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ABSTRACT 

 

Atherosclerotic cardiovascular disease (ASCVD) and subsequent adverse 

cardiovascular events remain highly prevalent in the U.S., making primary 

prevention an important goal. While the 2013 ACC/AHA Pooled Cohort Equations 

(PCE) remains the gold standard for cardiovascular event prediction, not 

represented in the model is cardiac electrophysiology, a major cause of sudden 

cardiac death. The electrocardiogram (ECG), a routinely available test that reflects 

one’s electrophysiologic health, may thus be useful for cardiovascular risk 

stratification in addition, and in comparison, to the PCE. Given the automated and 

highly correlated nature of its measurements, ECG data are well suited for analysis 

via machine learning. In this work, the value of aggregated ECG measurements for 

prediction of cardiovascular mortality is assessed in a nationwide cohort (NHANES 

III), via a comparative analysis of traditional survival analysis and machine 

learning methods. Overall, machine learning models could predict 10-year 

cardiovascular mortality with superior accuracy and event detection capacity 

compared to the PCE. Interestingly, only demographic and ECG data were 

necessary for such improved performance. Variable comparison between different 

prediction models provided insight into the relative importance of specific ECG 

components and the detection of silent myocardial infarctions as a possible 

underlying mechanism. 
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Chapter I 

INTRODUCTION 

 

1. Background 

Atherosclerotic cardiovascular disease (ASCVD) is a major cause of morbidity 

and mortality in the United States, with 580,000 incident heart attacks and 610,000 

incident strokes occurring each year1. The prevalence and cost burden of ASCVD 

continue to rise, with over 90 million affected adults and annual healthcare costs of 

over $400 billion1. While cardiovascular mortality has declined in recent decades, 

the rate of decline appears to be decelerating, thought to be related to the increasing 

prevalence of cardiovascular risk factors such as hypertension, diabetes, and 

obesity2. Therefore, primary prevention of ASCVD and subsequent major adverse 

cardiovascular events (MACE), defined as myocardial infarction, coronary heart 

disease-related death, and fatal and non-fatal stroke3, remains an important public 

health goal. 

The current gold standard for cardiovascular event risk estimation in the 

U.S. is the Pooled Cohort Equations (PCE)3, published by the American College of 

Cardiology (ACC) and the American Heart Association (AHA) in 2013. Briefly, the 

PCE is a stratified, multivariable Cox proportional hazards model that estimates 10-

year incident ASCVD event risk based on nine clinical variables. While the PCE is 

in routine clinical use in the U.S., its suboptimal calibration in specific patient 

populations have been noted, leading to updated clinical practice guidelines in 20194. 

While cardiac death was originally defined in the PCE as only those related to 

coronary heart disease, other types of cardiac death, such as those related to fatal 
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arrhythmias or heart failure, have been included as outcomes of interest in 

subsequent studies. From this perspective, the PCE may be missing important risk 

factors related to cardiac electrophysiology. Given such background, it is reasonable 

to consider whether information captured in the electrocardiogram (ECG), a 

routinely available and non-invasive test which reflects both coronary health and 

cardiac electrophysiology, may be useful for prediction of MACE. 

 

2. Electrocardiogram review 

 The standard 12-lead ECG captures the electrical activity of the heart in 

twelve separate tracings based on distinct combinations of positive and negative 

electrodes, known as leads. The twelve leads are named I, II, III, aVR, aVL, aVF, V1, 

V2, V3, V4, V5, and V6, and are grouped based on their anatomic locations, i.e. 

lateral (I, aVL, V5, V6), inferior (II, III, aVF), septal (V1, V2), and anterior (V3, V4) 

leads, which correspond to specific territories of the three coronary arteries. ECG 

tracings are recorded on standardized grid paper which allows measurement of 

various amplitudes and intervals, measured in millivolts and microseconds, 

respectively. The tracing of a normal heartbeat displays the P wave, PR segment, 

QRS complex, ST segment, and T wave, where diseases of the heart may manifest as 

pathological waves or aberrations in specific segments or intervals. While modern 

ECG equipment automatically measures hundreds of wave amplitudes and intervals 

at the time of ECG capture and produces preliminary interpretations based on 

proprietary algorithms, the final interpretation is made by a cardiologist, who 

typically relies on visual pattern recognition rather than quantitative computation. 

In clinical practice, only a small fraction of information available in the ECG are 

utilized, e.g. identifying ischemic waveform changes for assessing the risk of an 
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active heart attack or using the corrected QT interval for medication selection. In 

medical research, while isolated ECG components have been studied for their 

capacity in cardiovascular risk stratification, the predictive value of aggregated ECG 

measurements remain mostly unknown. 

 

3. Healthcare research environment 

 The widespread adoption of electronic health records (EHR) in the U.S. since 

the 2009 Health Information Technology for Economic and Clinical Health Act has 

resulted in large-scale, longitudinal data accumulation in healthcare systems. 

Availability of such “big data”, in addition to recent advances in machine learning 

(especially deep learning) and availability of affordable computing power, has 

provided a fertile environment for a new generation of clinical prediction models 

based on machine learning methods. Compared to traditional statistical analysis, 

machine learning models provide greater model capacity and flexibility to handle 

large amounts of correlated data. In this sense, machine learning methods are a 

natural fit to utilizing aggregated ECG data for cardiovascular event prediction. 

 

4. Problem statement 

While the 2013 PCE remains the gold standard for ASCVD event prediction, 

not represented in the model are risk factors related to cardiac electrophysiology, a 

major cause of sudden cardiac death. The ECG, a routinely available test that can 

reflect both coronary and electrophysiologic health, represents an ideal candidate for 

assessment of risk stratification value in addition, and in comparison, to the PCE. 

Given the automated, high-dimensional, and highly correlated nature of its 
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measurements, ECG data are well suited for analysis via machine learning methods 

that can handle such data complexity. 

 

5. Research objectives 

In this work, the primary objective is to assess the value of aggregated ECG 

measurements for prediction of cardiovascular mortality in a nationwide cohort, via 

both traditional survival analysis and machine learning methods. Secondary 

objectives include examination of specific ECG components to assess their relative 

contribution to cardiovascular risk stratification and to gain insight into the 

underlying mechanism for prediction. 

 

6. Research hypothesis 

 Aggregated ECG data are useful for cardiovascular risk prediction, in 

addition and in comparison to traditional cardiovascular risk factors represented in 

the PCE. 
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Chapter II. 

REVIEW OF RELATED LITERATURE 

 

1. Standard model for ASCVD event risk estimation 

a) The 2013 ACC/AHA Pooled Cohort Equations 

The 2013 PCE, developed and endorsed by the ACC and AHA, represents the 

current gold standard for prediction of ASCVD events in the general U.S. 

population4. Outcome events of interest are adverse events related to ASCVD, or 

MACE, originally defined as acute coronary syndrome (myocardial infarction), 

sudden cardiac death (related to coronary heart disease), and fatal- and non-fatal 

stroke. The PCE are sex- and race- stratified multivariable Cox proportional hazards 

(Cox PH) models that estimate 10-year ASCVD event risk, derived from five 

community-based, longitudinal cohorts (Atherosclerosis Risk in Communities, 

Cardiovascular Health Study, Coronary Artery Risk Development in Young Adults, 

Framingham Original, Framingham Offspring). These derivation cohorts included 

24,626 participants in total, who were 40-79 years of age and enrolled between 1968 

and 1990. The PCE utilizes nine routinely available clinical variables with known 

association with ASCVD risk, namely age, sex, race (white or African American), 

total cholesterol, high-density lipoprotein (HDL) cholesterol, systolic blood pressure, 

current treatment for hypertension, diabetes mellitus, and current smoking status, 

along with selected age-interaction terms. The full model parameters and applied 

examples are shown in Figure 1. The 10-year event risk estimate from the PCE is 

recommended to be utilized as part of clinician-patient discussion for risk factor 

modification based on lifestyle changes (e.g. healthy diet, regular exercise, and 
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smoking cessation) and to guide initiation of pharmacologic therapy, with 10-year 

risk cutoff of >7.5% for lipid-lowering therapy (i.e. statins)4.  

 

Figure 1. The 2013 ACC/AHA Pooled Cohort Equations. Adapted from: 3 
 

b) Assessing the PCE and opportunities for improvement 

While the PCE reported good discrimination (c-index 0.718-0.818) and 

calibration (chi square 4.86-7.25)3 at the time of its publication, follow-up studies 
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have since revealed suboptimal calibration in various population subgroups. In 

general, the PCE were shown to overestimate ASCVD event risk in more 

contemporary cohorts (including Physicians’ Health Study, Women’s Health Study, 

Women’s Health Initiative-Observational Cohort, Multi-Ethnic Study of 

Atherosclerosis, Reasons for Geographic and Racial Differences in Stroke)5, with 

particularly variable risk estimates among certain demographic groups (e.g. black 

men)6. Meanwhile, other studies have found significant underestimation of risk 

among specific patient subgroups, such as those with autoimmune diseases7, human 

immunodeficiency virus infection8, or disadvantaged socioeconomic background9,10. 

Such miscalibration may be due to the outdated nature of the PCE derivation 

cohorts which do not reflect secular changes in cardiovascular risk profile and 

disease management that have occurred in recent decades5, as well as additional 

cardiovascular risk factors that are not captured by the PCE4. 

In addition to suboptimal calibration, statistical design concerns have been 

raised regarding the PCE. These include possible violation of the underlying 

proportional hazards assumption, whose validity is necessary for a Cox PH model for 

proper estimation of its coefficients, and selection of interaction terms based on 

statistical significance, which can lead to overfitting of the model in the absence of 

appropriate regularization techniques6. Furthermore, there is mounting evidence 

that in addition to presence or magnitude of a risk factor, duration and variability 

over time are also important determinants of risk11. Among known risk factors for 

ASCVD, high variability in blood pressure, LDL cholesterol, blood glucose, and body 

weight have been shown to be associated with increased cardiovascular risk, where 

in contrast, low variability in heart rate appears to be associated with increased 

cardiovascular risk11. Such temporal variation, while containing important risk-
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stratifying information, cannot be captured by models based on the standard Cox PH 

framework such as the PCE, signaling the need for a more advanced model 

framework. 

Despite these concerns, the PCE remains the best validated ASCVD risk 

assessment tool in the U.S., compared to older prediction models such as the 

Framingham risk score4,12. There have been efforts to recalibrate and revise the PCE 

based on more modern cohorts5,6, and to expand its scope to address change in 

ASCVD risk factors in response to therapy13. The recently updated ACC/AHA 

clinical practice guidelines from 2019 recommend active consideration of other 

ASCVD risk-enhancing factors that are not part of the PCE, including family 

history, high-risk race/ethnicity (e.g. South Asian ancestry), primary 

hypercholesterolemia, metabolic syndrome, chronic kidney disease, chronic 

inflammatory conditions, premature menopause, pre-eclampsia, as well as 

additional biomarkers (C-reactive protein, Lp(A), apoB), ankle-brachial index, and 

coronary artery calcium score (CAC score)4. The PCE is recommended to be used as 

a baseline risk assessment tool, from which additional risk stratification and 

management decisions can be made based on consideration of patient-specific 

factors4. 

However, aside from the recommendation to inquire about family history, 

there are still no specific recommendations related to electrophysiologic risk factors 

or sudden cardiac death. Several studies have identified specific ECG components 

that can provide useful cardiovascular risk stratification beyond a standardized risk 

calculator14,15, suggesting the value of the ECG for further improving upon the PCE.  
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2. Challenges in modern healthcare research 

The specific challenges related to leveraging modern healthcare data for 

clinical prediction models are twofold: issues related to data complexity and model 

complexity16,17. These issues and relevant examples are examined in the following 

sections. 

 

a) Issues related to data complexity 

i) Heterogeneity and scale 

Healthcare data consist of large collections of different data types, both 

clinical and non-clinical, in structured and unstructured forms. They may be 

continuous/numeric (vital signs, laboratory values, sensor data), categorical (medical 

diagnosis and procedure codes), free text (clinical notes), image (radiology studies, 

pathology slides), administrative (encounter and claims data), among others. 

Utilizing such heterogeneous data in traditional statistical models is challenging as 

model input must typically be structured in a limited number of relevant variables. 

Potential solutions to address such large-scale heterogeneity in clinical data 

include computational phenotyping and representation learning16,17. In 

computational phenotyping, clustering methods or deep learning methods can be 

used to uncover underlying patterns and natural groupings in complex diseases. In 

representation learning, multimodal data are first embedded into a structured 

vector that can then be used for future predictive modeling. Pertinent examples are 

discussed below. 

In a prospective cohort study of 397 patients with heart failure with 

preserved ejection fraction, a heterogeneous disease, Shah et al.18 used hierarchical, 

penalized model-based clustering methods to discover three distinct phenotypes 
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based on structured clinical, laboratory, ECG, and echocardiography data. 

Significantly, these three phenotypes could be recognized as distinct clinical entities 

based on their parameter distribution, and were associated with important clinical 

outcomes (hospitalizations or death) in a separate validation cohort of 107 patients. 

This study demonstrated that a data-driven unsupervised learning approach could 

be utilized to discover clinically meaningful phenotypes in a heterogeneous 

cardiovascular disease. 

In another study of novel phenotype discovery, Seymour et al.19 applied k-

means clustering to 29 clinical variables derived from EHR data of 20,189 patients 

to identify four novel phenotypes of sepsis, another heterogeneous clinical syndrome. 

Results were validated in a separate cohort of 43,086 patients, who displayed similar 

phenotype distributions and consistent biomarker patterns that were recognizable 

by clinicians. These novel sepsis phenotypes were effective at predicting clinical 

outcomes, such as 28-day and 365-day mortality. In addition, these phenotypes could 

be applied to randomized controlled trial data to assess treatment effects, where 

simulation studies showed that treatment recommendations would have changed 

significantly had these phenotypic groups been used to stratify patients at the time 

of the clinical trial. This study suggested another utility of identification of data-

driven phenotypes, that of potential use in reassessing trial outcomes and aiding 

future study design. 

 

ii) Lack of data labels 

A related issue to data heterogeneity is the frequent lack of data labels, 

which is a significant hindrance to training accurate clinical prediction models. In 

traditional clinical studies, data labels are typically provided by an expert panel, 
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who identify and validate outcomes through an adjudication process. However, 

aggregated healthcare data such as that from an EHR often come unlabeled in 

relation to the outcome of interest. For example, a disease may be present based on 

diagnostic criteria but may not be labeled with an appropriate diagnosis code, or 

continuous sensor output may have been recorded but without formal 

documentation of its interpretation. While outcome adjudication by an expert panel 

is considered the gold standard, this is frequently unavailable nor practical for large 

amounts of aggregated data. A practical solution may involve constructing “silver 

standard” labels based on specific criteria recorded in EHR data16, for example 

diagnosing a disease via co-occurrence of specific diagnosis codes20. Other 

approaches include implicit labeling via transfer learning, where a deep learning 

model transfers learned knowledge about an outcome label to another model, 

without the need to explicitly create those labels21. 

In a study of healthcare data heterogeneity and disease labels, Wei et al.20 

investigated the relative importance of individual EHR components (disease 

diagnosis codes, clinician notes, and medications) in identifying common diseases. 

With the goal of properly identifying the ten most common diseases, it was 

discovered that each EHR component on its own was unreliable in both consistency 

and accuracy, while utilizing at least two components significantly improved and 

stabilized the positive predictive value. Interestingly, as a single component, 

primary clinician notes (from which text diagnoses were extracted) had better 

sensitivity than diagnosis codes, highlighting the value of incorporating 

unstructured data elements when feasible. Once multiple EHR components were 

combined, good empiric accuracy could be achieved in creating proper disease labels. 
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iii) Temporality and irregularity 

While longitudinal healthcare data capture a patient’s health trajectory over 

time, data sampling occurs at irregular intervals during healthcare encounters, 

resulting in data sparsity, irregularity, and censoring. Prediction models based on 

such data must actively address how to capture temporal information without being 

overly biased. Traditional survival analysis is the usual go-to for building clinical 

prediction models based on such temporal data, although it remains susceptible to 

aforementioned biases. In terms of machine learning, gated deep learning 

architectures such as recurrent neural network variants (e.g. Long short-term 

memory, gated recurrent unit, attention mechanism)22-25 and deep learning survival 

models26-30 enable capture of such temporal relationships, where data normalization 

methods and architectural modifications have been proposed to overcome data 

irregularity25,31-33. 

 

iv) High dimensionality 

The promise of modern healthcare data – that among a great number of 

variables certain combinations may prove to be useful for clinical event prediction or 

uncover previously unknown disease mechanisms – comes with the challenge of high 

dimensionality. Having too many variables to consider is problematic for two main 

reasons. First, variable selection becomes paramount, especially for traditional 

statistical prediction models that have limited capacity to handle high correlations 

or interactions. However, variable selection is a complicated problem, requiring 

expert knowledge for a priori variable selection that could potentially negate the 

benefits of utilizing large scale data, or having to rely on a statistical approach that 

may exclude clinically meaningful variables34. Furthermore, high dimensionality 
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necessarily leads to data sparsity (known as curse of dimensionality), leading to 

instances of model non-convergence and inaccurate parameter estimates. 

Approaches to deal with high dimensionality include knowledge-driven variable 

selection or data-driven dimension reduction techniques such as principal 

components analysis or multidimensional scaling. Notably, deep learning models are 

naturally adept at overcoming high dimensionality through its representation 

learning capacity, obviating the need to explicitly specify a dimension reduction 

approach35. 

One interesting approach for addressing high dimensionality using deep 

learning is to represent the entire medical history of a patient in an embedding 

vector, in a process called general purpose patient representation. For a given 

patient, all the data present in the EHR can be organized as a time series of 

healthcare encounters, with each encounter storing clinical data elements related to 

that visit. Specific deep learning methods that have been used include: stacked 

denoising autoencoders36, ensemble of neural network models33, and recurrent 

neural network variants23,25. Once built, these general-purpose patient 

representations have been shown to be empirically effective at predicting various 

clinical outcomes such as new onset heart failure, in-hospital mortality, etc. The 

main advantage of this approach is that these general representations can be 

utilized for many different prediction tasks, while the main disadvantages arise 

from difficulties related to model training due to the extreme size of data and 

computational power that is required, as well as poor interpretability and questions 

of external validity that arise from its overarching scope. 
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a) Issues related to model complexity 

Prediction models must appropriately reflect the type of input data and 

nature of the prediction task. In the setting of cardiovascular risk prediction, the 

task may be formulated as a survival analysis problem, given longitudinal data with 

intermittent observation times and censoring. If there is a specific time point of 

interest, such as event risk at 10-years, the prediction task can also be formulated as 

a binary classification problem, though with information loss and biased estimates 

when censoring is not considered. A review of traditional survival analysis methods 

and relevant machine learning adaptations are discussed below. 

 

i) Traditional survival analysis 

The goal of survival analysis is to utilize longitudinal data to predict the 

occurrence and if possible, timing, of the outcome event(s) of interest. In such time-

to-event data, survival time remains unknown for some subjects, a phenomenon 

known as censoring. Data may be left censored (event occurs prior to observation) or 

right censored (event has not yet occurred at end of follow-up). The term survival 

refers to a state where the outcome event of interest has not (yet) occurred, and does 

not necessarily refer to mortality. The main quantities of interest include the 

survival function S(t) = P(T ≥ t), representing the probability of survival to point t; 

the hazard function h(t) = -d[log S(t)]/dt, representing the probability of outcome 

event occurring at t given survival up to t; and the cumulative hazard function H(t) 

= ∫ h(u)du = -log S(t), approximating the cumulative event risk up to t 37. Other 

related functions include the cumulative density function F(t) = 1- S(t), and the 

death density function f(t) = dF(t)/dt = -dS(t)/dt 38. These functions are related to 
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each other in a fixed mathematical relationship, allowing different survival models 

to focus on estimating specific quantities to form the basis of outcome prediction37. 

Among traditional survival analysis methods, the Kaplan-Meier method and 

Cox PH regression are commonly used. The Kaplan-Meier method along with the 

log-rank test are nonparametric methods and are useful for comparing survival 

between groups, though they are unable to account for covariates or make specific 

predictions for individuals39. The Cox PH model, in contrast, is a semi-parametric 

method that allows for multivariable analysis, and is a common choice for clinical 

event prediction models such as the PCE. 

In the Cox PH model, the hazard function is expressed as a combination of 

baseline hazard and an exponentiated, linear combination of covariates: h(t) = h0(t) * 

exp (β1x1 + β2x3 + … + βpxp). The model is semi-parametric as the baseline hazard 

function remains unspecified while the coefficients β1 … βp are estimated through 

regression39. Advantages of the Cox PH model include the lack of need to make 

survival distribution assumptions, reasonable interpretability of the estimated 

coefficients (a constant multiplicative effect on the hazard), robustness compared to 

fully parametric models, and greater precision compared to non-parametric 

models38,39. In contrast, disadvantages of the standard Cox PH model include its 

assumption of proportional hazards (hazard of one group must remain a constant 

multiple of the hazard of the other group over the entire follow up period), fixed 

covariate effects over time (unable to account for nonlinear relationships or temporal 

changes occurring over the follow up period), and lack of direct estimation of the 

survival function (does not allow straightforward prediction of survival times)39. 

Variants of Cox PH models such as the regularized (e.g. lasso, ridge, elastic net) and 
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time-dependent Cox models enable handling of issues such as variable selection, 

collinearity, and time-varying covariates38. 

Beyond specific issues related to the Cox PH model, there are important 

general assumptions that must be considered when dealing with time-to-event 

data34. First, censoring must be noninformative; when censoring carries prognostic 

information (e.g. when patients withdraw from a clinical trial due to drug toxicity), 

survival model estimates will become biased. Second, when utilizing a regression 

framework, the effect of covariates are assumed to be constant during follow-up; 

otherwise scalar coefficient estimation would be inadequate. Finally, when there is a 

possibility of multiple outcome events interfering with one another, a competing 

risks framework must be adopted to avoid biased estimates. 

 

ii) Machine learning for survival analysis 

For survival analysis, machine learning methods must be adapted to handle 

issues related to time-to-event data and censoring, as discussed above. In 

comparison to traditional survival analysis, advantages of machine learning 

methods include: greater model flexibility due to less stringent assumptions, higher 

model capacity with ability to handle high dimensional data with nonlinear 

relationships and interactions, and improved prediction performance38. Many 

different types of machine learning methods that were originally developed for 

classification tasks have been adapted for survival analysis, including survival trees 

and related ensemble methods40-43, generalized additive models44,45, support vector 

machines46, and deep learning-based methods 29,30. Selected examples are discussed 

below. 
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Yu et al.47 proposed multi-task logistic regression (MTLR), where the survival 

function is modeled as a dependent sequence of logistic regression submodels.  The 

name MTLR refers to its multi-task learning framework, where survival status at 

each time point modeled by the submodels are jointly learned over the entire time 

sequence. In effect a discretized linear version of the survival function, MTLR 

retains the linear combination framework of the Cox PH model, but is more flexible 

in the sense that it naturally allows for time-varying covariates and coefficients. 

Tested in a cohort of more than 2,000 cancer patients, the MTLR model 

outperformed traditional survival analysis models (Cox PH and Aalen additive 

hazards models) by as much as 20% in classification accuracy. 

In neural multi-task logistic regression (N-MTLR), Fotso el al26 expanded on 

the MTLR framework by introducing an overarching neural network architecture 

over the sequence of dependent logistic regression submodels. The aim was to 

expand on the MTLR to capture nonlinear dependencies between covariates and 

survival, which linear models are inherently unable to capture. To achieve this, a 

non-linear transformation was performed on the input feature vector using a multi-

layer perceptron neural network, whose output vectors were used to represent the 

covariates at each subdivision of the time axis. In simulated and real-life datasets 

(Worcester Heart Attack Study, Veterans’ Administration Lung Cancer), the N-

MTLR performed similarly or better than both Cox PH and baseline MTLR models, 

particularly when nonlinear dependencies were present in simulated data. 

Katzman et al. proposed DeepSurv28, a deep learning model based on a multi-

layer perceptron architecture with its output layer modeled as a Cox PH model. The 

primary aim was to explicitly model treatment assignment and its interaction with 

other covariates in data-driven fashion, in contrast to feature engineering based on 
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expert knowledge that would be required in a standard Cox PH model. DeepSurv 

was shown to perform as well or better than other survival methods in both 

simulated datasets and real clinical studies (including the Worcestor Heart Attack 

Study), while also acting as an individualized treatment recommender system by 

predicting which treatment assignment would lead to improved survival given an 

individual patient’s baseline covariates.  

Survival trees refer to decision tree-based machine learning methods that 

have been adopted for analysis of survival data34,40. Briefly, decision trees are 

partitioning algorithms based on recursive binary splits, where the selection of 

covariate and cutoff value at each decision point is determined by maximizing the in-

group homogeneity (i.e. survival time) of the resulting subgroups. Advantages of 

survival trees include lack of baseline survival distribution assumptions, natural 

clustering of subjects, and clear interpretability in terms of important variables and 

cutoff points. Disadvantages include the lack of effect size estimate for each 

covariate, and for individual trees, high sensitivity to small changes in input data.  

The disadvantages of a single survival tree can be overcome by combining 

many trees, an instance of a general approach called ensemble learning40. The main 

principle behind ensemble learning is to take multiple base learners (e.g. individual 

survival trees), each of which may be good at making predictions based on certain 

data patterns, and combine their outputs into a single prediction. Ensemble learning 

models have an allocation function, which decides how much training data each base 

learner receives, and a combination function, which decides how to combine the 

prediction outcomes of each base learner (e.g. equal vs. weighted voting). 

Advantages of ensemble learning include improved robustness and performance, 

especially in extremes of data size or imbalance, and its ability to incorporate 
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distinct data domains for each base learner. Disadvantages include greater model 

complexity and increased computation needs. In the context of survival trees, 

ensemble learning methods include bootstrap aggregating (bagging)41, random 

forests42, and boosting43. 

Generalized additive models are generalized linear models in which the 

output variable depends on a smooth function of predictor variables, with the goal of 

estimating the shape of such functions. In its basic form a generalized additive 

model is formulated as y = f1(x1) + f2(x2) + … + fp(xp), where the functions fi replace 

the coefficients βi  in ordinary linear regression. Interaction terms may also be 

modeled with functions fij(xi, xj), which can be expanded to arbitrarily higher 

dimensions up to a full complexity model y = f(x1, …, xp). Estimation of the predictor 

functions can be done via smoothing splines or local linear regression using the 

backfitting algorithm, although a boosting trees approach is also feasible. 

Generalized additive models have been adapted for survival analysis45 and studied 

in the healthcare setting, where modeling up to pairwise interactions showed good 

empiric performance in predicting clinical outcomes (pneumonia risk and hospital 

readmissions), comparable to other machine learning methods (random forest, 

LogitBoost)44. A major advantage of generalized additive models over other machine 

learning methods is interpretability, enabled by its modular construction and 

intuitive visualization through bivariate shape plots44. 

Support vector machines refer to a class of supervised machine learning 

methods based on finding an optimal decision boundary in high-dimensional 

covariate space, combining aspects of nearest neighbor classification and linear 

regression modeling. It is a powerful technique that has been adapted for survival 

analysis46, with advantages such as the ability to find a globally optimal solution by 
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capturing complex, nonlinear relationships occurring in high dimensional space, 

compact solution representation using only a subset of training data, and strong 

empiric performance with good generalization capacity. Its disadvantages include 

the arbitrary nature of kernel function selection and lack of interpretability. 

The recurrent neural network family of deep learning methods are designed 

to handle sequential data, and can naturally represent time-varying effects of 

covariates in survival analysis. Giunchiglia et al. proposed RNN-SURV29, a deep 

learning survival model based on a composite framework of a 2-layer feed forward 

neural network and a 2-layer recurrent neural network with LSTM cells, used to 

predict both the survival function and individualized risk score for each patient. 

RNN-SURV demonstrated improved discriminative power of up to 28.4% over 

traditional survival models (Cox PH and Aalen’s additive hazards models) and 

machine learning based methods (including DeepSurv28) in several healthcare data 

sets including the United Network for Organ Sharing transplant and waitlist 

registries. While directly interpreting the parameters of a deep learning model 

remain difficult, RNN-SURV allows for plotting of the unique survival function for 

each patient, a useful visualization tool for discussing individual risk. 

In another deep learning application, Lee et al. proposed DeepHit 30, a 

multitask deep neural network to address the competing risks scenario. DeepHit 

architecture consists of a single shared multilayer perceptron network, upon which 

several cause-specific sub-networks are built. To enforce joint learning, the output of 

each sub-network is combined in a final softmax output layer, which predicts 

probability of each event at each time point. DeepHit learns the distribution of 

survival times without making any survival distribution assumptions, and is able to 

model time-varying effects of covariates. Significant improvements in prediction 
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accuracy in terms of the time-dependent concordance index (Ctd) were demonstrated 

over previous state-of-the-art methods in multiple large health datasets. 

 

iii) Model performance and evaluation 

To compare the performance of prediction models, standardized measures of 

comparison are needed. Traditionally, there are three main areas of assessment: 

overall model performance, discrimination, and calibration. More recently, measures 

such as reclassification tables and net reclassification improvement have been 

developed48. Relevant details are discussed below.  

Assessing overall model performance can be thought of as measuring the 

distance between predicted outcomes and actual outcomes. For continuous outcomes, 

mean absolute error or explained variation (R2 statistic) can be used, whereas for 

binary outcomes, measures such as accuracy, balanced accuracy, and Brier score are 

commonly used48. In survival analysis, prediction models can be evaluated for their 

accuracy at a given time point, where performance measures for a binary outcome 

would apply, or evaluated over the entire duration of follow up, where measures 

such as the integrated Brier score can be computed using time-dependent weights 

based on censoring information38. 

Beyond assessing overall model performance, its component characteristics, 

i.e. discrimination and calibration, are important to consider in the context of 

clinical decision making48,49. Discrimination refers to whether a model can 

accurately distinguish between those who will have an event versus those who will 

not. A common measure of discrimination is the concordance statistic (c-index), 

which in a binary setting is identical to the area under the receiver operating 

characteristic (ROC-AUC) curve, which plots the true positive rate (sensitivity) 
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against the false positive rate (1- specificity). An extension of the c-index is available 

(Harrell’s c-index) for survival analysis. In contrast, calibration, which assesses a 

model’s goodness of fit, refers to the agreement between predicted and observed 

outcomes. Calibration may be measured via graphical assessment of a plot of 

predicted vs. observed outcomes where the 45 degree line would indicate perfect 

calibration, or by using statistical tests such as the Hosmer-Lemeshow test. 

It is important to consider context when utilizing a prediction model. In a 

clinical scenario where the focus is to accurately identify highest risk candidates for 

targeted therapy, discrimination may be the most important consideration, in order 

to maximize therapeutic effect and minimize side effects. In other clinical scenarios 

where the focus is in discussing prognosis or determining thresholds for initiation of 

therapy, calibration may be more important. Thus the importance and utility of a 

given clinical prediction model will vary depending on the specific clinical scenario49. 

For prediction models based on machine learning, appropriate measures of 

assessment depend on the model type38. For supervised learning methods, standard 

model assessment metrics described above can be used, as the outcome event is 

clearly defined. In the binary outcome setting, especially in cases of class imbalance 

(e.g. rare outcome events), additional measures of interest may include precision, 

recall, F1 score, and precision-recall (PR) curve, which are related to positive event 

detection rate. More generally, measures such as Cohen’s kappa statistic, which 

measures improvement in classifier model performance over random guesses based 

on observed frequency of events, can be useful for comparing multiple prediction 

models. In contrast to supervised learning, for unsupervised learning methods, 

directly assessing model performance is not possible as the model is not trained with 

regards to a specific task; in such cases, a common approach is to apply the trained 
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model to different prediction tasks and then assess comparative performance 

metrics across those tasks as an indirect measure of overall model performance. 

Beyond assessing model performance in the derivation dataset (internal 

validity), a prediction model must be validated in external dataset(s) before it can be 

considered for deployment in actual clinical practice (external validity). Preferably, 

the model should be developed in a similar setting as the intended use environment. 

In the context of cardiovascular risk prediction, the PCE is meant to be used for the 

general undifferentiated patient in the U.S. without pre-existing ASCVD; as such, 

novel prediction models should ideally be developed and validated in similar patient 

cohorts representative of the intended target population. 

 

iv) Model interpretability 

While complex prediction models may have better performance compared to 

simpler counterparts, interpretability is an important factor when considering real-

world usage of a prediction model50. For regression-based models such as the PCE, 

adding additional covariates and interaction terms may increase model performance, 

but will make it more cumbersome to use and interpret. When considering more 

complex models based on machine learning, different model types will have varying 

degrees of interpretability depending on factors such as identification of important 

variables, estimation of variable effect, assessment of interaction between variables, 

ability to incorporate existing knowledge, etc. The “black box” nature of certain 

machine learning methods are considered major barriers to clinical adoption, and 

such models will likely need extensive external validation and further work 

regarding interpretability before they can be incorporated into clinical practice.  
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iv) Causal inference 

Beyond interpretability, causality is an important consideration in the 

clinical setting. Ideally, a clinician would like to know which factors cause adverse 

outcomes, so that modifiable risk factors can be addressed via therapy. However, 

prediction models based on observational data can only capture associations that are 

present in the data, and do not represent causal knowledge. While theoretical 

advances in causal inference have demonstrated that it is possible to extract causal 

information from observational data given causal hypotheses and assumptions 

represented as directed acyclic graphs51,52, in many clinical settings the underlying 

mechanisms are multifactorial, complex, or unknown, making it difficult to apply 

such methods. Still, machine learning methods that can incorporate existing medical 

knowledge allow for richer disease representations based on EHR data53, which may 

eventually lead to elucidation of complex pathophysiology and causal discovery. 

 

3. New models for cardiovascular event risk estimation 

a) Augmented PCE models 

A common approach to improve predictive power of a regression model, such 

as the PCE, is to extend the model with additional factor(s) and assess their 

incremental and independent prediction value. For ASCVD event prediction, 

parameters from cardiovascular imaging studies and serum biomarkers are popular 

candidates. Several examples are discussed below. 

Yeboah et al.54 assessed whether the addition of coronary artery calcium 

score (CAC score; degree of coronary artery calcification seen on computed 

tomography), the ankle-brachial index (ABI; a measure of peripheral vascular 

disease), high sensitivity C-reactive protein (a serum marker of inflammation), and 
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family history of ASCVD to the PCE improve prediction of ASCVD events. To 

address the known overestimation of risk by the PCE in the study cohort (Multi-

Ethnic Study of Atherosclerosis), the authors recalibrated the PCE prior to 

evaluation. Among the studied factors, CAC score, ABI, and family history were 

independent predictors of ASCVD events, although only the CAC score resulted in 

improvement in the overall c-index (0.74 to 0.76) when added to the recalibrated 

PCE. These results are consistent with the 2019 ACC/AHA recommendation to 

consider the CAC score as the test of choice for further risk stratification in 

intermediate risk patients4. 

Data from the ECG represent a potentially attractive addition to the set of 

risk factors considered in the PCE, as the ECG represents an unrepresented 

dimension of cardiac health (electrophysiology), is non-invasive and readily 

performed, and is easily interpreted and quantified. Prior studies have examined 

individual ECG components as a predictor of adverse cardiovascular outcomes, e.g. P 

wave duration55, deep terminal negativity of P wave in V1 (DTNPV1) 56,57, QRS 

duration58, QT interval59-62, JT interval62, and isolated ST-segment and T-wave 

abnormalities63. Individual ECG components have also been evaluated for their 

additive and independent predictive value to standard cardiovascular risk 

calculators such as the Framingham Risk Score and the PCE14,15. Beyond individual 

ECG components, groups of components have been evaluated in the framework of 

global electrical heterogeneity64,65. Despite their promise as additional predictors of 

cardiovascular risk, ECG data have not yet been incorporated into standard risk 

calculators such as the PCE or guideline recommendations. 
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b) Machine learning models 

In contrast to augmenting the standard PCE, machine learning based models 

provide greater flexibility and higher capacity that are better suited for high-

dimensional healthcare data. Applications to cardiovascular risk prediction are 

detailed below. 

Ambale-Venkatesh et al.66 applied the random survival forest technique to a 

wide range of clinical variables (735 total variables from imaging, noninvasive tests, 

questionnaires, and biomarker panels) collected in 6,814 participants from the 

Multi-Ethnic Study of Atherosclerosis cohort to develop separate prediction models 

for ASCVD and related outcomes (all-cause death, stroke, coronary artery disease, 

all cardiovascular disease, atrial fibrillation, heart failure). In this study, the 

random survival forest model outperformed both the PCE and variants of the Cox 

PH model (lasso regularization, forward and backward variable selection) in terms 

of c-index and Brier score over all outcomes. Interestingly, the most of the top 20 

important predictors identified by the random survival forest model were not part of 

the PCE, and varied for each outcome. Furthermore, these variable importance 

ranking results could then be used to improve the performance of the Cox PH model. 

Overall, this study demonstrated the superior performance of the random survival 

forest method over the PCE and related Cox PH variants in predicting distinct 

cardiovascular outcomes and identifying important risk factors for each outcome, 

based on richly phenotyped data. 

In another study involving the Multi-Ethnic Study of Atherosclerosis cohort, 

Kakadiaris et al.67 developed a novel ASCVD event calculator based on support 

vector machines. The model was trained based on baseline clinical variables 

identical to that of the PCE, enhanced by the NEATER data augmentation 
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algorithm to address class imbalance. Based on 13-year follow up data of 6,459 

patients, the support vector machine model significantly outperformed the PCE in 

ASCVD event prediction, in terms of sensitivity (0.86 vs. 0.76), specificity (0.95 vs. 

0.56), accuracy (0.94 vs. 0.58), ROC-AUC (0.92 vs. 0.71), and net reclassification 

index of 0.49. Results were further validated in an external cohort (Flemish Study of 

Environment, Genes and Health Outcome cohort). In addition to ASCVD-related 

events, clinically relevant outcomes such as other cardiovascular events and statin 

therapy were also evaluated, with similar results. While the performance gain over 

the PCE was significant and showcased the predictive power of the support vector 

machine model over the Cox PH model, limitations included lack of adjustment for 

survival data and unclear interpretability. 

In a retrospective cohort study of ~114,000 Veterans Health Administration 

patients in the U.S., Kennedy et al.68 compared the Framingham Risk Score to 

various machine learning methods (parametric logistic regression, nonparametric 

generalized additive model, and gradient tree boosting), with cerebrovascular- and 

cardiovascular- death as the outcome events of interest. For machine learning 

models, data were augmented with additional details such as medication, laboratory, 

vital signs, disease diagnoses and other data elements drawn from the EHR. 

Machine learning models performed significantly better compared to the 

Framingham Risk Score when using the same variables (ROC-AUC 71% vs. 73%), 

and even better when using augmented variables (ROC-AUC 78%, net 

reclassification improvement 0.29). This study demonstrated that internally 

developed prediction models specific to a healthcare system could outperform 

general prediction models within a specific target population. 
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In a study of the Framingham Offspring cohort, Dogan et al.69 constructed a 

new risk calculator for incident ASCVD events based on an ensemble of random 

forest models trained on four genetic (single nucleotide polymorphisms) and four 

epigenetic (DNA methylation) markers and their interactions. The integrated 

genetic-epigenetic model, in comparison to the PCE, predicted 5-year ASCVD risk 

with good accuracy (0.82), ROC-AUC (0.82), sensitivity (0.75 vs. 0.38) and specificity 

(0.73 vs. 0.85) in the internal validation sample. An interesting finding was that 

when regression analysis was performed between 8 traditional cardiovascular risk 

factors versus 8 genetic and epigenetic markers and their interaction terms, about 

half of the statistically significant relationships occurred between single loci and a 

cardiovascular risk factor, while the other half were between the genetic/epigenetic 

interaction term and a cardiovascular risk factor. These findings are illustrative of 

the complex interplay underlying genetic, environmental, and clinically manifested 

risk factors of ASCVD. Overall, this study demonstrated the potential of using 

genetic and epigenetic data in a machine learning framework for cardiovascular risk 

prediction, while limited by lack of external validation. 

In a prospective cohort study of ~380,000 outpatients based in the U.K, Weng 

et al.70 utilized 30 routinely available clinical data elements (demographic, social, 

laboratory, diagnoses, and treatment categories) to build four machine learning 

algorithms (logistic regression, random forest, gradient boosting machines, and 

neural network with multilayer perceptron architecture) and compared them to the 

PCE. In a 75/25 split internal validation sample, the PCE performed reasonably well 

(ROC-AUC 0.728), while machine learning methods showed slight gains in 

prediction performance (+1.7% to +3.6% gain in ROC-AUC, highest for the neural 

network model). Variable importance was determined based on coefficient size for 
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the PCE and logistic regression, variable importance ranking based on selection 

frequency in decision-tree based models (random forest and gradient boosting 

machine), and with assessment of overall variable weighting in the neural network. 

Among the PCE variables, age, sex, race, and smoking status were featured 

prominently in the machine learning models. This study was significant in terms of 

demonstrating the generalizability of the PCE to a population outside the U.S., 

highlighting the potential performance gain from machine learning, and identifying 

important variables based on a comparison between different machine learning 

methods. 
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Chapter III. 

METHODS 

 

1. Description of dataset (NHANES III) 

The third iteration of the National Health and Nutrition Examination Survey 

(NHANES III)71 consists of healthcare survey data compiled from a nationally 

representative sample of 39,695 persons from 1988 to 1994. In addition to survey 

features including demographic, historical, and physical elements, biochemical 

laboratory studies and ECG data are available for a subset of the surveyed 

population. Mortality outcome data, including the cause of death, are available via 

linked National Death Index files. As a nationwide probability-weighted sample 

consisting of mostly healthy persons with defined outcome event data over long-term 

follow up, the NHANES III dataset is well suited for development of population-

based event prediction models. As a publicly available data set, Institutional Review 

Board approval was not required for this study. 

As not all data were available for all subjects, subsets of the NHANES III 

dataset were used for this study. Those with complete demographic information 

(N=17,860) formed the base group, while those with complete PCE data components 

(i.e. additional medical history, exam, social, laboratory, and medication data) and 

ECG measurements (N=7,067) formed the main study group. 

 

2. Data analysis 

All data were imported and analyzed using R 3.5.172 and R Studio73 

statistical software. For statistical analysis and general machine learning, publicly 
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available R packages (tidyverse, data.table, survival, survminer, pROC, PRROC, 

mice, ROSE, caret, SuperLearner) were utilized where applicable. For deep learning, 

keras and CUDA software packages were adopted for R implementation and trained 

with NVIDIA GPU. R code for the PCE was provided by Dr. Jarrod Dalton of the 

NEOCARE research group at Cleveland Clinic Foundation via personal 

communication. 

 

3. Data preparation: Clinical data 

All adult (age 18 and above) participants from NHANES III were included in 

this study, except those with pre-existing cardiovascular disease (history of heart 

attack (HAF10), congestive heart failure (HAC1C), or stroke (HAC1D)). Data were 

recorded and averaged from relevant sections of NHANES III (questionnaire, 

examination, laboratory, medications, linked National Mortality Index files), and 

secondary measures (e.g. body mass index (BMI), pulse pressure, adjusted total 

cholesterol, adjusted HDL cholesterol) were computed according to descriptions 

below. 

Baseline age and sex were recorded as noted in multiple parts of the survey. 

Race categories were simplified to White, Black, or Other based on the DMARACER 

variable. Vital signs were combined as the median value among up to seven recorded 

measurements between the questionnaire (Systolic blood pressure: HAZA8AK1, 

HAZA8BK1, HAZA8CK1, HAZA8DK1; Diastolic blood pressure: HAZA8AK5, 

HAZA8BK5, HAZA8CK5, HAZA8DK5; Heart rate: HAZA5R) and exam (Systolic 

blood pressure: PEP6G1, PEP6H1, PEP6I1; Diastolic blood pressure: PEP6G3, 

PEP6H3, PEP6I3; Heart rate: PEP6DR) data. Median pulse pressure was computed 

for each participant based on above data. For body measurements, corresponding 
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Exam elements were recorded (weight: BMPWT, height: BMPHT, body mass index: 

BMPBMI), although secondarily computed BMI was used for subsequent analysis. 

For history of hypertension, qualifying criteria included answering ‘yes’ to 

questionnaire items (HAE4A, HAE5A), while blood pressure measurements were 

recorded separately as above. For history of hyperlipidemia, qualifying criteria 

included answering ‘yes’ to questionnaire item (HAE7), while lipid panel laboratory 

measurements (total cholesterol, HDL cholesterol, low density lipoprotein 

cholesterol, triglycerides) were separately recorded. For history of diabetes, 

qualifying criteria included answering ‘yes’ to questionnaire item (HAD1) or having 

laboratory values of any fasting glucose >=126 or HgbA1c >=6.5. For current tobacco 

use, qualifying criteria included answering ‘yes’ to questionnaire items (HAR3, 

HAR24, HAR27) or exam item (MYPB5). 

Data regarding medication use were obtained from a separate medications 

file. Medication codes used to identify treatment for high blood pressure included: 

0506: antihypertensives, 0507: diuretics, 0510: calcium channel blockers, 0512: beta 

blockers, 0513: alpha agonist/alpha blocker, 0514: angiotensin converting enzyme 

inhibitors. In addition, answering ‘yes’ to questionnaire items HAE4A, HAE5A also 

qualified for history of antihypertensive treatment. Medication codes used to identify 

treatment for high cholesterol included: 0912: hyperlipidemia.  

For those participants taking medications for high cholesterol, laboratory 

values were adjusted to adjust for average statin effect on cardiovascular outcomes 

(total cholesterol: 21% reduction, HDL cholesterol: 3.5% increase). Other laboratory 

measurements relevant to cardiovascular disease, including HgbA1c and C-reactive 

protein, were also recorded. 
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For outcomes, the main outcome of interest was cardiac death occurring 

during 10 years of follow up. Secondary outcomes of interest were all-cause death 

and cerebrovascular death. Death status and cause of death were determined using 

codes International Statistical Classification of Diseases and Related Health 

Problems - Tenth Revision (ICD-10). Cardiac death was identified by ICD-10 codes: 

I00-I09, I11, I13, I20-I51. Cerebrovascular death was identified by ICD-10 codes: 

I60-I69. All other deaths with or without recorded underlying cause of death were 

included in all-cause death. Other outcomes related to ASCVD, including nonfatal 

myocardial infarction and stroke, were not available in the NHANES III dataset. 

Outcome events were right-censored at maximum follow-up of 10 years for analysis. 

 

4. Data preparation: ECG data 

Combined ECG data in NHANES III were available in 166 column entries. 

Among these, 133 columns consisted of direct ECG measurements while 33 columns 

consisted of other ancillary data and interpretations based on the Minnesota code. 

Columns not based on direct measurements were excluded, due to lack of clinical 

relevance or requirement of human interpretation and labeling. Due to high 

proportion of missing values, preprocessing steps for ECG data included removing 

rows (participants) and columns (ECG measure) which had >50% missing data. For 

the remaining missing values, multiple imputation was performed using the 

Multivariate Imputation by Chained Equations (mice) package74, based on 

demographic and other ECG measurements. Further preprocessing steps included 

converting the rhythm code (ECPBEAT) to binary (Sinus vs. non-sinus rhythm) to 

avoid data sparsity and replacing QT interval (ECPQT) with corrected QT interval 
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(QTc) based on Bazett’s formula. For machine learning, all ECG data columns were 

standardized to have a mean of 0 and standard deviation of 1. 

 

5. Data splitting and augmentation 

All available data were split into train:test partitions in 80:20 ratio, based on 

random sampling. Given the low frequency of outcome events and resulting class 

imbalance, the training set was augmented by 1) oversampling of positive events 

and 2) synthetic data generation using the Random Over-Sampling Examples 

(ROSE) package75.  

 

6. Model training 

All models were trained on base, oversampled, and synthetic train datasets 

and with different data combinations (PCE variables, PCE + ECG variables, 

demographic + ECG variables, etc.) using 10-fold cross validation. Model 

performance was assessed in the test set. For traditional survival analysis, the PCE 

was implemented based on published parameters, while various survival models 

(Cox PH models, Cox PH models with L1 (lasso) regularization) were trained using 

survival76, survminer77, glmnet78 packages. For machine learning for survival 

analysis, the random survival forest method was implemented using the 

randomForestSRC79 package. For machine learning for classification, where 

probability of cardiovascular mortality outcome at 10 years was assessed as a binary 

outcome, models based on logistic regression, random forest, gradient boosting 

machine, support vector machine, and neural network were implemented using the 

caret80 package. For neural networks, the R implementation for keras81 package was 

used to design a multilayer perceptron with 3 hidden layers of 16 units each with 
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RELU activation for the hidden layers and sigmoid activation for the final layer, 

with he_uniform initialization and 25% dropout regularization. Finally, ensemble 

models were trained using the SuperLearner82 package, where optimal model 

weighting was determined based on 5-fold cross validation and maximizing overall 

ROC-AUC using the Nelder-Mead method.  

 

7. Model assessment and comparison 

  Survival models were compared for discrimination using Harrell’s c-index 

and assessed for calibration by plotting their calibration curves. Classification 

models and their ensembles were compared using accuracy, Cohen’s kappa, 

sensitivity, specificity, ROC-AUC, and PR-AUC. In the final combined comparison, 

classification performance metrics were computed for survival models by assessing 

their performance at 10 years, with varying probability cutoffs applied to maximize 

PR-AUC. 

 For variable importance comparison, hazard ratios were compared in survival 

and regression models, while variable importance rank metric from the caret 

package was used for classification models. For aggregate assessment of 

classification models, the cumulative count of top ten important predictors for each 

model was computed and plotted on an electrocardiogram for visual assessment and 

clinical interpretation. 
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Chapter IV. 

RESULTS 

 

1. Study population 

Among 20,050 adult persons who participated in the NHANES III survey, 

1,742 participants who reported pre-existing cardiovascular conditions (heart attack, 

congestive heart failure, or stroke) were excluded from analysis, and outcome data 

from the linked National Death Index were available for 17,860 participants (base 

group). Among them, 7,067 participants had PCE and ECG data available after 

preprocessing (study group). Baseline characteristics of the study population are 

reported in Table 1.  

There were notable differences between the base (N= 17,860) and study 

(N=7,067) groups. Most significantly, there were differences in age (mean ± standard 

deviation: 46.1 ± 19.8 vs. 59.2 ± 13.2), underlying medical comorbidities 

(hyperlipidemia 15.1% vs. 23.3%, hypertension 24.7% vs. 33.8%, diabetes 23.7% vs. 

46.7%), medications (for blood pressure: 21.0% vs. 31.6%, for cholesterol 1.5% vs 

2.9%), and mortality (all-cause: 15.0% vs. 19.8%, cardiac: 3.7% vs. 4.8%, 

cerebrovascular: 1.2% vs. 1.6%). Overall, the study group, who had additional 

laboratory and ECG measurements, were older and with more medical comorbidities 

compared to the base group. 
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Table 1. Characteristics of the study population 

 

Combined ECG data in NHANES III were available in 166 ECG variables, 

where 133 columns consisted of direct physical measurements, which were utilized 

for analysis, while 33 columns consisted of interpretations based on the Minnesota 

code and other miscellaneous data, which were excluded. There was a high 

frequency of missing data, with 44.7% of overall cells missing, and 34.8% of direct 

Mean±SD [Range] or N (%) Missing (%) Mean [Range] or N (%) Missing (%)
Age (years) 46.1±19.8 [18.0-90.0] 59.2±13.4 [40.0-90.0]
Sex

Male 8,260 (46.2%) 3,355 (47.5%)
Female 9,600 (53.8%) 3,712 (52.5%)

Race
White 12,138 (68.0%) 5,223 (73.9%)
Black 5,116 (28.6%) 1,645 (23.3%)
Other 606 (3.4%) 199 (2.8%)

Vital signs
Heart rate (beats/min) 73±10 [40-164] 256 (1.4%) 74±10 [43-164] 0 (0.0%)
Systolic BP (mmHg) 125±20 [70-248] 279 (1.6%) 132±20 [78-248] 0 (0.0%)
Diastolic BP (mmHg) 74±11 [2-144] 292 (1.6%) 77±10 [16-136] 1 (0.01%)
Pulse pressure (mmHg) 51±17 [12-139] 292 (1.6%) 56±18 [20-189] 1 (0.01%)

Body measurements
Weight (kg) 74.7±17.9 [21.8-218.9] 1,696 (9.5%) 76.2±17.1 [33.4-182.3] 9 (0.1%)
Height (cm) 166.4±9.9 [118.5-206.5] 1,678 (9.4%) 165.9±9.9 [126.9-200.0] 4 (0.06%)
Body mass index (kg/m2) 26.9±5.8 [11.7-79.6] 1,699 (9.5%) 27.6±5.5 [13.3-64.5] 9 (0.1%)

Medical history
Hyperlipidemia 2,699 (15.1%) 1,645 (23.3%)
Hypertension 4,402 (24.7%) 2,385 (33.8%)
Diabetes 4,226 (23.7%) 3,297 (46.7%)
Tobacco use (current) 4,854 (27.2%) 1,732 (24.5%)

Medication use
For blood pressure 3,749 (21.0%) 2,238 (31.7%)
For cholesterol 273 (1.5%) 203 (2.9%)

Lab measures
Total cholesterol 203±44 [59-676] 2,549 (14.3%) 217±43 [59-501] 0 (0.0%)
HDL cholesterol 52±16 [8-196] 2,657 (14.9%) 51±16 [12-196] 0 (0.0%)
LDL cholesterol 126±38 [20-380] 11,336 (63.5%) 136±38 [20-361] 3,935 (55.7%)
Triglyceride 140±111 [23-3616] 2,585 (14.5%) 157±116 [27-3616] 6 (0.1%)
HgbA1c 5.5±1.1 [2.8-16.1] 2,382 (13.3%) 5.8±1.2 [2.7-16.1] 32 (0.5%)
C-reactive protein 0.5±0.8 [0.2-25.2] 2,659 (14.9%) 0.5±0.8 [0.2-18.3] 62 (0.9%)

Follow-up (years) 19.8±7.2 [0.0-27.2] 18.1±7.6 [0.0-27.2]
Outcome (at 10 years)

Death (all cause) 2,681 (15.0%) 1,399 (19.8%)
Death (cardiac) 652 (3.7%) 338 (4.8%)
Death (cerebrovascular) 209 (1.2%) 111 (1.6%)

NHANES 3 with demographics (N=17,860) NHANES 3 with PCE + ECG data (N=7,067)
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measurement cells missing. Following removal of 68 rows (participants) and 41 

columns (ECG measures) which had >50% missing per row or per column, 7,413 

participants remained with mostly complete ECG data in 92 separate columns. The 

remaining 12.6% of cells with missing data were imputed with multiple imputation 

based on demographic and other ECG measurements. The 92 ECG variables used 

for analysis are highlighted in Appendix A. 

Following 80:20 train:test data splitting, the base training set (n=5,654, event 

rate: 4.6%) and test set (n=1,413, event rate: 5.6%) were created. Given the low 

frequency of outcome event and resulting class imbalance, oversampled (n=11,308, 

event rate: 52.2%) and synthetic datasets (n=5,654, event rate: 49.4%) were created 

for training of machine learning models. 

 

2. Assessment of the PCE in NHANES III 

Because the PCE is only defined for white or black persons, NHANES III 

participants with other race categories were excluded, leaving 6,868 participants for 

assessment of the performance of the PCE. The c-index and calibration plot are 

shown in Figure 2. With a c-index of 0.82 (95% CI: 0.78-0.84), discrimination 

performance was good, however the calibration curve clearly showed overestimation 

of event risk by the PCE. Some degree of risk overestimation was expected, however, 

given that the PCE was originally designed to predict ASCVD events, which include, 

but are not exclusive to, cardiovascular mortality. 
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Figure 2. Assessment of the PCE in NHANES III 

 

3. Survival models in NHANES III 

a) Cox proportional hazards models 

Seven Cox PH models were trained, based on various portions of clinical data 

available in NHANES III. Data subsets included: PCE variables only, PCE + ECG 

variables, demographic variables only, demographic + body measurements 

(BMI/vitals), demographic + ECG variables, demographic + body measurements + 

ECG variables, and ECG variables only. Comparison of model c-index and 

calibration assessment are shown in Table 2.  
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Table 2. Cox PH model comparison 

 

All of the fitted Cox PH models performed as well as the PCE in terms of 

discrimination, while only some had better calibration than the PCE. The two best 

performers were Cox PH models based on PCE + ECG variables and demographic + 

ECG variables, whose calibration plots are shown in Figures 3A and 3B, 

respectively, which showed clear improvement in calibration compared to the PCE. 

Interestingly, when ECG data were available, the PCE variables did not materially 

add to model performance compared to demographic (age, sex, race) information. 

 

Figure 3A. Calibration plot for Cox PH model (PCE + ECG variables) 

Model description C-index Calibration
Pooled cohort equations 0.82 [0.78-0.84] Poor
Cox PH model (PCE variables only) 0.84 [0.83-0.85 ] Fair
Cox PH model (PCE+ECG vars) 0.87 [0.86-0.89] Good
Cox PH model (Dem variables only) 0.83 [0.81-0.85] Poor
Cox PH model (BMI/Vitals+Dem vars) 0.83 [0.81-0.85] Poor
Cox PH model (Dem+ECG vars) 0.87 [0.86-0.88] Good
Cox PH model (BMI/Vitals+Dem+ECG) 0.84 [0.82-0.86] Good
Cox PH model (ECG variables only) 0.82 [0.80-0.84] Fair
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Figure 3B. Calibration plot for Cox PH model (Demographic + ECG variables) 

 

b) Regularized Cox proportional hazards models 

 Given the numerous and highly correlated nature of ECG measurements, L1 

(lasso) regularized Cox PH models were trained for automated variable selection. In 

terms of performance, L1-regularized Cox PH models had better discrimination 

compared to the PCE (Table 3), though with less outperformance compared to the 

full Cox PH models. 

 

 

Table 3. L1-regularized Cox PH model comparison 

 

Model description C-index
Pooled cohort equations 0.820
Cox PH with L1 regularization (PCE+ECG vars) 0.857
Cox PH with L1 regularization (Dem+ECG vars) 0.846
Cox PH with L1 regularization (BMI/Vitals+Dem+ECG) 0.852
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When hazard ratios were examined for variable selection, age, sex, systolic 

blood pressure, and current smoking status among PCE variables were retained in 

the L1-regularized Cox PH model, while race, total cholesterol, HDL cholesterol, and 

diabetes were excluded, in favor of ECG measurements (Table 4). Variable selection 

and hazard ratios were similar between PCE + ECG and demographic + ECG -based 

models. Among ECG variables, aside from sinus/non-sinus rhythm, the magnitude of 

hazard ratios for individual ECG components were very small (i.e. near 1), 

suggesting risk stratification value in aggregate rather than in specific ECG 

components.  

 

 

Table 4. Variable selection in L1-regularized Cox PH models 

 

c) Random survival forest models 

 To assess whether non-linear, machine learning-based survival analysis 

would improve model performance, random survival forest models were trained, 

with various data combinations among PCE, demographic, and ECG variables, in 

base, oversampled, and synthetic training sets. Model comparison results are shown 

Variable PCE+ECG Dem+ECG Variable PCE+ECG Dem+ECG Variable PCE+ECG Dem+ECG Variable PCE+ECG Dem+ECG Variable PCE+ECG Dem+ECG
HSSEX1 1.1607 1.1549 ECPLEADS ECPRA3 ECPSA2 ECPJ3

HSSEX2 ECPWIDTH ECPRA4 ECPSA3 ECPJ4

HSAGEIR 1.0927 1.0910 ECPDEPTH 1.0005 1.0002 ECPRA5 ECPSA5 ECPJ5 0.9970 0.9970

DMARACER2 ECPRATE 1.0015 ECPRA6 ECPSA6 ECPJ6

DMARACER3 ECPPR 0.9994 ECPRA7 ECPSA7 ECPJ7

Totalchol_adj ECPQRS ECPRA8 ECPSA8 ECPJ8

HDLchol_adj ECPAXIS1 ECPRA9 ECPSA9 ECPJ9

medianSBP 1.0049 ECPAXIS2 ECPRA10 1.0001 1.0001 ECPSA10 ECPJ10

HTN_tx1 1.2247 ECPAXIS3 0.9993 ECPRA11 ECPSA11 0.9999 ECPJ11 0.9973 0.9975

Diabetes1 ECPP1 0.9993 1.0000 ECPRA12 ECPSA12 0.9998 ECPJ12 0.9970 0.9964

Smoker_cur1 1.5297 ECPP2 ECPRD1 ECPSD1 1.0060 1.0039 ECPNTA4 1.0014 1.0013

ECPP3 ECPRD2 ECPSD2 ECPPTA1 1.0000

ECPP4 0.9995 0.9999 ECPRD3 ECPSD3 ECPPTA2

ECPQA1 ECPRD4 1.0006 1.0001 ECPSD5 ECPPTA3

ECPQA4 1.0004 ECPRD5 ECPSD6 ECPPTA5

ECPQA10 ECPRD6 ECPSD7 ECPPTA6

ECPQA11 ECPRD7 ECPSD8 ECPPTA8 1.0002 1.0001

ECPQD1 1.0126 1.0117 ECPRD8 ECPSD9 ECPPTA9 1.0001

ECPQD4 ECPRD9 ECPSD10 ECPPTA10

ECPQD10 ECPRD10 ECPSD11 ECPPTA11

ECPQD11 ECPRD11 ECPSD12 0.9982 ECPPTA12

ECPRA1 ECPRD12 ECPJ1 ECPSINUSNS 1.1471 1.1499

ECPRA2 0.9999 ECPSA1 ECPJ2 ECPQTC 1.0011 1.0011
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in Table 5. Overall, the performance of random survival forest models was not 

significantly better compared to the PCE, both in terms of discrimination and 

calibration. Interestingly, the poor calibration in random survival forest models were 

due to underestimation of event risk, in contrast to overestimation of event risk in 

the PCE. An example calibration plot for the random survival forest model trained 

on PCE variables in the base training set is shown in Figure 4.   

 

Table 5. Random survival forest model comparison 

 

 

Figure 4. Calibration plot for random survival forest model (PCE variables) 

Model description C-index Calibration
Pooled cohort equations 0.82 [0.78-0.84] Poor
Random survival forest (base) (PCE vars only) 0.817 Poor
Random survival forest (base) (PCE+ECG vars) 0.816 Poor
Random survival forest (base) (Dem+ECG vars) 0.809 Poor
Random survival forest (over) (PCE vars only) 0.799 Poor
Random survival forest (over) (PCE+ECG vars) 0.808 Poor
Random survival forest (over) (Dem+ECG vars) 0.798 Poor
Random survival forest (syn) (PCE vars only) 0.821 Poor
Random survival forest (syn) (PCE+ECG vars) 0.813 Poor
Random survival forest (syn) (Dem+ECG vars) 0.802 Poor
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4. Classification models in NHANES III 

Machine learning models for classification were trained to predict 

cardiovascular mortality at 10 years, ignoring censoring. Models fitted include: 

logistic regression, random forest, gradient boosting machine, support vector 

machine, and neural networks, based on various data combinations. Ensemble 

models were created to combine multiple models and assess improvement in 

prediction performance. 

 

a) Logistic regression models 

In total, six logistic regression models were trained, with two data 

combinations ((1) PCE + ECG variables, (2) Demographic + ECG variables), for each 

of the three training sets (base, oversampling, synthetic). ROC curve, PR curve, and 

calibration plots are shown in Figures 5A , 5B, and 5C. For both PCE + ECG and 

demographic + ECG data, utilizing oversampling or synthetic training sets 

significantly improved AUC-ROC and PR-AUC. Calibration curves showed 

overestimation of risk by all models, though more smoothed for models derived from 

oversampling and synthetic training sets. 
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Figure 5A. Logistic regression models – ROC plot 

 

  

 

Figure 5B. Logistic regression models – PR plot 
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Figure 5C. Logistic regression models – Calibration plot 

 

b) Random forest models 

In total, twelve random forest models were trained, with two data 

combinations ((1) PCE + ECG variables, (2) Demographic + ECG variables) and two 

different optimization goals (accuracy vs. kappa) for each of the three training sets 

(base, oversampling, synthetic). Tuning hyperparameter mtry was optimized via 

automated grid search. A separate hyperparameter ntree was fixed at 500. ROC 

curve, PR curve, and calibration plots are shown in Figures 6A , 6B, and 6C. 

Overall, random forest models performed very poorly, with negligible 

performance gain over random chance and without significant difference between 

training to maximize accuracy versus kappa. It is likely that these models were 

overfitted to training data, where specific cutoffs used for decision splits did not at 

all reflect generalizable patterns also present in the test data. 
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Figure 6A. Random forest models – ROC plot 

 

  

 

Figure 6B. Random forest models – PR plot 
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Figure 6C. Random forest models – Calibration plot 

 

c) Gradient boosting machine models 

In total, twelve gradient boosting machine models were trained, with two 

data combinations ((1) PCE + ECG variables, (2) Demographic + ECG variables) and 

two different optimization goals (accuracy vs. kappa) for each of the three training 

sets (base, oversampling, synthetic). Tuning hyperparameters included: nround, 

max_depth, eta, gamma, colsample_bytree, min_child_weight, and subsample, which 

were optimized for each model using automated grid search. The ROC curve, PR 

curve, and calibration plots for gradient boosting machine models are shown in 

Figures 7A , 7B, and 7C. 

Overall, gradient boosting models performed very poorly, with negligible 

performance gain over random chance and without significant difference between 

training to maximize accuracy versus kappa. It is likely that these models were 

overfitted to training data, especially given the version of the gradient boosting 
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model used (extreme gradient boosting), which has more hyperparameters and 

higher model capacity, but also prone to overfit more easily. 

 

  

 

Figure 7A. Gradient boosting machine models – ROC plot 

 

  

 

Figure 7B. Gradient boosting machine models – PR plot 



50 
 

 

  

 

Figure 7C. Gradient boosting machine models – Calibration plot 

 

d) Support vector machine models 

In total, twelve support vector machine models were trained, with two data 

combinations ((1) PCE + ECG variables, (2) Demographic + ECG variables) and two 

different optimization goals (accuracy vs. kappa) for each of the three training sets 

(base, oversampling, synthetic). Tuning hyperparameters included: sigma and C, 

which were optimized for each model using automated grid search. The ROC curve, 

PR curve, and calibration plots for support vector machine models are shown in 

Figures 8A , 8B, and 8C. 

 For both data combinations, support vector machine models based on the 

synthetic training set showed superior performance in terms of ROC-AUC, PR-AUC, 

and smoother calibration within this model family. However, performance gains 

were marginal and calibration remained poor. There were no discernable differences 
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in performance between models based on PCE + ECG vs. demographic + ECG data 

groups. 

 

  

 

Figure 8A. Support vector machine models – ROC plot 

 

  

 

Figure 8B. Support vector machine models – PR plot 
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Figure 8C. Support vector machine models – Calibration plot 

 

e) Neural network models 

In total, twelve neural network models were trained, with two data 

combinations ((1) PCE + ECG variables, (2) Demographic + ECG variables) and two 

different optimization goals (accuracy vs. cost-sensitive learning with 20:1 weighting 

for positive cases) for each of the three training sets (base, oversampling, synthetic). 

Model design and tuning hyperparameters included choice of network architecture, 

number and size of hidden layers, activation function for each layer, batch size, cost 

function, initialization scheme, and regularization, which were determined via 

manual grid search. Final model specification was as follows: multilayer perceptron 

with five layers (one input layer, three densely connected hidden layers with 16 

units each with ReLu activation, and one output layer with sigmoid activation), 

resulting in 2,305 trainable parameters. Models were trained with Rmsprop 
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optimizer, using accuracy vs. cost-sensitive accuracy metrics for the 

binary_crossentropy loss function. Further optimization steps included he_uniform 

initialization and 25% dropout regularization. Final epoch size was determined 

following examination of the training history for each neural network. The ROC 

curve, PR curve, and calibration plots for the neural network models are shown in 

Figures 9A, 9B, and 9C. Note for the calibration plot, sigmoid likelihoods were 

substituted for probabilities, which may result in graphical skew. 

Overall, all neural network models performed well above baseline. In the 

PCE + ECG group, both oversampled and synthetic datasets resulted in strong 

model performance, while in the demographic + ECG group, only the synthetic 

dataset resulted in models with good ROC-AUC and PR-AUC. Calibration plots 

demonstrated a tendency for overestimation of risk for all neural network models. 

 

 

  

 

Figure 9A. Neural network models – ROC plot 
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Figure 9B. Neural network models – PR plot 

 

  

 

Figure 9C. Neural network models – Calibration plot 
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5. Ensemble model 

In total, six ensemble models were created, for the two data combinations 

(PCE + ECG vs. Demographic + ECG) and three training sets (base, oversampling, 

synthetic). Of note, the neural network for the ensemble model differed from the 

individually trained neural network models, and consisted of a simplified feed-

forward neural network with a single hidden layer and without optimizations such 

as nonrandom initialization or dropout regularization, due to limitations in 

implementation. Example ensemble model characteristics, for the ensemble model 

based on PCE + ECG variables in the base training set, are shown in Table 6. As 

expected, ensemble weights were skewed towards the better performing individual 

base learners (e.g. logistic regression), while the best average ROC-AUC was 

achieved by the ensemble model. The classification performance characteristics of 

the six ensemble models are shown in Table 7. Interestingly, the ensemble models 

based on the base training set appeared to have the best kappa, ROC-AUC, and PR-

AUC in the PCE + ECG data group, while for the demographic + ECG data group, 

different ensemble models performed best in different categories. 

 

 

Table 6. Ensemble model characteristics 

 

Model name
Mean (syn) 0.132 [0.093-0.159] 0.500 [0.500-0.500]
Logistic regression (syn) 0.308 [0.222-0.432] 0.801 [0.763-0.835]
Random Forest (syn) 0.152 [0.105-0.205] 0.774 [0.707-0.797]
Gradient boosting machine (syn) 0.174 [0.063-0.249] 0.781 [0.726-0.822]
Support vector machine (syn) 0.064 [0.000-0.167] 0.753 [0.691-0.790]
Neural network (syn)* 0.170 [0.159-0.205] 0.500 [0.500-0.500]
Ensemble model 0.812 [0.750-0.845]
*Single hidden layer FFNN vs. 3-hidden layer Deep FFNN with dropout in individual model

Ensemble weight [range] Average ROC-AUC [range]
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Table 7. Ensemble model performance 

 

6. Model performance comparison 

Performance metrics of all trained classification models, for the PCE + ECG 

data group and demographic + ECG data group, are shown in Table 8 and Table 9, 

respectively. Highlighted in orange and light orange are baseline models for 

comparison, i.e. sample mean or base logistic regression. Highlighted in yellow are 

where the performance of a given model exceeded that of the baseline model for each 

performance category (column). Highlighted in blue are where an individual model 

performed best in each performance category. Highlighted in pink are where an 

ensemble model performed best in each performance category. 

Overall, model performance was heavily affected by the low event rate in the 

test set, resulting in no information rate of 94%. Given this limitation, kappa and 

PR-AUC were considered important metrics for model evaluation. Within each 

model class, there was a clear trend towards improved performance when utilizing 

augmented training sets, either oversampled or synthetic, although this was not 

evident in the ensemble models. 

 

Classification model Accuracy Kappa Sensitivity Specificity ROC-AUC PR-AUC
Ensemble model (base) (PCE+ECG) 0.834 0.234 0.633 0.846 0.740 0.157
Ensemble model (over) (PCE+ECG) 0.871 0.198 0.405 0.898 0.652 0.126
Ensemble model (syn) (PCE+ECG) 0.862 0.224 0.494 0.884 0.689 0.143
Ensemble model (base) (Dem+ECG) 0.857 0.237 0.544 0.876 0.710 0.152
Ensemble model (over) (Dem+ECG) 0.779 0.183 0.684 0.785 0.734 0.135
Ensemble model (syn) (Dem+ECG) 0.887 0.262 0.468 0.912 0.690 0.159



57 
 

 

Table 8. Classification models comparison (PCE + ECG variables) 
Base: original training set, Over: oversampled training set, Syn: synthetic training 
set. All models were trained to maximize accuracy, except for: (K) maximized kappa, 
or (cs): cost-sensitive learning with 20:1 weight for positive events. 
 

For classification models based on PCE + ECG variables (Table 8), best 

kappa and PR-AUC were achieved by the neural network model based on the 

synthetic training set (kappa: 0.214, ROC-AUC: 0.740, PR-AUC: 0.148), while the 

logistic regression model based on the oversampled training set had the best ROC-

AUC (kappa: 0.182, ROC-AUC: 0.758, PR-AUC: 0.139). Overall best performance 

was achieved by the ensemble model based on the base training set (kappa: 0.234, 

ROC-AUC: 0.740, PR-AUC: 0.157). 

Classification model (PCE+ECG vars) Accuracy Kappa Sensitivity Specificity ROC-AUC PR-AUC
Mean (No information rate) 0.944 0.000 0.000 1.000 0.500 NA
Logistic regression (base) 0.946 0.087 0.051 0.999 0.525 0.098
Logistic regression (over) 0.756 0.182 0.759 0.756 0.758 0.139
Logistic regression (syn) 0.750 0.176 0.759 0.749 0.754 0.136
Random forest (base) 0.944 0.000 0.000 1.000 0.500 NA
Random forest (over) 0.944 0.000 0.000 1.000 0.500 NA
Random forest (syn) 0.061 0.000 0.987 0.006 0.497 0.056
Random forest (base) (K) 0.944 0.000 0.000 1.000 0.500 NA
Random forest (over) (K) 0.944 0.000 0.000 1.000 0.500 NA
Random forest (syn) (K) 0.062 0.000 0.987 0.007 0.497 0.056
Gradient boosting machine (base) 0.945 0.024 0.013 1.000 0.506 0.072
Gradient boosting machine (over) 0.931 -0.002 0.013 0.986 0.499 0.056
Gradient boosting machine (syn) 0.061 0.000 0.987 0.006 0.497 0.056
Gradient boosting machine (base) (K) 0.938 0.082 0.063 0.990 0.526 0.078
Gradient boosting machine (over) (K) 0.941 0.014 0.013 0.996 0.504 0.059
Gradient boosting machine (syn) (K) 0.061 0.000 0.987 0.006 0.497 0.056
Support vector machine (base) 0.944 0.000 0.000 1.000 0.500 NA
Support vector machine (over) 0.943 0.020 0.013 0.999 0.506 0.062
Support vector machine (syn) 0.928 0.155 0.152 0.974 0.563 0.101
Support vector machine (base) (K) 0.943 0.020 0.013 0.999 0.506 0.062
Support vector machine (over) (K) 0.943 0.020 0.013 0.999 0.506 0.062
Support vector machine (syn) (K) 0.926 0.149 0.152 0.972 0.562 0.098
Neural network (base) 0.894 0.111 0.190 0.936 0.563 0.084
Neural network (over) 0.859 0.178 0.405 0.885 0.639 0.114
Neural network (syn) 0.813 0.214 0.658 0.822 0.740 0.148
Neural network (base) (cs) 0.793 0.161 0.570 0.806 0.688 0.119
Neural network (over) (cs) 0.795 0.171 0.595 0.807 0.701 0.125
Neural network (syn) (cs) 0.888 0.182 0.316 0.921 0.619 0.114
Ensemble model (base) (PCE+ECG) 0.834 0.234 0.633 0.846 0.740 0.157
Ensemble model (over) (PCE+ECG) 0.871 0.198 0.405 0.898 0.652 0.126
Ensemble model (syn) (PCE+ECG) 0.862 0.224 0.494 0.884 0.689 0.143
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Table 9. Classification models comparison (Demographic + ECG variables) 
Base: original training set, Over: oversampled training set, Syn: synthetic training 
set. All models were trained to maximize accuracy, except for: (K) maximized kappa, 
or (cs): cost-sensitive learning with 20:1 weight for positive events. 
 

For classification models based on demographic + ECG variables (Table 9), 

best kappa, ROC-AUC, and PR-AUC were all achieved by a single individual model, 

the neural network model based on the synthetic training set (kappa: 0.244, ROC-

AUC: 0.754, PR-AUC: 0.145). The ensemble model based on the synthetic dataset 

(kappa: 0.262, ROC-AUC: 0.690, PR-AUC: 0.159) performed better than the best 

neural network model in kappa and PR-AUC metrics, but not in ROC-AUC. 

Classification model (Dem+ECG vars) Accuracy Kappa Sensitivity Specificity ROC-AUC PR-AUC
Mean (No information rate) 0.944 0.000 0.000 1.000 0.500 NA
Logistic regression (base) 0.945 0.085 0.051 0.998 0.524 0.093
Logistic regression (over) 0.758 0.181 0.747 0.759 0.753 0.137
Logistic regression (syn) 0.736 0.165 0.759 0.735 0.747 0.130
Random forest (base) 0.944 0.000 0.000 1.000 0.500 NA
Random forest (over) 0.944 0.000 0.000 1.000 0.500 NA
Random forest (syn) 0.061 0.000 0.987 0.006 0.497 0.056
Random forest (base) (K) 0.944 0.000 0.000 1.000 0.500 NA
Random forest (over) (K) 0.944 0.000 0.000 1.000 0.500 NA
Random forest (syn) (K) 0.061 0.000 0.987 0.006 0.497 0.056
Gradient boosting machine (base) 0.945 0.024 0.013 1.000 0.506 0.072
Gradient boosting machine (over) 0.934 0.039 0.038 0.987 0.513 0.064
Gradient boosting machine (syn) 0.061 0.000 0.987 0.006 0.497 0.056
Gradient boosting machine (base) (K) 0.938 0.084 0.063 0.990 0.527 0.079
Gradient boosting machine (over) (K) 0.941 0.036 0.025 0.996 0.510 0.065
Gradient boosting machine (syn) (K) 0.061 0.000 0.987 0.006 0.497 0.056
Support vector machine (base) 0.943 -0.003 0.000 0.999 0.499 0.055
Support vector machine (over) 0.941 -0.005 0.000 0.997 0.499 0.055
Support vector machine (syn) 0.931 0.153 0.139 0.978 0.559 0.101
Support vector machine (base) (K) 0.944 0.000 0.000 1.000 0.500 NA
Support vector machine (over) (K) 0.941 -0.005 0.000 0.997 0.499 0.055
Support vector machine (syn) (K) 0.932 0.168 0.152 0.978 0.565 0.108
Neural network (base) 0.919 0.166 0.190 0.963 0.576 0.103
Neural network (over) 0.846 0.137 0.544 0.876 0.615 0.099
Neural network (syn) 0.841 0.244 0.633 0.853 0.754 0.145
Neural network (base) (cs) 0.881 0.155 0.291 0.916 0.604 0.103
Neural network (over) (cs) 0.900 0.208 0.316 0.934 0.625 0.125
Neural network (syn) (cs) 0.745 0.163 0.722 0.747 0.734 0.127
Ensemble model (base) (Dem+ECG) 0.857 0.237 0.544 0.876 0.710 0.152
Ensemble model (over) (Dem+ECG) 0.779 0.183 0.684 0.785 0.734 0.135
Ensemble model (syn) (Dem+ECG) 0.887 0.262 0.468 0.912 0.690 0.159
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For individual classification models that performed best within each model 

family, a combined tabular comparison versus the PCE, Cox PH models, and 

ensemble models is shown in Table 10, and a summary visualization of their ROC 

curves, PR curves, and calibration plots are shown in Figure 10. Compared to the 

PCE, whose classification performance metrics were computed at 10 years (kappa: 

0.170, ROC-AUC: 0.676, PR-AUC: 0.111), logistic regression and neural network 

models trained on augmented data sets and their ensemble models clearly 

outperformed in terms of all three metrics. As noted previously, there were no 

significant differences between utilizing PCE + ECG versus demographic + ECG 

data in terms of model performance. 

 

Table 10. Combined models comparison 
Base: original training set, Over: oversampled training set, Syn: synthetic training 
set. All models were trained to maximize accuracy, except for: (K) maximized kappa, 
or (cs): cost-sensitive learning with 20:1 weight for positive events. For survival 
models, classification performance was assessed at 10 years, with varying 
probability cutoffs to maximize PR-AUC. 
 

Survival model Accuracy Kappa Sensitivity Specificity ROC-AUC PR-AUC
Pooled cohort equations 0.841 0.170 0.492 0.859 0.676 0.111
Cox PH model (PCE+ECG) 0.825 0.132 0.447 0.844 0.646 0.093
Cox PH model (Dem+ECG) 0.772 0.105 0.509 0.785 0.647 0.085

Classification model Accuracy Kappa Sensitivity Specificity ROC-AUC PR-AUC
Logistic regression (over) (PCE+ECG) 0.756 0.182 0.759 0.756 0.758 0.139
Logistic regression (over) (Dem+ECG) 0.758 0.181 0.747 0.759 0.753 0.137
Logistic regression (syn) (PCE+ECG) 0.750 0.176 0.759 0.749 0.754 0.136
Logistic regression (syn) (Dem+ECG) 0.736 0.165 0.759 0.735 0.747 0.130
Support vector machine (syn) (PCE+ECG) 0.928 0.155 0.152 0.974 0.563 0.101
Support vector machine (syn) (Dem+ECG) 0.931 0.153 0.139 0.978 0.559 0.101
Support vector machine (syn) (K) (PCE+ECG) 0.926 0.149 0.152 0.972 0.562 0.098
Support vector machine (syn) (K) (Dem+ECG) 0.932 0.168 0.152 0.978 0.565 0.108
Neural network (syn) (PCE+ECG) 0.813 0.214 0.658 0.822 0.740 0.148
Neural network (syn) (Dem+ECG) 0.841 0.244 0.633 0.853 0.754 0.145
Neural network (over) (cs) (PCE+ECG) 0.795 0.171 0.595 0.807 0.701 0.125
Neural network (syn) (cs) (Dem+ECG) 0.745 0.163 0.722 0.747 0.734 0.127

Ensemble model Accuracy Kappa Sensitivity Specificity ROC-AUC PR-AUC
Ensemble model (base) (PCE+ECG) 0.834 0.234 0.633 0.846 0.740 0.157
Ensemble model (over) (PCE+ECG) 0.871 0.198 0.405 0.898 0.652 0.126
Ensemble model (syn) (PCE+ECG) 0.862 0.224 0.494 0.884 0.689 0.143
Ensemble model (base) (Dem+ECG) 0.857 0.237 0.544 0.876 0.710 0.152
Ensemble model (over) (Dem+ECG) 0.779 0.183 0.684 0.785 0.734 0.135
Ensemble model (syn) (Dem+ECG) 0.887 0.262 0.468 0.912 0.690 0.159
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Figure 10. Classification models comparison plots 
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7. Variable importance comparison 

 Ranking of important predictor variables for individual models and the 

aggregate counts for the top ten predictors for each model are shown in Table 11. 

Models were selected for inclusion based on individual model performance as 

assessed in the preceding sections, and included the Cox PH model, L1-regularized 

Cox PH model, logistic regression models based on each of the training sets (base, 

oversampled, synthetic), a gradient boosting machine model (base), and a support 

vector machine model (synthetic). Aside from the Cox PH model which was based on 

only PCE variables, the rest of the models were based on both PCE and ECG data. 

Neural network models were not included for this analysis due to limitations in 

assessing the relative ranking of predictor variables. 

Age was clearly the most important predictor of 10-year cardiovascular 

mortality, occurring in the top 10 list in all models. Next most important were 

systolic blood pressure and treatment for hypertension, which occurred in top 10 

predictors in 6 out of 7 examined models. Other variables of the PCE, including race, 

total cholesterol, HDL cholesterol, and diabetes, were deemed less important, 

occurring only in the Cox PH model which was forced to rank all nine variables 

(with two levels for race). 
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Table 11. Variable importance comparison 
Variables are color-coded by the frequency of occurrence in the top ten important 
predictor variables as identified by each model. Blue: 7, green: 6, light green: 4, 
yellow: 3, orange: 2. 
 

Among ECG variables, several occurred in the top 10 predictor list three or 

two times, and are highlighted in yellow and orange, respectively. Interestingly, 

when plotted on an ECG, the important ECG variables were seen to be clustering 

around inferior (II, III, aVF) and lateral (I, aVL, V5, V6) ECG leads (Figure 11). 

 

Variable Description Count PCE-Cox L1-Cox LR (base) LR (over) LR (syn) GBM (base)(K)SVM (syn)
HSSEX Sex 2 4 3
HSAGEIR Age 7 7 5 1 1 1 1 1

DMARACER2 Race-Black 1 5

DMARACER3 Race-Other 1 3

Totalchol_adj Total cholesterol 1 10

HDLchol_adj HDL cholesterol 1 9

medianSBP Systolic BP 6 8 7 10 2 3 2

HTN_tx1 Tx for Hypertension 6 2 2 8 4 7

Diabetes1 Hx of Diabetes 1 6

Smoker_cur1 Current smoker 4 1 1 3 2
ECPWIDTH Chest half-width (mm) 1 9
ECPDEPTH Chest half-depth (mm) 2 10 10
ECPRATE Heart rate on ECG 1 8
ECPP4 P amplitude, negative phase, lead V1 1 3
ECPQA4 Q/QS amplitude, lead aVL 2 6 5
ECPQA11 Q/QS amplitude, lead V6 1 4
ECPQD1 Q/QS duration, lead I 1 6
ECPRA2 R amplitude, lead II 2 5 5
ECPRA4 R amplitude, lead aVR 1 5
ECPRA5 R amplitude, lead aVL 3 4 7 2
ECPRD2 R duration, lead II 1 8
ECPSA1 S amplitude, lead I 2 9 9
ECPSA3 S amplitude, lead III 3 2 3 8
ECPSA6 S amplitude, lead aVF 3 7 6 10
ECPSA12 S amplitude, lead V6 1 9
ECPSD1 S duration, lead I 1 9
ECPSD12 S duration, lead V6 3 5 4 6
ECPJ1 J amplitude, lead I 1 6
ECPJ4 J amplitude, lead aVR 1 10
ECPJ5 J amplitude, lead aVL 1 10
ECPJ7 J amplitude, lead V1 1 6
ECPJ10 J amplitude, lead V4 1 9
ECPJ11 J amplitude, lead V5 2 8 3
ECPJ12 J amplitude, lead V6 1 4
ECPPTA1 Positive T amplitude, lead I 1 8
ECPSINUSNS Rhythm code 2 4 7
ECPQTC QT interval, corrected 1 7
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Figure 11. Important variables plotted on ECG 
Variables are color-coded by the frequency of occurrence in the top ten important 
predictor variables as identified by each model. Blue: 7, green: 6, light green: 4, 
yellow: 3, orange: 2. Important ECG variables appear to be clustering around 
inferior (II, III, aVF) and lateral (I, aVL, V5, V6) ECG leads. 
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Chapter V. 

DISCUSSION 

 

1. Summary of important findings 

The primary objective of this study was to assess whether ECG data could be 

used to predict cardiovascular mortality in the general population. This was 

motivated by the limitations of the current clinical standard, the 2013 PCE, which is 

known to be poorly calibrated in modern populations and does not reflect 

electrophysiologic risk factors that can lead to sudden cardiac death. Through a 

comparative analysis of traditional survival analysis and machine learning methods, 

this study demonstrated that 10-year cardiovascular mortality could be predicted 

from clinical and ECG data by machine learning models, with superior performance 

characteristics compared to the PCE. 

Interestingly, the superior performance of machine learning models, 

particularly that of neural networks and ensemble models, could be achieved with 

just demographic and ECG data, without the need for other traditional 

cardiovascular risk factors represented in the PCE. While the PCE is intended to be 

used as a screening tool for primary prevention, it is rather cumbersome to 

implement in practice due to the number of data categories required for its 

computation. The PCE requires demographic (age, sex, race), historical (diabetes), 

physical (systolic blood pressure), social (smoking status), laboratory (total 

cholesterol, HDL cholesterol), and medication (treatment for hypertension) data 

elements, which usually require multiple visits to determine. In contrast, the ECG is 

a single-instance, non-invasive, and routinely available test in the outpatient 



65 
 

setting, and in the modern era with built-in measurements that allows for 

automated computation of cardiovascular risk based on prediction models such as 

those developed in this study. Thus, risk prediction models based on the ECG 

represent an attractive alternative to the PCE. 

A comparative analysis of important variables between different prediction 

models shed insight into a possible underlying mechanism for cardiovascular risk 

determination in an ECG. The most frequently utilized ECG variables all localized 

to inferior (II, III, aVF) and lateral (I, aVL, V5, V6) leads, which are clinically 

meaningful in that they represent locations of “silent” myocardial infarctions, or 

minor myocardial infarctions that occur without any noticeable symptoms. Despite 

their lack of symptoms, the presence or history of these silent myocardial 

infarctions, as manifested in the ECG, would imply that the underlying risk factors 

for adverse cardiovascular events are already present, which would then lead to 

increased risk over the following 10 years. While it was initially hypothesized that 

risk for sudden cardiac death related to arrhythmia may be underrepresented in the 

PCE, it may in fact be the case that aggregated ECG measurements effectively 

capture underlying risk for ASCVD-related events instead. 

In terms of performance improvement, training data augmentation via 

oversampling and synthetic data generation were clearly beneficial in improving 

positive event detection rate in most machine learning models. Among individual 

models, the neural network model based on demographic and ECG data with 

synthetic data augmentation had the best ROC-AUC and PR-AUC, though it was 

expectedly outperformed by the ensemble model based on the same training data. 

However, the suite of prediction models trained clearly displayed a wide spectrum of 

model characteristics, where different models may be suited for different clinical 
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scenarios. In the context of cardiovascular risk prediction for primary prevention, 

being able to detect future events (high sensitivity, high PR-AUC) would arguably be 

the most important, and this was achieved by the neural network and ensemble 

models described above. 

The aggregated ECG components analysis for cardiovascular risk 

stratification is a unique approach taken for this study, which is in distinction 

compared to prior studies in medical literature. Most prior studies have examined 

individual ECG components (e.g. P wave duration55, deep terminal negativity of P 

wave in V1 (DTNPV1) 56,57, QRS duration58, QT interval59-62, JT interval62, and 

isolated ST-segment and T-wave abnormalities63) as independent and/or additive 

predictor(s) in the setting of standardized cardiovascular risk calculators such as the 

Framingham Risk Score and the PCE14,15. Interestingly, these previously identified 

individual ECG components did not feature prominently in the comparative analysis 

in this study, suggesting that ECG components in aggregate may capture additional 

cardiovascular risk beyond that available in individual ECG components. Other 

studies have explored the concept of global electrical heterogeneity, or abnormalities 

of the spatial ventricular gradient captured in 3-dimensions through an X- Y- Z- 

ECG lead system or by matrix transformation of the standard 12-lead ECG64. While 

global electrical heterogeneity has been shown to be a risk factor for adverse 

cardiovascular events such as sudden cardiac death65, how it compares to an 

aggregated examination of scalar ECG measurements such as in this study requires 

further research. 

 

 

 



67 
 

2. Limitations 

There are important limitations to this study. First, this was a retrospective 

study based on a single data source, with the usual limitations associated with such 

study design. Not all data components were available for all participants of 

NHANES III; in particular, ECG data were available in less than half of survey 

participants, who had greater comorbidity burden at baseline and thus may 

represent a different population than the target population of healthy, 

undifferentiated U.S. persons. Even where ECG data were available, there was a 

significant proportion of missing values, requiring removal of specific components 

and data imputation. This may be problematic if the data are not missing at 

random, which could not be ascertained and thus may have led to biased results. 

Next, available outcome events were limited to cardiovascular mortality, which is 

only part of the ultimate outcome of interest, that of both fatal and nonfatal adverse 

cardiovascular and cerebrovascular events. Methodologically, while some models 

were trained as survival models, other models were trained as classification models, 

which results in information loss and biased parameter estimates. Finally, many of 

the machine learning models overfitted training data and were not effective for 

event prediction in test data, only some of which may have improved with further 

optimization. 

Despite these limitations, the methodological framework pursued in this 

study, that of comparative analysis among many different types of prediction models 

with less focus on individual model parameters but with greater emphasis on 

aggregate findings and empiric performance, led to superior prediction performance 

compared to the current standard and also allowed for important insight into the 

underlying mechanisms of risk stratification using aggregated ECG data. There 
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were many novel insights which are hypothesis generating for future work, as 

outlined below. 

 

3. Future research 

 Findings of this study would greatly benefit from a validation study in a 

separate dataset, ideally in a nationwide sample with ECG data and all MACE 

outcomes over a long follow-up period. Specific patient subgroups (e.g. those with 

diabetes, obesity, or other risk-enhancing features as outlined in the 2019 ASCVD 

guidelines4) may be of particular interest to assess whether ECG data can improve 

cardiovascular risk prediction in these populations. Regarding ECG data, while 

measurements from a single ECG were used for this analysis, a series of ECGs 

obtained over time may provide additional insight into the nature of the predicted 

risk and how it changes over time. Beyond numeric ECG measurements, a direct 

visual pattern assessment based on advanced machine learning methods for image 

processing (e.g. convolutional neural networks) or computational phenotyping 

approaches may allow for extraction of additional risk stratifying information from a 

given ECG. Finally, the wealth of longitudinal and real-world data stored in EHRs 

across the U.S. could be leveraged in a similar methodological framework to 

complement the findings of this study. 
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Chapter VI. 

CONCLUSIONS 

 

Machine learning models trained on demographic and aggregated ECG data 

were superior to the PCE for prediction of 10-year cardiovascular mortality in a 

nationwide sample. Prediction models based on automated ECG measurements 

could be useful for routine screening for primary prevention due to their superior 

performance and ease of testing and use. Comparison between multiple models 

provided insight into important predictors and possible underlying mechanisms for 

cardiovascular risk estimation. 
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APPENDIX A. 

ECG variables used for analysis (adapted from NHANES III Electrocardiography 

Data File Index) 
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APPENDIX B. 

Abbreviations 

 

ACC: American College of Cardiology 

AHA: American Heart Association 

ASCVD: Atherosclerotic cardiovascular disease 

BMI: Body mass index 

Cox PH model: Cox proportional hazards model 

ECG: Electrocardiogram 

EHR: Electronic health records 

HDL: High-density lipoprotein 

MACE: Major adverse cardiovascular events 

NHANES: National Health and Nutrition Examination Survey 

PCE: Pooled Cohort Equations 

ROC curve: Receiver operating characteristic curve 

ROC-AUC: Receiver operating characteristic - area under curve 

PR curve: Precision-recall curve 

PR-AUC: Precision-recall - area under curve 

 

 


