.85 0.002 1.15 0.285 

Osmoprotectant transport 

system (M00209) 

1.72 0.016 1.59 0.026 1.64 0.027 

 VraS-VraR cell-wall 

peptidoglycan synthesis 

(M00480) 

1.44 0.017 1.42 0.028 1.40 0.057 

Lysine biosynthesis via 

diaminopimelic acid 

aminotransferase 

(M00527) 

1.43 0.073 1.80 0.002 1.55 0.033 

Betaine biosynthesis 

(M00555) 

1.38 0.038 1.35 0.099 1.37 0.086 

Down Menaquinone 

biosynthesis (M00116) 

-1.19 0.270 -1.21 0.240 -1.48 0.071 

 Succinate dehydrogenase 

prokaryotes (M00149) 

-1.52 0.011 -1.24 0.242 -1.29 0.162 

Shared leading-edge pathways identified by Gene Set Enrichment Analysis (GSEA) 

comparisons between vraS-driven resistance panels and vancomycin susceptibility 

(T8vsPA and C1vsPA) and response (HG001van) signatures. NES, normalized 

enrichment score, p-val, GSEA p-value. Bold font indicates a pathway with known 

association to vancomycin resistance. 
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Table 12. Shared Leading-edge Pathways Associated with Oxacillin Susceptibility and 

Flucloxacillin Response 

Panel Module number 1422vs2798 V3vs923 HG001fluc 

NES p-val NES p-val NES p-val 

Up Lysine biosynthesis via 

succinyl-diaminopimelic 

acid (M00016) 

-1.05 0.418 -0.87 0.651 -1.91 <0.001 

Inosine monophosphate 

biosynthesis (M00048) 

-1.32 0.114 -1.66 0.006 -2.31 <0.001 

Lysine biosynthesis via 

diaminopimelic acid 

aminotransferase 

(M00527) 

-1.19 0.290 -0.67 0.872 -1.66 0.022 

Dissimilatory nitrate 

reduction (M00530) 

-1.37 0.080 -1.67 0.004 -1.80 0.002 

Putative peptide 

(M00583) 

-1.18 0.285 -0.91 0.649 -1.47 0.019 

Shared leading-edge pathways identified by Gene Set Enrichment Analysis (GSEA) 

comparisons between vraS-driven resistance panels and oxacillin susceptibility 

(1422vs2798 and V3vs923) and flucloxacillin response (HG001fluc) signatures. NES, 

normalized enrichment score, p-val, GSEA p-value. None of the pathways are already 

associated with oxacillin/flucloxacillin resistance. 
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Figure 7. Pathway Signature Comparison Identifies Top Pathway Candidates Across 

Antibiotic Susceptibilities and Responses 

 
Gene Set Enrichment Analysis (GSEA) calculates normalized enrichment score (NES) 

and identifies leading-edge pathways between vraS-driven resistance panels (queries) and 

11 antibiotic (vancomycin (van), oxacillin (ox), flucloxacillin, or linezolid treated and 

untreated) susceptibility or response pathway signatures (references) from which relative 

frequency of pathway in leading-edges across the 11 reference signatures were 

calculated, to determine which pathways may be best to target to overcome multiple 

antibiotic resistances. 

 

3.2.4. Antibiotic Sensitivity Changes from Targeting Lysine Biosynthesis Provides 

Experimental Evidence to Support Computational Findings 

My computational findings predicted that lysine biosynthesis activities might be 

involved in resistance to specific antibiotics, so I hypothesized that lysine biosynthesis 

plays some role in antibiotic sensitivity. To support this hypothesis, I examined whether 

manipulation of lysine biosynthetic pathway alters response of a sensitive strain towards 

vancomycin, oxacillin, or linezolid treatment. Aspartate kinase catalyzes the first step in 

the lysine biosynthesis pathway and aspartate kinase activity is inhibited by the final 
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product lysine by feedback inhibition (Figure 8A)118. Therefore, I conducted Kirby-Bauer 

disk diffusion experiments utilizing changes in the zone of inhibition (i.e., distance of no 

growth from antibiotic disk) as an indicator of the effect of amino acid treatment on 

S. aureus’s sensitivity to individual antibiotics (vancomycin, oxacillin, or linezolid) as 

seen in Figure 8B. I observed a statistically significant (two-tailed Welch’s T-test 

p-value<0.05) increase in sensitivity, as seen by increased zone of inhibition, for lysine 

compared to vehicle treated samples during vancomycin exposure (Figure 8C). I saw no 

change in vancomycin challenged, aspartate treated samples where I might expect to see 

increased resistance (i.e., smaller average zone of inhibition). For oxacillin exposure, I 

observed significant increases in sensitivity for both lysine and aspartate treatment. For 

linezolid exposure, I noted a statistically significant increase in sensitivity in aspartate 

compared to vehicle treated samples and no change in sensitivity for lysine treated 

samples. For control purposes, I first repeated the disk diffusion experiment using 

phenylalanine treatment as a negative control, since the phenylalanine biosynthesis 

pathway (M00024) did not have statistically significant changes in activity for any 

dataset (data not shown) and I found no change in sensitivity to vancomycin, oxacillin, or 

linezolid (T-test p-value>0.204, Figure 8C) with phenylalanine treatment. Second, to 

confirm that there are no effects from using vehicle treated rather than no vehicle 

treatment (i.e., tryptic soy agar only) samples for controls, I compared triplicate no 

treatment plates to vehicle treated plates and found no change in the average zone of 

inhibitions for any antibiotic (T-test p-value>0.492). 
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Figure 8. Lysine Biosynthesis from Aspartate is Involved in Vancomycin, Oxacillin, and 

Linezolid Sensitivity 

 
(A) Schematic of lysine biosynthesis from aspartate pathway where aspartate, the initial 

substrate for lysine biosynthesis, is modified by aspartate kinase for conversion into 

lysine, which inhibits aspartate kinase, reducing pathway activity under high 

concentrations of lysine and increasing activity under aspartate treatment. (B) Schematic 

of disk diffusion experiment where tryptic soy agar (TSA) plates are treated with vehicle 

(water) or 20mg/mL of amino acid (lysine, aspartate, or phenylalanine) then S. aureus is 

spread across each plate and antibiotic disks applied prior to incubation. After growth, 

zone of inhibition (i.e., distance of no growth from edge of antibiotic disk to closest 

visible growth) measurements are taken for each disk to determine changes in sensitivity 

with larger zones representing more sensitivity. (C) Changes in the average zone of 

inhibition from triplicate cultures of the same S. aureus strain plated on TSA treated with 

vehicle (water) or 20 mg/mL of lysine, aspartate, or phenylalanine (as a negative control) 

then exposed to 30mcg vancomycin (van), 1mcg oxacillin (ox), or 30g linezolid 

confirms biological relevance of lysine biosynthesis pathway in antibiotic sensitivity. 

 

  



79 

 

3.3.Discussion 

3.3.1. Summary of Main Findings 

 Managing antibiotic resistant infections is a major ongoing clinical 

challenge8,9,11,17-19. My current understanding of resistance mechanisms is based on 

individual genes and pathway enrichment analysis based on statistical threshold that 

neglect genes with insufficient changes in expression. While these approaches have been 

successful in identifying resistance mechanisms in some infections, another approach 

might provide different perspectives on potential mechanisms of resistance for different 

antibiotic classes. Here, I used GSEA, a well-established computational tool that takes 

into account all changes including those normally do not satisfy arbitrary cutoff in 

traditional approach  when calculating enrichment, to examine antibiotic resistance, and 

am the first to use GSEA on S. aureus. I am also the first to apply a computational 

approach using GSEA that defines and compares pathway signatures to detect activity 

changes associated with antibiotic resistance and susceptibility across spectra of 

antibiotic classes. I began this study by applying my pathway signature approach to 

identify pathways associated with vraS-driven resistance. It was shown that my approach 

was able to detect the pathways containing the known associations to resistance via single 

gene expression analysis (reported using >2 fold-change cutoff between VC40 and 

mutS), such as up-regulated histidine biosynthesis76,216-218 and down-regulated amino-

acyl tRNA biosynthesis and succinate dehydrogenase101, as one of the highly enriched 

pathways in my analyses (Table 4). I also identified pathways which had no previous 

association with antibiotic resistance, such as lysine biosynthesis pathways (Table 4). I 

was able to find my up-regulated resistance pathway panel in both graSR-driven 
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resistance pathway signatures (Figure 4A and Figure 4B). More specifically the up-

regulation of histidine and lysine biosynthesis was consistently found to be significantly 

enriched (Table 7) and was one of the best able to separate samples by resistance levels 

(Figure 4C). When I repeated application of my approach to examine vancomycin 

susceptibility and response, I again detected several significantly enriched pathways that 

correspond to the pathways with documented gene mutations or pathway enrichment 

analyses associated with the vancomycin resistance (i.e., VISA) phenotype (Table 9). 

These pathways included up-regulation of VraSR two component system and down-

regulation of energy production pathways210-213, for example F-type ATPase, and 

translation processes214,215, such as amino-acyl tRNA biosynthesis, resulting in the slow 

growing phenotype reported in VISA strains clinically56. Among identified pathways 

with significant enrichment were pathways with no previous association with 

vancomycin resistance, such as up-regulated threonine biosynthesis and D-methionine 

transport (Table 9). Taken together, these results highlight the ability of my approach to 

detect pathways associated with antibiotic resistant phenotypes. 

 Next, I applied my pathway signature approach to several mRNA datasets 

examining resistance and/or response across different antibiotic classes to identify top 

pathway candidates affecting development of antibiotic resistance, which was the first 

analysis of its kind to the best of my knowledge. I then compared vraS-driven resistance 

panels to antibiotic (vancomycin, oxacillin, and linezolid) susceptibility and response 

signatures and revealed valuable insight into activity changes associated with the 

development of several antibiotic resistances. First, I found similarities that were usually 

significant between vraS-driven resistance panels and both vancomycin susceptibility and 
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response signatures (Figure 6). This is an indication of similar activity changes in the 

same pathways across signatures, as I observed for example in the osmoprotectant 

transport system (M00209), contribute to vancomycin resistance in Figure 7. Further in 

Figure 6, the up-regulated vraS-driven resistance panel resulted corresponding pathway 

activity changes in oxacillin and linezolid showed all 6 down regulated activities, 

representing a complete reversal (i.e., enriched in the opposite tail, such as up-regulated 

panel enriched in negative tail). It also showed that the down regulated vraS-driven 

resistance panel exhibited only a half of oxacillin and linezolid susceptibility datasets 

showed up-regulated pathway activities, representing a 50% partial reversal. These 

results support previously reported findings of the occasional resistance “see-saw” 

between vancomycin and oxacillin or linezolid56,190,191. When comparing individual 

pathway activity changes in vraS-driven resistance panel pathways across antibiotic 

susceptibility and response signatures, my approach identified lysine biosynthesis as the 

top pathway candidate to target experimentally to alter antibiotic sensitivity (Figure 7). 

While lysine biosynthesis has not been previously implicated in antibiotic resistance 

directly, aspartate has been shown to play a role in biofilm formation for S. aureus219 and 

biofilms are known for their antibiotic resistance220-223. Specifically, D- and L- isoforms 

of aspartate inhibited S. aureus biofilm formation in tissue culture plates219. Further, 

lysine biosynthesis may contribute to cell wall formation in several different ways. 

Lysine biosynthesis generates UDP-N-acetylmuramoyl-L-alanyl--D-glutamyl-meso-2,6-

diaminopimelate, a precursor for peptidoglycan biosynthesis. Lysine itself is part of the 

N-acetylmuramic acid pentapeptide that is used for cell wall cross-linkage. Although my 

pathway centric computational approach was successful in identifying a pathway that 
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may play a role in development of antibiotic resistance, the determination of exact 

mechanisms behind the involvement of lysine biosynthesis in antibiotic sensitivity is 

beyond the scope of my approach. However, it was clear from the high relative frequency 

in leading-edges across antibiotic susceptibility and response signatures that lysine 

biosynthesis was involved in antibiotic sensitivity somehow (Figure 7). Therefore, I 

hypothesized lysine biosynthesis would make a good target to alter antibiotic sensitivity 

and demonstrated this experimentally (Figure 8). 

3.3.2. Implications, Limitations, and Other Considerations 

 My pathway signature approach provides insight into a different paradigm for 

generating antibiotic resistant phenotypes. Most resistance mechanisms identified to date 

focus around 1) an enzyme that inactivates the antibiotic, such as -lactamase which 

cleaves -lactam rings on penicillin and some of its derivatives14,21, 2) a membrane 

transport that pumps the antibiotic out of the bacterial cell, like major facilitator 

superfamily multi-drug efflux proteins49,128,224, or 3) a mutation that diminishes the 

binding of antibiotic agent such as altered transpeptidase from mecA as a MRSA 

mechanism21,172. Instead, my approach provides a broader view examining pathway 

activity changes that result from developing resistance. I demonstrated here that by taking 

this different perspective, novel targets to improve antibiotic sensitivity, such as lysine 

biosynthesis, can be detected.  

 While my computational approach can give a fresh perspective to antibiotic 

resistance mechanisms, my approach does not provide a complete understanding of how 

resistance develops. It is also true for our experimental study that showed while aspartate 

and lysine supplementation clearly affected antibiotic sensitivity whereas phenylalanine 
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supplementation had no effect, we cannot associate specific biological mechanisms with 

our findings. One possibility is that changes in pathway activity could lead to changes in 

amino acid concentrations leading to altered sensitivity. By using a single high dose of 

amino acid for my experiment, I assumed that regardless of variations in bioavailability 

across amino acids due to amino acid configuration (D- vs L-form), the bacterial cell 

would become saturated with either aspartate or lysine. While aspartate and/or lysine 

saturation would alter lysine biosynthesis pathway activity, it may also alter the activity 

of other pathways with shared enzymes. For example, threonine and methionine synthesis 

are also derived from an L-aspartate-4-semialdehyde produced in the aspartate to lysine 

biosynthesis pathway225. Aspartate kinase isozymes in Escherichia coli and 

Corynebacterium pekinense are inhibited by threonine and methionine226,227 while there is 

no experimental evidence that aspartate kinase is inhibited by these amino acids in S. 

aureus. However,  I noted increased threonine biosynthesis and D-Methionine transport 

pathway activities were prominent in vancomycin susceptibility, and D-Methionine 

transport was part of the HG001vsSG511 up-regulated panel leading-edge (Table 7). This 

might suggest that the resistance mechanism I identified from my computational analysis 

for vancomycin resistance maybe a previously unknown mechanism. It was 

experimentally shown that the SG511 strain, which was able to gain resistance equal to 

its HG001 counterpart despite having a truncated graSR, has different sets of up and 

down-regulated genes with little overlap129. Unfortunately, there were no threonine 

transport, lysine transport, or methionine biosynthesis pathways included in the KEGG 

pathways used in this work, so I was unable to better elucidate this resistance mechanism. 

However, in version 92.0 which was released on October 1, 2019, KEGG modules were 
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reorganized to focus on metabolism, adding in methionine biosynthesis (M00017) and 

removing transporter modules (e.g., D-Methionine transport) and two-component system 

modules (e.g., VraSR). This highlights the ever-changing nature of biological databases 

and the need for extensive analysis of databases used with my pathway signature 

approach since gene set properties, such as gene and pathway inclusion and overlap, 

substantially impact the detection ability of my approach. 

 My analysis also did not detect all pathways associated with antibiotic resistance 

that have been reported in the literature. For example, I noticed that the VraDE 

transporter (M00737), vraSdriven resistance101 and vancomycin resistance56 was not 

selected as a part of pathway panels because it was not enriched enough (i.e., not enough 

NES) although ABC transporter genes encoded by vraDE was reported to show high 

expression for vraSdriven resistance101 and vancomycin resistance56 in microarray gene 

expression analyses. The observed lack of enrichment was not due to a lack of gene 

representation (i.e., no genes) of the VraDE transporter pathway in either the KEGG 

knowledgebase (74 genes for M00737) or the VC40vsmutS (7 genes) and T8vsPA (9 

genes) gene signatures. Of the VraDE transport pathway genes represented in the 

VC40vsmutS signature, I noted that no probes for vraD or vraE specifically were 

included in the dataset’s platform. For the VraDE transport pathway genes represented in 

the T8vsPA and C1vsPA signatures, I noted that they did include probes for vraD or 

vraE. When looking at single gene expression for vraD or vraE from vancomycin 

susceptibility gene signatures, I found differential expression for vraD in response to 

vancomycin between resistant (T8 or C1) and sensitive (PA) strains was not significantly 

changed (C1 Welch’s T-test p-value=0.092, T8 p-value=0.599) and vraE was significant 



85 

 

for C1 only (C1 p-value=0.033, T8 p-value=0.385). Further, I do not know why some 

pathways with known associations to antibiotic resistance in S. aureus via single gene 

expression analysis were not represented in S. aureus strains listed in the KEGG 

knowledgebase. An example is the WalKR two component system which is associated 

with vancomycin and daptomycin resistances56,101, but was not included among S. aureus 

KEGG modules at the time of this work. While KEGG included some pathways regulated 

by WalKR, such as SaeS-SaeR staphylococcal virulence regulation (M00468), KEGG did 

not include all pathways reported to be regulated by WalKR, for example omitting 

autolysis or cell wall turnover pathways. If gene lists for missing pathways were 

available, they could have been incorporated into my analysis. Though annotation issues 

limited my achievable results, these issues did not prevent my pathway signature 

approach from detecting novel pathways, such as lysine biosynthesis, that were not 

previously detected using other computational methods. Therefore, I expect that my 

pathway signature approach’s ability to detect enriched pathways will improve as 

genome and pathway knowledgebases are updated, since bacterial genomes commonly 

have annotation issues (i.e., incomplete and inaccurate)66,228,229 that reduce pathway 

database comprehensiveness (i.e., fewer pathways and genes in each pathway)64,230.  

 I also noted the vancomycin resistance (VanA, M00651) pathway was included 

among significant down-regulated pathways in all vancomycin response signatures from 

my vancomycin susceptibility dataset regardless of strain resistance. This finding is 

unexpected considering the vanA operon should be expressed more during vancomycin 

treatment56. To explain this, I examined individual gene expression for the vanA operon 

and found a small set of probes, including the one detecting vanA itself, detect expression 
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(APPENDIX A). I could not find any homologs close enough to these probe sequences to 

explain unintended hybridization to non-targeted proteins using Basic Local Alignment 

Search Tool (BLAST). Though I could not explain this finding, I noted that vanA 

expression should be detectable during vancomycin treatment if T8, C1, and/or PA use it 

as a resistance mechanism. This suggests that any resistance in these strains is derived 

from a different mechanism, which is not surprising if they are truly VISA strains. 

3.3.3. Future Directions 

 This innovative project holds great potential to improve clinical treatment options 

for antibiotic resistant infections. For example, experimental development of therapeutics 

that target top pathway candidates, like lysine biosynthesis, identified here could improve 

antibiotic sensitivity in S. aureus. More in vitro experimental research is needed to better 

understand the meaning of my experimental results. Further experimental research could 

examine examining 1) antibiotic response over a time course and with range of amino 

acid doses (i.e., titration), 2) kinetics of enzymes in the lysine pathway starting with 

aspartate kinase, and/or 3) binding affinity examination of strains with site specific 

mutagenesis of genes in the lysine biosynthesis pathway, is needed to elucidate the exact 

mechanism of involvement. These studies could involve site-specific mutagenesis 

(i.e., creation of genetic mutants) where individual enzymes within lysine biosynthesis 

pathways could be altered using CRISPR-Cas9231-233 and alterations in gene expression, 

pathway activity, biochemical levels, and phenotypic features like thickened cell walls 

and sensitivity measurements can be measured to establish the exact mechanism behind 

lysine biosynthesis involvement in antibiotic resistance. A good place to start based on 

my results in this work is with site-specific mutagenesis on the meso-2,6-



87 

 

diaminoheptanedioate intermediate and seeing if this changes sensitivity to vancomycin 

since, according to KEGG, this intermediate in the lysine biosynthesis pathway can also 

be used for peptidoglycan biosynthesis, major cell wall component that is associated with 

increased cell wall thickening, characteristic of VISA strains clinically56. To evaluate the 

success lysine and aspartate co-treatment may have in vivo, further experiments 

beginning with animal models with resistant S. aureus infections are needed. For 

example, infection recovery studies using in vivo animal models, where animals are 

infected with S. aureus, either a sensitive or resistance strain, and some infected animals 

are provided lysine or aspartate supplementation along with their prescribed antibiotic 

(e.g., lysine supplementation with vancomycin treatment). The expected outcome of these 

experiments, based on the results in this current investigation, should be that animals with 

lysine or aspartate supplementation would recover more rapidly than animals given 

antibiotics alone. Thus, providing evidence of our pathway signature approach’s 

predictive ability. If further experimentation reveals specific lysine biosynthesis pathway 

genes involved in antibiotic resistance, targeted interventions could be developed based 

on their gene expression pattern. For example, if a lysine biosynthesis gene is 

overexpressed, it can be silenced using RNAi approaches while an under-expressed gene 

could become overexpressed with additional gene copies delivered via bacteriophage 

therapy. Regardless of how lysine biosynthesis is altered, human clinical trials would be 

needed before therapeutics that target lysine biosynthesis could be implemented on a 

global scale. 

 Though applied here to S. aureus only, my pathway signature approach is directly 

applicable to other antibiotic resistant infections, potentially producing valuable 
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therapeutic directions that could revolutionize the management of deadly infectious 

diseases in this era of evolving antibiotic resistance. Thus, I recommend immediate 

application of my approach to examine antibiotic resistance in clinically relevant 

infections caused by organisms reported by the Center for Disease Control and 

Prevention as major public threats , such as Acinetobacter spp., Mycobacterium 

tuberculosis, and Clostridium difficile11. Regardless of the intended application, a 

thorough review of available pathway knowledge bases specific to the application is 

needed to ensure optimal pathway signature creation since knowledgebases vary and are 

continually updated. Consideration should be given to gene coverage, gene overlap, 

pathway inclusion, and strain/tissue variation. This is especially important when applying 

this approach to examining other antibiotic resistant infections as knowledgebases may 

differ in their contents across bacterial species230. The pathway knowledgebase selection 

process, along with the creation of pathway signatures themselves can be daunting and 

time-consuming, particularly for biologists without user-friendly software. While my 

pathway signature approach could be used by laboratory and clinical biologists directly 

after conducting a mRNA expression study as part of or in addition to RNA-seq analysis 

software, such as Rockhopper234,235, the approach can also be used by computational 

biologists for data mining as done in this dissertation. I therefore recommend 

development of publicly available software, either in collaboration with or in parallel to 

what is available for human disease at the Broad Institute in the MSigDB152. 

Accomplishing this will require development of user-friendly software for pathway 

signature generation, and ongoing semi-automated expansion and maintenance of a 

multi-knowledgebase catalog of pathway sets across biological life. Further, use of 
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pathway signatures could be developed into a diagnostic tool to identify resistance 

clinically. While my study here ran into sample size limitations, if a dataset were 

generated with enough mRNA expression data to produce a successful cross-validation 

model, an average multi-variable logistic equation could be generated to predict 

resistances. If computing power were improved to be able to examine genome-wide 

expression of a patient’s sample without the immobile, expensive chip technology 

prominent today, the logistic equation could become the basis for improved diagnostic 

methods for antibiotic resistant infections. Taken together, this work could potentially 

lead to the development of new clinical advancements, both in drug development and 

diagnostics, to treat S. aureus infections. These future directions have the potential to 

revolutionize how humanity detects, predicts, and interprets pathway activity from 

mRNA expression in several areas throughout microbial science and significantly 

enhances understanding of cellular biology.  Antibiotic resistant infections continue to be 

a foremost medical challenge. My work here addresses this challenge by 1) introducing a 

computational approach which define pathway signatures to characterize molecular 

changes associated with mutation-driven resistance and vancomycin, oxacillin, and 

linezolid susceptibilities and responses in S. aureus, and 2) using that approach to 

identify known and novel pathways that can be targeted to improve antibiotic sensitivity 

in S. aureus. Further, I lysine biosynthesis is specifically observed to affect vancomycin, 

oxacillin, and linezolid sensitivity, suggesting it could become a useful co-therapy target 

to treat resistant infections clinically. Examining the antibiotic resistance mechanisms 

that involve lysine biosynthesis may lead to the development of new co-therapeutic 

options to preclude or overcome antibiotic resistance. 
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3.4.Methods 

3.4.1. mRNA Expression Resources 

I used GSEA to define pathway signatures (i.e., ranked lists of pathways by 

changes in activity based on differential mRNA expression) from Kyoto Encyclopedia of 

Genes and Genomes (KEGG) S. aureus pathways (APPENDIX F) and mRNA expression 

data (Table 13) as illustrated in Figure 9. More details on all Gene Expression Omnibus 

(GEO) datasets are found in APPENDIX A. 

Figure 9. Schematic Overview of Approach 

 
Gene signatures are ranked lists of genes from high (red) to low (blue) differential mRNA 

expression between Group 1 and Group 2 based on an appropriate statistical method, 

such as T-score. Gene signatures are used as references for Gene Set Enrichment 

Analysis (GSEA) against 164 Kyoto Encyclopedia of Genes and Genomes (KEGG) 

S. aureus pathways (APPENDIX F) as individual query sets to generate 164 normalized 

enrichment score (NES), one per pathway, representing the extent of enrichment. 

Pathways with the most differential activity change have NES furthest away from zero 

(white). Pathway signatures (i.e., pathway lists ranked by NES from high (red) to low 

(blue) differential activity between Group 1 and Group 2) are used in this study for three 

purposes: 1) discovery of pathway activity changes between two experimental groups, 2) 

verification of discovered findings, and 3) comparison to other pathway signatures. 
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Table 13. S. aureus Datasets Utilized for this Study 

T Use Dataset Description Group 1 Group 2 S Ranking 

N
o
n
e D GSE46887101 Triplicate untreated cultures of resistant (vanco and 

daptomycin) VC401 (VraSR mutation) and sensitive mutS 

logged with DNA pool2 

VC40 mutS 6 T-test 

V GSE50842129 Duplicate untreated cultures of resistant (vanco and 

daptomycin) progeny of both HG001 (GraSR) and SG5113 
(truncated GraSR) logged to their respective sensitive 

ancestor strains2 

HG001 SG511 4 FC 

V GSE2601676 Unlogged triplicate HG001 (WT) and graSR cultures4 WT graSR 6 T-test 

V
an

co
 D, C GSE26400 Triplicate replicates of vanco untreated or treated (4mM PA, 

16mM C1, 32mM T8) samples of vanco resistant C1 or T8 

logged to its respective PA sample by treatment5 over a time 

course6 

T8 PA 6 T-test 

V, C  C1 PA 6 T-test 

O
x
ac

il
li

n
 C GSE26282 Triplicate replicates of untreated or oxacillin treated resistant 

samples with 2798 logged to 1422 by treatment5 over a time 

course6 

1422 2798 6 T-test 

C GSE26258 Five replicates of oxacillin treated or untreated samples of 

oxacillin resistant V3 and 923 logged by treatment5 

V3 923 10 T-test 

L
in

ez
o
li

d
 C GSE26358 Duplicate replicates of linezolid untreated or treated samples 

of resistant 3577, 5612, 6939, or 7210 logged to sensitive 
378 by treatment5 over a time course6 

3577 378 4 FC  

C 5612 378 4 FC 

C 6939 378 4 FC 

C 7210 378 4 FC 

M
an

y
 C GSE70040 77 Unlogged cultures6 of antibiotic sensitive strain HG001 

either vanco, fluc, or linezolid treated or untreated over a 

time course7 

Vanco  Untreated8  18 T-test 

C Fluc  Untreated8  18 T-test 

C Linezolid  Untreated8  18 T-test 

C, comparison of pathway signature to pathway panels defined in discovery dataset; D, discovery dataset used to define 

pathway panels used for comparison to all other datasets; FC, fold change; fluc, flucloxacillin; S, number of samples used; 

T, treatment (datasets with treated samples also have untreated samples); V, verification of discovery findings; vanco, 

vancomycin; WT, wild-type. 
1 Background strain NCTC8325 

2 Values were used as provided by Gene Expression Omnibus 
3 HG001 is a derivative (a rsbU+ variant) of strain NCTC 832577 
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4 Samples were z-scored across all samples for normalization 

5 Example log by treatment as provided by Gene Expression Omnibus: log2(T8 treated/PA treated), log2(T8 untreated/PA 

untreated). Example re-log by strain as used in this study: log2(T8 treated/T8 untreated), log2(PA treated/PA untreated). 
6 60min samples were used 
7 Samples grown to exponential phase in tryptic soy broth were used for this study 
8 Same 15 untreated samples used
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 To identify molecular changes associated with antibiotic resistance I searched the 

GEO repository236,237 on June 17 and December 29, 2019. From this I found nine datasets 

for use in my study (Table 13). I began by exploring mutation-driven resistance as 

produced by known or established vraSR or graSR mutations using three datasets 

(GSE46887101 GSE50842129, and GSE2601676) that compared gene expression between 

resistant (higher vraSR or graSR function) and sensitive (lower vraSR or graSR function) 

strains under the same treatment conditions. GEO provided expression data for 

GSE46887 and GSE50842 samples as log10 ratios of resistant strains to either a genomic 

DNA pool or sensitive strains, respectively, representing strain differences that reveal 

resistance mechanisms in individual strains, so I converted these ratios to log2 ratios for 

consistency across data used in this study. GEO provided expression data for GSE26016 

as unlogged intensities so I z-scored across all samples so that all data is normalized prior 

to use. 

 I then examined activity changes in S. aureus under antibiotic treatment 

conditions (i.e., response). To do this, I first used four datasets (GSE26400, GSE26258, 

GSE26282, and GSE26358) that examined gene expression between treated and 

untreated samples of strains with varying resistance levels. GEO provided expression 

data for these datasets as log2 ratios of high resistant to low resistant strains (e.g., T8 

treated/PA treated, T8 untreated/PA untreated). Fortunately, GEO also provided unlogged 

intensities for these datasets, so I used intensities to calculate log2 ratios of treated versus 

untreated for each strain separately (e.g., T8 treated/T8 untreated, PA treated/PA 

untreated), revealing response mechanisms for individual strains, for consistency across 

data used in this study. Further, I used one dataset (GSE7004077) to explore antibiotic 
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response in a sensitive strain. For this dataset, GEO provided unlogged intensities so I 

z-scored across all samples for normalization prior to use. For all datasets, if a locus tag 

had multiple platform probes, I selected the probe with the highest coefficient of variation 

to represent that locus tag to remove locus tag replicates in gene signatures. Individual 

dataset overviews with experimental information including strain, platform, and media 

and normalization details are provided in APPENDIX A. 

3.4.2. Signature Definition and Generation 

From the datasets found in GEO, I defined gene signatures (i.e., locus tag lists 

ranked by differential gene expression as defined by appropriate statistic, Figure 9). 

Probes for each platform are converted to locus tags (e.g., SAR1563) when necessary 

using GEO provided platform annotation files. Justification for my use of locus tags is 

found in APPENDIX B. If multiple probes have the same locus tag, I used the one with 

the highest coefficient of variation across all dataset samples and remove locus tag 

replicates in gene signatures. Using gene signatures individually, I defined pathway 

signatures by comparing a gene signature to each one of 164 KEGG (version 87.0, 

APPENDIX F)194,195 pathways using GSEA, javaGSEA Desktop Application version 3.0 

from Broad Institute, to calculate NES from 1000 locus tag permutations by which I rank 

the 164 pathways (Figure 9). Rationale for my use of KEGG is located in APPENDIX B. 

I purposely selected only KEGG pathways with at least 10 locus tags, a requirement for 

accurate GSEA calculations, gathered across any one of the 10 fully sequenced S. aureus 

strains available with varying methicillin and vancomycin sensitivities used to design 

platform probes for datasets used in this study: sensitive to methicillin and vancomycin 

(MSSA476, NCTC8325), MRSA strains sensitive to vancomycin (COL, N315, MW2, 
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Newman, MRSA252, USA300_TCH1516, and USA300FPR3757), and MRSA/VISA 

(Mu50), to maximize my approach’s detection potential. 

3.4.3. Defining Pathway Panels 

To detect pathway activity changes associated with antibiotic resistance, I defined 

two vraS-driven resistance panels (Table 4) by selecting the 20 most up- and down-

regulated pathways (i.e., best NES) from the VC40vsmutS pathway signature. I used the 

same selection process on the T8vsPA pathway signature to define two vancomycin 

susceptibility panels (Table 8) to detect pathway activity changes associated with 

vancomycin susceptibility.  

3.4.4. Comparison Across Pathway Signatures 

To verify the accuracy of pathway panel predictions, I first performed GSEA 

between vraS-driven resistance panels and HG001vsSG511 and WTvsgraSR pathway 

signatures. I repeated this process using vancomycin susceptibility panels and the 

C1vsPA pathway signature. Random modelling is done by using 1000 randomly selected 

pathway panels consisting of 20 pathways each selected from the 164 KEGG pathways 

used to generate pathway signatures as queries for GSEA against HG001vsSG511, 

WTvsgraSR, and C1vsPA as reference signatures, generating a null distribution of NES, 

to which I compared achieved NES for each reference pathway signature and count the 

number of equal or better NES to estimate significance (i.e., distribution p-value). I also 

utilized ROC curve analysis197,238 for individual pathway panels via easyROC, version 

1.3 to quantify the ability of each pathway panel to separate samples by resistance level 

through AUROC curve calculation197,208,238,239.  
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To compare pathway signatures, I used vraS-driven resistance panels as query sets 

for GSEA to individual antibiotic susceptibility (vancomycin: T8vsPA and C1vsPA; 

oxacillin: 1422vs2798 and V3vs923; and linezolid: 3577vs378, 5612vs378, 6939vs378, 

and 7210vs378) and response (HG001van, HG001fluc, and HG001line for vancomycin, 

flucloxacillin, and linezolid, respectively) pathway signatures as references. Heat maps 

were generated by GENE-E240. 

3.4.5. Disk Diffusion Validation of Computational Predictions 

To establish biological relevance of predictions made by my pathway signature approach, 

I performed Kirby-Bauer disk diffusion tests to observe sensitivity changes between 

vehicle (water) and amino acid (lysine, aspartate, or phenylalanine) treatment during 

antibiotic exposure. I prepare amino acid (DL-Aspartic Acid, L-Lysine, or DL-

Phenylalanine powder acquired from Carolina #843600 resuspended in sterile water, then 

filter sterilized) solutions and applied equal amounts of either sterile water or amino acid 

solution (final concentration on plate at 20mg/mL) separately to a pre-manufactured tryptic 

soy agar (TSA, Carolina #822022) plate. Next, I applied equal amounts of S. aureus 

(Carolina # 155554A) from one of triplicate overnight TSB cultures to each plate (i.e., 

technical replicates) and allowed to dry before applying 30mcg (i.e., g) vancomycin 

(Carolina #843600), 1mcg oxacillin (Carolina #806278), and 30g linezolid (Fisher 

#BD231761) disks and incubated overnight at 37oC with standard atmospheric conditions. 
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CHAPTER 4 

CONCLUSION 

 In prior chapters, I described S. aureus as a causative agent of potentially life-

threatening infections and discussed how modern medicine relies on antibiotic therapies, 

like vancomycin, oxacillin, and linezolid, to cure S. aureus infections. I provided an 

overview of the global antibiotic resistance problem menacing humanity, increasing 

mortality from once curable infections. Unfortunately, gene level examination alone has 

been only partially effective in identifying antibiotic resistance mechanisms, so I decided 

to take a broader perspective by examining pathway activity. To do this, I discussed the 

rationale and steps for a pathway signature approach that identified pathways with the 

most differential activity from mRNA expression data and applied it to elucidate pathway 

activity changes associated with mutation-driven resistance and vancomycin 

susceptibility. I then compared pathway activity changes associated with mutation-driven 

resistance to changes associated with vancomycin, oxacillin, or linezolid susceptibilities 

and responses to identify top pathway candidates for further laboratory characterization. I 

used this analysis to select lysine biosynthesis and demonstrated the biological relevance 

of this prediction to improve antibiotic sensitivity using disk diffusion. In this chapter, I 

summarized the importance and share future directions for my work. 

This work was the first to use Gene Set Enrichment Analysis (GSEA), a well-

established computational tool that does not neglect genes with insignificant changes 

when calculating enrichment, to examine antibiotic resistance in Staphylococcus aureus 

(S. aureus). Further, I was the first to apply a new computational approach using GSEA 

that defines and compares pathway signatures to detect activity changes associated with 
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antibiotic resistance that is immediately applicable to examine activity changes associated 

with resistance in other bacterial pathogens. This has the potential of providing valuable 

computational predictions to expedite the development of co-therapy options to overcome 

or preclude antibiotic resistance. By applying my pathway signature approach to multiple 

resistance studies across different antibiotic classes to identify pathways affecting 

development of antibiotic resistance, I established a precedence for this type of analysis 

in the field of microbiology. I am already applying my pathway signature approach to 

identify potential co-therapeutic targets associated with antibiotic resistance in several 

other pathogens, such as Pseudomonas aeruginosa, Escherichia coli, and Streptococcal 

species. My innovative computational approach can also be applied to other microbial 

questions outside of antibiotic resistance that require combining mRNA expression and 

biological pathway activity analyses. For example, I am starting to apply my approach to 

analyze mRNA expression differences between bacterial strains in cow lumen to identify 

pathway targets to reduce methane production, a known greenhouse gas and climate 

change contributor. Finally, my computational approach uncovered several top pathway 

candidates as potential co-therapeutic targets, such as lysine biosynthesis, to overcome 

antibiotic resistance in S. aureus. I successfully verified the biological relevance for 

lysine biosynthesis experimentally. With more experimental work, co-therapies targeting 

lysine biosynthesis and/or other top pathway candidates identified here can be developed 

and have the potential to save thousands of lives from antibiotic resistant infections. 

When the gravity of the potential of my results in S. aureus presented here is 

compounded by the breath of microbial work using my approach currently ongoing and 

proposed for the future, the impact of this dissertation work is truly exciting.  
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APPENDIX A. Overview of mRNA Expression Resources 

 

 Here, we detail the mRNA expression datasets provided by the Gene Expression 

Omnibus (GEO) used in this study. We first use three datasets (GSE46887, GSE50842, 

and GSE26016) containing untreated samples of antibiotic resistant and sensitive 

S. aureus strains to identify pathway activity changes based on mRNA expression 

resulting in antibiotic resistance from established mutations in vraSR or graSR53,56,75.  

 GSE46887 contained triplicate untreated samples of an antibiotic sensitive strain 

(NCTC 8325) with a mutS (mismatch repair gene) deletion mutation (mutS) to its 

antibiotic resistant progeny strain (VC40) that was generated from 30 serial passages of 

mutS with increasing vancomycin exposure, grown in brain heart infusion broth to 

exponential growth phase before mRNA collection (samples (S)=6)101. Among other 

mutations, VC40 had two VraSR mutations (L114S and D242G) that resulted in high 

level vancomycin resistance (MIC ≥48 mg/L) and low level daptomycin resistance 

(MIC=4 mg/L) with oxacillin sensitivity (MIC=1mg/L) and was not tested for linezolid 

resistance as determined through genetic reconstitution of the NCTC8325 genome 

(i.e., same mutations introduced to sensitive NCTC8325 resulting in increased 

vancomycin (MIC≥3mg/L) and daptomycin (MIC= 2mg/L) resistance)101. Samples were 

profiled on Agilent-021782 Custom S. aureus V6 Array (GEO accession GPL10537) to 

measure mRNA expression. This non-commercial, validated microarray platform241,242 

had 10 807 60-mer oligonucleotide probes specific to S. aureus covering >95% of ORFs 

annotated in S. aureus strains of varying methicillin and vancomycin sensitivities: 

sensitive to methicillin and vancomycin (MSSA476 and NCTC8325), MRSA strains 

sensitive to vancomycin (COL, N315, MW2, MRSA252, and USA300FPR3757), and 
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MRSA/VISA (Mu50), according to the published paper for this dataset101. However, we 

note that GEO provided 7266 probes containing 6888 unique probes (non-overlapping 

gene coverage, i.e., different probes targeting same gene) from other strains, some of 

which we verified from performing Basic Local Alignment Search Tool (BLAST) on 

probe nucleotide sequences (Table A-1). Further, we note that this platform does not 

include probes for the vanA operon, indicating we cannot assess the mechanism of 

vancomycin resistance in VC40, though the fact VC40 was generated from repeated 

increasing exposure to vancomycin indicates it is a VISA strain. We also notice that the 

VraS (SAOUHSC_02099) probe does not cover the regions where single polymorphism 

mutations in VraS were documented in VC40, making it impossible to distinguish 

between WT and mutant expression. GEO provided mRNA expression data for 

GSE46887 as log10(sample/gDNA pool) values. We convert these log10 ratios to log2 

ratios for consistency across data used in this study. 
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Table A-1. Platform coverage 

Strain GPL10537 GPL7137 GPL10597 GPL5879 GPL20586 

NCTC8325 26551 352 0 0 2836 

COL 0 904 240 1335 0 

N315  0 2437 88 87 0 

Mu50 0 560 1462 1490 0 

MW2 0 172 83 106 0 

USA300 419 902 1262 0 0 

MRSA252 0 744 720 745 0 

MSSA476 0 432 634 649 0 

UAMS-1 491 0 0 0 0 

Newman 726 1 0 0 0 

JH-1 0 3 0 0 0 

JH-9 0 24 0 0 0 

SAW1 2114 0 0 0 0 

Plasmids 0 67 23 9 0 

Tiling region 222 0 0 0 1192 

Obsolete 0 0 75 125 0 

Control 261 0 500 510 0 

Total tags 6888 6598 5087 5056 4028 
1 Stain 564 was used, which is a derivative of strain NCTC 8325. 

  

 GSE50842 contained duplicate untreated samples (S=4) of wildtype (antibiotic 

sensitive) HG001 (normal GraSR) and SG511 (truncated GraSR) strains, both rsbU+ 

(phosphoserine phosphatase that positively regulates RNA polymerase B activity during 

stress-response) derivatives of NCTC8235, and their antibiotic resistant progeny after 

four months of incrementally increasing daptomycin exposure grown in Mueller Hinton 

broth until exponential phase129. Antibiotic resistant progeny had intermediate 

vancomycin resistance (MIC=4mg/L), high daptomycin resistance (MIC=31mg/L) and 

were noted to be more susceptible to oxacillin and linezolid (MIC not reported)129. 

Samples were profiled on the customized commercial platform Agilent-017903 S. aureus 

V5 Bis 15K, basic version, array (GEO accession GPL7137), which had 6608 60-mer 

oligonucleotide probes with 6598 unique locus tags from various strains (Table A-1). 
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GEO or Agilent did not provide sequences for probes for this platform, so it is not 

possible to assess how the graSR mutation may impact gene expression in this dataset. 

Further, this platform does not include probes for the vanA operon, indicating we cannot 

assess the mechanism of vancomycin resistance in resistant HG001 and SG511, though 

given their low level resistance (MIC=4mg/L) they are unlikely to use the vanA operon, 

which is associated with immediate high level resistance (MIC>16mg/L)56. GEO 

provided mRNA expression data for GSE50842 as log10(resistant progeny/sensitive wild 

type in same strain) values. We convert these log10 ratios to log2 ratios for consistency 

across data used in this study. 

 GSE26016 contained triplicate samples (S=6) of wildtype HG001 (WT) and its 

mutant strain with a graSR entire gene (i.e., coding sequence) deletion (graSR) grown to 

mid-exponential phase in tryptic soy broth (TSB) containing 50mg/L colistin for graSR 

induction76. Only resistance to colistin, another cell membrane disruptor with similar 

structure to daptomycin, was established for GSE26016 strains76. The WT strain was 

colistin resistance (MIC=700mg/L) while the graSR strain was colistin sensitive 

(MIC=100mg/L), and resistance in the (graS) mutant was completely restored 

(MIC=700mg/L) via genetic reconstitution76. GEO provided this mRNA expression data 

was provided as unlogged median-normalized gene-level intensities so we z-score across 

all samples so that all data is normalized prior to use. Samples were profiled on the same 

platform used for GSE46887 which has a probe to detect graSR expression. We note that, 

while around 2-fold higher than WT, the experiment was able to detect graSR expression 

in the graSR mutant.  
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To examine molecular changes associated with vancomycin, oxacillin, or 

linezolid susceptibilities individually, we used four datasets (GSE26400, GSE26282, 

GSE26358, and GSE26258) that contained untreated and antibiotic treated samples of 

strains with varying resistance levels. Three datasets (GSE26400, GSE26282, and 

GSE26358) compared untreated and antibiotic (vancomycin, oxacillin, or linezolid, 

respectively) treated S. aureus strains grown in TSB over a time course (30min, 60min, 

90min, and 120min post-inoculation into treated media for early exponential, mid-

exponential, late exponential, and early stationary growth phases, respectively). 

GSE26400 contained triplicate samples of untreated and vancomycin treated strains (S=3 

per each treatment condition, S=6 samples total per time point, S=48 total), with T8 

(32mM vancomycin) and C1 (16mM vancomycin), and PA (4mM vancomycin). 

GSE26282 contained triplicate samples of untreated and oxacillin treatment strains 1422 

and 2798 to characterize a new methicillin resistant isolate lacking mecA (S=24). 

GSE26358 contained duplicate samples of untreated (S=32) and linezolid (S=31) 

treatment for four linezolid resistant strains: 3577 (S=16), 5612 (S=16), 6939 (S=15), and 

7210 (S=16), compared to the linezolid sensitive strain 378. All samples for GSE26400, 

GSE26282, and GSE26358 were profiled on J. Craig Venter Institute (JCVI) S. aureus 

16K v9 array designed primarily based on strain USA300 (GEO accession GPL10597). 

This non-commercial set contains 5087 probes of 70-mer oligonucleotides (Table A-1), 

including 4368 unique genes with 88 unique genes having multiple probes (P=232 with 

overlapping gene coverage). Plasmid derived probes for this platform came from 

pLW043, the plasmid containing Tn1546 transposon with the van operon. GEO values 

were provided as both log2 ratios of differing strains of the same treatment condition 
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(e.g., T8treated/PAtreated and T8untreated/PAuntreated) and their associated integrated 

intensity values.GSE26258 studies oxacillin resistance by examining five replicates 

grown in tryptic soy broth (TSB) of oxacillin treated and untreated samples of VC30 and 

923 (S=10), profiled on JCVI PFGRC S. aureus 22K v6 array designed primarily based 

on strain COL (GEO accession GPL5879). This non-commercial platform with 5056 70-

mer probes with 4783 unique probes. GEO provided probe sequences for this platform. 

GEO values were provided as both integrated intensity values and log2 ratios of differing 

treatments and strains (e.g., 923treated/923untreated and V3untreated/923untreated). For 

these datasets, we use intensities to calculate log2 ratios of treated versus untreated for 

each strain separately (e.g., T8 treated/T8 untreated, PA treated/PA untreated), revealing 

response mechanisms for individual strains, for consistency across data used in this study. 

One limitation to using these antibiotic susceptibility datasets is that they have not 

undergone proper peer review and there is a lack of information consistency on how data 

was generated experimentally. For example, there are no available MIC data for strains 

from GSE26400 (PA, C1, T8), GSE26358 (3577, 5612, 6939, 7210, and 378), GSE26258 

(VC30 and 923), and GSE26282 (1422 and 2798), so we cannot confirm the level of 

resistance for samples used in my work. Therefore, we assume that antibiotic 

concentrations used were close to MICs for each strain but cannot confirm this 

assumption. Antibiotic concentrations used to generate mRNA expression data were not 

provided for samples from GSE26282, GSE26258, or GSE26358. In GSE26400, the 

concentration was reported at mM rather than the clinical standard of mg/L92. Conversion 

of 16mM to mg/L would be over 23,000mg/L, around 4300% of the highest MIC 

reported (512mg/L)243, therefore we believe the mM to be a GEO typographical error 
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indicating C1 and T8 are high-level vancomycin resistant strains. Unfortunately, we 

attempted to communicate with the depositors of these datasets several times to clarify 

this confusion but did not receive any reply. Also, we do not know the details of how the 

experiment was performed, so it is possible parallel PA cultures were used to standardize 

C1 and T8 intensities (e.g., T8treated/PAtreated) since these were performed as two 

separate runs that may have occurred simultaneously. However, it is also possible that the 

PAfromT8 strain may have mutations not present in the PAfromC1 strain which could 

occur if the two runs were performed at different times. For this reason, we treat 

PAfromT8 and PAfromC1 as separate strains for this work. Finally, we do not know 

mechanisms, such as vanA, used by these strains to produce an antibiotic resistance 

phenotype, and sequenced genomes are not available for strains used in these studies. 

Probe sequences were available for these datasets though, so we used them to attempt to 

determine resistance mechanisms. We first select probe sequences for genes in operons 

with well-established associations to vancomycin resistance (VRSA, vanA operon)56 and 

methicillin resistance (MRSA, mecA operon)14,244. We also included the bla operon 

which has been associated methicillin resistance in the absence of the mecA operon14,244. 

We verify gene identify using these probe sequences using BLAST. Since GEO provided 

values as log ratios of differing strains of the same treatment condition 

(e.g., T8treated/PAtreated) with each raw intensity used for ratio calculations, we 

examine provided raw intensity values to better understand resistance mechanisms used 

by these strains (APPENDIX A). While we confirm that oxacillin samples (1422 and 

2798) do not have mecA expression, we notice for vancomycin resistant samples (T8, C1, 

and PA) that vanA operon gene expression can sometimes be detected in untreated 



120 

 

samples but not in treated samples (e.g., VRA0037, VRA0038, VRA0039, VRA0040, 

VRA0041, VRA0042, and VRA0043 for vraR, vraS, vraH, vraA, vraX, vraY, and vraZ, 

respectively), the opposite of what would be expected in a VRSA strain since the vanA 

operon has been shown to be constitutively or inducible expressed suggesting that 

detection should occur in vancomycin treated samples56. We fail to find another gene 

with sequence homology to these probes that might explain this expression pattern using 

BLAST. While these limitations can complicate conclusions drawn from this work, they 

are not significant enough to preclude the use of these datasets to examine antibiotic 

resistance in S. aureus.  

Figure A-1. Gene Expression Examination for Known Resistance Operons Provides 

Insight into Potential Resistance Mechanisms 

 
Gene expression heat map of raw intensity values for probes from GPL10597 for well-

characterized resistance operons, vanA for VRSA and mecA and bla for MRSA. 
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To examine vancomycin, oxacillin, or linezolid responses in a sensitive strain, we 

use data from antibiotic sensitive HG001 samples at GEO accession GSE7004077. This 

dataset contained 156 samples of over 40 experimental conditions including treatment 

with no antibiotic, 0.63mg/L vancomycin, 0.02mg/L flucloxacillin (like oxacillin), and 

0.10mg/L linezolid in TSB collected during both exponential phase and four hours after 

entrance into stationary phase, post-inoculation into treated media. Samples were profiled 

on gene level BaSysBio S. aureus T1 385K array 080604_SA_JH_Tiling (GEO accession 

GPL20586) on probes corresponding to a unique gene or complementary strand 

nucleotide sequence though exact probe sequences used for the platform are not provided 

(Table A-1). We note that this platform does not include probes for the vanA operon. 

GEO reported mRNA expression as quantile-normalized gene-level intensity values so 

we z-scored across all samples for normalization prior to use.  
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APPENDIX B. Justification Supplemental 

Justification for use of 20 pathways per panel and VC40vsmutS pathway signature 

to define vraS-driven resistance panels 

 We begin by using mutation-driven resistance pathway signatures,VC40vsmutS, 

HG001vsSG511, and WTvsgraS, for further analysis to justify the use of 20 pathways 

per panel in my study, which captures approximately 25% of the 164 S. aureus pathways 

from KEGG, 12.5% per tail. To do this, we define vraS-driven resistance pathway panels 

from the VC40vsmutS pathway signature as done in my study for the 20 pathway 

panels, except with 10, 13, 15, 18, 22, 25, 28, and 30 pathways per panel instead. We 

compare these new pathway panels as query against HG001vsSG511 and WTvsgraSR 

pathway signatures as reference using GSEA. From this analysis, we note that using 

panels containing 13 to 25 pathways do not substantially change similarities uncovered 

by GSEA when compared to verification signatures, while 28 and 30 panel pathways no 

longer detected similarities in WTvsgraSR and 10 panel pathways loses detection for 

the up-regulated panel and HG001vsSG511 (Figure B-1). We note that use of 15 and 25 

pathways per panel detect enrichment in the down-regulated panel for the signature that 

18, 20, and 22 pathways per panel does not detect. We will re-address this issue 

momentarily. 
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Figure B-1. Using 20 Pathways per Panel Does Not Affect Pathway Panel Enrichment 

Results 

 

Heat map of normalized enrichment scores (NES) achieved from Gene Set Enrichment 

Analysis (GSEA) of verification signatures HG001vsSG511 and WTvsgraSR 

(references) and various sized pathway panels defined from VC40vsmutS illustrates the 

use of 20 pathways/panel does not substantially alter obtained results. 

 As justification for my use of the VC40vsmutS pathway signature to define 

vraS-driven resistance panels in my study, we examine how results may change if panels 

are derived from other datasets. To do this, we define graSR-driven pathway panels from 

HG001vsSG511 and WTvsgraSR in the same manner performed to derive the vraS-

driven resistance panels used in my study. We use the graSR-driven pathway panels as 

queries for GSEA versus the VC40vsmutS pathway signature as reference. We do not 

find a substantial change for up-regulated panels, despite variations in pathway panel size 



124 

 

(Figure B-2), supporting the conclusion that my up-regulated pathway panel is truly 

enriched. We lose enrichment in my down-regulated panel which confirms what was 

observed when pathway panels are defined from the VC40vsmutS pathway signature. 

We also note that using 15 or 25 pathways per panel lost enrichment in one of the two up-

regulated panels (Figure B-2), supporting my decision to select 20 pathways per panel 

rather than 15 or 25 pathways per panel for use in the remainder of this study. We finally 

note that lysine biosynthesis pathways (M00016 and M00527) are the only pathways 

shared across leading-edges when we define panels from HG001vsSG511 (NES>1.91, p-

value<0.001) and WTvsgraSR (NES>2.16, p-value<0.001), showing my overall 

findings regarding lysine biosynthesis are not lost when graSR-driven resistance panels 

are used. 
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Figure B-2. Using Verification Signatures to Derive Pathway Panels Does Not Affect 

Pathway Panel Enrichment Results  

 

Heat map of normalized enrichment scores (NES) achieved from GSEA of 

VC40vsmutS signature (reference) and various sized pathway panels defined from 

HG001vsSG511 and WTvsgraSR signatures confirms true enrichment of up-regulated 

pathway panels not seen in down-regulated pathway panels. 

 

Justification for use of locus tags 

We use locus tags (e.g., SAUSA300_2200) rather than gene symbols (e.g., rpsS) to 

increase gene signature lengths and ensure pathway query set sizes are greater than 10 

since multiple locus tags can map to the same gene symbol (e.g., locus tags 

SAOUHSC_02989 and SAOUHSC_02491 from S. aureus NCTC 8325 have secY as their 

gene symbol in NCBI Genome), and longer gene signatures and query sets above 10 

items allow GSEA to calculate more robust NES for pathway signature generation65,67. 

While using locus tags increases the length of gene signatures, it does not improve 



126 

 

genome annotation since we notice in the platform used to profile most datasets used in 

this work (GPL10597) that a substantial number (26.8%) of probes have hypothetical 

annotation (i.e., no gene symbol and description) when probes are converted to gene 

symbols using NCBI databases and Position-Specific Iterative Basic Local Alignment 

Search Tool (PSI-BLAST)245, and find similar percentages when examining genome 

annotation across the seven S. aureus strains of varying methicillin and vancomycin 

sensitivities GPL10597 probes were designed to target, which is a common finding 

among bacterial genomes229,246. Unfortunately, lack of complete genome annotation 

weakens the detection ability of any gene expression and pathway enrichment analyses, 

including the approach used here, due to incomplete pathway database information. 

Justification for use of KEGG 

To address pathway database completeness, we evaluate several knowledgebases, 

including Molecular Signatures Database (MSigDB) version 6.267,152, Reactome version 

67155, Gene Ontology version 12.068,157,158, and Pathosystems Resource Integration Center 

(PATRIC) version 3.5.7168,247, for gene, pathway, and strain inclusion, all important 

considerations when selecting a pathway database65. We find these knowledgebases 

differ substantially in gene coverage (G=2458, G=730, G=657, and G=0 for KEGG, GO, 

PATRIC, and Reactome, respectively), when we compare the number of unique locus 

tags for the 12 S. aureus species with targeted genes on platforms used for datasets in this 

work. KEGG and PATRIC both have locus tags and gene symbols available whereas GO 

only has gene symbols, which limited my ability to use GO. Further, we find KEGG had 

326 pathways specific to S. aureus with 53 strains with varying resistances represented 

while PATRIC had 94 pathways with one strain represented. Therefore, we use KEGG 
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for this work since it has the largest number of genes, pathways, and represented 

S. aureus genomes between knowledgebases at the time of this study, though we 

acknowledge that knowledgebases are constantly updated as biological understanding 

advances so we recommend a thorough knowledgebase analysis be done prior to any use 

of my pathway signature approach. 
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APPENDIX C. Complete Separation Data 

 

Compared to human trials, bacterial experiments frequently have a small sample size (<5 

samples/condition)201,202, which can lead to complete separation during random model 

validation methods (i.e., principal component analysis (PCA) and logistic regression 

analysis)203-205. For example, we observe complete separation in both graSR-driven 

resistance datasets when unlogged or raw intensity gene expression values, for 

GSE50842 and GSE26016 respectively, are used for individual samples in PCA on 10 or 

100 randomly selected genes or when all dataset genes are selected (Figure C-1). We also 

find complete sample separation when using NES from 10 or 20 randomly selected 

pathways for PCA (data not shown). This separation is confirmed via leave one out cross 

validation (LOOCV) where we achieve 98% complete sample separation (r2=1.0) from 

1000 randomly selected 20-pathway panels whose membership excluded pathways from 

my vraS-driven resistance panels in both datasets. For this reason, we use a GSEA-based 

pathway signature comparison approach with a random modeling component to verify 

my vraS-driven and vancomycin susceptibility panels.  
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Figure C-1. Principal Component Analysis of Randomly Selected Genes 

 

Principal component analysis (PCA) shows complete separation of GSE50842 and 

GSE26016 samples regardless of number of genes selected, suggesting these datasets 

separate naturally and would not be good for traditional random model validation 

methods (i.e., principal component analysis (PCA) and logistic regression analysis). 
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Figure C-2. Principal Component Analysis of Randomly Selected Pathways 

 

Principal component analysis (PCA) shows complete separation of GSE50842 and 

GSE26016 samples regardless of number of pathways selected, suggesting these datasets 

separate naturally and would not be good for traditional random model validation 

methods (i.e., principal component analysis (PCA) and logistic regression analysis). 

 To assess if use of a dataset with more samples could introduce enough variation 

in gene expression to make PCA and logistic regression analysis work, we compare raw 

intensities for GSE26016 sample populations and find differences in variance (WT: 

172.9; graSR: 147.0) between WT and graSR (Table C-1). When looking at individual 

sample distributions, we note overlap of sample means and ranges, suggesting that more 

samples has the potential to produce enough variation though more work is needed to 

determine how many samples is enough. Experimental generation of a mRNA expression 
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dataset with enough samples for successful logistic regression analysis with random 

modeling could improve random modeling results using PCA and LOOCV. 

Table C-1. Individual Sample Statistics for GSE26016 Show Overlap Between WT 

and graSR Samples 

 WT graSR 

GSM 638321 638322 638323 638324 638325 638326 

Mean 5.89 5.36 5.95 5.11 6.21 5.54 

Range 

min 

0.19 0.14 0.14 0.13 0.13 0.12 

Range 

max 

113.19 71.70 82.85 78.34 76.05 72.98 

GSM refers to sample identification label in Gene Expression Omnibus (e.g., 

GSM638321).  



132 

 

APPENDIX D. Leading-edge Pathway Tables 

 

Table D-1 is derived from Gene Set Enrichment Analysis (GSEA) using vraS-driven 

resistance panels defined from the VC40vsmutS signature (query) and HG001vsSG511 

and WTvsgraSR resistance signatures (references). 

Table D-2 is derived from GSEA using vancomycin susceptibility (i.e., difference in 

response between resistant and sensitive strains) panels defined from the T8vsPA 

susceptibility signature (query) and C1vsPA susceptibility signature (reference). 

Table D-3 is derived from GSEA using vraS-driven resistance panels (query) and 

T8vsPA and C1vsPA vancomycin susceptibility signatures (references). 

Table D-4 is derived from GSEA using vraS-driven resistance panels (query) and 

1422vs2798 and V3vs923 oxacillin susceptibility signatures (references). 

Table D-5 is derived from GSEA using vraS-driven resistance panels (query) and 

3577vs378, 5612vs378, 6939vs378, and 7210vs378 linezolid susceptibility signatures 

(references). 

Table D-6 is derived from GSEA using vraS-driven resistance panels (query) and 

HG001van, HG001fluc, and HG001line response signatures in a sensitive strain for 

vancomycin, flucloxacillin (like oxacillin), and linezolid responses, respectively 

(references). 
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Table D-1. Leading-edge Pathways Associated with vraS- and graSR-driven 

Resistance 

Panel Signature Module number 

Up HG001vs

SG511 

Dissimilatory nitrate reduction (M00530)*, Lysine biosynthesis 

via diaminopimelic acid aminotransferase (M00527)*, 

Histidine biosynthesis (M00026)*, Lysine biosynthesis via 

succinyl-diaminopimelic acid (M00016)*, D-Methionine 

transport system (M00238)*, Betaine biosynthesis (M00555)*, 

Arabinogalactan oligomer/maltooligosaccharide (M00491)*, 

Leucine biosynthesis (M00432)*, Phosphonate (M00223)*, 

Serine biosynthesis (M00020)* 

WTvs 

graS 

Lysine biosynthesis via succinyl-diaminopimelic acid 

(M00016)*, Lysine biosynthesis via diaminopimelic acid 

aminotransferase (M00527)*, Leucine biosynthesis (M00432)*, 

Histidine biosynthesis (M00026)*, Biotin biosynthesis BioW 

pathway (M00577), VraS-VraR cell-wall peptidoglycan 

synthesis (M00480), Biotin biosynthesis (M00123), Putative 

peptide (M00583), Osmoprotectant transport system (M00209), 

Serine biosynthesis (M00020), Cationic antimicrobial peptide 

(M00732), Betaine biosynthesis (M00555), Dissimilatory 

nitrate reduction (M00530) 

Down HG001vs

SG511 

Iron complex (M00240)*, Spermidine/ putrescine transport 

system (M00299)*, Nickel complex (M00440)*, ABC-2 type 

(M00254)*, ArlS-ArlR virulence regulation (M00716), 

Menaquinone biosynthesis (M00116), Amino-acyl tRNA 

biosynthesis eukaryotes (M00359), Amino-acyl tRNA 

biosynthesis prokaryotes (M00360), Adenine ribonucleotide 

biosynthesis (M00049), TCA cycle second carbon oxidation 

(M00011) 

WTvs 

graS 

Amino-acyl tRNA biosynthesis prokaryotes (M00360)*, 

Amino-acyl tRNA biosynthesis eukaryotes (M00359)*, 

Guanine ribonucleotide biosynthesis (M00050)*, Adenine 

ribonucleotide biosynthesis (M00049)*, TCA cycle (M00009), 

TCA cycle second carbon oxidation (M00011), Succinate 

dehydrogenase prokaryotes (M00149), Acylglycerol 

degradation (M00098), ABC-2 type (M00254), Uridine 

monophosphate biosynthesis (M00051), TCA first carbon 

oxidation (M00010), Energy-coupling factor (M00582), 

Spermidine/ putrescine transport system (M00299) 

Modules listed in order of normalized enrichment score from most to least change in 

pathway activity. * represents Gene Set Enrichment Analysis derived p-value<0.05. 

HG001vsSG511 signature represents the difference in resistance between strains with 

graSR mutations. WTvsgraSR signature approximates graS-driven resistance. Bold font 

indicates a pathway with known association to antibiotic resistance (vraSR or graSR-
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driven). Pathways that have a * but do not have bold font are novel pathways associated 

with antibiotic resistance identified from my pathway signature approach. 
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Table D-2. Leading-edge Pathways Associated with Vancomycin Susceptibility in 

S. aureus 

Panel Signature Module number 

Up C1vsPA Oligopeptide (M00439)*, Threonine biosynthesis (M00018)*, 

Lysine biosynthesis via succinyl-diaminopimelic acid 

(M00016)*, D-Methionine transport system (M00238)*, Lysine 

biosynthesis via diaminopimelic acid aminotransferase 

(M00527)*, Riboflavin biosynthesis (M00125)*, 

Osmoprotectant transport system (M00209)*, Energy-coupling 

factor (M00582), VraS-VraR cell-wall peptidoglycan synthesis 

(M00480)*, Pantothenate biosynthesis (M00119), Betaine 

biosynthesis (M00555), Isoleucine biosynthesis (M00570), 

Formaldehyde assimilation ribulose monophosphate (M00345), 

Uridine monophosphate biosynthesis (M00051), Cationic 

antimicrobial peptide resistance VraFG transporter (M00730), 

Glyoxylate cycle (M00012) 

Down C1vsPA Iron complex (M00240)*, Amino-acyl tRNA biosynthesis 

prokaryotes (M00360)*, Dissimilatory nitrate reduction 

(M00530)*, Amino-acyl tRNA biosynthesis eukaryotes 

(M00359)*, Nickel complex (M00440)*, Ribosome bacteria 

(M00178)*, Fructose-specific (M00273)*, TCA cycle second 

carbon oxidation (M00011)*, Glucose- specific (M00809)*, 

Spermidine/ putrescine transport system (M00299)*, NreB-

NreC dissimilatory nitrate/nitrite reduction (M00483)*, 

Putative peptide (M00583), Cytochrome C oxidase (M00154)*, 

TCA cycle (M00009), F-type ATPase prokaryotes and 

chloroplasts (M00157), Urea cycle (M00029), Siroheme 

biosynthesis (M00846), Cytochrome aa3-600 menaquinol 

oxidase (M00416), Succinate dehydrogenase prokaryotes 

(M00149), Cystine (M00234) 

Modules listed in order of normalized enrichment score from most to least change in 

pathway activity. * represents Gene Set Enrichment Analysis derived p-value<0.05. 

Italics font indicates a pathway with known association to vancomycin intermediate 

resistance lacking the vanA operon. Pathways that have a * but do not have bold font are 

novel pathways associated with vancomycin intermediate resistance identified from my 

pathway signature approach. 
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Table D-3 Leading-edge Pathways Associated with vraS-driven Resistance and 

Vancomycin Susceptibility in S. aureus 

Panel Signature Module number 

Up T8 vs PA Osmoprotectant transport system (M00209)*, D-Methionine 

transport system (M00238)*, Lysine biosynthesis via succinyl-

diaminopimelic acid (M00016), VraS-VraR cell-wall 

peptidoglycan synthesis (M00480)*, Lysine biosynthesis via 

diaminopimelic acid aminotransferase (M00527), Betaine 

biosynthesis (M00555)*, Cationic antimicrobial peptide 

resistance VraFG transporter (M00730)  

C1 vs PA Lysine biosynthesis via succinyl-diaminopimelic acid 

(M00016)*, D-Methionine transport system (M00238)*, 

Lysine biosynthesis via diaminopimelic acid aminotransferase 

(M00527)*, Osmoprotectant transport system (M00209)*, 

VraS-VraR cell-wall peptidoglycan synthesis (M00480)*, 

Betaine biosynthesis (M00555) 

Down T8 vs PA Amino-acyl tRNA biosynthesis prokaryotes (M00360)*, 

Amino-acyl tRNA biosynthesis eukaryotes (M00359)*, TCA 

cycle second carbon oxidation (M00011)*, TCA cycle 

(M00009)*, Iron complex (M00240)*, Nickel complex 

(M00440)*, Spermidine/ putrescine transport system 

(M00299)*, Succinate dehydrogenase prokaryotes (M00149)*, 

ArlS-ArlR two-component regulatory system (M00716), 

Guanine ribonucleotide biosynthesis (M00050), Menaquinone 

biosynthesis (M00116), Adenine ribonucleotide biosynthesis 

(M00049), Shikimate pathway (M00022) 

C1 vs PA Iron complex (M00240)*, Amino-acyl tRNA biosynthesis 

prokaryotes (M00360)*, Amino-acyl tRNA biosynthesis 

eukaryotes (M00359)*, Nickel complex (M00440)*, TCA 

cycle second carbon oxidation (M00011)*, Adenine 

ribonucleotide biosynthesis (M00049)*, Spermidine/ 

putrescine transport system (M00299)*, Guanine 

ribonucleotide biosynthesis (M00050), TCA cycle (M00009), 

Succinate dehydrogenase prokaryotes (M00149), ArlS-ArlR 

virulence regulation (M00716), Menaquinone biosynthesis 

(M00116) 

Modules listed in order of normalized enrichment score from most to least change in 

pathway activity. * represents Gene Set Enrichment Analysis derived p-value<0.05. Bold 

font indicates a pathway with known association to vraS-driven antibiotic resistance. 

Italics font indicates a pathway with known association to vancomycin intermediate 

resistance lacking the vanA operon. Pathways that have a * but do not have bold font are 

novel pathways associated with vancomycin intermediate resistance identified from my 

pathway signature approach. 
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Table D-4. Leading-edge Pathways Associated with vraS-driven Resistance and 

Oxacillin Susceptibility in S. aureus 

Panel Signature Module number 

Up 1422vs2798  Leucine biosynthesis (M00432)*, Dissimilatory nitrate 

reduction (M00530), Inosine monophosphate biosynthesis 

(M00048), Cytochrome D ubiquinol oxidase (M00153), 

Betaine biosynthesis (M00555), Phosphonate (M00223), 

Putative peptide (M00583), Lysine biosynthesis via 

diaminopimelic acid aminotransferase (M00527), Histidine 

biosynthesis (M00026), Lysine biosynthesis via succinyl-

diaminopimelic acid (M00016), Cationic antimicrobial 

peptide (M00732) 

V3vs923 Dissimilatory nitrate reduction (M00530)*, Inosine 

monophosphate biosynthesis (M00048)*, Osmoprotectant 

transport system (M00209)*, Peptides/nickel (M00239), 

Cationic antimicrobial peptide (M00732), Serine 

biosynthesis (M00020), VraS-VraR cell-wall peptidoglycan 

synthesis (M00480), D-Methionine transport system 

(M00238), Cationic antimicrobial peptide resistance VraFG 

transporter (M00730), Putative peptide (M00583), Lysine 

biosynthesis via succinyl-diaminopimelic acid (M00016), 

Biotin biosynthesis (M00123), Biotin biosynthesis BioW 

pathway (M00577), Lysine biosynthesis via diaminopimelic 

acid aminotransferase (M00527) 

Down 1422vs2798  TCA cycle (M00009)*, TCA cycle second carbon oxidation 

(M00011)*, Molybdate transport system (M00189), 

Succinate dehydrogenase prokaryotes (M00149), ArlS-ArlR 

virulence regulation (M00716), Acylglycerol degradation 

(M00098), TCA first carbon oxidation (M00010), ABC-2 

type transport system (M00254) 

V3vs923 TCA cycle (M00009)*, Uridine monophosphate 

biosynthesis (M00051)*, TCA cycle second carbon 

oxidation (M00011)*, TCA first carbon oxidation 

(M00010)*, Nickel complex (M00440), Molybdate 

transport system (M00189), Menaquinone biosynthesis 

(M00116), Adenine ribonucleotide biosynthesis (M00049), 

Succinate dehydrogenase prokaryotes (M00149), 

Acylglycerol degradation (M00098), Iron complex 

(M00240), Spermidine/ putrescine transport system 

(M00299), Energy-coupling factor (M00582) 

Modules listed in order of normalized enrichment score from most to least change in 

pathway activity. * represents Gene Set Enrichment Analysis derived p-value<0.05. Bold 

font indicates a pathway with known association to vraS-driven antibiotic resistance. 

Italics font indicates a pathway with known association to vancomycin intermediate 

resistance lacking the vanA operon. Underlined pathways indicate as oxacillin resistance 
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association. Pathways that have a * but are not underlined are novel pathways associated 

with oxacillin intermediate resistance identified from my pathway signature approach. 
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Table D-5. Leading-edge Pathways Associated with vraS-driven Resistance and 
Linezolid Susceptibility in S. aureus  

Panel Signature Module number 

Up 3577vs378 D-Methionine transport system (M00238)*, Lysine biosynthesis 

via diaminopimelic acid aminotransferase (M00527)*, Inosine 

monophosphate biosynthesis (M00048)*, Cationic antimicrobial 

peptide (M00732), Leucine biosynthesis (M00432), Lysine 

biosynthesis via succinyl-diaminopimelic acid (M00016), Cationic 

antimicrobial peptide resistance VraFG transporter (M00730) 

5612vs378 Inosine monophosphate biosynthesis (M00048)*, D-Methionine 

transport system (M00238)*, Lysine biosynthesis via succinyl-

diaminopimelic acid (M00016)*, Lysine biosynthesis via 

diaminopimelic acid aminotransferase (M00527)*, Histidine 

biosynthesis (M00026), Leucine biosynthesis (M00432), 

Phosphonate (M00223) 

6939vs378 Inosine monophosphate biosynthesis (M00048)*, D-Methionine 

transport system (M00238), Peptides/nickel (M00239), 

Arabinogalactan oligomer/maltooligosaccharide (M00491), Lysine 

biosynthesis via succinyl-diaminopimelic acid (M00016), Lysine 

biosynthesis via diaminopimelic acid aminotransferase (M00527)*, 

VraS-VraR cell-wall peptidoglycan synthesis (M00480), Serine 

biosynthesis (M00020), Cationic antimicrobial peptide resistance 

VraFG transporter (M00730), Cationic antimicrobial peptide 

(M00732) 

7210vs378 Dissimilatory nitrate reduction (M00530)*, Osmoprotectant 

transport system (M00209)*, Phosphonate (M00223)* 

Down 3577vs378 TCA cycle second carbon oxidation (M00011)*, Molybdate 

transport system (M00189)*, TCA cycle (M00009)*, Menaquinone 

biosynthesis (M00116), Succinate dehydrogenase prokaryotes 

(M00149)* 

5612vs378 TCA cycle (M00009)*, TCA cycle second carbon oxidation 

(M00011)*, Spermidine/ putrescine transport system (M00299)*, 

Succinate dehydrogenase prokaryotes (M00149)*, Menaquinone 

biosynthesis (M00116), TCA cycle first carbon oxidation 

(M00010), Molybdate transport system (M00189), Amino-acyl 

tRNA biosynthesis prokaryotes (M00360) 

6939vs378 Uridine monophosphate biosynthesis (M00051)*, Iron complex 

(M00240)*, Energy-coupling factor (M00582), TCA cycle first 

carbon oxidation (M00010), ABC-2 type transport system 

(M00254) 

7210vs378 TCA cycle (M00009)*, TCA cycle second carbon oxidation 

(M00011), Amino-acyl tRNA biosynthesis eukaryotes (M00359), 

Spermidine/ putrescine transport system (M00299), Adenine 

ribonucleotide biosynthesis (M00049), Succinate dehydrogenase 

prokaryotes (M00149), Amino-acyl tRNA biosynthesis 

prokaryotes (M00360), Nickel complex (M00440), Molybdate 

transport system (M00189), Menaquinone biosynthesis (M00116) 
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Modules listed in order of normalized enrichment score from most to least change in pathway 

activity. * represents Gene Set Enrichment Analysis derived p-value<0.05. Bold font 

indicates a pathway with known association to vraS-driven antibiotic resistance. Italics font 

indicates a pathway with known association to vancomycin intermediate resistance 

lacking the vanA operon. Green font indicates a pathway with known association to 

linezolid resistance.  
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Table D-6. Leading-edge Pathways Associated with vraS-driven Resistance and 

Responses 

Panel Signature Module number 

Up HG001van 

(vancomycin 

treated vs 

untreated) 

Leucine biosynthesis (M00432)*, Osmoprotectant 

transport system (M00209)*, Lysine biosynthesis via 

diaminopimelic acid aminotransferase (M00527)*, Biotin 

biosynthesis BioW pathway (M00577), Biotin biosynthesis 

(M00123), VraS-VraR cell-wall peptidoglycan synthesis 

(M00480), Betaine biosynthesis (M00555), Lysine 

biosynthesis via succinyl-diaminopimelic acid (M00016) 

HG001fluc 

(flucloxacillin 

treated vs 

untreated) 

Inosine monophosphate biosynthesis (M00048)*, Lysine 

biosynthesis via succinyl-diaminopimelic acid (M00016)*, 

Dissimilatory nitrate reduction (M00530)*, D-Methionine 

transport system (M00238)*, Histidine biosynthesis 

(M00026)*, Lysine biosynthesis via diaminopimelic acid 

aminotransferase (M00527)*, Osmoprotectant transport 

system (M00209)*, Putative peptide (M00583)* 

HG001line 

(linezolid 

treated vs 

untreated) 

Inosine monophosphate biosynthesis (M00048)*, 

Dissimilatory nitrate reduction (M00530)*, Lysine 

biosynthesis via diaminopimelic acid aminotransferase 

(M00527), Putative peptide (M00583)*, Lysine 

biosynthesis via succinyl-diaminopimelic acid (M00016), 

Leucine biosynthesis (M00432), Serine biosynthesis 

(M00020) 

Down HG001van 

(vancomycin 

treated vs 

untreated) 

Menaquinone biosynthesis (M00116), Energy-coupling 

factor (M00582), Uridine monophosphate biosynthesis 

(M00051), 

ABC-2 type (M00254), Succinate dehydrogenase 

prokaryotes (M00149), Shikimate pathway (M00022), 

Molybdate transport system (M00189) 

HG001fluc 

(flucloxacillin 

treated vs 

untreated) 

Iron complex (M00240)*, Spermidine/ putrescine transport 

system (M00299)*, Amino-acyl tRNA biosynthesis 

prokaryotes (M00360)*, Nickel complex (M00440)*, 

Amino-acyl tRNA biosynthesis eukaryotes (M00359), 

Menaquinone biosynthesis (M00116), Energy-coupling 

factor (M00582) 

HG001line 

(linezolid 

treated vs 

untreated) 

Iron complex (M00240)*, Spermidine/ putrescine transport 

system (M00299)*, Menaquinone biosynthesis 

(M00116)*, Uridine monophosphate biosynthesis 

(M00051), Amino-acyl tRNA biosynthesis prokaryotes 

(M00360), Amino-acyl tRNA biosynthesis eukaryotes 

(M00359), TCA first carbon oxidation (M00010)*, 

Energy-coupling factor (M00582) 

Modules listed in order of normalized enrichment score from most to least change in 

pathway activity. * represents Gene Set Enrichment Analysis derived p-value<0.05. Bold 
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font indicates a pathway with known association to vraS-driven antibiotic resistance. 

Italics font indicates a pathway with known association to vancomycin intermediate 

resistance lacking the vanA operon. Underlined pathways indicate as oxacillin resistance 

association. Green font indicates a pathway with known association to linezolid 

resistance. 
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APPENDIX E. Significant Pathways Associated with Vancomycin Response in S. aureus 

Panel Signature Module number 

Up T8treatvsT8unt Oligopeptide (M00439), Methionine transport system (M00238), Threonine biosynthesis 

(M00018), Energy-coupling factor (M00582), C5 isoprenoid biosynthesis mevalonate 

pathway(M00095), Twin-arginine translocation system (M00336), Lysine biosynthesis via 

succinyl-diaminopimelic acid (M00016), Formaldehyde assimilation ribulose monophosphate 

(M00345), Osmoprotectant transport system (M00209), VraS-VraR cell-wall peptidoglycan 

synthesis (M00480), Glyoxylate cycle (M00012), Betaine biosynthesis (M00555) 

C1treatvsC1unt Threonine biosynthesis (M00018), VraDE transporter (M00737), Cationic antimicrobial 

peptide resistance lysyl-phosphatidylglycerol (L-PG) synthase MprF (M00726), Cationic 

antimicrobial peptide resistance VraFG transporter (M00730), Energy-coupling factor 

(M00582), Oligopeptide (M00439), D-Methionine transport system (M00238), Bacitracin 

transport system (M00314), Lysine biosynthesis via diaminopimelic acid aminotransferase 

(M00527), Lysine biosynthesis via succinyl-diaminopimelic acid (M00016), GraS-GraR two-

component regulatory system (M00733), Riboflavin biosynthesis (M00125), Glyoxylate cycle 

(M00012), Inositol phosphate metabolism (M00131) 

PAfromT8treatvs 

PAfromT8unt 

Nickel complex (M00440), Iron complex (M00240), Spermidine/putrescine transport system 

(M00299), Multidrug resistance efflux pump MepA (M00705), F-type ATPase prokaryotes 

and chloroplasts (M00157), Glyoxylate cycle (M00012) 

PAfromC1treatvs 

PAfromC1unt 

Iron complex (M00240), Cationic antimicrobial peptide resistance VraFG transporter 

(M00730), Histidine biosynthesis (M00026), -Lactam resistance Bla system (M00627), 
GraS-GraR two-component regulatory system (M00733), Lysine biosynthesis via 

diaminopimelic acid aminotransferase (M00527), Cationic antimicrobial peptide resistance, 

lysyl-phosphatidylglycerol synthase MprF (M00726), Peptides/nickel transport system 

(M00239), Betaine biosynthesis (M00555), Zinc transport system (M00242), Cytochrome c 

oxidase (M00154), Biotin biosynthesis (M00577) 
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Panel Signature Module number 

Down T8treatvsT8unt Amino-acyl tRNA biosynthesis prokaryotes (M00360), TCA cycle second carbon oxidation 

(M00011), Dissimilatory nitrate reduction (M00530), Amino-acyl tRNA biosynthesis 

eukaryotes (M00359), Ribosome bacteria (M00178), Vancomycin resistance (M00651), TCA 

cycle (M00009), Nickel complex (M00440), Urea cycle (M00029), Siroheme biosynthesis 

(M00846), Pyruvate oxidation (M00307), Arginine biosynthesis (M00844), Glucose-specific 

II component (M00809), Cytochrome c oxidase (M00154), Succinate dehydrogenase 

(M00149), F-type ATPase prokaryotes and chloroplasts (M00157), Cystine transport system 

(M00234), Arginine biosynthesis (M00845), Trehalose-specific II component (M00270), 

Lysine degradation (M00032), NreB-NreC dissimilatory nitrate/nitrite reduction two-

component regulatory system (M00483), Polyamine biosynthesis (M00134), Maltose and 

glucose-specific II component (M00266), N,N'-Diacetylchitobiose transport system (M00606), 

Glucose/mannose transport system (M00605) 

C1treatvsC1unt Ribosome bacteria (M00178), Amino-acyl tRNA biosynthesis prokaryotes (M00360), Amino-

acyl tRNA biosynthesis eukaryotes (M00359), Dissimilatory nitrate reduction (M00530), 

Nickel complex (M00440), Vancomycin resistance (M00651), Siroheme biosynthesis 

(M00846), Iron complex (M00240), RNA polymerase bacteria (M00183), Pyruvate oxidation 

(M00307), TCA cycle second carbon oxidation (M00011), Glucose-specific II component 

(M00809), F-type ATPase prokaryotes and chloroplasts (M00157), Molybdate transport 

system (M00189), NreB-NreC dissimilatory nitrate/nitrite reduction two-component 

regulatory system (M00483), Phosphate acetyltransferase-acetate kinase pathway (M00579), 

Cytochrome aa3-600 menaquinol oxidase (M00416), Fructose-specific II component 

(M00273), Spermidine/putrescine transport system (M00299), ResE-ResD two-component 

regulatory system (M00458) 

PAfromT8treatvs 

PAfromT8unt 

Vancomycin resistance (M00651), Uridine monophosphate biosynthesis (M00051), Putative 

ABC transport system (M00211), Isoleucine biosynthesis (M00570), ABC-2 type transport 

system (M00254), Inosine monophosphate biosynthesis (M00048), Pyruvate oxidation 

(M00307), Pentose phosphate pathway archaea (M00580), Maltose and glucose-specific II 

component (M00266) 
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Panel Signature Module number 

Down PAfromC1treatvs 

PAfromC1unt 

Vancomycin resistance (M00651), Uridine monophosphate biosynthesis (M00051), Ribosome 

bacteria (M00178), Siroheme biosynthesis (M00846), Molybdate transport system (M00189), 

Putative ABC transport system (M00211), Glucose-specific II component (M00809), ABC-2 

type transport system (M00254), Glycolysis core module involving three-carbon compounds 

(M00002), Pentose phosphate pathway, non-oxidative phase (M00007), Cytochrome aa3-600 

menaquinol oxidase (M00416), Phosphate acetyltransferase-acetate kinase pathway 

(M00579), LytS-LytR two-component regulatory system (M00492), Maltose and glucose-

specific II component (M00266), ResE-ResD two-component regulatory system (M00458) 

Modules listed in order of normalized enrichment score from most to least change in pathway activity with all pathways 

achieving a Gene Set Enrichment Analysis derived p-value<0.05. Italics font indicates a pathway with known association to 

vancomycin intermediate resistance lacking the vanA operon. Red font are pathways associated with vancomycin resistance via 

the vanA operon. 
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APPENDIX F. KEGG Pathways Used in Pathway Signature Generation 

Category Subcategory No.a Module Descriptionsa 

Carbohydrate and lipid 

metabolism pathway 

modules 

Central 

carbohydrate 

metabolism 

M00001  Glycolysis (Embden-Meyerhof pathway) 

M00002 Glycolysis core module involving 3-carbon compounds 

M00003 Gluconeogenesis 

M00004 Pentose phosphate cycle 

M00005 Phosphoribosyl diphosphate biosynthesis 

M00006 Pentose phosphate pathway, oxidative phase 

M00007 Pentose phosphate pathway non-oxidative phase 

M00008 Entner-Doudoroff pathway 

M00009 Citrate cycle (TCA cycle, Kreb’s cycle) 

M00010 Citrate cycle first carbon oxidation 

M00011 Citrate cycle second carbon oxidation 

M00307 Pyruvate oxidation 

M00580 Pentose phosphate pathway archaea 

Other carbohydrate 

metabolism 

M00012 Glyoxylate cycle 

M00549 Nucleotide sugar biosynthesis 

M00632 Galactose degradation (Leloir pathway) 

Fatty acid 

metabolism 

M00082  Fatty acid biosynthesis initiation 

M00083 Fatty acid biosynthesis elongation 

M00086 -Oxidation acyl-CoA synthesis 

M00087 -Oxidation 

Lipid metabolism 
M00093 Phosphatidylethanolamine biosynthesis 

M00131 Inositol phosphate metabolism 

Terpenoid backbone 

biosynthesis 

M00095 C5 isoprenoid biosynthesis (mevalonate pathway) 

M00096 C5 isoprenoid biosynthesis (non-mevalonate pathway) 

M00364 C10-C20 isoprenoid biosynthesis bacteria 

M00365 C10-C20 isoprenoid biosynthesis archaea 

M00367 C10-C20 isoprenoid biosynthesis non-plant eukaryotes 
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Category Subcategory No.a Module Descriptionsa 

Nucleotide and amino acid 

metabolism pathway 

modules 

Purine metabolism 

M00048  Inosine monophosphate biosynthesis 

M00049 Adenine ribonucleotide biosynthesis 

M00050 Guanine ribonucleotide biosynthesis 

Pyrimidine 

metabolism 

M00051 Uridine monophosphate biosynthesis 

M00052 Pyrimidine ribonucleotide biosynthesis 

M00053 Pyrimidine deoxyribonuleotide biosynthesis 

 M00089 Triacylglycerol biosynthesis 

 M00098 Acylglycerol degradation 

Serine and threonine 

metabolism 

M00018  Threonine biosynthesis 

M00020 Serine biosynthesis 

M00555 Betaine biosynthesis 

Cysteine and 

methionine 

metabolism 

M00021 Cysteine biosynthesis 

M00034 Methionine salvage pathway 

M00035 Methionine degradation 

Branched-chain 

amino acid 

metabolism 

M00019 Valine/isoleucine biosynthesis 

M00036 Leucine degradation 

M00432 Leucine biosynthesis 

M00570 Isoleucine biosynthesis 

Lysine metabolism 

M00016 Lysine biosynthesis (succinyl-diaminopimelic acid) 

M00032 Lysine degradation 

M00527 
Lysine biosynthesis (diaminopimelic acid 

aminotransferase) 

Arginine and proline 

metabolism 

M00015 Proline biosynthesis 

M00028 Ornithine biosynthesis 

M00029 Urea cycle 

M00844 Arginine biosynthesis (ornithine => arginine) 

M00845 Arginine biosynthesis (glutamate => arginine) 

Polyamine 

biosynthesis 

M00134 Polyamine biosynthesis 

M00135 GABA biosynthesis eukaryotes 

Histidine 

metabolism 

M00026 Histidine biosynthesis 

M00045 Histidine degradation 
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Category Subcategory No.a Module Descriptionsa 

Nucleotide and amino acid 

metabolism pathway 

modules 

Aromatic amino acid 

metabolism 

M00022  Shikimate pathway 

M00023 Tryptophan biosynthesis 

M00024 Phenylalanine biosynthesis 

M00025 Tyrosine biosynthesis 

Other amino acid 

metabolism 
M00027 GABA (gamma-Aminobutyrate) shunt 

Cofactor and vitamin 

biosynthesis 

M00115 NAD biosynthesis 

M00116 Menaquinone biosynthesis 

M00119 Pantothenate biosynthesis 

M00120 Coenzyme A biosynthesis 

M00123 Biotin biosynthesis 

M00125  Riboflavin biosynthesis 

M00126 Tetrahydrofolate biosynthesis 

M00140 C1-unit interconversion prokaryotes 

M00141 C1-unit interconversion eukaryotes 

M00577 Biotin biosynthesis BioW pathway 

M00842 Tetrahydrobiopterin biosynthesis 

M00846 Siroheme biosynthesis 

Energy metabolism 

pathway modules 

Carbon fixation 

M00166 Reductive pentose phosphate cycle 

M00375 Hydroxypropionate-hydroxybutylate cycle 

M00579 Phosphate acetyltransferase-acetate kinase  

Nitrogen metabolism M00530 Dissimilatory nitrate reduction 

Sulfur metabolism M00176 Assimilatory sulfate reduction 

Genetic information 

processing structural 

complexes 

Methane metabolism M00345 Formaldehyde assimilation ribulose monophosphate 

DNA M00260 DNA polymerase III complex, bacteria 

RNA 
M00183 RNA polymerase bacteria 

M00394 RNA degradosome 

Ribosome M00178 Ribosome bacteria 
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Category Subcategory No.a Module Descriptionsa 

Environmental information 

processing structural 

complexes 

Mineral and organic 

ion transport system 

M00188 Glutathione biosynthesis 

M00189 Molybdate transport system 

M00190 Iron(III) transport system 

M00209 Osmoprotectant transport system 

M00299 Spermidine/ putrescine transport system 

Bacterial secretion 

system 

M00335 Secretion (sec) system 

M00336 Twin-arginine translocation (Tat) system 

M00429 Competence-related DNA transformation transporter 

Phosphotransferase 

system (PTS) II 

component 

M00266  Maltose and glucose-specific 

M00267 N-acetylglucosamine-specific 

M00268 Arbutin-like 

M00270 Trehalose-specific 

M00273 Fructose-specific 

M00274 Mannitol-specific 

M00279 Galactitol-specific 

M00281 Lactose-specific 

M00283 Ascorbate-specific 

M00809 Glucose- specific 

Environmental information 

processing 

ABC-2 type and other 

transport systems 

M00251 Teichoic acid 

M00254 ABC-2 type 

M00257 Hemin 

M00258 Putative ABC 

M00314 Bacitracin 

M00583 Putative peptide 

M00731 Bacitracin 

M00732 Cationic antimicrobial peptide 

M00817 Lantibiotic transport system 
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Category Subcategory No.a Module Descriptionsa 

Environmental 

information 

processing 

Metallic cation, iron-

siderophore and 

vitamin B12 transport 

system 

M00240  Iron complex 

M00242 Zinc 

M00581 Biotin transport system 

M00582 Energy-coupling factor 

M00792 Manganese/zinc 

Peptide and nickel 

transport system 

M00239 Peptides/nickel 

M00439 Oligopeptide 

M00440 Nickel 

Phosphate and amino 

acid transport system 

M00222 Phosphate 

M00223 Phosphonate 

M00234 Cystine 

M00238 D-Methionine transport system 

Saccharide, polyol, 

and lipid transport 

system 

M00196 Multiple sugar transport system 

M00211 Putative ABC 

M00491 Arabinogalactan oligomer/maltooligosaccharide 

M00605 Glucose/mannose transport system 

M00606 N,N'-Diacetylchitobiose transport system 

Energy metabolism 

structural complexes 
ATP synthesis 

M00149 Succinate dehydrogenase prokaryotes 

M00153 Cytochrome D ubiquinol oxidase 

M00154 Cytochrome C oxidase 

M00157 F-type ATPase prokaryotes and chloroplasts 

M00416 Cytochrome aa3-600 menaquinol oxidase 

Metabolism 

functional set 

modules 

Amino-acyl tRNA 
M00359 Amino-acyl tRNA biosynthesis eukaryotes 

M00360 Amino-acyl tRNA biosynthesis prokaryotes 

Nucleotide sugar 
M00361 Nucleotide sugar biosynthesis eukaryotes 

M00362 Nucleotide sugar biosynthesis prokaryotes  
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Category Subcategory No.a Module Descriptionsa 

Environmental 

information 

processing functional 

set modules 

Drug efflux 

transporter/pump 
M00737 Bacitracin resistance VraDE transporter 

Two-component 

regulatory system 

M00434 PhoR-PhoB (phosphate starvation response) 

M00454 KdpD-KdpE (potassium transport) 

M00458 ResE-ResD (aerobic and anaerobic respiration) 

M00459 VicK-VicR (cell wall metabolism) 

M00468 SaeS-SaeR (staphylococcal virulence regulation) 

M00479 DesK-DesR (membrane lipid fluidity regulation) 

M00480 VraS-VraR (cell wall peptidoglycan synthesis) 

M00483 NreB-NreC (dissimilatory nitrate/nitrite reduction) 

M00492 LytS-LytR 

M00495 AgrC-AgrA (exoprotein synthesis) 

M00716 ArlS-ArlR (virulence regulation) 

M00733 GraS-GraR (cationic antimicrobial peptide transport) 

M00734 BraS-BraR (bacitracin transport) 

Signature gene set 

module 

Metabolic capability M00616 Nitrate assimilation 

Drug resistance 

M00625 Methicillin resistance 

M00627 -Lactam resistance Bla system 

M00651 Vancomycin resistance 

M00700 Multi-drug resistance efflux pump AbcA 

M00702 Multi-drug resistance efflux pump NorB 

M00704 Tetracycline resistance efflux pump Tet38 

M00705 Multi-drug resistance efflux pump MepA 

M00725 Cationic antimicrobial peptide resistance dltABCD operon 

M00726 
Cationic antimicrobial peptide resistance lysyl-

phosphatidylglycerol synthase MprF 

M00729 Fluoroquinolone resistance 

M00730 Cationic antimicrobial peptide resistance VraFG transporter 

M00742 Aminoglycoside resistance 

No. = KEGG Module number, a Listed respectively. 


