
CAG: A REAL-TIME LOW-COST
ENHANCED-ROBUSTNESS

HIGH-TRANSFERABILITY CONTENT-AWARE
ADVERSARIAL ATTACK GENERATOR

by

VAN NHAT HUY PHAN

A thesis submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Master of Science

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Bo Yuan

and approved by

New Brunswick, New Jersey

May, 2020



ABSTRACT OF THE THESIS

CAG: A Real-time Low-cost Enhanced-robustness

High-transferability Content-aware Adversarial Attack

Generator

By Van Nhat Huy Phan

Thesis Director:

Bo Yuan

Deep neural networks (DNNs) are vulnerable to adversarial attack despite their tremen-

dous success in many artificial intelligence fields. Adversarial attack is a method that

causes the intended misclassfication by adding imperceptible perturbations to legiti-

mate inputs. To date, researchers have developed numerous types of adversarial attack

methods. However, from the perspective of practical deployment, these methods suf-

fer from several drawbacks such as long attack generating time, high memory cost,

insufficient robustness and low transferability. To address the drawbacks, we propose

a Content-aware Adversarial Attack Generator (CAG) to achieve real-time, low-cost,

enhanced-robustness and high-transferability adversarial attack. First, as a type of

generative model-based attack, CAG shows significant speedup (at least 500 times) in

generating adversarial examples compared to the state-of-the-art attacks such as PGD

and C&W. Furthermore, CAG only needs a single generative model to perform tar-

geted attack to any targeted class. Because CAG encodes the label information into

a trainable embedding layer, it differs from prior generative model-based adversarial

attacks that use n different copies of generative models for n different targeted classes.
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As a result, CAG significantly reduces the required memory cost for generating ad-

versarial examples. Moreover, CAG can generate adversarial perturbations that focus

on the critical areas of input by integrating the class activation maps information in

the training process, and hence improve the robustness of CAG attack against the

state-of-art adversarial defenses. In addition, CAG exhibits high transferability across

different DNN classifier models in black-box attack scenario by introducing random

dropout in the process of generating perturbations. Extensive experiments on different

datasets and DNN models have verified the real-time, low-cost, enhanced-robustness,

and high-transferability benefits of CAG.
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Chapter 1

Introduction

Deep neural networks (DNNs) have achieved unprecedented success in many artificial

intelligence fields, such as computer vision, natural language processing and speech

recognition [8], [11], [12]. Despite their current popularity and prosperity, DNNs are still

facing several severe challenges, especially their high vulnerability to adversarial attack

[5], [17], which adds well-designed tiny perturbations to the legitimate inputs to cause

the intended misclassification of DNN models. Such attacks could cause severe safety,

economic and social problems if launched to the DNNs deployed in practical applications

ranging from face recognition, autonomous driving to speech authentication.

Figure 1.1: Adversarial images generated with CAG using ImageNet dataset. From top
row to bottom row: legitimate images, adversarial images, perturbations (enhanced).

In order to address this critical challenge, the machine learning community has con-

ducted extensive researches on the vulnerability of DNNs, from both the attack and

defense aspects. Adversarial attack technique was pioneered by Szegedy et al. [4]. Since

then, researchers have developed various adversarial attacking algorithms, targeting dif-

ferent types of DNN models including convolutional neural networks, recurrent neural
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networks and graph neural networks, and also different application scenarios, ranging

from image classification, machine translation, to graph classification etc. Among those

algorithms, one popular class of attack techniques is fast gradient sign method (FGSM),

which performs one-step gradient computation to craft untargeted adversarial examples

[5]. Considering the relatively weak attack performance of FGSM, the machine learn-

ing community has proposed several iterative optimization-based techniques including

C&W, I-FGSM and PGD that deliver the state-of-the-art attack performance [5], [17],

[20]. Furthermore, some recent work has also proposed to use generative models, e.g.,

GAN and U-Net, to generate adversarial examples [6], [10], [24], [26].

Although the existing adversarial attack methods can already exhibit high attack

success rate (ASR), especially in white-box attack scenario, from the perspective of

practical deployment, they are still suffering one or more drawbacks, namely long ad-

versarial example generating time, high memory cost for launching adversarial attack,

insufficient robustness against defense methods and low transferability in black-box

attack scenario.

Aiming to overcome these drawbacks, in this paper we propose a Content-aware Ad-

versarial Attack Generator (CAG), to achieve real-time, low-cost, enhanced-robustness

and high-transferability adversarial attack. We show some adversarial images generated

by CAG in Figure 1.1. The features and benefits of CAG are summarized as follows:

• CAG is a generative model-based attack, so it can avoid time-consuming iterative

optimization procedure to generate adversarial examples. Compared with the

state-of-the-art iterative attacks such as PGD and C&W, CAG achieves significant

speedup (at least 500 times), and hence makes real-time attack possible.

• CAG utilizes a trainable embedding layer to encode all label information to one

single model, unlike prior generative model-based methods which require differ-

ent generative models for different targeted classes. In n-class targeted attack

scenario, the number of the required generative models is reduced from n to 1,

thereby drastically reducing the memory cost for launching attacks.
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• CAG integrates the class activation maps (CAMs) information into the train-

ing process, in contrast to many other attack methods that generate adversarial

perturbations over the entire input. Consequently, CAG is able to generate ad-

versarial perturbations that focus on the critical areas of input, and thus improves

the attack’s robustness against the state-of-art defense approaches.

• CAG exhibits high transferability across different DNN classifier models in black-

box attack scenario. CAG can generate adversarial perturbations with better

generality by introducing random dropout in the perturbations-generation pro-

cess. As a result, CAG’s adversarial examples have higher transferability when

attacking unseen classifiers.

The rest of this paper is organized as follows. Section 2 introduces the related work

on adversarial attack and defense methods. Section 3 discusses our motivation. Section

4 describes the technical details of CAG. The experimental results are presented and

analyzed in Section 5. Section 6 draws the conclusions of all findings in our paper.
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Chapter 2

Related Work

2.1 Adversarial Attacks

To define an adversarial attack, let X = {x1, ..., xm} be a set of the valid inputs from

the dataset, y ∈ {1, ..., L} be the valid class label, and F (·) be the well-trained DNN

classifier. Let (xi, yi) denote the i-th benign instance and the corresponding true label.

The goal of an adversarial attack is to create the x′i = xi + δ, where δ is imperceptible

adversarial perturbation. A nontargeted attack requires F (xi) 6= yi and a targeted

attack specifies t 6= i such that F (x′i) = yt.

2.2 FGSM

Fast gradient sign method (FGSM) is a one-step fast-adversarial-example-generation

approach [5]. It aims to linearize loss function in L∞ neighborhood of a legitimate

input and to find the exact maximum of the linearized loss function. Correspondingly,

its adversarial example generation formula is as follows:

x′ = x+ ε · sign(∆J(x, ytrue)),

where ytrue denotes the true label, ∆J(., .) computes the gradient of the loss function,

and sign denotes the sign function. Notice that here ε is the attack strength parameter

to control the balance between the attack performance and the norm of the perturba-

tions.
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2.3 I-FGSM & PGD

Although FGSM is fast, its attack performance is relatively weak. Researchers have

proposed various approaches to achieve stronger attack by improving the vanilla FGSM

method. Kurakin et al. [14] propose to take multiple steps of FGSM (I-FGSM) with

smaller attack strength α in an iterative way:

x′N+1 = Clipε{x′N + α · sign(∆J(x′N , ytrue)},

where x′N is the adversarial image at the N -th iteration, and Clip{·} clips the overall

attack strength back to ε at the end of the iteration. Notice that in the case of using L∞

norm, I-FGSM is equivalent to another popular iteration-based attack method (PGD)

[20].

2.4 C&W

C&W [17] is an optimization-based attack method. It aims to optimize the loss function

as follows:

‖x′ − x‖p + c ·max(max
i 6=t

f(x′)i − f(x′)t,−κ),

where t is the targeted class, f(·) denotes the softmax function, c is a constant set by

binary search, and κ is an adjustable parameter that encourages the attacker to find an

adversarial example being classified as class t with high confidence. By minimizing the

above loss function using Adam optimizer in an iterative way, C&W can achieve high

ASR with low perturbation norm.

2.5 Generative Model-based

One drawback of the iterative methods mentioned above is long generating time. Hence

another method to generate adversarial examples is to use a generative model, such as

GAN, Autoencoder [6] or U-Net. For instance, Xiao et al. [26] apply AdvGAN to craft

perceptually realistic adversarial examples. Moreover, Baluja et al. [16] develop an

adversarial transformation network to convert inputs into adversarial examples. Pour-

saeed et al. [24] propose a method they name Generative Adversarial Perturbations
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(GAP) that uses a ResNet-based generative model [13] to perform adversarial attack.

2.6 Adversarial Defenses

2.7 Pixel Deflection

The key idea of pixel deflection defense is to randomly replace pixels with nearby pixels

[25]. To achieve the replacement, this method uses CAMs of the top-5 predictions to

guide the update of the pixels [15]. In this scenario, the probability of a pixel being

updated is inversely proportional to the likelihood that the area contains the object.

After the pixel replacement, a denoising operation is applied to recover the classification

accuracy.

2.8 Randomization

The mitigation of adversarial attack effects can also be achieved by using randomization.

For instance, Xie et al. proposes to first resize the input to random size [22]. After

that, a random padding operation is performed to pad zeros around the resized image.

Though it may seem simple, this method can significantly improve the robustness of

DNN models against adversarial attack.

2.9 Input Transformation

Another type of popular defense methods is input transformation. Its key idea is to

perform various transformations, such as bit-depth reduction, lossy compression and

variance minimization on adversarial examples to mitigate the attack effects [18], [23].

The reported experimental results show that these methods can achieve balance between

robustness against attack and computation overhead.
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Chapter 3

Motivations

Despite the abundance of researches on adversarial attack methods described in Section

2, existing approaches still suffer from several inherent drawbacks–in particular from

the perspective of practical deployment.

Long Generation Time Iteration-based approaches predominate among current

state-of-the-art methods, including PGD and C&W. Consequently, generating adver-

sarial examples using iteration is time-expensive and requires extensive computational

resources, especially for the targeted attack. For example, to achieve a high ASR,

C&W method takes hours to generate 100 large-size adversarial examples on a GPU.

Such long generation time makes launching the adversarial attack in real-time setting

infeasible.

High Memory Cost Using an iteration-free generative model-based attack promises

to avoid long generation time [26], [24], [16]. However, in these existing works if the

attackers wants to achieve targeted attack to a specific class, they have to train different

generator models for different targeted classes. For example, to prepare for the targeted

attack to 1000 classes in the ImageNet dataset, in total 1000 different generator models

have to be trained and stored, thereby causing massive memory cost.

Insufficient Robustness To date, most adversarial example generation is based

on the search over the entire input size instead of focusing on the critical part of

legitimate object content. Noticing this phenomenon, many defense methods have

been developed to improve defense performance via integrating this information into

the defense scheme. For instance, Luo et al. propose to mask out the background

regions with little transformation performed on the critical areas [9]. Similarly, Prakash

et al. propose to use pixel deflection to denoise and reconstruct the input by locally
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redistributing pixels under the guidance of the object position [25]. Consequently, such

well-designed defense schemes make the existing adversarial attack exhibit insufficient

robustness.

Low Transferability Most adversarial attack methods can achieve high ASR in

the white-box attack scenario. However, in real-world applications, black-box attack is

a more common environment setting. In such cases, the transferability of the generated

adversarial examples is important to ensure a successful attack. However, to date on

large-scale datasets and large DNN models, the existing adversarial attack approaches

exhibit low transferability, thereby impeding the feasibility of launching real-life black-

box attack.

Our Motivation Motivated to redress the above challenges plaguing the existing

adversarial attack methods, we aim to develop an adversarial attack method that can

1) generate each adversarial example in a real-time manner; 2) require only one model

for different targeted classes; 3) exhibit strong robustness against the-state-of-the-art

defense techniques; and 4) exhibit high transferability in the black-box attack scenario.

To fulfill those requirements, we develop CAG, an attack method with fast genera-

tion speed, low memory cost, improved robustness and high transferability. Next, we

describe the model training and attack generation schemes of CAG in detail.
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Chapter 4

CAG: Content-aware Adversarial Attack Generator

4.1 Overall Architecture

Figure 4.1: Overall architecture of CAG.

Figure 4.1 illustrates the overall architecture of CAG. To generate an adversarial

image, an input tensor T is first constructed based on the given clean image x, true

label i and targeted label t. Then a generator model G(·), in the format of U-Net, is

used to generate the perturbations δ from T . After that, δ is scaled to a fixed L2 norm

and added to x. Finally, after clipping out-of-range values, the adversarial image x′ is

ready to mislead the classifier from original true class i to the targeted class t.

Fast Generation Speed using U-Net CAG utilizes U-Net as the underlying

generative model. Therefore, when compared with other iteration-based attack meth-

ods, U-Net-based approach avoids time-expensive iterative procedure, and hence makes



10

real-time generation of adversarial examples possible.

4.2 Building Input Tensors

Figure 4.2: Building input tensor for CAG. The target class is randomly selected and
given in training and testing phase, respectively.

Single Generative Model via Label Embedding As mentioned in Section 3,

the main drawback of generative model-based attack is a need for massive amount

of models for different target classes. To address this problem, we encode the class

label information into the input tensor T for U-Net. Figure 4.2 shows the overall

procedure of constructing T . Here the dimension of the clean image is denoted as

h × w × c where h,w, c represent height, width and number of channels, respectively.

Then during training phase, an embedding layer EhwL with the size of h × w × L,

where L is the number of valid classes, is trained to encode the label information.

Specifically, in the forward propagation pass, a targeted class t is randomly selected for

each training data xi. The target label t, as well as the true label i, are used to extract

the corresponding slices Et and Ei from EhwL, where Ek = E::k denotes the k-th front

slice of the embedding layer EhwL. Then in the backward propagation phase, Et and Ei

are updated to help EhwL capture more class information for this training data. After

being trained on the entire dataset, the embedding layer EhwL learns the important

class encoding information and thereby ensuring only one U-Net model is sufficient for
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different target classes.

Enhanced Attack Robustness using CAM Besides using an embedding layer,

the construction of input tensor T also utilizes the information of CAMs. Classifiers

make decisions based heavily on the hot areas of CAM because they contain the most

discriminative information of an image. Therefore, defense methods cannot make sub-

stantial modifications in these critical area, otherwise they can easily cause misclassifi-

cations. Taking advantage of this behavior, we place the perturbations only on the hot

areas of CAM to enhance the robustness of our attack against many defense schemes.

To achieve this increment in robustness, the position of the object in the image needs

to be integrated into the input tensor, which can be reflected by the CAM. As shown

in Figure 4.2, another component of input tensor T is CAM i
x with the size of h×w×1,

which is the CAM with respect to input xi and its true label yi. Consequently, we

denote τ as the concatenating operation, and the final input tensor is constructed as

follows:

T = τ(xi, Ei, Et, CAM
i
x),

where the size of T is h× w × (c+ 3).

4.3 Training CAG

Next, we describe the details of CAG training procedure. Our objective is to get G(·)

and EhwL to achieve:

F (clip(G(T ) + xi)) = yt.

In this scenario, the embedding layer EhwL is treated as a model parameter that can

be learned, so that yt can be any selected label from {1, ..., L}. Therefore, we can

formulate an effective loss function Loss, and use existing optimization algorithms to

perform training as follows.

First, in order to keep the perturbations imperceptible, we scale the perturbations

using the L2 distance metric. In other words, we keep all the perturbations at a fixed

L2 norm to constrain the attack strength of the noise in a fixed amount.

Then we feed the generated adversarial example x′i to the classifier F (x′i) to produce



12

Algorithm 1: CAG Training Algorithm

1 Input: dataset X = {x1, ..., xm}, true labels y ∈ {1, ...L}, classifier F (·), input
tensor T , desired perturbation L2 norm.

2 Result: trained CAG G(·), embedding layer EhwL.
3 Random initialize G(·), EhwL.
4 for xi, yi in dataset do
5 yt = get random target(yi), t 6= i;
6 Ei = (E::i), Et = (E::t); h× w × 1;
7 CAM i

x = cam generator(x, yi);
8 T = concat(xi, Ei, Et, CAM

i
x);

9 δ = drop out (G(T ));
10 δ = L2 norm adjust(δ);
11 adversarial img = x′i = clip(xi + δ) ;
12 ypred = F (x′i);
13 CAM t

x′ = cam generator(x′, yt);
14 Loss = CrossEntropy(yt, ypred) + β·‖CAM i

x − CAM t
x′‖2;

15 update(G(·)); update(EhwL);

16 end

the prediction ypred. We define Losstarget as the cross-entropy with respect to the one-

hot label of the targeted class. Therefore, to ensure the generated adversarial examples

can fool the classifier, Losstarget is formulated as:

Losstarget = CrossEntropy(yt, ypred).

Meanwhile, the CAM of the targeted class t for x′ is computed and denoted as

CAM t
x′ . We aim to concentrate the adversarial noise on the critical areas which contain

the legitimate object content, so that the CAM t
x′ for the adversarial examples would not

be significantly changed compared to CAM i
x. In other words, to satisfy the similarity

between CAM t
x′ and CAM i

x, we need to minimize the their L2 distance. Therefore,

LossCAM is defined to lead the distribution of the noise:

LossCAM = ‖CAM i
x − CAM t

x′‖2.

Finally, the new loss function is formulated as:

Loss = Losstarget + β · LossCAM ,

where β controls the magnitude of LossCAM . We then iteratively optimize the CAG

as well as EhwL by minimizing the Loss function. The details of our approach to train

the CAG are summarized in Algorithm 1.



13

Improve Transferability via Noise Dropout It is worth noting that before

directly adding the noise on xi, we propose to apply a dropout layer with probability

p in the training phase. As a result, dropout layer can eliminate over-fitting problem

to the current classifier and achieve better performance in black-box attack scenario by

increasing the transferability. The extensive experimental results are given in the next

section.

Figure 4.3: Embeddings of different classes after using T-SNE to reduce the dimension
(CIFAR-10).

After preparing CAG and EhwL to perform attacks, we visualize the EhwL to demon-

strate the effectiveness of this embedding layer. We show the examples using CIFAR-10

dataset, thus the size of the embedding layer is 32×32×10 for 10 classes [3]. For better

visualization, T-SNE is applied to reduce the each class embedding’s dimension to 2

[1]. As we can see from Figure 4.3, at epoch 0, class embeddings are initialized and

distributed randomly. However, at epoch 500, embeddings of similar classes are close

to each other, such as car-truck, horse-deer, and dog-cat. Therefore, the local distance

between similar classes suggests that our approach creates a useful set of embeddings.

We also show the attention regions using CAM for adversarial examples generated

by different attack methods. As shown in Figure 4.4, compared with the clean images,

I-FGSM and GAP achieve targeted attack by misleading the network’s attention. How-

ever, we believe that changing the attention would make adversarial images vulnerable

to designed defense mechanisms. Interestingly, as can be seen in the last row of Figure
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Figure 4.4: CAM attention visualization. From top row to bottom row: clean images,
CAM of clean images, CAM of PGD’s adversarial images, CAM of GAP’s adversarial
images, CAM of CAG’s adversarial images.

4.4, the adversarial images generated by CAG do not suffer from this problem. Mali-

cious perturbations are constrained to locate in the discriminative areas, so that CAG’s

adversarial examples are robust enough circumvent detection and defense methods.
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Chapter 5

Experimental Results

5.1 Experiment Design

To evaluate the effectiveness of CAG, we conduct extensive experiments on CIFAR-

10 [3] and ImageNet [2] dataset. We perform white-box and black-box attacks by

using a pool of 6 different classifiers: ResNet-18 (RN-18), ResNet-34 (RN-34); VGG-

11, VGG-13; DenseNet-121 (DN-121), DenseNet-169 (DN-169) [7], [12], [19]. The top-1

classification accuracy is above 92% (CIFAR-10) and above 70% (ImageNet) for all

classifiers. We use ResNet-18 to generate CAMs for all experiments. We set β = 3

for both datasets because higher β enforces too much restriction and can reduce ASR.

Then we train CAG using SGD with Nesterov momentum. The initial learning rate

is set to 5e−2 and gradually decayed to 1e−6 using a cosine annealing curve. During

training, a target label is randomly picked from all incorrect classes for each data point.

On CIFAR-10, the CAG is trained for a total of 500 epochs using the batch size of 256.

On ImagetNet, we train the CAG for 20 epochs with batch size of 64. The L2 norm of

adversarial perturbations is set to 0.1 for both datasets.

We compare our proposed method with other existing attack algorithms: I-FGSM,

PGD, and C&W. We use FoolBox in PyTorch [21] to generate these adversarial exam-

ples. Our experiments are performed on NVIDIA Tesla V100 GPU.

5.2 CIFAR-10

We first evaluate our proposed CAG on CIFAR-10 in white-box scenario. The classifier

is set to be ResNet-18, and the classification accuracy on clean images achieves 93.48%

for 10,000 validation images. To evaluate the targeted attack algorithms, ASR is used
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ASR Acc. L2 Time

I-FGSM 99.53% 0.05% 0.106 13m24s

PGD 99.56% 0.22% 0.106 12m56s

C&W 99.85% 0.14% 0.009 >10h

CAG 97.29% 1.4% 0.100 1.44s

Table 5.1: Comparison of adversarial examples generated by CAG and other methods
on ResNet-18 (CIFAR-10).

Attacks / Classifiers RN-34 VGG-11 VGG-13 DN-121 DN-169 Average

I-FGSM 30.45% 21.39% 23.88% 29.01% 28.70% 26.69%

PGD 45.38% 28.46% 34.90% 41.15% 40.05% 37.99%

C&W 7.57% 8.88% 8.40% 6.61% 7.70% 7.85%

CAG p = 0.0 86.47% 66.46% 94.09% 83.64% 85.74% 83.78%

CAG p = 0.1 89.02% 70.51% 95.10% 87.01% 88.52% 85.92%

CAG p = 0.2 90.83% 74.31% 94.93% 88.93% 90.37% 87.85%

CAG p = 0.3 91.83% 77.81% 94.89% 90.49% 91.31% 89.24%

Table 5.2: Comparison of transferbility (ASR) of various attack methods and CAG
with different dropout rate p on ResNet-18 in black-box scenario (CIFAR-10).

as the performance metric.

5.2.1 Low Computation Time

We generate 10,000 adversarial examples in CIFAR-10 validation set, and each image

is targeted to a randomly incorrect class. The ASR can reach 97.29% on the ResNet-

18. We compare our proposed CAG with other state-of-art targeted attack methods.

Similar to the procedure we use to evaluate CAG, we also choose attack targets in

random manner. As for C&W, we only report first 1000 images targeted on random

classes. Since the L2 norm for CAG is set to be 0.1, for fair comparison, we try to

keep L2 norm around similar range for I-FGSM and PGD. Therefore, ε and α is set to

0.1 and 0.035, respectively. The maximum iteration is set to 50. When using C&W

attack, we perform 10 iterations of binary search and run 10,000 iterations of gradient

descent with learning rate at 0.005 using the Adam optimizer. We only generate 1,000

images using C&W attack. As can be seen from the Table 5.1, our attack achieves

comparable results compared with I-FGSM, PGD, and C&W. However, our attack has

much lower inference time of only 1.44 seconds compared of 12 minutes 56 seconds of

PGD and more than 10 hours of C&W attack–a more than 500-fold speedup. The
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Storage White-box Black-box

Attacks / Classifiers RN-18 VGG-11 DN-121 Average RN-34 VGG-13 DN-169 Average

GAP Unet (5T) 30 MB × 5 97.98% 98.45% 97.85% 98.09% 82.97% 85.69% 88.31% 85.66%

GAP ResNet (5T) 30 MB × 5 91.02% 94.25% 90.58% 91.95% 76.40% 86.27% 78.33% 80.33%

GAP (1000T) 30 MB × 1000 N/A N/A N/A N/A N/A N/A N/A N/A

CAG (5T) 222 MB 98.52% 97.71% 96.91% 97.71% 95.45% 94.34% 94.06% 94.62%

CAG (1000T) 222 MB 97.79% 97.01% 96.62% 97.14% 93.38% 94.28% 92.61% 93.42%

Table 5.3: Storage and ASR comparison of adversarial examples generated by CAG
and GAP (ImageNet). Both are trained on ensemble of models: RN-18, VGG-11 and
DN-121. 5T and 1000T represents 5 and 1000 targeted classes, respectively. Due to
the limitation of storage and impractical training time, we can not report the attack
results on GAP with 1000T.

White-box Black-box

Defense Methods RN-18 VGG-11 DN-121 Average
Average
I-FGSM

RN-34 VGG-13 DN-169 Average
Average
I-FGSM

None 0.59% 1.03% 1.50% 1.04% 4.58% 2.10% 1.51% 3.85% 2.49% 42.17%

Pixel Deflection 24.75% 26.39% 31.76% 27.63% 14.76% 33.83% 23.44% 43.45% 33.57% 57.25%

Randomization 3.06% 3.07% 6.80% 4.31% 22.19% 5.26% 2.77% 10.23% 6.09% 43.90%

Bit Depth Reduction 4.80% 7.33% 10.41% 7.51% 10.22% 11.12% 10.18% 17.85% 12.96% 50.08%

JPEG Compression 5.81% 7.63% 11.05% 8.16% 12.62% 12.17% 10.48% 17.78% 13.48% 49.36%

Table 5.4: Classification accuracy of CAG’s adversarial images versus I-FGSM’s after
applying defense mechanisms (ImageNet).

ability to generate a large number of adversarial images in a such a small time makes

our attack method practical in real-time applications.

5.2.2 High Transferability

CAG always has ASR greater than 95% in white-box attack scenario. However, consid-

ering black-box attack, when attackers have no access to architecture and parameters of

the classifier, ASR is not as high as the white-box scenario. To address this high trans-

ferbility requirement, we propose to drop out part of the perturbation before adding

it on the benign image during training phase. As a result, CAG generalizes better

and is less prone to over-fitting to a particular classifier. Hence, the transferability of

the adversarial examples to new classifiers increases. We train 4 CAG models using

ResNet-18 with dropout probability p = 0.0, p = 0.1, p = 0.2 and p = 0.3. The ASR

for 10,000 validation images (only 1000 images for C&W) targeted on random incorrect

classes are reported. Table 5.2 reveals that even without dropout, CAG still has bet-

ter performance in black-box results compared with other methods. Furthermore, the

transferability of adversarial examples improves with increasing dropout probability.
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5.3 ImageNet

We also evaluate the CAG on ImageNet. In our experiments, CAG takes a long time to

converge when trained with a single classifier. Thus to accelerate the training process

and perform stronger attack, we train CAG with an ensemble of ResNet-18, VGG-11

and DenseNet-121. When training with an ensemble of classifiers, we observe that

the CAG does not suffer from over-fitting as much as training with only one classi-

fier. Hence, unlike the best configuration in CIFAR-10 where p = 0.3, we reduce the

perturbation dropout to p = 0.1 in this case.

To explicitly demonstrate the performance of our proposed method, we compare

our results with GAP [24]. To create a fair comparison, we implement GAP with two

architectures and keep the configuration the same as our method. The first GAP uses

identical generative architecture to ours, so we denote it GAP U-Net. The second

GAP has the same architecture used in GAP’s original paper, which we denote it GAP

ResNet. However, to perform targeted attack, GAP requires 1 model for each targeted

class. Because we do not have enough resources to train 1,000 GAP models to have

a comprehensive evaluation, we train 5 models for each architecture targeted at these

following random chosen classes: black swan, Tibetan terrier, tiger beetle, cliff dwelling,

hook.

5.3.1 Low Memory Cost

The comparison result is shown in Table 5.3. 10,000 benign images are randomly picked

from the validation dataset to do the evaluation. We use CAG to generate adversarial

examples targeted at the same 5 selected labels for fair comparison. In addition, since

our proposed CAG can perform the comprehensive targeted attack on all 1,000 classes,

we also generate adversarial images crossing all classes. In the table, 5T means ASR

are evaluated on a pool of the same 5 targeted classes using 10,000 images in ImageNet

evaluation dataset. In the last row, 1000T means that 10,000 images are targeted to

any randomly selected label from all 1,000 classes. As can be seen from the table, to

perform comprehensive attacks to all 1000 classes of ImageNet, our model takes 222MB
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of storage: 30MB for model’s weights, and 192MB for the embeddings. However, other

generative models can take up to 30MB × 1000 ≈ 30GB for storage to attack all

classes. Moreover, as shown in Table 5.3, for seen classifiers, ASR is above 90% for

all approaches. On the one hand, while targeting 5 selected classes, adversarial images

generated by GAP U-Net and CAG have comparable performance. On the other hand,

by analyzing the result of unseen classifiers, we can see that CAG outperforms GAP.

ASR of CAG can reach to 93.42% for 1,000 target labels in black-box scenario. To

sum up, our proposed CAG is more practical to perform general targeted attack while

keeping high ASR and transferability.

5.4 Breaking Defenses

5.4.1 Enhanced Robustness

Finally, we study the robustness of adversarial examples generated by CAG on Ima-

geNet. We prepare CAG trained on the ensemble of ResNet-18, VGG-11 and DenseNet-

121. Using the optimal setting, the dropout probability is set to 0.1. Since it is meaning-

less to protect images that are originally mis-classified, we evaluate 10,000 (ImageNet)

images that are correctly classified by all three classifiers. We use the following config-

urations:

5.4.2 Pixel Deflection

To achieve the strongest defense performance we provide the CAMs of the true class

of correctly classified images to guide the pixel deflection (unlike using CAMs of top-5

predictions as the original paper suggests). We set the parameters following the original

paper with window=10, deflections=100.

5.4.3 Randomization

To perform this defense with optimal parameters, we keep the scale ratio the same as the

ratio reported in the original paper. Thus the image size is modified from 224×224×3

to 253× 253× 3 in our implementation.
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5.4.4 Bit-depth Reduction

In our experimental setting, we reduce images to 3 bits as the original paper [22].

5.4.5 JPEG Compression

We perform JPEG compression at quality level 75 out of 100.

Classification accuracy after applying defense methods is shown in Table 5.4. As a

result of using CAM guidance in proposed CAG, our attack is robust against defense

methods that aim to modify the non-discriminative regions such as pixel deflection and

randomization. After using pixel deflection, classifiers accuracy on CAG’s generated

adversarial images is still low at 27.63% (white-box) and 33.34% (black-box). In addi-

tion, CAG’s adversarial images can bypass the defense effects of input transformation.

Bit depth reduction and JPEG compression can not improve the accuracy more than

10% for white-box and 14% for black-box setting. Compared with I-FGSM, our attack

achieves lower classification accuracy in almost all categories. To sum up, our attack is

robust against many defense mechanisms.
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Chapter 6

Conclusions

In this work, we propose a generative model to perform targeted adversarial attacks

called CAG. With the help of the trainable embedding layer, the supervision of CAMs

and random dropout, CAG is able to produce robust adversarial examples with state-of-

art attacking performance and high transferability, while still maintaining low compu-

tation time and low memory cost. CAG has many desirable properties of an adversarial

attack method, and therefore outperforms many other methods and can launch a real-

time robust attack against many modern DNN systems.
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