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ABSTRACT OF THE DISSERTATION

Speech-based Affective Computing Using Attention With

Multimodal Fusion

by Yue Gu

Dissertation Director: Ivan Marsic

Multimodal affective computing, learning to recognize and interpret human affect

and subjective information from multiple data sources, is now a popular task with the

recent rapid advancements in social media technology. Sentiment analysis and emotion

recognition, both of which require applying subjective human concepts for detection,

can be treated as two affective computing subtasks on different levels. A variety of data

sources, including voice, facial expression, gesture, and linguistic content have been

employed in sentiment analysis and emotion recognition. In this research, we focus on

a multimodal structure to leverage the advantages of speech source on sentence-level

data. Specifically, given an utterance, we consider the linguistic content and acoustic

characteristics together to recognize the opinion or emotion. Our work is important and

useful because speech is the most basic and commonly used form of human expression.

We first present two hybrid multimodal frameworks to predict human emotions and

sentiments based on utterance-level spoken language. The hybrid deep multimodal
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system extracts the high-level features from both text and audio, which considers the

spatial information from text, temporal information from audio, and high-level asso-

ciations from low-level handcrafted features. The system fuse all extracted features

on utterance-level by using a three-layer deep neural network to learn the correlations

across modalities and train the feature extraction and fusion modules together, allow-

ing optimal global fine-tuning of the entire structure. Since not all parts of the text

and vocal signals contribute equally to the predictions, a specific word may change the

entire sentimental state of text; a different vocal delivery may indicate inverse emotions

despite having the same linguistic content. To learn such variation, we thus introduce

the hybrid attention multimodal system that consists of both feature attention and

modality attention to help the model focus on learning informative representations for

both modality-specific feature extraction and model fusion.

Although demonstrated for the modality attention fusion, there is still challenge to

combine the textual and acoustical representations. Most previous works focused on

combining multimodal information at a holistic level or fusing the extracted modality-

specific features from entire utterances. However, to determine human meaning, it is

critical to consider both the linguistic content of the word and how it is uttered. A

loud pitch on different words may convey inverse emotions, such as the emphasis on

“hell” for anger but indicating happy on “great”. Synchronized attentive information on

word-level across text and audio would then intuitively help recognize the sentiments

and emotions. Therefore, we introduce a hierarchical multimodal architecture with

attention and word-level fusion to classify utterance-level sentiment and emotion from

text and audio data. Our introduced model outperforms state-of-the-art approaches on

published datasets, and we demonstrate that our model’s synchronized attention over
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modalities offers visual interpretability.

We further propose an efficient dyadic fusion network that only relies on an at-

tention mechanism to select representative vectors, fuse modality-specific features, and

learn the sequence information. Compared to previous work, the proposed model has

three distinct characteristics: 1. Instead of using a recurrent neural network to extract

temporal associations as in previous research, we introduce multiple sub-view atten-

tion layers to compute the relevant dependencies among sequential utterances; this

significantly improves model efficiency. 2. To improve fusion performance, we design a

learnable mutual correlation factor inside each attention layer to compute associations

across different modalities. 3. To overcome the label disagreement issue, we embed

the labels from all annotators into a k-dimensional vector and transform the categori-

cal problem into a regression problem; this method provides more accurate annotation

information and fully uses the entire dataset. We evaluate the proposed model on two

published multimodal emotion recognition datasets. Our model significantly outper-

forms previous state-of-the-art research by 3.8%-7.5% accuracy, using a more efficient

model.

We finally introduced a novel human conversation analysis system, which uses a

hierarchical encoder-decoder framework to better combine features extracted from lin-

guistic modality, acoustic modality, and visual modality. The hierarchical structure first

encodes the multimodal data into word-level features. The conversation-level encoder

further selects important information from word-level features with temporal attention

and represents all the conversation-level features as a vector. Considering that emotion

and sentiment may change over a conversation and that multiple traits may be present

simultaneously, our hierarchical decoder structure first decodes features at each time
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instance. Then, the attribute decoder will further decode the feature vector at each

time instance into attributes at that time.we proposed word-level fusion with modal-

ity attention. Our system achieved state-of-the-art performance on three published

datasets and outperformed others at generalization testing.
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Chapter 1

Introduction

1.1 Overview

Multimodal affective computing, learning to recognize and interpret human affect and

subjective information from multiple data sources, is now a popular task with the re-

cent rapid advancements in social media technology. Sentiment analysis and emotion

recognition, both of which require applying subjective human concepts for detection,

can be treated as two affective computing subtasks on different levels [Sun et al., 2017,

Poria et al., 2017a]. A variety of data sources, including voice, facial expression, ges-

ture, and linguistic content have been employed in sentiment analysis and emotion

recognition [Balazs and Velásquez, 2016]. Speech based emotion recognition and senti-

ment analysis, which aim to automatically identify emotional or sentiment state from

human verbal expression, has become an increasing expanding research topic in ar-

tificial intelligence and machine learning [El Ayadi et al., 2011, Trigeorgis et al., 2016,

Badjatiya et al., 2017].

Because speech is the most basic and commonly used form of human expression

[Giles and Powesland, 1975], precisely detecting human emotion or sentiment from hu-

man spoken language is useful in many real-world applications such as recommender

systems and chatbots. However, it is hard for a computer to precisely interpret human

affect because: 1. Giving computers the ability to detect the opinion and emotion from



2

speech requires a complete analysis from multiple sources such as linguistic content, vo-

cal signals, and even need the facial expression. But how to process the heterogeneous

inputs into a computer is an open-ended question. 2. It is hard to extract associated

features; there is a gap between the extracted modality-specific features and the actual

human affective state. The lack of high-level feature associations is a limitation of tra-

ditional approaches using low-level handcrafted features as representations. 3. Another

issue is the fusion of cues from heterogeneous data. How to integrate and combine

the extracted multimodal information is still challenge. In this research, we propose

four different type of multimodal architectures including hybrid multimodal network,

hierarchical multimodal network, mutual attentive fusion network, and human conver-

sation analysis system to address the above issues. Specifically, given an utterance, we

mainly consider the linguistic content and acoustic characteristics together to recog-

nize the opinion or emotion. Our work focus on designing novel structures to integrate

multiple source from speech data, creating effective architectures to extract the informa-

tive modality-specific features, and learning the across modality association to improve

modality fusion performance.

To integrate multiple sources, we present two hybrid multimodal frameworks to

predict human emotions and sentiments based on utterance-level spoken language. We

first introduce the hybrid deep multimodal system to extract the high-level features

from both text and audio, which considers the spatial information from text, tem-

poral information from audio, and high-level associations from low-level handcrafted

features. It uses ConvNets [Kim, 2014] to extract textual features from words and

part-of-speech [Toutanova et al., 2003], a CNN-LSTM structure to capture spatial-

temporal acoustic features from Mel-frequency spectral coefficients (MFSCs) energy
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maps [Abdel-Hamid et al., 2014], and a three-layer deep neural network to learn high-

level acoustic associations from low-level handcrafted features. We then concatenate

all the extracted features by using a three-layer deep neural network to learn the mu-

tual correlations across modalities and classify the emotions via a softmax classifier.

We directly train the feature extraction module and fusion model together, so that

the final loss is appropriately used to tune all parameters. The proposed structure

achieves 60.4% weighted accuracy for five emotions on the IEMOCAP multimodal

dataset [Busso et al., 2008]. We also demonstrate the promising performance compared

with previous multimodal structures. Since not all parts of the text and vocal signals

contribute equally to the predictions, a specific word may change the entire sentimental

state of text; a different vocal delivery may indicate inverse emotions despite having the

same linguistic content. To learn such variation, we thus introduce the hybrid attention

multimodal system that consists of both feature attention and modality attention to

help the model focus on learning informative representations for both modality-specific

feature extraction and model fusion. To select the informative words and frames, we

introduced an LSTM with an attention mechanism as the feature extractor on both

the text and audio branches. A weighted pooling strategy was applied over the feature

extractor to form a modality-specific feature representation. The proposed modality

attention fusion overcomes the limitations from feature-level and decision-level fusion

by performing feature-level fusion with modality scores over the features. We evaluated

our system on three published datasets and a trauma resuscitation speech dataset. The

results show that the proposed architecture achieves state-of-the-art performance. We

also demonstrated the necessity of applying a multimodal structure, extracting high-

level feature representations, and using modality attention fusion. The generalization
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testing established that our system has the ability to handle actual speech data.

Although demonstrated for the modality attention fusion, there is still challenge to

combine the textual and acoustical representations. Most previous works focused on

combining multimodal information at a holistic level, such as integrating independent

predictions of each modality via algebraic rules [Wöllmer et al., 2013b] or fusing the

extracted modality-specific features from entire utterances [Poria et al., 2016]. They

extract word-level features in a text branch, but process audio at the frame-level or

utterance-level. These methods fail to properly learn the time-dependent interactions

across modalities and restrict feature integration at timestamps due to the different

time scales and formats of features of diverse modalities [Poria et al., 2017a]. However,

to determine human meaning, it is critical to consider both the linguistic content of

the word and how it is uttered. A loud pitch on different words may convey inverse

emotions, such as the emphasis on “hell” for anger but indicating happy on “great”.

Synchronized attentive information across text and audio would then intuitively help

recognize the sentiments and emotions. Therefore, we introduce a hierarchical mul-

timodal architecture with attention and word-level fusion to classify utterance-level

sentiment and emotion from text and audio data. Our model aligned the text and

audio at the word-level and applied attention distributions on textual word vectors,

acoustic frame vectors, and acoustic word vectors. We propose three fusion strate-

gies with a CNN structure to combine word-level features to classify emotions. Our

introduced model outperforms state-of-the-art approaches on published datasets, and

we demonstrate that our model’s synchronized attention over modalities offers visual

interpretability.
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We further propose an efficient dyadic fusion network that only relies on an at-

tention mechanism to select representative vectors, fuse modality-specific features, and

learn the sequence information. Compared to previous work, the proposed model has

three distinct characteristics: 1. Instead of using a recurrent neural network to extract

temporal associations as in previous research, we introduce multiple sub-view atten-

tion layers to compute the relevant dependencies among sequential utterances; this

significantly improves model efficiency. 2. To improve fusion performance, we design a

learnable mutual correlation factor inside each attention layer to compute associations

across different modalities. 3. To overcome the label disagreement issue, we embed

the labels from all annotators into a k-dimensional vector and transform the categori-

cal problem into a regression problem; this method provides more accurate annotation

information and fully uses the entire dataset. We tested our model on two published

multimodal emotion recognition datasets: IEMOCAP [Busso et al., 2008] and MELD

[Poria et al., 2018]. Our model shows a significant improvement in model performance

and efficiency. The result indicates that our model outperforms the most recent state-

of-the-art approaches by 7.5% accuracy in IEMOCAP dataset and 3.8% accuracy in

MELD dataset. In addition, quantitative analysis shows the proposed modality-specific

feature extraction models provide comparable results; the mutual correlation attentive

factors indeed help improve fusion performance with 4.9% accuracy on IEMOCAP. We

further give detailed analysis on disagreeing annotation data and provide a visualization

of the inner attention.

We finally introduced a novel human conversation analysis system, which uses a

hierarchical encoder-decoder framework to better combine features extracted from lin-

guistic modality, acoustic modality, and visual modality. The hierarchical structure first
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encodes the multimodal data into word-level features. The conversation-level encoder

further selects important information from word-level features with temporal attention

and represents all the conversation-level features as a vector. Considering that emotion

and sentiment may change over a conversation and that multiple traits may be present

simultaneously, our hierarchical decoder structure first decodes features at each time

instance. Then, the attribute decoder will further decode the feature vector at each

time instance into attributes at that time.we proposed word-level fusion with modal-

ity attention. Our system achieved state-of-the-art performance on three published

datasets and outperformed others at generalization testing.

1.2 Organization

The following sections are organized as follows: We will first introduce the hybrid

multimodal systems in chapter 2. In chapter 3, we are going to introduce the improved

hierarchical attention multimodal network with word-level fusion strategies. In chapter

4, we propose the mutual attention fusion network. In Chapter 5 we introduce our

under-going work on human conversation analysis using acoustic, textual, and visual

inputs. Chapter 6 summarize our work and conclude the research.

1.3 Contribution

Our work on multimodal real-time activity recognition can be summarized :

1. Designed two hybrid multimodal networks to investigate, evaluate, and combine

the low-level handcrafted features and high-level automatic generated features for

the speech affective computing.
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2. Introduced the hierarchical attention strategy with word-level alignment for speech

emotion recognition and sentiment analysis.

3. Introduced the mutual correlation attentive factor with sub-view attention mech-

anism to facilitate the feature extraction and modality fusion.

4. Proposed an effective solution and a detailed experimental analysis of the label

disagreement issue that keeps sequence consistency and allows full use of labeled

dialog data.

5. Proposed a hierarchical encoder-decoder framework to encode acoustic, textual,

and visual features from word-level to conversation-level and decode the abstract

features into attribute profile at each time instance.
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Chapter 2

Hybrid Multimodal Architecture

2.1 Introduction of Chapter

Human speech conveys both content and attitude. When communicating through

speech, humans naturally pick up both content and emotions to understand the speaker’s

actual intended meaning. Emotion recognition, defined as extracting a group of affec-

tive states from humans, is necessary to automatically detect human meaning in a

human-computer interaction. Speech emotion recognition, under the field of affective

computing, extracts the affective states from speech and reveals the attitudes under

spoken language.

Compared to the large amount of research in visual-audio multimodal emotion recog-

nition, there is relatively little work combining text and audio modalities. To detect the

emotions in utterances, humans often consider both the textual meaning and prosody. A

multimodal structure is thus necessary for using both the text and audio as input data.

Previous research shows promising performance improvements by combining text with

acoustic information, demonstrating the potential benefits of textual-acoustic structures

[Poria et al., 2015, Poria et al., 2016]. One challenge to successfully recognizing human

emotions is the extraction of effective features from speech data. There are a number

of widely used low-level handcrafted features used for sentiment analysis and emotion

detection in natural language and speech signal processing. In particular, thousands
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of low-level acoustic descriptors and derivations (LLD) with functional statistics are

extracted via OpenSmile software in [Poria et al., 2016, Wöllmer et al., 2013b]; bag of

words (BoW) and bag of n-grams (BoNG) were extracted from text to represent lin-

guistic features [Schuller, 2011, Rosas et al., 2013, Jin et al., 2015]. Nevertheless, these

low-level features poorly represent high-level associations and are considered insuffi-

cient to distinguish emotion [Poria et al., 2015, Poria et al., 2016, Zheng et al., 2015,

Lee and Tashev, 2015]. In [Poria et al., 2015, Poria et al., 2016], a convolutional neu-

ral network (ConvNet) extracted the high-level textual features from word embedding

maps to represent textual features; however, they still combined it with handcrafted

low-level acoustic features in the shared representation. Although ConvNets can ex-

tract high-level acoustic features [Cai and Xia, 2015, Wang and Tashev, 2017], they do

so without considering the temporal associations. Hence, a common structure that

extracts high-level features from both text and audio is desirable.

Another challenge in emotion recognition is the fusion of different modalities. There

are two major fusion strategies for multimodal emotion recognition: decision-level fusion

and feature-level fusion. Unlike decision-level fusion that combines the unimodal re-

sults via specific rules, feature-level fusion merges the individual feature representations

before the decision making, significantly improving performance [Rosas et al., 2013,

Jin et al., 2015], especially in recent deep models [Poria et al., 2015, Poria et al., 2016,

Gu et al., 2017b]. Nevertheless, these works directly feed the concatenated features into

a classifier or use shallow-layered fusion models, which have difficulty learning the com-

plicated mutual correlations between different modalities. A deep belief network that

consists of three Restricted Boltzmann Machine layers achieves better performance than

shallow fusion models by fusing the high-level audio-visual features [Zhang et al., 2017];
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however, it separates the training stage of feature extraction and feature fusion. The

biggest issue with this approach is that it cannot guarantee global tuning of the parame-

ters, as the prediction loss is not actually backpropagated to tune the feature extraction

module.

In this section, we first propose a deep multimodal framework to address the prob-

lems above. To predict human emotions from sentence-level spoken language, we build a

hybrid deep multimodal system (HDMS). It uses ConvNets to extract textual features

from words and part-of-speech, a CNN-LSTM structure to capture spatial-temporal

acoustic features from Mel-frequency spectral coefficients (MFSCs) energy maps, and

a three-layer deep neural network to learn high-level acoustic associations from low-

level handcrafted features. We then concatenate all the extracted features by using

a three-layer deep neural network to learn the mutual correlations across modalities

and classify the emotions via a softmax classifier. We directly train the feature extrac-

tion module and fusion model together, so that the final loss is appropriately used to

tune all parameters. The proposed structure achieves 60.4% weighted accuracy for five

emotions on the IEMOCAP multimodal dataset. We also demonstrate the promising

performance compared with previous multimodal structures.

To further improve the system performance on the feature extraction and modality

fusion, we present a hybrid attention multimodal system (HAMS) with both feature

attention and modality attention to classify utterance-level speech data. The proposed

hybrid attention architecture helps the system focus on learning informative representa-

tions for both modality-specific feature extraction and model fusion. The experimental

results show that our system achieves state-of-the-art or competitive results on three
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published multimodal datasets. We also demonstrated the effectiveness and general-

ization of our system on a medical speech dataset from an actual trauma scenario.

Furthermore, we provided a detailed comparison and analysis of traditional approaches

and deep learning methods on both feature extraction and fusion.

2.2 Related Work

A variety of feature extraction strategies were proposed in the last decade. Early re-

search used prosodic features to recognize human emotions [Murray and Arnott, 1993,

Wu and Liang, 2010]. The vocal signal information including speaking rate, intensity,

pitch, and voice quality have been introduced to form the human emotional representa-

tions [Luengo et al., 2005, Poria et al., 2017a]. Besides the prosodic features, the energy

related features were demonstrated the helpfulness on the affective computing tasks.

For example, the mel-frequency cepstral coefficients (MFCCs), log-frequency power co-

efficients (LFPCs), and linear prediction cepstral coefficients (LPCCs) were introduced

as emotional features in previous work [Kishore and Satish, 2013, Kim et al., 2007,

Nwe et al., 2003, Poria et al., 2017a]. Recent research proposed low-level acoustic de-

scriptors and derivations (LLDs) with functional statistics as acoustic features [Rosas et al., 2013,

Ringeval et al., 2015, Wöllmer et al., 2013a, Metallinou et al., 2012]. Different type of

toolkits were applied to generate the low-level acoustic representations such as OpenS-

mile and COVAREP [Eyben et al., 2010b, Degottex et al., 2014b].

For textual features, the very early research rely mainly on statistical models, rule-

based models, and knowledge-based models such as designing some emotional and

sentimental lexicon for the specific datasets [Mishne et al., 2005, Oneto et al., 2016,
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Cambria, 2016]. Most rule-based systems use bag of words (BoW) as the textual repre-

sentations for the emotion or sentiment classification [Kim et al., 2000, Schuller et al., 2005,

Liscombe et al., 2005]. Because the BoW representations cannot fully capture the

semantic information, the the knowledge-based approaches such as bag of concepts

models are introduced to provide the contextual semantic features for the sentiment

and emotion classification [Wu and Tsai, 2014, Hu et al., 2013]. The basic idea of the

bag of concept is to assign the words from similar classes with similar representa-

tions [Wang et al., 2014] to further improve the feature extraction and the classifica-

tion. Compared with the knowledge-based approaches, statistics-based approaches also

provide comparable performance in the affective computing field [Melville et al., 2009],

especially in the small datasets [Socher et al., 2013].They used SVMs with bag of words

(BoW) and part of speech (PoS) features in addition to low-level acoustic features

[Rozgic et al., 2012, Rosas et al., 2013]. Since low-level features represent limited high-

level associations [Poria et al., 2015], various deep learning approaches have been pro-

posed in recent study, like CNNs [Poria et al., 2016] and LSTMs [Gu et al., 2017a,

Zadeh et al., 2017], to learn high-level representations. To further improve system per-

formance, an attention mechanism was introduced in machine translation and text

classification [Bahdanau et al., 2014, Yang et al., 2016].

There exist two commonly used fusion strategies in previous research: decision-level

fusion and feature-level fusion. Specifically, Poria et al. [Poria et al., 2015, Poria et al., 2016]

used a multiple kernel learning strategy to fuse the modality data on the feature-

level. A decision-level fusion was applied by Wöllmer et al. [Wöllmer et al., 2013b]

that combines the results of the text and audio-visual modalities by a threshold score
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vector. Deep neural network fusion was proposed in a recent study to fuse the ex-

tracted modality-specific features [Zhang et al., 2017]. More recent approaches intro-

duced LSTM structures to fuse the features at each time step [Poria et al., 2017b,

Chen et al., 2017].

2.3 Hybrid Deep Multimodal System (HDMS)

Figure 2.1: Overall structure of the proposed deep multimodal framework

2.3.1 System Overview

As shown in Fig 2.1, The proposed deep multimodal framework 1 consists of three

modules: data preprocessing, feature extraction, and feature fusion. The data prepro-

cessing module processes the input speech streams and outputs the corresponding text

sentence, part-of-speech tags, audio signal, and extracted low-level handcrafted acous-

tic features. Then, a hybrid deep structure initializes and extracts the textual and

1This work has been published in 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP) [Gu et al., 2018a].



14

acoustic features from the above four input branches, respectively. The fusion module

concatenates the output features as a joint feature representation and learns the mutual

correlations through a deep neural network. We use a softmax layer to finally predict

the emotions based on the final shared representation.

2.3.2 Data Preprocessing

We first divide the input speech streams into sentence-level text and the correspond-

ing audio clips. We used Natural Language Toolkit (NLTK) to extract the part-of-

speech tags for each sentence, since phrasing also indicates the human speaking manner

[Loper and Bird, 2002]. We remove all the punctuation in both the text and phrasing.

Instead of just using audio signals as input data (spectral feature maps from the feature

extraction module), we also extract the low-level pitch and vocal related features using

OpenSmile software [Eyben et al., 2010b]. Specifically, the software extracts low-level

descriptions such as fundamental frequency, pitch/energy related features, zero cross-

ing rate (ZCR), jitter, shimmer, mel-frequency cepstral coefficients (MFCC), etc., with

some functional statistics, such as flatness, skewness, quartiles, standard deviation, root

quadratic mean, etc. The total number of the features is 6382. As shown in Fig 2.1,

we feed all the four branches into the feature extraction module.

2.3.3 Feature Extraction

To initialize the words, we first use word2vec (a pre-trained word embedding model

with 300 dimensions for each word based on 100 million words from Google news

[Mikolov et al., 2013]) as a dictionary to embed each word into a low-dimensional

word vector. We pad all sentences with zero padding to fit 40×300. As suggested
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in [Kim, 2014], we apply one convolutional layer with one max-pooling layer to extract

the features and use multiple convolutional filters with 2, 3, 4, and 5 as the widths.

We created 256 filters for each width. The final textual feature representation is a

1024-dimensional feature vector.

Figure 2.2: Feature extraction structure for MFSC maps

For POS embedding, we did not use a pre-trained dictionary as we did with word em-

bedding; instead, we trained our own POS embedding dictionary based on the word2vec

model using our own POS tagging data. We encoded the POS into a 10-dimensional

vector and used the same ConvNet structure as the word branch to extract the POS

features. We also created 256 filters for each width and made the output POS feature

representation a 1024-dimensional feature vector.

For the audio signal input, we first extracted Mel-frequency spectral coefficients

(MFSCs) from raw audio signals, which were shown to be efficient in convolutional mod-

els of speech recognition and intention classification in recent study [Gu et al., 2017b,

Abdel-Hamid et al., 2014, Gu et al., 2017a]. Compared to the MFCCs, MFSCs main-

tain the locality of the data by preventing new basis of spectral energies resulting

from discrete cosine transform in MFCC extraction [Abdel-Hamid et al., 2014]. We

used 64 filter banks to extract the MFSCs and extracted both the delta and double

delta coefficients. Instead of resizing the MFSC feature maps into the same size as
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in [Gu et al., 2017a], we selected 64 as the context window size and 15 frames as the

shift window to segment the entire MFSC map. In particular, given an audio clip, our

MFSC map is a 4D array with size n×64×64×3, where n is the number of shift win-

dows. We constructed an eight-layer ConvNet to capture the spatial associations from

each MFSC segmentation, which has four convolutional layers with four max-pooling

layers. As shown in Fig 2.2, we selected 3×3 as the convolutional kernel size and 2×2

as the max-pooling kernel size. We applied a fully-connected layer and a dense layer to

connect feature vectors. Although previous research used a 3D-CNN structure to learn

the temporal associations from the spectrograms [Zhang et al., 2017], simply concate-

nating output features from the ConvNet cannot reveal the actual temporal associations

in sequence. LSTM is a special recurrent neural network (RNN) that allows input data

with varying length, remembers values with arbitrary intervals, learns the long-term

dependencies of time series, and outputs a fixed-length result. Compared with the

ConvNet, LSTM is more suitable to capture the temporal associations, as it considers

the sequential properties of the time series [Hochreiter and Schmidhuber, 1997]. We

set up an LSTM layer after the dense layer (Layer6) to handle segmented sequential

output with various lengths and learn temporal associations. We selected the hidden

state from the last layer (Layer7) as the final 1024-dimensional feature vector output.

Despite the high-level acoustic features from spectral energy maps, we also extract

the low-level features in prosody and vocal quality. Unlike most previous research that

concatenated the low-level handcrafted features directly or reduced the dimension of

the feature vectors via correlation-based feature selection (CFS) and principle compo-

nent analysis (PCA) [Poria et al., 2015, Poria et al., 2016], we set up a three-layer deep
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neural network of one input layer with two hidden layers to extract the high-level asso-

ciations from the low-level features. Max-min normalization is applied for the low-level

features before feeding them into the network. The input layer is a 6382-dimensinal

feature vector and we set 2048 and 1024 as the hidden unites for each hidden layer,

respectively. We select the last hidden layer as the final feature representation, which

is a 1024-feature vector.

2.3.4 Feature Fusion

We concatenate all the extracted high-level features to form the joint feature represen-

tation. We use a deep neural network with one input layer, two hidden layers, and a

softmax layer to capture the associations between the features from different modali-

ties and classify the emotions [Bishop, 2006]. The hidden units are 2048 and 1024 for

each hidden layer, respectively. The output of the softmax layer is the corresponding

emotion vector. It worth mentioning that we also try to replace the softmax function

with a linear SVM [Schuller et al., 2004] to classify the shared representation from the

last hidden layer in the fusion model. Nevertheless, there is no obvious improvement in

performance. To eliminate the unnecessary structures, we directly use softmax as the

final classifier.

2.3.5 Network Training and Baselines

Unlike previous research that trained the feature extraction module and fusion modules

separately, our architecture connects them together and uses backpropagation to adjust

the entire framework, including the parameters in both fusion and feature extraction

modules. Considering the multiple layers in the proposed structure, we use the rectified
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linear unit (ReLU) as the activation function to facilitate convergence and set dropout

functions to overcome overfitting. Another issue for training a deep model is internal

covariate shift, which is defined as the change in the distribution of network activations

due to the change in network parameters during training [Ioffe and Szegedy, 2015]. We

applied batch normalization function between each layer to normalize and better learn

the distribution [Ioffe and Szegedy, 2015], improving the training efficiency. We ini-

tialize the learning rate at 0.01 and use Adam optimizer [Kingma and Ba, 2014] to

minimize the value from categorical cross-entropy loss function.

We setup the following experiment as the baselines:

• CNNword: Using ConvNet as feature extractor and text as input.

• CNNpos: Using ConvNet as feature extractor and part-of-speech tags as input

data.

• CNN LSTMmfsc: Using CNN-LSTM as feature extractor and MFSC energy

maps as input data.

• DNNlhaf : Using DNN as feature extractor and low-level handcraft features as

input data.

• Both text: Including both CNNword and CNNpos.

• Both audio: Including both CNN LSTMmfsc and DNNlhaf .

• LHAFwo: Low-level handcraft acoustic features without feature selection.

• LHAFw: Low-level handcraft acoustic features with feature selection.

• CNNmel: Using ConvNet as feature extractor and mel-spectrogram as input data.
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Approach Ang Hap Sad Neu Fru

CNNword 42.9 54.0 50.2 39.7 49.2
CNNpos 10.3 33.2 30.3 12.9 39.5
CNN LSTMmfsc 51.5 50.6 52.3 43.2 49.2
DNNlhaf 54.3 44.1 40.4 39.8 41.7
CNNword + CNNpos 47.5 54.1 53.3 41.5 49.3
CNNword + CNN LSTMmfsc 54.6 59.2 57.2 52.1 54.3
CNNword +DNNlhaf 55.3 52.5 54.2 51.2 52.2
CNNpos + CNN LSTMmfsc 46.1 40.3 41.3 34.2 40.4
CNNpos +DNNlhaf 37.2 42.8 35.3 27.7 35.4
CNN LSTMmfsc +DNNlhaf 53.7 51.3 51.1 41.3 49.5
Both text+ CNN LSTMmfsc 55.7 61.3 57.4 52.6 57.5
Both text+DNNlhaf 55.9 60.2 54.1 50.3 54.3
CNNword +Both audio 56.1 63.2 60.1 55.4 60.4
CNNpos +Both audio 47.2 42.3 40.1 36.2 40.5
Ours separate 55.3 61.4 57.2 52.3 58.1
Ours together 57.2 65.8 60.2 56.3 61.6

Table 2.1: Comparison of different feature combinations (percentage)

• CNNmel: Using ConvNet as feature extractor and MFSC as input data.

• MKL: Using multiple kernel learning as fusion strategy.

2.4 Experimental Results of HDMS

We evaluate our proposed framework on the Interactive Emotional Dyadic Motion Cap-

ture Database (IEMOCAP) [Busso et al., 2008]. IEMOCAP is a multimodal emotion

dataset including visual, audio, and text data. In this research, we only consider the

audio and text data. Three annotators assign one emotion label to each sentence from

happy, sad, neutral, anger, surprised, excited, frustration, disgust, fear, and other. We

only use the sentences with at least two agreed emotion labels for our experiments. We

merged excited and happy as Hap, making the final dataset 1213 Hap, 1032 Sad (sad),

1084 Ang (anger), 774 Neu (neutral), and 1136 Fru (frustration). We apply 5-fold cross

validation to train and test the framework.
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Approach Ang Hap Sad Neu Fru

BoW + SVM 40.6 45.0 42.2 31.7 44.2
CNNword 42.9 54.0 50.2 39.7 49.2
LHAFwo + SVM 41.2 36.6 38.3 39.2 41.5
LHAFw + SVM 40.2 37.1 40.2 40.1 41.8
CNNmel 39.7 41.2 43.5 39.1 41.4
CNNword + LHAFw +MKL 50.3 52.5 53.2 49.2 52.2
CNNword + CNNmfsc 50.1 52.3 56.3 51.2 50.4
CNNword + CNNmfsc + SVM 51.2 50.8 55.3 51.7 51.4
Ours together 57.2 65.8 60.2 56.3 61.6

Table 2.2: Comparison of previous emotion recognition structures (percentage)

We first evaluate each feature branch individually. As shown in Table 2.1, the

CNNword has good performance on Sad and Hap category. Compared to high-level

acoustic features extracted from low-level handcrafted features (DNNlhaf ), the spatial-

temporal high-level acoustic features extracted from the CNN-LSTM lead to better per-

formance on Hap, Sad, Neu, and Fru. DNNlhaf achieves the best result on Ang category

in all unimodal structures, with 54.3% accuracy. Then, we compare the performance of

different feature combinations. Combining all the features from four branches achieves

the best result, with 60.4% weighted accuracy. We evaluate different training manners:

training the feature extraction module and fusion module separately (Ours separate),

and training all modules together (Ours together). Our result shows that training the

entire structure together increases weighted accuracy by 2.7%.

We also conducted experiments using methods proposed in the previous research.

From Table 2.2, our framework outperforms the text-specific model (BoW and CNNword)

and acoustic-specific model (LHAFw and CNNmel) by 9.9%-29.5% accuracy. Com-

pared with the low-level textual features (BoW ), high-level textual features (CNNword)

improve the accuracy around 6% on average. The high-level acoustic features extracted

from Mel-spectrogram via ConvNet structure (CNNmel) perform slightly better than
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the low-level handcrafted acoustic features without feature selection (LHAFwo). From

our result, using principal component analysis and cyclic correlation-based feature sub-

set selection to select the low-level handcrafted acoustic features (LHAFw) helps im-

prove performance less. Both LHAFwo and LHAFw have lower weighted accuracies

compared to DNNlhaf in Table 2.1. We also evaluate structures using shallow lay-

ers in the fusion model [Poria et al., 2016, Gu et al., 2017b]; our proposed hybrid deep

multimodal structure achieves the best performance, improving accuracy by up to 8%.

It is worth noting that simply replacing the low-level handcrafted features with high-

level features from CNNmfsc in the multimodal structure does not significantly improve

performance. Using CNN LSTMmfsc as the feature extractor improves 3.9% weighted

accuracy, demonstrating that the lack of temporal associations indeed influences system

accuracy. Our experiments also show that using a linear SVM as the classifier after the

deep model does not significantly improve performance compared to a single softmax

classifier.

2.5 Hybrid Attention Multimodal System (HDMS)

2.5.1 System Overview

Compared with the proposed HDMS that combines the traditional low-level features

and high-level, we introduced a hybrid attention based multimodal architecture 2 for

different spoken language understanding tasks. Our system used feature attention and

modality attention to select the representative information at both the feature-level and

modality-level. The proposed modality attention fusion overcomes the limitations from

2This work has been published in 2018 Proceedings of the conference. Association for Computational
Linguistics. Meeting [Gu et al., 2018c].
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feature-level and decision-level fusion by performing feature-level fusion with modality

scores over the features. As shown in Fig 2.3, there are three major parts of the system:

the data preprocessing, feature extraction, and modality fusion.

Figure 2.3: The overall system structure for hybrid attention multimodal system.

2.5.2 Data Preprocessing

The system accepts raw audio signal and text as inputs. The data preprocessing module

formats the heterogeneous inputs into specific representations, which can be effectively

used in the feature extraction network. We embedded the words and extracted Mel-

frequency spectral coefficients (MFSCs) from the text and audio inputs for the feature

extraction module. We first embedded each word into a 300-dimensional word vector

by word2vec, which is a pre-trained word embedding dictionary trained on 100 mil-

lion words from Google news [Mikolov et al., 2013]. Compared to GloV e and LexV ec,
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word2vec provides us the best performance. For all embedded vectors, we allow fine-

tuning of the embedding layer via backpropagation during the training stage. We

removed all punctuation, as spoken language does not provide tokens. Unknown words

were randomly initialized and each sentence was represented as a N ×300 matrix, where

N is the number of the words for the given sentence. Unlike most previous research

extracting LLDs or using Mel-frequency cepstral coefficients (MFCCs) as the acoustic

features [Poria et al., 2016, Mirsamadi et al., 2017], we represented the raw audio signal

using MFSCs because: 1. MFSCs maintain the locality of the data by preventing new

bases of spectral energies resulting from discrete cosine transform in MFCCs extraction

[Abdel-Hamid et al., 2014]. 2. Compared to the MFCCs that only have 39 dimensions

for each audio frame, MFSCs allow more dimensions in the frequency domain that aid

learning in deep models. 3. Instead of using MFCCs, voice intensity, pitch, etc. as in

[Poria et al., 2017a] that need voice normalization and statistic computations, MFSC

extraction does not require additional operations. As suggested in [Gu et al., 2017b],

we used 64 filter banks to extract static, delta(∆), and doubledelta(∆∆) of the MFSCs

as the MFSCs map. The final representation is a 3-D array with 64 ×F ×3 dimensions,

where F is the number of extracted MFSCs frames.

2.5.3 Textual Feature Extraction with Attention

We applied the LSTM structure with an attention mechanism to extract temporal

associations and select informative words.

The textual feature extraction module consists of two parts. Firstly, it has a regular

bidirectional LSTM structure used to generate the contextual hidden states for each

word vector. Secondly, it has an attention layer connected to the bidirectional LSTM to
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Figure 2.4: Textual feature extraction with attention.

provide a weight vector over the contextual hidden states to amplify the representative

vectors. As shown in Fig 2.4, we fed the words into the bidirectional LSTM in sequence.

Specifically,

t→i , t
←
i = bi LSTM(Ei), i ∈ [1, N ] (2.1)

where Ei is the embedded word vector of the ith word, bi LSTM is the bidirec-

tional LSTM, and t→i and t←i denote respectively the forward and backward contextual

states of the given input word vector. Each contextual state is a word-level feature

representation with forward and backward temporal associations. As not all words

equally contribute to the final prediction, we added a learnable attention layer over

the contextual states to denote the importance of the representations. As defined by

[Bahdanau et al., 2014], we first computed the text attention energies (eti) by:

eti = tanh(Wt[t
→
i , t

←
i ] + bt), i ∈ [1, N ] (2.2)

Then, we calculated the text attention distribution (αt
i) for word representations via a

softmax function:

αt
i =

exp(eti
>
vt)∑N

k=1exp(e
t
k
>
vt)

(2.3)
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where Wt, bt, and vt are the learnable parameters. To form the final textual feature

representation (V t), we applied a weighted-pooling by computing a weighted sum of

the text contextual states and the attention distribution:

V t =
∑N

i=1
[t→i , t

←
i ]αt

i (2.4)

Unlike the systems that apply convolutional neural networks to extract the sen-

timental and emotional textual features using a fixed window size [Poria et al., 2015,

Poria et al., 2017b], we used LSTM structures that can fully capture the sequential in-

formation with varying length and learn the temporal associations between words. We

notice that Zadeh also applied LSTMs as the textual feature extractor [Zadeh et al., 2017].

However, they used a mean-pooling strategy to form the final utterance-level feature

representation by passing all the contextual states into the dense layer. This assumes

all the outputs can correctly contribute to the final prediction. Unfortunately, as we

know, even the same word may carry diverse information that may make different con-

tributions to the final prediction. The proposed attention layer allows the system to

focus on the most informative words to further improve the representations.

2.5.4 Acoustic Feature Extraction with Attention

Similar to textual feature extraction, we also introduced a bidirectional LSTM with

attention to focus on extracting informative contextual states on frame-level MFSCs.

Unlike the textual feature extraction that only has one channel (2D-array), the input

MFSCs map is a 3D-array. We first concatenated the synchronized frames from static,

delta, and double delta feature maps to form the input acoustic feature vector (Aj):

Aj = [sj ,∆j ,∆∆j ], j ∈ [1, F ] (2.5)
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Figure 2.5: Acoustic feature extraction with attention.

Again, we used the same approach as in textual feature extraction to compute the

bidirectional acoustic contextual states ([α→j , α
←
j ]), acoustic attention energies (eaj ),

and acoustic attention distribution (αa
j ). The αa

j can be understood as the importance

score for the jth frame. We computed the weighted sum of the bidirectional acoustic

contextual states and acoustic attention distribution as the final acoustic representation

(V a).

Unlike previous research that directly uses the acoustic LLDs as the extracted fea-

tures [Degottex et al., 2014a, Poria et al., 2016], the proposed architecture learns high-

level acoustic associations. We didn’t use convolutional neural networks to extract the

acoustic features as in [Gu et al., 2017b] because CNNs only capture spatial associa-

tions whereas acoustic data contains many temporal associations. The fixed window

size of CNNs limits the temporal interaction extraction. As the number of audio frames

is large (hundreds per sentence), the LSTM structure ensures the system captures long-

term dependencies among the MFSCs frames. Even if a deep neural network was used

for extracting the high-level associations on LLDs [Zadeh et al., 2017, Gu et al., 2018a],

the generation of attention over the extracted features is still desirable, as it can help
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indicate the importance at the frame-level. The weighted pooling based on the atten-

tion distribution makes sure the final acoustic feature representations contain the most

informative features.

Figure 2.6: Modality fusion

2.5.5 Modality Fusion

Simply concatenating the features cannot reveal the actual importance of different

modalities; the same modality may have different contributions in different spoken lan-

guage understanding tasks. For example, people rely more on the vocal delivery and

acoustic characteristics to express their emotions, but linguistic content and text are

more important to speech content classification. Even for the same task, the modal-

ity may have distinct influences on different categories. Acoustic in-formation might

provide useful information for the anger class, but it is hard to distinguish neutral

and happy without considering text. To make the system learn this difference, we
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proposed a modality attention fusion that puts an attention layer over the extracted

modality-specific features, helping the system focus on the informative modality. It

can be intuitively understood as giving a weighted score vector at the modality-level to

indicate the importance of individual branches.

The proposed modality fusion consists of three major parts: a modality attention

module, a weighted operation, and a decision making module. We first set up five dense

layers after the attention layer to fuse the modality-specific features (as shown in figure

4). Then, we used softmax regression to generate the weighted score (s) for the given

modality:

s = softmax(tanh(Wf [V t, V a] + bf )) (2.6)

where Wf and bf are the trainable fusion attention parameters, s is a n-dimension

vector, and n=2 in this study (representing the text and audio modalities respectively).

We computed a soft-attention over the original modality features and concatenated

them. A dense layer was used to learn the associations across weighted modality-specific

features by:

r = tanh(Wr[(1 + st)V
t, (1 + sa)V a] + br) (2.7)

where r is the final representation, and Wr and br are the additional parameters for the

last dense layer. We used (1 + s) as the attention score to keep the original modality

characteristics. We made the final decision by a softmax classifier using r as input.

2.6 Experimental Results of HAMS

We evaluated the proposed system on three published multimodal datasets and an

actual trauma resuscitation speech dataset. We compared our structure with the base-

lines from three major aspects: 1. proposed system vs previous methods; 2. low-level
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Dataset Class Speaker Independent Training Set Testing Set

CMU-MOSI 2 93(74|19) 1755 444
IEMOCAP 4 151(121|30) 4295 1103
MOUD 2 79(59|20) 322 115
TRS 7 50(40|10) 7261 1843

Table 2.3: Dataset details.

handcrafted features vs high-level features; 3. shallow fusion vs deep fusion. We also

conducted an experiment on a trauma resuscitation speech dataset that uses speech-

to-text results as text input to test the generalizability of the system.

2.6.1 Dataset

We selected three multimodal datasets that contain spoken language information. We

used audio and text data as inputs in this study. Table 2.3 shows dataset details.

CMU-MOSI: This dataset is a multimodal sentiment intensity and subjectiv-

ity dataset consisting of 93 review videos in English with 2199 utterance segments

[Zadeh et al., 2016]. Each segment is labelled by five individual annotators between -3

(strong negative) to +3 (strong positive). The aim of using this dataset is to extract

the sentiments from spoken language information by applying the audio segments and

the corresponding transcripts. We used binary labels (positive and negative) based

on the sign of the annotations’ average. We used an 80-20 training-testing split that

considers speaker independency. Specifically, there are 1755 utterances for training and

444 utterances for testing.

IEMOCAP: The interactive emotional dyadic motion capture database is a multi-

modal emotion dataset including visual, audio, and text data [Busso et al., 2008]. For

this study, we only used the audio and text data and classified emotion at the utterance-

level. We used the label agreed on by the majority and combined the happy and excited
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classes following previous research [Poria et al., 2016]. The final dataset consists of four

categories including 1591 hap (happy+excited), 1054 sad, 1076 anger, 1677 neutral.

We still used an 80-20 speaker independent data split.

MOUD: The MOUD dataset is a Spanish multimodal utterance-level dataset. Fol-

lowing previous research [Poria et al., 2016], we only consider the positive and negative

labels during training and testing. Instead of translating the sentences into English as

previous research did, we initialize the word embedding layer randomly.

In addition, we tested the generalizability of the proposed system on a trauma

resuscitation speech dataset (TRS).

TRS: This dataset was collected from 50 actual trauma cases with 9104 utterance-

level audio segments. For each segment, it contains one utterance with at least 2

seconds. The dataset contains the following utterance-level medical category labels:

airway, breathing, circulation, disability, exposure, secondary− survey, and others.

Each utterance was assigned one category by trauma experts. The audio data was

collected by two shotgun microphones placed in the resuscitation room. We used two

different transcripts as the text input: human transcribed text and speech-to-text tran-

script. These experiments can then evaluate the influence of noise in the text branch.

We reserved 40 cases as the training set and the 10 others as the testing set.

2.6.2 Baselines

We first compared our system with several state-of-the-art methods.

SVM Trees: an ensemble of SVM trees was used for classifying concatenated bag-

of-words and LLDs [Rozgic et al., 2012].

BL-SVM: extracted bag-of-words and low-level descriptors as textual and acoustic
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features, respectively. The model used an SVM classifier [Rosas et al., 2013].

GSV-eVector: this model used Gaussian Supervectors to select LLDs as acous-

tic features and extracted a set of weighted handcrafted vectors (eVector) as textual

features. A linear kernel SVM was used as the final classifier [Jin et al., 2015].

C-MKL: the system used a multiple kernel learning structure as the final classi-

fier [Poria et al., 2016]. The model extracted textual and acoustic features by using a

convolution neural network and OpenSMILE software, respectively.

TFN: a tensor fusion network was used to fuse the extracted features from different

modalities [Zadeh et al., 2017].

WF-LSTM: a word-level LSTM with temporal attention structure to predict sen-

timents on the CMU-MOSI dataset [Chen et al., 2017].

BC-LSTM: a bidirectional LSTM structure to learn contextual information among

utterances [Poria et al., 2017b].

H-DMS: a hybrid deep multimodal structure to extract and fuse the textual and

acoustic features on the IEMOCAP dataset [Gu et al., 2018a].

We further tested the performance of models using different feature extraction meth-

ods.

BoW: using bag-of-words as the textual features to make the final prediction

[Wöllmer et al., 2013b].

WEV: directly using word embedding vectors as the textual features [Zadeh et al., 2018].

CNNs-t: Convolutional neural networks were used for extracting the textual fea-

tures based on embedding word vectors [Poria et al., 2015].

LSTM-t: using an LSTM structure to learn contextual word-level textual features

[Gu et al., 2017a].
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OpenSimle: extracts 6373 low-level acoustic features from an entire audio clip

[Poria et al., 2017b].

COVAREP: extracts low-level acoustic features including MFCCs, pitch tracking,

glottal source parameters, peak slope, and maxima dispersion quotients [Chen et al., 2017].

CNNs-a: using convolutional neural networks on extracted MFSCs [Gu et al., 2017b].

LSTM-a: using an LSTM structure to learn the temporal associations based on

LLDs extracted by OpenSmile [Gu et al., 2018a].

To make the comparison more reasonable, we introduced a shallow fusion and a

deep fusion that combines with the previous feature extraction strategies to make the

final predictions.

SVM: an SVM was trained on modality-specific features or concatenated features

for classification.

DF: a deep neural network with three hidden layers was trained as the fusion module

and a softmax classifier was used for decision-making.

2.6.3 Network Training

We implemented the system in Keras using the Tensorflow backend [Chollet et al., 2015,

Abadi et al., 2016]. Instead of directly training the entire network, we first pre-trained

the feature extraction networks by using two individual softmax classifiers. Then, we

tuned the entire network by combining the feature extraction module and modality

fusion module. The system was trained on a GTX 1080 GPU with 32GB RAM. We

set 200 as the dimension for the bidirectional LSTM. We selected the ReLU activation

function except for the attention layers. To overcome overfitting and internal covariate

shift [Ioffe and Szegedy, 2015], we applied dropout and batch normalization after the
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bidirectional LSTM layer and attention layers. We initialized 0.01 as the learning rate,

used the Adam optimizer [Kingma and Ba, 2014], and binary/categorical cross-entropy

loss. We further split 20 percent of the data from the training set as validation and

used mini-batch size 8. To make a fair comparison between the proposed system and

baselines, we re-trained all models on the same training-testing set split (shown in Table

2.3). We directly built the models for the baselines that provided the source code. For

the rest, we re-implemented the models based on the methods described in their papers.

2.6.4 Experimental Results

We first compared the performance of the proposed system with the previous meth-

ods. The result shows that our system achieves state-of-the-art on all three published

datasets. Specifically, we achieved 76.2% accuracy and 74.8 weighted F1 score on

CMU-MOSI, outperforming the previous methods by a margin of 2.3% to 7.8%, which

demonstrates the effectiveness of the proposed architecture. Compared to the tradi-

tional approaches using low-level handcrafted features and shallow fusion strategies

(GSV-eVector and SVM Trees), the proposed method shows a significant performance

improvement on IEMOCAP (9.3% and 8.7% accuracy gain, respectively). Experiments

also indicate that our system performs better than the deep approaches (including C-

MKL, TFN, H-DMS), showing the necessity of learning attentive information on feature

extraction and fusion levels. Our approach achieves a competitive result (72.8% accu-

racy) on the MOUD dataset. We further re-implemented all previous methods on the

TRS dataset, and our system reports the best performance in terms of both accuracy

(69.4%) and weighted F1 score (66.0).

We further compare low-level vs high-level features and shallow vs deep fusion. We
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CMU-MOSI IEMOCAP MOUD TRS

Approach Acc. W-F1 Acc. W-F1 Acc. W-F1 Acc. W-F1

SVM Tree 67.3 66.1 66.4 66.7 60.4 50.4 58.4 45.7
BL-SVM 68.4 67.8 65.2 65.0 60.3 52.8 59.2 50.1
GSV-eVector 65.7 65.5 64.2 64.3 61.1 52.3 58.4 48.4
C-MKL 71.3 71.0 67.0 67.2 72.0 72.2 62.1 58.1
TFN 73.6 73.5 70.4 70.2 62.1 61.2 64.4 61.5
WF-LSTM 73.9 73.3 69.5 69.4 72.7 72.8 65.6 61.5
BC-LSTM 72.4 72.6 70.8 70.8 72.4 72.4 67.9 64.4
H-DMS 70.4 70.2 70.2 69.8 68.4 67.6 66.7 64.3

Ours HAMS 76.2 74.8 72.1 72.2 72.8 73.0 69.4 66.0

Acc = accuracy (%). W-F1 = weighted accuracy.

Table 2.4: Proposed system vs previous methods.

re-trained all the individual feature extraction baselines and fusion structures on both

IEMOCAP and CMU-MOSI with the same training-testing split. As shown in Table

2.5 (a), (b), and (c), we made several different combinations of the feature extraction

baselines with fusion baselines. We first evaluated the performance of unimodal and

multi-modal systems. From Table 2.5 (a), in all of combinations, multi-modal systems

performed better than unimodal ones. In general, the performance of text is similar to

that of audio on the IEMOCAP dataset, but text dominates the system performance on

MOSI. This might because humans rely more on vocal delivery to express emotions, but

less on sentiments. Combining textual and acoustic modalities using an ATFE+AAFE

structure leads to 9.6% performance boost on IEMOCAP, which proves the necessity of

using multimodal inputs in spoken language understanding. However, there is only 1.7%

accuracy improvement on CMU-MOSI by using a multimodal structure. This might

because humans express their attitudes without using many vocal characteristics.

Table 2.5 (b) compares the different feature extraction methods. Compared to tradi-

tional textual feature extraction (BoW), the deep models achieve better performance by

extracting high-level associations on both datasets. It worth mentioning that directly
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(a) Comparison of modalities

Approach CM IE

BoW+SVM 65.3 53.2
OS*+SVM 52.9 56.4
BoW+OS*+SVM 65.9 61.7
CNNt+DF 69.2 57.8
CNNa+DF 57.3 59.9
CNNt+CNNa+DF 71.6 64.2
ATFE+DF 74.5 61.8
AAFE+DF 60.4 62.5
ATFE+AAFE+MAF 76.2 72.1

(b) Comparison of Features

Approach CM IE Approach CM IE

BoW+SVM 65.3 53.2 OS*+SVM 52.9 56.4
WEV+SVM 65.4 54.7 COV*+SVM 51.5 52.7
CNNt+SVM 67.3 55.2 CNNa+SVM 54.1 55.4
LSTMt+SVM 68.2 55.7 LSTMa+SVM 56.9 56.1
ATFE+SVM 72.2 61.0 AAFE+SVM 57.1 59.1
CNNt+DF 69.2 57.8 OS*+DF 56.1 58.7
LSTMt+DF 71.2 58.2 COV*+DF 55.1 56.3
LSTMa+DF 58.5 60.5 CNNa+DF 57.3 59.9
ATFE+DF 74.5 61.4 AAFE+DF 60.4 62.5

(c) Comparison of Fusion

Approach CM IE Approach CM IE

BoW+OS*+SVM 65.9 61.7 CNNt+CNNa+SVM 65.7 63.4
BoW+OS*+DF 67.2 63.2 CNNt+CNNa+DF 71.6 64.2
BoW+OS*+MAF 68.7 64.7 CNNt+CNNa+MAF 72.9 66.1
WEA+COV*+SVM 65.8 62.7 ATFE+AAFE+SVM 71.1 65.1
WEA+COV*+DF 67.7 64.1 ATFE+AAFE+DF 74.8 70.5
WEA+COV*+MAF 68.5 64.8 ATFE+AAFE+MAF 76.2 72.1

(d) Generalization

Approach TRS

AAFE+DF 56.5
ATFE(trans)+DF 66.8
ATFE(asr)+DF 47.7
ATFE(trans)+AAFE+DF 69.4
ATFE(asr)+AAFE+DF 58.9

OS* = OpenSmile. COV* = COVAREP. ATFE = proposed attention based textual
feature extraction. AAFE = proposed attention based acoustic feature extraction.
MAF = modality attention fusion.

Table 2.5: Detailed comparison on CMU-MOSI (CM) dataset and IEMOCAP (IE)
dataset (accuracy percent-age).
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using the word vectors extracted by word2vec model as textual features (WEA+SVM)

cannot outperform CNN and LSTM word vector feature extractors (CNNt+SVM and

LSTM-SVM). This observation demonstrates the necessity of extracting high-level fea-

tures. On IEMOCAP, the high-level acoustic features extracted by CNNaand LSTMa

achieves 59.9% and 60.5% accuracy, outperforming the low-level hand-crafted acoustic

features (OpenSimle+SVM and COVAREP+SVM) between 1.7% to 7.8% in accuracy.

We notice that applying the LSTM architecture over the LLDs gives a 2.4% accu-

racy in-crease compared to directly using the LLDs on CMU-MOSI, which shows that

modeling the temporal associations improve system performance. As expected, the

proposed attention-based textual and acoustic feature extraction performs the best on

each individual branch. Based on the above observations, we conclude that learning the

high-level features from textual and acoustic data improves the system performance,

and that the proposed attention-based LSTM structure indeed helps extract associated

features.

Compared to the performance of shallow fusion (SVM) in Table 2.5 (c), deep fusion

(DF) gives a significant performance improvement on combinations that use deep fea-

ture extractors (CNNs, LSTM, and proposed attention structure), demonstrating that

extracting associations across modality-specific features indeed helps the final decision-

making. The modality fusion outperforms both shallow fusion (directly using SVM

classifier) and deep fusion (DF) on diverse feature ex-traction combinations. Using

an MAF structure instead of SVM and DF brings 5.1% and 1.4% accuracy gain on

CMU-MOSI, respectively. To further compare, we visualized the weighed scores from

the modality attention on different datasets and categories (shown in Fig 2.7). We
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computed the average scores of one hundred random testing samples from each cate-

gory and dataset. The results indicate the proposed modality attention can learn the

distinct scores on different categories and datasets.

(a) Modality attention scores of different categories on IEMOCAP. (b) Modality
attention scores of different datasets.

Figure 2.7: The weighted scores of modality attention.

We further tested the generalization of the proposed system by applying it to the

TRS dataset. Instead of just using the transcribed speech text, we fed the raw audio

data into the IBM Watson speech to text API to automatically recognize speech (ASR).

From Table 2.5 (d), using the ASR text leads to a 19.1% accuracy decrease compared

to the transcribed text on unimodal systems. How-ever, the multimodal structure only

has a 10.5% accuracy drop. These observations indicate that the multimodal system is

tolerant to noisy data, demonstrating the generalizability of the proposed multimodal

architecture with modality attention.

2.7 Summary

In this section, we first proposed a hybrid deep framework to predict the emotions

from spoken language, which consists of ConvNets, CNN-LSTM, and DNN, to extract

spatial and temporal associations from the raw text-audio data and low-level acoustic

features. We used a four-layer deep neural network to fuse the features and classify

the emotions. Our results show that the proposed framework outperforms the previous
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multimodal structures on the IMOCAP dataset, achieving 60.4% weighted accuracy on

five emotion categories.

we further introduced a hybrid attention based multimodal architecture for dif-

ferent spoken language understanding tasks. Our system used feature attention and

modality attention to select the representative information at both the feature-level and

modality-level. The proposed modality attention fusion overcomes the limitations from

feature-level and decision-level fusion by performing feature-level fusion with modality

scores over the features. We evaluated our system on three published datasets and a

trauma resuscitation speech dataset. The results show that the proposed architecture

achieves state-of-the-art performance. We also demonstrated the necessity of applying a

multimodal structure, extracting high-level feature representations, and using modality

attention fusion. The generalization testing established that our system has the ability

to handle actual speech data.
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Chapter 3

Hierarchical Attention Multimodal Network

3.1 Introduction of Chapter

A basic challenge in sentiment analysis and emotion recognition is filling the gap be-

tween extracted features and the actual affective states [Zhang et al., 2017]. The lack

of high-level feature associations is a limitation of traditional approaches using low-

level handcrafted features as representations [Seppi et al., 2008, Rozgic et al., 2012].

Recently, deep learning structures such as CNNs and LSTMs have been used to ex-

tract high-level features from text and audio [Eyben et al., 2010a, Poria et al., 2015].

However, not all parts of the text and vocal signals contribute equally to the predic-

tions. A specific word may change the entire sentimental state of text; a different vocal

delivery may indicate inverse emotions despite having the same linguistic content. Re-

cent approaches introduce attention mechanisms to focus the models on informative

words [Yang et al., 2016] and attentive audio frames [Mirsamadi et al., 2017] for each

individual modality. However, to our knowledge, there is no common multimodal struc-

ture with attention for utterance-level sentiment and emotion classification. To address

such issue, we design a deep hierarchical multimodal architecture 1 with an attention

mechanism to classify utterance-level sentiments and emotions. It extracts high-level

1This work has been published in 2018 Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics Meeting [Gu et al., 2018d].
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informative textual and acoustic features through individual bidirectional gated recur-

rent units (GRU) and uses a multi-level attention mechanism to select the informative

features in both the text and audio module.

Another challenge is the fusion of cues from heterogeneous data. Most previous

works focused on combining multimodal information at a holistic level, such as integrat-

ing independent predictions of each modality via algebraic rules [Wöllmer et al., 2013b]

or fusing the extracted modality-specific features from entire utterances [Poria et al., 2016].

They extract word-level features in a text branch, but process audio at the frame-level or

utterance-level. These methods fail to properly learn the time-dependent interactions

across modalities and restrict feature integration at timestamps due to the different

time scales and formats of features of diverse modalities [Poria et al., 2017a]. However,

to determine human meaning, it is critical to consider both the linguistic content of

the word and how it is uttered. A loud pitch on different words may convey inverse

emotions, such as the emphasis on “hell” for anger but indicating happy on “great”.

Synchronized attentive information across text and audio would then intuitively help

recognize the sentiments and emotions. Therefore, we compute a forced alignment be-

tween text and audio for each word and propose three fusion approaches (horizontal,

vertical, and fine-tuning attention fusion) to integrate both the feature representations

and attention at the word-level.

We evaluated our model on four published sentiment and emotion datasets. Ex-

perimental results show that the proposed architecture outperforms state-of-the-art

approaches. Our methods also allow for attention visualization, which can be used for

interpreting the internal attention distribution for both single- and multi-modal sys-

tems. The contributions of this paper are: (i) a hierarchical multimodal structure with
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attention mechanism to learn informative features and high-level associations from both

text and audio; (ii) three word-level fusion strategies to combine features and learn cor-

relations in a common time scale across different modalities; (iii) word-level attention

visualization to help human interpretation.

3.2 Related Work

Despite the large body of research on audio-visual affective analysis, there is rela-

tively little work on combining text data. Early work combined human transcribed

lexical features and low-level handcrafted acoustic features using feature-level fusion

[Forbes-Riley and Litman, 2004, Litman and Forbes-Riley, 2004]. Others used SVMs

fed bag of words (BoW) and part of speech (POS) features in addition to low-level acous-

tic features [Seppi et al., 2008, Rozgic et al., 2012, Savran et al., 2012, Rosas et al., 2013,

Jin et al., 2015]. All of the above extracted low-level features from each modality sep-

arately. More recently, deep learning was used to extract higher-level multimodal fea-

tures. Bidirectional LSTMs were used to learn long-range dependencies from low-level

acoustic descriptors and derivations (LLDs) and visual features [Eyben et al., 2010a,

Wöllmer et al., 2013b]. CNNs can extract both textual [Poria et al., 2015] and visual

features [Poria et al., 2016] for multiple kernel learning of feature-fusion. Later, hi-

erarchical LSTMs were used [Poria et al., 2017b]. A deep neural network was used

for feature-level fusion in [Gu et al., 2018a] and [Zadeh et al., 2017] introduced a ten-

sor fusion network to further improve the performance. A very recent work using

word-level fusion was provided by [Chen et al., 2017]. The key differences between this

work and the proposed architecture are: (i) we design a fine-tunable hierarchical atten-

tion structure to extract word-level features for each individual modality, rather than
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simply using the initialized textual embedding and extracted LLDs from COVAREP

[Degottex et al., 2014b]; (ii) we propose diverse representation fusion strategies to com-

bine both the word-level representations and attention weights, instead of using only

word-level fusion; (iii) our model allows visualizing the attention distribution at both

the individual modality and at fusion to help model interpretability.

Our architecture is inspired by the document classification hierarchical attention

structure that works at both the sentence and word level [Yang et al., 2016]. For audio,

an attention-based BLSTM and CNN were applied to discovering emotion from frames

[Huang and Narayanan, 2016, Neumann and Vu, 2017]. Frame-level weighted-pooling

with local attention was shown to outperform frame-wise, final-frame, and frame-level

mean-pooling for speech emotion recognition [Mirsamadi et al., 2017].

3.3 Methodology

We introduce a multimodal hierarchical attention structure with word-level alignment

for sentiment analysis and emotion recognition (Fig. 3.1). The model consists of three

major parts: text attention module, audio attention module, and word-level fusion

module. We first make a forced alignment between the text and audio during pre-

processing. Then, the text attention module and audio attention module extract the

features from the corresponding inputs (shown in Algorithm 1). The word-level fusion

module fuses the extracted feature vectors and makes the final prediction via a shared

representation (shown in Algorithm 2).
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Figure 3.1: The overall system structure for multimodal hierarchical attention
structure with word-level alignment.

3.3.1 Forced Alignment and Preprocessing

The forced alignment between the audio and text on the word-level prepares the dif-

ferent data for feature extraction. We align the data at the word-level because words

are the basic unit in English for human speech comprehension. We used aeneas2 to

determine the time interval for each word in the audio file based on the Sakoe-Chiba

Band Dynamic Time Warping (DTW) algorithm [Sakoe and Chiba, 1978].

For the text input, we first embedded the words into 300-dimensional vectors by

word2vec [Mikolov et al., 2013], which gives us the best result compared to GloVe and

LexVec. Unknown words were randomly initialized. Given a sentence S with N words,

2https://www.readbeyond.it/aeneas/
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let wi represent the ith word. We embed the words through the word2vec embedding

matrix We by:

Ti = Wewi, i ∈ [1, N ] (3.1)

where Ti is the embedded word vector.

For the audio input, we extracted Mel-frequency spectral coefficients (MFSCs) from

raw audio signals as acoustic inputs for two reasons. Firstly, MFSCs maintain the local-

ity of the data by preventing new bases of spectral energies resulting from discrete cosine

transform in MFCCs extraction [Abdel-Hamid et al., 2014]. Secondly, it has more di-

mensions in the frequency domain that aid learning in deep models [Gu et al., 2017b].

We used 64 filter banks to extract the MFSCs for each audio frame to form the MFSCs

map. To facilitate training, we only used static coefficients. Each word’s MFSCs can

be represented as a matrix with 64×n dimensions, where n is the interval for the given

word in frames. We zero-pad all intervals to the same length L, the maximum frame

numbers of the word in the dataset. We did extract LLD features using OpenSmile

[Eyben et al., 2010b] software and combined them with the MFSCs during our train-

ing stage. However, we did not find an obvious performance improvement, especially

for the sentiment analysis. Considering the training cost of the proposed hierarchical

acoustic architecture, we decided the extra features were not worth the tradeoff. The

output is a 3D MFSCs map with dimensions [N, 64, L].

3.3.2 Text Attention Module

To extract features from embedded text input at the word level, we first used bidirec-

tional GRUs, which are able to capture the contextual information between words. It
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Algorithm 1 FEATURE EXTRACTION

1: procedure FORCED ALIGNMENT
2: Determine time interval of each word
3: find wi ← → [Aij ], j ∈ [1, L], i ∈ [1, N ]
4: end procedure
5: procedure TEXT BRANCH
6: Text Attention Module
7: for i ∈ [1, N ] do
8: Ti ← getEmbedded(wi)
9: t hi ← bi GRU(Ti)

10: t ei ← getEnergies(t hi)
11: t αi ← getDistribution(t ei)
12: end for
13: return t hi, t αi

14: end procedure
15: procedure AUDIO BRANCH
16: for i ∈ [1, N ] do
17: Frame-Level Attention Module
18: for j ∈ [1, L] do
19: f hij ← bi GRU(Aij)
20: f eij ← getEnergies(f hij)
21: f αij ← getDistribution(f eij)
22: end for
23: f Vi ← weightedSum(f αij , f hij)
24: Word-Level Attention Module
25: w hi ← bi GRU(f Vi)
26: w ei ← getEnergies(w hi)
27: w αi ← getDistribution(w ei)
28: end for
29: return w hi, w αi

30: end procedure

can be represented as:

t h→i , t h
←
i = bi GRU(Ti), i ∈ [1, N ] (3.2)

where bi GRU is the bidirectional GRU, t h→i and t h←i denote respectively the forward

and backward contextual state of the input text. We combined t h→i and t h←i as t hi

to represent the feature vector for the ith word. We choose GRUs instead of LSTMs

because our experiments show that LSTMs lead to similar performance (0.07% higher

accuracy) with around 25% more trainable parameters.
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To create an informative word representation, we adopted a word-level attention

strategy that generates a one-dimensional vector denoting the importance for each word

in a sequence [Yang et al., 2016]. As defined by [Bahdanau et al., 2014], we compute

the textual attentive energies t ei and textual attention distribution t αi by:

t ei = tanh(Wtt hi + bt), i ∈ [1, N ] (3.3)

t αi =
exp(t ei

>vt)∑N
k=1exp(t ek

>vt)
(3.4)

where Wt and bt are the trainable parameters and vt is a randomly-initialized word-level

weight vector in the text branch. To learn the word-level interactions across modal-

ities, we directly use the textual attention distribution t αi and textual bidirectional

contextual state t hi as the output to aid word-level fusion, which allows further com-

putations between text and audio branch on both the contextual states and attention

distributions.

3.3.3 Audio Attention Module

We designed a hierarchical attention model with frame-level acoustic attention and

word-level attention for acoustic feature extraction.

Frame-level Attention captures the important MFSC frames from the given word

to generate the word-level acoustic vector. Similar to the text attention module, we

used a bidirectional GRU:

f h→ij , f h
←
ij = bi GRU(Aij), j ∈ [1, L] (3.5)

where f h→ij and f h←ij denote the forward and backward contextual states of acoustic

frames. Aij denotes the MFSCs of the jth frame from the ith word, i ∈ [1, N ]. f hij

represents the hidden state of the jth frame of the ith word, which consists of f h→ij
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and f h←ij . We apply the same attention mechanism used for textual attention module

to extract the informative frames using equation 3.3 and 3.4. As shown in Figure ??,

the input of equation 3.3 is f hij and the output is the frame-level acoustic attentive

energies f eij . We calculate the frame-level attention distribution f αij by using f eij

as the input for equation 3.4. We form the word-level acoustic vector f Vi by taking a

weighted sum of bidirectional contextual state f hij of the frame and the corresponding

frame-level attention distribution f αij Specifically,

f Vi =
∑

j
f αijf hij (3.6)

Word-level Attention aims to capture the word-level acoustic attention distri-

bution w αi based on formed word vector f Vi. We first used equation 3.2 to gen-

erate the word-level acoustic contextual states w hi, where the input is f Vi and

w hi = (w h→i , w h←i ). Then, we compute the word-level acoustic attentive energies

w ei via equation 3.3 as the input for equation 3.4. The final output is an acoustic at-

tention distribution w αi from equation 3.4 and acoustic bidirectional contextual state

w hi.

3.3.4 Word-level Fusion Module

Fusion is critical to leveraging multimodal features for decision-making. Simple fea-

ture concatenation without considering the time scales ignores the associations across

modalities. We introduce word-level fusion capable of associating the text and audio at

each word. We propose three fusion strategies (Figs. 3.2 and Algorithm 2): horizontal

fusion, vertical fusion, and fine-tuning attention fusion. These methods allow easy syn-

chronization between modalities, taking advantage of the attentive associations across

text and audio, creating a shared high-level representation.
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Algorithm 2 FUSION

1: procedure FUSION BRANCH
2: Horizontal Fusion (HF)
3: for i ∈ [1, N ] do
4: t Vi ← weighted(t αi, t hi)
5: w Vi ← weighted(w αi, w hi)
6: Vi ← dense([t Vi, w Vi])
7: end for
8: Vertical Fusion (VF)
9: for i ∈ [1, N ] do

10: hi ← dense([t hi, w hi])
11: s αi ← average([t αi, w αi])
12: Vi ← weighted(hi, s αi)
13: end for
14: Fine-tuning Attention Fusion (FAF)
15: for i ∈ [1, N ] do
16: u ei ← getEnergies(hi)
17: u αi ← getDistribution(u ei, s αi)
18: Vi ← weighted(hi, u αi)
19: end for
20: Decision Making
21: E ← convNet(V1, V2, ..., VN )
22: return E
23: end procedure

Horizontal Fusion (HF) provides the shared representation that contains both

the textual and acoustic information for a given word (Figure 3.2 (a)). The HF has two

steps: (i) combining the bidirectional contextual states (t hi and w hi in Figure 3.2)

and attention distributions for each branch (t αi and w αi in Figure 3.2) independently

to form the word-level textual and acoustic representations. As shown in Figure 3.2,

given the input (t αi, t hi) and (w αi, w hi), we first weighed each input branch by:

t Vi = t αit hi (3.7)

w Vi = w αiw hi (3.8)

where t Vi and w Vi are word-level representations for text and audio branches, re-

spectively; (ii) concatenating them into a single space and further applying a dense

layer to create the shared context vector Vi, and Vi = (t Vi, w Vi). The HF combines
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t hi: word-level textual bidirectional state. t αi: word-level textual attention distribu-
tion. w hi: word-level acoustic bidirectional state. w αi: word-level acoustic attention
distribution. s αi: shared attention distribution. u αi: fine-tuning attention distribu-
tion. Vi: shared word-level representation.

Figure 3.2: Fusion strategies.

the unimodal contextual states and attention weights; there is no attention interaction

between the text modality and audio modality. The shared vectors retain the most

significant characteristics from respective branches and encourages the decision making

to focus on local informative features.

Vertical Fusion (VF) combines textual attentions and acoustic attentions at the

word-level, using a shared attention distribution over both modalities instead of focusing

on local informative representations (Figure 3.2 (b)). The VF is computed in three

steps: (i) using a dense layer after the concatenation of the word-level textual (t hi)

and acoustic (w hi) bidirectional contextual states to form the shared contextual state

hi; (ii) averaging the textual (t αi) and acoustic (w αi) attentions for each word as

the shared attention distribution s αi; (iii) computing the weight of hi and s αi as final

shared context vectors Vi, where Vi = his αi. Because the shared attention distribution

(s αi) is based on averages of unimodal attentions, it is a joint attention of both textual

and acoustic attentive information.

Fine-tuning Attention Fusion (FAF) preserves the original unimodal attentions
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and provides a fine-tuning attention for the final prediction (Figure3.2 (c)). The averag-

ing of attention weights in vertical fusion potentially limits the representational power.

Addressing such issue, we propose a trainable attention layer to tune the shared at-

tention in three steps: (i) computing the shared attention distribution s αi and shared

bidirectional contextual states hi separately using the same approach as in vertical

fusion; (ii) applying attention fine-tuning:

u ei = tanh(Wuhi + bu) (3.9)

u αi =
exp(u ei

>vu)∑N
k=1exp(u ek

>vu)
+ s αi (3.10)

where Wu, bu, and vu are additional trainable parameters. The u αi can be understood

as the sum of the fine-tuning score and the original shared attention distribution s αi;

(iii) calculating the weight of u αi and hi to form the final shared context vector Vi.

3.3.5 Decision Making

The output of the fusion layer Vi is the ith shared word-level vectors. To further make

use of the combined features for classification, we applied a CNN structure with one

convolutional layer and one max-pooling layer to extract the final representation from

shared word-level vectors [Poria et al., 2016, Wang et al., 2016]. We set up various

widths for the convolutional filters [Kim, 2014] and generated a feature map ck by:

fi = tanh(WcVi:i+k−1 + bc) (3.11)

ck = max{f1, f2, ..., fN} (3.12)

where k is the width of the convolutional filters, fi represents the features from window

i to i + k − 1. Wc and bc are the trainable weights and biases. We get the final
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representation c by concatenating all the feature maps. A softmax function is used for

the final classification.

3.4 Experiments

3.4.1 Datasets

We evaluated our model on four published datasets: two multimodal sentiment datasets

(MOSI and YouTube) and two multimodal emotion recognition datasets (IEMOCAP

and EmotiW).

MOSI dataset is a multimodal sentiment intensity and subjectivity dataset con-

sisting of 93 reviews with 2199 utterance segments [Zadeh et al., 2016]. Each segment

was labeled by five individual annotators between -3 (strong negative) to +3 (strong

positive). We used binary labels based on the sign of the annotations’ average.

YouTube dataset is an English multimodal dataset that contains 262 positive, 212

negative, and 133 neutral utterance-level clips provided by [Morency et al., 2011]. We

only consider the positive and negative labels during our experiments.

IEMOCAP is a multimodal emotion dataset including visual, audio, and text data

[Busso et al., 2008]. For each sentence, we used the label agreed on by the majority

(at least two of the three annotators). In this study, we evaluate both the 4-catgeory

(happy+excited, sad, anger, and neutral) and 5-catgeory(happy+excited, sad, anger,

neutral, and frustration) emotion classification problems. The final dataset consists of

586 happy, 1005 excited, 1054 sad, 1076 anger, 1677 neutral, and 1806 frustration.

EmotiW3 is an audio-visual multimodal utterance-level emotion recognition dataset

3https://cs.anu.edu.au/few/ChallengeDetails.html
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consist of video clips. To keep the consistency with the IEMOCAP dataset, we used

four emotion categories as the final dataset including 150 happy, 117 sad, 133 anger,

and 144 neutral. We used IBM Watson4 speech to text software to transcribe the audio

data into text.

3.4.2 Baselines

We compared the proposed architecture to published models. Because our model fo-

cuses on extracting sentiment and emotions from human speech, we only considered

the audio and text branch applied in the previous studies.

Sentiment Analysis Baselines

BL-SVM extracts a bag-of-words as textual features and low-level descriptors as acous-

tic features. An SVM structure is used to classify the sentiments [Rosas et al., 2013].

LSTM-SVM uses LLDs as acoustic features and bag-of-n-grams (BoNGs) as tex-

tual features. The final estimate is based on decision-level fusion of text and audio

predictions [Wöllmer et al., 2013b].

C-MKL1 uses a CNN structure to capture the textual features and fuses them via

multiple kernel learning for sentiment analysis [Poria et al., 2015].

TFN uses a tensor fusion network to extract interactions between different modality-

specific features [Zadeh et al., 2017].

LSTM(A) introduces a word-level LSTM with temporal attention structure to

predict sentiments on MOSI dataset [Chen et al., 2017].

4https://www.ibm.com/watson/developercloud/speech-to-text/api/v1/
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Emotion Recognition Baselines

SVM Trees extracts LLDs and handcrafted bag-of-words as features. The model auto-

matically generates an ensemble of SVM trees for emotion classification [Rozgic et al., 2012].

GSV-eVector generates new acoustic representations from selected LLDs using

Gaussian Supervectors and extracts a set of weighed handcrafted textual features as an

eVector. A linear kernel SVM is used as the final classifier [Jin et al., 2015].

C-MKL2 extracts textual features using a CNN and uses openSMILE to extract

6373 acoustic features. Multiple kernel learning is used as the final classifier [Poria et al., 2016].

H-DMS uses a hybrid deep multimodal structure to extract both the text and audio

emotional features. A deep neural network is used for feature-level fusion [Gu et al., 2018a].

Fusion Baselines

Utterance-level Fusion (UL-Fusion) focuses on fusing text and audio features from

an entire utterance [Gu et al., 2017b]. We simply concatenate the textual and acoustic

representations into a joint feature representation. A softmax function is used for

sentiment and emotion classification.

Decision-level Fusion (DL-Fusion) Inspired by [Wöllmer et al., 2013b], we ex-

tract textual and acoustic sentence representations individually and infer the results via

two softmax classifiers, respectively. As suggested by Wöllmer, we calculate a weighted

sum of the text (1.2) result and audio (0.8) result as the final prediction.

3.4.3 Model Training

We implemented the model in Keras with Tensorflow as the backend. We set 100 as

the dimension for each GRU, meaning the bidirectional GRU dimension is 200. For
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the decision making, we selected 2, 3, 4, and 5 as the filter width and apply 300 filters

for each width. We used the rectified linear unit (ReLU) activation function and set

0.5 as the dropout rate. We also applied batch normalization functions between each

layer to overcome internal covariate shift [Ioffe and Szegedy, 2015]. We first trained the

text attention module and audio attention module individually. Then, we tuned the

fusion network based on the word-level representation outputs from each fine-tuning

module. For all training procedures, we set the learning rate to 0.001 and used Adam

optimization and categorical cross-entropy loss. For all datasets, we considered the

speakers independent and used an 80-20 training-testing split. We further separated

20% from the training dataset for validation. We trained the model with 5-fold cross

validation and used 8 as the mini batch size. We set the same amount of samples from

each class to balance the training dataset during each iteration.

3.5 Result Analysis

3.5.1 Comparison with Baselines

The experimental results of different datasets show that our proposed architecture

achieves state-of-the-art performance in both sentiment analysis and emotion recog-

nition (Table 3.1). We re-implemented some published methods [Rosas et al., 2013,

Wöllmer et al., 2013b] on MOSI to get baselines.

For sentiment analysis, the proposed architecture with FAF strategy achieves 76.4%

weighted accuracy, which outperforms all the five baselines (Table 3.1). The result

demonstrates that the proposed hierarchical attention architecture and word-level fu-

sion strategies indeed help improve the performance. There are several findings worth
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Sentiment Analysis (MOSI) Emotion Recognition (IEMOCAP)

Approach Category WA(%) UA(%) F1 Approach Category WA(%) UA(%) F1

BL-SVM* 2-class 70.4 70.6 0.668 SVM Trees 4-class 67.4 67.4 -
LSTM-SVM* 2-class 72.1 72.1 0.674 GSV-e Vector 4-class 63.2 62.3 -
C-MKL1 2-class 73.6 - 0.752 C-MKL2 4-class 65.5 65.0 -
TFN 2-class 75.2 - 0.760 H-DMS 5-class 60.4 60.2 0.594
LSTM(A) 2-class 73.5 - 0.703 UL-Fusion* 4-class 66.5 66.8 0.663
UL-Fusion* 2-class 72.5 72.5 0.730 DL-Fusion* 4-class 65.8 65.7 0.665
DL-Fusion* 2-class 71.8 71.8 0.720 Ours-HF 4-class 70.0 69.7 0.695
Ours-HF 2-class 74.1 74.4 0.744 Ours-VF 4-class 71.8 71.8 0.713
Ours-VF 2-class 75.3 75.3 0.755 Ours-FAF 4-class 72.7 72.7 0.726
Ours-FAF 2-class 76.4 76.5 0.768 Ours-FAF 5-class 64.6 63.4 0.644

Table 3.1: Comparison of models. WA = weighted accuracy. UA = unweighted ac-
curacy. * denotes that we duplicated the method from cited research with the corre-
sponding dataset in our experiment.

mentioning: (i) our model outperforms the baselines without using the low-level hand-

crafted acoustic features, indicating the sufficiency of MFSCs; (ii) the proposed ap-

proach achieves performance comparable to the model using text, audio, and visual

data together [Zadeh et al., 2017]. This demonstrates that the visual features do not

contribute as much during the fusion and prediction on MOSI; (iii) we notice that

[Poria et al., 2017b] reports better accuracy (79.3%) on MOSI, but their model uses a

set of utterances instead of a single utterance as input.

For emotion recognition, our model with FAF achieves 72.7% accuracy, outperform-

ing all the baselines. The result shows the proposed model brings a significant accuracy

gain to emotion recognition, demonstrating the pros of the fine-tuning attention struc-

ture. It also shows that word-level attention indeed helps extract emotional features.

Compared to C-MKL2 and SVM Trees that require feature selection before fusion and

prediction, our model does not need an additional architecture to select features. We

further evaluated our models on 5 emotion categories, including frustration. Our model

shows 4.2% performance improvement over H-DMS and achieves 0.644 weighted-F1. As

H-DMS only achieves 0.594 F1 and also uses low-level handcrafted features, our model

is more robust and efficient.
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Modality
MOSI IEMOCAP

WA F1 WA F1

T 75.0 0.748 61.8 0.620
A 60.2 0.604 62.5 0.614

T+A 76.4 0.768 72.7 0.726

Table 3.2: Accuracy (%) and F1 score on text only (T), audio only (A), and multi-
modality using FAF (T+A).

From Table 3.1, all the three proposed fusion strategies outperform UL-Fusion and

DL-Fusion on both MOSI and IEMOCAP. Unlike utterance-level fusion that ignores

the time-scale-sensitive associations across modalities, word-level fusion combines the

modality-specific features for each word by aligning text and audio, allowing associative

learning between the two modalities, similar to what humans do in natural conversation.

The result indicates that the proposed methods improve the model performance by

around 6% accuracy. We also notice that the structure with FAF outperforms the HF

and VF on both MOSI and IEMOCAP dataset, which demonstrates the effectiveness

and importance of the FAF strategy.

3.5.2 Modality and Generalization Analysis

From Table 3.2, we see that textual information dominates the sentiment prediction

on MOSI and there is an only 1.4% accuracy improvement from fusing text and audio.

However, on IEMOCAP, audio-only outperforms text-only, but as expected, there is a

significant performance improvement by combining textual and audio. The difference

in modality performance might because of the more significant role vocal delivery plays

in emotional expression than in sentimental expression.

We further tested the generalizability of the proposed model. For sentiment gener-

alization testing, we trained the model on MOSI and tested on the YouTube dataset
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Approach

MOSI IEMOCAP
↓ ↓

YouTube EmotiW
WA F1 WA F1

Ours-HF 62.9 0.627 59.3 0.584
Ours-VF 64.7 0.643 60.8 0.591
Ours-FAF 66.2 0.665 61.4 0.608

Table 3.3: Accuracy (%) and F1 score for generalization testing.

(Table 3.3), which achieves 66.2% accuracy and 0.665 F1 scores. For emotion recogni-

tion generalization testing, we tested the model (trained on IEMOCAP) on EmotiW

and achieves 61.4% accuracy. The potential reasons that may influence the generaliza-

tion are: (i) the biased labeling for different datasets (five annotators of MOSI vs one

annotator of Youtube); (ii) incomplete utterance in YouTube dataset (such as “about”,

“he”, etc.); (iii) without enough speech information (EmotiW is a wild audio-visual

dataset that focuses on facial expression).

3.5.3 Visualize Attentions

Our model allows us to easily visualize the attention weights of text, audio, and fusion

to better understand how the attention mechanism works. We introduce the emotional

distribution visualizations for word-level acoustic attention (w αi), word-level textual

attention (t αi), shared attention (s αi), and fine-tuning attention based on the FAF

structure (u αi) for two example sentences (Figure 3.3). The color gradation represents

the importance of the corresponding source data at the word-level.

Based on our visualization, the textual attention distribution (t αi) denotes the

words that carry the most emotional significance, such as “hell” for anger (Figure 3.3

a). The textual attention shows that “don’t”, “like”, and “west-sider” have similar

weights in the happy example (Figure 3.3 b). It is hard to assign this sentence happy
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Figure 3.3: The overall system structure for multimodal hierarchical attention
structure with word-level alignment.

given only the text attention. However, the acoustic attention focuses on “you’re”

and “west-sider”, removing emphasis from “don’t” and “like”. The shared attention

(s αi) and fine-tuning attention (u αi) successfully combine both textual and acoustic

attentions and assign joint attention to the correct words, which demonstrates that the

proposed method can capture emphasis from both modalities at the word-level.

3.6 Summary

There are several limitations and potential solutions worth mentioning: (i) the pro-

posed architecture uses both the audio and text data to analyze the sentiments and

emotions. However, not all the data sources contain or provide textual information.

Many audio-visual emotion clips only have acoustic and visual information. The pro-

posed architecture is more related to spoken language analysis than predicting the

sentiments or emotions based on human speech. Automatic speech recognition pro-

vides a potential solution for generating the textual information from vocal signals. (ii)

The word alignment can be easily applied to human speech. However, it is difficult to

align the visual information with text, especially if the text only describes the video or

audio. Incorporating visual information into an aligning model like ours would be an in-

teresting research topic. (iii) The limited amount of multimodal sentiment analysis and

emotion recognition data is a key issue for current research, especially for deep models
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that require a large number of samples. Compared large unimodal sentiment analysis

and emotion recognition datasets, the MOSI dataset only consists of 2199 sentence-level

samples. In our experiments, the EmotiW and MOUD datasets could only be used for

generalization analysis due to their small size. Larger and more general datasets are

necessary for multimodal sentiment analysis and emotion recognition in the future.

In this paper, we proposed a deep multimodal architecture with hierarchical atten-

tion for sentiment and emotion classification. Our model aligned the text and audio

at the word-level and applied attention distributions on textual word vectors, acoustic

frame vectors, and acoustic word vectors. We introduced three fusion strategies with

a CNN structure to combine word-level features to classify emotions. Our model out-

performs the state-of-the-art methods and provides effective visualization of modality-

specific features and fusion feature interpretation.
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Chapter 4

Mutual Attentive Fusion Network

4.1 Introduction of Chapter

Even though the primary focus of previous research has been to classify utterance-level

emotions based on a single data source (words, audio signal, facial expression, etc.), re-

cent works demonstrate the necessity and benefits of multimodal architectures that com-

bine heterogeneous inputs to predict emotion with joint modalities [Zadeh et al., 2017,

Poria et al., 2015, Gu et al., 2018d]. Aside from multimodal analysis, more recent works

employ dialogs and dyadic communication rather than single utterance as input to pro-

vide contextual information for emotion recognition [Poria et al., 2017b, Zadeh et al., 2018,

Gu et al., 2018b]. In this paper, we focus on learning human emotional state based on

dyadic verbal expressions. Specifically, we consider sequence and contextual informa-

tion of verbal communication in the form of acoustic signals and linguistic content to

predict utterance-level emotion 1.

Although previous approaches have achieved good performance, there still exist

several challenges in multimodal dyadic emotion recognition: 1. Different sensor data

require independent preprocessing and feature extraction designs due to the heteroge-

neous formats [Poria et al., 2015, Poria et al., 2016]. Using the appropriate approaches

1This work has been published in 2019 Proceedings of the 27th ACM International Conference on
Multimedia [Gu et al., 2019].
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to capture representative modality-specific features is critical to model performance.

2. The multiple modalities significantly increase the complexity of both the individual

modalities and fusion model, especially for the recent deep learning-based architectures

[Gu et al., 2018b, Chen et al., 2017]. To make an applicable and generalizable model

for multimodal emotion recognition, it is necessary to consider the tradeoff between

computational complexity and performance. 3. Little research provides solutions to

uncertainty in label disagreement in emotion recognition. However, as emotion is an

abstract and subjective concept, it is very common in both real-world scenarios and

multimodal emotion datasets to have utterance-level data with diverse emotions from

different people or annotators. Of the IEMOCAP dataset [Busso et al., 2008], 28.2%

of utterance-level samples cannot be assigned to a specific emotion category due to dis-

agreements from all annotators; only around 37.5% of utterance-level data have com-

plete agreements. Most previous research uses only the completely-agreed data or ap-

plies majority vote on the labels [Zadeh et al., 2017, Poria et al., 2015, Gu et al., 2018d,

Poria et al., 2017b, Zadeh et al., 2018, Gu et al., 2018b, Poria et al., 2016]. Unfortu-

nately, these approaches abandon the disagreeing data and cannot fully reveal the ac-

tual emotional state. This restriction may cause a discontinuities or gaps during dyadic

emotion recognition.

Addressing the issues above, we introduce a novel efficient dyadic fusion network that

only relies on an attention mechanism to select informative features, combine unimodal

features, and capture contextual information. We first design a sub-view attention based

on the self-attention mechanism [Vaswani et al., 2017] for both the feature extraction

models and fusion model. Unlike the previous approaches that use diverse and com-

plex sub-embedding networks to extract modality-specific features [Gu et al., 2018b,
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Poria et al., 2017c], we design two very simple but effective models with sub-view at-

tention mechanisms to extract the textual and acoustic representations. We train the

two independent modalities without considering contextual information during feature

extraction. Our design allows fast convergence in a few training epochs. Then, we gener-

ate utterance-level acoustic and textual representations, respectively. To improve fusion

efficiency, we introduce the sub-view attention layer to replace recurrent architectures

in previous research [Poria et al., 2017b, Zadeh et al., 2018, Poria et al., 2017c]. We

further facilitate attention-based modality fusion by introducing a mutual correlation

attentive factor to learn the mutual attention distribution across different modalities.

The learned acoustic or textual mutual representations are then fused with the original

representations to finalize the information exchange in each sub-view attention layer.

To solve the disagreeing annotation issue, for each utterance, we embed all concurrent

labels into a k-dimensional vector (where k represents the number of classes) based on

the label count and transform the categorical problem to a regression problem. This

method allows the full use of each utterance and its label. We evaluate the proposed

model on two published multimodal emotion recognition datasets. Our model signif-

icantly outperforms previous state-of-the-art research by 3.8%-7.5% accuracy, using a

more efficient model. The main contribution of our paper can be summarized as:

• An efficient dyadic fusion network that mainly relies on an attention mechanism

for feature extraction, modality fusion, and contextual representation learning.

• A novel mutual correlation attentive factor that automatically learns the associ-

ations across modalities in each sub-view attention layer to facilitate fusion.
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• An effective solution and a detailed experimental analysis of the label disagree-

ment issue that keeps sequence consistency and allows full use of labeled dialog

data.

4.2 Related Work

A basic challenge for multimodal emotion recognition is to extract informative modality-

specific features. Previous approaches can be separated into two categories: low-

level hand-crafted features and abstract high-level representations. A large body of

low-level features for both the text and audio branch-es has been proposed in previ-

ous decades, such as the bag of words and part-of-speech tagging for text, and the

low-level descriptors with statistics for audio [Seppi et al., 2008, Savran et al., 2012,

Eyben et al., 2010b, Degottex et al., 2014a]. However, the lack of high-level associa-

tions between features prevents improvements in the model performance. To overcome

this issue, recent works used deep learning models to extract high-level representations

from the low-level features, resulting in performance improvements. A convolutional

neural network was used to extract the textual features from the embedding word

vectors in [Poria et al., 2015, Poria et al., 2017b]. The long short-term memory net-

work was applied to both the text and audio branch to capture the temporal features

[Poria et al., 2017b, Rajagopalan et al., 2016, Liang et al., 2018a]. More recently, at-

tention mechanisms were integrated with recurrent neural networks to select informative

textual and acoustic features [Zadeh et al., 2018, Gu et al., 2018b, Poria et al., 2017c].

Compared to the manually handcrafted features, the deep models allow automatic fea-

ture extraction and can learn representative associations from low-level features. Later,

word-level feature extraction was introduced [Gu et al., 2018d, Chen et al., 2017] to
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further improve modality-specific feature extraction. Most previous works focused on

using single utterance to identity emotion [Poria et al., 2015, Gu et al., 2018d], while

the more recent works started combining the surrounding utterances as context to

provide extra information for utterance-level emotion recognition [Poria et al., 2017b,

Zadeh et al., 2018, Gu et al., 2018b]. These approaches require the ability to extract

modality-specific features not only from a single utterance, but also from the surround-

ing utterances. Hence, designing an effective and efficient structure to select the infor-

mative contextual features is necessary in multimodal emotion recognition.

In addition, modality fusion is challenging due to the heterogeneous inputs. Early

research applied late fusion to combine prediction results by some algebraic rules

[Wöllmer et al., 2013b], avoiding the difficulty of combining heterogeneous features.

However, such approaches ignore associations across modalities and fail to measure

mutual correlations. To address the above issue, recent works proposed deep fusion net-

works to combine modality-specific representations at the feature-level [Zadeh et al., 2017,

Poria et al., 2016, Liu et al., 2018], which allows significant performance improvement.

To further measure the temporal and context information, a multi-attention recurrent

network was proposed [Zadeh et al., 2018] to learn both modality-specific and cross-

view interactions over time. A local-global ranking fusion strategy integrated with

LSTM and a recurrent multistage fusion model were introduced [Liang et al., 2018b,

Liang et al., 2018a] to fuse the features in a timeline. A hierarchical encoder-decoder

structure was proposed, which relied on an LSTM to encode modality-specific features

and decode the prediction in sequence. A context-dependent model using two unidi-

rectional LSTMs to predict human emotion from context utterances was proposed in



65

[Gu et al., 2018b]. Although most used recurrent neural networks to identify tempo-

ral or context information during emotion recognition, we argue that this is neither

necessary nor efficient because: 1. A specific word or utterance may directly indicate

the emotional state and then dominate the final decision. Instead of word-by-word or

utterance-by-utterance feature extraction in RNNs, learning the informative word or

utterance representations is more helpful. 2. The RNNs require more training time

compared with other approaches because they can only compute sequentially.

To address the above issues, we propose a dyadic fusion network that mainly re-

lies on attention mechanisms to extract contextual features and fuse the multimodal

information.

4.3 Methodology

4.3.1 System Overview

Our model consists of three major modules: modality-specific feature extraction, modal-

ity fusion, and decision making. To facilitate the fusion of heterogeneous inputs, we first

introduce the sub-view attention structure and extract modality-specific features for

each single utterance. Then, we treat the surrounding utterances as the context of the

current utterance and concatenate the generated utterance representations in sequen-

tial order as the input for modality fusion. Specifically, for the current utterance, we

consider all the previous utterances in the same dialog as the context information. We

further design a mutual correlation attentive factor (MCAF) combined with sub-view

attention structure to fuse the contextual modality-specific representations. We use a

four-layer sub-view attention with MCAF to select the features, learn cross-modality

associations, and compute the attention distribution over the entire dialog or dyadic
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sequence for each modality. Finally, we concatenate the two generated fusion repre-

sentations and introduce 1D average-pooling to generate the final joint representation.

The model is trained with a regression strategy to predict utterance-level emotion.

4.3.2 Sub-View Attention Mechanism

The sub-view attention mechanism is the foundation of both feature extraction and

modality fusion. Inspired by the work in [Vaswani et al., 2017] that proposes a multi-

head self-attention mechanism in machine translation, we replace recurrent approaches

with attention for emotion recognition because: 1. The temporal features are not the

most critical information for emotion detection on both utterance-level and dialog-level

data. Most dyadic communication and verbal utterances are short sentences, so a spe-

cific word or utterance may directly indicate the emotional state and dominate the final

decision. Unlike RNNs that learn features word-by-word or utterance-by-utterance, at-

tention directly computes the importance score of each word or utterance, providing

an intuitive weighted representation to help the final decision. 2. Because the atten-

tion computation can be processed in parallel (rather than sequentially, as in recurrent

approaches), attention architectures are more efficient in both training and inference

[Vaswani et al., 2017]. This significantly reduces the model size and computational

complexity, especially for multimodal research.

The basic concept of self-attention can be understood as a weighted computation of

each value using the corresponding overall mapping of query-key sets (shown in Fig.4.1).

As suggested in self-attention [10], we first generate the query (q), key (k), and value

(v) by computing the linear projection of the input i with different parameter matrices
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Figure 4.1: Sub-view attention mechanism

(wq,wk,and wv), respectively:

q, k, v = linear(iwq, iwk, iwv) (4.1)

Instead of applying multiple linear operations with different learnable projection

parameters to generate multiple q, k, and v as in multi-head self-attention, we only

compute a single linear projection for q, k, and v, repectively. Then, we separate the

q and k into n sub-vectors to further compute the attention over the individual qj and

kj :

attj = softmax(
qjk

T
j√
d

), j ∈ [1, n] (4.2)

where d is the scale dimension and n∗d equals the input dimension (i). The generated
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attj can be intuitively seen as the sub-view attention based on the jth query-key pair.

The final output o can be represented as:

o = [concate(att1, att2, . . . , attn)v]wo (4.3)

where the wo is the parameter matrix of the output linear projection. The proposed

sub-view attention focuses on learning the attention distribution over the sub-space of

each query-key pair. Because we only process a single linear operation rather than

generate multiple sub-projected queries, keys, and values, the model further reduces

the computational cost and improves model efficiency.

4.3.3 Modality-specific Feature Extraction

We first train the textual and acoustic modalities independently to generate the utterance-

level modality-specific representations. Because our work focuses on learning the dialog-

level emotional state from multiple utterance-level representations, an effective and

efficient architecture is necessary for model generalization. Unlike the structures in

[Poria et al., 2017b, Gu et al., 2018b] that consist of diverse models and multiple deep

networks to extract modality-specific features, we design two effective shallow neural

networks to extract unimodal features. We leave the contextual information learning

for the modality fusion stage and train the unimodalities without using the surrounding

utterances. This means each representation only relies on the current item in the verbal

transcript or audio stream.

To extract the textual representations for each utterance, as shown in Fig.4.2, we

first embed each word into a 200-dimensional vector using pretrained word vectors

from Glove [Pennington et al., 2014]. Then, we feed the embedded word vectors into
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Figure 4.2: Modality-specific feature extraction

the sub-view attention layer to compute the attentive dependencies and generate the

weighted representation for each word. The output of the layer has the same dimension

as the input; we set two sub-view attention layers to learn the features. The output

from the last attention layer directly connects to a global 1D max-pooling operation to

form the utterance-level textual representation. The final output is a 200-dimensinal

feature vector.

To generate the acoustic representations, we directly use the openSmile toolkit

[Eyben et al., 2010b] to extract low-level descriptors (LLDs) for each utterance-level

audio stream to reduce the model complexity. The feature set contains 6553 features

including voice intensity, pitch, MFCCs, etc. We apply three dense layers to learn the

high-level associations from the LLDs and reduce the dimension of the acoustic repre-

sentation. As shown in Fig.4.2, the acoustic representation for each utterance is also a
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200-dimensional vector.

We format the output utterance-level representations into the dialog-level based on

the sequence order. Each input sample of the fusion module becomes a 2D matrix

with [h, 200] as the shape. The h indicates the number of all utterances from the first

utterance in the dialog to the current utterance. We perform zero-padding to align all

samples based on the longest dialog from the dataset.

4.3.4 Modality Fusion with Mutual Correlation Attentive Factor

Instead of feeding dialog-level samples into a recurrent neural network in sequential or-

der as most previous research did [Poria et al., 2017b, Zadeh et al., 2018], we design a

mutual correlation attentive factor integrated with the proposed sub-view attention to

extract the dialog-level features and learn cross-modality associations simultaneously.

As shown in Fig.4.3, the fusion model first applies the same sub-view attention structure

to learn the dialog-level attentive dependencies on the textual and acoustic represen-

tations. Unlike the original sub-view attention that simply relies on the independent

textual kt or acoustic ka to compute the attention, we introduce two learnable factors

lt and la to fuse the keys for each branch, respectively:

kt
∗

= kt + ltka (4.4)

ka
∗

= ka + lakt (4.5)

The fused textual key (kt
∗
) and acoustic key (ka

∗
) continue to separately compute

the textual and acoustic attention using equation (2). The two factors learn the mutual

correlations between independent keys, helping the model compute attention over both
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the textual and acoustic branches. This allows model fusion inside each attention layer.

Fig.4.3 shows the details of the mutual correlation attentive factor.

We set four sub-view attention layers with mutual correlation attentive factors to

compute attentions on each utterance and fuse the textual and acoustic modalities.

The output weighted vectors contain the attentions of both the modality-specific and

cross-modality context; the final outputs are ot for textual representation and oa for

acoustic representation.

Figure 4.3: Mutual correlation attentive factors (MCAF) in sub-view attention for
modality fusion



72

Figure 4.4: Dyadic fusion network

4.3.5 Decision Making

Fig.4.4 shows the overall structure of the dyadic fusion network. As suggested by

the self-attention mechanism [Vaswani et al., 2017], we first connect each MCAF sub-

view attention layer with a batch normalization layer [Ioffe and Szegedy, 2015] and

an activation function. The proposed attention mechanism learns the attention on

utterances over the entire dialog, so each utterance has already been represented by

the weighted score to indicate the corresponding importance in dialog. We do not

use RNNs to generate the contextual vectors because the attention mechanism allows

each utterance to learn the dependencies from other utterances. Since each utterance
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has already integrated the information from all other utterances, there is no need for

the model to learn the temporal information step by step. Removing the recurrent

neural networks also increases the training speed due to the parallel computation of

attention. To make the final decision, we concatenate the generated ot and oa to form

the joint representation and use an average pooling and dense layer to form the final

representation (shown in Fig.4.4).

Compared to the previous approaches that classify emotion only based on all-

agreeing or majority-voted labels [Zadeh et al., 2017, Poria et al., 2015, Gu et al., 2018d,

Poria et al., 2017b], we embed the labels from all annotators into a k dimensional vec-

tor based on the number of classes and scale the vector to sum to one. We fit the final

representation with the scaled labels in a regression method because: 1. The scaled

vectors reveal the actual emotional state and allow the full use of the entire dataset.

Some previous works assign the disagreeing labels to the ‘Other ’ category during mod-

eling [Gu et al., 2018b], which is inappropriate because the placeholder category may

consist of contradicting emotions. For example, ‘I just don’t. It’s stupid.’ (with the

labels Anger, Disgust, Frustration) and ‘I’ve been ready a long, long time.’ (with the

labels Excited, Happiness, Surprise) were both assigned to ‘other’ due to disagreeing

labels, although they contain opposite emotional states. 2. The regression approach

trains the model to output a mixed ratio, which has been demonstrated effective in

[Tokozume et al., 2017]. We finally compute the argmax based on the output to trans-

form the regression metric into a categorical metric.
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4.4 Experiments

4.4.1 Dataset Configuration

We evaluated our model on two published multimodal emotion recognition datasets:

IEMOCAP and MELD.

IEMOCAP: The Interactive Emotional Dyadic Motion Capture database is an

acted, multimodal, multi-speaker emotion recognition dataset recorded across 5 sessions

including 12 hours of video, speech, and text [Busso et al., 2008]. For this study, we only

use audio and text data. The dataset consists of 10039 utterances from 151 dialogs and

contains 10 categories including ‘neutral’, ‘exciting’, ‘sadness’, ‘frustration’, ‘happiness’,

‘angry’, ‘other’, ‘surprised’, ‘disgust’, and ‘fear’. For each utterance, we include the

labels from all annotators and embed it as a 10-dimensional vector. We follow previous

research to split the data into training, validation, and testing sets at the session level

[4, 5]. The split considers the speakers independent. The final dataset has 3 sessions

for training, 1 session for validation, and 1 session for testing.

MELD: Multimodal EmotionLines Dataset (MELD) is a multimodal and multi-

speaker dataset that enhances and extends EmotionLines [Poria et al., 2018, Chen et al., 2018].

It contains about 1400 dialogues and 13000 utterances with video, speech, and text

from the Friends TV series. Its seven emotions include ‘anger’, ‘disgust’, ‘sadness’,

‘joy’, ‘neutral’, ‘surprise’ and ‘fear’. The dataset has already been split into training

(1039 dialogues with 9989 utterances), testing (114 dialogues with 1109 utterances),

and dev (280 dialogues with 2610 utterances) data.
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4.4.2 Baselines

We compare the performance of our model to the following baselines for the multimodal

emotion recognition task.

SVM: an SVM classifier trained on the concatenation of text and audio features

[Rosas et al., 2013].

RF: a random forest model that also uses the concatenated text and audio branch

features [Breiman, 2001].

C-MKL: a convolutional neural network with a multiple kernel learning strategy

to predict emotion and sentiment based on multimodal data [Poria et al., 2016].

EF-LSTM: an early fusion strategy to concatenate the inputs from different modal-

ities at each time step and apply a single LSTM to learn temporal information from

the joint representations [Zadeh et al., 2018].

BC-LSTM: a context-dependent model using two unidirectional LSTMs to predict

human sentiment and emotion, which can identify information from context utterances

[Poria et al., 2017b].

MV-LSTM: a recurrent model to capture both modality-specific and cross-view in-

teractions over time or structured outputs from multiple modalities [Rajagopalan et al., 2016].

TFN: a tensor fusion network that uses a multi-dimensional tensor to learn view-

specific and cross-view dynamics across three modalities for emotion recognition and

sentiment analysis tasks [Zadeh et al., 2017].

HAW: a multimodal structure using hierarchical attention with word-level align-

ment to utterance-level sentiment and emotion [Gu et al., 2018d].

AMN: an attentive multimodal network using a hierarchical encoder-decoder to
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predict the sentiment and emotions with contextual information [Gu et al., 2018b].

MARN: a multi-attention recurrent network that explicitly models both view-

specific and cross-view dynamics in the network through time by using a specific neural

component called Multi-attention Block (MAB) [Zadeh et al., 2018].

4.4.3 Implementation

We implement the model with Keras [Chollet et al., 2015] and Tensorflow [Abadi et al., 2016]

backend. We use normalized low-level features extracted by OpenSmile based on each

feature type with zero mean and unit variance. The detailed information of each layer

is shown in Fig.4.2 and Fig.4.4. The modality feature extraction module and modality

fusion module are trained on the same training-validation-testing split. We set the

learning rate to 0.0001 and use the Adam optimizer with mean square error loss for

both the pretraining and fusion modeling. We compute the argmax of the output from

our model to indicate the prediction class. To make a fair comparison with previous

research, we reimplement the baseline models from the source code provided by the au-

thors using our dataset splits. For the models that cannot be applied on two modalities

(TFN) or that do not have source code (EF-LSTM), we directly use the performance re-

ported in [Zadeh et al., 2018]. All the models are trained on the entire dataset, rather

than on majority-voted or all-agreement data as in previous research. As suggested

in [Gu et al., 2018b], We assign the disagreeing labels to the ‘Other’ category for all

baselines.
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Modality Context Acc.(%) F1-Score

SVM T+A no 27.2(↑ 24.4) 27.3(↑ 23.0)
RF T+A no 30.5(↑ 21.1) 22.1(↑ 28.2)
C-MKL T+A no 37.0(↑ 14.6) 36.1(↑ 14.2)
EF-LSTM T+A+V no 34.1(↑ 17.5) 32.3(↑ 18.0)
BC-LSTM T+A yes 38.9(↑ 12.7) 38.1(↑ 12.2)
MV-LSTM T+A yes 37.2(↑ 14.4) 37.2(↑ 13.1)
TFN T+A+V no 36.0(↑ 14.6) 34.5(↑ 15.8)
HAW T+A no 40.8(↑ 10.8) 40.8(↑ 9.5)
AMN T+A yes 43.4(↑ 8.2) 43.3(↑ 7.0)
MARN T+A yes 44.1(↑ 7.5) 43.9(↑ 6.4)

Ours(cate) T+A yes 47.3(↑ 4.3) 47.2(↑ 3.1)
Ours(reg) T+A yes 51.6 50.3

Table 4.1: Emotion recognition result on IEMOCAP dataset. Following previous re-
search, the metric computation based on 9 categories (without ‘other’ ).

4.5 Result Analysis

4.5.1 Comparison with Baselines

We first compare our model with the baselines and the state-of-the-art on IEMOCAP.

Following previous research [Zadeh et al., 2018], we compare the model performance

without considering the ‘Other’ category. The result shown in Table 1 indicates that

the performance of our model significantly outperforms previous approaches at both

accuracy and weighted F1-score. The proposed dyadic fusion network using mutual

correlation attentive factors gains 7.5% accuracy and 6.4 F1-score improvement over

the previous state-of-the-art. We have the following findings from Table 4.1: 1. The

significant performance improvement shows that the proposed architecture is effective

for multi-class classification. Even without using the visual features, our model still

achieves the best performance on IEMOCAP. 2. Using contextual information indeed

helps emotion recognition. The structures that consider previous utterances during

prediction perform better than the models that only rely on a single utterance; this

demonstrates the necessity of context.
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Ang Joy Neu Sad Sur
Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

CNN(T) 75.4 74.8 65.1 64.7 63.1 62.7 77.4 72.1 75.5 71.3
BiLSTM(T) 74.8 73.7 65.0 64.3 63.3 63.1 77.6 72.2 74.7 71.2
BiLSTM(T) 68.3 64.2 63.2 60.1 56.5 54.3 69.3 62.5 69.4 65.9
BiLSTM(T+A) 75.9 74.1 67.4 66.3 65.8 64.7 80.2 74.4 76.1 73.6

Ours(T+A) 79.4 75.3 70.4 70.1 65.7 65.4 84.0 79.2 78.3 74.0

Table 4.2: Emotion recognition result on MELD dataset (%). the metric compu-
tation based on binary classification for each emotion. Ang=anger, Neu=neutral,
Sur=surprise.

We also evaluate the model performance on MELD. Because it is a newly released

dataset, there are very few works using MELD. We directly compared our model with

the baseline models proposed in [Poria et al., 2018]. Due to the imbalanced emotion

split in MELD, we conduct binary classification during experiments. The result in

Table 4.2 shows that our model outperforms the baselines on both accuracy and F1-

score in anger, joy, sad, and surprise. We notice that our model only achieves 65.7%

in the neutral class, but all baselines have relatively bad performance there. After

analyzing the raw data, we found a significant number of neutral emotion samples with

only very subtle differences compared to the other emotions. We believe the ambiguity

of neural samples extremely reduces the performance of neural detection. Since the

MELD dataset only has one annotator for each utterance, we argue that the data may

have personal bias and some inaccurate emotion labels.

4.5.2 Quantitative Analysis

We further evaluate our model by comparing the performance of unimodal and multi-

modal structures (shown in Table 4.3). We compute individual accuracy (9 category)

and list four general emotions including Ang (‘angry’ ), Neu (‘neutral’ + ‘frustration’ ),

Sad (‘sadness’ ), and Hap (‘happiness’ + ‘exciting’ ). The result indicates that the
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Acc. Weighted-F1 Ang Neu Sad Hap

Ours(T) 43.8 44.3 33.4 50.6 45.5 36.6
Ours(A) 36.7 36.7 31.8 44.7 38.1 24.1
w/o-Context 47.2 46.2 35.8 48.1 67.2 48.8
w/o-MCAF 46.7 44.5 18.4 52.7 66.2 47.8

Ours(T+A) 51.6 60.3 31.8 54.1 74.1 61.0

Table 4.3: Quantitative analysis on IEMOCAP dataset (%). Ang = anger, Neu =
neutral+frustration, Hap = happy+exciting.

textual modality performs better than acoustic modality in general. The multimodal

structure significantly improves the performance on Neu, Sad, and Hap. Even with

a slight performance decrease on Ang, combining two modalities still provides 7.8%

accuracy improvement from textual modality and 14.9% accuracy improvement from

acoustic modality. This demonstrates the helpfulness of applying multimodal struc-

ture. In addition, the proposed unimodal structures achieve comparable performance

to the baseline multimodal structures, especially for the text modality, which achieves

43.8% accuracy. This indicates the proposed modality-specific models and the regres-

sion training strategy are more effective than previous approaches.

We design an experiment on our model without using contextual information. The

only difference between the with- and without-context model is that the model without

context only uses a single utterance representation as the fusion input and we set zero

values as the context information. As shown in Table 4.3, using contextual information

improves 4.4% accuracy and 4.1 F1-score, which shows that context contains additional

information that can facilitate emotion recognition. The model without context per-

forms better than the contextual model on Ang, which means context information does

not provide positive contribution during the final prediction in our experiment.

To illustrate the performance of the proposed mutual correlation attentive factors,

we compare the model with and without MCAF. The result shows that using MCAF
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Trainable Training Training Speed Acc.
Parameters FLOPs (ms/per epoch) (%)

Ours(T) 2.9× 107 5.7× 107 2.3× 107 38.9
Ours 1.3× 107 2.7× 107 1.2× 104 51.6

Table 4.4: Comparison of training cost on IEMOCAP dataset.

increases 4.9% accuracy and 5.8 F1-score on the IEMOCAP dataset. The model without

MCAF only achieves 18.4% accuracy on Ang and the MCAF improves the performance

by 18.5% accuracy. The better performance on both the overall and specific emotion

categories demonstrates the usefulness of the proposed mutual correlation attentive

factor.

We also compute the training cost of our model using three metrics: trainable

parameters, number of floating-point operations, and the average training speed per

epoch. We compare our model with the BC-LSTM approach that also considers contex-

tual information during modeling. To make a fair comparison, we reimplemented their

approach with the same train/dev/test set (without using visual data) and we trained

both models on an NVIDIA GTX 1018ti with the same framework environment. Table

4.4 shows the training cost of the entire architecture including both the feature extrac-

tion and modality fusion. The result indicates that the proposed approach significantly

reduces the training costs on all three metrics. Our model outperforms the BC-LSTM

approach by 12.7% accuracy but only requires about half training cost, demonstrating

the efficiency of the proposed network.

4.5.3 Disagreeing Annotation Analysis

Since disagreeing annotations are very common in most emotion datasets that con-

sist of multiple annotators, giving an appropriate solution and a detailed analysis
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for the disagreeing data is helpful and necessary for model generalization. Unfortu-

nately, most previous approaches simply remove these samples in modeling and very

rarely contain detailed analysis [Zadeh et al., 2017, Poria et al., 2015, Gu et al., 2018d,

Poria et al., 2017b, Zadeh et al., 2018, Gu et al., 2018b, Poria et al., 2016]. In this sec-

tion, we provide an analysis of the samples that cannot be assigned to a category in

IEMOCAP.

As shown in Table 4.5, around 25% of utterances have disagreeing annotations in

all three sets. Simply abandoning this data may cause incomplete dialogue. This gap

may further influence contextual feature extraction and the prediction accuracy of the

emotion state change in dyadic communication. Unlike all previous works, the proposed

regression approach allows our model to fully use all data and simultaneously keep

emotional information from the disagreeing labels, which maintains the consistency of

the data. To analyze the disagreeing annotations, we first treat the disagreeing labels

as multi-labels and compute the average precision for each category. As shown in Table

4.5, ‘exciting’ and ‘anger’ achieve 86.8 and 83.8 average precision, and the mean average

precision of the overall multi-label samples is 52.0; this demonstrates our model can

successfully learn multiple emotions and reveal actual emotional state for disagreeing

data. We further compare the performance of the proposed regression approach and

the categorical approach (directly assigning all disagreeing labels into ‘other’ category).

The result in Table 1 shows the regression approach increases 4.3% accuracy and 3.1

F1-score, showing that using disagreeing annotation data with regression training can

provide extra information to improve emotion recognition.
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Session Split Train Set Dev Set Test Set

3/1/1 1405/5800 572/2136 564/2103

neu exc sad fru hap ang oth sur dis fea

P/A 12.8 18.5 11.1 15.8 16.0 17.9 3.40 3.50 0.50 0.00

AP 60.3 86.8 52.0 74.1 75.2 83.8 16.2 16.7 2.60 0.00

Table 4.5: Analysis of disagreement annotation on IEMOCAP dataset. number of
disagreement annotation utterance/total utterances. P/A = number of the positive
samples / number of total samples. AP = average precision.

4.5.4 Attention Visualization

In this section, we provide an example of the sub-view attention in Fig 4.5 to help

human interpretation of the model. We plot the attention score (attj , in equation (2))

of both textual and acoustic branches from the last MCAF fusion layer, respectively.

The color gradation indicates the importance of the current utterance over the last

utterance. In the example, the model predicts the emotion of the last utterance (u4)

based on both u4 and the previous three utterances, which can be seen as contextual

information for the u4. Each branch consists of four sub-view attention scores. To

facilitate understanding of the visualization, we compute the average scores of the four

sub-scores to epresent the importance of the current utterance. As shown in Fig 4.5, the

textual branch focuses on the last utterance itself and pays less attention to the first

utterance. Our attention mechanism successfully measures the change of emotional

state from ‘neutral’ to ‘exciting’ in this example, which helps the model assign the

last sentence to the correct category. For the acoustic branch, the last three utterances

almost equally contribute to the final prediction. Both the textual and acoustic branches

have already shared attention with each other due to the mutual correlation attention

factor. This means the textual attention scores were decided not only by the textual

representation, but also by the acoustic representation (similarly, for acoustic attention
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scores). The visualization of the textual and acoustic attention scores can be intuitively

understood as joint attention scores for each branch, respectively

nt, na: average sub-view scores. nti, n
a
i : sub-view attention score. ui: the index of the

utterances. s1, s2: speaker IDs.

Figure 4.5: Attention visualization.

4.6 Summary

In this paper, we introduced a dyadic fusion network that mainly relies on attention to

extract contextual features and fuse multimodal information. We first used two effective

light-weight modality-specific feature extractors to generate non-contextual representa-

tions for each utterance. Then, we combine the surrounding utterance representations

as contextual input for modality fusion network. We designed a mutual correlation

attentive factor integrated with the proposed sub-view attention mechanism to select

representative vectors and learn cross-modal associations. We generated the labels for

each utterance by embedding the corresponding labels from all annotators as a vector

and used a regression approach to make the final decision. To the best of our knowledge,

our work is the first one to provide a detailed analysis and solution on the disagreeing

label issue. The experimental results show that our model significantly outperforms the

previous approaches with less training cost. The results demonstrate the effectiveness
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and efficiency of the proposed sub-view attention, mutual correlation attentive factor,

and regression modeling strategy. Finally, we give a visualization of the attention to

help human interpretation.
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Chapter 5

Human Conversation Analysis Using Textual, Acoustic,

And Visual Inputs

5.1 Introduction of Chapter

Human conversation analysis 1, including emotion recognition, sentiment analysis and

speaker trait detection, is useful in many real-world applications such as medical sup-

port, activity recognition, chatbots, etc. Aside from challenges in sensor engineering

and speech recognition, conversation understanding is still difficult because: (1) Mean-

ing can be expressed through different media. A positive attitude can be expressed by

words, facial expressions, and intonation, which are often captured by different sensors,

requiring a feature fusion mechanism. Furthermore, we shall consider strategies that

synchronize the input at the word-level because word is an important basic unit of

meaning. (2) Different sensors may indicate contradicting meanings. For example, one

person can pretend to be happy by saying happy words but with a sad face. Simply

merging the features extracted from different modalities may confuse the system. The

correct prediction can only be made by selecting a representative input modality and

observing the context. (3) The emotion, sentiment and traits during conversation may

or may not change over time. Most traditional conversation understanding strategies

1This work has been published in 2018 Proceedings of the 26th ACM International Conference on
Multimedia [?].
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only make a single prediction per conversation, which is inadequate for real-world appli-

cations. Furthermore, as conversations may contain multiple attributes (such as both

happy and exciting), we need a flexible model that is able to perform classification,

regression, and multi-label classification with only a slight modification.

To synchronize different sensor inputs, we introduce a feature extraction strategy

that first aligns the raw text, audio, and video at the word level. Unlike sentence-level

feature extraction and synchronization [Zadeh et al., 2016, Poria et al., 2015, Poria et al., 2016],

our word-level feature extraction breaks down the features to a finer granularity with

more details. Unlike direct feature fusion [Poria et al., 2016, Gu et al., 2018a], we pro-

posed a fusion strategy with learned modality attention. The modality attention first

identifies the importance of each input modality, then extends the importance of each

modality to each feature dimension within that modality. Finally, to build a system

that is both accurate and flexible, we designed a hierarchical encoder-decoder structure.

The hierarchical structure first encodes the multimodal data into word-level features.

The conversation-level encoder further selects important information from word-level

features with temporal attention and represents all the conversation-level features as a

vector. Considering that emotion and sentiment may change over a conversation and

that multiple traits may be present simultaneously, our hierarchical decoder structure

first decodes features at each time instance. Then, the attribute decoder will further

decode the feature vector at each time instance into attributes at that time.

We tested our model on five published datasets. Our model outperformed the most

recent state-of-the-art systems: emotion recognition with IEMOCAP [Busso et al., 2013]

on classification; sentiment analysis with MOSI [Zadeh et al., 2016] on both classifica-

tion and regression; and trait analysis with POM [Park et al., 2014] on classification. In



87

addition, our hierarchical encoder-decoder system was able to make multi-label predic-

tions (predict multiple traits at once) and achieved performance comparable with most

recent research which used 11 individual models. We further tested the generalizability

of our system by training it on IEMOCAP and MOSI and testing on EmotiW and

MOUD, respectively. Our system outperformed most recent state-of-the-art systems

[Poria et al., 2017b] on the same transfer learning task by 6.8% accuracy. We further

visualized our modality attention mechanism for modality fusion and temporal atten-

tion for encoding, demonstrating that the introduced modality attention model is able

to select representative input modalities for sensor fusion. Our contributions include:

1. A word-level feature extraction strategy that is able to synchronize and extract

features from different input modalities at the word level

2. A sensor fusion strategy with modality attention that can identify the importance

of each modality and the importance of features within each modality.

3. A hierarchical encoder-decoder framework. The encoder encodes features from

low level (word level) to high level (conversation level). The decoder first decodes

the abstract features into attribute profile at each time instance, and then decodes

the attribute profile at each time instance to individual attributes.

5.2 Related Work

Research on multimodal conversation understanding can be divided into three gener-

ations. The first generation used low-level handcrafted features for different modali-

ties, including lexical representations for text, low-level descriptors (LLDs) for audio,

and facial characteristic points (FCPs) for video [Rosas et al., 2013, Rozgic et al., 2012,
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Savran et al., 2012]. Instead of simply concatenating the extracted modality-specific

features as the final feature representation [Rosas et al., 2013], different shallow fusion

strategies were introduced to learn the associations across different modalities, including

Bayesian filtering [Savran et al., 2012] and ensemble SVM trees [Rozgic et al., 2012].

Handcrafted features, however, do not generalize well to different application scenarios,

and modality-specific fusion strategies cannot effectively model the complex correlations

between spatial and temporal information.

The second-generation systems tried address the issues caused by manually crafted

features by extracting high-level features using deep learning. Convolutional neu-

ral networks (CNNs) were used for visual feature extraction [Krizhevsky et al., 2012]

and recurrent neural networks (RNNs) (i.e. gated recurrent units (GRUs) and long

short-term memories (LSTMs) [Poria et al., 2015, Poria et al., 2016, Gu et al., 2018d])

were used for audio and text feature extraction. RNNs were also used for learning

long-term dependencies for the fusion of audio and video data [Wöllmer et al., 2013b].

Deep feature extractors can automatically learn features that are general and repre-

sentative compared with manually-crafted features. Combining features learned from

different input modalities with different time scales, however, remains a challenge

[Poria et al., 2015, Poria et al., 2016]. Researchers tried to address modality fusion by

applying decision-level fusion such as voting [Wöllmer et al., 2013b], but this approach

failed to learn correlations between features extracted from different modalities over

time.

Recent systems focus on model-level fusion, generating a shared representation of

different modalities [Poria et al., 2017b, Chen et al., 2017, Zadeh et al., 2017, Zadeh et al., 2018].

Previous work directly used gated multimodal embedded fusion structures to fuse the
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raw features, ignoring the temporal associations of individual modalities [Chen et al., 2017].

To avoid this problem, our system uses individual LSTMs to extract modality-specific

features and learns their local temporal associations before fusion. Some researchers

used only CNN and openSMILE to extract features [Poria et al., 2017b, Eyben et al., 2010a],

but we introduce an attention-based LSTM structure to select informative word-level

features. Instead of directly combining sentence-level features and ignoring the tempo-

ral associations [Zadeh et al., 2017], our hierarchical encoder-decoder LSTM learns the

temporal associations at the word-level and conversation-level. We also applied tem-

poral attention to select informative shared word-level representations to further im-

prove the system’s performance. The most recent research introduced a multi-attention

recurrent network to fuse the modality features and learn the temporal associations

[Zadeh et al., 2018], which achieved state-of-the-art performance on published multi-

modal datasets. However, this structure cannot learn the correlations across different

modalities. Different modalities may have different importance during feature fusion;

for example, acoustic features play a more important role in emotion recognition, but

less in sentiment analysis. To model this information, we designed a modality fusion

strategy that dynamically assigns the importance weights for input modalities.

5.3 Attentive Multimodal Networks with Hierarchical Encoder-Decoder

5.3.1 System Overview

We designed our system to be generalizable and flexible. To achieve generalizability, our

system extracts features directly from raw data (instead of using pre-extracted features

[Degottex et al., 2014a, Eyben et al., 2010a]). Our system consists of two modules (Fig

5.1): (1) the hierarchical encoder learns features at word-level and conversation-level;
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Figure 5.1: The structure of our proposed hierarchical encoder-decoder for
conversation understanding.

(2) the hierarchical decoder makes continuous multi-label predictions at each time in-

stance.

Hierarchical Encoder: (Fig 5.1, left). Our hierarchical encoder has two levels,

the word-level encoder (WLE) and conversation-level encoder (CLE). The word-level en-

coder (Fig 5.1, gray shaded region at left top) synchronizes and combines the features

extracted from different sensors, and only selects informative information to form the

shared representation. As different sensors have different sampling rates, we perform

word-level data synchronization before feature extraction. Compared to multimodal

frame-level [Zhang et al., 2017] and sentence-level encoding [Poria et al., 2017b], the

conversation-level encoder (Fig 5.1, solid line to the left) combines useful information

extracted about each word into a single feature vector. This encoder allows the sys-

tem to make use of multimodal information extracted over the entire conversation to

make the predictions. Because not all words are important, we use a temporal atten-

tion mechanism from neural machine translation to select the important word vectors

[Bahdanau et al., 2014].
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Hierarchical Decoder: (Fig 5.1, right). Our hierarchical decoder also has two lev-

els, the instance-level decoder (ILD) and attribute-level decoder (ALD). The instance-

level decoder decodes the features to each time instance. During simple or short conver-

sations, the emotion, sentiment, and traits remain the same, so we can decode all the

information into a single instance. In such scenarios, the ILD treats the entire input

data as a single time instance, performing a single prediction per case. During complex

conversations with changing emotion, sentiment, and traits, the ILD allows us to make

continuous predictions within a single conversation. In addition to multi-class classi-

fication, some datasets have more than one label per time instance (such as speaker

trait analysis datasets). Our attribute-level decoder decodes the features at each time

instance into multiple co-existing attributes and makes multi-label predictions. This

hierarchical decoder structure can be applied to both classification and regression on

both the instance-level and attribute-level.

5.3.2 Word-level Feature Extraction

Word-level feature synchronization and extraction are the foundations of our encoder.

Word-level synchronization aligns the features by word, aiding fusion across different

modalities. For datasets without word-level timestamps, we synchronized the audio and

video to text using aeneas2 from Sakoe-Chiba Band Dynamic Time Warping (DTW)

[Sakoe and Chiba, 1978].

Even with word-level timestamps, sensors have different sampling rates that inhibit

merging. We considered two options: (1) Downsample all data to a common rate, or

(2) Extract features for each modality at their original sampling rate and encode them

2https://www.readbeyond.it/aeneas/
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into a single vector. We adopted the second approach because downsampling loses

information. We used different encoding strategies for different modalities (Fig 5.2):

Figure 5.2: Word-level data synchronization and feature extraction using attention
mechanisms.

Text: To capture textual word-level representations, we first embed each word using

a pretrained word2vec dictionary [Mikolov et al., 2013]. We introduced an attention-

based bidirectional LSTM (bi-LSTM) to extract word-level representations [Yang et al., 2016].

The key aspects of our approach are: (1) Instead of directly using the embedded vec-

tors as textual features [Chen et al., 2017], our LSTM extracts high-level associations.

(2) Instead of CNNs with fixed window size, our LSTM fully captures sequential infor-

mation with varying lengths [Poria et al., 2015]. (3) The attention mechanism enables
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selection of informative word-level representations [Zadeh et al., 2017]. We set the bi-

LSTM dimension equal to 256 and the word2vec dimension as 300.

Audio: We introduce a hierarchical attention structure to extract informative

acoustic features at both frame-level and word-level. Unlike previous research that

directly used low-level acoustic descriptors (LLDs), we extracted 100 fps Mel-frequency

spectral coefficients (MFSCs), which had been demonstrated effective on deep models

due to locality maintenance and higher dimensionality [Gu et al., 2018a, Abdel-Hamid et al., 2014].

First, we use an attentive bi-LSTM (same as for the text feature extraction) to select

the informative frames. The word-level representation is then a weighted sum of a

word’s frames. We then apply another attentive bi-LSTM over the word-level rep-

resentations to learn the associations between representations and select informative

representations at word-level. The final outputs are word-level acoustic representations

with the same dimensionality as the word-level textual representations. As suggested

in [Gu et al., 2018d], we used a 64-filter bank to extract MFSCs and initialized the

bi-LSTM dimension as 256 at both frame-level and word-level.

Video: This branch captures the facial expression and body posture features from

video. Previous work on facial recognition [Ranjan et al., 2017, Li et al., 2017] sug-

gested that ResNet [He et al., 2016] performs well at person identification and track-

ing. We thus built our visual feature extractor with resnet-50 for each frame. Attention

[Bahdanau et al., 2014] is applied to the extracted feature vectors for each frame to se-

lect the most representative features on each video frame for prediction. Because the

datasets we used contains only one face at a time, we chose the Resnet for visual fea-

ture extraction. For more complex scenarios with multiple people per-frame, the face

detector shall be implemented to capture features from certain face [Rosas et al., 2013].
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Each input modality will generate feature vectors of the same length to avoid a dom-

inant modality during fusion. The encoder structure finally outputs a visual, acoustic,

and textual representation for each word.

5.3.3 Modality Attention and Fusion

To merge the word-level features for further processing, we introduce a novel modality

fusion strategy. Modality fusion strategies are either early fusion or late fusion. Late

fusion makes a final prediction from an ensemble of single-modality predictions (i.e. by

voting); it is simple to implement but ignores associations between different modalities.

Early fusion concatenates the features, but direct concatenation assumes that each

modality contributes equally, which may not always be true (e.g. visual features are

important for emotion recognition, but textual features contribute more to sentiment

analysis). Attention is commonly used to select the most representative features.

Figure 5.3: Our fusion strategy based on 1D fully convolutional network and soft
attention.

Previous research focused on the attention over modality-specific features [Mirsamadi et al., 2017]
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or attention over shared feature vectors [Chen et al., 2017, Poria et al., 2017c]. We pro-

pose a fusion structure with two-level attention: (1) a cross-modality attention focusing

on the important modality; (2) a modality-specific attention that highlights impor-

tant feature dimensions within each modality. We first select a modality by attention,

and then expand it to modality-specific attention using a one-dimensional convolution-

deconvolution network (Fig 5.3).

Our cross-modality attention is implemented with a set of convolution and pooling

operations similar to visual attention used in image recognition [Wang et al., 2017]. Be-

cause convolution does not compromise spatial associations, the input vector for each

modality will eventually be converted into a feature point with a high channel dimen-

sion (3×channel). This output denotes the importance of each input modality. This

modality attention representation can be directly broadcasted to the input feature vec-

tor and used as the attention vector. However, such method overlooks the associations

between modalities. We propose deconvolution and up-sampling (Fig 5.3) to create the

attention vector of each input modality. Similarly, the attention vector of each modal-

ity is aligned to the modality’s feature vector. Finally, we apply the attention to the

feature vector input using soft attention [Wang et al., 2017].

5.3.4 Temporal Attention

We add attention for conversation-level feature fusion to select only the important

word representations for final decision making. We adopted the temporal attention

[Bahdanau et al., 2014] similar to the attentive bi-LSTM mechanism in textual feature

extraction [Yang et al., 2016]. This enables the system to establish temporal association

for both encoder and decoder between word-level representations (Fig 5.1, the region
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labeled by dash line).

(a) The hierarchical decoder. (b) Modification 1: The hierarchical decoder with single
time instance. (c) Modification 2: The hierarchical decoder with single attribute.

Figure 5.4: The decoder structure

5.3.5 The Decoder

The hierarchical decoder has two levels: instance-level and attribute-level. The instance-

level decoder decodes the encoder output across time instances to make continuous

predictions (Fig 5.4(a)). The proposed decoder can be further modified based on two

specific requirements. By setting the number of time instances to one (Fig 5.4(b))

the decoder performs single per-case multi-label predictions. By changing the num-

ber of attributes to one (Fig 5.4(c)), the system makes multiple binary- or multi-class

classification per-conversation.

The decoder can perform classification and regression regardless of the number of

time instances or attributes. Classification is done by a single softmax activation in

the output layer, subject to categorical cross-entropy loss. For regression, we scale all

labels to (0, 1) and use one sigmoid neuron as the output, subject to mean-absolute

error (MAE) loss.
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5.4 Experiments

5.4.1 Implementation

We synchronized all modalities to text using aeneas. Due to our limited hardware

resources, the feature extractors for text, audio, and video are pre-trained and we set

all bi-LSTMs with 256 hidden states. We selected the ReLU activation function except

for the attention layers. We initialized the learning rate as 0.01 and used the Adam

optimizer. We also applied batch normalization and dropout function to address the

overfitting issue. We used the 80-20 training and testing split across all modalities. The

implementation is based on Keras with Tensorflow and is trained on two GTX1080Ti

GPUs.

5.4.2 Dataset

We evaluated our model on five published datasets: two sentiment datasets (MOSI,

MOUD), two emotion datasets (IEMOCAP, EmotiW), and one multi-label traits dataset

(POM).

MOSI: A multimodal sentiment intensity and subjectivity dataset consisting of 93

English review videos with 2199 utterance segments [Zadeh et al., 2016]. We took the

average score from five annotators as the ground-truth label (as in previous research

[Zadeh et al., 2018]). Considering the speaker independence, there are 1755 training

and 444 testing utterances. We used video, audio, and text for classification (binary-

category and 7-category) and regression tasks (Fig 5.4(b, c)).

MOUD: A multimodal Spanish sentiment dataset including 79 videos with a posi-

tive/negative label for each of 498 utterances [Rosas et al., 2013]. Instead of translating
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the sentences into English as previous research [Poria et al., 2017b], we randomly ini-

tialized the word vectors. Considering its small size, we only used it for generalization

experiments. We used 59 videos for training and the remaining 20 for testing. Follow-

ing previous research [Poria et al., 2017b], we removed the neutral label and kept only

positive/negative labels.

IEMOCAP: The Interactive Emotional Dyadic Motion Capture database is an

acted, multimodal, and multi-speaker dataset [Busso et al., 2008] containing ∼12 hours

of video, speech, and text. For each sentence in the dataset, we took the voted results

from different annotators as labels. We performed experiments on the 10-category

configuration and tested the classification (Fig 5.4(a, b)) with this dataset.

EmotiW 3: A multimodal audio-visual emotion recognition dataset. We used IBM

Watson speech-to-text software4 to transcribe the text data. We used the official train-

ing and evaluation set (we did not use the test set due to the lack of labels). We only

used it for generalization experiments on the classification task (7-category) due to its

small size.

POM: The Persuasion Opinion Multimodal dataset contains 904 movie review

videos [Park et al., 2014]. Each video contains one speaker and is annotated with sev-

eral traits. Following previous research [Zadeh et al., 2018], we used confidence, passion,

dominance, credibility, entertaining, reserved, trusting, relaxed, nervous, humorous, and

persuasive (11 multi-labels). To compare, we followed the same 700-204 training-testing

split. We performed multiclass classification, regression, and multi-label classification

(Fig 5.4(a, b, c)) on this dataset.

3https://cs.anu.edu.au/few/ChallengeDetails.html

4https://www.ibm.com/watson/developercloud/speech-to-text/api/v1/
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5.5 Preliminary Results

5.5.1 Experimental Results and Comparison

We first compared our system with previous research using the same setup on three

relatively large datasets [Zadeh et al., 2018]. The proposed method outperformed the

previous state-of-the-art on all three datasets on different tasks (Table 5.1). Observe

that: 1). Our system outperforms previous work with the same network configuration

on different applications (emotion recognition, semantic analysis, and trait analysis).

2). The major differences between our system and previous state-of-the-art are the

feature extraction and fusion strategies; our hierarchical encoder and modality atten-

tion help the system select representative features and result in higher performance

(Table 5.2). Our proposed structure with attribute-level decoder achieves 37.9% ac-

curacy on POM dataset which is the second-best result compared with the multiclass

classification baselines (Table 5.1). The state-of-the-art system used 11 separate mod-

els for multiclass classification [Abdel-Hamid et al., 2014] while we used single model.

Our model is more scalable and easier to be implemented compared with multi-binary

model based solution.

5.5.2 Impact of Encoder Modalities and Attentions

We evaluated the importance of each modality during IEMOCAP and MOSI tests. We

analyze how each of the following affects performance: having multimodal data, the pro-

posed word-level encoder (WLE) with modality attention (MA), and the conversation-

level encoder (CLE) with temporal attention (TA). By removing components of our
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Table 5.1: Experimental results and comparison on MOSI, IEMOCAP, and POM.
(BC) for binary classification, (MCC) for multiclass classification, (MCR) for multiclass
regression, and (MLC) for multi-label classification (accuracy in percentage).
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Method
IEMOCAP(MCC) MOSI(MCC)
Acc. F1 Acc. F1

T 31.8 0.307 32.7 0.271
A 31.5 0.310 27.5 0.225
V 28.4 0.268 23.3 0.191
T+A 33.4 0.325 32.8 0.278
T+V 32.7 0.321 32.1 0.270
A+V 31.8 0.301 23.8 0.187
T+A+V (no MA & WLE) 34.9 0.341 35.2 0.301
T+A+V (no TA & CLE) 35.2 0.352 33.8 0.298

T+A+V (with all) 39.4 0.383 38.5 0.331

Table 5.2: Experimental results and comparison of modality importance (accuracy in
percentage)

model, we were able to study the impact of different modalities and attentions (Ta-

ble 5.2). We found that: 1). The multimodal structure with tri-modality achieves the

highest accuracy and F1 score on IEMOCAP and MOSI, indicating that the differ-

ent modalities indeed complement each other. 2). Text alone outperforms both video

and audio on MOSI. However, text and audio have similar performance on IEMOCAP,

indicating that vocal delivery is more important for emotion recognition than for sen-

timent analysis. 3). Removing modality attention (and directly using concatenated

features for conversation-level encoding) causes a significant accuracy decrease on both

datasets; -4.5% accuracy on IEMOCAP and -3.3% accuracy on MOSI (Table 5.2). This

shows that the word-level encoder with modality attention has a positive influence. 4).

Conversation-level encoding with temporal attention brings 4.2% and 4.7% accuracy

improvement on IEMOCAP and MOSI (Table 5.2). This demonstrates that the tem-

poral attention and hierarchical encoder also improves performance.
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MOSI(MCC) IEMOCAP(MCC) POM(MCC)

GRU 37.4 38.6 38.9
LSTM 37.9 39.1 39.3
bi-LSTM 38.5 39.4 39.6

Table 5.3: Encoder quantity analysis (accuracy in percentage)

Acc. or MAE Trainable Parameters Training Time (s)

MCC 39.6 3.45× 108 3.96× 105

MLC 37.9 5.14× 107 6.15× 104

MCR 0.102 4.45× 108 1.22× 106

MLR 0.158 3.18× 107 8.74× 104

Table 5.4: Comparison of multiclass classification (MCC), multiclass regression (MCR),
and multi-label classification (MLC), multi-label regression (MLR) on POM dataset
(accuracy in percentage).

5.5.3 Impact of Recurrent Unit

We also made the quantity evaluation of different sequential models on the encoder

structure. We did the baseline experiments that using GRUs and LSTMs as the en-

coder, respectively. The result in Table 5.3 indicates that the bi-LSTM as we used in

the proposed architecture has the best performance on MOSI, IEMOCAP, and POM

dataset.

5.5.4 Decoder Analysis

We evaluated the proposed decoder by comparing the different decision-making model

performances on POM, IEMOCAP, and MOSI. Specifically, we tried to answer the

following questions: 1). Is the proposed hierarchical decoder sufficiently flexible for

different tasks? 2). How does multi-label classification and regression compare with

baseline multiple-classifier solutions [Zadeh et al., 2018]? We found that: 1). The pro-

posed architecture achieved state-of-the-art classification and regression on MOSI and

POM (Table 5.1 and Table 5.4). The only difference between these two models is the
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IEMOCAP (MCC) → EmotiW (MCC)

Testing Set Acc. F1

IEMOCAP 39.4 0.383
EmotiW with[Poria et al., 2017b] 23.4 0.231
EmotiW with our method 26.1 0.244

MOSI (BC) → MOUD (BC)

Testing Set Acc. F1

MOSI 77.5 0.774
MOUD with[Poria et al., 2017b] 52.7 \
MOUD with our method 59.5 0.592

Table 5.5: Experimental results on generalization (accuracy in percentage)

activation function; softmax for classification and hard sigmoid for regression. This

shows that our decoder can handle both classification and regression very well. 2).

Compared with MOSI and POM, IEMOCAP has emotional changes over the conver-

sation. Nevertheless, our model achieved state-of-the-art (Table 5.1 and Table 5.2) on

IEMOCAP simply by changing the number of decoding instances from 1 prediction per

case to 100 predictions per case (one at each percentile). This shows our model can

handle predictions over time, answering questions 1. 3). We further compared the per-

formance of multiclass and multi-label [Liu and Chen, 2015] tasks on both regression

and classification (Table 5.4). Using multiple classifiers (one for each attribute) still

achieves 1.7% better performance but requires ∼7 times more parameters and ∼6.5

times more training time than our proposed single multi-label classifier. The proposed

multi-label architecture still achieved performance comparable to many previous base-

lines (Table 5.1). To our best knowledge, we are the first to use multi-label classification

and regression for conversation understanding, and our model shows the potential of

multi-label decoders for conversation understanding tasks.
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5.5.5 Generalization Test

Our system should be transferable enough to achieve good performance on one dataset

despite being trained on another. We performed two sets of experiments to test the

system’s generalizability.

We first trained a model on the IEMOCAP emotion dataset and tested on both

IEMOCAP and EmotiW (Table 5.5). To match the labels between the IEMOCAP and

EmotiW, we changed surprise to exciting due to the lack of surprise in IEMOCAP.

Then, we trained our model on the MOSI sentiment dataset and tested on MOUD

(Table 5.5). Similar to previous experiments [Zadeh et al., 2018], we processed the

MOUD labels to positive/negative to perform transfer learning from the MOSI-trained

model.

The results show that training on IEMOCAP achieves 26.1% accuracy with 0.244

F1 score on EmotiW. We further compared the generalization ability of our method

with previous approaches [Poria et al., 2016]. We re-implemented their method with

the same training and testing split. The proposed system outperforms the previous

approach by 2.7% accuracy. The MOSI-trained model achieves 59.5% accuracy with

0.592 F1 score on MOUD. Compared to the 77.5% accuracy with 0.774 F1 score on

the MOSI test set, the lower generalization accuracy might be caused by the language

difference (MOSI is English, but MOUD is Spanish). However, compared with the

approach in [Poria et al., 2017b], our system still outperforms the previous method by

6.8% accuracy.
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5.5.6 Visualization of Attentions

Unlike previous approaches using uninterpretable attention at the hidden-state-level

[Zadeh et al., 2018] or feature-level [Poria et al., 2017c], our system provides direct vi-

sualizations of modality and temporal attention. The word-level design allows intuitive

understanding of modality importance of each word and its importance in the text

sequence.

We noticed that the model assigns the text modality a high attention score on the

words that carry emotion information, such as ”dumb” (Figure 5). The system also

focuses on audio or video when tone or facial expression changes. For example, the

system focuses on video when the kid has knitted brows and then on audio when he

has a higher acoustic energy distribution (Fig 5.5(a)). The visualization demonstrates

that the modality attention selects useful information from different sources.

Unlike modality attention, temporal attention assigns the importance of each word

representation. We see that the temporal attention vector peaks on ”great”, indicating

this representation contains the most informative information (Fig 5.5(b)). Because

temporal attention is computed over a multimodal representation, it selects the most

important words considering all modalities.

5.6 Future Work

Our hierarchical decoder can be used for text and conversation understanding. It is

common that a conversation or text has multiple attributes: a person can be both

angry and sad, excited and happy. Unlike previous strategies [Zadeh et al., 2018], our

hierarchical encoder-decoder framework flexibly decodes one or multiple attributes si-

multaneously over time with a single model. In addition, our temporal and modality
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Figure 5.5: Visualization of modality attention (MA) and temporal attention (TA) on
MOSI. (a) Negative example. (b) Positive example.

attentions allow visual interpretation of the model’s inner workings (Fig 5.5).

We demonstrated that our hierarchical decoder is able to make both multiclass

and multi-label predictions with performance comparable to most of previous systems

(Table 5.1). Yet there are still some limitations: 1). the attribute-decoder framework

assumes associations are between conversational attributes: e.g. if a conversation is

convincing, it is usually pervasive. However, such complicated associations cannot be

fully captured through limited data size (only 904 samples) with an imbalanced amount

of data across attributes (e.g. there is a lack of labels with confidence score). We will

continue to test our system on different datasets with concurrent labels. 2). The model

simply decodes the entire conversation into time instances with equal length, which

cannot make sentence-level predictions as in previous research. This may lead to some

performance mismatches between our system and the previous approaches. We plan to

decode features for sentence-level instance predictions in the future.
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5.7 Summary

We introduced a novel human conversation analysis system using a hierarchical encoder-

decoder framework. To better combine features extracted from different modalities, we

proposed word-level fusion with modality attention. Our system achieved state-of-the-

art performance on three published datasets and outperformed others at generalization

testing. We hope to deliver the following contributions to the community:

1. A hierarchical encoder-decoder framework that can recognize emotion, sentiment,

and speaker traits.

2. A word-level feature extraction strategy that can be widely used for emotion

recognition, sentiment analysis, and associated applications.

3. An attentive modality fusion strategy that can be used for any multimodal appli-

cation.

4. A detailed comparison with previous work for future reference, including gener-

alization and classification vs. regression tests.

5. Datasets synchronized to the word-level and our source code for future compara-

tive research.
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Chapter 6

Conclusion

The speech affective computing is one of the most popular research topic in artificial

intelligent. In this research, we mainly focus on improving the model and system

performance of speech emotion recognition and sentiment analysis on three aspects:

modality-specific feature extraction, modality fusion, and context-aware design.

For feature extraction, we first evaluate the performance low-level handcraft features

and high-level features extracted by the deep neural network. Then, we propose the

hierarchical attention network to extract both the acoustic and textual features on word-

level. We further improve the model by introducing the sub-view attention module. Our

contribution on affective feature extraction can be summarized as:

1. A hybrid architecture using attention mechanism with recurrent neural network

to select the informative acoustic features and textual features independently.

2. A hierarchical attention structure to represent the acoustic and textual features

on word-level.

3. A sub-view attention module that only relies on the attention mechanism to

extract modality-specific features without using recurrent neural networks.

For modality fusion, we first present a hybrid structure that combines low-level

features with high-level features using a deep neural network. Then, we improve the
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fusion by applying the modality attention to help the model to select the helpful fea-

tures on modality-level. We further introduce three attention based fusion strategies to

combine modality-specific features on word-level. We also design a mutual correlation

attentive factor to help the sub-view attention architecture to learn the across modality

association. Our contribution can be summarized as:

1. A modality attention module that generates scores to represent the importance

for each modality and fuses the features with the weighted scores.

2. Three word-level fusion strategies to combine features and learn correlations in a

common time scale across different modalities.

3. A novel mutual correlation attentive factor that automatically learns the associ-

ations across modalities in each sub-view attention layer to facilitate fusion.

For context-aware design, we introduce the mutual attentive fusion network that

uses the attention to give weighted scores to all the previous utterances as the con-

text representation. We further apply the encoder-decoder structure to generate the

affective state based on continues input. We also propose a solution for the disagreeing

annotation, which is an important issue of most existing context-aware systems. The

contribution can be summarized as:

1. An efficient dyadic fusion network that mainly relies on an attention mechanism

for feature extraction, modality fusion, and contextual representation learning.

2. A hierarchical encoder-decoder framework. The encoder encodes features from

low-level to high-level. The decoder first decodes the abstract features into at-

tribute profile at each time instance, and then decodes the attribute profile at
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each time instance to individual attributes.

3. An effective solution and a detailed experimental analysis of the label disagree-

ment issue that keeps sequence consistency and allows full use of labeled dialog

data.
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