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This dissertation consists of two essays that explore issues in empirical asset pric-
ing and portfolio management using high-frequency financial econometrics techniques.
The first essay investigates the cross-sectional return predictability of various jump
risk factors. The second essay develops sparse portfolio variance forecast models that
incorporate informative realized jump risk factors.

In Chapter 2, we study the cross-sectional relationship between (small and large)
jump variation measures and future stock returns, based on portfolio sorts and Fama-
MacBeth type regressions. We document that a new risk factor, signed small jump
variation (i.e., the difference between upside and downside small jump variation mea-
sures), strongly predicts the cross-sectional variation in future returns. Constructed
based on a data-driven threshold, signed small jump variation has stronger predictive
power for future returns than other realized risk measures, in the cross-section. We
also conduct various experiments (e.g., event studies, etc.) to further explore the link-
ages between different jump risk measures and economic factors relating to news in
the markets. We show that large jumps are closely associated with “big” news. While
such news related information is embedded in large jump variation, the information is

generally short-lived, and dissipates too quickly to provide marginal predictive content
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for subsequent weekly returns. By contrast, we find that small jumps are more likely
to be diversified away than large jumps, thus tend to be more closely associated with
idiosyncratic risks, and are therefore more likely to be driven by liquidity conditions
and trading activity.

In Chapter 3, we investigate whether the decomposition of realized covariance ma-
trices of portfolios of asset returns into components based on both the signs and mag-
nitudes of the underlying high-frequency returns is useful for forecasting. In particular,
our decomposition separates realized covariation into components based on signs (pos-
itive and negative) and magnitudes (continuous, small jump, and large jump). Sparse
portfolio variance forecast models, which are constructed by utilizing the most informa-
tive covariance components, produce significant improvements in predictive accuracy.
We show that such predictive gains can be traced to the identification of short-lived

pricing signals associated with co-jumps.
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Chapter 1

Introduction

Volatility or (co)realized variance has been documented as one of the most informa-
tive stock-level predictors for future returns or variance (see e.g.,Gu et al. (2019) and
Corsi (2009)). With the availability of high-frequency financial data and advances
in high-frequency econometrics, different components of the variance, associated with
upside/downside and/or continuous/discontinuous price movements, can now be con-
sistently measured. Recent studies have reached a consensus that the signs of the
underlying high-frequency returns lead to distinct information content residing in dif-
ferent components of the realized risk measure (see e.g., Bollerslev et al. (2019a) and
Bollerslev et al. (2019b)).

In this dissertation, I take a further step by considering both the signs and the magni-
tudes of the underlying high-frequency stock returns when constructing risk factors and
explore the return/variance predictability of these separate risk components. Specifi-
cally, in the second chapter, we partition the semi-variances into small and large compo-
nents. In particular, high frequency intraday data are used to construct various realized
jump variation measures, including small upside/downside, large upside/downside, and
the difference between upside small (large) and downside small (large) jump variation
(i.e., signed small and large jump variation measures). We then investigate the re-
lationship between these various risk measures and future returns, using single sorted
and double sorted stock portfolios, and Fama-MacBeth regression analysis. In the third
chapter, we decompose the realized covariance into components based on both the signs
and magnitudes of the underlying high frequency returns, and construct sparse portfolio
variance forecast models by utilizing the most informative components as predictors.

In Chapter 2, entitled “New Evidence of the Marginal Predictive Content of Small
and Large Jumps” joint with Bruce Mizrach and Norman R. Swanson, we take the
additional step of partitioning the semi-variances into small and large components, and

explore the possibility that small and large jumps contain different information relative



to investing and return predictability. We find that sorting on signed small jump
variation (i.e., the difference between the upside and downside small jump variation
measures) leads to greater value-weighted return differentials between stocks in our
highest and lowest quintile portfolios (i.e., high-low spreads) than when either signed
total jump or signed large jump variation is sorted on. Moreover, in a key case, the
high-low spread is not significantly different from zero when signed large jump variation
is sorted on. Indeed, including large jump variation can actually decrease predictive
accuracy, in the sense that average returns and alphas for high-low portfolios are lower
when total jump variation is utilized in our prediction experiments rather than small
jump variation. These results suggest that there may be a threshold, beyond which
“large” jump variation contains no marginal predictive ability, relative to that contained
in small jump variation. Analysis of returns and alphas based on industry double-sorts
indicates that the benefit of small signed jump variation investing is driven by stock
selection within an industry, rather than industry bets. Investors prefer stocks with
a high probability of large positive jump variation, but they also tend to overweight
safer industries. Additionally, the fact that large and small (signed) jump variation have
differing marginal predictive content is explained at least in part by our observation that
in double-sorted portfolios, the content of signed large jump variation is negligible when
controlling for either signed total jump variation or realized skewness. By contrast,
signed small jump variation has unique information for predicting future returns, even
when controlling for total jump variation or realized skewness. Further, we find that
large jumps are closely associated with “big” news, as might be expected. In particular,
large earning announcement surprises increase both the magnitude and occurrence of
large jumps. While such news related information is embedded in large jump variation,
the information is generally short-lived, and dissipates too quickly to provide marginal
predictive content for subsequent weekly returns. Finally, we find that while large jump
variation is closely associated with large earnings surprises (“big” news), small jumps
tend to be more closely associated with idiosyncratic risks, and can be diversified away.

In Chapter 3, entitled “Forecasting Portfolio Variance: A New Decomposition Ap-

proach,” we investigate whether the decomposition of realized covariance matrices of



portfolio of asset returns into components based on both the signs and magnitudes of
the underlying high-frequency returns is useful for forecasting. In particular, our de-
composition separates realized covariation into components based on signs (positive and
negative) and magnitudes (continuous, small jump, and large jump). The impetus for
this decomposition is that certain variation components may be useful for prediction,
while others are not; and by including only “information-rich” components in realized
(co)-variation forecasting models, predictive accuracy may be improved. Our experi-
ments that are designed to assess the marginal predictive content of different variation
components focus on portfolio variance prediction, and utilize various machine learn-
ing methods, including: penalized regression type methods such as the least absolute
shrinkage operator and the elastic net, as well as dimension reduction methods such as
partial least squares and principal components analysis. We find that machine learn-
ing methods with key variation components offer limited improvement to out-of-sample
fit, relative to benchmark HAR-type forecasting models that do not include our more
granular variation measures. However, more sparse models, which are specified using
predictors selected using a first “dimension reduction” yield significant improvements in
predictive accuracy when our decomposed variation measures are included. These pre-
dictive gains can be traced to the identification of short-lived pricing signals associated

with co-jumps.



Chapter 2

New Evidence of the Marginal Predictive Content of

Small and Large Jumps
2.1 Introduction

Theoretical models of the risk-return relationship anticipate that volatility should be
priced, and that investors should demand higher expected returns for more volatile as-
sets. However, ex-ante risk measures are not directly observable, and must be estimated
(see e.g., Rossi and Timmermann (2015)). Given the necessity of estimating volatility,
various different risk estimators have been utilized in the empirical literature study-
ing the strength and sign of the risk-return relationship. Unfortunately, the evidence
from the literature is mixed, in the sense that researchers have found both negative
and positive relationships between return and volatility. One possible reason for these
surprisingly contradictory findings is that the risk-return relationship is nonlinear. Ex-
amples of papers pursuing this hypothesis include Campbell and Vuolteenaho (2004),
who incorporate different factor betas based on good and bad news about cash flows and
discount rates; and Woodward and Anderson (2009) who find that bull and bear market
betas differ substantially across most industries. This research has helped to spawn the
“smart-beta” approach to factor investing.! In related research, Feunou et al. (2013)
model the effects of volatility in positive and negative return states separately. They
define so-called disappointment aversion preferences, and show that investors should
demand a higher return for downside variability. These authors find empirical support
for their model in the U.S. and several foreign markets using a bi-normal GARCH
process to estimate volatility.

In this paper, we focus on the importance of jumps in volatility for understanding

the risk-return relationship. We do this by assessing the marginal predictive content

In 2017, Morningstar reported that this approach to investing has attracted over one trillion dollars
in assets (see e.g., Jennifer Thompson, Financial Times, December 27, 2017).



of small versus large jump variation, when forecasting one-week ahead cross-sectional
equity returns. We also examine earnings announcements as well as carry out various
Fama-MacBeth type regressions in order to uncover the linkages between (small and
large) jumps and news. Finally, we examine the importance of control variates, in-
cluding skewness and other firm characteristics, when undertaking to disentangle the
relative importance of small, large, positive, and negative jumps for the dynamic evo-
lution of firm specific returns. Much of the empirical research that explores the impor-
tance of jumps in this context focuses on estimation of continuous and jump variation
components using nonparameteric realized measures constructed with high frequency
financial data. A key paper in this area is Bollerslev et al. (2019b), who examine the
relationship between signed jumps and future stock returns in the cross-section. They
document that signed jump variation, which captures the asymmetric impact of upside
and downside jump risks, are good predictors of returns for small and illiquid stocks.?
In the current paper, we add to this literature by decomposing jump variation into
signed small and large components and evaluating the importance of these elements in
a cross-section of stock returns. We utilize the cross-section of individual stocks because
aggregate index returns may mask small jump effects on return predictability. Indeed,
many studies document that aggregation may diversify away idiosyncratic small jumps
in the cross-section (see e.g., Ait-Sahalia and Jacod (2012) and Duong and Swanson
(2015)).

The motivation for our paper can be traced back to Yan (2011) and Jiang and Yao
(2013), who show that large, infrequent jumps are priced in the cross-section of returns.
Feunou et al. (2018) take the decomposition used by these authors one step further,
and model jumps in the realized semi-variances of market returns. They construct a
new measure of the variance risk premium, and find a strong positive premium for
downside risk. Fang et al. (2017) find a similar result for Chinese market returns. In

a related line of research, various authors study the information content in the upside

2In a related paper, Duong and Swanson (2015) construct both small and large jump measures based
on some fixed truncation levels. They exploit the risk predictabilities of different jump measures using
both index data and Dow 30 stocks and find that small jump variation has more volatility predictability
than large jump variation.



and downside jump variation. For example, Guo et al. (2015) document that at the
market level, a negative jump component in realized volatility predicts an increase in
future equity premia. Bollerslev et al. (2015) identify both left and right jump tail risks
under the risk-neutral measure. They find that the left jump tail risk is an appropriate
proxy for market fear. Additionally, they find that including a variance risk premium
together with jump tail risk measures as predictors significantly improves market return
forecasts. Finally, they show that jump risk helps explain the high-low book-to-market
and winners versus losers portfolio returns.

Building on the above literature, we decompose jump variation into four distinct
components depending on both the direction (semi-variances) and magnitude (small and
large) of the jumps.® Specifically, we decompose individual stock jump semi-variances
into small and large components. High frequency intraday data are used to construct
various realized jump variation measures, including large upside/downside, small up-
side/downside, and the difference between upside large (small) and downside large
(small) jump variation. We then investigate the relationship between these various
jump measures and future returns, using sorted and double-sorted stock portfolios, and
using regression analysis. The reason that we decompose jump semi-variances into small
and large components is that this decomposition allows us to explore the possibility that
they contain different information relevant to investing and return predictability. As
Maheu and McCurdy (2004) note, large jumps may reflect important individual stock
and market news announcements. Smaller jumps (or continuous variation) may result
from liquidity and strategic trading.

Our key findings can be summarized as follows. First, we find that both small
and large upside (downside) jump variation negatively (positively) predict subsequent
weekly returns. However, portfolios sorted using signed total jump variation are asso-
ciated with increased average returns and risk adjusted alphas for high-low portfolios,

relative to the cases where upside or downside jump variation is sorted on. This finding

3The methods that we implement to separate jump variation utilize recent advances in financial
econometrics due to Andersen et al. (2003), Andersen et al. (2007), Jacod (2008), Mancini (2009),
Barndorff-Nielsen et al. (2010), Todorov and Tauchen (2010), Ait-Sahalia and Jacod (2012), and Patton
and Sheppard (2015).



is in accord with the findings of Bollerslev et al. (2019b).

Our second finding involves the case where jump variation is further decomposed
into “small” and “large” components. In this case, sorting on signed small jump varia-
tion leads to value weighted high-low portfolios with greater average returns and alphas
than when either signed total jump or signed large jump variation is sorted on. Indeed,
when the truncation parameter used to differentiate small from large jumps is based
on a 5 standard deviation cut-off, we find that average return spreads are 10% higher
when signed small jump variation is sorted on rather than signed total jump varia-
tion. Moreover, these average return spreads are statistically significant in both cases.
However, average return spreads are not significantly different from zero when signed
large jump variation is sorted on. Indeed, including large jump variation is actually
detrimental to predictive accuracy, as average returns and alphas for high-low portfolios
actually decline when total variation is instead utilized in our prediction experiments.
These results suggest that there may be a “jump-threshold”, beyond which “large”
jump variation contains no marginal predictive ability, relative to that contained in
small jump variations.* In summary, we find that large jump variation has little to no
marginal predictive content, beyond a certain threshold. Indeed, when said threshold
is judiciously selected, one can actually improve predictive performance in our experi-
ments, leading to increased high-low portfolio average returns and alphas, when sorting
portfolios based on small jump variation rather than total jump variation.

Third, industry double-sorts indicate that the benefit of small signed jump variation
investing is driven by stock selection within an industry, rather than industry bets.
Investors prefer stocks with a high probability of large positive jump variation, but

they also tend to overweight safer industries.

4When equal weighted portfolios are instead examined, sorting on total jump variation yields higher
average returns and alphas than when sorting on small or large jump variation. However, deeper
inspection of our tabulated results in this case reveals that average returns associated with large jump
variation sorts are much smaller (around 1/2 the magnitude) of small and total jump variation sorts,
and that the magnitude of average returns associated with small jump variation sorts is much closer
(within 10%) to the average returns associated with total jump variation sorts when our truncation
parameter uses a 5 standard deviation cut-off instead of a 4 standard-deviation cut-off. This suggests
that the “jump-threshold” differs depending upon portfolio type, and indicates that our findings based
on equal weighted portfolios are largely in accord with the findings elucidated above.



Fourth, the reason why small and large (signed) jump variation measures have
differing marginal predictive content for returns is associated with the importance of
realized skewness as a control variable in our experiments. Namely, we find that in
double-sorted portfolios, the content of signed large jump variation is negligible when
controlling for either signed total jump variation or realized skewness. By contrast,
signed small jump variation has unique information for predicting future returns, even
when controlling for total jump variation or realized skewness. This finding is consistent
with the results from a series of Fama-MacBeth regressions, in which we control for
multiple firm characteristics and risk measures.

Finally, small and large jump variation measures are driven by different economic
factors and contain different information for predicting future returns. For exam-
ple, large jumps are closely associated with “big” news. In particular, large earning
announcement surprises increase both the magnitude and occurrence of large jumps.
While such news related information is embedded in large jump variation, the informa-
tion is generally short-lived, and dissipates too quickly to provide marginal predictive
content for subsequent weekly returns. This is consistent with our finding that filtering
out signed small jump variation, which we know to be useful, from signed total jump
variation, results in increased predictive ability, relative to the case where only signed
total jump variation is utilized in return forecasting, especially for big firms. Addition-
ally, this finding is interesting, given that comparison of aggregated and weighted jump
variation measures indicates that small jump variation captures idiosyncratic risks and
can be diversified away.”

The rest of this paper is organized as follows. In Section 2.2 we discuss the model
setup and define the jump risk measures that we utilize. Section 2.3 contains a discus-
sion of the data used in our empirical analysis, and highlights key summary statistics
taken from our dataset. Section 2.4 presents our main empirical findings, including
discussions of results based on single portfolio sorts, double-sorts, cumulative return

and Sharpe ratio analysis, firm-level Fama MacBeth regressions, and finally, jumps and

This result is consistent with the finding of Amaya et al. (2015) that preference for positive asym-
metry (skewness) may partially explain the idiosyncratic volatility puzzle, especially for small firms.



news announcements. Section 2.5 concludes.

2.2 Model Setup and Estimation Methodology

Following Ait-Sahalia and Jacod (2012), assume that the log price, Xy, of a security

follows an It6 semimartingale, formally defined as:

t ¢ t t
Xt = Xo+ / bsds + / osdWs + / / x(p —v)(ds,dzr) + / / zp(ds,dz),
0 0 0 J{lz|<e} 0 J{lz[>e}

where b and o denote the drift and diffusive volatility processes, respectively; W is a
standard Brownian motion; p is a random positive measure with its compensator v;
and e is the (arbitrary) fixed cutoff level (threshold) used to distinguish between small
and large jumps. As pointed out in Ait-Sahalia and Jacod (2012),, the continuous part
of this model (i.e., the f(f osdWy term) captures normal hedgeable risk of the asset. The
“big jumps” part of the model (i.e., the fg f{lx\ZE} zp(ds,dx) term) may capture big
news-related events such as default risk, and the “small jumps” part of the model (i.e.,
the fot f{|x|§e} x(u — v)(ds,dz) term) may capture large price movements on the time
scale of a few seconds. If jumps are summable (e.g., when jumps have finite activity,
so that ngt AX, < oo, for all t), then the size of a jump at time s is defined as
AX, = X, — X,_.5 In this context, the “true” price of risk is often defined by the
quadratic variation, QV;, of the process X;. Namely,

t
QVt:/ olds + Y AXZ,
0

s<t

where the variation of the continuous component (i.e., the integrated volatility) is given
by IV, = fg o2ds, and the variation of the price jump component is given by Q.J; =
> AXZ.

In the sequel, intraday stock returns are assumed to be observed over equally spaced
time intervals in a given day, where the sampling interval is denoted by A,,, and the
number of intraday observations is n. Thus the intraday log-return over the ith interval

is defined as

Tit = Xinpt — X(i—1)Ap,t-

SA jump process has finite activity when it makes a finite number of jumps, almost surely, in each
finite time interval, otherwise it is said to have infinite activity.
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It is well known that when the sampling interval goes to zero, the realized volatility, RV;,
which is calculated by summing up all successive intraday squared returns, converges

to QV4, as n — 0o, where

n

RV => 1}, = QVi = IV; + QJ;,
=1

where —,, denotes convergence in probability, uniformly in time.
To separate jump variation from integrated volatility, Andersen et al. (2007) show

that the jump and continuous components of realized variance can be constructed as:
RV J; = maz(RV; — I/X\/t, 0)

and

RVCy = RV, — RV J,

respectively, where I/Y\/t is an estimator of fg o2ds. Following Barndorff-Nielsen and
Shephard (2004), and Barndorff-Nielsen et al. (2006), we use tripower variation to

estimate the integrated volatility. In particular, define

3

)

v, =V

N

2 2[by
73’3“3

w|

where p, = E(]Z|?) is the gth absolute moment of the standard normal distribution,

and

n
Vingmaseme = Y ITaa ™ rim o™ | ric g™,
i=k

where m1, mo ...my are positive, such that Z]f m; = q. Based on the above decompo-
sition approach, Duong and Swanson (2011, 2015) separate jump variation into small
and large variation measures, using various truncation levels, . In particular, they
define realized small and large jump variation measures as follows:

n

. 2
RVLJy; = min(RVJ, Y 12 s, 154})

i=1

and

RVSJ,;=RVJ,— RVLJ,,,

respectively, where I(-) denotes the indicator function, which equals one if the absolute

return is larger than the truncation level, and is otherwise equal to zero. We are
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also interested in upside and downside variation measures associated with positive and
negative returns. Thus, following Barndorff-Nielsen et al. (2010) we construct realized
semi-variances, defined as: RS, = >, 7y, >0 RS, = Yol 12y, <o), and
RV, = RS;" + RS, . They show that the upside and downside semi-variances (RS;" and
RS, , respectively) each converge to the sum of one-half of the integrated volatility and
the corresponding signed jump variation. Namely,
1 st
RS, —, 2/0 olds + Z AXZI{ax, >0
s<t
and

1 t
RSt_ —u 2/0 Uzds+ZAXEI{AXS<O}'

s<t

We construct upside and downside jump variation measures as follows:
1~
RV JP, = max(RS;" — §IVt,0) (2.1)

and

1~
RV JN; = mazx(RS} — 51V;,0). (2.2)

In addition, signed jump variation can be calculated as the difference between these

upside and downside jump measures,
SRV J; = RVJP, — RV JN,. (2.3)

This measure captures asymmetry in upside and downside jump variation.

In our analysis, we further decompose upside and downside jump variation measures
into small and large components using thresholding method (see Mancini (2009), Duong
and Swanson (2015), Li et al. (2017), and the references cited therein for discussion
of thresholding methods). In particular, upside large jump variation based on fixed
truncation level, «, is defined as follows:

n
RVLJP,; = min(RVJP, Y 1} I, 5qy) (2.4)
i=1
and
n

RVLJNyy =min(RVJINy, Y 13 I, < vy)- (2.5)
=1
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We use a truncation level, v, that is constructed by estimating « %.ﬁ\/ EZ)AQLAQ, and is

data-driven, accounting for the time-varying diffusive spot volatility of different stocks
in the cross-section.” In the sequel, we consider three values for v, say 7! (with a = 4),
72 (with @ = 5), and 72 (with a = 6). Signed large jump variation (i.e., large jump

asymmetry) is defined as follows:
SRVLJ; = RVLJP, — RVLJNy. (2.6)

Our corresponding small jump variation measure is defined as the difference between

total jump variation and large jump variation. Namely,
RVSJP, =RVJP,— RVLJP, (2.7)

and

RVSJNy = RVJN; — RVLJN;. (2.8)

Signed small jump variation is defined as:
SRV SJ; = RVSJP, — RVSJN;. (2.9)

In order to analyze the predictability of various jump measures in the cross-section,
we normalize each of the jump variation measures discussed above by total realized
variation.

Of note, is that a natural alternative to our approach for calculating the upside and
downside jump variation measures in (2.1) and (2.2) is to use thresholding. Namely,
instead of using tripower variation, one can use truncated realized variation (TRV) as
a consistent estimator of integrated volatility, where TRV, = > | T?,tl{lr,-, J<an} —u
1V, = fé o2ds. Upside and downside jump variation measures can then be calculated
using:

n

RVJIP, = RS} =Y 17 T0<r, ,<an) (2.10)

=1

"For each stock, Li et al. (2017) use bipower variation as the fixed value for I/‘\/iz) We instead use

— (0 —~ (i

bipower variation as the initial value for the integrated volatility I Vi ), say, and [ Vi ) is estimated using
. . —~ (i —~(i—1

truncated bipower variation with threshold 'y<“1), say, where 'y<“1> is fixed only when |IV,(52) - IVil )|

—~ (i—1)

is smaller than 5% x IVE
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and
n

RVJIN, = RS; =Y 1} I{_a,<p <0} (2.11)
i=1

where a, is the truncation level.® Our empirical findings based on the use of (2.10)
and (2.11) to define RV JP; and RV JN, are qualitatively the same as those reported
in Section 2.4 based on the use of (2.1) and (2.2).
In order to measure skewness and kurtosis, we also construct higher order realized
return moments. Following Amaya et al. (2015),
Vn Z?:l 7"?,15
RV;% 7

RSK; = (2.12)

standardized daily skewness is defined as: and normalized daily realized kurtosis is

defined as:
no 4
ny iy Tit

RKT, =
t

(2.13)

Finally, it should be noted that we follow Amaya et al. (2015) and Bollerslev et al.
(2019b), and conduct our cross-sectional analysis at the weekly frequency. In partic-
ular, on each Tuesday, we compute the following weekly realized measures: RV, =
(22 Z?:o RV;_))'/? and RM}V = %(Z?:o RM;_;), where RV; is defined above, and
where RM; denotes any of the realized measures defined above other than RV, (e.g.,
RV JP;, RVJNy, SRV Jy, etc.) Hereafter, we shall drop the superscript “W” for the
sake of notational brevity. All of the descriptors used to denote the various realized
measures constructed in our empirical analysis are summarized in Table 2.1.

As described in detail in Section 2.4, the realized measures outlined above are used in
a number of different ways in our empirical analysis. First, we carry out single portfolio
sorts, in which we sort stock portfolios on the above realized jump measures, and predict
average excess returns, one-week ahead. In these experiments, we also calculate alphas
based on regressions that utilize the Fama-French and Carhart factors. In this first
part of our analysis, we also examine cumulative returns and Sharpe ratios. In addition
to the single portfolio sorts, we carry out double portfolio sorts, in which we sort not

only on realized jump risk measures, but also on various control variables, including

8Here, the threshold, a, = 31/ %I/‘\/EZ)A%AE), is estimated using the same procedure as in footnote 7.
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realized skewness and other firm specific characteristics. Using these double sorts, we
also examine the inter-play between individual stock-level jump variation and industry-
level jump variation. Needless to say, the purpose of our double-sorts is to examine
the robustness of our findings based on single sorts, after controlling for other realized
measures. Next, we carry out a series of Fama-MacBeth regressions, in order to check
the robustness of our findings to the inclusion of various firm specific characteristics.
Finally, we carry out an event study in which the effect of earning surprises on realized

jump measures is examined. For complete details, see Section 2.4.

2.3 Data

We utilize high frequency trading data obtained from the consolidated Trade and Quote
(TAQ) database. In particular, we analyze all stocks in the TAQ database that are listed
on the NYSE, Amex, and NASDAQ stock exchanges. There are 15,585 unique stocks
during the 1,246 weeks analyzed in this paper.” The sample period is from January 4,
1993 to December 31, 2016. Intraday prices are sampled at five minute intervals from
9:30 a.m. to 4:00 p.m. from Monday to Friday. Overnight returns are not considered
in this paper, and days with less than 80 transactions at a 5 minute frequency are
eliminated. For example, if AAPL has less than 80 trades on a particular day, then
AAPL is dropped from our sample, but only for that day. All high frequency data
used in this paper are cleaned to remove trades outside of exchange hours, negative or
zero prices or volumes, trade corrections and non-standard sale conditions, using the
methodology described in Appendix A.1 in Bollerslev et al. (2019b).

We constructed two variants of our dataset. The first is cleaned as discussed above.
The second classifies five minute intraday returns greater than 15% as abnormal and
replaces them with zeros. In the sequel, results based on analysis of the second dataset
are reported. However, results based on utilization of the first dataset are qualitatively

the same; and indeed key return results reported in this paper generally change by 1

9In some cases, multiple TAQ symbols are matched with a unique Center for Research in Security
Prices (CRSP) PERMNO. Over each quarter, the TAQ symbol which has the most observations is kept
and the other overlapping observations are dropped.
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basis point or less when the former dataset is used in our analysis. Complete results
are available upon request from the authors.

Daily and monthly returns, and adjusted numbers of shares for individual securities
are collected from the CRSP database. Delisting returns in CRSP are used as returns
after the last trading day. Daily Fama-French and Carhart four factor (FFC) portfolio
returns are obtained from Kenneth R. French’s website.

Following Amaya et al. (2015) and Bollerslev et al. (2019b), we also construct var-
ious lower frequency firm level variables that might be related to future returns, such
as the market beta (BETA), the firm size, the book-to-market ratio (BEME), momen-
tum (MOM), short-term reversals (REV), idiosyncratic volatility (IVOL), co-skewness
(CSK), co-kurtosis (CKT), maximum (MAX) and minimum (MIN) daily return in the
previous week, and the Amihud (2002) illiquidity measure (ILLIQ). For a complete list
of these firm specific control variables, refer to Table 2.1. For a detailed description of
these variables, including the methodology used to construct them, see Appendix A.2
in Bollerslev et al. (2019b).

Note that while the majority of our analysis is based on the examination of indi-
vidual stocks, in our double sorts, there are some cases (that are reported in Section
2.4.4) where we examine the inter-play between individual stock-level jump variation
and industry-level jump variation. In this case, we follow the Fama-French industry
classification approach, and group stocks into 49 industries based on their SIC codes,

which are obtained from CRSP.

2.3.1 Unconditional Distributions of Realized Measures

Figure 2.1 displays kernel density estimates of the unconditional distributions of each
of our realized measures, across all firms and weeks. The top two panels in the fig-
ure show the distributions of signed jump variation and realized skewness. Both of
these distributions are approximately symmetric and peaked around zero. The skew-

ness distribution is more fat-tailed, however.'® The middle two panels of Figure 2.1

10The kurtosis of signed jump variation is 4.36. For realized skewness, the analogous statistic is 12.04.
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display the distributions of signed small and large jump variation. Similar to signed
jump variation, both signed small and large jump variation mesaures are approximately
symmetric around zero, but signed small jump variation is less fat-tailed.!! Consistent
with the results in Amaya et al. (2015) and Bollerslev et al. (2019b), realized volatility
and realized kurtosis are both right skewed and very fat-tailed, as shown in the bottom
two panels of the figure.!?

Figure 2.2 shows the time variation in the cross-sectional distribution of each realized
measure using 10-week moving averages. In particular, 10th, 50th, and 90th percentiles
for each realized measure in the cross-section are plotted. Thus, dispersion at any
given time in these plots reflects information about the cross-sectional distribution
of the realized measure. Inspection of Panels A and B in the figure reveal that signed
jump variation and realized skewness have stable dispersion, for all three cross-sectional
percentiles, over time, while the cross-sectional dispersion in realized volatility and
kurtosis are rather time-dependent (see Panels C and D). Additionally, similar to the
cross-sectional distribution of signed jump variation, the percentiles for signed small
and large jump variation measures are quite steady over time, as indicated in Panels

E-H.

2.3.2 Summary Statistics and Portfolio Characteristics

Table 2.2 contains various summary statistics for all of the realized measures summa-
rized in Table 2.2. In Panel A, the cross-sectional means and standard errors for each
of the realized measures is given. This is done for two different truncation levels, de-
noted as y! = 4 %ﬁ/f)A%‘lg and v2 =5 %I/Y\/Ei)A%‘lg. As might be expected, jump
variation is quite sensitive to the choice of v. For example, the (normalized) mean of
RVSJP (positive (upside) small jump variation) increases from 0.1180 to 0.1715 when

the threshold is increased from ! to 2. Needless to say, various measures remains the

same, as they are independent of ~.

1 The unconditional kurtosis is 6.43 and 3.51, for signed small and large jump variation, based on
truncation level 4'; and 8.87 and 3.09 based on truncation level 42, respectively.

12The kurtosis is 15.85 and 27.24, for the unconditional distribution of realized volatility and realized
kurtosis, respectively.
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Panel B of Table 2.2 contains cross-sectional correlations for all of the realized
measures. In accord with the findings reported by Amaya et al. (2015) and Bollerslev
et al. (2019b), signed jump variation (SRVJ) and realized skewness (RSK) are highly
correlated with each other and have significantly positive correlations with the short
term reversal variable (REV); as well as with maximum (MAX) and minimum (MIN)
daily returns in the previous week.

Interestingly, we also find that signed large jump variation (SRVLJ) is highly cor-
related with SRVJ and with RSK. However, signed small jump variation (SRVSJ) has
lower correlation with SRVJ and much smaller positive correlation with RSK. This
finding is consistent with our finding discussed below that realized skewness captures
information that is primarily contained in large jumps; and serves as an important dis-
tinction between the findings in this paper and those reported in the papers discussed
above.

Table 2.3 complements Table 2.2 by sorting stocks into quintile portfolios based on
different realized measures. On each Tuesday, stocks are ranked by the realized variation
measures, and we calculate the equal-weighted averages of each firm characteristic in
the same week. Panels A, B, C and E report summary statistics for portfolios sorted
by SRVJ, SRVLJ, SRVSJ, and RSK, respectively. Consistent with the correlations
contained in Table 2.2, firms with larger signed small and large jump variation measures
tend to have higher signed jump variation, realized skewness, REV, MAX and MIN.
Firms with high realized volatility and realized kurtosis (see Panels D and F) tend to

be illiquid and small.'?

2.4 Empirical Results

In this section, results based on stocks that are sorted into quintile portfolios based on
a single different realized measure are first reported. These single (univariate) portfolio

sort results are collected in Tables 2.4 to 2.7. Results based on double sorts are reported

13See the Supplementary Appendix for results based on the examination of additional quintile port-
folios that are constructed based on ex-ante risk measures and displayed with ex-post risk measures.
It is clear that sorting stocks based on jump risk measures results in portfolios with the desired risk
exposures.
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(in Tables 2.8 to 2.10). We assume a weekly holding period, and return calculations
reported in the tables are carried out as follows. At the end of each Tuesday, stocks are
sorted into quintile portfolios based on different realized variation measures (see Panel
A of Table 2.1). We then calculate equal-weighted and value-weighted portfolio returns
over the subsequent week. We report the time series average of these weekly returns for
each portfolio (these returns are called “Mean Return” in the tables) In addition, we
regress excess return of each portfolio on the Fama-French and Carhart (FFC4) factors

to control for systematic risks, using regression of the form

rig—re = i+ BT (MKT,—rp )+ 80P SM By + 8™ HM L+ 87 MPUMD, +€;

(2.14)
where r;; denotes the weekly return for firm i, 77, is the risk-free rate; and MK,
SMBy, HM L;, and UM D, denote FFC4 market, size, value and momentum factors,
respectively. The intercepts from these regressions (called “Alpha” in our tabulated
results), measure risk-adjusted excess returns, and are also reported in Tables 2.4 to
2.13. Needless to say, our objective in these tables is to assess whether predictability
exists, after controlling for various systematic risk factors. Finally, in Tables 2.14,
we report the results of cross-sectional (firm level) Fama-MacBeth regressions used to
investigate return predictability when simultaneously controlling for multiple realized

measures and firm characteristics.

2.4.1 Single (Univariate) Portfolio Sorts Based on Realized Measures

In this section, we first discuss the results contained in Table 2.4. Recall that the “Mean-
Return” in this table is an average taken over our entire time series of equal-weighted
and value-weighted portfolio returns, for single sorted portfolios based on positive jump
variation (RVJP), negative jump variation (RVJN) and signed jump variation (SRVJ).
Values in parentheses are Newey-West t-statistics (see Bollerslev et al. (2015) and Pe-
tersen (2009) for further discussion). Panel A provides results for portfolios sorted by
RVJP. Inspection of the entries in this panel indicate that mean returns and alphas of

high-low portfolios (i.e., the difference in returns (alphas) between the fifth and first
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quintiles) are all negative, indicating a negative association between RVJP and subse-
quent stock returns. Interestingly, the alpha of -7.71 basis points (bps) is insignificant
for the high-low spread for the equal weighted portfolio, while the mean return of -5.63
bps is only significant at a 10% level for the high-low spread for the value weighted
portfolio.

The lack of statistical significance for some of the mean return values reported in
Panel A does not characterize our findings when negative and signed jump variation
measures are utilized for sorting. Moreover, the magnitudes of the mean returns and
alphas are usually three or more times larger when sorting on negative and signed
jump variation (to see this, turn to Panels B and C of Table 2.4). In Panel B, the
high-low spread of mean returns equals 36.06 bps, with a t-statistic of 6.47 for the
equal-weighted portfolio, and 15.13 bps with a t-statistic of 3.75 for the value-weighted
portfolio. Moreover, both equal-weighted and value-weighted portfolios generate signif-
icant positive abnormal future returns measured by the alphas. These results clearly
point to a statistically significant positive association between negative jump variation
and the following week’s returns.

Panel C in Table 2.4 contains results for portfolios sorted by signed jump variation.
The negative high-low spreads indicate a statistically significant negative association
between signed jump variation and future returns. In particular, a strategy buying
stocks in the lowest signed jump variation quintile and selling stocks in the highest
signed jump variation quintile earns a mean return of 40.82 bps with a t-statistic of
9.85 each week for the equal-weighted portfolio and 25.02 bps with a t-statistic of 5.78
for the value-weighted portfolio. These results are consistent with the results reported
in Bollerslev et al. (2019b). Interestingly, almost all of the mean returns listed in Table
2.4 are “alpha” (see tabulated average alphas in the table), and cannot be explained
by standard portfolio risk factors using regressions of the type given above as equation
(2.14).

A key question that we provide evidence on in this paper is whether the results
summarized in Table 2.4 carry over to the case where small and large jump variation

is separately sorted on. First, consider large jumps. Table 2.5 reports the results for
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portfolios sorted by positive, negative and signed large jump variation, respectively.
Similar to positive jump variation, positive large jumps negatively predict subsequent
returns, but the predictability is not significant, regardless of the truncation level ()
used to separate small and large jumps, and regardless of portfolio weighting used. This
is evidenced by the fact that the t-statistics for mean returns and alphas of high-low
portfolios all indicate insignificance, at a 5% testing level, regardless of truncation level.
Thus, there is no ambiguity, as in Panel A of Table 2.4. Positive jump variation is not
a significant predictor, under our large jump scenario. On the other hand, we shall
see that sorting on small and large negative variation measures yields significant excess
returns, as does sorting on small positive jump variation, under both equal and value
weighting schemes.

As just noted, equal-weighted high-low portfolios sorted on large negative jump
variation generate significant positive returns and alphas (see Panel B of Table 2.5).
However, analogous returns and alphas under value weighting are not significant. Signed
large jump variation is sorted on in Panel C of Table 2.5. Signed large jump variation
is useful for undertaking a long-short trading strategy based on the difference between
large upside and downside jump variation measures. Inspection of the results in this
panel of the table reveals that the high-low spread for the equal weighted portfolio
generates an average risk-adjusted weekly return of -28.36 bps (with a t-statistics of
-9.39) and -9.25 bps (with a t-statistics of -2.87) for the value-weighted portfolio, for
truncation level equal to y!. Results based on 72 (i.e., our larger truncation level)
are also significant, although magnitudes are lesser and only for our equal weighted
portfolio.'* In particular, observe that when large jump variation is constructed using
72, the high-low spreads for value-weighted portfolios sorted by downside or signed large
jump variation measures are insignificant, suggesting that small firms have stronger
relationships (than larger firms) between signed (or negative) large jump variation and
subsequent returns. This may be due to the fact that smaller firms are in some ways

more susceptible to changing market conditions than larger firms.

M Empirical findings based on 4 are similar to those discussed above, and hence are not reported.
This robustness of our findings to the choice of 7y also characterizes the other empirical findings discussed
in the sequel.
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Table 2.6 summarizes results analogous to those reported in Table 2.5, but for
positive, negative and signed small jump variation measures. Similar to large jump
measures, positive and signed small jump variation measures negatively predict future
returns, and negative small jump variation measures positively predict returns in the
following week. By contrast, the differences in average (risk-adjusted) returns between
equal-weighted and value-weighted long-short portfolios based on RVSJP and RVSJN
are smaller than those for portfolios based on large jumps (compare the entries for the
high-low quintiles under the two weighting schemes in Panels A and B of Table 2.6
with like entries in Panels A and B of Table 2.5). These results indicate that big firms
have a stronger relationship between small jump variation and future returns than
that between large jumps and subsequent weekly returns. Since stocks for big firms
are more liquid and price discovery more rapid, the predictabilities of large jumps are
much weaker or insignificant for big firms. This finding is in line with Bollerslev et al.
(2019b), who document that the predictability of signed jump variation is stronger for
small and illiquid firms and is driven by investor overreaction. In addition, when using
our larger truncation level, v2, value-weighted high-low spreads based on signed small
jump variation are larger than those based on signed total jump variation and signed
large jump variation. This result implies that a long-short strategy associated with
signed small jump variation generates the highest value-weighted risk-adjusted returns,
given the use of an appropriate truncation level to separate small and large jumps.

Table 2.7 reports results for portfolios sorted by realized volatility, realized skew-
ness, realized kurtosis, and continuous variance. Consistent with the results in Amaya
et al. (2015) and Bollerslev et al. (2019b), there is a significant negative relationship
between realized skewness and future returns, while the association is not significant
between either realized volatility or realized kurtosis and returns in the following week,
regardless of portfolio weighting scheme. In addition, continuous variance significantly
and negatively predicts one-week ahead returns for equal-weighted portfolios, but this

negative association is not significant for value-weighted portfolios.
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2.4.2 Cumulative Returns and Sharpe Ratios

Not surprisingly, our findings based on univariate portfolio sorts suggest that strategies
that utilize different realized measures deliver different risk-adjusted average returns.
In order to investigate this result further, we calculate cumulative returns and Sharpe
ratios for short-long portfolios, sorted on various risk measures that are described in
Table 2.1, including SRVJ, RSJ, SRVLJ, SRVSJ, and RSK. In addition, for comparison
purposes, we also carry out our analysis using the relative signed jump variation measure
(called RSJ) that is examined by Bollerslev et al. (2019b). Our experiments are carried
out as follows. Beginning in January 1993, various short-long portfolios are constructed,
with an initial investment of $1. These portfolios are re-balanced and accumulated at
a weekly frequency, until the end of 2016.> Figure 2.3 plots portfolio values over
time. Consistent with our results based on single portfolio sorts, inspection of the
plots in this figure indicates that for equal-weighted portfolios sorting on signed jump
variation (SRVJ) yields the largest portfolio accumulations; and for value-weighted
portfolios, sorting on signed small jump variation (SRVSJ) yields the largest portfolio
accumulations. 16

Now, consider the Sharpe ratios reported below, which are reported for various jump

measures, and are constructed based on truncation level 42 = 5 %ﬁ\/ E”A%‘lg.

Sharpe Ratios
SRVJ RSJ SRVLJ SRVSJ RSK

Equal-Weighted 2.1342 2.1363 1.8556 1.8161 2.2234
Value-Weighted 1.1322 1.1310 0.1611 1.2755 0.8665

The entries in this table are Sharpe ratios for equal and value-weighted short-long
portfolios constructed using SRVJ, RSJ, SRVLJ, SRVSJ, and RSK. Recall that RSK
is realized skewness (see Table 2.1 for definitions of these measures). The sample of

stocks used for Sharpe ratio calculations includes all NYSE, NASDAQ and AMEX listed

15Cumulative returns calculations do not include the risk-free rate. For a definition of cumulative
returns both with and without the weekly risk-free rate, see Bollerslev et al. (2019b).

16Note that RSJ, which measures the same signed jump variation as SRVJ, although using different
estimation methodology, generates the highest cumulative return for equal-weighted portfolios, but is
dominated by SRVSJ for value-weighted portfolios.
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stocks for the period January 1993 to December 2016. At the end of each Tuesday, all
of the stocks in the sample are sorted into quintile portfolios based on ascending values
of various realized risk measures. A high-low spread portfolio is then formed as the
difference between portfolio 1 and portfolio 5, and held for one week, where 1 and
5 refer to quintiles, as in Tables 2.3 to 2.7. The Sharpe ratio is calculated with the
one-week ahead returns.

Interestingly, for equal-weighted portfolios, the RSK-based short-long strategy yields
the highest Sharpe ratio (i.e., 2.2234), although the ratio of 2.1342 for SRVJ is approx-
imately the same. Still, the success of the RSK measure is likely due to its relatively
stable performance, compared with other jump-based strategies. This finding is similar
to the findings discussed in Xiong et al. (2016), who show that tail-risks can be sub-
stantially reduced by forecasting skewness. Note also that the signed small jump vari-
ation (SRVSJ) based portfolio has the highest Sharpe ratio, among all value-weighted
portfolios. However, it is clear that all equal-weighted portfolios outperform their cor-
responding value-weighted counterparts. This result is consistent with the finding dis-
cussed above that small and illiquid firms tend to react more strongly to realized risk

measures.

2.4.3 Double Portfolio Sorts Based on Realized Measures

To further investigate whether small and large jumps are priced differently, we utilize
double portfolio sorts. In particular, we carry out double sorts in order to examine
the robustness of our findings based on single sorts, after controlling for other realized
measures. Table 2.8 reports returns and alphas from various of these sorts in which
we alternate the sorting order among SRVJ, SRVLJ and SRVSJ. When we first sort
by total jump variation, and then sort stocks based on SRVLJ or SRVSJ, a negative
relation only exists between SRVSJ and subsequent weekly returns (see Panels A and
B of the table). This result indicates that there is no marginal predictive content
associated with large jumps, when conditioning on the predictive content associated
with total jump variation, while small jumps have unique information for predicting

future returns, even compared to total jumps.
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Panel C reports returns and alphas based on sorting on SRVSJ after controlling for
SRVLJ. Both the equal- and value-weighted high-low spreads and alphas are statistically
significant in this case, while this is not the case if stocks are first sorted by SRVSJ and
then by SRVLJ, as shown in Panel D. More specifically, the high-low return is -25.38 bps
(with a t-statistic of -6.61), for the value-weighted portfolio in Panel C, and is -3.77 bps
with a t-statistics of -1.49 in Panel D, for the value-weighted portfolio. This indicates
that the predictable content in large jumps becomes negligible after controlling for small
jumps.

Bollerslev et al. (2019b) document that the negative association between realized
skewness and one-week ahead returns is reversed when controlling for the signed jump
variation. To further investigate the relationship between skewness and different jump
variation measures, we use double portfolio sorts to control for different effects that are
associated with cross-sectional variation in future returns.

Panel A of Table 2.9 reports average returns and corresponding t-statistics for 25
portfolios sorted by SRVJ (signed jump variation), controlling for realized skewness
(RSK). At the end of each Tuesday, stocks are first sorted into quintiles based on
realized skewness, and then within each quintile portfolio, we further sort stocks into
quintiles based on signed jump variation. We also report the equal- and value-weighted
returns in the following week and Fama-French and Carhart four-factor alphas for the
long-short portfolios and the averaged portfolios across quintiles. Inspection of the
results in this table indicates that the negative association between SRVJ and future
returns still exists, after controlling for RSK, indicating that there is unique predictive
information contained in signed jump variation. Panel B in this table reports results for
portfolios sorted first by SRVJ and then by RSK. The high-low spreads of the averaged
portfolios are positive after controlling for SRVJ, confirming the results reported in
Bollerslev et al. (2019b).

Panel A of Table 2.10 contains results for portfolios sorted by SRVLJ (signed large
jump variation) after controlling for RSK. As noted above, the negative association be-
tween SRVLJ and future returns is reversed after controlling for skewness. By contrast,

this issue doesn’t exist for portfolios sorted by SRVSJ (signed small jump variation)
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when controlling for skewness, as shown in panel B of Table 2.10, indicating that signed
small jump variation has unique information about future return premia. However, first
accounting for skewness negates the usefulness that signed large jump variation has for
predicting future returns. This finding serves as an important distinction between the
predictive content of small and large jumps. Whereas the former can be forecast by
realized skewness, the latter cannot.

Finally, Tables 2.11 contains results for portfolios sorted on RSK, after controlling
for SRVLJ and SRVSJ, respectively. Inspection of the entries in this table indicates
that the high-low spreads are negative, except in select value weighted portfolio cases,
when controlling for SRVSJ. This is not surprising since skewness captures information
from both SRVLJ and SRVSJ, while the negative association between realized skewness
and subsequent returns remains, when controlling for either SRVLJ or SRVSJ, in most
cases. Of note is that this negative association disappears for some value-weighted
portfolios, when controlling for SRVSJ, suggesting that signed small jump variation
(especially for big firms) is the main driver of the signed total jump variation. These
findings are consistent with the findings documented by Bollerslev and Todorov (2011)

that S&P 500 market portfolios tend to have symmetric jump tails (large jumps).

2.4.4 Using Double Portfolio Sorts to Examine Stock-Level Versus

Industry-Level Predictability

In this section, we carry out an additional set of double portfolio sort experiments, in
which industry based investing is compared with individual stock based investing. Our
earlier findings indicate that low signed jump variation investing (buying stocks with low
signed jump variation and shorting stocks with high signed jump variation) can deliver
significant risk-adjusted returns (this is similar to low risk investing, and is a result
also found by Bollerslev et al. (2019b), for example). In order to examine whether this
investment strategy relies on industry betting or stock selection within industries (or
both), we form double sorted portfolios based on industry-level and stock-level signed
jump risk variation. In particular, each Tuesday we group stocks into 49 industries

based on SIC codes. Industry-level signed jump risk is calculated as the value-weighted
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average of signed (large/small) jump variation measures for stocks within each industry.
Thus, stocks in the same industry have the same industry signed (large/small) jump
variation during a given week. Stock-level signed jump risk is calculated as outlined in
the above. Double sorts are then used to investigate the selection effects at industry-
and stock-level. Namely, stocks are sorted into 25 portfolios based on industry- and
stock-level signed (large/small) jump variation quintiles. With this particular variety
of sorting, results are independent of the order in which stocks are sorted.

Figure 2.4 depicts the percentage of stocks in each portfolio (see Panel A), and the
market capitalization in these portfolios (see Panel B). If industry-level selection and
stock-level selection lead to different quintile portfolios (i.e. off-diagonal portfolios in
the figures have non-zero membership), it is possible to separate these two effects using
double sorts. Namely, there are different industry- and stock-level effects. Both panels
indicate this to be the case.

Tables 2.12 to 2.13 report our empirical findings based on our double portfolio
sort experiments. In particular, Table 2.12 reports results for sorting done on signed
jump variation (SRVJ), while Table 2.13 reports results for sorting done on signed
large jump variation (SRVLJ) and signed small jump variation (SRVSJ), respectively.
Entries in the tables are mean returns and alphas, as in previous tables. However,
in these tables we also report industry-level effects and stock-level effects. These are
reported in the last two rows of entries in each panel of the tables. The first of these
two rows, called “Industry-Level Effect” reports average high-low returns and alphas
by averaging across quintiles in the high-low and alpha columns of the table (these
are industry-level results). The second of these two rows, called “Stock-Level Effect”
reports average high-low returns and alphas by averaging across quintiles in the high-
low and alpha rows of the table (these are stock-level results). Summarizing, rows in
these tables display portfolios formed by stocks in the same stock-level SRVJ, SRVLJ,
or SRVSJ quintiles, while columns report results for portfolios formed by stocks in the
same industry-level SRVJ, SRVLJ, or SRVSJ quintiles.

Turning to Table 2.12, notice, for example, that a strategy of buying stocks in the

highest industry SRVJ quintile and selling stocks in the lowest industry SRV J quintile



27

generates an equal-weighted average return of 29.63 bps with a ¢-statistic of 5.66, and
the corresponding value-weighed average return is 11.48 bps with a t-statistics of 2.23
(see Table 2.12). This finding is interesting, as it suggests that the negative association
between SRVJ and future returns is reversed in the industry level. The equal-weighted
average of the high-low row (i.e., the average stock-level effect) is -45.28 bps with a
t-statistic of -11.39 and the alpha is -44.70 bps with a t-statistic of -11.50, indicating
that the stock-level effect is economically significant. At the stock-level, investors prefer
stocks with high SRVJ, requiring lower returns under higher SRVJ, given that there is
a large probability of extremely large positive jumps. By contrast, when sorting at the
industry-level, investors are more interested in industry exposure with lower SRVJ, or
in return distributions concentrated to the right. Lottery-like payoff exposure comes
from individual stocks, not from industry bets. These results are mirrored in Table
2.13, where SRVLJ and SRVSJ are the sorting measures. However, average stock- and
industry-level returns and alphas are much higher under SRVSJ sorting than under
SRVLJ sorting. For example, buying stocks in the highest industry SRVLJ quintile
and selling stocks in the lowest industry SRVLJ quintile generates an equal-weighted
average return of 14.83 bps with a t-statistic of 3.77 under SRVLJ sorting (see panel A
of Table 2.13), versus an equal-weighted average return of 26.69 bps with a t-statistic
of 5.02 under SRVSJ sorting (see panel B of Table 2.13).

2.4.5 Firm-Level Fama-MacBeth Regressions

Table 2.14 gathers results based on firm-level Fama-MacBeth regressions, which we
run in order to investigate the return predictability associated with variation measures,
when controlling for multiple firm specific characteristics. Regressions are carried out

as follows. At the end of each Tuesday, we run the cross-sectional regression,

K K>
Tit+1 = Yot + Z’Yj,tXi,j,t + Z bsiZisp + €ipyr, t=1,..T, (2.15)
=1 s=1

where 7; ;41 denotes the stock return for firm ¢ in week ¢ + 1, K; is the number of
potential variation measures, and X; ;; denotes a relevant realized measure at the end

of week t. In addition, there are K5 variables measuring firm characteristics, which
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are denoted by Z; ;; (see Section 2.3 for details). After estimating the cross-sectional
regression coefficients on a weekly basis, we form the time series average of the resulting
T weekly 7;+ and as,t values, in order to estimate the average risk premium associated

with each risk measure. Namely, we construct

T T

1 ~ ~ 1 ~ _

i = TZ’YN’ and ¢s = T Z(b&t, for j=1,..,Ki, s=1,..., K».
t=1 t=1

Panel A of Table 2.14 reports results for regressions on various realized variation
measures, without controlling for firm specific characteristics. Consistent with our re-
sults based univariate sorting, signed jump variation (SRVJ) significantly negatively
predicts cross-sectional variation, in these weekly returns regressions. Additionally,
both signed small and large jump variation measures negatively predict future weekly
returns. Finally, both small and large upside (downside) jump variation measures neg-
atively (positively) predict subsequent weekly returns. However, when including mea-
sures that contain information from both small and large jump variation measures, as
well as realized skewness, the negative association between skewness and future returns
is reversed (see the results for the regressions labeled IX, XII, XV, XVI). In partic-
ular, skewness drives out signed large jump variation in regression XIII by reverting
the negative association between the latter and future returns. If only small jumps are
considered as control variables, skewness still negatively predicts future returns. This
again indicates that signed small jump variation has unique and significant information
about future returns.

Panel B of Table 2.14 reports regression results for the same set of regressions in
panel A, but controlling for various firm specific characteristics, ranging from BETA to
ILLIQ (see Table 2.1 for details). In these regressions, signed (small) jump variation
is always significant. Additionally, skewness significantly negatively predicts future
returns in regressions that only include small jump variation. This provides yet further
evidence that signed small jump variation has unique and significant information about

future returns, while large jumps have information in common with realized skewness.
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2.4.6 Pricing Distinctions Between Small and Large Jumps

The results in previous sections show that small and large jump variation measures
contain different information, and thus have different predictive content. To further
investigate whether the differences are driven by distinct economic factors, we provide

empirical evidence on the inter-relationship between jumps and news.

2.4.6.1 Jumps and News Announcement

We begin by examining the relationship between jumps and firm-level news announce-
ments. In order to do this, we construct event windows using the approach of Bernard
and Thomas (1989). We then plot the dynamics of SRVJ, SRVLJ, and SRVSJ around
earnings announcements. In particular, following Livnat and Mendenhall (2006), the
earning surprise (SUE) for each stock is defined as

Xt — Ejt)

(
Ej, = 2.1
SUE;, B (2.16)

where E;; and X;; denote the analysts’ expectations and reported actual earnings per
share, respectively. Here, P;; is the price per share for stock j at the end of quarter t.
In a [-12,12] week event window, where week zero denotes the earning announcement
week, stocks are sorted into tertile portfolios by the value of SUE at the end of week
zero. We then calculate the equal-weighted and value-weighted average of jump mea-
sures for each tertile portfolio at each week. Figure 2.5 displays various jump variation
measures of portfolios with the most negative, median, and positive earning surprises.
It turns out that large (both positive and negative) jump variation measures are higher
during announcement weeks, regardless of news sentiment (i.e., regardless of whether
SUE is positive or negative). However, positive large jump variation (RVLJP) is higher
on days with the most positive earning surprises, and negative large jump variation
(RVLJN) reaches its peak on days with the most negative earning surprises. In con-
trast, both small positive and negative jump variation measures (RVSJP and RVSJN)
have lower magnitudes during announcement weeks. The size of the reduction asso-
ciated with small positive jump variation (RVSJP) is larger on days with the most

negative earning surprises, while small negative jump variation (RVSJN) decreases the
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most on days with the most positive surprises. For signed jump variation, jump mag-
nitudes increase (relative to non-earnings-surprise weeks) on positive surprise days and
decrease on negative surprising days. These results indicate that big news, regardless of
sentiment, simultaneously leads to increases in the magnitude of large jump variation,
and reductions in the level of small jump variation.

The other direction in which we investigate the linkage between news announce-
ments and jump variation is based on an exploration of whether news announcements
affect the frequency of occurrence of either small or large jumps. Table 2.15 reports the
average percentage of firms exhibiting particular types of jumps on days with and with-
out earning surprises. Specifically, on each announcement date, all stocks exhibiting
earnings are sorted into tertile portfolios based on the absolute value of the earning sur-
prise (SUE). The categories sorted on are denoted as “small”, “medium”, and “large”,
with tertiles calculated by appropriate sorting of the firms based on the absolute values
of the firms’ earnings surprise magnitudes. Then, within each tertile, the percentage of
firms exhibiting a particular type of jump (averaged across all earnings surprise days)
is calculated and reported. For these calculations, only days in which at least 3 firms
report earning surprises and included in our sample.!” Thus, for example, if 12 firms re-
port earning surprises, then 4 firms will be represented in each of the 3 tertiles. Turning
to the results in the table, note, for example, that the entry 0.3042 in the sixth col-
umn of Panel A indicates that 30.42% of firms in the “small surprise” tertile portfolio
recorded a large jump (measured by SRVLJ) on small surprise days, on average, across
the entire daily sample. By contrast, 89.83% of firms exhibit small jumps (measured
by SRVSJ) on days with small surprises.

Two clear conclusions emerge upon examination of the results in this table. First,
when the magnitude of earning surprises increases, the average percentage of firms with
large jumps (SRVLJ) increases from 30.42% to 37.37%. In particular, in Panel A, note
that for the “Small” tertile, the percentage of firms exhibiting large jumps (SRVLJ)

is 30.42%, while for the “Large” tertile, the percentage is 37.37%. By contrast, the

1"Results are virtually identical if we only include days in which at least 12 or 24 firms report earnings
surprises.
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percentage of firms with small jumps decreases as the relative magnitude of earnings
surprises increases (i.e., the percentage of firms associated with SRVSJ decreases from
89.83% to 88.29%). This result indicates that “big news” is associated with an increase
in the prevalence of large jumps. Second, the prevalence of jumps differs depending
upon whether one tabulates results on earnings surprise days (Panel A) or on non-
earnings surprise days (Panel B). For example, large news surprises are associated with
large jumps for 31.07% of firms on non-announcement days (see Panel B) and 37.38% of
firms on announcement days (Panel A). This result is consistent with event study finding
that jump magnitudes are larger on announcement days than non-announcement days.

It is also worth noting that Panel C of Table 2.15 reports t-statistics that test
whether the differences in percentages of jumps in different portfolios are significant. In
this table, “None” refers to the case where percentages are calculated on non-earnings-
announcement days. Thus, the fact that the “Large-None” t-statistic associated with
SRVLJ is 16.85, indicates that the percentage of large jumps on “large-surprise” earn-
ings announcement days is significantly greater than the percentage of large jumps
on non-earnings-announcement days. This in turn implies that large jumps tend to
occur on “large-surprise” earnings announcement days. On the other hand, the re-
verse is true in the case of small jumps. In particular, the “Large-None” t-statistic
associated with SRVSJ is -10.85, indicating that small jumps tend to occur on non-

earnings-announcement days.

2.4.6.2 Systematic Versus Idiosyncratic Risks

To further explore the unique information embedded in either large or small jump
variation measures, and examine their association with systematic and idiosyncratic
risks, we identify the effect of diversification on both small and large jumps. In order
to do this, we construct two alternative measures of SRVLJ and SRVSL. The ratio of
these is plotted in Figure 2.6.

Method 1: For jump measures using this method, we simply construct SRVLJ
and SRVSJ as done earlier in the paper. Namely, we sort stocks into quintiles based on

either weekly SRVLJ or SRVSJ. Then, we construct daily ratios of SRVLJ to SRVSJ for
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each individual stock in a given quintile. Finally, these ratios are aggregated, forming
weekly measures of SRVLJ/SRVSJ. These measures are then used to form equal- or
value-weighted ratios of SRVLJ to SRVSJ. These values are depicted in red (solid line)
in Figure 2.6.

Method 2: For jump measures using this method, we start by constructing the
same quintiles (based on weekly SRVLJ and SRVSJ) as done above. Then, we use
the 5-minute returns for each stock in a given quintile in order to construct 5-minute
aggregate portfolio returns for that quintile. We then construct daily jump measures
using these portfolio returns (called SRVLJ and SRVSJ, and SRVLJ/SRVSJ), which
are porfolio versions of the similar measures constructed using Method 1. Finally, daily
measures are aggregated into weekly measures. These value are depicted in blue (dotted
line) in Figure 2.6.

Comparing jump variation ratios constructed in these two different ways allows us
to explore the importance of diversification when measuring jump variation. Turning
to our findings, Figure 2.6 shows the time series of aggregated (Method 2) and weighted
average (Method 1) jump variation measures for the first quintile portfolios. The fact
that Method 1 (red line) is much smoother than Method 2 (blue line) means that the
small jump component in the ratio of SRVLJ/SRVSJ reamins much larger than in the
other case. Thus, the obvious difference between aggregated and weighted averages of
SRVLJ/SRVSJ indicates that small jump variation is more likely to be diversified away
than large jump variation. This can be immediately seen upon examination of the plots
in any of the four panels in the figure. Small jump variation is therefore more closely
related to firm specific or idiosyncratic risks, while large jump variation is more likely
to be systematic risks. ®

Another way to explore the relationship between systematic and idiosyncratic risks
is to carry out Fama-MacBeth type regressions where the dependent variable is one of

our jump variation measures and the independent variables are firm characteristics.

18See the Supplementary Appendix for plots of jump variation measures for the other quintile
portfolios.

19Specifically, our objective in this section is to discuss regressions of the form given in equation
(2.15), with the dependent variable replaced by various realized variables.
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The results from a number of these sorts of regressions are reported in Table 2.16.
Evidently, the firm characteristics always explain more of the dynamics associated with
small jumps than with large jumps. This finding is supported by the fact that adjusted
R? are higher when the dependent variable is a small jump variation measure (compare
the results of regressions I and IT with III and IV). This again suggests that small jump

variation is more likely to be associated with idiosyncratic risks.2’

2.5 Concluding Remarks

In this paper, we add to the literature that explores the relationship between equity
returns and volatility. In particular, we focus on the strand of this literature that
explores the data for evidence of asymmetry (non-linearity) in the return volatility
trade-off. Following Bollerslev et al. (2019b), we decompose realized variation into
upside and downside semi-variances (good and bad volatilities). We then take the
additional step of partitioning the semi-variances into small and large components.
Within this context, we examine the marginal predictive content of small and large
jump variation measures. We also examine the importance of earnings announcements
for examining the linkages between small and large jumps and news.

We find that sorting on signed small jump variation leads to value weighted high-low
portfolios with greater average returns and alphas than when either signed total jump
or signed large jump variation is sorted on. We also find that there is a threshold,
beyond which “large” jump variation contains no marginal predictive ability, relative
to that contained in small jump variation. Indeed, including large jump variation can
actually be detrimental to predictive accuracy, as average returns and alphas for high-
low portfolios actually decline when total variation is instead utilized in some of our

prediction experiments. Analysis of returns and alphas based on industry double-sorts

20Gee the Supplementary Appendix for results from double-sorted portfolios that condition on various
control variables. In these tables, it is noteworthy that when stocks are first sorted by a control variable
(e.g., illiquidity, volatility, firm size and reversal), the SRVJ (SRVLJ and SRVSJ) effect is much higher
within quintile portfolios with high illiquidity, high volatility, small firm size, and low reversal. This
result suggests that all of these control variables significantly contribute to the predictability of jump
variation measures. This result provides additional confirmation to earlier findings reported in Bollerslev
et al. (2019Db).
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indicate that the benefit of small signed jump variation investing is driven by stock
selection within an industry, rather than industry bets. Investors prefer stocks with
a high probability of large positive jump variation, but they also tend to overweight
safer industries. Additionally, we find that the content of signed large jump variation is
negligible when controlling for either signed total jump variation or realized skewness.
By contrast, signed small jump variation has unique information for predicting future
returns, even when controlling for total jump variation or realized skewness. Finally,
we find that large jumps are closely associated with “big” news, as might be expected.
In particular, large earning announcement surprises increase both the magnitude and
occurrence of large jumps. While such news related information is embedded in large
jump variation, the information is generally short-lived, and dissipates too quickly to
provide marginal predictive content for subsequent weekly returns. Moreover, while
large jump variation is closely associated with large earnings surprises (“big” news),
small jumps tend to be more closely associated with idiosyncratic risks, and can be

diversified away.
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Table 2.1: Realized Measures and Firm Characteristics

Panel A: Realized Measures Used in Portfolio Sorts and Fama-MacBeth Regressions

RVJP Positive (upside) jump variation, see (2.1).

RVIN Negative (downside) jump variation, see (2.2).

SRVJ Signed jump variation, RV.JP — RVJN, see (2.3).

RVLJP  Positive (upside) large jump variation, see (2.4).

RVLIJN  Negative (downside) large jump variation, see (2.5).
SRVLJ  Signed large jump variation, RVLJP — RVLJN, see (2.6).
RVSJP  Positive (upside) small jump variation, see (2.7).

RVSJN  Negative (downside) small jump variation, see (2.8).
SRVSJ Signed small jump variation, RV.SJP — RV.SJN, see (2.9).
RVOL Realized volatility

RSK Realized skewness, see (2.12).

RKT Realized kurtosis, see (2.13).

Panel B: Explanatory Variables and Firm Characteristics Used in Fama-MacBeth Regressions

BETA Market beta

log(Size) Natural logarithm of firm size
BEME Book-to-market ratio

MOM Momentum

REV Short-term reversal
IVOL Idiosyncratic volatility
CSK Coskewness

CKT Cokurtosis
MAX Maximum daily return
MIN Minimum daily return
ILLIQ Miquidity

*Notes: The realized measures listed in Panel A of this table are defined and discussed in Section
2.2. For detailed descriptions of the explanatory variables and firm characteristics listed in Panel
B of this table, refer to Bollerslev et al. (2019b), and the references cited therein.



Table 2.2: Summary Statistics for Various Realized Measures and Firm

Characteristics Based on Two Jump Truncation Levels

Panel A: Cross-Sectional Summary Statistics

36

SRVJ RVIP RVIN SRVL] RVLIP RVLIN SRVS] RVSJP RVSIN RVOL RSK RKT BETA log(Size) BEME  MOM REV  IVOL CSK CKT  MAX MIN  ILLIQ
Part I: Jump Truncation Level= ~
Mean 0.0061 02698 02637 00045 0.1518 01472 00015 0.1180 01165 09480 0.0288 8.2560 65280 05060 2023.8456  70.6077 00263 11438 4121004 -346.7608 -5.2826
Std 01537 01350 01347 01424 01555 01523 00635 00783 00783 21211 08150 45706 18359 07224 74645273 927.3551 03283 08474 5721454 350.6780  2.4047
Part II: Jump Truncation Le 22
Mean 0.0061 02698 02637 00020 00983 00954 00031 01715 01684 00480 0.028% 82569 10794 6.5280  0.5960 20238456 70.6077 00293 -0.0263 11438 4121004 -346.7608 -5.2826
Std 01537 01350 01347 01303 01401 01368 0.0859 00911 00009 21211 08159 45706 05566 18350 07224 74645273 927.3551 0.0250 0.3283 0.8474 572.1454 350.6789 24047
Panel B: Cross-Sectional Correlations
SRVJ RVJP RVJIN SRVLJ RVLJP RVLJN SRVSJ] RVSJP RVSIN RVOL RSK RKT BETA log(Size) BEME MOM REV IVOL CSK CKT MAX MIN ILLIQ
Part I: Jump Truncation Level= 7!
SRVJ 1.00 0.57  -0.57 0.91 0.43 -0.40 0.37 0.13 -0.18 -0.02 094 0.03 -0.03 0.01 0.01 0.01 030 -0.03 0.09 000 017 0.00
RVJP 1.00 0.33 0.52 0.85 0.37 0.21 0.04 -0.13 022 054 045 -0.26 -0.49 0.14 -0.10 015 012 004 -0.24 0.15 0.56
RVIN 1.00 -0.52 0.35 0.84 -0.22 -0.10 0.08 024  -0.54 041 -0.23 -0.49 0.13 -0.11  -0.19 015 -0.06 -0.24 -0.05 0.55
SRVLJ 1.00 0.48 -0.44 -0.04 -0.05 -0.01 -0.01 092 0.03 -0.02 0.00 0.01 0.00 020 -0.02 0.05 0.00 012 0.00
RVLJP 1.00 0.57 -0.02 -0.46 -0.45 023 044 0.61 -0.25 -0.47 0.12 -0.06 009 013 002 -0.24 0.12 0.54
RVLIN 1.00 0.01 -0.44 -0.45 024  -041 059 -0.23 -0.48 0.11 -0.06 -0.10 015 -0.03 -0.24 0.01 0.54
SRVSJ 1.00 0.42 -0.42 -0.02 0.9 0.00 -0.03 0.01 0.01 0.01 026 -0.03 0.08 0.00 0.14 0.00
RVSJP 1.00 0.64 -0.04  0.06 -0.40  0.06 0.03 0.01 -0.05 0.0 -0.03 0.04 004 0.02 -0.06
RVSIN 1.00 -0.03  -0.10 -0.40  0.08 0.02 0.01 -0.06 -0.12 -0.01 -0.03 0.03 -0.09 -0.06
RVOL 1.00  -0.01 022 -0.05 -0.55 0.08 -0.12 0.06 056 -0.01 -0.27 0.44 0.56
RSK 1.00  0.04 -0.02 0.00 0.01 0.00 022 -0.02 006 000 013 0.00
RKT 1.00  -0.20 -0.34 0.09 -0.02 0.00 0.0 -0.01 -0.19 0.08 0.40
BETA 1.00 0.10 -0.09 0.00 -0.04 006 001 030 0.03 -0.16
ME 1.00 -0.19 011  -0.05 -0.52 0.01 040 -0.32 -0.93
BEME 1.00 0.03 0.02 005 000 -0.06 0.05 . 0.18
MOM 1.00 000 -0.08 -0.07 006 -0.05 005 -0.15
REV 100 012 016 -0.04 049 029  0.05
IVOL 100 002 -0.35 050 -0.47 047
CSK 100 001 007 007 0.0
CKT 100 -0.16  0.15 -0.37
MAX 100 -0.28  0.34
MIN 100 -0.35
ILLIQ 1.00
SRVJ RVJP RVIN SRVLJ RVLJP RVLJN SRVSJ RVSJP RVSIN RVOL RSK RKT BETA log(Size) BEME MOM REV IVOL CSK CKT MAX MIN ILLIQ
Part 11: Jump Truncation Level= 2
SRVJ 1.00 0.57  -0.57 0.83 0.40 -0.37 0.52 -0.02 094 003 -0.03 0.01 0.01 0.01 030 -0.03 0.09 0.17 0.00
/. 1.00 0.33 0.48 0.77 0.33 0.30 022 054 045 -0.26 -0.49 0.14 -0.10  0.15 0.12  0.04 0.15 0.56
100 -047 031 075 -0.31 024 -054 041 023  -0.49 013  -0.11 -0.19 015 -0.06 -0.05 0.55
1.00 0.49 -0.44 -0.04 -0.01 089 004 -0.01 0.00 0.01 0.00 016 -0.02 0.04 0.09 0.00
1.00 0.56  -0.02 0.20 X 024 -0.40 011 -0.05 006 011 0.01 0.10 0.47
1.00 0.01 0.21 0.62 -023  -0.41 010 -0.06 -0.09 013 -0.03 0.01 0.47
1.00 -0.02 032 0.00 -0.03 0.01 0.01 001 030 -0.03 0.09 0.16 0.00
0.03 013 -030 -0.02  -0.14 0.04  -0.07 013 002 0.04 0.07 0.13
0.05  -0.17 -0.30  0.01 -0.15 004 -0.07 -0.15 0.05 -0.04 -0.08 0.13
100 -0.01 022 -0.05  -0.55 0.08 012 006 056 -0.01 0.44 0.56
100 004  -0.02 0.00 001 000 022 -0.02 0.06 0.13 0.00
100 020 034 0.09  -0.02 000 010 -0.01 0.08 0.40
1.00 0.10 0.00  -0.04 006 0.01 0.03 .16
1.00 011 -0.05 -052 0.01 -0.32 K
0.03 002 005 0.00 0.05 0.18
100 0.00 -0.08 -0.07 -0.05 -0.15
100 012 016 0.49 0.05
100 0.02 0.50 0.47
1.00 0.07 0.00
-0.16 -0.37
1.00 0.34
-0.35
1.00

2 _ s /17y
and 42 = 5\/11V,
cs (see columns 1

: See notes to Table 2.1. This table presents cro:

‘tional summar;

statistics and correlations for all realized measures and control variables based on two truncation leve

i) 9 P N P .
A% The entries in the table for realized measures (see columns 2-13) are constructed using 5-min intraday high frequency data. Entries
are constructed using daily data, with the exception of BEME, which is constructed using monthly data. For complete details, see Sections 2.3 and 2.4

for firm
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Table 2.3: Realized Measures and Firm Characteristics of Portfolios Sorted by Various
Realized Measures

Panel A: Stocks Sorted by SRV.J

Quintile  RVJP RVJN RVLJP RVLJN RVSJP RVSJN SRVLJ SRVSJ SRVJ RVOL RSK RKT  BETA log(Size) BEME MOM REV IVOL  CSK CKT MAX MIN  ILLIQ
1 0.2021 03959 0.1161  0.2723  0.0860  0.1235 -0.1563 -0.0375 -0.1938 0.9394 -0.9324 9.8720 1.0369 6.1326  0.6235 0.2006 -0.0363 0.0317 10482 0.0205 -0.0494 -4.6903
2 0.2200 02777 0.1015 0.1391  0.1185 0.1385 -0.0376 -0.0200 -0.0576 0.9513 -0.2504 7.1729 1.1351 0.5711 02051 -0.0111 0.0293 11987 0.0346 -0.0383 -5.5835
3 0.2435 02399 0.1127 0.1103  0.1308 0.1296 0.0023 0.0012 0.0036 1.0360 0.0194 6.9162 1.1301 0.5695 0.0077  0.0283 12222 0.0397 -0.0328 -5.7301
4 0.2801 02138  0.1441  0.1005  0.1360  0.1132  0.0436  0.0227 0.0663 0.9162 0.2954 7.2497 1.1096 0.5778 0.0266  0.0278 . 1.2055  0.04¢ -0.0282  -5.6668
5 04035 01914 02846 01138 01189 00775 01708 0.0413 02121 09018 10138 10.0739 09851 6.2007  0.6427 0.0485 00293 0.0145 10443 0.0569 -0.0247 -4.7419
Panel B: Stocks Sorted by SRVLJ

Quintile  RVJP  RVJN RVLJP RVLJN RVSJP RVSIN SRVLJ SRVSJ SRVJ RVOL RSK RKT BETA log(Size) BEME MOM REV IVOL CSK CKT MAX MIN ILLIQ
Part I: Jump Truncation Level= !

1 0.2255 0.3959 0.1250  0.3016  0.1005 0.0943 -0.1766 0.0062 -0.1703 0.9420 -0.9075 10.2967 1.0163 6.0403  0.6320 0.1966 -0.0221 0.0316 L0357 0.0347 -0.0461 -4.5515
2 0.2222 0.2603 0.0874  0.1297  0.1347  0.1307 -0.0422 0.0041 -0.0382 0.9128 -0.2003 6.9378 11314 6.7639  0.5678 0.2104 -0.0011 0.0288 1.2050 0.0374 -0.0357 -5.6652
3 0.2296  0.2252  0.0968  0.0936  0.1329 0.1316 0.0032 0.0013 0.0044 1.1510 0.0218 6.5571 1.1308  6.9059  0.5648 0.1997 0.0069 0.0282 -0.0245 1.2380 0.0390 -0.0326 -5.8581
4 0.2726 02229 0.1493  0.0981  0.1233  0.1248 0.0512 -0.0016 0.0497 0.8314 0.2602 7.2170 11237 6.7993  0.5764 0.2118 0.0169 0.0280 -0.0166 1.2086 0.0421 -0.0304 -5.6962
5 0.4041 02153 0.3149  0.1234  0.0891  0.0920 0.1915 -0.0028 0.1887 0.9158 0.9900 10.5179 0.9873  6.0946  0.6471 0.1887 0.0354 0.0299 10376 0.0533 -0.0284 -4.6003
Part II: Jump Truncation Level= 72

1 0.2412 03897  0.0841  0.2403 0.1494  -0.1561 0.0076 -0.1485 0.9355 -0.8465 10.5599 10128  6.0603  0.6360 0.1928 -0.0152 0.0313 -0.0478 1.0403 0.0366 -0.0438 -4.5663
2 02189 0.2314  0.0341  0.0519 01794 -0.0178  0.0054 -0.0124 09321 -0.0762 64172 LI 68798  0.5622 0.2132 0.0045 0.0283 -0.0278 1.2310 0.0388 -0.0340 -5.8322
3 02438 0.2405  0.0805  0.0770 0.1635  0.0035 -0.0001 0.0033 16847 00202 7.7437 L 6.5 0.6248  0.1664 00063 0.0322 -0.0021 1.2281 0.0426 -0.0360

4 0.2985 0.2611 0.1233  0.0854 0.1756  0.0379 -0.0004 0.0375 1.0724 02140 8.0742 1.0912 6.4 0.5995  0.1944 00125  0.0294 213 11478 0.0418 -0.0324

5 85 0.2321 02526 0.0837 0.1484  0.1690 -0.0025 0.1664 0.9201 09332 10.8242 0.9935 61033  0.6466 0.1896 0.0285 0.0300 -0.0084 1.0418 0.0506 -0.0301

Panel C: Stocks Sorted by SRVSJ

Quintile RVJP  RVJN RVLJP RVLJN RVSJP RVSIN SRVLJ SRVSJ SRVJ RVOL RSK RKT BETA log(Size) BEME MOM REV  IVOL CSK CKT MAX MIN ILLIQ
Part I: Jump Truncation Level= !

1 0.2060 0.2784 0.1085  0.0968 0.0975 0.1815 0.0116 -0.0840 -0.0724 0.7622 -0.1832 7.1817 11514 6.7378  0.5654 -0.0270 0.0292 -0.0637 1.2017 0.0302 -0.0438 -5.6348
2 0.2711 02845 01758  0.1649  0.0952  0.1197 0.0110 -0.0244 -0.0135 1.0260 -0.0157 8.6959 1.0715 6.4139  0.6062 -0.0046 0.0302 -0.0417 1.1242 0.0380 -0.0375 -5.1168
3 77 0.3003 0.2186  0.2126  0.0891  0.0877 0.0060 0.0014 0.0074 1.2309 0.0345 9.7978 1.0053 6.1262  0.6382 0.0066 10469 0.0423 -0.0356 -4.6619
4 43 0.2492  0.1413  0.1438  0.1330  0.1053 -0.0026 0.0277 0.0251 0.9562 0.0709 8.0830 1.0906 6.6614  0.5854 0.0190 . 11752 0.0436  -0.0305 -5.4837
5 0.2830 0.1981 0.1004  0.1051  0.1826  0.0930 -0.0047 0.0896 0.0849 0.7380 0.2395 7.1974 10947 6.8064 05783 0.2217 0.0428 0.0272 0.0136 11959 0.0517 -0.0251 -5.6801
Part II: Jump Truncation Level= ~

1 0 9 0.0650  0.1309 0.0099  -0.1121  -0.1023 0.8104 76 11207 6.5 05792 0.2179  -0.0318  0.0301 11558 0.0296  -0.0461

2 0.2561 0.2841  0.1103  0.1027  0.1458 0.0077  -0.0356 -0.0280 1.0119 8.4222  1.0918  6.5103  0.5957 0.1964 -0.0079 0.0298 X 11482 0.0363 -0.0379

3 0.2906 0.2847 0.1423  0.1381  0.1484 0.0041  0.0019  0.0060 1.1729 9.3041  1.0385  6.3412  0.6204 0.1788  0.0065 0.0301 0273 1.0955  0.0413  -0.0346

4 0.2821 0.2444  0.0950  0.0979  0.1871 -0.0029  0.0405  0.0377  0.9731 8.1884 1.0851  6.6358  0.5919 0.2046 0.0220 0.0284 -0.0086 1.1700 0.0447 -0.0299

5 0.3137 0.1959  0.0671  0.0713  0.2466 -0.0043  0.1220 0.1178 0.7734 7.6692  1.0627  6.6238  0.5954 0.2153 0.0469 0.0278 0.0158 1.1527 0.0543 -0.0245

Panel D: Stocks Sorted by RVOL

Quintile  RVJP. RVJN RVLJP RVLJN RVSJP RVSJN SRVLJ SRVSJ SRVJ RSK RKT BETA log(Size) BEME MOM REV CSK CKT MAX MIN ILLIQ
1 0.2255 02140 0.1013  0.0943  0.1241  0.1197 0.0070  0.0044 0.0114 0.0485  6.8794 0.8390 83393  0.5407 0.1686 0.0040 -0.0213  1.4325 0.0177 -0.0154 -7.4961
2 0.2375 02282 01136 0.1071  0.1240  0.1211  0.0065 0.0028  0.0094 0.0403  7.2835 10471 74505  0.5506 0.1853 0.0044 -0.0213  1.3708 0.0257 -0.0227 -6.4401
3 0.2567 02493  0.1387  0.1327  0.1180  0.1166  0.0060  0.0014  0.0074 0.0341  7.9018 12246 6.6274  0.5581 0.2598 0.0051 -0.0249  1.2373  0.0346 -0.0304 -5.5465
4 02864 0.2823 01717 01675 01147 01148 0.0042 -0.0001 0.0041 08136 00216 87067 1.2761 03071 0.0058 -0.0308 1.0491 0.0464 -0.0405 -4.4310
5 0.3429 03449 0.2336  0.2347  0.1093 01102 -0.0011 -0.0010 -0.0021 28115 -0.0003 10.5156 1.0101 0.0910  0.0160 -0.0331 0.6286  0.0817 -0.0645 -2.4951
Panel E: Stocks Sorted by RSK

Quintile RVJP  RVJN RVLJP RVLJN RVSJP RVSJN SRVLJ SRVSJ SRVJ RVOL RSK RKT  BETA BEME MOM REV IVOL CSK CKT MAX MIN ILLIQ
1 0.2077 0.3914  0.1200 0.2822  0.0877  0.1091 -0.1622 -0.0215 -0.1837 0.9182 -0.9829 10.3573 1.0293 0.6212  0.2118 -0.0274 0.0312 L0611 1.0555  0.0324  -0.0472 -4.7275
2 0.2203  0.2758  0.0967  0.1366  0.1235 0.1393  -0.0398 -0.0157 -0.0556 0.9332 -0.2596 6.8740 1.1303 0.5719  0.2052  -0.0077  0.0291 4 1.1981 0.0353 -0.0374 -5.5757
3 0.2430 02394 0.1057 0.1035  0.1373  0.1359 0.0023 0.0014 0.0037 1.1222 0.0189 6.5111 1.1288 0.5748 0.1932  0.0073 0.0283 -0.0238 1.2155 0.0391 -0.0325 -5.7121
4 0.2786 02142 0.1418  0.0960  0.1368 0.1182 0.0459 0.0186 0.0644 0.8769 0.3040 6.9460 1.1139 0.5790 02056 0.0231 0.0280 -0.0098 1.2017 0.0444 -0.0290 -5.6422
5 0.3996  0.1978 0.2947  0.1179  0.1049  0.0800 0.1769  0.0249 0.2018 0.8942 1.0656 10.5964 0.9944 0.6374  0.1963  0.0400 0.0297 0.0045 1.0482 0.0549 -0.0272 -4.7552
Pancl F: Stocks Sorted by RKT

Quintile  RVJP RVJN RVLJP RVLJN RVSJP RVSIN SRVLJ SRVSJ SRVJ RSK BETA log(Size) BEME MOM REV IVOL  CSK CKT MAX MIN ILLIQ
1 0.1804 0.1785  0.0257  0.0248 0.1548  0.1536  0.0008  0.0011  0.0019 0.0110 11920  7.6130  0.5303 0.1864 0.0054 0.0248 -0.0222 1.3529 0.0339 -0.0290 -6.7592
2 0.2242 02206 0.0757  0.0738  0.1484  0.1468  0.0020 0.0017  0.0036 0.0167 L1586 6.9411 05522 0.2203 0.0077 0.0276 -0.0252 1.2505 0.0387 -0.0324 -5.954
3 02630 0.2582  0.1340 01310 01291 01272  0.0030 0.0019 0.0048 0.0215 11103 6.5028 05817 02175 0.0083 0.0296 -0.0265 11627 0.0417

1 : 0.2067 02017 0.1004  0.0987  0.0049  0.0017  0.0066 0.0292 10438 6.0841  0.6186 02085 0.0076 0.0313 -0.0281 10644 0.0440 -0.0370

5 0.3171 03051 0.0574  0.0561 0.0119  0.0013  0.0133 0.0660 0.8918 54974 0.7022 0.1793  0.0064 0.0332 -0.0205 0.8881 0.0478 -0.0403

*Notes: See notes to Table 2.2. Entries in this table are time serie
NYSE, NASDAQ and AMEX listed stocks for the period January 1!

erages of equal-weighted realized measures and firm characteristics of stocks
to December 2016, At the end of each Tuesday, all of the stocks in the sample are sorted into quintile portfolios, based on ascending values of

) 9 2
A% and 2 =5

various realized measures. The equal-weighted realized measures and firm characteristics of each quintile portfolio are calculated over the same week. Additionally, 7
are jump truncation levels. See Sections 2.2 and 2.4 for further details.

4

sorted by various realized measures. The sample includes all

T pos
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Table 2.4: Univariate Portfolio Sorts Based on Positive, Negative, and Signed Total
Jump Variation

Panel A: Stocks Sorted by RVJP

Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas
Quintile 1(Low) 2 3 4 5(High) High-Low 1(Low) 2 3 4 5(High) High-Low
Mean Return 33.65 30.50 33.04 28.08 20.64 -13.01%** 23.52 19.48 1793 2091 18.27 -5.25
(3.54) (3.28) (3.49) (2.87) (2.19) (-2.75) (3.54) (3.27)  (2.93) (3.35) (2.83) (-1.35)
Alpha 10.59 747 11.24 7.52 2.88 -7.71 2.88 -0.63 -2.30 0.67 -2.75 -5.63*
(4.16) (3.64) (4.34) (2.33) (0.72) (-1.64) (2.31) (-0.44) (-1.22) (0.32) (-1.19) (-1.87)

Panel B: Stocks Sorted by RVJN

Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas
Quintile 1(Low) 2 3 4 5(High) High-Low 1(Low) 2 3 4 5(High) High-Low
Mean Return 13.17  23.01 26.77  33.79 49.23  36.06%** 16.23 2544  26.41  26.62 31.36  15.13%**
(1.52)  (2.59) (2.84) (3.36) (4.62) (6.47) (2.55) (4.11)  (4.08) (3.93) (4.29) (3.75)
Alpha -9.36 -0.03 418  13.24 3171 41.07%F* -3.55 4.94 5.27 5.49 10.05  13.60%**
(-4.46) (-0.02) (1.86) (3.93) (6.34) (7.51) (-3.08)  (3.02) (2.64) (2.37) (4.13) (4.52)

Panel C: Stocks Sorted by SRVJ

Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas
Quintile 1(Low) 2 3 4 5(High) High-Low 1(Low) 2 3 4  5(High) High-Low
Mean Return 51.85  39.02 26.15 17.86 11.02  -40.82%** 34.67 2743 19.93  13.64 9.65 -25.02%**
(5.14)  (3.85) (2.70)  (1.98) (1.33) (-9.85) (4.85) (4.12) (3.10) (2.16) (1.59) (-5.78)
Alpha 30.54  17.81 4.56 -3.58 -9.64  -40.18%F* 13.44 6.94 -0.52 -6.53 -10.25  -23.69%**
(8.40) (5.78) (1.74) (-1.56) (-4.05) (-10.10) (5.01) (3.95) (-0.40) (-4.48) (-4.47) (-5.56)

*Notes: Entries in this table are average returns and risk-adjusted alphas for single-sorted portfolios based on RVJP, RVIN and SRVJ, which
are described in Table 2.2. The sample includes all NYSE, NASDAQ and AMEX listed stocks for the period January 1993 to December 2016.
At the end of each Tuesday, all the stocks in the sample are sorted into quintile portfolios based on ascending values of the various jump
variation measures listed in the titel of each panel. Each portfolio is held for one week. The row labeled “Mean Return” reports the time
series average values of one-week ahead equal-weighted and value-weighted returns for quintile portfolios. The row labeled “Alpha” reports
Fama-French-Carhart four-factor alphas, based on the model (2.14), for each of the quintile portfolios, as well as for the difference between
t {-statistics are given in parentheses; and *, ** and *** denote means and alphas that are significant

portfolio 5 and portfolio 1. Newey-Wes
at the 10%, 5%, and 1% levels, respectively.
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Table 2.5: Univariate Portfolio Sorts Based on Positive, Negative, and Signed Large
Jump Variation

Panel A: Stocks Sorted by RVLJP

Equal-Weighted Returns and Alphas

Value-Weighted Returns and Alphas

Quintile 1(Low) 2 3 4 5(High) High-Low 1(Low) 2 3 4 5(High) High-Low

Part I: Jump Truncation Level=r'

Mean Return 31.40 30.00 29.17 31.04 23.78 ST.61%* 21.78  20.61  20.72  18.56 17.75 -4.03
(3.31) (3.19) (3.10) (3.28) (2.48) (-2.05) (3.41) (3.21) (3.33) (2.95) (2.66) (-1.09)

Alpha 10.07 7.64 6.65 9.04 6.08 -3.98 1.97 0.68 -0.42 -2.32 -2.83 -4.80*
(4.20) (3.44) (2.81) (3.35) (1.53) (-1.08) (195) (0.52) (-0.26) (-1.27)  (-1.21) (-1.71)

Part IT: Jump Truncation Level=~>

Mean Return 2942 43.86 30.00 29.12 25.77 -3.65 20.42 27.59 20.12 22.50 20.39 -0.03
(3.15) (2.16) (3.04) (3.07) (2.74) (-1.11) (3.25) (1.77) (2.98) (3.63) (3.14) (-0.01)

Alpha 774 3293 7.28 7.02 7.70 -0.04 0.45 13.80  -0.27 1.60 -0.52 -0.97
(3.70) (3.23) (2.92) (2.62) (2.02) (-0.01) (0.72)  (1.35) (-0.13) (0.83) (-0.22) (-0.37)

Panel B: Stocks Sorted by RVLJN

Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas

Quintile 1(Low) 2 3 4 5(High) High-Low 1(Low) 2 3 4 5(High) High-Low

Part I: Jump Truncation Level=~!

Mean Return 23.80 23.68 27.64 28.85 41.56  17.76%** 19.65 19.58  25.63  22.38 25.24 5.59
(2.65) (2.59) (2.98) (2.95) (4.10) (4.47) (3.10)  (3.10)  (4.00) (3.27) (3.44) (1.41)

Alpha 2.31 1.11 5.00 7.10 23.74  21.43%Fx* -0.20  -1.32 4.52 0.89 4.34 4.54
(1.11)  (0.55) (2.32) (2.47) (5.39) (5.53) (-0.18) (-0.92) (2.47) (0.40) (1.82) (1.61)

Part II: Jump Truncation Level=+>

Mean Return 24.76 6.46 27.89 29.12 38.62  13.86%** 19.69 1321 2146  23.20 22.34 2.66
(2.71) (0.33) (2.75) (3.03) (3.88) (4.01) (3.13)  (0.93) (3.05) (3.61) (3.15) (0.75)

Alpha 3.02 6.75 6.58 7.06 20.62  17.60%** -0.30 6.52 1.26 2.28 1.58 1.88
(1.63) (1.08) (2.50) (2.67) (4.81) (5.06) (-0.45)  (0.91) (0.57) (1.06) (0.66) (0.70)

Panel C: Stocks Sorted by SRVLJ

Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas

Quintile 1(Low) 2 3 4 5(High) High-Low 1(Low) 2 3 4 5(High) High-Low

Part I: Jump Truncation Level=~!

Mean Return 44.35 3294 31.08 22.72 16.04 -28.31%** 26.27 2299 2236 1777 16.27  -10.01%**
(4.52) (3.36) (3.13) (2.44) (1.88) (-9.00) (3.92) (3.58) (3.29) (2.79) (2.71) (-3.09)

Alpha 23.47 11.38 8.91 0.96 -4.90 -28.36%** 5.00 2.42 1.83 -2.64 -4.26 -9.25%¥*
(7.13) (4.20) (3.04) (0.40) (-2.17) (-9.39) (2.24) (1.64) (1.01) (-1.82) (-2.24) (-2.87)

Part I1: Jump Truncation Level=y>

Mean Return 40.55 2837 33.06 24.16 19.03  -21.52%** 22.59 20.48 16.45 18.86 20.14 -2.45
(4.19) (2.91) (1.48) (2.55) (2.19) (-8.22) (3.40) (3.18) (1.14) (3.02) (3.27) (-0.80)

Alpha 19.59 8.18 24.26 2.23 -1.97  -21.55%F* 1.82 0.76 6.85 -2.41 -0.26 -2.08
(6.15) (3.29) (2.16) (0.82) (-0.84) (-8.33) (0.86) (0.68) (1.04) (-1.23) (-0.13) (-0.69)

*Notes: See notes to Table 2.4. Entries are average returns and risk-adjusted alphas for single-sorted portfolios based on RVLJP, RVLIN

and SRVLJ. Jump truncation levels are ' = 41/ %IT/P

AU and 42 = 5y/1TV AL
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Table 2.6: Univariate Portfolio Sorts Based on Positive, Negative, and Signed Small
Jump Variation

Panel A: Stocks Sorted by RVSJP

Equal-Weighted Returns and Alphas

Value-Weighted Returns and Alphas

Quintile 1(Low) 2 3 4 5(High) High-Low 1(Low) 2 3 4 5(High) High-Low

Part I: Jump Truncation Level=r'

Mean Return 32.00 3251 29.03  26.59 25.72 -6.29%* 27.93  26.10 18.44  16.52 15.37  -12.55%*
(3.44) (3.43) (3.09) (2.85) (2.65) (-2.14) (3.65) (3.84) (2.91) (2.75) (2.45) (-2.54)

Alpha 13.11 9.39 6.37 4.77 6.13 -6.98%** 7.40 5.21 -1.83 -2.89 -4.95  -12.35%**
(3.74)  (4.21) (3.02) (2.08) (1.82) (-2.65) (2.44) (3.28) (-1.39) (-1.55)  (-2.32) (-2.93)

Part IT: Jump Truncation Level=~>

Mean Return 34.25 31.55 28.43 2741 24.23  -10.02%%* 29.37 18.76 17.76 14.75 18.98 -10.40%*
(3.72)  (3.37) (3.04) (2.90) (2.48) (-3.26) (4.09) (2.95) (2.94) (2.39) (2.93) (-2.25)

Alpha 14.08 8.85 5.90 5.75 5.08  -9.00%** 8.52 -2.00  -2.01 -5.30 -1.51  -10.02%*
(4.93) (412) (2.73) (2.32) (1.42) (-3.13) (3.87) (-1.52) (-1.24) (-2.67) (-0.62) (-2.54)

Panel B: Stocks Sorted by RVSJN

Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas

Quintile 1(Low) 2 3 4 5(High) High-Low 1(Low) 2 3 4 5(High) High-Low

Part I: Jump Truncation Level=~!

Mean Return 23.66 21.60 27.21 31.73 41,77 18.10%** 6.94 15.90 21.97 27.77 3126 24.32%%*
(2.64) (2.38) (2.97) (3.35) (3.93) (5.07) (1.00) (2.42) (3.46) (4.34) (4.68) (5.00)

Alpha 526  -1.04 435 9.56 21.62  16.36%** -13.39  -4.28 1.80 7.41 1052 23.91%**
(1.59) (-0.51) (2.22) (4.02) (5.49) (5.46) (-4.54) (-2.80) (1.33) (3.72) (4.07) (5.21)

Part II: Jump Truncation Level=+>

Mean Return 19.42  23.04 26.65 32.48 4437 24.96%** 1422 18.78  25.82  29.05 32.60  18.38***
(2.23)  (2.60) (2.93) (3.35) (4.09) (6.07) (2.13)  (3.00) (4.13) (4.42) (4.43) (3.80)

Alpha -0.37 0.70 4.18 10.38 24.84  25.22%%* -5.47 -1.28 5.81 7.80 10.85 16.31%*%*
(-0.14)  (0.37) (2.18)  (4.02) (5.85) (7.21) (-2.72) (-1.07)  (3.39) (3.67) (4.02) (4.15)

Panel C: Stocks Sorted by SRVSJ

Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas

Quintile 1(Low) 2 3 4 5(High) High-Low 1(Low) 2 3 4 5(High) High-Low

Part I: Jump Truncation Level=~!

Mean Return 46.41  40.51  25.12  19.00 13.74  -32.67*** 34.54 2408 1826 17.84 1042 -24.12%**
(4.57)  (4.04) (2.67) (2.06) (1.62) (-8.60) (5.00) (3.58) (2.81) (2.85) (1.72) (-6.60)

Alpha 23.64 19.68 5.23 -2.09 -8.14  -31.78%** 13.77 3.25 -2.37 -2.39 -9.27  -23.04%**
(7.62) (6.10) (1.53) (-0.85) (-4.17) (-9.01) (6.18)  (1.91) (-1.07) (-1.52) (-5.00) (-6.54)

Part I1: Jump Truncation Level=y>

Mean Return 47.90 41.62  27.23 17.90 11.20  -36.70%** 36.88 25.13 18.45 14.98 9.41  -27.47%%*
(4.70)  (4.13) (2.87) (1.98) (1.34) (-9.06) (5.31)  (3.79) (2.86) (2.39) (1.52) (-6.94)

Alpha 25.37 20.76 6.99 -3.03 -10.51  -35.88%** 16.07 4.52 -1.87 -5.39 -10.34  -26.41%%*
(7.79)  (6.65) (2.23) (-1.25) (-5.21) (-9.49) (6.72) (2.60) (-1.23) (-3.30) (-5.00) (-6.72)

*Notes: See notes to Table 2.5.
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Table 2.7: Univariate Portfolio Sorts Based on Realized Volatility, Skewness, Kurtosis
and Continuous Variance

Panel A: Stocks Sorted by RVOL

Equal-Weighted Returns and Alphas

Value-Weighted Returns and Alphas

Quintile 1(Low) 2 3 4 5(High) High-Low 1(Low) 2 3 4  5(High) High-Low
Mean Return 23.36  28.00 28.89 31.78 33.91 10.55 20.72 2142 19.75  26.78 29.19 8.47
(4.47) (3.92) (2.96) (2.59) (2.24) (0.81) (4.09) (2.83) (1.84) (1.98) (1.92) (0.64)
Alpha 4.50 5.01 5.15 8.74 16.33 11.83 1.95 -1.39 -3.94 2.44 5.44 3.49
(2.07) (2.94) (2.57) (2.54) (2.11) (1.37) (1.35) (-0.67) (-1.01) (0.43) (0.67) (0.40)
Panel B: Stocks Sorted by RSK
Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas
Quintile 1(Low) 2 3 4 5(High) High-Low 1(Low) 2 3 4 5(High) High-Low
Mean Return 47.56  38.06 27.86 19.44 12.98  -34.58%** 29.45 27.52 19.27 14.68 13.21  -16.24%**
(4.85) (3.82) (2.86) (2.12) (1.54) (-9.94) (4.27)  (4.22) (2.98) (2.32) (2.18) (-4.29)
Alpha 26.22  16.77 6.73 -2.15 -7.90  -34.12%F* 7.87 7.02 -0.82 -5.38 -6.77  -14.64%*F*
(7.93) (5.66) (2.41) (-0.96) (-3.51) (-10.08) (3.30)  (4.44) (-0.60) (-3.73) (-3.23) (-3.85)
Panel C: Stocks Sorted by RKT
Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas
Quintile 1(Low) 2 3 4 5(High) High-Low 1(Low) 2 3 4 5(High) High-Low
Mean Return 28.95 28.59 29.91 29.42 29.07 0.12 19.87 21.57 21.12 22.17 19.55 -0.32
(3.07) (3.00) (3.13) (3.06) (3.24) (0.04) (3.12) (3.42) (3.37) (3.38) (2.96) (-0.10)
Alpha 8.55 6.42 7.47 7.92 9.36 0.81 0.21 0.65 -0.10 0.94 -1.92 -2.13
(3.21) (2.87) (3.05) (2.87) (3.07) (0.28) (0.20)  (0.46) (-0.06) (0.49)  (-0.91) (-0.81)
Panel D: Stocks Sorted by RVC
Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas
Quintile 1(Low) 2 3 4 5(High) High-Low 1(Low) 2 3 4  5(High) High-Low
Mean Return 36.18  31.82 28.23 27.47 22.21 -13.97%* 24.36 24.80 22.94 23.40 20.41 -3.95
(3.54) (3.22) (3.00) (3.05) (2.42) (-2.58) (3.53)  (3.65) (3.59) (3.87) (3.20) (-1.00)
Alpha 19.82  10.62 5.54 4.66 -0.94  -20.76%** 4.27 3.29 2.42 3.27 0.06 -4.22
(4.04) (3.36) (2.48) (2.47) (-0.41) (-3.87) (1.76)  (1.62) (1.30) (2.10) (0.07) (-1.46)

*Notes: See notes to Tables 2.5.
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Table 2.8: Double-Sorted Portfolios: Portfolios Sorted by Various Jump Variation

Measures

Panel A: Stocks Sorted by SRVLJ, Controlling for SRVJ Based on 2

Equal-Weighted Returns and Alphas

Value-Weighted Returns and Alphas

SRVJ Quintile

SRVJ Quintile

SRVLJ Quintile 1(Low) 2 3 4 5(High) Average 1(Low) 2 3 4 5(High) Average
Part I: Mean Return and Alpha
1(Low) 4799 28.73 21.12 1290 7.82 23.71 41.88 18.83 19.24  13.59 5.04 16.61
2 50.55 37.24 2238 26.91 12.99 33.21 29.61 25.26 18.26 17.39 14.08 22.70
3 53.07 3857 2349 @ 21.73 12.37 29.75 36.31 26.28 810  15.50 17.40 24.19
4 56.29 21.42 35.09  14.59 17.86 27.51 36.38 7.94 1853  13.64 16.59 20.33
5(High) 4770 4592 32.70  26.10 7.59 32.00 32.64 39.20 23.00  20.20 19.84 27.00
High-Low -0.24 17.19 11.58  13.20 -0.23 8.30 6.38 20.37  3.76 6.61 14.81 10.38
Alpha -6.48 16.64 10.80 13.88 2.60 7.49 3.69 1941 246 6.06 13.84 9.09
Part II: t-Statistics
1(Low) 515 290 226 1.48 0.92 2.68 345 266 2.89 2.08 0.75 2.67
2 481 362 194 0.81 1.43 3.49 397 340 228 0.88 1.99 3.49
3 487  3.03 0.75 1.89 1.39 3.03 4.65 3.06 0.37 1.92 2.65 3.73
4 464 0.63 3.07 1.53 2.04 2.81 426 027 218 2.05 2.50 3.04
5(High) 439 429 3.23 2.71 0.89 3.38 3.77 489 3.16 2.78 2.99 4.01
High-Low -0.04 424 331 3.87 -0.06 4.18 1.09 371  0.79 1.54 3.09 4.15
Alpha -1.19 411 3.06 4.09 0.67 3.80 0.62 340 049 1.44 2.96 3.53
Panel B: Stocks Sorted by SRVSJ, Controlling for SRVJ Based on 72

Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas

SRVJ Quintile SRVJ Quintile

SRVSJ Quintile 1(Low) 2 3 4 5(High) Average 1(Low) 2 3 4 5(High) Average
Part I: Mean Return and Alpha
1(Low) 56.90 44.50 34.78  26.13 19.50 36.36 41.88 3591 26.98  18.28 22.43 29.73
2 55.66 47.02 3091 18.59 10.34 32.50 40.76  34.11 20.84  13.23 16.52 25.09
3 56.24 41.20 2846 19.74 10.02 31.13 30.72  23.04 20.39 13.82 14.29 20.45
4 53.58 37.21 16.75 12.62 10.19 26.07 28.23 23.82 12.02 1494 6.93 17.19
5(High) 3430  25.12  19.72 1212 5.79 19.41 17.03 16.65 18.03  12.69 3.77 13.63
High-Low -22.60 -19.38 -15.06 -14.01 -13.71 -16.95 -28.00 -19.26 -8.95 -5.59 -18.66 -16.09
Alpha -19.26 -18.83 -14.19 -14.86 -16.20 -16.67 -25.86 -20.41 -6.87 -4.79 -18.22 -15.23
Part II: t-Statistics
1(Low) 5.44 4.22 3.40 2.67 2.16 3.76 5.47 4.75  3.58 2.54 3.33 4.44
2 5.20 4.21 3.08 1.93 1.17 3.35 5.19 4.65  3.00 1.95 2.33 3.86
3 5.15 3.99 2.77 2.14 1.17 3.26 4.04 3.21 2.89 2.02 2.20 3.20
4 5.33 3.58 1.71 1.42 1.23 2.86 3.39 341 1.72 2.22 1.02 2.68
5(High) 3.46 2.60 2.12 1.39 0.70 2.19 2.22 2.32 2.67 1.89 0.56 2.16
High-Low -4.99 504 -414 -3.79 -3.45 -7.22 -5.37  -3.66 -1.79 -1.19 -3.80 -5.77
Alpha -4.15  -490 -391 -4.16 -4.12 -7.42 -4.93  -3.65 -1.30 -1.02 -3.78 -5.32
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Table 2.8 (Continued)

Panel C: Stocks Sorted by SRVSJ, Controlling for SRVLJ Based on 72

Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas
SRVLJ Quintile SRVLJ Quintile

SRVSJ Quintile 1(Low) 2 3 4 5(High) Average 1(Low) 2 3 4 5(High) Average
Part I: Mean Return and Alpha

1(Low) 60.34  51.38  40.69 44.93 31.91 47.28 41.88 35.33  35.90 34.10 30.94 36.43
2 57.30 3841 58.52 28.26 28.35 40.27 23.32  25.07 37.49 18.00 25.93 25.12
3 35.25  26.42 4.21 28.76 14.62 25.17 16.19 21.74 9.63 20.36 21.71 19.86
4 28.42  16.02  48.13 10.74 10.78 19.49 17.78 15.39  97.02 14.92 14.12 22.20
5(High) 18.79 945  -1.20 8.01 8.26 10.89 14.98 8.09 6.98 7.78 13.31 11.30
High-Low -41.55 -41.93 -40.72 -38.27 -23.65 -36.71 -26.63 -27.24 -27.87 -27.67 -17.63 -25.38
Alpha -40.15 -41.33 -40.17 -37.25 -22.90 -35.45 -25.59 -25.58 -26.01 -26.35 -17.73 -24.07
Part II: t-Statistics

1(Low) 5.60 4.76 1.56 4.18 3.28 4.58 5.38 4.76 1.72 4.12 4.37 5.13
2 5.40 3.61 2.17 2.64 3.02 3.97 3.03 3.41 1.61 2.34 3.60 3.62
3 3.58 2.60 0.19 2.85 1.62 2.65 2.27 3.21 0.53 2.93 3.11 3.15
4 2.83 1.70 1.20 1.10 1.23 2.01 2.49 2.30 1.11 2.03 2.07 2.35
5(High) 2.12 1.06  -0.06 0.93 1.01 1.31 2.12 1.22 0.46 1.08 2.02 1.82
High-Low -8.29 -849 -2.04 -6.08 -5.33 -8.59 -5.15  -5.54  -1.50 -4.14 -3.64 -6.61
Alpha -8.24 -8.75  -2.03 -6.22 -5.50 -8.80 -4.90 -5.18 -1.39 -3.87 -3.66 -6.13

Panel D: Stocks Sorted by SRVLJ, Controlling for SRVSJ Based on 72

Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas
SRVSJ Quintile SRVSJ Quintile

SRVLJ Quintile 1(Low) 2 3 4 5(High) Average 1(Low) 2 3 4 5(High) Average
Part I: Mean Return and Alpha

1(Low) 59.99  60.01 41.84 27.66 16.62 41.23 41.88 30.53 19.67 16.32 12.01 23.80
2 49.75 4195 27.20 17.65 11.51 29.31 35.69 2591 18.85 17.68 8.92 20.89
3 76.41  38.05 24.45 6.48 14.41 32.06 45.15 16.78 11.30 10.47 21.45 21.03
4 43.99  30.88 23.29 13.82 11.84 24.86 38.54 18.80 17.59 15.79 10.15 20.55
5(High) 32,38 28.64 10.59 8.97 6.78 17.47 31.35 2593 18.89 13.97 10.03 20.03
High-Low -27.61 -31.38 -31.25  -18.69 -9.84 -23.75 -9.14 -4.60 -0.78 -2.35 -1.98 -3.77
Alpha -26.51 -31.63 -31.28  -19.37 -9.80 -23.72 -8.62 -3.72 -0.59 -2.79 -1.66 -3.47
Part II: t-Statistics

1(Low) 5.51 5.59 4.22 2.85 1.85 4.25 537 4.03 269 2.23 1.71 3.59
2 4.51 3.85 2.62 1.87 1.29 3.05 4.71 354 263 2.71 1.32 3.28
3 2.31 1.95 1.61 0.41 0.80 2.49 153 1.16 1.08 0.78 1.49 2.25
4 4.05 2.90 2.28 1.44 1.31 2.63 4.83 251 2.47 2.31 1.39 3.23
5(High) 3.36 2.99 1.21 1.03 0.83 2.02 432 3.63 2.69 2.11 1.55 3.23
High-Low -6.48  -7.66 -6.92 -4.65 -2.73 -8.80 -1.83 -0.98 -0.16 -0.46 -0.44 -1.49
Alpha -6.16  -7.50 -6.94 -4.94 -2.83 -8.94 -1.70  -0.79 -0.12 -0.53 -0.37 -1.38

*Notes: See notes to Table 2.5. This table presents average returns (called “Mean Return”) and risk-adjusted alphas (called “Alpha”) for portfolios
sorted by various jump variation measures. The sample includes NYSE, NASDAQ and AMEX listed stocks for the period January 1993 to December
2016. At the end of each Tuesday, all the stocks in the sample are sorted into quintile portfolios based on ascending values of SRVJ (SRVLJ/SRVSJ).
Then, within each quintile portfolio, stocks are further sorted based on the values of SRVLJ/SRVSJ (SRVSJ/SRVLJ), resulting in 25 portfolios. Each
portfolio is held for one week. The row labeled “High-Low” reports the average values of one-week ahead returns in Part I (corresponding Newey-West
t-statistics are given in Part II of the panel). The row labeled “Alpha” reports Fama-French-Carhart four-factor alphas in Part I (corresponding
Newey-West t-statistics are again given in Part II of the panel) for the double-sorted High-Low portfolios. Note that entries given in the “Average”
column of the table, are average returns across the 5 quintiles. Finally, note that SRVLJ and SRVSJ are constructed based on jump truncation level

RESNATANT
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Table 2.9: Double-Sorted Portfolios: Portfolios Sorted by SRVJ and RSK

Panel A: Stocks Sorted by SRVJ, Controlling for RSK

Equal-Weighted Returns and Alphas

Value-Weighted Returns and Alphas

RSK Quintile

RSK Quintile

SRVJ Quintile 1(Low) 2 3 4 5(High) Average 1(Low) 2 3 4 5(High) Average
Part I: Mean Return and Alpha
1(Low) 56.92 5549 4281 31.69 20.91 41.57 41.88 39.12 3049 25.47 17.56 30.90
2 56.77  46.17  33.30 22.89 15.27 34.88 41.63 35.10 21.38 17.20 13.71 25.81
3 49.97  38.92 2347 1747 11.61 28.29 37.18  27.01 2224 14.45 10.52 22.28
4 42.67 29.57 21.68 13.20 12.18 23.86 28.53 20.24 15.10 11.99 11.47 17.47
5(High) 31.39  20.03 1794 11.86 4.85 17.21 18.32  21.67 12.23 7.31 12.60 14.42
High-Low -25.54 -35.46 -24.87 -19.83 -16.06 -24.35 -23.56 -17.46 -18.27 -18.16 -4.95 -16.48
Alpha -28.79 -36.20 -24.40 -18.40 -12.75 -24.11 -24.22  -18.52 -18.40 -16.82 -4.88 -16.57
Part II: t-Statistics
1(Low) 6.13 5.04 3.97 3.04 2.22 4.21 5.72 4.87 3.97 3.35 2.51 4.58
2 5.34 4.12 3.14 2.32 1.70 3.52 5.11 4.57 2.96 2.44 2.02 3.89
3 4.67 3.80 2.30 1.90 1.35 2.99 4.90 3.78 3.07 2.14 1.63 3.51
4 4.09 2.98 2.27 1.46 1.44 2.61 3.67 2.84 2.17 1.76 1.72 2.73
5(High) 3.27 2.20 2.02 1.36 0.59 2.01 2.59 3.24 1.76 1.07 1.90 2.36
High-Low -5.36  -7.09 -5.12 -4.32 -3.40 -7.70 -4.70 -3.17  -3.32  -3.28 -0.89 -5.24
Alpha -6.18  -7.57  -5.25  -4.32 -2.80 -8.07 -4.81  -3.50 -3.36 -3.04 -0.90 -5.45
Panel B: Stocks Sorted by RSK, Controlling for SRV.J

Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas

SRVJ Quintile SRVJ Quintile

RSK Quintile  1(Low) 2 3 4 5(High) Average 1(Low) 2 3 4 5(High) Average
Part I: Mean Return and Alpha
1(Low) 51.14 29.34 21.71 17.58 12.40 26.43 41.88 18.33 2091 12.07 4.09 18.48
2 49.50 39.74 23.05 14.15 11.46 27.58 37.29 3329 1495 10.36 10.00 21.18
3 49.96 3741 2726 18.14 12.93 29.14 28.38 23.82 2252 14.80 15.23 20.95
4 53.85 43.31 2811 18.79 12.52 31.32 36.37 28.73 19.57 17.15 10.67 22.50
5(High) 54.80 45.32  30.65 20.66 5.78 31.44 36.75  32.79  24.63 18.92 14.26 25.47
High-Low 3.66  15.98 8.94 3.08 -6.63 5.01 -0.25  14.46 3.72 6.85 10.17 6.99
Alpha 0.54 16.64 8.57 2.34 -4.54 4.71 -0.71  15.66 4.39 6.30 9.15 6.96
Part II: t-Statistics
1(Low) 5.56 3.07 2.36 1.99 1.42 3.02 4.98 2.61 3.15 1.74 0.60 2.97
2 4.76 3.75 2.33 1.57 1.30 2.94 4.89 4.50 2.06 1.53 1.52 3.29
3 4.76 3.60 2.69 1.94 1.50 3.07 3.59 3.33 3.29 2.24 2.33 3.30
4 4.99 3.98 2.77 1.97 1.49 3.27 4.70 3.89 2.69 2.39 1.63 3.45
5(High) 5.00 4.19 2.99 2.17 0.68 3.27 4.50 4.20 3.29 2.83 2.09 3.87
High-Low 0.85 3.98 2.31 0.84 -1.61 2.35 -0.05 2.85 0.74 1.48 2.19 2.87
Alpha 0.14 4.40 2.24 0.66 -1.09 2.42 -0.14 3.05 0.89 1.38 2.01 2.92

*Notes: See notes to Table 2.5. This table presents average returns (called “Mean Return”) and risk-adjusted alphas (called “Alpha”)
for portfolios sorted by SRVJ controlling for RSK, and vice versa. The sample includes NYSE, NASDAQ and AMEX listed stocks for the
period January 1993 to December 2016. At the end of each Tuesday, all the stocks in the sample are sorted into quintile portfolios based on
ascending values of RSK (SRVJ), and then within each quintile portfolio, stocks are further sorted using values of SRVJ (RSK), resulting
in 25 portfolios. Each portfolio is held for one week. The row labeled “High-Low” reports the average values of one-week ahead returns in
Part I (corresponding Newey-West ¢-statistics are given in Part IT of the panel). The row labeled “Alpha” reports Fama-French-Carhart
four-factor alphas in Part I (corresponding Newey-West t-statistics are again given in Part II of the panel) for each of the quintile portfolios,

as well as for the average across 5 RSK (SRVJ) portfolios.
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Table 2.10: Double-Sorted Portfolios: Portfolios Sorted by SRVLJ/SRVSJ,
Controlling for RSK

Panel A: Stocks Sorted by SRVLJ, Controlling for RSK Based on 2

Equal-Weighted Returns and Alphas

Value-Weighted Returns and Alphas

RSK Quintile

RSK Quintile

SRVLJ Quintile 1(Low) 2 3 4 5(High) Average 1(Low) 2 3 4 5(High) Average
Part I: Mean Return and Alpha
1(Low) 47.31 31.04 20.83 13.46 9.23 24.38 41.88 20.74 17.63 10.28 10.95 17.04
2 48.24 3553 1815 41.82 10.40 30.72 2752 2593 13.06 22.40 13.21 21.88
3 46.79  36.39 -2.22  17.53 16.01 27.86 27.77  24.25 23.68 13.64 18.71 21.29
4 47.56 9.61 2736 19.04 20.92 27.46 27.71 8.29 20.27 1745 16.06 20.34
5(High) 43.55 4348 34.14 26.41 7.84 31.13 35.80 32.07 20.61 23.70 18.89 26.28
High-Low -3.57 1244 1330 1295 -1.39 6.75 1042 11.33 298 13.42 7.94 9.22
Alpha -8.76 11.52  13.22  13.09 1.59 6.13 8.26  11.20 1.91  12.69 7.30 8.27
Part II: t-Statistics
1(Low) 5.10 3.13 2.17 1.51 1.08 2.73 3.34 2.85 2.51 1.59 1.63 2.68
2 4.67 3.47 1.41 1.61 1.16 3.21 3.71 3.71 1.47 1.12 1.98 3.42
3 4.48 295  -0.07 1.54 1.79 2.91 3.81 2.87 0.85 1.56 2.89 3.30
4 4.32 0.37 2.27 1.96 2.38 2.89 3.68 0.43 2.12 2.52 2.45 3.17
5(High) 4.22 4.03 3.42 2.75 0.93 3.34 4.08 3.80 2.81 3.23 2.79 3.90
High-Low -0.66 2.93 4.28 4.11 -0.37 3.64 1.71 1.89 0.66 3.03 1.62 3.76
Alpha -1.62 2.63 4.14 4.13 0.42 3.18 1.35 1.76 0.41 2.90 1.51 3.22
Panel B: Stocks Sorted by SRVSJ, Controlling for RSK Based on 4?2

Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas

RSK Quintile RSK Quintile

SRVSJ Quintile 1(Low) 2 3 4 5(High) Average 1(Low) 2 3 4 5(High) Average
Part I: Mean Return and Alpha
1(Low) 56.15 51.19 42.56 31.93 24.16 41.20 41.88 40.69 31.16 31.49 21.39 33.55
2 54.34  50.15 3579 24.76 12.89 35.59 3245 3320 2193 19.73 23.95 26.25
3 55.24 38,53 2629 18.62 11.09 29.95 2791 2264 18.61 12.36 16.37 19.58
4 40.20 3145 18.77 14.26 12.14 23.35 18.13 22.01 15.30 13.17 10.40 15.79
5(High) 30.21 18.90 15.72 7.49 4.76 15.42 18.59 19.31 12.59 8.23 6.56 13.06
High-Low -25.94 -32.29 -26.84 -24.43 -19.40 -25.78 -24.44 -21.37 -18.56 -23.26 -14.84 -20.49
Alpha -23.86 -31.76 -26.49 -23.94 -20.71 -25.35 -22.27 -22.89 -18.30 -21.83 -14.44 -19.95
Part II: t-Statistics
1(Low) 5.43 4.75 3.98 3.16 2.62 4.15 5.11 5.25 4.16 4.39 3.15 4.92
2 5.17 4.48 3.42 2.47 1.43 3.61 4.30 4.53 2.96 2.68 3.39 3.95
3 5.25 3.76 2.60 1.96 1.25 3.14 3.75 3.12 2.66 1.72 2.46 3.03
4 4.11 3.13 1.96 1.58 1.45 2.59 2.50 3.20 2.27 1.98 1.57 2.55
5(High) 3.18 2.06 1.71 0.87 0.58 1.79 2.56 2.86 1.79 1.23 0.97 2.09
High-Low -5.78  -7.15  -6.04 -5.58 -4.72 -8.41 -4.21  -4.04 -3.67 -4.56 -2.93 -6.31
Alpha -5.36  -7.20 -6.12 -5.75 -5.27 -8.89 -3.83  -4.29 -3.51  -4.09 -2.83 -6.01

*Notes: See notes to Table 2.8. Portfolios are sorted by SRVLJ/SRVSJ, controlling for RSK, and using truncation level 42, as discussed in

the footnote to Table 2.2.
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Table 2.11: Double-Sorted Portfolios: Portfolios Sorted by RSK, Controlling for
SRVLJ or SRVSJ

Panel A: Stocks Sorted by RSK, Controlling for SRVLJ Based on 72

Equal-Weighted Returns and Alphas

Value-Weighted Returns and Alphas

SRVLJ Quintile

SRVLJ Quintile

RSK Quintile 1(Low) 2 3 4 5(High) Average 1(Low) 2 3 4 5(High) Average
Part I: Mean Return and Alpha
1(Low) 51.98 46.26 32.88 42.99 35.40 43.72 41.88 34.45 3297 31.19 33.46 34.64
2 48.38 38.05 5549 31.86 20.58 37.03 30.03 23.16 48.38 17.47 16.06 24.56
3 43.16  26.83 8.78  20.69 16.54 25.94 2591 21.10 10.09 19.92 19.16 21.15
4 37.70 22,51 55.61 11.20 14.84 24.67 18.23  18.69 8.48 13.82 14.50 16.23
5(High) 21.43 8.10 -0.87 14.29 7.74 12.81 13.59 7.52  -820 15.74 15.50 12.31
High-Low -30.55 -38.16 -30.25 -30.06 -27.66 -31.07 -23.12 -26.93 -37.56 -16.82 -17.96 -22.43
Alpha -32.89 -37.85 -28.79 -30.01 -24.81 -30.46 -23.34 -24.74 -36.67 -14.80 -18.66 -21.39
Part II: t-Statistics
1(Low) 5.63 4.46 1.33 4.16 3.61 4.48 4.94 4.65 1.67 4.00 4.80 5.06
2 4.68 3.68 2.16 3.04 2.22 3.72 3.99 3.28 2.04 2.34 2.31 3.63
3 4.14 2.66 0.40 2.04 1.84 2.69 3.32 3.22 0.59 2.66 2.87 3.29
4 3.62 2.29 1.37 1.11 1.73 2.50 2.54 2.82 0.48 1.80 2.22 2.54
5(High) 2.27 0.89  -0.04 1.63 0.92 1.49 1.91 1.08 -0.52 2.33 2.24 1.98
High-Low =791 -9.22  -1.71 -5.63 -5.85 -9.46 -456 -6.02 -2.29 -2.75 -3.47 -6.54
Alpha -8.43 -9.50 -1.64 -5.86 -5.51 -9.57 -4.59 -5.54 -2.22  -2.37 -3.65 -6.10
Panel B: Stocks Sorted by RSK, Controlling for SRVSJ Based on 72

Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas

SRVSJ Quintile SRVSJ Quintile

RSK Quintile 1(Low) 2 3 4 5(High) Average 1(Low) 2 3 4 5(High) Average
Part I: Mean Return and Alpha
1(Low) 57.49 56.03 40.07 26.79 17.75 39.62 41.88 24.28 18.84 16.57 12.21 23.20
2 51.21 42.88 31.02 15.27 12.69 30.61 35.14  26.67 14.77 21.10 9.49 21.43
3 54.96 41.34 25.81 20.97 10.12 30.64 37.20  24.66 20.50 10.79 7.58 20.15
4 4252 3893 2950 16.21 9.58 27.35 37.22  23.08 17.57 15.29 11.02 20.84
5(High) 33.23  28.85 9.62 10.20 5.82 17.54 31.94 30.24 21.43 16.36 8.89 21.77
High-Low -24.26  -27.17 -30.45 -16.59 -11.93 -22.08 -12.15 5.96 2.59  -0.21 -3.33 -1.43
Alpha -22.78 -27.83 -30.17 -17.16 -11.85 -21.96 -10.86 7.74 294  -0.96 -3.03 -0.83
Part II: t-Statistics
1(Low) 5.53 5.32 4.11 2.82 1.99 4.19 5.79 3.21 2.52 2.21 1.73 3.49
2 4.84 4.00 3.06 1.62 1.44 3.20 4.45 3.56 2.02 3.25 1.42 3.30
3 4.96 3.79 2.58 2.21 1.15 3.15 4.86 3.35 3.01 1.55 1.13 3.12
4 4.01 3.79 2.86 1.73 1.12 2.87 5.03 3.26 2.44 2.17 1.62 3.22
5(High) 341 3.05 1.09 1.17 0.72 2.03 4.19 4.35 2.91 2.49 1.38 3.48
High-Low -5.79  -6.79  -6.74 -4.40 -3.12 -8.56 -2.27 1.17 0.48  -0.04 -0.69 -0.49
Alpha -5.33  -6.78 -6.68 -4.61 -3.19 -8.57 -2.06 1.50 0.53  -0.17 -0.61 -0.29

*Notes: See notes to Table 2.8. Portfolios are sorted by RSK, controlling for SRVLJ/SRVSJ, and using truncation level 42, as discussed

in the footnote to Table 2.2.
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Table 2.12: Double-Sorted Portfolios: Portfolios Independently Sorted by Stock- and
Industry-Level SRVJ

Equal-Weighted Returns and Alphas

Value-Weighted Returns and Alphas

Industry-Level Quintile

Stock-Level Quintile 1(Low) 2 3 4 5(High)
Part I: Mean Return and Alpha

1(Low) 39.23 4742  53.00 61.43 72.18
2 30.55 33.28 38.69 48.44 55.77
3 14.07 2147 2427  30.98 43.15
4 6.90 1245 15.65 19.51 34.51
5(High) -7.35 1.99 9.90 16.40 25.94
High-Low -46.58 -45.43 -43.09 -45.03 -46.24
Alpha -44.64 -45.23 -41.18 -45.96 -46.46

Industry-Level Effect (average of High-Low column; Alpha column)
Stock-Level Effect (average of High-Low row; Alpha row)

Part II: t-Statistics

1(Low) 3.82 4.37 4.98 5.87 6.83
2 2.90 3.13 3.49 4.48 5.22
3 1.39 2.09 2.28 3.11 4.43
4 0.70 1.28 1.60 2.12 3.93
5(High) -0.79 0.22 1.07 1.88 3.16
High-Low -9.33 812 -827 -7.80 -8.01
Alpha, FFC4 -9.00 -8.16 -7.97 -7.93 -8.34

Industry-Level Effect (average of High-Low column; Alpha column)
Stock-Level Effect (average of High-Low row; Alpha row)

High-Low

32.94
25.22
29.07
27.61
33.29

29.63
-45.28

5.20
3.50
4.60
4.40
5.88

5.66
-11.39

Alpha

34.74
25.86
29.60
28.30
32.92

30.29
-44.70

5.35
3.35
4.47
5.93

5.57
-11.50

4.61
3.82

1.69
-0.51
-7.19
-7.37

33.40
27.31
24.85
11.96

-23.54
-22.73

3.98
3.56
3.23
1.62
1.27
-3.92
-3.73

Industry-Level Quintile

3

32.78
20.24
17.56
10.38

-27.92
-26.52

3.93
2.35
2.25
1.36
0.62
-5.22
-5.06

4

36.58
37.10
20.35
14.58
13.25
-23.33
-23.09

5(High)

25.03
14.64
8.69
2.67
-3.95
-31.16
-28.98

High-Low

10.19
7.20
10.64
9.54
19.82

11.48
-29.35

1.40
114
1.54
1.50
2.82

2.23
-8.88

Alpha

9.28
6.68
11.98
9.99
21.72

11.93
-28.55

1.27
1.00

1.54
3.06

2.20
-8.91

*Notes: See notes to Table 2.8. This table presents average returns and risk-adjusted alphas for portfolios sorted by stock-level and industry-level SRVJ. The sample
includes all NYSE, NASDAQ and AMEX listed stocks for the period January 1993 to December 2016. A stock’s industry signed jump variation (SRVJ) is the
capitalization-weighted average of the SRVJ of all stocks within the industry. At the end of each Tuesday, all stocks in the sample are sorted into quintile portfolios
based on stock-level and industry-level SRVJ, independently, resulting in 25 portfolios. Each portfolio is held for one week. The row labeled “Industry-Level Effect”
reports average values of one-week ahead returns (and Fama-French-Carhart four-factor alphas in the High-Low (Alpha) column) in Part I (corresponding Newey-West
t-statistics are given in Part II). The row labeled “Stock-Level Effect” reports the average values of one-week ahead returns (and alphas) in Part I (corresponding

Newey-West t-statistics are again given in Part II).



48

Table 2.13: Double-Sorted Portfolios: Portfolios Sorted by Stock- and Industry-Level
SRVLJ/SRVSJ Independently

Panel A: Portfolios Sorted Based on SRVLJ

Equal-Weighted Returns and Alphas

Value-Weighted Returns and Alphas

Industry-Level Quintile

Industry-Level Quintile

Stock-Level Quintile 1(Low) 2 3 4 5(High) High-Low Alpha 1(Low) 2 3 4 5(High)  High-Low Alpha
Part I: Mean Return and Alpha
1(Low) 34.64 3534 35.04 51.12 51.00 16.36  17.03 2226 24.61 20.46 26.39 25.19 2.92 0.73
2 25.37 25.36 22.38 34.21 36.00 10.64 9.43 18.78 2297 19.49 2351 27.29 8.51 7.46
3 17.55  0.89 26.31 34.26 31.56 14.40 11.15 18.90 1595 11.59  4.81 17.06 -6.76  -10.28
4 13.59 2091 2120 27.71 34.08 19.69  19.75 11.26  21.71  10.01  12.25 25.88 13.89  15.35
5(High) 12.22 11.90 14.43  25.57 25.57 13.36  12.93 14.16  21.60 16.13  20.63 22.85 8.69 11.30
High-Low -22.42 -23.44 -20.61 -25.55 -25.42 -8.10  -3.00 -4.33 -5.75 -2.33
Alpha -22.02 -23.37 -2045 -25.74 -26.12 -9.58  -3.52  -4.34 540 1.00
Industry-Level Effect (average of High-Low column; Alpha column) 14.83  14.31 7.24 6.90
Stock-Level Effect (average of High-Low row; Alpha row) -23.49 -23.54 -4.70  -4.37
Part II: t-Statistics
1(Low) 3.63 339 333 494 5.23 3.40 3.41 3.25 3.06 2.48 3.25 3.16 0.49 0.12
2 2.55 2.44 2,14 3.46 3.73 2.17 1.90 2.70 3.17 257 320 3.73 1.60 1.32
3 0.78  0.04 093 1.41 1.46 0.85 0.65 1.08 0.73 0.51 0.25 1.05 -0.37  -0.54
4 1.32 1.95 1.94 2.74 3.73 3.67 3.73 1.49 2.62 1.20 1.45 3.69 2.43 2.65
5(High) 1.31 1.24 1.50  2.84 2.99 2.97 2.91 1.83 2.83 2.12 2.83 3.56 1.50 2.09
High-Low -6.14  -5.13 -4.66 -5.85 -6.19 -1.57  -0.59  -0.90 -1.19 -0.45
Alpha, FFC4 -6.09  -5.03 -4.58 -5.91 -6.38 -1.93  -0.68 -0.87 -1.09 0.21
Industry-Level Effect (average of High-Low column; Alpha column) 3.77 3.55 1.77 1.57
Stock-Level Effect (average of High-Low row; Alpha row) -9.05 -9.14 -2.01  -1.91
Panel B: Portfolios Sorted Based on SRVSJ

Equal-Weighted Returns and Alphas Value-Weighted Returns and Alphas

Industry-Level Quintile Industry-Level Quintile

Stock-Level Quintile 1(Low) 2 3 4 5(High) High-Low Alpha 1(Low) 2 3 4 5(High) High-Low Alpha
Part I: Mean Return and Alpha
1(Low) 40.39 68.45 28.07  29.88 44.09 37.87 32.07 36.14 45.53 1.44 0.72
2 32.52 59.67 27.15  28.20 2411 24.09 23.82 2745 42.09 17.99  18.36
3 15.39 45.29 29.90  30.43 2022 1593 21.91 17.63 25.37 5.16 4.88
4 9.07 32.70 23.63  23.94 11.38  12.88 22,53 11.01 25.43 14.04  15.23
5(High) -2.44 22.30 24.73  26.19 8.91 791  11.60 9.76 11.23 2.32 5.33
High-Low -42.83 -46.16 -35.18 -29.95 -20.47 -26.38 -34.30
Alpha -42.27 -39.03 -34.75 -42.27 -45.96 -36.51 -30.26 -18.68 -25.89 -31.90
Industry-Level Effect (average of High-Low column; Alpha column) 26.69 27.73 8.19 8.90
Stock-Level Effect (average of High-Low row; Alpha row) -41.51  -40.86 -29.26 -28.65
Part II: t-Statistics
1(Low) 3.91 3.90  3.98 5.06 6.20 4.04 3.99 5.58 4.66 3.66 4.40 5.62 0.21 0.10
2 3.00 383 388 442 5.68 3.89 3.88 3.19 3.04 2.90 3.50 5.39 2.84 2.77
3 1.55 2.26 2.46 3.11 4.68 4.91 4.94 2.52 1.97 2.73 2.33 3.43 0.70 0.68
4 092  0.93 1.74 1.84 3.64 3.72 3.74 1.46 1.78 2.85 1.47 3.72 2.18 2.43
5(High) -025 033 0.77 1.41 2.70 3.94 415 1.06 0.96 1.49 1.36 1.74 0.34 0.76
High-Low -8.38  -7.85 -7.04 -7.99 -7.60 -6.21 -545 -3.70 -5.15 -6.15
Alpha, FFC4 -8.38  -7.95 -6.85 -8.19 -8.02 -6.55  -5.68 -3.41 -5.15 -5.69
Industry-Level Effect (average of High-Low column; Alpha column) 5.02 5.01 1.60 1.68
Stock-Level Effect (average of High-Low row; Alpha row) -10.65 -11.14 -8.78  -8.75

*Notes: See notes to Table 2.12. Jumps are decomposed using truncation level 42, as discussed in the footnote to Table 2.2.
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Fama-MacBeth Cross-Sectional Regressions

I I jisg v
Intercept 18.54 27.95 23.99 15.77
(1.94)  (3.07) (2.82) (1.69)
RVJP -63.86
(-6.00)
RVIN 107.11
(8.29)
RVLJP -53.42 -44.85
(-6.46) (-4.46)
RVLJN 71.27 83.09
(8.12) (7.45)
RVSJP -130.77  -99.16
(-8.97) (-6.24)
RVSJIN 165.05  161.39
(822) (7.19)
SRVLJ
SRVSJ
SRVJ
RVOL
RSK
RKT
Adjusted R 0.0063 0.0033  0.0035 0.0082

v VI VI VI X X XI XTI X XIV XV XVI
3031 31.03 3146 3120 1974 3204 2001 2004 2888 3001 3048  30.17
(332)  (3.37)  (341)  (339) (2.03) (3.73) (2.14) (208) (3.29) (3.40) (344) (3.41)
-128.25
(-6.24)
196.57
(8.98)
76.84 -79.63
(6.58) (-3.94)
-30.83 149.92
(-2.40) (7.18)
-88.56  -129.39
(-6.64)  (-6.33)
12924 195.31
(7.94)  (8.26)
-50.07 -53.94 72.19 -82.69
(-7.98) (-8.37) (6.60) (-4.48)
-141.69 -144.75 -103.72 -149.56
(-9.25)  (-9.32) (-8.25)  (-7.66)
-81.15 -150.59
(-10.15) (-7.80)
894 746 674 908 590  -631  -6.40
(-1.60) (-1.32) (-1.21) (-1.62) (-1.05) (-1.12) (-1.14)
1612 2216 -9.87 912 -2475  -10.15  4.08
(5.59)  (-9.55) (-9.49) (3.07) (-1041) (-9.72) (1.39)
068 068 046 068 012 009  0.08
(-225) (-227) (145) (-2.24) (0.42)  (0.30)  (0.28)
0.0005 0.0019 0.0024 0.0016 00204 00175 00185 0.0214 0.0160 0.0168 0.0172
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Table 2.14 (Continued)

Panel B: Regressions with Control Variables

i il it v v VI VII VI X X XI XII  XII  XIV XV XVI
Intercept 10076 100.26 9297  98.02  97.60 9772 9857 9826  89.27 9287  93.62  89.60 9459 9482 9519  94.94
(4.24)  (545)  (5.25) (4.15) (5.67) (5.65) (5.69) (5.67) (3.30) (4.26) (3.93) (3.27) (4.37) (4.33) (4.30)  (4.29)
RVJIP -30.35 -33.59
(-3.04) (-1.87)
RVIN 28.77 50.58
(3.26) (3.48)
RVLJP -27.56 27.07 11.55 -28.36
(-4.46) (-2.81) (1.20) (-1.53)
RVLIN 16.42 23.05 -0.32 48.59
(2.67) (2.61) (-0.03) (2.89)
RVSJP 26,94 -34.15 2407 -38.20
(-2.78)  (-2.51) (-2.20)  (-2.04)
RVSIN 4462 45.83 2648 5234
(4.25)  (3.81) (2.67)  (3.42)
SRVLJ -22.63 -25.76 9.90 -31.02
(-5.18) (-5.67) (1.10) (-1.93)
SRVSJ 3316 -38.71 2375 -41.74
(-3.92)  (-4.45) (-2.74)  (-2.83)
SRVJ -28.64 -39.38
(-6.26) (-2.69)
RVOL 479 507 459 468 494 487 486 484
(0.79)  (0.84)  (0.76)  (0.77)  (0.82)  (0.80)  (0.80)  (0.79)
RSK 302 -4.90  -358 267 -553  -3.67 142 246
(1.23)  (-3.01) (-4.69) (0.98) (-3.45) (-4.79) (0.50)  (0.95)
RKT 053 =061  -0.38  -056  -0.49  -046  -0.44  -0.44
(-2.00) (-2.27)  (-1.08) (-1.87) (-1.78) (-1.63) (-1.49) (-1.46)
Beta. 828 811  -809 827  -807 826 -829 816 -771 -7.75 818  -T.72 810 -818 822  -8.14
(-146)  (-1.40) (-1.38) (-1.46) (-1.37) (-141) (-141) (-139) (-1.36) (-1.35) (-142) (-1.37) (-1.40) (-1.42) (-1.43) (-1.41)
log(Size) 1493 1477 <1473 -14.94 <1476 -14.76  -14.67  -14.67  -14.36  -1425  -14.29  -1448 -14.13  -14.11 -1404  -14.05
(-5.24)  (-5.25) (-5.21) (-5.32) (-5.15) (-5.14) (-5.13) (-5.13) (-5.19) (-5.15) (-5.16) (-5.26) (-5.08) (-5.07) (-5.06) (-5.07)
BE/ME 076 -0.75  -0.65 -076  -0.67 -061 -0.59  -0.62 -072 -057 -057 -0.60 -056 -0.54 -0.56 -0.58
(-0.37)  (-0.36) (-0.32) (-0.37) (-0.33) (-0.30) (-0.29) (-0.30) (-0.34) (-0.27) (-0.27) (-0.33) (-0.27) (-0.26) (-0.27) (-0.28)
MOM 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
(0.96)  (0.97)  (0.94) (0.98) (0.93) (0.93) (0.93) (0.93) (1.26) (1.19) (L18) (1.22) (1.19) (1.21) (1.20) (1.21)
REV 001 =001  -0.01 -001 0.0l -001  -0.0l  -0.0l -001 -0.01  -001  -0.01 -0.01 -0.01  -0.01  -0.01
(-5.63) (-5.83) (-5.63) (-5.53) (-5.84) (-5.66) (-5.55) (-5.64) (-5.74) (-5.97) (-5.82) (-5.70) (-5.99) (-5.83) (-5.77) (-5.80)
IVOL 230146 -293.89 -207.02 -304.39 -291.92 -292.47 -298.32 -208.14 -425.97 -416.77 -422.83 -424.54 -419.05 -421.52 -424.24 -425.20
(-218)  (-2.15) (-217) (-221) (-2.13) (-212) (-2.16) (-217) (-4.69) (-4.57) (-4.63) (-4.67) (-4.59) (-4.62) (-4.65) (-4.67)
CSK 752 867  -813 729 -869  -823  -7.62  -T.87  -7.00 -7.84 744 689  -T91 745  -7.35  -7.52
(-1.75)  (-2.01) (-1.89) (-1.70) (-2.01) (-1.91) (-1.77) (-1.82) (-1.66) (-1.86) (-1.77) (-1.64) (-1.88) (-1.77) (-1.74) (-1.78)
CKT 234 229 224 236 232 232 243 238 174 172 169 174 171 177 183 181
(L19)  (L15)  (1.13)  (1.20) (L.15) (1.16) (1.21) (L18) (0.91) (0.89) (0.87) (0.91) (0.88) (0.91)  (0.94)  (0.93)
MAX 003 -003  -0.03 -003 -0.03 -003 -0.03 -0.03 -003 -0.03 -003 -0.03 -003 -003 -0.03 -0.03
(-5.33)  (-5.66) (-5.57) (-5.31) (-5.64) (-5.71) (-5.55) (-5.54) (-7.37) (-7.55) (-7.45) (-7.35) (-7.59) (-7.55) (-7.57) (-7.55)
MIN 002 -002  -0.02  -002 -0.02 -002 -0.02 -0.02 -001 -0.02 -001 -0.01 -0.01 -001 -0.01  -0.01
(-279)  (-3.11) (-3.14) (-279) (-3.11) (-3.12) (-2.83) (-2.85) (-2.81) (-2.94) (-2.80) (-2.81) (-2.88) (-2.80) (-2.73) (-2.75)
ILLIQ 784 768 808  -7.86  -7.99 803  -T.87  -7.88  -894 887 868 -910 854 -851 841  -843
(-5.24)  (-5.12) (-5.22) (-5.26) (-5.15) (-5.16) (-5.08) (-5.10) (-479) (-5.12) (-4.96) (-4.87) (-4.97) (-4.95) (-4.86) (-4.88)
Adjusted R?  0.0602  0.0597  0.0597 0.0609 0.0590 0.0592 0.0594 0.0592 0.0647 0.0641 0.0642 0.0652 0.0636 0.0637 0.0639 0.0638

*Notes: See notes to Tables 2.1 and 2.5. This table reports results for cross-sectional Fama-MacBeth regressions, based on the regression model depicted as equation
(2.15) in Section 2.4.5. In these regression models, future weekly returns are regressed on various realized measures and control variates. The two panels utilize jump
truncation level 42, as discussed in the footnote to Table 2.2. The regressions that are reported on are of the form: r;11 = Yot + Zﬁl Vit Xije + Zf(:?l GstZist + €itt1s
t=1,...,T, where r; ;41 denotes the stock return for firm i in week ¢ 4 1, K; is the number of potential variation measures, and X; j; denotes a relevant realized measure
at the end of week . In addition, there are Ky variables measuring firm characteristics, which are denoted by Z; j; (see Section 2.3 for details). In the table, time series
averages of the coefficient estimates (% ZZ;l 7 and % Z¢T=1 ;b\”) are reported, along with Newey-West t-statistics (in parentheses). For complete details, see Section 2.4.
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Table 2.15: Jumps Associated with (Absolute) Magnitude of Earning Surprises

Panel A: Daily Average Percentage of Firms Exhibiting Various Types of Jumps, on Days
Characterized by Earnings Surprises

A-SUE RVJP RVIN SRVJ RVLJP RVLJN SRVLJ RVSJP RVSJN SRVSJ
Small 0.8099 0.8180 0.9849 0.1951  0.2004 0.3042 0.7233 0.7258 0.8983
Medium 0.8310 0.8232 0.9841 0.2216  0.2173  0.3289 0.7319  0.7232  0.8928
Large 0.8605 0.8621 0.9909 0.2618  0.2572  0.3737 0.7455  0.7488 0.8829
Panel B: Daily Average Percentage of Firms Exhibiting Various Types of Jumps, on Days
Characterized by No Earnings Surprises
RVJP RVIJN SRVJ RVLJP RVLJN SRVLJ RVSJP RVSJN SRVSJ
0.8836 0.8786 0.9884 0.2252  0.2220 0.3107 0.7941  0.7900  0.9095

Panel C: t-Statistics Associated with the Difference in Jump Size Percentages Between Portfolios

Difference SRVJ  SRVLJ SRVSJ

Medium-Small  -0.55 4.98 -1.68
Large-Medium 5.76 9.02 -3.06
Large-None 3.54 16.85 -10.85

*Notes: See notes to Tables 2.1. Panels A and B of this table report daily average percentages of firms
exhibiting various types of jumps, on days with (Panel A) and without (Panel B) earnings surprises. On
earning announcement dates for which at least 3 stocks report earning, the “reporting” stocks are sorted
into tertile portfolios (called “Small”, “Medium”, and “Large”), based on the absolute value of earning
surprise (A-SUE), where SUE is defined in equation (2.16). Thus, small, medium and large portfolios are
only constructed on days for which at least 3 firms are characterized by an earnings surprise. Then, the
percentage of firms exhibiting jumps in each of the three earnings surprise size categories is calculated, for
various different jump types (i.e., RVJP, RVIN] etc.) Finally, percentages are averages over all reporting
days in the sample. Finally, various Newey-West t-statistics measuring the significance of the differences
in jump size percentages for SRVJ, SRVLJ, and SRVSJ type jumps are reported in Panel C of the table.
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Table 2.16: Fama-MacBeth Type Regressions Using Various Jump Variation Measures
as Dependent Variable

SRVLJ SRVLJ SRVSJ SRVSJ SRVJ  SRVJ
I 11 11T A% \% VI

Intercept 0.0080  0.0176  0.0034  0.0159  0.0115  0.0335
(5.81) (10.78)  (2.59) (11.64)  (4.63) (12.31)
RVOL -0.0050  0.0025 -0.0065  0.0006 -0.0115  0.0032
(-11.02)  (5.36) (-15.37)  (1.88) (-14.81)  (4.71)
Beta 0.0014 -0.0011 0.0003
(4.40) (-3.76) (0.79)
log(Size) 0.0013  0.0003  0.0030  0.0017  0.0043  0.0020
(5.79)  (1.62) (15.19)  (9.21) (12.71)  (6.67)
BE/ME 0.0007 0.0003 0.0010
(4.11) (2.72) (4.58)
MOM 0.0007 0.0011 0.0018
(3.54) (5.94) (6.13)
REV 0.25166  0.1176  0.3172  0.1882  0.5688  0.3058
(61.05) (31.43) (65.55) (41.52) (69.66) (39.62)
IVOL -0.1424 -0.1880 -0.3303
(-17.05) (-23.23) (-24.43)
CSK 0.0142 0.0206 0.0349
(19.14) (28.33) (26.38)
CKT -0.0008 -0.0008 -0.0015
(-2.28) (-1.96) (-2.31)
MAX 0.2456 0.2248 0.4704
(43.77) (25.28) (35.84)
MIN 0.5115 0.4365 0.9480
(54.63) (48.47) (58.64)
ILLIQ 0.0020  0.0016  0.0032  0.0023  0.0052  0.0039
(6.33)  (5.32) (18.60) (16.36) (12.20) (10.28)
Adjusted R2  0.0322  0.0492  0.1070  0.1473  0.1049  0.1517

*Notes: See notes to Tables 2.1, 2.5 and 2.14. This table reports results for
cross-sectional Fama-MacBeth type regressions using various jump variation
measures (listed across the first row of entries in the table) as dependent
variables, and for various control variables (listed in the first column of the
table). Thus, the regressions in this table mirror those reported in Table
2.14, with one difference. Namely, the dependent variable in the regressions
is either SRVLJ, SRVSJ, or SRVJ. Here, SRVLJ and SRVSJ are contructed

using jump truncation level 42 =5 %I/‘\/ tz

(4)

0.49
A049



53

Figure 2.1: Unconditional Distributions of Realized Measures
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*Notes: See notes to Table 2.1. Panels A-F display unconditional distribution kernel density estimates

of various realized measures, for the cross-section of stock returns for the period January 1993 to

December 2016. Signed small and large jump variation measures are constructed using truncation
= (%)

IV, A%

75 100 125

levels 4! =4 %I/f/il)A%Ag. Distributions are similar when using v = 5 %
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Figure 2.2: Percentiles of Realized Measures
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Figure 2.3: Cumulative Gains of Short-Long Portfolios
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*Notes: Panels A-B display cumulative gains of equal-weighted and value-weighted short-
long portfolios constructed using SRVJ, SRVLJ, SRVSJ, and RSK (see Table 2.1 and Section
2.2 for a discussion of these measures). RSJ is the relative signed jump variation measure
defined and analyzed in Bollerslev et al. (2019b), who include the risk-free rate in all of
their calculations, while we do not (refer to Bollerslev et al. (2019b) for complete details).
In all experiments, the initial investment, made on January 1993, is $1. Each portfolio is
re-balanced and accumulated on a weekly basis, through 2016. Signed small and large jump
variation measures used in the experiment reported on in this figure are constructed based

on truncation level % = 51/ %I/\\/EZ)A(,)LAQ. See Section 2.4.2 for further discussion.
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Figure 2.4: Distribution of Stocks in Portfolios Formed Based on Stocks’ Signed Jump
Variation (SRVJ) and Industry Signed Jump Variation
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*Notes: See notes to Table 2.13. The vertical axis in Panels A and B measures time series

average proportions of stocks and market capitalizations, across double sorted portfolios.
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2.5: Jump Variation Measures Around Earnings Announcement
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Figure 2.5 (Continued)
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Figure 2.5 (Continued)
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Figure 2.6: Aggregated and Weighted Average of Jump Variation Measures
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of SRVLJ to SRVSJ for 1st quintile stocks, sorted on SRVLJ to SRVSJ. Aggregated jump measures are
depicted in blue (dotted line), and are constructed using 5-minute portfolio returns. Weighted average
jump measures are depicted in red (solid line) and are constructed using individual daily jump measures,

and then aggregating to weekly. All calculation utilize jump truncation level 4! = 4

complete details, refer to Section 2.4.6.2.
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Chapter 3

Forecasting Portfolio Variance: A New Decomposition

Approach
3.1 Introduction

The price movements of an asset depend on the nature of news (sentiment and impor-
tance) and on the corresponding information processing mechanism. Different stocks
may respond to the same market-level news announcement in different ways (e.g., with
upside or downside price drift or with small or large jumps). Thus, when examining
the covariance matrix of a portfolio, it is crucial to consider the interactions among
different types of price movements, as different components may provide different in-
formational content. In light of this fact, the objective of this paper is to build on the
research of Bollerslev et al. (2019a), in which realized covariance matrices are decom-
posed into constituent variation components. In particular, we analyze both the signs
and magnitudes of the underlying high-frequency returns used in the construction of
realized covariance matrices. The impetus for our approach is that by including only
“information-rich” components in realized (co)-variation forecasting models, predictive
accuracy may be improved. Finally, in our prediction experiments, we consider a wide
variety of forecasting models, constructed using both standard HAR specifications, as
well as various machine learning methods, including: penalized regression type meth-
ods such as the least absolute shrinkage operator (LASSO) and the elastic net (EN),
and dimension reduction methods such as partial least squares (PLS) and principal
components analysis (PCA).

It should be noted that the decomposition of realized components of the covariance
matrix used in this paper is closely related to that discussed in recent work on the
construction of risk measures based on high-frequency data, including realized skew-
ness and kurtosis (see, e.g. Neuberger (2012) and Amaya et al. (2015)), and jumps

(see, e.g. Bollerslev et al. (2019b), Feunou et al. (2018), and Duong and Swanson
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(2015)). Moreover, our utilization of various machine learning methods for forecast-
ing financial variables builds on previous research in which stock returns are predicted
using shrinkage and variable selection methods (see, e.g., Rapach et al. (2013)), and
estimating and testing asset pricing models using dimension reduction methods (see,
e.g. Giglio and Xiu (2019) and Kelly et al. (2017)). However, in contrast to these stud-
ies, we synthesize machine learning techniques with foreasting portfolio variances using
high-frequency based risk measures, including those based on jumps and co-jumps.

Our contributions to the literature are thus twofold. First, investigate the useful-
ness of a new decomposition that separates the realized covariance matrix of a portfolio
into components based on the signs (positive or negative) and magnitudes (contin-
uous, small jump, or large jump) of underlying high-frequency returns. Second, we
investigate the importance of sparseness when forecasting covariance matrices using
cross section data. This is done by designing forecasting experiments that utilize ma-
chine learning, shrinkage, and dimension reduction methods. Our empirical analysis is
based on all constituent S&P 500 stocks, for the period January 2005 - December 2013.
The candidate predictors used in the specification of our forecasting models include
21 “concordant” and “discordant” variation components measured at daily, weekly,
and monthly frequencies, totaling 63 unique variables. We construct portfolios formed
using 5 to 200 stocks, based on high-frequency returns at 5-minute, 15-minute, and
30-minute frequencies. Under each of the 117 data frequency, truncation level, and
portfolio dimension settings that we analyze, we evaluate the predictive performance of
each forecasting model using 200 randomly selected portfolios. Our empirical finding
can be summarized as follow.

First, sparsity or parsimony is one of the key factors for improving the portfolio
variance forecasting performance. Namely, although each variation component we con-
struct may (in principle) contain marginal predictive content, only a small set of these
components actually contain information that is useful for forecasting portfolio vari-
ance. This conclusion is predicated on the observation that restricted SCHAR-r models
are significantly more accurate than SCHAR models, for example. Additionally, both

of these models are highly parsimonious (sparse), and they are our two mean square
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forecasting error “best” models, when specified using two-step penalized regression in
which dimension reduction via the LASSO and EN are carried out in the first step.

Second, co-jumps are the source of all out-of-sample forecasting gains, when sparse
models are compared with standard HAR-type models. However, all of our best per-
forming models indicate that negative continuous variation components are the most
influential predictors. This does not, of course, mean that jumps do not matter. In-
deed, when our variation components are constructed using 5-minute and 15-minute
frequency data, the MSFE-best models include both continuous and jump components
as predictors. This finding is more pronounced as portfolio dimension increases. Finally,
the above findings are less pronounced when 30-minute high-frequency returns are used
in covariance matrix estimation. Thus, forecasting gains are driven by the identifica-
tion of co-jumps through well-diversified portfolios, and the use of higher frequencies of
data.

Finally, machine learning methods, including the LASSO and EN provide limited
improvement to the out-of-sample fit, unless sparseness is enhanced by using first stage
variable selection and dimension reduction when specifying forecasting models. This
result further underscores the importance of imposing sparseness, after carrying out de-
compositions of the variety examined in this paper. Namely, if sparseness is retained by
removing predictors associated with extraneous (co)-variation information, in contexts
where realized covariance matrices are decomposed into constituent variation compo-
nents that depend on both the signs and magnitudes of the underlying high-frequency
returns, then realized covariance matrices can be more precisely predicted.

The rest of this paper is organized as follows. In Section 3.2 we discuss the model
setup and define the jump risk measures that we utilize. Section 3.3 contains a discus-
sion of the data used in our empirical analysis. Section 3.4 presents our main empirical
findings, including discussions of results based on panelized regression models, dimen-

sion reduction models, and sparse models. Section 3.5 concludes.
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3.2 Model Setup and Estimation Methodology

3.2.1 Components of covariance matrix

Following Ait-Sahalia and Jacod (2012), we assume the d-dimensional log-price process,

X =[X14t,s Xdﬂg]T, follows an Itd6 semimartingaleis, defined as
t t
Xt:X0+/ bsd8+/ osdWs + J¢,
0 0

where b and o denote the drift and diffusive volatility processes, respectively; W is
a d-dimensional standard Brownian motion; J denotes the jump part, which can be

further decomposed into its small and large components,

t t
Jy = / / z(p —v)(ds,dx) —I—/ / zp(ds, dz)
0 J{lz|<e} 0 J{lz|>e}

where p is a random positive measure with its compensator v; and € is the (arbitrary)
fixed cutoff level (threshold) used to distinguish between large and small jumps. For
each trading day t, transaction prices are observed over equally spaced intervals and
the corresponding intraday log returns, r¢; = [ri44, ...,rdﬂg,i]T, at the ith interval A,
are defined as

Tti = XiAnt — X(ifl)An,tv

The daily realized covariance matrix is thus defined as
[t/An]
RCOVy = Y rrf.
i=1

We decompose the covariance matrix into separate components based on the sign
and magnitude of the underlying high-frequency returns using thresholding method (see
Mancini (2009), Duong and Swanson (2015), Li et al. (2017), and the references cited
therein). Let rfj, TE{, rf;] i Tf{f ., ré{f " and rflj ~ denote the positive continuous,
negative continuous, positive small jump, negative small jump, positive large jump,

negative large jump return vector, respectively. In particular,

ct _ ct c— _ C—
Tig =Tti© It,i Tig =Tti © It,i
SJt _ SJ+ SJ— SJ~
Tt,i = Tt,’L' @ It,l Tt,i = Tt,’i @ It,’L (31)

LJt _ LJ+ LJ— _
T =T O L Ty =T O L



ct _
where It = [Ljo<r,, <anw)s o Lo<ry, <anz)]

+
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= ]T

[1{7’1,t,¢>’Y}’ e 1{7’d,t,¢>W}

)

= [1{QA5<T1”§7},...,1{QA5<M“§7}]T denote the element-wise indicator

functions, with A7 and 7 as the truncation levels to separate jumps from contin-

uous part, and large jumps from small jumps, respectively.! IC

ti o I,fi‘]_ and IEZJ_ are

defined analogously. The “concordant” semicovariances based on return vectors with

same magnitudes are defined as,

[t/An] . .
PC= Y. (CHEET,

=1

[t/An] ) .
PShi= Y (30T,

=1

[t/An] . .
PLL= Y ()0 )T,

=1

NCtE

NSJt =

NLJ; =

[t/An]

Z (rtcz )(thz )T7
i=1

[t/An]

S EEIEE T
i=1

[t/An]

> )T

=1

(3.2)

the “concordant” semicovariances based on return vectors with different magnitudes

are defined as,

/A /A
PCSJ, = Z (rtCZ )(Tf;] )7, NCSJ; = Z (thz )(7’29{] )7
i=1 i=1
A A
PSIC, = Y (/G NSJCi= > ()T,
i=1 =1
A 2T
PCLJ; = Z (7}0Z )(Tf{] )7, NCLJ; = Z (rtoz )(TtLZJ )’
i=1 =1 (3.3)
/A /A
PLIC,= > (HH0EHT,  NLici= Y H 65T
i=1 =1
/A A
PSLJ; = Z (TtS;] )(TtL{] )7, NSLJ; = Z (Ttsij )(TthJ )’
i=1 i=1
/A A
PLST,= Y (of{)0")T,  NLSL= ) () )T
i=1 i=1

the “discordant” semicovariances based on return vectors with same magnitudes are

L All truncation levels have included time-of-day effects.
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defined as,

[t/An] . - [t/An] .

MCF= Y () )T, MGy = Yy (i ) )
i=1 i=1
[t/An] . - [t/An] - .

MSTF= Y (e )T, MSIm= Y e )T, (34
i=1 i=1
[t/An] . - [t/An] - .

MLJF = Y ()T, MLI; = Y )0
i=1 i=1

and the “discordant” semicovariances based on return vectors with different magnitudes

are defined as,

2 ) [t/An) N
MCSJH= > (g )T MCSIT = Y (g )T,

=1 =1

- 2
MSJCH = Z )T, MSJCy = Z ! )T,

i=1 i=1

/8] ) [t/An) N
MCLJ} = Z T, MCLJ, = Z (r)E T,

I I
MLJC = Z rEEG)T, MLJC; = Z (rt! g T,

=1 =1

/8 ) t/An) .
MSLJ = Z 2T, MSLJ; = Z i )T,

=1 =1

/8 ) [t/An) N
MLSTF = Y ()T, MLSI = Y (f )T

=1 =1

Following from the above definitions, the realized covariance matrix equals to the

sum of all these “concordant” and “discordant” components. And PCSJ; = PSJCY,
NCSJ,=NSJCy,, PCLJ, = PLJCy, NCLJ;, = NLJCy, PSLJ, = PLSJ;, NSLJ, =
NLSJyand MCSJ;" = MSJC;, MCSJ, = MSJC;", MCLJ;t = MLJC, , MCLJ; =
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MLJCY, MSLJ;” = MLSJ;, MSLJ; = MLSJ;", therefore we have several com-

bined components,

PCSJ2; = PCSJ + PSJC, NCSJ2, = NCSJ; + NSJCy,

PCLJ2; = PCLJ; + PLJC;, NCLJ2; = NCLJ; + NLJC},

PSLJ2; = PSLJ;, + PLSJ;, NSLJ2; = NSLJ; + NLSJ;,
MLJ2, = MLJ; + MLJ;, MSJ2, = MSJ; + MSJ;, .
MCSJP2, = MCSJ" + MSJC;,  MCSJN2, = MCSJ; + MSJC;, 0

MCLJP2;=MCLJ; + MLJC;,  MCLJN2;= MCLJ;, + MLJC},
MSLJP2, = MSLJ;" + MLSJ, MSLJN2y = MSLJ; + MLSJ,",

MC2, = MC;" + MC; .

3.2.2 Forecasting portfolio variance

Given the high-frequency return vectors of the constituents of a portfolio, the realized
covariance matrix of the portfolio can be separated into various “concordant” and “dis-
cordant” semivariances based on returns of different signs and magnitudes. For any

given portfolio weight vector w,
RVP = w'RCOVw
= w' PVPw + w' NVPw + w' MVPw + w' PV MPw + w' NV MPw + w' MV MPw
(3.7)
=PV + NV + MVY + PYVMY + NV MY + MYMY
where PVP, NVP MVP denote various positive concordant, negative concordant and
discordant semivariances constructed by return vectors with same magnitudes, and

PVMP, NVMP, MV MP denote the corresponding semivariances based on return vec-

tors with different magnitudes.

3.2.3 Forecasting model comparisons

Our bechmark forecasting model is HAR model of Corsi (2009), in which the one-

day-ahead forecast for portfolio variance depends on daily, weekly and monthly lags of
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portfolio variance,

RVP

t4+1lt — =00+ adRth + ewRV;tpfl:tle + emRWi&Fm‘ (3-8)

We also consider semivariance HAR (SHAR) model of Patton and Sheppard (2015),

RVP

tH1t =0 + 0d+Vt+p +04-Vy P+ 0u,RVY g+ 0m RV 5, o (3.9)

where V;7 and V; P denote the daily semivariances of the portfolio.

In addition, we also consider the semicovariance HAR (SCHAR) and its restricted

version SCHAR-r of Bollerslev et al. (2019a),

RV[ ), = 00+ 0apPy + 0w, pPi_yy—s + OmpPi_5y o
+ 0a NN + 0w NN g+ O NN 5401 (3.10)

+ 0 MME + 0w MY 14y + O MM 54 o1
The restricted version is constructed as follows,

RVt+1|t_90+9dNN F 0w NN g+ O NN 51 + Om M5 oy (3.11)

We extend the standard HAR model by incorporating the abovementioned realized
components,

RV

=00+ OqZl + 0,2l |, 4+ Ol oy o (3.12)
where Z; denotes a set of daily realized components defined in (3.2)-(3.6).
To estimate these HAR-type models, we use a standard least squares objective

function,
== Z RVE, — f(27:0))% (3.13)

where f(Z?;0) denotes the predicted realized variance of a portfolio by applying each
of the abovementioned models plus machine learning methods with the corresponding
predictors up to day t, denoted by ZF. We adopt three criteria to evaluate model
performance,

(1) Heteroskedasticity adjusted root mean square error (HARMSE) (see Corsi et al.
(2010)),
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T
1 Yt — Ut
HARMSE = —E 2,
thl( Yt )

(2) In-sample R,

(3) Out-of-sample R? (see Campbell and Thompson (2008)),

T ~
> _ 1 ZimWe—0)?
00s _ .
25:1(% —%)?
For model comparison, we use modified Diebold and Mariano (1995) test following

Gu et al. (2019),
DMy = di3/64,,

_ 1 i . (2
di2 41 = - Z((ez(,lt)—&-l)Q - (ez(',t)—i-l)z)
i=1

(1)
it+1

E?H denote the forecasting error for portfolio i at time t based on

where é and é
each model. di2 and the 04, 18 the mean and Newey-West standard error of dio over

200 randomly selected portfolios.

3.2.4 Penalized Regression: LASSO and Elastic Net

Arguably, the ultimate goal of regression analysis is to construct a model that can
predict well with new data and also to discover variables that contribute to the pre-
diction. When there is a large number of predictors, the least squares method for a
linear regression will typically produces non-zero estimates of all parameters, making
the interpretation challenging and leading to overfitting as well.

Thus it is crucial to regularize the estimation process by reducing the number of
parameters, rendering a parsimonious specification. In contrast to the least-squares
estimate, which often has low bias but high variance, penalized regression may improve
the prediction accuracy (measured by mean squared error) by introducing some bias
but reducing the variance of predicted values (bias-variance trade-off).

Building on simple linear regression models, penalized linear models impose a penalty
term on the loss function,

L(0;-) = L(0) + ®(6;-), (3.14)
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where ®(0;-) is the penalty term, which takes the form,

K K
1
(0N o) = A1 —a)) |9¢|+§)\o¢§ 02, (3.15)
1 =1

i=
where A and a are two hyperparameters. In this paper, we consider two methods,
LASSO and elastic net, corresponding to different values of . When « = 1, there is
only a lo-penalty on the parameters and this case corresponds to ridge regression, which
can shrink all parameters but not set any of them to zero. If a = 0, this [;-penalty
setting corresponds to the LASSO regression, which can shrink all coefficients and set
certain parameters to zero simultaneously. The o € (0,1) case corresponds to elastic
net, which combines characteristics of both the {1 and [ penalties. Since the main
purpose of this paper is to find the most relevant signals for prediction, we focus on
LASSO (see Tibshirani (1996)) and elastic net (see Zou and Hastie (2005)) as they can
produce simpler models through both shrinkage and variable selection.

Of note is that LASSO tends to randomly select one variable from a group within
which variables are correlated.? Elastic net is proposed to tackle this problem by
assigning similar coefficients to highly correlated variables. Under the assumption that
only a small number of predictors are important signals for predicting portfolio realized
variance, it’s possible that this small set of variables comes from different groups. Thus
we adopt both LASSO and elastic net in our variable selection procedure, in hopes that
no potential candidate models are missed in this step.

LASSO is applied through a two-stage process, a special case of the relaxed lasso
(Meinshausen 2007). As lasso sets a number of the coefficients to be zeros and shrinks
the others towards zero relative to the regular least-square estimates, these nonzero
estimates by lasso will cause bias towards zero. Relaxed lasso is a method to tackle this
issue by separating the two effects of standard lasso (variable selection and shrinkage)
into a two-step procedure: a relative large penalty on the full set of variables in the first
step for variable selection; a relative small penalty on the selected variables for shrinkage

(soft de-biasing). In this paper, we adopt a special case of relaxed lasso, which involves

2This is why the variable selection procedure generates a huge quantity of candidate predictor
combinations over time and portfolios.
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a standard least-squares estimation to the subset of variables selected from the first
step, such that the difference in prediction performance between penalized regression
and sparse models is mainly due to the selection of predictors. To be consistent, we

utilize the same two-stage process for elastic net models.

3.2.5 Dimension Reduction: PLS and PCR

When regressors are highly correlated, OLS may result in unstable and unreliable esti-
mates. Penalized linear regressions are one of the possible remedies for multicollinearity
by imposing constraints on the magnitudes of parameters. But such models can lead
to suboptimal prediction performance especially when input data contains a lot of re-
dundant information.? To tackle this issue, we can apply dimension reduction methods
that utilize derived mutually orthogonal components as new regressors. Generally, di-
mension reduction models involve a two-step procedure. First, they produce a number
of linear combinations of the original variables. Next, the first few components which
can explain most of the variability in independent or dependent variables are used in
a regular regression for prediction. Two commonly used methods in this domain are
principal component regression (PCR) (see, e.g., Stock and Watson (2002a,b, 2006),
and Bai and Ng (2006a,b, 2008)) and partial least squares (PLS) (see, e.g., Kelly and
Pruitt (2013, 2015)).

PCR transforms the original T x K input data matrix Z? into a set of derived co-
variates named principal components based on the singular-value decomposition (SVD)
of ZP. Specifically, ZP = USV ", where Sty = diag[61, ..., 6] with 6 > ---> 31 >0
denotes the non-negative singular values of ZP and Urxr = [u1,...,ur] and Vi g =
[v1, ..., k] are left and right singular vectors of ZP respectively. Columns u;(i = 1,...,T)
and vj(j = 1, ..., K) are orthogonal unit vectors with length T and K, respectively. Thus
TF. i = ZPV defines the full principal component decomposition of ZP. The leading L

(L < K) principal components, corresponding to the first L largest singular values (the

3As documented by Tibshirani (1996), ridge regression empirically dominates lasso in terms of
forecasting performance when regressors are correlated, indicates that a linear combination of all the
original input variables can better represent the dependent variable relative to a subset of the redundant
variables. This is consistent with the idea of dimension reduction methods.
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squared root of eigenvalues) and eigenvectors, are used as new predictors in a second

step of regression, defined as
RVP =6y + O'T}f =6y + ©'(2PVy), (3.16)

The estimation procedure of PCR is to find a set of K-dimensional vectors [vy, ..., v
such that each derived principal component successively retains the maximum possible

variation in ZP. Thus the j vector of weights satisfies
vj = arg max Var(T ) = arg max Var(ZPV), s.t.v'v = 1, vjuy = 0,1 =1,...,j—1. (3.17)
v v

The limitation of PCR is that it only considers the variability in the original predic-
tors when constructing orthogonal principal components, thus it may omit information
that would be useful in predicting the response variable. In contrast to PCR, PLS
takes into account both the independent and the response variables in the dimension
reduction procedure. The j* vector of weights (W = [wy, ..., wk]) used to construct

component of PLS satisfies 4
w; = arg max Cov(ZPW, RVP)?, st w'w=1, wé-wl =0,1=1,...,7—1.  (3.18)
w

PCR and PLS transform the original space of K variables into a new space of
K uncorrelated variables and achieve dimension reduction by discarding the last K-L
components corresponding to the last few eigenvalues. In contrast to the unsupervised
method of PCR, PLS is applied in a supervised way with consideration of the cor-
relation between independent and dependent variables. However, in the case of low
signal-to-noise ratio, irrelevant predictors can still get some weights in the first L linear
combinations rather than being eliminated completely from all components, making

the prediction performance contaminated by noise.

3.2.6 Sparse Models

Though we can decompose realized covariance into multiple components in hopes that

each of them has unique information, we still assume that only a small number of these

“This problem can be solved in an efficient way by using SIMPLS algorithm of De Jong (1993).
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separated realized measures plays an important role in predicting portfolio realized
variance. Thus one of the main purposes of this paper is to discover the most relevant
signals by exploiting sparsity in models for prediction.

The construction of candidate sparse models relies on the variable selection proce-
dure. In the first step, all of the 63 predictors are included in the penalized regression
for estimating portfolio variance in the subsequent day, operated on a rolling window
scheme. All models are re-estimated daily using the most recent 1000 daily observa-
tions, and predictor sets with less than 10 variables selected by either LASSO or elastic
net are saved as candidate predictor combinations. In the second step, a regular linear
regression with predictors selected from the first step is performed as a candidate sparse
model.

The above procedure is performed under different settings related to data frequency,
truncation levels, and the number of stocks used to construct a portfolio. Specifically,
the construction and estimation steps are based on (1) 3 data frequencies (5-minute,
15-minute, and 30-minute); (2) 3 truncation levels used to separate large jumps from
small jumps (v', v2, and 73);> (3) 13 kinds of portfolios which are constructed by
different number of stocks (N € [5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200]).
Thus there are 117 (3*3*13) unique settings and the detailed procedure is as follows:

In the first step of variable selection, penalized regressions are operated under each
abovementioned setting for 100 randomly selected portfolios and all resulted variable
combinations are collected for later steps. Usually there are around 80,000 different
candidate models (variable combinations) for each of the 117 settings. However, a large
quantity of these candidate models are not robust over time and in the cross-section
of portfolios. An intermediate step, in which most unstable models are filtered out, is
necessary to make the estimation process efficient. Thus before the next step of model
selection, the forecasting performance of each candidate model is calculated based on 30
randomly selected portfolios. Any model with average statistics worse than benchmark

models is discarded. Typically there are hundreds of models left for each of the 117

5’}’1 =4 %.I/‘\/tA%ZlQ s ’}’2 =5 %I/‘\/tA%ZIQ s and ’y3 =6 %ﬁ/tA%Ag .
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settings, making the following steps less time-consuming. In the next step of model
selection, the comparison of prediction performance of all benchmark and candidate

models is conducted based on 200 randomly selected portfolios under each setting.

3.3 Data

We obtain high frequency trading data for S&P 500 constituents from the consolidated
Trade and Quote (TAQ) database. The sample period is from January, 2005 to De-
cember 2013, for a total of 2265 trading days. We subsample the data at 5-minute,
15-minute, and 30-minute frequencies using previous tick approach. Intraday prices are
sampled from 9:30 a.m. to 4:00 p.m. from Monday to Friday. Overnight returns are

not considered in this paper.

3.4 Empirical Results

3.4.1 Prediction Performance

Table 3.1-3.3 report the prediction performance of models in terms of HARMSE, in-
sample and out-of-sample R? based on 3 data frequencies and 3 truncation levels. There
are 23 models presented in each panel, including 4 benchmark models (HAR, SHAR,
SCHAR, and SCHAR-1), 3 penalized linear regressions (LASSO, elastic net with a = 0.2
and a = 0.6, denoted EN1, EN2), PLS with number of components based on 3 criteria
(which select the leading components that can cumulatively explain 90%, 80% and 70%
of the variance in the dependent variable, respectively, and drop any selected compo-
nent if the corresponding marginal contribution is less than 5% of the variance; denoted
PLS1, PLS2, PLS3), PCR using principal components based on 3 criteria (which choose
the leading components that can cumulatively retain 90%, 80% and 70% of the vari-
ability in independent variables, respectively, and discard any chosen component with a

marginal contribution less than 5% of the variance; denoted by PCR1, PCR2, PCR3),5

5We also used cross-validation to determine the number of components for both PLS and PCR, the
results are qualitatively the same as those in Table 3.1-3.3.
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10 best performing sparse models that outperform all benchmark models (M1,..., M10).”

Panel A of Table 3.1 presents the average HARMSE, R? and R?

(] 008 based on 200 ran-

domly selected portfolios formed by different number of stocks for each model. Among 4
benchmark models, SHAR and SCHAR are dominated by HAR and SCHAR-r in terms
of R?

00S*

Consistent with Bollerslev, Li, Patton, and Quaedvlieg (2019), the restricted
SCHAR-r model outperform standard HAR model in terms of predictive accuracy mea-
sured by all three evaluation estimators across all portfolio dimensions (from N=5 to
N=200), indicating that realized semicovariances provide additional information for im-
proving prediction performance. However, it’s the restricted SCHAR-r model rather
than the unrestricted SCHAR model produces out-of-sample forecasting improvement,
suggesting that many of the realized semicovariances contain irrelevant or redundant
information for prediction.

Panelized regression models (LASSO, EN1, and EN2) clearly exhibit overfitting as
the out-of-sample R2,, are much smaller than the in-sample RZ. It is not surprising as
these models assign non-zeros values to the coefficients of some irrelevant or redundant
variables. Figure 3.1 displays the model complexity of each model on each re-estimation
day. For portfolios with a small dimension (formed by 10 stocks), LASSO or elastic
net usually select over 10 variables as predictors. This number is between 5 and 20
if portfolios are formed by 200 stocks and before 2013. There is a sharp increase in
the number of variables after 2013 for well-diversified portfolios, indicating an increase
in the number of reliable features and the benefit of utilizing the identified common
factors in the cross-section.

Dimension reduction models (PLS1-3 and PCR1-3) improve the prediction perfor-

2

mance in terms of out-of-sample R,

relative to penalized regressions. This result
further confirms the assumption that many of realized measures inside the covariance
matrix are redundant. Linear combinations (components) utilized by PLS or PCR can

average out some of the noise. In addition, the number of components used by PLS

and PCR is much fewer than the number of features selected by LASSO or elastic net,

"When data frequency is 15-minute or 30-minute and the number of stocks used for forming a
portfolio is small, there are none or less than 10 models that can beat all the benchmark models.
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with this number ranging from 1 to 5. These simple model settings also reduce over-
fitting for portfolios in different dimensions. However, PLS and PCR only discard the
last few components to achieve the goal of dimension reduction, rather than throwing
away unnecessary variables, making the leading components contaminated by noisy
variables. Thus it’s not surprising that dimension reduction models only perform on
par with those benchmark models. This result suggests that it is crucial to filter out
those relevant signals and build parsimonious models for better prediction.

In Table 3.1-3.3, M1-M10 denote the top 10 sparse models that can outperform
all those 4 benchmark models in terms of all evaluation criteria. Each panel reports

the average HARMSE, R?, and R?

b 20s over 200 randomly selected portfolios formed

by different number of stocks. M1-M10 denote the same models in each panel, but
the model specifications are varying across different settings/panels. Panel A of Table
3.1 corresponds to a setting of 5-minute data and a small truncation level v'. Under
this setting, all top models perform similarly better than benchmark models, with an
improvement of 3% relative to standard HAR model (2% relative to SCHAR-r model) in

terms of R2

~ s for small portfolios constructed by 5 stocks. This out-of-sample prediction

improvement increases to 5% relative to the performance of HAR model (2% relative
to SCHAR-r model) for portfolios formed by 200 stocks. Table 3.4-3.6 report the
predictors utilized by these best-performing sparse models. For small portfolios, the
number of predictors is less than 5 regardless of the setting of data frequency and
truncation level. When portfolios are large, with number of stocks greater than 30,
more predictors (always less than 10) are included in these sparse models. This result
indicates that both diversification effect and those additional predictors contribute to
the improvement in prediction performance.

Figure 3.2 reports the median value of all evaluation criteria for all benchmark mod-
els, elastic net with o = 0.2 (EN1), PLS with components that can explain 90% of the
variation in dependent variable (PLS1), PCR with principal components that account
for 90% of the variability in independent variables (PCR1), the sparse model, together
with the 10% and the 90% quantiles for the top sparse models over 200 randomly se-

lected portfolios with dimensions ranging from N=>5 to N=200. Sparse models generate
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a substantial improvement in prediction over all the other models as the portfolio size
increases. One exception is that elastic net has the largest in-sample R?S for portfolios
formed by 20 or more stocks, which further confirms the existence of the overfitting
problem in penalized regressions.

Of note is that when portfolios are small (N is less than 50), there is a large dispersion
of prediction performance among the 10%, median, and 90% quantiles for sparse models.
The potential reason is that when portfolios are not well-diversified, detected jumps
are most likely to be idiosyncratic jumps, which may affect the prediction to different
extent for different portfolios. However, for portfolios with large dimensions, most of
the idiosyncratic jumps are diversified out, and the remainings tend to be co-jumps in
the cross-section, leading to an improvement in the prediction performance. This result
further confirms that co-jumps are critical in forecasting portfolio variance.

To complement Table 3.1-3.3, which only report the quantitative prediction perfor-
mance of all models, Table 3.7-3.9 show the statistical significance of differences among
models. We report the pairwise Diebold-Mariano test statistics. The Diebold-Mariano
test compares the forecast accuracy of two forecasting models and the null hypothesis
is that two models have the same forecast accuracy. The corresponding test statis-
tic is asymptotically N (0,1) distributed under the null hypothesis. Thus a negative
statistic indicates that the column model is dominated by the row model. Regard-
less of data frequency and portfolio dimension, penalized regressions perform poorly
compared to benchmark models. Dimension reduction models significantly outperform
the over-parameterized SCHAR model, while there is no significant differences between
PLS/PCR and HAR/SCHAR-r models. In contrast, sparse models improve the out-of-
sample performance over all benchmark models. Except at 30-minute frequency and for
some small portfolios at 15-minute frequency, sparse models produce statistically signif-
icant improvement over all benchmark, penalized regressions, and dimension reduction

models.



78

3.4.2 Variable Importance

In this section, we investigate the predictors utilized in best-performing sparse mod-
els. Table 3.4-3.6 report the selected variables in those top 5 sparse models (M1-M5)
under different settings. Regardless of data frequency, truncation level and portfolio
dimension, daily, weekly and monthly negative continuous components (dANC, wNC,
and mNC) are three predictors appeared in most of the top sparse models.

At the fastest frequency (5-minute), top sparse models also use several components
based on the interactions between continuous and jump returns, including positive con-
tinuous and small jump part (PCSJ), positive continuous and large jump part (PCLJ),
and negative continuous and small jump part (NCSJ). When the portfolio dimension
increases to a certain level (N is larger than 50 in Table 3.4), more jump related com-
ponents are included in those top models, such as positive small and large jumps part
(PSLJ), negative small and large jump part (NSLJ), and discordant components based
on small and/or large jumps (MSLJN, MSLJP, etc.), indicating that co-jump related
components are more likely to be identified through constructing diversified portfolios
and such measures play an important role in predicting portfolio variance. Of note is
that all these jump related components are weekly or monthly aggregated measures,
except daily NCSJ for portfolios formed by 200 stocks. This result suggests that it is
hard to identify co-jumps using high-frequency data at fast frequencies due to issues
of asynchronicity and microstructure noise. While weekly and monthly jump measures
aggregate otherwise weak signals embedded in daily jumps.

Based on 15-minute data and besides those three important continuous components
(daily,weekly, and monthly negative continuous parts), top sparse models exploit several
jump related measures, including concordant measures (PCSJ, NCSJ, PSLJ, NSLJ,
NSJ, and NLJ, etc.) and discordant measures (MLJ, MCLJ, and MCSJ, etc.). For
portfolios with small dimensions (N=5 and N=10), jump related measures are almost
all weekly and/or monthly aggregations. However, daily jump related measures become
influential predictors for portfolios with large size (N is larger than 30 in Table 3.5),

indicating that co-jumps can be identified when building well-diversified portfolios using
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15-minute data.

Table 3.6 reports the selected variables for top sparse models basde on 30-minute
data. At this coarse frequency, there are fewer sparse models that can outperform all
benchmark models in terms of all evaluation criteria. When portfolios are in small
dimensions (N is less than 50), there are none such sparse models. Though the selected
jump related variables are similar to those at higher frequencies, most of them are weekly
or monthly aggregations. This is not surprising as it is difficult to detect jumps at such
coarse frequency, making aggregated jump measures contain relative more information
than rarely detected daily jump measures.

Figure 3.4-3.6 complement Table 3.4-3.6 by showing the variable importance for
penalized regression, dimension reduction and sparse models. Specifically, we want to
identify covariance components that have an significant influence on predicting port-
folio variance while simultaneously controlling other predictors. Following Kelly et al.
(2017), we rank each separated covariance measure by the corresponding variable im-
portance, denoted by V' I;, which is defined as the reduction in the forecasting Rfs from
setting the values of feature i to zeros and keeping the remaining forecasting model
fixed.

The most influential predictors are based on negative continuous returns (dNC,
wNC, and mNC), an universal agreement among all models. Besides these important
negative continuous component, elastic net tends to place similar weights on correlated
jump measures, making the number of selected variables much larger than that in
sparse models. This is also why penalized regressions are susceptible to overfitting.
In contrast to penalized regressions, dimension reduction models place emphasis on a
smaller set of variables, including continuous and jump components. However, PLS and
PCR set nonzero weights on the other variables, making predictions contaminated by
noise. Sparse models exploit much fewer predictors than the other models, extracting
predictive information from the most relevant and influential continuous and co-jump

components.
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3.4.3 The Effects of Data Frequency and Truncation Level on Predic-

tion

The construction of realized covariance matrix and the corresponding separated compo-
nents is based on large dimensional high-frequency datasets. To alleviate the problems
of asynchronicity and microstructure noise associated with high-frequency data, we sub-
sample the original dataset at different frequencies using the previous tick approach,
including 5-minute, 15-minute, and 30-minute. In this section, we examine the effect
of subsampling on prediction performance.

As discussed in Section 3.4.2, the appropriate data frequency to detect co-jumps
is at 15-minute. Sparse models can thus draw information directly from daily jump
measures (e.g., NSLJ etc.) for prediction. Though there are concerns of asynchronicity
and microstructure noise at higher frequency (5-minute), sparse models can alleviate
such concerns by using a small set of predictors, among which weekly and monthly jump
measures aggregate otherwise incomplete information from daily co-jump measures.
Thus top sparse models at 5-minute frequency significantly outperform all the other
models in terms of out-of-sample forecasting performance. While at a coarse frequency
(30-minute), jumps are less likely to be identified, potentially the reason why sparse
models produce indistinguishable improvement over benchmark models. In summary,
data frequency affects the detection of jumps, which may contain critical information
for prediction, making sparse models not attractive at certain frequencies. This result
further confirms that co-jumps are key factors that contribute to the outperformance
of sparse models, not only due to the sparseness itself.

For robustness, we use three truncation levels to separate large jumps from small
jumps. Table 3.4-3.6 show that predictors of top sparse models, especially jump related
measures, are different when applying different truncation levels. In fact, the difference
is mainly due to the change in definition of a certain range of returns. A large jump
related component when using a small truncation level is actually measuring similar
parts of the covariance matrix as does a small jump related component when using

a large truncation level. One example is that a discordant component that based on
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negative small and large jump returns (NSLJ) is an important predictor when using the
small truncation level ¥' at 15-minute frequency, the corresponding predictor turns into
a component based only on negative small jump returns (NSJ) if a larger truncation
level 73 is used. Though the selected predictors may be denoted differently, they are
providing similar information related to prediction, thus the performance of top sparse
models are indistinguishable under different settings regarding truncation level. While
it is still necessary to separate a jump into its small and large components as each
of them and the interactions between them among different stocks can provide unique

information.

3.5 Concluding Remarks

We propose a new decomposition approach of the covariance matrix of a portfolio,
building on the work of Bollerslev et al. (2019a). The decomposition utilizes infor-
mation on the sign and magnitude of the underlying high-frequency returns. In this
decomposition, interactions among stocks related to negative/positive continuous vari-
ation components, as well as small/large jump components, yield a number of new
predictors, many of which are found to contain unique information that has marginal
predictive content for future portfolio variances. This finding is dependent upon the
construction of sparse models that utilize only relevant signals, and drop “noisy” vari-
ables. More specifically, our findings are predicated upon the judicious use of machine
learning, shrinkage and dimension reduction methods when specifying alternatives to
standard HAR-type prediction models. Finally, it is noteworthy that predictive gains
are most pronounced when higher frequency data is used in our empirical experiments,

and when portfolios with greater numbers of stocks are examined.



Table 3.1: Prediction Performance (5-minute)

Panel A: Separating Large Jumps from Small Jumps Based on !
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Model HAR SHAR SCHAR SCHAR-r LASSO EN1 EN2 PLSI PLS2 PLS3 PCR1 PCR2 PCR3 ML M2 M3 M4 M5 M6 M7 MS M9 MO
Number of Stocks: N=5

HARMSE 085 081 0.80 0.74 0.83  0.84 071 071 073 077 076 075 072 073 0.74 071 071 071 071 072 073 0.73

Ris 055 058 0.58 0.65 0.65 055 056 058 056 055 055 059 059 059 059 059 0.60 0.60 0.60 0.60 0.60

Roos 061 0.60 0.62 0.50 0.49 0.62 058 063 062 062 064 064 064 064 064 064 064 064 064 064
Number of Stocks: N=10

HARMSE 088  0.81 0.73 083 083 083 072 070 072 077 077 075 072 071 072 071 072 072 070 072 072 0.71

Ris 0.57  0.61 0.60 0.67 0.67 0.67 057 058 060 058 057 057 0.62 0.62 062 0.62 0.62 062 0.62 062 062 0.62

Roos 0.65  0.63 0.66 052 052 052 064 063 063 065 064 064 068 0.68 068 068 0.68 0.68 068 0.68 0.68 0.68
Number of Stocks: N=30

HARMSE 1.00  0.89 0.85 0.79 088 0885 088 078 072 075 084 084 08 076 0.76 0.76 0.77 0.77 0.75 0.76 0.78 0.79 0.76

Ris 058  0.63 0.65 0.61 068 0.68 068 057 059 060 058 057 057 0.63 0.63 063 063 0.63 063 063 0.63 063 063

Roos 065  0.63 0.57 0.67 054 053 052 064 064 065 065 063 063 069 0.69 069 0.69 0.69 069 069 0.69 069 0.69
Number of Stocks: N=50

HARMSE 104 092 0.88 0.81 0.87 0.8 080 073 077 087 087 086 078 079 0.78 079 077 0.78 0.79 077 080 0.79

Ris 0.58 0.63 0.65 0.61 0.68 0.68 0.57 0.59 0.60 0.58 0.57 0.57 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63

Roos 0.64  0.63 0.56 0.67 056 0.55 063 064 065 065 063 063 069 0.69 069 0.69 069 0.69 0.69 0.69 0.69 0.69
Number of Stocks: N=100

HARMSE 108 0.95 0.89 0.84 088 080 089 083 074 080 089 090 088 080 0.79 080 081 078 074 082 082 082 080

Ris 058  0.63 0.65 0.61 068 068 068 057 058 060 058 057 057 0.63 0.63 063 063 0.63 063 063 0.63 063 063

Roos 064 063 0.56 0.67 056 054 054 063 0.64 066 064 063 063 069 0.69 069 0.69 0.69 069 069 0.69 069 0.69
Number of Stocks: N=200

HARMSE 111 097 0.90 0.85 0.89 0.8 084 074 082 091 091 090 083 074 081 081 080 0.79 0.82 079 0.83 0.85

Ris 0.58 0.63 0.65 0.61 0.68  0.68 0.57 0.59 0.61 0.58 0.57 0.57 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63

Roos 064 063 0.55 0.67 0.58  0.51 063 064 066 064 062 062 069 0.69 069 0.69 069 069 0.69 0.69 0.69 0.69

Panel B: Separating Large Jumps from Small Jumps Based on 72

Model HAR SHAR SCHAR SCHAR-r LASSO EN1 EN2 PLSI PLS2 PLS3 PCRI PCR2 PCR3 M1 M2 M3 M4 M5 M6 M7 M8 M9 MIo
Number of Stocks: N=5

HARMSE 085 081 0.80 0.74 085 085 085 070 070 072 075 075 074 071 072 073 072 070 0.72 073 072 0.70 0.72

Ris 0.56  0.59 0.60 0.58 0.65 065 065 055 056 058 057 056 055 060 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60

Roos 0.62  0.60 0.55 0.62 049 049 049 063 060 059 063 063 062 065 0.64 064 064 064 064 0.64 064 064 064
Number of Stocks: N=10

HARMSE 088 081 0.81 0.73 083 0.83 071 069 071 076 077 074 071 072 072 071 0.72 072 070 072 072 0.72

Ris 0.57  0.61 0.63 0.60 0.66  0.66 056 058 059 057 057 056 062 061 062 062 062 062 062 061 062 062

Roos 0.64  0.63 0.57 0.66 051 0.50 064 063 063 065 064 064 068 0.68 068 0.68 068 0.68 0.68 068 0.67 0.67
Number of Stocks: N=30

HARMSE 1.00  0.89 0.86 0.79 0.85 0.85 078 071 076 084 084 082 078 0.76 076 077 0.77 0.77 0.7 0.76 0.76

Ri 0.58  0.63 0.64 0.61 0.67  0.67 057 058 060 058 057 057 0.63 0.63 063 063 063 063 0.63 0.63 0.63

Roos 0.64  0.63 0.57 0.67 0.55 0.55 064 064 065 065 063 063 069 0.69 069 069 069 069 0.69 0.69 0.69
Number of Stocks: N=50

HARMSE 104  0.92 0.87 0.81 085 085 086 080 072 077 08 086 084 080 0.78 0.80 0.79 079 0.77 0.79

Ri 0.58  0.63 0.65 0.61 0.67 0.67 067 057 058 060 058 057 057 0.63 0.63 0.63 0.63 0.63 0.63 0.63

Roos 0.64  0.63 0.56 0.67 056 055 055 063 064 065 065 063 063 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69
Number of Stocks: N=100

HARMSE 108  0.95 0.89 0.84 0.87 0.88 083 073 080 090  0.90 0.81 082 082 0.78 082 081 0.82 0.81

Ri 0.58 0. 0.65 0.61 0.67  0.67 057 0. 0.60 058 057 0.63 0.63 0.63 0.64 063 0.63 0.63 0.63

Roos 0.64  0.63 0.56 0.67 0.58 057 063 064 065 064 063 063 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69
Number of Stocks: N=200

HARMSE 111 097 0.90 0.85 0.85 0.86 0.86 084 073 084 091 091 088 079 0.82 083 081 0.80 0.84 0.83 083 083 0.83

Ri 058 0.63 0.65 0.61 0.66 0.66 0.66 057 058 061 058 057 057 0.64 0.64 064 0.63 .63 0.63

Roos 0.64  0.63 0.56 0.67 0.60 058 058 063 064 066 064 062 062 070 0.69 069 0.69 0.69 0.69 0.69 069 0.69 0.69
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Table 3.1 (Continued)

Panel C: Separating Large Jumps from Small Jumps Based on 7*

Model HAR SHAR SCHAR SCHAR-r LASSO EN1 EN2 PLS1 PLS2 PLS3 PCR1 PCR2 PCR3 M1 M2 M3 M4 M5 M6 M7 M8 M9 MO
Number of Stocks: N=5

HARMSE  0.84 0.80 0.80 0.73 0.86 086 0.86 0.71 070 0.72 0.76 0.75 0.74 0.72 072 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.70
Ris 0.56 0.59 0.61 0.58 0.65 0.65 0.66 0.55 0.56 0.58 0.57 0.56 0.55 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60
Roos 0.62 0.60 0.55 0.63 044 045 043 063  0.60 0.59 0.63 0.63 0.63 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.64

Number of Stocks: N=10
0.73 0.83 084 083 072 069 072 0.77 0.77 0.75 0.72 0.72 0.73 0.72 071 0.73 0.70 0.73 0.69 0.72

HARMSE  0.88 0.81

Ris 0.57 0.61 0.60 0.67 0.67 0.67 0.57 058  0.59 0.58 0.57 0.56 0.62 062 062 0.62 062 062 0.62 062 062 0.62

Roos 0.65 0.63 0.66 0.52 048 052 065 063 063 0.65 0.65 0.64 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68
Number of Stocks: N=30

HARMSE  1.00 0.89 0.85 0.78 0.86 087 0.87 0.77 071 0.75 0.83 0.84 0.81 0.76 0.76 0.77 0.77 0.75 0.77 0.72 0.72 0.77 0.75

Ris 0.58 0.63 0.64 0.61 0.67 0.67 0.67 0.57 0.58  0.60 0.58 0.57 0.57 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 063 0.63

Roos 0.64 0.63 0.56 0.67 0.53 052 052 063 064 0.65 0.64 0.63 0.63 0.69 0.69 0.69 0.69 0.68 0.68 0.68 0.68 0.68 0.68
Number of Stocks: N=50

HARMSE  1.05 0.92 0.88 0.81 0.89 089 0.89 08 072 0.78 0.87 0.87 0.84 0.78 0.73 0.78 0.80 0.79 0.78 0.80 0.80 0.81 0.73

Ris 0.58 0.63 0.65 0.61 0.67 0.67 0.67 0.57 0.58 0.60 0.58 0.57 0.57 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63

Roos 0.64 0.63 0.56 0.67 0.54 053 053 063 064 065 0.64 0.63 0.63 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69
Number of Stocks: N=100

HARMSE  1.08 0.95 0.89 0.84 0.88 089 088 083 074 081 0.90 0.90 0.86 0.75 0.80 0.76 0.82 0.82 0.78 0.80 0.81 0.82 0.83

Ris 0.58 0.63 0.65 0.62 0.67 0.67 0.67 057 058 061 0.58 0.57 0.57 0.63 0.63 0.63 0.63 0.63 0.63 0.63 063 063 0.63

Roos 0.64 0.63 0.56 0.67 0.53 053 053  0.63  0.64 0.66 0.64 0.63 0.63 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69
Number of Stocks: N=200

HARMSE  1.11 0.97 0.90 0.85 0.85 0.86 0.84 074 0.84 0.91 0.91 0.87 0.80 0.82 0.79 0.75 0.77 0.82 0.80 0.84 082 0.79

Ris 0.58 0.63 0.65 0.62 0.66  0.66 0.57  0.58  0.61 0.58 0.57 0.57 0.64 0.64 0.64 0.63 063 0.63 0.64 0.64 063 0.63

Roos 0.64 0.63 0.56 0.67 0.57  0.55 0.63  0.64 0.66 0.64 0.62 0.62 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69

*Notes: This table reports the in-sample and out-of-sample portfolio volatility forecasting performance of benchmark models (HAR, SHAR, SCHAR, and SCHAR-r), LASSO, Elastic Net with a = 0.2 and a = 0.6 (EN1-EN2),

partial least squares using components that can explain 90%, 80%,70% of variance in the response variable (PLSI-PLS3), principal component regression using components that can explain 90%, 80%,70% of variability in

explanatory variables (PCR1-PCR3), and the top 10 models in terms of HARMSE, R2,,RZ, using predictors selected by LASSO or elastic net (M1-M10), at the 5-minute data frequency. The reported numbers are based on

200 randomly selected portfolios constructed by 5, 10, 30, 50, 100, and 200 stocks, ely, therefore all statistics are the average value over time and all randomly sclected portfolios. The truncation level used to separate
N

jumps and continuous variation is 3/ 11V A% . 41, 5%, and 4 (in the form of ay/LIV,A%* ) are three truncation levels used to split jump variation into large and small components, with a = 4, 5, and 6, respectively.



Table 3.2: Prediction Performance (15-minute)

Panel A: Separating Large Jumps from Small Jumps Based on !

84

Model HAR SHAR SCHAR SCHAR-r LASSO EN1 EN2 PLS1 PLS2 PLS3 PCRl1 PCR2 PCR3 M1 M2 M3 M4 M5 M6 M7 M8 M9 MI0
Number of Stocks: N=5

HARMSE  1.24 1.20 1.08 130 130 1.29 1.05 1.06  1.07 110 1.09 1.10 1.06 1.05 1.06 1.06 1.07 1.07

Ris 0.48 0.51 0.51 0.59  0.59 0.59 048 049  0.51 0.51 0.49 0.48 0.52 0.53 0.53 0.53 0.53 0.53

Roos 0.45 0.42 0.44 027 026 029 048 045 041 0.46 0.46 047 047 0.47 047 047 047 047
Number of Stocks: N=10

HARMSE  1.27 119 110 1.04 119 119 1.20 0.99 1.00 1.01 1.07 1.05 1.07 01 099 1.00 1. 0.99 1.03 1.01 099 1.02 1.00

Ris 0.50 0.53 0.56 0.54 0.62 0.62 062 050 052 054 0.53 0.50 0.50 0.55 0.55 0.55 0.55 0.56 0.55 0.56 0.56 0.56 0.56

Roos 0.47 0.45 0.39 0.47 028 0.27 026 049 046 045 0.48 0.48 0.49 51 0.51 0. 0.51 0.51 0.51 051 0.51 0.50 0.50
Number of Stocks: N=30

HARMSE  1.40 1.28 1.16 1.09 123 124 1.04  1.04 113 112 112 1.03 1.00 099 1.07 1.08 1.03 1.09 1.04 1.01 0.98

Ris 0.50 0.54 0.57 0.54 0.62  0.62 052 0.56 0.53 0.50 049 056 0.56 0.57 0.57 0.57 057 057 056 0.56 0.57

Roos 0.45 0.42 0.36 0.45 0.26 0.23 043 0.44 0, 0.45 0.46 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
Number of Stocks: N=50

HARMSE  1.45 1.32 118 111 1.25 128 1.25 1.04 1.07  1.07 115 1.16 115 1.04 1.10 1.10 1.04 .01 101 1.00 099 1.09 1.03

Ris 0.49 0.54 0.57 0.54 0.62  0.62 0. 0.50 052 0.56 0.53 0.50 049 056 0.57 0.57 057 056 0.56 0.56 0.57 0.57 0.56

Roos 0.45 0.42 0.36 0.46 029 0.23 0.2 047 043 0.44 0.44 0.45 0.47 051 0.51 0.51 0.5 51 0.51 0.51 51 0.51 0.
Number of Stocks: N=100

HARMSE  1.49 1.36 1.20 115 129 131 129 107 1.09 1.09 119 119 118 1.06 1.12 1.13 1.05 1.09 103 1.02 1.01 1.02 1.02

Ris 0.49 0.54 0.57 0.54 0.62 0.62 062 050 052 0.56 0.53 0.50 0.49 057 057 057 056 057 056 057 057 056 057

Roos 0.45 0.42 0.35 0.46 030 0.22 026 046 043 045 0.43 0.44 0.46 0.51 0.51 0.51 0.51 0.51 051 051 051 0.51 0.51
Number of Stocks: N=200

HARMSE  1.51 1.38 1.20 1.16 1.25 1.28 1.25 1.08 110 1.10 1.22 1.21 120 112 1.06 1.13 1.16 14 1.04 1.08 1.06 1.09 1.03

Ris 0.49 0.54 0.57 0.54 0.62 0.62 062 050 052 0.56 0.54 0.50 0.49 057 057 057 057 057 058 057 056 057 057

Roos 0.44 0.41 0.35 0.45 029 020 027 046 043 0.44 0.42 0.44 0.45 051 051 051 051 051 051 051 051 0.51 0.50

Panel B: Separating Large Jumps from Small Jumps Based on 72

Model HAR SHAR SCHAR SCHAR-r LASSO EN1 EN2 PLS1 PLS2 PLS3 PCR1 PCR2 PCR3 M1 M2 M3 M4 M5 M6 M7 M8 M9 MO
Number of Stocks: N=5

HARMSE 1.23 1.18 1.14 1.07 1.27 126 1.26 1.04 1.06 1.09 1.08 1.04 1.04 1.06 1.07 1.06 1.05 1.05 1.05 1.04

Ris 0.47 0.50 0.52 0.50 0.58 0.58 0.58 048  0.51 0.50 0.48 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52

Roos 0.44 0.41 0.35 0.43 023 0.20 0.24 0.45 0.43 0.45 0.46 047 047 047 047 047 047 047 047 047 047
Number of Stocks: N=10

HARMSE 1.27 1.19 1.12 1.05 122 122 1.22 0.99 1.00 1.01 1.07 1.05 1.07 1.00 0.99 1.00 0.98 1.00 1.00 1.00 101 1.0

Ris 0.49 0.53 0.55 0.53 0.61 0.61 061 049 050 0.54 0.52 0.49 049 055 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55

Roos 0.46 0.43 0.36 0.45 026 0.25 0.27 0.48 0.45 0.44 0.46 0.46 048 049 049 049 049 049 049 049 049 4
Number of Stocks: N=30

HARMSE 1.40 1.29 1.16 1.09 1.27 132 1.29 1.03 1.04 1.05 1.13 1.12 1.13 1.05 1.04 1.02 101 099 1.03 1.01 1.08 1.00 1.01

Ris 0.49 0.54 0.57 0.54 0.62 0.62 062 050 052 055 0.53 0.50 049 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56

Roos 0.45 0.42 0.36 0.46 0.30 027 028 047 044 045 0.45 0.45 0.47 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
Number of Stocks: N=50

HARMSE 1.44 1.32 1.17 1.11 1.28 1.31 1.27 1.04 1.06 1.06 1.15 1.14 1.04 1.05 1.02 1.06 1.01 1.05 1.03 099 1.02 1.08

Ris 0.49 0.54 0.57 0.54 0.62 0.62 062 050 052 0.56 0.53 0.50 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56

Roos 0.45 0.42 0.36 0.46 032 028 028 047 044 045 0.44 0.45 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
Number of Stocks: N=100

HARMSE 1.48 1.36 1.19 1.14 1.36  1.36 1.36 1.06 1.09 1.09 1.18 1.17 1.18 1.00 1.13 1.03 1.06 1.05 1.08 1.10 0.98 1.09 0.9

Ris 0.49 0.54 0.57 0.54 0.62 0.62 062 050 052 0.56 0.53 0.50 0.49 0.57 0.57 0.56 0.57 0.57 0.58 0.57 0.57 0.56 0.57

Roos 0.45 0.42 0.35 0.46 032 0.28 0.31 046 043 045 0.44 0.44 046 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
Number of Stocks: N=200

HARMSE 1.51 1.38 1.20 1.16 1.29 136 1.33 1.08 1.11 1.11 1.21 1.20 1.09 0.99 1.02 1.10 1.09 106 1.16 1.16 1.10 1.11

Ris 0.49 0.54 0.57 0.54 0.61 0.61 061 050 052 0.56 0.53 0.50 0.58 0.57 0.57 0.58 0.57 0.58 0.57 0.57 0.57 0.59

Roos .44 0.41 0.35 0.45 0.38 030 0.30 046 043 044 0.43 0.44 0.51 0.51 51 0.51 051 051 051 051 051 051
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Table 3.2 (Continued)

Panel C: Separating Large Jumps from Small Jumps Based on 7*

Model HAR SHAR SCHAR SCHAR-r LASSO EN1 EN2 PLS1 PLS2 PLS3 PCR1 PCR2 PCR3 M1 M2 M3 M4 M5 M6 M7 M8 M9 MO
Number of Stocks: N=5

HARMSE  1.23 118 1.14 1.08 1.20 1.20 1.02 1.03 1.03 1.08 1.07 1.07 1.02 1.03 1.03 1.03 1.03 1.04 1.03

Ris 0.48 0.51 0.53 0.51 0.59 0.59 048 049 051 0.51 0.49 0.48 0.53 0.53 0.53 0.53 0.53 0.53 0.53

Roos 0.46 0.44 0.38 0.45 0.32 032 049 048 046 0.47 0.47 0.48 0.49 0.49 0.49 0.49 048 0.48 0.48
Number of Stocks: N=10

HARMSE  1.27 1.19 112 1.04 121 1.21 121 099 1.00 1.01 1.07 1.06 1.07 1.00 0.99 1.00 098 099 1 0.99 1.00 1.01

Ris 0.49 0.53 0.56 0.54 0.61 0.61 0.61 0.50 0.51 0.54 0.53 0.50 049 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55

Roos 0.46 0.44 0.37 0.46 031 029 030 048 046 045 0.46 0.46 0.48 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
Number of Stocks: N=30

HARMSE  1.39 1.28 1.15 1.08 127 1.29 129 1.02 1.04 1.04 113 113 112 1.04 107 101 107 105 106 105 101 1.00 1.07

Ris 0.50 0.54 0.57 0.54 0.62 062 0.62 050 051 055 0.53 0.50 0.49 0.56 0.57 0.56 0.57 0.56 0.57 0.57 0.56

Roos 0.46 0.43 0.36 0.46 031 027 030 047 045 045 0.45 0.45 047 051 051 0.51 051 051 051 0.51 0.51
Number of Stocks: N=50

HARMSE 145 1.32 1.17 112 1.41 1.05 106 1.07 115 117 1.15 1.04 106 1.02 110 1.03 1.07 1.08 1.02 1.04

Ris 0.49 0.54 0.57 0.54 0.63 0.50 0.52 0.56 0.53 0.50 049 0.57 0.56 0.57 0.57 0.56 0.56 0.57 0.57 0.57

Roos 0.45 0.42 0.36 0.46 0.18 047 044 045 0.45 0.45 0.47 0.51 051 0.51 051 050 0.50 0.50 0.50 0.50
Number of Stocks: N=100

HARMSE  1.49 1.36 1.19 1.14 1.64 1.67 1.45 1.06 1.09 1.09 118 1.20 1.18 1.04 1.13 1.11 1.04 1.03 107 113 103 1.11 .

Ris 0.49 0.54 0.57 0.54 0.63 0.63 0.63 050 052 0.56 0.53 0.50 0.49 0.57 0.57 0.57 0.57 0.57 057 057 057 057 0.57

Roos 0.44 0.42 0.35 0.45 022 014 022 046 043 045 0.43 0.44 0.46 0.51 051 0.51 051 051 051 051 051 051 0.51
Number of Stocks: N=200

HARMSE  1.52 1.38 1.20 1.16 286 271 216 1.08 110 110 1.20 1.23 119 112 114 111 1.14 105 1.03 1.09

Ris 0.49 0.54 0.57 0.54 0.63 0.63 0.63 0.50 0.52 0.56 0.53 0.50 049 0.57 0.57 0.57 0.57 0.57 0.57 0.57

Roos 0.44 0.41 0.35 0.45 0.21 015 027 046 043 0.44 0.43 0.44 0.46 0.51 0.51 0.51 0.51 0.51 0.51 0.51

*Notes: See notes to Table 3.1.



Table 3.3: Prediction Performance (30-minute)

Panel A: Separating Large Jumps from Small Jumps Based on !
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Model HAR SHAR SCHAR SCHAR-r LASSO EN1 EN2 PLS1 PLS2 PLS3 PCRl1 PCR2 PCR3 M1 M2 M3 M4 M5 M6 M7 M8 M9 MI0
Number of Stocks: N=5
HARMSE 1.71 1.64 .50 147 1.63 1.64 1.63 146 1.48 148 1.48 1.52
Ris 0.47 0.51 3 0.59  0.58 0.58 0.49  0.51 0.51 0.51 0.49
Roos 0.48 0.44 5 0.30 0.36 0.36 049  0.44 0.49 0.49 0.49
Number of Stocks: N=10
HARMSE  1.75 1.64 1.46 1.43 151 1.51 151 1.34 1.33 1.38 1.40 141 1.44
Ris 0.48 0.53 0.56 0.54 0.60 0.60 0.60 051 051 0.54 0.54 0.52 0.50
Roos 0.50 0.49 0.39 0.49 037 0.38 037 051 049 046 0.51 0.51 0.51
Number of Stocks: N=30
HARMSE  1.87 1.69 1.46 1.39 143 143 1.29 126 1.32 1.36 1.39 1.43
Ris 0.49 0.54 0.58 0.56 0.62  0.61 0.52 052 0.57 0.56 0.52 0.51
Roos 0.51 0.51 0.39 0.51 0.44  0.44 0.51 048 047 0.53 0.51 0.50
Number of Stocks: N=50
HARMSE  1.94 1.72 1.49 1.40 141 141 142 131 127 1.33 1.37 141 146 136 1.38 1.33 1.36
Ris 0.49 0.55 0.58 0.56 0.61 0.61 0.61 0.52 053  0.57 0.57 0.53 052 0.59 0.59 0.60 0.59
Roos 0.52 0.52 0.39 0.51 0.46 046 046 051 047 048 0.54 0.51 0.50 0.52 0.52 0.52 0.52
Number of Stocks: N=100
HARMSE  2.00 1.76 1.53 141 141 141 141 131 127 1.32 1.37 141 147 136 1.39 1.36 1.32 1.37 136 141 135 1.32 140
Ris 0.49 0.55 0.59 0.56 0.61  0.61 0.61 052 053 0.58 0.57 0.53 052 0.59 0.60 0.59 0.60 0.60 0.60 0.59 0.60 0.60 0.59
Roos 0.52 0.52 0.39 0.52 0.47 047 047 051 046  0.49 0.54 0.51 0.50 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53
Number of Stocks: N=200
HARMSE  2.00 175 1.55 1.39 135 1.35 1.35 1.30 124 1.30 1.36 1.40 1.39 137 139 1.39 1.37 1.37 129 137 134 1.29
Ris 0.50 0.55 0.59 0.57 0.61 0.61 0.61 0.53 053  0.58 0.57 0.53 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60
Roos 0.52 0.53 0.38 0.52 0.49 049 049 051 046  0.49 0.54 0.51 0.50 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53
Panel B: Separating Large Jumps from Small Jumps Based on 72
Model HAR SHAR SCHAR SCHAR-r LASSO EN1 EN2 PLS1 PLS2 PLS3 PCR1 PCR2 PCR3 M1 M2 M3 M4 M5 M6 M7 M8 M9 MO
Number of Stocks: N=5
HARMSE 1.74 1.67 1.53 1.51 1.63 1.62 1.63 1.46 1.46 1.49 1.50 1.52 1.53
Ris 0.46 0.50 0.53 0.50 0.58 0.58 0.58 048 048  0.50 0.51 0.50 0.48
Roos 0.47 0.45 0.36 0.44 032 032 034 049 048 044 0.48 0.49 0.48
Number of Stocks: N=10
HARMSE 1.75 1.63 1.44 1.42 1.51 1.51 1.53 1.35 1.34 1.36 1.39 1.42 1.45
Ris 0.48 0.53 0.56 0.54 0.60 0.60 0.60 0.51 051 0.54 0.55 0.52 0.50
Roos 0.51 0.50 0.40 0.49 0.38 0.40 0.40 0.51 0.50 0.47 0.52 0.52 0.51
Number of Stocks: N=30
HARMSE 1.89 1.69 1.46 1.40 142 142 142 1.31 1.27 1.33 1.36 1.40 1.45
Ris 0.49 0.54 0.58 0.56 0.61 0.61 061 052 052 057 0.56 0.53 0.51
Roos 0.52 0.52 0.40 0.52 0.46 046 0.46 0.51 0.49 0.49 0.54 0.51 0.51
Number of Stocks: N=50
HARMSE 1.94 1.72 1.49 1.41 142 141 143 1.31 1.27 1.32 1.37 1.41 1.46  1.38
Ris 0.50 0.55 0.59 0.56 0.62 0.62 062 052 053 057 0.57 0.53 0.52  0.59
Roos 0.52 0.52 0.39 0.52 047 047 047 0.5 0.48 0.48 0.54 0.51 0.50  0.52
Number of Stocks: N=100
HARMSE 1.98 1.74 1.52 1.40 1.40 1.36 1.38 1.3 1.25 1.31 1.36 1.40 1.46 1.36 1.37 1.36 1.37 1.38 1.36 1.33 1.37 1.36 1.36
Ris 0.50 0.55 0.59 0.57 0.61 0.61 061 052 053 0.58 0.57 0.53 0.52 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60
Roos 0.52 0.52 0.39 0.52 049 049 049 0.5 0.47  0.48 0.54 0.51 0.50 0.53 0.53 0.53 053 053 053 053 053 053 0.53
Number of Stocks: N=200
HARMSE  2.00 1.75 1.55 1.40 141 134 1.37 1.30 1.25 1.30 1.36 1.40 146 1.39 1.39 1.40 1.37 140 1.35 135 1.37 1.36 1.32
Ris 0.50 0.55 0.59 0.57 0.61 0.61 061 052 053 0.58 0.57 0.53 0.52 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60
Roos 0.52 0.52 0.38 0.52 0.50  0.50 0.50 0.51 046 048 0.54 0.51 0.50 0.54 0.53 053 053 053 053 053 053 053 0.53
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Panel C: Separating Large Jumps from Small Jumps Based on 7
Model HAR SHAR SCHAR SCHARr LASSO EN1 EN2 PLS1 PLS2 PLS3 PCRI PCR2 PCR3 Ml M2 M3 M4 M5 M6 M7 M$ M9 MO
Number of Stocks: N=5
HARMSE  1.71 1.63 1.50 1.46 1.53 1.42 1.42 1.45 1.48 1.48 1.49
Ris 047 050 0.53 0.51 0.58 049 049 050 052 051 049
Roos 048 047 0.36 045 0.38 049 048 045 048 049 048
Number of Stocks: N=10
HARMSE 176 164 1.45 1.43 150 150 150 137 136 138 142 144 147
Ris 0.49 0.53 0.56 0.54 0.60 0.60 0.60 0.51 0.51 0.55 0. 0.51
Roos 051 051 0.41 0.50 042 041 042 052 051 048 053 053 052
Number of Stocks: N=30
HARMSE  1.88 1.69 1.47 1.39 143 143 1.44 1.31 1.28 1.33 1.37 1.40 1.45
Ris 049 054 0.58 .56 061 061 061 052 052 056 056 053 051
Roos 051 052 0.39 0.51 045 045 045 052 050 048 054 051 051
Number of Stocks: N=50
HARMSE 194 173 1.50 1.42 141 142 143 133 129 134 138 142 148 140 140
Ris 0.50 0.55 0.59 0.56 0.61 0.61 0.61 0.52 0.53 0.57 0.56 0.53 0.52 .59 0.60
Roos 052 052 0.39 0.52 048 048 048 051 049 048 054 051 050 052 0.52
Number of Stocks: N=100
HARMSE  1.99 1.76 1.52 1.42 141 140 141 1.33 1.28 1.33 1.38 1.43 1.49 141 140 1.41 140 1.37 141 142 139 142 1.36
Ris 049 055 0.59 0.56 061 061 061 052 053 057 057 053 052 0.60 0.60 0.60 0.60 0.60 0.60 0.60 059 0.60 0.60
Roos 052 053 0.39 0.52 049 049 049 051 048 048 054 051 050 053 053 0.53 053 053 052 052 052 052 052
Number of Stocks: N=200
HARMSE 2,00 175 1.55 1.39 136 133 134 130 125 130 134 140 146 139 138 139 139 138 138 139 134
Ris 0.50 0.55 0.59 0.57 0.61  0.61 0.61 0.52 0.53 0.58 0.57 0.53 0.52  0.60 0.60 0.60 0.61 0.60 0.60 0.60 0.60
Roos 052 053 0.38 0.52 051 051 051 051 047 048 054 051 050 054 053 0.53 053 053 0.53 0.53

e notes to Table 3.1.
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Table 3.4: Predictors in Best-Performing Models (5-minute)

INC Wi < NG NG Wi
INC Wi wNe WAISLINZ  mNC INC WG
aNe wNe s WNC NG anc  wNe
INC_ Wi e mNCsI2 anc e
M1 aNe  we NG wiC
M3 ANC wNC mPCsT2 ANC wNC
Mi NG nNC e INC W
M5 NG e mNC e INC_wNC
Nuwmiber of Stode: N—30
M1 NG we =) NG wiC
M3 ANC wNC mPCsy2 ANC wNC
Mi NG wNC mPCLI2 INC wNC
Number of Stocke:
Mz aNe aNc mNe pcsa2
M3 NG 1NC
Mi NG wNC 1~e mNC
Number of Stocks
M2 NG wNC ane :
M3 NG i 1NC e mpesa2
M5 ane wre wpcLz anc wNe i mMSLIP2  aNe N
Number
N1 NG aNcsiE SRICEIPE NG mPS1 NG wNC e NISLIPT NG TNCEING  MSLITE
M2 aNC  aNCsiz iNe MPCLI2 NG aNCsI2 wNC e 1N¢ mNC L2 b2 MSLIP2
M3 NG wNC NG wNC wpsLIz 1~e wNMCLIP2 IMSLIP
M5 NG wNe anc wrpc Wne et 2 anc mec mNC | wposaz

e NG wNC INC wNC wnc
ansLaNg mNC NG wNC e ane wne mNCSI2
e WPCsI2 | mNC NG wNC MSLIP2 ANC WNCG mposiz
W WMCLIP2 NG anc wne AN wne e NLI
wNe NG wNC anc
e NG wNC anc
wNe INC wNC mNCSI2 anc
arsLaz me NG WNC wMISLIP2 mPosiz anc NLI
INSLIZ | wNC NG wnie L2 anc
ANSLIZ wNe NG wNC HNLI ane TANLI
INSLI2  wNC INC wNC mpCsI2 INC wne IR LI
INSLIZ wNe aNC_wNe  mne L anc NL
Nomter of Stocke: N_50
NI NG aNSLIZ | wiC NG wNe i anc ST
M ANC  ANSLJ2  wNC ANC wWNC anc mNC WL
NI NG ANSLIZ  wNC NG wNC mpes2 anc WNSI wMC2 i
Nuwber of Stocie: N—100
ANC ANSLE2  wNe anc ene s anc e WNST waez e
ANC ANSLI2  wNe anc ML anc e UNST WMOSIP2  mposa2
INC ANSLIZ  wNC iNe wNe NS N mpCs2 anc wNe e NLI
Nuwmber of Stocke: N—200
M2 ANC i aNe wNC NS mMLI2 T anc wNC
M3 NG 52 iNC NS mPCLI2 INC W
NERRINS 2 INC wNC WNSI uNLJ anc e WNSI waesie2

*Notes: See notes to Table 3.1

Table 3.6: Predictors in Best-Performing Models (30-minute)

Number of Stocks: N=50

Ml dNC wNC wPCLJ2 mNC
M2 dNC wNC wPCLJ2 mPC mNSL.
M3 dNC wNC wPCLJ2 mPC mNC mNSLJ2
M4 INC wNC wPCLJ2 mNCSJ2  mNSLJ2

dNC wNC wPCLJ2 mNSJ ANC wNC  wPSLJ2 mNSJ
ANC dNSJ wNC wPCLJ2  mNSJ

M3
Number of Stocks: N=100
Ml dNC wNC wPCLJ2 mNC mNSLJ2 dNC wNC wPCLJ2 mNCSJ)2  mNSLJ2 dNC wNC  wPCLJ2 mNSJ mNLJ
M2 dNC wNC wPCL12 mPC mNSLJ2 dNC wNC wPCLJ2 mPC mNSLJ2 dNC wNC  wPCLJ2 mNSJ
M3 dNC wNC wPCLJ2 mNi mNSL. dNC wPCLJ2 mNC mNL]  mNSLJ2 dNC dMC2 wNC wPCLIJ2  wM mNC mNSJ
M4 dNC wNC wPCLJ2 mPC mNC mNSLJ2 dANC wPCLJ2 mNSJ dNC  dMC2 wN wPS] wMC2 mNCSJ2
Mj dNC dNSJ wNC wPCL12  mNC mNSLJ2 dNC wPCLJ2 mNLJ dNC wNC  wPCL]2 mPC mNSJ
Number of Stocks: N=200
ML dNC wNC wPSJ mNC dNC dMC2 wPCLJ2 mPC mN. dNC wNC  wPCLJ2
M2 dNC dNST dMC2 wMSJ2 mNSLJ2  dNC dMC2 mPC mNSJ mMCLJP2 ~ dNC dNSJ dMC2 mNSJ
M3 dNC dNSJ wNC dNC wNC  wPC ANC dMC2 w N
M4 dNC wNC wPCLJ2 dNC wNC  wPCLJ: mMCSJP2 ANC dMC2 wNC mNC mNSJ
M5 dNC dNSJ dMC2  dMCLIN2 wNC wPCLJ2 mNSJ dNC wNC  wPCLJ2 mMSJ2 mMCSJP2 dNC dNSJ dMC2  wNC wPCLJ2 mPC mNSJ  mPLJ

*Notes: See notes to Table 3.1
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Table 3.7: Comparison of Out-of-Sample Prediction Performance (5-minute)

Panel A: Portfolios Constructed by 10 Stocks
‘ SHAR SCHAR SCHAR-r LASSO

EN2 PLS1 PLS2 PLS3 PCR1 PCR2 PCR3 M1 M2 M3 M4 M5 M6

HAR -0.76 5 1.38 -2.90 -3.05 010 -117 -1.23 0.79 0.09 -021 2.18 2.10 2.09 1.97 2.03 2.04
SHAR 3 1.94 -2.82 -3.00 0.67 0.03  -0.01 1.03 0.68 0.50 3.11 3.09 3.07 2.99 2.98 3.00
SCHAR 3.64 -1.22 <122 217 211 259 2.57  2.20  1.99 4.64 4.64 4.60 4.59 4.56 4.47
SCHAR-r -3.39 -3.64  -1.06 -219 -254 -0.72 -1.13 -124 1.90 1.77 1.76 1.64 1.66 1.67

087 3.15 2.85 2.89 3.33 3.17 3.02 3.90 3.88 3.88 3.86 3.87 3.87
108 3.25 2.96 3.01 3.43 3.27 3.12 4.02 4.00 4.00 3.98 3.99 3.99
3.32 3.04 3.12 3.54 3.35 3.17 4.21 4.19 4.19 4.18 4.18 4.18
-1.42 -1.10 1.80 -0.09 -2.69 1.68 1.61 1.61 154 1.57 1.61

-0.12 2.12 1.39 1.01 2.96 2.87 291 2.78 2.87 2.93

1.73 1.11 0.80 4.06 3.96 3.98 3.80 3.95 3.93

-227 211 160 152 152 143 147 150

-1.62 1.75 1.68 1.68 1.61 1.64 1.67

1.76 1.70 1.70 1.63 1.66 1.70

-1.26 -1.96 -1.90 -4.11 -1.00

-0.77 -1.44 -1.84 -0.60

-0.57

-0.01
0.03

Panel B: Portfolios Constructed by 200 Stocks

‘SIIAR SCHAR SCHAR-r LASSO EN1 EN2 PLSI PLS2 PLS3 PCR1 PCR3 Ml M2 M3 M4 M5 M7 M8 M9 M0

HAR -0.40 -1.94 1.60 -1.48 -1.79 -0.60 -0.14  0.96 -0.01 -0.78 2.58 2.24 2.32 2.56 2.54 2.35 2.32
SHAR -2.73 150 -0.75 -1.44 0.04 026 142 034 -0.06 2.32 2.45 2.37 2.31 2.32 2.48 2.48
SCHAR 2.86 1.26  0.52 1.36 1.69 3.14 1.68 1.25 3.48 3.69 3.61 3.35 3.36 3.55 3.60
SCHAR-r -2.85  -2.56 -170 <118 -0.39  -1.50 -1.76 1.68 159 1.72 179 1.78 1.88 1.73
LASSO -1.33 0.83 1.20  2.45 1.38 0.64 4.12 3.49 3.58 4.15 4.17 4.03 3.74
EN1 142 1.68 2.53 1.81 125 3.59 3.21 3.18 3.59 3.59 3.47 3.34
EN2 127 151 242 1.62 112 3.33 3.07 3.02 3.32 3.32 3.27 3.16
PLS1 0.46 1.01 2.17 -241 2.32 1.96 2.02 2.37 2.35 2.13 2.02
PLS2 0.93 015 -0.67 2.32 1.79 1.83 2.22 2.20 1.91 1.80
PLS3 -0.74 -1.10 2.41 2.61 2.49 2.11 2.12 2.24 2.47
PCR1 . 229 2.24 1.86 1.94 2.33 2.30 2.06 1.93
PCR2 2.69 2.34 2.00 2.06 2.40 2.38 2.16 2.06
PCR3 2.34 199 2.05 2.39 2.37 2.15 2.05
M1 -0.10 -0.55 -0.59 -0.61 -0.55
M2 -0.47 -0.14 -0.15 -0.40 -0.68
M3 -0.01 -0.03 -0.26 -0.53
M4 -0.38 -0.33 -0.29
M5 -0.31 -0.27
M6 -0.08 -0.11
M7 -0.14
M8 0.00  -0.05
M9 -0.11
This table reports pairwise Diebold-Mariano test statistics ing the daily out-of-sample forecasting pes ce among models. Portfolios are constructed by 10 and 200 stocks using 5-minute high frequency data.

number indicates that the column model outperform the row model. Bold font indicates the difference is significant at 10% level or better.
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of Out-of-Sample

Prediction Performance (15-minute)
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SHAR SCHAR SCHAR-r LASSO ENI EN2 PLS1 PLS2 PLS3 PCR1 PCR2 PCR3 Ml M2 M3 M4 M5 M6 M7 M10
HAR -1.18 -2.95 -0.28 -2.47 1.02 -0.23 -0.84 0.25 0.29 0.89 1.02 096 096 097 094 092 088 0.87
SHAR -3.26 1.77 -2.50 1.76 115 0.63 1.37 1.20 161 2.80 2.72 2.70 2.70 2.68 2.70 2.60 2.57
SCHAR 4.03 -1.40 -1.43 3.05 2.86 2.87 2.89 2.54 2.93 4.09 4.08 4.06 4.05 4.03 4.02 4.02 4.01
SCHAR-r -2.66 -2.87 131 0.02 -1.17 0.49 0.53 111 1.94 1.84 1.82 1.89 1.80 1.78 1.69 1.62
LASSO -0.77 117 3.04 2.78 2.69 2.87 2.83 298 3.22 3.20 3.18 3.19 3.18 3.18 3.16 3.13
EN1 1.09 2.80 2.55 2.46 2.64 2.62 2.75 2.96 2.94 2.93 2.94 293 293 2091 2.89
EN2 2.99 273 264 282 279 293 3.18 3.15 3.14 3.15 3.14 3.14 3.12 3.09
PLS1 -2.13 -1.95 -1.17 =247 -146 046 039 038 039 036 033 0.28 0.28
PLS2 -1.28 0.54 081 1.79 164 157 153 1.65 1.52 151 144 1.37
PLS3 1.37 117 1.73 3.54 3.50 3.41 3.59 3.39 3.43 3.33 3.07
PCR1 0.14 091 1.15 1.08 1.07 1.09 1.05 1.01 097 0.94
PCR2 2.24 085 079 078 081 076 0.74 0.70 0.67
PCR3 0.53 046 045 047 043 041 0.36 0.36
M1 -1.40 -141 -1.03 -3.72 -4.01 -2.56 -1.47
M2 -0.04 -024 -0.70 -1.14 -3.71 -0.81
M3 -0.19 -0.73 -1.07 -2.44 -0.89
M4 -0.09 -0.46 -0.82 -0.42
M5 -0.77 -1.51 -0.61
M6 -0.59 -0.24
M7 0.13
M8 -0.18
M9 0.18
Panel B: Portfolios Constructed by 200 Stocks

SHAR SCHAR SCHAR-r LASSO EN1 EN2 PLS1 PLS2 PLS3 PCR1 PCR2 PCR3 M1 M2 M3 M4 M5 M6 M7 M8 M9 MIO
HAR -0.74 -2.09 0.45 -1.70  -1.50 0.60 -0.41 0.00 -0.67 -0.17 0.50 1.77 1.74 1.74 154 159 1.51 1.71 145 1.85 1.46
SHAR -2.17 1.78 -1.80 -1.55 1.07 0.42 1.10 0.37 0.51 0.98 2.37 2.33 2.33 2.62 2.53 2.52 2.37 2.42 2.38 2.53
SCHAR 3.05 -0.68 -0.54 2.02 163 2.24 1.56 151  1.94 3.25 3.21 3.20 3.34 3.40 3.39 3.19 3.33 3.30 3.29
SCHAR-r -1.83 0.18 -1.03 -0.60 -1.01 -0.55 0.07 1.99 2.09 2.11 2.00 2.07 1.93 2.03 1.74 1.95 1.85
LASSO -1.14 -0.95 2.42 1.67 1.66 1.49 1.76 2.33 2.78 2.82 2.84 2.59 2.62 2.51 2.77 2.38 2.78 2.49
EN1 040 1.94 161 1.78 1.60 1.70 1.90 2.16 2.17 2.17 2.30 2.23 2.21 2.16 2.16 2.15 2.26
EN2 1.77 1.45 1.62 1.44 1.54 1.73 2.00 2.02 2.02 2.15 2.08 2.06 2.00 2.01 1.99 2.12
PLS1 -1.77 0 -052  -1.45 -244  -1.21 143 160 159 135 1.38 1.26 1.41 113 133 125
PLS2 051 -0.07 0.42 153 2.25 2.60 2.58 2.09 2.21 2.04 2.27 1.84 2.10 1.97
PLS3 -0.57  -0.15 0.41 2.80 2.80 2.86 2.84 2.87 2.66 2.67 2.68
PCR1 0.40 1.26 2.25 2.24 2.26 1.96 2.23 1.89 2.32 1.92
PCR2 2.36 1.68 1.85 1.85 152 1.69 140 160 151
PCR3 144 161 160 127 142 115 135 126
M1 -0.08 -0.19 -0.22 -0.59 -0.24 -0.55 -0.21
M2 -0.37 -017 -0.27 -0.15 -0.20 -0.17
M3 -0.02 -0.08 -0.11 -0.20 -0.10 -0.14 -0.11
M4 -0.09 -0.16 -0.07 -0.11 -0.08 -0.69
M5 -0.12 -0.04 -0.07 -0.06 -0.13
M6 0.00 -0.03 -0.03 -0.08
M7 -0.02 -0.06 -0.03
M8 -0.02 -0.02
M9 0.00

*Notes: See notes to Table 3.7.
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Panel A: Portfolios Constructed by 10 Stocks
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‘ SHAR SCHAR SCHAR-r LASSO EN1 EN2 PLS1 PLS2 PLS3 PCRl1 PCR2 PCR3
HAR -0.58 -2.61 -0.62 -2.69 -2.65 -2.64 0.82 -0.11 0.29 1.01 0.39
SHAR -3.37 -0.06 -4.16 -4.31 -438 085 057 1.70 1.07 0.65
SCHAR 3.45 -1.04 -0.44 -0.38 2.84 2.87 4.03 3.16 2.61
SCHAR-r -4.18 -4.55 -4.34 097  0.67 1.80 1.23 0.73
LASSO 1.91 123 290 2.95 4.36  3.17  2.69
EN1 0.07 2.89 2.93 4.55  3.21  2.65
EN2 2.89 2.98 5.13 3.23  2.64
PLS1 -1.89 -0.07 0.46  -1.83
PLS2 040 1.93 0.80
PLS3 3.16 1.79 1.29
PCR1 023  -0.11
PCR2 -0.94
Panel B: Portfolios Constructed by 200 Stocks

SHAR SCHAR SCHAR-r LASSO EN1 EN2 PLS1 PLS2 PLS3 PCR1 PCR2 PCR3 M1 M2 M3 M4 M5 M6 M9
HAR 0.17 -2.10 0.08 -0.34 -0.29 -0.38 -0.37 -145 -0.56 0.56  -0.58 -0.85 0.37 033 030 028 026 026 0.24
SHAR -2.82 -0.32 -1.09 -1.03 -1.13 -0.31 -1.70 -1.34 048 -0.37  -048 058 048 039 035 029 029 0.25
SCHAR 2.83 2.38 250 230 1.96 132 199 295 1.88 1.73 3.10 3.08 3.00 3.04 2.94 291 2.89
SCHAR-r -1.02 -0.95 -1.08 -0.24 -1.69 -1.26 0.66  -0.31 -0.42  0.71  0.63 0.57 0.53 047 0.53 0.48
LASSO 0.61 -0.57 021 -1.14 -1.08 1.25 0.14 0.02 2.81 2.75 2.75 2.60 2.12 3.68 3.56
EN1 -0.85  0.16 -1.22 -1.14 1.22 0.08 -0.04 275 2.65 2.58 2.41 2.03 4.07 3.86
EN2 025 -1.09 -0.98 1.27 0.17 0.06 2.63 2.58 2.60 2.47 2.10 3.26 3.14
PLS1 -1.31 -0.44 0.71 -1.03  -1.72 048 045 042 040 039 0.39 0.38
PLS2 0.60  1.80 118 101 1.89 1.86 1.81 1.81 1.76 1.88 1.85
PLS3 1.43 0.37 026 2.55 2.51 2.62 2.56 2.29 2.42 2.40
PCR1 -0.76  -0.86 -0.10 -0.17 -0.22 -0.25 -0.31 -0.29 -0.32
PCR2 -1.57 053 0.50 047 045 044 045 0.43
PCR3 0.62 058 055 054 053 0.54 0.52
M1 -248 -0.53 -0.68 -0.69 -0.82
M2 -0.25 -0.40 -0.47 -0.59
M3 -0.29 -0.28 -0.40
M4 -0.16 -0.27
M5 -0.01 -0.09
M6 -1.19
M7 -0.21
M8 -0.05
M9

*Notes: See

notes to Table 3
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Figure 3.1: Correlations Between Realized Components (15-minute)
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This figure displays the average of correlations between each two

See notes to Table 3.1.

*Notes:

separated realized components based on 200 randomly constructed portfolios.
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Figure 3.2: Median Value of Forecasting Performance
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*Notes: See notes to Table 3.1. This figure reports the median value of HARMSE, R?,, and R2,,
respectively, for each model based on 200 randomly selected portfolios. The range of portfolio dimension
is from 5 to 200. T1 refers to the best-performing sparse model, T1-10% and T1-90% denote the 10%
and 90% quantiles of each evaluation criterion for the best-performing sparse model.



Figure 3.3: Model Complexity (15-minute, 7')
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See notes to Table 3.1. This figure displays the average of correlations between each two
separated realized components based on 200 randomly constructed portfolios.
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Figure 3.4: Feature Importance (5-minute, ')
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*Notes: See notes to Table 3.1. This figure displays the average of rankings of each decomposed realized
component in terms of in-sample prediction contribution over time and 200 randomly constructed
portfolios. Each column represents a model, with predictors ordered by the ranks based on model EN1.
The color gradients indicate the most influential (dark blue) to the least influential (white) predictors.
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Figure 3.5: Feature Importance (15-minute, y!)
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*Notes:
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Figure 3.6: Feature Importance (30-minute, ')
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