
MOBILE EDGE CLOUD ARCHITECTURE FOR
FUTURE LOW-LATENCY APPLICATIONS

BY SUMIT MAHESHWARI

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Dipankar Raychaudhuri

and approved by

New Brunswick, New Jersey

May, 2020

c© 2020

Sumit Maheshwari

ALL RIGHTS RESERVED

ABSTRACT OF THE DISSERTATION

Mobile Edge Cloud Architecture for Future Low-latency

Applications

by Sumit Maheshwari

Dissertation Director: Dipankar Raychaudhuri

This thesis presents the architecture, design, and evaluation of the mobile edge cloud

(MEC) system aimed at supporting future low-latency applications. Mobile edge clouds

have emerged as a solution for providing low latency services in future generations

(5G and beyond) of mobile networks, which are expected to support a variety of real-

time applications such as AR/VR (Augmented/Virtual Reality), autonomous vehicles

and robotics. Conventional cloud computing implemented at distant large-scale data

centers incurs irreducible propagation delays of the order of 50-100ms or more that

may be acceptable for current applications but may not be able to support emerging

real-time needs. Edge clouds considered here promise to meet the stringent latency

requirements of emerging classes of real-time applications by bringing compute, storage,

and networking resources closer to user devices. However, edge clouds are intrinsically

local and have a smaller scale and are thus subject to significantly larger fluctuations

in offered traffic due to factors such as correlated events and user mobility. In addition,

edge computing systems by definition are distributed across multiple edge networks

and hence are associated with considerable heterogeneity in bandwidth and compute

resources. Considering these challenges, this thesis analyzes the requirements posed

by the edge clouds and proposes specific techniques for control, network routing, data

ii

migration, and dynamic resource assignment which can be employed to support low-

latency applications.

The thesis starts by analyzing system-level edge cloud requirements for low-latency

by deploying a set of sample AR applications, namely, annotation-based assistance, and

smart navigation. A city-scale MEC system is analyzed for achievable latency when

running AR applications using existing core clouds as well as the proposed distributed

edge cloud infrastructure. Performance evaluation results are presented to understand

the trade-offs in key system parameters such as core cloud latency and inter-edge or core-

to-edge network bandwidth. The results show that while the core cloud-only system

outperforms the edge-only system having low inter-edge bandwidth, a distributed edge

cloud selection scheme can approach global optimal assignment when the edge has

sufficient compute resources and high inter-edge bandwidth. Adding capacity to an

existing edge cloud system without increasing the inter-edge bandwidth contributes to

network-wide congestion and can reduce system capacity.

Next, a specific network-assisted cloud resource management technique is described

that uses the concept of named-object architecture to create a named-object based

virtual network (NOVN) inherently supporting application specific routing specifically

designed to enable Quality of Service (QoS) in MEC. The results validate the feasibility

of the named-object approach, showing minimal VN processing, control overhead, and

latency. The results also validate application specific routing (ASR) functionality for

an example latency constrained edge cloud service scenario.

Further, user mobility and edge cloud system load balancing are handled by enabling

dynamic service migration. Container migration is emerging as a potential solution

that enables dynamic resource migration in virtualized networks and mobile edge cloud

(MEC) systems. The orchestrated, lightweight container migration model is designed

and evaluated for a real-time application (license plate recognition) using performance

metrics such as the average system response time and the migration cost for different

combinations of load, compute resources, inter-edge cloud bandwidth, network, and ap-

plication latency. The concept of NOVN and service migration are then applied to the

advanced driver assistance systems (ADAS) geared towards autonomous driving using

iii

Augmented Reality (AR). The experiments show that the low-latency ADAS applica-

tions with an average system latency of less than 100 ms for the applications can be

supported. The key observations from this study are: (1) machine type plays a crucial

role in deciding migration, (2) applications requiring higher computation capabilities,

for instance, annotation-based assistance should be offloaded to the closest available

lightly-loaded edge cloud, (3) the latency of applications requiring pre-fetched data

has fewer avenues for optimization, and (4) service migration should consider network

bandwidth, system load, and compute capability of the source and the destination.

The work on edge cloud resource assignment and networking motivated the design of

a general-purpose control plane that supports the exchange of essential control informa-

tion (such as compute and network capabilities, current workloads, bandwidth/latency,

etc.) between edge cloud domains in a region. The existence of such a control plane

enables distributed resource management, application-aware routing, and task assign-

ment algorithms without the requirement of a single point of control. Therefore, the

final part of this thesis focuses on creating a lightweight control protocol that can pro-

vide neighboring edge clouds with visibility of their computing and network resources

along with current load metrics. The proposed design promotes regional awareness

of available resources in a heterogeneous multi-tenant environment to enable cooper-

ative techniques such as cluster computing, compute offloading, or service chaining.

The design of a specific control plane protocol followed by a system-level evaluation

of the performance associated with task assignment and routing algorithms enabled

by the framework is presented. The evaluation is based on a prototype system with a

heterogeneous network of compute clusters participating in the control plane protocol

and executing specified resource sharing algorithms. An application-level evaluation

of latency vs. offered load is also carried out for an example time-critical application

(image analysis for traffic lane detection) running on the ORBIT testbed confirming

that significant performance gains can be achieved through cooperation at the cost of

modest complexity and overhead.

iv

Acknowledgements

People who are willing to go above and beyond to support you are difficult to find; I

am lucky to have them in abundance in my life. A rather difficult job is to thank them

enough for their contributions. I hope these words do justice expressing how indebted

I feel.

First and foremost, I wish to extend my deepest gratitude to my advisor Prof.

Dipankar Raychaudhuri for believing in me and being my polestar for guiding me

through every step on the way. Of all the hard jobs around, one of the hardest is

being a good teacher. I could never thank him enough for imparting his technical

expertise and life-lessons, and clarifying what I was thinking when it was not apparent

to me. He has always given me the best advice I could ever seek, both personally and

professionally, and never wavered in his generosity and sharp engagement with my work

by providing unique perspectives. His kindness and compassion are synergic with that

of his better half, Arundhati aunty. Thank you, aunty, for your love and care.

I would like to thank my proposal and thesis committee members, Dr. N. K.

Shankaranarayanan, Prof. Emina Soljanin, Prof. Roy Yates, and Prof. Richard Mar-

tin. My external examiner, Shankar gave me many opportunities to observe and learn

from his work. I look forward to continuing our collaboration. Emina’s teaching and

research always inspired me. Thoughtful and generous are the two words I think when

I think of her. I am grateful to Roy for bringing the best out of me. His invaluable

insights and feedback during the weekly team meetings greatly improved the work. My

infinite gratitude to all the committee members.

WINLAB has become an unforgettable place for me; it’s hard to imagine WINLAB

without Ivan Seskar. From him, I learned how to solve problems from the systems

view that gave practical wings to my theories. He imparted deep technical suggestions

v

during our friendly conversations and kept a tab open for me even in the busiest of

his times. I sincerely thank Prof. Zoran Gajic for navigating me through this journey.

Thanks are also due to the professors who have shaped me as a student including Prof.

Narayan Mandayam, Prof. Predrag Spasojavic, Prof. Gil Zussman, Prof. Gala Yadgar,

and Prof. Yanyong Zhang.

This thesis is incomplete without mentioning the support of my mentors, collab-

orators, and friends – Dr. Francesco, Dr. Jiachen, Shalini, Wuyang, Prasad, Fil-

ippo, Anirudh, Kishore, Krishnamohan, Mohit, Aayush, Tingjun, Hanif, Shreyasee,

Siddharth, Parishad, Murtadha, Vishakha, Mareesh, Bhargav, Ayman, Prof. Maha-

patra, Prof. Chakrabarti, Prof. Ganguly, Dr. Vasu, Suganya, Naveen, Dr. Walid,

Sameer, Andrea, Ray Miller, Dr. Abhigyan, and Matthew for all the big and small

ways you all have pitched in.

I would like to acknowledge the competent staff members of WINLAB, ECE, and

Rutgers including Noreen, Elaine, Christy, Mike, Jake, Lisa, Janice, Elisa, Jenny, and

Arletta, for their prompt help.

Deepest heartfelt thanks to my family whose unconditional love and selfless support

are with me in whatever I pursue. I could not have imagined doing a Ph.D. without the

much-needed love and affection of my wife, Kritika, for being there, always, whatsoever.

Thank you for sailing me through the tough times, patiently listening to all the technical

jibber-jabber, taking care of our kids when I almost every day said that I am busy today,

and boosting my morale during the darkest of the moments. I don’t think I can ever

thank you enough, and therefore I am dedicating this thesis to you.

vi

Dedication

To my lovely wife Kritika, and wonderful kids Chinmay & Aavya

vii

Table of Contents

Abstract . ii

Acknowledgements . v

Dedication . vii

List of Tables . xiii

List of Figures . xiv

1. Introduction . 1

1.1. Organization of the thesis . 4

2. Mobile Edge Cloud Requirements . 7

2.1. Augmented Reality and Edge Clouds . 10

2.1.1. Use Case Scenario . 11

2.1.2. Application Flow Timing Diagram 11

2.2. System Model . 13

2.2.1. System Design . 13

2.2.2. Performance Model . 16

Application . 17

Compute . 17

Latency . 18

2.2.3. Edge Selection for an AR Application 19

2.2.4. Baseline Approach . 20

2.3. Performance Evaluation of Baseline System 21

2.3.1. Impact of Network Bandwidth Parameters 21

2.3.2. Impact of Resource Distribution 23

viii

2.3.3. Impact of AR Application Traffic Parameters 24

2.4. ECON: Enhanced Capacity Edge Cloud Network 26

2.4.1. ”Usable” Edge-Cloud Optimization 28

2.5. ECON vs. Baseline . 29

2.5.1. Resource Distribution and Inter-edge Bandwidth 29

2.5.2. Application Delay Constraints 30

Edge-favored vs. Cloud-favored 31

Goodput . 32

2.6. Related Work . 33

2.7. Summary . 35

3. Techniques to Enable QoS Support in MEC 36

3.1. Introduction . 36

3.2. Edge Cloud Requirements . 38

3.2.1. Enabling QoS using Virtual Networks 40

The need for Layer 3 network virtualization 41

3.2.2. Application Specific Routing . 42

3.2.3. QoS Control . 42

3.2.4. Network Slicing . 43

3.3. Named-Object Based Virtualization . 43

3.3.1. NOVN General Design . 45

3.3.2. An Embedded Virtualization Abstraction 47

3.3.3. Separating Local and Global Tasks 48

3.3.4. Network State Exchange . 50

3.4. Name Resolution Service Impact on the Architecture Scalability 50

3.4.1. NRS Implementations . 50

3.4.2. NRS Challenges . 52

3.5. Advanced MEC Techniques . 53

3.5.1. Application Specific Routing . 54

ix

3.5.2. Quality of Service Control . 55

3.5.3. Network Slicing . 56

3.6. Prototype and Experiment Set-up . 57

3.6.1. Core Prototype Components . 57

3.6.2. Extended Implementation for the Advanced Services 59

3.6.3. Overlay based VN Implementation 60

3.7. Performance Evaluation . 61

3.7.1. NOVN Performance Benchmarks 61

3.7.2. QoS Control . 63

3.7.3. ASR Use Case . 64

3.7.4. Comparing NOVN with Overlay VN Solution 66

3.8. Discussion and Related Work . 69

3.9. Summary . 70

4. Service Migration in MEC . 71

4.1. Introduction . 71

4.2. MEC and Container Migration . 73

4.3. Container Migration System . 74

4.3.1. Flow Diagram . 74

4.3.2. System Details . 75

4.3.3. Assessing Migration Cost . 77

4.4. Modeling Container Migration . 77

4.4.1. Simulation Parameters . 78

4.4.2. Migration Cost . 79

4.4.3. ShareOn: Migration Decision Algorithm 79

4.4.4. Result — Emulation . 81

4.5. Simulation Set-up . 82

4.5.1. Simulation Scenario . 82

4.5.2. Simulation Parameters . 83

x

4.6. Results and Discussion . 83

4.6.1. System Performance . 84

4.6.2. Migration Cost . 85

4.6.3. ShareOn vs. Other Approaches 86

4.7. Supporting Autonomous Driving . 86

4.7.1. ADAS . 87

4.7.2. ADAS Applications . 90

4.7.3. ADAS System Design . 90

4.7.4. Smart Navigation . 92

4.7.5. EdgeDrive System . 93

System Components . 93

AR using HoloLens . 93

EdgeDrive Capabilities . 94

4.7.6. Experimental Details . 95

4.7.7. Emulating ADAS . 96

4.7.8. Container Migration . 96

4.7.9. Results and Discussion . 96

Parameters Impacting Container Migration 97

Factors Affecting Application Performance 97

Effect of Container Migration . 99

4.8. Summary . 99

5. Distributed Control Plane Protocol for MEC 102

5.1. Introduction . 103

5.2. Protocol Design . 106

5.2.1. Design Goals . 106

5.2.2. Protocol Design . 106

5.3. Implementation . 109

5.4. Cooperative Resource Sharing Algorithms 115

xi

5.4.1. Application Performance Evaluation 116

Cluster Computing . 116

Single Node Task Offloading . 117

NFV and Service Chaining . 117

5.5. Large Scale Emulation Methodology . 118

5.5.1. Setting Parameters . 118

AS to Location Mapping . 118

Neighbor List . 119

Number of Edge Clouds in an AS 119

Maximum Number of Hops . 120

5.5.2. Tesbed Set-up . 120

EC Nodes . 120

5.5.3. Application Details . 121

5.6. Performance Evaluation and Results . 122

5.6.1. Control Plane Overhead Evaluation 122

Packet Overhead . 123

Convergence Time . 125

5.6.2. DISCO System Level Performance Evaluation 126

5.6.3. Application Performance Evaluation 127

Cluster Computing . 127

Same Load and Inter-edge Bandwidth 129

Heterogeneous EC Network . 131

NFV and Service Chaining . 133

5.7. Discussion and Related Work . 134

5.8. Summary . 136

6. Conclusions . 137

6.1. Looking Ahead . 138

References . 139

xii

List of Tables

2.1. System Design Parameters . 15

2.2. Simulation Parameters . 16

3.1. Latency and throughput NOVN Benchmarks 62

3.2. Overhead comparison. 68

4.1. Simulation Parameters . 84

4.2. Requirements for Sample ADAS Applications 90

5.1. Average Convergence Time (ms) for DISCO 126

5.2. Compute Power Comparison for Different Resource Sharing Algorithms,

Load and MHops (k=1) . 127

xiii

List of Figures

2.1. General Multi-tier Edge-cloud Network Architecture 9

2.2. AR Use-case Scenario Set-up: (a) AR Application Flow (b) Smart Meet-

ing Application using Indoor Navigation and (c) Annotation based As-

sistance . 12

2.3. Timing Diagram for the AR Applications: (a) Smart Meeting Applica-

tion using Indoor Navigation and (b) Annotation based Assistance. . . . 13

2.4. Hybrid Edge Cloud System Diagram . 14

2.5. Wi-Fi APs Placement in Chicago City 15

2.6. AR Application Average Response Time for Core Cloud only System

with Increasing System Load and Different Uplink Bandwidth 22

2.7. Average Response Time Comparison for Core Cloud and Edge Only Sys-

tem, with Different Load and Inter-edge Bandwidth for Baseline 23

2.8. Average Response Time for Edge Cloud System for Different Load, Re-

source Distribution and Inter-edge Bandwidth for Baseline 24

2.9. Average Response Time for Edge Cloud System with Different Load and

Resource Distribution for Baseline. Inter-edge Bandwidth=1Gbps. . . . 25

2.10. Average Response Time for Edge Cloud System with Different Resource

Distribution and Inter-edge Bandwidth for Baseline. Load=0.5. 26

2.11. Average Response Time for Edge Cloud System with Different Resource

Distribution and Inter-edge Bandwidth for Baseline. Load=0.6. 27

2.12. Average Response Time Comparison for ECON and Baseline, for Differ-

ent Load and 1 Gbps Inter-edge Bandwidth 30

2.13. Impact of Application Latency Threshold on Delay-constraint Percentage

for ECON and Baseline without Inter-edge Bandwidth Constraints . . . 31

xiv

2.14. ECON and Baseline Comparison for Edge and Cloud Favored Resources

(Inter-edge BW=10 Gbps) . 32

2.15. Impact of Load on Goodput Ratio of ECON and Baseline in an Edge

Cloud System for Real-time Applications 33

3.1. NOVN layers of abstraction. 44

3.2. The named-object abstraction applied to core use cases. 45

3.3. NOVN design . 45

3.4. The effect of router migration on overlay deployments (left) and NOVN

(right). 48

3.5. Separation of local and global scale problems through a distributed co-

ordination plane. 49

3.6. Application Specific Routing as an advanced routing service for the edge

cloud use cases . 54

3.7. QoS control (traffic shaping) example in NOVN 56

3.8. Network Slicing in NOVN . 56

3.9. Click router elements graph for data plane flow 58

3.10. A Sample Traffic Shaper Implementation in NOVN 60

3.11. Network topology used for benchmarks 62

3.12. Multiplexing NOVN benchmark . 63

3.13. QoS control benchmark in NOVN . 64

3.14. ASR edge cloud use case example . 65

3.15. Network topology used for edge cloud deployment 65

3.16. Response time for edge cloud deployment 66

3.17. Network topology for VN comparison 67

3.18. Comparing effect of link failure for overlay VN and NOVN 69

4.1. General MEC System . 74

4.2. Container Migration Flow Diagram . 75

4.3. Container Migration Set-up in ORBIT 76

4.4. Impact of Processing Speed, Container Size on Total Migration Time . . 77

xv

4.5. Edge Cloud Network Topology . 78

4.6. Baseline (no migration) vs. ShareOn . 83

4.7. Average System Response Comparison for Static Allocations and Migra-

tions . 85

4.8. Effect of Load on the Migration Cost . 85

4.9. Average System Response Comparison for Different Migration Approaches 86

4.10. AR-enable ADAS Applications. The dashboard displays the weather,

navigation and surrounding information. 88

4.11. ADAS System Design . 89

4.12. ADAS Application Latency Comparison 91

4.13. Smart Navigation in ADAS . 92

4.14. EdgeDrive System . 94

4.15. Container Migration in EdgeDrive . 95

4.16. Emulating ADAS Applications at WINLAB 97

4.17. Impact of Machine type and Container Size on Total Migration Time

(Bandwidth=912 Mbps) . 98

4.18. Impact of System Load on Application Performance 99

4.19. Impact of Various Parameters on the Application Performance. (a) Up-

link fps affects the RTT for Annotation Application and (b) Mobility

affects the Accuracy of Navigation . 100

4.20. Latency Performance using EdgeDrive. (a) Single User Latency with

and without migration and (b) Average System Performance with and

without Migration . 101

5.1. Computation Offloading to: (1) Central Cloud, (2) Infrastructure MEC

node, and (3) Neighbors. 104

5.2. Distributed Edge Cloud Control Plane Architecture. 105

5.3. Information Dissemination in DISCO 108

5.4. Peering Configuration for Control Exchange. 110

5.5. Control Packet Format in DISCO. 111

xvi

5.6. Sending and Receiving Phases in DISCO. 112

5.7. Status Table in DISCO. 113

5.8. DISCO Node Logic Implementation . 114

5.9. AS Relationship in the SFO (CAIDA [1]) 119

5.10. Example AS Information in SFO . 120

5.11. Processing Latency (ms) of Traffic Lane Detection Application 121

5.12. Processing Latency of Traffic Lane Detection Application with Different

GFlops . 122

5.13. Processing Latency of Traffic Lane Detection Application with Load and

GFlops . 123

5.14. Ring Topology for Centralized vs. Distributed Control Plane Overhead

Evaluation. 124

5.15. DISCO Packet Overhead with Varied Number of Hops and Neighbors . 125

5.16. Cluster Computing with and without DISCO for Load=0.12 and Dif-

ferent MHops; Numbers in black are data plane neighbors for each EC

node. 128

5.17. Cluster Computing Comparison for Schemes with and without DISCO

for Heterogeneous Load, Bandwidth and Compute Resources. 129

5.18. Average EC Response Time Comparison for Different Load Conditions;

MHops=1 . 130

5.19. Average Response Time Comparison for Different MHops and EC Node

Load . 132

5.20. Average Response Time Comparison for Heterogeneous System Settings

(Load, Bandwidth) for MHops=1 . 133

5.21. Average Response Time Comparison for Heterogeneous System Settings

(Load, Bandwidth) for MHops=2 . 134

5.22. Impact of Threshold on the Application Performance for Different MHops135

5.23. NFV Service Chain Response Time Comparison for Different Schemes &

Various Average Loads. 136

xvii

1

Chapter 1

Introduction

The computing requirements of mobile devices are growing due to a rise in newer appli-

cations such as Augmented Reality (AR), Virtual Reality (VR), autonomous vehicles,

and robotics. The surge in usage of mobile devices (mobile data traffic will increase

seven-fold between 2017–2022[2]) has also resulted in tremendous increase of user expec-

tations both for the data rate and the quality of service (QoS). The mobile applications’

focus is therefore shifting from local execution towards the always connected paradigm

requiring seamless access to cloud computing, storage, and networking intended to off-

set limited computation capability and battery life at mobile devices. The concept of

Mobile Edge Cloud (MEC; also known as Multi-access Edge Computing) is introduced

by placing the compute, storage, and network components close to the users [3, 4] to

potentially fulfill extensive computing requirements of emerging low-latency class of

applications. Complex application software such as augmented and virtual reality etc.,

running on these mobile devices require data to be processed in ∼ms, something that

mobile devices (even those equipped with accelerator GPUs) cannot keep up with. This

motivates the edge cloud architecture in which the network infrastructure helps improve

the user’s QoE. The number of devices (scalability) and their performance requirements

(QoS) to be supported by the MEC architecture bring in additional research challenges

yet to be explored. This thesis† proposes architecture, design, and evaluation of the

MEC system with a specific focus on supporting future low-latency applications. The

specific results presented in this thesis include a study of the scalability and performance

†The work presented in this thesis is partially funded by NSF Future Internet Architecture - Next

Phase (FIA-NP) CNS#1345295, and COSMOS project CNS#1827923 funded by NSF and PAWR

Project Office.

2

of AR applications supported by city-scale MEC system, virtual network techniques to

enable QoS support in MEC, handling load balancing and user mobility, and providing

decentralized control plane protocol to enable distributed orchestration of edge cloud

resources.

Current cloud computing systems are designed to support low-cost and scalable

compute offloading which cannot provide a stringent bound on the round trip delays

of future low-latency applications[5, 6, 7] mainly due to their distant placement induc-

ing higher network delays, and uncertain bandwidth connectivity between the request

endpoint and the cloud [8]. Note that while the shift from infrastructure based com-

puting to cloud computing was based on the economic factors, the shift towards MEC

is motivated by low-latency and high bandwidth scenarios that require tighter place-

ment and control of computing and network resources. Although grid computing also

shares several common aspects with the MEC including peer to peer computing[9], it

cannot fulfill low-latency demands due to its loosely connected compute and network

protocols thus creating a lack of availability and trust[10, 11]. While MEC promises to

fulfill the application QoS, its geographically local, resource constrained design will not

be sufficient to handle load surges. Therefore the inter-MEC, as well as the MEC to

cloud offloading schemes, must be used to support AR applications. A detailed study

of scalability and performance of such a hybrid MEC system using a city-scale simu-

lation model is thus undertaken in this thesis wherein MECs are complemented with

the central cloud. The work presented in this thesis is an early direction to provide

system capacity details of hybrid MEC with different resource distributions, load and

inter-edge bandwidth which has the potential to guide future MEC deployments.

The geographical distribution of MEC resources leads to challenges of inter-domain

connectivity and dynamic re-routing while providing seamless service to a user. Ex-

isting L2 solutions such as VLAN [12] and MPLS [13] cannot provide cross-domain

connectivity while overlay based L3 solutions such as VINI [14] bring in the additional

set-up as well as run-time overhead. MEC being an integral part of 5G networks under

consideration [15], should support seamless service integration by connecting users to

their respective edge clouds. To achieve this, we propose an in-network, name-object

3

based [16] dynamic virtual network design (NOVN), which can provide application spe-

cific routing of a request to a best edge cloud. NOVN enhances the MEC architecture by

inherently supporting resource management, network slicing, and compute and network

orchestration.

The localized nature of MECs causes high load variability due to user mobility. The

prevalent technique to deal with such a scenario is task offloading [17, 18] which intro-

duces additional network path extension delay when using a uniform MEC entry/exit

point. The virtualization of computing functions in the form of the virtual machines

and more recently the lightweight containers have opened newer avenues of handling

user mobility and MEC load by using service migrations which are explored in this

thesis. An orchestrated framework to minimize service downtime and improve QoS is

designed and evaluated for taxicabs in San Francisco city.

The typical system model for edge clouds is based on the use of a central controller

for coordination of compute and network resources. The centralized control model does

not apply to a distributed system implemented across multiple edge network domains,

possibly involving a multiplicity of service providers. For a distributed edge cloud model

to work, a control plane is needed to exchange both network and compute resource in-

formation between edge clouds located in a region. Existing MEC architectures such

as hierarchical [19, 20] as well as centralized [21] implicitly assume the availability of

control plane information. This thesis proposes to design, implement and evaluate the

performance of a fully decentralized control plane protocol for MEC using an overlay

protocol design, allowing the use of the existing network fabric while ensuring flexibility,

simplicity, and elasticity [22]. Overlay solutions are a popular choice in the literature

due to their implementation simplicity and compatibility advantages [23, 24]. A com-

mon solution for distributing inter-network information is the Border Gateway Protocol

(BGP) which disseminates the IP routes between the Autonomous Systems (ASes) by

forming peering relationships [25]. However BGP by itself is designed only for routing

and cannot provide updates with the short time constants associated with edge cloud

resources. Overlay based large-scale testbeds such as PlanetLab and GENI [26, 27] are

configured for compute and network resources using resource specifications (RSpec) [28]

4

which enables a full description of the network, control of the network topologies, and

network-aware resource placement. Our protocol design complements these testbeds for

run-time resource discovery extending the current static configuration capabilities with

Rspec. The edge cloud network is a shared infrastructure system in which networking

entities such as routers play a significant role in MEC’s performance. Therefore, sup-

porting the views of [29, 30] we believe that a tightly coupled network participation,

for instance, routers disseminating network state information to the MEC nodes helps

to improve the performance and scalability.

A general technology solution for edge clouds will thus require distributed control

algorithms and associated control plane protocols to realize a closed loop, low-latency

control as well as the data plane for compute, storage and networking. The control

plane information thus obtained can be used in a multitude of applications such as

cluster computing, service migration, and service chaining, thereby motivates us to

design and develop an end-to-end framework to support future applications.

1.1 Organization of the thesis

Chapter 2 presents an analysis of the scalability and performance of an edge cloud

system designed to support latency-sensitive applications. A system model for geo-

graphically dispersed edge clouds is developed by considering an urban area such as

Chicago and co-locating edge computing clusters with known Wi-Fi access point lo-

cations. The model also allows for provisioning of network bandwidth and processing

resources with specified parameters in both edge and the cloud. The model can then be

used to determine application response time (sum of network delay, compute queuing

and compute processing time), as a function of offered load for different values of edge

and core compute resources, and network bandwidth parameters. Numerical results are

given for the city-scale scenario under consideration to show key system-level trade-offs

between edge cloud and conventional cloud computing. Alternative strategies for rout-

ing service requests to edge vs. core cloud clusters are discussed and evaluated. Key

conclusions from the study are: (a) the core cloud-only system outperforms the edge-

only system having low inter-edge bandwidth, (b) a distributed edge cloud selection

5

scheme can approach the global optimal assignment when the edge has sufficient com-

pute resources and high inter-edge bandwidth, and (c) adding capacity to an existing

edge network without increasing the inter-edge bandwidth contributes to network-wide

congestion and can reduce system capacity.

In chapter 3, techniques to enable QoS in MEC are described using a concept of

named-object abstraction applied to the virtual networks. A layer 3 virtual network

framework is designed, implemented and evaluated which can provide the control mech-

anisms to connect distributed resources across network domains. Building on that, an

application specific routing mechanism is provided to support requests based on cross-

layer information information extracted from network and application. Moreover, the

named-object abstraction is applied to achieve dynamic resource management using

in-network resource slicing and devising mechanisms for the QoS control. Finally, the

experimental results are obtained using a working prototype implemented usng the

Click modular router software.

Chapter 4 provides a technique to handle dynamic load and mobility in MEC by

migrating services across the MEC. Container migration is emerging as a potential

solution that enables dynamic resource migration in virtualized networks and MEC

systems. A traffic aware container migration approach is proposed, and validated with

an end-to-end system implementation using a pure container hypervisor called LXD

(Linux Container Hypervisor). The container migration model is then evaluated for

real-time applications such as license plate recognition running in a mobile edge cloud

scenario based on city-scale mobility traces from taxicabs in San Francisco. The sys-

tem evaluation considers key metrics associated with application quality-of-experience

(QoE) and network efficiency such as the average system response time and the mi-

gration cost for different combinations of load, compute resources, inter-edge cloud

bandwidth, network and user latency. A specific compute resource and network-aware

distributed resource migration algorithm called ”ShareOn” is proposed and compared

with alternative techniques using the San Francisco MEC model.

Finally, chapter 5 brings all the architectural components together by proposing a

distributed control plane protocol and providing a detailed evaluation of techniques to

6

support low-latency in the MEC. A novel control plane protocol is under discussion to

enable cooperative resource sharing in heterogeneous edge cloud scenarios to address

the key design challenges including: (a) specification of a lightweight overlay control

plane protocol for distributed edge, (b) evaluation of control protocol overhead and

achievable system performance with cooperation between edge clouds, (c) specification

of cooperative resource sharing algorithms (e.g., offloading, cluster computing and ser-

vice chaining) enabled by the protocol, and (d) evaluation of end-to-end latency for

specific real-time applications to be run on edge clouds. This evaluation is conducted

via an experimental edge cloud setup on the ORBIT testbed at WINLAB.

7

Chapter 2

Mobile Edge Cloud Requirements

Edge clouds promise to meet the stringent latency requirements of emerging classes of

real-time applications such as augmented reality (AR) [31] and virtual reality (VR) [32]

by bringing compute, storage and networking resources closer to user devices [33, 34].

Edge compute resources which are strategically placed near the users in the access

network do not incur the irreducible propagation delays associated with offloading of

compute intensive tasks to a distant data center. In addition, the use of edge computing

can also lower wide-area backhaul costs associated with carrying user data back and

forth from the central cloud. AR and VR applications enable users to view and interact

with virtual objects in real time, hence requiring fast end-to-end delivery of compute

services such as image analytics and video rendering. Previous studies [35, 36, 37, 38]

have shown that latency associated with AR or gaming applications can be reduced

by migrating some of the delay-sensitive tasks computing tasks to local servers, while

maintaining global state in the core cloud.

While edge clouds have significant potential for improved system-level performance,

there are some important trade-offs between edge and core clouds that need to be

considered. Specifically, core clouds implemented as large-scale data centers [5] have the

important advantage of service aggregation from large numbers of users, thus making

the traffic volume predictable. Further, service requests entering a large data center can

be handled in a close to optimal manner via centralized routing and load balancing [39]

algorithms. In contrast, edge clouds are intrinsically local and have a smaller scale and

are thus subject to significantly larger fluctuations in offered traffic due to factors such as

correlated events and user mobility. In addition, we note that edge computing systems

by definition are distributed across multiple edge networks and hence are associated

8

with considerable heterogeneity in bandwidth and compute resources. Moreover, the

data center model of centralized control of resources is not applicable to a distributed

system [40, 41] implemented across multiple edge network domains, possibly involving

a multiplicity of service providers.

A general technology solution for edge clouds will thus require suitable distributed

control algorithms and associated control plane protocols necessary for realization. The

unique nature of the distributed edge cloud system poses key design challenges such as

specification of a control plane for distributed edge, distributed or centralized resource

assignment strategies, traffic load balancing, orchestration of computing functions and

related network routing of data, mobility management techniques and so on. MEC also

has other advantages such as security to prevent data being sent away from the MEC.

This thesis is focused on latency. In order to address these challenges, a simulation

based system model is the foundation for understanding performance and evaluating

alternative strategies for any of the above design issues.

This chapter presents an analysis of the scalability and performance of a general

hybrid edge cloud system which supports latency-sensitive applications. The goal is to

provide a better understanding of key system design parameters such as the proportion

of resources in local cloud vs. data center, fronthaul and backhaul network bandwidth,

relative latency/distance of core and edge clouds, and determine their impact on system

level metrics such as average response time and service goodput. Using the model

described here, we seek answers to the following questions: (a) How much load can

an edge cloud network support without affecting the performance of an application;

(b) How does the value of the application delay-constraint affect the capacity of the

system; (c) What is the impact of offered load and resource distribution on goodput;

(d) Under what circumstances can the core cloud perform better than an edge network

and vice-versa; and (e) What is the impact of inter-edge (fronthaul) and edge-to-core

(backhaul) network bandwidth on system capacity?

We use a simulation model to study a city-scale general multi-tier network as shown

in Fig. 2.1 containing both edge and central cloud servers. The model is used to obtain

system capacity and response time for an augmented reality application while analyzing

9

Figure 2.1: General Multi-tier Edge-cloud Network Architecture

the impact of key parameters such as resource distribution and fronthaul/backhaul

bandwidth. A general optimization framework for the distributed system is proposed

and compared with distributed algorithm approaches.

The rest of the chapter is organized as follows. Section 2.1 demonstrates the aug-

mented reality application with two use-cases deployed at WINLAB to measure their

computation (e.g., processing delay), networking (e.g., propagation and transmission

latency) and storage (e.g., database use) requirements. The requirements demonstrate

a need of edge cloud to achieve low-latency. Section 2.2 provides the simulation details

including the system model with an emphasis on system design, and performance model

to analyze edge clouds using a city-scale network including models for application, com-

pute and latency. A baseline distributed resource allocation approach for selecting an

edge cloud for an AR application is also detailed in Section 2.3. Section 2.4 presents the

performance evaluation of the baseline approach. Section 2.5 proposes and evaluates a

capacity enhancement heuristic (ECON) for real-time applications. Numerical results

to compare ECON and the baseline are given in Section 2.6. Section 2.7 provides related

work in the field and finally, Section 2.8 concludes the chapter.

10

2.1 Augmented Reality and Edge Clouds

Augmented Reality (AR) is gaining popularity in numerous fields such as healthcare,

visualization, entertainment and education. Most of the commercially available AR

devices like Atheer AiR [42], Microsoft Hololens [43] and Google Glass [44] have lim-

ited power, storage and on-chip computation capabilities; for example, currently the

Hololens (first version) has ∼64 GB storage and ∼2GB RAM. Thus, these devices often

rely upon offloading storage as well as compute to an architecturally centralized cloud

server to ensure that the application response time requirements are met.

The Quality of Experience (QoE) perceived by a user running an AR application

using cloud services is a complex combination of network bandwidth, network traffic

and compute capabilities of the cloud. First, the bandwidth from end–user to a cloud

data center is the minimum bandwidth available across all the hops in the network

path, which could be significant when cloud is located far from the user. Second, the

network traffic depends upon the network load and congestion, and varies for each

individual local network. Edge cloud computing (denoted as ”edge” in the following

discussions) promises to alleviate the shortcomings of the cloud server by bringing

computation, networking and storage closer to the user and providing fast response,

context awareness and mobility support [45]. Therefore, edge computing can be viewed

as having the same centralized cloud resources scattered at the mobile network edge and

accessed through fast Wi-Fi or 5G access networks. This approach has the potential

to provide tightly bounded service response time thereby creating a geographically

distributed heterogeneous computing and communication system.

Edge computing complements the cloud infrastructure as edge clouds are resource

limited in terms of bandwidth and compute. The multifaceted edge system therefore

must be studied in conjunction with the existing core cloud for different user require-

ments, application types, edge assignments and QoS constraints. Thus, for a resource

constrained system it is required to allocate resources per request while taking system

capacity into consideration. This leads to a nonlinear optimization problem [46] due

11

to multiple factors affecting the capacity including but not limited to network band-

width, resource availability and application type. In order to understand the capacity

constraints of a hybrid edge cloud system for latency sensitive applications, we analyze

the MEC using a set of sample AR application [47].

2.1.1 Use Case Scenario

Figure 2.2(a) shows the process flow of our implementation of demo AR applications

using Microsoft Hololens. A client sends a continuous video stream to the edge server

which processes the information based upon application type and returns output to the

client. The video stream (30 fps) is processed by OpenCV [48] 3.3 running on Intel i7

CPU 980, 3.33GHz and 15GB RAM. The edge server is connected to the client in two

hops: (i) edge to first hop router (bandwidth: 932 Mbps) and (ii) router to Hololens

(bandwidth: 54 Mbps). The following use-cases are evaluated.

Smart Navigation. A user enters a building. The edge in the building has her

contextual information from the calendar entries and GPS. As shown in Fig. 2.2(b) the

user is navigated to meet a person in the building using a set of cubes appearing on

the device as she moves. Achievable latency is critical here because real-time activities

of the user can be disrupted by late arrival of AR information.

Annotation based assistance. In this scenario, a user looks at an object having a

set marker through Hololens with an intention to get supplementary information about

the object. In Fig. 2.2(c), user looks at the printer and its status, ink level, number

and current jobs are annotated on the user’s display.

2.1.2 Application Flow Timing Diagram

Figures 2.3(a) and (b) show (not to the scale) the timing diagrams of a sample packet

flow in the system for smart meeting and annotation-based assistance applications re-

spectively. The network delay in both the cases is kept below 10 ms by deploying edge

cloud services a single hop away from the AP. In both the scenarios, the processing

delay, path finding in the navigation and OpenCV image processing in the annotation

12

Figure 2.2: AR Use-case Scenario Set-up: (a) AR Application Flow (b) Smart Meeting
Application using Indoor Navigation and (c) Annotation based Assistance

application, can be a major bottleneck. The following techniques are used in our im-

plementation to lower the total response time as compared to the traditional core cloud

based services: (i) reduction of network latency via higher bandwidth and closer edge

cloud service; (ii) passing minimum processed information to the client such as end-to-

end coordinates (8 Bytes) per query in case of the navigation and 64-1500 Bytes per

frame processed for the annotation application, and (iii) offloading multiple tasks to the

edge cloud to minimize local processing at the UE. The AR implementation serves as a

guide to the parameters used in the system model described in the next section, which

assumes a low-latency requirement to run AR applications with an acceptable subjec-

tive quality [38]. Using our deployed AR applications, this section confirms that: (a)

the total application latency can be brought down by reducing the number of hops and

increasing available access bandwidth, and (b) although edge cloud lowers the network

latency, application processing latency contributes significantly to the total latency for

AR applications.

13

Figure 2.3: Timing Diagram for the AR Applications: (a) Smart Meeting Application
using Indoor Navigation and (b) Annotation based Assistance.

2.2 System Model

2.2.1 System Design

The system diagram of the hybrid edge cloud under consideration is shown in Fig. 2.4.

Each AP is equipped with an edge cloud with a configurable compute resource capacity.

In general, a compute resource represents a machine or a group of machines (cluster)

also known as cloud or edge rack. A rack has limited capacity to support users for their

computational requirements. For instance, an AR application requires computation to

process video/image stream and receive their response back from the server. The edge

rack in our design has maximum five processors each having 3.33 GIPS processing speed.

The central cloud server is placed at Salem, Oregon (OR; location chosen to relate with

commercially available central clouds) which again has a configurable capacity. The

compute capacity is defined as the number of servers available at the edge cloud and/or

at the central cloud. The inter-edge bandwidth is varied from 1 Gbps to 100 Gbps and

AP-Cloud bandwidth from 10 Gbps to 500 Gbps. The special case of unconstrained

14

Figure 2.4: Hybrid Edge Cloud System Diagram

inter-edge and AP-cloud bandwidth is also considered. The central controller has the

capability to collect network and compute parameters from all the edge clouds and the

core cloud. The system design parameters are listed in Table 2.1.

In this study, the total amount of compute available at the edge clouds and core

cloud is assumed to be fixed. This assumption holding the compute cost constant allows

us to fairly analyze the impact of varying other key system parameters such as % of edge

servers or core/edge bandwidth. In our simulation, we increase the resource density of

already deployed edge clouds by removing and redistributing compute resources from

the central cloud thereby keeping the overall compute resources for the whole system

unchanged.

We use Chicago, the third most populous city in US, as a test-case considering

locations of 11,00 WiFi APs [49] as shown in Fig. 2.5. The number of hops from

Chicago to OR varies from 10 to 20 (including switches) and takes around 5-6 hops

to reach the cloud server gateway whereas the average latency in US ranges from 13

ms to 106 ms [50] based on a ping test of 64 bytes packet from various locations. It

15

Table 2.1: System Design Parameters

Parameter Value/Range

AP-Cloud Bandwidth 10–500 Gbps

Inter-edge Bandwidth 1-100 Gbps

Core Cloud Resources 0, 20, 40, 60 or 100%

Edge Cloud Resources 0, 20, 40, 60 or 100%

Core Cluster 0-5500 servers

Edge Clusters 0-5500 servers

AR Latency Requirements 50-100 ms

Figure 2.5: Wi-Fi APs Placement in Chicago City

is to be noted that the AR application’s bit rate increases rapidly with resolution for

instance a 160x120 pixels video needs around 1.7 Mbps whereas a 640x480 pixels video

requires 27 Mbps continuous uplink bandwidth (assuming 30 fps, 24 bit per pixel), and

432 Mbps for 1920x1080 video. The response from the server is sent to the UE in the

packets of size between 100 to 1500 Bytes per processed frame. Note that the uplink

bandwidth requirement for an AR application is more than the download bandwidth

due to its uplink video/downlink processed information characteristic which is quite

different from most web traffic today. We model the network based on the type of

application and its latency requirement.

16

We run an AR application at the UE which sends a video stream to the server

while server computes the contextual information and sends back the output to the

user. The application is annotation-based assistance using AR wherein a user gets

information about surrounding annotated on his AR device as described in Section II.

Annotation-based assistance can be used in various application scenarios. For example,

a policeman looks at a license plate of a car while driving and the information about

the owner gets displayed on the device. The license plate can also be run against a list

of stolen car and can be immediately reported to the policeman.

Table 2.2: Simulation Parameters

Parameter Value

Area 5.18 km2

Number of APs 1.1K

Maximum Number of Users 55K

Distribution of Users Random

Bandwidth (Uplink) 27, 150 and 300 Mbps

Bandwidth (downlink) 54, 300 and 600 Mbps

Packet Size 1500 Bytes

Edge Resources (baseline) 5 Machines

α 0.1

β 1

w 0.5

p 10

2.2.2 Performance Model

In this section, we describe system modeling aimed at evaluating user performance

and system capacity as a function of key design parameters. A multi-tier edge-cloud

system as shown in Fig. 2.4 can be divided into user, network (data and control) and

computation plane. Our system design is a hierarchical composition of compute and

network elements. The computation at edge or cloud is similar in functionality but

different in terms of resources availability as the core cloud has a single big pool of

shared resources while each edge cloud has limited resources closer to the user. The

following discussion presents application, compute and latency modeling.

17

Application

In our model, the application is defined by a four tuple < V,G, S, L > where V denotes

the computational task per unit time ranging from [1, n], n ∈ Z+. Each AR application

requires these tasks to be completed within a specified real-time threshold latency in

order to be useful to the AR application. In case a task is not completed within

the application latency threshold, the goodput of system goes down. G denotes the

geolocation of the UE. A city is considered to be a collection of Gi blocks (assume

as cells of a cellular network), i ∈ [1, N] where N is the total number of geographical

blocks. For simplicity, we divide the geographical area into square Gi’s. Analyzing the

users served by each block provides us meaningful information if we need to upgrade

the capacity of an edge cloud in the block if it is available. Binary S ∈ {0, 1} denotes

the availability of the edge cloud in the geographical area G of a user. Unavailability of

an edge cloud may mean that there is no physical edge cloud present or the edge cloud

of that region has run out of capacity in which case, a neighboring edge cloud can be

chosen or the user can be routed to the central cloud. For delay-tolerant applications,

routing a user to the central cloud frees resources at the edge to serve latency-sensitive

applications. Finally, L ∈ (0, dmax) represents the maximum tolerable latency for the

said application.

Compute

The delay due to computation is modeled using a multi-server queuing model. The edge

cloud is like a mini data center where tasks arrive from geographically distributed users,

processed by the available resources in the edge cloud and depart. Therefore, as the

number of transactions in the system increase when the system load rises these tasks

are queued till they are processed. This scenario can be best represented by employing

an M/M/C queuing model[51]. Each edge or central cloud processes multiple service

requests in a work-conserving FCFS queue with assumed infinite buffers. The overall

latency is dependent on the arrival rate λ, service rate µ and the number of servers c.

It can be noted that as the system computation power is constant, increasing capacity

18

at the edge will mean removing equivalent resources from the central cloud implying a

rise in queuing delay at the cloud.

For a given set of static users, the system load is proportional to the number of

active users and the rate of application requests per second. In our model, Load=0.1 is

defined as 10% of the total users are running the AR application. In general, average

time spent by a task in the server is the sum of transmission delay, queuing delay and

processing delay, which is calculated using the M/M/c queuing model [51] as given by

Eq. 2.1–2.3.

dnode = W +
1

µ
+ ttx = PQ ∗

ρ

λ(1− ρ)
+

1

µ
+ ttx (2.1)

PQ =
(cρ)c

c!

1

1− ρ
p0 (2.2)

p0 =

[
c∑

k=0

(cρ)k

k!
+

(cρ)c

c!

1

1− ρ

]−1
(2.3)

Here, dnode is the total time spent by a task V at the edge cloud or the core cloud, W

is the wait time in the queue, PQ is the queuing probability, ρ is the server utilization,

c are number of servers at each edge or total server at the cloud, and p0 is the initial

probability. In view of shared bandwidth on inter-edge links, the transmission time ttx

can be simplified as blink/rusers where blink is the total bandwidth of a link and rusers

are number of total tasks run by all the users at an edge. For large c, to avoid involved

calculations in Eq. (2), we split cloud computing resources into set of uniform clusters

where a selected cluster is one serving the lowest number of concurrent tasks.

Latency

The overall latency of an application has several components including irreducible prop-

agation delay, the transmission delay, routing node delays and the cloud processing time.

For a core cloud server, which carries aggregated traffic, there is also a Software Defined

Networking (SDN) switching latency. As the number of users increase in a geographical

region, the bandwidth is shared among them costing more transmission delay. For a

19

cloud only model when there are no edge servers, the total cloud latency can be stated

as:

Lcloud = α ∗Dmin(UE,APs) + β ∗DAP−cloud + dnode (2.4)

Eq. 2.4 shows that a closest AP is chosen to route a user to the cloud. Here, α and β

are the proportionality constants to account for the propagation delays, Dmin(UE,APs)

is distance from UE to nearest AP and DAP−cloud is the distance from AP to the

central cloud. When resources are available at the edge, the total edge latency can be

represented as:

Ledge = α ∗Dmin(UE,APs) + dnode + ds (2.5)

In Eq. 2.5, ds ≥ 0 is the control plane switching latency from an edge at AP to

another AP’s edge in case of unavailable resources which is assumed to be between 1–

5ms. The response time for an application is the sum of transmission delay, propagation

delay, switching delay (if any), queuing delay and computation delays in both the cases.

The specific values of α and β are selected to relate with the distance between users

and cloud components.

A core cloud-only system is defined as one with no edge cloud available. The edge-

only system does not have any core cloud and if the load exceeds the available compu-

tational resources, a request is queued until it is processed. We also consider hybrids

of core and edge based on the percentage parameter that splits computing resources

between the two.

2.2.3 Edge Selection for an AR Application

Edge selection in a system for a given traffic load can be achieved using multiple ap-

proaches. The network routing information that is available to all the routers can be

used to deliver the service request to the nearest edge cloud — the edge cloud then

independently decide to serve the request based upon resource availability or can route

the user to the central cloud. A queuing model is used to estimate the service time for a

20

request apart from networking delays (control plane), propagation delays and transmis-

sion delays (available bandwidth). The nearest edge approach works well for scenarios

with evenly distributed users and network resources. However, this simple nearest edge

cloud routing strategy does not work well when the user distribution is not geograph-

ically uniform ascertained by our simulation showing only 10% improvement in the

average system response time as compared to a cloud-only system.

An alternative distributed approach improves upon simple anycast by having routers

maintain compute resource availability states of neighboring edge clouds. This may

involve the use of overlay protocols to exchange cloud state in a distributed manner

[52, 53]. A user is routed to the nearest edge first which makes one of the following

decisions: (i) serve the request, (ii) route to a neighboring edge with available resources,

or (iii) route to the central cloud. The decision at the edge is based upon application

requirement and traffic load. For an AR application, the decision metric selects the

closest edge to the UE which can serve the UE in Ledge ≤ dmax.

2.2.4 Baseline Approach

Algorithm 1 shows the pseudo-code for the baseline edge cloud selection approach

adopted in our study. The algorithm is invoked whenever the default edge cloud is

unable to serve the user’s demand (line: 2). It then scans the states of neighboring

edges to find the best edge which can serve the user within the specified latency thresh-

old. This approach relies upon shared resource and bandwidth information among

21

neighbors. The list of neighbors is defined as p closest edge clouds from the current

edge location. For finite p the order of state update messages to be exchanged is ∼ N∗p2

where N is the number of edge clouds, and is thus an acceptable overhead for small to

moderate values of p.

This section detailed our system and performance model. A baseline algorithm

which scans the states of neighboring edge clouds to find the best edge which can serve

the user within the specified latency threshold is developed. Next section evaluates the

performance of baseline algorithm.

2.3 Performance Evaluation of Baseline System

In this section we discuss the capacity of different edge cloud systems with respect to

traffic load, resource distribution and inter-edge bandwidth. Consider a system with

following compute resources: (i) core cloud only, (ii) edge cloud only, and (iii) core cloud

plus edge cloud, where in each case, the total amount of resources are same. Major

system parameters used in the simulation are summarized in Table 4.2.

2.3.1 Impact of Network Bandwidth Parameters

Figure 2.6 illustrates the impact of constraint bandwidth AP-cloud system on the aver-

age response time. Here, the total bandwidth limit is set between edge network and the

core cloud cluster. For a 500 Gbps AP-cloud bandwidth, for given system, the average

response time compares with that of an unconstrained bandwidth case while for 50

Gbps case, it rises exponentially as the load increases. In case of lower bandwidth cases

like 10 Gbps and 25 Gbps, the system is unable to handle higher load. As a bandwidth-

constrained cloud system cannot compete with an edge-only system in terms of response

time, further discussions in this work will assume a bandwidth-unconstrained cloud.

Figure 2.7(a) plots the average response time for the core cloud as well as edge

only system with different inter-edge bandwidth. On one hand, the extreme fronthaul

bandwidth of 100 Gbps edge-only compares with the unconstrained bandwidth edge-

only system and therefore all the edge resources are utilized. On the other hand, after

22

Figure 2.6: AR Application Average Response Time for Core Cloud only System with
Increasing System Load and Different Uplink Bandwidth

the system fills up at Load=0.7, core cloud only system outperforms the edge only

system with 1 Gbps inter-edge bandwidth. The reason is that for the baseline case,

when an edge fills up the capacity, it routes the request to a neighboring edge utilizing

inter-edge bandwidth. As the finite inter-edge bandwidth is split between multiple

application flows, the propagation delay and queuing delay rise which in turn increases

the average response time for higher load. In the baseline approach, the edge decides

whether to send the request to a neighboring edge or to the central cloud. For 1 Gbps

inter-edge bandwidth case, the average response time for Load=0.1 is as low as 30 ms

while for Load=0.8 case, it rises to 130 ms as the bandwidth exhausts and queuing

delay rises. A delay more than 100 ms is unsuitable for most of the AR applications.

As the bandwidth doubles, for Load=0.8 case, the average response time is ∼95 ms.

Increasing bandwidth lowers the average response time for a completely loaded system

but beyond 10 Gbps there is no significant advantage visible for the baseline case as

there are still significant queuing delays for a loaded edge at an AP (or neighboring

AP). After a load point, there is no dip in response time irrespective of how good the

fronthaul connectivity between edge clouds is. In this case, there is a crossover around

Load=0.7 so we compare the CDF of core cloud only and edge-only with the 1 Gbps

23

Figure 2.7: Average Response Time Comparison for Core Cloud and Edge Only System,
with Different Load and Inter-edge Bandwidth for Baseline

case in Fig. 2.7(b). A linear rise in response time can be observed for the static load

case implying that the inter-edge bandwidth of 1 Gbps is insufficient to run such a

heavily loaded system.

2.3.2 Impact of Resource Distribution

In this section, we analyze the impact of the compute resource distribution between

the core cloud and edge cloud on the average response time. There are a total of

5.5K processors each having 3.33 GIPS speed available as compute resources which are

equivalent to 1.1K full edge racks. The compute resources are distributed between edge

and cloud. In the simulation model, CE82 implies that 80% compute resources are

available at the cloud and 20% are placed at the edge near the APs and so on.

Figures 2.8(a) and (b) compare average response time in CE28 and CE82 for the

baseline with respect to inter-edge bandwidth and load respectively. Response times

for inter-edge bandwidth of 10, 50 and 100 Gbps are close to each other for all the load

cases for both scenarios. This implies that increasing inter-edge bandwidth indefinitely

cannot improve the system performance when using the simple scheme of filling neigh-

boring edge resources. Figure 2.8(a) also highlights the fact that when edge resources

24

Figure 2.8: Average Response Time for Edge Cloud System for Different Load, Resource
Distribution and Inter-edge Bandwidth for Baseline

are higher than the core cloud for a low inter-edge bandwidth, beyond a load point, the

core cloud-only system performs better. This means that for a highly loaded system,

if fast edge connectivity is unavailable, it is better to use the core cloud. Here, cloud

only means that there are no edge clouds in the network and APs are connected to the

cloud with unconstrained bandwidth.

2.3.3 Impact of AR Application Traffic Parameters

Figure 2.9 establishes that a limited inter-edge bandwidth makes system very suscepti-

ble to load. For the CE28 case, when the cloud-edge resource distribution is 20%-80%

and inter-edge bandwidth is 1 Gbps, average response time increases at a faster rate

than that of the CE82 case. The reason is that in the baseline scenario for CE28, an

edge might be able to find a neighbor with available capacity but the connectivity is

not sufficient to reach to that neighbor. In the case of lower or no edge resources, the

core cloud is immediately favored and therefore performs better than the edge cloud

scenario as can be observed from the crossover point at Load>0.7.

One more point of interest in Fig. 2.9 is between Load=0.5 and Load=0.6 where

all the CE cases intersect. Figure 2.10 shows the average response time with different

25

Figure 2.9: Average Response Time for Edge Cloud System with Different Load and
Resource Distribution for Baseline. Inter-edge Bandwidth=1Gbps.

inter-edge bandwidth and resource distribution for baseline when Load=0.5. Here, for

the CE82 case, increasing inter-edge bandwidth does not boost the system performance

as compared to the CE28 case because for the low edge resources case, increasing inter-

edge bandwidth cannot decrease the processing delays at the edge. For a system with

high edge resources, a higher inter-edge bandwidth is therefore needed to maintain AR

performance.

Similarly, for the Load=0.6 case, Fig. 2.11 plots average response time vs. resource

distribution for different inter-edge bandwidths. Again, for a 50 Gbps inter-edge band-

width system, a faster drop in the average response time can be observed for the CE28

case when 80% resources are at the edge. For a 1 Gbps inter-edge bandwidth system,

the average response time is slightly higher for the CE28 system than for the CE46

system.

Using our designed system and performance model, we make following observations

for the baseline scenario: (a) for unconstrained compute resources, the edge cloud con-

tinues to perform better than the core cloud due to its vicinity to the users (lower

network latency), (b) increasing core network bandwidth beyond a load point does not

lower the total application latency as the compute latency takes over, (c) for higher

26

Figure 2.10: Average Response Time for Edge Cloud System with Different Resource
Distribution and Inter-edge Bandwidth for Baseline. Load=0.5.

system load, the propagation delay and queuing delay rise because finite inter-edge

bandwidth is divided among multiple application flows, (d) indefinitely increasing fron-

thaul edge cloud connectivity does not improve the response time after a load level, and

(e) for lower inter-edge bandwidth case, distributing more resources at the edge clouds

only worsens the application performance.

2.4 ECON: Enhanced Capacity Edge Cloud Network

The baseline approach considered in the previous section relies on a distributed control

to select the best available neighboring edge cloud which might be sub-optimal in terms

of overall system capacity. A more general approach is to select an edge cloud based

upon global information about network and compute resources available at a logically

centralized point such as an SDN controller. The idea is to use the complete network

view before assigning an application/user to an edge cloud or deciding to route it

to the core cloud. We call this approach Enhanced Capacity Edge Cloud Network

(ECON). This section describes the ECON method and compares its performance with

the baseline method.

27

Figure 2.11: Average Response Time for Edge Cloud System with Different Resource
Distribution and Inter-edge Bandwidth for Baseline. Load=0.6.

Definition 1: An edge or cloud is ”usable” for a request i if the latency La
i for the

user running an application a is below the latency threshold for given application La
Th

i.e. La
i ≤ La

Th. Here, La
i is simply equal to Lcloud or Ledge with different dnode and ds.

A ”usable” server is best for a user request in terms of service quality whereas

the overall system capacity might not be optimal with this assignment. For example

consider a user’s application latency threshold 110 ms which may be assigned to an

edge server serving request within 30 ms. This assignment will hamper performance of

another needy user who required 35 ms latency but cannot be accommodated due to

unavailable resources at the edge.

Definition 2: ”delay-constraint (%)” of an edge-cloud system is defined as the num-

ber of requests out of hundred served below the application response time threshold,

La
Th. For a specific value of La

Th, the delay-constraint can also be interpreted as sys-

tem capacity. For instance, a delay-constraint of 10% for a 15 ms threshold implies

that system can accommodate only 10% of the total requests and 90% requests will

only consume resources to lower the goodput. This means for 90% of the requests, the

assigned edge resources are ”not usable”.

Percentage delay-constraint, C = (nTh/N) ∗ 100, where nTh are requests served

28

within threshold response time and N are the total number of requests in the system.

A system with high C for a threshold is required to run latency sensitive applications.

2.4.1 ”Usable” Edge-Cloud Optimization

Assigning requests to a ”usable” server is similar to capacity optimization of an edge-

cloud system for given compute as well network resources and application delay fulfill-

ment. This problem is equivalent to the maximum cardinal bin packing and hence is

NP-hard [17, 54]. We can model the global optimization to maximize usable server s

for N requests, where each request i is assigned to the server s, as:

max
s

∑
n∈N

I{sn>0} (2.6)

subject to:

La
i (s) ≤ La

Th,∀sn > 0, n ∈ N (2.7)

I{sn>0} being the indicator function with values 1 or 0 depending upon if such a

server is available or not for a given request which means if it can serve the request

in application response time threshold. Mapping users to ”usable” server is NP-hard

problem as explained earlier thus requiring an alternative approach.

The total average processing delay, dcomp, at the cloud or edge, comprise of a waiting

delay in the queue and a processing delay associated to the type of application. At each

node, there is a transmission time, ttx associated with each task V , adding which to

dcomp provides total time, dnode, spent at a server. Therefore, for such a system, we

can formulate Eq. (2.6) as minimizing dnode of the system for all the users, while

compromising on the optimality, instead of a ”usable” server problem as follows:

P1 : min
M∑
i=1

(
N∑
j=1

dj,iproc + ditx + dis) (2.8)

subject to:

La
j ≤ La

Th, ∀j ∈ N (2.9)

bi,upmin ≤ b
a
i ≤ bi,upmax, ∀i ∈M (2.10)

bi,down
min ≤ bai ≤ bi,down

max ,∀i ∈M (2.11)

29

M∑
i=1

ci ≤C (2.12)

Equation 2.8 defines the optimization problem with Eq. (2.9) as delay constraint,

Eq. (2.10) and Eq. (2.11) as bandwidth constraints for uplink and downlink each

user application and, Eq. (2.12) as capacity constraint of each node respectively. As

explained earlier, bai can be computed as bi/redge. Again, the problem is similar to

maximum cardinality bin packing problem and is NP-hard. Therefore, to find the

”usable” server, we need to fix a user to a nearby edge and find the Pareto optimal

edge for the next user sequentially satisfying the application latency constraint. This

can be done by omitting the switching delay. Therefore, the problem can be simplified

as (with same constraints as above) follows assuming ditx constraint is satisfied by

bandwidth splitting for each request.

P2 : min
M∑
i=1

N∑
j=1

dj,iproc (2.13)

Equation 2.13 establishes that for a latency sensitive AR application, finding the ”us-

able” server for a user means we need to place the task to a server which is nearby to

the user in strict network sense having low load, latency and high available bandwidth.

The delay minimization objective function fills up the edge resources before routing a

task to the central cloud. The latency and bandwidth of chosen server are estimated

using the exponential moving average: xp ∗ wx + (1 − wx)x, with wx as weight factor

for x, xp is the previous value, x is the previous average and x is latency or bandwidth

parameter. We call this approach ECON and results are compared with the baseline

in next section.

2.5 ECON vs. Baseline

2.5.1 Resource Distribution and Inter-edge Bandwidth

ECON relies upon filling up the edge resources before routing to the central cloud.

Figures 2.12(a) and (b) compare average response time for CE28 and CE82 cases when

the inter-edge bandwidth is 1 Gbps. For an edge-favored CE28 scenario in Fig. 2.12(a),

ECON and baseline have similar performance because finding an available resource in

30

Figure 2.12: Average Response Time Comparison for ECON and Baseline, for Different
Load and 1 Gbps Inter-edge Bandwidth

ECON is equivalent to finding a neighbor in the baseline which has high probability

when edge resources are 80%. When the resources are cloud-favored i.e. CE82 in Fig.

2.12(b), for a lightly loaded system, ECON performs better as it is able to find the

resources anywhere in the network without additional queuing delays at the edge. For

a highly loaded system, finding an available edge is more expensive than routing the

request to the cloud itself and therefore baseline outperforms ECON in case Load>0.5.

2.5.2 Application Delay Constraints

Figure 2.13 presents the delay-constraints for unconstrained fronthaul bandwidth for an

edge-cloud system for the CE82 case when Load=0.1. As application latency threshold

increases, delay-constraint rises meaning if an application has a latency threshold of

100ms, about 60% requests can be fulfilled by the cloud-only system whereas the edge-

only system will be able to fulfill all the requests. As shown in the plot, without

inter-edge bandwidth limits, ECON performs better than the baseline as it fills up

maximum edge resources before routing any request to central cloud.

31

Figure 2.13: Impact of Application Latency Threshold on Delay-constraint Percentage
for ECON and Baseline without Inter-edge Bandwidth Constraints

Edge-favored vs. Cloud-favored

Figures 2.14(a) and (b) compare edge and cloud favored resources respectively when

inter-edge bandwidth is 10 Gbps. Figure 2.14(a) shows that for an edge-favored case

when most of the resources are available at the edge, a baseline neighbor selection

scheme performs equally well as ECON which selects the best of all edge resources for

the request. For the cloud favored resource case shown in Fig. 2.14(b), ECON performs

better than baseline as each of the edges has sufficient bandwidth to reach a far away

available edge resource. Therefore, when sufficient bandwidth is available, it is better

to choose an edge even if there are fewer resources available as the queuing time at

an edge can be compensated by faster request transfers. On the other hand, if the

inter-edge bandwidth is low, instead of trying to maximize edge resource utilization, it

is good to send the request to the cloud if the application can withstand the resulting

delay.

32

Figure 2.14: ECON and Baseline Comparison for Edge and Cloud Favored Resources
(Inter-edge BW=10 Gbps)

Goodput

As discussed earlier, AR applications are delay sensitive and discard packets which ar-

rive late. Goodput is defined as the number of useful (on time) bits per second delivered

to UEs running the AR application. Therefore, even when the system throughput is

high, the goodput could remain low due to high proportion of late arrivals. The capac-

ity improvement can be studied by analyzing a geographic block, G′is level of goodput

using our simulation tool. If goodput is lowest in a block, it indicates a need to augment

additional edge resources to the serving edge. Figure 2.15 shows the normalized ratio

of goodput of ECON and goodput of baseline for different resource distribution and

load. For an unconstrained inter-edge bandwidth system, the goodput ratio of a cloud-

favored system is more than that of an edge-favored one as ECON tries to find the best

available edge resource as compared to the neighbor selection baseline scheme. In a

cloud-favored system, the edge has minimal resources and therefore each edge requires

sufficient bandwidth to transfer requests to other edges which may be far away. The

edge-favored system cannot be significantly improved with ECON as there are ample

neighboring edges available from the baseline and therefore finding a more optimal edge

33

Figure 2.15: Impact of Load on Goodput Ratio of ECON and Baseline in an Edge
Cloud System for Real-time Applications

tends to increase the network delay. Also, as the system load increases, there is a rise

in the queuing delay at the edge server and therefore the system performance is similar

for ECON as well as baseline in this case.

This section compared baseline scenario with a global edge assignment approach

called ECON. We found that: (a) for an edge-favored resource system, ECON and

baseline have similar application response time performance, (b) for a cloud-favored

resources and lightly loaded system, ECON performs better than the baseline, (c)

maximizing edge cloud’s usage for lower inter-edge bandwidth hampers the average

system response time, and (d) for elastic applications such as email, a cloud-only system

is sufficient and can even perform better as compared to an edge-cloud system with low

bandwidth.

2.6 Related Work

Edge cloud solutions have been proposed for a number of emerging scenarios including

Internet of Things (IoT) [55], Cloud of Things (CoT) [56, 57, 58, 59], health analytics

[60] and autonomous driving [61, 62]. The term cloud is generically used to describe a

34

remotely located on-demand computing and networking system along with its typical

storage functionality. Architectures such as Mobile Edge Cloud (MEC) [17, 46], fog [63]

and edge computing bring these resources close to the user to support faster networking

and ultra-low latency applications.

Serving IoT devices using edge clouds is proposed in [64, 65, 66] with or without

virtualization techniques to provide local compute offload, nearby storage, and network-

ing. Real-time applications such as autonomous driving, traffic monitoring/reporting,

and online multi-player 3D gaming have also been considered, [38, 67, 68, 69]. Applica-

tions of ICN (Information Centric Networking) have been proposed in [70] as a means

to reduce network complexity through named services and content. A three-tier cloud

of things (CoT) system is modeled in [71] which identifies edge cloud is a key design el-

ement for time-constraint applications. Attempts are also made to provide hierarchical

models of edge clouds thereby enabling aggregation capabilities similar to data center

networks [72]. Understanding network topology is a critical step in analyzing a cloud

or edge network mainly due to effect of routing on latency and throughput. Attempts

have been made to characterize the network using geographical properties in [73] using

data of autonomous system (ASes) and their relationships, to create a network topology

for realistic analysis.

Motivated by faster compute and connectivity needs of newer AR/VR applications,

an edge-centric computing is described in [74]. A QoS-aware global optimal edge place-

ment approach is described in [75]. An energy efficient resource allocation strategy is

proposed in [76] considering link layer parameters. A small cell based multi-level cloud

system is simulated in [77]. Existing literature either relies on a central controller for an

optimal edge placement or the use of new network hierarchy to realize improvements in

system performance[78, 79]. Studies aimed at determining the overall capacity of a edge

cloud system to support multiple applications using a city-scale network are lacking in

the existing literature. To the best of our knowledge, this is one of the early attempts

to characterize such a hybrid system with respect to edge-cloud resource distribution,

inter-edge bandwidth, AP-cloud bandwidth and system load.

35

2.7 Summary

This chapter provides a framework for modeling and analyzing capacity of a city-scale

hybrid edge cloud system intended to serve augmented reality application with service

time constraints. A baseline distributed decision scheme is compared with a centralized

decision (ECON) approach for various system load, edge-cloud resource distribution,

inter-edge bandwidth and edge-core bandwidth parameters. The results show that a

core cloud only system outperforms the edge-only system when inter-edge fronthaul

bandwidth is low. The system analysis results provide guidance for selecting right

balance between edge and core cloud resources given a specified application delay con-

straint. We have shown that for the case with higher inter-edge bandwidth and edge

computing resources, a distributed edge selection achieves performance close to cen-

tralized optimization, whereas with ample core cloud resources and no bandwidth con-

straints, ECON provides a lower average response time. Our study shows that adding

capacity to an existing edge resource without increasing internetwork bandwidth may

actually increase network-wide congestion and can result in reduced system capacity.

36

Chapter 3

Techniques to Enable QoS Support in MEC

Achieving advanced MEC services such as dynamic resource assignment and slicing,

maintaining Quality of Service (QoS), and enabling heterogeneous virtual functions are

some of the technical challenges associated with edge-cloud enhanced 5G architectures

now under consideration. This chapter proposes a named-object based virtual network

architecture to support low-latency applications in the MEC.

3.1 Introduction

Mobile Edge Computing (MEC) is envisioned to be a core component in future cellular

architectures, expected to grow rapidly in the next few years due to continuing large-

scale adoption of smartphones as well as emerging technologies such as IoT (Internet-

of-Things) and augmented, virtual or mixed reality (AR/VR/MR) [80, 31, 32]. MECs

exploit resource locality and have been embraced by the infrastructure and the service

providers for their network evolution. In particular, providers are increasingly aiming to

distribute their service points of presence (i.e. processing and storage) in order to exploit

locality and serve their clients right at the edge of the networks they are connected to.

The industry and research communities alike have embraced this approach and are

proposing solutions known as edge clouds [81, 82, 33] or fog computing [83] that can

better scale and provide low delay services to real-time applications.

Edge clouds distributed at the periphery of the network represent a conceptually

simple and scalable solution for delivering computing services to mobile users. More-

over, because of the lower network delay in reaching cloud resources, MEC offers the

potential to meet strict service requirements (e.g. low latency). However, this comes

at the cost of significant technical challenges associated with moving cloud processing

37

from a centralized data center to a loosely coupled set of servers located at the edge of

the network. One central challenge is that of distributed control; by their very nature,

edge clouds are placed in multiple network domains with heterogeneous bandwidth

and latency properties without a single point of control. While existing solutions such

as network slicing and service chaining provide a means to use distributed, heteroge-

neous resources, the end-to-end quality remains a concern due to insufficient large-scale

telemetry techniques in the currently deployed networks. A second key challenge arises

from heterogeneity of computing resources and the limited amount of computational

power edge systems can be equipped with. In contrast to the previous data center driven

cloud model, edge clouds are often co-located with the existing network equipment and

deploy limited computational resources. This implies the need for distributed resource

management (i.e. task assignment, load balancing and application-level quality-of-

service management) across heterogeneous edge computing resources. Furthermore,

network wide changes arising due to the user mobility, link or node failure and network

congestion induce additional challenges in maintaining end-to-end service quality.

A general technology and architectural solution for edge clouds will thus require: (a)

control as well management plane protocols to provision these heterogeneous resources

in real-time, (b) distributed or centralized resource assignment strategies, for traffic load

balancing, orchestration of computing functions and related network routing of data,

(c) mobility management techniques such as dynamic network slicing, and (d) low-

overhead mechanisms to reach to these heterogeneous set of distributed resources in real-

time. This work attempts to design, integrate and evaluate these components aiming

at fulfilling requirements of advanced services using MEC architecture. In summary,

the main contributions of this work are:

• Design of NOVN ∗, a Layer 3 virtual network framework that can provide the

control mechanisms to connect distributed resources across network domains.

• Starting from the NOVN framework, we develop routing mechanisms that exploit

the abstractions of the architecture to support distributed edge-cloud services.

∗NOVN was jointly developed in collaboration with Dr. F. Bronzino.

38

This technique, called application specific routing (ASR), supports routing service

requests based on cross-layer information extracted from network and application.

• Building techniques to achieve dynamic resource management using in-network

resource slicing and devising mechanisms for the quality of service (QoS) control.

• Finally, develop a working implementation of NOVN, ASR and advanced service

scenarios using the Click [84] modular router, implemented on the MobilityFirst

network architecture software prototype [85]. As part of this effort, we present

experimental results obtained to validate the feasibility of this architecture and

demonstrate significant latency improvements for real-time applications.

The rest of this chapter is structured as follows. Section 3.2 presents edge cloud re-

quirements to support the advanced services such as cross domain connectivity, dynamic

re-routing and cross-layer network support, and align them with the key MEC archi-

tectural components. Section 3.3 introduces the core design of NOVN ; starting from

the definition of named-objects, the high level design choices taken are described. The

impact of name resolution server (NRS) on the scalability and consistency of NOVN is

detailed in Section 3.4. Section 3.5 introduces how NOVN, integrated with techniques

such as application specific routing and network slicing could be exploited to support

advanced network services. To support the proposed design, in Section 3.6 a comprehen-

sive set of experiments based on a working prototype deployed on the ORBIT testbed

[86] is presented. Performance evaluation of the proposed NOVN architecture and the

related scenarios including comparison with the overlay based solutions are described

in the Section 3.7. Finally, in Section 3.8 a further discussion on the design choices and

a comparison to related work is provided. Section 3.9 concludes the chapter.

3.2 Edge Cloud Requirements

In this section we discuss the requirements imposed by edge clouds on developing an

architecture involving virtual network and advanced MEC services to interconnect and

manage distributed resources. Starting from a review of existing virtualization tech-

niques, we discuss the need for the introduction of in-network Layer 3 and service

39

virtualization.

Edge clouds are highly distributed architectures that require loosely coupled coordi-

nation mechanisms to operate. Resource allocation in edge clouds is more difficult than

in a data center. This is due to the fact that edge clouds do not have the law-of-large-

numbers advantage of a data center which aggregates requests from tens of thousands

of users. Instead, they must deal with requests from smaller numbers of users charac-

terized by significant randomness in both the spatial and temporal dimensions. Due to

their physical presence in multiple network domains and the type of resources they de-

ploy, the following requirements are identified in contrast to the ones usually presented

by datacenter based clouds.

Cross Domain Connectivity. Management of distributed cloud resources becomes

more complex when the edges extend across multiple domains. A key requirement for

this scenario is to be able to synchronize resources to coordinate and communicate state

potentially across multiple domains managed by different commercial entities such as

network or service providers.

Dynamic Re-Routing. Due to the nature of IP addresses, any configuration change

cased by failure or resource migration requires to reconfigure connectivity between

edge computing resources. The new information has to be propagated across all the

participating entities. This can – and often does – cause all ongoing traffic to be lost.

This is due to packets not being able to carry the necessary information to self-correct

temporary errors. Approaches to reduce this impact have been explored [87, 88], but

require the creation of dedicated control channels to maintain persistent traffic flow.

Support Cross-Layer Interactions. Edge clouds require dealing with a mix of

computing and networking resources with complex cross-layer interactions and consid-

erable heterogeneity in both networking and computing metrics across the region of

deployment. Conventional large datacenters have addressed this problem by requiring

uniformity in the network fabric and using software-defined network (SDN) technologies

to assign resources in a logically centralized manner. On the contrary, for a distributed

architecture, a key requirement arises due to the need of dynamic allocation of cloud

40

processing requests across available edge computing and networking resources [89].

Seamless Service Integration. Edge clouds promise to support tighter close loop low

latency applications which require a seamless integration of services with the network

entities whose performance can be monitored, reported and enhanced. The key require-

ments therefore is to design mechanisms which can blend service state parameters into

the network to create a fully virtualized end-to-end QoS-enabled system.

The mapping of these requirements to the corresponding architectural component

of MEC is further discussed as follows.

3.2.1 Enabling QoS using Virtual Networks

Virtual Networks (VNs) have been proposed as a means of connecting resources across

the Internet, supporting the illusion of a customized network with user-specified topol-

ogy, security and performance characteristics matched to application requirements [90].

Depending on the purpose, different techniques have been applied at different layers of

the networking stack in order to realize virtual networks. Cloud networks have been one

of the main adopters of virtual networks, with VN techniques being used to abstract the

distribution of physical and logical resources - e.g. applications, databases and more

- within data centers, allowing for flexible management techniques [91, 92]. Thanks

to the simplicity of the solution, together with new technologies like SDN, LAN based

VNs allow for a powerful and efficient framework for coordinating resources within a

data center.

While VLAN based solutions employed within data centers could be considered to

solve this challenge, they cannot scale outside of a single domain. Existing solutions that

can work across domains either only support point to point connectivity between remote

cloud locations [93, 94] or are based on overlay solutions (e.g VINI [14]). Overlay VN

solutions, while flexible, may incur high overhead and lack the visibility of underlying

network layer performance parameters, limiting their utility in scenarios that might

benefit from custom metrics and deeper cross layer optimization [95, 96].

41

Existing VN solutions can be roughly grouped into two categories: tag based virtu-

alization at Layer 2 and overlay based Layer 7 solutions.

Tag Based Virtualization. Tag based approaches exploit flat unique identifiers

placed at different layers of the network stack to uniquely identify packet flows. Exam-

ple of this are VLANs [12] and MPLS [13]. Cloud networks have been one of the main

adopters of Layer 2 virtual networks, with VN techniques being used to abstract the

distribution of physical and logical resources - e.g. applications, databases and more

- within data centers, allowing for flexible management techniques. This approach is

exemplified by NVP [91] (and similarly by FlowN [92]) that exploits it to implement

a network management system, within an enterprise data center. The core issue with

these solutions is the limited scope in which they can be applied, as the employed tags

are limited in size and have validity only within a single network. For this reason they

can solely be used to support single domain solutions.

Overlay Networks. Overlay networking approaches, e.g. VINI [14, 26], represent a

flexible way for deploying experimental networks and protocols on top of the existing

infrastructure. Through encapsulation of network packets on top of UDP packets and

tunneling across participating nodes, they allow for the quickest solution to implement

experimental protocols on top of the existing infrastructure. With this solution, flex-

ibility and simplicity come at the cost of additional overhead. Moreover, residing at

the application layer they lack visibility of the underlying network environment, not

providing support for the aforementioned cross-layer interactions.

The need for Layer 3 network virtualization

Looking at the two available solutions, we identify three limitations: 1) Most virtual-

ization techniques are limited to single domain scopes, e.g. a data center or an access

network, 2) When extended to support larger networks, they either need full control of

the network environment, or 3) they rely on overlay solutions that are expensive due

to the generated overhead and lack any access to the underlying network environment.

42

The overall goal is to provide a solution that enables the exchange of information be-

tween the virtualized environment, the applications that run on top and the underlying

network. This solution should offer service providers the ability to exploit network

virtualization to enhance deployed solutions like edge clouds, where applications might

benefit from affecting routing decisions based on custom metrics and cross layer opti-

mization. From this analysis, we identify the network layer as the right level to host

a Virtual Network design. Layer 3 is by definition where protocols are used to inter-

connect networks resources. Extending it to support virtualization provides the most

natural solution to conveniently support interconnecting resources that span multiple

networks. The next section defines how a VN can be integrated into the network layer.

3.2.2 Application Specific Routing

Building on top of the L3 virtual networking concept, attempts are made to enhance

applications by allowing them to provide hints to the network to optimize routing deci-

sions [95, 96, 97] by implementing a novel technique called Application Specific Routing

(ASR). ASR offers applications a solution for pushing small snapshots of compute sta-

tus data into the virtual routing fabric providing a control environment for distributed

services on top of limited edge resources. For example, consider a mobile edge cloud

scenario where the application goal is to connect mobile devices to the “best” edge

cloud server: while in a normal networking environment “best” might correspond to

the “nearest”, in heterogeneous environments, varying computing loads might require

delivery to a lightly loaded cluster which is not necessarily the closest one in terms

of network distance. Through ASR, the architecture can support advanced anycast

delivery service allowing virtualized routers to consider application status and perform

custom routing decisions.

3.2.3 QoS Control

Traditional QoS control mechanisms require complex packet sniffing and processing to

manage network resources for achieving traffic prioritization and resource reservations.

43

The name-based network virtualization technique described in the next section simpli-

fies the QoS control by mapping each virtual network to a unique identifier (Virtual

Network Identifier – VNID) encapsulated in the packet header. Striping VNID from the

packet header and querying a Name Resolution Server (NRS) for the VNID’s allowed

traffic capacity provides a L3 in-network support for the scanarios such as shaping

network traffic, limiting bandwidth for a VN, and ensuring QoS using the ASR metrics.

3.2.4 Network Slicing

With a network entity (NE) such as router allowed to be a part of multiple name-

based virtual networks, network slicing is achieved by the statistical multiplexing of

the resources while pushing the VNID to the resource mapping to the NRS during VN

instantiation or dynamically, and run-time retrieval of the same by the NE involved in

the VN. The prime advantage of this approach is that the resource provisioning and their

chaining need not be done in advance. At each NE hop, both the resource metric and

the next hop information is obtained from the NRS which thereby inherently handles

scenarios such as node failure, link failure and traffic congestion without affecting the

ongoing virtual network connection.

3.3 Named-Object Based Virtualization

Recognizing the need to provide a solution that offers the logical simplicity of L2 network

virtualization while offering the flexibility to control traffic across network domains,

this work presents NOVN [98], a virtual network solution that exploits the concept of

named-objects [99] introduced in the MobilityFirst future Internet architecture [16] to

realize a logically clean, easily deployable, virtual networking framework at Layer 3.

NOVN tackles the control mechanism challenge by applying name indirection to create

clean partitions across logical layers (Figure 3.1). First, physical network resources are

mapped to globally unique names, eliminating the need of continually tracking routers

addresses and possible configuration changes. A second layer of abstraction then maps

network elements to the participants of the virtual network, creating a logical network

44

on top of the infrastructure.

Virtual Layer

Name Layer

Physical Layer

Figure 3.1: NOVN layers of abstraction.

For more than a decade, the research community has advocated the separation of

names (identities) from network addresses [100, 101, 102, 103, 16]. Named-objects [99]

are a powerful abstraction achieved through the use of a dynamic globally available

Name Resolution Service (NRS) for mapping names to routable network entities. This

separation has inherent benefits in handling mobility and dynamism for one-to-one

communications. The general concept of named-objects can be extended to achieve

considerable flexibility in creating a variety of new service abstractions [104] as shown

in Figure 3.2. First, names can be used to represent many different Internet objects; for

example, a cell-phone, a person, or a group of devices; the latter concept also applies

in the context of network virtualization, as it provides the basis for NOVN ’s solution

of defining participation of network elements to the logical network. In this case, the

named-object abstraction can be used to define entire VNs and store the corresponding

topology directly into the NRS. The routers’ job is then simplified as they can support

multiple virtual network policies simply by indexing their routing table to the Virtual

Network Identifier (VNID) associated with a given network. This makes it possible to

operate VNs without the need for any additional overlay protocols, creating the sense

of VNs as an integral feature of the network protocol stack. The following sections

provide the general concepts of how this process is defined.

45

Figure 3.2: The named-object abstraction applied to core use cases.

Network
19

Network 53

VR1
VR2 VR3

VR4 VR5
VR6

Network 5

NRS Service Plane
GUID Locator/Mapping

VN-1 VR1, VR2, VR3, VR4, …

VR1 R1.1

R1.1 53.a

Normal Mapping GUID to Location

Mapping VN-ID to VN-Members

Mapping VN-Name to Phy-Name

R1.1

R1.2

R1.3
R1.4

PKT

Previous
Headers Payload

Src: 53.a
Dst: 53.d

VN-Src: VR1
VN-Dst: VR6

Src: R1.1
Dst: R1.4

VNID:
VN-1

R2.1

R2.2

R2.3 R3.1

R3.2
R3.3

Figure 3.3: NOVN design

3.3.1 NOVN General Design

NOVN addresses the fundamental issues of virtual network management and deploy-

ment support through the use of named-objects. Figure 3.3 lists for clarity the set of

core design operations are at the base of the framework. To simplify the discussion,

three basic assumptions are considered throughout this section: (1) the availability

of a globally accessible NRS capable of storing mappings from names to list of values;

(2) the ability to identify network classes based on a unique identifier (SID); and (3) the

flexibility of accessing names and addresses as part of a network header to enable hybrid

routing, similar in spirit to the one employed in the MobilityFirst architecture [16].

Logical Definition of a VN through Naming. NOVN simplifies the definition of

the virtualized logical layer through information offloading to the NRS. This is done as a

three step process: 1) first, a unique identifier is assigned to the VN and a mapping from

46

such name (VNID) to all participating resources is stored in the naming service (red

box in the Figure); referenced resources are identified with a name that has meaning

only within the limits of the VN logic - i.e. they are unique and not shared across

different VN instances; this provides the dual function of simple access and distributed

information recovery. 2) Each VN resource name, is then mapped into two values: a)

the name identifying the resource the virtualized element is running on top and b) the

list of its neighbors. 3) Finally, these identifiers are mapped into physical Network

Addresses allowing for normal forwarding operations. Items 1 and 2 above define the

higher abstraction level shown in Figure 3.1 and their mapping into the mid-layer,

while item 3 provides the last translation to the bottom layer, that is, the physical

infrastructure.

Bootstrap Process & Management. As the topology information is made available

at a global scale through the NRS and can be dynamically retrieved from participating

resources, the scope of what information is required to share at each layer of the network

infrastructure is limited in comparison to other solutions, e.g. [14]. This allows two

core issues to be handled separately: the local problem of mapping virtual to physical

resources and the global problem of coordinating the virtualized logic across domains.

The first one can be handled either in a network-by-network basis or by a centralized

authority while the second one is offloaded to the NRS. To this end, the bootstrap

process in NOVN is then limited to allocating on participating nodes instructions on

how to retrieve the VN topology, i.e. the VN unique identifier used to query the

NRS, and the information about the physical resources that are required. Similarly,

management operations, e.g. migration, of resources can be handled through NRS

offloading too, whereas local changes are reflected into the globally accessible service

and dynamically resolved at forward time.

Routing & Forwarding. Providing full flexibility for different routing configurations,

NOVN does not constrain VN users to employ specific routing protocols. Routing

information is exchanged across nodes through control packets encapsulated accordingly

47

in order to reach participating nodes. Similarly, data forwarding happens on a hop-

by-hop manner across routers of the virtual network. When a data chunk reaches one

of these routers and a routing decision is taken, the chunk is encapsulated within an

external network header that contains information to reach the next VN router (shown

in Figure 3.3). At nodes not participating in the protocol, normal routing decisions are

taken using the external network header. As names identify each hop, forwarding can

happen independently from the physical network configuration.

3.3.2 An Embedded Virtualization Abstraction

Conventional network virtualization techniques suffer from the fundamental shortcom-

ings of the underlying IP architecture and address structure, limiting their flexibility

and increasing deployment complexity. Consider the case of overlay based solutions

(e.g. VINI [14]) where virtual router interfaces are assigned private IP addresses and

then mapped to public ones that can be used to tunnel packets across participating

resources (Figure 3.4). Due to the nature of IP addresses, any configuration change

due to failure or resource migration requires the tunnel to be reconfigured, the new

information to be propagated across all the participating resources, causing the loss

of all ongoing traffic. This is due to packets not being able to carry the necessary

information to self-correct temporary errors. Approaches to reduce this impact have

been explored [87], but require the creation of dedicated control channels to maintain

persistent traffic flow.

NOVN solves this issues by creating clean partitions across logical layers, as previ-

ously shown in Figure 3.1. This is obtained by recursively mapping from VN dedicated

names, to network elements names and finally to the physical addresses. These layers

of abstraction are critical in allowing a separation of management issues. Consider,

for example, the case of virtual router migration. In NOVN, the process is simplified

by limiting the impact of the migration to remapping identifiers between the top two

layers. Once the required migration process is defined, the entry mapping the VN ele-

ment to the network element is re-written to the new location. If in-flight packets are

forwarded during the transfer process, name indirection allows for fast recovery without

48

Virtual
Route
r 1a

Dynamic Interface
Mapping

VR1

VR2

VR2

GNRS Service Plane

GUID Locator

VN-1 VR1, VR2, …

VR2 2b 3a

Ongoing
traffic
forwarded

New traffic
dynamically
resolved

Name
resolution

Packets with
destination
address IP-2
are lost

Virtual
Route
r 1b

Virtual
Route
r 2a

Dynamic Interface
Mapping

Virtual
Route
r 2b

Virtual
Route
r 2b

Dynamic Interface
Mapping

Virtual
Route
r 3a

Migration

IP-1

IP-2
IP-3

Figure 3.4: The effect of router migration on overlay deployments (left) and NOVN
(right).

need of end-to-end retransmission, by resolving the delivery location through the NRS.

Similarly, if a physical machine needs to be replaced due to failure or an address change

is required, a new one can be instantiated and the state transferred.

One could argue that the employment of multiple layers of abstraction can introduce

additional overhead due to the resolution costs of crossing the different logical layers

through name resolution and due to the additional headers employed. The impact of

these is alleviated though by the employment of two separate techniques: 1) While name

resolution can become costly if performed for each forwarding decision, the action is not

required as for the majority of the time the resources do not change; hence, information

can be pre-cached on the participating routers and only once resources are notified of

occurring changes they have to update their mappings by querying the NRS. 2) As

tag switching and SDN techniques [105] have demonstrated, matching multiple fields

in hardware is a feasible task and as software components take over, this becomes an

even easier task. An empirical demonstration of the feasibility of the approach will be

given as part of the prototype deployment presented in later sections.

3.3.3 Separating Local and Global Tasks

Managing resources in virtualized environments increases in complexity when extended

to multiple domains. This is true for overlay approaches, where resources need to be

49

NRS Service Plane

GUID Locator/Mapping

VN-1 VR1, VR2, VR3

VR1 R1.1

R1.1 53.a

Global
Local

Global Service
Manager

Local Service
Manager

Local Service
Manager

1

3

4

2

5

Network 53 Network 19

Service
initialization request

Create virtual
router VR1 on
resource R1.1

Insert mappings
<VR1,R1.1> and
<R1.1,53a>

Report result

Insert VN-1 mapping

Figure 3.5: Separation of local and global scale problems through a distributed coordi-
nation plane.

coordinated and communicated potentially across multiple networks in order to syn-

chronize, and it is mostly untreatable for tag based solutions that are usually optimized

for small domains, e.g. a data center or an access network [91]. This is a consequence

of the complexity of assigning coherent resources across multiple domains that can be

managed by different commercial entities.

NOVN approaches the problem by creating a distinction between the local prob-

lem of assigning network and computing resources and the global problem of providing

coordination mechanisms across domains. The NRS and the named-object abstraction

are the key elements employed to offer ways for eliminating the complexity as they

provide the infrastructure a way to offload the sharing of the virtualized topology and

the mapping of the underlying elements. With this, network administrators can then

separately focus on deploying techniques for optimizing the management of their infras-

tructure and the placement of the resources while relying on globally available mappings

for coordinating with partnering networks.

Figure 3.5 outlines the resource allocation process when a hierarchical set of service

coordinators is employed. In this example, each network domain exposes an interface

that services deploying a multi-network VN can invoke to allocate resources that span

across the participating networks. While this example employs the concept of a single

service interface per network with a centralized controller for requesting and coordinate

resources across networks, the same tools can enable more distributed mechanisms for

allocating and deploying virtual networks.

50

3.3.4 Network State Exchange

Similar in spirit to previous attempts of providing full control of the deployed routing

protocols on top of virtualized networks [14], NOVN has been designed to offer routing

independent network abstractions. In other words, administrators of virtual networks

can independently choose which routing protocols better suit their needs as long as

they have ways of learning the underlying network conditions, e.g. virtual links costs.

This latter problem could be approached in multiple ways: a) resorting to over the tops

approaches where measurement tools are used to extract the information, as done in

VINI [14]; b) by allowing routing information sharing across layers, through the use of

APIs exposed by the underlying networking logic. The current NOVN design favors

the second approach, acknowledging the increasing reliance of software based routing

tools that can support APIs used by the virtual layers on top to extract link state

information.

3.4 Name Resolution Service Impact on the Architecture Scalability

The named-object abstraction of NOVN relies upon the use of a Name Resolution

Service (NRS). Therefore, the performance of the NRS becomes critical to achieve

consistent performance. Multiple previous projects have demonstrated how different

NRS designs [106, 107] achieve low resolution latency goals of less than 100ms on average

for lookup operations. Moreover, additional studies demonstrate how to further reduce

response time exploiting concepts such as caching and locality [108]. Commercial [101]

and experimental [107] versions of such services are currently running and are available

for use. This section provides an overview of the different implementation approaches

and details how to handle consistency and scalability issues while relying on the NRS

to deploy the NOVN architecture.

3.4.1 NRS Implementations

NRS designs can be classified as either hierarchical or flat based on their naming struc-

ture. For hierarchical namespaces, commercially proven implementations such as DNS

51

are available. Unfortunately, it has been demonstrated that DNS is not suitable as

an NRS implementation in a highly mobile environment due to its static placement

strategies inherently, e.g. time-to-live (TTL) based caching, limiting its effectiveness

upon end-host mobility. This work relies on the use of a flat namespace for which there

are several NRS implementations available in the literature. We select two designs as

candidate implementations for NOVN.

Auspice [107]. Auspice’s logic uses a demand-aware replica placement engine to dis-

tribute GUID to NA records across available caches to provide low lookup latency, low

update cost, and high availability by carefully choosing the number and locations of

required replicas for each GUID as per the lookup and update request rates, the exist-

ing replicas for a GUID, and aggregate load at a replica. This geo-distributed engine

is implemented as a logically centralized authority which tracks query demands using

a recursively mapped key-value store. In Auspice, a GUID belongs to a number of

replica-controllers (fixed) and active replicas (variable). The replica-controllers main-

tain information about active replicas such as their number and locations whereas the

actives replicas maintain a GUID record and process a request. The placement algo-

rithm is computed locally at each replica using lookup to update ratio of a GUID thus

limiting the update cost. The replica location is chosen such that the lookup latency

is minimal by selecting some replicas closer to the higher demand zones while others

placed randomly for load balancing.

DMAP [106] / GMAP [109]. In DMAP, name mappings to network addresses

are distributed among participating Autonomous Systems (ASes) while also choosing a

deputy As which has minimum IP distance to the current hash value of an IP address.

DMAP routers apply K consistent hash functions (where K is the number of replicas

desired) to map names to the gateway routers wherein they are are stored. GMAP

builds over DMAP by organizing the name to NA mappings hierarchically in three

levels – local, regional, and global – to exploit spatial locality. Furthermore, the server

lookups are load balanced using a concept of probabilistic caching, thus improving

scalability over the baseline solution.

52

3.4.2 NRS Challenges

The implementation of a large scale database such as a Name Resolution Service creates

challenges of information freshness as well as lookup delay that might compromise the

requirements of the NOVN architecture. In the following section we describe how both

architectures could be safely employed to deploy NOVN.

Consistency. Inconsistency may arise when a query reaches a cache that does not

hold an up to date name/address mapping due to host mobility and late update, or

incorrect prefix cache in a BGP table, thus incurring additional query response delay.

In Auspice [107], the consistency issue is handled using an explicit coordination

mechanism between the consensus engines of the replica-controllers and active replicas,

where each NRS node propagates information to a set of replica servers. In DMAP [106],

consistency is quantified as the probability of BGP churn by varying the percentage of

prefixes that are newly announced or withdrawn from 0 to 10%. If a GUID is not found

at an AS, it replies with a ”GUID missing” message and the querying node contacts

another replica. The fragmentation of IP address space may lead to an unannounced

IP as a hash causing the IP hole problem. To maintain consistency, the withdrawing

AS sends a GUID insert message to the deputy AS while deleting its own entry. Later,

the subsequent queries hit a IP hole and thus the deputy AS is queried to obtain

the latest mapping. In case a query is not found at an AS, the querying AS sends a

one-time migration message to the deputy to self-assign a mapping thus removing an

inconsistency.

GMAP [109] further enhances DMAP’s consistency mechanisms by using a sequen-

tial scheme which piggybacks the server availability updates in the query replies along

the request path. It is shown that for up to 5 replicas, there is only a 5% failure rate

which shifts the median from 40.5ms to 41.3ms which is acceptable for consistency in

NOVN as there are practically a very few origin changes for an AS prefix according to

[110, 111].

Scalability. An increase in number of replicas improves NRS scalability but creates

a consistency problem. In Auspice, the dynamic nature of its placement algorithm

53

maintains a balance between the cost and the performance. At lower loads, the lookup

latency is minimized by selecting maximum number of replicas whereas at higher loads,

only the popular GUIDs are replicated at multiple locations thus keeping cost under

control without sacrificing performance a lot, making the solution scalable.

In DMAP the balance between consistency and scalability is provided by (a) using

a single overlay-hop path to a storage location and (b) not adding a table maintain-

ing traffic unlike other DHT implementations. The query response time evaluation of

105 name insertions and 106 queries shows that with K=5, 95% of the queries com-

plete within 86ms which is reasonable for a large scale system. The query response

delay in DMAP is low because the updates do not introduce additional delays, and a

name/address mapping is stored at multiple locations which can be queried by a node

from a location closest to the itself. GMap provides scalability at the cost of not main-

taining per-GUID state at all the servers, and keeping the cache size low for popular

GUIDs. As even commercially available VN techniques [112] introduce a delay in the

order of ∼150-200ms when using 3–4 network hops —almost twice as compared to the

delay value of less than 100ms achieved by DMAP— we argue that these implementa-

tions are acceptable for NOVN.

3.5 Advanced MEC Techniques

The increasing softwarization of the network infrastructure, enabled by the advance-

ments in computing power and virtualization techniques, has facilitated the support

of new applications and services inside the network. Among different opportunities,

network vendors and researchers have looked at solutions that explore how to better in-

tegrate inputs from the application logic to optimize network functionality [95, 96, 113,

97]. While this is a useful direction, more general solutions capable of extending be-

yond the limits of single networks are still lacking. Such working solutions would highly

benefit distributed service scenarios, where advanced control mechanisms are required.

In this section, techniques to efficiently utilize the named-object based virtualization in

the MEC architecture are described.

54

NRS Service Plane

GUID Locator/Mapping

Fun-1 VR1.1, VR1.2

Srv-1 VC3.1, VC5.2

… …

Service
Srv-1

App State

VN Data

Region IV
<Compute
Load

Region I
<Distance

Region III
<Distance

Region II
<Compute
Load

Decision Space /
Threshold based

Di
st

an
ce

Compute load

Decision based on
Net Metric and
App State

Figure 3.6: Application Specific Routing as an advanced routing service for the edge
cloud use cases

3.5.1 Application Specific Routing

MEC architecture using NOVN is extended to support advanced routing through a

technique called Application Specific Routing (ASR). ASR defines a mechanism aimed

at exploiting a comprehensive set of information from both network and application

layers to enable custom delivery mechanisms, giving service providers the flexibility to

incorporate parameters which allow for utilizing information above the network layer

for routing decisions. Consider, for example, the case of a service deployed at multiple

locations across different domains: application state could be exploited to implement

advanced anycast delivery based on network metrics and service load at the end points.

Two key technology components are required and introduced into the NOVN frame-

work to support ASR: (1) the ability to aggregate multiple service instances under a

single name, a natural extension of the named-object abstraction. (2) the ability to

make application nodes participate in the routing protocol by sharing their application

state. NOVN supports the first one by offloading the list of participant locations under

a single name into the name resolution service and the second one by allowing custom

routing protocols to be deployed on top of any underlying infrastructure and integrating

end point APIs to push application state into the VN.

For edge clouds to scale well and deploy easily, it is necessary to develop a robust

and self-organizing distributed architecture analogous to the way in which inter-domain

protocols in the Internet enable networks to cooperate on routing while retaining some

measure of local policy control. Of course, the distributed algorithm design problem

55

for edge clouds is a more difficult one because we are dealing with a mix of computing

and networking resources with complex cross-layer interactions and considerable het-

erogeneity in both networking and computing metrics across the region of deployment.

ASR supports edge cloud solutions through the support of advanced cross-layer

routing mechanisms. Consider for example the scenario depicted in Figure 3.6, where

a collection of servers offer a service to its clients. NOVN and ASR provide the base

to deploy such distributed tools by: a) allowing push of state to participating nodes

and b) make use of the named-object abstraction to support advanced anycast delivery

to service instances based on both network and application metrics (Figure 3.6). At

branching locations, routers can then take informed decisions. For example, Figure 3.6

shows a decision space scenario where given thresholds define different states that can

influence how routing decision. While the effectiveness of the ASR approach has been

proposed in our previous work in the context of cyber physical systems [114], coupling

NOVN with ASR can support a low latency and scalable solution for any service that

would benefit of the locality of edge clouds.

3.5.2 Quality of Service Control

Maintaining QoS is a key requirement in the MEC architecture specifically to support

low-latency applications. General QoS control mechanisms favor class-based approach

where each traffic flow is assigned a QoS class identifier (QCI) to tackle issues such

as admission control, queue management, and limiting bandwidth. The QCI value is

pre-configured and cannot be adjusted dynamically during the run-time therefore lack

required flexibility in the QoS control. Edge clouds are often co-located with the existing

network equipment and often have limited computation and storage. For this reason,

they are solely capable of hosting a limited amount of applications at any point in time,

requiring service orchestrators to engage in dynamic traffic management. NOVN maps

the VNID to its control parameter by querying NRS at the run-time, thereby providing

a per-flow as well as per chuck based fine-grain QoS control. Figure 3.7 illustrates a

traffic shaping example using NOVN. A service ID (SID) can be classified either as a

part of virtual network or as a best effort traffic at the router during run-time. The

56

Figure 3.7: QoS control (traffic shaping) example in NOVN

Figure 3.8: Network Slicing in NOVN

VN forwarding engine queries the NRS service plane for the traffic rate information for

the VNID and thus achieves the traffic shaping function inherently.

3.5.3 Network Slicing

In a multi-provider network scenario, to support a variety of services, network slicing

allows statistical multiplexing of the available resources. NOVN allows a virtual router

to be a part of multiple virtual networks thus enabling network slicing implicitly. The

resource provisioning to each of the network slice is similar in spirit to the QoS control

mechanism described above. Figure 3.8 illustrates as example of two network slices

with a common virtual router (VR1). The VNID header lookup at the NRS provides

the information about the participating virtual routers. Finally, each of the VN traffic

is handled according to its own QoS policy thereby ensuring a cleaner approach to a

sliced network.

57

3.6 Prototype and Experiment Set-up

In order to understand the achievable performance and feasibility of the proposed

NOVN architecture and its associated advanced techniques, a fully working prototype

of the framework has been implemented. The NOVN prototype uses as its founda-

tion the MobilityFirst (MF) future Internet architecture [16] prototype [85]. The MF

architecture is an example of how the named-object abstraction could be integrated

into an Internet network design and for this reason provides the perfect environment

to natively deploy the features at the base of NOVN. At the core of the architecture

is a new name-based service layer which serves as the “narrow waist” of the proto-

col stack. The name-based service layer uses flat Globally Unique Identifiers (GUIDs)

of 160 bits to identify all principals or network-attached objects. Names are resolved

through a Global Name Resolution Service (GNRS) that provides APIs to insert and

query for <key,value> mappings and support hybrid routing schemes [115] that exploit

availability of both names and addresses in the network header for dynamic resolution

of destination locations. A Service Identifier (SID) flag placed in network header allows

network components to be aware of different service types in order to apply different

forwarding modes.

The main components of the architecture prototype are three: a Java based GNRS

that uses DMap’s [106] DHT based implementation to distribute mapping entries, a

software router implementing MF’s hybrid name/address routing logic and a host guid

based API and network stack [104] to run applications on the architecture; while the

complexity of the individual components of the prototype is not irrelevant, due to space

constraints this work solely focus on the components that have been extended to support

NOVN ’s design, referring to previous work [85]. The open access code repository and

code wiki are also fully available for more details [116].

3.6.1 Core Prototype Components

Routers. The software router is implemented as a set of forwarding elements and

table objects within the Click modular router [84] run at user-level. As a baseline, the

58

NRS
Service

UniCast Rtn

Blk
Seg

Hold
Buffer

VN
Mng

Fwd
Logic

ASR
Logic

Click Router
Elements Abstraction

Rx Queue Tx Queue

VN Logic
Routing Logic

Rtn Tables

MultiCast Rtn
AnyCast Rtn

Elements
Tables
APIsRtn/Fwd

Tables

Pkt Flow
API
Access

Srv
Class

Blk
Aggr

Pkt
Class

Net
BinderIf If

Useful Acronyms:

Class → Classifier
Blk → Block

Srv → Service

Rtn → Routing

Fwd → Forwarding

Aggr → Aggregator

Seg → Segmentor

If → Interface
Abstraction

Pkt → Packet

Mng → Manager

Chunk Format

L2 NET PL

ETH/ETH+IP/ETH+IP+UDP

Src GUID,
Dst GUID

Src NA,
Dst NA

Ext
Header

VN-Src,
VN-Dst

VNID

Chunk

Figure 3.9: Click router elements graph for data plane flow

router implements dynamic-binding using GNRS, hop-by-hop reliable transport using

a HOP [117] inspired protocol (by aggregation and segmentation of large chunks of

data), and storage-aware routing [115]. It integrates a large storage, via an in-memory

hold buffer, to temporarily hold data blocks for destination endpoints during short-

lived disconnections or poor access connections. A particular instance of this system,

implements what we call an MF access router, a router providing access connectivity

to clients.

The base router has been extended to introduce the NOVN logic (Figure 3.9).

Multiplexing across different delivery services is handled via the Service ID (SID) tag

available in the MF routing header (Srv Class). Encapsulation of the NOVN required

headers has been implemented exploiting extension fields in the MF network layer.

When traversing a non-VN enabled router, the SID is not recognized and the data

is forwarded based on normal unicast rules. Once packets enter the VN logic layer, the

router checks whether a) the packet is intended for itself (destination GUID) and b) if

the VN belongs to the ones currently active; the simple field base matching exploits VN

native concepts as explained in section 3.3.2 allowing for a performant decision logic,

as shown in the results of the next Section. VN tables (Routing/Forwarding/ASR) are

stored and quickly retrieved via a Hash Map, guaranteeing high performance; when

invoked, the routing logic (and if deployed, the ASR one) can access the information

and take fast decisions.

59

The control plane (not shown in the picture) is handled in similar fashion: the

current design implements a Link State like Protocol (LSP), to exchange routing in-

formation between routing instances; routers periodically generate and distribute the

aggregated cost view of each virtualized link to neighbors that, following the logic of

the protocol, store and forward the information. Path costs are extracted from the

underlying unicast routing tables (Rtn Tables) via APIs. Initialization of the logic for

a given VN can be done via two different methods: either statically within the click

configuration files using as inject point or based on a managing protocol exposed via

the Click software control interface.

Finally, the routers have been enabled with interchangeable Interface classes that

can adapt to different networking environments, supporting different deployment sce-

narios; these include: a) native support of the MF protocols on top of a L2 network

and overlay support both on top of b) barebone IP network or c) a full overlay solution

on top of UDP.

Clients. In similar fashion, the baseline client network stack and API [104] have

been extended to support NOVN operations including: a) exposure of the required

API options during socket initialization (i.e. open) to b) instantiate resources in the

network stack and c) encapsulation of messages as required by the protocol.

3.6.2 Extended Implementation for the Advanced Services

The core NOVN prototype is further extended to support QoS control and network

slicing by introducing a VNID based mapping technique. An MF chuck consists of

number of packets. As shown in the Figure 3.10, resource management is achieved by

marking the incoming packets in a chunk and then classifying them according to their

VNIDs. The classified chucks are stored into a buffer which are pulled by a bandwidth

shaper at a specified rate before aggregating them back as a chunk and sending at

the output port. This simple VNID based classification and shaping technique enables

NOVN with the resource provisioning and traffic shaping, and therefore aids in the

network slicing.

60

Figure 3.10: A Sample Traffic Shaper Implementation in NOVN

3.6.3 Overlay based VN Implementation

For performance evaluation and comparison purposes, we implement an overlay based

virtual network as follows. We integrate OpenVPN [118] based tunnels on top of a

barebone IP router implementation using Click [84]. Tunnels connecting nodes are set-

up between each pair of virtual routers (VR). Upon transmission, data is encrypted,

encapsulated and tunneled to the neighboring virtual router. An encapsulation table

maps an UDP tunnel to the public IP of the adjacent router at the overlay virtual

router. An OSPF-like (Open Shortest Path First) protocol is used for routing at the

IP layer. Predefined virtual paths are set using the aforementioned tunnels between

virtual routers. Finally, the VN packet is implemented in click with the following fields:

virtual source IP, virtual destination IP, transport identifier (UDP), OpenVPN header,

source IP, destination IP and the payload.

The named-object based VN is evaluated by running an additional Name Resolution

Service, which for simplicity we deploy using a single server. The network topology

information consisting physical router connectivity, physical to virtual router mapping,

and participating VN and service identifier, is disseminated at all the routers before

the network bootstrap. A named-object VN packet has the following fields: source NA,

destination NA, service ID, source GUID, destination GUID, VNID, source VGUID,

destination VGUID and the payload, as described in the previous sections. Each virtual

router is mapped to its physical router’s GUID whose network address is queried from

the NRS during run-time.

61

3.7 Performance Evaluation

A combination of routers and clients have been deployed on the ORBIT testbed [86].

On the testbed, all nodes are interconnected via 1 Gbit Ethernet switches, creating a

single L2 network. Selecting 19 nodes, different networks have been deployed for the

different use cases analyzed. As the testbed provides a single L2 network, a logical

split has been implemented within the click routers to enforce the topology. We present

the following evaluation results: (a) a set of micro-benchmark experiments aimed at

demonstrating the baseline computation overhead of our VN implementation against

the baseline MF prototype, (b) an analysis of how to achieve network slicing in which

different VNs can co-exist on the deployed network, (c) results on the traffic shaping

to achieve QoS control, (d) an ASR edge cloud use case deployment scenario, and (e) a

comparative analysis of NOVN with the traditional VN deployed as an overlay network

on top of the current Internet architecture.

3.7.1 NOVN Performance Benchmarks

In order to understand the basic overhead introduced by running the virtual network

logic on top of the baseline prototype, two sets of benchmarks are performed: first, a

latency evaluation using a ping-like application that collects RTTs for a small (64B)

and a large (1MB) chunks size; second, using a port of iperf that uses the new API

and stack to transmit data, achievable bandwidth is estimated. For both scenarios the

network shown in Figure 3.11 is used, but traffic generation is limited to VN-2 (blue

color).

Latency and Throughput: Total values reported in Table 3.1 account for the sum of three

time components: 1) the processing time of the software router (including potentially

the VN logic); 2) the queries to the NRS (2ms RTT from the routers to the NRS

with query results cached on the routers for 30 seconds); and 3) the HOP like protocol

which requires the transmission of initial and final control packets for each chunk to

provide a reliable transmission on a hop-by-hop basis. For this experiment, RTTs for the

smaller chunk size do suffer some small increase in the NOVN case due to the overhead

62

MF Router

MF Host

VN1 Member
VN2 Member
VN3 Member

Name Resolution Service
1

2

3

4

5

6

Figure 3.11: Network topology used for benchmarks

Size RTT without NOVN RTT with NOVN

64 B 7.6 ms 8.8 ms

1 MB 128.1 ms 128.1 ms

Throughput without NOVN Throughput with NOVN

64 B 14 mbps 11 mbps

1 MB 916 mbps 903 mbps

Table 3.1: Latency and throughput NOVN Benchmarks

generated by the processing of the added logic and the additional queries to the NRS (to

resolve the higher layer mappings). The effect of the NRS queries is limited though, as

they are averaged over the number of total collected samples (1000, one every second),

even considering that a 30s cache is quite conservative, especially for VN like scenarios

where changes are unlikely to happen in the order of seconds. The bigger size is less

impacted by the additional overhead. The performance impact of NOVN ’s overhead

on the achievable throughput is also minimally noticeable, but with increasing chunk

size the effect is proportionally minimized. For this metric, the impact of the queries to

the NRS is a lesser factor (at 1MB, ∼113 chunks per second are transmitted and only

one time every 30s or ∼3400 chunks the NRS is queried). The decrease in throughput

has then to be attributed to the additional header and processing overhead caused by

the VN logic. Even though these do factor for a decrease in performance, this is small

enough that the evaluated scenario does not causes concern for the effectiveness of the

design.

63

Figure 3.12: Multiplexing NOVN benchmark

3.7.2 QoS Control

A big advantage inherent to the NOVN design is the possibility of performing multi-

plexing across different VNs by natively switching traffic based on a single header field,

i.e. the VNID. To test the overhead and functionality of the VN switching mechanisms

in the prototype, three VNs have been deployed on the network shown in Figure 3.11.

Best effort and managed traffic scenarios are evaluated without and with the QoS con-

trol mechanisms.

Multi VN Co-existence: Each traffic source (nodes on the left side), generates

traffic at 100 Mbps. Figure 3.12 shows the results after running a five minutes experi-

ment without employing traffic shaping. While initial competition on the wire, causes

some overshooting of the goal throughput, the traffic stabilizes shortly after and it is

maintained until the experiment is completed (at around 300s). The overshooting is

introduced by the chunk base nature of the protocols implemented, where a sudden

arrival of large chunks (1MB) requires time to adjust.

Managed Traffic Network Slicing: Using the topology described in Figure 3.11,

traffic is generated at the rate of 100 Mbps at all three sources and managed in-network

using the traffic shaper. VNID to allowed traffic rate mapping information is updated at

the start of the experiment and dynamically retrieved during the run-time by querying

NRS. As shown in Figure 3.13, each of the red, blue and green VNs pushed traffic up

to their allowed limits of 0.5, 10 and 20 Mbps respectively. Similar to our previous

observation, while the initial competition on the wire shoots up the traffic, due to the

64

Figure 3.13: QoS control benchmark in NOVN

rate limiting implementation in the traffic shaper, all three VN’s traffic stabilizes to

reach up to their allowed capacity.

3.7.3 ASR Use Case

To exemplify the implementation of the ASR concept, a closed-loop (round-trip) ap-

plication has been deployed on the network pictured in Figure 3.14, where clients send

requests of 10KB each in size to a set of two servers representing a cloud service. ASR

is deployed to consider in its forwarding decisions both network metrics used in the

normal routing scheme (latency and delay) and the servers load. Cloud servers loads

are emulated by adding emulated delays before sending responses of 10KB back to the

client. Server-1 has dynamic load chosen uniformly every 30 seconds from the set of

values 0, 0.2, 0.4, 0.6, 0.8, representing linearly increasing delays of 0, 20, 40, 60, 80 ms.

Server-2 is statically configured to always select parameter 0.4. A 20 ms extra RTT

has been added in the path to the bottom server by using tc to emulate different path

distance between the servers. Servers announce their load via the ASR protocol every 2

seconds. Figure 3.14 shows the performance obtained, representing the taken decisions

by the ASR logic; at the bifurcation, requests are forwarded based on a simple threshold

logic, where potential destinations are divided into a decision space in which different

regions have higher priority: if there are servers with load lower than 0.5, choose the

one with the best path; otherwise simply choose the best path. This guarantees for the

experiment setup that all requests are sent to a router with load lower than 0.5 capping

response time to ∼70ms.

65

Figure 3.14: ASR edge cloud use case example
C

loud Service

Network 1

Network 2

Network 3

Figure 3.15: Network topology used for edge cloud deployment

This setup has then be extended to represent a more realistic scenario as shown

in Figure 3.15. In this case, three clients are deployed, connecting to three networks

each equipped with a local service instance. Crossing border routers introduce a 5ms

delay each way, replicating the cost of traversing across domains. The server loads are

dynamic with the same parameters. Each case has been run for one hour and collected

results show how the combination of NOVN and ASR impact the service response

time. Figure 3.16 shows the obtained results. The following should be observed: 1)

up to ∼50ms, the difference between the two lines should be recollected to the local

servers’ load variations over time (i.e. if the load is below 50%, the local server is

chosen) and should converge over a longer time; 2) the ASR impact is very noticeable

above such threshold, where 90% of requests are serviced in less than 68ms, a more than

30% improvement from the baseline case (where the local server is always selected).

The NOVN framework, as described in Section 3.3, provides a clean way to define

66

Figure 3.16: Response time for edge cloud deployment

a virtual network topology through the use of the named-object abstraction. While

using this technique it is possible to achieve the purpose of providing the high level

mechanisms that characterize the system, additional details are required to provide a

better sense of how NOVN can fully overcome the issues presented and how it could

be deployed on top of the current TCP/IP Internet architecture.

3.7.4 Comparing NOVN with Overlay VN Solution

Overlay based virtual networking approaches rely upon complex packet processing at

the router and the setting flags to carry extra information such as fragmentation. These

approaches increase the round trip time (RTT) of a packet in the network and lowers

data throughput, but may also fail the integrity of a tunneled packet for a larger size

due to fragmentation flag set. This is generally avoided using a no fragmentation flag

which causes loss of packets which are bigger than the MTU. Furthermore, overlay

based solutions rely upon tunnels which are set up a priori. In case of a run-time

failure, the tunnel needs to be set up again.

During link failures, overlay virtual networks lose packets until the link becomes ac-

tive again or the route converges, incurring packet loss and lowering system throughput.

In case of short duration link failures, the route converges to the same path and there-

fore the packet loss is directly proportional to the duration of the failed link. For the

permanent link failures (equivalently, long duration link failures), the route converges

to a different path and therefore the packet loss is proportional to the sum of losses

67

Figure 3.17: Network topology for VN comparison

due to timer expiration and route convergence time. Due to the slow start behavior

of TCP, it is time expensive to create new tunnels in case of route change impacting

throughput and delay.

In the embedded NOVN approach, network addresses are dynamically retrieved

using a logically centralized geographically distributed NRS. The route is therefore

resolved at the run-time by querying NRS which strictly decouples network functions

from the hardware functions, shifting focus from complex packet processing to a simple

packet forwarding. This also alleviates network configuration issues as assigning a GUID

to a node is as simple as declaring a variable.

VN comparison experimental set-up We deploy both, the overlay as well as named-

object based VN architectures described in the Section 3.6.3 on a small network on

ORBIT as shown in the Figure 3.17. Seven routers form the core network and are

connected via the Ethernet with 900 Mbps bandwidth. A simple ping application is run

from the client to the server with different packet size to compare both the approaches

in terms of protocol data plane overhead and recovery time from link failure.

Latency comparison. The round-trip delays associated with the data traversed across

the network capture the encryption, tunneling, encapsulation and any other packet

processing; therefore, the RTT can be approximated as protocol overhead for the ar-

chitecture comparison. Table 3.2 shows round trip times (RTTs) obtained for different

packets sizes for overlay and NOVN. The ping latency is averaged over a large number

of pings (>1000). We notice that NOVN experiences increased latency compared to

68

the results obtained by the overlay network. We attribute the added latency to the pe-

riodic NRS queries in case of NOVN whereas overlay network is pre-configured and the

only overhead it experiences is in replacing headers. Moreover, the MF based solution

uses 160 bits long names for objects identification, a large increase in headers overhead

compared to the other solution. Even considering these elements, NOVN still achieves

close performance results compared to the overlay network.

Packet Size Overlay (RTT in ms) NOVN (RTT in ms)

64 B 6.1 7.2
1400 B 6.3 7.5
5 KB 7.9 9.6
10 KB 9.4 12.9
50 KB 13.6 17.8
100 KB 20.1 24.4
500 KB 72.4 78.5

Table 3.2: Overhead comparison.

Link Failure. We emulate link failures by introducing packet loss at the link between

the routers R6 and R7. We analyse two cases: (i) 100ms (short term failure) and (ii)

100s (long term failure), using the RandomSample element in click router, sampling

packets at the loss rate 1 for the specified duration. For the first case, neither of the

approaches had enough time to react to the failure and converging to a new path; both

cases simply recover once the link is re-established. Packet loss observed in the overlay

case is MTTR∗rate while for NOVN there is no loss due to store and forward capability

of the router inherited from the MF architecture. In the 100s case, the overlay approach

has to wait for the routing protocol to re-converge to a new path and set-up new VPN

[119] tunnels before a client can get ping responses back from the destination. In

contrast, NOVN reacts much faster as the next node’s network address is dynamically

resolved by querying the NRS. Figure 3.18 compares the effect of link failure for both

the cases. The server transmission rate is a ping response to the ten 64 B packet ping

requests sent by the client shown the Figure 3.17. The failure is introduced at time

t=35 seconds. NOVN recovers in about 1 second without losing any packets due to its

in-network store and forward scheme. Overlay VN loses the packets equivalent to the

69

Figure 3.18: Comparing effect of link failure for overlay VN and NOVN

mean time to recover (MTTR) which is more than 5 seconds in this case.

3.8 Discussion and Related Work

Inter-Domain Peering Agreements. Inter-domain connections might require addi-

tional coordination across parties involved if no overlay solution is implemented. For

this, it is arguable that the increasing reliance of ISPs on point to point agreements via

Remote Peering [120] and private interconnections over IXP locations via VLANs [12]

would well serve this type of architecture. Both techniques rely on the use of tag based

forwarding, e.g. long distance MPLS for the first, to interconnect networks, providing

a suitable environment to map higher level VNs defined in NOVN to these channels.

Related work. NOVN takes inspiration from within two broad categories of works:

1) virtual network designs and management techniques and 2) software based solutions

to enhance services on networks. Most recent VN designs in general span from overlay

solutions [14, 121] to lower layer integrations using tag switching [91, 92]. NOVN differs

from all these works by offering a native network-layer solution based on separating

names identifying VN resources from the underlying infrastructure. No other work

has looked at this type of generalization, providing capabilities that can extend across

multiple domains.

70

ASR takes inspiration from the broad variety of software enhanced solutions aimed

at allowing greater control and interaction to application and services populating net-

works. SDN [105] and its extensions [97] have provide contributions to this research

area, but have been limited their scope to single domains. Active networks [122] had

also been proposed as an extreme solution to the problem, allowing packets to carry

instructions interpreted by the network fabric. Multi-domain approaches have mostly

focused on single specific issues, such as anycast delivery or path selection to distributed

services [95, 96]. Similar to ASR, Internet standardization organizations have also intro-

duce overlay approaches for custom routing [102]. ASR in NOVN differs from previous

work by providing a distributed and integrated solution for deploying both advanced

network control and allowing applications to influence network layer decisions. Lastly,

NOVN, through the employed named-object abstraction, belongs to the categories of

Information Centric Networking [123, 124, 16] and name separation [100, 101] works.

3.9 Summary

This chapter presents NOVN, a novel network virtualization architecture aimed at pro-

viding a clean and logically simple solution for deploying virtual networks. Exploiting

the named-object abstraction, NOVN provides a solution that offers the logical sim-

plicity of L2 network virtualization which augmented with the advanced mobile edge

cloud (MEC) techniques such as application specific routing, network slicing and QoS

control, achieves a high degree of flexibility in creating customized topologies and rout-

ing of traffic in an application-aware manner. Results based on a working prototype

deployed on the ORBIT testbed demonstrate that the new framework provides an ef-

ficient realization for defining and managing virtual networks without compromising

performance or incurring excessive control overhead. Performance evaluation of vari-

ous MEC scenarios are presented and the solution is compared with the overlay based

virtual networks. Results show that NOVN provides faster path recovery and incurs

no packet loss during link failure. The ASR improves the latency performance by 30%

as compared to the baseline approach for a 90 percentile response time at 68 ms.

71

Chapter 4

Service Migration in MEC

Achieving low-latency services in the edge clouds face challenges of resource assignment

and load balancing due to variability of user location (mobility), server load and network

state. Dynamic resource migration techniques are considered necessary to achieve load

balance, fault tolerance and system maintenance objectives. Container migration is

emerging as a potential solution that enables dynamic resource migration in virtualized

networks and mobile edge cloud (MEC) systems. This chapter proposes a traffic aware

container migration approach and validates it with an end-to-end system implementa-

tion using a pure container hypervisor called LXD (Linux Container Hypervisor). The

container migration model is then evaluated for real-time applications such as license

plate recognition running in a mobile edge cloud scenario based on city-scale mobility

traces from taxicabs in San Francisco. The system evaluation considers key metrics

associated with application quality-of-experience (QoE) and network efficiency such as

the average system response time and the migration cost for different combinations

of load, compute resources, inter-edge cloud bandwidth, network and user latency. A

specific compute resource and network-aware distributed resource migration algorithm

called ”ShareOn” is proposed and compared with alternative techniques using the San

Francisco MEC model.

4.1 Introduction

Emerging cloud-assisted mobile applications – Augmented/Virtual Reality (AR/VR)

involve intensive computation with real-time response constraints. Mobile edge com-

puting (MEC)[41, 82] is currently under active consideration as a promising approach

which supports low-latency applications by bringing compute, network and storage close

72

to the user. Edge cloud is generally deployed with limited compute resources to target

local users. MEC is a distributed computing infrastructure that must respond to factors

such as user mobility, fluctuating load, variability in network performance/congestion,

and resource heterogeneity. Thus, maintaining user quality-of-experience (QoE) via

distributed coordination between local edge cloud clusters is a challenge.

User QoE can be maintained in the MECs using a number of distinct mechanisms[74,

125, 126]. These include the use of either centralized or distributed resource assignment

schemes which allocate computing servers to mobile user requests at nearby servers with

available compute capacity. Resource virtualization (VM’s and virtual networks) can

also be used to partition and control resource use between multiple competing applica-

tions or users [127]. It is also possible to employ GPU’s and/or parallelize computing

resources across the network to accelerate the computation[128] or predict the net-

work traffic [129]. Further, mobile user performance can be dynamically optimized via

container migration in which the cloud process is moved from one computing node to

another in response to mobility events and to load balance across the network. Con-

tainer migration to be addressed in this work implies moving a virtual machine (VM)

or a container from one edge cloud to the other[130]. Virtualization based on containers

allows users to run an application and its dependencies in an Operating System with

flexible resource allocation, easy scaling and improved efficiency[131, 132]. Containers

are gaining momentum due to their light running and deployment overhead, smaller

start and stop time, size, and higher network bandwidth as compared to VMs[133, 134].

Container (LXD)[135]/Docker[136]) and VM migration are implemented in [137,

138]. In [139, 140], migration algorithms have been designed based on a limited set

of parameters e.g. distance between edge cloud and user. Existing literature either

studies VM or implements container migration without explicitly taking the container

specific parameters e.g. dynamic resource allocation (available processing speed, RAM

and bandwidth) and size, into account. The migration cost of a heterogeneous system is

a complex combination of local, remote and network resources. System load, available

processing resource and inter-node bandwidth affect the total migration time. Further-

more, considering above mentioned parameters to simulate container migration to test

73

feasibility in a city-scale scenario is still unexplored.

This work aims to develop a more general approach to container migration and to

validate the proposed methods via simulation of a realistic MEC scenario. Thus, we

propose ShareOn∗, a traffic-aware container migration algorithm using LXD and CRIU

(Checkpoint Restore in Userspace)[141]. An end-to-end migration framework running

real-time application has been deployed to analyze the impact of resource allocation,

latency, bandwidth, size and migration time. A simulation model is also set up in which

the containers are hosted in an edge cloud network running an automated license plate

recognition (alpr [142]) application. Real traces from taxicabs in San Francisco [143]

are used to model user mobility. Scalability of the system with respect to increasing

traffic load is investigated using the above mentioned city-scale MEC model.

The rest of the chapter is organized as follows. Section 4.2 highlights the need

of container migration in MEC. Section 4.3 describes the container migration system

with specific details on the migration flow and the emulation set-up. Section 4.4 in-

troduces the simulation model and its parameters. Simulation scenarios and analytics

are detailed in Section 4.5. Results are discussed in Section 4.6. Section 4.7 provides a

use case of container migration in the advanced driver assistance system (ADAS), and

Section 4.8 provides a summary of the chapter.

4.2 MEC and Container Migration

The architecture of MEC is based on three layers of computing, the first at the mobile

client, the second at a local network attached edge cloud, and the third at a centralized

data center/cloud in the core of the network. As shown in Fig. 4.1, this architecture

offers the advantage of low latency response to real-time applications which cannot

tolerate a typical edge-to-core round trip delay that typically exceeds ∼100 ms.

With the help of flexible resource provisioning and sharing among neighboring edge

cloud nodes, MEC can meet the unpredictable traffic demands and quickly scale the

network due to its multitenancy feature. Further, in order to reduce the application

∗The work on ShareOn was done in collaboration with Shalini Choudhury.

74

Figure 4.1: General MEC System

latency and to provide the required user QoE, service requests are handled by the

resource virtualized environment. Container-based virtualization is finding increasing

adoption in MEC systems to realize slice isolation and fine resource control. Resource

isolation (especially, memory) across components of different applications is necessary

for the integrity of individual applications. The light-weight containerized resources

can be shared with neighboring nodes using migration techniques[144]. The dynamic

container migration approach therefore can be used to address deteriorating user QoE,

arising from the processing latency (system load) and/or the network latency (user

mobility). In the rest of this work, we describe and validate a container migration

system suitable for MEC scenarios with latency constrained applications.

4.3 Container Migration System

4.3.1 Flow Diagram

We start with an outline of the software stack at each MEC computing node. The

migration process has two entities, a source, which is the host that initially has the

container, and a sink, the container receiver. The prepare phase is succeeded by iterative

pre-copy, freeze, state-copy, unfreeze and post-copy phases. Fig. 4.2 illustrates the

75

Figure 4.2: Container Migration Flow Diagram

distributed process flow by placing control and decision logic at each of the node. The

resource tracker and controller at the source node assess the network and neighboring

node resources. The migration decider determines best destination node while the

controller initiates the selected container migration.

4.3.2 System Details

Our set-up is deployed at the SB9 (sandbox9) in the ORBIT[86] testbed (Fig. 4.3)

which enables a software based emulation. We use SSH tunneling to connect to the

edge cloud nodes. The core of LXD is a privileged daemon, which provides a REST

API over a local UNIX socket and the network. Container orchestrated with Shell

and Python scripts, allows us to run alpr remotely and to emulate users. CRIU does

container checkpoint and restore on the host as a snapshot.

Container Creation: The primary sockets used in container migration are: control

stream, CRIU images/mig/ stream and filesystem stream. LXD supports creating/managing

bridges, IPv4 address, NAT (Network Address Translation) and DHCP (Dynamic Host

Configuration Protocol) range. Hence, before setting up the container we set-up LXD

76

Figure 4.3: Container Migration Set-up in ORBIT

for storage and networking needs e.g. daemon settings, storage pools, network de-

vices and profiles. Hostname is pre-added to the LXD group and the LXD tools are

pre-installed to the destination edge with valid keys.

Migration Phases: There are three phases of migration: decision, initiation and com-

pletion. During the decision phase, a node accumulates resource, network, and applica-

tion QoS information. A low overhead control plane protocol is used to exchange both

routing and computing state information between edge cloud clusters in the region.

Upon selecting the container to be migrated, neighboring edge clouds are queried using

an extended inter-domain protocol such as EIR (edge-aware interdomain routing)[145]

which has the above mentioned features. The neighboring nodes then respond with

their utilization level: high, medium or low. A suitable destination node is chosen and

the migration is initiated. Container state is then copied and traffic switched. On

migration completion, the source node discards the old container states.

Application Details: The alpr is used to detect license plates of cars. The frames are

obtained from the UE (User Equipment) video stream. After processing these frames

in a container, the output is possible plate numbers with the set confidence level. The

application phases include detection, binarization, char analysis, plate edges, character

segmentation, OCR (Optical Character Recognition) and post processing.

77

Figure 4.4: Impact of Processing Speed, Container Size on Total Migration Time

4.3.3 Assessing Migration Cost

We developed an experiment to measure migration cost parameters: pre-copy, mi-

gration, and post-copy time, with respect to machine type, network bandwidth and

container size for alpr. In order to assess migration requirement and cost, different

size containers (0.6-4.6GB) are exchanged between two similar test nodes by varying

the processing speed. Fig. 4.4 shows the total migration time (tmt) which includes

pre-copy, migration and post-copy time. The migration time for fixed sized containers

and given inter-edge bandwidth remains same. The pre-copy and post-copy time are

inversely proportional to the processing speed since it is also shared by the containers

for the application specific computations.

4.4 Modeling Container Migration

We escalate the emulation set-up to carry out a large scale simulation model for a

continuous container migration approach. To evaluate the efficiency of our work we

choose San Francisco city as the geographical location with nine nodes spaced out

across the city to deploy the edge cloud network as shown in Fig. 4.5. Real SFO

taxicab traces are used from the heavy traffic routes across this location.

78

Figure 4.5: Edge Cloud Network Topology

4.4.1 Simulation Parameters

The parameters used in simulation are described below.

• Page dirty rate (rpd): Memory pages modified per second

• Page size (spage): Default size of a memory size

• Processing speed (sp): Processor speed in GIPS

• RAM (m): Random access memory in GB

• Inter-edge bandwidth (bi): BW between two edge nodes

• Network latency (tn): User to edge cloud network delay

• Queuing latency (tq): The wait time of request at an edge cloud node

• Processing latency (tp): Computation delay at a node

• Control latency (tc): Control plane delay between nodes

• Total response time (ttotal): Sum of tn, tq and tp

• Edge cloud load (load): Current load at an edge node

• Container size (scon)

79

• Containers-up (k): No. of running containers at a node

• Total migration time (tmt): Sum of pre-copy, migration and post-copy time

4.4.2 Migration Cost

For a given container to be migrated, the cost is a function of pre-copy time, post-copy

time and migration time. Therefore, the total migration cost is defined as follows:

Cm =
N∑
j=1

[
(kin,j + kout,j) ∗ rpd,j ∗ spage,j

sp,j ∗ (1− loadj)

]
+

N∑
j=1

N∑
l=1(l 6=j)

[
kin,j,l ∗ rpd,j ∗ spage,j

bi,j,l

]
(4.1)

In the Eq. 4.1, the first part denotes the compute time and the second part estimates

the migration time due to inter-edge bandwidth, where N is the number of edge cloud

nodes, and kin and kout are the number of incoming and outgoing containers from the

given node respectively. The objective is to minimize system migration cost as well as

average latency (application). In a continuous migration process, multiple container

migration time overlaps which can be optimized by minimizing the time of maximum

cost migration as follows:

min .

max .

(kin,j + kout,j) ∗ spage,j ∗ rpd,j
sp,j ∗ (1− loadj)

+
N∑

l=1(l 6=j)

kin,j,l ∗ spage,j ∗ rpd,j
bi,j,l

 ,∀j ∈ [1, N]

(4.2)

4.4.3 ShareOn: Migration Decision Algorithm

Migration is a two way process. First, the source node selects containers based upon

their resource usage and application performance. Second, the source node determines

best available destination node based upon its utilization region, estimated applica-

tion performance and the available inter-edge bandwidth. The utilization region, util,

captures the node specific parameters such as load, available CPU and RAM. Estimat-

ing application performance at the destination node is challenging because of network

variability, fluctuating node utilization and the application type. Also, the number of

80

Algorithm 1 Container Pre-selection for Migration

Input: k, tth, ttotal
Output: Pre-selected containers

1: for cont ∈ EdgeNode do
2: if (ttotal > tth) then
3: cont → Listpre−select
4: end if
5: end for
6: SORT(descending) Listpre−select(ttotal)

Algorithm 2 : Utilization Regions (UR) of a Node

Input: sp,avg,mavg, k, sp,th1, sp,th2,m,mth1,mth2

Output: UR(L, M or H)

1: Calculation
2: sp,avg ← sp/k; /*node calculates average processing*/
3: mavg ← m/k; /*node calculates average memory*/
4: if sp,avg ≤ sp,th1||mavg ≤ mth1 then
5: H → UR
6: else
7: if (sp,avg > sp,th1||mavg > mth1) AND (sp,avg ≤ sp,th2||mavg ≤ mth2) then
8: M → UR
9: end if

10: else
11: L → UR
12: end if
13: STORE UR

migrations between target nodes affect the available inter-edge bandwidth and there-

fore, the migration decision must take this into account.

ShareOn works as follows. First, a node shortlists high total application latency

containers and determines the primary reason — high processing latency, networking

latency or both. Second, for each container, a few suitable neighbors are selected using

two conditions: (a) falls in low or med Util regions and/or (b) geographically closer

to the user. Algorithm 1 pre-selects the containers to be migrated based upon their

application latency threshold.

The average processing per container at a node is sp,avg = sp/k and the average

RAM is mavg = m/k. The utilization region of a node is found using algorithm 2 which

defines High, Med or Low zones by capturing available processing speed and RAM, and

comparing them with pre-defined values needed to run an application.

81

The network latency, tm, between the user and the destination edge cloud node can

be estimated as du,e ∗ ld + var(l) where du,e is the distance between the user and the

destination edge node, ld is the network latency per unit distance and var(l) is the

past moving average latency variance of the user geographic area and the destination

node. The processing latency, tp, of a destination node can be approximated as tp,avg +

utilFac ∗ αe where utilFac is the current utilization factor of a node, and αe is the

latency factor associated with the current utilization.

Migration gives rise to the computation and network overheads. Therefore, the

decision algorithm has to adequately determine whether, when and where to migrate

depending on aspects such as application QoS, user mobility, inter-edge bandwidth,

and resource availability at MECs. Considering these parameters, we design ShareOn,

a dynamic container migration technique which uses traffic (number of requests per sec-

ond at a node) as a primary metric. Each node tracks its own compute and networking

resources, and is aware of the application latency of each request. These nodes have

control plane connectivity to each other and hence can query the neighboring nodes

periodically for the above mentioned parameters. Thus, in our system, each node can

decide, control and migrate its containers in a distributed manner. Finally, a desti-

nation is chosen based upon number of migrations from the source to the destination

considering the available inter-edge bandwidth and compute. The complete procedure

is described in the algorithm 3.

4.4.4 Result — Emulation

The emulation based total application delay is shown in Fig. 4.6 to observe the effect

of server load on the container migration and the application performance. ShareOn

is compared with a case when there is no migration. The load is varied from 0 to 1

for node1 and 1 to 0 for node2 in steps. When the load reaches 0.4 for the node1, the

total application delay crosses a set threshold (100ms in this case), triggering migration.

Node2 is chosen using ShareOn which shows a drop in the total delay upon migration

completion.

82

Algorithm 3 Final Containers and their Destination Selection for Migration

Input: Listpreselect, Cm, Lest

Output: Final selected containers for migration and their destination edge cloud
nodes

1: for cont ∈ Listpreselect do
2: for DestNode ∈ EdgeNodes do
3: if DestNode ∈ UR{L,M} AND ttotal − test,dest > δL then
4: DestNode → Listdest
5: cont → Listselect
6: end if
7: end for
8: end for
9: for cont ∈ Listselect do

10: FinalDest = min(Cm)∀Listdest
11: FinalDest→ Listcont,dest
12: end for

4.5 Simulation Set-up

We develop a simulation set-up similar to the emulation model described in the Section

4.3, to test the scalability in a large geographical region such as San Francisco city with

real mobility traces. The topology is same as shown in Fig. 4.5. This section details

the simulation scenario and the numerical values for the parameters described earlier.

4.5.1 Simulation Scenario

Initially, we determine the system performance without considering migration, using

following approaches.

Equal-Load (E): The user requests are equally divided among the heterogeneous edge

cloud nodes, routing a set number of requests based upon user vicinity. The remaining

requests are routed to the next closest node and so on.

Nearest-Edge (N): The user requests are always routed to the closest node irrespective

of the node’s current load.

Migration is simulated using the approaches listed below.

Bandwidth-only : The users are connected at the nearest edge cloud node and the mi-

gration is done based on the application QoS and available inter-edge cloud bandwidth.

83

Figure 4.6: Baseline (no migration) vs. ShareOn

Processing-only : Following the above process, the migration is done based on the ap-

plication QoS and the destination node resources (processing speed).

In all the cases, user mobility is introduced and load is varied by injecting multiple

requests per taxicab. The delay induced by the control latency, tc, is negligible and

is omitted in the simulations. Our proposed approach, ShareOn, can be instantiated

from the nearest or the equal load scenario considering their first connected request as

the initial state.

4.5.2 Simulation Parameters

The numerical values for the simulation are listed in Table 4.2. There are total 536

taxicabs in the city with a known mobility pattern. The load is varied from 0 to 1

by initiating multiple requests from a taxi. The processing speed determines the page

dirty rate which allows us to push most of the memory pages to destination before

suspending the container at the source.

4.6 Results and Discussion

This section presents the results obtained from the simulation model introduced in the

previous section.

84

Table 4.1: Simulation Parameters

Parameter Value Parameter Value

sp 2.2-3.9 GIPS bi 10-100 Gbps

rpd 2.5-4 kpps spage 4-64 KB

m 8-32GB load 0-1

scon 0.6-4.6 GB #taxi 536

4.6.1 System Performance

Fig. 4.7 compares our migration approach, ShareOn with no migration cases. In the

equal load case, the average system response time at load 0.1 is low as compared with the

other approaches since the service requests have been equally distributed among nine

edge cloud nodes. However, as load gradually increases, the average system response

time starts degrading since without any optimization this approach cannot handle the

volume of requests with the available resources at each node. While in the case of the

nearest edge (users connect to the closest MEC) the average system response time is

prominent. The reason for this rise is that in the real-time mobile taxicab trace, many

of the users connect to the North-East edge cloud node (ref: Fig. 4.5) because of their

close physical proximity to that node when they are introduced into the system. The

limited resources at that node are unable to support all the connected users and hence

the system enters into overload resulting in a large average system latency.

Using ShareOn-E, initially there are not many migrations since all the requests are

well distributed between nodes. On increasing the load, the system response is well

below the non-migration approaches, as the load gets efficiently distributed across the

geographical regions. This is due to ShareOn taking processing capability, inter-edge

bandwidth and network latency of each node into consideration for migrations. In the

case of ShareOn-N, the users are initially connected at the nearest edge cloud where the

available resources are exhausted resulting in a slight increase in the migration cost.

85

Figure 4.7: Average System Response Comparison for Static Allocations and Migrations

Figure 4.8: Effect of Load on the Migration Cost

4.6.2 Migration Cost

Fig. 4.8 presents the migration cost (Cm) for different system load. The maximum Cm

is the peak migration time recorded for the system at a given load. Similarly, minimum

Cm is the least while the average Cm is mean time. The total number of containers

migrated are not linearly proportional to the load. At a higher load, some containers

are omitted even though the latency threshold is met for the migration due to scarce

compute and networking resources. Therefore, even though the number of migrating

containers rise with the load, a drop in the average migration cost can be observed, as

seen at load=0.3.

86

Figure 4.9: Average System Response Comparison for Different Migration Approaches

4.6.3 ShareOn vs. Other Approaches

Fig. 4.9 compares ShareOn with bandwidth-only and processing-only migration meth-

ods. The former performs better than the later at lower loads as the migration time

dominates the pre-copy and post-copy time for the fewer container migrations in these

cases. As the bandwidth-only approach keeps track of bandwidth before initiating mi-

gration, the average system latency does not suffer from the migration time factor. For

the higher load scenario, checking bandwidth only is not sufficient as the migration

time dominates the pre-copy and post-copy time, thereby increasing the total system

latency. In either case, ShareOn performs significantly better than these methods. The

project code is available at [146].

4.7 Supporting Autonomous Driving

As a use-case of container migration described in this chapter and named-object based

virtual networks detailed in the previous chapter, in this section, we present EdgeDrive

which is a networked edge cloud service framework to support low-latency applications

during mobility taking into account needs of the driver, nature of the required service

and key network features. We implement head-mounted device (HMD) based Aug-

mented Reality (AR) ADAS applications such as navigation, weather notification and

87

annotation based assistance to drive the evaluation. These services are then coupled

with the Mobile Edge Clouds (MECs) wherein the container based service migration

is enabled based upon migration cost and required Quality of Experience (QoE) to

support mobility. An emulator based evaluation is carried out on the ORBIT testbed

using realistic San Francisco taxicab traces running over nine edge cloud nodes and AR

HMD being used by drivers. The experiments show that the EdgeDrive can support

low-latency ADAS applications with an average system latency less than 100 ms for

the applications under consideration.

4.7.1 ADAS

Advanced Driver Assistance Systems (ADAS) are expected to become increasingly

important to the automotive industry [147]. ADAS focuses on assisting drivers by

providing timely critical information such as real-time navigation, safe driving limits,

pedestrian crossing, and sensor calibration. Recent advances in ADAS focus on ap-

plications such as 3D mapping [148], Internet of Vehicles (IoV) [149], and holographic

displays [150] requiring uninterrupted information exchange between connected cars,

offloading computation to the cloud computing servers, and handling mobility through

novel communication as well as networking architectures [127, 16].

Head-mounted device (HMD) based Augmented Reality (AR) provides a user-

friendly method for drivers of vehicles to interact with the surrounding environment

by supplementing real world with the contextual information, e.g., traffic status, stop

notification [151]. Furthermore, gesture enabled head-mounted AR devices make this

interaction hands-free thus improving the user Quality of Experience (QoE). Neverthe-

less, the core functions of AR enabled driving assistant applications (perception, anno-

tation, visualization and sensing) are usually computation and data intensive [152], and

the on-board computing capabilities of currently available AR devices such as Microsoft

Hololens [43] and Google glass [44] are insufficient to perform these intensive tasks. For

instance, the latest Hololens has only 1.04 GHz CPU clock rate, and 2GB RAM. The

constrained capability cannot satisfy the service demands associated with processing

analytics over a single frame within 30 ms and delivering a 60 frame per second [153].

88

Figure 4.10: AR-enable ADAS Applications. The dashboard displays the weather,
navigation and surrounding information.

Further, the applications running on these devices rely on shared information ob-

tained from nearby vehicles or roadway infrastructure to interact with the environment.

For example, self-driving vehicles receive surrounding information from other vehicles

which have knowledge about distant traffic for better informing driving decisions. This

inter-vehicle information exchange can be realized either as a peer-to-peer (V2V) appli-

cation or as a cloud service based on edge cloud infrastructure. As central cloud servers

may be at distant geographic location from the source of data generation, conventional

offloading is likely to introduce significant network latency. For a client instance in New

Jersey which connects to Amazon EC2 cloud servers located in West Virginia, Oregon

and California, the round-trip latency alone is 17, 104 and 112ms, with achievable

bandwidths of 50, 18 and 16 Mbps, respectively.

Mobile Edge clouds (MECs) bring computation, storage and networking close to

the user thereby promising to support stringent latency requirements for AR applica-

tions [81, 83, 154]. Latency is a critical factor in user QoE for AR applications. For

example, in an HMD, the combined network and processing latency while using an

89

Figure 4.11: ADAS System Design

AWS cloud is more than 100 ms at which 50 degrees per second head or object rota-

tion introduces 5 degrees of angular error [155]. In case of objects closer to the user,

this implies that the user views a virtual coffee cup in the air instead of on the table

and for farther objects, the error only accumulates. MECs provide a way to reduce

this latency, and hence the overall errors by providing responses faster than the user

perceivable latency.

EdgeDrive is an edge cloud based end-to-end system to minimize the latency of

AR applications for ADAS. We implement and deploy several example ADAS based

AR applications such as smart navigation, weather notification, and annotation based

assistance as shown in Figure 4.10. The applications are augmented with networking

and edge cloud components emulated using the ORBIT [156] testbed with demonstrated

methods to reduce overall system latency by edge cloud techniques such as caching,

application specific routing, dynamic server selection and edge cloud migration [75]. A

large-scale emulation using nine edge cloud locations in San Francisco is used along

with realistic taxicab traces to showcase dynamic server migration. It is shown that

the MEC system can improve AR based ADAS performance when augmented with

additional capabilities such as service containerization, and its migration.

90

The rest of this section is organized as follows. First, the above mentioned ADAS ap-

plications are described while detailing smart navigation application for the techniques

used to reduce its delay. Next, the EdgeDrive architecture using MECs is provided with

the emulation set-up used to carry out the experiments. Finally, results and discussion

are presented to conclude the use-case.

4.7.2 ADAS Applications

In order to test the functionalities of ADAS system, we identified three key applica-

tions namely, (a) annotation based assistance, (b) smart navigation, and (c) 3D weather.

These applications are chosen as they cover different features and requirements such

as the latency, caching, throughput and compute as listed in Table 1. In particular,

the first application supports the driver by embedding the processed surrounding infor-

mation onto the AR device using image processing. The second application provides

navigation support by embedding 3D objects onto the path where the driver collects

the objects similar to a game play. The third application projects the current location’s

and destination’s weather information on to the driver’s AR display.

Table 4.2: Requirements for Sample ADAS Applications

Feature Annotation Smart Navigation 3D Weather

Latency Low Medium High

Database/Caching No Yes Yes

Throughput High Medium Low

Compute High Medium Low

4.7.3 ADAS System Design

The system consists of devices (e.g. Hololens), network (e.g. routers) and the service

functions placed at each cloud servers. The server runs on an edge cloud which is

typically one hop away from the Access Point (AP). The network, in addition to rout-

ing and forwarding, also supports control exchange functions among the edge clouds.

The edge cloud provides features such as computation, storage, resource virtualization,

91

Figure 4.12: ADAS Application Latency Comparison

service migration, and performance monitoring. The applications are developed using

Unity and C#. The design framework is as shown in Figure 4.11. The APIs developed

at the smart space interface allows user to seamlessly access the services from the cloud

server. The user states are accessible across the network using a logically centralized

database.

By deploying this three-layered, device-router-edge cloud system on the ORBIT

testbed, the function level latency is measured for all the applications as shown in Figure

4.12. The arrows represent the required latency thresholds which is low for annotation

based application as the response should be in real-time as the user’s head movement.

The lower bound represents the latency which is sufficient to provide satisfied quality

of experience to the user. The smart navigation application spends most of the time in

image processing using OpenCV and therefore requires a highly computational, lightly

loaded edge cloud for offloading the compute. The 3D weather application is able to

serve without delays using its caching function retrieving the statistics from a central

weather server periodically. It can be noted that despite edge cloud being one hop

away, the annotation based assistance application is unable to achieve latency bounds

and there require techniques such as distributed task computing [153] which are not

studied in this work.

92

Figure 4.13: Smart Navigation in ADAS

4.7.4 Smart Navigation

Smart Navigation is one of the most crucial features in ADAS. First, we describe the

challenges of developing an uninterrupted navigation service and then detail the suitable

design choices.

Localization with Hololens: Navigation needs GPS location information of the

device. Yet, currently available Hololens devices do not support the GPS module.

Therefore, we rely upon mapping coordinates based upon accelerometer and gyroscope

sensor readings for localization. The map is divided into set of junctions and at each

junction, the route is recalculated based upon current Hololens coordinate and destina-

tion coordinates. Therefore, the complete navigation system relies upon manipulating

coordinates as read by local sensors and thus the implementation functions without the

GPS as shown in Figure 4.13.

High Uplink Bandwidth: Hololens requires to send the stream of images to the

server continuously. This is expensive as it requires high uplink bandwidth. In order to

optimize this, we send only when the image changes more than 5% (can be varied) as

compared to the last sent image and thereby also saving server compute. A lightweight

bitmap based hash function is locally employed on the HMD for the image comparison.

Path Rerouting: Sometime the vehicle may take paths other than that suggested by

navigation. This is handled by continuously comparing the coordinates of line connect-

ing two suggested junctions. If the user’s current coordinates do not lie on the line, the

path is rerouted to the next optimal path. Finally, the path is always selected based

93

upon the minimum distance between the source and the destination considering all the

possible combinations.

Receiving Real-time Responses: The image processing and path calculations are

offloaded to the neighboring edge cloud server and is detailed in the next section.

In a general ADAS system, a tagged metadata image stream is used for all the ser-

vices rendered to an HMD. Therefore, in this work, we have employed image streaming

irrespective of the application.

4.7.5 EdgeDrive System

In this section, the EdgeDrive system components and its capabilities are described.

System Components

The system has the following components as shown in Figure 4.14. (1) End Devices:

These are hosts, sensors and embedded compute devices such as FGPA which can

push/pull data from the system; (2) Smart Space Interface: It allows to connect

heterogeneous devices to the edge cloud by mapping their API requirement to the

deployed system; (3) Network: Its functions are routing, forwarding and control. The

deployed network has additional feature which allows application state to be pushed

to the cloud and vice-versa. This simple action allows application specific routing to

best available edge cloud while keeping the control distributed in the network; (4)

Edge Cloud: Each instance of edge cloud can compute, store, migrate resources by

virtualization (such as containers), measure and report statistics to the network and

neighbors; (5) Database: It contains user states and space specific information which

can be cached at the edge cloud proactively or on-demand.

AR using HoloLens

HoloLens provides a state of the art technique to achieve AR functionalities by its

unique features such as frame of references (stationary and attached), spatial anchoring

and spatial mapping. This implies that a virtual object (hologram) can be placed and

oriented at a fixed location in the real-world (mixed reality) and can be retrieved at

94

Figure 4.14: EdgeDrive System

the same location later anytime. The specially designed spatial coordinate system can

be used to derive other coordinate systems or can be used as-is to determine device’s

own position in the three-dimension space.

EdgeDrive Capabilities

The key features of EdgeDrive are described as follows. Service Containerization:

All the services such as navigation, annotation and weather reporting are containerized

at the edge cloud servers. Containerization provides benefits such as service and user

level isolation, faster start and stop, and easy migration.

Mobility Support using Container Migration: EdgeDrive provides ADAS appli-

cation mobility support by migrating containers across edge cloud nodes. Each edge

cloud node has a performance monitor, migration manager and controller which with

the help of neighboring edge cloud resource information decides the target as shown in

Figure 4.15.

95

Figure 4.15: Container Migration in EdgeDrive

4.7.6 Experimental Details

The experiment is set up at the sandbox-9 (SB9) on the ORBIT [156] testbed. Nine

nodes are set-up based on the topology of a San Francisco edge cloud network with

variable inter-edge bandwidth (randomly chosen between 100-900 Mbps) connectivity

as shown in Figure 4.5. The nodes are placed based on the population density in SFO

and have heterogeneous memory, processing speed (Ref: Fig.4.5) and cpu load (varied

from 0 to 1). Real SFO taxicab traces are used from the heavy traffic routes across the

city. Each of these users are assumed to be using the smart navigation application as

described earlier. The source and destination are chosen randomly. The low-latency

requirement of the navigation application is aimed to be fulfilled by EdgeDrive by:

(a) pre-caching and reevaluating navigation information at each junction and the line

connecting the neighboring junctions, (b) associating user to the best available edge

cloud, (c) providing service transfer support using container migration, and (d) enabling

network embedded application specific routing.

96

4.7.7 Emulating ADAS

The ADAS applications are emulated on the ORBIT testbed by setting in-lab source

and destination for navigation. The junctions are pre-defined at every intersection and

realistic dimensions are obtained using a laser rangefinder. A navigation algorithm

finds the shortest distance between the source and the destination. The coordinates

are initialized at (x,y,z) = (0,0,0) using OpenCV based recognizable chilitags placed

at the source. For the entire experiment, z (height) is set to 0. At source, the user

looks at the marker using Hololens and the navigation begins for the set destination.

The user then collects the pink cubes as shown in Figure 4.16(b) to navigate towards

the destination. The image stream rate from HoloLens is varied from 10fps to 60fps

for the walking user to emulate vehicular mobility. For a large scale experiment, 536

mobile users are injected into the system using a custom script emulating from the

SFO taxicabs traces and thereby loading servers. Similarly, the annotation application

is emulated by obtaining real-time printer information such as ink status as shown in

Figure 4.16(c). MySQL database is used for storage and Apache for server code.

4.7.8 Container Migration

As the services run on containers at the nine edge clouds, the migration is self-triggered

locally at an edge considering migration cost and the parameters as described in ShareOn.

The migration has three stages: (a) decision, (b) initiation and (c) completion. During

the decision phase, the right edge cloud is chosen for migrating a running containerized

service. During the initiation phase, the pre-copy of container begins thus copying the

pages from source to the destination. Finally, during the completion phase, source edge

cloud node informs the destination edge cloud node to run the newly received container

and itself discards the old container upon receiving confirmation from the destination.

The complete process is automated using Python and shell scripts.

4.7.9 Results and Discussion

This section presents the results obtained using the experiments as detailed earlier.

97

Figure 4.16: Emulating ADAS Applications at WINLAB

Parameters Impacting Container Migration

Container migration consists of pre-copy, migration and post-copy. For stateless ap-

plications such as annotation, weather and navigation, post-copy is not required and

therefore merely migrating the dependencies enables the destination node to restart the

services. Figure 4.17 shows the impact of machine type and container size on the total

migration time. It can be seen that the migration time for a 4.2 GB container running

on an Intel i5 machine can be as high as 60 seconds which is less useful for real-time

applications described in this work. Therefore, while deciding service migration, along

with the bandwidth, machine type plays an important role. The other parameters of

interest are system utilization (load), processing capabilities of the edge cloud and the

available RAM.

Factors Affecting Application Performance

The input from HoloLens in case of weather and smart navigation applications is pri-

marily the coordinates (a few KBs) of user whereas in case of annotation application,

continuous stream of images (avg. 30fps) is sent from the device to the server. There-

fore, the annotation application is the most affected by the system load as shown in

98

Figure 4.17: Impact of Machine type and Container Size on Total Migration Time
(Bandwidth=912 Mbps)

Figure 4.18. As the weather application relies upon the pre-fetched data in the edge

cloud, the current system load does not affect its performance. The navigation appli-

cation intermittently requests server to calculate the path and therefore its round trip

response time grows when the system load is high.

Figure 4.19(a) depicts that when the frame per second sent from the HoloLens to

the edge cloud server is low, the server is unable to determine the object and therefore

the response time is high. When the fps is increased, OpenCV is able to detect the

marker or object and therefore the annotation appears in less than 70 ms. As the

fps is increased, the server is loaded with the heavy processing and therefore the RTT

increases again.

Figure 4.19(b) shows the impact of mobility on the navigation performance of

HoloLens. The in-lab mobility is normalized from 0 to 1 and error is defined as junc-

tion missed due to mobility which otherwise would have provided the shortest path.

The percentage error is calculated by running the experiment multiple times and then

averaging the miss rate.

99

Figure 4.18: Impact of System Load on Application Performance

Effect of Container Migration

Figure 4.20(a) shows the latency for the navigation application for a single random user

when the system is loaded at 0.5 (50% CPU utilization). As the user is mobile, the

latency depends upon whether the user is moving closer to the assigned edge cloud or

not. Employing ShareOn based EdgeDrive, the application latency for the user drops

after the time tick 20 at which point the migration is complete and user’s service is

migrated to another edge cloud.

Figure 4.20(b) shows the average latency for the whole system for all the applications

when the CPU load is 0.5. For the higher compute demanding applications, EdgeDrive

is able to provide better QoE as the latency is significantly lower than the system

without migration.

4.8 Summary

This chapter has proposed dynamic container migration as a mechanism for supporting

user-mobility, server load and network fluctuations. A traffic-aware container migration

method is developed using a testbed based set-up, to emulate an edge cloud network and

user mobility. The migration cost is evaluated by running a real-time application and

a distributed migration algorithm. Using parameters obtained from the emulation, a

100

Figure 4.19: Impact of Various Parameters on the Application Performance. (a) Uplink
fps affects the RTT for Annotation Application and (b) Mobility affects the Accuracy
of Navigation

large-scale simulation model for migration is developed incorporating real taxicab traces

from San Francisco city. A heuristic traffic-aware container migration scheme, ShareOn,

is proposed which considers multiple parameters: application QoS, network latency,

edge cloud resources, and inter-edge bandwidth. The system performance of ShareOn

is compared with two non-migration approaches: equal-load and nearest-edge, and two

migration-based approaches: bandwidth-only and processing-only. Furthermore, as a

use-case we proposed EdgeDrive, a mobile edge cloud based compute, network and stor-

age orchestrated architecture to support advanced driver assistance systems (ADAS).

Using key Augmented Reality (AR) applications developed for the head mounted dis-

play (HMD), it is demonstrated that EdgeDrive is able to provide low-latency service to

the driver during mobility. The key observations from this study are: (1) machine type

plays a crucial role in deciding migration, (2) migration is a viable approach when suffi-

cient computation (at source and destination) and inter-edge bandwidth are available,

(3) a low-load scenario incurs substantial migration cost while there is no significant

drop in the average system response time as compared to no-migration approaches, (4)

101

Figure 4.20: Latency Performance using EdgeDrive. (a) Single User Latency with and
without migration and (b) Average System Performance with and without Migration

processing-only and bandwidth-only approaches fail to lower the average system re-

sponse time at higher load as compared to the multi-parameter ShareOn approach, (5)

applications requiring higher compute for instance annotation based assistance should

be offloaded to the closest available edge cloud, (6) the latency of applications requiring

pre-fetched data cannot be significantly optimized, and (7) service migration should

consider network bandwidth, system load, and compute capability of the source and

the destination.

102

Chapter 5

Distributed Control Plane Protocol for MEC

This Chapter presents a novel control plane protocol designed to enable cooperative

resource sharing in heterogeneous edge cloud scenarios. While edge clouds offer the

advantage of potentially low latency for time critical applications, computing load gen-

erated by mobile users at the network edge can be very bursty as compared with ag-

gregated traffic served by a data center. This motivates the design of a shared control

plane which enables dynamic resource sharing between edge clouds in a region. The

proposed control plane is designed to exchange key compute and network parameters

(such as CPU GIPS, % utilization and network bandwidth) needed for cooperation

between heterogeneous edge clouds across network domains. The protocol thus en-

ables sharing mechanisms such as dynamic resource assignment, compute offloading,

load balancing multi-node orchestration and service migration. A specific distributed

control plane (DISCO) based on overlay neighbor distribution with hop-count limit is

described and evaluated in terms of control overhead and performance using an exper-

imental prototype running on the ORBIT radio grid testbed. The prototype system

implements a heterogeneous network with 18 autonomous systems each with a compute

cluster that participates in the control plane protocol and executes specified resource

sharing algorithms. Experimental results are given comparing the performance of the

baseline with no cooperation to that of cooperative algorithms for compute offloading,

cluster computing and service chaining. An application level evaluation of latency vs.

offered load is also carried out for an example time-critical application (image analysis

for traffic lane detection). The results show significant performance gains (as much as

45% for the cluster computing example) vs. the no cooperation baseline in each case

at the cost of relatively modest complexity and overhead.

103

5.1 Introduction

This Chapter presents a novel control plane protocol designed to enable cooperative

resource sharing in heterogeneous mobile edge cloud (MEC) scenarios. MEC [157, 158]

is motivated by significantly lower network delay between a mobile device and a com-

pute server, and is thus considered as a solution for low latency applications such

as augmented reality, industrial control and autonomous driving [159, 160, 161, 162].

While MEC offers the advantage of potentially low latency for time critical applications,

computing load generated by mobile users at the network edge can be very bursty as

compared with aggregated traffic served by a data center. This burstiness in traffic

demand can be overcome by pooling computing resources across multiple edge clouds

in a region, motivating the design of a shared control plane to enable such coopera-

tion. The focus of this work is thus on the design of a lightweight control protocol

which provides neighboring edge clouds with visibility of their computing and network

resources along with current load metrics. The design is intended to promote regional

awareness of available resources in a heterogeneous multi-tenant environment so as to

enable cooperative techniques such as cluster computing, compute offloading or service

chaining [158, 163, 164, 165].

Figure 5.1 is an illustration of how a mobile client in an MEC service scenario can

identify resources for offloading. In this example, a mobile client wishing to offload com-

puting tasks will in general require information about the current status of available

MEC nodes where the task can be executed. The most prevalent architectural solution

is the central controller [166, 167] shown in the figure, which is a reasonable design for

software-defined enterprise networks under the management of a single operator. How-

ever, if edge cloud services are adopted at scale, it may be expected that coverage of an

entire city or region will be heterogeneous and multi-tenant in nature, involving mul-

tiple operators/owners who cannot possibly belong to a single administrative domain.

Experience with the Internet shows that building a large-scale network with organic

growth involves the adoption of cooperative protocols (such as the border gateway pro-

tocol, BGP [25]) between autonomous systems in a way that enables flexible business

104

Thin MEC at home Thin car Neighbor MEC Car with mini-MEC

X amount of compute required Compute available

Central Cloud

Infrastructure
MEC Node

1 2 3

Control Plane?

Central Controller

Figure 5.1: Computation Offloading to: (1) Central Cloud, (2) Infrastructure MEC
node, and (3) Neighbors.

models for monetization of contributed resources. We believe that the same general

philosophy applies to edge clouds, i.e. organic growth and large scale will be best pro-

moted by a distributed control architecture which provides a lightweight mechanism

for cooperation and monetization of edge cloud resources. The distributed approach

avoids centralized points of control which can severely limit business model flexibility

and prevent the emergence of grass roots edge cloud service providers [168, 169]∗.

Figure 5.2 is a conceptual diagram of the distributed edge cloud control plane archi-

tecture proposed in this work. As shown in the figure, each set of edge cloud resources

is represented by a domain controller (ECDC). Each ECDC voluntarily identifies neigh-

bors with which it wishes to collaborate, either as a peer or as service provider. The

ECDC participates in a distributed resource update protocol in which neighbors ex-

change status parameters (such as compute capability, load, bandwidth, etc.) in order

to develop a regional map of available resources to be used to enable cooperative resource

∗It is noted here that while the focus of this work is on the resource control protocol and algorithms,

additional service level agreement (SLA) protocols [170, 171, 172] which are beyond the scope of this

work will also be needed to support various business agreements between cloud computing peers in this

architecture.

105

ECDC1 ECDC2

ECDC3

Edge Cloud Resources

Regional
Resource Map

Control Plane
Neighbors: 2, 3

Control Plane
Neighbor: 1

Control Plane
Neighbor: Null

Edge Cloud Resources

Control Plane (CP) Peer CP ConsumerResource Aggregation

DP Peer High Reachability DP NeighborData Plane (DP) Neighbor

Figure 5.2: Distributed Edge Cloud Control Plane Architecture.

sharing algorithms. The scope of control information distribution can be controlled by

limiting the forwarding of control packets to a specified maximum number of hops, thus

limiting overheads associated with uncontrolled flooding.

The rest of the Chapter is organized as follows. Section 5.2 describes the distributed

edge cloud control protocol design principles. Section 5.3 provides the implementation

specific details such as configuration, information exchange phases and software func-

tions. The cooperative resource sharing algorithms for different use-cases are discussed

in the Section 5.4. The methodology to carry out large scale emulation of the proposed

protocol is presented in the Section 5.5 with the details of testbed set-up and the ap-

plication. Results including comparison with the centralized control plane, application

independent protocol performance evaluation and analysis of a low-latency application

using the proposed protocol, are presented in the Section 5.6. Section 5.7 provides a

discussion on the related work in this field. Finally, Section 6 concludes this Chapter.

106

5.2 Protocol Design

This section introduces the design challenges and provides the protocol design details.

We start with the high level design goals next.

5.2.1 Design Goals

Design for scalability and growth. Currently evolving mobile network architectures

such as 5G aim to populate vast geographical areas with high-speed wireless access

networks along with supporting edge cloud infrastructure. The goal is to enable grass

roots models which encourage organic growth of large scale edge cloud systems.

Lightweight and compatible protocol. The protocol should be lightweight and

designed as an overlay so as to avoid requiring changes to existing IP protocols or

existing cloud stacks. Also, protocol overhead should be kept reasonable, avoiding

problems associated with unconstrained flooding.

Distributed architecture which promotes federation and cooperation. The

control plane protocol should work in a fully distributed manner with edge cloud

nodes/clusters as peers. The protocol should work across multiple ownership domains

and encourage sharing/monetization of regional computing resources.

Flexibility for local policy choice. Each edge cloud node should be able to choose

its own number of neighbors and can decide independently how far in the network its

own information should propagate.

Heterogeneity support. The protocol should capture key parameters associated with

heterogeneous computing clusters with varying network quality.

Timely dissemination of control information. Resource status updates should be

timely enough to enable sharing algorithms at the granularity of a single task request.

5.2.2 Protocol Design

In this section, we present the protocol design used in DISCO, a distributed control

plane protocol capable of handling heterogeneous compute nodes for their offloading

requirements.

107

i. Control Plane Information

The periodic control plane messages are used to gather the capabilities of neighbor-

ing edge cloud node which can be later used to offload the tasks. From an edge-centric

perspective, a node must be aware of: (a) the network distance (e.g., Round Trip Time

– RTT), (b) network capacity (e.g., bandwidth), (c) node computation capability (e.g.,

Giga floating point operations, per second – GFLOPS), and (d) current utilization of

the node, of its peer. Along with these, the EC specifications (e.g., number of proces-

sors, number of cores, processor architecture, machine type etc.) may be a part of the

control plane information. While the EC specifications, (c) and (d) can be obtained

directly from the node’s control plane information packet, (a) and (b) are measured by

establishing a direct connection with the peer.

Design Implications. As the information about all the peers is locally maintained at

each node, the node can independently decide which peer to choose for computation

offloading. Moreover, this essential information set can assist a node to make a best

decision for use-cases such as cluster computing, compute offloading, or service chaining.

ii. Information Exchange

The control plane information is distributed from each edge cloud node to its agreed

peers. The agreement can be peer-to-peer in which both edge clouds agree to send the

control messages to each other or peer-to-consumer where one edge cloud is the sender

while other is the receiver. Moreover, the information dissemination can be intra- or

inter-domain depending upon the agreements. Figure 5.3 shows an example edge cloud

information dissemination for the Autonomous Systems (ASes†) in the San Francisco

(SFO) city obtained from CAIDA [1]. It is noted that a consumer for one AS can

become peer in another agreement and vice-versa. Each edge cloud has a pre-defined

number of directly agreed peers (N).

Design Implications. The agreement based control plane information exchange design

avoids network flooding. Also, the node can independently decide to become a peer or

†Note that edge cloud domain controllers need not have a 1:1 mapping with ASes as in this example.

Each AS will have at least one ECDC, and typically many more for a large AS spread across a wide

geographic area.

108

Figure 5.3: Information Dissemination in DISCO

a consumer depending upon its own computation and other resource availability.

iii. Information Propagation

The information is recursively propagated from an edge cloud node to the peer-of-

peer or consumer-of-peer. This progressive control plane messaging enables an edge

cloud to send its capability information to unknown but trustworthy edge cloud nodes

who can then offload computation to it. In DISCO control packet, maximum number

of hops (MHops) corresponding to the control plane propagation depth in the network

and, current hop count (CHops), are embedded. CHops is set equal to the MHops at

the control packet generation node which is decremented at each edge-hop, discarding

the packet when it becomes zero.

Design Implications. The edge-to-edge hop design allows the information propagation

through trusted neighbors. The MHops provides the generator node complete con-

trol to regulate its information reachability. The design corresponds to the telescopic

flooding [173] where if MHops is set too high (greedy), the control information will be

delayed at a far edge cloud node. Moreover, such MHops settings will discourage the

farther edge cloud node to offload their computations for which a service-level agree-

ment (SLA) might not exist. The MHops of a node also helps its own reachability for

cooperation.

109

iv. Periodic Control

The periodicity of control message generation can be independently set by the edge

cloud node. The period can be determined by a node based upon its timescale of

resource variability.

Design Implications. The independent nature of periodicity avoids the need of global

synchronization. Moreover, as the node capabilities vary, the periodicity can be changed

accordingly, thereby updating the direct neighbors immediately.

5.3 Implementation

This section describes DISCO protocol implementation using Linkpack [174], Click

modular router [175], OpenCV[48], Java and Python.

a. EC Node Resource Measurement

Compute Capability. Compute capability of the edge cloud node is benchmarked

in GFLOPS using Linkpack version 3.011. Linpack loads the node with a dense n by n

system of linear equations Ax = b to measure its computing power.

EC Utilization. The Linux mpstat is employed to periodically measure the current

utilization (between 0-1).

EC Specifications. The EC node machine specifications are parsed from the

/proc/cpuinfo, obtaining machine type, number of cores, threads per core and processor

frequency.

b. Peer Configuration

Each ECDC maintains a configuration of its first hop agreed peers as shown in red

color in Figure 5.4, preserved as an overlay over the physical network configuration.

The peer configuration is independently set by each ECDC. In case a node does not

have sufficient compute capabilities or does not want to receive data plane offloads,

it can set peers as null. The nodes listed in peering configuration are the first set of

neighbors to receive the control plane packet from a node.

c. Control Packet Generation

The DISCO control packet designed as an overlay on top of IP consists of the

110

Physical
Configuration

Peering
Configuration

1 3

2 4
3

1 3

2 4

1, 3
2, 4

null

Figure 5.4: Peering Configuration for Control Exchange.

following fields as shown in Figure 5.5. The Type (1 octet) denotes that its an EC

control packet. The CHops (1 octet) and MHops (1 octet) denote the current and

maximum number of hops. Initially CHops is set equal to MHops and is decremented

by one at each of the ECDC until CHops = 0, when the packet is discarded. The

SECID (20 octets) and DECID (20 octets) are the source and destination globally

unique EC identifications for the ECDCs. The uniqueness of these IDs can be achieved

using a name certification server as described in [16, 176]. The field U (4 octets) denotes

the current utilization of an edge cloud, periodically retrieved through the Linux mpstat

command and CC (4 octets) is the computational capability of an edge cloud measured

in GFlops obtained using Linpack during the bootstrap phase. The EC specifications

field is a variable sized field used to communicate the machine specific parameters.

Why both CHops and MHops. As the topology is not exposed to the neighbors

(security) and the scheme does not rely upon the acknowledgements (timeliness), these

two hop counts are used to determine and adjust the self-reachability.

d. Control Plane Information Exchange

DISCO is designed with the following phases for control plane information ex-

change.

i. Bootstrap Phase Bootstrap phase is an initial phase which occurs when the

ECDC/cluster is born in the system or undergoes any changes during its lifecycle. In

general, the following events are associated with the bootstrap phase:

111

Type
(1 octet)

CHops
(1 octet)

SECID (20 octets)

MHops
(1 octet)

U (4 octets)

CC (4 octets)

DECID (20 octets)

EC Specifications
(variable size)

Figure 5.5: Control Packet Format in DISCO.

1. Determine Specifications: In this step, the machine specifications such as num-

ber of processors, number of cores, processor architecture, and machine type are

obtained.

2. Estimate Compute Capability (CC): This step estimates the number of GFlops of

an EC node without any load. The time taken to measure CC varies for each EC

node.

ii. Sending Phase

During the sending phase, a control packet is created as per the format shown in

Figure 5.5. The forwarding function is also a part of sending phase wherein the control

packet received from peers are forwarded to a node’s own neighbors. The EC node

utilization, U , is measured in this phase, while the other fields are filled using the

stored values (see Figure 5.6, left). The current utilization is periodically estimated in

time t1. The timer value for U is a function of node’s resource variability and therefore

can be independently set by each EC node. The control packet is created periodically

in time t2 using the stored CC, and EC specification values. In case of forwarding a

peer’s packet, only the DECID and CHops fields are changed. The DECID field is

112

Estimate Current Utilization (t1)

Create Control Packet (t2)

Send Control Packet (t2)

Receive Control Packet

Update Status Table

Estimate RTT (t3) Estimate Bandwidth (t4)

Re-update Status Table with RTT and BW

Get Current HopsAdjust
‘MHops’

Get SECID, CC, U

Sending Receiving

Check if CHops>0

Peering Configuration, CC,
Machine Spec.

Figure 5.6: Sending and Receiving Phases in DISCO.

filled from the node’s own neighbors while the CHops is decremented by one. Control

packet creation and sending occur periodically in time t2. The sending phase is also

dependent on the receiving phase for fine-tuning the MHops value.

iii. Receiving Phase

During the receiving phase (see Figure 5.6, right), if CHops is greater than zero,

the sending phase is triggered to forward the packet to its neighbors. The values of

other parameters such as SECID, CC and U are also obtained and are updated in

the status table as shown in Figure 5.7. The CHops and MHops values are used in

this phase to determine the number of hops an indirect neighbor is away. For example,

consider that an EC node receives a packet from a neighbor with MHops = 4 and the

current decremented hop count, CHops = 0. If the maximum hop count set by this EC

node, MHops = 2, then it is likely that the neighbor in discussion will not receive its

control plane information (if the node is not in the neighbor list of itself and first hop

neighbors). This simple intuition is used to adjust local MHops value to increase the

reachability if sufficient resources are available.

Network Resource Measurement. An important step during the receiving phase

is to measure the round trip time and bandwidth to all the direct and indirect neigh-

bors. Since the neighbors are identified using their globally unique identifiers, a name

resolution server similar to [16, 176] is used to obtain the network address of EC nodes

113

ECID CC U RTT Bandwidth

E31 3 0.4 30ms 2.1 Mbps

- - - - -

Figure 5.7: Status Table in DISCO.

from their ECIDs. The round trip time is estimated using Ping command running pe-

riodically in time t3. Similarly, the bandwidth is measured using iperf in every t4 time

period. As bandwidth measurement is an expensive function, in general, t4 >> t3.

Update EC Status Table Each EC node maintains a status table which lists all

possible edge computing peers with their compute capability, current utilization, ping

based network distance and the bandwidth. The information stored in the status table

is used in various resource sharing strategies during the data plane.

e. System Details

The prototype is implemented using the Click modular router software running

on a general purpose edge computing node. The element graph in Click, as shown

in Figure 5.8, provides an easy to configure, modular schema which can be enabled

for both sending and receiving modes simultaneously. The FromDevice and ToDevice

elements are configured with their respective Ethernet ports. The peering configuration

is set using a topology file passed as a parameter. The timer values can be set and

sending mode can be periodically triggered as per the timer value t2. A port of the

name resolution server (NRS) is used to obtain and cache the ECID to network address

mapping during the first receipt of a packet for an SECID.

Software logic for DISCO consists of a set of generation, forwarding and table

elements. The packet classifier helps in identifying control and data packets which are

forwarded to the respective click elements, namely, Control and Data packet logic. The

EC manager class inherits generation and forwarding elements. The generation phase

involves accessing the database for CC, U , CHops, MHops and peer configuration

which are updated at the respective fields in the control packets. An EC node status

table is updated based on the current status information received from the control

114

Pkt
Class

Control Pkt Logic

DISCO Logic

Gen
Logic

Fwd.
Logic

Status Table

Data Pkt Logic

Edge Cloud Selection

EC Manager

Net
Binder

Tx Queue Rx Queue

If If

NRS

CC, U, BW, RTT
Peers, MHops, CHops

DB

Click Element
Table
APIs

Pkt Flow
API access

Acronyms:
If: Interface Abstraction
Pkt: Packet
Class: Classifier
Gen: Generation

Acronyms:
Fwd: Forward
DB: Database
NRS: Name Resolution
Server

Figure 5.8: DISCO Node Logic Implementation

packets. The network statistics such as BW (Bandwidth) and RTT are measured

using standard Linux tools for each edge peer and are updated in the status table

accordingly. The forwarding phase relays the received control packets from peers based

on the neighbor list while updating destination IDs and decrementing CHops. The

packet is discarded when CHops become zero.

i. Loop Removal. Packets are not forwarded on the received input port. Further-

more, if the SECID matches DECID from the peer configuration, the control packet

is discarded without forwarding to prevent loops.

ii. Data Freshness. The received packets are first compared with the status table

and if the timestamp of currently received packets is higher than that of the previously

received packet for that particular ECID obtained from the status table, the packet is

not forwarded and discarded.

115

5.4 Cooperative Resource Sharing Algorithms

The cooperative resource sharing technique is used to fulfill the requirements of an

application or a use-case as follows. In case a node does not have enough compute

resources, it can use the computation offloading to utilize resources of another node.

The faster processing of big data can be achieved by sharing a group of resources in a

parallel or distributed (cluster) manner. In order to utilize a specific service available at

a node to accomplish a broader task, pipeline based service processing (service chaining)

allows sharing resources sequentially.

Offloading. The control plane capability extends the DISCO functionality to select

a best EC node to offload a task and forward a data packet to that node. Different

schemes for various use-cases are implemented for the performance evaluation.

For a given compute cluster, the overall compute capability of can be calculated as

G =
N∑
i=1

gi, where gi is a node’s compute capability in GFlops. Thus, the normalized

compute capability of a node with respect to the whole system is gnormi = gi/G. As-

suming the current load at each node is loadi, we define the compute power of a node

as γi = gnormi ∗ (1 − loadi). When selecting k nodes for resource sharing, the average

available compute power for an EC node can be given by Equation 5.1.

Γi =
k∑

j=1

γj/k (5.1)

Therefore, the objective of an MEC control plane architecture is to select nodes leading

to Γ =
N∑
i=1

Γi maximization.

Several cooperative resource sharing algorithms are available in the literature as-

suming partial or complete information availability at each node. Based upon the

information, algorithms such as round-robin, random selection, select-all, centralized,

and game-theory etc., are used [177, 178, 179].

Following an application independent approach, and depending upon the informa-

tion availability, the protocol can be generally evaluated for overall system performance

using one of the following approaches.

Random Selection (R). Here, among r available neighbors, 0≤ k≤r nodes are se-

lected arbitrarily for resource sharing.

116

Round-Robin (RR). In this case, the nodes are chosen in a round-robin fashion. For

k > 1, randomized group of neighbors can be selected in a round-robin way.

Optimal (O). In this case, k best performing nodes are selected for resource sharing.

In case of same RTT and BW, the best nodes can be selected based upon their sorted

γi values.

5.4.1 Application Performance Evaluation

The proposedDISCO protocol can also be used to evaluate the application performance

for various cases such as cluster computing, single node task offloading, and service

chaining.

Cluster Computing

The batch processing tasks can be divided among the available data plane neighbors of

an EC node using following schemes.

Equal-share. In this schemes, the T tasks are equally divided among all the k available

neighbors as taski = T/k. This scheme is bottle-necked by the straggler EC node

among the k neighbors which has maximum total response time for a batch (sum of

transmission, propagation & processing delay).

Proportional. In this DISCO enabled scheme, the tasks are distributed proportioned

among the available neighbors based upon the inverse of their normalized estimated

service time. In general, if the service time of each node is si, i ∈ (1, k), the task

allocated to a node i from the batch size B can be calculated using Equation 5.2.

taski = (
k∏

j=1(j 6=i)

sj/(
k∑

i=1

k∏
j=1(j 6=i)

sj)) ∗B (5.2)

For both the schemes, the maximum available neighbors based upon the peering agree-

ments are chosen for parallelism.

117

Single Node Task Offloading

In this case, a single EC node is selected to process a task. The output of the task

is returned to the home MEC node once processed. If the selected node is local, then

there is no offloading involved. Apart from a neighbor’s processing delay, the total

transmission as well as propagation delays are also considered to make a decision to

offload. The single node task offloading approach can be evaluated using following

schemes.

Baseline. In this scheme, the processing requests are handled by local EC nodes. This

scheme does not use DISCO and there is no task offloading involved at any of these

EC nodes.

Thresholding without DISCO. In this scheme, the image processing requests can

be handled locally or offloaded to a neighbor if the EC response time is beyond the

application latency threshold. As the neighboring node’s information is not available

through DISCO, the offloading node is chosen from the list of neighbors based upon

the available bandwidth which behaves as a random selection when the inter-edge band-

width between all the EC nodes is same.

Thresholding with DISCO. In this DISCO enabled scheme, the processing requests

can be handled locally or offloaded based upon comparing the local processing delay,

and the transmission, propagation and processing delay costs of offloading to a neighbor.

The offloading decision is initiated using an application latency threshold.

Best Choice (BC). In this DISCO enabled best choice offloading decision scheme,

the processing request is always offloaded to the best EC neighbor, if available.

In the context of MEC, assuming that the inter-edge bandwidth and round-trip

delay are same between all the nodes, the goal is to select node(s) with minimal load

and highest compute capabilities (high γ).

NFV and Service Chaining

For a NFV service chaining, the following algorithms can be used to select k pipeline

nodes for subsequent task processing.

118

Random. The random scheme selects an arbitrary node from the list of available neigh-

bors to offload the partially-processed task and the next neighbor after accomplishing

the next task repeats the process until the final stage is completed.

Next-best Sequential. This scheme uses the information provided by DISCO to

select a node with lowest response delay and allows the neighbor to do the same for the

remaining tasks in the chain.

Global Optimal. The optimal assumes that the information about all the nodes is

available at the home node beforehand and therefore selects k best nodes for service

chaining. This approach resembles the traveling salesman problem [180] and has non

deterministic polynomial time complexity.

5.5 Large Scale Emulation Methodology

The large scale evaluation of the proposed distributed control plane protocol is carried

out using the publicly available Autonomous Systems (ASes) dataset of San Francisco

(SFO) city from CAIDA [1] and inferring details from their published capacity [181,

182].

5.5.1 Setting Parameters

AS to Location Mapping

Each AS can have one or more ECs in its domain. We chose a total of 18 top ASes from

the dataset and analyzed their network as well traffic capacity [181, 182]. An Internet

Service Provider (ISP) may operate in multiple cities and/or countries and therefore

there is no AS to geo-location explicit binding available. Thus, in this work, we assume

geographical location of an AS as the origin AS’s office location in the city with the

assumption that the traffic for that AS should pass through the deployed ECs. For

instance, AS6939 is located at the zip code 94102 with the AS name HURRICANE.

119

Figure 5.9: AS Relationship in the SFO (CAIDA [1])

Neighbor List

We infer the neighbor’s of an AS located in SFO using the following relations: (a)

peer-to-peer and (b) peer-to-consumer. As the relation is not transitive, a consumer

might have other ASes peer or consumer and so on. The AS relationship of top 18

ASes in SFO is shown in Figure 5.9. The relation can be explained as follows: AS6939

has peer-to-peer relation with AS27647, it is a consumer of AS14601, and it has a peer-

to-consumer relationship with AS12276. A peer sends control plane information to its

peers and consumers which in turn can offload their tasks when required. The neighbor

list is stored at each AS location using this relationship.

Number of Edge Clouds in an AS

The estimated traffic capacity and the number of IP addresses for each AS are obtained

from the publicly available information as shown in Figure 5.10. The traffic capacity

is directly related to the ability of an AS to handle amount of data to and from the

120

Figure 5.10: Example AS Information in SFO

network. Therefore, for the emulation, we assign the number of ECs available in pro-

portion to the traffic at each AS. The number of ECs in our emulation are between

from one and seven chosen to match our evaluation capabilities on the ORBIT testbed

[86]. For example, AS6939 is assumed to have seven ECs.

Maximum Number of Hops

The average AS path length is proportional to the number of hops. This implies that the

AS which propagate its information to a farther location should hold more IP addresses.

Therefore, the maximum number hops, MHops is proportioned to the number of IP

addresses available at an AS. It is noted that with MHops = 3, all the ASes can be

reached with the given AS relationship in Figure 5.9. For the evaluation, the MHops

is set between 0 and 3 where MHops = 0 implies that the AS is consumer (stub AS)

and cannot handle the offloaded tasks; thus it does not propagate its own as well as

others control plane information to any other node.

5.5.2 Tesbed Set-up

The prototype is evaluated at the ORBIT [86] testbed using heterogeneous compute

nodes.

EC Nodes

We selected 18 grid nodes in ORBIT with varied compute capabilities and measured

their raw GFlops. The GFlops are in the range of 98–194 as measured using the

121

Input White Yellow Select: 16.98 Convert to Gray Scale: 9.79 Smoothing: 3.32

Edge Detection: 2.38 ROI selection: 0.158 Draw Lines: 0.508 Sloped Lines: 1.7

Figure 5.11: Processing Latency (ms) of Traffic Lane Detection Application

Linpack [174] tool. The nodes have different machine type, processor architectures and

generations. The number of threads per core are between 1–2. The CPU processing is

between 3.1–3.6 GHz.

5.5.3 Application Details

We used a low-latency traffic lane detection (TLD) application [183] for performance

evaluation. The application takes an input of image, selects white and yellow, con-

verts to gray scale, smooths, detects edges, selects region of interest (ROI) and finally

draws sloped lines on top of the traffic lanes. On an Intel i7-3770, 3.4 GHz, 4 cores

local compute node, the processing latency of different steps of this applications are

determined as shown in Figure 5.11. The baseline performance of TLD is obtained at

different EC ORBIT nodes as shown in Figure 5.12. It is observed that with higher

GFlops, the processing latency of TLD can be less than 55 ms. It can be noted that for

an EC end-to-end evaluation, the network latency including transmission, propagation

and queuing should also be considered.

Figure 5.13 shows the variation of TLD processing latency with EC node load and it

GFlops. This mapping is stored at an EC node to estimate the application performance

once the CC and U are obtained through the DISCO control plane protocol. Although

an EC node can choose the neighbor with minimal processing latency, other parameters

such as RTT , BW and peering relationship to the neighbor are also taken into account

122

Figure 5.12: Processing Latency of Traffic Lane Detection Application with Different
GFlops

for better performance.

5.6 Performance Evaluation and Results

In this section, we present the protocol evaluation results for: (a) centralized and

distributed control plane overhead comparison, (b) DISCO protocol performance, and

(c) application performance using DISCO.

5.6.1 Control Plane Overhead Evaluation

The control plane information can be disseminated in at least two ways. In one ap-

proach, a central controller such as SDN periodically queries the resource status of

EC nodes and then multicasts or broadcasts this information. Alternatively, the in-

formation systematically propagates across the network on need-to-know basis. These

approaches are evaluated by setting up a six node ring topology using the ORBIT nodes

as shown in Figure 5.14.

123

Figure 5.13: Processing Latency of Traffic Lane Detection Application with Load and
GFlops

The six routers are connected in ring fashion each associated with an EC node.

EC node has a unique ECID. The inter-router bandwidth is 932 Mbps. The central

controller collects and disseminates the control plane packets periodically from and to

each of the EC nodes, respectively. The DISCO protocol runs as an overlay with

each EC node setting its own peering configuration and MHops. For both the cases,

packets are captured using the pcap filter. The control packet transmission interval

(CPTI; timer, t2 in 5.6) is varied from 0.1–10 seconds. For DISCO, the average

number of neighbors, N is varied from 0.5–5 and MHops is varied from 1–5. As the

loop removal logic in the implementation discards the redundant packet, MHops cannot

be set beyond the maximum network depth.

Packet Overhead

Figure 5.15 shows the impact of varying number of hops, CPTI and average number of

neighbors on the packets generated per second in the system. Here, N = 0.5 implies

that every alternate EC node has a neighbor or one EC has three neighbors and others

have zero which are chosen randomly to satisfy the average requirement. For N = 0.5,

when MHops is increased from two to five, we observe that there is no rise in the

packet overhead as the network depth is lesser than the maximum hops set by an EC

124

Router and EC
(co-located)

Central
Controller

ECID:101

ECID:102

ECID:103

ECID:104

ECID:105

ECID:106

Figure 5.14: Ring Topology for Centralized vs. Distributed Control Plane Overhead
Evaluation.

node. Similarly, lowering MHops has significant improvement on the number of control

packets generated as observed for N = 5 which implies that each EC node maintains all

five other ECs as its peer. Therefore, in such a case, setting MHops as one is necessary

and sufficient to propagate control plane packet throughput the system.

The tradeoffs between N and MHops can also be observed from the application

point of view. For example, if an EC node has a large number of neighbors, setting

MHops too high will mean that the SLAs will not be met for all the offloading re-

quests. In our protocol design, configuring neighbor lists along with setting MHops

and timers, are left to the provider. Finally, varying CPTI has definite impact on the

packet overhead and can be systematically adjusted depending upon the node’s resource

variability. In general, an EC can also decide to generate the control plane packets only

when the node’s resource changes, and otherwise operate as a relay to forward control

packets originated from its peers.

The centralized approach depends only on the CPTI value for the packet overhead

and cannot be controlled by an EC node. Assuming that each EC node periodically

sends control packets to the central controller and the controller forwards the packets to

all the EC nodes, the packet overhead is observed to be proportional to the number of

125

Figure 5.15: DISCO Packet Overhead with Varied Number of Hops and Neighbors

participating EC nodes. In particular, the total number of overhead packets per second

can be calculated as 2 ∗M ∗ 1
CPTI , where M are the total number of EC nodes in the

system. It is assumed that the central controller aggregates information from all the

nodes and sends as a single packet to all the nodes. For CPTI = 1 seconds, the total

number of packets generated are therefore 12 in this system which are more than the

case of DISCO, N = 0.5 and MHops <= 5. It can be noted that for a distributed

technique, the packet overhead is a function of resource variability and therefore can

be limited by a provider’s parameter settings.

Convergence Time

The convergence time of a control plane protocol is defined as total wait time at an

EC node to receive all the intended control packets. For a centralized scheme, the

convergence time is the total time accounted for: receiving control packets at the cen-

tral controller from all the nodes in the network, creating an aggregate packet at the

controller, and receiving the aggregate packet at all the participating EC nodes. For

DISCO, since MHops and N are set by the individual EC nodes, accurate determi-

nation of intended control packets is infeasible. For topology shown in Figure 5.14, the

126

intended control packets in DISCO at an EC node are calculated by mapping MHops

and N of all the EC nodes. For example, if EC101 can be reached by EC102, EC104

and EC106 in any number of hops as set by each of these EC nodes, the convergence

time is the wait time to receive control packets from all these nodes.

We measure the time taken to collect all the control packets at each EC node

using DISCO and average time (ten runs) for different MHops and average number

of neighbors is shown in Table 5.1. It is observed that for lower N , increasing MHops

does not increase the convergence time as there are no peers available to forward the

packet. Similarly, for higher N , as all the peers are directly connected, increasing

MHops does not increase the convergence time. For the centralized implementation,

the average convergence time for the same topology is measured to be 2.78 ms which is

more than the DISCO approach due to central controller’s requirement to gather all

the information before aggregation.

Table 5.1: Average Convergence Time (ms) for DISCO

N 0.5 1 2 3 4 5

MHops 1 0.97 0.96 1.19 1.31 1.37 1.54
MHops 2 0.94 1.49 1.43 1.93 1.54 1.54
MHops 3 0.94 1.59 1.43 1.93 1.54 1.54
MHops 4 0.94 1.74 1.43 1.93 1.54 1.54

5.6.2 DISCO System Level Performance Evaluation

The neighbor information gathered using the DISCO protocol is valuable for general

as well as specific use-cases. For general case, we evaluate the application independent

performance for DISCO using the topology shown in Figure 5.9 set-up on ORBIT

radio testbed. The sum total of compute capability for this topology is G = 2653.

Using the method described in 5.4, we calculate Γ for different maximum k values. If

a node does not have k neighbors, it selects the maximum available neighbors. Table

5.2 presents the comparison between random, round-robin and optimal approach of

neighbor selection for a single run. For long-run, the round-robin approach tends to

127

perform same as a random approach. It can be noted that only the optimal approach

uses the DISCO protocol information. In all the cases, the information obtained using

our proposed protocol ensures better performance in terms of the available compute

power for the chosen nodes.

Table 5.2: Compute Power Comparison for Different Resource Sharing Algorithms,
Load and MHops (k=1)

MHops=1, Load MHops=2, Load

Algo. 0.2 0.5 0.7 0.2 0.65 0.65

R 0.91 0.57 0.39 0.9 0.53 0.39
RR 0.89 0.56 0.38 0.86 0.54 0.37
O 1.01 0.63 0.43 1.05 0.66 0.46

5.6.3 Application Performance Evaluation

The information obtained through DISCO can be used to enhance traditional services

such as cluster (parallel as well as distributed) computing. For the AS topology shown

in Fig. 5.9, the performance of the TLD application is evaluated for the same as well

as variable load and inter-edge bandwidth cases. In all the cases, the load is introduced

using the stress function in Linux and the bandwidth is varied using Linux tc command.

It is assumed that the execution environment is already available at all the ECs.

EC Response Time. The EC response time (tres) is given by the Eq. 5.3. Here,

tproc is the task processing time at an EC, and ttx,task, tprop,task, tprop,task and tprop,res

are the transmission and propagation delays, for the task and its processed response,

respectively. For a task executed locally (no offload) tres is equal to tproc.

tres = tproc + ttx,task + tprop,task + ttx,res + tprop,res (5.3)

Cluster Computing

In order to evaluate parallel cluster computing performance, we create a Hadoop-like

set up for TLD application with 100K batch jobs. The tasks are divided for the schemes

presented in Section 5.4.1. Figure 5.16 compares the cluster computing scenario with

128

Figure 5.16: Cluster Computing with and without DISCO for Load=0.12 and Different
MHops; Numbers in black are data plane neighbors for each EC node.

heterogeneous load, inter-edge bandwidth and resource distribution for EC response

time. For the average load of 0.12 and MHops of one, when there are no neighbors

available, the performance of equal-share and proportional task distribution is same.

While having more neighbors is beneficial for both the schemes, the equal-share is always

bottle-necked by the straggler whose compute capability, load, inter-edge bandwidth

and round trip propagation delay information was not available during offload decision.

As the DISCO makes a node aware of the estimated processing delay of the neighbor,

sending the number of tasks inversely proportional to the delay of a neighbor improves

the overall delay incurred for batch processing. For the same load of 0.12 and Mhops

increased to 2, an EC node can distribute the tasks to more neighbors. Thus, in this

case again, the DISCO based proportional task distribution provides lesser average

processing delay for each EC node as compared to the equal-share.

Figure 5.17 shows the aggregate performance of equal-share and proportional schemes

for different loads and MHops. Although, increasing MHops from one to two improves

the latency performance for both the schemes, it is observed that for medium loaded

system, increasing MHops provides larger average latency gains as compared to the low

and high loads cases. This is due to the fact that at the low-load, the EC node with

129

Figure 5.17: Cluster Computing Comparison for Schemes with and without DISCO for
Heterogeneous Load, Bandwidth and Compute Resources.

equal share can also find low-loaded nodes with decent response time and at high-load,

both equal-share as well proportional cannot avail low-latency as needed. However,

in both the cases, proportional scheme with DISCO provides better performance as

compared with equal-share.

Same Load and Inter-edge Bandwidth

Next, we evaluate the performance of the TLD application for offloading to a single

neighbor. The evaluation is carried out from the EC’s perspective, without considering

the UE to EC access latency. We use a local MPEG-4 video stream of 960 pixels by 540

pixels to be processed to detect the traffic lanes. The maximum inter-edge bandwidth

is fixed to 112 Mbps because of ORBIT capabilities. From the RTT and inter-edge

bandwidth information obtained through DISCO, we estimate the transmission and

propagation delays for all the EC neighbors. Furthermore, the processing latency is

estimated using Figure 5.13 for a given neighbor’s load and compute capability. Finally,

the EC node is selected based upon one of the schemes explained in Section 5.4.1.

In this evaluation, the EC nodes have same load levels and same inter-edge band-

width among nodes. The emulation is carried out for different bandwidth and load

130

Figure 5.18: Average EC Response Time Comparison for Different Load Conditions;
MHops=1

values. Figure 5.18 presents the application performance in terms of average EC re-

sponse time for MHops=1 and two extreme load conditions. The inter-edge offload

bandwidth limit presents the available bandwidth between pair of neighbors. For the

no offload baseline case, bandwidth has no impact on the response time. In case of

without DISCO and threshold of 70ms, the EC node attempts to offload the task to

a neighbor with bandwidth as a metric which is uniform for all the pairs. The lower

inter-edge bandwidth leads to higher EC response time. Therefore, for a homogeneous

network, a scheme without additional control plane information works as a random

selection scheme. As more bandwidth becomes available, the thresholding scheme out-

performs the baseline scheme. The lower threshold limit implies that more tasks are

offloaded to neighbors while the higher threshold limit at a lower load is same as base-

line with no task offloading. Similarly, as the DISCO information is used with the

threshold based task offload trigger, for lower loads and higher threshold, the scheme

is same as baseline while for lower thresholds, it performs as the best choice which is

an always offload (if best is available) scheme.

131

In case of the higher load (Figure 5.18, right), again, the baseline is an average

scheme while the without DISCO based threshold scheme improves with the band-

width. Both low and high thresholds are triggered due to higher loads at the EC nodes

but the limited bandwidth slows the offloads. Moreover, due to randomness in the se-

lection of a neighbor, the performance is not similar. As the higher bandwidth becomes

available, again the thresholding without DISCO outperforms the baseline scheme.

The DISCO based thresholding schemes performs same as best choice because a high

performance neighbor is always chosen once the threshold is triggered.

Figure 5.19 compares the application performance for different EC load and MHops

for the homogeneous network. It is observed that lower threshold scheme with DISCO

information performs similar to the best choice. Therefore, a simple thresholding

scheme with an appropriate application threshold is sufficient to achieve performance

better than baseline and other schemes. In this study, the threshold value zero is equiv-

alent to the best choice, while the infinity threshold represents a no offload baseline

scheme. Thus, a 100ms threshold offloads less often than 70ms but has comparable per-

formance. As the network depth increases, the schemes without using the control plane

information are unable to take advantage of other neighboring nodes while DISCO

based thresholding scheme can perform better even at the higher average load values.

Heterogeneous EC Network

A heterogeneous EC network is a more realistic scenario than homogeneous, and we

evaluate this case using the AS topology shown in Figure 5.9. The traffic capacity and

IP address information of these ASes are used to proportionate the bandwidth between

the pair of nodes. The load at each node is chosen during the experiment run using

uniform random distribution between the lower (α), and upper (β) limits.

Figure 5.20 shows the response time averaged over all the nodes and ten runs for

this heterogeneous setting. The compute capability of each node is different as men-

tioned earlier. It is observed that the average EC response time gain using DISCO is

significantly higher than baseline and threshold based schemes for an extremely het-

erogeneous setting, e.g., when α = 0 and β = 0.4. This is because DISCO enables an

132

Figure 5.19: Average Response Time Comparison for Different MHops and EC Node
Load

EC node to offload information to a lightly loaded neighbor which has better inter-edge

bandwidth connectivity. For lower load levels, all the schemes provide similar perfor-

mance as either there is no need to offload or a chosen EC node (even with the baseline

scheme) has sufficient available compute capabilities.

The network depth is increased by setting MHops as two and the performance

results are presented in Figure 5.21. Again, using DISCO, the thresholding based

scheme performs similar to the best choice except for very low load levels where the

threshold based algorithm is not triggered. The thresholding schemes without DISCO

information are unable to select an optimal EC node to offload tasks. However, in

some cases, particularly for the lower load scenarios, a chosen node can be good enough

when just using the thresholding scheme and can outperform the baseline scheme as

observed.

Figure 5.22 shows that the performance can be improved with change in the appli-

cation threshold as well as MHops. For more MHops, with and without using DISCO,

the EC node has lower response time as compared to the case with lower MHops values.

133

Figure 5.20: Average Response Time Comparison for Heterogeneous System Settings
(Load, Bandwidth) for MHops=1

Thus, setting appropriate network depth impacts the performance. The lower latency

threshold triggers more offloads which, in case of without DISCO schemes, does not

perform well. With DISCO, setting the lower threshold is beneficial to trigger the

offload request. Therefore when no control plane information is available, keeping ap-

plication threshold higher has better performance but when using the DISCO protocol,

setting the latency threshold lower has better performance. The low load value (0.12)

used for this emulation shows that for MHops=1, not many better nodes in the given

network depth are available and therefore performance improvement is not observed.

NFV and Service Chaining

The DISCO protocol information is also useful in an NFV service chaining use-case.

We set-up a chain of TLD specific service functions (white yellow select, convert to gray,

etc.; Ref: Figure 5.11) to evaluate the service chain latency performance for different

schemes described in the Section 5.4.1. Figure 5.23 shows that the random scheme does

not provide satisfactory results due to lack of information about a neighbor while the

DISCO-enabled next-best scheme’s performance is similar to the global optimal for all

the load levels.

134

Figure 5.21: Average Response Time Comparison for Heterogeneous System Settings
(Load, Bandwidth) for MHops=2

The dataset used and the project code developed for this work is made available

using GitHub at the following Link [184].

5.7 Discussion and Related Work

Control Plane Variants. Many existing MEC architectures such as hierarchical [19,

20] as well as centralized [21] implicitly assume control plane information availability.

To the best of our knowledge, DISCO is an early attempt to design, implement and

evaluate the performance of a fully decentralized control plane protocol for MEC.

Overlay based Control. The overlay based control plane allows use of the existing

network fabric while ensuring required flexibility, simplicity and elasticity [22]. Over-

lay solution are a popular choice in literature due to implementation simplicity and

compatibility advantages, and is thus reflected in the DISCO design [23, 24].

Border Gateway Protocol. DISCO shares similarities with BGP which dissem-

inates IP routes between the ASes by forming peering relationships [25]. However,

DISCO is differentiated by its: (a) controlled network depth envisioned to scale up to

a geographical region, (b) shorter periodicity as needed by MEC specifically to support

135

Figure 5.22: Impact of Threshold on the Application Performance for Different MHops

low-latency applications, and (c) both, network and compute information disseminate

in order to enable cooperative resource management algorithms rather than simply

routing.

Resource Specification (RSpec). The overlay based large-scale testbeds such as

PlanetLab and GENI [26, 27] are configured for the compute and network resources

using resource specifications (RSpec) [28] which enables full description of the network,

control of the network topologies, and network-aware resource placement. DISCO is

a natural complement to these testbeds for run-time resource discovery extending the

current static configuration capabilities with Rspec.

Network Participation. The edge cloud network is a shared infrastructure system

for MEC in which the networking entities such as routers play significant role in MEC’s

performance. Although the current DISCO protocol is built as an overlay, supporting

the views of [29, 30] we believe that a tightly coupled network participation, for instance,

routers disseminating network state information to the MEC nodes, will greatly improve

the performance and scalability.

136

Figure 5.23: NFV Service Chain Response Time Comparison for Different Schemes &
Various Average Loads.

5.8 Summary

In this work[185], a distributed control plane protocol, DISCO, is designed, imple-

mented and evaluated to enable cooperative resource sharing in heterogeneous edge

cloud scenarios. DISCO allows controlled peer-to-peer exchange of key compute and

network parameters (such as CPU GIPS, % utilization and network bandwidth) needed

for cooperation between heterogeneous edge clouds across network domains. The con-

trol plane information thus obtained can be used in a variety of independent data

plane offloading decisions and sharing mechanisms such as cluster computing, compute

offloading, load balancing multi-node orchestration, and service chaining.

The results given in this work demonstrate the feasibility of distributed control for

future edge clouds, which we feel is an important new capability that will promote scal-

ability and organic growth through grass-roots participation. System level evaluations

for several use cases of the DISCO protocol further confirm that significant perfor-

mance gains can be achieved through cooperation at the cost of modest complexity and

overhead.

137

Chapter 6

Conclusions

In this thesis, we presented the architecture, design, and evaluation of the mobile edge

cloud (MEC) system to support future low-latency applications. Considering the re-

quirements posed by these applications, we proposed specific techniques in mobile edge

clouds to (a) analyze the performance and scalability of low-latency applications, (b)

enable application specific network routing, (c) provide service migration to handle load

and user mobility, and (d) create a general-purpose control plane for the distributed

resource sharing in the MEC. This thesis provided the following contributions.

First, the system-level edge cloud requirements for low-latency applications were

analyzed by benchmarking a set of sample Augmented Reality (AR) applications. A

city-scale MEC network simulation was carried out to evaluate the performance and

scalability of the system with users running these AR applications. It was shown that

the core cloud only can outperform an edge cloud only system when it has insufficient

inter-edge cloud bandwidth necessary for data movement. The study concluded that it

is essential to increase inter-edge cloud bandwidth along with the compute capacity to

avoid network-wide congestion and support low-latency applications.

Next, using the concepts of named-object architecture, we designed a low-latency

named-object based virtual network (NOVN) to realize a resource-aware anycast capa-

bility for connecting distributed MEC resources with the heterogeneous users requesting

specific services. NOVN inherently supports application specific routing with minimal

processing and control overhead and thereby provides Quality of Service (QoS) in a

multi-tenant MEC network. The performance of NOVN is validated via experimental

evaluation of an example edge cloud scenario, showing significant gains in the achievable

service latency distribution.

138

User mobility and system load variability are key characteristics of the locally placed,

geographically distributed MECs. To overcome these challenges, a service migration

framework, specifically designed using containers was evaluated for a real-time applica-

tion running our proposed algorithm. The application latency performance was mea-

sured at different loads for a city-scale mobility trace. This work demonstrated that

container based service migration is a viable approach for handling user mobility and

varying system load when parameters such as machine type, system load, inter-edge

bandwidth and compute capability are considered.

Finally, a lightweight control plane protocol (DISCO) supporting the exchange of

essential control information in MEC was proposed and validated with an experimental

prototype. It was shown that the existence of such a control plane enables distributed

resource sharing and management by providing neighboring edge clouds with visibil-

ity of their computing and network resources along with their current load metrics.

Evaluating various use-cases such as cluster computing, compute offloading and service

chaining, we showed that DISCO provides significant performance gains at the cost of

modest complexity and overhead. We believe that the use of a control plane for edge

cloud metadata will enable effective peering of edge cloud resources between multiple

autonomous networks in a region.

6.1 Looking Ahead

The MEC architectural components, algorithms & protocols provided in this thesis can

potentially serve as guidelines for future edge cloud deployments. Real-life use-cases

such as autonomous driving, wireless AR/VR, remote surgery, and holographic tele-

porting are already under active consideration but many technical challenges remain.

One challenge is to achieve latency of the order of a few milliseconds which is feasible

with the resource assignment, cross-layer routing, container migration and control plane

techniques provided in this thesis. The work presented here can be expanded across

many horizons of different application profiles, network topologies, and system config-

urations. Further evaluation of a real-world deployment, inter-operating with different

MEC implementations across multi-tenant networks remains an open challenge.

139

References

[1] The caida as relationships dataset. http://www.caida.org/data/as-relationships/.
Accessed: 2019-01-30.

[2] VNI Cisco. Cisco visual networking index: Forecast and trends, 2017–2022. White
Paper, 1, 2018.

[3] Guenter I Klas. Fog computing and mobile edge cloud gain momentum open fog
consortium, etsi mec and cloudlets. Google Scholar, 2015.

[4] Xu Chen, Lei Jiao, Wenzhong Li, and Xiaoming Fu. Efficient multi-user compu-
tation offloading for mobile-edge cloud computing. IEEE/ACM Transactions on
Networking, 24(5):2795–2808, 2015.

[5] Anthony D JoSEP, RAnDy KAtz, AnDy KonWinSKi, LEE Gunho, DAViD PAt-
tERSon, and ARiEL RABKin. A view of cloud computing. Communications of
the ACM, 53(4), 2010.

[6] Ling Qian, Zhiguo Luo, Yujian Du, and Leitao Guo. Cloud computing: An
overview. In IEEE International Conference on Cloud Computing, pages 626–
631. Springer, 2009.

[7] Brian D Halligan, Joey F Geiger, Andrew K Vallejos, Andrew S Greene, and
Simon N Twigger. Low cost, scalable proteomics data analysis using amazon’s
cloud computing services and open source search algorithms. Journal of proteome
research, 8(6):3148–3153, 2009.

[8] Ian Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu. Cloud computing and grid
computing 360-degree compared. arXiv preprint arXiv:0901.0131, 2008.

[9] Rajiv Ranjan, Liang Zhao, Xiaomin Wu, Anna Liu, Andres Quiroz, and Manish
Parashar. Peer-to-peer cloud provisioning: Service discovery and load-balancing.
In Cloud Computing, pages 195–217. Springer, 2010.

[10] Ibrahim W Habib, Qiang Song, Zhaoming Li, and Nageswara SV Rao. De-
ployment of the gmpls control plane for grid applications in experimental high-
performance networks. IEEE Communications Magazine, 44(3):65–73, 2006.

[11] Joshy Joseph, Mark Ernest, and Craig Fellenstein. Evolution of grid computing
architecture and grid adoption models. IBM Systems Journal, 43(4):624–645,
2004.

[12] E. Bell, A. Smith, P. Langille, A. Rijhsinghani, and K. McCloghrie. Definitions of
Managed Objects for Bridges with Traffic Classes, Multicast Filtering and Virtual
LAN Extensions. RFC 2674, 1999.

140

[13] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol Label Switching Archi-
tecture. RFC 3031, 2001.

[14] Andy Bavier, Nick Feamster, Mark Huang, Larry Peterson, and Jennifer Rex-
ford. In vini veritas: realistic and controlled network experimentation. ACM
SIGCOMM Computer Communication Review, 36(4):3–14, 2006.

[15] Bego Blanco, Jose Oscar Fajardo, Ioannis Giannoulakis, Emmanouil Kafetzakis,
Shuping Peng, Jordi Pérez-Romero, Irena Trajkovska, Pouria S Khodashenas,
Leonardo Goratti, Michele Paolino, et al. Technology pillars in the architecture of
future 5g mobile networks: Nfv, mec and sdn. Computer Standards & Interfaces,
54:216–228, 2017.

[16] Dipankar Raychaudhuri, Kiran Nagaraja, and Arun Venkataramani. Mobili-
tyfirst: a robust and trustworthy mobility-centric architecture for the future
internet. ACM SIGMOBILE Mobile Computing and Communications Review,
16(3):2–13, 2012.

[17] Xu Chen, Lei Jiao, Wenzhong Li, and Xiaoming Fu. Efficient multi-user compu-
tation offloading for mobile-edge cloud computing. IEEE/ACM Transactions on
Networking, 24(5):2795–2808, 2015.

[18] Ke Zhang, Yuming Mao, Supeng Leng, Alexey Vinel, and Yan Zhang. Delay
constrained offloading for mobile edge computing in cloud-enabled vehicular net-
works. In 2016 8th International Workshop on Resilient Networks Design and
Modeling (RNDM), pages 288–294. IEEE, 2016.

[19] Liang Tong, Yong Li, and Wei Gao. A hierarchical edge cloud architecture for mo-
bile computing. In IEEE INFOCOM 2016-The 35th Annual IEEE International
Conference on Computer Communications, pages 1–9. IEEE, 2016.

[20] Abbas Kiani and Nirwan Ansari. Toward hierarchical mobile edge computing: An
auction-based profit maximization approach. IEEE Internet of Things Journal,
4(6):2082–2091, 2017.

[21] Aditya Gudipati, Daniel Perry, Li Erran Li, and Sachin Katti. Softran: Software
defined radio access network. In Proceedings of the second ACM SIGCOMM
workshop on Hot topics in software defined networking, pages 25–30. ACM, 2013.

[22] An Wang, Yang Guo, Fang Hao, TV Lakshman, and Songqing Chen. Scotch:
Elastically scaling up sdn control-plane using vswitch based overlay. In Pro-
ceedings of the 10th ACM International on Conference on emerging Networking
Experiments and Technologies, pages 403–414. ACM, 2014.

[23] Siamak Azodolmolky, Reza Nejabati, Eduard Escalona, Ramanujam Jayakumar,
Nikolaos Efstathiou, and Dimitra Simeonidou. Integrated openflow–gmpls control
plane: an overlay model for software defined packet over optical networks. Optics
express, 19(26):B421–B428, 2011.

[24] Animesh Nandi, Aditya Ganjam, Peter Druschel, TS Eugene Ng, Ion Stoica,
Hui Zhang, and Bobby Bhattacharjee. Saar: A shared control plane for overlay
multicast. In NSDI, 2007.

141

[25] Eric C Rosen and Yakov Rekhter. Bgp/mpls vpns. 1999.

[26] Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Peterson, Mike
Wawrzoniak, and Mic Bowman. Planetlab: an overlay testbed for broad-coverage
services. ACM SIGCOMM Computer Communication Review, 33(3):3–12, 2003.

[27] Mark Berman, Jeffrey S Chase, Lawrence Landweber, Akihiro Nakao, Max Ott,
Dipankar Raychaudhuri, Robert Ricci, and Ivan Seskar. Geni: A federated
testbed for innovative network experiments. Computer Networks, 61:5–23, 2014.

[28] Ted Faber and Rob Ricci. Resource description in geni: Rspec model. In Presen-
tation given at the Second GENI Engineering Conference (March 2008), 2008.

[29] Lucian Popa, Gautam Kumar, Mosharaf Chowdhury, Arvind Krishnamurthy,
Sylvia Ratnasamy, and Ion Stoica. Faircloud: sharing the network in cloud
computing. ACM SIGCOMM Computer Communication Review, 42(4):187–198,
2012.

[30] Alexander Stage and Thomas Setzer. Network-aware migration control and
scheduling of differentiated virtual machine workloads. In Proceedings of the 2009
ICSE workshop on software engineering challenges of cloud computing, pages 9–
14. IEEE Computer Society, 2009.

[31] Ronald T Azuma. A survey of augmented reality. Presence: Teleoperators &
Virtual Environments, 6(4):355–385, 1997.

[32] Howard Rheingold. Virtual reality: exploring the brave new technologies. Simon
& Schuster Adult Publishing Group, 1991.

[33] Abhishek Chandra, Jon Weissman, and Benjamin Heintz. Decentralized edge
clouds. IEEE Internet Computing, 17(5):70–73, 2013.

[34] Albert Greenberg, James R Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A Maltz, Parveen Patel, and Sudipta
Sengupta. Vl2: a scalable and flexible data center network. In ACM SIGCOMM
computer communication review, volume 39, pages 51–62. ACM, 2009.

[35] Jason G Caudill. The growth of m-learning and the growth of mobile comput-
ing: Parallel developments. The International Review of Research in Open and
Distributed Learning, 8(2), 2007.

[36] Puneet Jain, Justin Manweiler, and Romit Roy Choudhury. Overlay: Practi-
cal mobile augmented reality. In Proceedings of the 13th Annual International
Conference on Mobile Systems, Applications, and Services, pages 331–344. ACM,
2015.

[37] Marco C Jacobs, Mark A Livingston, et al. Managing latency in complex aug-
mented reality systems. 1997.

[38] Wuyang Zhang, Jiachen Chen, Yanyong Zhang, and Dipankar Raychaudhuri. To-
wards efficient edge cloud augmentation for virtual reality mmogs. In Proceedings
of the Second ACM/IEEE Symposium on Edge Computing, page 8. ACM, 2017.

142

[39] Nidhi Jain Kansal and Inderveer Chana. Cloud load balancing techniques: A
step towards green computing. IJCSI International Journal of Computer Science
Issues, 9(1):238–246, 2012.

[40] Pieter Simoens, David Griffin, Elisa Maini, T Khoa Phan, Miguel Rio, Luc
Vermoesen, Frederik Vandeputte, Folker Schamel, and Dariusz Burstzynowski.
Service-centric networking for distributed heterogeneous clouds. IEEE Commu-
nications Magazine, 55(7):208–215, 2017.

[41] Shiqiang Wang, Rahul Urgaonkar, Murtaza Zafer, Ting He, Kevin Chan, and
Kin K Leung. Dynamic service migration in mobile edge-clouds. In 2015 IFIP
Networking Conference (IFIP Networking), pages 1–9. IEEE, 2015.

[42] Atheer AiR. https://atheerair.com/ .

[43] Microsoft Hololens. https://www.microsoft.com/en-us/hololens .

[44] Google Glass. https://developers.google.com/glass/ .

[45] Rodrigo Roman, Javier Lopez, and Masahiro Mambo. Mobile edge computing, fog
et al.: A survey and analysis of security threats and challenges. Future Generation
Computer Systems, 78:680–698, 2018.

[46] Andreas Reiter, Bernd Prünster, and Thomas Zefferer. Hybrid mobile edge com-
puting: Unleashing the full potential of edge computing in mobile device use
cases. In Proceedings of the 17th IEEE/ACM International Symposium on Clus-
ter, Cloud and Grid Computing, pages 935–944. IEEE Press, 2017.

[47] Dipankar Raychaudhuri, Ivan Seskar, Gil Zussman, Thanasis Korakis, Dan
Kilper, Tingjun Chen, Jakub Kolodziejski, Michael Sherman, Zoran Kostic, Xi-
aoxiong Gu, Harish Krishnaswamy, Sumit Maheshwari, Panagiotis Skrimponis,
and Craig Gutterman. Challenge: Cosmos: A city-scale programmable testbed
for experimentation with advanced wireless. In Mobicom, 2020.

[48] Opencv. https://opencv.org/. Accessed: 2019-07-01.

[49] WiGLE: Wireless Network Mapping.” WiGLE: Wireless Network Mapping.
https://www.wigle.net/ .

[50] CloudPing.info. https://www.cloudping.info/ .

[51] Tiago Gama Rodrigues, Katsuya Suto, Hiroki Nishiyama, and Nei Kato. Hy-
brid method for minimizing service delay in edge cloud computing through vm
migration and transmission power control. IEEE Transactions on Computers,
66(5):810–819, 2016.

[52] Amin Tootoonchian and Yashar Ganjali. Hyperflow: A distributed control plane
for openflow. In Proceedings of the 2010 internet network management conference
on Research on enterprise networking, volume 3, 2010.

[53] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon
Poutievski, Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue,
Takayuki Hama, et al. Onix: A distributed control platform for large-scale pro-
duction networks. In OSDI, volume 10, pages 1–6, 2010.

143

[54] Albert E Fernandes Muritiba, Manuel Iori, Enrico Malaguti, and Paolo Toth.
Algorithms for the bin packing problem with conflicts. Informs Journal on com-
puting, 22(3):401–415, 2010.

[55] Mahadev Satyanarayanan, Pieter Simoens, Yu Xiao, Padmanabhan Pillai, Zhuo
Chen, Kiryong Ha, Wenlu Hu, and Brandon Amos. Edge analytics in the internet
of things. IEEE Pervasive Computing, 14(2):24–31, 2015.

[56] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing
and its role in the internet of things. In Proceedings of the first edition of the MCC
workshop on Mobile cloud computing, pages 13–16. ACM, 2012.

[57] Mohammad Aazam, Imran Khan, Aymen Abdullah Alsaffar, and Eui-Nam Huh.
Cloud of things: Integrating internet of things and cloud computing and the issues
involved. In Proceedings of 2014 11th International Bhurban Conference on Ap-
plied Sciences & Technology (IBCAST) Islamabad, Pakistan, 14th-18th January,
2014, pages 414–419. IEEE, 2014.

[58] Abdur Rahim Biswas and Raffaele Giaffreda. Iot and cloud convergence: Op-
portunities and challenges. In 2014 IEEE World Forum on Internet of Things
(WF-IoT), pages 375–376. IEEE, 2014.

[59] Antonio Celesti, Maria Fazio, Maurizio Giacobbe, Antonio Puliafito, and Mas-
simo Villari. Characterizing cloud federation in iot. In 2016 30th International
Conference on Advanced Information Networking and Applications Workshops
(WAINA), pages 93–98. IEEE, 2016.

[60] Mu-Hsing Kuo. Opportunities and challenges of cloud computing to improve
health care services. Journal of medical Internet research, 13(3):e67, 2011.

[61] Quanwen Zhu, Long Chen, Qingquan Li, Ming Li, Andreas Nüchter, and Jian
Wang. 3d lidar point cloud based intersection recognition for autonomous driving.
In 2012 IEEE Intelligent Vehicles Symposium, pages 456–461. IEEE, 2012.

[62] Swarun Kumar, Shyamnath Gollakota, and Dina Katabi. A cloud-assisted design
for autonomous driving. In Proceedings of the first edition of the MCC workshop
on Mobile cloud computing, pages 41–46. ACM, 2012.

[63] Luis M Vaquero and Luis Rodero-Merino. Finding your way in the fog: To-
wards a comprehensive definition of fog computing. ACM SIGCOMM Computer
Communication Review, 44(5):27–32, 2014.

[64] Jianli Pan and James McElhannon. Future edge cloud and edge computing for
internet of things applications. IEEE Internet of Things Journal, 5(1):439–449,
2017.

[65] Roberto Morabito, Vittorio Cozzolino, Aaron Yi Ding, Nicklas Beijar, and Jorg
Ott. Consolidate iot edge computing with lightweight virtualization. IEEE Net-
work, 32(1):102–111, 2018.

[66] Sandro Pinto, Tiago Gomes, Jorge Pereira, Jorge Cabral, and Adriano Tavares.
Iioteed: an enhanced, trusted execution environment for industrial iot edge de-
vices. IEEE Internet Computing, 21(1):40–47, 2017.

144

[67] Kengo Sasaki, Naoya Suzuki, Satoshi Makido, and Akihiro Nakao. Vehicle control
system coordinated between cloud and mobile edge computing. In 2016 55th
Annual Conference of the Society of Instrument and Control Engineers of Japan
(SICE), pages 1122–1127. IEEE, 2016.

[68] Engin Zeydan, Ejder Bastug, Mehdi Bennis, Manhal Abdel Kader, Ilyas Alper
Karatepe, Ahmet Salih Er, and Mérouane Debbah. Big data caching for network-
ing: Moving from cloud to edge. IEEE Communications Magazine, 54(9):36–42,
2016.

[69] Gagangeet Singh Aujla, Neeraj Kumar, Albert Y Zomaya, and Rajiv Ranjan.
Optimal decision making for big data processing at edge-cloud environment: An
sdn perspective. IEEE Transactions on Industrial Informatics, 14(2):778–789,
2017.

[70] Ravishankar Ravindran, Xuan Liu, Asit Chakraborti, Xinwen Zhang, and Guo-
qiang Wang. Towards software defined icn based edge-cloud services. In 2013
IEEE 2nd International Conference on Cloud Networking (CloudNet), pages 227–
235. IEEE, 2013.

[71] Wei Li, Igor Santos, Flavia C Delicato, Paulo F Pires, Luci Pirmez, Wei Wei,
Houbing Song, Albert Zomaya, and Samee Khan. System modelling and perfor-
mance evaluation of a three-tier cloud of things. Future Generation Computer
Systems, 70:104–125, 2017.

[72] Liang Tong, Yong Li, and Wei Gao. A hierarchical edge cloud architecture for mo-
bile computing. In IEEE INFOCOM 2016-The 35th Annual IEEE International
Conference on Computer Communications, pages 1–9. IEEE, 2016.

[73] Yi Hu, Feixiong Zhang, KK Ramakrishnan, and Dipankar Raychaudhuri.
Geotopo: A pop-level topology generator for evaluation of future internet ar-
chitectures. In 2015 IEEE 23rd International Conference on Network Protocols
(ICNP), pages 90–99. IEEE, 2015.

[74] Pedro Garcia Lopez, Alberto Montresor, Dick Epema, Anwitaman Datta, Teruo
Higashino, Adriana Iamnitchi, Marinho Barcellos, Pascal Felber, and Etienne
Riviere. Edge-centric computing: Vision and challenges. ACM SIGCOMM Com-
puter Communication Review, 45(5):37–42, 2015.

[75] Wuyang Zhang, Yi Hu, Yanyong Zhang, and Dipankar Raychaudhuri. Segue:
Quality of service aware edge cloud service migration. In 2016 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom), pages 344–
351. IEEE, 2016.

[76] Changsheng You, Kaibin Huang, Hyukjin Chae, and Byoung-Hoon Kim. Energy-
efficient resource allocation for mobile-edge computation offloading. IEEE Trans-
actions on Wireless Communications, 16(3):1397–1411, 2016.

[77] Abdelhamied A Ateya, Anastasia Vybornova, Ruslan Kirichek, and Andrey
Koucheryavy. Multilevel cloud based tactile internet system. In 2017 19th In-
ternational Conference on Advanced Communication Technology (ICACT), pages
105–110. IEEE, 2017.

145

[78] Sharon Choy, Bernard Wong, Gwendal Simon, and Catherine Rosenberg. A hy-
brid edge-cloud architecture for reducing on-demand gaming latency. Multimedia
systems, 20(5):503–519, 2014.

[79] Mathias Björkqvist, Lydia Y Chen, Marko Vukolić, and Xi Zhang. Minimizing
retrieval latency for content cloud. In 2011 Proceedings IEEE INFOCOM, pages
1080–1088. IEEE, 2011.

[80] Zhijing Qin, Grit Denker, Carlo Giannelli, Paolo Bellavista, and Nalini Venkata-
subramanian. A software defined networking architecture for the internet-of-
things. In 2014 IEEE network operations and management symposium (NOMS),
pages 1–9. IEEE, 2014.

[81] Mahadev Satyanarayanan. The emergence of edge computing. Computer,
50(1):30–39, 2017.

[82] Sumit Maheshwari, Dipankar Raychaudhuri, Ivan Seskar, and Francesco
Bronzino. Scalability and performance evaluation of edge cloud systems for la-
tency constrained applications. In 2018 IEEE/ACM Symposium on Edge Com-
puting (SEC), pages 286–299. IEEE, 2018.

[83] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing
and its role in the internet of things. In Proceedings of the first edition of the MCC
workshop on Mobile cloud computing, pages 13–16. ACM, 2012.

[84] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M Frans
Kaashoek. The click modular router. ACM Transactions on Computer Systems
(TOCS), 18(3):263–297, 2000.

[85] Francesco Bronzino, Dipankar Raychaudhuri, and Ivan Seskar. Experiences with
testbed evaluation of the mobilityfirst future internet architecture. In Networks
and Communications (EuCNC), 2015 European Conference on, pages 507–511.
IEEE, 2015.

[86] Open-access research testbed for next-generation wireless networks (orbit).
https://www.orbit-lab.org/. Accessed: 2019-09-16.

[87] Yi Wang, Eric Keller, Brian Biskeborn, Jacobus van der Merwe, and Jennifer Rex-
ford. Virtual routers on the move: live router migration as a network-management
primitive. In ACM SIGCOMM Computer Communication Review, volume 38,
pages 231–242. ACM, 2008.

[88] Thomas Anderson, Larry Peterson, Scott Shenker, and Jonathan Turner. Over-
coming the internet impasse through virtualization. Computer, 38(4):34–41, 2005.

[89] Sumit Maheshwari, Shalini Choudhury, Ivan Seskar, and Dipankar Raychaud-
huri. Traffic-aware dynamic container migration for real-time support in mobile
edge clouds. In 2018 IEEE International Conference on Advanced Networks and
Telecommunications Systems (ANTS), pages 1–6. IEEE, 2018.

[90] Jinho Hwang, K K Ramakrishnan, and Timothy Wood. Netvm: High per-
formance and flexible networking using virtualization on commodity platforms.
IEEE Transactions on Network and Service Management, 12(1):34–47, 2015.

146

[91] Teemu Koponen, Keith Amidon, Peter Balland, Mart́ın Casado, Anupam
Chanda, Bryan Fulton, Igor Ganichev, Jesse Gross, Paul Ingram, Ethan Jack-
son, et al. Network virtualization in multi-tenant datacenters. In 11th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 14), pages
203–216, 2014.

[92] Dmitry Drutskoy, Eric Keller, and Jennifer Rexford. Scalable network virtualiza-
tion in software-defined networks. IEEE Internet Computing, 17(2):20–27, 2013.

[93] KK Ramakrishnan, Prashant Shenoy, and Jacobus Van der Merwe. Live data
center migration across wans: a robust cooperative context aware approach. In
Proceedings of the 2007 SIGCOMM workshop on Internet network management,
pages 262–267. ACM, 2007.

[94] Timothy Wood, KK Ramakrishnan, Prashant Shenoy, and Jacobus Van der
Merwe. Cloudnet: dynamic pooling of cloud resources by live wan migration
of virtual machines. In ACM Sigplan Notices, volume 46, pages 121–132. ACM,
2011.

[95] Vytautas Valancius, Nick Feamster, Jennifer Rexford, and Akihiro Nakao. Wide-
area route control for distributed services. In USENIX Annual Technical Confer-
ence, 2010.

[96] Xiongqi Wu and James Griffioen. Supporting application-based route selection.
In Computer Communication and Networks (ICCCN), 2014 23rd International
Conference on, pages 1–8. IEEE, 2014.

[97] Andrew D Ferguson, Arjun Guha, Chen Liang, Rodrigo Fonseca, and Shriram
Krishnamurthi. Participatory networking: An api for application control of sdns.
In ACM SIGCOMM computer communication review, volume 43, pages 327–338.
ACM, 2013.

[98] Francesco Bronzino, Sumit Maheshwari, Ivan Seskar, and Dipankar Raychaud-
huri. Novn: named-object based virtual network architecture. In Proceedings
of the 20th International Conference on Distributed Computing and Networking,
pages 90–99. ACM, 2019.

[99] Francesco Bronzino, Shreyasee Mukherjee, and Dipankar Raychaudhuri. The
named-object abstraction for realizing advanced mobility services in the future
internet. In Proceedings of the Workshop on Mobility in the Evolving Internet
Architecture, pages 37–42. ACM, 2017.

[100] R. Moskowitz, P. Nikander, P. Jokela, and T. Henderson. Host Identity Protocol.
RFC 5201, 2008.

[101] Dino Farinacci, Darrel Lewis, David Meyer, and Vince Fuller. The locator/ID
separation protocol (LISP). RFC 6830, 2013.

[102] Michael Kowal, Dino Farinacci, and Parantap Lahiri. Lisp traffic engineering
use-cases. Technical report, 2018.

[103] V Fuller, D Farinacci, D Meyer, and D Lewis. Locator/id separation protocol
alternative logical topology (lisp+ alt). Technical report, 2013.

147

[104] Francesco Bronzino, Kiran Nagaraja, Ivan Seskar, and Dipankar Raychaudhuri.
Network service abstractions for a mobility-centric future internet architecture. In
Proceedings of the eighth ACM international workshop on Mobility in the evolving
internet architecture, pages 5–10. ACM, 2013.

[105] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peter-
son, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: enabling
innovation in campus networks. ACM SIGCOMM Computer Communication
Review, 38(2):69–74, 2008.

[106] Tam Vu, Akash Baid, Yanyong Zhang, Thu D Nguyen, Junichiro Fukuyama,
Richard P Martin, and Dipankar Raychaudhuri. Dmap: A shared hosting scheme
for dynamic identifier to locator mappings in the global internet. In Distributed
Computing Systems (ICDCS), 2012 IEEE 32nd International Conference on,
pages 698–707. IEEE, 2012.

[107] Abhigyan Sharma, Xiaozheng Tie, Hardeep Uppal, Arun Venkataramani, David
Westbrook, and Aditya Yadav. A global name service for a highly mobile in-
ternetwork. In ACM SIGCOMM Computer Communication Review, volume 44,
pages 247–258. ACM, 2014.

[108] Yi Hu, Roy D Yates, and Dipankar Raychaudhuri. A hierarchically aggregated in-
network global name resolution service for the mobile internet. Technical report,
WINLAB TR 442, 2015.

[109] Yi Hu, Roy D Yates, and Dipankar Raychaudhuri. A hierarchically aggregated
in-network global name resolution service for the mobile internet. WINLAB:
New-Brunswick, NJ, USA, 2015.

[110] Sophie Y Qiu, Patrick D McDaniel, Fabian Monrose, and Aviel D Rubin. Char-
acterizing address use structure and stability of origin advertisement in inter-
domain routing. In 11th IEEE Symposium on Computers and Communications
(ISCC’06), pages 489–496. IEEE, 2006.

[111] Ratul Mahajan, David Wetherall, and Tom Anderson. A study of bgp origin as
changes and partial connectivity. Slide Presentation, University of Washington,
Asta Networks,(ritual@ cs. washington. edu)(22 pages), 2001.

[112] Daniel Turull, Markus Hidell, and Peter Sjödin. Performance evaluation of open-
flow controllers for network virtualization. In 2014 IEEE 15th International Con-
ference on High Performance Switching and Routing (HPSR), pages 50–56. IEEE,
2014.

[113] Yiannis Yiakoumis, Sachin Katti, and Nick McKeown. Neutral net neutrality. In
Proceedings of the 2016 conference on ACM SIGCOMM 2016 Conference, pages
483–496. ACM, 2016.

[114] Kiyohide Nakauchi, Francesco Bronzino, Yozo Shoji, Ivan Seskar, and Dipankar
Raychaudhuri. vmcn: virtual mobile cloud network for realizing scalable, real-
time cyber physical systems. In Proceedings of the 4th Workshop on Distributed
Cloud Computing, page 6. ACM, 2016.

148

[115] Samuel C Nelson, Gautam Bhanage, and Dipankar Raychaudhuri. Gstar: gen-
eralized storage-aware routing for mobilityfirst in the future mobile internet. In
Proceedings of the sixth international workshop on MobiArch, pages 19–24. ACM,
2011.

[116] Mobilityfirst wiki. http://mobilityfirst.orbit-lab.org/.

[117] Ming Li, Devesh Agrawal, Deepak Ganesan, Arun Venkataramani, and Himanshu
Agrawal. Block-switched networks: A new paradigm for wireless transport. In
NSDI, volume 9, pages 423–436, 2009.

[118] Markus Feilner. OpenVPN: Building and integrating virtual private networks.
Packt Publishing Ltd, 2006.

[119] YL Andersson, T Madsen, and AB Acreo. Provider Provisioned Virtual Private
Network (VPN) Terminology. RFC 4026, 2005.

[120] Ignacio Castro, Juan Camilo Cardona, Sergey Gorinsky, and Pierre Francois.
Remote peering: More peering without internet flattening. In Proceedings of the
10th ACM International on Conference on emerging Networking Experiments and
Technologies, pages 185–198. ACM, 2014.

[121] Xuxian Jiang and Dongyan Xu. Violin: Virtual internetworking on overlay infras-
tructure. Parallel and Distributed Processing and Applications, pages 937–946,
2005.

[122] Konstantinos Psounis. Active networks: Applications, security, safety, and archi-
tectures. IEEE Communications Surveys, 2(1):2–16, 1999.

[123] Teemu Koponen, Mohit Chawla, Byung-Gon Chun, Andrey Ermolinskiy,
Kye Hyun Kim, Scott Shenker, and Ion Stoica. A data-oriented (and beyond)
network architecture. In ACM SIGCOMM Computer Communication Review,
volume 37, pages 181–192. ACM, 2007.

[124] Jianli Pan, Subharthi Paul, Raj Jain, and Mic Bowman. Milsa: a mobility and
multihoming supporting identifier locator split architecture for naming in the
next generation internet. In Global Telecommunications Conference, 2008. IEEE
GLOBECOM 2008. IEEE, pages 1–6. IEEE, 2008.

[125] Cedric Westphal. Challenges in networking to support augmented reality and
virtual reality. IEEE ICNC, 2017.

[126] Hoang T Dinh, Chonho Lee, Dusit Niyato, and Ping Wang. A survey of mobile
cloud computing: architecture, applications, and approaches. Wireless commu-
nications and mobile computing, 13(18):1587–1611, 2013.

[127] Francesco Bronzino, Sumit Maheshwari, Ivan Seskar, and Dipankar Raychaud-
huri. Novn: named-object based virtual network architecture. In Proceedings
of the 20th International Conference on Distributed Computing and Networking,
pages 90–99. ACM, 2019.

149

[128] Zhou Zhao, Kai Hwang, and Jose Villeta. Game cloud design with virtualized
cpu/gpu servers and initial performance results. In Proceedings of the 3rd work-
shop on Scientific Cloud Computing, pages 23–30. ACM, 2012.

[129] Sumit Maheshwari, Sudipta Mahapatra, Cheruvu Siva Kumar, and Kantubukta
Vasu. A joint parametric prediction model for wireless internet traffic using hid-
den markov model. Wireless networks, 19(6):1171–1185, 2013.

[130] Lele Ma, Shanhe Yi, and Qun Li. Efficient service handoff across edge servers via
docker container migration. In Proceedings of the Second ACM/IEEE Symposium
on Edge Computing, page 11. ACM, 2017.

[131] Stephen J Vaughan-Nichols. New approach to virtualization is a lightweight.
Computer, 39(11):12–14, 2006.

[132] Sumit Maheshwari, Saurabh Deochake, Ridip De, and Anish Grover. Compar-
ative study of virtual machines and containers for devops developers. arXiv
preprint arXiv:1808.08192, 2018.

[133] Claus Pahl and Brian Lee. Containers and clusters for edge cloud architectures–
a technology review. In 2015 3rd international conference on future internet of
things and cloud, pages 379–386. IEEE, 2015.

[134] YC Tay, Kumar Gaurav, and Pavan Karkun. A performance comparison of con-
tainers and virtual machines in workload migration context. In 2017 IEEE 37th
International Conference on Distributed Computing Systems Workshops (ICD-
CSW), pages 61–66. IEEE, 2017.

[135] The LXD container hypervisor. https://www.ubuntu.com/containers/lxd/ .

[136] Docker. https://www.docker.com/ .

[137] Shripad Nadgowda, Sahil Suneja, Nilton Bila, and Canturk Isci. Voyager: Com-
plete container state migration. In 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS), pages 2137–2142. IEEE, 2017.

[138] Andrew Machen, Shiqiang Wang, Kin K Leung, Bong Jun Ko, and Theodoros
Salonidis. Live service migration in mobile edge clouds. IEEE Wireless Commu-
nications, 25(1):140–147, 2017.

[139] Shiqiang Wang, Rahul Urgaonkar, Murtaza Zafer, Ting He, Kevin Chan, and
Kin K Leung. Dynamic service migration in mobile edge-clouds. In 2015 IFIP
Networking Conference (IFIP Networking), pages 1–9. IEEE, 2015.

[140] Chaima Ghribi, Makhlouf Hadji, and Djamal Zeghlache. Energy efficient vm
scheduling for cloud data centers: Exact allocation and migration algorithms.
In 2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid
Computing, pages 671–678. IEEE, 2013.

[141] CRIU. http://www.criu.org/ .

[142] Openalpr/openalpr. https://github.com/openalpr/openalpr/wiki/OpenALPR-
Design .

150

[143] Piorkowski, M., et al. CRAWDAD dataset epfl/mobility.
https://crawdad.org/epfl/mobility/20090224 .

[144] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul,
Christian Limpach, Ian Pratt, and Andrew Warfield. Live migration of virtual
machines. In Proceedings of the 2nd conference on Symposium on Networked Sys-
tems Design & Implementation-Volume 2, pages 273–286. USENIX Association,
2005.

[145] Shreyasee Mukherjee, Shravan Sriram, Tam Vu, and Dipankar Raychaudhuri.
Eir: Edge-aware inter-domain routing protocol for the future mobile internet.
Computer Networks, 127:13–30, 2017.

[146] ShareOn GitHub. https://github.com/sumitece87/shareon.

[147] David Geronimo, Antonio M Lopez, Angel D Sappa, and Thorsten Graf. Survey
of pedestrian detection for advanced driver assistance systems. IEEE transactions
on pattern analysis and machine intelligence, 32(7):1239–1258, 2010.

[148] Ryan W Wolcott and Ryan M Eustice. Visual localization within lidar maps for
automated urban driving. In Intelligent Robots and Systems (IROS 2014), 2014
IEEE/RSJ International Conference on, pages 176–183. IEEE, 2014.

[149] Mario Gerla, Eun-Kyu Lee, Giovanni Pau, and Uichin Lee. Internet of vehicles:
From intelligent grid to autonomous cars and vehicular clouds. In Internet of
Things (WF-IoT), 2014 IEEE World Forum on, pages 241–246. IEEE, 2014.

[150] Savaş Tay, P-A Blanche, R Voorakaranam, AV Tunç, W Lin, S Rokutanda, T Gu,
D Flores, P Wang, G Li, et al. An updatable holographic three-dimensional
display. Nature, 451(7179):694, 2008.

[151] Wenxiao Zhang, Bo Han, and Pan Hui. Jaguar: Low latency mobile augmented
reality with flexible tracking. In 2018 ACM Multimedia Conference on Multimedia
Conference, pages 355–363. ACM, 2018.

[152] Zhanpeng Huang, Weikai Li, Pan Hui, and Christoph Peylo. Cloudridar: A
cloud-based architecture for mobile augmented reality. In Proceedings of the 2014
workshop on Mobile augmented reality and robotic technology-based systems, pages
29–34. ACM, 2014.

[153] Wuyang Zhang, Sugang Li, Luyang Liu, Zhenhua Jia, Zhang Yanyong, and Di-
pankar Raychaudhuri. Heteroedge: Orchestration of real-time vision applications
on heterogeneous edge clouds. In INFOCOM, 2019 Proceedings IEEE. IEEE,
2019.

[154] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge computing:
Vision and challenges. IEEE Internet of Things Journal, 3(5):637–646, 2016.

[155] Ronald Azuma. Tracking requirements for augmented reality. Communications
of the ACM, 36(7):50–51, 1993.

151

[156] Dipankar Raychaudhuri, Ivan Seskar, Max Ott, Sachin Ganu, Kishore Ramachan-
dran, Haris Kremo, Robert Siracusa, Hang Liu, and Manpreet Singh. Overview
of the orbit radio grid testbed for evaluation of next-generation wireless network
protocols. In Wireless Communications and Networking Conference, 2005 IEEE,
volume 3, pages 1664–1669. IEEE, 2005.

[157] Alberto Ceselli, Marco Premoli, and Stefano Secci. Mobile edge cloud network de-
sign optimization. IEEE/ACM Transactions on Networking (TON), 25(3):1818–
1831, 2017.

[158] Yun Chao Hu, Milan Patel, Dario Sabella, Nurit Sprecher, and Valerie Young.
Mobile edge computing—a key technology towards 5g. ETSI white paper,
11(11):1–16, 2015.

[159] Ronald T Azuma. A survey of augmented reality. Presence: Teleoperators &
Virtual Environments, 6(4):355–385, 1997.

[160] Howard Rheingold. Virtual reality: exploring the brave new technologies. Simon
& Schuster Adult Publishing Group, 1991.

[161] Swarun Kumar, Shyamnath Gollakota, and Dina Katabi. A cloud-assisted design
for autonomous driving. In Proceedings of the first edition of the MCC workshop
on Mobile cloud computing, pages 41–46. ACM, 2012.

[162] Quanwen Zhu, Long Chen, Qingquan Li, Ming Li, Andreas Nüchter, and Jian
Wang. 3d lidar point cloud based intersection recognition for autonomous driving.
In 2012 IEEE Intelligent Vehicles Symposium, pages 456–461. IEEE, 2012.

[163] Nasir Abbas, Yan Zhang, Amir Taherkordi, and Tor Skeie. Mobile edge comput-
ing: A survey. IEEE Internet of Things Journal, 5(1):450–465, 2017.

[164] Stefania Sardellitti, Gesualdo Scutari, and Sergio Barbarossa. Joint optimization
of radio and computational resources for multicell mobile-edge computing. IEEE
Transactions on Signal and Information Processing over Networks, 1(2):89–103,
2015.

[165] Konstantinos Samdanis, Xavier Costa-Perez, and Vincenzo Sciancalepore. From
network sharing to multi-tenancy: The 5g network slice broker. IEEE Commu-
nications Magazine, 54(7):32–39, 2016.

[166] Peter Rost, Albert Banchs, Ignacio Berberana, Markus Breitbach, Mark Doll,
Heinz Droste, Christian Mannweiler, Miguel A Puente, Konstantinos Samdanis,
and Bessem Sayadi. Mobile network architecture evolution toward 5g. IEEE
Communications Magazine, 54(5):84–91, 2016.

[167] Min Chen and Yixue Hao. Task offloading for mobile edge computing in software
defined ultra-dense network. IEEE Journal on Selected Areas in Communications,
36(3):587–597, 2018.

[168] Allan Afuah. Internet business models and strategies: Text and cases. McGraw-
Hill, Inc., 2002.

152

[169] David Gorodyansky. System and method for monetizing internet usage, Novem-
ber 23 2006. US Patent App. 11/471,247.

[170] Pankesh Patel, Ajith H Ranabahu, and Amit P Sheth. Service level agreement
in cloud computing. 2009.

[171] C-H Chang, Pandelis Kourtessis, and JM Senior. Gpon service level agreement
based dynamic bandwidth assignment protocol. Electronics Letters, 42(20):1173–
1175, 2006.

[172] Karl Czajkowski, Ian Foster, Carl Kesselman, Volker Sander, and Steven Tuecke.
Snap: A protocol for negotiating service level agreements and coordinating re-
source management in distributed systems. In Workshop on Job Scheduling
Strategies for Parallel Processing, pages 153–183. Springer, 2002.

[173] Shreyasee Mukherjee, Shravan Sriram, Tam Vu, and Dipankar Raychaudhuri.
Eir: Edge-aware inter-domain routing protocol for the future mobile internet.
Computer Networks, 127:13–30, 2017.

[174] Linpack. https://www.netlib.org/linpack/. Accessed: 2019-09-16.

[175] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M Frans
Kaashoek. The click modular router. ACM Transactions on Computer Systems
(TOCS), 18(3):263–297, 2000.

[176] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, Patrick Crow-
ley, Christos Papadopoulos, Lan Wang, Beichuan Zhang, et al. Named data
networking. ACM SIGCOMM Computer Communication Review, 44(3):66–73,
2014.

[177] Jian Guo, Fangming Liu, Dan Zeng, John CS Lui, and Hai Jin. A cooperative
game based allocation for sharing data center networks. In 2013 Proceedings
IEEE INFOCOM, pages 2139–2147. IEEE, 2013.

[178] Sandeep Sharma, Sarabjit Singh, and Meenakshi Sharma. Performance analy-
sis of load balancing algorithms. World Academy of Science, Engineering and
Technology, 38(3):269–272, 2008.

[179] Xiaodan Wang, Christopher Olston, Anish Das Sarma, and Randal Burns.
Coscan: cooperative scan sharing in the cloud. In Proceedings of the 2nd ACM
Symposium on Cloud Computing, page 11. ACM, 2011.

[180] G Serban and MC Pintea. Heuristics and learning approaches for solving
the travling salesman problem. Studia Universitatis Babes-Bolyai Informatica,
49(2):27–36, 2004.

[181] Home page - bgpview. https://bgpview.io/. Accessed: 2019-09-16.

[182] Hurricane electric bgp toolkit. https://bgp.he.net/. Accessed: 2019-09-16.

[183] Github – finding lane lines using python and opencv.
https://github.com/naokishibuya/car-finding-lane-lines/. Accessed: 2019-07-01.

153

[184] Disco. https://github.com/sumitece87/disco. Accessed: 2019-09-16.

[185] Sumit Maheshwari, Prasad Netalkar, and Dipankar Raychaudhuri. Disco: Dis-
tributed control plane architecture for resource sharing in heterogeneous mobile
edge cloud scenarios. In 40th IEEE International Conference on Distributed Com-
puting Systems (ICDCS), Singapore, 2020 (to appear).

