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This dissertation consists of two essays that explore issues in empirical asset pric-

ing and portfolio management using high-frequency financial econometrics techniques.

The first essay investigates the cross-sectional return predictability of various jump

risk factors. The second essay develops sparse portfolio variance forecast models that

incorporate informative realized jump risk factors.

In Chapter 2, we study the cross-sectional relationship between (small and large)

jump variation measures and future stock returns, based on portfolio sorts and Fama-

MacBeth type regressions. We document that a new risk factor, signed small jump

variation (i.e., the difference between upside and downside small jump variation mea-

sures), strongly predicts the cross-sectional variation in future returns. Constructed

based on a data-driven threshold, signed small jump variation has stronger predictive

power for future returns than other realized risk measures, in the cross-section. We

also conduct various experiments (e.g., event studies, etc.) to further explore the link-

ages between different jump risk measures and economic factors relating to news in

the markets. We show that large jumps are closely associated with “big” news. While

such news related information is embedded in large jump variation, the information is

generally short-lived, and dissipates too quickly to provide marginal predictive content
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for subsequent weekly returns. By contrast, we find that small jumps are more likely

to be diversified away than large jumps, thus tend to be more closely associated with

idiosyncratic risks, and are therefore more likely to be driven by liquidity conditions

and trading activity.

In Chapter 3, we investigate whether the decomposition of realized covariance ma-

trices of portfolios of asset returns into components based on both the signs and mag-

nitudes of the underlying high-frequency returns is useful for forecasting. In particular,

our decomposition separates realized covariation into components based on signs (pos-

itive and negative) and magnitudes (continuous, small jump, and large jump). Sparse

portfolio variance forecast models, which are constructed by utilizing the most informa-

tive covariance components, produce significant improvements in predictive accuracy.

We show that such predictive gains can be traced to the identification of short-lived

pricing signals associated with co-jumps.
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Chapter 1

Introduction

Volatility or (co)realized variance has been documented as one of the most informa-

tive stock-level predictors for future returns or variance (see e.g.,Gu et al. (2019) and

Corsi (2009)). With the availability of high-frequency financial data and advances

in high-frequency econometrics, different components of the variance, associated with

upside/downside and/or continuous/discontinuous price movements, can now be con-

sistently measured. Recent studies have reached a consensus that the signs of the

underlying high-frequency returns lead to distinct information content residing in dif-

ferent components of the realized risk measure (see e.g., Bollerslev et al. (2019a) and

Bollerslev et al. (2019b)).

In this dissertation, I take a further step by considering both the signs and the magni-

tudes of the underlying high-frequency stock returns when constructing risk factors and

explore the return/variance predictability of these separate risk components. Specifi-

cally, in the second chapter, we partition the semi-variances into small and large compo-

nents. In particular, high frequency intraday data are used to construct various realized

jump variation measures, including small upside/downside, large upside/downside, and

the difference between upside small (large) and downside small (large) jump variation

(i.e., signed small and large jump variation measures). We then investigate the re-

lationship between these various risk measures and future returns, using single sorted

and double sorted stock portfolios, and Fama-MacBeth regression analysis. In the third

chapter, we decompose the realized covariance into components based on both the signs

and magnitudes of the underlying high frequency returns, and construct sparse portfolio

variance forecast models by utilizing the most informative components as predictors.

In Chapter 2, entitled “New Evidence of the Marginal Predictive Content of Small

and Large Jumps” joint with Bruce Mizrach and Norman R. Swanson, we take the

additional step of partitioning the semi-variances into small and large components, and

explore the possibility that small and large jumps contain different information relative
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to investing and return predictability. We find that sorting on signed small jump

variation (i.e., the difference between the upside and downside small jump variation

measures) leads to greater value-weighted return differentials between stocks in our

highest and lowest quintile portfolios (i.e., high-low spreads) than when either signed

total jump or signed large jump variation is sorted on. Moreover, in a key case, the

high-low spread is not significantly different from zero when signed large jump variation

is sorted on. Indeed, including large jump variation can actually decrease predictive

accuracy, in the sense that average returns and alphas for high-low portfolios are lower

when total jump variation is utilized in our prediction experiments rather than small

jump variation. These results suggest that there may be a threshold, beyond which

“large” jump variation contains no marginal predictive ability, relative to that contained

in small jump variation. Analysis of returns and alphas based on industry double-sorts

indicates that the benefit of small signed jump variation investing is driven by stock

selection within an industry, rather than industry bets. Investors prefer stocks with

a high probability of large positive jump variation, but they also tend to overweight

safer industries. Additionally, the fact that large and small (signed) jump variation have

differing marginal predictive content is explained at least in part by our observation that

in double-sorted portfolios, the content of signed large jump variation is negligible when

controlling for either signed total jump variation or realized skewness. By contrast,

signed small jump variation has unique information for predicting future returns, even

when controlling for total jump variation or realized skewness. Further, we find that

large jumps are closely associated with “big” news, as might be expected. In particular,

large earning announcement surprises increase both the magnitude and occurrence of

large jumps. While such news related information is embedded in large jump variation,

the information is generally short-lived, and dissipates too quickly to provide marginal

predictive content for subsequent weekly returns. Finally, we find that while large jump

variation is closely associated with large earnings surprises (“big” news), small jumps

tend to be more closely associated with idiosyncratic risks, and can be diversified away.

In Chapter 3, entitled “Forecasting Portfolio Variance: A New Decomposition Ap-

proach,” we investigate whether the decomposition of realized covariance matrices of
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portfolio of asset returns into components based on both the signs and magnitudes of

the underlying high-frequency returns is useful for forecasting. In particular, our de-

composition separates realized covariation into components based on signs (positive and

negative) and magnitudes (continuous, small jump, and large jump). The impetus for

this decomposition is that certain variation components may be useful for prediction,

while others are not; and by including only “information-rich” components in realized

(co)-variation forecasting models, predictive accuracy may be improved. Our experi-

ments that are designed to assess the marginal predictive content of different variation

components focus on portfolio variance prediction, and utilize various machine learn-

ing methods, including: penalized regression type methods such as the least absolute

shrinkage operator and the elastic net, as well as dimension reduction methods such as

partial least squares and principal components analysis. We find that machine learn-

ing methods with key variation components offer limited improvement to out-of-sample

fit, relative to benchmark HAR-type forecasting models that do not include our more

granular variation measures. However, more sparse models, which are specified using

predictors selected using a first “dimension reduction” yield significant improvements in

predictive accuracy when our decomposed variation measures are included. These pre-

dictive gains can be traced to the identification of short-lived pricing signals associated

with co-jumps.
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Chapter 2

New Evidence of the Marginal Predictive Content of

Small and Large Jumps

2.1 Introduction

Theoretical models of the risk-return relationship anticipate that volatility should be

priced, and that investors should demand higher expected returns for more volatile as-

sets. However, ex-ante risk measures are not directly observable, and must be estimated

(see e.g., Rossi and Timmermann (2015)). Given the necessity of estimating volatility,

various different risk estimators have been utilized in the empirical literature study-

ing the strength and sign of the risk-return relationship. Unfortunately, the evidence

from the literature is mixed, in the sense that researchers have found both negative

and positive relationships between return and volatility. One possible reason for these

surprisingly contradictory findings is that the risk-return relationship is nonlinear. Ex-

amples of papers pursuing this hypothesis include Campbell and Vuolteenaho (2004),

who incorporate different factor betas based on good and bad news about cash flows and

discount rates; and Woodward and Anderson (2009) who find that bull and bear market

betas differ substantially across most industries. This research has helped to spawn the

“smart-beta” approach to factor investing.1 In related research, Feunou et al. (2013)

model the effects of volatility in positive and negative return states separately. They

define so-called disappointment aversion preferences, and show that investors should

demand a higher return for downside variability. These authors find empirical support

for their model in the U.S. and several foreign markets using a bi-normal GARCH

process to estimate volatility.

In this paper, we focus on the importance of jumps in volatility for understanding

the risk-return relationship. We do this by assessing the marginal predictive content

1In 2017, Morningstar reported that this approach to investing has attracted over one trillion dollars
in assets (see e.g., Jennifer Thompson, Financial Times, December 27, 2017).



5

of small versus large jump variation, when forecasting one-week ahead cross-sectional

equity returns. We also examine earnings announcements as well as carry out various

Fama-MacBeth type regressions in order to uncover the linkages between (small and

large) jumps and news. Finally, we examine the importance of control variates, in-

cluding skewness and other firm characteristics, when undertaking to disentangle the

relative importance of small, large, positive, and negative jumps for the dynamic evo-

lution of firm specific returns. Much of the empirical research that explores the impor-

tance of jumps in this context focuses on estimation of continuous and jump variation

components using nonparameteric realized measures constructed with high frequency

financial data. A key paper in this area is Bollerslev et al. (2019b), who examine the

relationship between signed jumps and future stock returns in the cross-section. They

document that signed jump variation, which captures the asymmetric impact of upside

and downside jump risks, are good predictors of returns for small and illiquid stocks.2

In the current paper, we add to this literature by decomposing jump variation into

signed small and large components and evaluating the importance of these elements in

a cross-section of stock returns. We utilize the cross-section of individual stocks because

aggregate index returns may mask small jump effects on return predictability. Indeed,

many studies document that aggregation may diversify away idiosyncratic small jumps

in the cross-section (see e.g., Aı̈t-Sahalia and Jacod (2012) and Duong and Swanson

(2015)).

The motivation for our paper can be traced back to Yan (2011) and Jiang and Yao

(2013), who show that large, infrequent jumps are priced in the cross-section of returns.

Feunou et al. (2018) take the decomposition used by these authors one step further,

and model jumps in the realized semi-variances of market returns. They construct a

new measure of the variance risk premium, and find a strong positive premium for

downside risk. Fang et al. (2017) find a similar result for Chinese market returns. In

a related line of research, various authors study the information content in the upside

2In a related paper, Duong and Swanson (2015) construct both small and large jump measures based
on some fixed truncation levels. They exploit the risk predictabilities of different jump measures using
both index data and Dow 30 stocks and find that small jump variation has more volatility predictability
than large jump variation.
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and downside jump variation. For example, Guo et al. (2015) document that at the

market level, a negative jump component in realized volatility predicts an increase in

future equity premia. Bollerslev et al. (2015) identify both left and right jump tail risks

under the risk-neutral measure. They find that the left jump tail risk is an appropriate

proxy for market fear. Additionally, they find that including a variance risk premium

together with jump tail risk measures as predictors significantly improves market return

forecasts. Finally, they show that jump risk helps explain the high-low book-to-market

and winners versus losers portfolio returns.

Building on the above literature, we decompose jump variation into four distinct

components depending on both the direction (semi-variances) and magnitude (small and

large) of the jumps.3 Specifically, we decompose individual stock jump semi-variances

into small and large components. High frequency intraday data are used to construct

various realized jump variation measures, including large upside/downside, small up-

side/downside, and the difference between upside large (small) and downside large

(small) jump variation. We then investigate the relationship between these various

jump measures and future returns, using sorted and double-sorted stock portfolios, and

using regression analysis. The reason that we decompose jump semi-variances into small

and large components is that this decomposition allows us to explore the possibility that

they contain different information relevant to investing and return predictability. As

Maheu and McCurdy (2004) note, large jumps may reflect important individual stock

and market news announcements. Smaller jumps (or continuous variation) may result

from liquidity and strategic trading.

Our key findings can be summarized as follows. First, we find that both small

and large upside (downside) jump variation negatively (positively) predict subsequent

weekly returns. However, portfolios sorted using signed total jump variation are asso-

ciated with increased average returns and risk adjusted alphas for high-low portfolios,

relative to the cases where upside or downside jump variation is sorted on. This finding

3The methods that we implement to separate jump variation utilize recent advances in financial
econometrics due to Andersen et al. (2003), Andersen et al. (2007), Jacod (2008), Mancini (2009),
Barndorff-Nielsen et al. (2010), Todorov and Tauchen (2010), Aı̈t-Sahalia and Jacod (2012), and Patton
and Sheppard (2015).
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is in accord with the findings of Bollerslev et al. (2019b).

Our second finding involves the case where jump variation is further decomposed

into “small” and “large” components. In this case, sorting on signed small jump varia-

tion leads to value weighted high-low portfolios with greater average returns and alphas

than when either signed total jump or signed large jump variation is sorted on. Indeed,

when the truncation parameter used to differentiate small from large jumps is based

on a 5 standard deviation cut-off, we find that average return spreads are 10% higher

when signed small jump variation is sorted on rather than signed total jump varia-

tion. Moreover, these average return spreads are statistically significant in both cases.

However, average return spreads are not significantly different from zero when signed

large jump variation is sorted on. Indeed, including large jump variation is actually

detrimental to predictive accuracy, as average returns and alphas for high-low portfolios

actually decline when total variation is instead utilized in our prediction experiments.

These results suggest that there may be a “jump-threshold”, beyond which “large”

jump variation contains no marginal predictive ability, relative to that contained in

small jump variations.4 In summary, we find that large jump variation has little to no

marginal predictive content, beyond a certain threshold. Indeed, when said threshold

is judiciously selected, one can actually improve predictive performance in our experi-

ments, leading to increased high-low portfolio average returns and alphas, when sorting

portfolios based on small jump variation rather than total jump variation.

Third, industry double-sorts indicate that the benefit of small signed jump variation

investing is driven by stock selection within an industry, rather than industry bets.

Investors prefer stocks with a high probability of large positive jump variation, but

they also tend to overweight safer industries.

4When equal weighted portfolios are instead examined, sorting on total jump variation yields higher
average returns and alphas than when sorting on small or large jump variation. However, deeper
inspection of our tabulated results in this case reveals that average returns associated with large jump
variation sorts are much smaller (around 1/2 the magnitude) of small and total jump variation sorts,
and that the magnitude of average returns associated with small jump variation sorts is much closer
(within 10%) to the average returns associated with total jump variation sorts when our truncation
parameter uses a 5 standard deviation cut-off instead of a 4 standard-deviation cut-off. This suggests
that the “jump-threshold” differs depending upon portfolio type, and indicates that our findings based
on equal weighted portfolios are largely in accord with the findings elucidated above.
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Fourth, the reason why small and large (signed) jump variation measures have

differing marginal predictive content for returns is associated with the importance of

realized skewness as a control variable in our experiments. Namely, we find that in

double-sorted portfolios, the content of signed large jump variation is negligible when

controlling for either signed total jump variation or realized skewness. By contrast,

signed small jump variation has unique information for predicting future returns, even

when controlling for total jump variation or realized skewness. This finding is consistent

with the results from a series of Fama-MacBeth regressions, in which we control for

multiple firm characteristics and risk measures.

Finally, small and large jump variation measures are driven by different economic

factors and contain different information for predicting future returns. For exam-

ple, large jumps are closely associated with “big” news. In particular, large earning

announcement surprises increase both the magnitude and occurrence of large jumps.

While such news related information is embedded in large jump variation, the informa-

tion is generally short-lived, and dissipates too quickly to provide marginal predictive

content for subsequent weekly returns. This is consistent with our finding that filtering

out signed small jump variation, which we know to be useful, from signed total jump

variation, results in increased predictive ability, relative to the case where only signed

total jump variation is utilized in return forecasting, especially for big firms. Addition-

ally, this finding is interesting, given that comparison of aggregated and weighted jump

variation measures indicates that small jump variation captures idiosyncratic risks and

can be diversified away.5

The rest of this paper is organized as follows. In Section 2.2 we discuss the model

setup and define the jump risk measures that we utilize. Section 2.3 contains a discus-

sion of the data used in our empirical analysis, and highlights key summary statistics

taken from our dataset. Section 2.4 presents our main empirical findings, including

discussions of results based on single portfolio sorts, double-sorts, cumulative return

and Sharpe ratio analysis, firm-level Fama MacBeth regressions, and finally, jumps and

5This result is consistent with the finding of Amaya et al. (2015) that preference for positive asym-
metry (skewness) may partially explain the idiosyncratic volatility puzzle, especially for small firms.
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news announcements. Section 2.5 concludes.

2.2 Model Setup and Estimation Methodology

Following Aı̈t-Sahalia and Jacod (2012), assume that the log price, Xt, of a security

follows an Itô semimartingale, formally defined as:

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs +

∫ t

0

∫
{|x|≤ϵ}

x(µ− ν)(ds, dx) +

∫ t

0

∫
{|x|≥ϵ}

xµ(ds, dx),

where b and σ denote the drift and diffusive volatility processes, respectively; W is a

standard Brownian motion; µ is a random positive measure with its compensator ν;

and ϵ is the (arbitrary) fixed cutoff level (threshold) used to distinguish between small

and large jumps. As pointed out in Aı̈t-Sahalia and Jacod (2012),, the continuous part

of this model (i.e., the
∫ t
0 σsdWs term) captures normal hedgeable risk of the asset. The

“big jumps” part of the model (i.e., the
∫ t
0

∫
{|x|≥ϵ} xµ(ds, dx) term) may capture big

news-related events such as default risk, and the “small jumps” part of the model (i.e.,

the
∫ t
0

∫
{|x|≤ϵ} x(µ − ν)(ds, dx) term) may capture large price movements on the time

scale of a few seconds. If jumps are summable (e.g., when jumps have finite activity,

so that
∑

s≤t∆Xs < ∞, for all t), then the size of a jump at time s is defined as

∆Xs = Xs − Xs−.
6 In this context, the “true” price of risk is often defined by the

quadratic variation, QVt, of the process Xt. Namely,

QVt =

∫ t

0
σ2
sds+

∑
s≤t

∆X2
s ,

where the variation of the continuous component (i.e., the integrated volatility) is given

by IVt =
∫ t
0 σ

2
sds, and the variation of the price jump component is given by QJt =∑

s≤t∆X2
s .

In the sequel, intraday stock returns are assumed to be observed over equally spaced

time intervals in a given day, where the sampling interval is denoted by ∆n, and the

number of intraday observations is n. Thus the intraday log-return over the ith interval

is defined as

ri,t = Xi∆n,t −X(i−1)∆n,t.

6A jump process has finite activity when it makes a finite number of jumps, almost surely, in each
finite time interval, otherwise it is said to have infinite activity.
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It is well known that when the sampling interval goes to zero, the realized volatility, RVt,

which is calculated by summing up all successive intraday squared returns, converges

to QVt, as n → ∞, where

RVt =
n∑

i=1

r2i,n →u QVt = IVt +QJt,

where →u denotes convergence in probability, uniformly in time.

To separate jump variation from integrated volatility, Andersen et al. (2007) show

that the jump and continuous components of realized variance can be constructed as:

RV Jt = max(RVt − ÎVt, 0)

and

RV Ct = RVt −RV Jt,

respectively, where ÎVt is an estimator of
∫ t
0 σ

2
sds. Following Barndorff-Nielsen and

Shephard (2004), and Barndorff-Nielsen et al. (2006), we use tripower variation to

estimate the integrated volatility. In particular, define

ÎVt = V 2
3
, 2
3
, 2
3
µ−3

2
3

,

where µq = E(|Z|q) is the qth absolute moment of the standard normal distribution,

and

Vm1,m2,...mk
=

n∑
i=k

|ri,t|m1 |ri−1,t|m2 ...|ri−k+1,t|mk ,

where m1, m2 ...mk are positive, such that
∑k

1 mi = q. Based on the above decompo-

sition approach, Duong and Swanson (2011, 2015) separate jump variation into small

and large variation measures, using various truncation levels, γ. In particular, they

define realized small and large jump variation measures as follows:

RV LJγ,t = min(RV Jt,

n∑
i=1

r2i,tI{|ri,t|≥γ})

and

RV SJγ,t = RV Jt −RV LJγ,t,

respectively, where I(·) denotes the indicator function, which equals one if the absolute

return is larger than the truncation level, and is otherwise equal to zero. We are
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also interested in upside and downside variation measures associated with positive and

negative returns. Thus, following Barndorff-Nielsen et al. (2010) we construct realized

semi-variances, defined as: RS+
t =

∑n
i=1 r

2
i,tI{ri,t>0}, RS−

t =
∑n

i=1 r
2
i,tI{ri,t<0}, and

RVt = RS+
t +RS−

t . They show that the upside and downside semi-variances (RS+
t and

RS−
t , respectively) each converge to the sum of one-half of the integrated volatility and

the corresponding signed jump variation. Namely,

RS+
t →u

1

2

∫ t

0
σ2
sds+

∑
s≤t

∆X2
s I{∆Xs>0}

and

RS−
t →u

1

2

∫ t

0
σ2
sds+

∑
s≤t

∆X2
s I{∆Xs<0}.

We construct upside and downside jump variation measures as follows:

RV JPt = max(RS+
t − 1

2
ÎVt, 0) (2.1)

and

RV JNt = max(RS−
t − 1

2
ÎVt, 0). (2.2)

In addition, signed jump variation can be calculated as the difference between these

upside and downside jump measures,

SRV Jt = RV JPt −RV JNt. (2.3)

This measure captures asymmetry in upside and downside jump variation.

In our analysis, we further decompose upside and downside jump variation measures

into small and large components using thresholding method (see Mancini (2009), Duong

and Swanson (2015), Li et al. (2017), and the references cited therein for discussion

of thresholding methods). In particular, upside large jump variation based on fixed

truncation level, γ, is defined as follows:

RV LJPγ,t = min(RV JPt,

n∑
i=1

r2i,tI{ri,t>γ}) (2.4)

and

RV LJNγ,t = min(RV JNt,

n∑
i=1

r2i,tI{ri,t<−γ}). (2.5)
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We use a truncation level, γ, that is constructed by estimating α

√
1
t ÎV

(i)

t ∆0.49
n , and is

data-driven, accounting for the time-varying diffusive spot volatility of different stocks

in the cross-section.7 In the sequel, we consider three values for γ, say γ1 (with α = 4),

γ2 (with α = 5), and γ3 (with α = 6). Signed large jump variation (i.e., large jump

asymmetry) is defined as follows:

SRV LJt = RV LJPt −RV LJNt. (2.6)

Our corresponding small jump variation measure is defined as the difference between

total jump variation and large jump variation. Namely,

RV SJPt = RV JPt −RV LJPt (2.7)

and

RV SJNt = RV JNt −RV LJNt. (2.8)

Signed small jump variation is defined as:

SRV SJt = RV SJPt −RV SJNt. (2.9)

In order to analyze the predictability of various jump measures in the cross-section,

we normalize each of the jump variation measures discussed above by total realized

variation.

Of note, is that a natural alternative to our approach for calculating the upside and

downside jump variation measures in (2.1) and (2.2) is to use thresholding. Namely,

instead of using tripower variation, one can use truncated realized variation (TRV) as

a consistent estimator of integrated volatility, where TRVt =
∑n

i=1 r
2
i,tI{|ri,t|≤αn} →u

IVt =
∫ t
0 σ

2
sds. Upside and downside jump variation measures can then be calculated

using:

RV JPt = RS+
t −

n∑
i=1

r2i,tI{0<ri,t≤αn} (2.10)

7For each stock, Li et al. (2017) use bipower variation as the fixed value for ÎV
(i)

t . We instead use

bipower variation as the initial value for the integrated volatility ÎV
(0)

t , say, and ÎV
(i)

t is estimated using

truncated bipower variation with threshold γ(i−1), say, where γ(i−1) is fixed only when |ÎV
(i)

t − ÎV
(i−1)

t |
is smaller than 5%× ÎV

(i−1)

t .
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and

RV JNt = RS−
t −

n∑
i=1

r2i,tI{−αn≤ri,t<0}, (2.11)

where αn is the truncation level.8 Our empirical findings based on the use of (2.10)

and (2.11) to define RV JPt and RV JNt are qualitatively the same as those reported

in Section 2.4 based on the use of (2.1) and (2.2).

In order to measure skewness and kurtosis, we also construct higher order realized

return moments. Following Amaya et al. (2015),

RSKt =

√
n
∑n

i=1 r
3
i,t

RV
3
2
t

, (2.12)

standardized daily skewness is defined as: and normalized daily realized kurtosis is

defined as:

RKTt =
n
∑n

i=1 r
4
i,t

RV 2
t

. (2.13)

Finally, it should be noted that we follow Amaya et al. (2015) and Bollerslev et al.

(2019b), and conduct our cross-sectional analysis at the weekly frequency. In partic-

ular, on each Tuesday, we compute the following weekly realized measures: RV W
t =

(2525
∑4

i=0RVt−i)
1/2 and RMW

t = 1
5(
∑4

i=0RMt−i), where RVt is defined above, and

where RMt denotes any of the realized measures defined above other than RVt (e.g.,

RV JPt, RV JNt, SRV Jt, etc.) Hereafter, we shall drop the superscript “W” for the

sake of notational brevity. All of the descriptors used to denote the various realized

measures constructed in our empirical analysis are summarized in Table 2.1.

As described in detail in Section 2.4, the realized measures outlined above are used in

a number of different ways in our empirical analysis. First, we carry out single portfolio

sorts, in which we sort stock portfolios on the above realized jump measures, and predict

average excess returns, one-week ahead. In these experiments, we also calculate alphas

based on regressions that utilize the Fama-French and Carhart factors. In this first

part of our analysis, we also examine cumulative returns and Sharpe ratios. In addition

to the single portfolio sorts, we carry out double portfolio sorts, in which we sort not

only on realized jump risk measures, but also on various control variables, including

8Here, the threshold, αn = 3

√
1
t
ÎV

(i)

t ∆0.49
n , is estimated using the same procedure as in footnote 7.
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realized skewness and other firm specific characteristics. Using these double sorts, we

also examine the inter-play between individual stock-level jump variation and industry-

level jump variation. Needless to say, the purpose of our double-sorts is to examine

the robustness of our findings based on single sorts, after controlling for other realized

measures. Next, we carry out a series of Fama-MacBeth regressions, in order to check

the robustness of our findings to the inclusion of various firm specific characteristics.

Finally, we carry out an event study in which the effect of earning surprises on realized

jump measures is examined. For complete details, see Section 2.4.

2.3 Data

We utilize high frequency trading data obtained from the consolidated Trade and Quote

(TAQ) database. In particular, we analyze all stocks in the TAQ database that are listed

on the NYSE, Amex, and NASDAQ stock exchanges. There are 15,585 unique stocks

during the 1,246 weeks analyzed in this paper.9 The sample period is from January 4,

1993 to December 31, 2016. Intraday prices are sampled at five minute intervals from

9:30 a.m. to 4:00 p.m. from Monday to Friday. Overnight returns are not considered

in this paper, and days with less than 80 transactions at a 5 minute frequency are

eliminated. For example, if AAPL has less than 80 trades on a particular day, then

AAPL is dropped from our sample, but only for that day. All high frequency data

used in this paper are cleaned to remove trades outside of exchange hours, negative or

zero prices or volumes, trade corrections and non-standard sale conditions, using the

methodology described in Appendix A.1 in Bollerslev et al. (2019b).

We constructed two variants of our dataset. The first is cleaned as discussed above.

The second classifies five minute intraday returns greater than 15% as abnormal and

replaces them with zeros. In the sequel, results based on analysis of the second dataset

are reported. However, results based on utilization of the first dataset are qualitatively

the same; and indeed key return results reported in this paper generally change by 1

9In some cases, multiple TAQ symbols are matched with a unique Center for Research in Security
Prices (CRSP) PERMNO. Over each quarter, the TAQ symbol which has the most observations is kept
and the other overlapping observations are dropped.
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basis point or less when the former dataset is used in our analysis. Complete results

are available upon request from the authors.

Daily and monthly returns, and adjusted numbers of shares for individual securities

are collected from the CRSP database. Delisting returns in CRSP are used as returns

after the last trading day. Daily Fama-French and Carhart four factor (FFC) portfolio

returns are obtained from Kenneth R. French’s website.

Following Amaya et al. (2015) and Bollerslev et al. (2019b), we also construct var-

ious lower frequency firm level variables that might be related to future returns, such

as the market beta (BETA), the firm size, the book-to-market ratio (BEME), momen-

tum (MOM), short-term reversals (REV), idiosyncratic volatility (IVOL), co-skewness

(CSK), co-kurtosis (CKT), maximum (MAX) and minimum (MIN) daily return in the

previous week, and the Amihud (2002) illiquidity measure (ILLIQ). For a complete list

of these firm specific control variables, refer to Table 2.1. For a detailed description of

these variables, including the methodology used to construct them, see Appendix A.2

in Bollerslev et al. (2019b).

Note that while the majority of our analysis is based on the examination of indi-

vidual stocks, in our double sorts, there are some cases (that are reported in Section

2.4.4) where we examine the inter-play between individual stock-level jump variation

and industry-level jump variation. In this case, we follow the Fama-French industry

classification approach, and group stocks into 49 industries based on their SIC codes,

which are obtained from CRSP.

2.3.1 Unconditional Distributions of Realized Measures

Figure 2.1 displays kernel density estimates of the unconditional distributions of each

of our realized measures, across all firms and weeks. The top two panels in the fig-

ure show the distributions of signed jump variation and realized skewness. Both of

these distributions are approximately symmetric and peaked around zero. The skew-

ness distribution is more fat-tailed, however.10 The middle two panels of Figure 2.1

10The kurtosis of signed jump variation is 4.36. For realized skewness, the analogous statistic is 12.04.
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display the distributions of signed small and large jump variation. Similar to signed

jump variation, both signed small and large jump variation mesaures are approximately

symmetric around zero, but signed small jump variation is less fat-tailed.11 Consistent

with the results in Amaya et al. (2015) and Bollerslev et al. (2019b), realized volatility

and realized kurtosis are both right skewed and very fat-tailed, as shown in the bottom

two panels of the figure.12

Figure 2.2 shows the time variation in the cross-sectional distribution of each realized

measure using 10-week moving averages. In particular, 10th, 50th, and 90th percentiles

for each realized measure in the cross-section are plotted. Thus, dispersion at any

given time in these plots reflects information about the cross-sectional distribution

of the realized measure. Inspection of Panels A and B in the figure reveal that signed

jump variation and realized skewness have stable dispersion, for all three cross-sectional

percentiles, over time, while the cross-sectional dispersion in realized volatility and

kurtosis are rather time-dependent (see Panels C and D). Additionally, similar to the

cross-sectional distribution of signed jump variation, the percentiles for signed small

and large jump variation measures are quite steady over time, as indicated in Panels

E-H.

2.3.2 Summary Statistics and Portfolio Characteristics

Table 2.2 contains various summary statistics for all of the realized measures summa-

rized in Table 2.2. In Panel A, the cross-sectional means and standard errors for each

of the realized measures is given. This is done for two different truncation levels, de-

noted as γ1 = 4

√
1
t ÎV

(i)

t ∆0.49
n and γ2 = 5

√
1
t ÎV

(i)

t ∆0.49
n . As might be expected, jump

variation is quite sensitive to the choice of γ. For example, the (normalized) mean of

RVSJP (positive (upside) small jump variation) increases from 0.1180 to 0.1715 when

the threshold is increased from γ1 to γ2. Needless to say, various measures remains the

same, as they are independent of γ.

11The unconditional kurtosis is 6.43 and 3.51, for signed small and large jump variation, based on
truncation level γ1; and 8.87 and 3.09 based on truncation level γ2, respectively.

12The kurtosis is 15.85 and 27.24, for the unconditional distribution of realized volatility and realized
kurtosis, respectively.
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Panel B of Table 2.2 contains cross-sectional correlations for all of the realized

measures. In accord with the findings reported by Amaya et al. (2015) and Bollerslev

et al. (2019b), signed jump variation (SRVJ) and realized skewness (RSK) are highly

correlated with each other and have significantly positive correlations with the short

term reversal variable (REV); as well as with maximum (MAX) and minimum (MIN)

daily returns in the previous week.

Interestingly, we also find that signed large jump variation (SRVLJ) is highly cor-

related with SRVJ and with RSK. However, signed small jump variation (SRVSJ) has

lower correlation with SRVJ and much smaller positive correlation with RSK. This

finding is consistent with our finding discussed below that realized skewness captures

information that is primarily contained in large jumps; and serves as an important dis-

tinction between the findings in this paper and those reported in the papers discussed

above.

Table 2.3 complements Table 2.2 by sorting stocks into quintile portfolios based on

different realized measures. On each Tuesday, stocks are ranked by the realized variation

measures, and we calculate the equal-weighted averages of each firm characteristic in

the same week. Panels A, B, C and E report summary statistics for portfolios sorted

by SRVJ, SRVLJ, SRVSJ, and RSK, respectively. Consistent with the correlations

contained in Table 2.2, firms with larger signed small and large jump variation measures

tend to have higher signed jump variation, realized skewness, REV, MAX and MIN.

Firms with high realized volatility and realized kurtosis (see Panels D and F) tend to

be illiquid and small.13

2.4 Empirical Results

In this section, results based on stocks that are sorted into quintile portfolios based on

a single different realized measure are first reported. These single (univariate) portfolio

sort results are collected in Tables 2.4 to 2.7. Results based on double sorts are reported

13See the Supplementary Appendix for results based on the examination of additional quintile port-
folios that are constructed based on ex-ante risk measures and displayed with ex-post risk measures.
It is clear that sorting stocks based on jump risk measures results in portfolios with the desired risk
exposures.
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(in Tables 2.8 to 2.10). We assume a weekly holding period, and return calculations

reported in the tables are carried out as follows. At the end of each Tuesday, stocks are

sorted into quintile portfolios based on different realized variation measures (see Panel

A of Table 2.1). We then calculate equal-weighted and value-weighted portfolio returns

over the subsequent week. We report the time series average of these weekly returns for

each portfolio (these returns are called “Mean Return” in the tables) In addition, we

regress excess return of each portfolio on the Fama-French and Carhart (FFC4) factors

to control for systematic risks, using regression of the form

ri,t−rf,t = αi+βMKT
i (MKTt−rf,t)+βSMB

i SMBt+βHML
i HMLt+βUMD

i UMDt+ϵi,t

(2.14)

where ri,t denotes the weekly return for firm i, rf,t is the risk-free rate; and MKTt,

SMBt, HMLt, and UMDt denote FFC4 market, size, value and momentum factors,

respectively. The intercepts from these regressions (called “Alpha” in our tabulated

results), measure risk-adjusted excess returns, and are also reported in Tables 2.4 to

2.13. Needless to say, our objective in these tables is to assess whether predictability

exists, after controlling for various systematic risk factors. Finally, in Tables 2.14,

we report the results of cross-sectional (firm level) Fama-MacBeth regressions used to

investigate return predictability when simultaneously controlling for multiple realized

measures and firm characteristics.

2.4.1 Single (Univariate) Portfolio Sorts Based on Realized Measures

In this section, we first discuss the results contained in Table 2.4. Recall that the “Mean-

Return” in this table is an average taken over our entire time series of equal-weighted

and value-weighted portfolio returns, for single sorted portfolios based on positive jump

variation (RVJP), negative jump variation (RVJN) and signed jump variation (SRVJ).

Values in parentheses are Newey-West t-statistics (see Bollerslev et al. (2015) and Pe-

tersen (2009) for further discussion). Panel A provides results for portfolios sorted by

RVJP. Inspection of the entries in this panel indicate that mean returns and alphas of

high-low portfolios (i.e., the difference in returns (alphas) between the fifth and first
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quintiles) are all negative, indicating a negative association between RVJP and subse-

quent stock returns. Interestingly, the alpha of -7.71 basis points (bps) is insignificant

for the high-low spread for the equal weighted portfolio, while the mean return of -5.63

bps is only significant at a 10% level for the high-low spread for the value weighted

portfolio.

The lack of statistical significance for some of the mean return values reported in

Panel A does not characterize our findings when negative and signed jump variation

measures are utilized for sorting. Moreover, the magnitudes of the mean returns and

alphas are usually three or more times larger when sorting on negative and signed

jump variation (to see this, turn to Panels B and C of Table 2.4). In Panel B, the

high-low spread of mean returns equals 36.06 bps, with a t-statistic of 6.47 for the

equal-weighted portfolio, and 15.13 bps with a t-statistic of 3.75 for the value-weighted

portfolio. Moreover, both equal-weighted and value-weighted portfolios generate signif-

icant positive abnormal future returns measured by the alphas. These results clearly

point to a statistically significant positive association between negative jump variation

and the following week’s returns.

Panel C in Table 2.4 contains results for portfolios sorted by signed jump variation.

The negative high-low spreads indicate a statistically significant negative association

between signed jump variation and future returns. In particular, a strategy buying

stocks in the lowest signed jump variation quintile and selling stocks in the highest

signed jump variation quintile earns a mean return of 40.82 bps with a t-statistic of

9.85 each week for the equal-weighted portfolio and 25.02 bps with a t-statistic of 5.78

for the value-weighted portfolio. These results are consistent with the results reported

in Bollerslev et al. (2019b). Interestingly, almost all of the mean returns listed in Table

2.4 are “alpha” (see tabulated average alphas in the table), and cannot be explained

by standard portfolio risk factors using regressions of the type given above as equation

(2.14).

A key question that we provide evidence on in this paper is whether the results

summarized in Table 2.4 carry over to the case where small and large jump variation

is separately sorted on. First, consider large jumps. Table 2.5 reports the results for
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portfolios sorted by positive, negative and signed large jump variation, respectively.

Similar to positive jump variation, positive large jumps negatively predict subsequent

returns, but the predictability is not significant, regardless of the truncation level (γ)

used to separate small and large jumps, and regardless of portfolio weighting used. This

is evidenced by the fact that the t-statistics for mean returns and alphas of high-low

portfolios all indicate insignificance, at a 5% testing level, regardless of truncation level.

Thus, there is no ambiguity, as in Panel A of Table 2.4. Positive jump variation is not

a significant predictor, under our large jump scenario. On the other hand, we shall

see that sorting on small and large negative variation measures yields significant excess

returns, as does sorting on small positive jump variation, under both equal and value

weighting schemes.

As just noted, equal-weighted high-low portfolios sorted on large negative jump

variation generate significant positive returns and alphas (see Panel B of Table 2.5).

However, analogous returns and alphas under value weighting are not significant. Signed

large jump variation is sorted on in Panel C of Table 2.5. Signed large jump variation

is useful for undertaking a long-short trading strategy based on the difference between

large upside and downside jump variation measures. Inspection of the results in this

panel of the table reveals that the high-low spread for the equal weighted portfolio

generates an average risk-adjusted weekly return of -28.36 bps (with a t-statistics of

-9.39) and -9.25 bps (with a t-statistics of -2.87) for the value-weighted portfolio, for

truncation level equal to γ1. Results based on γ2 (i.e., our larger truncation level)

are also significant, although magnitudes are lesser and only for our equal weighted

portfolio.14 In particular, observe that when large jump variation is constructed using

γ2, the high-low spreads for value-weighted portfolios sorted by downside or signed large

jump variation measures are insignificant, suggesting that small firms have stronger

relationships (than larger firms) between signed (or negative) large jump variation and

subsequent returns. This may be due to the fact that smaller firms are in some ways

more susceptible to changing market conditions than larger firms.

14Empirical findings based on γ3 are similar to those discussed above, and hence are not reported.
This robustness of our findings to the choice of γ also characterizes the other empirical findings discussed
in the sequel.



21

Table 2.6 summarizes results analogous to those reported in Table 2.5, but for

positive, negative and signed small jump variation measures. Similar to large jump

measures, positive and signed small jump variation measures negatively predict future

returns, and negative small jump variation measures positively predict returns in the

following week. By contrast, the differences in average (risk-adjusted) returns between

equal-weighted and value-weighted long-short portfolios based on RVSJP and RVSJN

are smaller than those for portfolios based on large jumps (compare the entries for the

high-low quintiles under the two weighting schemes in Panels A and B of Table 2.6

with like entries in Panels A and B of Table 2.5). These results indicate that big firms

have a stronger relationship between small jump variation and future returns than

that between large jumps and subsequent weekly returns. Since stocks for big firms

are more liquid and price discovery more rapid, the predictabilities of large jumps are

much weaker or insignificant for big firms. This finding is in line with Bollerslev et al.

(2019b), who document that the predictability of signed jump variation is stronger for

small and illiquid firms and is driven by investor overreaction. In addition, when using

our larger truncation level, γ2, value-weighted high-low spreads based on signed small

jump variation are larger than those based on signed total jump variation and signed

large jump variation. This result implies that a long-short strategy associated with

signed small jump variation generates the highest value-weighted risk-adjusted returns,

given the use of an appropriate truncation level to separate small and large jumps.

Table 2.7 reports results for portfolios sorted by realized volatility, realized skew-

ness, realized kurtosis, and continuous variance. Consistent with the results in Amaya

et al. (2015) and Bollerslev et al. (2019b), there is a significant negative relationship

between realized skewness and future returns, while the association is not significant

between either realized volatility or realized kurtosis and returns in the following week,

regardless of portfolio weighting scheme. In addition, continuous variance significantly

and negatively predicts one-week ahead returns for equal-weighted portfolios, but this

negative association is not significant for value-weighted portfolios.
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2.4.2 Cumulative Returns and Sharpe Ratios

Not surprisingly, our findings based on univariate portfolio sorts suggest that strategies

that utilize different realized measures deliver different risk-adjusted average returns.

In order to investigate this result further, we calculate cumulative returns and Sharpe

ratios for short-long portfolios, sorted on various risk measures that are described in

Table 2.1, including SRVJ, RSJ, SRVLJ, SRVSJ, and RSK. In addition, for comparison

purposes, we also carry out our analysis using the relative signed jump variation measure

(called RSJ) that is examined by Bollerslev et al. (2019b). Our experiments are carried

out as follows. Beginning in January 1993, various short-long portfolios are constructed,

with an initial investment of $1. These portfolios are re-balanced and accumulated at

a weekly frequency, until the end of 2016.15 Figure 2.3 plots portfolio values over

time. Consistent with our results based on single portfolio sorts, inspection of the

plots in this figure indicates that for equal-weighted portfolios sorting on signed jump

variation (SRVJ) yields the largest portfolio accumulations; and for value-weighted

portfolios, sorting on signed small jump variation (SRVSJ) yields the largest portfolio

accumulations. 16

Now, consider the Sharpe ratios reported below, which are reported for various jump

measures, and are constructed based on truncation level γ2 = 5

√
1
t ÎV

(i)

t ∆0.49
n .

Sharpe Ratios

SRVJ RSJ SRVLJ SRVSJ RSK

Equal-Weighted 2.1342 2.1363 1.8556 1.8161 2.2234
Value-Weighted 1.1322 1.1310 0.1611 1.2755 0.8665

The entries in this table are Sharpe ratios for equal and value-weighted short-long

portfolios constructed using SRVJ, RSJ, SRVLJ, SRVSJ, and RSK. Recall that RSK

is realized skewness (see Table 2.1 for definitions of these measures). The sample of

stocks used for Sharpe ratio calculations includes all NYSE, NASDAQ and AMEX listed

15Cumulative returns calculations do not include the risk-free rate. For a definition of cumulative
returns both with and without the weekly risk-free rate, see Bollerslev et al. (2019b).

16Note that RSJ, which measures the same signed jump variation as SRVJ, although using different
estimation methodology, generates the highest cumulative return for equal-weighted portfolios, but is
dominated by SRVSJ for value-weighted portfolios.
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stocks for the period January 1993 to December 2016. At the end of each Tuesday, all

of the stocks in the sample are sorted into quintile portfolios based on ascending values

of various realized risk measures. A high-low spread portfolio is then formed as the

difference between portfolio 1 and portfolio 5, and held for one week, where 1 and

5 refer to quintiles, as in Tables 2.3 to 2.7. The Sharpe ratio is calculated with the

one-week ahead returns.

Interestingly, for equal-weighted portfolios, the RSK-based short-long strategy yields

the highest Sharpe ratio (i.e., 2.2234), although the ratio of 2.1342 for SRVJ is approx-

imately the same. Still, the success of the RSK measure is likely due to its relatively

stable performance, compared with other jump-based strategies. This finding is similar

to the findings discussed in Xiong et al. (2016), who show that tail-risks can be sub-

stantially reduced by forecasting skewness. Note also that the signed small jump vari-

ation (SRVSJ) based portfolio has the highest Sharpe ratio, among all value-weighted

portfolios. However, it is clear that all equal-weighted portfolios outperform their cor-

responding value-weighted counterparts. This result is consistent with the finding dis-

cussed above that small and illiquid firms tend to react more strongly to realized risk

measures.

2.4.3 Double Portfolio Sorts Based on Realized Measures

To further investigate whether small and large jumps are priced differently, we utilize

double portfolio sorts. In particular, we carry out double sorts in order to examine

the robustness of our findings based on single sorts, after controlling for other realized

measures. Table 2.8 reports returns and alphas from various of these sorts in which

we alternate the sorting order among SRVJ, SRVLJ and SRVSJ. When we first sort

by total jump variation, and then sort stocks based on SRVLJ or SRVSJ, a negative

relation only exists between SRVSJ and subsequent weekly returns (see Panels A and

B of the table). This result indicates that there is no marginal predictive content

associated with large jumps, when conditioning on the predictive content associated

with total jump variation, while small jumps have unique information for predicting

future returns, even compared to total jumps.
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Panel C reports returns and alphas based on sorting on SRVSJ after controlling for

SRVLJ. Both the equal- and value-weighted high-low spreads and alphas are statistically

significant in this case, while this is not the case if stocks are first sorted by SRVSJ and

then by SRVLJ, as shown in Panel D. More specifically, the high-low return is -25.38 bps

(with a t-statistic of -6.61), for the value-weighted portfolio in Panel C, and is -3.77 bps

with a t-statistics of -1.49 in Panel D, for the value-weighted portfolio. This indicates

that the predictable content in large jumps becomes negligible after controlling for small

jumps.

Bollerslev et al. (2019b) document that the negative association between realized

skewness and one-week ahead returns is reversed when controlling for the signed jump

variation. To further investigate the relationship between skewness and different jump

variation measures, we use double portfolio sorts to control for different effects that are

associated with cross-sectional variation in future returns.

Panel A of Table 2.9 reports average returns and corresponding t-statistics for 25

portfolios sorted by SRVJ (signed jump variation), controlling for realized skewness

(RSK). At the end of each Tuesday, stocks are first sorted into quintiles based on

realized skewness, and then within each quintile portfolio, we further sort stocks into

quintiles based on signed jump variation. We also report the equal- and value-weighted

returns in the following week and Fama-French and Carhart four-factor alphas for the

long-short portfolios and the averaged portfolios across quintiles. Inspection of the

results in this table indicates that the negative association between SRVJ and future

returns still exists, after controlling for RSK, indicating that there is unique predictive

information contained in signed jump variation. Panel B in this table reports results for

portfolios sorted first by SRVJ and then by RSK. The high-low spreads of the averaged

portfolios are positive after controlling for SRVJ, confirming the results reported in

Bollerslev et al. (2019b).

Panel A of Table 2.10 contains results for portfolios sorted by SRVLJ (signed large

jump variation) after controlling for RSK. As noted above, the negative association be-

tween SRVLJ and future returns is reversed after controlling for skewness. By contrast,

this issue doesn’t exist for portfolios sorted by SRVSJ (signed small jump variation)
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when controlling for skewness, as shown in panel B of Table 2.10, indicating that signed

small jump variation has unique information about future return premia. However, first

accounting for skewness negates the usefulness that signed large jump variation has for

predicting future returns. This finding serves as an important distinction between the

predictive content of small and large jumps. Whereas the former can be forecast by

realized skewness, the latter cannot.

Finally, Tables 2.11 contains results for portfolios sorted on RSK, after controlling

for SRVLJ and SRVSJ, respectively. Inspection of the entries in this table indicates

that the high-low spreads are negative, except in select value weighted portfolio cases,

when controlling for SRVSJ. This is not surprising since skewness captures information

from both SRVLJ and SRVSJ, while the negative association between realized skewness

and subsequent returns remains, when controlling for either SRVLJ or SRVSJ, in most

cases. Of note is that this negative association disappears for some value-weighted

portfolios, when controlling for SRVSJ, suggesting that signed small jump variation

(especially for big firms) is the main driver of the signed total jump variation. These

findings are consistent with the findings documented by Bollerslev and Todorov (2011)

that S&P 500 market portfolios tend to have symmetric jump tails (large jumps).

2.4.4 Using Double Portfolio Sorts to Examine Stock-Level Versus

Industry-Level Predictability

In this section, we carry out an additional set of double portfolio sort experiments, in

which industry based investing is compared with individual stock based investing. Our

earlier findings indicate that low signed jump variation investing (buying stocks with low

signed jump variation and shorting stocks with high signed jump variation) can deliver

significant risk-adjusted returns (this is similar to low risk investing, and is a result

also found by Bollerslev et al. (2019b), for example). In order to examine whether this

investment strategy relies on industry betting or stock selection within industries (or

both), we form double sorted portfolios based on industry-level and stock-level signed

jump risk variation. In particular, each Tuesday we group stocks into 49 industries

based on SIC codes. Industry-level signed jump risk is calculated as the value-weighted
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average of signed (large/small) jump variation measures for stocks within each industry.

Thus, stocks in the same industry have the same industry signed (large/small) jump

variation during a given week. Stock-level signed jump risk is calculated as outlined in

the above. Double sorts are then used to investigate the selection effects at industry-

and stock-level. Namely, stocks are sorted into 25 portfolios based on industry- and

stock-level signed (large/small) jump variation quintiles. With this particular variety

of sorting, results are independent of the order in which stocks are sorted.

Figure 2.4 depicts the percentage of stocks in each portfolio (see Panel A), and the

market capitalization in these portfolios (see Panel B). If industry-level selection and

stock-level selection lead to different quintile portfolios (i.e. off-diagonal portfolios in

the figures have non-zero membership), it is possible to separate these two effects using

double sorts. Namely, there are different industry- and stock-level effects. Both panels

indicate this to be the case.

Tables 2.12 to 2.13 report our empirical findings based on our double portfolio

sort experiments. In particular, Table 2.12 reports results for sorting done on signed

jump variation (SRVJ), while Table 2.13 reports results for sorting done on signed

large jump variation (SRVLJ) and signed small jump variation (SRVSJ), respectively.

Entries in the tables are mean returns and alphas, as in previous tables. However,

in these tables we also report industry-level effects and stock-level effects. These are

reported in the last two rows of entries in each panel of the tables. The first of these

two rows, called “Industry-Level Effect” reports average high-low returns and alphas

by averaging across quintiles in the high-low and alpha columns of the table (these

are industry-level results). The second of these two rows, called “Stock-Level Effect”

reports average high-low returns and alphas by averaging across quintiles in the high-

low and alpha rows of the table (these are stock-level results). Summarizing, rows in

these tables display portfolios formed by stocks in the same stock-level SRVJ, SRVLJ,

or SRVSJ quintiles, while columns report results for portfolios formed by stocks in the

same industry-level SRVJ, SRVLJ, or SRVSJ quintiles.

Turning to Table 2.12, notice, for example, that a strategy of buying stocks in the

highest industry SRVJ quintile and selling stocks in the lowest industry SRVJ quintile
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generates an equal-weighted average return of 29.63 bps with a t-statistic of 5.66, and

the corresponding value-weighed average return is 11.48 bps with a t-statistics of 2.23

(see Table 2.12). This finding is interesting, as it suggests that the negative association

between SRVJ and future returns is reversed in the industry level. The equal-weighted

average of the high-low row (i.e., the average stock-level effect) is -45.28 bps with a

t-statistic of -11.39 and the alpha is -44.70 bps with a t-statistic of -11.50, indicating

that the stock-level effect is economically significant. At the stock-level, investors prefer

stocks with high SRVJ, requiring lower returns under higher SRVJ, given that there is

a large probability of extremely large positive jumps. By contrast, when sorting at the

industry-level, investors are more interested in industry exposure with lower SRVJ, or

in return distributions concentrated to the right. Lottery-like payoff exposure comes

from individual stocks, not from industry bets. These results are mirrored in Table

2.13, where SRVLJ and SRVSJ are the sorting measures. However, average stock- and

industry-level returns and alphas are much higher under SRVSJ sorting than under

SRVLJ sorting. For example, buying stocks in the highest industry SRVLJ quintile

and selling stocks in the lowest industry SRVLJ quintile generates an equal-weighted

average return of 14.83 bps with a t-statistic of 3.77 under SRVLJ sorting (see panel A

of Table 2.13), versus an equal-weighted average return of 26.69 bps with a t-statistic

of 5.02 under SRVSJ sorting (see panel B of Table 2.13).

2.4.5 Firm-Level Fama-MacBeth Regressions

Table 2.14 gathers results based on firm-level Fama-MacBeth regressions, which we

run in order to investigate the return predictability associated with variation measures,

when controlling for multiple firm specific characteristics. Regressions are carried out

as follows. At the end of each Tuesday, we run the cross-sectional regression,

ri,t+1 = γ0,t +

K1∑
j=1

γj,tXi,j,t +

K2∑
s=1

ϕs,tZi,s,t + ϵi,t+1, t = 1, ..., T, (2.15)

where ri,t+1 denotes the stock return for firm i in week t + 1, K1 is the number of

potential variation measures, and Xi,j,t denotes a relevant realized measure at the end

of week t. In addition, there are K2 variables measuring firm characteristics, which
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are denoted by Zi,j,t (see Section 2.3 for details). After estimating the cross-sectional

regression coefficients on a weekly basis, we form the time series average of the resulting

T weekly γ̂j,t and ϕ̂s,t values, in order to estimate the average risk premium associated

with each risk measure. Namely, we construct

γ̂j =
1

T

T∑
t=1

γ̂j,t, and ϕ̂s =
1

T

T∑
t=1

ϕ̂s,t, for j = 1, ...,K1, s = 1, ...,K2.

Panel A of Table 2.14 reports results for regressions on various realized variation

measures, without controlling for firm specific characteristics. Consistent with our re-

sults based univariate sorting, signed jump variation (SRVJ) significantly negatively

predicts cross-sectional variation, in these weekly returns regressions. Additionally,

both signed small and large jump variation measures negatively predict future weekly

returns. Finally, both small and large upside (downside) jump variation measures neg-

atively (positively) predict subsequent weekly returns. However, when including mea-

sures that contain information from both small and large jump variation measures, as

well as realized skewness, the negative association between skewness and future returns

is reversed (see the results for the regressions labeled IX, XII, XV, XVI). In partic-

ular, skewness drives out signed large jump variation in regression XIII by reverting

the negative association between the latter and future returns. If only small jumps are

considered as control variables, skewness still negatively predicts future returns. This

again indicates that signed small jump variation has unique and significant information

about future returns.

Panel B of Table 2.14 reports regression results for the same set of regressions in

panel A, but controlling for various firm specific characteristics, ranging from BETA to

ILLIQ (see Table 2.1 for details). In these regressions, signed (small) jump variation

is always significant. Additionally, skewness significantly negatively predicts future

returns in regressions that only include small jump variation. This provides yet further

evidence that signed small jump variation has unique and significant information about

future returns, while large jumps have information in common with realized skewness.
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2.4.6 Pricing Distinctions Between Small and Large Jumps

The results in previous sections show that small and large jump variation measures

contain different information, and thus have different predictive content. To further

investigate whether the differences are driven by distinct economic factors, we provide

empirical evidence on the inter-relationship between jumps and news.

2.4.6.1 Jumps and News Announcement

We begin by examining the relationship between jumps and firm-level news announce-

ments. In order to do this, we construct event windows using the approach of Bernard

and Thomas (1989). We then plot the dynamics of SRVJ, SRVLJ, and SRVSJ around

earnings announcements. In particular, following Livnat and Mendenhall (2006), the

earning surprise (SUE) for each stock is defined as

SUEj,t =
(Xj,t − Ej,t)

Pj,t
, (2.16)

where Ej,t and Xj,t denote the analysts’ expectations and reported actual earnings per

share, respectively. Here, Pj,t is the price per share for stock j at the end of quarter t.

In a [-12,12] week event window, where week zero denotes the earning announcement

week, stocks are sorted into tertile portfolios by the value of SUE at the end of week

zero. We then calculate the equal-weighted and value-weighted average of jump mea-

sures for each tertile portfolio at each week. Figure 2.5 displays various jump variation

measures of portfolios with the most negative, median, and positive earning surprises.

It turns out that large (both positive and negative) jump variation measures are higher

during announcement weeks, regardless of news sentiment (i.e., regardless of whether

SUE is positive or negative). However, positive large jump variation (RVLJP) is higher

on days with the most positive earning surprises, and negative large jump variation

(RVLJN) reaches its peak on days with the most negative earning surprises. In con-

trast, both small positive and negative jump variation measures (RVSJP and RVSJN)

have lower magnitudes during announcement weeks. The size of the reduction asso-

ciated with small positive jump variation (RVSJP) is larger on days with the most

negative earning surprises, while small negative jump variation (RVSJN) decreases the
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most on days with the most positive surprises. For signed jump variation, jump mag-

nitudes increase (relative to non-earnings-surprise weeks) on positive surprise days and

decrease on negative surprising days. These results indicate that big news, regardless of

sentiment, simultaneously leads to increases in the magnitude of large jump variation,

and reductions in the level of small jump variation.

The other direction in which we investigate the linkage between news announce-

ments and jump variation is based on an exploration of whether news announcements

affect the frequency of occurrence of either small or large jumps. Table 2.15 reports the

average percentage of firms exhibiting particular types of jumps on days with and with-

out earning surprises. Specifically, on each announcement date, all stocks exhibiting

earnings are sorted into tertile portfolios based on the absolute value of the earning sur-

prise (SUE). The categories sorted on are denoted as “small”, “medium”, and “large”,

with tertiles calculated by appropriate sorting of the firms based on the absolute values

of the firms’ earnings surprise magnitudes. Then, within each tertile, the percentage of

firms exhibiting a particular type of jump (averaged across all earnings surprise days)

is calculated and reported. For these calculations, only days in which at least 3 firms

report earning surprises and included in our sample.17 Thus, for example, if 12 firms re-

port earning surprises, then 4 firms will be represented in each of the 3 tertiles. Turning

to the results in the table, note, for example, that the entry 0.3042 in the sixth col-

umn of Panel A indicates that 30.42% of firms in the “small surprise” tertile portfolio

recorded a large jump (measured by SRVLJ) on small surprise days, on average, across

the entire daily sample. By contrast, 89.83% of firms exhibit small jumps (measured

by SRVSJ) on days with small surprises.

Two clear conclusions emerge upon examination of the results in this table. First,

when the magnitude of earning surprises increases, the average percentage of firms with

large jumps (SRVLJ) increases from 30.42% to 37.37%. In particular, in Panel A, note

that for the “Small” tertile, the percentage of firms exhibiting large jumps (SRVLJ)

is 30.42%, while for the “Large” tertile, the percentage is 37.37%. By contrast, the

17Results are virtually identical if we only include days in which at least 12 or 24 firms report earnings
surprises.
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percentage of firms with small jumps decreases as the relative magnitude of earnings

surprises increases (i.e., the percentage of firms associated with SRVSJ decreases from

89.83% to 88.29%). This result indicates that “big news” is associated with an increase

in the prevalence of large jumps. Second, the prevalence of jumps differs depending

upon whether one tabulates results on earnings surprise days (Panel A) or on non-

earnings surprise days (Panel B). For example, large news surprises are associated with

large jumps for 31.07% of firms on non-announcement days (see Panel B) and 37.38% of

firms on announcement days (Panel A). This result is consistent with event study finding

that jump magnitudes are larger on announcement days than non-announcement days.

It is also worth noting that Panel C of Table 2.15 reports t-statistics that test

whether the differences in percentages of jumps in different portfolios are significant. In

this table, “None” refers to the case where percentages are calculated on non-earnings-

announcement days. Thus, the fact that the “Large-None” t-statistic associated with

SRVLJ is 16.85, indicates that the percentage of large jumps on “large-surprise” earn-

ings announcement days is significantly greater than the percentage of large jumps

on non-earnings-announcement days. This in turn implies that large jumps tend to

occur on “large-surprise” earnings announcement days. On the other hand, the re-

verse is true in the case of small jumps. In particular, the “Large-None” t-statistic

associated with SRVSJ is -10.85, indicating that small jumps tend to occur on non-

earnings-announcement days.

2.4.6.2 Systematic Versus Idiosyncratic Risks

To further explore the unique information embedded in either large or small jump

variation measures, and examine their association with systematic and idiosyncratic

risks, we identify the effect of diversification on both small and large jumps. In order

to do this, we construct two alternative measures of SRVLJ and SRVSL. The ratio of

these is plotted in Figure 2.6.

Method 1: For jump measures using this method, we simply construct SRVLJ

and SRVSJ as done earlier in the paper. Namely, we sort stocks into quintiles based on

either weekly SRVLJ or SRVSJ. Then, we construct daily ratios of SRVLJ to SRVSJ for
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each individual stock in a given quintile. Finally, these ratios are aggregated, forming

weekly measures of SRVLJ/SRVSJ. These measures are then used to form equal- or

value-weighted ratios of SRVLJ to SRVSJ. These values are depicted in red (solid line)

in Figure 2.6.

Method 2: For jump measures using this method, we start by constructing the

same quintiles (based on weekly SRVLJ and SRVSJ) as done above. Then, we use

the 5-minute returns for each stock in a given quintile in order to construct 5-minute

aggregate portfolio returns for that quintile. We then construct daily jump measures

using these portfolio returns (called SRVLJ and SRVSJ, and SRVLJ/SRVSJ), which

are porfolio versions of the similar measures constructed using Method 1. Finally, daily

measures are aggregated into weekly measures. These value are depicted in blue (dotted

line) in Figure 2.6.

Comparing jump variation ratios constructed in these two different ways allows us

to explore the importance of diversification when measuring jump variation. Turning

to our findings, Figure 2.6 shows the time series of aggregated (Method 2) and weighted

average (Method 1) jump variation measures for the first quintile portfolios. The fact

that Method 1 (red line) is much smoother than Method 2 (blue line) means that the

small jump component in the ratio of SRVLJ/SRVSJ reamins much larger than in the

other case. Thus, the obvious difference between aggregated and weighted averages of

SRVLJ/SRVSJ indicates that small jump variation is more likely to be diversified away

than large jump variation. This can be immediately seen upon examination of the plots

in any of the four panels in the figure. Small jump variation is therefore more closely

related to firm specific or idiosyncratic risks, while large jump variation is more likely

to be systematic risks. 18

Another way to explore the relationship between systematic and idiosyncratic risks

is to carry out Fama-MacBeth type regressions where the dependent variable is one of

our jump variation measures and the independent variables are firm characteristics.19

18See the Supplementary Appendix for plots of jump variation measures for the other quintile
portfolios.

19Specifically, our objective in this section is to discuss regressions of the form given in equation
(2.15), with the dependent variable replaced by various realized variables.
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The results from a number of these sorts of regressions are reported in Table 2.16.

Evidently, the firm characteristics always explain more of the dynamics associated with

small jumps than with large jumps. This finding is supported by the fact that adjusted

R2 are higher when the dependent variable is a small jump variation measure (compare

the results of regressions I and II with III and IV). This again suggests that small jump

variation is more likely to be associated with idiosyncratic risks.20

2.5 Concluding Remarks

In this paper, we add to the literature that explores the relationship between equity

returns and volatility. In particular, we focus on the strand of this literature that

explores the data for evidence of asymmetry (non-linearity) in the return volatility

trade-off. Following Bollerslev et al. (2019b), we decompose realized variation into

upside and downside semi-variances (good and bad volatilities). We then take the

additional step of partitioning the semi-variances into small and large components.

Within this context, we examine the marginal predictive content of small and large

jump variation measures. We also examine the importance of earnings announcements

for examining the linkages between small and large jumps and news.

We find that sorting on signed small jump variation leads to value weighted high-low

portfolios with greater average returns and alphas than when either signed total jump

or signed large jump variation is sorted on. We also find that there is a threshold,

beyond which “large” jump variation contains no marginal predictive ability, relative

to that contained in small jump variation. Indeed, including large jump variation can

actually be detrimental to predictive accuracy, as average returns and alphas for high-

low portfolios actually decline when total variation is instead utilized in some of our

prediction experiments. Analysis of returns and alphas based on industry double-sorts

20See the Supplementary Appendix for results from double-sorted portfolios that condition on various
control variables. In these tables, it is noteworthy that when stocks are first sorted by a control variable
(e.g., illiquidity, volatility, firm size and reversal), the SRVJ (SRVLJ and SRVSJ) effect is much higher
within quintile portfolios with high illiquidity, high volatility, small firm size, and low reversal. This
result suggests that all of these control variables significantly contribute to the predictability of jump
variation measures. This result provides additional confirmation to earlier findings reported in Bollerslev
et al. (2019b).
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indicate that the benefit of small signed jump variation investing is driven by stock

selection within an industry, rather than industry bets. Investors prefer stocks with

a high probability of large positive jump variation, but they also tend to overweight

safer industries. Additionally, we find that the content of signed large jump variation is

negligible when controlling for either signed total jump variation or realized skewness.

By contrast, signed small jump variation has unique information for predicting future

returns, even when controlling for total jump variation or realized skewness. Finally,

we find that large jumps are closely associated with “big” news, as might be expected.

In particular, large earning announcement surprises increase both the magnitude and

occurrence of large jumps. While such news related information is embedded in large

jump variation, the information is generally short-lived, and dissipates too quickly to

provide marginal predictive content for subsequent weekly returns. Moreover, while

large jump variation is closely associated with large earnings surprises (“big” news),

small jumps tend to be more closely associated with idiosyncratic risks, and can be

diversified away.
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Table 2.1: Realized Measures and Firm Characteristics

Panel A: Realized Measures Used in Portfolio Sorts and Fama-MacBeth Regressions

RVJP Positive (upside) jump variation, see (2.1).
RVJN Negative (downside) jump variation, see (2.2).
SRVJ Signed jump variation, RV JP −RV JN , see (2.3).
RVLJP Positive (upside) large jump variation, see (2.4).
RVLJN Negative (downside) large jump variation, see (2.5).
SRVLJ Signed large jump variation, RV LJP −RV LJN , see (2.6).
RVSJP Positive (upside) small jump variation, see (2.7).
RVSJN Negative (downside) small jump variation, see (2.8).
SRVSJ Signed small jump variation, RV SJP −RV SJN , see (2.9).
RVOL Realized volatility
RSK Realized skewness, see (2.12).
RKT Realized kurtosis, see (2.13).

Panel B: Explanatory Variables and Firm Characteristics Used in Fama-MacBeth Regressions

BETA Market beta
log(Size) Natural logarithm of firm size
BEME Book-to-market ratio
MOM Momentum
REV Short-term reversal
IVOL Idiosyncratic volatility
CSK Coskewness
CKT Cokurtosis
MAX Maximum daily return
MIN Minimum daily return
ILLIQ Illiquidity

*Notes: The realized measures listed in Panel A of this table are defined and discussed in Section
2.2. For detailed descriptions of the explanatory variables and firm characteristics listed in Panel
B of this table, refer to Bollerslev et al. (2019b), and the references cited therein.
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Table 2.2: Summary Statistics for Various Realized Measures and Firm
Characteristics Based on Two Jump Truncation Levels

Panel A: Cross-Sectional Summary Statistics

SRVJ RVJP RVJN SRVLJ RVLJP RVLJN SRVSJ RVSJP RVSJN RVOL RSK RKT BETA log(Size) BEME MOM REV IVOL CSK CKT MAX MIN ILLIQ

Part I: Jump Truncation Level= γ1

Mean 0.0061 0.2698 0.2637 0.0045 0.1518 0.1472 0.0015 0.1180 0.1165 0.9489 0.0288 8.2569 1.0794 6.5280 0.5969 2023.8456 70.6077 0.0293 -0.0263 1.1438 412.1094 -346.7608 -5.2826
Std 0.1537 0.1350 0.1347 0.1424 0.1555 0.1523 0.0635 0.0783 0.0783 2.1211 0.8159 4.5706 0.5566 1.8359 0.7224 7464.5273 927.3551 0.0250 0.3283 0.8474 572.1454 359.6789 2.4047

Part II: Jump Truncation Level= γ2

Mean 0.0061 0.2698 0.2637 0.0029 0.0983 0.0954 0.0031 0.1715 0.1684 0.9489 0.0288 8.2569 1.0794 6.5280 0.5969 2023.8456 70.6077 0.0293 -0.0263 1.1438 412.1094 -346.7608 -5.2826
Std 0.1537 0.1350 0.1347 0.1303 0.1401 0.1368 0.0859 0.0911 0.0909 2.1211 0.8159 4.5706 0.5566 1.8359 0.7224 7464.5273 927.3551 0.0250 0.3283 0.8474 572.1454 359.6789 2.4047

Panel B: Cross-Sectional Correlations

SRVJ RVJP RVJN SRVLJ RVLJP RVLJN SRVSJ RVSJP RVSJN RVOL RSK RKT BETA log(Size) BEME MOM REV IVOL CSK CKT MAX MIN ILLIQ

Part I: Jump Truncation Level= γ1

SRVJ 1.00 0.57 -0.57 0.91 0.43 -0.40 0.37 0.13 -0.18 -0.02 0.94 0.03 -0.03 0.01 0.01 0.01 0.30 -0.03 0.09 0.00 0.17 0.22 0.00
RVJP 1.00 0.33 0.52 0.85 0.37 0.21 0.04 -0.13 0.22 0.54 0.45 -0.26 -0.49 0.14 -0.10 0.15 0.12 0.04 -0.24 0.15 0.06 0.56
RVJN 1.00 -0.52 0.35 0.84 -0.22 -0.10 0.08 0.24 -0.54 0.41 -0.23 -0.49 0.13 -0.11 -0.19 0.15 -0.06 -0.24 -0.05 -0.20 0.55
SRVLJ 1.00 0.48 -0.44 -0.04 -0.05 -0.01 -0.01 0.92 0.03 -0.02 0.00 0.01 0.00 0.20 -0.02 0.05 0.00 0.12 0.16 0.00
RVLJP 1.00 0.57 -0.02 -0.46 -0.45 0.23 0.44 0.61 -0.25 -0.47 0.12 -0.06 0.09 0.13 0.02 -0.24 0.12 -0.02 0.54
RVLJN 1.00 0.01 -0.44 -0.45 0.24 -0.41 0.59 -0.23 -0.48 0.11 -0.06 -0.10 0.15 -0.03 -0.24 0.01 -0.17 0.54
SRVSJ 1.00 0.42 -0.42 -0.02 0.19 0.00 -0.03 0.01 0.01 0.01 0.26 -0.03 0.08 0.00 0.14 0.18 0.00
RVSJP 1.00 0.64 -0.04 0.06 -0.40 0.06 0.03 0.01 -0.05 0.10 -0.03 0.04 0.04 0.02 0.11 -0.06
RVSJN 1.00 -0.03 -0.10 -0.40 0.08 0.02 0.01 -0.06 -0.12 -0.01 -0.03 0.03 -0.09 -0.04 -0.06
RVOL 1.00 -0.01 0.22 -0.05 -0.55 0.08 -0.12 0.06 0.56 -0.01 -0.27 0.44 -0.47 0.56
RSK 1.00 0.04 -0.02 0.00 0.01 0.00 0.22 -0.02 0.06 0.00 0.13 0.17 0.00
RKT 1.00 -0.20 -0.34 0.09 -0.02 0.00 0.10 -0.01 -0.19 0.08 -0.10 0.40
BETA 1.00 0.10 -0.09 0.00 -0.04 0.06 0.01 0.30 0.03 -0.09 -0.16
ME 1.00 -0.19 0.11 -0.05 -0.52 0.01 0.40 -0.32 0.35 -0.93
BEME 1.00 0.03 0.02 0.05 0.00 -0.06 0.05 -0.03 0.18
MOM 1.00 0.00 -0.08 -0.07 0.06 -0.05 0.05 -0.15
REV 1.00 0.12 0.16 -0.04 0.49 0.29 0.05
IVOL 1.00 0.02 -0.35 0.50 -0.47 0.47
CSK 1.00 0.01 0.07 0.07 0.00
CKT 1.00 -0.16 0.15 -0.37
MAX 1.00 -0.28 0.34
MIN 1.00 -0.35
ILLIQ 1.00

SRVJ RVJP RVJN SRVLJ RVLJP RVLJN SRVSJ RVSJP RVSJN RVOL RSK RKT BETA log(Size) BEME MOM REV IVOL CSK CKT MAX MIN ILLIQ

Part II: Jump Truncation Level= γ2

SRVJ 1.00 0.57 -0.57 0.83 0.40 -0.37 0.52 0.23 -0.27 -0.02 0.94 0.03 -0.03 0.01 0.01 0.01 0.30 -0.03 0.09 0.00 0.17 0.22 0.00
RVJP 1.00 0.33 0.48 0.77 0.33 0.30 0.30 0.01 0.22 0.54 0.45 -0.26 -0.49 0.14 -0.10 0.15 0.12 0.04 -0.24 0.15 0.06 0.56
RVJN 1.00 -0.47 0.31 0.75 -0.31 0.03 0.33 0.24 -0.54 0.41 -0.23 -0.49 0.13 -0.11 -0.19 0.15 -0.06 -0.24 -0.05 -0.20 0.55
SRVLJ 1.00 0.49 -0.44 -0.04 -0.05 -0.01 -0.01 0.89 0.04 -0.01 0.00 0.01 0.00 0.16 -0.02 0.04 0.00 0.09 0.13 0.00
RVLJP 1.00 0.56 -0.02 -0.36 -0.34 0.20 0.43 0.64 -0.24 -0.40 0.11 -0.05 0.06 0.11 0.01 -0.22 0.10 -0.02 0.47
RVLJN 1.00 0.01 -0.34 -0.35 0.21 -0.40 0.62 -0.23 -0.41 0.10 -0.06 -0.09 0.13 -0.03 -0.22 0.01 -0.14 0.47
SRVSJ 1.00 0.47 -0.47 -0.02 0.32 0.00 -0.03 0.01 0.01 0.01 0.30 -0.03 0.09 0.00 0.16 0.21 0.00
RVSJP 1.00 0.55 0.03 0.13 -0.30 -0.02 -0.14 0.04 -0.07 0.13 0.02 0.04 -0.04 0.07 0.10 0.13
RVSJN 1.00 0.05 -0.17 -0.30 0.01 -0.15 0.04 -0.07 -0.15 0.05 -0.04 -0.04 -0.08 -0.09 0.13
RVOL 1.00 -0.01 0.22 -0.05 -0.55 0.08 -0.12 0.06 0.56 -0.01 -0.27 0.44 -0.47 0.56
RSK 1.00 0.04 -0.02 0.00 0.01 0.00 0.22 -0.02 0.06 0.00 0.13 0.17 0.00
RKT 1.00 -0.20 -0.34 0.09 -0.02 0.00 0.10 -0.01 -0.19 0.08 -0.10 0.40
BETA 1.00 0.10 -0.09 0.00 -0.04 0.06 0.01 0.30 0.03 -0.09 -0.16
ME 1.00 -0.19 0.11 -0.05 -0.52 0.01 0.40 -0.32 0.35 -0.93
BEME 1.00 0.03 0.02 0.05 0.00 -0.06 0.05 -0.03 0.18
MOM 1.00 0.00 -0.08 -0.07 0.06 -0.05 0.05 -0.15
REV 1.00 0.12 0.16 -0.04 0.49 0.29 0.05
IVOL 1.00 0.02 -0.35 0.50 -0.47 0.47
CSK 1.00 0.01 0.07 0.07 0.00
CKT 1.00 -0.16 0.15 -0.37
MAX 1.00 -0.28 0.34
MIN 1.00 -0.35
ILLIQ 1.00

*Notes: See notes to Table 2.1. This table presents cross-sectional summary statistics and correlations for all realized measures and control variables based on two truncation levels: γ1 =

4

√
1
t
ÎV

(i)

t ∆0.49
n and γ2 = 5

√
1
t
ÎV

(i)

t ∆0.49
n . The entries in the table for realized measures (see columns 2-13) are constructed using 5-min intraday high frequency data. Entries for firm

characteristics (see columns 14-24) are constructed using daily data, with the exception of BEME, which is constructed using monthly data. For complete details, see Sections 2.3 and 2.4
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Table 2.3: Realized Measures and Firm Characteristics of Portfolios Sorted by Various
Realized Measures

Panel A: Stocks Sorted by SRVJ

Quintile RVJP RVJN RVLJP RVLJN RVSJP RVSJN SRVLJ SRVSJ SRVJ RVOL RSK RKT BETA log(Size) BEME MOM REV IVOL CSK CKT MAX MIN ILLIQ
1 0.2021 0.3959 0.1161 0.2723 0.0860 0.1235 -0.1563 -0.0375 -0.1938 0.9394 -0.9324 9.8720 1.0369 6.1326 0.6235 0.2006 -0.0363 0.0317 -0.0708 1.0482 0.0295 -0.0494 -4.6903
2 0.2200 0.2777 0.1015 0.1391 0.1185 0.1385 -0.0376 -0.0200 -0.0576 0.9513 -0.2504 7.1729 1.1351 6.7041 0.5711 0.2051 -0.0111 0.0293 -0.0443 1.1987 0.0346 -0.0383 -5.5835
3 0.2435 0.2399 0.1127 0.1103 0.1308 0.1296 0.0023 0.0012 0.0036 1.0360 0.0194 6.9162 1.1301 6.8171 0.5695 0.2030 0.0077 0.0283 -0.0242 1.2222 0.0397 -0.0328 -5.7301
4 0.2801 0.2138 0.1441 0.1005 0.1360 0.1132 0.0436 0.0227 0.0663 0.9162 0.2954 7.2497 1.1096 6.7855 0.5778 0.2097 0.0266 0.0278 -0.0066 1.2055 0.0454 -0.0282 -5.6668
5 0.4035 0.1914 0.2846 0.1138 0.1189 0.0775 0.1708 0.0413 0.2121 0.9018 1.0138 10.0739 0.9851 6.2007 0.6427 0.1936 0.0485 0.0293 0.0145 1.0443 0.0569 -0.0247 -4.7419

Panel B: Stocks Sorted by SRVLJ

Quintile RVJP RVJN RVLJP RVLJN RVSJP RVSJN SRVLJ SRVSJ SRVJ RVOL RSK RKT BETA log(Size) BEME MOM REV IVOL CSK CKT MAX MIN ILLIQ
Part I: Jump Truncation Level= γ1

1 0.2255 0.3959 0.1250 0.3016 0.1005 0.0943 -0.1766 0.0062 -0.1703 0.9429 -0.9075 10.2967 1.0163 6.0403 0.6329 0.1966 -0.0221 0.0316 -0.0548 1.0357 0.0347 -0.0461 -4.5515
2 0.2222 0.2603 0.0874 0.1297 0.1347 0.1307 -0.0422 0.0041 -0.0382 0.9128 -0.2003 6.9378 1.1314 6.7639 0.5678 0.2104 -0.0011 0.0288 -0.0329 1.2050 0.0374 -0.0357 -5.6652
3 0.2296 0.2252 0.0968 0.0936 0.1329 0.1316 0.0032 0.0013 0.0044 1.1510 0.0218 6.5571 1.1308 6.9059 0.5648 0.1997 0.0069 0.0282 -0.0245 1.2380 0.0390 -0.0326 -5.8581
4 0.2726 0.2229 0.1493 0.0981 0.1233 0.1248 0.0512 -0.0016 0.0497 0.8314 0.2602 7.2170 1.1237 6.7993 0.5764 0.2118 0.0169 0.0280 -0.0166 1.2086 0.0421 -0.0304 -5.6962
5 0.4041 0.2153 0.3149 0.1234 0.0891 0.0920 0.1915 -0.0028 0.1887 0.9158 0.9900 10.5179 0.9873 6.0946 0.6471 0.1887 0.0354 0.0299 -0.0021 1.0376 0.0533 -0.0284 -4.6003

Part II: Jump Truncation Level= γ2

1 0.2412 0.3897 0.0841 0.2403 0.1571 0.1494 -0.1561 0.0076 -0.1485 0.9355 -0.8465 10.5599 1.0128 6.0603 0.6360 0.1928 -0.0152 0.0313 -0.0478 1.0403 0.0366 -0.0438 -4.5663
2 0.2189 0.2314 0.0341 0.0519 0.1848 0.1794 -0.0178 0.0054 -0.0124 0.9321 -0.0762 6.4172 1.1366 6.8798 0.5622 0.2132 0.0045 0.0283 -0.0278 1.2310 0.0388 -0.0340 -5.8322
3 0.2438 0.2405 0.0805 0.0770 0.1633 0.1635 0.0035 -0.0001 0.0033 1.6847 0.0202 7.7437 1.0936 6.5831 0.6248 0.1664 0.0063 0.0322 -0.0021 1.2281 0.0426 -0.0360 -5.3661
4 0.2985 0.2611 0.1233 0.0854 0.1752 0.1756 0.0379 -0.0004 0.0375 1.0724 0.2140 8.0742 1.0912 6.4686 0.5995 0.1944 0.0125 0.0294 -0.0213 1.1478 0.0418 -0.0324 -5.2346
5 0.3985 0.2321 0.2526 0.0837 0.1459 0.1484 0.1690 -0.0025 0.1664 0.9201 0.9332 10.8242 0.9935 6.1033 0.6466 0.1896 0.0285 0.0300 -0.0084 1.0418 0.0506 -0.0301 -4.6103

Panel C: Stocks Sorted by SRVSJ

Quintile RVJP RVJN RVLJP RVLJN RVSJP RVSJN SRVLJ SRVSJ SRVJ RVOL RSK RKT BETA log(Size) BEME MOM REV IVOL CSK CKT MAX MIN ILLIQ
Part I: Jump Truncation Level= γ1

1 0.2060 0.2784 0.1085 0.0968 0.0975 0.1815 0.0116 -0.0840 -0.0724 0.7622 -0.1832 7.1817 1.1514 6.7378 0.5654 0.2183 -0.0270 0.0292 -0.0637 1.2017 0.0302 -0.0438 -5.6348
2 0.2711 0.2845 0.1758 0.1649 0.0952 0.1197 0.0110 -0.0244 -0.0135 1.0260 -0.0157 8.6959 1.0715 6.4139 0.6062 0.1933 -0.0046 0.0302 -0.0417 1.1242 0.0380 -0.0375 -5.1168
3 0.3077 0.3003 0.2186 0.2126 0.0891 0.0877 0.0060 0.0014 0.0074 1.2309 0.0345 9.7978 1.0053 6.1262 0.6382 0.1754 0.0066 0.0309 -0.0275 1.0469 0.0423 -0.0356 -4.6619
4 0.2743 0.2492 0.1413 0.1438 0.1330 0.1053 -0.0026 0.0277 0.0251 0.9562 0.0709 8.0830 1.0906 6.6614 0.5854 0.2098 0.0190 0.0283 -0.0099 1.1752 0.0436 -0.0305 -5.4837
5 0.2830 0.1981 0.1004 0.1051 0.1826 0.0930 -0.0047 0.0896 0.0849 0.7380 0.2395 7.1974 1.0947 6.8064 0.5783 0.2217 0.0428 0.0272 0.0136 1.1959 0.0517 -0.0251 -5.6801

Part II: Jump Truncation Level= γ2

1 0.2058 0.3081 0.0749 0.0650 0.1309 0.2431 0.0099 -0.1121 -0.1023 0.8104 -0.3171 7.6436 1.1207 6.5435 0.5792 0.2179 -0.0318 0.0301 -0.0682 1.1558 0.0296 -0.0461 -5.3493
2 0.2561 0.2841 0.1103 0.1027 0.1458 0.1814 0.0077 -0.0356 -0.0280 1.0119 -0.0747 8.4222 1.0918 6.5103 0.5957 0.1964 -0.0079 0.0298 -0.0427 1.1482 0.0363 -0.0379 -5.2661
3 0.2906 0.2847 0.1423 0.1381 0.1484 0.1465 0.0041 0.0019 0.0060 1.1729 0.0308 9.3041 1.0385 6.3412 0.6204 0.1788 0.0065 0.0301 -0.0273 1.0955 0.0413 -0.0346 -4.9812
4 0.2821 0.2444 0.0950 0.0979 0.1871 0.1465 -0.0029 0.0405 0.0377 0.9731 0.1235 8.1884 1.0851 6.6358 0.5919 0.2046 0.0220 0.0284 -0.0086 1.1700 0.0447 -0.0299 -5.4350
5 0.3137 0.1959 0.0671 0.0713 0.2466 0.1246 -0.0043 0.1220 0.1178 0.7734 0.3845 7.6692 1.0627 6.6238 0.5954 0.2153 0.0469 0.0278 0.0158 1.1527 0.0543 -0.0245 -5.4040

Panel D: Stocks Sorted by RVOL

Quintile RVJP RVJN RVLJP RVLJN RVSJP RVSJN SRVLJ SRVSJ SRVJ RVOL RSK RKT BETA log(Size) BEME MOM REV IVOL CSK CKT MAX MIN ILLIQ
1 0.2255 0.2140 0.1013 0.0943 0.1241 0.1197 0.0070 0.0044 0.0114 0.2290 0.0485 6.8794 0.8390 8.3393 0.5407 0.1686 0.0040 0.0137 -0.0213 1.4325 0.0177 -0.0154 -7.4961
2 0.2375 0.2282 0.1136 0.1071 0.1240 0.1211 0.0065 0.0028 0.0094 0.3596 0.0403 7.2835 1.0471 7.4505 0.5506 0.1853 0.0044 0.0187 -0.0213 1.3708 0.0257 -0.0227 -6.4401
3 0.2567 0.2493 0.1387 0.1327 0.1180 0.1166 0.0060 0.0014 0.0074 0.5331 0.0341 7.9018 1.2246 6.6274 0.5581 0.2598 0.0051 0.0253 -0.0249 1.2373 0.0346 -0.0304 -5.5465
4 0.2864 0.2823 0.1717 0.1675 0.1147 0.1148 0.0042 -0.0001 0.0041 0.8136 0.0216 8.7067 1.2761 5.7649 0.5997 0.3071 0.0058 0.0338 -0.0308 1.0491 0.0464 -0.0405 -4.4310
5 0.3429 0.3449 0.2336 0.2347 0.1093 0.1102 -0.0011 -0.0010 -0.0021 2.8115 -0.0003 10.5156 1.0101 4.4547 0.7443 0.0910 0.0160 0.0548 -0.0331 0.6286 0.0817 -0.0645 -2.4951

Panel E: Stocks Sorted by RSK

Quintile RVJP RVJN RVLJP RVLJN RVSJP RVSJN SRVLJ SRVSJ SRVJ RVOL RSK RKT BETA log(Size) BEME MOM REV IVOL CSK CKT MAX MIN ILLIQ
1 0.2077 0.3914 0.1200 0.2822 0.0877 0.1091 -0.1622 -0.0215 -0.1837 0.9182 -0.9829 10.3573 1.0293 6.1615 0.6212 0.2118 -0.0274 0.0312 -0.0611 1.0555 0.0324 -0.0472 -4.7275
2 0.2203 0.2758 0.0967 0.1366 0.1235 0.1393 -0.0398 -0.0157 -0.0556 0.9332 -0.2596 6.8740 1.1303 6.7033 0.5719 0.2052 -0.0077 0.0291 -0.0412 1.1981 0.0353 -0.0374 -5.5757
3 0.2430 0.2394 0.1057 0.1035 0.1373 0.1359 0.0023 0.0014 0.0037 1.1222 0.0189 6.5111 1.1288 6.8070 0.5748 0.1932 0.0073 0.0283 -0.0238 1.2155 0.0391 -0.0325 -5.7121
4 0.2786 0.2142 0.1418 0.0960 0.1368 0.1182 0.0459 0.0186 0.0644 0.8769 0.3040 6.9460 1.1139 6.7671 0.5790 0.2056 0.0231 0.0280 -0.0098 1.2017 0.0444 -0.0290 -5.6422
5 0.3996 0.1978 0.2947 0.1179 0.1049 0.0800 0.1769 0.0249 0.2018 0.8942 1.0656 10.5964 0.9944 6.2012 0.6374 0.1963 0.0400 0.0297 0.0045 1.0482 0.0549 -0.0272 -4.7552

Panel F: Stocks Sorted by RKT

Quintile RVJP RVJN RVLJP RVLJN RVSJP RVSJN SRVLJ SRVSJ SRVJ RVOL RSK RKT BETA log(Size) BEME MOM REV IVOL CSK CKT MAX MIN ILLIQ
1 0.1804 0.1785 0.0257 0.0248 0.1548 0.1536 0.0008 0.0011 0.0019 0.6884 0.0110 4.4470 1.1920 7.6130 0.5303 0.1864 0.0054 0.0248 -0.0222 1.3529 0.0339 -0.0290 -6.7592
2 0.2242 0.2206 0.0757 0.0738 0.1484 0.1468 0.0020 0.0017 0.0036 0.7285 0.0167 5.7679 1.1586 6.9411 0.5522 0.2203 0.0077 0.0276 -0.0252 1.2505 0.0387 -0.0324 -5.9541
3 0.2630 0.2582 0.1340 0.1310 0.1291 0.1272 0.0030 0.0019 0.0048 0.8130 0.0215 7.0711 1.1103 6.5028 0.5817 0.2175 0.0083 0.0296 -0.0265 1.1627 0.0417 -0.0347 -5.3464
4 0.3070 0.3004 0.2067 0.2017 0.1004 0.0987 0.0049 0.0017 0.0066 0.9433 0.0292 8.9744 1.0438 6.0841 0.6186 0.2085 0.0076 0.0313 -0.0281 1.0644 0.0440 -0.0370 -4.6922
5 0.3745 0.3612 0.3171 0.3051 0.0574 0.0561 0.0119 0.0013 0.0133 1.5722 0.0660 15.0322 0.8918 5.4974 0.7022 0.1793 0.0064 0.0332 -0.0295 0.8881 0.0478 -0.0403 -3.6585

*Notes: See notes to Table 2.2. Entries in this table are time series averages of equal-weighted realized measures and firm characteristics of stocks sorted by various realized measures. The sample includes all
NYSE, NASDAQ and AMEX listed stocks for the period January 1993 to December 2016. At the end of each Tuesday, all of the stocks in the sample are sorted into quintile portfolios, based on ascending values of

various realized measures. The equal-weighted realized measures and firm characteristics of each quintile portfolio are calculated over the same week. Additionally, γ1 = 4
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are jump truncation levels. See Sections 2.2 and 2.4 for further details.
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Table 2.4: Univariate Portfolio Sorts Based on Positive, Negative, and Signed Total
Jump Variation

Panel A: Stocks Sorted by RVJP

Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas

Quintile 1(Low) 2 3 4 5(High) High-Low 1(Low) 2 3 4 5(High) High-Low
Mean Return 33.65 30.50 33.04 28.08 20.64 -13.01*** 23.52 19.48 17.93 20.91 18.27 -5.25

(3.54) (3.28) (3.49) (2.87) (2.19) (-2.75) (3.54) (3.27) (2.93) (3.35) (2.83) (-1.35)
Alpha 10.59 7.47 11.24 7.52 2.88 -7.71 2.88 -0.63 -2.30 0.67 -2.75 -5.63*

(4.16) (3.64) (4.34) (2.33) (0.72) (-1.64) (2.31) (-0.44) (-1.22) (0.32) (-1.19) (-1.87)

Panel B: Stocks Sorted by RVJN

Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas

Quintile 1(Low) 2 3 4 5(High) High-Low 1(Low) 2 3 4 5(High) High-Low
Mean Return 13.17 23.01 26.77 33.79 49.23 36.06*** 16.23 25.44 26.41 26.62 31.36 15.13***

(1.52) (2.59) (2.84) (3.36) (4.62) (6.47) (2.55) (4.11) (4.08) (3.93) (4.29) (3.75)
Alpha -9.36 -0.03 4.18 13.24 31.71 41.07*** -3.55 4.94 5.27 5.49 10.05 13.60***

(-4.46) (-0.02) (1.86) (3.93) (6.34) (7.51) (-3.08) (3.02) (2.64) (2.37) (4.13) (4.52)

Panel C: Stocks Sorted by SRVJ

Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas

Quintile 1(Low) 2 3 4 5(High) High-Low 1(Low) 2 3 4 5(High) High-Low
Mean Return 51.85 39.02 26.15 17.86 11.02 -40.82*** 34.67 27.43 19.93 13.64 9.65 -25.02***

(5.14) (3.85) (2.70) (1.98) (1.33) (-9.85) (4.85) (4.12) (3.10) (2.16) (1.59) (-5.78)
Alpha 30.54 17.81 4.56 -3.58 -9.64 -40.18*** 13.44 6.94 -0.52 -6.53 -10.25 -23.69***

(8.40) (5.78) (1.74) (-1.56) (-4.05) (-10.10) (5.01) (3.95) (-0.40) (-4.48) (-4.47) (-5.56)

*Notes: Entries in this table are average returns and risk-adjusted alphas for single-sorted portfolios based on RVJP, RVJN and SRVJ, which
are described in Table 2.2. The sample includes all NYSE, NASDAQ and AMEX listed stocks for the period January 1993 to December 2016.
At the end of each Tuesday, all the stocks in the sample are sorted into quintile portfolios based on ascending values of the various jump
variation measures listed in the titel of each panel. Each portfolio is held for one week. The row labeled “Mean Return” reports the time
series average values of one-week ahead equal-weighted and value-weighted returns for quintile portfolios. The row labeled “Alpha” reports
Fama-French-Carhart four-factor alphas, based on the model (2.14), for each of the quintile portfolios, as well as for the difference between
portfolio 5 and portfolio 1. Newey-West t-statistics are given in parentheses; and *, **, and *** denote means and alphas that are significant
at the 10%, 5%, and 1% levels, respectively.
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Table 2.5: Univariate Portfolio Sorts Based on Positive, Negative, and Signed Large
Jump Variation

Panel A: Stocks Sorted by RVLJP

Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas

Quintile 1(Low) 2 3 4 5(High) High-Low 1(Low) 2 3 4 5(High) High-Low
Part I: Jump Truncation Level=γ1

Mean Return 31.40 30.00 29.17 31.04 23.78 -7.61** 21.78 20.61 20.72 18.56 17.75 -4.03
(3.31) (3.19) (3.10) (3.28) (2.48) (-2.05) (3.41) (3.21) (3.33) (2.95) (2.66) (-1.09)

Alpha 10.07 7.64 6.65 9.04 6.08 -3.98 1.97 0.68 -0.42 -2.32 -2.83 -4.80*
(4.20) (3.44) (2.81) (3.35) (1.53) (-1.08) (1.95) (0.52) (-0.26) (-1.27) (-1.21) (-1.71)

Part II: Jump Truncation Level=γ2

Mean Return 29.42 43.86 30.00 29.12 25.77 -3.65 20.42 27.59 20.12 22.50 20.39 -0.03
(3.15) (2.16) (3.04) (3.07) (2.74) (-1.11) (3.25) (1.77) (2.98) (3.63) (3.14) (-0.01)

Alpha 7.74 32.93 7.28 7.02 7.70 -0.04 0.45 13.80 -0.27 1.60 -0.52 -0.97
(3.70) (3.23) (2.92) (2.62) (2.02) (-0.01) (0.72) (1.35) (-0.13) (0.83) (-0.22) (-0.37)

Panel B: Stocks Sorted by RVLJN

Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas

Quintile 1(Low) 2 3 4 5(High) High-Low 1(Low) 2 3 4 5(High) High-Low
Part I: Jump Truncation Level=γ1

Mean Return 23.80 23.68 27.64 28.85 41.56 17.76*** 19.65 19.58 25.63 22.38 25.24 5.59
(2.65) (2.59) (2.98) (2.95) (4.10) (4.47) (3.10) (3.10) (4.00) (3.27) (3.44) (1.41)

Alpha 2.31 1.11 5.00 7.10 23.74 21.43*** -0.20 -1.32 4.52 0.89 4.34 4.54
(1.11) (0.55) (2.32) (2.47) (5.39) (5.53) (-0.18) (-0.92) (2.47) (0.40) (1.82) (1.61)

Part II: Jump Truncation Level=γ2

Mean Return 24.76 6.46 27.89 29.12 38.62 13.86*** 19.69 13.21 21.46 23.20 22.34 2.66
(2.71) (0.33) (2.75) (3.03) (3.88) (4.01) (3.13) (0.93) (3.05) (3.61) (3.15) (0.75)

Alpha 3.02 6.75 6.58 7.06 20.62 17.60*** -0.30 6.52 1.26 2.28 1.58 1.88
(1.63) (1.08) (2.50) (2.67) (4.81) (5.06) (-0.45) (0.91) (0.57) (1.06) (0.66) (0.70)

Panel C: Stocks Sorted by SRVLJ

Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas

Quintile 1(Low) 2 3 4 5(High) High-Low 1(Low) 2 3 4 5(High) High-Low
Part I: Jump Truncation Level=γ1

Mean Return 44.35 32.94 31.08 22.72 16.04 -28.31*** 26.27 22.99 22.36 17.77 16.27 -10.01***
(4.52) (3.36) (3.13) (2.44) (1.88) (-9.00) (3.92) (3.58) (3.29) (2.79) (2.71) (-3.09)

Alpha 23.47 11.38 8.91 0.96 -4.90 -28.36*** 5.00 2.42 1.83 -2.64 -4.26 -9.25***
(7.13) (4.20) (3.04) (0.40) (-2.17) (-9.39) (2.24) (1.64) (1.01) (-1.82) (-2.24) (-2.87)

Part II: Jump Truncation Level=γ2

Mean Return 40.55 28.37 33.05 24.16 19.03 -21.52*** 22.59 20.48 16.45 18.86 20.14 -2.45
(4.19) (2.91) (1.48) (2.55) (2.19) (-8.22) (3.40) (3.18) (1.14) (3.02) (3.27) (-0.80)

Alpha 19.59 8.18 24.26 2.23 -1.97 -21.55*** 1.82 0.76 6.85 -2.41 -0.26 -2.08
(6.15) (3.29) (2.16) (0.82) (-0.84) (-8.33) (0.86) (0.68) (1.04) (-1.23) (-0.13) (-0.69)

*Notes: See notes to Table 2.4. Entries are average returns and risk-adjusted alphas for single-sorted portfolios based on RVLJP, RVLJN

and SRVLJ. Jump truncation levels are γ1 = 4
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Table 2.6: Univariate Portfolio Sorts Based on Positive, Negative, and Signed Small
Jump Variation

Panel A: Stocks Sorted by RVSJP

Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas

Quintile 1(Low) 2 3 4 5(High) High-Low 1(Low) 2 3 4 5(High) High-Low
Part I: Jump Truncation Level=γ1

Mean Return 32.01 32.51 29.03 26.59 25.72 -6.29** 27.93 26.10 18.44 16.52 15.37 -12.55**
(3.44) (3.43) (3.09) (2.85) (2.65) (-2.14) (3.65) (3.84) (2.91) (2.75) (2.45) (-2.54)

Alpha 13.11 9.39 6.37 4.77 6.13 -6.98*** 7.40 5.21 -1.83 -2.89 -4.95 -12.35***
(3.74) (4.21) (3.02) (2.08) (1.82) (-2.65) (2.44) (3.28) (-1.39) (-1.55) (-2.32) (-2.93)

Part II: Jump Truncation Level=γ2

Mean Return 34.25 31.55 28.43 27.41 24.23 -10.02*** 29.37 18.76 17.76 14.75 18.98 -10.40**
(3.72) (3.37) (3.04) (2.90) (2.48) (-3.26) (4.09) (2.95) (2.94) (2.39) (2.93) (-2.25)

Alpha 14.08 8.85 5.90 5.75 5.08 -9.00*** 8.52 -2.00 -2.01 -5.30 -1.51 -10.02**
(4.93) (4.12) (2.73) (2.32) (1.42) (-3.13) (3.87) (-1.52) (-1.24) (-2.67) (-0.62) (-2.54)

Panel B: Stocks Sorted by RVSJN

Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas

Quintile 1(Low) 2 3 4 5(High) High-Low 1(Low) 2 3 4 5(High) High-Low
Part I: Jump Truncation Level=γ1

Mean Return 23.66 21.60 27.21 31.73 41.77 18.10*** 6.94 15.90 21.97 27.77 31.26 24.32***
(2.64) (2.38) (2.97) (3.35) (3.93) (5.07) (1.00) (2.42) (3.46) (4.34) (4.68) (5.00)

Alpha 5.26 -1.04 4.35 9.56 21.62 16.36*** -13.39 -4.28 1.80 7.41 10.52 23.91***
(1.59) (-0.51) (2.22) (4.02) (5.49) (5.46) (-4.54) (-2.80) (1.33) (3.72) (4.07) (5.21)

Part II: Jump Truncation Level=γ2

Mean Return 19.42 23.04 26.65 32.48 44.37 24.96*** 14.22 18.78 25.82 29.05 32.60 18.38***
(2.23) (2.60) (2.93) (3.35) (4.09) (6.07) (2.13) (3.00) (4.13) (4.42) (4.43) (3.80)

Alpha -0.37 0.70 4.18 10.38 24.84 25.22*** -5.47 -1.28 5.81 7.80 10.85 16.31***
(-0.14) (0.37) (2.18) (4.02) (5.85) (7.21) (-2.72) (-1.07) (3.39) (3.67) (4.02) (4.15)

Panel C: Stocks Sorted by SRVSJ

Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas

Quintile 1(Low) 2 3 4 5(High) High-Low 1(Low) 2 3 4 5(High) High-Low
Part I: Jump Truncation Level=γ1

Mean Return 46.41 40.51 25.12 19.00 13.74 -32.67*** 34.54 24.08 18.26 17.84 10.42 -24.12***
(4.57) (4.04) (2.67) (2.06) (1.62) (-8.60) (5.00) (3.58) (2.81) (2.85) (1.72) (-6.60)

Alpha 23.64 19.68 5.23 -2.09 -8.14 -31.78*** 13.77 3.25 -2.37 -2.39 -9.27 -23.04***
(7.62) (6.10) (1.53) (-0.85) (-4.17) (-9.01) (6.18) (1.91) (-1.07) (-1.52) (-5.00) (-6.54)

Part II: Jump Truncation Level=γ2

Mean Return 47.90 41.62 27.23 17.90 11.20 -36.70*** 36.88 25.13 18.45 14.98 9.41 -27.47***
(4.70) (4.13) (2.87) (1.98) (1.34) (-9.06) (5.31) (3.79) (2.86) (2.39) (1.52) (-6.94)

Alpha 25.37 20.76 6.99 -3.03 -10.51 -35.88*** 16.07 4.52 -1.87 -5.39 -10.34 -26.41***
(7.79) (6.65) (2.23) (-1.25) (-5.21) (-9.49) (6.72) (2.60) (-1.23) (-3.30) (-5.00) (-6.72)

*Notes: See notes to Table 2.5.
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Table 2.7: Univariate Portfolio Sorts Based on Realized Volatility, Skewness, Kurtosis
and Continuous Variance

Panel A: Stocks Sorted by RVOL

Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas

Quintile 1(Low) 2 3 4 5(High) High-Low 1(Low) 2 3 4 5(High) High-Low
Mean Return 23.36 28.00 28.89 31.78 33.91 10.55 20.72 21.42 19.75 26.78 29.19 8.47

(4.47) (3.92) (2.96) (2.59) (2.24) (0.81) (4.09) (2.83) (1.84) (1.98) (1.92) (0.64)
Alpha 4.50 5.01 5.15 8.74 16.33 11.83 1.95 -1.39 -3.94 2.44 5.44 3.49

(2.07) (2.94) (2.57) (2.54) (2.11) (1.37) (1.35) (-0.67) (-1.01) (0.43) (0.67) (0.40)

Panel B: Stocks Sorted by RSK

Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas

Quintile 1(Low) 2 3 4 5(High) High-Low 1(Low) 2 3 4 5(High) High-Low
Mean Return 47.56 38.06 27.86 19.44 12.98 -34.58*** 29.45 27.52 19.27 14.68 13.21 -16.24***

(4.85) (3.82) (2.86) (2.12) (1.54) (-9.94) (4.27) (4.22) (2.98) (2.32) (2.18) (-4.29)
Alpha 26.22 16.77 6.73 -2.15 -7.90 -34.12*** 7.87 7.02 -0.82 -5.38 -6.77 -14.64***

(7.93) (5.66) (2.41) (-0.96) (-3.51) (-10.08) (3.30) (4.44) (-0.60) (-3.73) (-3.23) (-3.85)

Panel C: Stocks Sorted by RKT

Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas

Quintile 1(Low) 2 3 4 5(High) High-Low 1(Low) 2 3 4 5(High) High-Low
Mean Return 28.95 28.59 29.91 29.42 29.07 0.12 19.87 21.57 21.12 22.17 19.55 -0.32

(3.07) (3.00) (3.13) (3.06) (3.24) (0.04) (3.12) (3.42) (3.37) (3.38) (2.96) (-0.10)
Alpha 8.55 6.42 7.47 7.92 9.36 0.81 0.21 0.65 -0.10 0.94 -1.92 -2.13

(3.21) (2.87) (3.05) (2.87) (3.07) (0.28) (0.20) (0.46) (-0.06) (0.49) (-0.91) (-0.81)

Panel D: Stocks Sorted by RVC

Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas

Quintile 1(Low) 2 3 4 5(High) High-Low 1(Low) 2 3 4 5(High) High-Low
Mean Return 36.18 31.82 28.23 27.47 22.21 -13.97** 24.36 24.80 22.94 23.40 20.41 -3.95

(3.54) (3.22) (3.00) (3.05) (2.42) (-2.58) (3.53) (3.65) (3.59) (3.87) (3.20) (-1.00)
Alpha 19.82 10.62 5.54 4.66 -0.94 -20.76*** 4.27 3.29 2.42 3.27 0.06 -4.22

(4.04) (3.36) (2.48) (2.47) (-0.41) (-3.87) (1.76) (1.62) (1.30) (2.10) (0.07) (-1.46)

*Notes: See notes to Tables 2.5.
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Table 2.8: Double-Sorted Portfolios: Portfolios Sorted by Various Jump Variation
Measures

Panel A: Stocks Sorted by SRVLJ, Controlling for SRVJ Based on γ2

Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas

SRVJ Quintile SRVJ Quintile
SRVLJ Quintile 1(Low) 2 3 4 5(High) Average 1(Low) 2 3 4 5(High) Average
Part I: Mean Return and Alpha
1(Low) 47.99 28.73 21.12 12.90 7.82 23.71 41.88 18.83 19.24 13.59 5.04 16.61
2 50.55 37.24 22.38 26.91 12.99 33.21 29.61 25.26 18.26 17.39 14.08 22.70
3 53.07 38.57 23.49 21.73 12.37 29.75 36.31 26.28 8.10 15.50 17.40 24.19
4 56.29 21.42 35.09 14.59 17.86 27.51 36.38 7.94 18.53 13.64 16.59 20.33
5(High) 47.70 45.92 32.70 26.10 7.59 32.00 32.64 39.20 23.00 20.20 19.84 27.00
High-Low -0.24 17.19 11.58 13.20 -0.23 8.30 6.38 20.37 3.76 6.61 14.81 10.38
Alpha -6.48 16.64 10.80 13.88 2.60 7.49 3.69 19.41 2.46 6.06 13.84 9.09

Part II: t-Statistics
1(Low) 5.15 2.90 2.26 1.48 0.92 2.68 3.45 2.66 2.89 2.08 0.75 2.67
2 4.81 3.62 1.94 0.81 1.43 3.49 3.97 3.40 2.28 0.88 1.99 3.49
3 4.87 3.03 0.75 1.89 1.39 3.03 4.65 3.06 0.37 1.92 2.65 3.73
4 4.64 0.63 3.07 1.53 2.04 2.81 4.26 0.27 2.18 2.05 2.50 3.04
5(High) 4.39 4.29 3.23 2.71 0.89 3.38 3.77 4.89 3.16 2.78 2.99 4.01
High-Low -0.04 4.24 3.31 3.87 -0.06 4.18 1.09 3.71 0.79 1.54 3.09 4.15
Alpha -1.19 4.11 3.06 4.09 0.67 3.80 0.62 3.40 0.49 1.44 2.96 3.53

Panel B: Stocks Sorted by SRVSJ, Controlling for SRVJ Based on γ2

Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas

SRVJ Quintile SRVJ Quintile
SRVSJ Quintile 1(Low) 2 3 4 5(High) Average 1(Low) 2 3 4 5(High) Average
Part I: Mean Return and Alpha
1(Low) 56.90 44.50 34.78 26.13 19.50 36.36 41.88 35.91 26.98 18.28 22.43 29.73
2 55.66 47.02 30.91 18.59 10.34 32.50 40.76 34.11 20.84 13.23 16.52 25.09
3 56.24 41.20 28.46 19.74 10.02 31.13 30.72 23.04 20.39 13.82 14.29 20.45
4 53.58 37.21 16.75 12.62 10.19 26.07 28.23 23.82 12.02 14.94 6.93 17.19
5(High) 34.30 25.12 19.72 12.12 5.79 19.41 17.03 16.65 18.03 12.69 3.77 13.63
High-Low -22.60 -19.38 -15.06 -14.01 -13.71 -16.95 -28.00 -19.26 -8.95 -5.59 -18.66 -16.09
Alpha -19.26 -18.83 -14.19 -14.86 -16.20 -16.67 -25.86 -20.41 -6.87 -4.79 -18.22 -15.23

Part II: t-Statistics
1(Low) 5.44 4.22 3.40 2.67 2.16 3.76 5.47 4.75 3.58 2.54 3.33 4.44
2 5.20 4.21 3.08 1.93 1.17 3.35 5.19 4.65 3.00 1.95 2.33 3.86
3 5.15 3.99 2.77 2.14 1.17 3.26 4.04 3.21 2.89 2.02 2.20 3.20
4 5.33 3.58 1.71 1.42 1.23 2.86 3.39 3.41 1.72 2.22 1.02 2.68
5(High) 3.46 2.60 2.12 1.39 0.70 2.19 2.22 2.32 2.67 1.89 0.56 2.16
High-Low -4.99 -5.04 -4.14 -3.79 -3.45 -7.22 -5.37 -3.66 -1.79 -1.19 -3.80 -5.77
Alpha -4.15 -4.90 -3.91 -4.16 -4.12 -7.42 -4.93 -3.65 -1.30 -1.02 -3.78 -5.32
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Table 2.8 (Continued)

Panel C: Stocks Sorted by SRVSJ, Controlling for SRVLJ Based on γ2

Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas

SRVLJ Quintile SRVLJ Quintile
SRVSJ Quintile 1(Low) 2 3 4 5(High) Average 1(Low) 2 3 4 5(High) Average
Part I: Mean Return and Alpha
1(Low) 60.34 51.38 40.69 44.93 31.91 47.28 41.88 35.33 35.90 34.10 30.94 36.43
2 57.30 38.41 58.52 28.26 28.35 40.27 23.32 25.07 37.49 18.00 25.93 25.12
3 35.25 26.42 4.21 28.76 14.62 25.17 16.19 21.74 9.63 20.36 21.71 19.86
4 28.42 16.02 48.13 10.74 10.78 19.49 17.78 15.39 97.02 14.92 14.12 22.20
5(High) 18.79 9.45 -1.20 8.01 8.26 10.89 14.98 8.09 6.98 7.78 13.31 11.30
High-Low -41.55 -41.93 -40.72 -38.27 -23.65 -36.71 -26.63 -27.24 -27.87 -27.67 -17.63 -25.38
Alpha -40.15 -41.33 -40.17 -37.25 -22.90 -35.45 -25.59 -25.58 -26.01 -26.35 -17.73 -24.07

Part II: t-Statistics
1(Low) 5.60 4.76 1.56 4.18 3.28 4.58 5.38 4.76 1.72 4.12 4.37 5.13
2 5.40 3.61 2.17 2.64 3.02 3.97 3.03 3.41 1.61 2.34 3.60 3.62
3 3.58 2.60 0.19 2.85 1.62 2.65 2.27 3.21 0.53 2.93 3.11 3.15
4 2.83 1.70 1.20 1.10 1.23 2.01 2.49 2.30 1.11 2.03 2.07 2.35
5(High) 2.12 1.06 -0.06 0.93 1.01 1.31 2.12 1.22 0.46 1.08 2.02 1.82
High-Low -8.29 -8.49 -2.04 -6.08 -5.33 -8.59 -5.15 -5.54 -1.50 -4.14 -3.64 -6.61
Alpha -8.24 -8.75 -2.03 -6.22 -5.50 -8.80 -4.90 -5.18 -1.39 -3.87 -3.66 -6.13

Panel D: Stocks Sorted by SRVLJ, Controlling for SRVSJ Based on γ2

Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas

SRVSJ Quintile SRVSJ Quintile
SRVLJ Quintile 1(Low) 2 3 4 5(High) Average 1(Low) 2 3 4 5(High) Average
Part I: Mean Return and Alpha
1(Low) 59.99 60.01 41.84 27.66 16.62 41.23 41.88 30.53 19.67 16.32 12.01 23.80
2 49.75 41.95 27.20 17.65 11.51 29.31 35.69 25.91 18.85 17.68 8.92 20.89
3 76.41 38.05 24.45 6.48 14.41 32.06 45.15 16.78 11.30 10.47 21.45 21.03
4 43.99 30.88 23.29 13.82 11.84 24.86 38.54 18.80 17.59 15.79 10.15 20.55
5(High) 32.38 28.64 10.59 8.97 6.78 17.47 31.35 25.93 18.89 13.97 10.03 20.03
High-Low -27.61 -31.38 -31.25 -18.69 -9.84 -23.75 -9.14 -4.60 -0.78 -2.35 -1.98 -3.77
Alpha -26.51 -31.63 -31.28 -19.37 -9.80 -23.72 -8.62 -3.72 -0.59 -2.79 -1.66 -3.47

Part II: t-Statistics
1(Low) 5.51 5.59 4.22 2.85 1.85 4.25 5.37 4.03 2.69 2.23 1.71 3.59
2 4.51 3.85 2.62 1.87 1.29 3.05 4.71 3.54 2.63 2.71 1.32 3.28
3 2.31 1.95 1.61 0.41 0.80 2.49 1.53 1.16 1.08 0.78 1.49 2.25
4 4.05 2.90 2.28 1.44 1.31 2.63 4.83 2.51 2.47 2.31 1.39 3.23
5(High) 3.36 2.99 1.21 1.03 0.83 2.02 4.32 3.63 2.69 2.11 1.55 3.23
High-Low -6.48 -7.66 -6.92 -4.65 -2.73 -8.80 -1.83 -0.98 -0.16 -0.46 -0.44 -1.49
Alpha -6.16 -7.50 -6.94 -4.94 -2.83 -8.94 -1.70 -0.79 -0.12 -0.53 -0.37 -1.38

*Notes: See notes to Table 2.5. This table presents average returns (called “Mean Return”) and risk-adjusted alphas (called “Alpha”) for portfolios
sorted by various jump variation measures. The sample includes NYSE, NASDAQ and AMEX listed stocks for the period January 1993 to December
2016. At the end of each Tuesday, all the stocks in the sample are sorted into quintile portfolios based on ascending values of SRVJ (SRVLJ/SRVSJ).
Then, within each quintile portfolio, stocks are further sorted based on the values of SRVLJ/SRVSJ (SRVSJ/SRVLJ), resulting in 25 portfolios. Each
portfolio is held for one week. The row labeled “High-Low” reports the average values of one-week ahead returns in Part I (corresponding Newey-West
t-statistics are given in Part II of the panel). The row labeled “Alpha” reports Fama-French-Carhart four-factor alphas in Part I (corresponding
Newey-West t-statistics are again given in Part II of the panel) for the double-sorted High-Low portfolios. Note that entries given in the “Average”
column of the table, are average returns across the 5 quintiles. Finally, note that SRVLJ and SRVSJ are constructed based on jump truncation level

γ2 = 5

√
1
t ÎV

(i)

t ∆0.49
n .
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Table 2.9: Double-Sorted Portfolios: Portfolios Sorted by SRVJ and RSK

Panel A: Stocks Sorted by SRVJ, Controlling for RSK

Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas

RSK Quintile RSK Quintile
SRVJ Quintile 1(Low) 2 3 4 5(High) Average 1(Low) 2 3 4 5(High) Average
Part I: Mean Return and Alpha
1(Low) 56.92 55.49 42.81 31.69 20.91 41.57 41.88 39.12 30.49 25.47 17.56 30.90
2 56.77 46.17 33.30 22.89 15.27 34.88 41.63 35.10 21.38 17.20 13.71 25.81
3 49.97 38.92 23.47 17.47 11.61 28.29 37.18 27.01 22.24 14.45 10.52 22.28
4 42.67 29.57 21.68 13.20 12.18 23.86 28.53 20.24 15.10 11.99 11.47 17.47
5(High) 31.39 20.03 17.94 11.86 4.85 17.21 18.32 21.67 12.23 7.31 12.60 14.42
High-Low -25.54 -35.46 -24.87 -19.83 -16.06 -24.35 -23.56 -17.46 -18.27 -18.16 -4.95 -16.48
Alpha -28.79 -36.20 -24.40 -18.40 -12.75 -24.11 -24.22 -18.52 -18.40 -16.82 -4.88 -16.57

Part II: t-Statistics
1(Low) 6.13 5.04 3.97 3.04 2.22 4.21 5.72 4.87 3.97 3.35 2.51 4.58
2 5.34 4.12 3.14 2.32 1.70 3.52 5.11 4.57 2.96 2.44 2.02 3.89
3 4.67 3.80 2.30 1.90 1.35 2.99 4.90 3.78 3.07 2.14 1.63 3.51
4 4.09 2.98 2.27 1.46 1.44 2.61 3.67 2.84 2.17 1.76 1.72 2.73
5(High) 3.27 2.20 2.02 1.36 0.59 2.01 2.59 3.24 1.76 1.07 1.90 2.36
High-Low -5.36 -7.09 -5.12 -4.32 -3.40 -7.70 -4.70 -3.17 -3.32 -3.28 -0.89 -5.24
Alpha -6.18 -7.57 -5.25 -4.32 -2.80 -8.07 -4.81 -3.50 -3.36 -3.04 -0.90 -5.45

Panel B: Stocks Sorted by RSK, Controlling for SRVJ

Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas

SRVJ Quintile SRVJ Quintile
RSK Quintile 1(Low) 2 3 4 5(High) Average 1(Low) 2 3 4 5(High) Average
Part I: Mean Return and Alpha
1(Low) 51.14 29.34 21.71 17.58 12.40 26.43 41.88 18.33 20.91 12.07 4.09 18.48
2 49.50 39.74 23.05 14.15 11.46 27.58 37.29 33.29 14.95 10.36 10.00 21.18
3 49.96 37.41 27.26 18.14 12.93 29.14 28.38 23.82 22.52 14.80 15.23 20.95
4 53.85 43.31 28.11 18.79 12.52 31.32 36.37 28.73 19.57 17.15 10.67 22.50
5(High) 54.80 45.32 30.65 20.66 5.78 31.44 36.75 32.79 24.63 18.92 14.26 25.47
High-Low 3.66 15.98 8.94 3.08 -6.63 5.01 -0.25 14.46 3.72 6.85 10.17 6.99
Alpha 0.54 16.64 8.57 2.34 -4.54 4.71 -0.71 15.66 4.39 6.30 9.15 6.96

Part II: t-Statistics
1(Low) 5.56 3.07 2.36 1.99 1.42 3.02 4.98 2.61 3.15 1.74 0.60 2.97
2 4.76 3.75 2.33 1.57 1.30 2.94 4.89 4.50 2.06 1.53 1.52 3.29
3 4.76 3.60 2.69 1.94 1.50 3.07 3.59 3.33 3.29 2.24 2.33 3.30
4 4.99 3.98 2.77 1.97 1.49 3.27 4.70 3.89 2.69 2.39 1.63 3.45
5(High) 5.00 4.19 2.99 2.17 0.68 3.27 4.50 4.20 3.29 2.83 2.09 3.87
High-Low 0.85 3.98 2.31 0.84 -1.61 2.35 -0.05 2.85 0.74 1.48 2.19 2.87
Alpha 0.14 4.40 2.24 0.66 -1.09 2.42 -0.14 3.05 0.89 1.38 2.01 2.92

*Notes: See notes to Table 2.5. This table presents average returns (called “Mean Return”) and risk-adjusted alphas (called “Alpha”)
for portfolios sorted by SRVJ controlling for RSK, and vice versa. The sample includes NYSE, NASDAQ and AMEX listed stocks for the
period January 1993 to December 2016. At the end of each Tuesday, all the stocks in the sample are sorted into quintile portfolios based on
ascending values of RSK (SRVJ), and then within each quintile portfolio, stocks are further sorted using values of SRVJ (RSK), resulting
in 25 portfolios. Each portfolio is held for one week. The row labeled “High-Low” reports the average values of one-week ahead returns in
Part I (corresponding Newey-West t-statistics are given in Part II of the panel). The row labeled “Alpha” reports Fama-French-Carhart
four-factor alphas in Part I (corresponding Newey-West t-statistics are again given in Part II of the panel) for each of the quintile portfolios,
as well as for the average across 5 RSK (SRVJ) portfolios.
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Table 2.10: Double-Sorted Portfolios: Portfolios Sorted by SRVLJ/SRVSJ,
Controlling for RSK

Panel A: Stocks Sorted by SRVLJ, Controlling for RSK Based on γ2

Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas

RSK Quintile RSK Quintile
SRVLJ Quintile 1(Low) 2 3 4 5(High) Average 1(Low) 2 3 4 5(High) Average
Part I: Mean Return and Alpha
1(Low) 47.31 31.04 20.83 13.46 9.23 24.38 41.88 20.74 17.63 10.28 10.95 17.04
2 48.24 35.53 18.15 41.82 10.40 30.72 27.52 25.93 13.06 22.40 13.21 21.88
3 46.79 36.39 -2.22 17.53 16.01 27.86 27.77 24.25 23.68 13.64 18.71 21.29
4 47.56 9.61 27.36 19.04 20.92 27.46 27.71 8.29 20.27 17.45 16.06 20.34
5(High) 43.55 43.48 34.14 26.41 7.84 31.13 35.80 32.07 20.61 23.70 18.89 26.28
High-Low -3.57 12.44 13.30 12.95 -1.39 6.75 10.42 11.33 2.98 13.42 7.94 9.22
Alpha -8.76 11.52 13.22 13.09 1.59 6.13 8.26 11.20 1.91 12.69 7.30 8.27

Part II: t-Statistics
1(Low) 5.10 3.13 2.17 1.51 1.08 2.73 3.34 2.85 2.51 1.59 1.63 2.68
2 4.67 3.47 1.41 1.61 1.16 3.21 3.71 3.71 1.47 1.12 1.98 3.42
3 4.48 2.95 -0.07 1.54 1.79 2.91 3.81 2.87 0.85 1.56 2.89 3.30
4 4.32 0.37 2.27 1.96 2.38 2.89 3.68 0.43 2.12 2.52 2.45 3.17
5(High) 4.22 4.03 3.42 2.75 0.93 3.34 4.08 3.80 2.81 3.23 2.79 3.90
High-Low -0.66 2.93 4.28 4.11 -0.37 3.64 1.71 1.89 0.66 3.03 1.62 3.76
Alpha -1.62 2.63 4.14 4.13 0.42 3.18 1.35 1.76 0.41 2.90 1.51 3.22

Panel B: Stocks Sorted by SRVSJ, Controlling for RSK Based on γ2

Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas

RSK Quintile RSK Quintile
SRVSJ Quintile 1(Low) 2 3 4 5(High) Average 1(Low) 2 3 4 5(High) Average
Part I: Mean Return and Alpha
1(Low) 56.15 51.19 42.56 31.93 24.16 41.20 41.88 40.69 31.16 31.49 21.39 33.55
2 54.34 50.15 35.79 24.76 12.89 35.59 32.45 33.20 21.93 19.73 23.95 26.25
3 55.24 38.53 26.29 18.62 11.09 29.95 27.91 22.64 18.61 12.36 16.37 19.58
4 40.20 31.45 18.77 14.26 12.14 23.35 18.13 22.01 15.30 13.17 10.40 15.79
5(High) 30.21 18.90 15.72 7.49 4.76 15.42 18.59 19.31 12.59 8.23 6.56 13.06
High-Low -25.94 -32.29 -26.84 -24.43 -19.40 -25.78 -24.44 -21.37 -18.56 -23.26 -14.84 -20.49
Alpha -23.86 -31.76 -26.49 -23.94 -20.71 -25.35 -22.27 -22.89 -18.30 -21.83 -14.44 -19.95

Part II: t-Statistics
1(Low) 5.43 4.75 3.98 3.16 2.62 4.15 5.11 5.25 4.16 4.39 3.15 4.92
2 5.17 4.48 3.42 2.47 1.43 3.61 4.30 4.53 2.96 2.68 3.39 3.95
3 5.25 3.76 2.60 1.96 1.25 3.14 3.75 3.12 2.66 1.72 2.46 3.03
4 4.11 3.13 1.96 1.58 1.45 2.59 2.50 3.20 2.27 1.98 1.57 2.55
5(High) 3.18 2.06 1.71 0.87 0.58 1.79 2.56 2.86 1.79 1.23 0.97 2.09
High-Low -5.78 -7.15 -6.04 -5.58 -4.72 -8.41 -4.21 -4.04 -3.67 -4.56 -2.93 -6.31
Alpha -5.36 -7.20 -6.12 -5.75 -5.27 -8.89 -3.83 -4.29 -3.51 -4.09 -2.83 -6.01

*Notes: See notes to Table 2.8. Portfolios are sorted by SRVLJ/SRVSJ, controlling for RSK, and using truncation level γ2, as discussed in
the footnote to Table 2.2.
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Table 2.11: Double-Sorted Portfolios: Portfolios Sorted by RSK, Controlling for
SRVLJ or SRVSJ

Panel A: Stocks Sorted by RSK, Controlling for SRVLJ Based on γ2

Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas

SRVLJ Quintile SRVLJ Quintile
RSK Quintile 1(Low) 2 3 4 5(High) Average 1(Low) 2 3 4 5(High) Average
Part I: Mean Return and Alpha
1(Low) 51.98 46.26 32.88 42.99 35.40 43.72 41.88 34.45 32.97 31.19 33.46 34.64
2 48.38 38.05 55.49 31.86 20.58 37.03 30.03 23.16 48.38 17.47 16.06 24.56
3 43.16 26.83 8.78 20.69 16.54 25.94 25.91 21.10 10.09 19.92 19.16 21.15
4 37.70 22.51 55.61 11.20 14.84 24.67 18.23 18.69 8.48 13.82 14.50 16.23
5(High) 21.43 8.10 -0.87 14.29 7.74 12.81 13.59 7.52 -8.20 15.74 15.50 12.31
High-Low -30.55 -38.16 -30.25 -30.06 -27.66 -31.07 -23.12 -26.93 -37.56 -16.82 -17.96 -22.43
Alpha -32.89 -37.85 -28.79 -30.01 -24.81 -30.46 -23.34 -24.74 -36.67 -14.80 -18.66 -21.39

Part II: t-Statistics
1(Low) 5.63 4.46 1.33 4.16 3.61 4.48 4.94 4.65 1.67 4.00 4.80 5.06
2 4.68 3.68 2.16 3.04 2.22 3.72 3.99 3.28 2.04 2.34 2.31 3.63
3 4.14 2.66 0.40 2.04 1.84 2.69 3.32 3.22 0.59 2.66 2.87 3.29
4 3.62 2.29 1.37 1.11 1.73 2.50 2.54 2.82 0.48 1.80 2.22 2.54
5(High) 2.27 0.89 -0.04 1.63 0.92 1.49 1.91 1.08 -0.52 2.33 2.24 1.98
High-Low -7.91 -9.22 -1.71 -5.63 -5.85 -9.46 -4.56 -6.02 -2.29 -2.75 -3.47 -6.54
Alpha -8.43 -9.50 -1.64 -5.86 -5.51 -9.57 -4.59 -5.54 -2.22 -2.37 -3.65 -6.10

Panel B: Stocks Sorted by RSK, Controlling for SRVSJ Based on γ2

Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas

SRVSJ Quintile SRVSJ Quintile
RSK Quintile 1(Low) 2 3 4 5(High) Average 1(Low) 2 3 4 5(High) Average
Part I: Mean Return and Alpha
1(Low) 57.49 56.03 40.07 26.79 17.75 39.62 41.88 24.28 18.84 16.57 12.21 23.20
2 51.21 42.88 31.02 15.27 12.69 30.61 35.14 26.67 14.77 21.10 9.49 21.43
3 54.96 41.34 25.81 20.97 10.12 30.64 37.20 24.66 20.50 10.79 7.58 20.15
4 42.52 38.93 29.50 16.21 9.58 27.35 37.22 23.08 17.57 15.29 11.02 20.84
5(High) 33.23 28.85 9.62 10.20 5.82 17.54 31.94 30.24 21.43 16.36 8.89 21.77
High-Low -24.26 -27.17 -30.45 -16.59 -11.93 -22.08 -12.15 5.96 2.59 -0.21 -3.33 -1.43
Alpha -22.78 -27.83 -30.17 -17.16 -11.85 -21.96 -10.86 7.74 2.94 -0.96 -3.03 -0.83

Part II: t-Statistics
1(Low) 5.53 5.32 4.11 2.82 1.99 4.19 5.79 3.21 2.52 2.21 1.73 3.49
2 4.84 4.00 3.06 1.62 1.44 3.20 4.45 3.56 2.02 3.25 1.42 3.30
3 4.96 3.79 2.58 2.21 1.15 3.15 4.86 3.35 3.01 1.55 1.13 3.12
4 4.01 3.79 2.86 1.73 1.12 2.87 5.03 3.26 2.44 2.17 1.62 3.22
5(High) 3.41 3.05 1.09 1.17 0.72 2.03 4.19 4.35 2.91 2.49 1.38 3.48
High-Low -5.79 -6.79 -6.74 -4.40 -3.12 -8.56 -2.27 1.17 0.48 -0.04 -0.69 -0.49
Alpha -5.33 -6.78 -6.68 -4.61 -3.19 -8.57 -2.06 1.50 0.53 -0.17 -0.61 -0.29

*Notes: See notes to Table 2.8. Portfolios are sorted by RSK, controlling for SRVLJ/SRVSJ, and using truncation level γ2, as discussed
in the footnote to Table 2.2.
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Table 2.12: Double-Sorted Portfolios: Portfolios Independently Sorted by Stock- and
Industry-Level SRVJ

Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas

Industry-Level Quintile Industry-Level Quintile
Stock-Level Quintile 1(Low) 2 3 4 5(High) High-Low Alpha 1(Low) 2 3 4 5(High) High-Low Alpha
Part I: Mean Return and Alpha
1(Low) 39.23 47.42 53.00 61.43 72.18 32.94 34.74 36.50 33.40 32.78 36.58 25.03 10.19 9.28
2 30.55 33.28 38.69 48.44 55.77 25.22 25.86 28.37 27.31 20.24 37.10 14.64 7.20 6.68
3 14.07 21.47 24.27 30.98 43.15 29.07 29.60 18.16 24.85 17.56 20.35 8.69 10.64 11.98
4 6.90 12.45 15.65 19.51 34.51 27.61 28.30 12.97 11.96 10.38 14.58 2.67 9.54 9.99
5(High) -7.35 1.99 9.90 16.40 25.94 33.29 32.92 -4.30 9.86 4.86 13.25 -3.95 19.82 21.72
High-Low -46.58 -45.43 -43.09 -45.03 -46.24 -40.80 -23.54 -27.92 -23.33 -31.16
Alpha -44.64 -45.23 -41.18 -45.96 -46.46 -41.42 -22.73 -26.52 -23.09 -28.98
Industry-Level Effect (average of High-Low column; Alpha column) 29.63 30.29 11.48 11.93
Stock-Level Effect (average of High-Low row; Alpha row) -45.28 -44.70 -29.35 -28.55

Part II: t-Statistics
1(Low) 3.82 4.37 4.98 5.87 6.83 5.20 5.35 4.61 3.98 3.93 4.55 4.71 1.40 1.27
2 2.90 3.13 3.49 4.48 5.22 3.50 3.35 3.82 3.56 2.35 4.58 3.16 1.14 1.00
3 1.39 2.09 2.28 3.11 4.43 4.60 4.53 2.34 3.23 2.25 2.76 1.87 1.54 1.73
4 0.70 1.28 1.60 2.12 3.93 4.40 4.47 1.69 1.62 1.36 1.87 0.68 1.50 1.54
5(High) -0.79 0.22 1.07 1.88 3.16 5.88 5.93 -0.51 1.27 0.62 1.93 -1.00 2.82 3.06
High-Low -9.33 -8.12 -8.27 -7.80 -8.01 -7.19 -3.92 -5.22 -4.31 -5.33
Alpha, FFC4 -9.00 -8.16 -7.97 -7.93 -8.34 -7.37 -3.73 -5.06 -4.31 -5.47
Industry-Level Effect (average of High-Low column; Alpha column) 5.66 5.57 2.23 2.20
Stock-Level Effect (average of High-Low row; Alpha row) -11.39 -11.50 -8.88 -8.91

*Notes: See notes to Table 2.8. This table presents average returns and risk-adjusted alphas for portfolios sorted by stock-level and industry-level SRVJ. The sample
includes all NYSE, NASDAQ and AMEX listed stocks for the period January 1993 to December 2016. A stock’s industry signed jump variation (SRVJ) is the
capitalization-weighted average of the SRVJ of all stocks within the industry. At the end of each Tuesday, all stocks in the sample are sorted into quintile portfolios
based on stock-level and industry-level SRVJ, independently, resulting in 25 portfolios. Each portfolio is held for one week. The row labeled “Industry-Level Effect”
reports average values of one-week ahead returns (and Fama-French-Carhart four-factor alphas in the High-Low (Alpha) column) in Part I (corresponding Newey-West
t-statistics are given in Part II). The row labeled “Stock-Level Effect” reports the average values of one-week ahead returns (and alphas) in Part I (corresponding
Newey-West t-statistics are again given in Part II).
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Table 2.13: Double-Sorted Portfolios: Portfolios Sorted by Stock- and Industry-Level
SRVLJ/SRVSJ Independently

Panel A: Portfolios Sorted Based on SRVLJ

Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas

Industry-Level Quintile Industry-Level Quintile
Stock-Level Quintile 1(Low) 2 3 4 5(High) High-Low Alpha 1(Low) 2 3 4 5(High) High-Low Alpha
Part I: Mean Return and Alpha
1(Low) 34.64 35.34 35.04 51.12 51.00 16.36 17.03 22.26 24.61 20.46 26.39 25.19 2.92 0.73
2 25.37 25.36 22.38 34.21 36.00 10.64 9.43 18.78 22.97 19.49 23.51 27.29 8.51 7.46
3 17.55 0.89 26.31 34.26 31.56 14.40 11.15 18.90 15.95 11.59 4.81 17.06 -6.76 -10.28
4 13.59 20.91 21.20 27.71 34.08 19.69 19.75 11.26 21.71 10.01 12.25 25.88 13.89 15.35
5(High) 12.22 11.90 14.43 25.57 25.57 13.36 12.93 14.16 21.60 16.13 20.63 22.85 8.69 11.30
High-Low -22.42 -23.44 -20.61 -25.55 -25.42 -8.10 -3.00 -4.33 -5.75 -2.33
Alpha -22.02 -23.37 -20.45 -25.74 -26.12 -9.58 -3.52 -4.34 -5.40 1.00
Industry-Level Effect (average of High-Low column; Alpha column) 14.83 14.31 7.24 6.90
Stock-Level Effect (average of High-Low row; Alpha row) -23.49 -23.54 -4.70 -4.37

Part II: t-Statistics
1(Low) 3.63 3.39 3.33 4.94 5.23 3.40 3.41 3.25 3.06 2.48 3.25 3.16 0.49 0.12
2 2.55 2.44 2.14 3.46 3.73 2.17 1.90 2.70 3.17 2.57 3.20 3.73 1.60 1.32
3 0.78 0.04 0.93 1.41 1.46 0.85 0.65 1.08 0.73 0.51 0.25 1.05 -0.37 -0.54
4 1.32 1.95 1.94 2.74 3.73 3.67 3.73 1.49 2.62 1.20 1.45 3.69 2.43 2.65
5(High) 1.31 1.24 1.50 2.84 2.99 2.97 2.91 1.83 2.83 2.12 2.83 3.56 1.50 2.09
High-Low -6.14 -5.13 -4.66 -5.85 -6.19 -1.57 -0.59 -0.90 -1.19 -0.45
Alpha, FFC4 -6.09 -5.03 -4.58 -5.91 -6.38 -1.93 -0.68 -0.87 -1.09 0.21
Industry-Level Effect (average of High-Low column; Alpha column) 3.77 3.55 1.77 1.57
Stock-Level Effect (average of High-Low row; Alpha row) -9.05 -9.14 -2.01 -1.91

Panel B: Portfolios Sorted Based on SRVSJ

Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas

Industry-Level Quintile Industry-Level Quintile
Stock-Level Quintile 1(Low) 2 3 4 5(High) High-Low Alpha 1(Low) 2 3 4 5(High) High-Low Alpha
Part I: Mean Return and Alpha
1(Low) 40.39 42.50 43.55 55.02 68.45 28.07 29.88 44.09 37.87 32.07 36.14 45.53 1.44 0.72
2 32.52 40.60 41.29 45.73 59.67 27.15 28.20 24.11 24.09 23.82 27.45 42.09 17.99 18.36
3 15.39 22.96 24.90 30.69 45.29 29.90 30.43 20.22 15.93 21.91 17.63 25.37 5.16 4.88
4 9.07 9.08 17.26 17.20 32.70 23.63 23.94 11.38 12.88 22.53 11.01 25.43 14.04 15.23
5(High) -2.44 3.16 7.13 12.21 22.30 24.73 26.19 8.91 7.91 11.60 9.76 11.23 2.32 5.33
High-Low -42.83 -39.34 -36.43 -42.82 -46.16 -35.18 -29.95 -20.47 -26.38 -34.30
Alpha -42.27 -39.03 -34.75 -42.27 -45.96 -36.51 -30.26 -18.68 -25.89 -31.90
Industry-Level Effect (average of High-Low column; Alpha column) 26.69 27.73 8.19 8.90
Stock-Level Effect (average of High-Low row; Alpha row) -41.51 -40.86 -29.26 -28.65

Part II: t-Statistics
1(Low) 3.91 3.90 3.98 5.06 6.20 4.04 3.99 5.58 4.66 3.66 4.40 5.62 0.21 0.10
2 3.00 3.83 3.88 4.42 5.68 3.89 3.88 3.19 3.04 2.90 3.50 5.39 2.84 2.77
3 1.55 2.26 2.46 3.11 4.68 4.91 4.94 2.52 1.97 2.73 2.33 3.43 0.70 0.68
4 0.92 0.93 1.74 1.84 3.64 3.72 3.74 1.46 1.78 2.85 1.47 3.72 2.18 2.43
5(High) -0.25 0.33 0.77 1.41 2.70 3.94 4.15 1.06 0.96 1.49 1.36 1.74 0.34 0.76
High-Low -8.38 -7.85 -7.04 -7.99 -7.60 -6.21 -5.45 -3.70 -5.15 -6.15
Alpha, FFC4 -8.38 -7.95 -6.85 -8.19 -8.02 -6.55 -5.68 -3.41 -5.15 -5.69
Industry-Level Effect (average of High-Low column; Alpha column) 5.02 5.01 1.60 1.68
Stock-Level Effect (average of High-Low row; Alpha row) -10.65 -11.14 -8.78 -8.75

*Notes: See notes to Table 2.12. Jumps are decomposed using truncation level γ2, as discussed in the footnote to Table 2.2.
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Table 2.14: Fama-MacBeth Cross-Sectional Regressions

Panel A: Regressions Without Control Variables

I II III IV V VI VII VIII IX X XI XII XIII XIV XV XVI
Intercept 18.54 27.95 23.99 15.77 30.31 31.03 31.46 31.20 19.74 32.04 20.01 20.04 28.88 30.01 30.48 30.17

(1.94) (3.07) (2.82) (1.69) (3.32) (3.37) (3.41) (3.39) (2.03) (3.73) (2.14) (2.08) (3.29) (3.40) (3.44) (3.41)
RVJP -63.86 -128.25

(-6.00) (-6.24)
RVJN 107.11 196.57

(8.29) (8.98)
RVLJP -53.42 -44.85 76.84 -79.63

(-6.46) (-4.46) (6.58) (-3.94)
RVLJN 71.27 83.09 -30.83 149.92

(8.12) (7.45) (-2.40) (7.18)
RVSJP -130.77 -99.16 -88.56 -129.39

(-8.97) (-6.24) (-6.64) (-6.33)
RVSJN 165.05 161.39 129.24 195.31

(8.22) (7.19) (7.94) (8.26)
SRVLJ -50.07 -53.94 72.19 -82.69

(-7.98) (-8.37) (6.60) (-4.48)
SRVSJ -141.69 -144.75 -103.72 -149.56

(-9.25) (-9.32) (-8.25) (-7.66)
SRVJ -81.15 -150.59

(-10.15) (-7.80)
RVOL -8.94 -7.46 -6.74 -9.08 -5.90 -6.31 -6.40 -6.38

(-1.60) (-1.32) (-1.21) (-1.62) (-1.05) (-1.12) (-1.14) (-1.13)
RSK 16.12 -22.16 -9.87 9.12 -24.75 -10.15 4.08 14.02

(5.59) (-9.55) (-9.49) (3.07) (-10.41) (-9.72) (1.39) (4.91)
RKT -0.68 -0.68 0.46 -0.68 0.12 0.09 0.08 0.09

(-2.25) (-2.27) (1.45) (-2.24) (0.42) (0.30) (0.28) (0.32)
Adjusted R2 0.0063 0.0033 0.0035 0.0082 0.0005 0.0019 0.0024 0.0016 0.0204 0.0175 0.0185 0.0214 0.0160 0.0168 0.0172 0.0168
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Table 2.14 (Continued)

Panel B: Regressions with Control Variables

I II III IV V VI VII VIII IX X XI XII XIII XIV XV XVI
Intercept 100.76 100.26 92.97 98.02 97.60 97.72 98.57 98.26 89.27 92.87 93.62 89.60 94.59 94.82 95.19 94.94

(4.24) (5.45) (5.25) (4.15) (5.67) (5.65) (5.69) (5.67) (3.30) (4.26) (3.93) (3.27) (4.37) (4.33) (4.30) (4.29)
RVJP -30.35 -33.59

(-3.04) (-1.87)
RVJN 28.77 50.58

(3.26) (3.48)
RVLJP -27.56 -27.07 11.55 -28.36

(-4.46) (-2.81) (1.20) (-1.53)
RVLJN 16.42 23.05 -0.32 48.59

(2.67) (2.61) (-0.03) (2.89)
RVSJP -26.94 -34.15 -24.07 -38.20

(-2.78) (-2.51) (-2.20) (-2.04)
RVSJN 44.62 45.83 26.48 52.34

(4.25) (3.81) (2.67) (3.42)
SRVLJ -22.63 -25.76 9.90 -31.02

(-5.18) (-5.67) (1.10) (-1.93)
SRVSJ -33.16 -38.71 -23.75 -41.74

(-3.92) (-4.45) (-2.74) (-2.83)
SRVJ -28.64 -39.38

(-6.26) (-2.69)
RVOL 4.79 5.07 4.59 4.68 4.94 4.87 4.86 4.84

(0.79) (0.84) (0.76) (0.77) (0.82) (0.80) (0.80) (0.79)
RSK 3.02 -4.90 -3.58 2.67 -5.53 -3.67 1.42 2.46

(1.23) (-3.01) (-4.69) (0.98) (-3.45) (-4.79) (0.50) (0.95)
RKT -0.53 -0.61 -0.38 -0.56 -0.49 -0.46 -0.44 -0.44

(-2.00) (-2.27) (-1.08) (-1.87) (-1.78) (-1.63) (-1.49) (-1.46)
Beta -8.28 -8.11 -8.09 -8.27 -8.07 -8.26 -8.29 -8.16 -7.71 -7.75 -8.18 -7.72 -8.10 -8.18 -8.22 -8.14

(-1.46) (-1.40) (-1.38) (-1.46) (-1.37) (-1.41) (-1.41) (-1.39) (-1.36) (-1.35) (-1.42) (-1.37) (-1.40) (-1.42) (-1.43) (-1.41)
log(Size) -14.93 -14.77 -14.73 -14.94 -14.76 -14.76 -14.67 -14.67 -14.36 -14.25 -14.29 -14.48 -14.13 -14.11 -14.04 -14.05

(-5.24) (-5.25) (-5.21) (-5.32) (-5.15) (-5.14) (-5.13) (-5.13) (-5.19) (-5.15) (-5.16) (-5.26) (-5.08) (-5.07) (-5.06) (-5.07)
BE/ME -0.76 -0.75 -0.65 -0.76 -0.67 -0.61 -0.59 -0.62 -0.72 -0.57 -0.57 -0.69 -0.56 -0.54 -0.56 -0.58

(-0.37) (-0.36) (-0.32) (-0.37) (-0.33) (-0.30) (-0.29) (-0.30) (-0.34) (-0.27) (-0.27) (-0.33) (-0.27) (-0.26) (-0.27) (-0.28)
MOM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(0.96) (0.97) (0.94) (0.98) (0.93) (0.93) (0.93) (0.93) (1.26) (1.19) (1.18) (1.22) (1.19) (1.21) (1.20) (1.21)
REV -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01

(-5.63) (-5.83) (-5.63) (-5.53) (-5.84) (-5.66) (-5.55) (-5.64) (-5.74) (-5.97) (-5.82) (-5.70) (-5.99) (-5.83) (-5.77) (-5.80)
IVOL -301.46 -293.89 -297.02 -304.39 -291.92 -292.47 -298.32 -298.14 -425.97 -416.77 -422.83 -424.54 -419.05 -421.52 -424.24 -425.20

(-2.18) (-2.15) (-2.17) (-2.21) (-2.13) (-2.12) (-2.16) (-2.17) (-4.69) (-4.57) (-4.63) (-4.67) (-4.59) (-4.62) (-4.65) (-4.67)
CSK -7.52 -8.67 -8.13 -7.29 -8.69 -8.23 -7.62 -7.87 -7.00 -7.84 -7.44 -6.89 -7.91 -7.45 -7.35 -7.52

(-1.75) (-2.01) (-1.89) (-1.70) (-2.01) (-1.91) (-1.77) (-1.82) (-1.66) (-1.86) (-1.77) (-1.64) (-1.88) (-1.77) (-1.74) (-1.78)
CKT 2.34 2.29 2.24 2.36 2.32 2.32 2.43 2.38 1.74 1.72 1.69 1.74 1.71 1.77 1.83 1.81

(1.19) (1.15) (1.13) (1.20) (1.15) (1.16) (1.21) (1.18) (0.91) (0.89) (0.87) (0.91) (0.88) (0.91) (0.94) (0.93)
MAX -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03

(-5.33) (-5.66) (-5.57) (-5.31) (-5.64) (-5.71) (-5.55) (-5.54) (-7.37) (-7.55) (-7.45) (-7.35) (-7.59) (-7.55) (-7.57) (-7.55)
MIN -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.01 -0.02 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01

(-2.79) (-3.11) (-3.14) (-2.79) (-3.11) (-3.12) (-2.83) (-2.85) (-2.81) (-2.94) (-2.80) (-2.81) (-2.88) (-2.80) (-2.73) (-2.75)
ILLIQ -7.84 -7.68 -8.08 -7.86 -7.99 -8.03 -7.87 -7.88 -8.94 -8.87 -8.68 -9.10 -8.54 -8.51 -8.41 -8.43

(-5.24) (-5.12) (-5.22) (-5.26) (-5.15) (-5.16) (-5.08) (-5.10) (-4.79) (-5.12) (-4.96) (-4.87) (-4.97) (-4.95) (-4.86) (-4.88)
Adjusted R2 0.0602 0.0597 0.0597 0.0609 0.0590 0.0592 0.0594 0.0592 0.0647 0.0641 0.0642 0.0652 0.0636 0.0637 0.0639 0.0638

*Notes: See notes to Tables 2.1 and 2.5. This table reports results for cross-sectional Fama-MacBeth regressions, based on the regression model depicted as equation
(2.15) in Section 2.4.5. In these regression models, future weekly returns are regressed on various realized measures and control variates. The two panels utilize jump
truncation level γ2, as discussed in the footnote to Table 2.2. The regressions that are reported on are of the form: ri,t+1 = γ0,t +

∑K1
j=1 γj,tXi,j,t +

∑K2
s=1 ϕs,tZi,s,t + ϵi,t+1,

t = 1, ..., T, where ri,t+1 denotes the stock return for firm i in week t+ 1, K1 is the number of potential variation measures, and Xi,j,t denotes a relevant realized measure
at the end of week t. In addition, there are K2 variables measuring firm characteristics, which are denoted by Zi,j,t (see Section 2.3 for details). In the table, time series

averages of the coefficient estimates ( 1
T

∑T
t=1 γ̂j,t and

1
T

∑T
t=1 ϕ̂j,t) are reported, along with Newey-West t-statistics (in parentheses). For complete details, see Section 2.4.
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Table 2.15: Jumps Associated with (Absolute) Magnitude of Earning Surprises

Panel A: Daily Average Percentage of Firms Exhibiting Various Types of Jumps, on Days
Characterized by Earnings Surprises

A-SUE RVJP RVJN SRVJ RVLJP RVLJN SRVLJ RVSJP RVSJN SRVSJ

Small 0.8099 0.8180 0.9849 0.1951 0.2004 0.3042 0.7233 0.7258 0.8983
Medium 0.8310 0.8232 0.9841 0.2216 0.2173 0.3289 0.7319 0.7232 0.8928
Large 0.8605 0.8621 0.9909 0.2618 0.2572 0.3737 0.7455 0.7488 0.8829

Panel B: Daily Average Percentage of Firms Exhibiting Various Types of Jumps, on Days
Characterized by No Earnings Surprises

RVJP RVJN SRVJ RVLJP RVLJN SRVLJ RVSJP RVSJN SRVSJ

0.8836 0.8786 0.9884 0.2252 0.2220 0.3107 0.7941 0.7900 0.9095

Panel C: t-Statistics Associated with the Difference in Jump Size Percentages Between Portfolios

Difference SRVJ SRVLJ SRVSJ

Medium-Small -0.55 4.98 -1.68
Large-Medium 5.76 9.02 -3.06
Large-None 3.54 16.85 -10.85

*Notes: See notes to Tables 2.1. Panels A and B of this table report daily average percentages of firms
exhibiting various types of jumps, on days with (Panel A) and without (Panel B) earnings surprises. On
earning announcement dates for which at least 3 stocks report earning, the “reporting” stocks are sorted
into tertile portfolios (called “Small”, “Medium”, and “Large”), based on the absolute value of earning
surprise (A-SUE), where SUE is defined in equation (2.16). Thus, small, medium and large portfolios are
only constructed on days for which at least 3 firms are characterized by an earnings surprise. Then, the
percentage of firms exhibiting jumps in each of the three earnings surprise size categories is calculated, for
various different jump types (i.e., RVJP, RVJN, etc.) Finally, percentages are averages over all reporting
days in the sample. Finally, various Newey-West t-statistics measuring the significance of the differences
in jump size percentages for SRVJ, SRVLJ, and SRVSJ type jumps are reported in Panel C of the table.
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Table 2.16: Fama-MacBeth Type Regressions Using Various Jump Variation Measures
as Dependent Variable

SRVLJ SRVLJ SRVSJ SRVSJ SRVJ SRVJ

I II III IV V VI
Intercept 0.0080 0.0176 0.0034 0.0159 0.0115 0.0335

(5.81) (10.78) (2.59) (11.64) (4.63) (12.31)
RVOL -0.0050 0.0025 -0.0065 0.0006 -0.0115 0.0032

(-11.02) (5.36) (-15.37) (1.88) (-14.81) (4.71)
Beta 0.0014 -0.0011 0.0003

(4.40) (-3.76) (0.79)
log(Size) 0.0013 0.0003 0.0030 0.0017 0.0043 0.0020

(5.79) (1.62) (15.19) (9.21) (12.71) (6.67)
BE/ME 0.0007 0.0003 0.0010

(4.11) (2.72) (4.58)
MOM 0.0007 0.0011 0.0018

(3.54) (5.94) (6.13)
REV 0.25166 0.1176 0.3172 0.1882 0.5688 0.3058

(61.05) (31.43) (65.55) (41.52) (69.66) (39.62)
IVOL -0.1424 -0.1880 -0.3303

(-17.05) (-23.23) (-24.43)
CSK 0.0142 0.0206 0.0349

(19.14) (28.33) (26.38)
CKT -0.0008 -0.0008 -0.0015

(-2.28) (-1.96) (-2.31)
MAX 0.2456 0.2248 0.4704

(43.77) (25.28) (35.84)
MIN 0.5115 0.4365 0.9480

(54.63) (48.47) (58.64)
ILLIQ 0.0020 0.0016 0.0032 0.0023 0.0052 0.0039

(6.33) (5.32) (18.60) (16.36) (12.20) (10.28)
Adjusted R2 0.0322 0.0492 0.1070 0.1473 0.1049 0.1517

*Notes: See notes to Tables 2.1, 2.5 and 2.14. This table reports results for
cross-sectional Fama-MacBeth type regressions using various jump variation
measures (listed across the first row of entries in the table) as dependent
variables, and for various control variables (listed in the first column of the
table). Thus, the regressions in this table mirror those reported in Table
2.14, with one difference. Namely, the dependent variable in the regressions
is either SRVLJ, SRVSJ, or SRVJ. Here, SRVLJ and SRVSJ are contructed

using jump truncation level γ2 = 5

√
1
t ÎV

(i)

t ∆0.49
n .



53

Figure 2.1: Unconditional Distributions of Realized Measures

Panel A: SRVJ Kernel Density Estimate Panel B: RSK Kernel Density Estimate

Panel C: SRVLJ Kernel Density Estimate Panel D: SRVSJ Kernel Density Estimate

Panel E: RKT Kernel Density Estimate Panel F: RVOL Kernel Density Estimate

*Notes: See notes to Table 2.1. Panels A-F display unconditional distribution kernel density estimates
of various realized measures, for the cross-section of stock returns for the period January 1993 to
December 2016. Signed small and large jump variation measures are constructed using truncation

levels γ1 = 4

√
1
t
ÎV

(i)

t ∆0.49
n . Distributions are similar when using γ2 = 5

√
1
t
ÎV

(i)

t ∆0.49
n .
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Figure 2.2: Percentiles of Realized Measures

Panel A: Percentiles of SRVJ Panel B: Percentiles of RSK

Panel C: Percentiles of RKT Panel D: Percentiles of RVOL

Panel E: Percentiles of SRVLJ Based on
γ2

Panel F: Percentiles of SRVSJ Based on
γ2

*Notes: See notes to Table 2.1. Panels A-H display 10-week moving averages of percentiles of realized
measures, for the cross-section of stocks, for the period January 1993 to December 2016. Signed small

and large jump variation measures are contructed based on jump truncation level γ2 = 5

√
1
t
ÎV

(i)

t ∆0.49
n .
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Figure 2.3: Cumulative Gains of Short-Long Portfolios

Panel A: Equal-Weighted Mean Return

Panel B: Value-Weighted Mean Return

*Notes: Panels A-B display cumulative gains of equal-weighted and value-weighted short-
long portfolios constructed using SRVJ, SRVLJ, SRVSJ, and RSK (see Table 2.1 and Section
2.2 for a discussion of these measures). RSJ is the relative signed jump variation measure
defined and analyzed in Bollerslev et al. (2019b), who include the risk-free rate in all of
their calculations, while we do not (refer to Bollerslev et al. (2019b) for complete details).
In all experiments, the initial investment, made on January 1993, is $1. Each portfolio is
re-balanced and accumulated on a weekly basis, through 2016. Signed small and large jump
variation measures used in the experiment reported on in this figure are constructed based

on truncation level γ2 = 5

√
1
t
ÎV

(i)

t ∆0.49
n . See Section 2.4.2 for further discussion.



56

Figure 2.4: Distribution of Stocks in Portfolios Formed Based on Stocks’ Signed Jump
Variation (SRVJ) and Industry Signed Jump Variation

Panel A: Average Distribution of Stocks Across Double-Sorted
Portfolios

Panel B: Average Distribution of Market Capitalization Across
Double-Sorted Portfolios

*Notes: See notes to Table 2.13. The vertical axis in Panels A and B measures time series
average proportions of stocks and market capitalizations, across double sorted portfolios.
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Figure 2.5: Jump Variation Measures Around Earnings Announcement

Panel A1: Equal-Weighted RVJP Panel A2: Value-Weighted RVJP

Panel B1: Equal-Weighted RVJN Panel B2: Value-Weighted RVJN

Panel C1: Equal-Weighted SRVJ Panel C2: Value-Weighted SRVJ
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Figure 2.5 (Continued)

Panel D1: Equal-Weighted RVLJP Panel D2: Value-Weighted RVLJP

Panel E1: Equal-Weighted RVLJN Panel E2: Value-Weighted RVLJN

Panel F1: Equal-Weighted SRVLJ Panel F2: Value-Weighted SRVLJ
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Figure 2.5 (Continued)

Panel G1: Equal-Weighted RVSJP Panel G2: Value-Weighted RVSJP

Panel H1: Equal-Weighted RVSJN Panel H2: Value-Weighted RVSJN

Panel I1: Equal-Weighted SRVSJ Panel I2: Value-Weighted SRVSJ

*Notes: See notes to Table 2.1. Panels A-I display equal- or value-weighted averages of various weekly
jump variation measures in a [-12, 12] week window around earnings announcement.
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Figure 2.6: Aggregated and Weighted Average of Jump Variation Measures

Panel A: Equal-Weighted SRVLJ/SRVSJ
(Stocks Sorted by SRVLJ)

Panel B: Value-Weighted SRVLJ/SRVSJ
(Stocks Sorted by SRVLJ)

Panel C: Equal-Weighted SRVLJ/SRVSJ
(Stocks Sorted by SRVSJ)

Panel D: Value-Weighted SRVLJ/SRVSJ
(Stocks Sorted by SRVSJ)

*Notes: See notes to Table 2.1. Panels A-D display weekly aggregated and weighted averages of the ratio
of SRVLJ to SRVSJ for 1st quintile stocks, sorted on SRVLJ to SRVSJ. Aggregated jump measures are
depicted in blue (dotted line), and are constructed using 5-minute portfolio returns. Weighted average
jump measures are depicted in red (solid line) and are constructed using individual daily jump measures,

and then aggregating to weekly. All calculation utilize jump truncation level γ1 = 4

√
1
t
ÎV

(i)

t ∆0.49
n . For

complete details, refer to Section 2.4.6.2.
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Chapter 3

Forecasting Portfolio Variance: A New Decomposition

Approach

3.1 Introduction

The price movements of an asset depend on the nature of news (sentiment and impor-

tance) and on the corresponding information processing mechanism. Different stocks

may respond to the same market-level news announcement in different ways (e.g., with

upside or downside price drift or with small or large jumps). Thus, when examining

the covariance matrix of a portfolio, it is crucial to consider the interactions among

different types of price movements, as different components may provide different in-

formational content. In light of this fact, the objective of this paper is to build on the

research of Bollerslev et al. (2019a), in which realized covariance matrices are decom-

posed into constituent variation components. In particular, we analyze both the signs

and magnitudes of the underlying high-frequency returns used in the construction of

realized covariance matrices. The impetus for our approach is that by including only

“information-rich” components in realized (co)-variation forecasting models, predictive

accuracy may be improved. Finally, in our prediction experiments, we consider a wide

variety of forecasting models, constructed using both standard HAR specifications, as

well as various machine learning methods, including: penalized regression type meth-

ods such as the least absolute shrinkage operator (LASSO) and the elastic net (EN),

and dimension reduction methods such as partial least squares (PLS) and principal

components analysis (PCA).

It should be noted that the decomposition of realized components of the covariance

matrix used in this paper is closely related to that discussed in recent work on the

construction of risk measures based on high-frequency data, including realized skew-

ness and kurtosis (see, e.g. Neuberger (2012) and Amaya et al. (2015)), and jumps

(see, e.g. Bollerslev et al. (2019b), Feunou et al. (2018), and Duong and Swanson
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(2015)). Moreover, our utilization of various machine learning methods for forecast-

ing financial variables builds on previous research in which stock returns are predicted

using shrinkage and variable selection methods (see, e.g., Rapach et al. (2013)), and

estimating and testing asset pricing models using dimension reduction methods (see,

e.g. Giglio and Xiu (2019) and Kelly et al. (2017)). However, in contrast to these stud-

ies, we synthesize machine learning techniques with foreasting portfolio variances using

high-frequency based risk measures, including those based on jumps and co-jumps.

Our contributions to the literature are thus twofold. First, investigate the useful-

ness of a new decomposition that separates the realized covariance matrix of a portfolio

into components based on the signs (positive or negative) and magnitudes (contin-

uous, small jump, or large jump) of underlying high-frequency returns. Second, we

investigate the importance of sparseness when forecasting covariance matrices using

cross section data. This is done by designing forecasting experiments that utilize ma-

chine learning, shrinkage, and dimension reduction methods. Our empirical analysis is

based on all constituent S&P 500 stocks, for the period January 2005 - December 2013.

The candidate predictors used in the specification of our forecasting models include

21 “concordant” and “discordant” variation components measured at daily, weekly,

and monthly frequencies, totaling 63 unique variables. We construct portfolios formed

using 5 to 200 stocks, based on high-frequency returns at 5-minute, 15-minute, and

30-minute frequencies. Under each of the 117 data frequency, truncation level, and

portfolio dimension settings that we analyze, we evaluate the predictive performance of

each forecasting model using 200 randomly selected portfolios. Our empirical finding

can be summarized as follow.

First, sparsity or parsimony is one of the key factors for improving the portfolio

variance forecasting performance. Namely, although each variation component we con-

struct may (in principle) contain marginal predictive content, only a small set of these

components actually contain information that is useful for forecasting portfolio vari-

ance. This conclusion is predicated on the observation that restricted SCHAR-r models

are significantly more accurate than SCHAR models, for example. Additionally, both

of these models are highly parsimonious (sparse), and they are our two mean square
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forecasting error “best” models, when specified using two-step penalized regression in

which dimension reduction via the LASSO and EN are carried out in the first step.

Second, co-jumps are the source of all out-of-sample forecasting gains, when sparse

models are compared with standard HAR-type models. However, all of our best per-

forming models indicate that negative continuous variation components are the most

influential predictors. This does not, of course, mean that jumps do not matter. In-

deed, when our variation components are constructed using 5-minute and 15-minute

frequency data, the MSFE-best models include both continuous and jump components

as predictors. This finding is more pronounced as portfolio dimension increases. Finally,

the above findings are less pronounced when 30-minute high-frequency returns are used

in covariance matrix estimation. Thus, forecasting gains are driven by the identifica-

tion of co-jumps through well-diversified portfolios, and the use of higher frequencies of

data.

Finally, machine learning methods, including the LASSO and EN provide limited

improvement to the out-of-sample fit, unless sparseness is enhanced by using first stage

variable selection and dimension reduction when specifying forecasting models. This

result further underscores the importance of imposing sparseness, after carrying out de-

compositions of the variety examined in this paper. Namely, if sparseness is retained by

removing predictors associated with extraneous (co)-variation information, in contexts

where realized covariance matrices are decomposed into constituent variation compo-

nents that depend on both the signs and magnitudes of the underlying high-frequency

returns, then realized covariance matrices can be more precisely predicted.

The rest of this paper is organized as follows. In Section 3.2 we discuss the model

setup and define the jump risk measures that we utilize. Section 3.3 contains a discus-

sion of the data used in our empirical analysis. Section 3.4 presents our main empirical

findings, including discussions of results based on panelized regression models, dimen-

sion reduction models, and sparse models. Section 3.5 concludes.
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3.2 Model Setup and Estimation Methodology

3.2.1 Components of covariance matrix

Following Aı̈t-Sahalia and Jacod (2012), we assume the d-dimensional log-price process,

Xt = [X1,t, ..., Xd,t]
⊤, follows an Itô semimartingaleis, defined as

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs + Jt,

where b and σ denote the drift and diffusive volatility processes, respectively; W is

a d-dimensional standard Brownian motion; J denotes the jump part, which can be

further decomposed into its small and large components,

Jt =

∫ t

0

∫
{|x|≤ϵ}

x(µ− ν)(ds, dx) +

∫ t

0

∫
{|x|≥ϵ}

xµ(ds, dx)

where µ is a random positive measure with its compensator ν; and ϵ is the (arbitrary)

fixed cutoff level (threshold) used to distinguish between large and small jumps. For

each trading day t, transaction prices are observed over equally spaced intervals and

the corresponding intraday log returns, rt,i = [r1,t,i, ..., rd,t,i]
⊤, at the ith interval ∆n

are defined as

rt,i = Xi∆n,t −X(i−1)∆n,t,

The daily realized covariance matrix is thus defined as

RCOVt =

⌊t/∆n⌋∑
i=1

rt,ir
⊤
t,i.

We decompose the covariance matrix into separate components based on the sign

and magnitude of the underlying high-frequency returns using thresholding method (see

Mancini (2009), Duong and Swanson (2015), Li et al. (2017), and the references cited

therein). Let rC
+

t,i , rC
−

t,i , rSJ
+

t,i , rSJ
−

t,i , rLJ
+

t,i , and rLJ
−

t,i denote the positive continuous,

negative continuous, positive small jump, negative small jump, positive large jump,

negative large jump return vector, respectively. In particular,

rC
+

t,i ≡ rt,i ⊙ IC
+

t,i

rSJ
+

t,i ≡ rt,i ⊙ ISJ
+

t,i

rLJ
+

t,i ≡ rt,i ⊙ ILJ
+

t,i

rC
−

t,i ≡ rt,i ⊙ IC
−

t,i

rSJ
−

t,i ≡ rt,i ⊙ ISJ
−

t,i

rLJ
−

t,i ≡ rt,i ⊙ ILJ
−

t,i

(3.1)



65

where IC
+

t,i ≡ [1{0<r1,t,i≤α∆ϖ
n }, ..., 1{0<rd,t,i≤α∆ϖ

n }]
⊤, ILJ

+

t,i ≡ [1{r1,t,i>γ}, ..., 1{rd,t,i>γ}]
⊤,

and ISJ
+

t,i ≡ [1{α∆ϖ
n <r1,t,i≤γ}, ..., 1{α∆ϖ

n <rd,t,i≤γ}]
⊤ denote the element-wise indicator

functions, with α∆ϖ
n and γ as the truncation levels to separate jumps from contin-

uous part, and large jumps from small jumps, respectively.1 IC
−

t,i , ILJ
−

t,i and ISJ
−

t,i are

defined analogously. The “concordant” semicovariances based on return vectors with

same magnitudes are defined as,

PCt ≡
⌊t/∆n⌋∑
i=1

(rC
+

t,i )(rC
+

t,i )⊤,

PSJt ≡
⌊t/∆n⌋∑
i=1

(rSJ
+

t,i )(rSJ
+

t,i )⊤,

PLJt ≡
⌊t/∆n⌋∑
i=1

(rLJ
+

t,i )(rLJ
+

t,i )⊤,

NCt ≡
⌊t/∆n⌋∑
i=1

(rC
−

t,i )(rC
−

t,i )⊤,

NSJt ≡
⌊t/∆n⌋∑
i=1

(rSJ
−

t,i )(rSJ
−

t,i )⊤,

NLJt ≡
⌊t/∆n⌋∑
i=1

(rLJ
−

t,i )(rLJ
−

t,i )⊤,

(3.2)

the “concordant” semicovariances based on return vectors with different magnitudes

are defined as,

PCSJt ≡
⌊t/∆n⌋∑
i=1

(rC
+

t,i )(rSJ
+

t,i )⊤,

PSJCt ≡
⌊t/∆n⌋∑
i=1

(rSJ
+

t,i )(rC
+

t,i )⊤,

PCLJt ≡
⌊t/∆n⌋∑
i=1

(rC
+

t,i )(rLJ
+

t,i )⊤,

PLJCt ≡
⌊t/∆n⌋∑
i=1

(rLJ
+

t,i )(rC
+

t,i )⊤,

PSLJt ≡
⌊t/∆n⌋∑
i=1

(rSJ
+

t,i )(rLJ
+

t,i )⊤,

PLSJt ≡
⌊t/∆n⌋∑
i=1

(rLJ
+

t,i )(rSJ
+

t,i )⊤,

NCSJt ≡
⌊t/∆n⌋∑
i=1

(rC
−

t,i )(rSJ
−

t,i )⊤,

NSJCt ≡
⌊t/∆n⌋∑
i=1

(rSJ
−

t,i )(rC
−

t,i )⊤,

NCLJt ≡
⌊t/∆n⌋∑
i=1

(rC
−

t,i )(rLJ
−

t,i )⊤,

NLJCt ≡
⌊t/∆n⌋∑
i=1

(rLJ
−

t,i )(rC
−

t,i )⊤,

NSLJt ≡
⌊t/∆n⌋∑
i=1

(rSJ
−

t,i )(rLJ
−

t,i )⊤,

NLSJt ≡
⌊t/∆n⌋∑
i=1

(rLJ
−

t,i )(rSJ
−

t,i )⊤,

(3.3)

the “discordant” semicovariances based on return vectors with same magnitudes are

1All truncation levels have included time-of-day effects.
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defined as,

MC+
t ≡

⌊t/∆n⌋∑
i=1

(rC
+

t,i )(rC
−

t,i )⊤,

MSJ+
t ≡

⌊t/∆n⌋∑
i=1

(rSJ
+

t,i )(rSJ
−

t,i )⊤,

MLJ+
t ≡

⌊t/∆n⌋∑
i=1

(rLJ
+

t,i )(rLJ
−

t,i )⊤,

MC−
t ≡

⌊t/∆n⌋∑
i=1

(rC
−

t,i )(rC
+

t,i )⊤,

MSJ−
t ≡

⌊t/∆n⌋∑
i=1

(rSJ
−

t,i )(rSJ
+

t,i )⊤,

MLJ−
t ≡

⌊t/∆n⌋∑
i=1

(rLJ
−

t,i )(rLJ
+

t,i )⊤,

(3.4)

and the “discordant” semicovariances based on return vectors with different magnitudes

are defined as,

MCSJ+
t ≡

⌊t/∆n⌋∑
i=1

(rC
+

t,i )(rSJ
−

t,i )⊤,

MSJC+
t ≡

⌊t/∆n⌋∑
i=1

(rSJ
+

t,i )(rC
−

t,i )⊤,

MCLJ+
t ≡

⌊t/∆n⌋∑
i=1

(rC
+

t,i )(rLJ
−

t,i )⊤,

MLJC+
t ≡

⌊t/∆n⌋∑
i=1

(rLJ
+

t,i )(rC
−

t,i )⊤,

MSLJ+
t ≡

⌊t/∆n⌋∑
i=1

(rSJ
+

t,i )(rLJ
−

t,i )⊤,

MLSJ+
t ≡

⌊t/∆n⌋∑
i=1

(rLJ
+

t,i )(rSJ
−

t,i )⊤,

MCSJ−
t ≡

⌊t/∆n⌋∑
i=1

(rC
−

t,i )(rSJ
+

t,i )⊤,

MSJC−
t ≡

⌊t/∆n⌋∑
i=1

(rSJ
−

t,i )(rC
+

t,i )⊤,

MCLJ−
t ≡

⌊t/∆n⌋∑
i=1

(rC
−

t,i )(rLJ
+

t,i )⊤,

MLJC−
t ≡

⌊t/∆n⌋∑
i=1

(rLJ
−

t,i )(rC
+

t,i )⊤,

MSLJ−
t ≡

⌊t/∆n⌋∑
i=1

(rSJ
−

t,i )(rLJ
+

t,i )⊤,

MLSJ−
t ≡

⌊t/∆n⌋∑
i=1

(rLJ
−

t,i )(rSJ
+

t,i )⊤

(3.5)

Following from the above definitions, the realized covariance matrix equals to the

sum of all these “concordant” and “discordant” components. And PCSJt = PSJCt,

NCSJt = NSJCt, PCLJt = PLJCt, NCLJt = NLJCt, PSLJt = PLSJt, NSLJt =

NLSJt andMCSJ+
t = MSJC−

t ,MCSJ−
t = MSJC+

t ,MCLJ+
t = MLJC−

t ,MCLJ−
t =
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MLJC+
t , MSLJ+

t = MLSJ−
t , MSLJ−

t = MLSJ+
t , therefore we have several com-

bined components,

PCSJ2t ≡ PCSJ + PSJC,

PCLJ2t ≡ PCLJt + PLJCt,

PSLJ2t ≡ PSLJt + PLSJt,

MLJ2t ≡ MLJ+
t +MLJ−

t ,

MCSJP2t ≡ MCSJ+
t +MSJC−

t ,

MCLJP2t ≡ MCLJ+
t +MLJC−

t ,

MSLJP2t ≡ MSLJ+
t +MLSJ−

t ,

MC2t ≡ MC+
t +MC−

t .

NCSJ2t ≡ NCSJt +NSJCt,

NCLJ2t ≡ NCLJt +NLJCt,

NSLJ2t ≡ NSLJt +NLSJt,

MSJ2t ≡ MSJ+
t +MSJ−

t ,

MCSJN2t ≡ MCSJ−
t +MSJC+

t ,

MCLJN2t ≡ MCLJ−
t +MLJC+

t ,

MSLJN2t ≡ MSLJ−
t +MLSJ+

t ,

(3.6)

3.2.2 Forecasting portfolio variance

Given the high-frequency return vectors of the constituents of a portfolio, the realized

covariance matrix of the portfolio can be separated into various “concordant” and “dis-

cordant” semivariances based on returns of different signs and magnitudes. For any

given portfolio weight vector w,

RV p ≡ w′RCOV w

≡ w′PV pw + w′NV pw + w′MV pw + w′PVMpw + w′NVMpw + w′MVMpw

(3.7)

≡ PVp
t +NVp

t +MVp
t + PVMp

t +NVMp
t +MVMp

t

where PV p, NV p, MV p denote various positive concordant, negative concordant and

discordant semivariances constructed by return vectors with same magnitudes, and

PVMp, NVMp, MVMp denote the corresponding semivariances based on return vec-

tors with different magnitudes.

3.2.3 Forecasting model comparisons

Our bechmark forecasting model is HAR model of Corsi (2009), in which the one-

day-ahead forecast for portfolio variance depends on daily, weekly and monthly lags of
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portfolio variance,

RV p
t+1|t = θ0 + θdRV p

t + θwRV p
t−1:t−4 + θmRV p

t−5:t−21. (3.8)

We also consider semivariance HAR (SHAR) model of Patton and Sheppard (2015),

RV p
t+1|t = θ0 + θd+V

+p
t + θd−V

−p
t + θwRV p

t−1:t−4 + θmRV p
t−5:t−21. (3.9)

where V+p
t and V−p

t denote the daily semivariances of the portfolio.

In addition, we also consider the semicovariance HAR (SCHAR) and its restricted

version SCHAR-r of Bollerslev et al. (2019a),

RV p
t+1|t = θ0 + θd,PPp

t + θw,PPp
t−1:t−4 + θm,PPp

t−5:t−21

+ θd,NN p
t + θw,NN p

t−1:t−4 + θm,NN p
t−5:t−21 (3.10)

+ θd,MMp
t + θw,MMp

t−1:t−4 + θm,MMp
t−5:t−21.

The restricted version is constructed as follows,

RV p
t+1|t = θ0 + θd,NN p

t + θw,NN p
t−1:t−4 + θm,NN p

t−5:t−21 + θm,MMp
t−5:t−21. (3.11)

We extend the standard HAR model by incorporating the abovementioned realized

components,

RV p
t+1|t = θ0 +ΘdZ

p
t +ΘwZ

p
t−1:t−4 +ΘmZp

t−5:t−21. (3.12)

where Zt denotes a set of daily realized components defined in (3.2)-(3.6).

To estimate these HAR-type models, we use a standard least squares objective

function,

L(θ) =
1

T

T∑
t=1

(RV p
t+1 − f(Zp

t ; θ))
2. (3.13)

where f(Zp
t ; θ) denotes the predicted realized variance of a portfolio by applying each

of the abovementioned models plus machine learning methods with the corresponding

predictors up to day t, denoted by Zp
t . We adopt three criteria to evaluate model

performance,

(1) Heteroskedasticity adjusted root mean square error (HARMSE) (see Corsi et al.

(2010)),
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HARMSE =

√√√√ 1

T

T∑
t=1

(
yt − ŷt

yt
)2,

(2) In-sample R2,

(3) Out-of-sample R2 (see Campbell and Thompson (2008)),

R2
oos = 1−

∑T
t=1(yt − ŷt)

2∑T
t=1(yt − ȳt)2

.

For model comparison, we use modified Diebold and Mariano (1995) test following

Gu et al. (2019),

DM12 = d̄12/σ̂d̄12

d̄12,t+1 =
1

n

n∑
i=1

((ê
(1)
i,t+1)

2 − (ê
(2)
i,t+1)

2)

where ê
(1)
i,t+1 and ê

(2)
i,t+1 denote the forecasting error for portfolio i at time t based on

each model. d̄12 and the σ̂d̄12 is the mean and Newey-West standard error of d12 over

200 randomly selected portfolios.

3.2.4 Penalized Regression: LASSO and Elastic Net

Arguably, the ultimate goal of regression analysis is to construct a model that can

predict well with new data and also to discover variables that contribute to the pre-

diction. When there is a large number of predictors, the least squares method for a

linear regression will typically produces non-zero estimates of all parameters, making

the interpretation challenging and leading to overfitting as well.

Thus it is crucial to regularize the estimation process by reducing the number of

parameters, rendering a parsimonious specification. In contrast to the least-squares

estimate, which often has low bias but high variance, penalized regression may improve

the prediction accuracy (measured by mean squared error) by introducing some bias

but reducing the variance of predicted values (bias-variance trade-off).

Building on simple linear regression models, penalized linear models impose a penalty

term on the loss function,

L(θ; ·) = L(θ) + Φ(θ; ·), (3.14)
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where Φ(θ; ·) is the penalty term, which takes the form,

Φ(θ;λ, α) = λ(1− α)
K∑
i=1

|θi|+
1

2
λα

K∑
i=1

θ2i , (3.15)

where λ and α are two hyperparameters. In this paper, we consider two methods,

LASSO and elastic net, corresponding to different values of α. When α = 1, there is

only a l2-penalty on the parameters and this case corresponds to ridge regression, which

can shrink all parameters but not set any of them to zero. If α = 0, this l1-penalty

setting corresponds to the LASSO regression, which can shrink all coefficients and set

certain parameters to zero simultaneously. The α ∈ (0, 1) case corresponds to elastic

net, which combines characteristics of both the l1 and l2 penalties. Since the main

purpose of this paper is to find the most relevant signals for prediction, we focus on

LASSO (see Tibshirani (1996)) and elastic net (see Zou and Hastie (2005)) as they can

produce simpler models through both shrinkage and variable selection.

Of note is that LASSO tends to randomly select one variable from a group within

which variables are correlated.2 Elastic net is proposed to tackle this problem by

assigning similar coefficients to highly correlated variables. Under the assumption that

only a small number of predictors are important signals for predicting portfolio realized

variance, it’s possible that this small set of variables comes from different groups. Thus

we adopt both LASSO and elastic net in our variable selection procedure, in hopes that

no potential candidate models are missed in this step.

LASSO is applied through a two-stage process, a special case of the relaxed lasso

(Meinshausen 2007). As lasso sets a number of the coefficients to be zeros and shrinks

the others towards zero relative to the regular least-square estimates, these nonzero

estimates by lasso will cause bias towards zero. Relaxed lasso is a method to tackle this

issue by separating the two effects of standard lasso (variable selection and shrinkage)

into a two-step procedure: a relative large penalty on the full set of variables in the first

step for variable selection; a relative small penalty on the selected variables for shrinkage

(soft de-biasing). In this paper, we adopt a special case of relaxed lasso, which involves

2This is why the variable selection procedure generates a huge quantity of candidate predictor
combinations over time and portfolios.
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a standard least-squares estimation to the subset of variables selected from the first

step, such that the difference in prediction performance between penalized regression

and sparse models is mainly due to the selection of predictors. To be consistent, we

utilize the same two-stage process for elastic net models.

3.2.5 Dimension Reduction: PLS and PCR

When regressors are highly correlated, OLS may result in unstable and unreliable esti-

mates. Penalized linear regressions are one of the possible remedies for multicollinearity

by imposing constraints on the magnitudes of parameters. But such models can lead

to suboptimal prediction performance especially when input data contains a lot of re-

dundant information.3 To tackle this issue, we can apply dimension reduction methods

that utilize derived mutually orthogonal components as new regressors. Generally, di-

mension reduction models involve a two-step procedure. First, they produce a number

of linear combinations of the original variables. Next, the first few components which

can explain most of the variability in independent or dependent variables are used in

a regular regression for prediction. Two commonly used methods in this domain are

principal component regression (PCR) (see, e.g., Stock and Watson (2002a,b, 2006),

and Bai and Ng (2006a,b, 2008)) and partial least squares (PLS) (see, e.g., Kelly and

Pruitt (2013, 2015)).

PCR transforms the original T × K input data matrix Zp into a set of derived co-

variates named principal components based on the singular-value decomposition (SVD)

of Zp. Specifically, Zp = USV ⊤, where ST×K = diag[δ1, ..., δK ] with δK ≥ · · · ≥ δ1 ≥ 0

denotes the non-negative singular values of Zp and UT×T = [u1, ..., uT ] and VK×K =

[v1, ..., vK ] are left and right singular vectors of Zp respectively. Columns ui(i = 1, ..., T )

and vj(j = 1, ...,K) are orthogonal unit vectors with length T and K, respectively. Thus

T p
T×K = ZpV defines the full principal component decomposition of Zp. The leading L

(L < K) principal components, corresponding to the first L largest singular values (the

3As documented by Tibshirani (1996), ridge regression empirically dominates lasso in terms of
forecasting performance when regressors are correlated, indicates that a linear combination of all the
original input variables can better represent the dependent variable relative to a subset of the redundant
variables. This is consistent with the idea of dimension reduction methods.
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squared root of eigenvalues) and eigenvectors, are used as new predictors in a second

step of regression, defined as

RV p = θ′0 +Θ′T p
L = θ′0 +Θ′(ZpVL), (3.16)

The estimation procedure of PCR is to find a set of K-dimensional vectors [v1, ..., vL]

such that each derived principal component successively retains the maximum possible

variation in Zp. Thus the jth vector of weights satisfies

vj = arg max
v

Var(T ) = arg max
v

Var(ZpV ), s.t.v′v = 1, v′jvl = 0, l = 1, ..., j−1. (3.17)

The limitation of PCR is that it only considers the variability in the original predic-

tors when constructing orthogonal principal components, thus it may omit information

that would be useful in predicting the response variable. In contrast to PCR, PLS

takes into account both the independent and the response variables in the dimension

reduction procedure. The jth vector of weights (W = [w1, ..., wK ]) used to construct

component of PLS satisfies 4

wj = arg max
w

Cov(ZpW,RV p)2, s.t. w′w = 1, w′
jwl = 0, l = 1, ..., j − 1. (3.18)

PCR and PLS transform the original space of K variables into a new space of

K uncorrelated variables and achieve dimension reduction by discarding the last K-L

components corresponding to the last few eigenvalues. In contrast to the unsupervised

method of PCR, PLS is applied in a supervised way with consideration of the cor-

relation between independent and dependent variables. However, in the case of low

signal-to-noise ratio, irrelevant predictors can still get some weights in the first L linear

combinations rather than being eliminated completely from all components, making

the prediction performance contaminated by noise.

3.2.6 Sparse Models

Though we can decompose realized covariance into multiple components in hopes that

each of them has unique information, we still assume that only a small number of these

4This problem can be solved in an efficient way by using SIMPLS algorithm of De Jong (1993).
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separated realized measures plays an important role in predicting portfolio realized

variance. Thus one of the main purposes of this paper is to discover the most relevant

signals by exploiting sparsity in models for prediction.

The construction of candidate sparse models relies on the variable selection proce-

dure. In the first step, all of the 63 predictors are included in the penalized regression

for estimating portfolio variance in the subsequent day, operated on a rolling window

scheme. All models are re-estimated daily using the most recent 1000 daily observa-

tions, and predictor sets with less than 10 variables selected by either LASSO or elastic

net are saved as candidate predictor combinations. In the second step, a regular linear

regression with predictors selected from the first step is performed as a candidate sparse

model.

The above procedure is performed under different settings related to data frequency,

truncation levels, and the number of stocks used to construct a portfolio. Specifically,

the construction and estimation steps are based on (1) 3 data frequencies (5-minute,

15-minute, and 30-minute); (2) 3 truncation levels used to separate large jumps from

small jumps (γ1, γ2, and γ3);5 (3) 13 kinds of portfolios which are constructed by

different number of stocks (N ∈ [5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200]).

Thus there are 117 (3*3*13) unique settings and the detailed procedure is as follows:

In the first step of variable selection, penalized regressions are operated under each

abovementioned setting for 100 randomly selected portfolios and all resulted variable

combinations are collected for later steps. Usually there are around 80,000 different

candidate models (variable combinations) for each of the 117 settings. However, a large

quantity of these candidate models are not robust over time and in the cross-section

of portfolios. An intermediate step, in which most unstable models are filtered out, is

necessary to make the estimation process efficient. Thus before the next step of model

selection, the forecasting performance of each candidate model is calculated based on 30

randomly selected portfolios. Any model with average statistics worse than benchmark

models is discarded. Typically there are hundreds of models left for each of the 117

5γ1 = 4
√

1
t
ÎV t∆

0.49
n , γ2 = 5

√
1
t
ÎV t∆

0.49
n , and γ3 = 6

√
1
t
ÎV t∆

0.49
n .
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settings, making the following steps less time-consuming. In the next step of model

selection, the comparison of prediction performance of all benchmark and candidate

models is conducted based on 200 randomly selected portfolios under each setting.

3.3 Data

We obtain high frequency trading data for S&P 500 constituents from the consolidated

Trade and Quote (TAQ) database. The sample period is from January, 2005 to De-

cember 2013, for a total of 2265 trading days. We subsample the data at 5-minute,

15-minute, and 30-minute frequencies using previous tick approach. Intraday prices are

sampled from 9:30 a.m. to 4:00 p.m. from Monday to Friday. Overnight returns are

not considered in this paper.

3.4 Empirical Results

3.4.1 Prediction Performance

Table 3.1-3.3 report the prediction performance of models in terms of HARMSE, in-

sample and out-of-sample R2 based on 3 data frequencies and 3 truncation levels. There

are 23 models presented in each panel, including 4 benchmark models (HAR, SHAR,

SCHAR, and SCHAR-r), 3 penalized linear regressions (LASSO, elastic net with α = 0.2

and α = 0.6, denoted EN1, EN2), PLS with number of components based on 3 criteria

(which select the leading components that can cumulatively explain 90%, 80% and 70%

of the variance in the dependent variable, respectively, and drop any selected compo-

nent if the corresponding marginal contribution is less than 5% of the variance; denoted

PLS1, PLS2, PLS3), PCR using principal components based on 3 criteria (which choose

the leading components that can cumulatively retain 90%, 80% and 70% of the vari-

ability in independent variables, respectively, and discard any chosen component with a

marginal contribution less than 5% of the variance; denoted by PCR1, PCR2, PCR3),6

6We also used cross-validation to determine the number of components for both PLS and PCR, the
results are qualitatively the same as those in Table 3.1-3.3.
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10 best performing sparse models that outperform all benchmark models (M1,..., M10).7

Panel A of Table 3.1 presents the average HARMSE, R2
is and R2

oos based on 200 ran-

domly selected portfolios formed by different number of stocks for each model. Among 4

benchmark models, SHAR and SCHAR are dominated by HAR and SCHAR-r in terms

of R2
oos. Consistent with Bollerslev, Li, Patton, and Quaedvlieg (2019), the restricted

SCHAR-r model outperform standard HAR model in terms of predictive accuracy mea-

sured by all three evaluation estimators across all portfolio dimensions (from N=5 to

N=200), indicating that realized semicovariances provide additional information for im-

proving prediction performance. However, it’s the restricted SCHAR-r model rather

than the unrestricted SCHAR model produces out-of-sample forecasting improvement,

suggesting that many of the realized semicovariances contain irrelevant or redundant

information for prediction.

Panelized regression models (LASSO, EN1, and EN2) clearly exhibit overfitting as

the out-of-sample R2
oos are much smaller than the in-sample R2

is. It is not surprising as

these models assign non-zeros values to the coefficients of some irrelevant or redundant

variables. Figure 3.1 displays the model complexity of each model on each re-estimation

day. For portfolios with a small dimension (formed by 10 stocks), LASSO or elastic

net usually select over 10 variables as predictors. This number is between 5 and 20

if portfolios are formed by 200 stocks and before 2013. There is a sharp increase in

the number of variables after 2013 for well-diversified portfolios, indicating an increase

in the number of reliable features and the benefit of utilizing the identified common

factors in the cross-section.

Dimension reduction models (PLS1-3 and PCR1-3) improve the prediction perfor-

mance in terms of out-of-sample R2
oos relative to penalized regressions. This result

further confirms the assumption that many of realized measures inside the covariance

matrix are redundant. Linear combinations (components) utilized by PLS or PCR can

average out some of the noise. In addition, the number of components used by PLS

and PCR is much fewer than the number of features selected by LASSO or elastic net,

7When data frequency is 15-minute or 30-minute and the number of stocks used for forming a
portfolio is small, there are none or less than 10 models that can beat all the benchmark models.
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with this number ranging from 1 to 5. These simple model settings also reduce over-

fitting for portfolios in different dimensions. However, PLS and PCR only discard the

last few components to achieve the goal of dimension reduction, rather than throwing

away unnecessary variables, making the leading components contaminated by noisy

variables. Thus it’s not surprising that dimension reduction models only perform on

par with those benchmark models. This result suggests that it is crucial to filter out

those relevant signals and build parsimonious models for better prediction.

In Table 3.1-3.3, M1-M10 denote the top 10 sparse models that can outperform

all those 4 benchmark models in terms of all evaluation criteria. Each panel reports

the average HARMSE, R2
is, and R2

oos over 200 randomly selected portfolios formed

by different number of stocks. M1-M10 denote the same models in each panel, but

the model specifications are varying across different settings/panels. Panel A of Table

3.1 corresponds to a setting of 5-minute data and a small truncation level γ1. Under

this setting, all top models perform similarly better than benchmark models, with an

improvement of 3% relative to standard HAR model (2% relative to SCHAR-r model) in

terms of R2
oos for small portfolios constructed by 5 stocks. This out-of-sample prediction

improvement increases to 5% relative to the performance of HAR model (2% relative

to SCHAR-r model) for portfolios formed by 200 stocks. Table 3.4-3.6 report the

predictors utilized by these best-performing sparse models. For small portfolios, the

number of predictors is less than 5 regardless of the setting of data frequency and

truncation level. When portfolios are large, with number of stocks greater than 30,

more predictors (always less than 10) are included in these sparse models. This result

indicates that both diversification effect and those additional predictors contribute to

the improvement in prediction performance.

Figure 3.2 reports the median value of all evaluation criteria for all benchmark mod-

els, elastic net with α = 0.2 (EN1), PLS with components that can explain 90% of the

variation in dependent variable (PLS1), PCR with principal components that account

for 90% of the variability in independent variables (PCR1), the sparse model, together

with the 10% and the 90% quantiles for the top sparse models over 200 randomly se-

lected portfolios with dimensions ranging from N=5 to N=200. Sparse models generate
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a substantial improvement in prediction over all the other models as the portfolio size

increases. One exception is that elastic net has the largest in-sample R2
is for portfolios

formed by 20 or more stocks, which further confirms the existence of the overfitting

problem in penalized regressions.

Of note is that when portfolios are small (N is less than 50), there is a large dispersion

of prediction performance among the 10%, median, and 90% quantiles for sparse models.

The potential reason is that when portfolios are not well-diversified, detected jumps

are most likely to be idiosyncratic jumps, which may affect the prediction to different

extent for different portfolios. However, for portfolios with large dimensions, most of

the idiosyncratic jumps are diversified out, and the remainings tend to be co-jumps in

the cross-section, leading to an improvement in the prediction performance. This result

further confirms that co-jumps are critical in forecasting portfolio variance.

To complement Table 3.1-3.3, which only report the quantitative prediction perfor-

mance of all models, Table 3.7-3.9 show the statistical significance of differences among

models. We report the pairwise Diebold-Mariano test statistics. The Diebold-Mariano

test compares the forecast accuracy of two forecasting models and the null hypothesis

is that two models have the same forecast accuracy. The corresponding test statis-

tic is asymptotically N (0,1) distributed under the null hypothesis. Thus a negative

statistic indicates that the column model is dominated by the row model. Regard-

less of data frequency and portfolio dimension, penalized regressions perform poorly

compared to benchmark models. Dimension reduction models significantly outperform

the over-parameterized SCHAR model, while there is no significant differences between

PLS/PCR and HAR/SCHAR-r models. In contrast, sparse models improve the out-of-

sample performance over all benchmark models. Except at 30-minute frequency and for

some small portfolios at 15-minute frequency, sparse models produce statistically signif-

icant improvement over all benchmark, penalized regressions, and dimension reduction

models.
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3.4.2 Variable Importance

In this section, we investigate the predictors utilized in best-performing sparse mod-

els. Table 3.4-3.6 report the selected variables in those top 5 sparse models (M1-M5)

under different settings. Regardless of data frequency, truncation level and portfolio

dimension, daily, weekly and monthly negative continuous components (dNC, wNC,

and mNC) are three predictors appeared in most of the top sparse models.

At the fastest frequency (5-minute), top sparse models also use several components

based on the interactions between continuous and jump returns, including positive con-

tinuous and small jump part (PCSJ), positive continuous and large jump part (PCLJ),

and negative continuous and small jump part (NCSJ). When the portfolio dimension

increases to a certain level (N is larger than 50 in Table 3.4), more jump related com-

ponents are included in those top models, such as positive small and large jumps part

(PSLJ), negative small and large jump part (NSLJ), and discordant components based

on small and/or large jumps (MSLJN, MSLJP, etc.), indicating that co-jump related

components are more likely to be identified through constructing diversified portfolios

and such measures play an important role in predicting portfolio variance. Of note is

that all these jump related components are weekly or monthly aggregated measures,

except daily NCSJ for portfolios formed by 200 stocks. This result suggests that it is

hard to identify co-jumps using high-frequency data at fast frequencies due to issues

of asynchronicity and microstructure noise. While weekly and monthly jump measures

aggregate otherwise weak signals embedded in daily jumps.

Based on 15-minute data and besides those three important continuous components

(daily,weekly, and monthly negative continuous parts), top sparse models exploit several

jump related measures, including concordant measures (PCSJ, NCSJ, PSLJ, NSLJ,

NSJ, and NLJ, etc.) and discordant measures (MLJ, MCLJ, and MCSJ, etc.). For

portfolios with small dimensions (N=5 and N=10), jump related measures are almost

all weekly and/or monthly aggregations. However, daily jump related measures become

influential predictors for portfolios with large size (N is larger than 30 in Table 3.5),

indicating that co-jumps can be identified when building well-diversified portfolios using
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15-minute data.

Table 3.6 reports the selected variables for top sparse models basde on 30-minute

data. At this coarse frequency, there are fewer sparse models that can outperform all

benchmark models in terms of all evaluation criteria. When portfolios are in small

dimensions (N is less than 50), there are none such sparse models. Though the selected

jump related variables are similar to those at higher frequencies, most of them are weekly

or monthly aggregations. This is not surprising as it is difficult to detect jumps at such

coarse frequency, making aggregated jump measures contain relative more information

than rarely detected daily jump measures.

Figure 3.4-3.6 complement Table 3.4-3.6 by showing the variable importance for

penalized regression, dimension reduction and sparse models. Specifically, we want to

identify covariance components that have an significant influence on predicting port-

folio variance while simultaneously controlling other predictors. Following Kelly et al.

(2017), we rank each separated covariance measure by the corresponding variable im-

portance, denoted by V Ii, which is defined as the reduction in the forecasting R2
is from

setting the values of feature i to zeros and keeping the remaining forecasting model

fixed.

The most influential predictors are based on negative continuous returns (dNC,

wNC, and mNC), an universal agreement among all models. Besides these important

negative continuous component, elastic net tends to place similar weights on correlated

jump measures, making the number of selected variables much larger than that in

sparse models. This is also why penalized regressions are susceptible to overfitting.

In contrast to penalized regressions, dimension reduction models place emphasis on a

smaller set of variables, including continuous and jump components. However, PLS and

PCR set nonzero weights on the other variables, making predictions contaminated by

noise. Sparse models exploit much fewer predictors than the other models, extracting

predictive information from the most relevant and influential continuous and co-jump

components.
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3.4.3 The Effects of Data Frequency and Truncation Level on Predic-

tion

The construction of realized covariance matrix and the corresponding separated compo-

nents is based on large dimensional high-frequency datasets. To alleviate the problems

of asynchronicity and microstructure noise associated with high-frequency data, we sub-

sample the original dataset at different frequencies using the previous tick approach,

including 5-minute, 15-minute, and 30-minute. In this section, we examine the effect

of subsampling on prediction performance.

As discussed in Section 3.4.2, the appropriate data frequency to detect co-jumps

is at 15-minute. Sparse models can thus draw information directly from daily jump

measures (e.g., NSLJ etc.) for prediction. Though there are concerns of asynchronicity

and microstructure noise at higher frequency (5-minute), sparse models can alleviate

such concerns by using a small set of predictors, among which weekly and monthly jump

measures aggregate otherwise incomplete information from daily co-jump measures.

Thus top sparse models at 5-minute frequency significantly outperform all the other

models in terms of out-of-sample forecasting performance. While at a coarse frequency

(30-minute), jumps are less likely to be identified, potentially the reason why sparse

models produce indistinguishable improvement over benchmark models. In summary,

data frequency affects the detection of jumps, which may contain critical information

for prediction, making sparse models not attractive at certain frequencies. This result

further confirms that co-jumps are key factors that contribute to the outperformance

of sparse models, not only due to the sparseness itself.

For robustness, we use three truncation levels to separate large jumps from small

jumps. Table 3.4-3.6 show that predictors of top sparse models, especially jump related

measures, are different when applying different truncation levels. In fact, the difference

is mainly due to the change in definition of a certain range of returns. A large jump

related component when using a small truncation level is actually measuring similar

parts of the covariance matrix as does a small jump related component when using

a large truncation level. One example is that a discordant component that based on
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negative small and large jump returns (NSLJ) is an important predictor when using the

small truncation level γ1 at 15-minute frequency, the corresponding predictor turns into

a component based only on negative small jump returns (NSJ) if a larger truncation

level γ3 is used. Though the selected predictors may be denoted differently, they are

providing similar information related to prediction, thus the performance of top sparse

models are indistinguishable under different settings regarding truncation level. While

it is still necessary to separate a jump into its small and large components as each

of them and the interactions between them among different stocks can provide unique

information.

3.5 Concluding Remarks

We propose a new decomposition approach of the covariance matrix of a portfolio,

building on the work of Bollerslev et al. (2019a). The decomposition utilizes infor-

mation on the sign and magnitude of the underlying high-frequency returns. In this

decomposition, interactions among stocks related to negative/positive continuous vari-

ation components, as well as small/large jump components, yield a number of new

predictors, many of which are found to contain unique information that has marginal

predictive content for future portfolio variances. This finding is dependent upon the

construction of sparse models that utilize only relevant signals, and drop “noisy” vari-

ables. More specifically, our findings are predicated upon the judicious use of machine

learning, shrinkage and dimension reduction methods when specifying alternatives to

standard HAR-type prediction models. Finally, it is noteworthy that predictive gains

are most pronounced when higher frequency data is used in our empirical experiments,

and when portfolios with greater numbers of stocks are examined.
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Table 3.1: Prediction Performance (5-minute)

Panel A: Separating Large Jumps from Small Jumps Based on γ1

Model HAR SHAR SCHAR SCHAR-r LASSO EN1 EN2 PLS1 PLS2 PLS3 PCR1 PCR2 PCR3 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Number of Stocks: N=5

HARMSE 0.85 0.81 0.80 0.74 0.83 0.84 0.83 0.71 0.71 0.73 0.77 0.76 0.75 0.72 0.73 0.74 0.71 0.71 0.71 0.71 0.72 0.73 0.73
Ris 0.55 0.58 0.60 0.58 0.65 0.65 0.65 0.55 0.56 0.58 0.56 0.55 0.55 0.59 0.59 0.59 0.59 0.59 0.60 0.60 0.60 0.60 0.60
Roos 0.61 0.60 0.53 0.62 0.50 0.49 0.49 0.62 0.59 0.58 0.63 0.62 0.62 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64

Number of Stocks: N=10

HARMSE 0.88 0.81 0.80 0.73 0.83 0.83 0.83 0.72 0.70 0.72 0.77 0.77 0.75 0.72 0.71 0.72 0.71 0.72 0.72 0.70 0.72 0.72 0.71
Ris 0.57 0.61 0.63 0.60 0.67 0.67 0.67 0.57 0.58 0.60 0.58 0.57 0.57 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62
Roos 0.65 0.63 0.57 0.66 0.52 0.52 0.52 0.64 0.63 0.63 0.65 0.64 0.64 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68

Number of Stocks: N=30

HARMSE 1.00 0.89 0.85 0.79 0.88 0.88 0.88 0.78 0.72 0.75 0.84 0.84 0.83 0.76 0.76 0.76 0.77 0.77 0.75 0.76 0.78 0.79 0.76
Ris 0.58 0.63 0.65 0.61 0.68 0.68 0.68 0.57 0.59 0.60 0.58 0.57 0.57 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63
Roos 0.65 0.63 0.57 0.67 0.54 0.53 0.52 0.64 0.64 0.65 0.65 0.63 0.63 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69

Number of Stocks: N=50

HARMSE 1.04 0.92 0.88 0.81 0.87 0.88 0.87 0.80 0.73 0.77 0.87 0.87 0.86 0.78 0.79 0.78 0.79 0.77 0.78 0.79 0.77 0.80 0.79
Ris 0.58 0.63 0.65 0.61 0.68 0.68 0.68 0.57 0.59 0.60 0.58 0.57 0.57 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63
Roos 0.64 0.63 0.56 0.67 0.56 0.55 0.55 0.63 0.64 0.65 0.65 0.63 0.63 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69

Number of Stocks: N=100

HARMSE 1.08 0.95 0.89 0.84 0.88 0.89 0.89 0.83 0.74 0.80 0.89 0.90 0.88 0.80 0.79 0.80 0.81 0.78 0.74 0.82 0.82 0.82 0.80
Ris 0.58 0.63 0.65 0.61 0.68 0.68 0.68 0.57 0.58 0.60 0.58 0.57 0.57 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63
Roos 0.64 0.63 0.56 0.67 0.56 0.54 0.54 0.63 0.64 0.66 0.64 0.63 0.63 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69

Number of Stocks: N=200

HARMSE 1.11 0.97 0.90 0.85 0.89 0.88 0.89 0.84 0.74 0.82 0.91 0.91 0.90 0.83 0.74 0.81 0.81 0.80 0.79 0.82 0.79 0.83 0.85
Ris 0.58 0.63 0.65 0.61 0.68 0.68 0.68 0.57 0.59 0.61 0.58 0.57 0.57 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63
Roos 0.64 0.63 0.55 0.67 0.58 0.51 0.55 0.63 0.64 0.66 0.64 0.62 0.62 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69

Panel B: Separating Large Jumps from Small Jumps Based on γ2

Model HAR SHAR SCHAR SCHAR-r LASSO EN1 EN2 PLS1 PLS2 PLS3 PCR1 PCR2 PCR3 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Number of Stocks: N=5

HARMSE 0.85 0.81 0.80 0.74 0.85 0.85 0.85 0.70 0.70 0.72 0.75 0.75 0.74 0.71 0.72 0.73 0.72 0.70 0.72 0.73 0.72 0.70 0.72
Ris 0.56 0.59 0.60 0.58 0.65 0.65 0.65 0.55 0.56 0.58 0.57 0.56 0.55 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60
Roos 0.62 0.60 0.55 0.62 0.49 0.49 0.49 0.63 0.60 0.59 0.63 0.63 0.62 0.65 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64

Number of Stocks: N=10

HARMSE 0.88 0.81 0.81 0.73 0.83 0.83 0.83 0.71 0.69 0.71 0.76 0.77 0.74 0.71 0.72 0.72 0.71 0.72 0.72 0.70 0.72 0.72 0.72
Ris 0.57 0.61 0.63 0.60 0.66 0.66 0.66 0.56 0.58 0.59 0.57 0.57 0.56 0.62 0.61 0.62 0.62 0.62 0.62 0.62 0.61 0.62 0.62
Roos 0.64 0.63 0.57 0.66 0.51 0.50 0.51 0.64 0.63 0.63 0.65 0.64 0.64 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.67 0.67

Number of Stocks: N=30

HARMSE 1.00 0.89 0.86 0.79 0.85 0.85 0.85 0.78 0.71 0.76 0.84 0.84 0.82 0.78 0.76 0.76 0.77 0.77 0.77 0.77 0.76 0.78 0.76
Ris 0.58 0.63 0.64 0.61 0.67 0.67 0.67 0.57 0.58 0.60 0.58 0.57 0.57 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63
Roos 0.64 0.63 0.57 0.67 0.55 0.55 0.53 0.64 0.64 0.65 0.65 0.63 0.63 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69

Number of Stocks: N=50

HARMSE 1.04 0.92 0.87 0.81 0.85 0.85 0.86 0.80 0.72 0.77 0.86 0.86 0.84 0.80 0.80 0.79 0.78 0.78 0.80 0.79 0.79 0.77 0.79
Ris 0.58 0.63 0.65 0.61 0.67 0.67 0.67 0.57 0.58 0.60 0.58 0.57 0.57 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63
Roos 0.64 0.63 0.56 0.67 0.56 0.55 0.55 0.63 0.64 0.65 0.65 0.63 0.63 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69

Number of Stocks: N=100

HARMSE 1.08 0.95 0.89 0.84 0.87 0.88 0.88 0.83 0.73 0.80 0.90 0.90 0.87 0.81 0.82 0.82 0.82 0.78 0.82 0.81 0.82 0.80 0.81
Ris 0.58 0.63 0.65 0.61 0.67 0.67 0.67 0.57 0.58 0.60 0.58 0.57 0.57 0.63 0.63 0.63 0.63 0.64 0.63 0.63 0.63 0.63 0.63
Roos 0.64 0.63 0.56 0.67 0.58 0.57 0.57 0.63 0.64 0.65 0.64 0.63 0.63 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69

Number of Stocks: N=200

HARMSE 1.11 0.97 0.90 0.85 0.85 0.86 0.86 0.84 0.73 0.84 0.91 0.91 0.88 0.79 0.82 0.83 0.81 0.80 0.84 0.83 0.83 0.83 0.83
Ris 0.58 0.63 0.65 0.61 0.66 0.66 0.66 0.57 0.58 0.61 0.58 0.57 0.57 0.64 0.63 0.63 0.64 0.64 0.64 0.63 0.64 0.63 0.63
Roos 0.64 0.63 0.56 0.67 0.60 0.58 0.58 0.63 0.64 0.66 0.64 0.62 0.62 0.70 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69
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Table 3.1 (Continued)

Panel C: Separating Large Jumps from Small Jumps Based on γ3

Model HAR SHAR SCHAR SCHAR-r LASSO EN1 EN2 PLS1 PLS2 PLS3 PCR1 PCR2 PCR3 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Number of Stocks: N=5

HARMSE 0.84 0.80 0.80 0.73 0.86 0.86 0.86 0.71 0.70 0.72 0.76 0.75 0.74 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.70
Ris 0.56 0.59 0.61 0.58 0.65 0.65 0.66 0.55 0.56 0.58 0.57 0.56 0.55 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60
Roos 0.62 0.60 0.55 0.63 0.44 0.45 0.43 0.63 0.60 0.59 0.63 0.63 0.63 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.64

Number of Stocks: N=10

HARMSE 0.88 0.81 0.81 0.73 0.83 0.84 0.83 0.72 0.69 0.72 0.77 0.77 0.75 0.72 0.72 0.73 0.72 0.71 0.73 0.70 0.73 0.69 0.72
Ris 0.57 0.61 0.63 0.60 0.67 0.67 0.67 0.57 0.58 0.59 0.58 0.57 0.56 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62
Roos 0.65 0.63 0.57 0.66 0.52 0.48 0.52 0.65 0.63 0.63 0.65 0.65 0.64 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68

Number of Stocks: N=30

HARMSE 1.00 0.89 0.85 0.78 0.86 0.87 0.87 0.77 0.71 0.75 0.83 0.84 0.81 0.76 0.76 0.77 0.77 0.75 0.77 0.72 0.72 0.77 0.75
Ris 0.58 0.63 0.64 0.61 0.67 0.67 0.67 0.57 0.58 0.60 0.58 0.57 0.57 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63
Roos 0.64 0.63 0.56 0.67 0.53 0.52 0.52 0.63 0.64 0.65 0.64 0.63 0.63 0.69 0.69 0.69 0.69 0.68 0.68 0.68 0.68 0.68 0.68

Number of Stocks: N=50

HARMSE 1.05 0.92 0.88 0.81 0.89 0.89 0.89 0.80 0.72 0.78 0.87 0.87 0.84 0.78 0.73 0.78 0.80 0.79 0.78 0.80 0.80 0.81 0.73
Ris 0.58 0.63 0.65 0.61 0.67 0.67 0.67 0.57 0.58 0.60 0.58 0.57 0.57 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63
Roos 0.64 0.63 0.56 0.67 0.54 0.53 0.53 0.63 0.64 0.65 0.64 0.63 0.63 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69

Number of Stocks: N=100

HARMSE 1.08 0.95 0.89 0.84 0.88 0.89 0.88 0.83 0.74 0.81 0.90 0.90 0.86 0.75 0.80 0.76 0.82 0.82 0.78 0.80 0.81 0.82 0.83
Ris 0.58 0.63 0.65 0.62 0.67 0.67 0.67 0.57 0.58 0.61 0.58 0.57 0.57 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63
Roos 0.64 0.63 0.56 0.67 0.53 0.53 0.53 0.63 0.64 0.66 0.64 0.63 0.63 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69

Number of Stocks: N=200

HARMSE 1.11 0.97 0.90 0.85 0.85 0.86 0.86 0.84 0.74 0.84 0.91 0.91 0.87 0.80 0.82 0.79 0.75 0.77 0.82 0.80 0.84 0.82 0.79
Ris 0.58 0.63 0.65 0.62 0.66 0.66 0.66 0.57 0.58 0.61 0.58 0.57 0.57 0.64 0.64 0.64 0.63 0.63 0.63 0.64 0.64 0.63 0.63
Roos 0.64 0.63 0.56 0.67 0.57 0.55 0.55 0.63 0.64 0.66 0.64 0.62 0.62 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69

*Notes: This table reports the in-sample and out-of-sample portfolio volatility forecasting performance of benchmark models (HAR, SHAR, SCHAR, and SCHAR-r), LASSO, Elastic Net with α = 0.2 and α = 0.6 (EN1-EN2),
partial least squares using components that can explain 90%, 80%,70% of variance in the response variable (PLS1-PLS3), principal component regression using components that can explain 90%, 80%,70% of variability in
explanatory variables (PCR1-PCR3), and the top 10 models in terms of HARMSE, R2

is,R
2
oos using predictors selected by LASSO or elastic net (M1-M10), at the 5-minute data frequency. The reported numbers are based on

200 randomly selected portfolios constructed by 5, 10, 30, 50, 100, and 200 stocks, respectively, therefore all statistics are the average value over time and all randomly selected portfolios. The truncation level used to separate

jumps and continuous variation is 3
√

1
t
ÎV t∆

0.49
n . γ1, γ2, and γ3 (in the form of α

√
1
t
ÎV t∆

0.49
n ) are three truncation levels used to split jump variation into large and small components, with α = 4, 5, and 6, respectively.
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Table 3.2: Prediction Performance (15-minute)

Panel A: Separating Large Jumps from Small Jumps Based on γ1

Model HAR SHAR SCHAR SCHAR-r LASSO EN1 EN2 PLS1 PLS2 PLS3 PCR1 PCR2 PCR3 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Number of Stocks: N=5

HARMSE 1.24 1.20 1.13 1.08 1.30 1.30 1.29 1.05 1.06 1.07 1.10 1.09 1.10 1.06 1.06 1.05 1.06 1.06 1.07 1.07
Ris 0.48 0.51 0.53 0.51 0.59 0.59 0.59 0.48 0.49 0.51 0.51 0.49 0.48 0.52 0.53 0.53 0.53 0.53 0.53 0.53
Roos 0.45 0.42 0.37 0.44 0.27 0.26 0.29 0.48 0.45 0.41 0.46 0.46 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47

Number of Stocks: N=10

HARMSE 1.27 1.19 1.10 1.04 1.19 1.19 1.20 0.99 1.00 1.01 1.07 1.05 1.07 1.01 0.99 1.00 1.00 0.99 1.03 1.01 0.99 1.02 1.00
Ris 0.50 0.53 0.56 0.54 0.62 0.62 0.62 0.50 0.52 0.54 0.53 0.50 0.50 0.55 0.55 0.55 0.55 0.56 0.55 0.56 0.56 0.56 0.56
Roos 0.47 0.45 0.39 0.47 0.28 0.27 0.26 0.49 0.46 0.45 0.48 0.48 0.49 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.50 0.50

Number of Stocks: N=30

HARMSE 1.40 1.28 1.16 1.09 1.23 1.24 1.23 1.02 1.04 1.04 1.13 1.12 1.12 1.03 1.00 0.99 1.07 1.08 1.03 1.09 1.04 1.01 0.98
Ris 0.50 0.54 0.57 0.54 0.62 0.62 0.62 0.50 0.52 0.56 0.53 0.50 0.49 0.56 0.56 0.57 0.57 0.57 0.57 0.57 0.56 0.56 0.57
Roos 0.45 0.42 0.36 0.45 0.26 0.23 0.24 0.47 0.43 0.44 0.44 0.45 0.46 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Number of Stocks: N=50

HARMSE 1.45 1.32 1.18 1.11 1.25 1.28 1.25 1.04 1.07 1.07 1.15 1.16 1.15 1.04 1.10 1.10 1.04 1.01 1.01 1.00 0.99 1.09 1.03
Ris 0.49 0.54 0.57 0.54 0.62 0.62 0.63 0.50 0.52 0.56 0.53 0.50 0.49 0.56 0.57 0.57 0.57 0.56 0.56 0.56 0.57 0.57 0.56
Roos 0.45 0.42 0.36 0.46 0.29 0.23 0.25 0.47 0.43 0.44 0.44 0.45 0.47 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51

Number of Stocks: N=100

HARMSE 1.49 1.36 1.20 1.15 1.29 1.31 1.29 1.07 1.09 1.09 1.19 1.19 1.18 1.06 1.12 1.13 1.05 1.09 1.03 1.02 1.01 1.02 1.02
Ris 0.49 0.54 0.57 0.54 0.62 0.62 0.62 0.50 0.52 0.56 0.53 0.50 0.49 0.57 0.57 0.57 0.56 0.57 0.56 0.57 0.57 0.56 0.57
Roos 0.45 0.42 0.35 0.46 0.30 0.22 0.26 0.46 0.43 0.45 0.43 0.44 0.46 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51

Number of Stocks: N=200

HARMSE 1.51 1.38 1.20 1.16 1.25 1.28 1.25 1.08 1.10 1.10 1.22 1.21 1.20 1.12 1.06 1.13 1.16 1.14 1.04 1.08 1.06 1.09 1.03
Ris 0.49 0.54 0.57 0.54 0.62 0.62 0.62 0.50 0.52 0.56 0.54 0.50 0.49 0.57 0.57 0.57 0.57 0.57 0.58 0.57 0.56 0.57 0.57
Roos 0.44 0.41 0.35 0.45 0.29 0.20 0.27 0.46 0.43 0.44 0.42 0.44 0.45 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.50

Panel B: Separating Large Jumps from Small Jumps Based on γ2

Model HAR SHAR SCHAR SCHAR-r LASSO EN1 EN2 PLS1 PLS2 PLS3 PCR1 PCR2 PCR3 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Number of Stocks: N=5

HARMSE 1.23 1.18 1.14 1.07 1.27 1.26 1.26 1.03 1.04 1.06 1.09 1.08 1.09 1.04 1.04 1.06 1.07 1.07 1.06 1.05 1.05 1.05 1.04
Ris 0.47 0.50 0.52 0.50 0.58 0.58 0.58 0.47 0.48 0.51 0.50 0.48 0.47 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52
Roos 0.44 0.41 0.35 0.43 0.23 0.20 0.24 0.47 0.45 0.43 0.45 0.46 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47

Number of Stocks: N=10

HARMSE 1.27 1.19 1.12 1.05 1.22 1.22 1.22 0.99 1.00 1.01 1.07 1.05 1.07 1.00 0.99 1.00 0.98 1.01 1.00 1.00 1.00 1.01 1.04
Ris 0.49 0.53 0.55 0.53 0.61 0.61 0.61 0.49 0.50 0.54 0.52 0.49 0.49 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55
Roos 0.46 0.43 0.36 0.45 0.26 0.25 0.27 0.48 0.45 0.44 0.46 0.46 0.48 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49

Number of Stocks: N=30

HARMSE 1.40 1.29 1.16 1.09 1.27 1.32 1.29 1.03 1.04 1.05 1.13 1.12 1.13 1.05 1.04 1.02 1.01 0.99 1.03 1.01 1.08 1.00 1.01
Ris 0.49 0.54 0.57 0.54 0.62 0.62 0.62 0.50 0.52 0.55 0.53 0.50 0.49 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56
Roos 0.45 0.42 0.36 0.46 0.30 0.27 0.28 0.47 0.44 0.45 0.45 0.45 0.47 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Number of Stocks: N=50

HARMSE 1.44 1.32 1.17 1.11 1.28 1.31 1.27 1.04 1.06 1.06 1.15 1.14 1.15 1.04 1.05 1.02 1.06 1.01 1.05 1.03 0.99 1.02 1.08
Ris 0.49 0.54 0.57 0.54 0.62 0.62 0.62 0.50 0.52 0.56 0.53 0.50 0.49 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56
Roos 0.45 0.42 0.36 0.46 0.32 0.28 0.28 0.47 0.44 0.45 0.44 0.45 0.47 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Number of Stocks: N=100

HARMSE 1.48 1.36 1.19 1.14 1.36 1.36 1.36 1.06 1.09 1.09 1.18 1.17 1.18 1.00 1.13 1.03 1.06 1.05 1.08 1.10 0.98 1.09 0.98
Ris 0.49 0.54 0.57 0.54 0.62 0.62 0.62 0.50 0.52 0.56 0.53 0.50 0.49 0.57 0.57 0.56 0.57 0.57 0.58 0.57 0.57 0.56 0.57
Roos 0.45 0.42 0.35 0.46 0.32 0.28 0.31 0.46 0.43 0.45 0.44 0.44 0.46 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Number of Stocks: N=200

HARMSE 1.51 1.38 1.20 1.16 1.29 1.36 1.33 1.08 1.11 1.11 1.21 1.20 1.20 1.09 0.99 1.02 1.10 1.09 1.06 1.16 1.16 1.10 1.11
Ris 0.49 0.54 0.57 0.54 0.61 0.61 0.61 0.50 0.52 0.56 0.53 0.50 0.49 0.58 0.57 0.57 0.58 0.57 0.58 0.57 0.57 0.57 0.59
Roos 0.44 0.41 0.35 0.45 0.38 0.30 0.30 0.46 0.43 0.44 0.43 0.44 0.46 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51
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Table 3.2 (Continued)

Panel C: Separating Large Jumps from Small Jumps Based on γ3

Model HAR SHAR SCHAR SCHAR-r LASSO EN1 EN2 PLS1 PLS2 PLS3 PCR1 PCR2 PCR3 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Number of Stocks: N=5

HARMSE 1.23 1.18 1.14 1.08 1.20 1.20 1.20 1.02 1.03 1.03 1.08 1.07 1.07 1.02 1.03 1.03 1.05 1.03 1.03 1.03 1.04 1.04 1.03
Ris 0.48 0.51 0.53 0.51 0.59 0.59 0.59 0.48 0.49 0.51 0.51 0.49 0.48 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53
Roos 0.46 0.44 0.38 0.45 0.32 0.32 0.32 0.49 0.48 0.46 0.47 0.47 0.48 0.49 0.49 0.49 0.49 0.49 0.49 0.48 0.48 0.48 0.48

Number of Stocks: N=10

HARMSE 1.27 1.19 1.12 1.04 1.21 1.21 1.21 0.99 1.00 1.01 1.07 1.06 1.07 1.00 0.99 1.00 0.98 0.99 1.00 0.99 1.00 1.00 1.01
Ris 0.49 0.53 0.56 0.54 0.61 0.61 0.61 0.50 0.51 0.54 0.53 0.50 0.49 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55
Roos 0.46 0.44 0.37 0.46 0.31 0.29 0.30 0.48 0.46 0.45 0.46 0.46 0.48 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Number of Stocks: N=30

HARMSE 1.39 1.28 1.15 1.08 1.27 1.29 1.29 1.02 1.04 1.04 1.13 1.13 1.12 1.04 1.07 1.01 1.07 1.05 1.06 1.05 1.01 1.00 1.07
Ris 0.50 0.54 0.57 0.54 0.62 0.62 0.62 0.50 0.51 0.55 0.53 0.50 0.49 0.56 0.57 0.56 0.57 0.56 0.57 0.57 0.56 0.56 0.56
Roos 0.46 0.43 0.36 0.46 0.31 0.27 0.30 0.47 0.45 0.45 0.45 0.45 0.47 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51

Number of Stocks: N=50

HARMSE 1.45 1.32 1.17 1.12 1.38 1.41 1.35 1.05 1.06 1.07 1.15 1.17 1.15 1.04 1.06 1.02 1.10 1.03 1.07 1.08 1.02 1.03 1.04
Ris 0.49 0.54 0.57 0.54 0.63 0.63 0.63 0.50 0.52 0.56 0.53 0.50 0.49 0.57 0.56 0.57 0.57 0.56 0.56 0.57 0.57 0.57 0.57
Roos 0.45 0.42 0.36 0.46 0.24 0.18 0.24 0.47 0.44 0.45 0.45 0.45 0.47 0.51 0.51 0.51 0.51 0.50 0.50 0.50 0.50 0.50 0.50

Number of Stocks: N=100

HARMSE 1.49 1.36 1.19 1.14 1.64 1.67 1.45 1.06 1.09 1.09 1.18 1.20 1.18 1.04 1.13 1.11 1.04 1.03 1.07 1.13 1.03 1.11 1.10
Ris 0.49 0.54 0.57 0.54 0.63 0.63 0.63 0.50 0.52 0.56 0.53 0.50 0.49 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57
Roos 0.44 0.42 0.35 0.45 0.22 0.14 0.22 0.46 0.43 0.45 0.43 0.44 0.46 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51

Number of Stocks: N=200

HARMSE 1.52 1.38 1.20 1.16 2.86 2.71 2.16 1.08 1.10 1.10 1.20 1.23 1.19 1.12 1.14 1.11 1.05 1.14 1.05 1.03 1.09 1.09 1.12
Ris 0.49 0.54 0.57 0.54 0.63 0.63 0.63 0.50 0.52 0.56 0.53 0.50 0.49 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.58 0.57
Roos 0.44 0.41 0.35 0.45 0.21 0.15 0.27 0.46 0.43 0.44 0.43 0.44 0.46 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51

*Notes: See notes to Table 3.1.
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Table 3.3: Prediction Performance (30-minute)

Panel A: Separating Large Jumps from Small Jumps Based on γ1

Model HAR SHAR SCHAR SCHAR-r LASSO EN1 EN2 PLS1 PLS2 PLS3 PCR1 PCR2 PCR3 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Number of Stocks: N=5

HARMSE 1.71 1.64 1.50 1.47 1.63 1.64 1.63 1.46 1.46 1.48 1.48 1.48 1.52
Ris 0.47 0.51 0.53 0.51 0.59 0.58 0.58 0.49 0.49 0.51 0.51 0.51 0.49
Roos 0.48 0.44 0.35 0.44 0.30 0.36 0.36 0.49 0.49 0.44 0.49 0.49 0.49

Number of Stocks: N=10

HARMSE 1.75 1.64 1.46 1.43 1.51 1.51 1.51 1.34 1.33 1.38 1.40 1.41 1.44
Ris 0.48 0.53 0.56 0.54 0.60 0.60 0.60 0.51 0.51 0.54 0.54 0.52 0.50
Roos 0.50 0.49 0.39 0.49 0.37 0.38 0.37 0.51 0.49 0.46 0.51 0.51 0.51

Number of Stocks: N=30

HARMSE 1.87 1.69 1.46 1.39 1.43 1.43 1.43 1.29 1.26 1.32 1.36 1.39 1.43
Ris 0.49 0.54 0.58 0.56 0.62 0.61 0.62 0.52 0.52 0.57 0.56 0.52 0.51
Roos 0.51 0.51 0.39 0.51 0.44 0.44 0.44 0.51 0.48 0.47 0.53 0.51 0.50

Number of Stocks: N=50

HARMSE 1.94 1.72 1.49 1.40 1.41 1.41 1.42 1.31 1.27 1.33 1.37 1.41 1.46 1.36 1.38 1.33 1.36
Ris 0.49 0.55 0.58 0.56 0.61 0.61 0.61 0.52 0.53 0.57 0.57 0.53 0.52 0.59 0.59 0.60 0.59
Roos 0.52 0.52 0.39 0.51 0.46 0.46 0.46 0.51 0.47 0.48 0.54 0.51 0.50 0.52 0.52 0.52 0.52

Number of Stocks: N=100

HARMSE 2.00 1.76 1.53 1.41 1.41 1.41 1.41 1.31 1.27 1.32 1.37 1.41 1.47 1.36 1.39 1.36 1.32 1.37 1.36 1.41 1.35 1.32 1.40
Ris 0.49 0.55 0.59 0.56 0.61 0.61 0.61 0.52 0.53 0.58 0.57 0.53 0.52 0.59 0.60 0.59 0.60 0.60 0.60 0.59 0.60 0.60 0.59
Roos 0.52 0.52 0.39 0.52 0.47 0.47 0.47 0.51 0.46 0.49 0.54 0.51 0.50 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53

Number of Stocks: N=200

HARMSE 2.00 1.75 1.55 1.39 1.35 1.35 1.35 1.30 1.24 1.30 1.36 1.40 1.45 1.39 1.37 1.39 1.39 1.37 1.37 1.29 1.37 1.34 1.29
Ris 0.50 0.55 0.59 0.57 0.61 0.61 0.61 0.53 0.53 0.58 0.57 0.53 0.52 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60
Roos 0.52 0.53 0.38 0.52 0.49 0.49 0.49 0.51 0.46 0.49 0.54 0.51 0.50 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53

Panel B: Separating Large Jumps from Small Jumps Based on γ2

Model HAR SHAR SCHAR SCHAR-r LASSO EN1 EN2 PLS1 PLS2 PLS3 PCR1 PCR2 PCR3 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Number of Stocks: N=5

HARMSE 1.74 1.67 1.53 1.51 1.63 1.62 1.63 1.46 1.46 1.49 1.50 1.52 1.53
Ris 0.46 0.50 0.53 0.50 0.58 0.58 0.58 0.48 0.48 0.50 0.51 0.50 0.48
Roos 0.47 0.45 0.36 0.44 0.32 0.32 0.34 0.49 0.48 0.44 0.48 0.49 0.48

Number of Stocks: N=10

HARMSE 1.75 1.63 1.44 1.42 1.51 1.51 1.53 1.35 1.34 1.36 1.39 1.42 1.45
Ris 0.48 0.53 0.56 0.54 0.60 0.60 0.60 0.51 0.51 0.54 0.55 0.52 0.50
Roos 0.51 0.50 0.40 0.49 0.38 0.40 0.40 0.51 0.50 0.47 0.52 0.52 0.51

Number of Stocks: N=30

HARMSE 1.89 1.69 1.46 1.40 1.42 1.42 1.42 1.31 1.27 1.33 1.36 1.40 1.45
Ris 0.49 0.54 0.58 0.56 0.61 0.61 0.61 0.52 0.52 0.57 0.56 0.53 0.51
Roos 0.52 0.52 0.40 0.52 0.46 0.46 0.46 0.51 0.49 0.49 0.54 0.51 0.51

Number of Stocks: N=50

HARMSE 1.94 1.72 1.49 1.41 1.42 1.41 1.43 1.31 1.27 1.32 1.37 1.41 1.46 1.38
Ris 0.50 0.55 0.59 0.56 0.62 0.62 0.62 0.52 0.53 0.57 0.57 0.53 0.52 0.59
Roos 0.52 0.52 0.39 0.52 0.47 0.47 0.47 0.51 0.48 0.48 0.54 0.51 0.50 0.52

Number of Stocks: N=100

HARMSE 1.98 1.74 1.52 1.40 1.40 1.36 1.38 1.30 1.25 1.31 1.36 1.40 1.46 1.36 1.37 1.36 1.37 1.38 1.36 1.33 1.37 1.36 1.36
Ris 0.50 0.55 0.59 0.57 0.61 0.61 0.61 0.52 0.53 0.58 0.57 0.53 0.52 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60
Roos 0.52 0.52 0.39 0.52 0.49 0.49 0.49 0.51 0.47 0.48 0.54 0.51 0.50 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53

Number of Stocks: N=200

HARMSE 2.00 1.75 1.55 1.40 1.41 1.34 1.37 1.30 1.25 1.30 1.36 1.40 1.46 1.39 1.39 1.40 1.37 1.40 1.35 1.35 1.37 1.36 1.32
Ris 0.50 0.55 0.59 0.57 0.61 0.61 0.61 0.52 0.53 0.58 0.57 0.53 0.52 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60
Roos 0.52 0.52 0.38 0.52 0.50 0.50 0.50 0.51 0.46 0.48 0.54 0.51 0.50 0.54 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53



87

Table 3.3 (Continued)

Panel C: Separating Large Jumps from Small Jumps Based on γ3

Model HAR SHAR SCHAR SCHAR-r LASSO EN1 EN2 PLS1 PLS2 PLS3 PCR1 PCR2 PCR3 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Number of Stocks: N=5

HARMSE 1.71 1.63 1.50 1.46 1.53 1.53 1.53 1.42 1.42 1.45 1.48 1.48 1.49
Ris 0.47 0.50 0.53 0.51 0.58 0.58 0.58 0.49 0.49 0.50 0.52 0.51 0.49
Roos 0.48 0.47 0.36 0.45 0.38 0.38 0.39 0.49 0.48 0.45 0.48 0.49 0.48

Number of Stocks: N=10

HARMSE 1.76 1.64 1.45 1.43 1.50 1.50 1.50 1.37 1.36 1.38 1.42 1.44 1.47
Ris 0.49 0.53 0.56 0.54 0.60 0.60 0.60 0.51 0.51 0.53 0.55 0.53 0.51
Roos 0.51 0.51 0.41 0.50 0.42 0.41 0.42 0.52 0.51 0.48 0.53 0.53 0.52

Number of Stocks: N=30

HARMSE 1.88 1.69 1.47 1.39 1.43 1.43 1.44 1.31 1.28 1.33 1.37 1.40 1.45
Ris 0.49 0.54 0.58 0.56 0.61 0.61 0.61 0.52 0.52 0.56 0.56 0.53 0.51
Roos 0.51 0.52 0.39 0.51 0.45 0.45 0.45 0.52 0.50 0.48 0.54 0.51 0.51

Number of Stocks: N=50

HARMSE 1.94 1.73 1.50 1.42 1.41 1.42 1.43 1.33 1.29 1.34 1.38 1.42 1.48 1.40 1.40
Ris 0.50 0.55 0.59 0.56 0.61 0.61 0.61 0.52 0.53 0.57 0.56 0.53 0.52 0.59 0.60
Roos 0.52 0.52 0.39 0.52 0.48 0.48 0.48 0.51 0.49 0.48 0.54 0.51 0.50 0.52 0.52

Number of Stocks: N=100

HARMSE 1.99 1.76 1.52 1.42 1.41 1.40 1.41 1.33 1.28 1.33 1.38 1.43 1.49 1.41 1.40 1.41 1.40 1.37 1.41 1.42 1.39 1.42 1.36
Ris 0.49 0.55 0.59 0.56 0.61 0.61 0.61 0.52 0.53 0.57 0.57 0.53 0.52 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.59 0.60 0.60
Roos 0.52 0.53 0.39 0.52 0.49 0.49 0.49 0.51 0.48 0.48 0.54 0.51 0.50 0.53 0.53 0.53 0.53 0.53 0.52 0.52 0.52 0.52 0.52

Number of Stocks: N=200

HARMSE 2.00 1.75 1.55 1.39 1.36 1.33 1.34 1.30 1.25 1.30 1.34 1.40 1.46 1.39 1.38 1.39 1.39 1.39 1.39 1.38 1.38 1.39 1.34
Ris 0.50 0.55 0.59 0.57 0.61 0.61 0.61 0.52 0.53 0.58 0.57 0.53 0.52 0.60 0.60 0.60 0.61 0.61 0.61 0.60 0.60 0.60 0.60
Roos 0.52 0.53 0.38 0.52 0.51 0.51 0.51 0.51 0.47 0.48 0.54 0.51 0.50 0.54 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53

*Notes: See notes to Table 3.1.
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Table 3.4: Predictors in Best-Performing Models (5-minute)

γ1 γ2 γ3

Number of Stocks: N=5

M1 dNC wNC mNC dNC wNC mNC dNC wNC mNC
M2 dNC wNC mPC dNC wNC wMSLJN2 mNC dNC wNC mPC
M3 dNC wNC mPCSJ2 dNC wNC mNC mMLJ2 dNC wNC wMSLJP2 mNC
M4 dNC wNC mNCSJ2 dNC wPC wNC mNC dNC wNC mNC mPCSJ2
M5 dNC wNC mMC2 dNC wNC mNCSJ2 dNC wNC mNC mMSLJP2

Number of Stocks: N=10

M1 dNC wNC mPCSJ2 dNC wNC mNC dNC wNC mNC
M2 dNC wNC mNC dNC wNC mPC dNC wNC mNC mPCSJ2
M3 dNC wNC mPC dNC wNC mNC mPCSJ2 dNC wNC wNCSJ2 mNC
M4 dNC wPC wNC mNC dNC wPC wNC mNC dNC wPC wNC mNC
M5 dNC wNC wPCSJ2 mNC dNC wNC wNCSJ2 mNC dNC wNC wMC2 mPCSJ2

Number of Stocks: N=30

M1 dNC wNC mPCSJ2 dNC wNC wNCSJ2 mPCSJ2 dNC wNC mNC
M2 dNC wNC mPCLJ2 dNC wNC mNC dNC wNC mNC mPCSJ2
M3 dNC wNC mNC dNC wNC mNC mPCSJ2 dNC wNC wNCSJ2 mNC
M4 dNC wNC wPCLJ2 mPCLJ2 dNC wNC mPC dNC wNC mPC
M5 dNC wNC mPC dNC wNC wNCSJ2 mNC dNC wPC wNC mNC

Number of Stocks: N=50

M1 dNC wNC mPCLJ2 dNC wNC wNCSJ2 mPCSJ2 dNC wNC mNC mPCSJ2
M2 dNC wNC wPCLJ2 mPCLJ2 dNC wNC wPSLJ2 wMSLJN2 mNC dNC wNC mPC mNC mPCSJ2
M3 dNC wPC wNC mPCLJ2 dNC wPC wNC wNCSJ2 mPCSJ2 dNC wNC mNC
M4 dNC wNC mPCSJ2 dNC wNC mNC mPCSJ2 dNC wNC wNCSJ2 mNC
M5 dNC wNC mNC mPCLJ2 dNC wNC mNC dNC wNC mPC

Number of Stocks: N=100

M1 dNC wNC mPCLJ2 dNC dNCSJ2 wNC wPSLJ2 wNSLJ2 mNC dNC wNC mPC mNC mPCSJ2
M2 dNC wNC mNC mPCLJ2 dNC wNC wPSLJ2 wMSLJN2 mNC dNC wNC mNC mPCSJ2
M3 dNC wPC wNC mPCLJ2 dNC wNC wNCSJ2 mPCSJ2 dNC wNC wMLJ2 mPC mNC mPCSJ2
M4 dNC wNC wPCLJ2 mPCLJ2 dNC wPC wNC wNCSJ2 mPCSJ2 dNC wNC wMSLJP2 mNC
M5 dNC wPC wNC mNC mPCLJ2 dNC wNC mPC mNC mMC2 mMSLJP2 dNC wNC wNCSJ2 mNC

Number of Stocks: N=200

M1 dNC dNCSJ2 wNC wPLJ wMCSJP2 mNC mPSJ dNC wNC mPC mNC mMC2 mMSLJP2 dNC wNC mNC mMCSJN2 mMSLJP2
M2 dNC dNCSJ2 wNC mPC mNC mPCLJ2 dNC dNCSJ2 wNC wPSLJ2 wNSLJ2 mNC dNC wPC wNC mNC mMLJ2 mMCSJP2 mMSLJP2
M3 dNC wNC mPCLJ2 dNC wNC wPSLJ2 wMSLJN2 mNC dNC wPC wNC wMCLJP2 mPSJ mMSLJP2
M4 dNC wPC wNC mPCLJ2 dNC wNC mNC mMCSJN2 mMSLJP2 dNC wNC mPC mNC mPCSJ2
M5 dNC wNC mNC mPCLJ2 dNC wPC wNC mNC mMCSJN2 mMSLJP2 dNC wNC wMLJ2 mPC mNC mPCSJ2

*Notes: See notes to Table 3.1.

Table 3.5: Predictors in Best-Performing Models (15-minute)

γ1 γ2 γ3

Number of Stocks: N=5

M1 dNC wNC mPC dNC wNC mNC dNC wNC mNC
M2 dNC dMSLJN2 wNC mNC dNC wNC wMSLJP2 mNC dNC wNC mNCSJ2
M3 dNC wNC mNC mMCLJN2 dNC wNC mNCSJ2 dNC wNC mPC
M4 dNC wNC wPCSJ2 mNC dNC wNC mPC mMSLJP2 dNC wNC mPCSJ2
M5 dNC wNC wMCLJP2 mNC dNC wNC mPCSJ2 dNC wNC mNC mNLJ

Number of Stocks: N=10

M1 dNC wNC mPCSJ2 dNC wNC mPCSJ2 dNC wNC mPCSJ2
M2 dNC wNC mNC dNC wNC mNC dNC wNC mNC
M3 dNC wNC mPC dNC wNC mPC dNC wNC mPC
M4 dNC wNC mNCSJ2 dNC wNC mNCSJ2 dNC wNC mNCSJ2
M5 dNC dPSLJ2 wNC mNC dNC wNC wMSLJP2 mPCSJ2 dNC wNC mNC mNLJ

Number of Stocks: N=30

M1 dNC dNSLJ2 wNC dNC wNC mMLJ2 dNC wNC mNLJ
M2 dNC dNSLJ2 wNC mPC dNC wNC dNC dPSLJ2 wNC mNC mNLJ
M3 dNC dNSLJ2 wNC mNC dNC wNC mNLJ dNC wNC mNC mNLJ
M4 dNC dNSLJ2 wNC wMC2 mNC dNC wNC mPCSJ2 dNC dPSLJ2 wPC wNC mNC mNLJ
M5 dNC dNSLJ2 wNC wMC2 mPC dNC wNC mNC mNLJ dNC wPC wNC mNLJ

Number of Stocks: N=50

M1 dNC dNSLJ2 wNC dNC wNC mMLJ2 dNC dNSJ wNC wNSJ
M2 dNC dNSLJ2 wNC wMC2 mNC dNC wNC dNC wNC mNLJ
M3 dNC dNSLJ2 wNC wMC2 mPC dNC wNC mPCLJ2 dNC dNSJ wNC mNC mNLJ
M4 dNC dNSLJ2 wNC wNSLJ2 dNC wNC wMCSJP2 mPCSJ2 dNC dNSJ wNC wNSJ wMC2 mPC
M5 dNC dNSLJ2 wNC mPC dNC wNC mPCSJ2 dNC wNC mNC mNLJ

Number of Stocks: N=100

M1 dNC dNSLJ2 wNC wNSLJ2 dNC dPSJ dNSJ wNC wNSJ mMLJ2 dNC dNSJ wNC wNSJ
M2 dNC dNSLJ2 wNC wMC2 mNC dNC wPC wNC wMC2 mNCLJ2 dNC dNSJ wNC wNSJ wMC2 mPC
M3 dNC dNSLJ2 wNC wMC2 mPC dNC wNC mMLJ2 dNC dNSJ wNC wNSJ wMCSJP2 mPCSJ2
M4 dNC dNSLJ2 wNC dNC dNSJ wNC wNSJ mNC mPCSJ2 dNC dNSJ wNC mNC mNLJ
M5 dNC dNSLJ2 wPC wNC wMCLJN2 mNC dNC dNCLJ2 wNC wNSJ dNC dNSJ wNC mNC mNLJ mMSLJP2

Number of Stocks: N=200

M1 dNC dNSLJ2 wPC wNC wMCLJN2 mNC dNC dPSJ dNSJ wNC wNSJ wMC2 mNC mMCLJP2 dNC dNSJ wNC wNSJ wMCSJP2 mPCSJ2
M2 dNC dNSLJ2 wNC wNSLJ2 dNC dPSJ dNSJ wNC wNSJ mMLJ2 dNC dNSJ wNC wNSJ wMC2 mPC
M3 dNC dNSLJ2 wNC wMC2 mNC dNC dNSJ wNC wNSJ mPCLJ2 dNC dNSJ wNC wNCSJ2 wMC2 mNCSJ2 mNCLJ2
M4 dNC dNSLJ2 wNC wMC2 wMCSJP2 mNC mPCSJ2 dNC dNLJ dNSLJ2 wNC wNSJ wMCSJN2 mNSJ mMSLJP2 dNC dNSJ wNC wNSJ
M5 dNC dNSLJ2 wNC wMC2 mPC dNC dNLJ dNSLJ2 wNC wNSJ mNLJ dNC dNSJ wNC wNSJ wMCSJP2

*Notes: See notes to Table 3.1.

Table 3.6: Predictors in Best-Performing Models (30-minute)

γ1 γ2 γ3

Number of Stocks: N=50

M1 dNC wNC wPCLJ2 mNC mNSLJ2 dNC wNC wPCLJ2 mNSJ dNC wNC wPSLJ2 mNSJ
M2 dNC wNC wPCLJ2 mPC mNSLJ2 dNC dNSJ wNC wPCLJ2 mNSJ
M3 dNC wNC wPCLJ2 mPC mNC mNSLJ2
M4 dNC wNC wPCLJ2 mNCSJ2 mNSLJ2
M5

Number of Stocks: N=100

M1 dNC wNC wPCLJ2 mNC mNSLJ2 dNC wNC wPCLJ2 mNCSJ2 mNSLJ2 dNC wNC wPCLJ2 mNSJ mNLJ
M2 dNC wNC wPCLJ2 mPC mNSLJ2 dNC wNC wPCLJ2 mPC mNSLJ2 dNC wNC wPCLJ2 mNSJ
M3 dNC wNC wPCLJ2 mNCSJ2 mNSLJ2 dNC wNC wPCLJ2 mNC mNLJ mNSLJ2 dNC dMC2 wNC wPCLJ2 wMCSJN2 mNC mNSJ
M4 dNC wNC wPCLJ2 mPC mNC mNSLJ2 dNC wNC wPCLJ2 mNSJ dNC dMC2 wNC wPSJ wMC2 mNCSJ2
M5 dNC dNSJ wNC wPCLJ2 mNC mNSLJ2 dNC wNC wPCLJ2 mNSJ mNLJ dNC wNC wPCLJ2 mPC mNSJ

Number of Stocks: N=200

M1 dNC wNC wPSJ wPCLJ2 wMCSJN2 mNC mNSLJ2 dNC dNSJ dMC2 wNC wPCLJ2 wMCSJN2 mPC mNSJ dNC wNC wPCLJ2 wMCSJN2 mNLJ mNCSJ2
M2 dNC dNSJ dMC2 wNC wPCLJ2 wMSJ2 mNC mNSLJ2 dNC dNSJ dMC2 wNC wPCLJ2 wMCSJN2 mPC mNSJ mMCLJP2 dNC dNSJ dMC2 wNC wPCLJ2 wMCSJN2 mPC mNSJ
M3 dNC dNSJ wNC wPCLJ2 mNSLJ2 dNC wNC wPCLJ2 wMCSJN2 mNCSJ2 dNC dMC2 wNC wPCLJ2 wMCSJN2 mNLJ mNCSJ2 mNSLJ2
M4 dNC wNC wPCLJ2 mNSLJ2 dNC wNC wPCLJ2 wMCSJN2 mNCSJ2 mMCSJP2 dNC dMC2 wNC wPCLJ2 wMLJ2 wMCSJN2 mNC mNSJ
M5 dNC dNSJ dMC2 dMCLJN2 wNC wPCLJ2 mNSJ dNC wNC wPCLJ2 wMCSJN2 mNCSJ2 mMSJ2 mMCSJP2 dNC dNSJ dMC2 wNC wPCLJ2 wMCSJN2 mPC mNSJ mPLJ

*Notes: See notes to Table 3.1.
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Table 3.7: Comparison of Out-of-Sample Prediction Performance (5-minute)

Panel A: Portfolios Constructed by 10 Stocks

SHAR SCHAR SCHAR-r LASSO EN1 EN2 PLS1 PLS2 PLS3 PCR1 PCR2 PCR3 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

HAR -0.76 -2.55 1.38 -2.90 -2.98 -3.05 0.10 -1.17 -1.23 0.79 0.09 -0.21 2.18 2.10 2.09 1.97 2.03 2.04 2.04 2.01 1.94 1.91
SHAR -3.53 1.94 -2.82 -2.94 -3.00 0.67 0.03 -0.01 1.03 0.68 0.50 3.11 3.09 3.07 2.99 2.98 3.00 2.90 3.10 2.91 2.98
SCHAR 3.64 -1.22 -1.26 -1.22 2.17 2.11 2.59 2.57 2.20 1.99 4.64 4.64 4.60 4.59 4.56 4.47 4.46 4.46 4.53 4.61
SCHAR-r -3.39 -3.51 -3.64 -1.06 -2.19 -2.54 -0.72 -1.13 -1.24 1.90 1.77 1.76 1.64 1.66 1.67 1.71 1.45 1.52 1.46
LASSO -0.17 0.87 3.15 2.85 2.89 3.33 3.17 3.02 3.90 3.88 3.88 3.86 3.87 3.87 3.86 3.81 3.84 3.84
EN1 1.08 3.25 2.96 3.01 3.43 3.27 3.12 4.02 4.00 4.00 3.98 3.99 3.99 3.98 3.94 3.96 3.96
EN2 3.32 3.04 3.12 3.54 3.35 3.17 4.21 4.19 4.19 4.18 4.18 4.18 4.18 4.12 4.16 4.15
PLS1 -1.42 -1.10 1.80 -0.09 -2.69 1.68 1.61 1.61 1.54 1.57 1.61 1.61 1.53 1.50 1.45
PLS2 -0.12 2.12 1.39 1.01 2.96 2.87 2.91 2.78 2.87 2.93 2.94 2.96 2.75 2.73
PLS3 1.73 1.11 0.80 4.06 3.96 3.98 3.80 3.95 3.93 4.00 4.17 3.81 3.81
PCR1 -2.27 -2.11 1.60 1.52 1.52 1.43 1.47 1.50 1.50 1.40 1.38 1.32
PCR2 -1.62 1.75 1.68 1.68 1.61 1.64 1.67 1.67 1.59 1.56 1.51
PCR3 1.76 1.70 1.70 1.63 1.66 1.70 1.70 1.62 1.59 1.55
M1 -1.26 -1.96 -1.90 -4.11 -1.00 -2.08 -0.96 -3.31 -3.33
M2 -0.77 -1.44 -1.84 -0.60 -1.23 -0.71 -2.72 -2.75
M3 -0.57 -1.13 -0.46 -1.04 -0.58 -1.46 -2.24
M4 -0.07 -0.01 -0.39 -0.29 -1.18 -1.38
M5 0.03 -0.55 -0.33 -1.17 -1.82
M6 -0.34 -0.38 -0.44 -0.83
M7 -0.17 -0.33 -0.74
M8 0.00 -0.20
M9 -0.55

Panel B: Portfolios Constructed by 200 Stocks

SHAR SCHAR SCHAR-r LASSO EN1 EN2 PLS1 PLS2 PLS3 PCR1 PCR2 PCR3 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

HAR -0.40 -1.94 1.60 -1.48 -1.79 -1.61 -0.60 -0.14 0.96 -0.01 -0.79 -0.78 2.58 2.24 2.32 2.56 2.54 2.44 2.35 2.42 2.29 2.32
SHAR -2.73 1.50 -0.75 -1.44 -1.42 0.04 0.26 1.42 0.34 -0.07 -0.06 2.32 2.45 2.37 2.31 2.32 2.31 2.48 2.31 2.48 2.48
SCHAR 2.86 1.26 0.52 0.51 1.36 1.69 3.14 1.68 1.24 1.25 3.48 3.69 3.61 3.35 3.36 3.39 3.55 3.38 3.56 3.60
SCHAR-r -2.85 -2.56 -2.38 -1.70 -1.18 -0.39 -1.50 -1.77 -1.76 1.68 1.59 1.72 1.79 1.78 1.61 1.88 1.54 1.86 1.73
LASSO -1.33 -1.07 0.83 1.20 2.45 1.38 0.63 0.64 4.12 3.49 3.58 4.15 4.17 4.26 4.03 4.27 4.00 3.74
EN1 -0.05 1.42 1.68 2.53 1.81 1.25 1.25 3.59 3.21 3.18 3.59 3.59 3.54 3.47 3.53 3.46 3.34
EN2 1.27 1.51 2.42 1.62 1.12 1.12 3.33 3.07 3.02 3.32 3.32 3.26 3.27 3.25 3.27 3.16
PLS1 0.46 1.01 2.17 -2.54 -2.41 2.32 1.96 2.02 2.37 2.35 2.23 2.13 2.21 2.10 2.02
PLS2 0.93 0.15 -0.69 -0.67 2.32 1.79 1.83 2.22 2.20 2.11 1.91 2.09 1.88 1.80
PLS3 -0.74 -1.11 -1.10 2.41 2.61 2.49 2.11 2.12 1.91 2.24 1.88 2.19 2.47
PCR1 -2.33 -2.29 2.24 1.86 1.94 2.33 2.30 2.16 2.06 2.13 2.03 1.93
PCR2 2.69 2.34 2.00 2.06 2.40 2.38 2.27 2.16 2.25 2.13 2.06
PCR3 2.34 1.99 2.05 2.39 2.37 2.26 2.15 2.24 2.13 2.05
M1 -0.10 -0.24 -0.55 -0.59 -0.64 -0.61 -0.73 -0.57 -0.55
M2 -0.47 -0.14 -0.15 -0.22 -0.40 -0.26 -0.41 -0.68
M3 -0.01 -0.03 -0.12 -0.26 -0.17 -0.27 -0.53
M4 -0.38 -0.28 -0.33 -0.40 -0.31 -0.29
M5 -0.25 -0.31 -0.37 -0.29 -0.27
M6 -0.08 -1.02 -0.09 -0.11
M7 -0.01 -0.08 -0.14
M8 0.00 -0.05
M9 -0.11

*Notes: This table reports pairwise Diebold-Mariano test statistics comparing the daily out-of-sample forecasting performance among models. Portfolios are constructed by 10 and 200 stocks using 5-minute high frequency data.
Positive number indicates that the column model outperform the row model. Bold font indicates the difference is significant at 10% level or better.
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Table 3.8: Comparison of Out-of-Sample Prediction Performance (15-minute)

Panel A: Portfolios Constructed by 10 Stocks

SHAR SCHAR SCHAR-r LASSO EN1 EN2 PLS1 PLS2 PLS3 PCR1 PCR2 PCR3 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

HAR -1.18 -2.95 -0.28 -2.66 -2.47 -2.62 1.02 -0.23 -0.84 0.25 0.29 0.89 1.02 0.96 0.96 0.97 0.94 0.92 0.88 0.90 0.87 0.87
SHAR -3.26 1.77 -2.75 -2.50 -2.70 1.76 1.15 0.63 1.37 1.20 1.61 2.80 2.72 2.70 2.70 2.68 2.70 2.60 2.65 2.57 2.57
SCHAR 4.03 -1.48 -1.40 -1.43 3.05 2.86 2.87 2.89 2.54 2.93 4.09 4.08 4.06 4.05 4.03 4.02 4.02 4.05 4.00 4.01
SCHAR-r -2.91 -2.66 -2.87 1.31 0.02 -1.17 0.49 0.53 1.11 1.94 1.84 1.82 1.89 1.80 1.78 1.69 1.74 1.67 1.62
LASSO -0.77 1.17 3.04 2.78 2.69 2.87 2.83 2.98 3.22 3.20 3.18 3.19 3.18 3.18 3.16 3.17 3.14 3.13
EN1 1.09 2.80 2.55 2.46 2.64 2.62 2.75 2.96 2.94 2.93 2.94 2.93 2.93 2.91 2.92 2.90 2.89
EN2 2.99 2.73 2.64 2.82 2.79 2.93 3.18 3.15 3.14 3.15 3.14 3.14 3.12 3.13 3.10 3.09
PLS1 -2.13 -1.95 -1.17 -2.47 -1.46 0.46 0.39 0.38 0.39 0.36 0.33 0.28 0.31 0.27 0.28
PLS2 -1.28 0.54 0.81 1.79 1.64 1.57 1.53 1.65 1.52 1.51 1.44 1.49 1.41 1.37
PLS3 1.37 1.17 1.73 3.54 3.50 3.41 3.59 3.39 3.43 3.33 3.39 3.24 3.07
PCR1 0.14 0.91 1.15 1.08 1.07 1.09 1.05 1.01 0.97 0.99 0.96 0.94
PCR2 2.24 0.85 0.79 0.78 0.81 0.76 0.74 0.70 0.73 0.68 0.67
PCR3 0.53 0.46 0.45 0.47 0.43 0.41 0.36 0.39 0.35 0.36
M1 -1.40 -1.41 -1.03 -3.72 -4.01 -2.56 -2.20 -2.41 -1.47
M2 -0.04 -0.24 -0.70 -1.14 -3.71 -2.56 -2.02 -0.81
M3 -0.19 -0.73 -1.07 -2.44 -1.36 -3.59 -0.89
M4 -0.09 -0.46 -0.82 -0.50 -0.73 -0.42
M5 -0.77 -1.51 -0.73 -1.49 -0.61
M6 -0.59 -0.14 -0.58 -0.24
M7 0.98 -0.08 0.13
M8 -0.64 -0.18
M9 0.18

Panel B: Portfolios Constructed by 200 Stocks

SHAR SCHAR SCHAR-r LASSO EN1 EN2 PLS1 PLS2 PLS3 PCR1 PCR2 PCR3 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

HAR -0.74 -2.09 0.45 -1.92 -1.70 -1.50 0.60 -0.41 0.00 -0.67 -0.17 0.50 1.77 1.74 1.74 1.54 1.59 1.51 1.71 1.45 1.85 1.46
SHAR -2.17 1.78 -0.99 -1.80 -1.55 1.07 0.42 1.10 0.37 0.51 0.98 2.37 2.33 2.33 2.62 2.53 2.52 2.37 2.42 2.38 2.53
SCHAR 3.05 0.58 -0.68 -0.54 2.02 1.63 2.24 1.56 1.51 1.94 3.25 3.21 3.20 3.34 3.40 3.39 3.19 3.33 3.30 3.29
SCHAR-r -2.45 -2.06 -1.83 0.18 -1.03 -0.60 -1.01 -0.55 0.07 1.99 2.09 2.11 2.00 2.07 1.93 2.03 1.74 1.95 1.85
LASSO -1.14 -0.95 2.42 1.67 1.66 1.49 1.76 2.33 2.78 2.82 2.84 2.59 2.62 2.51 2.77 2.38 2.78 2.49
EN1 0.40 1.94 1.61 1.78 1.60 1.70 1.90 2.16 2.17 2.17 2.30 2.23 2.21 2.16 2.16 2.15 2.26
EN2 1.77 1.45 1.62 1.44 1.54 1.73 2.00 2.02 2.02 2.15 2.08 2.06 2.00 2.01 1.99 2.12
PLS1 -1.77 -0.52 -1.45 -2.44 -1.21 1.43 1.60 1.59 1.35 1.38 1.26 1.41 1.13 1.33 1.25
PLS2 0.51 -0.07 0.42 1.53 2.25 2.60 2.58 2.09 2.21 2.04 2.27 1.84 2.10 1.97
PLS3 -0.57 -0.15 0.41 2.80 2.80 2.86 2.83 2.94 2.84 2.87 2.66 2.67 2.68
PCR1 0.40 1.26 2.25 2.24 2.26 2.02 2.06 1.96 2.23 1.89 2.32 1.92
PCR2 2.36 1.68 1.85 1.85 1.60 1.63 1.52 1.69 1.40 1.60 1.51
PCR3 1.44 1.61 1.60 1.35 1.38 1.27 1.42 1.15 1.35 1.26
M1 -0.08 -0.19 -0.12 -0.19 -0.22 -0.59 -0.24 -0.55 -0.21
M2 -0.37 -0.08 -0.17 -0.17 -0.27 -0.15 -0.20 -0.17
M3 -0.02 -0.08 -0.11 -0.20 -0.10 -0.14 -0.11
M4 -0.09 -0.16 -0.07 -0.11 -0.08 -0.69
M5 -0.12 -0.04 -0.07 -0.06 -0.13
M6 0.00 -0.03 -0.03 -0.08
M7 -0.02 -0.06 -0.03
M8 -0.02 -0.02
M9 0.00

*Notes: See notes to Table 3.7.
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Table 3.9: Comparison of Out-of-Sample Prediction Performance (30-minute)

Panel A: Portfolios Constructed by 10 Stocks

SHAR SCHAR SCHAR-r LASSO EN1 EN2 PLS1 PLS2 PLS3 PCR1 PCR2 PCR3

HAR -0.58 -2.61 -0.62 -2.69 -2.65 -2.64 0.82 -0.11 -1.24 0.29 1.01 0.39
SHAR -3.37 -0.06 -4.16 -4.31 -4.38 0.85 0.57 -1.45 1.70 1.07 0.65
SCHAR 3.45 -1.04 -0.44 -0.38 2.84 2.87 2.45 4.03 3.16 2.61
SCHAR-r -4.18 -4.55 -4.34 0.97 0.67 -1.36 1.80 1.23 0.73
LASSO 1.91 1.23 2.90 2.95 3.54 4.36 3.17 2.69
EN1 0.07 2.89 2.93 3.24 4.55 3.21 2.65
EN2 2.89 2.98 4.79 5.13 3.23 2.64
PLS1 -1.89 -1.53 -0.07 0.46 -1.83
PLS2 -1.41 0.40 1.93 0.80
PLS3 3.16 1.79 1.29
PCR1 0.23 -0.11
PCR2 -0.94

Panel B: Portfolios Constructed by 200 Stocks

SHAR SCHAR SCHAR-r LASSO EN1 EN2 PLS1 PLS2 PLS3 PCR1 PCR2 PCR3 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

HAR 0.17 -2.10 0.08 -0.34 -0.29 -0.38 -0.37 -1.45 -0.56 0.56 -0.58 -0.85 0.37 0.33 0.30 0.28 0.26 0.26 0.25 0.26 0.24 0.24
SHAR -2.82 -0.32 -1.09 -1.03 -1.13 -0.31 -1.70 -1.34 0.48 -0.37 -0.48 0.58 0.48 0.39 0.35 0.29 0.29 0.26 0.27 0.25 0.23
SCHAR 2.83 2.38 2.50 2.30 1.96 1.32 1.99 2.95 1.88 1.73 3.10 3.08 3.00 3.04 2.94 2.91 2.91 2.78 2.89 2.90
SCHAR-r -1.02 -0.95 -1.08 -0.24 -1.69 -1.26 0.66 -0.31 -0.42 0.71 0.63 0.57 0.53 0.47 0.53 0.50 0.54 0.48 0.45
LASSO 0.61 -0.57 0.21 -1.14 -1.08 1.25 0.14 0.02 2.81 2.75 2.75 2.60 2.12 3.68 3.55 2.37 3.56 3.45
EN1 -0.85 0.16 -1.22 -1.14 1.22 0.08 -0.04 2.75 2.65 2.58 2.41 2.03 4.07 3.94 2.55 3.86 3.66
EN2 0.25 -1.09 -0.98 1.27 0.17 0.06 2.63 2.58 2.60 2.47 2.10 3.26 3.16 2.30 3.14 3.12
PLS1 -1.31 -0.44 0.71 -1.03 -1.72 0.48 0.45 0.42 0.40 0.39 0.39 0.38 0.41 0.38 0.37
PLS2 0.60 1.80 1.18 1.01 1.89 1.86 1.81 1.81 1.76 1.88 1.86 1.80 1.85 1.87
PLS3 1.43 0.37 0.26 2.55 2.51 2.62 2.56 2.29 2.42 2.38 1.97 2.40 2.37
PCR1 -0.76 -0.86 -0.10 -0.17 -0.22 -0.25 -0.31 -0.29 -0.31 -0.33 -0.32 -0.33
PCR2 -1.57 0.53 0.50 0.47 0.45 0.44 0.45 0.44 0.46 0.43 0.43
PCR3 0.62 0.58 0.55 0.54 0.53 0.54 0.53 0.56 0.52 0.52
M1 -2.48 -0.53 -0.68 -0.68 -0.69 -0.75 -0.46 -0.82 -0.85
M2 -0.25 -0.40 -0.45 -0.47 -0.53 -0.32 -0.59 -0.63
M3 -0.29 -0.32 -0.28 -0.35 -0.22 -0.40 -0.39
M4 -0.21 -0.16 -0.23 -0.14 -0.27 -0.28
M5 -0.01 -0.07 -0.05 -0.09 -0.11
M6 -0.66 -0.06 -1.19 -0.46
M7 0.02 -0.21 -0.21
M8 -0.05 -0.07
M9 -0.10

*Notes: See notes to Table 3.7.



92

Figure 3.1: Correlations Between Realized Components (15-minute)

N = 5 (γ1) N = 150 (γ1)

N = 5 (γ3) N = 150 (γ3)

*Notes: See notes to Table 3.1. This figure displays the average of correlations between each two
separated realized components based on 200 randomly constructed portfolios.
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Figure 3.2: Median Value of Forecasting Performance

HARMSE

R2
is

R2
oos

*Notes: See notes to Table 3.1. This figure reports the median value of HARMSE, R2
is, and R2

oos,
respectively, for each model based on 200 randomly selected portfolios. The range of portfolio dimension
is from 5 to 200. T1 refers to the best-performing sparse model, T1-10% and T1-90% denote the 10%
and 90% quantiles of each evaluation criterion for the best-performing sparse model.
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Figure 3.3: Model Complexity (15-minute, γ1)

LASSO/EN (N = 10) LASSO/EN (N = 200)

PLS (N = 10) PLS (N = 200)

PCR (N = 10) PCR (N = 200)

*Notes: See notes to Table 3.1. This figure displays the average of correlations between each two
separated realized components based on 200 randomly constructed portfolios.
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Figure 3.4: Feature Importance (5-minute, γ1)

N = 10 N = 200

*Notes: See notes to Table 3.1. This figure displays the average of rankings of each decomposed realized
component in terms of in-sample prediction contribution over time and 200 randomly constructed
portfolios. Each column represents a model, with predictors ordered by the ranks based on model EN1.
The color gradients indicate the most influential (dark blue) to the least influential (white) predictors.
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Figure 3.5: Feature Importance (15-minute, γ1)

N = 10 N = 200

*Notes: See notes to Figure 3.4.
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Figure 3.6: Feature Importance (30-minute, γ1)

N = 10 N = 200

*Notes: See notes to Figure 3.4.



98

Bibliography
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