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ABSTRACT OF THE DISSERTATION

STRUCTURE IN MODERN DATA AND HOW TO EXPLOIT IT:

SOME SIGNAL PROCESSING APPLICATIONS

by Muhammad Asad Lodhi

Dissertation Director: Prof. Waheed U. Bajwa

Modern applications in real-world scenarios generate data that are massive and often

times highly structured. Exploiting this structure in an effective manner leads to improved

performance, and reduced computational and memory complexities. Moreover, successful

exploitation of this underlying structure also admits efficient data representation, superior

inference capabilities, and scalable estimation with fewer samples. This dissertation inves-

tigates these advantages of structure exploitation in three applications: (i) signal detection

and classification under the union-of-subspaces model, (ii) learning product graphs under-

lying smooth graph signals, and (iii) distributed radar imaging under position errors and

unsynchronized clocks.

For detection under the union-of-subspaces model we derive the generalized likelihood

ratio tests and bounds on the recovery performance under varying levels of knowledge

about colored noise in the observations. We also make explicit the dependence of the per-

formance metrics on the geometry of the subspaces comprising the union and of the colored

noise. We validate the theoretical insights through numerical experiments on synthetic and

real data.

In regards to the product graph learning problem, we devise a method to learn structured

graphs from data that are given in the form of product graphs. Product graphs arise nat-

ii



urally in many real-world datasets and provide an efficient and compact representation of

large-scale graphs through several smaller factor graphs. We initially pose the graph learn-

ing problem as a linear program, which (on average) outperforms the state-of-the-art graph

learning algorithms. Afterwards, we devise an alternating minimization-based algorithm

aimed at learning various types of product graphs from data, and establish local conver-

gence guarantees to the true solution. Finally the superior performance and reduced sam-

ple complexity of the proposed algorithm over existing methods are also validated through

numerical simulations on synthetic and real datasets.

Our final focus is on distributed radar imaging, which is essential for modern radar

applications to enable high resolution imaging through a large synthetic aperture. This

distributed setup suffers from two commons problems: (i) access to imprecise antenna

locations, and (ii) clock mismatch between the distributed components, which adversely

affects the final reconstruction of radar scene. We develop exact models to address both

of these issues in the most general settings by modeling the errors as convolutions with

1-sparse spatial and temporal shifts. The radar scene reconstruction problems associated

with the resulting forward models can then be expressed as nonconvex blind deconvolution

problems, which can be solved through a block coordinate descent-based method. At each

step of this method, each subproblem is convex and can be solved using accelerated prox-

imal gradient methods like FISTA. Finally, we characterize the theoretical performance of

the proposed method by deriving error bounds for the estimated unknowns, and through

numerical simulations on synthetic data obtained under varying degrees of noise in the

observations.
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1

CHAPTER 1

INTRODUCTION

1.1 Motivation

Modern applications in real-world scenarios generate data that is often times highly struc-

tured. Moreover, in numerous applications there is an inherent structure in the data ac-

quisition and the data generation processes. Exploiting the structure in aspects of data

generation and acquisition, and in the data itself, has been at the core of countless informa-

tion processing and learning methodologies. A (possible) categorization of these methods

is shown in Fig. 1.1.

Although structure exploiting approaches have been investigated in the past, the interest

in this field got renewed with the advent of compressed sensing (CS) [1, 2, 3], which aims

to reconstruct a sparse signal from fewer than Nyquist-dictated samples. CS also sparked

researchers in the field to explore and exploit structure in the multidimensional regime (con-

sisting of matrices and tensors), with the aim of generalizing methods initially designed for

vector-valued data. Independent of this direction of research, there has been increasing in-

terest in graph signal processing that aims to generalize the existing approaches in classical

signal processing to data that lives on structured domains [4, 5, 6, 7, 8]. Graph signals

provide a natural way to represent data and subsume the classical way of representing sig-

nals. Exploiting structure in an effective manner has been shown to result in parsimonious

data representation, superior inference capabilities, and reduced computational and mem-

ory complexities in numerous applications. Moreover, given the massive nature of modern

data, it is imperative to develop scalable and efficient structure exploiting techniques to

further entertain the advantages entailed.
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Figure 1.1: A (possible) high-level representation of structure exploiting methodologies in
modern data science. All three blocks are interrelated. The contributions of this dissertation
are indicated by red boxes in the figure.

1.2 Research contributions

Our main contributions towards structure exploitation in data, data acquisition, and data

generation processes in this dissertation are presented below.

1.2.1 Detection theory for union of subspaces

Signal detection is one of the oldest problems in signal processing with a rich literature

under the subspace model [9, 10]. However, recently, the focus has shifted to a non-linear

model named union of subspaces (UoS) model [11, 12, 13, 14], which dictates that real-

world data is generated by a collection of subspaces rather than just one subspace. Our work

in Chapter. 2 focused on formulating a theory for signal detection under the UoS model.

We formalized the problems of signal detection and active subspace classification problems



3

under the UoS model, when the data is generated by only one subspace in one instance. We

posed the detection and classification problems as binary and multiple hypothesis tests and

presented the generalized likelihood ratio tests for each. We characterized the performance

of the proposed tests in terms of bounds on the probabilities of false alarm, detection, and

correct classification (active subspace detection). Furthermore, we analyzed these bounds

in light of the geometry between the subspace and the geometry of the colored noise in

the observed signal. We showed that the probability of correctly identifying the active

subspace increases with the increasing principal angles between the subspaces comprising

the union. We also demonstrated, for same noise levels, the subspaces that live close to the

higher-order eigenvectors of the colored noise covariance (i.e., eigenvectors corresponding

to higher eigenvalues) have lower detection probabilities, and vice versa. We validated the

performance and the analytical insights through numerical experiments on synthetic and

real datasets.

1.2.2 Learning structured graphs from data

Real-world data is often times associated with irregular structures that can analytically be

represented as graphs. Having access to this graph, which is sometimes trivially evident

from domain knowledge, provides a better representation of the data and facilitates various

information processing tasks. However, in cases where the underlying graph is unavail-

able, it needs to be learned from the data itself for data representation, data processing

and inference purposes [7, 15, 16]. Existing literature on learning graphs from data has

mostly considered arbitrary graphs [15, 16], whereas the graphs generating real-world data

tend to have additional structure that can be incorporated in the graph learning procedure.

Structure-aware graph learning methods require learning fewer parameters and have the

potential to reduce computational, memory and sample complexities. In light of this, our

work in Chapter. 3 devised a method to learn structured graphs from data that are given in

the form of product graphs [6]. Product graphs arise naturally in many real-world datasets
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and provide an efficient and compact representation of large-scale graphs through several

smaller factor graphs. To this end, first the graph learning problem was posed as a linear

program, which (on average) outperformed the state-of-the-art graph learning algorithms.

This formulation is of independent interest itself as it shows that graph learning is possible

through a simple linear program. Afterwards, an alternating minimization-based algorithm

aimed at learning various types of product graphs was proposed, and local convergence

guarantees to the true solution were established for this algorithm. Finally the performance

gains, reduced sample complexity, and inference capabilities of the proposed algorithm

over existing methods were also validated through numerical simulations on synthetic and

real datasets.

1.2.3 Distributed radar imaging under ambiguous array parameters

Distributed radar imaging is essential for modern radar applications where high resolution

imaging is enabled through a large synthetic aperture by combining several small aperture

antennas. However, two commons problems faced in distributed radar are (i) imprecise

knowledge of antenna locations, and (ii) clock mismatch between the distributed com-

ponents, which adversely effects the final reconstruction performance of radar scene. In

Chapter. 3 of this dissertation, we developd exact models to address both of these issues in

the most general settings, i.e., instead of modeling the position and clock errors as a com-

bined complex phase and gain vector (as done traditionally), we model them separately in

the image and time domains as convolutions with 1-sparse spatial and temporal shifts. The

radar scene reconstruction problems associated with the resulting forward models could

then be expressed as blind deconvolution problems in two or more unknowns. We proposed

a block coordinate descent-based algorithm to solve these nonconvex blind deconvolution

problems, where each subproblem was convex and was solved using accelerated proximal

gradient methods like FISTA. For theoretical characterization of the performance, we de-

rived bounds on the error of estimated unknowns from their true values for all problems
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posed in this work. We also validate the performance of our proposed forward models

and the reconstruction algorithm through numerical simulations with synthetic data under

varying degrees of noise in the observations.

1.2.4 Notation

The following notational convention is used throughout this dissertation. We use bold

lower-case and bold-upper case letters to represent vectors and matrices, respectively. Cal-

ligraphic letters are used to represent tensors, which are arrays of three or more dimensions.

Given a vector a, ‖a‖p denotes its `p-norm and |a| denotes its elementwise absolute val-

ues. For a matrix A, aj and aij denote its j-th column and (i, j)-th entry, respectively.

Further, ‖A‖F represents its Frobenius norm, ‖A‖ represents its spectral norm, A† repre-

sents its Moore-Penrose inverse, and finally |A| denotes its determinant. Moreover, ‖A‖1

represents the `1-norm of the entries of A, while ‖A‖1,off represents the `1-norm of the off-

diagonal entries of A. The Kronecker and Cartesian products of two matrices A and B are

denoted by A⊗B and A⊕B, respectively [17]. The strong product of two matrices, which

is the sum of Cartesian and Kronecker products, is denoted by A�B. Furthermore, ⊗
s

, ⊕
s

,

and�
s

, respectively denote the Kronecker, Cartesian, and strong products taken over the in-

dices provided by the entries of the vector s. The Hadamard product (elemntwise product)

of two vectors or matrices is denoted by “◦”. For a tensor T , T(i) represents its matriciza-

tion (flattening) in the i-th mode and vec(T ) represents its vectorization [18]. Also, “:”

represents the scalar product or double dot product between two tensors, which results in

a scalar [18]. Finally, ×i represents matrix multiplication in the i-th mode of a tensor and

×
s

represents matrix multiplications in the modes of a tensor specified in the entries of the

vector s. In chapter 4, calligraphic letters are reserved for representing operators that act

on (one or more) vectors and matrices.

We use diag(x) to denote a diagonal matrix with diagonal entries given by the entries

of the vector x, 1 to denote a vector of all ones with appropriate length, and 1 to denote
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a tensor of all ones of appropriate size. We denote the set with elements {1, 2, . . . , K} as

[K], and [K] \ k represents the same set without the element k. The sets of valid Laplacian

and weighted adjacency matrices are represented by L and W , respectively. The set of

weighted adjacency matrices with any product structure is denoted by Wp. We use the

standard “big-O” notation to denote asymptotic scaling. Finally, Q(·), Γ(·), and Kn(·)

denote the Gaussian Q function, the Gamma function, and the modified Bessel function of

the second kind with parameter n, respectively.

1.2.5 Organization

In the following chapters we will detail our contributions under the three problems de-

scribed in this section. We will formulate each problem followed by our proposed methods

for solving each problem, accompanied thereafter by theoretical performance guarantees

of the proposed methods. We will also validate the performance of each proposed method

through numerical simulations on synthetic and real data.
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CHAPTER 2

DETECTION THEORY FOR UNION OF SUBSPACES

2.1 Introduction

Detection theory has a long history in the signal processing literature. Classical detection

theory is often based on the subspace model, in which the signal to be detected is assumed

to come from a low-dimensional subspace embedded in a high-dimensional ambient space

[9, 10]. However, recently a nonlinear generalization of the subspace model, termed the

union of subspaces (UoS) model [11, 12, 13, 14], has gained attention in the literature due

to its ability to better model real-world signals. Indeed, data in many real-world scenarios

tend to be generated by processes that switch/operate in different modes. In such instances,

data generated through each mode of the process can be modeled as lying on a subspace, in

which case the entire data generated during the process as a whole can be best described as

coming from a union of subspaces [19, 20, 21, 22, 23, 24, 25]. Some specific instances of

such processes include: (i) radar target detection involving multiple targets, with only one

target being present at a time and each target being characterized by its own specific spectral

signature; (ii) user detection in a wireless network, with only one user transmitting at a

time and each user having its own transmit codebook; and (iii) image-based verification of

employees in an organization, with the verification system using a database of employees’

facial images collected under varying lighting conditions.

Broadly speaking, and under the assumption of processes following the UoS model,

we focus on the following questions in this work: (i) whether an observed signal (e.g.,

spectral data, radio frequency (RF) observations, or an image) corresponds to a known

generation mechanism (e.g., spectral signatures of known targets, RF transmissions from

known users, or faces of known employees); and (ii) which mode (e.g., which known target,
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which known user, or which existing employee) from the known generation mechanism

gave rise to the observed signal. In this context, we revisit in this chapter the problem

of detection of signals under various additive noise models for the case when the signal

conforms to the UoS model. Our goals in this regard are: (i) derivation of tests for detection

of both the signal and the underlying active subspace (mode), and (ii) characterization of

the performance of these tests in terms of geometry of the subspaces.

2.1.1 Prior work

There exists a rich body of literature concerning detection of signals under the subspace

model; see, e.g., [27, 28, 29, 30]. The most well-studied method in this regard is the

matched subspace detector [27], which projects the received signal onto the subspace of

interest and compares its energy against a threshold. A naı̈ve approach to detection under

the UoS model would be to treat it as a subspace detection problem by replacing the union

with direct sum and using the resulting subspace within the matched subspace detector.

However, such an approach not only results in high false alarm rates (for obvious reasons),

but it also does not enable detection of the active subspace. A better alternative is to treat

the detection problem as a multiple hypothesis testing problem, as in [23], with each test

given by an individual matched subspace detector. We establish in this chapter that such an

approach will have the same performance as a generalized likelihood ratio test (GLRT) for

the case of a single active subspace.

Recently, there have been a few works that are directly related to the detection problem

under the UoS model [1, 2, 3, 24, 26]. One of the biggest differences between these (and

related) works and this chapter is that the existing works cannot explain the variability of

detection performance under the UoS model for different problems with same problem

parameters (e.g., number and dimension of subspaces, and signal-to-noise ratio); see, e.g.,

Fig. 2.15 and the accompanying discussion. In contrast, we have been able to establish

in this chapter that such variability is a quantifiable function of the geometry (expressed
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in terms of principal angles) of individual subspaces in the union and the geometry of the

noise.

In terms of explicit comparisons with individual works related to this chapter, [1] stud-

ies the problem of signal detection under the compressive sensing framework [31], with the

final results involving analysis of a GLRT for a binary hypothesis test. These compressive

detection results can be considered a special instance of those for detection under the UoS

model, since a sparse signal can be thought of as lying in a union of (exponentially many)

subspaces [11]. The nature of these results, however, does not enable understanding of the

general detection problem under the UoS model, especially in relation to geometry of the

underlying subspaces. First, individual subspaces do not explicitly appear in compressive

detection; rather, the results are presented in terms of the so-called “measurement matrix,”

which obfuscates the role of individual subspaces in detection performance. Second, the

most useful of compressive detection results involve the use of random measurement ma-

trices; translated into the UoS model, this corresponds to randomly generated subspaces.

Since random subspaces tend to be equiangular (with high probability), compressive detec-

tion literature does not lend itself to understanding the role of subspace geometry in signal

detection. Similar to [1], [2] also studies the compressive detection problem, but in the

context of radar-based multi-target detection. While the analysis in [2] is based on the use

of the LASSO [32] for detection, it too does not offer geometric insights into the general

UoS-based detection problem. In [3], the authors extend the original compressive detection

framework of [1] to more general settings, but the final results are still couched in terms

of the sparsity framework and they fail to bring out the geometric interplay between the

different subspaces.

The work that is most closely related to ours is [24], in which the authors study the

signal and the active subspace detection problems under the UoS framework in the context

of radar target detection. The (signal and active subspace) detection schemes proposed

in [24] are based on multiple hypothesis testing. The analysis in [24] is for the case of
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colored Gaussian noise with unknown variance but known covariance matrix. Further, since

the analysis is in terms of the spectral signatures of targets, it does not help understand the

interplay between the detection performance and the geometry of subspaces. Finally, [24]

does not investigate invariance properties of the derived test statistics.

Recently, [26] has studied both recovery of a signal conforming to the UoS model and

detection of the corresponding active subspace in the presence of a linear sampling operator.

This work, however, is fundamentally focused on understanding the role of the sampling

operator within the active subspace detection problem. Further, it assumes white Gaussian

noise with known variance, does not investigate the related problem of signal detection,

and does not focus on the geometry of subspaces as an integral component of the detection

problem.

2.1.2 Our contributions

The major contributions of this chapter include derivation, analysis, and understanding

of various GLRTs for the signal and the active subspace detection problems under the

UoS model for different noise settings. One of our main contributions in this regard is a

comprehensive understanding of the two detection problems in terms of characterization of

the performance of the derived GLRTs through the probabilities of detection, classification,

and false alarm, geometry of the underlying subspaces, and invariance properties of the test

statistics. One of the key insights of this work is that the probability of correct identification

of the active subspace increases with increasing principal angles between subspaces in the

union. While this makes intuitive sense, our analysis provides theoretical justification for

such an assertion. Further, our work also helps understand the relationship between a binary

and a multiple hypothesis testing approach to the signal detection problem under the UoS

model. Finally, we provide extensive numerical experiments to highlight the usefulness of

our analysis and its superiority to prior works such as [26]. We refer the reader to Table 2.1

for a brief comparison of our work with existing literature.
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2.1.3 Organization

The rest of the chapter is organized as follows. In Sec. 4.2, we formulate the signal and the

active subspace detection problems under the UoS model. Sec. 2.3 derives and analyzes

the GLRTs for these two problems under different noise conditions. Sec. 2.4 provides

a discussion of the results obtained in Sec. 2.3. Sec. 2.5 presents the results of numeri-

cal experiments on both synthetic and real-world data, while we conclude the chapter in

Sec. 2.6.

2.2 Problem formulation

We study two interrelated detection problems in this chapter. The first one, referred to as

signal detection, involves deciding between an observation y ∈ Rm being just noise or it

being an unknown signal x ∈ Rm embedded in noise. Mathematically, this can be posed

as a binary hypothesis test with the null (H0) and the alternate (H1) hypotheses given by:

H0 : y = n;

H1 : y = x + n; (2.1)

where n ∈ Rm denotes noise that is typically assumed Gaussian. Traditionally, (2.1)

has been studied under the assumption of x belonging to a low-dimensional subspace of

Rm [27, 28, 29, 30]. In contrast, our focus is on the case of x belonging to a union of

low-dimensional subspaces: x ∈
K0⋃
k=1

Sk, where Sk ⊂ Rm denotes a subspace of Rm. We

further assume that the subspaces are pairwise disjoint, Sk ∩ Sk′ = ∅ for k 6= k′, and they

have the same dimension: ∀k, dim(Sk) = n� m.1

The second problem studied in this chapter, which does not arise in classical subspace

detection literature, is referred to as active subspace detection. The goal in this problem is

1One can extend this work to the case of different dimensional subspaces in a straightforward manner at
the expense of notational complexity.
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to not only detect whether y contains an unknown signal x, but also identify the subspace

Sk to which x belongs. Mathematically, this can be posed as a multiple hypothesis test with

the null (H0) and the alternate ({Hk}K0
k=1) hypotheses given by:

H0 : y = n;

Hk : y = x + n, x ∈ Sk; k = 1, . . . , K0. (2.2)

Our goal in this chapter is to derive statistical tests for (2.1) and (2.2), and provide a

rigorous mathematical understanding of the performance of the derived tests. Our anal-

ysis is based on the assumption of n being a colored Gaussian noise that is distributed

as N (0, σ2R) with R being a full-rank covariance. In particular, we focus on the three

cases of (i) known noise statistics, (ii) known variance (σ2), but unknown covariance (R),

and (iii) unknown variance and covariance. In contrast to prior works [1, 2, 3, 24, 26],

we are specifically interested in characterizing our results in terms of the geometry of the

underlying subspaces. This geometry can be described through the principal angles be-

tween the subspaces, where the i-th principal angle between subspace Sj and Sk, denoted

by ϕ(j,k)
i , i = 1, . . . , n, is recursively defined as [33]:

ϕ
(j,k)
i = arccos

(
max
u,v

{
〈u,v〉
‖u‖2‖v‖2

: u ∈ Sj,v ∈ Sk,

u⊥u`,v⊥v`, ` = 1, . . . , i− 1

})
, (2.3)

where (u`,v`) ∈ Sj × Sk denote the principal vectors associated with the `-th principal

angle. It is straightforward to see that 0 ≤ ϕ
(j,k)
1 ≤ ϕ

(j,k)
2 ≤ · · · ≤ ϕ

(j,k)
n ≤ π/2.

We conclude by noting that our statistical tests in the following will be expressed in
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terms of the following ratios for compactness purposes:

Tz(P) =
zTPz

zTz
, T ηz (P) =

zTPz

η
,

Tz(P,Q) =
zTPz

zTQz
, T

η

z(P) =
zTPz

η + zTz
,

where z and (P, Q) denote a vector and matrices of appropriate dimensions, respectively,

while η > 0 denotes a constant.

2.2.1 Performance metrics

The performances of the statistical tests proposed in this chapter will be characterized in

terms of the probabilities of detection (PD), classification (PC), and false alarm (PFA).

Specifically, let PHi
(·) = Pr(·|Hi), and define the event Ĥi = {HypothesisHi is accepted}.

Then, in the case of signal detection, we have PD = PH1(Ĥ1) and PFA = PH0(Ĥ1). In

contrast, in the case of active subspace detection, we have PC =
∑K0

k=1 PHk
(Ĥk) Pr(Hk)

and PFA = PH0(∪K0
k=1Ĥk).

We conclude by pointing out that some of our forthcoming discussion will use the

shorthand PSk
(·) = Pr(·|{x ∈ Sk}) and Ψ(η0, α) =

√
2

2nΓ(n/2)
(η0α)(n−1)/2K(n−1)/2

(
η0α

2

)
,

where α ∈ R+ and η0 ∈ (0, 1/2). Using this notation, we can also write the probability of

detection as PD =
∑K0

k=1 PSk
(Ĥ1) Pr(x ∈ Sk).

2.3 Main results

In this section, we present statistical tests for both the detection problems under various

noise conditions. In addition, we provide bounds on the performance metrics for these

tests.
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2.3.1 Known noise statistics

We begin with the assumption that both the noise variance, σ2, and the covariance, R,

are known. It is trivial to see that y|H0 ∼ N (0, σ2R) for both detection problems. Fur-

ther, in the case of signal detection, we have y|H1 ∼ N (x, σ2R). In contrast, the ob-

servations y under the k-th alternate hypothesis in the case of active subspace detection

can be expressed as y|Hk ∼ N (Hkθk, σ
2R), k = 1, . . . , K0, where Hk ∈ Rm×n de-

notes a basis for subspace Sk and θk ∈ Rn denotes representation coefficients of x un-

der basis Hk. Since x and θk are unknown for the signal and the active subspace detec-

tion problems, respectively, we resort to the generalized likelihood ratio tests (GLRTs)

for the two detection problems. Our results in this regard are based on the following

definitions: let z = R−
1
2 y denote the whitened observations, w = R−

1
2 n denote the

whitened noise, Gk = R−
1
2 Hk, k = 1, . . . , K0, denote the whitened subspace bases, and

PS̄k
= Gk(G

T
kGk)

−1GT
k and P⊥

S̄k
= I − PS̄k

, respectively, denote the projection matrix

for the k-th whitened subspace and its orthogonal complement.

Theorem 1. Let γ̄ > 0 denote the test threshold and define k̂ = arg maxk(z
TPS̄k

z). The

GLRT for the signal detection and the active subspace detection problem is, respectively,

given by

T 2σ2

z

(
PS̄

k̂

) H1

≷
H0

γ̄ and T 2σ2

z

(
PS̄

k̂

) H
k̂

≷
H0

γ̄ . (2.4)

The proof of this theorem is given in Appendix 2.7.1, while its interpretation as well

as its relationship to the classical test for subspace detection are provided in Sec. 2.4. We

now characterize the performance of the statistical tests in (2.4) in terms of bounds on

PFA, PD, and PC . Note that we have to resort to bounds, as opposed to exact expressions,

because of the complicated joint distributions that arise in our context; we refer the reader

to Appendix 2.7.2 for further discussion.
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Theorem 2. The GLRTs in Theorem 1 for the signal and the active subspace detection

problems result in probability of false alarm that is upper bounded by:

PFA ≤ min
{

1 ,

K0∑
k=1

Pr
(
T 2σ2

w (PS̄k
) > γ̄

)}
. (2.5)

Further, in the case of signal detection, the probability of detection PD =
∑K0

k=1 PSk
(Ĥ1) Pr(x ∈

Sk) can be upper and lower bounded by the fact that

PSk
(Ĥ1) ≤ min

{
1 ,

K0∑
i=1

PSk

(
T 2σ2

z (PS̄i
) > γ̄

)}
, and

PSk
(Ĥ1) ≥

K0∑
i=1

[
PSk

(
T 2σ2

z (PS̄i
) > γ̄

)]2

K0∑
j=1

PSk

(
T 2σ2

z (PS̄i
) > γ̄, T 2σ2

z (PS̄j
) > γ̄

) . (2.6)

Finally, the probability of classification PC for active subspace detection can be lower

bounded by the fact that

PHk
(Ĥk) ≥ max

{
0 , PSk

(T 2σ2

z (PS̄k
) > γ̄)+

K0∑
j=1,j 6=k

PSk
(Tz(PS̄k

,PS̄j
) > 1)− (K0 − 1)

}
. (2.7)

The proof of this theorem is given in Appendix 2.7.2. It is worth noting that prob-

abilities of the form PSk
(T 2σ2

z (PS̄j
) > γ̄) correspond to tail probabilities of chi-squared

random variables, whereas the probabilities PSk
(Tz(PS̄k

,PS̄j
) > 1) involve ratios of de-

pendent chi-squared variables whose distributions can be numerically computed.

Remark 1. It is noted in Appendix 2.7.2 that (2.7) can be further lower bounded using [26,

Lemma 1] as PHk
(Ĥk) ≥ max

{
0, PSk

(T 2σ2

z (PS̄k
) > γ̄) −

∑
j:j 6=k

Q
(

1
2
(1 − 2η0)

√
λj\k

)
−∑

j:j 6=k
Ψ(η0, λj\k)

}
, where λj\k = zTP⊥

S̄j
z/σ2 when z ∈ S̄k. This bound, however, depends

further on η0. Numerical experiments reported in Sec. 2.5 show the looseness of this bound

for the case of η0 = 0.25, the value advertised in [26].
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Remark 2. A heuristic approach to detecting signals under the UoS model would be to use

the multiple hypothesis tests of [23], where each test is an individual matched subspace

detector. The final decision can then be made by taking the union of binary outputs from

each matched detector and declaring detection if any one of them has detected a signal. It

is straightforward to see however that this final decision rule coincides with the decision

rule in (2.4). Thus, in the event that only one subspace is active, the testing procedure in

[23] effectively reduces to a GLRT.

2.3.2 Unknown noise covariance

Next, we consider the case of colored noise with unknown covariance matrix R. In this

case, we also assume access to N0 noise samples ξp ∼ N (0,R), p = 1, . . . , N0 (N0 > m

to obtain a non-singular estimate of R), which is a standard assumption in the detection

literature [28, 29, 30]. As before, we use GLRTs to obtain decision rules for the two detec-

tion problems. Our results make use of the following definitions: let Σ = 1
N0

∑N0

p=1 ξpξp
T

denote sample covariance of noise samples, ẑ = Σ−
1
2 y denote the empirically whitened

observations, ŵ = Σ−
1
2 n denote the empirically whitened noise, Ĝk = Σ−

1
2 Hk, k =

1, . . . , K0, denote the empirically whitened subspace bases, and P̂S̄k
= Ĝk(Ĝ

T
k Ĝk)

−1ĜT
k

denote the projection matrix for the k-th empirically whitened subspace.

Theorem 3. Let γ̄ > 0 denote the test threshold and define k̂ = arg maxk(ẑ
T P̂S̄k

ẑ). The

GLRT for the signal detection and the active subspace detection problem is, respectively,

given by:

T
N0σ2

ẑ (P̂S̄
k̂
)
H1

≷
H0

γ̄ and T
N0σ2

ẑ (P̂S̄
k̂
)
H

k̂

≷
H0

γ̄. (2.8)

The proof of this theorem is provided in Appendix 2.7.3, while some discussion on

interpretation and relationship to the classical test for subspace detection is provided in

Sec. 2.4. We now characterize the performance of the statistical tests in (2.8) in terms of
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bounds on PFA, PD, and PC .

Theorem 4. The GLRTs for the signal and the active subspace detection problems in The-

orem 3 result in the probability of false alarm that is upper bounded by:

PFA ≤ min
{

1 ,

K0∑
k=1

Pr
(
T
N0σ2

ŵ (P̂S̄k
) > γ̄

)}
. (2.9)

Further, the detection probability for signal detection, PD =
∑K0

k=1 PSk
(Ĥ1) Pr(x ∈ Sk)

can be upper and lower bounded by the fact that

PSk

(
Ĥ1

)
≤ min

{
1 ,

K0∑
i=1

PSk

(
T
N0σ2

ẑ (P̂S̄i
) > γ̄

)}
, and

PSk

(
Ĥ1

)
≥

K0∑
i=1

[
PSk

(
T
N0σ2

ẑ (P̂S̄i
) > γ̄

)]2

K0∑
j=1

PSk

(
T
N0σ2

ẑ (P̂S̄i
) > γ̄, T

N0σ2

ẑ (P̂S̄j
) > γ̄

) . (2.10)

Finally, the probability of classification PC for active subspace detection can be lower

bounded by the fact that

PHk
(Ĥk) ≥ max

{
0 , PSk

(T
N0σ2

ẑ (P̂S̄k
) > γ̄)+

K0∑
j=1,j 6=k

PSk
(Tẑ(P̂S̄k

, P̂S̄j
) > 1)− (K0 − 1)

}
. (2.11)

The proof of this theorem follows along similar lines as for the proof of Theorem 2 and

is thus omitted. In contrast to Theorem 2, the terms of the form PSk
(T

N0σ2

ẑ (P̂S̄k
) > γ̄)

and PSk
(Tẑ(P̂S̄k

, P̂S̄j
) > 1) involve probabilities of the ratios of dependent chi-squared

variables and have to be computed numerically.

Remark 3. One can again further lower bound (2.11) using [26, Lemma 1] as: PHk
(Ĥk) ≥

max
{

0, PSk
(T

N0σ2

ẑ (P̂S̄k
) > γ̄) −

K0∑
j:j 6=k

Q
(

1
2
(1 − 2η0)

√
λ̂j\k

)
−

K0∑
j:j 6=k

Ψ(η0, λ̂j\k)
}

, where

λ̂j\k = 1
σ2 ẑT P̂⊥

S̄j
ẑ when z ∈ S̄k.
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2.3.3 Unknown noise statistics

We now address adaptive detection in settings where the covariance matrix R and variance

σ2 are both unknown. Once again assuming access to N0 noise samples and using the

notation of Sec. 2.3.2, the GLRTs lead to the following decision rules.

Theorem 5. Let γ̄ > 0 denote the test threshold and define k̂ = arg maxk(ẑ
T P̂S̄k

ẑ). The

GLRT for the signal detection and the active subspace detection problem is, respectively,

given by:

Tẑ(P̂S̄
k̂
)
H1

≷
H0

γ̄ and Tẑ(P̂S̄
k̂
)
H

k̂

≷
H0

γ̄. (2.12)

The proof of this theorem is given in Appendix 2.7.4, with corresponding discussion

in Sec. 2.4. The performance of the statistical tests in (2.12) is given by the following

theorem.

Theorem 6. The GLRTs for the signal and the active subspace detection problems in The-

orem 5 result in the probability of false alarm that is upper bounded by:

PFA ≤ min
{

1 ,

K0∑
k=1

Pr
(
Tŵ(P̂S̄k

) > γ̄
)}
. (2.13)

Further, signal detection probability PD =
∑K0

k=1 PSk
(Ĥ1) Pr(x ∈ Sk) can be upper

and lower bounded by the fact that

PSk

(
Ĥ1

)
≤ min

{
1 ,

K0∑
i=1

PSk

(
Tẑ(P̂S̄i

) > γ̄
)}
, and

PSk

(
Ĥ1

)
≥

K0∑
i=1

[
PSk

(
Tẑ(P̂S̄i

) > γ̄
)]2

K0∑
j=1

PSk

(
Tẑ(P̂S̄i

) > γ̄, Tẑ(P̂S̄j
) > γ̄

) . (2.14)

Finally, the probability of classification PC for active subspace detection can be lower
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bounded by the fact that

PHk
(Ĥk) ≥ max

{
0 , PSk

(Tẑ(P̂S̄k
) > γ̄)+

K0∑
j=1,j 6=k

PSk
(Tẑ(P̂S̄k

, P̂S̄j
) > 1)− (K0 − 1)

}
. (2.15)

The proof of this theorem is also similar to the proof of Theorem 2 and is thus omitted.

Similar to Theorem 4, the terms of the form PSk
(Tẑ(P̂S̄k

) > γ̄) and PSk
(Tẑ(P̂S̄k

, P̂S̄j
) > 1)

need to be computed numerically.

Remark 4. Similar to Remark 3, a looser lower bound can be derived here as well, with the

only difference being that T
N0σ2

ẑ (P̂S̄k
) is replaced by Tẑ(P̂S̄k

).

2.4 Discussion

In this section we discuss some characteristics of the various test statistics obtained in

Sec. 2.3. We also describe the impact of geometry of the subspaces in the union and the

geometry of the colored noise on the detection performances.

2.4.1 UoS detection versus classical subspace detection

First, we compare the test statistics for signal detection under the UoS model ((2.4),(2.8)

and (2.12)) with their counterparts under the subspace model [27, 28, 29, 30]. Under

the subspace observation model, the signal x is assumed to belong to a single subspace,

x = Hθ, where H contains the subspace bases. The corresponding test statistics for known

noise statistics, unknown noise covariance and unknown noise statistics are, respectively,

given by [27, 28, 29, 30]:

T 2σ2

z (PS̄)
H1

≷
H0

γ̄, T
N0σ2

ẑ (P̂S̄)
H1

≷
H0

γ̄, and Tẑ(P̂S̄)
H1

≷
H0

γ̄. (2.16)
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At a first glance, the test statistics for the UoS model and the subspace model look similar.

However, the numerator of the statistics for the subspace model corresponds to the energy

of the observed signal after projection onto the relevant subspace. In contrast, since we

deal with multiple subspaces, we have to rely on projection onto the subspace that captures

the most energy of the observed signal.

Figure 2.1: This figure highlights the difference between UoS- and classical subspace-
based detection of signals generated under the UoS model. The red and blue dots corre-
spond to noisy signals generated from a union of two subspaces, while the magenta dots
represent observations that do not belong to the union. UoS-based detection would be able
to reject the magenta observations, whereas subspace-based detection would accept them
as signals since they belong to the direct sum of the underlying subspaces.

Next, we discuss advantages of the UoS-based test statistics over the respective subspace-

based test statistics for signal detection. Under the assumption of the (noisy) signal being

generated under the UoS model, the test statistics derived in this chapter reject observations

that correspond to the “gaps” between the individual subspaces; see, e.g., Fig. 2.1, in which

observations in the gaps correspond to magenta-colored dots. In contrast, subspace-based

detection needs to resort to direct sum of the underlying subspaces in the union. This, in

turn, leads to higher false alarm rates since observations in gaps that belong to the direct
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sum are falsely accepted as signals; in Fig. 2.1, e.g., subspace-based detection will accept

all magenta observations as signals. We also refer the reader to Sec. 2.5 for numerical

validation of this fact.

Finally, the presence of multiple subspaces in the union also results in the problem

of active subspace detection, which does not arise in the context of classical subspace

detection as it only considers one underlying subspace.

2.4.2 Signal detection versus active subspace detection

Notice that the test statistics for active subspace detection have forms similar to those for

signal detection. The main difference lies in the performance of these statistics when de-

tecting either the signal or the active subspace. The detection performance for active sub-

space detection is lower than that for signal detection. This is due to the fact that for signal

detection, the detector is not concerned with detecting the true subspace from which the

observed signal is coming and can afford to confuse one subspace with another as long

as it detects the presence of a signal. That is not the case with active subspace detection,

where this confusion matters, and thus we observe the loss in performance. This fact was

also highlighted by Gini et al. in [24].

2.4.3 Invariance properties of the test statistics

We now examine the invariance properties of our test statistics for signal detection. Since

our test statistics for active subspace detection are similar to those for signal detection under

UoS model, they exhibit similar invariance properties.

From the expressions in (2.4), (2.8) and (2.12), notice that the statistics are invariant to

the rotations in S̄k̂. This means all rotated versions of the relevant signal (for rotations in S̄k̂)

will result in same detection performance. Moreover, the statistics also exhibit invariance

with respect to the translations in S̄⊥
k̂

(which is the orthogonal subspace of S̄k̂). This implies

that any additive interference from S̄⊥
k̂

is unnoticeable to the detectors since they only
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measure the energy of z in the subspace S̄k̂. Additionally, the test statistic for detection in

unknown noise statistics (2.12) is also invariant to the scaling of the observed signals, i.e.,

scaled versions of a signal will result in same detection performance with this test. This is

due to the fact that both numerator and denominator in (2.12) are quadratic forms of the

whitended/empirically whitened observations z, without any additive terms.

2.4.4 Influence of geometry between whitened subspaces on detection probability

The detection performance of our detector decreases only slightly as the angles between

the subspaces increase. This can be seen from an alternate expression for the probability

of union of events. For example, the probability of union of two events, A, and B, can

be written as: P (A ∪ B) = P (A) + P (B) − P (AB) = P (AB′) + P (A′B) + P (AB)

where A′, and B′ are the complements of the corresponding events. One can thus see

that the probability of union of events is directly proportional to the probability of the

intersection of events (and their complements). For the case of detection probability, these

intersections are k-tuples of the form
k
∩
j=1

{
T 2σ2

ẑ (P̂S̄j
) > γ̄

}
(and their complements). When

a pair (or more) of subspaces are close to each other, i.e., the principal angles between

whitened/empirically whitened subspaces are small, the probability of these k-tuples is

larger compared to when the subspaces are far apart.

Intuitively, since signal detection problem is not concerned with the detection of the

active subspace, confusing a (noisy) signal coming from one subspace as being generated

from another subspace does not matter significantly. In fact, this confusion helps the de-

tection task as long as a signal is actually present. Interestingly, when the subspaces are far

apart, i.e., principal angles are large, chances of such confusion are less and the probability

of detection is slightly decreased.
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2.4.5 Influence of geometry between whitened subspaces on correct classification probability

We now examine the influence of geometry between whitened subspaces on the probability

of correct classification. This analysis in particular sets us apart from other related works

such as [1, 2, 3, 24, 26], as we make the influence of geometry explicit through the principal

angles between subspaces. We start with the case of active subspace detection in known

noise statistics. The crux of our analysis is given in the following theorem.

Theorem 7. When the active subspaces are detected using the test in Theorem 1, the lower

bound on the probability of correct classification increases with increasing principal angles

between the whitened subspaces.

The proof of this theorem is detailed in Appendix 2.7.5. The following corollary can

also be obtained form Theorem 7.

Corollary 1. Suppose the noise is white Gaussian, i.e., n ∼ N (0, σ2I). When the active

subspaces are detected using the test in Theorem 1, the lower bound on the probability of

correct classification increases with increasing principal angles between the subspaces in

the union.

Similarly, in the case of other noise settings (unknown covariance and unknown noise

statistics), the probability of correct classification of individual subspaces increases with

increasing principal angles between the empirically whitened subspaces. This also follows

trivially from Theorem 7.

2.4.6 Influence of geometry of colored noise

To characterize the effect of noise geometry on two detection problems, we focus on the

terms zTPS̄k
z in (2.4). We can see that zTPS̄k

z = (x̄ + w)TPS̄k
(x̄ + w) = x̄TPS̄k

x̄ +
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Figure 2.2: This figure shows the effect of geometry of colored noise on two signals
coming from two different subspaces. The ellipse represents the covariance of the colored
noise with the green vectors representing the eigenvectors of the covariance. The blue
vectors x1 and x2 represent signals from the two different subspaces. The first operation
during whitening can be seen as rotation by QT to align the canonical bases with the noise
eigenvectors. The second operation of scaling by Λ−

1
2 scales each axis by the inverse of

the corresponding eigenvalue. Thus, the closer a subspace is to the leading eigenvectors of
noise covariance, the lower is its detection probability as it suffers more attenuation during
whitening.

2wTPS̄k
x̄ + wTPS̄k

w, where x̄ = R−
1
2 x. The norm of x̄ can be expressed as:

‖x̄‖2
2 = xTQΛ−1QTx = ‖Λ−

1
2 xQ‖2

2 =
m∑
i=1

(xQi )2

λi
(2.17)

where xQ = QTx, and R = QΛQT is the eigenvalue decomposition of R. The matrix

Λ contains the eigenvalues λ1 ≥ λ2 ≥ . . . λm on the diagonal and the matrix Q has

the eigenvectors of the covariance as its columns. Note that QT is a rotation matrix that
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rotates and aligns the canonical bases of the observation space with the eigenvectors of the

covariance, i.e., QT performs unscaled whitening. We can see from the last expression in

(2.17) that xQi for smaller values of i gets attenuated by a larger λi than xQi for larger values

of i (since λ1 ≥ λ2 ≥ . . . λm). This implies that subspaces (and signals) with more energy

in lower indices after unscaled whitening, suffer more attenuation and have a lower ‖x̄‖2.

Thus, subspaces (signals) closer to the higher-order eigenvectors of the covariance (i.e.,

eigenvectors corresponding to higher eigenvalues) end up having a lower ‖x̄‖2.

With slight algebraic manipulations, we can see also that ‖x̄‖2 (and other terms pro-

portional to it) appears in the numerator of our test statistics. This dictates that for same

signal-to-noise ratio (SNR), i.e., SNR =
‖x‖22
σ2 , a lower ‖x̄‖2 will result in a lower detection

probability. Thus we conclude that for the same SNR, subspaces with more energy closer

to the higher-order eigenvectors of the covariance have lower detection probability and vice

versa. This make intuitive sense: a subspace with more influence of noise (i.e., a subspace

that lives closer to the higher-order eigenvectors of the covariance) will have a lower de-

tection rate than a subspace with less influence of noise. A depiction of this observation is

shown in Fig. 2.2.

Since the same quadratic forms appear in the numerator of the test statistics for active

subspace detection, we also conclude from this discussion that the subspaces with more en-

ergy near the higher-order eigenvectors of the covariance have lower probability of correct

classification.

2.5 Numerical experiments

In this section, we present numerical experiments to examine the tightness of various

bounds derived in this chapter and verify the trends of performance metrics with respect to

the geometry of the subspaces.
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Figure 2.3: ROC curves for signal detection under the UoS model (labeled UoSD) and the
derived bounds. Each subfigure shows four plots under the UoS model: the upper union
bound on the detection probability, the true detection probability, the lower bound on the
detection probability, and the lower union bound. Starting from the top, the subfigures show
the ROC curves under known noise statistics, unknown noise covariance and unknown
noise statistics, respectively.
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2.5.1 Synthetic data

We run Monte-Carlo experiments for signal and active subspace detection problems under

different noise settings using synthetic data. Our general procedure for these experiments is

as follows: we consider a union of three 2-dimensional subspaces in a 4-dimensional space.

The subspaces are structured to highlight the effect of geometry between subspaces. The

first and third subspaces are fixed and the angles between them are kept constant. As for

the second subspace, we make different realizations of it with increasing principal angles

with respect to the first subspace. This process is repeated for different levels of false

alarm probabilities and SNR levels. The threshold for each false alarm level is determined

numerically. When unmentioned, the false alarm rate is upper bounded at 10−1 and the

SNR is 10 dB. Each experiment is averaged over 10000 trials.

Signal detection problem

The receiver operating characteristic (ROC) curve of signal detection for the tests derived

in this chapter, with their respective upper and lower bounds, is given in Fig. 2.3. We can

see that the lower union bound is much looser compared to the upper union bound and the

lower bound derived in the chapter. Moreover, Fig. 2.4 provides a comparison of different

noise scenarios, from which we conclude that the best performance is given under known

noise statistics.

Next, Fig. 2.5 shows the effect of subspace angles on the detection probability. We see

that the principal angles between whitened subspaces have indeed minimal effect on the

detection probability under known noise settings. A similar behavior can also be seen for

detection probability under other noise settings, but we omit those plots in the interest of

space.

To show the influence of the geometry of noise, we consider three 2-dimensional sub-

spaces in a 4-dimensional space and randomly generate a noise covariance matrix. We then

add noise to the eigenvectors of the noise covariance matrix and use them as bases for two
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Figure 2.4: ROC curves for signal (top) and active subspace (bottom) detection under the
UoS model for different noise settings.

of our subspaces. Starting from the eigenvectors corresponding to the smallest eigenvalues,

we successively pick n noisy eigenvectors for subspaces S1 and S2 in the union. The bases

of the third subspace S3 are generated randomly from a standard normal distribution. We
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Figure 2.5: The probability of detection with respect to the principal angles between
whitened subspaces when the noise statistics are fully known. The angles/whitened angles
between subspaces 1 and 3 are fixed, but the probabilities change due to changing angles
with subspace 2, and thus we see a vertical line for the detection probability with respect to
ϕ

(1,3)
1 and ϕ(1,3)

2 . For other angles, we see a minimal decrease in probability as the angles
increase.

noted in Sec. 2.4.6 that subspaces with more basis vectors closer to the higher-order eigen-

vectors of the noise covariance have lower ‖x̄‖2 and thus a lower detection probability, and

vice versa. This trend can be clearly seen in Fig. 2.6 for signal detection under each noise

setting.
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Figure 2.6: Each subfigure shows that the closer a subspace is to the higher-order eigen-
vectors of the noise covariance, the lower is its detection probability. On the x-axis we have
the average ‖x̄‖ over 12500 random signals for each subspace and the on y-axis we have
the detection probability. The subspace with bases closer to the higher-order eigenvectors
has lower ‖x̄‖ and thus lower detection probability.
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Active subspace detection problem

We now demonstrate that the probability of correct classification increases with increasing

principal angles between (whitened/empirically whitened) subspaces. This trend can be

seen in Fig. 2.7 for active subspace detection under known noise settings. Notice that for

subspace S2, the probability PS2(Ĥ2) first increases then decreases. This is because as we

keep increasing the angles between S1 and S2, S2 keeps moving closer to S3. Since S1

and S3 are fixed, the angles that S2 collectively makes with S1 and S3 first increase and

then decrease, resulting in the observed behavior for PS2(Ĥ2). This insight is verified in

Fig. 2.8 in terms of the plot of ϕ1,2
1 + ϕ2,3

1 as a function of the number of trials. Similar

trends for probabilities are seen under other noise settings, which are omitted due to space

constraints.

Next, we plot the ROC curves for the probability of correct classification and the various

bounds derived under different noise settings in Fig. 2.9. We see that the lower bounds

derived from [26] are very loose, compared to our lower bounds. A comparison of the

probability of correct classification under different noise settings is provided in Fig. 2.4.

We further show the influence of noise geometry on active subspace detection. We use

the same setup as for signal detection. We can see from Fig. 2.10 that subspaces closer to

the higher-order eigenvectors of the noise covariance have lower detection probability, and

vice versa.

Comparison with existing approaches

Of the existing methods, we can only compare the signal detection performance of the

GLRTs derived in this chapter with that of the subspace-based GLRTs. Indeed, the ac-

tive subspace detection problem under the UoS model has no counterpart in the classical

subspace model. Likewise, comparison with a simple GLRT (for signal detection) is also

infeasible as a simple GLRT requires knowledge of the signal template, whereas we only

assume access to the subspaces that generate the signal. In addition, as noted earlier in
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Figure 2.7: In known noise settings, the probability of correct classification increases with
the increasing principal angles between whitened subspaces.

the chapter, reliance of existing compressive detection frameworks on the use of measure-

ment matrices and (exponentially many, equiangular) random subspaces renders them im-

practical for UoS-based detection involving finitely many, arbitrary subspaces. In order

to compare UoS-based detection with the classical subspace detection, we consider three

2-dimensional subspaces in an 8-dimensional space. Subspace detection in this setting re-

quires projection of the observed signal onto the direct sum of the three subspaces. We

compare the probability of signal detection and probability of false alarm for both UoS

and subspace methods under the same SNR (5 dB) and the same detection threshold. The

results, provided in Fig. 2.11 for six different threshold values, show that the probability of
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Figure 2.8: Sum of minimum principal angles subspace S2 makes with subspace S1 and
subspace S3. As S2 moves away from S1, the average of this sum increases initially and
then decreases. The effect of this on the probability of classification PS2(Ĥ2) can be seen
in Fig. 2.7.

detection of the classical subspace method is slightly higher than the detection probability

under the UoS model. This is because the classical subspaces model considers the direct

sum of the subspaces instead of the union and ends up declaring irrelevant signals as detec-

tions. However, this in turn significantly increases the false alarm rate of signal detection

under the subspace model. In particular, it can be seen from Fig. 2.11 that the probability

of false alarm for the classical subspace detection far exceeds that of UoS-based detection.

Other observations

Fig. 2.12 shows the gap between detection and classification probabilities for different noise

settings and different SNR levels. We can see that the gap decreases for higher SNR levels.

We make a final observation by plotting the ROC curves under various noise settings

for different number of noise samples. From Fig. 2.13, we see that the gap between prob-

abilities for known noise settings and unknown noise covariance decreases as the number
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Figure 2.9: ROC curves for active subspace detection under the UoS model (labeled
UoSD) and the derived bounds. All subfigures show three plots: the true classification
probability under UoS, the lower bound on the classification probability computed numer-
ically and the lower bound derived using [26]. Starting from the left, the sub-figures show
the ROC curves under known noise statistics, unknown noise covariance and unknown
noise statistics.
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Figure 2.10: Each subfigure shows that the closer a subspace is to the higher-order eigen-
vectors of the noise covariance, the lower is its classification probability PHk

(Ĥk). The
setup here is similar to the one for Fig. 2.6.

Figure 2.11: Performance comparison of UoS-based and subspace-based detection of sig-
nals generated under the UoS model. Under all noise conditions, classical subspace detec-
tion incurs a significantly higher false alarm rate than UoS-based signal detection.

Figure 2.12: Gap between the probability of detection and the probability of correct clas-
sification under various noise settings. The two rows have SNR levels 10 dB and 5 dB,
respectively. We can see that higher SNR results in a lower gap.

of noise samples increases. This is since with increasing number of noise samples, our

estimates of noise statistics get better and we move closer to the regime of known noise
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statistics.

Figure 2.13: Gap between the ROC curves under various noise settings for different num-
ber of noise samples. Figures in the first row use 200 noise samples whereas the ones in
the second row use 8 noise samples.

2.5.2 Real-world datasets

In this subsection, we report results on some real-world datasets that potentially conform to

the UoS model. The first dataset we consider is the Salinas ‘A’ Scene Hyperspectral Data

[34]. This data was acquired by a 224-band AVIRIS sensor over Salinas Valley (California).

There are six target classes in the data. We assume each target class is lying in a different

subspace, thus modeling the set of targets as belonging to a union of subspaces. To obtain

the bases for the subspaces, we randomly select 20 pixels belonging to each target and use

singular value decomposition (SVD) to get the bases for 10-dimensional target subsapces.

For the Salinas ‘A’ Scene, the ground truth and the detected targets are shown in Fig. 2.14.

Assuming noise with unknown statistics and false alarm probability upper bounded at 5×

10−4, the targets are classified with the overall probability of correct classification 0.9116.



38

Next, the face of a subject with varying illumination conditions has been shown to lie

near a 9-dimensional subspace [35]. Thus a set of subjects can be assumed to lie near a

union of subspaces. Using this assumption, for the Yale Database B [36], we first obtain

subspace bases for each subject by using SVD on 18 randomly selected subject images.

With these bases and assuming unknown noise statistics, we correctly identify subjects

with probability 0.76 while upper bounding the false alarm rate at 1× 10−3.

The third dataset in consideration is the Hopkins 155 motion segmentation dataset [37],

which consists of sequences of two and three motions extracted from several videos. It

has been argued that different motion sequences extracted from tracking a set of points

in a video lie in 3-dimensional subspaces [37]. We again use SVD on randomly selected

sequences to learn the subspace bases. Using the UoS model with unknown noise statistics,

the probability of correct classification over all sequences comes out to be 0.7664 by upper

bounding the false alarm rate at 5× 10−2.

Figure 2.14: This figure shows the ground truth (left) for different classes in Salinas A
scene and the detected targets (right) using the UoS detector under unknown noise statistics.
The targets were detected with the classification accuracy of 91.16% when upper bounding
the false alarm rate at 5× 10−4.

Next, recall that one of the main theses of this chapter is that the geometry of subspaces

underlying a union impact the performance of active subspace detection. We now validate

this claim on real-world data using the Salinas ‘A’ hyperspectral and the Hopkins motion
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datasets. In the case of Salinas ‘A’ data, we select three targets whose underlying subspaces,

when compared to other targets in the data, have increasing minimum principal angle and

an increasing sum of principal angles (relative to the other subspaces). In the case of the

Hopkins motion dataset, we select 11 sequences from the data in a similar fashion. We

then carry out active subspace detection using the GLRTs derived in this chapter and report

the results in Fig. 2.15 for the selected targets and sequences under the same SNR and

detection thresholds. It can be seen from the figure that, even though the detection of

the selected targets/sequences is carried out under identical conditions, the probability of

correct classification of different targets/sequences varies as a function of the geometry of

subspaces in the union. In particular, targets/sequences whose cumulative principal angles

(relative to the subspaces of other targets/sequences) are larger result in higher probabilities

of correct classification and vice versa. These results, coupled with the ones reported for

synthetic data, confirm that geometry of subspaces play an integral role in the problem of

active subspace detection under the UoS model.

Figure 2.15: This figure shows the effects of geometry between subspaces for the Salinas
‘A’ hyperspectral and the Hopkins motion datasets. Three targets from Salinas ‘A’ data
and 11 sequences from Hopkins motion data are selected such that they have increasing
minimum and increasing cumulative principal angles with respect to the subspaces of other
selected targets/sequences. One can see from the plots that target/subspaces (indicated with
markers) having larger (cumulative) principal angles result in higher probabilities of correct
classification (and vice versa).
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2.5.3 Discussion

The experiments performed in Sec. 2.5.1 suggest that even though the bounds we obtain

for probabilities of detection and correct classification are loose, they still predict the effect

of subspace geometry on these probabilities correctly. In particular, we correctly predict

that as the angles between whitened subspaces increase, the probabilities of detection and

correct classification get higher, and vice-versa.

The results obtained in Sec. 2.5.2 for real-world datasets are not as good as some state-

of-the-art algorithms (e.g., see [37]). However, there are certain advantages that our ap-

proach enjoys over the state-of-the-art methods. The first advantage is that our detection

and classification methods allow control over the false alarm rate, which is not an option

for other methods. Secondly, our method can work with just enough data, i.e., we just need

enough samples to get good estimates of subspace bases and noise statistics. The third ad-

vantage is that our results explicitly cater to different levels of knowledge about the noise

statistics and include that information in the detection and classification processes.

2.6 Conclusion

We introduced GLRTs for signal and active subspace detection under the UoS model. We

analyzed the performance of the derived test statistics under various levels of knowledge

about noise and explained the effect of colored noise geometry and geometry between sub-

spaces on the detection and classification capabilities of these statistics. This was achieved

by obtaining bounds on detection and classification probabilities in terms of the angles be-

tween subspaces and the angles that subspaces make with the noise eigenvectors. We also

validated the insights of our analysis through Monte-Carlo experiments and experiments

with real-world datasets.
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2.7 Appendix

2.7.1 Proof of Theorem 1

In the case of the signal detection problem, the likelihoods under the two hypotheses are

given by:

l0(y) ∝ exp
(
− yTR−1y

2σ2

)
, and

l1(y) ∝ exp
(
− (y − x)TR−1(y − x)

2σ2

)
. (2.18)

Since x is unknown in (2.18), we replace it with its maximum likelihood (ML) estimate x̂,

which is given by arg mink(y−Hkθ)TR−1(y−Hkθ), where PSk
= Hk(H

T
kR−1Hk)

−1HT
kR−1 [27].

Consequently, the GLRT for this problem leads to the decision rule

l1(y)

l0(y)

H1

≷
H0

γ ⇔
yTR−1PS

k̂
y

2σ2

H1

≷
H0

γ̄, (2.19)

where k̂ = arg maxk(y
TR−1PSk

y), and γ̄ = log γ is the threshold used to control the

probability of false alarm. Now, with appropriate substitutions, we can rewrite the final

decision rule as: T 2σ2

z

(
PS̄

k̂

) H1

≷
H0

γ̄ with k̂ = arg maxk zTPS̄k
z.

Similarly, the likelihoods under different hypotheses for the active subspace detection

problem are given by:

l0(y) ∝ exp
(
− yTR−1y

2σ2

)
, and

lk(y) ∝ exp
(
− (y −Hkθk)

TR−1(y −Hkθk)

2σ2

)
, (2.20)

where k = 1, . . . , K0. Replacing the unknown θk’s in (2.20) with their ML estimates

θ̂k = (HT
kR−1Hk)

−1HT
kR−1y [27] and comparing the generalized likelihoods lead to the
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rule

lk̂(y)

l0(y)

H
k̂

≷
H0

γ ⇔
yTR−1PS

k̂
y

2σ2

H
k̂

≷
H0

γ̄. (2.21)

Making the same substitutions as before, the final decision rule becomes: T 2σ2

z

(
PS̄

k̂

) H
k̂

≷
H0

γ̄. �

2.7.2 Proof of Theorem 2

The probability of false alarm in the case of signal detection is given by:

PFA = PH0

(
Ĥ1

)
= PH0

(
T 2σ2

z (PS̄
k̂
) > γ̄

)
(a)
= Pr

(
T 2σ2

w (PS̄
k̂
) > γ̄

)
= Pr

(K0⋃
k=1

{
T 2σ2

w (PS̄k
) > γ̄

})
=

K0∑
k=1

Pr
(
T 2σ2

w (PS̄k
) > γ̄

)
−

K0∑
k<j

Pr

({
T 2σ2

w (PS̄k
) > γ̄

}⋂{
T 2σ2

w (PS̄j
) > γ̄

})
+

+ . . .+ (−1)K0−1Pr
(K0⋂
k=1

{
T 2σ2

w (PS̄k
) > γ̄

})
, (2.22)

where (a) follows because y|H0 = n. We cannot evaluate (2.22) explicitly since it con-

tains tail probabilities of k-tuples
k⋂
j=1

{
wT PS̄j

w

2σ2 > γ̄
}

, k = 1, . . . , K0. In particular, notice

that wTPS̄j
w is a quadratic form of the variable PS̄j

w and has a centered chi-squared

distribution. This means that the distribution of the k-tuple is the joint distribution of k

dependent chi-squared variables. These distributions exist in the literature for either inde-

pendent quadratic forms or dependent quadratic forms under particular settings [38, 39, 40,

41]. However, the quadratic forms in (2.22) are neither independent nor fall under these
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settings. We instead resort to upper bounding (2.22) by the union bound, i.e.,

PFA = Pr
(K0⋃
k=1

{
T 2σ2

w (PS̄k
) > γ̄

})
≤ min

{
1 ,

K0∑
k=1

Pr
(
T 2σ2

w (PS̄k
) > γ̄

)}
. (2.23)

Finally since, the null hypotheses for both signal and active subspace detection problems

are the same, they end up having the same probability of false alarm.

Next, for the probability of detection PD, note that

PSk

(
Ĥ1

)
= PSk

(K0⋃
i=1

{
T 2σ2

z (PS̄i
) > γ̄

})
(b)
=

K0∑
i=1

PSk

(
T 2σ2

z (PS̄i
) > γ̄

)
−

K0∑
i<j

PSk

({
T 2σ2

z (PS̄i
) > γ̄

}
,
{
T 2σ2

z (PS̄j
) > γ̄

})
− · · ·+ (−1)K0−1PSk

(K0⋂
i=1

{
T 2σ2

z (PS̄i
) > γ̄

})
(c)

≤ min
{

1 ,

K0∑
i=1

PSk

(
T 2σ2

z (PS̄i
) > γ̄

)}
, (2.24)

where (c) is again obtained using the union bound since the k-tuples in (b) cannot be

expressed in closed form. Further, the lower bound in (2.6) follows from [42, Theorem 1].

Finally for the probability of classification PC , we have:

PHk
(Ĥk) = PSk

(
{T 2σ2

z (PS̄k
) > γ̄},

K0⋂
j=1,j 6=k

{Tz(PS̄k
,PS̄j

) > 1}
)
. (2.25)

Since (2.25) cannot be evaluated explicitly as it involves dependent definite and indefinite
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quadratic forms, we lower bound it by using the Fréchet inequalities [43]:

PHk
(Ĥk) ≥ max

{
0 , PSk

(T 2σ2

z (PS̄k
) > γ̄)+

K0∑
j=1,j 6=k

PSk
(Tz(PS̄k

,PS̄j
) > 1)− (K0 − 1)

}
. (2.26)

We conclude by noting that one could use [26, Lemma 1] to further lower bound (2.26).

Specifically,

PSk
(Tz(PS̄k

,PS̄j
) > 1) = PSk

(zTP⊥S̄j
z− zTP⊥S̄k

z > 0)

= 1− PSk
(zTP⊥S̄j

z− zTP⊥S̄k
z < 0)

≥ 1−Q
(1

2
(1− 2η0)

√
λj\k

)
−Ψ(n, λj\k), (2.27)

where λj\k = 1
σ2 zTP⊥

S̄j
z when z ∈ S̄k. This leads to PHk

(Ĥk) ≥ max
{

0, PSk
(T 2σ2

z (PS̄k
) >

γ̄)−
∑
j:j 6=k

Q
(

1
2
(1− 2η0)

√
λj\k

)
−
∑
j:j 6=k

Ψ(η0, λj\k)
}

. �

2.7.3 Proof of Theorem 3

The results derived in this appendix closely follow the derivations in [30]. The likelihood

of ξp is given by:

l(ξp) =
1√

(2π)m|R|
exp

{−1

2
ξp
TR−1ξp

}
, (2.28)

which is used to get the joint likelihoods under each hypothesis H1 and H0: l0(y,Ξ) and

l1(y,Ξ), where Ξ = [ξ1, ξ2, · · · , ξN0 ]. From these joint likelihoods, the ML estimate of

R under H1 and H0 can be computed as R̂1 = N0

N0+1
Σ + (y−x)(y−x)T

σ2(N0+1)
and R̂0 = R̂1|x=0,

respectively.

Now, following the same steps as in the proof of Theorem 1, we can proceed to calculate

the final decision rule for signal detection as T
N0σ2

ẑ (P̂S̄
k̂
)
H1

≷
H0

γ̄, where k̂ = arg maxk(ẑ
T P̂S̄k

ẑ)
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and γ̄ = log γ.

Next, note that the likelihood in (2.28) combined with the likelihoods in (2.20) also pro-

vide the joint likelihoods under each hypothesis for the active subspace detection problem.

With trivial algebraic manipulations, the ML estimates of R in this case can be expressed

as:

H0 : R̂0 =
N0

N0 + 1
Σ +

yyT

σ2(N0 + 1)
, and

Hk : R̂k =
N0

N0 + 1
Σ +

(y − x)(y − x)T

σ2(N0 + 1)
, (2.29)

where x|Hk = Hkθk. Using the ML estimates of R and the joint likelihoods, we can

calculate the decision rule (similar to the proof of Theorem 1) as T
N0σ2

ẑ (P̂S̄
k̂
)
H

k̂

≷
H0

γ̄. �

2.7.4 Proof of Theorem 5

This proof uses derivations from the proof of Theorem 3. The only additional estimate we

need is for the variance σ2 which can be found from the joint likelihoods with the estimate

R̂ substituted in them. This results in:

σ̂2|H1 =
N0 −m+ 1

N0m
(y − x)TΣ−1(y − x), and

σ̂2|H0 =
N0 −m+ 1

N0m
yTΣ−1y. (2.30)

The ML estimate of x in this case is the same as in the proof of Theorem 1. Putting

these estimates together, we arrive at the final decision rule Tz(PS̄
k̂
)
H1

≷
H0

γ̄, where k̂ =

arg maxk(ẑ
T P̂S̄k

ẑ) and γ̄ = log γ.

Similarly, the active subspace detection problem takes the same from as in Theorem 3

with an additional unknown variable σ2. However, we can use the previously calculated

ML estimates of σ2, R, and x to arrive at the final decision rule of Tẑ(P̂S̄
k̂
)
H

k̂

≷
H0

γ̄. �



46

2.7.5 Proof of Theorem 7

To get a better understanding of the parameters that effect the probability of correct classifi-

cation, we analyze the terms PSk
(Tz(PS̄k

,PS̄j
) > 1) in (2.7) since these terms characterize

the interactions between the whitened subspaces. Assuming x ∈ Sk, notice that:

Tz(PS̄k
,PS̄j

) > 1⇔ zTPS̄k
z > zTPS̄j

z

⇔ (x̄ + w)TPS̄k
(x̄ + w) > (x̄ + w)TPS̄j

(x̄ + w)

(a)⇔ wTPS̄k
w −wTPS̄j

w >

− x̄T x̄ + x̄TPS̄j
x̄− 2wT x̄ + 2wTPS̄j

x̄, (2.31)

where x̄ = R−
1
2 x is the whitened signal. We now focus on the quadratic forms x̄TPS̄j

x̄

and wTPS̄j
x̄ in (2.31) because these are the terms where different subspaces interact with

each other and that can be expressed in terms of the principal angles between whitened sub-

spaces. Using the derivation provided in Appendix 2.7.6, we can bound PSk
(Tz(PS̄k

,PS̄j
) >

1) as:

PSk
(wTPS̄k

w −wTPS̄j
w > −x̄T x̄ + x̄TPS̄j

x̄

− 2wT x̄ + 2wTPS̄j
x̄)

≥ PSk

(
‖n‖2

2(cos2 ψk − cos2 ψj) >

−
n∑
i=1

θ2
ki sin

2 ϕ
(k,j)
i + 2

n∑
i<p

|θkiθkp| cosϕ
(k,j)
i cosϕ(k,j)

p

+ ‖n‖2 cosψj

( n∑
i=1

θ2
ki cos2 ϕ

(k,j)
i

) 1
2 − ‖n‖2 cosψk

( n∑
i=1

θ2
ki

) 1
2

+ ‖n‖2 cosψj

(
2

n∑
i<p

|θkiθkp| cosϕ
(k,j)
i cosϕ(k,j)

p

) 1
2
)
, (2.32)

where ϕ(k,j)
i is the angle that gki (i-th basis vector of whitened subspace S̄k, i.e., i-th col-

umn of Gk) makes with the whitened subspace S̄j , ϕ
(k,j)
ip is the angle between gk→ji and
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gk→jp (i.e., the angles between the i-th and p-th basis vectors of whitened subspace S̄k after

projection onto the whitened subspace S̄j) and ψj is the angle between w and the whitened

subspace S̄j .

This lower bound on PSk
(Tz(PS̄k

,PS̄j
) > 1) is dependent on the principal angles ϕ(k,j)

i

between the whitened subspace S̄k and S̄j . In particular, we can see that as the principal

angles ϕ(k,j)
i increase, the bound on the right hand side of the inequality (a) in (2.31)

becomes smaller. This implies that lower bound on the tail probability in (2.32) becomes

larger as the principal angles increase. This trend holds for all pairs of whitened subspaces

S̄j and S̄k (for j, k = 1, . . . , K0 and j 6= k). This means that the lower bound for PHk
(Ĥk)

in (2.7) also increases with increasing principal angles between the whitened subspaces.

We conclude by noting that this trend can also be derived from the lower bound expres-

sion in Remark 1. The quantities Q() and Ψ() in that expression are functions of λj\i and

decrease monotonically as λj\i is increased [26]. This means that an increase in λj\i will

result in an increase in the probability of correct classification. Since λj\i can be expressed

as λj\i = 1
σ2 zTP⊥

S̄j
z = 1

σ2

(
zTz−zTPS̄j

z
)

= 1
σ2

(
zTz− x̄TPS̄j

x̄−2wTPS̄j
x̄−wTPS̄j

w
)
,

one can use results from Appendix 2.7.6 to once again argue that as the angles between

whitened subspaces increase, the lower bound on λj\i increases which in turn results in

larger (lower) bound on the probability of correct classification. �

2.7.6 Probability bound on ratio of quadratic forms

The outline of our procedure for deriving a lower bound on the probability of the compar-

ison of quadratic forms is as follows: we first express x̄TPS̄j
x̄ and wTPS̄j

x̄ in terms of

the principal angles between whitened subspaces. We then obtain upper bounds on these

quadratic forms that depend on the principal angles. Next we put these upper bounds in

the expression for the probability of correct classification of the individual subspaces and

finally we derive a lower bound on the probability of correct classification that is dependent

on the principal angles between the whitened subspaces.
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Let’s consider x̄TPS̄j
x̄ when x ∈ Sk:

x̄TPS̄j
x̄ = ‖PS̄j

x̄‖2
2

(a)
= ‖PS̄j

Gkθk‖2
2

(b)
= ‖θk1g

k→j
1 + · · ·+ θkng

k→j
n ‖2

2

(c)
=

n∑
i=1

‖θkigk→ji ‖2
2 + 2

n∑
i<p

〈θkigk→ji , θkpg
k→j
p 〉,

=
n∑
i=1

θ2
ki‖gki ‖2

2 cos2 ϕ
(k,j)
i +

2
n∑
i<p

|θki|‖gki ‖2 cosϕ
(k,j)
i |θkp|‖gkp‖2 cosϕ(k,j)

p cosϕ
(k,j)
ip (2.33)

where ϕ(k,j)
i are as defined in Appendix 2.7.5. Note that (a) in (2.33) follows from x̄ =

Gkθk, (b) uses the notation gk→ji = PS̄j
gi and (c) uses the identity ‖a + b‖2

2 = ‖a‖2
2 +

‖b‖2
2 + 2〈a,b〉.

Now, if we assume gki ’s to be the unit-norm principal vectors of S̄k, we can bound

(2.33) as x̄TPS̄j
x̄ ≤

n∑
i=1

θ2
ki cos2 ϕ

(k,j)
i +2

n∑
i<p

|θki| cosϕ
(k,j)
i |θkp| cosϕ

(k,j)
p . Similarly we have

wTPS̄j
x̄ ≤ ‖n‖2 cosψj

( n∑
i=1

θ2
ki cos2 ϕ

(k,j)
i

) 1
2
+‖n‖2 cosψj

(
2
n∑
i<p

|θki| cosϕ
(k,j)
i |θkp| cosϕ

(k,j)
p

) 1
2

, where we have used the fact that
√
a+ b ≤

√
a +
√
b and ψj is the angle between w and

the whitened subspace S̄j . Substituting these upper bounds in (2.31) we get:

‖n‖2
2(cos2 ψk − cos2 ψj) > −

n∑
i=1

θ2
ki sin

2 ϕ
(k,j)
i +

2
n∑
i<p

|θkiθkp| cosϕ
(k,j)
i cosϕ(k,j)

p +

‖n‖2 cosψj

( n∑
i=1

θ2
ki cos2 ϕ

(k,j)
i

) 1
2 − ‖n‖2 cosψk

( n∑
i=1

θ2
ki

) 1
2

+ ‖n‖2 cosψj

(
2

n∑
i<p

|θkiθkp| cosϕ
(k,j)
i cosϕ(k,j)

p

) 1
2
, (2.34)

which can be used to obtain (2.32). �
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CHAPTER 3

LEARNING PRODUCT GRAPHS UNDERLYING SMOOTH GRAPH SIGNALS

3.1 Introduction

Graph signal processing (GSP) is an emerging field in data science and machine learning

that aims to generalize existing information processing methods to data that live on an

irregular domain. This underlying irregular domain can be represented as a graph and

analysis of signals on the vertices of this graph, aptly named graph signals, is enabled by

the graph shift operator (GSO). Recent developments in GSP have already established that

GSO-based data processing outperforms classical signal processing for several common

tasks such as noise removal, signal filtering, wavelet representations, etc. [4, 5, 6, 7, 8].

The GSO is at the core of graph signal processing and could refer to either the adjacenecy

matrix or one of the many types of Laplacian matrices associated with a graph. The exact

choice of the GSO depends on the signal domain and the application of interest. The

eigenvectors of GSO provide bases for the spectral analysis of graph signals and generalize

the concepts of bandlimited signals to the graph domain [4, 5, 6, 7, 8]. GSO also facilitates

the synthesis of graph-based filters [44, 45] and plays a pivotal role in the description of

the notion of smoothness for graph signals [4, 5, 6, 7, 8].

The underlying graph (and hence the GSO) for some real-world datasets is either known

apriori, or can trivially be constructed through domain knowledge. As an example, consider

weather data collected over a region. In this example, different weather stations would act

as nodes, their observations as graph signals, and one (possible) way to construct the graph

would be to connect physically adjacent nodes. For most real-world data, however, such

a trivially constructed graph is either non-optimal or it cannot be constructed in the first

place due to lack of precise knowledge about the data generation process. This presents the
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need to learn the true underlying graph from the data itself. In this regard, the problem of

graph learning from the observed data (i.e., graph signals) has gained a lot of attention in

the recent years [44, 46, 45, 47, 15, 48, 49, 50, 4].

Graph learning refers to the problem of learning an unknown underlying graph from

observed graph signals by exploiting some property of the graph signals. Traditional ap-

proaches for graph learning have proposed algorithms whose best-case complexity scales

quadratically with the number of nodes in the graph [49, 15, 51, 47, 48]. These approaches

might be suitable for learning small graphs, but even for moderately sized graphs the learn-

ing cost would be prohibitive. Moreover, for learning an arbitrary graph (Laplacian), the

number of parameters one needs to learn also scale quadratically with the number of nodes.

Both of these problems hinder the amenability of traditional graph learning approaches to

large-scale real-world datasets. Our work on graph learning, in contrast, hinges on the

fact that real-world data is often generated over graphs that have an additional inherent

structure. This inherent structure is dictated by either the way the data is acquired, by the

arrangement of the sensors, or by the inherent relation of variables being observed [6].

Moreover, this inherent structure of the graph being considered also presents itself in the

associated GSO, which can incidentally be represented in terms of the product of several

smaller factor GSOs. In this chapter, we will focus on three such structures that can be

described in terms of three different products termed Kronecker, Cartesiasn and strong

products. Although aware of the presence of these product structures in real-world graphs

(and the associated GSOs) [6], the research community has yet to propose algorithms that

incorporate the graph product structure in the graph learning procedure. Additionally, as

the number of free parameters scales quadratically with the number of nodes in the graph,

given the massive nature of the datasets available today, it has become imperative to devise

methods that fully utilize the product structure of graphs to reduce the number of parame-

ters to be learned. Moreover, posing the problems in terms of smaller factor graphs instead

of the graph itself can enable efficient data representation [6], and result in reduced sample
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complexity as one has to learn fewer parameters. To this end, the main objective of this

work is to investigate the problem of learning product graphs from data in an efficient and

scalable manner.

3.1.1 Prior work

The existing works in graph signal processing can mainly be divided into four chronologi-

cal categories. The first set of works in GSP introduced the idea of information processing

over graphs [7, 5, 8]. These works highlight the advantages and superior performance of

graph-based signal processing approach (with known underlying graph) over classical sig-

nal processing. The second wave of research in this area built upon the first one to exploit

knowledge of the underlying graph for graph signal recovery from samples obtained over

a subset of graph nodes or from noisy observations of all nodes [16, 52]. Through these

works, the idea of bandlimitidness was extended to graph signals and the concept of smooth

graph signals was introduced. Since the underlying graph is not always available before-

hand, the third wave of GSP analyzed the problem of recovering the underlying graph

through observations over the graph [44, 46, 45, 47, 15, 48, 49]. Finally, the fourth wave

of research in GSP has focused on joint identification of the underlying graph and graph

signals from samples/noisy observations using interrelated properties of graph signals and

graphs [50, 53, 54, 49].

Within the third set of papers in GSP, our work falls in the category of combinato-

rial graph Laplacian estimation [47, 15, 48, 49] from graph signals. Combinatorial graph

Laplacian refers to the unnormalized Laplacian of an unstructured graph with no self loops

[48]. The earliest of works in this category [49] aims to jointly denoise noisy graph signals

observed at the nodes of the graph and also learn the graph from these denoised graph sig-

nals. The authors pose this problem as a multiconvex problem in the graph Laplacian and

the denoised graph signals, and then solve it via an alternating minimization approach that

solves a convex problem in each unknown. The authors in [46] examine the problem of
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graph Laplacian learning when the eigenvectors of the graph Laplacian are known before-

hand. They achieve this by formulating a convex program to learn a valid graph Laplacian

(from a feasible set) that is diagonalized by the noiseless and noisy Laplacian eigenvectors.

The work in [47] takes a slightly different route and learns a sparse unweighted graph

Laplacian matrix from noisy graph signals through an alternating minimization approach

that restricts the number of edges in the graph. In contrast to earlier work, [44] focuses

on learning a graph diffusion process from observations of stationary signals on graphs

through convex formulations. In this regard, the authors also consider different criteria in

addition to searching for a valid Laplacian and devise specialized algorithms to infer the

diffusion processes under these criteria. In [51, 15] the graph learning problem is adressed

by posing it in terms of learning a sparse weighted adjacency matrix from the observed

graph signals. Finally, the authors in [48] provide a comprehensive unifying framework for

inferring several types of graph Laplacians from graph signals. They also make connection

with the state-of-the-art and describe where the past works fit in light of their proposed

framework.

It should be mentioned here that since Laplacian matrices (and thus adjacency matrices)

are related to precision matrices, defined as the (pseudo-)inverses of covariance matrices,

imposing a structure on the graph adjacency matrix amounts to imposing a structure on the

covariance of data. Earlier works in the field have already made comparisons of Laplacian

learning approaches with those for learning precision matrices from data [49, 48], and

established the superior graph recovery performance of Laplacian-based learning. Some

recent works have also investigated learning structured covariance and precision matrices,

and their usefulness in efficiently representing real-world datasets [55, 56, 57]. While these

models work well in practice, we will demonstrate through our experiments that there are

scenarios where graph-based learning outperforms structured covariance-based learning

(see Sec. 4.5 for details).
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3.1.2 Our contributions

Our first contribution in this work is a novel formulation of the graph learning problem as

a linear program. We show, both theoretically and empirically, that graph adjacency ma-

trices can be learned through a simple and fast linear program. We then shift our attention

towards learning structured graphs. Prior works regarding graph learning have only con-

sidered arbitrary graphs with either some connectivity constraints [15], or no constraints at

all [45, 49]. In all cases, the complexity of the graph learning procedure and the number

of free parameters scale quadratically with the number of nodes in the graph, which can be

prohibitively large in real-world scenarios. In contrast, our work focuses on inferring the

underlying graph from graph signals in the context of structured graphs. Specifically, we

investigate graphs that can be represented as Kronecker, Cartesian, and strong products of

several smaller graphs. We first show how, for these product graphs, the graph adjacency

matrix, the graph Laplacian, the graph Fourier transform, and the graph smoothness mea-

sure can be represented with far fewer parameters than required for arbitrary graphs. This

reduction in number of parameters to be learned results in reduced sample complexity and

helps avoid overfitting. Afterwards, we outline an algorithm to learn these product graphs

from the data and provide convergence guarantees for the proposed algorithm in terms of

the estimation error of factor graphs. We validate the performance of our algorithm with

numerical experiments on both synthetic and real data.

3.1.3 Organization

The rest of this chapter is organized as follows. In Sec. 3.2 we give a probabilistic formu-

lation of the graph learning problem in line with existing literature. Then, we propose our

novel formulation of the graph learning problem as a liner program in Sec. 3.3. Sec. 3.4 de-

scribes the motivation for product graphs and formulates the graph learning problem in the

context of product graphs. In Sec. 3.5 we propose an algorithm for learning product graphs

from data and derive error bounds on estimated factor graphs. We present our numerical
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experiments with synthetic and real datasets in Sec. 4.5, and the chapter is concluded in

Sec. 3.7.

3.2 Probabilistic problem formulation

In this section we formulate the arbitrary graph learning problem from a probabilistic stand-

point. Let as assume access tom = 1, . . . ,M0 graph signals xm ∈ Rn observed on n nodes

of an undirected graph G = {V,E} without any self loops, where V and E represent the

nodes and edges of the graph. The weighted edges of this graph G can be represented

as a weighted adjacency matrix W ∈ Rn×n, which has a zero diagonal owing to no self-

loops in the graph. Based on the adjacency matrix W, one can define the degree matrix

D = diag(W1), which is a diagonal matrix containing the weighted degree of each node at

the respective diagonal entry. The associated unnormalized graph Laplacian for G can then

be defined as L = D −W. The adjacency matrix W of the graph can be decomposed as

UΛUT and its eigenvectors define the graph Fourier basis for the graph Fourier transform

[6].

The signals observed on the nodes of a graph are assumed to have a joint distribution

given by a multivariate normal distribution, i.e., xm ∼ N (0,L†), where L† is the pseudoin-

verse of L and L represents the graph Laplacian. In words, signals generated over a graph

can be seen as being generated over a Gaussian Markov Random Field (GMRF) whose

precision matrix is the graph Laplacian [49]. Given independent observations {xm}, the

maximum likelihood estimate (MLE) of L can be expressed as:

L̂ = arg max
L∈L

|L|
M0
2 exp(−1

2

M0∑
m=1

xTmLxm)

= arg min
L∈L

− log |L|+ 1

M0

M0∑
m=1

xTmLxm, (3.1)

where L represents the class of valid Laplacians, i.e., a symmetric positive semi-definite
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matrix with rows that sum to zero and nonpositive off-diagonal entries. With the Laplacian

constraints, the problem in (3.1) can be further expressed as:

L̂ = arg min
L

− log |L|+ 1

M0

M0∑
m=1

xTmLxm

s.t. L1 = 0, trace(L) = n, (L)ij = (L)ji ≤ 0. (3.2)

Interactions in the real world tend to be mostly local, and thus not all nodes in a graph

are connected to each other in real-world datasets. To impose only local interactions, usu-

ally a sparsity term regularizing the off-diagonal entries of the Laplacian matrix is added to

the graph learning objective to learn sparse graphs. Therefore, traditional graph learning

approaches [51, 49, 56, 57] take a form similar to the following:

L̂ = arg min
L

− log |L|+ α

M0

M0∑
m=1

xTmLxm + β‖L‖1,off

s.t. L1 = 0, trace(L) = n, (L)ij = (L)ji ≤ 0, (3.3)

where ‖L‖1,off represents a sparsity penalty on the off-diagonal entries of L, the parameter

α > 0 controls the penalty on the quadratic term, and the parameter β > 0 controls the

density of the graph. In the following section, we show that the traditional graph learning

problem can be significantly simplified and that arbitrary graphs can actually be learned

through a simple linear program.

3.3 Graph learning as a linear program

Let us start by inspecting the traditional graph learning problem in (3.3). In particular, let us

first focus on the term log |L| in the objective function and the constraint trace(L) = n. We

can express this log-determinant term in the objective as log |L| =
∑n

i=1 log λi, where λi

is the i-th largest eigenvalue of L. Thus, through this log |L| term, the MLE constrains the
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spectrum of the Laplacian matrix to be estimated. However, for our problem of estimating

the Laplacian matrix, the constraint trace(L) =
∑n

i=1 λi = n, is already putting a hard con-

straint on the sum of eigenvalues of the Laplacian matrix. Moreover, the constraint L1 = 0

is forcing the smallest eigenvalue of the Laplacian to be zero. In the presence of these con-

straints, the log-determinant regularization in the objective function is no longer necessary

to arrive at a valid Laplacian matrix or to avoid trivial solutions. Another advantage of

removing the log-determinant term is the massive savings in computational complexity as

this term forces one to employ singular value decomposition at each step of the learning

algorithm [56, 57].

Let us also examine the term
∑M0

m=1 xTmLxm in the objective in (3.1). This term comes

from the likelihood of the observed signals with the Laplacian as the precision matrix, and

also represents the sum of Dirichlet energy or “smoothness” of the observed graph signals

[51, 49, 48]. It has been shown in the existing literature [51] that this term can be expressed

as a weighted sparsity regularization on the graph adjacency matrix as
∑M0

m=1 xTmLxm =

trace(XTLX) = ‖W ◦ Z‖1. Here X is the data matrix with xm as the m-th column,

and Z is the matrix of pairwise distances between rows of X such that (i, j)-th entry in

Z is the euclidean distance between the i-th and j-th row of X. This implies that the

sum of Dirichlet energy in the objective implicitly regularizes the sparsity of W and thus

controls the density of edges in the graph. Therefore, presence of this term in the objective

eliminates the need to explicitly regularize the sparsity of the graph to be learned.

In light of the preceding discussion, we propose to solve the following linear program

[58] for learning graphs:

L̂ = min
L

α

M0

M0∑
m=1

xTmLxm

s.t. L1 = 0, trace(L) = n, (L)ij = (L)ji ≤ 0, (3.4)

where α is a regularization parameter that controls the smoothness of the graph signals and
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thus the sparsity of edges in the graph.

3.3.1 Fast solver for the graph learning linear program

We now present an algorithm, named Graph learning with Linear Programming (GLP), for

solving the linear graph learning problem (3.4). To proceed, note that the objective term in

the graph learning problem can be reformulated as:

1

M0

M0∑
m=1

xTmLxm =
1

M0

M0∑
m=1

(xTmDxm − xTmWxm)

=
1

M0

M0∑
m=1

(xTmdiag(W1)xm − xTmWxm)

=
1

M0

M0∑
m=1

(xTmdiag(xm)W1− xTmWxm)

=
1

M0

M0∑
m=1

(x̄TmW1− xTmWxm)

=
1

M0

M0∑
m=1

trace(x̄TmW1− xTmWxm)

=
1

M0

trace
[
W

M0∑
m=1

1x̄Tm −W

M0∑
m=1

xmxTm

]
= trace

[
W
( M0∑
m=1

1x̄Tm −
M0∑
m=1

xmxTm

)
/M0

]
= trace(WS̃) = vec(S̃)Tvec(W) = s̃TMw, (3.5)

where the matrix S̃ = (
M0∑
m=1

1x̄Tm −
M0∑
m=1

xmxTm)/M0, the vector x̄Tm = xTmdiag(xm) = xTm ◦

xTm, vec(W) = Mw, w is a vector of distinct elements from upper triangular part of the

symmetric matrix W, and M is the duplication matrix that duplicates the elements from

w to generate a vectorized version of W. With this rearrangement of the objective and the
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adjacency matrix, our graph learning problem can be posed as follows:

ŵ = min
w

α s̃TMw

s.t. Aw = b, wi ≥ 0, i ∈ F, (3.6)

where A is a matrix that represents the equality constraints from (3.4) in terms of equality

constraints on w, b = [0T , n]T , and F is the set containing the indices of the off-diagonal

elements in w. Once the solution ŵ is obtained, it can be converted to the symmetric

adjacency matrix Ŵ, which can then be used to get L̂.

The standard way of solving a linear program with mixed (equality and inequality) con-

straints is through interior point methods whose complexity scales quadratically with the

problem dimension [58]. A better alternative is to deploy a first-order method whose per-

iteration complexity is linear in the number of nonzero entries of A. However, a first-order

method would exhibit slow convergence for a linear program because of the lack of smooth-

ness and strong convexity in linear programs [59]. To overcome these issues, linear pro-

grams have been solved through the Alternating Direction Method of Multiplier (ADMM)

[60, 59]. To solve our proposed linear formulation of graph learning, we follow a recent

algorithm proposed in [59]. This ADMM-based algorithm for linear programs proposed a

new variable splitting scheme that achieves a convergence rate ofO(‖A‖2 log(1/ε)), where

ε is the desired accuracy of the solution. To this end, we start by modifying the original

graph learning problem with the introduction of an additional variable y as follows:

ŵ = min
w

cTw

s.t. Aw = b, w = y, yi ≥ 0, i ∈ F, (3.7)

where c = αMT s̃. The corresponding augmented Lagrangian can then be expressed as
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Algorithm 1: : GLP—ADMM for graph learning with linear programming
Input: Observations {xm}M0

m=1, maximum iterations T0, and parameter α, ρ > 0
Initialize: y(1) ← 0 , z(1) ← 1

for t = 1 to T0

e(t+1) ← −AT
w[z(t) + ρ(Ayy(t) − b̃)]− c

w(t+1) ← ρ−1(I + ATA)−1e(t+1)

y(t+1) ← [w(t+1) + z
(t)
y /ρ]>

F
0

z(t+1) ← z(t) + ρ(Aww(t+1) + Ayy(t+1) − b̃)
end

Output: Final adjacency estimate ŵ← w(t+1).

follows:

L(w,y, z) = cTw + h(y) + zT (Aww + Ayy − b̃) + ρ/2‖Aww + Ayy − b̃‖2
2, (3.8)

where h(y) denotes the non-negativity constraint on the entries of y indexed by F , i.e.,

∀i ∈ F , h(y) = 0 when yi ≥ 0, and h(y) = ∞ when yi < 0. Moreover, z = [zTw, z
T
y ]T ,

zw and zy are the Lagrange multipliers, Aw = [AT , I]T , Ay = [0,−I]T , and finally

b̃ = [bT ,0T ]T . One can then use ADMM to go through the steps outlined in Algorithm 1

until convergence to obtain ŵ.

In Algorithm 1, [·]>
F

0 is entrywise thresholding that projects the entries with indices in F

to the nonnegative orthant. As we can see from the algorithm, all updates have closed-form

solutions and the most computationally expensive step is the w(t+1) update that involves

matrix inversion. This matrix inversion, however, can be computed efficiently using the

identity (I + ATA)−1 = I − AT (I + AAT )−1A. Since matrix A is a fat matrix, AAT

has smaller dimensions than ATA. Moreover, one can easily see that AAT is a matrix of
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dimensions (n+ 1)× (n+ 1), and

AAT =



cn 1 1 . . . 1

1 1 0 . . . 0

1 0 1 . . . 0

...
...

... . . . ...

1 0 0 . . . 1


. (3.9)

where cn = 2n2 − n. In addition, the inverse only needs to be computed once at the

start of the algorithm since this matrix is deterministic and depends only on the size of the

adjacency matrix being estimated.

3.3.2 Parameter and computational complexities

The number of parameters that one needs to learn a graph adjacency matrix is n(n+1)
2

. This

implies that the number of unknown parameters scales quadratically with the number of

nodes in the graph. Additionally, the per-iteration computational complexity of the pro-

posed method also scales quadratically with the number of nodes [59]. The same compu-

tational and memory complexities also hold for the existing state-of-the-art graph learning

algorithms [49, 15, 51, 47, 48]. However, while these complexities are manageable for

small graphs, for real-world datasets with even hundreds of nodes the current methods be-

come prohibitive. To overcome these issues, we will next examine the problem of learning

product graphs from data.

3.4 Why product graphs?

In this section we briefly review product graphs and their implications towards graph learn-

ing. We investigate how product graphs provide a way to efficiently represent graphs with

a huge number of nodes, and we revisit the notion of smoothness of signals over product

graphs.
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Let us consider K0 graphs Gk = {Vk, Ek}, for k = 1, . . . , K0, where Vk and Ek

represent the vertices and edges of the k-th graph. The product of these graphs would

result in a product graph G = {V,E}, with V and E representing the vertices and edges

of the resultant graph. The three most commonly investigated graph products and their

respective adjacency matrices are discussed below. Note that graph adjacency matrices

are considered in this work because each kind of product structure is directly reflected in

adjacency matrix of the resultant graph.

3.4.1 Kronecker graphs

For the Kronecker product of graphs Gk, for k = 1, . . . , K0, with adjacency matrices Wk,

the Kronecker product graph can be expressed as G = ⊗
[K0]

Gk = GK0 ⊗GK0−1⊗ · · · ⊗G1.

The respective Kronecker-structured adjaceny matrix of the resultant graph can written in

terms of component/factor adjacency matices as W = ⊗
[K0]

Wk. Additionally, if the factor

adjacency matrix Wk can be expressed via eigenvalue decomposition (EVD) as Wk =

UkΛkU
T
k , then the Kronecker adjaceny matrix can be written as (using the properties of

the Kronecker product [6]):

W = (UK0ΛK0U
T
K0

)⊗ · · · ⊗ (U1Λ1U
T
1 )

= ( ⊗
[K0]

Uk) ( ⊗
[K0]

Λk) ( ⊗
[K0]

WT
k ) = UΛkronU

T . (3.10)

One can see that both the eigenmatrix and the eigenvalue matrix of the Kronecker adjacency

matrix have a Kronecker structure in terms of the component eigenmatrices and component

eigenvalue matrices, respectively. Given the number of edges in the component graphs are

|Ek|, the number of edges in the Kronecker graph are |E| = 2K0−1
K0∏
k=1

|Ei|.

An example of Kronecker product graph is the bipartite graph of a recommendation sys-

tem like Netflix [61] where the graph between users and movies can be seen as a Kronecker

product of two smaller factor graphs. In fact, the adjacency matrix of any bipartite graph
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can be represented in terms of a Kronecker product of appropriate factor matrices [62]. As

adjacency matrices are also closely related to precision matrices (i.e. inverse covariance

matrices), and inverse of Kronecker product is Kronecker product of inverses [6], impos-

ing Kronecker structure on the adjacency matrix also amounts to imposing a Kronecker

structure on the covariance matrix of the data.

The optimization problem in (3.4) can be specialized to the case of learning Kronecker

graphs by explicitly imposing the Kronecker product structure on the adjacency matrix

and posing the problems in terms of the individual factor adjacency matrices, rather than

the bigger adjacency matrix produced after the product. This leads us to the following

nonconvex problem for learning Kronecker graphs:

min
{Wk∈W}

K0
k=1

α

M0

trace

[[
⊗

[K0]
Wk

]( M0∑
m=1

1x̄Tm −
M0∑
m=1

xmxTm

)]
. (3.11)

3.4.2 Cartesian graphs

The Cartesian product (also called Kronecker sum product) of graphs Gk is represented as

G = ⊕
[K0]

Gk = GK0⊕GK0−1⊕· · ·⊕G1. The correspoding cartesian adjacency matrix can be

written in terms of the component adjacency matrices as W = ⊕
[K0]

Wk. Furthermore, with

the EVD of the component adjacency matrices, the Cartesian adjacency can be decomposed

as [6]:

W = (UK0ΛK0U
T
K0

)⊕ · · · ⊕ (U1Λ1U
T
1 )

= ( ⊗
[K0]

Uk) ( ⊕
[K0]

Λi) ( ⊗
[K0]

WT
k ) = UΛcartU

T . (3.12)

This means that the eigenmatrix and the eigenvalue matrix of the Cartesian adjacency ma-

trix are represented, respectively, as Kronecker and Cartesian products of component eigen-

matrices and eigenvalue matrices. The number of edges in the Cartesian graph can be found

as |E| =
∑K0

k=1( ⊗
[K0]\k

ni)|Ek|, where |Ek| represents the number of edges and nk represents
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the number of vertices in the k-th component graph.

A typical exmaple of a Cartesian product graph is images. Images reside on two dimen-

sional rectangular grids that can be represented as the Cartesian product between two line

graphs pertaining to the rows and columns of the image [6]. A social network can also be

approximated as a Cartesian product of an inter-community graph with an intra-community

graph [6].

Similar to the previous discussion, the optimization problem in (3.4) can be specialized

to learning Cartesian graphs by explicitly imposing the Cartesian structure and posing the

problem in terms of the factor adjacency matrices as follows:

min
{Wk∈W}

K0
k=1

α

M0

trace

[[
⊕

[K0]
Wk

]( M0∑
m=1

1x̄Tm −
M0∑
m=1

xmxTm

)]
. (3.13)

3.4.3 Strong graphs

The strong product of graphs Gk can be represented as G = �
[K0]

Gk = GK0 � GK0−1 �

· · · � G1. The respective strong adjacency matrix of the resultant strong graph is given in

terms of the component adjacency matrices as W = �
[K0]

Wk, and can be further expressed

as:

W = (UK0ΛK0U
T
K0

)� · · ·� (U1Λ1U
T
1 )

= ( ⊗
[K0]

Uk) ( �
[K0]

Λi) ( ⊗
[K0]

WT
k ) = UΛstrU

T (3.14)

in terms of EVD of the component adjacency matrices.

The strong product graphs can be seen as the sum of Kronecker and Cartesian products

of the factor adjacency matrices. An example of data conforming to the strong product

graph is a spatiotemporal sensor network graph, which consists of a strong product of a

spatial graph and a temporal graph (representing the temporal dependencies of the sensors).

The spatial graph has as many nodes as the number of sensors in the sensor network and
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represents the spatial distribution of sensors. On the other hand, the temporal graph has

as many nodes as the number of temporal observations of the whole sensor network and

represents the overall temporal dynamics (changes in connectivity over time) of the network

[6].

By making the strong product structure explicit in terms of the factor adjacency matri-

ces, the optimization problem for learning strong graphs can be expressed as the following

nonconvex problem:

min
{Wk∈W}

K0
k=1

α

M0

trace

[[
�

[K0]
Wk

]( M0∑
m=1

1x̄Tm −
M0∑
m=1

xmxTm

)]
. (3.15)

3.4.4 Product graph Fourier transform

One can see from (3.10),(3.12), and (3.14) that the graph Fourier transform of a product

graph (which is the eigenmatrix of the product adjacency matrix), has a Kronecker structure

in terms of the eigenmatrices of the component graph adjacency matrices: U = ⊗
[K0]

Uk.

In terms of the implementation of the graph Fourier transform, this structure provides an

efficient implementation of the graph Fourier as (using the properties of Kronecker product

and tensors [18]):

UTx = ( ⊗
[K0]

Uk)
Tx = vec(X ×

[K0]
Uk), (3.16)

where x ∈ Rn1n2...nK0 is an arbitrary graph signal on the product graph, andX ∈ Rn1×n2×nK0

represents appropriately tensorized version of the signal x. Because of this, one does not

need to form the huge Fourier matrix U and can avoid costly matrix multiplications by just

applying the component graph Fourier matrices to each respective mode of the tensorized

observation X and then vectorizing the result.
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3.4.5 Smoothness

Smoothness of a graph signal is one of the core concepts in graph signal processing [4, 5,

6, 7, 8] and product graph Laplacians provide an efficient representation for the notion of

smoothness. The smoothness of a graph signal can be measured through the Dirchlet energy

defined as xTLx. The Dirichlet energy can be reexpressed as: xTLx = xT (D −W)x =

xTDx−xTWx. Let us now focus on each term separately in the context of product graphs.

For the term involving W we have:

xTWx = xTUΛUTx = (UTx)TΛ(UTx)

= vec(X ×
[K0]

Uk)
TΛvec(X ×

[K0]
Uk). (3.17)

Similarly, the term involving D can be reexpressed as:

xTDx = xTdiag(W1)x = xTdiag(x)W1

= (x� x)TW1 = x̄TW1, (3.18)

which can be computed efficiently along the lines of (3.17). With this reformulation, one

circumvents the need to explicitly form the prohibitively large eigenmatrix U and can eval-

uate the Dirichlet energy much more efficiently with just mode-wise products with the

smaller component eigenmatrices.

3.4.6 Representation complexity

Let us consider an unknown graph G with the number of nodes |V | = n =
∏K0

k=1 nk,

where nk represents the number of nodes in each component graph and K0 is total number

of component graphs. If one were to learn this graph by means of an arbitrary adjacency

matrix, the number of parameters that need to estimated would be n(n+1)
2

(since the graph

adjacency matrix is a symmetric matrix). On the other hand, for the same graph, by uti-
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lizing the product model of the graph adjacency matrix, one would need to estimate only∑K0

k=1
nk(nk+1)

2
parameters. This means that, e.g., n1 = n2 = · · · = nK0 = n̄, imposing the

product structure on graph adjacency matrix reduces the number of parameters needed to

be learned by n̄K0−1/K0.

3.5 Algorithm for learning product graphs

In the previous section we highlighted some properties and advantages of product graphs

and we posed the optimization problems for learning these graphs. We now propose an

algorithm for solving these product graph learning problems. To this end, we first recog-

nize that even though these problems posed are nonconvex (except for Cartesian graphs),

the factor-wise minimization problems for any factor adjacency matrix is still convex if all

the other factors are fixed. Moreover, these factor-wise can be solved through Algorithm 1

proposed in the earlier sections. These observations lead us to propose a block coordi-

nate descent (BCD) based algorithm, named BPGL (BCD for product graph learning), that

minimizes over each factor adjacency matrix in cyclic fashion. The proposed algorithm

is provided in Algorithm 2, and in the following discussion we present the factor-wise

problems for each product graph.

Algorithm 2: : BPGL–BCD for product graph learning
Input: Observations {xm}M0

m=1, maximum iterations N0, and parameter α
Initialize: {Ŵk}K0

k=1

for n = 1 to N0

for k = 1 to K0

while stopping criteria
Solve (3.19), (3.20), or (3.21) for Ŵk via Algorithm 1

end
end

end
Output: Final adjacency matrix estimates Ŵk.
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3.5.1 Kronecker graphs

Since Algorithm 2 utilizes factor-wise minimization, we can characterize the error for prod-

uct graph learning in terms of the factor-wise error of each factor adjacency matrix (while

keeping the other factors fixed). The factor-wise minimization problem in the case of learn-

ing Kronecker graphs boils down to (see Appendix 3.8.1):

min
Wk∈W

α trace(DkS̄k)− α trace
(
WkSk

)
(3.19)

for k = 1, · · · , K0, and where Sk and S̄k are as defined in Appendix 3.8.1. As pointed

out before, each of these factor-wise problem is a convex program. The error charac-

teristics of factor-wise problems are provided in the following theorem with the proof in

Appendix 3.8.1.

Theorem 8. For the k-th adjacency factor comprising a Kronecker product adjacency

matrix, while keeping other components Wj for j = 1, · · · , K0, j 6= k fixed, with high

probability, the error between the sample-based minimization with M0 samples and the

population-based minimization of (3.19) satisfies O
(
n2
k log(nk)

nM0

)
, for an appropriate α.

Moreover, also with high probability, the error between the estimated factor Ŵk and the

true factor Wk satisfies ‖Ŵk −Wk‖F = O

(√
nk log(nk)
nM0

)
.

3.5.2 Cartesian graphs

For Cartesian graphs, the factor-wise minimization problems, for k = 1, · · · , K0, can be

represented as follows (see Appendix 3.8.2):

min
Wk∈W

α trace(DkT̄k)− α trace
(
WkTk

)
, (3.20)

where Tk and T̄k are as defined in Appendix 3.8.2. As before, each factor-wise problem

is a convex program, and the following theorem characterizes the factor-wise minimization
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of the graph learning problem for Cartesian graphs.

Theorem 9. The objective function (3.13) for the Cartesian graph learning problem is

convex, and can be represented as a sum of terms that are linear in each factor adjacency

matrix. Moreover, each factor-wise minimization satisfies the same error bounds as from

Theorem 8.

The proof of this theorem is given in Appendix 3.8.2. The theorem states that the

objective function for learning Cartesian product graphs is convex and separable in each

factor adjacency matrix, i.e., the objective function can be represented as a sum of linear

terms each of which is dependent on only one factor adjacency matrix. Therefore, for

learning Cartesian graphs, this allows one to optimize over all factors in parallel, unlike the

problems for learning other product graphs.

3.5.3 Strong graphs

The problem for learning strong graphs can be posed factor-wise, for k = 1, · · · , K0, (see

Appendix 3.8.3) as follows:

min
Wk∈W

α trace(DkZ̄k)− α trace
(
WkZk

)
, (3.21)

where Zk and Z̄k are as defined in Appendix 3.8.3. The following theorem, with its proof

in Appendix 3.8.3, characterizes the behavior of factor-wise minimization problems for

strong graphs.

Theorem 10. For the k-th adjacency factor comprising a strong product adjacency matrix,

while keeping other components Wj for j = 1, · · · , K0, j 6= k fixed, the error between the

sample-based minimization with M0 samples and the population-based minimization of

(3.21) satisfies O
(
n2
k log(nk)

nM0

)
for an appropriately chosen α, with high probability. More-

over, with high probability, the error between the estimated factor Ŵk and the true factor

Wk satisfies ‖Ŵk −Wk‖F = O

(√
nk log(nk)
nM0

)
.
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Remark 5. Theorems 8,9 and 10 claim that the estimated factor lies within a ball of radius

log(nk)
(n/nk)M0

around the true factor. The accuracy of the estimate increases with the number of

available observations M0, and the product of the dimensions of the other factors n/nk =∏
j 6=k nj . Moreover, the accuracy decreases with the increasing dimensions of the factor

being estimated.

Remark 6. The theorems 8,9 and 10 provide the estimation error bounds of factor adjacency

matrices for respective product graphs. Error bounds on the product adjacency matrix

are non-trivial and will be the focus of future work. However, intuitively speaking, the

error for estimating Cartesian graphs should be smaller than other product graphs as the

Cartesian adjacency matrix can be obtained as a linear combination of the factor matrices,

whereas Kronecker and strong graphs contain terms obtained through products of the factor

adjacency matrices (which compounds the error multiplicatively).

3.5.4 Convergence properties

Each of the preceding theorems in this chapter derive the error bounds after the first iteration

of Algorithm 2 for each product structure. The overall convergence of the algorithm can be

established through the following theorem:

Theorem 11. The product graph learning algorithm Algorithm 2 is guaranteed to converge

to a stationary point at a linear rate.

The proof of this theorem is provided in Appendix 3.8.4.

3.5.5 Computational complexity

The computational complexity of solving each factor-wise problem scales quadratically

with the number of nodes in the graph. This implies that when the product structure is

imposed, one only has to solve K0 smaller problems each with computational complexity

of O(n̄2), assuming the special case of n1 = n2 = · · · = nK0 = n̄. In contrast, for learning
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unstructured graphs the computational complexity would scale as O(n2) = O(
∏K0

k=1 n
2
k) =

O(n̄2K0). Thus, the computational gains are huge in comparison to the original problem

for learning unstructured graphs!

3.5.6 Error bound for arbitrary graphs

As a byproduct of Theorem 8, we can also obtain an error bound for arbitrary graph learning

problem. Following along the lines of Theorem 8, we can say that by solving (3.4) one is

guaranteed to converge to the true adjacency matrix of the unstructured graph with the error

given as: ‖Ŵ −W∗‖F = OP
(√

log(n)/M0

)
.

Remark 7. Taking a closer look at the error bounds for learning arbitrary and structured

graphs reveals an important point. The denominator in the error bound is the number of

observations available to estimate the graph. For M0 observed graph signals, the number

of observations available to arbitrary graph learning are (obviously) M0; however, for es-

timating the k-th factor adjacency when learning product graphs the effective number of

observations are
∏

j 6=k nj × M0. This means that imposing the product structure results

in an increased number of effective observations to estimate each factor adjacency matrix.

This combined with the reduced number of parameters required to learn these graphs makes

product graphs very attractive for real world applications.

3.6 Numerical experiments

This section provides results for learning product graphs from synthetic and real datasets.

We first present experiments for learning arbitrary graphs through our proposed linear pro-

gram in Sec. 3.3, and then the results for learning products graphs from synthetic data

through Algorithm2. Afterwards we validate the performance of our proposed algorithm

for product graphs on real-world datasets.
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Figure 3.1: F-measure values for various graphs for our proposed graph learning algorithm
(GLP), LOG [48], and CGL [15].
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3.6.1 Synthetic data: Arbitrary graphs

To showcase the performance of our new formulation for graph learning, we run synthetic

experiments on a graph with n = 64 nodes. We generate various different graph types such

as: (i) a sparse random graph with Gaussain weights, (ii) an Erdos-Renyi random graph

with edge probability 0.7, (iii) a scale-free graph with preferential attachment (6 edges at

each step), (iv) a random regular graph where each node is connected to 0.7n other nodes,

(v) a uniform grid graph, (vi) a spiral graph , (vii) a community graph , and (viii) a low

stretch tree graph on a grid of points. The related details of how the graphs are simulated

can be found in [63, 49]. For each kind of graph, we generate 20 different realizations,

and for each realization we generate observations using a degenerate multivariate Gaussian

distribution with the graph Laplacian as the precision matrix [49, 48, 51].

We compare the performance of our proposed method with two other state-of-the-art

methods for arbitrary graph learning: (i) combinatorial graph learning from [48] (which we

refer to as CGL), and (ii) graph learning method from [15] (which we refer to as LOG),

which also aims to learn a combinatorial graph Laplacian through a slightly different op-

timization problem than [48]. We choose α for our algorithm in the range 0.75i
√

log(n)
M0

with the integer i in the range [0, 14], as dictated by the error bounds for learning graphs

in Appendix 3.8.1 and by the existing literature [49, 48, 51]. Furthermore, we choose

ρ = 0.75/ log(M0) through empirical evaluation. For each algorithm, in the prescribed

range of the optimization parameters, we manually choose the parameters that produce the

best results.

The results of our experiments are shown as F-measure values in Fig. 3.1. F-measure

is the harmonic mean of precision and recall, and signifies the overall accuracy of the

algorithm [48]. Precision here denotes the fraction of true graph edges recovered among

all the recovered edges, and recall signifies the fraction of edges recovered from the true

graph edges. One can see that our algorithm (except for community graphs) performs

just as well or better than the existing state-of-the-art algorithms. Moreover, the average
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performance over all graphs in Fig. 3.2 shows that on average we outperform the existing

algorithms. A runtime comparison of all algorithms in Fig. 3.2 also reveals competitive

run time for our proposed scheme. The runtime of LOG is the smallest, however, this

algorithm has a huge computational overhead for the first step which is done separately

from the main algorithm. This overhead relates to the construction of a matrix of pairwise

distances of all rows of data matrix X. In contrast, other algorithms work with the graph

signal observations directly and do not require extra steps.

Remark 8. For some graphs in Fig. 3.1, the performance for GLP seems to worsen as

number of observations grow. We have seen empirically, that this is due to the limited range

that we have considered for searching the optimization parameter. For a bigger range, this

downward trend is likely to disappear as one can choose a more appropriate parameter over

this range. The range that we have prescribed is the one mostly used in the literature and

on average works well in most settings.

3.6.2 Synthetic data: Product graphs

We now present the results of our numerical experiments involving synthetic data for prod-

uct graphs. We run experiments for random Erdos-Renyi factor graphs with n = n1n2n3 =

12×12×12 nodes, and having either Cartesian, Kronecker or strong structure. We then use

our proposed algorithms to learn the generated graphs with varying number of observations

and compare the performance with the algorithm in [15] as its performance was the second

best in Fig. 3.1. The results for all three types of product graphs are shown in Fig. 3.3

(top). For a fixed number of observations, Cartesian product graphs can be learned with

the highest F-measure score followed by strong and then Kronecker graphs. The figure

also shows that for each graph, imposing product structure on the learned graph drastically

improves the performance of the learning algorithm. Fig. 3.3 (bottom) also shows the run

times comparison of our approach BPGL with the algorithm in [15]. Even for a graph of

this size, with total number of nodes n = 1728, we can see a considerable reduction in
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Figure 3.2: Average F-measure values over all graphs (left) from Fig. 3.1 for our proposed
graph learning algorithm (GLP), LOG [48], and CGL [15]. Average run times over 30 trials
for each algorithm (right), with increasing number of nodes.

run times. Thus, our learning algorithm that explicitly incorporates the product structure of

the graph enjoys superior performance, reduced computational complexity and faster run

times.

3.6.3 United States wind speed data

The first real data we use for experimentation is NCEP wind speed data. The NCEP wind

speed data [64] represents wind conditions in the lower troposphere and contains daily

averages of U (east-west) and V (north-south) wind components over the years 1948-2012.

Similar to the experiments in [57] with preprocessed data, we use a grid of n1n2 = 10 ×

10 = 100 stations to extract the data available for the United States region. From this

extracted data, we choose the years 2003-2007 for training and keep the years 2008-2012

for testing purposes. Using a non-overlapping window of length n3 = 8, which amounts to

dividing the data into chunks of 8 days, we obtain M0 = 228 samples, each of length n =
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Figure 3.3: Precision, recall and F-measure values for various values of the β parameter.
The plots shown are for Cartesian (top), Kronecker (middle), and strong (bottom) graphs
when using only 5 observations for learning.

n1n2n3. Therefore, for training purposes we have 228 samples, where each sample contains

spatiotemporal data for 100 stations over 8 days. Same amount of data is obtained for

testing through the same procedure. The testing procedure consists of introducing missing

values in each sample of the test data by omitting the data for the 8th day, and then using a

using a linear minimum-mean-square-error (LMMSE) estimator [65, Chapter 4] to predict

the missing values. Our proposed method estimates the (structured) adjacency matrix of

the graph (which is related to the precision matrix of the data), and we use W + I in place

of the data covariance for the LMMSE estimator.

We make a comparison of the following: (1) sample covariance matrix (SCM), (2) the

permuted rank-penalized least squares (PRLS) approach [57] with r = 6 Kronecker com-

ponents, (3) PRLS with r = 2 Kronecker components, (4) time varying graph learning
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Table 3.1: Comparison of prediction RMSE for US wind speed data

Method RMSE reduction
over SCM (dB) parameters

SCM – 320400
TVGL [66] 1.0461 40656

PRLS [57] (r = 6) 1.7780 30492
PRLS [57] (r = 2) -1.5473 10164

BPGL strong 1.8640 5082
BPGL Cartesian 1.3105 5082

Comparison of our graph learning method with SCM, PRLS and TVGL. Our proposed
graph learning method outperforms the existing methods for learning sum of Kronecker
structures covariance matrix from the data and for learning time varying graph learning.

Moreover, our proposed procedure outperforms while using considerably fewer
parameters.

(TVGL) approach from [66] which was shown to outperform the approach in [67], (5) spa-

tiotemporal strong graph with BPGL with a spatial component of size n1n2 and a temporal

component of size n3, and (6) spatiotemporal Cartesian graph with BPGL of the same di-

mensions. The parameters for PRLS were chosen for optimal performance as given in [57].

The optimization parameters for TVGL and BPGL were manually tuned for best perfor-

mance. It should be noted here that SCM and PRLS aim to learn a covariance matrix and a

structured covariance matrix from the data, respectively.

SCM aims to estimate n(n+1)
2

parameters, while the number of parameters that PRLS

needs to estimate is r(n1n2(n1n2+1)
2

+ n3(n3+1)
2

). On the other hand, TVGL aims to esti-

mate n3(n1n2(n1n2+1)
2

) parameters, while BPGL needs to learn only n1n2(n1n2+1)
2

+ n3(n3+1)
2

parameters for both strong and Cartesian graphs. The mean prediction root-mean-squared

errors (RMSE) for all methods are shown in Table 3.1. One can see that our proposed

method outperforms PRLS and TVGL while estimating far fewer parameters than both.

The table also shows that learning a strong graph for this data results in a higher RMSE

reduction over the baseline (SCM), and is thus better suited for this data than the Cartesian

product graph.
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3.6.4 ABIDE fMRI data: Exploratory data analysis

The second real data that we use as an application for our proposed algorithm is a part of

the ABIDE fMRI dataset [68, 69]. Our aim is to learn the graphs over the fMRI data of

control and autistic subjects and to use the learned graphs to higlight the differences in the

control and autistic brains. The data we obtain is already preprocessed to remove various

fMRI artifacts and for controlization of the obtained scans [70]. The final preprocessed data

consists of measurements from n1 = 111 brain regions scanned over 116 time instances

for each subject. The data contains scans for control and autistic subjects, and to avoid

class imbalance we randomly choose 47 subjects for each class. Out of the 47 subjects for

each class, we then randomly choose 30 subjects for training and keep the remaining 17 for

testing purposes. We use a non-overlapping window length of n2 = 29 which results into

M0 = 120 samples of length n = n1 × n2.

As before, we compare the performance of our proposed approach with SCM and

PRLS. Table 3.2 shows the results of our experiments. One can see that our approach

performs very similar to PRLS for both Cartesian and strong product graphs, all the while

using much fewer parameters (five times fewer). We also see that strong product graphs are

more suited to model brain activity. The work in [70] suggests that autistic brains exhibit

hypoconnectivity in different regions of the brain as compared to control subjects. The

results from our graph learning procedure go a step further and bring more insight into the

spatiotemporal dynamics of the brain. Firstly, as already suggested in [70], we see clear

evidence of spatial hypoconnectivity (see Fig. 3.4). More importantly, our learned graphs

in Fig. 3.5 reveal that, in addition to spatial hypoconnectivity, autistic brains also suffer

from temporal hypoconnectivity.

3.6.5 Estrogen receptor data

The final dataset that we experiment on is the estrogen receptor data [71, 72], which con-

sists of 157 samples of 693 probe sets related to estrogen receptor pathway. We aim to
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Table 3.2: Comparison of prediction RMSE for ABIDE fMRI data

Method RMSE reduction
over SCM (dB) parameters

SCM – 5182590
PRLS Normal 2.1793 33255

Cartesian GL Control 2.0980 6651
Strong GL Control 2.1753 6651

PRLS Autism 2.375 33255
Cartesian GL Autism 2.3400 6651

Strong GL Autism 2.3563 6651
Comparison of our graph learning method with SCM and PRLS.

Figure 3.4: This figure shows the adjacency matrix of the spatial components learned
for control (left) and autism (right) subjects with strong graph learning algorithms, respec-
tively. The images reveal, in line with the existing literature, that control brain is much
more connected than the autistic brain.

learn a Kronecker structured graph on this data using 120 randomly selected samples for

training and the remaining 37 for testing. We choose Kronecker structured graph for this

data because transposable models, i.e., models that learn a Kronecker structured data co-

variance, have been shown to work well for genomic data in the existing literature [61].

And as pointed out in Sec.3.4.1, Kronecker structured adjacency matrix corresponds to a

Kronecker structured data covariance. For testing purposes, we follow a procedure similar

to the previous subsections.
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Figure 3.5: This figure shows the adjacency matrix of the temporal components learned
for control (left) and autism (right) subjects with strong graph learning algorithms, re-
spectively. The images reveal that control brains exhibit more temporal connections as
compared to autistic brains. This is a new finding possible only by considering the spa-
tiotemporal dynamics of the brain rather than just spatial connectivity analysis.

We compare our graph learning approach with SCM, PRLS and sparse covariance es-

timation (SEC) from [73]. Optimization parameters are manually tuned for best results for

each method. We learn a graph through our method (and covariance through PRLS), with a

Kronecker structure composed of two factor matrices of dimensions n1 = 21 and n2 = 33.

We then use LMMSE estimator to predict 33 probe set measurements removed from the test

data. PRLS, SEC and BPGL result in an improvement of 0.91347 dB, 0.93598 dB, and

1.0242 dB over SCM, respectively. This demonstrates that our method outperforms the

state-of-the-art unstructured and structured sparse covariance estimation techniques, and

provides a better model for real datasets.

3.7 Conclusion

In this chapter, we introduced a new linear formulation of the graph learning problem from

graph signals. We demonstrated the performance of this new formulation with numerical

experiments and derived bounds on its estimation performance. Based on the proposed

formulation, we also posed the problem to learn product graphs from data. We devised
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a block coordinate descent based algorithm for learning product graphs, and derived the

associated error bounds for various product structures. Finally, we validated the perfor-

mance characteristics and superior learning capabilities of our proposed method through

numerical simulations on synthetic and real datasets.

3.8 Appendix

3.8.1 Proof of Theorem 8

Note that the current form of the objective function (3.11) can be expressed as:

α

M0

M0∑
m=1

x̄Tm( ⊗
[K0]

Wi)1− xTm( ⊗
[K0]

Wi)xm

=
α

M0

M0∑
m=1

〈X̄m,1 ×
[K0]

Wi〉 − 〈Xm,Xm ×
[K0]

Wi〉, (3.22)

using the properties of the Kronecker product. Let us define the following: the tensor

Ym = Xm ×
[K0]\k

W
1/2
i ×

k
Ik, the matrix Sk = 1

M0

∑M0

m=1 Ym(k)YTm(k), d̄k is a vector of

degrees of the product adjacency matrix ⊗
[K0]\k

Wi, dk is the vector of degrees of Wk, ȳmj

is the j-th column of X̄m(k), ymj is the j-th column of Xm(k), and finally the matrix S̄k =

1
M0

∑M0

m=1

∑n/nk

j=1 (d̄k)jymjy
T
mj . Then we can further express the terms in (3.22) as:

α

M0

M0∑
m=1

〈Xm,Xm ×
[K0]

Wi〉

=
α

M0

M0∑
m=1

trace
(
WkXm(k)( ⊗

[K0]\k
Wi)X T

m(k)

)
=

α

M0

M0∑
m=1

trace
(
WkYm(k)YTm(k)

)
= α trace

(
WkSk

)
, (3.23)
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and,

α

M0

M0∑
m=1

〈X̄m,1 ×
[K0]

Wi〉

=
α

M0

M0∑
m=1

trace
(
WkX̄m(k)( ⊗

[K0]\k
Wi)1

T
(k)

)
=

α

M0

M0∑
m=1

trace
(
WkX̄m(k)d̄k1

T
)

=
α

M0

M0∑
m=1

trace
(
dTk X̄m(k)d̄k

)
=

α

M0

M0∑
m=1

trace
(
dTk [ȳm1, ȳm2, · · · , ȳmn/nk

]d̄k
)

=
α

M0

M0∑
m=1

n/nk∑
j=1

trace
(
(d̄k)jy

T
mjDkymj

)
= α trace(DkS̄k) (3.24)

Moreover, for the terms in (3.23) and (3.24), the difference from their expected value takes

the form of:

α
∣∣∣trace

(
WkSk

)
− Ex

[
trace

(
WkSk

)]∣∣∣
= α

∣∣∣trace
(
WkSk

)
− trace

(
WkEx[Sk]

)∣∣∣
= α

∣∣∣trace
(
Wk(Sk − Ex[Sk])

)∣∣∣
= α

∣∣∣∑
i,j

(
Wk(Sk − Ex[Sk])

)
i,j

∣∣∣
≤ α max

i,j

∣∣∣(Sk − Ex[Sk])i,j

∣∣∣∑
i,j

(
Wk

)
i,j

= αnk max
i,j

∣∣∣(Sk − Ex[Sk])i,j

∣∣∣ ≤ C1
n2
k log(nk)

nM0

, (3.25)
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and

α
∣∣∣trace

(
DkS̄k

)
− Ex

[
trace

(
DkS̄k

)]∣∣∣
≤ α max

i,j

∣∣∣(S̄k − Ex[S̄k])i,j

∣∣∣∑
i,j

(
Dk

)
i,j

= αnk max
i,j

∣∣∣(S̄k − Ex[S̄k])i,j

∣∣∣ ≤ C2
n2
k log(nk)

nM0

, (3.26)

with probability for both inequalities exceeding 1 − 4n2
k

[
exp

(−nM0

2nk

)
+ exp

(
− (0.25 +

√
log nk)

2
)]

; details in [74, Lemma B.1]. The last inequalities in both expressions follow

from [74], and by choosing α ≤
√

nk log(nk)
nM0

. With these bounds, the error between the

sample-based objective and the population-based objective can be upper-bounded as:

α
∣∣∣trace

(
WkSk

)
− trace

(
DkS̄k

)
− E

[
trace

(
WkSk

)]
+ E

[
trace

(
DkS̄k

)]∣∣∣
≤ α

∣∣∣trace
(
WkSk

)
− E

[
trace

(
WkSk

)]∣∣∣+
+ α

∣∣∣trace
(
DkS̄k

)
− E

[
trace

(
DkS̄k

)]∣∣∣ ≤ C
n2
k log(nk)

nM0

(3.27)

To derive the bound on the error between the factor estimate Ŵk and the true factor

Wk, let us first define the following convex function of ∆:

Fk(∆) = α trace
(
S̄kdiag(∆1)

)
− α trace

(
Sk∆

)
. (3.28)

where ∆ = W′
k −Wk, and diag(∆1) = D′k −Dk.

Now, we want to prove that Fk(∆) > 0 for ∆ ∈ Rnk×nk with ‖∆‖F = ‖W′
k −

Wk‖F = R
√

nk log(nk)
nM0

, for a constant R > 0. Consider Fk at ∆̂ = Ŵk −Wk, which is

the minima of Fk(∆) because Ŵk is the minima of our factor-wise minimization in (3.19).
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Then we have:

Fk(∆̂) = αtrace
(
D̂kS̄k − ŴkSk

)
− αtrace

(
DkS̄k −WkSk

)
,

≤ Fk(0) = αtrace
(
DkS̄k −WkSk

)
−

αtrace
(
DkS̄k −WkSk

)
= 0, (3.29)

If we can prove that Fk(∆) > 0 for a ∆ ∈ Rnk×nk of certain norm, then since Fk(∆̂) < 0,

it must satisfy ‖∆̂‖F < R
√

nk log(nk)
nM0

. To see that Fk > 0 for ∆ ∈ Rnk×nk with the

prescribed norm, first consider the following using the property of the trace of product of

matrices [75]:

trace
(
S̄kdiag(∆1)

)
≥ λnk

(S̄k)trace
(
diag(∆1)

)
≥ λnk

(S̄k)‖diag(∆1)‖F

= λnk
(S̄k)‖∆1‖F > 0 (3.30)

since ‖∆‖F ≥ 0, and where λnk
(S̄k) is the minimum eigenvalue of Sk. Secondly, one can

also see that:

trace
(
Sk∆

)
≤ λ1(Sk)trace

(
∆
)

= 0, (3.31)

where λ1(Sk) is the largest eigenvalue of Sk, and trace
(
∆
)

= 0 because of the adjacency

constraints. Using the upper and lower bounds on the trace terms one can see that Fk(∆) >

0 which completes the proof. �
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3.8.2 Proof of Theorem 9

Let us focus on the Cartesian objective function in (3.4):

α

M0

M0∑
m=1

xTm( ⊕
[K0]

Wi)xm

=
α

M0

M0∑
m=1

K0∑
k=1

xTm(( ⊗
[k−1]

Ii)⊗Wk ⊗ ( ⊗
[K0]\[k]

Ij))xm

=
α

M0

M0∑
m=1

K0∑
k=1

〈Xm,Xm ×
k

Wk〉

=
α

M0

M0∑
m=1

K0∑
k=1

trace
(
WkXm(k)X T

m(k)

)
= α

K0∑
k=1

trace
(
WkTk

)
(3.32)

where the matrix Tk = 1
M0

∑M0

m=1Xm(k)X T
m(k). Similar steps can be followed, along the

lines of (3.24), to arrive at α/M0

∑M0

m=1 xTm( ⊕
[K0]

Di)xm = α
∑K0

k=1 trace
(
DkT̄k

)
. Thus,

one can clearly see that the objective function can be expressed as a sum of terms each

dependent on only one of the factor adjacency matrices Wk. After this, one can follow the

steps in Appendix 3.8.1 to obtain the final error bounds. �

3.8.3 Proof of Theorem 10

Focusing again on the objective in (3.4), the terms involving only the k-th factor Lk can be

expressed as:

α

M0

M0∑
m=1

K0−1∑
j=0

P(k,j)∑
p

Xm:(Xm ×p Wp ×k Wk)

=
α

M0

M0∑
m=1

K0−1∑
j=0

P(k,j)∑
p

trace
(
WkXm(k)MpX T

m(k)

)
=

α

M0

M0∑
m=1

trace
(
WkXm(k)

[K0−1∑
j=0

P(k,j)∑
p

Mp

]
X T
m(k)

)
=

α

M0

M0∑
m=1

trace
(
WkXm(k)QkX T

m(k)

)
= α trace

(
WkZk

)
, (3.33)
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where p denotes a column from matrix P(k, j),
∑P(k,j)

p denotes the summation over the

columns of P(k, j), and the columns of P(k, j) are different combinations of indices given

by
[

[1,...,K0]−[k]

j

]
. Additionally, Mp denotes a matrix of size (n−nk)×(n−nk) that contains

an appropriate Kronecker product of identity matrices and factor adjacency matrices in

accordance with the entries of the vector p, and Zk = 1
M0

∑M0

m=1Xm(k)QkX T
m(k). The

remaining steps are similar to the proof of Theorem 9, and are thus omitted in the interest

of space. �

3.8.4 Proof of Theorem 11

To prove this lemma, one can follow along the lines of the proof for [76, Proposition 2.7.1].

Since each mode-wise problem is convex, the update for each mode-wise problem is guar-

anteed to converge to its minimum. Once block/mode-wise convergence to the minima is

established, the convergence of every limit point to a stationary point is proven from [76,

Proposition 2.7.1].

The work in [77] provides convergence guarantees and rates of convergence for block

coordinate descent for multiconvex objectives. It can be trivially seen that each factor-wise

problem (3.8) for learning factor graphs is strongly convex. The strong convexity of the

factor-wise problems, in conjunction with [77, Theorem 2.9] (part 2), implies that Alg. 2

presented in this paper converges to its critical points at a linear rate. �



86

CHAPTER 4

DISTRIBUTED RADAR IMAGING UNDER AMBIGUOUS ARRAY

PARAMETERS

4.1 Introduction

Distributed radar imaging is an essential modern radar imaging technique as it enables

high-resolution radar imaging through a large synthetic aperture. This large aperture is

achieved by combining information from several geographical distributed radar platforms

with small individual apertures. Such distributed radar arrays also facilitate a flexible plat-

form that can be mobile, is tolerant to component failures, and admits low maintenance

costs [78, 79, 80, 81]. However, such a setup with spatially distributed arrays is also prone

to coherence issues caused by ambiguities in antennas’ locations and complications in pre-

cise synchronization of antenna clocks.

To overcome these obstacles, two approaches have traditionally been the focus of at-

tention in the literature. The first approach aims to design methods that are robust to the

position and clock ambiguities by modeling them as errors that cannot be resolved [80,

82, 83]. This approach, aptly called incoherent imaging, typically results in low-resolution

imaging and poor reconstruction performance.

A more successful approach, which has received a lot of attention over the years, is to

resolve the ambiguities in distributed radar by modeling them as unknowns in the imaging

problem. Most works under this approach have proposed schemes that compensate for both

(or one) ambiguities by modeling them as unknown gain and phase errors in the acquired

measurements [84, 85, 86, 87, 88, 89]. While this error model is valid under certain con-

ditions, e.g., under clock mismatch the error is equivalent to a phase-only component that

is linear in frequency, or under far-field imaging a position error is well approximated as
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a time shift, for most real world scenarios the model is imprecise as investigated in [90].

Moreover, the resulting formulation is difficult to handle due to the non-linearities and re-

quired additional constraints that don’t always translate to real situations; see [91, 92, 93]

for details.

In lieu of this, recent work in distributed radar imaging has focused on developing

precise formulations that model the ambiguities in a distributed setup in (i) the image do-

main for position errors in the antennas’ locations [94, 90], and (ii) time domain for the

clock mismatch between transmitting and receiving antennas [95]. These models have

been shown to produce better reconstructions when compared to their imprecise counter-

parts that model all ambiguities with just a gain and phase error term. Our work in this

dissertation is inspired by and is a continuation of these models to handle more general

imaging scenarios. We first explicitly model the position errors in antennas’ locations for

the case when transmitting and receiving antennas are affected by different position errors,

rather than the same error as posed in [94, 90]. We show how in this case, the problem can

be posed as a blind deconvolution problem in the unknown position errors and the radar

scene to be reconstructed. Afterwards, we revisit the convex formulation of the clock-

mismatch problem posed in [95], and pose it as a blind deconvolution problem. Finally,

we pose a general formulation that explicitly and jointly models the position ambiguity and

the clock synchronization error to pose a multilinear blind deconvolution problem in all the

unknowns. The essence of our work is precise formulation of ambiguities in distributed

radar to achieve performance on par with coherent imaging. Our work hinges on the fact

that proper use of knowledge about the structure in unknown variables leads to accurate

models that outperform approximate models. We also devise algorithms for our proposed

formulations and derive the associated error bounds on the estimated quantities. The iden-

tifiability conditions for the deconvolution problems are derived and the performance is

verified through numerical simulations.
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4.1.1 Organization

The rest of the chapter is organized as follows. We describe the general distributed radar

imaging setup and formulate the imaging problem with ambiguities in Sec. 4.2. In Sec. 4.3

we pose the imaging problem under various ambiguities as blind deconvolution problems

and provide a block coordinate descent based algorithm for solving the proposed deconvo-

lution problems. Sec. 4.4 examines the theoretical guarantees for the blind deconvolution

problems in terms of error of the reconstructed radar scene and the estimated ambiguities.

Afterwards, we provide experimental verification of performance of the proposed algorithm

in Sec. 4.5. and finally, Sec. 4.6 concludes the chapter by summarizing our results.

4.2 Problem formulation

We consider a two-dimensional radar scene of K targets in which the region of interest is

divided into a spatial grid Ω containing |Ω| = N = Nx × Ny points, where Nx and Ny

represent the granularity of the grid in horizontal and vertical directions, respectively. We

further assume the grid resolution is sufficiently fine and that there is only one reflector at

each grid point. Let us also consider that the radar scene is being imaged with M antennas

that could be situated inside or outside the scene grid. Furthermore, assume that the spatial

locations of the antennas are known and are denoted by the set Γ ⊂ R2 with cardinality

|Γ| = M . Without loss of generality, we assume that a subset of antennas act as both

transmitters and receivers, while the others act only as receivers. To image the target scene,

a time-domain pulse p(t) with frequency spectrum P (w) is transmitted by all transmitting

antennas, where w = 2πf is the angular frequency with f being the ordinary frequency in

the bandwidth B, where the bandwidth consist of |B| = F frequency components.

With a transmit antenna at position r ∈ Γ, the frequency domain (also called measure-

ment domain) signal received by a receive antenna at position r′ ∈ Γ due to scattering of
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the pulse by a target at location l ∈ Ω is given by [96]:

Y (w, r, r′, l) = P (w)G(w, r, r′, l)X(l) +N(w), (4.1)

whereX(l) ∈ C is the reflectivity of the radar scene at location l,N(w) is the measurement

noise, and G(w, r, r′, l) is the pulse propagation characterized by:

G(w, r, r′, l) = a(r, r′, l)e−iw
‖r−l‖2+‖r′−l‖2

c . (4.2)

In (4.2), a(r, r′, l) term denotes magnitude attenuation whereas e−iw
‖r−l‖2+‖r′−l‖2

c describes

the phase change due to the transmission delay, and c denotes the speed of light.

Assuming no shadowing and no multiple reflections, the received signal for each transmitter-

receiver pair is a sum of (4.1) for all locations l ∈ Ω where a reflector is present. Denoting

the vectorized scene reflectivity by x ∈ CN , where a zero entry in x represents absence of

a reflector at the respective grid point, one can express the received signal y(r, r′) ∈ CF

for a particular transmitter-receiver pair and at all frequencies w as follows:

y(r, r′) = A(r, r′)x(l) + n(r, r′), (4.3)

where A(r, r′) ∈ CF×N is dependent on P (w) and G(w, r, r′, l), and denotes the radar

imaging operator for the transmitter at position r and the receiver at position r′. Moreover,

n(r, r′) denotes the measurement noise for the particular transmitter-receiver pair. An ex-

ample of such distributed setup with 32 antennas grouped into 4 antenna arrays (each with

8 antennas) is shown in Fig. 4.1.

The distributed radar setup described in (4.3) and depicted in Fig. 4.1 is primarily af-

fected by two type of ambiguities: (i) time ambiguity caused by unsynchronized clocks

between transmitting and receiving antennas, and (ii) position ambiguity as a consequence

of access to imprecise locations of the antennas comprising the distributed setup. In the
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Figure 4.1: An ideal distributed radar setup. The colored dots represent the error-free po-
sitions of the antennas imaging the setup and the synchronized clocks represent the clocks
for each antenna array. The target scene in consideration is represented by the red box with
three targets in the scene.

following discussion we formalize the forward models when either one or both of these

ambiguities are present in the imaging setup.

Figure 4.2: A distributed radar setup with synchronized clocks but position ambiguity. The
crosses represent the actual positions of the antennas imaging the setup whereas the dots
represent the erroneous assumed positions. As before, the target scene in consideration is
represented by the red box with three targets in the scene.

4.2.1 Image-domain convolution model for position ambiguities

We first focus on the forward model for the distributed radar setup with erroneous antenna

positions. Let us consider a transmitter-receiver pair with true transmitter and receiver po-

sitions denoted by r and r′, respectively. Furthermore, let the erroneous antenna positions

of the transmitter and receiver be denoted by r̃ = r + e and r̃′ = r′ + e′, respectively.

Instead of modeling these position errors in the measurement (frequency) domain, as has
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been done in the majority of existing works [84, 85, 86, 87, 88, 89, 91, 92, 93, 97, 94], we

propose to model them in the image (spatial) domain. The reason being that modeling the

position ambiguities as unknown complex quantities in the measurement domain amounts

to approximating them as time-domain shift operators. As shown by recent works [94, 90],

this approximation for position errors only holds in the far-field regime.

To handle these position errors in a precise manner, each antenna position ambiguity

is modeled as an image-domain unknown shift kernel. We present our proposed image-

domain convolution model for the distributed radar setup with position ambiguities in the

following proposition:

Proposition 1. Let ỹ = Ãx be the observation for a transmitter-receiver pair with erro-

neous positions given by r̃ and r̃′. Then the equivalent image-domain convolution model

can be expressed entrywise as:

ỹ(w) = A′w

({
(Aw ∗ h) x

}
∗ g
)
, (4.4)

where h and g represent the spatial shift kernels in the image-domain caused by the position

errors of the transmitter and the receiver, respectively.

Proof. Let us first express the observation vector ỹ entrywise as:

ỹ(w) =
∑
l∈Ω

e−iw
‖r̃−l‖2+‖r̃′−l‖2

c x(l)

=
∑
l∈Ω

e−iw
‖r̃′−l‖2

c e−iw
‖r̃−l‖2

c x(l)

=
∑
l∈Ω

e−iw
‖r′−(l−e′)‖2

c e−iw
‖r−(l−e)‖2

c x(l)

= A′w(l− e′) Aw(l− e) x(l) (4.5)

where Aw(l − e) is a diagonal matrix with entries e−iw
‖r−(l−e)‖2

c for l ∈ Ω on the diago-

nal, and A′w(l − e′) is a row matrix (matrix with just one row) with each entry given by
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e−iw
‖r′−(l−e′)‖2

c for l ∈ Ω. Let’s define le = l− e. This implies that:

ỹ(w) = A′w(l− e′) Aw(l− e) x(l)

= A′w(le + e− e′) Aw(le) x(le + e)

= A′w(le − (e′ − e)) Aw(le) (x(le) ∗ δ(e)). (4.6)

Now, let us define x(le) = Aw(le) (x(le) ∗ δ(e)) and l = le − e, where e = e′ − e. Then

we can express the above equation as:

ỹ(w) = A′w(le − (e′ − e)) Aw(le) (x(le) ∗ δ(e))

= A′w(le − e) x(le)

= A′w(l) x(l + e)

= A′w(l) (x(l) ∗ δ(e))

= A′w(l)
((

Aw(l) (x(l) ∗ δ(e))
)
∗ δ(e)

)
. (4.7)

For further simplification, recognize that δ(e) = δ(e′)∗δ(−e′), and moving the convolution

with δ(−e) inside the brackets leads to:

ỹ(w) = A′w(l)
((

Aw(l) (x(l) ∗ δ(e))
)
∗ δ(e)

)
= A′w(l)

((
Aw(l) (x(l) ∗ δ(e))

)
∗ δ(e′) ∗ δ(−e)

)
= A′w(l)

({
(Aw(l) ∗ δ(−e)) x(l)

}
∗ δ(e′)

)
, (4.8)

which gives us the desired model by assuming h = δ(−e) and g = δ(e′). �

A depiction of the imaging setup and the interpretation of the model in (4.4) can be seen

in Fig. 4.2 and Fig. 4.3, respectively. Our objective under this image-domain convolution

model is to recover the radar scene x as well as the antenna position ambiguities, h and g.

Remark 9. Earlier work in [90] investigated image-domain modeling of position errors for
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Figure 4.3: Interpretation of the model in (4.4) for distributed radar setup with position
ambiguity. The red box denotes the target radar scene. The actual and assumed transmitting
antenna positions are represented by the blue and gray antennas, respectively. Similarly,
the actual assumed receiving antenna positions are, respectively, denoted by orange and
black antennas. The corresponding incident fields (solid lines) and reflected fields (dotted
lines) follow the same color notation.

the case of collocated transmitter-receiver pairs. In this case, both antennas suffer from the

same position error and the model can be simplified. The model in Proposition 1 is more

general and subsumes the model in [90]. Similar to the model in [90], if the transmitter

and receiver antennas are both affected by the same position error, then e = e′ − e = 0 in

(4.7). In this scenario, the image-domain model gets simplified to ỹ = A(x ∗ h), which is

the model proposed in [90].

4.2.2 Measurement-domain model for clock mismatch

The second type of ambiguity that arises in the distributed radar setup is the time am-

biguity due to unsynchronized clocks between transmitting and receiving antennas. The

pairwise clock mismatch for each transmitter-receiver pair causes a time drift, which can

be represented as a convolution with a time shift in the time-domain measurements. In the

measurement domain, this time shift can be represented as phase-only component [95]. De-

noting the time mismatch affecting a particular transmitter-receiver pair by z, the received
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Figure 4.4: A distributed radar setup with correct antenna locations but unsynchronized
clocks. The colored dots represent the error-free positions of the antennas imaging the
setup. The clocks across the antenna arrays are not synchronized which results in the time
ambiguity. The target scene in consideration is represented by the red box with three targets
in the scene.

frequency domain signal for the pair (4.3) can be rewritten as:

ỹ = DzAx + n, (4.9)

where A succinctly represents the measurement matrix without position errors, z = Fz, F

is the Fourier transform matrix, and Dz is a diagonal matrix with the Fourier transform of z

at its diagonal. The goal under this model is to recover the radar scene x and the unknown

time mismatch z. A depiction of the imaging setup and an interpretation of the model in

(4.9) are shown in Fig. 4.4 and Fig. 4.5, respectively.

This model and its variants have a rich history in distributed radar and have been used in

previous studies for modeling the combined effect of time and position ambiguities [84, 85,

86, 87, 88, 89, 94]. However, as noted in Sec. 4.2.1, this model is exact only when either

the measurements are being affected by just the time ambiguity, or by position ambiguity

in the far field.

4.2.3 Generalized model for both position and time ambiguities

In light of the preceding discussion, we can now formulate a generalized model for dis-

tributed radar that incorporates both time and position ambiguities in the forward model.
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Figure 4.5: Interpretation of the model in (4.9) for distributed radar setup with time am-
biguity. The red box denotes the target radar scene. The transmitting antenna position is
represented by the gray antenna, whereas the receiving antenna position is denoted by the
black antenna. The incident field is represented with solid gray lines. The reflected fields
(dotted lines) in the absence and presence of time mismatch are shown in black and red,
respectively.

We introduce the proposed forward model for a particular transmitter-receiver pair, affected

by both position and time ambiguities, in the following proposition.

Proposition 2. Let ỹ = Ãx be the observation for a transmitter-receiver pair with er-

roneous positions given by r̃ and r̃′, as well as a time mismatch given by z. Then, the

equivalent image-domain convolution model can be expressed entrywise as:

ỹ(w) = Dz(w)A′w

({
(Aw ∗ h) x

}
∗ g
)
, (4.10)

where Dz(w) denotes the diagonal entry of Dz indexed by w.

This proposition follows directly from Proposition 1 and (4.9). The forward model

aims to jointly recover the radar scene x, the time ambiguity z, and the antenna position

ambiguities h and g. The novelty of this proposed forward model is the explicit separate

representation of the position and time ambiguities. This separation of the two ambiguities
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Figure 4.6: A distributed radar setup with both position and time ambiguity. The crosses
represent the actual positions of the antennas imaging the setup whereas the dots represent
the erroneous assumed positions. The clocks across the antenna arrays are not synchronized
which results in the time ambiguity. The target scene in consideration is represented by the
red box with three targets in the scene.

allows for a precise characterization of the distributed radar setup and for a better utilization

of the known properties of both ambiguities, which produces a better reconstruction of the

radar scene.

4.3 Blind deconvolution for ambiguous distributed radar

In this section we first pose the problems proposed in Sec. 4.2 as blind deconvolution

problems, followed by the algorithms to arrive at their solutions.

4.3.1 Blind deconvolution for position ambiguities

We first examine the case of distributed radar with just position ambiguities. To recover the

radar scene and the position errors from the model in Prop. 1, a simple minimization over

x, h and g would be insufficient as the problem would be highly ill-posed. Therefore, one

needs to incorporate prior knowledge about the radar scene and the position ambiguities to

formulate a well-posed problem. To this end, we first realize that the radar scene x is sparse

and piecewise smooth. Moreover, the shift kernels modeling the position ambiguities are

non negative 1-sparse two-dimensional shift operators. We include these properties in our

model through a fused Lasso [98] penalty for the radar scene, whereas a `1-norm penalty for
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the shift kernels while constraining them to be on the standard simplex (to enforce 1-sparse

solutions). The resulting overall optimization problem for a total of M observations, where

each observation is an interaction between one transmitter-receiver pair, is as follows:

min
x∈CN ,

hm∈R
Nh
+ ,

gm∈R
Ng
+

M∑
m=1

‖ỹm −Amx‖2
2 + α(‖hm‖1 + ‖gm‖1)

s.t. Rx(x) ≤ τ, 1Thm = 1, 1Tgm = 1, (4.11)

where hm and gm represent the shift kernels of the m-th observation, Am succinctly rep-

resents the shift kernel dependent pairwise measurement matrix for the m-th transmitter-

receiver pair from (4.4), Rx(x) = ‖x‖1 + γ‖x‖TV is the fused Lasso regularization, and

‖ · ‖TV is the well-known total variation regularization to promote piecewise smoothness

[98]. The parameters α and τ are regularization parameters that control the sparsity and

piecewise-smoothness of the shift kernels and the radar scene, respectively. This optimiza-

tion problem is clearly nonconvex due to the convolution of the unknown variables, and is

usually referred to as blind deconvolution (trilinear blind deconvolution in our case) in the

literature [97, 92, 91, 90].

4.3.2 Blind deconvolution for clock mismatch

Next we focus on distributed radar under clock mismatch. Similar to Sec.4.3.1, we need

additional constraints on the unknown variables to arrive at a well-posed optimization prob-

lem. As before, we regularize the radar scene with a fused Lasso penalty, and for the un-

known time shift we use a `1-norm penalty for sparsity with a unit-sum constraint over
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non-negative reals. The overall optimization problem then becomes:

min
x∈CN ,

zm∈RNz
+

M∑
m=1

‖ỹm −Amx‖2
2 + β‖zm‖1

s.t. Rx(x) ≤ τ, 1Tzm = 1, (4.12)

where zm = Fzm, zm represents the clock drift for the m-th transmitter-receiver pair, and

Am succinctly represents the clock drift dependent pairwise measurement matrix for the

m-th transmitter-receiver pair from (4.9). This problem is also a nonconvex bilinear blind

deconvolution problem similar to the problem for position ambiguities.

4.3.3 Blind deconvolution for the generalized model

We now present the optimization problem for the generalized model. Since the general-

ized model considers both position and synchronization errors, the associated optimization

problem incorporates the knowledge for the radar scene, the spatial shift kernels, and the

clock drift. We can express the overall problem as follows:

min
x∈CN ,zm∈RNz

+ ,

hm∈R
Nh
+ ,gm∈R

Ng
+

M∑
m=1

∥∥∥ỹm −DzmAmx
∥∥∥2

2
+ β‖zm‖1 + α(‖hm‖1 + ‖gm‖1)

s.t. Rx(x) ≤ τ, 1Tzm = 1,1Thm = 1, 1Tgm = 1, (4.13)

which is a quadrilinear deconvolution problem and where Am succinctly represents the

clock drift dependent pairwise measurement matrix for the m-th transmitter-receiver pair

from (4.10).

4.3.4 Block coordinate descent for blind deconvolution

Here we describe an alternating-minimization based block coordinate descent (BCD) al-

gorithm for the optimization problems posed in the preceding subsections. As noted ear-
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lier, the optimization problems are multilinear blind deconvolution problems. This means

by fixing all but one unknown variable, the resulting problem is convex in that variable.

Therefore, one way to arrive at a stationary point of the overall problem is to minimize in-

dividually over each variable while keeping the other variables fixed (by using their current

estimates) [77]. The proposed algorithm for solving the generalized model with both po-

sition and synchronization ambiguities, named Block coordinate descent for Generalized

blind Deconvolution (BloGD), is outlined in Algorithm 3. For solving either position or

synchronization error, the algorithm can be modified and different steps in the algorithm

can be skipped depending on what one needs to estimate. In Algorithm 3, the operators

Algorithm 3: : BloGD—Block coordinate descent for Generalized blind
Deconvolution

Input: Observations {ỹm}Mm=1

Initialize: initial radar scene estimate x0, initial ambiguity estimates
{z0

m}Mm=1,{h0
m}Mm=1,{g0

m}Mm=1, maximum inner iterations T , and parameters τ, α, β

repeat
n← n+ 1
Estimate radar scene:
Update Ax,m with zn−1

m , hn−1
m , gn−1

m for all m
Update τ according to [99]
xn ← FPGD({Ax,m}Mm=1, {ỹm}Mm=1,x

n−1, τ)
Estimate position error: (skip if only clock mismatch)
for m = 1 to M

Update Ah,m with xn, zn−1
m , gn−1

m

hnm ← FISTA(Ah,m, ỹm,h
n−1
m , T, α)

hnm ← P∞(hnm)
for m = 1 to M

Update Ag,m with xn, zn−1
m , hnm

gnm ← FISTA(Ag,m, ỹm,g
n−1
m , T, α)

gnm ← P∞(gnm)
Estimate clock drift: (skip if only position errors)
for m = 1 to M

Update Az,m with xn, hnm, gnm
znm ← FISTA(Az,m, ỹm, z

n−1
m , T, β)

znm ← P∞(znm)
until: stopping criterion

Output: Radar scene estimate xn.
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Algorithm 4: : FPGD for updating radar scene x

Input: Observations {ỹm}Mm=1, forward model operators {Ax,m}Mm=1, previous radar
scene estimate xn−1, maximum iterations T , parameter τ

Initialize: q0 ← 1, u0 ← s0 ← xn−1, γ ← inverse of max eigenvalue of
M∑
m=1

AHh,mAh,m

for t = 1 to T

ut ← PRx

(
st−1 + γ

M∑
m=1

AHh,m(ỹm −Ah,mst−1), τ
)

qt ← 1+
√

1+4(qt−1)2

2

st ← ut + qt−1−1
qt

(ut − ut−1)

Output: Radar scene estimate xn ← st.

Algorithm 5: : FISTA for updating ambiguity hm
Input: Observation ỹm, forward model operator Ah,m, previous ambiguity estimate
hn−1
m , maximum iterations T , parameter α

Initialize: q0 ← 1, u0 ← s0 ← hn−1
m , γ ← inverse of max eigenvalue of AHh,mAh,m

for t = 1 to T
ut ← T+

(
st−1 + γAHh,m(ỹm −Ah,mst−1), γα

)
ut ← ut/(1Tut)

qt ← 1+
√

1+4(qt−1)2

2

st ← ut + qt−1−1
qt

(ut − ut−1)

Output: Ambiguity estimate hnm ← st.

Ax,m, Ah,m, and Az,m represent the variable specific forward models for the m-th ob-

servation when all the other unknowns are replaced by their estimates. Moreover, P∞(·)

represents the projection onto the set of valid shift operators by replacing the largest entry

in its argument by one while making all the other ones zero.

It can be seen that the objective functions in (4.11),(4.12) and (4.13) are separable in

hm, gm and zm for all m. This means that the problem for updating each of these variable

for a particular m reduces to standard non-negative sparse recovery problem, which can be

efficiently solved through the fast iterative shrinkage/thresholding algorithm (FISTA) [99].

As for updating the radar scene x, the problem is similar to standard sparse recovery but

with a fused Lasso penalty instead of the Lasso penalty. For solving this fused Lasso prob-
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lem for x, we use the FISTA-inspired fast proximal gradient descent (FPGD) algorithm

devised in [94] which replaces the proximal gradient step with projected gradient step.

These algorithms are outlined in Algorithm4 and Algorithm5, where T+(·, γα) represents

the well-known elementwise nonnegative soft-thresholding operator induced by the prox-

imal shrinkage for the `1 regularization [99, 94] and PRx(·, τ) represents the constrained

fused-lasso projection operator as defined in [94, 90].

Remark 10. An alternative way to solve the blind deconvolution problems posed in this

work is to lift them to a higher-order space and use convex blind deconvolution approaches

to arrive at the solutions [91, 100, 92, 97, 101]. In our case, however, one would have

to first recover very high-dimensional low-rank tensors and then perform tensor factoriza-

tion to recover the radar scene and obtain the unknown errors. This approach would be

very expensive in terms of memory and computational complexity. Our approach, in con-

trast, solves a number of convex problems in the original low-dimensional space in a serial

fashion to recover the scene. Thus, our proposed method enjoys low memory and compu-

tational complexities compared to the existing convex approaches for (multilinear) blind

deconvolution.

4.4 Error bounds for blind deconvolution

In this section we derive error bounds for the algorithm prescribed in the previous section,

and show that block coordinate descent for the proposed deconvolution problems provides

a solution that is very close to the true solution.

4.4.1 BloGD error bounds for generalized model

Since the model proposed in Prop. 2 is the most general model with both ambiguities, we

start by deriving error bounds for this model. Afterwards, the error bounds for individual

ambiguities can be derived along the same lines as for the generalized model. These error

bounds are presented in the following theorem:



102

Theorem 12. Consider the distributed radar imaging model with both position and syn-

chronization ambiguities in Prop. 2, and the associated blind deconvolution problem posed

in (4.13). Then using Alg.3, when F = O(s log4N), the errors of the estimated radar

scene and the ambiguities satisfy:

‖hm − h∗m‖
2
2 ≤

(
2‖ñm‖2 + 1

σmin Cx

√
F

)2

,

‖gm − g∗m‖
2
2 ≤

(
2‖ñm‖2 + 1

σmin Cx

√
F

)2

, (4.14)

and

‖x− x∗‖2
2 +

M∑
m=1

‖zm − z∗m‖2
2

≤

(√
2‖ñ‖2 +

√
s+
√
sTV + 1

min{ỹmin, 1}
√

2FM

)2

, (4.15)

by choosing β ≤ ỹmin

M
√

2F
and α ≤ σmin Cx√

4F
. Here s and sTV denote the sparsity of the radar

scene with respect to `1 and TV norms, respectively. Moreover, ỹmin is the magnitude of the

smallest entry in all observations and σmin Cx is the smallest singularvalue of convolution

matrix Cx for two-dimensional convolution with x.

The proof of this theorem is given in Appendix 4.7.1. The theorem states that for each

unknown variable the estimate lies within a ball of certain radius around the true value of

the variable. The radius of this ball decreases as the noise in the observations decreases

and as the variables become sparser. The radius also decreases as the smallest value in

the observations, the bandwidth of the transmitted wave, and the number of observations

increase.

Remark 11. The proof in Appendix 4.7.1 also provides error bounds when the parameters

are shared among observations, i.e., when one transmitter is shared by multiple receivers

and when a receiver receives from multiple transmitters. In this case, the condition on
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the required bandwidth gets relaxed to FM ′ = O(s log4N), where M ′ is the number of

transmitters/receivers that are shared.

4.4.2 BloGD error bounds for position ambiguity

The error bounds for the case of only position ambiguity are presented in the following

algorithm:

Theorem 13. Consider the distributed radar imaging model with position ambiguities ex-

pressed entrywise in Prop. 1, and the associated blind deconvolution problem posed in

(4.11). Then using Alg.3, when F = O(s log4N), the errors of the estimated radar scene

and the ambiguities satisfy:

‖hm − h∗m‖
2
2 ≤

(
2‖ñm‖2 + 1

σmin Cx

√
F

)2

,

‖gm − g∗m‖
2
2 ≤

(
2‖ñm‖2 + 1

σmin Cx

√
F

)2

, (4.16)

and

‖x− x∗‖2
2 ≤

(√
2‖ñ‖2 +

√
s+
√
sTV√

2FM

)2

, (4.17)

by choosing α ≤ σmin Cx√
4F

. Here s and sTV denote the sparsity of the radar scene with

respect to `1 and TV norms, respectively. Moreover, σmin Cx is the smallest singularvalue

of two-dimensional convolution matrix Cx for convolution with x.

The proof of this theorem is omitted due to space constraints and follows trivially from

the proof of Theorem 12. The error bounds for the position ambiguities in this theorem are

similar to the ones in the generalized model, while the bound for the estimated radar scene

is slightly different as there is no clock mismatch in this scenario.
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4.4.3 BloGD error bounds for clock mismatch

Finally, for the error bounds in the presence of clock mismatch while using Alg. 3 to esti-

mate the unknown, results are presented in the following theorem:

Theorem 14. Consider the distributed radar imaging model with position ambiguities ex-

pressed entrywise in (4.9), and the associated blind deconvolution problem posed in (4.12).

Then using Alg.3, when F = O(s log4N), the error of the estimated radar scene and the

clock mismatch satisfies:

‖x− x∗‖2
2 +

M∑
m=1

‖zm − z∗m‖2
2

≤

(√
2‖ñ‖2 +

√
s+
√
sTV + 1

min{ỹmin, 1}
√

2FM

)2

, (4.18)

by choosing β ≤ ỹmin

M
√

2F
. Here s and sTV denote the sparsity of the radar scene with respect

to `1 and TV norms, respectively. Moreover, ỹmin is the magnitude of the smallest entry in

all observations.

The proof of this theorem follows closely from the proof of Theorem 12 and is thus

omitted.

4.5 Numerical Experiments

We now evaluate the performance of BloGD through numerical experiments on simulated

data. For this purpose, we simulated a distributed radar imaging scenario where a scene

is imaged with 32 distributed antennas grouped into four arrays of eight antennas each, as

shown in Fig. 4.1. The assumed antenna positions (true or erroneous) are always repre-

sented as solid dots whereas the actual positions are represented as crosses (as in Fig. 4.2

and Fig. 4.6). In our simulated setup, the transmitting antennas transmit a differential Gaus-

sian pulse of 9 GHz bandwidth centered at 6 GHz. The observations are contaminated with
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white Gaussian noise with peak signal to noise ratios (PSNRs) of levels 6 dB, 8 dB, 10 dB,

15 dB, 20 dB, and 25dB, after matched-filtering with the transmitted pulse.

We generate 5 different radar scenes layout each with a different arrangement of three

targets within the scene. We also experiment with ten different realizations of the antenna

position errors that have an average absolute value of 2λ, where λ = 6 Ghz is the wave-

length of the central frequency of our transmitted pulse. In all experiments with clock

mismatch, the clock drift is picked uniformly at random within the range of [-10, 10] time

periods. In all cases, we pick γ = 0.5 and α = β = 7/PSNR.

For performance comparison, we compare the performance of our proposed approach

BloGD that tries to estimate the errors along with the radar scene, with the plain fused

Lasso approach that does not assume any errors in the array parameters. Fig. 4.7 shows the

results of these experiment for three of the five simulated target scenes at a PSNR of 15

dB. One can clearly see that our proposed models that recover the radar scene as well as

the ambiguities outperform the fused Lasso approach by visibly reducing the artifacts that

contribute to false alarms, and by detecting all targets in the scene which results in a higher

detection rate. A comparison of Receiver operating characteristic (ROC) curves for all

three models under various PSNR levels can be seen in Fig. 4.8. The figure highlights the

superior performance of our proposed models and the proposed algorithm over the fused

Lasso reconstructions with existing models.

4.6 Conclusion

In this paper we developed novel forward models to enable high resolution distributed radar

imaging under ambiguous array parameters. We proposed these forward models in the im-

age and time domains, rather than the measurement domain, for exact modeling of position

ambiguity in antenna locations and clock mismatch between antennas. We then devised a

block coordinate descent based algorithm, called BloGD, for radar scene recovery from the

nonconvex multilinear blind deconvlution problems formulated through our proposed for-
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ward models. We demonstrated the superior performance of the proposed method through

numerical simulations on synthetic data. In the future, we plan to investigate the effects of

multipath in our proposed framework and develop precise models for alleviating its effects.

4.7 Appendix

4.7.1 Proof of Theorem 12

The general idea of the proof is similar to the works in [102, 74, 103]. To begin, we first

realize that for each observation, the data fidelity term in the objective function can be

expressed as:

‖ỹm −DzmAmx‖2
2 = ‖Dpmỹm −Amx‖2

2

= ‖Dỹmpm −Amx‖2
2

= ‖DỹmFpm −Amx‖2
2, (4.19)

because zm is a phase only vector, and pm = Fpm is the Fourier transform of the convolu-

tive inverse of zm such that pm ∗ zm = δ. Let us define the difference between a candidate

radar scene x and the true scene x∗, as ∆x = x − x∗. Similarly, define the error between

a candidate clock drift pm and the true drift p∗m, as ∆pm = pm − p∗m. Now, define the
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following function:

Fxp(∆x,∆pm)

=
M∑
m=1

‖DỹmFpm −Amx‖2
2 − ‖DỹmFp∗m −Amx∗‖2

2

=
M∑
m=1

∥∥∥Ãm

pm

x

∥∥∥2

2
−
∥∥∥Ãm

p∗m

x∗

∥∥∥2

2

=
M∑
m=1

∥∥∥Ãm

p∗m + ∆pm

x∗ + ∆x

∥∥∥2

2
−
∥∥∥Ãm

p∗m

x∗

∥∥∥2

2

=
M∑
m=1

∥∥∥Ãm

∆pm

∆x

∥∥∥2

2
+ 2

p∗m

x∗


T

ÃH
mÃm

∆pm

∆x


=

M∑
m=1

∥∥∥Ãm

∆pm

∆x

∥∥∥2

2
− 2ñHmÃm

∆pm

∆x

 (4.20)
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where Ãm = [DỹmF, −Am], and ñm = Ãm

p∗m

x∗

 = DỹmFp∗m−Amx∗ is the (modified)

noise in the m-th observation. Let us also define another function:

Fx(∆x) = ‖x‖1 + γ‖x‖TV − (‖x∗‖1 + γ‖x∗‖TV )

= ‖x‖1 − ‖x∗‖1 + γ‖x‖TV − γ‖x∗‖TV

= ‖x∗ + ∆x‖1 − ‖x∗‖1 + γ‖x∗ + ∆x‖TV − γ‖x∗‖TV

= ‖(x∗ + ∆x)S‖1 + ‖(x∗ + ∆x)Sc‖1 − ‖(x∗)S‖1 − ‖(x∗)Sc‖1

+ γ‖(x∗ + ∆x)STV
‖TV + γ‖(x∗ + ∆x)Sc

TV
‖TV

− γ‖(x∗)STV
‖TV − γ‖(x∗)Sc

TV
‖TV

= ‖(x∗ + ∆x)S‖1 − ‖(x∗)S‖1 + ‖(∆x)Sc‖1

+ γ‖(x∗ + ∆x)STV
‖TV − γ‖(x∗)STV

‖TV + γ‖(∆x)Sc
TV
‖TV

(4.21)

where ‖x‖TV = ‖DTV x‖2,1, DTV : CN → C2×N is the two-dimensional finite differ-

ence operator, S represents the true support of x, and STV is the true support of DTV x.

Moreover, ‖(x∗)Sc‖1 = 0, and ‖(x∗)Sc
TV
‖TV = 0 as well. In a similar vein, define

Fp(∆pm) = ‖pm‖1 − ‖p∗m‖1

= ‖(pm)S‖1 + ‖(pm)Sc‖1 − ‖(p∗m)S‖1 − ‖(p∗m)Sc‖1

= ‖(p∗m + ∆pm)S‖1 − ‖(p∗m)S‖1 + ‖(∆pm)Sc‖1 (4.22)

To derive the bound on the error between the true variables (x∗ and p∗m) and the es-

timated variables (x̂ and p̂m), let us first define the following convex function of ∆x and
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∆pm:

F (∆x,∆pm) = Fxp(∆x,∆pm) + µFx(∆) +

β

M∑
m=1

Fp(∆pm), (4.23)

and see that this function is minimized at (∆x̂,∆p̂m) because ∆x̂ and ∆p̂m minimize

(4.13) for all other unknowns fixed. Also see that for this minima of F (∆x,∆pm) we

have, F (∆x̂,∆p̂m) ≤ F (0,0) = 0.

Our main objective then is to prove that F (∆x,∆pm) > 0, for ∆x and ∆pm of some

prescribed norms, respectively. If that can be proved, then since F (∆x̂,∆p̂m) ≤ 0,

then ∆x and ∆pm must have norms smaller than the prescribed norms. To show that
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F (∆x,∆pm) > 0, proceed by realizing that:

F (∆x,∆pm) = Fxp(∆x,∆pm) + µFx(∆) + β
M∑
m=1

Fp(∆pm)

=
M∑
m=1

∥∥∥Ãm

∆pm

∆x

∥∥∥2

2
− 2ñHmÃm

∆pm

∆x


+ µ
(
‖(x∗ + ∆x)S‖1 − ‖(x∗)S‖1 + ‖(∆x)Sc‖1

+ γ‖(x∗ + ∆x)STV
‖TV − γ‖(x∗)STV

‖TV + γ‖(∆x)Sc
TV
‖TV

)
+ β

(
‖(p∗m + ∆pm)S‖1 − ‖(p∗m)S‖1 + ‖(∆pm)Sc‖1

)
(a)

≥
M∑
m=1

∥∥∥Ãm

∆pm

∆x

∥∥∥2

2
− 2ñHmÃm

∆pm

∆x


+ µ
(
‖(x∗ + ∆x)S‖1 − ‖(x∗)S‖1

+ γ‖(x∗ + ∆x)STV
‖TV − γ‖(x∗)STV

‖TV
)

+ β
(
‖(p∗m + ∆pm)S‖1 − ‖(p∗m)S‖1

)
(b)

≥
M∑
m=1

∥∥∥Ãm

∆pm

∆x

∥∥∥2

2
− 2ñHmÃm

∆pm

∆x


− µ

∣∣∣‖(x∗ + ∆x)S‖1 − ‖(x∗)S‖1

∣∣∣
− µγ

∣∣∣‖(x∗ + ∆x)STV
‖TV − γ‖(x∗)STV

‖TV
∣∣∣

− β
∣∣∣‖(p∗m + ∆pm)S‖1 − ‖(p∗m)S‖1

∣∣∣
(c)

≥
M∑
m=1

∥∥∥Ãm

∆pm

∆x

∥∥∥2

2
− 2ñHmÃm

∆pm

∆x


− µ‖(∆x)S‖1 − µγ‖(∆x)STV

‖TV − β‖(∆pm)S‖1, (4.24)

where inequality (a) follows from the fact that ‖(∆x)Sc‖1, ‖(∆x)Sc
TV
‖TV , and ‖(∆pm)Sc‖1

are all ≥ 0. Additionally, (b) follows from inequalities similar to ‖(x∗ + ∆x)S‖1 −
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‖(x∗)S‖1 ≥ −
∣∣∣‖(x∗ + ∆x)S‖1 − ‖(x∗)S‖1

∣∣∣, and finally (c) is true because of inequali-

ties similar to
∣∣∣‖(x∗ + ∆x)S‖1 − ‖(x∗)S‖1

∣∣∣ ≤ ‖(∆x)S‖1.

To further lower boundF (∆x,∆pm), we will use the inequality ‖(∆x)S‖1 ≤
√
s‖∆x‖2,

where s is the number of nonzero entries in x. We will also use the following inequality:

γ‖(∆x)STV
‖TV = γ‖(DTV ∆x)STV

‖2,1

≤ γ‖DTV ∆x‖2,1 ≤ γ
√
sTV ‖DTV ∆x‖2

≤ γ
√
sTV σmax D‖∆x‖2 ≤

√
sTV ‖∆x‖2 (4.25)

by picking γσmax D ≤ 1, and where σmax D is the largest singular value of D. With these

we express the lower bound as:

F (∆x,∆pm) ≥
M∑
m=1

∥∥∥Ãm

∆pm

∆x

∥∥∥2

2
− 2ñHmÃm

∆pm

∆x


− µ‖(∆x)S‖1 − µγ‖(∆x)STV

‖TV − β‖(∆pm)S‖1

≥
M∑
m=1

∥∥∥Ãm

∆pm

∆x

∥∥∥2

2
− 2ñHmÃm

∆pm

∆x


− µ
√
s‖∆x‖2 − µ

√
sTV ‖∆x‖2 − β

√
sp‖∆pm‖2

= ‖Axp∆xp‖2
2 − 2ñHAxp∆xp − µ

√
s‖∆x‖2

− µ
√
sTV ‖∆x‖2 − β

M∑
m=1

√
sp‖∆pm‖2

= ‖Axp∆xp‖2

[
‖Axp∆xp‖2 − 2

ñHAxp∆xp

‖Axp∆xp‖2

− µ
√
s
‖∆x‖2

‖Axp∆xp‖2

− µ
√
sTV

‖∆x‖2

‖Axp∆xp‖2

− β
M∑
m=1

√
sp
‖∆pm‖2

‖Axp∆xp‖2

]
, (4.26)

where the vector ñ = [ñT1 , ñ
T
2 , · · · , ñTM ]T , the vector ∆xp = [∆T

x ,∆
T
p1
,∆T

p2
, · · · ,∆T

pM
]T ,
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and the matrix

Axp =



A1 −Dỹ1F 0 · · · 0

A2 0 −Dỹ2F · · · 0

...
... · · · . . . 0

AM 0 0 · · · −DỹM
F


. (4.27)

In the following we will use several facts, such as: (i) cosine of the angle between two F -

dimensional random Gaussian vectors with real entries is upper-bounded by 1/
√
F [104],

and (ii) with complex entries is bounded by 1/
√

2F , and that (iii)
√
sp = 1.Using these

facts, the inequality in (4.26) will still be true, if the following slightly different inequality

is satisfied:

F (∆x,∆pm)

‖Axp∆xp‖2

≥ ‖Axp∆xp‖2 − 2
ñHAxp∆xp

‖Axp∆xp‖2

− µ
√
s
‖∆x‖2

‖Axp∆xp‖2

− µ
√
sTV

‖∆x‖2

‖Axp∆xp‖2

− β
M∑
m=1

√
sp
‖∆pm‖2

‖Axp∆xp‖2

≥ ‖Axp∆xp‖2 − 2
‖ñ‖2√
2FM

− µ(
√
s+
√
sTV )

‖∆x‖2

‖Axp∆xp‖2

−
β

M∑
m=1

‖∆pm‖2

‖Axp∆xp‖2

. (4.28)

Let us briefly focus on ‖Axp∆xp‖2. In matrix Axp, each sub-matrix Am is similar to a

Fourier matrix (both have similar coherence properties) [105], and the coherence decreases

with increasing dimensions of the radar scene (increasing number of rows in each sub-

matrix Am) and increasing distance between the scene and the radar arrays. Therefore,
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with the results in [105] while considering the columns to be normalized:

‖Axp∆xp‖2
2

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



A1 −Dỹ1F 0 · · · 0

A2 0 −Dỹ2F · · · 0

...
... · · · . . . 0

AM 0 0 · · · −DỹM
F





∆x

∆p1

∆p2

...

∆pM



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



A1 −I 0 · · · 0

A2 0 −I · · · 0

...
... · · · . . . 0

AM 0 0 · · · −I





∆x

ỹ1 � F∆p1

ỹ2 � F∆p2

...

ỹM � F∆pM



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

(d)

≥ 0.5

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



∆x

ỹ1 � F∆p1

ỹ2 � F∆p2

...

ỹM � F∆pM



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

≥ 0.5(‖∆x‖2
2 + ỹ2

min‖∆p‖2
2) (4.29)

where ỹmin is the smallest entry over all observations, and (d) follows with high probability
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as long as FM = O(s log4N) [105]. Now, (4.28) can be further lower-bounded as:

F (∆x,∆pm)

‖Axp∆xp‖2

≥ ‖Axp∆xp‖2 − 2
‖ñ‖2√
2FM

− µ(
√
s+
√
sTV )

‖∆x‖2

‖Axp∆xp‖2

−
β

M∑
m=1

‖∆pm‖2

‖Axp∆xp‖2

≥ ‖Axp∆xp‖2 − 2
‖ñ‖2√
2FM

− µ(
√
s+
√
sTV )

‖∆x‖2√
0.5‖∆x‖2

−
β

M∑
m=1

‖∆pm‖2

√
0.5ỹmin‖∆p‖2

≥ ‖Axp∆xp‖2 − 2
‖ñ‖2√
2FM

−
µ(
√
s+
√
sTV )√

0.5
− β

√
M√

0.5ỹmin

≥
√

0.5(‖∆x‖2
2 + ỹ2

min‖∆p‖2
2)− 2

‖ñ‖2√
2FM

−
µ(
√
s+
√
sTV )√

0.5
− β

√
M√

0.5ỹmin

(4.30)

where we used the fact that

M∑
m=1
‖∆pm‖2

‖∆p‖2 =

M∑
m=1
‖∆pm‖2√

M∑
m=1
‖∆pm‖22

≤
√
M . All that’s left is to find the

condition under which this fina lower bound is greater than zero. To that end, proceed as
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follows:

√
0.5(‖∆x‖2

2 + ỹ2
min‖∆p‖2

2)− 2
‖ñ‖2√
2FM

−
µ(
√
s+
√
sTV )√

0.5
− β

√
M√

0.5ỹmin

> 0

⇒
√

0.5(‖∆x‖2
2 + ỹ2

min‖∆p‖2
2) > 2

‖ñ‖2√
2FM

+
µ(
√
s+
√
sTV )√

0.5
+

β
√
M√

0.5ỹmin

⇒
√

0.5(‖∆x‖2
2 + ỹ2

min‖∆p‖2
2) > 2

‖ñ‖2√
2FM

+
µ(
√
s+
√
sTV )√

0.5
+

β
√
M√

0.5ỹmin

⇒
√

0.5(‖∆x‖2
2 + ỹ2

min‖∆p‖2
2) > 2

‖ñ‖2√
2FM

+
µ(
√
s+
√
sTV )√

0.5
+

β
√
M√

0.5ỹmin

⇒‖∆x‖2
2 + ỹ2

min‖∆p‖2
2 >

(√
2‖ñ‖2 +

√
s+
√
sTV + 1√

2FM

)2

,

⇒‖∆x‖2
2

ỹ2
min

+ ‖∆p‖2
2 >

(√
2‖ñ‖2 +

√
s+
√
sTV + 1

ỹmin

√
2FM

)2

, (4.31)

where we β and µ are chosen such that β ≤ ỹmin

M
√

2F
and µ ≤ 1√

2FM
, respectively. Now, if

ỹmin ≤ 1, then ‖∆x‖22
ỹ2
min
≥ ‖∆x‖2

2, and the bound can be expressed as:

‖∆x‖2
2 + ‖∆p‖2

2 >

(√
2‖ñ‖2 +

√
s+
√
sTV + 1

ỹmin

√
2FM

)2

, (4.32)

otherwise, if ỹmin > 1, then ỹ2
min‖∆p‖2

2 > ‖∆p‖2
2, and the bound can be expressed as:

‖∆x‖2
2 + ‖∆p‖2

2 >

(√
2‖ñ‖2 +

√
s+
√
sTV + 1√

2FM

)2

. (4.33)
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Combining both cases, the bound can be expressed as:

‖∆x‖2
2 + ‖∆p‖2

2 >

(√
2‖ñ‖2 +

√
s+
√
sTV + 1

min{ỹmin, 1}
√

2FM

)2

, (4.34)

This implies that for F (∆x,∆pm), the error satisfies:

‖∆x‖2
2 + ‖∆p‖2

2 ≤

(√
2‖ñ‖2 +

√
s+
√
sTV + 1

min{ỹmin, 1}
√

2FM

)2

, (4.35)

which is the required result for error bound on ‖∆x‖2
2 and ‖∆p‖2

2.

We now shift our attention towards hm, and we begin by realizing that the data fidelity

term in objective function can be expressed to focus on hm as:

‖ỹm −DzmAmx‖2
2

= ‖DỹmFpm −Amx‖2
2

=
F∑
w=1

‖ỹm(w)[Fpm](w)−A′w

({
(Aw ∗ hm) x

}
∗ gm

)
‖2

2

=
F∑
w=1

‖ỹm(w)[Fpm](w)−A′w

({
Aw(x ∗ qm)

}
∗ hm ∗ gm

)
‖2

2

=
F∑
w=1

‖ỹm(w)[Fpm](w)−A′w

({
Aw(x ∗ qm)

}
∗ tm

)
‖2

2

= ‖DỹmFpm −Bm(x ∗ qm)‖2
2 (4.36)

where qm∗hm = δ, hm∗gm = tm, and Bm is the matrix that represents the forward model

with focus on qm. We will make qm our subject in order to bound error on hm. To this end,

define ∆qm = qm − q∗m, which is the difference between a candidate shift qm and the true
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shift q∗m, and also define the following function:

Fq(∆qm)

=
M∑
m=1

‖DỹmFpm −Bm(x ∗ qm)‖2
2 + α‖qm‖1

− ‖DỹmFpm −Bm(x ∗ q∗m)‖2
2 − α‖q∗m‖1

=
M∑
m=1

‖Bm(x ∗∆qm)‖2
2 − 2ñHmBm(x ∗∆qm)+

α(‖(q∗m + ∆qm)S‖1 − ‖(q∗m)S‖1 + ‖(∆qm)Sc‖1) (4.37)

similar to (4.20) and (4.22). Following along the steps in (4.30), we can lower-bound this

as:

Fq(∆qm)

=
M∑
m=1

‖Bm(x ∗∆qm)‖2
2 − 2ñHmBm(x ∗∆qm)+

α(‖(q∗m + ∆qm)S‖1 − ‖(q∗m)S‖1 + ‖(∆qm)Sc‖1)

≥
M∑
m=1

‖Bm(x ∗∆qm)‖2

(
‖Bm(x ∗∆qm)‖2 − 2

‖ñ‖2√
2F

− α‖∆qm‖2

‖Bm(x ∗∆qm)‖2

)
. (4.38)

We can now lower bound ‖Bm(x ∗∆qm)‖2
2 as:

‖Bm(x ∗∆qm)‖2
2 ≥ 0.5 ‖x ∗∆qm‖

2
2

= 0.5 ‖Cx∆qm‖
2
2

≥ 0.5σ2
min Cx

‖∆qm‖
2
2 , (4.39)

if the number of frequency components is F = O(s log4N) [105], and where Cx is the
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two-dimensional convolution matrix for convolution with x, and σmin Cx is the minimum

singularvalue of this convolution matrix. With this lower bound, we can further lower

bound our function from (4.38) as:

Fq(∆qm)

≥
M∑
m=1

‖Bm(x ∗∆qm)‖2

(
‖Bm(x ∗∆qm)‖2 − 2

‖ñm‖2√
2F

− α‖∆qm‖2

‖Bm(x ∗∆qm)‖2

)
≥

M∑
m=1

‖Bm(x ∗∆qm)‖2

(√
0.5σmin Cx ‖∆qm‖2 − 2

‖ñm‖2√
2F

− α‖∆qm‖2√
0.5σmin Cx‖∆qm‖2

)
, (4.40)

which requires the following to be satisfied for Fq(∆qm) to be greater than zero:

√
0.5σmin Cx ‖∆qm‖2 −

2‖ñm‖2√
2F

− α√
0.5σmin Cx

> 0

⇒
√

0.5σmin Cx ‖∆qm‖2 >
2‖ñm‖2√

2F
+

α√
0.5σmin Cx

⇒‖∆qm‖2 >
2‖ñm‖2

σmin Cx

√
F

+
α√

0.25σ2
min Cx

⇒‖∆qm‖2 >
2‖ñm‖2 + 1

σmin Cx

√
F
, (4.41)

by choosing α
√
F√

0.25σmin Cx
≤ 1⇒ α ≤ σmin Cx√

4F
. Therefore, the final error bound for ‖∆qm‖2

comes out to be:

‖∆qm‖2 ≤
2‖ñm‖2 + 1

σmin Cx

√
F
. (4.42)

A fairly common scenario in distributed imaging is the sharing for one transmitter over

multiple receivers. If that is the case, and the signal transmitted by the m-th transmitter is

received by M ′ receivers, then another bound can be derived along the steps in (4.30) and
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(4.31), given by:

‖∆qm‖2 ≤
2‖ñ‖2 + 1

σmin Cx

√
FM ′

. (4.43)

by choosing α ≤ σmin Cx√
4FM ′

and the relaxed condition on number of frequency components as

FM ′ = O(s log4N). Following similar arguments, the error for the other shift kernel can

also be derived to be:

‖∆gm‖2 ≤
2‖ñm‖2 + 1

σmin Cx

√
F
, (4.44)

when each receiver is receiving from one antenna, and:

‖∆gm‖2 ≤
2‖ñ‖2 + 1

σmin Cx

√
FM ′

, (4.45)

when the m-th receiver is receiving from M ′ different antennas, respectively. �
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Figure 4.7: This figure shows the results of numerical experiments with three different
radar scenes reconstructed at an SNR of 15 dB. Each column represents a different scene,
and the rows represent the following in order: ground truth radar scene, fused Lasso recon-
struction without any ambiguities, fused Lasso reconstruction suffering clock mismatch,
BloGD reconstruction with clock mismatch correction, fused Lasso reconstruction suf-
fering position errors, BloGD reconstruction with position error correction, fused Lasso
reconstruction suffering both position errors and clock mismatch, BloGD reconstruction
with correction for both ambiguities.
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Figure 4.8: This figure compares the ROC curves for all experiments performed under
various level of ambiguities and reconstruction with BloGD and fused Lasso. The first
row shows the ROC curves for different SNR levels for reconstruction under only clock
mismatch with BloGD (left) and fused Lasso (right). The second row shows the curves for
reconstruction under position errors, and finally the third rows showcases the results for
when both ambiguities are present in the setup. One can see that BloGD outperforms fused
Lasso except for all case, except for 6 dB curve for clock mismatch which can be attributed
to limited noise realizations in our experiments.



122

CHAPTER 5

CONCLUSION

To summarize, the objective of this dissertation was to develop methods that exploit struc-

ture in various aspects of modern data. To this end, we focused on three specific appli-

cations of structure exploitation. In Chapter 2 we focused on detecting and classifying

signals under the UoS model. We posed the problems as hypothesis testing problems, de-

rived bounds on performance measures, and expressed the bounds in terms of the geometry

between the subspaces and the geometry of the colored noise.

Chapter 3 focused on developing methods to learn unstructured and structured graphs

from data through smooth graph signals. We posed the unstructured graph learning prob-

lem as a linear program and numerically validated its superior performance over existing

state of the art methods. For structured graphs, we made product graphs the focus of our

attention, developed an algorithm for learning product graphs in terms of the factor graphs,

and derived error bounds for the proposed algorithm. We also validated the performance of

the proposed product graph learning algorithm on synthetic and real-world datasets.

Finally, in Chapter 4 we developed precise models for distributed radar imaging with

ambiguous array parameters, i.e., imprecise antennas locations and unsynchronized clocks

between antennas, using the known properties of the ambiguities. We then posed the radar

scene reconstruction problems under said ambiguities as blind deconvolution problems us-

ing these known properties and the prior knowledge about the radar scene. Furthermore, we

proposed an block coordinate descent based algorithm for solving these problems, derived

the associated error bounds, and validated the performance through numerical simulations.

Through our work in this dissertation, we have highlighted the importance of and the

advantages gained by successfully exploiting structure in information processing applica-

tions. We showcased scenarios where the structure can be exploited in the data itself, the
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data acquisition process, or the underlying process generating the data. Our future work

will continue these efforts in the problems explored in this dissertation and other related

problems.



124

REFERENCES

[1] M. A. Davenport, P. T. Boufounos, M. B. Wakin, and R. G. Baraniuk, “Signal
processing with compressive measurements,” IEEE J. Sel. Topics Signal Process,
vol. 4, no. 2, pp. 445–460, 2010.
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