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As one of the most promising renewable energy sources, wind power provides clean 

and carbon free energy and becomes more economically viable with significant 

environmental benefits. To feed the rapidly expanding energy market and to provide 

alternatives for the consumption of traditional non-renewable energy sources such as fossil 

fuel, wind farms have been developed to meet the ever-expanding growth of energy 

consumption. In the meantime, wind farm development and turbine manufacturing 

technology still need to address the challenges of high installation and operation costs, 

production stability, electricity capacity and economic efficiency. To enable economic 

feasibility of large-scale wind energy generation, optimal development of wind farms 

appears to be crucial for viable wind energy systems. This research presents stochastic 

models and optimization methods for optimal development of wind farms in different 

applications.  
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In this research, wind uncertainty is quantified using probabilistic models for stochastic 

wind speeds and directions. The two-stage optimization framework is developed to 

sequentially determine the optimal number of turbines and their most-productive 

placement. In the first stage of optimization, possible turbine locations are predefined at a 

number of candidate locations. A binary variable is associated with each location to 

determine whether a turbine is installed there. The first stage of global search optimization 

finds the optimal number of turbines needed and their corresponding locations. In the 

second stage of optimization, the solution from the previous stage is relaxed into a 

continuous solution space. The local search algorithm is then applied to further improve 

the locations of turbines identified by the optimization solution from the previous stage. 

With the two-stage optimization framework, the optimization procedure can determine the 

optimal number of turbines and refine the turbine placement for the most-productive layout 

design. 

To minimize the objective function - Cost per Expected Power Production (CEPP), five 

different applications of wind farm models have been studied, in terms of geometric shape 

of wind farm, site selection and energy sources collaborations. First, the common 

rectangular wind farm model is studied with pre-defined cells, where the center of each 

cell represents a candidate turbine location. Next, more-realistic arbitrary-shaped wind 

farms are considered with engineering constraints, which fits flexibly in various surface 

conditions, applied to both onshore and offshore wind farm cases. Additionally, a wind 

farm model in Energy Storage Integrated Wind Energy System (ESIWES) is designed 

within a micro-grid. With energy storage functioning as backup supply, the wind farm 

generates electricity in order to meet the demand of the micro-grid community, and at the 
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same time, maintain the minimal CEPP cost by leveraging storage of excess wind energy. 

The fifth application expands the renewable energy system to include biorefinery – the 

waste-to-energy recovery pipeline. With biorefinery, the Hybrid Wind, Biorefinery, 

Energy-storage based Renewable Energy System (HWBRES) is developed to generate 

more sustainable energy, and at the same time, tackle environmental risk problems caused 

by waste.  

Last but not the least, an advanced scheduling and maintenance model is developed on 

top of the HWBRES system, in which the turbine operation scheduling and periodic 

inspection are both taken into consideration to save energy from excess production while 

maintaining the reliability of each turbine. Additionally, opportunistic maintenance is 

scheduled occasionally for the cluster of switched-off turbines, by implementing this model 

it ensures the reliable energy production with limited maintenance costs.  
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Chapter 1   INTRODUCTION 

The worldwide demand for renewable energy is increasing rapidly due to the limited 

resources of non-renewable energy, i.e. fossil fuels, as well as the rising awareness in 

climate change. In 2015, it is estimated that 147 GW of renewable capacity were added 

globally and reached the total 439 GW at year’s end. About 23.7% of the total consumption 

worldwide was from renewable power generation [1], comparing to 18.8% in 2013 [2]. 

Non-renewable energy sources such as fossil fuels, still play a significant role in the global 

energy supply. However, more and more public concern, including reduced deposits of 

fossil fuel, competitive price of alternative renewable sources and negative climate 

consequences etc., causes the continuous increasing replacement of fossil fuels with 

renewable energy. The limitation of oil sources brings the energy dependency, while the 

stable growth of renewable energy installations, such as wind, solar PV and biofuel, 

reduces a nation’s energy dependency and mitigates environmental impact from burning 

fossil fuels. 

Per UCSUSA in ‘Benefits of Renewable Energy Use’ [3], the significant amount of 

carbon-dioxide emissions per natural gas (0.6-2 CO2E/kWh) and coal (1.4-3.6 CO2E/kWh) 

still contributes as the major cause of global warming. Sustainable energy resources, such 

as wind power (0.02-0.04 CO2E/kWh), solar PV (0.07-0.2 CO2E/kWh), geothermal (0.1-

0.2 CO2E/kWh) and hydroelectric (0.1-0.5 CO2E/kWh), on the other side, have low carbon 

footprint, which can improve public health and environmental quality by replacing carbon-

intense energy sources. Therefore, alternative renewable energy sources have seized 

increasing public support and growing energy market.  
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1.1  Wind Energy Overview 

Recently wind energy has been cost competitive compared to fossil fuels even without 

accounting for externalities [1]. The increasing deployment is also driven by wind energy’s 

environmental and other benefits. Wind power provides clean and carbon free energy 

without carbon emissions and straining water supply. It is a domestic source of energy 

where the supply is inexhaustible, and wind farms can be built on land (onshore) or in 

ocean water (offshore). Even without government subsidies, wind power is the least-cost 

renewable energy technology for new power generating capacity in the U.S. With these 

benefits, today wind energy becomes one of the most promising renewable energy 

technologies to feed the rapidly growing energy market and to displace the consumption 

of traditional non-renewable energy sources.  

As of 2014, the market volume for new wind projects was 40% greater than in 2013 

[4]. In 2015, more than 63 GW wind power was added – about an 22% increase over the 

2014 market – for a total of 433 GW global wide. Wind energy production is rapidly 

growing not only in the top three producer countries – China, U.S. and Germany, but also 

in those with large capacities such as India, Spain, Brazil, etc. Based on the 2016 report by 

Renewable Energy Policy Network [1], China led in both new installations and largest 

capacity of wind power, followed by U.S., Germany and India; these countries were named 

as the top countries for global wind energy addition and capacity in 2015, as shown in 

Table 1-1. New markets were expanded across Africa, Asia, the Middle East and South 

America. Guatemala, Jordan and Serbia developed their first large scale wind farms.  

In Europe and U.S., wind is the leading source of new power generation. Particularly 

in Europe, including both onshore and offshore projects, wind represented over 44% of 

new power capacity in 2015. During the same year wind energy generation reached another 
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record year in annual installations. Among them, Germany accounted for half of European 

wind energy market. At the end of 2015, the leading countries for total wind power capacity 

per person were Denmark, Sweden, Germany, Ireland and Spain [1]. 

 

Table 1-1 Wind power global capacity and additions, top 10 countries, 2015 [1] 

In the United States, wind power, mainly onshore wind, is a $10 billion per year 

industry. It led global wide wind power generation (190.9 TWh [1]) by the end of 2015, 

with the potential to generate 20% of national electricity by 2030. In 2012, 42% of all new 

electricity generation capacity was from wind. About 80% of the wind power generation 

facilities were located in twelve states, including Texas, Iowa, California, and Oklahoma. 

Wind energy generation and consumption in Texas, Iowa, and South Dakota reached 25% 
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or more of their total energy consumption. By 2014, more than 46,000 utility-scale wind 

turbines were installed [5]. Per Renewable Energy Policy Network [1], during 2015, wind 

energy was the top energy source for new installation capacity, accounting for over 40% 

in total. More installations were added in the fourth quarter of 2015 alone than in the whole 

year of 2014. The cost competitiveness of wind energy attracted more public attention, 

making 2015 the first year with half of the known US purchase agreements being 

contributed by independent power producer. By the year end, an additional 9.4 GW of 

capacity was scheduled under construction.  

1.2  Wind Farms Overview 

Wind power generation facilities include onshore and offshore wind farms. The power 

is typically generated by large scale wind farms that are located either on mainland or close 

to shoreline, where they are able to connect and transmit to the power grid, and then to 

further distribute to consumers. While offshore wind development is still at an early stage 

in the U.S., onshore wind farms has matured and gained the majority share of renewable 

energy market. The cost competitiveness of wind power generation reflects mainly on 

onshore wind farms. In 2015 the global weighted average levelized cost of electricity 

(LCOE) of onshore wind power generation was about $0.06/kWh. Estimated based on its 

technology improvement and reduced installation costs, worldwide wind farms were 

expected to deliver electricity in between $0.04/kWh to $0.09/kWh without government 

subsides. Power purchase agreement (PPA) assessed cost of wind energy in both 2015 and 

2016, which could be as low as $0.04/kWh for further delivery, competing with fossil fuels 

cost where lay between $0.045/kWh and $0.14/kWh [1].  

Onshore wind farms are located in areas with constant flow of non-turbulent wind. In 

the U.S. they are mainly located in the vast plains or near ridgeline of mountains and most 
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of them are located in western U.S. The most commonly used wind turbines are three-

bladed, horizontal axis machine operating at near-fixed rotational speed, with turbine sizes 

of 1.5 MW and 3 MW. Typical wind turbine starts generating electricity at 3-5 m/s, 

reaching maximum power at 15 m/s and cutting out at wind speed great than 25 m/s [6].  

Similar to onshore wind development, offshore wind energy draws increasing attention 

due to its enormous potential in vast coast areas. Offshore wind is known to be intense, 

steady and abundant. Since offshore wind is stronger during the middle of the day and 

evening when energy is consumed most, offshore wind power can play a significant role 

for peak hour energy supply. Comparing to onshore wind, offshore wind power generation 

shows many advantages, such as higher wind speed, open coast areas without land use, less 

visual barriers and acoustic noise barriers for human life, etc.  

Higher wind speed in coastline areas provides better power generation, which in turn 

offsets higher installation and operations & maintenance (O&M) costs. Offshore wind, 

with abundant location choice, allows turbine installations sufficiently far from a coastline 

to significantly eliminate its negative impact on human activities. On the other side, 

offshore wind power has its own challenges. The major ones are high capital costs, 

difficulty to maintain and repair, harsh environmental conditions. Because of higher 

investment costs in turbine foundation, cabling, towers and general installations, offshore 

wind energy generation is at least 1.5-2 times more expensive than onshore wind 

generation [7]. While some problems can be fixed relatively easily and cheaply onshore, 

offshore maintenance requires time consuming transportation methods which may 

potentially cause longer production interruptions. Such constraints on maintenance lead to 

lower productivity of offshore wind energy generation systems. Furthermore, the ocean 
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volatile weather conditions cause potential harsher environmental impact on offshore wind 

turbines, such as corrosion from sea water, higher wear-out rate due to wave and loading, 

lack of vessels for construction etc. One solution to address such technical risks is by using 

highly reliable components, this way it reduces the potential of damage at the expense of 

higher investment cost. Although there are different opinions on the trade-off between 

energy production versus higher capital, offshore wind development continues being a hot 

topic and attracting commercializing opportunities [8].  

In Europe, offshore wind farms have been well developed and are steadily expanding. 

There have been more than 2,000 offshore wind turbines installed, providing thousands of 

Mega-watts of electricity each year. In 2015, world offshore energy capacity reached 12 

GW, of which 3.4 GW offshore power was generated in Europe. In Denmark, 42% of 

electricity demand was satisfied by offshore wind farms. In Germany, more than 60% of 

electricity demand in four states was met by offshore wind farms. In Uruguay, offshore 

power supplied 15.5% of total national electricity [1].  

Offshore wind projects in the U.S., however, are in the early stage. In 2014, the 

Department of Energy initiated three pilot offshore wind projects, including the on-going 

one in south New Jersey. The potential is promising and demonstrated. In Dec 2016, the 

first offshore wind farm began to run in Block Island, RI. Although the pioneer project has 

installed only five turbines, it is capable of powering about 17,000 homes. The areas of 

U.S. coast within a 50 nautical miles limit comprise a potential of 907 GW, which is close 

to the cumulative capacity in the country [7, 9]. In addition, there are the Great Lake and 

Gulf coast, with potential of gigawatt offshore power generation. As of 2017, about 30 

wind projects totaling 24 GW of potential installed capacity were being planned. 
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1.3  Motivation of Research 

As the wind energy becomes more economically viable with significant environmental 

benefits, advances in science and technology for wind turbine design and manufacturing 

continuously improve the power efficiency and reduce the costs. Modern wind turbines 

produce 10 times more electricity now than decades ago. Wind farm development, however, 

requires land and space to be preferably convenient for either transmission lines or 

consumers. The land is expensive, and the wind source is location dependent. To improve 

economic use of land, optimal wind farm layout for onshore installations is one of the most 

significant strategies. In regard to offshore wind farms, the layout design maintains critical 

for efficient energy production, consistent transmission and turbine protection.  

Specifically, optimal development of wind farms, involving decisions on the number 

of turbines and their best placement, seeks to use the land more effectively and produce 

energy more efficiently. Previous research focuses on onshore wind farm layout design, 

mainly considering regular shaped farms. The most commonly used wind farm model is 

rectangular and divided into candidate cells, where the center of each cell represents the 

candidate turbine location. Such a model was originally developed by Mosetti [10] and 

Grady [11] on the basis of Jensen’s analytical wake loss model with the objective to 

minimize cost per energy production. Once candidate locations are predefined, binary 

Genetic Algorithm is applied to find the optimal turbine installation layout. 

In the past decades there have been extensive researches on optimizing regular-shaped 

wind farm layouts. In reality, due to the topology of mountains and the limitation of land 

space, wind farms are designated either on the ridgeline of mountains or surrounded by 

existing structures, such as forest, main road, reservoir, restriction zones, etc. Therefore, 

the wind farm site may not always be compatible with regular-shaped boundaries. To meet 
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site selection criterions, arbitrarily shaped wind farm can be taken into consideration and 

in need of further design.  

Research on wind farm development has three outstanding challenges: (i) By the 

uncertain nature of wind and complex interaction between turbines, accurate evaluation of 

power generation of the farm becomes challenging and is subjected to various sources of 

noises; (ii) Determining the number of turbines in the wind farm is a major challenge, 

because the system performance (an energy production measure in the function of the 

number of turbines, turbine placement, and wind scenarios) is highly nonlinear and 

combinatorial. That being the case, in order to find the optimal development plan, variables 

of number of turbines and turbine placement need to be considered simultaneously under 

wind uncertainty; and (iii) A mixed integer stochastic programming (MISP) model needs 

to be developed to account for stochastic wind profiles, integer variables and continuous 

variables.   

1.4  Research Contributions 

In this research, a new optimization framework is developed to find the wind farm 

layout that optimizes the cost and production objectives. Such an optimization framework 

overcomes the computational difficulty that happened due to large number of decision 

variables and expensive function evaluations. With this framework, the optimization 

procedure can determine the optimal number of turbines and refine the turbine placement 

for most-productive layout design under complex wind uncertainty. As a general structure, 

this optimization method can be used for logistic, transportation, and facility planning 

problems under complex system uncertainty. 

Second, with the proposed optimization framework, new heuristic algorithms are 

developed and implemented in the first stage, followed by a local search algorithm in the 
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second refining stage. It significantly simplifies the evolving steps by branching out using 

current existing information at each iteration, bypassing the computational challenge in the 

nature of solving combinatorial problems.  

Third, wind uncertainty is considered by using probabilistic models for stochastic wind 

speeds and directions. Specifically, seasonal scenarios are taken into Monte Carlo 

simulation for wind data sampling. Both onshore and offshore wind farm models are based 

on real data captured in the country. Onshore wind data is collected from wind farms in 

Montezuma, Kansas. Offshore wind data is collected from a current wind project along the 

Atlantic shoreline in south New Jersey. By using real wind data, it reflects the real-time 

shift through date-time and seasons, which in turn is more practical to simulate the 

intermittent nature of wind power generation. 

Finally, this study integrates important research aspects into one general project of wind 

farm development: from onshore to offshore wind farm models; from regular to arbitrary 

shaped wind farm designs; from uniform to complex terrain condition; from wind-grid-

market energy components to wind-energy storage-biorefinery integrated systems in a 

micro-grid. All these topics are taken part and evaluated in the modeling and numerical 

studies.  
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Chapter 2   BACKGROUND AND LITERATURE REVIEWS 

The wind farm layout design is often studied as combinatorial problems. There have 

been inspiring works in the area of wind farm development, which can be generally be 

categorized by wake loss models, wind farm models, wind uncertainty models, 

optimization models and algorithms, wind farm based renewable energy systems,  

renewable energy-based micro-grid applications, as well as scheduling and maintenance 

policies . 

2.1  Wake Lose Models 

To accurately evaluate wind energy generated from wind turbines, wake loss models 

have been widely applied to account for turbine interactions. For instance, a downwind 

turbine generates less power compared to its upwind turbines. The turbulence generated 

behind the rotor of a turbine is known as wake. Due to convection and counter effects, wind 

speeds captured by a downwind turbine in the wake region will be reduced, thus less energy 

will be generated from a downwind turbine. The wake effect decayed with distance can be 

quantified by wake loss models.  

Generally speaking, wake loss models can be broadly classified into two categories: 

analytical wake loss models [10-27] and computational wake loss models [28-35]. 

Analytical wake loss models, known for their simplicity, characterize the speed in a wake 

by the use of analytical expressions. One of the most popular analytical models is 

developed by Jensen [36], which has been commonly adopted among literature. Jensen’s 

wake loss model assumes that the momentum of wind is conserved in the wake and the 

vertex shedding is neglected. The wake expands linearly, and the speed of turbine in a wake 

region is modeled as a function of turbine distance. Because of its reliable prediction with 
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simplified turbulence measurements to quantify wind speed reduction at the downwind 

turbine, this is the most well-known wake loss model. Besides Jensen’s model, there are 

other analytical wake loss models [12, 25, 27]. For instance, Ishihara’s [25] considers 

turbulence’s recovery rate. Ozturk’s [12] develops a direction-based model, which 

considers linear reduction wake model in cross wind interference and quadratic reduction 

wake model in prevailing wind interference.  

In the second category, most computational wake loss models apply Computational 

Fluid Dynamics (CFD) for the turbulence and wake effect. The common procedure is to 

average the Navier-Stokes equations to obtain the Reynolds-averaged Navier-Stokes 

(RANS) solver and the k-ε turbulence model. Crespo [30] conducts a comprehensive study 

in both analytical and computational wake loss models. Among several wake models, a 

parabolic model UPMWAKE is highlighted for estimating turbulence characteristics. The 

turbulence counter-effect is taken into account by imposing perturbation values of velocity, 

temperature, kinetic energy and dissipation at the turbine location [33]. Specifically, k-ε 

turbulence model is employed to simulate the turbulence transport terms in flow equations.  

2.2  Wind Farm Models 

The wind farm layout problem is often studied as combinatorial problems. Extensive 

research in wind farm layout design includes both onshore wind farms [10-14, 16-20, 22-

24, 27] and offshore farms [37-50]. The difference between offshore wind farm models 

and onshore wind farm models mainly refers to the types of foundation during turbine 

installation, such as regular mono-piles, tripod, concrete gravity foundation and floating, 

etc. [6].   
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With respect to the wind farm topologies, there are two types of onshore wind farm 

models discussed in the recent literature: regular-shaped wind farm models in uniform 

terrain conditions [10, 11, 14, 16-24] and arbitrary-shaped wind farm models under 

complex terrain conditions [14, 27, 28, 34, 35, 48]. In 1994, Mosetti [10] first proposed a 

systematic position optimization scheme of wind farm layout with 10x10 candidate turbine 

locations. The objective is to minimize the total cost per energy production, which 

considers installation cost and overall energy production. Three scenarios of wind profiles 

are considered based on wind speed/direction variations. This work is further improved by 

Grady [11] in terms of programming accuracy and efficiency. Both Mosetti’s and Grady’s 

studies are based on discretizing fields with predefined square cells. This approach 

represents a classic turbine installation design, which has been adopted in literature [10-17, 

20-24, 27]. Li’s work [19] presents different discretization methods: instead of square cells 

the wind farm is discretized into equilateral triangular meshes. Kusiak [18] proposes 

circular-shaped wind farm model with the fixed turbine number and no pre-defined cell 

locations.  

There are several other researches on the layout design for complex wind farms and 

heterogeneous turbines. Abbes [28] presents a real life wind development case in Tunisia. 

Song’s work [34, 35] considers complex terrain scenarios with computational wake loss 

model by pre-determining turbine numbers. Gonzalez [27] uses similar models from 

Mosetti’s to seek optimal development of a wind farm under complex terrain constraints 

such as main road, forbidden zones and load bearing capacity crossing farm. Frandersen’s 

[26] wake loss model aims to maximize annual incomes. In the scheme of turbine-selection 
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related layout design to maximize power production, Chen [14] extends Mosetti’s work by 

considering arrangement of turbines with three different hub heights. 

For offshore wind energy, many studies use the similar wind farm model as the 

onshore’s, however there are some other innovative models. Amaral et al. [42] develops a 

micro sitting model slightly different from the one introduced earlier where the center of 

each cell represents the candidate turbine location. Instead they further divide each cell into 

multiple sub-cells, this allows further improving turbine locations within the cells, and at 

the same time, maintain the advantages of the traditional method. Li et. al.  [48] introduces 

a wind farm model in arbitrary shape with predefined 132 candidate turbine locations at an 

initial stage, and later relaxes the constraints so the turbines are able to move within the 

farm model for location selection. Rodrigues et al. [40] proposes an offshore wind farm 

model with floating turbines which allowed turbines to move after installation. In particular 

their research considers turbines with mobile anchoring position, promoting the movement 

in two directions.  

2.3  Wind Uncertainty Models 

Another thread of research in wind farm development is on wind uncertainty modeling. 

A valid wind uncertainty model is crucial for robust wind farm design. Due to the variation 

of wind direction, wake loss effects can change significantly. Typical approaches for wind 

modeling is to use probabilistic models for wind speeds and directions; specifically the 

Weibull distribution is widely used to model the wind speed variation [18, 22, 24, 27, 28]. 

For the Weibull probability distribution, the parameters of speed distribution may vary as 

a function of wind directions. In our study, historical data are fit into Weibull distributions 

to determine the distribution parameters. Daytime and seasonal factors are considered in 

different wind scenarios for more accurate wind prediction models.  
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2.4  Optimization Models and Algorithms 

Exhaustive evaluations of all possible turbine placements in a wind field is not feasible 

for large-scale wind farm development problems. Mathematical optimization procedures 

using mixed integer programming (MIP) models can be employed to quickly search for 

optimal or practically good solutions in such problems. Methods developed can be 

classified by pre-defining either possible turbine locations [10, 11, 16, 17, 19-23], or the 

number of turbines [18, 24, 51]. For example, in Mosetti’s [10] when the possible turbine 

locations are pre-defined (in the center of 10x10 discretized cells), the optimization process 

is applied to look through all possible layout solutions for the optimal number of turbines 

as well as their best placement. Once the number of turbines is determined, the optimization 

algorithm can be applied to further refine turbine locations and return with the best layout. 

 For placement optimization, evolution-based global search algorithms, such as Genetic 

Algorithm [10, 11, 14, 16, 19], Gaussian Particle Swarm [24], Mixed Discrete Particle 

Swarm [52], virus-based algorithm [17], bionic algorithm [34] are widely used to search 

for the optimal turbine layout. Wan [23] develops a two-stage Genetic Algorithm for wind 

farm development. In the first stage, it employs binary Genetic Algorithm to seek turbine 

locations for minimal cost per unit energy production. During the second stage, the 

positions of turbines are allowed to be adjusted within their cells to further improve the 

energy production. This method combines the global search with local refinement, but it 

lacks realistic constraints on turbine distance and the cell local refinement improves the 

solutions very little. Other optimization models include greedy algorithm [35], heuristic 

algorithm [12], etc.  
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2.5  Wind Farm Based Renewable Energy Systems 

Due to the stochastic nature of wind, wind power generation is highly fluctuating and 

intermittent which affect the stability of energy generation and cause power supply 

disturbance. Small scale wind farms tend to have higher expected hourly variation than the 

larger ones [53]. To reduce such a negative impact, energy storage is commonly integrated 

to balance the wind energy output and provide peak-hour backup. Recently there are 

plentiful literature studying the status, technologies and implementation of current energy 

storages [53-66]. 

Energy storage systems for wind power generation can be broadly categorized by their 

characteristics and technologies, such as pumped hydro-storage, compressed air energy 

storage, battery and flow battery energy storage, hydrogen-based energy storage system, 

flywheel, superconducting magnetic energy storage, supercapacitor energy storage [53, 57, 

58, 60-62]. Depending on the size of energy system, energy storage is selected in terms of 

efficiency, cost, capacity, charge/discharge rate, and life cycle. The application with energy 

storage offers voltage support while maintaining grid stabilization and system reliability, 

mitigation of transmission curtailment at the same time smoothing renewable energy 

generation. 

There are studies of integrating energy storage into wind energy generation to maintain 

good power quality and uninterruptible power supply. For example, as reviewed by 

Beaudin, et.al. [53] in grid scale wind power production, Iowa Stored Energy Park is 

expected to use wind energy and off peak electricity to store compressed air; Utility Xcel 

Energy in Cabin Creek, CO, upgraded a pumped hydroelectric storage  to mitigate wind 

variability; upper Wisconsin has the largest installation of superconduction magnetic 

energy storage; last but not the least, wind-hydrogen hybrid energy system has been 
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implemented among European countries like Denmark, Norway and southern California in 

U.S.. For wind farm scale energy storage, the largest lead acid storage 10 MW/ 40 MWh 

was installed in Chino, CA; Lthium-ion battery was constructed in Kansas with capacity 

of 60 MWh; Tomanae wind farm in Japan integrated Vanadium redox battery with capacity 

of 4 MW / 6 MWh.  

There are other studies proposing new energy storage integrated renewable energy 

systems. Aissou et.al. [55] presents hybrid wind/solar PV power system with battery 

storage and design of system components has been modeled. Fazeli et. al. [59] and Levron 

et.al. [63] propose integration of wind farm with energy storage to supply a local micro-

grid. A two-level energy storage system is developed by Xi, et. al. [66]. To improve the 

overall performance, super capacitors are designed to meet the short term fast changing 

power, while Li-ion battery and Vanadium Redox are designed to meet large-scale long-

term energy capacity requirement. 

2.6  Renewable Energy Based Micro-Grid Applications 

Fifteen years ago, micro-grid was introduced as an electric reliability technology 

solution, meaning to be a system that connects with generators and carries loads, converting 

energy from power sources and carries out correlative control. By definition, a micro-grid 

is a localized energy group that can perform while connected to the traditional power grid, 

or isolated and function as an electrical island. It operates as an active distribution network 

which includes distribution generators and loads. In recent years, renewable energy 

powered micro-grids have increasing public attention. Renewable energies such as wind 

power and solar PV have been commercially integrated into micro-grid systems, operating 

in both grid connection and standalone model. On top of that, energy storage is a good 
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complement to stabilize the electricity generation and provide backup to satisfy the peak 

demands.  

There have been inspiring works in the area of micro-grid with sustainable energy 

systems [59, 63, 67-72]. Borhanazad et.al. [71] studies a hybrid wind/PV energy system 

with battery storage and diesel generator in micro-grid, and use multi-objective particle 

swarm optimization to find its best configuration and component sizes. Niinisto [72] 

simulates a micro-grid with wind, solar and gas generators and present an energy 

management algorithm to forecast process errors and dispatch allocation decisions. Zhang 

et.al. [69] presents research on hybrid wind/solar/energy storage based micro-grid 

technology. In this literature, renewable energy system is connected to the power grid as a 

supplement. The scale of the energy storage system has been configured to suppress power 

fluctuations, and at the same time, allocation of hybrid energy system and traditional power 

grid has been optimized.  

2.6.1  Renewable Energy Community in Micro-grid 

The Renewable Energy Community concept promoted by National Renewable Energy 

Laboratory (NREL) advocates innovation; meantime it changes the way we design new 

communities that could significantly decrease the energy use and associated emissions and 

climate change impacts. The renewable energy community is an innovative community in 

which integrated renewable energy technologies play the primary role in meeting the 

energy supply and demand needs of its residents, with the possibility of providing excess 

energy back to the grid or other communities[73]. This community is designed to have 

near-zero or zero-energy homes, integrated transportation modes with advanced vehicles, 

local renewable energy generation, and incorporate sustainable living practices. Figure 2-

1 shows an example of ‘zero-energy homes’ community built in Premier Garden, 
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Sacramento, CA. To be considered as a renewable energy community, it needs to integrate 

sustainable design approach and advanced energy efficient transportation into the micro-

grid or solar/zero energy buildings [73].  

 

Figure 2-1 Zero-energy homes community, premier garden, sacramento, CA 

By combining multiple distributed energy resources, micro-grids are usually intended 

for local production of power with islanding capabilities and capacity to sell back to macro-

grids. Cost and benefit for such a system are tightly coupled with the operation of its own 

resources. A typical micro-grid portfolio of energy resources includes Photo-Voltaic (PV) 

panels, wind turbines, gas-fired generation, storage and purchase from the grid. A proper 

mix of power generation resources and timely investment in these resources is an important 

design and major operational planning decision for micro-grid development. These 

decisions can significantly impact micro-grids short-term and long-term objectives, such 

as savings from energy costs, reducing risks for grid blackouts, and the use of renewables 

in a generation portfolio. Therefore, it is very likely that micro-grid investors are motivated 

by energy and cost savings that can be realized from local energy resources, and by security 

and reliability that micro-grids can offer, especially at times of peak loads and rare events 
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due to unexpected disasters. From appropriately sizing the micro-grid and minimizing the 

risks of dependency on the grid, the micro-grid owners and investors will be able to 

maximize their savings while ensuring higher levels of energy security and reliability.  

2.7  Advanced Scheduling and Maintenance Policies  

Over the years, different maintenance policies and scheduling models have been 

researched in both onshore and offshore wind farms. According to literature by Song et al. 

[74], the most commonly used policies include preventive maintenance, corrective 

maintenance, continuous monitoring and condition-based maintenance.  

Specifically, among all the studies, Jiang et al. designs two-stage multi-objective model 

to solve for the collaborative scheduling of wind farm and electric vehicle battery switch 

station (BSS), considering demand curtailment of BSS, wind curtailment of wind farm and 

generation schedule tracking [75]. Zhang et al. presents an optimization model to schedule 

power generation at a wind farm using particle swarm algorithm with small world network 

structure [76]. Song et al. conducts a condition-based maintenance meanwhile considered 

opportunistic maintenance based on geographical clusters of wind turbines [74]. Tian et al. 

develops a condition-based maintenance optimization model for wind farms by defining 

two failure probability thresholds at wind turbine level under continuous monitoring [77]. 

Sinha designs a condition-based prognostic maintenance plan based on failure analysis to 

control cost of power and make maintenance more efficient [78].  

Kovacs introduces a system that performs the detailed scheduling of maintenance 

operations at a set of wind farms maintenance by a common crew, which constitutes an 

integrated framework for condition monitoring, diagnosis and maintenance of wind 

turbines [79]. Lei conducts a simulation-based real options analysis model to determine the 

optimal maintenance schedules, which are predicted based on remaining useful life prior 
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to failure for a wind farm maintained by power purchase agreement, at the same time, 

considering the operational state of turbines, the energy delivered as well as delivery target, 

prices and penalty [80]. Seyr et al reviews literatures in the scheduling of operations and 

maintenance in offshore wind farm [81]. Besnard develops an opportunistic maintenance 

optimization model for an offshore wind power system [82]. Asensio et al. presents a novel 

maintenance management method for offshore wind farm based on condition monitoring 

systems and the economic study of its life cycle cost [83]. Nilsson performs a life cycle 

cost analysis with strategies using condition monitoring systems to improve maintenance 

planning, the case studies include a single onshore wind turbine and an offshore wind farm 

[84].  
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Chapter 3   PROBLEM FORMULATION 

3.1  Modeling Dynamic Interactions Between Turbines 

Wind energy captured by a turbine in the farm varies by locations and surrounding 

turbines. To model such stochastic interaction between turbines, a wake loss model is 

needed to estimate the wind speed reduction. In this work, Jensen’s model is used to 

quantify the wake effects among turbines. We consider following assumptions: (1) the 

vertex vortices effect is neglected in the near field where wind speed right behind the rotor 

is reduced to one third of original speed; (2) The wake radius expands linearly behind the 

turbine; and (3) the wake deficit is obtained by assuming linearized momentum 

conservation. In Jensen’s wake loss model, the speed at a turbine is mainly affected by 

wake interactions with upwind turbines. Figure 3-1 shows the wake shadow behind an 

upwind turbine in the wind direction. 

The wake region of an upwind turbine can be simply defined by a cone centered at its 

rotor centroid along the wind direction 𝑑 at an angle 𝛾=arctan(ĸ), where ĸ is the speed 

entrainment constant. If a downwind turbine 𝑗 is inside the wake cone of an upwind turbine 

𝑖, the speed reduces from 𝑢! to 𝑢, where 𝑢! is the upwind speed at 𝑖; otherwise 𝑗 has the 

same speed 𝑢! as 𝑖 if 𝑗 is not in the wake of 𝑖. 
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Figure 3-1 Jensen’s wake loss model. 

Considering the wake effect from multiple upwind turbines, a downwind turbine can 

have wake loss caused by multiple upwind turbines. For example, as shown in Figure 3-2, 

when the wind blows from west to east, both turbines T1 and T2 are upwind without any 

wake effect between each other; turbine T5 has the wake interaction solely with T2; and 

T4 is located in the combined wake loss region of T1, T2 and T3. On the other side, T3 is 

outside of both wake cones of its upwind turbine T1 and T2; therefore, there is no wake 

loss of wind power for T3, given this wind direction.  

Wind power generation at a time instance for a turbine is often modeled by equation 

(12) with the wind speed 𝑢" at the turbine 𝑖. Accurate evaluation of wind power generated 

from a turbine also needs to offset the power from wake loss caused by upwind turbines. 

As the wind direction and speed are highly dynamic, the wake loss zones in the farm 

changes in time.  
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Figure 3-2 Turbines under the wake of multiple turbines (top view). 

Considering the wake loss between a pair of identical turbines 𝑖 and 𝑗, the Jensen’s 

model quantifies the reduction of wind speed at 𝑗. As indicated with equation (1), the wind 

speed u at the downwind turbine 𝑗 can be calculated by equation (2). 

 

 

(1) 

 

 

(2) 

Where 𝑢! is the wind speed at turbine 𝑖, 𝑢 is the reduced wind speed at turbine 𝑗, d is 

the distance between turbines 𝑖 and 𝑗 in the wind direction, and R is the radius of turbine 

rotor. The entrainment constant ĸ, which indicates how quickly the wake decays in distance, 

can be quantified with a simple model (3): 
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(3) 

Where Z is the hub height of wind turbine, and 𝑍! is the surface roughness of the terrain. 

In this study, identical wind turbines and a flat farmland spans with homogeneous 

obstructions are considered, therefore 𝑍! and Z are assumed to be constant throughout the 

field. 

In equation (1), α is the axial induction factor around a turbine, specifying the reduction 

rate of wind speed when the wind passes through the upwind turbine. The factor α can be 

calculated using the thrust coefficient 𝐶#: 

 
 

(4) 

Where 𝐶# is a characteristic parameter of the turbine. Let 𝑅$ be the radius of wake cone, 

𝑅$ can be calculated by equation (5).  

 
𝑅$ = 𝑅4

1 − 𝛼
1 − 2𝛼 (5) 

By equations (3) and (4), the reduced wind speed 𝑢 in the wake zone (equation (2)) is 

a function of the distance 𝑑  between turbines i and j. When a turbine 𝑗 locates within 

multiple turbines’ wake regions, due to the multiple wake loss effects, the total energy loss 

for 𝑗 can be computed by equation (6) based on the kinetic energy balance. After a simple 

transformation by equation (1) and (6), the wind speed for turbine 𝑗 can be computed by 

(7). 
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(7) 

In equation (7), 𝑁% is the total number of upwind turbines that generate wake effect 

𝑉𝑒𝑙_𝑑𝑒𝑓",% at turbine 𝑗. Note that 𝑁% may vary continuously as the wind direction and speed 

change through the time and at different locations in the farm. Here 𝑢"%  represents the 

reduced speed at turbine 𝑗 affected by upwind turbine 𝑖. 

3.2  Optimal Development of Wind Farm 

The objective of wind farm development projects considers minimizing the Cost per 

Expected Power Production (CEPP). Given a layout X= [X*, X', X,, …, X-,…,X.], it can 

be formulated as follows.  

 argmin(.,0)		CEPP =
Annual	Total	Cost

Expected	Power	Production   

Subject to: u! ≥ u- 

                 TX- − X2T ≥ 200, ∀	i ≠ j ∈ {1,2…N}                                  

(8) 

The total development costs and expected annual energy production are evaluated and 

analyzed. Distance constraints for turbine layout design are included in the proposed 

turbine placement optimization models.  

3.3  Two-stage Optimization Framework 

In order to find both the optimal number of turbines and their most productive locations, 

a two-stage optimization framework is proposed. In the first stage of optimization, the wind 

farm field is discretized to a number of candidate locations for turbines placement. A binary 

global search optimization model is used to find the optimal number of turbines and their 

locations. A solution represents a layout design for the wind farm development.  
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In the second stage, a continuous optimization model is considered. That is, the turbines 

can be located anywhere in the field. In this stage, the solution returned from the first stage 

is used and the objective value is further improved by finding better locations for these 

turbines. The optimization model continuously searches the entire field until a feasible 

layout solution that specifies the most productive turbine locations is found. 

3.3.1  Genetic Algorithm (GA) Based Two-stage Optimization Algorithm 

Genetic algorithm (GA), a stochastic global search technique, has been widely applied 

to wind farm layout optimization [10, 11, 14, 16, 19]. It is general, evolutionary and does 

not require gradient estimation of the objective function. Evolving through iterations, GA, 

however, is often slow to converge and in some cases, terminating with premature 

convergence.  

To design an efficient optimization algorithm, we propose a two-stage optimization 

framework for the optimal wind farm layout. Initially the wind farm field is discretized to 

a number of candidate locations where turbines are considered to install. In the first stage, 

the GA-based binary global search optimization model is developed to find the optimal 

number of turbines and their locations. As shown in Figure 3-3, the optimization in first 

stage searches solutions 𝐾⃑̀̀=[𝐾*, 𝐾', 𝐾,, …, 𝐾",…,𝐾3] where 𝐾" ∈ {0,1} and M is the total 

number of candidate locations 𝐾 ∈ {0,1}3 . 𝐾" = 1 indicates a turbine being installed at 

location 𝑖 and 𝐾" = 0 otherwise. Thus, GA returns a solution 𝐾""⃑ ∗ specifing a layout design 

for the wind farm. 𝑁 = ∑ 𝐾"3
")*  is the optimized number of turbines.  

In the first stage, we need to determine the parameters in GA, including the population 

size, number of iterations, crossover and mutation rates. The coding, reproducing and new 

population sampling in the search space determine the evolution of solutions in the process 
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of GA. The string of binary-coded decision variables identifies the possible layout of wind 

farm, where ‘1’ represents turbine’s placement in the candidate location while ‘0’ 

represents no turbine installed. Individual solutions are evaluated in terms of objective 

values. The best solutions in the population are selected after ranking, as shown in Figure 

3-3, then crossover and reproducing procedures are applied to generate new populations of 

solutions. Mutation, randomly switching selected variables in the string, is the next step to 

prevent the process from falling into local optima. Both crossover and mutation solutions 

are selected randomly, each variable has equal probability of being selected and is able to 

generate new sets of individuals (solutions). Objective values are evaluated in each 

iteration until optimal condition or terminating criteria is satisfied. The best set of solutions 

in the last population will be returned when GA terminates.  

The second stage optimization takes the initial solution 𝑋!`̀`̀⃑, which is the corresponding 

coordinates for turbines determined by 𝐾⃑̀̀∗ . As mentioned, the continuous searching of 

decision variables (x",y") will be applied by a local search optimization method to locate 

an improved layout solution 𝑋⃑∗ that specifies the most productive locations for N turbines 

in the field. In this work, a Positive Basis Pattern Search algorithm is employed to find 𝑋⃑∗ 

- the optimal wind farm layout.  
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Figure 3-3 Two-stage optimization model. 

3.3.2  Heuristic Algorithm for Two-stage Optimization  

A heuristic model aims to produce solutions in a reasonable time frame without 

rigorous convergence guarantee. It sorts outcomes at each iteration based on current 

available information and then decides the direction of next step. Therefore, the move is 

predictable, and an exact solution may be reached during reevaluation.  

Heuristic optimization algorithms presented in this study improves the objective values 

iteratively by first examining the overall power production, as shown in Figure 3-4. In each 

step, the value of wind power production per turbine is evaluated, and the one that generates 

the least power is removed after comparison. This way the layout scheme is updated by 

each iteration. According to wake loss model, the wake interaction between turbines is 

changed by the time turbine layout pattern shifts, therefore the wind speed captured by 

𝐾⃑̀̀∗ →	 𝑋⃑	 
Type	equation	here.
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each turbine may change too. To take such variation into account, objective values CEPP 

is updated by each layout scheme. At the end of evaluation, there are M objective values 

corresponding to each iteration, the one with the best fitness value is considered as the 

current optimal solution 𝐾⃑̀̀∗; this solution provides the optimal number of turbines and best 

layout scheme for next stage.  

Same as the GA-based two-stage optimization model, during the second stage, the 

previous solution 𝐾⃑̀̀∗ is converted into coordinates-based solution, such that it continuously 

improves in the space until the most productive locations 𝑋⃑∗ is located.  

 

Figure 3-4 Heuristic-based two-stage optimization model 

𝐾⃑̀̀∗ →	 𝑋⃑	 
Type	equation	here.
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Chapter 4   PRELIMINARY RESEARCH RESULTS 

To evaluate the performance of proposed wind farm development optimization model, 

five different applications have been studied, in terms of geometric shape of wind farm, 

site selection and energy system configurations with storage or other renewable sources 

such as bio-generator.  

First, the most commonly used rectangular wind farm is studied with pre-defined cells, 

where the center of each cell represents the candidate turbine location. Second, the 

arbitrarily shaped wind farm is applied to both onshore and offshore wind farm models, 

which fits flexibly in various surface conditions. Then a wind farm model in Energy 

Storage Integrated Wind Energy System (ESIWES) is designed within micro-grid. With 

energy storage functioning as backup supply, the wind farm generates electricity in order 

to meet the demand of the micro-grid community, and at the same time, maintain the 

minimal CEPP cost by leveraging storage of excess wind energy. Stepping up from 

ESIWES, the last application expands the renewable energy system and includes 

biorefinery – the waste-to-energy recovery pipeline. By implementing bio-system, it 

generates more sustainable energy, and at the same time, tackle environmental risk 

problems caused by waste.  

In all cases, the two-stage optimization method is applied to find the optimal layout of 

turbines, meanwhile considering the wind uncertainty in the design solution. 

4.1  Optimal Development of Regular-shaped Onshore Wind Farm 

4.1.1  Square-shaped Wind Farm Field 

The wind farm model considered in this study is based on the case study used in [10]. 

In the first stage, the wind farm of a 2x2 km2 squared terrain is discretized into 10x10 equal 

area squared cells. The center of each cell is assumed to be a candidate location of each 
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turbine, in total there are 100 possible turbine locations (Figure 4-1). In the published study, 

the wind direction is fixed from west toward east as 0 degree, counter-closewise increasing 

to cover the entire plane. Figure 4-1 shows the discretized field in wind direction of 0 

degree. Turbines are assumed identical, therefore the same power curve function is applied 

to all turbines.  

 
Figure 4-1 Discretized wind farm (Mosetti’s [10]) 

4.1.2  Modeling Wind Uncertainty 

Wind resources are modeled based on a wind farm in Montezuma, Kansas. Historical 

wind speed and direction data is collected. The data from year 2007 is used to fit the wind 

probabilistic models. With statistical analysis, the wind directions can be estimated with 

lognormal distribution with mean 5.1677 and standard deviation 0.3247. As shown in the 

wind rosemap in Figure 4-2, historical data indicates that the wind blows mostly in the 

direction from 45 degree to 320 degree, with higher probabilities in the range of (128, 200) 

degree. 
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Figure 4-2 Rosemap for stochastic wind modeling 

Based on wind speed data, which was retrieved in 10 minutes interval, the wind speed 

changes significantly in different seasons and times of the day. To account for such 

variations, wind models were built in four scenarios: warm season daytime, warm season 

nighttime, cold season daytime, and cold season nighttime. The warm season represents 

the dates from April 1st to Sept 30th; the cold season represents the dates before April 1st 

and after Sept 30th. The daytime is from 6 am to 5:50 pm and the rest of the day is 

considered as nighttime. The wind rosemap in Figure 4-2 shows the speed is mostly in the 

range of 6 m/s-12 m/s. The daily-averaged wind speed follows a Weibull distribution with 

fitted shape parameters and scale parameters, as shown in Table 4-1.  

 

Table 4-1 Weibull models for stochastic wind speed in four scenarios 

5%

10%

15%

WEST EAST

SOUTH

NORTH

2 - 4
4 - 6
6 - 8
8 - 10
10 - 12
12 - 14
14 - 16
16 - 18
18 - 20

Shape Parameter Scale Parameter Shape Parameter Scale Parameter
Daytime (06:00-17:50) 3.461 10.8764 2.9638 9.7399

Nighttime (00:00-05:50, 18:00-23:50) 3.2264 10.0686 3.069 10.4743

Cold season (01/01-03/31, 10/01-12/31) Warm season (04/01-09/30)

𝑓5(𝜃) = lognormal(5.1677, 0.3247) 
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4.1.3  Optimal Development of Wind Farms 

The objectives of wind farm development projects are to minimize the Cost per 

Expected Power Production (CEPP). Turbine installation costs and expected annual energy 

productions are considered in our economic analysis. Geographical and engineering 

constraints on layout design are considered in the proposed optimization models.  

4.1.3.1  Installation Costs of Wind Turbines 

Turbine installation cost, including the capital investment of equipment and labor costs, 

is considered as the major cost of wind farm development. A review by National 

Renewable Energy Laboratory (NREL) shows that 68% of the capital cost of onshore wind 

project is associated with the turbine installation [85]. In this research, we focus on 

minimizing the overall investment cost of wind turbines. The average cost per turbine can 

be reduced by additional installations in the farm. As discussed in Mosetti’s and Grady’s 

work [10, 11], the total cost of wind farm project (K$) can be estimated with the total 

number of turbines installed in the designated wind farm: 

 𝐶(𝑁) = 𝑁(
2
3 +

1
3 𝑒

6!.!!*89(") (9) 

Where N is the number of turbines. From equation (9), if N is large enough, the average 

cost of each turbine can be reduced by about 33%. 

4.1.3.2  Expected Annual Energy Production 

The potential energy 𝑃:";$  in the wind of speed 𝑈  is modeled by equation (10). 

Considering the energy loss in power generation, a turbine can produce 𝑃<=>?";@ , the 

proportion of the total wind energy with an efficiency coefficient 𝐶A , as described by 

equation (11).  
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 𝑃:";$ =
1
2𝜌𝐴𝑈

, (10) 

 𝑃<=>?";@ =
1
2𝐶A𝜌𝐴𝑈

, (11) 

Where 𝜌 is the air density, A is the rotor swept area, 𝑈 is the spontaneous wind speed. 

Power coefficient 𝐶A  varies by aerodynamic and mechanical losses. According to the 

Betz’s law, the maximum energy captured by a turbine can be no more than 59.3% of the 

kinetic energy in wind; that is 𝐶A ≤ 0.593 . Similar to Grady’s [11], a simple power curve 

function is applied as the function of wind speed 𝑢"  in a given direction 𝜃 captured by 

turbines 𝑖, which yields the following expression for power generation: 

 𝑃<=>?";@	"(𝑢") = 0.3𝑢", (12) 

In general, the power generated from a turbine is not always related to wind speed 	𝑢" 

by (12), particularly for borderline 	𝑢" (considerably low or high). As commonly accepted, 

the equation (12) is only applied to a certain range of wind speed [𝑢";, 𝑢C=<] for turbine. 

The minimum effective speed 	𝑢"; is called the cut-in speed for a turbine to start generation 

power, while the maximum effective speed 	𝑢C=< is called the cut-out speed. In this study 

𝑢"; = 3	𝑚/𝑠 , 𝑢C=< = 20	𝑚/𝑠 . For any speed 	𝑢  in between 	𝑢";  and 𝑢C=< , a turbine 

generates energy estimated by the power curve function (12). If speed 𝑢 is greater than 

𝑢C=<, the turbine will terminate operation to avoid damage. The power generation from a 

turbine 𝑖 can be calculated as: 

 

 

 

																			0.3𝑢",												3 ≤ 𝑢" ≤ 20                             

           𝑃"(𝑢") =						                          

                         0                    Otherwise									         

(13) 
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4.1.3.3  Objective Model 

Considering stochastic wind speed 𝑢!  and direction 𝜃! , both can be modeled with 

probabilistic function 𝑓D(𝑢!)  and 𝑓E(𝜃!)  respectively. The expected total wind power 

produced from a wind farm with N turbines can be computed:  

 
𝐸5#,=$(𝑢!,𝜃!) => { { 𝑃"(𝑢"; 𝑢!, 𝜃!)𝑓D(𝑢!)𝑓E(𝜃!)𝑑𝑢!

=$%&

='(

,F!

!

(

")*
𝑑𝜃! 

(14) 

Again 𝑢! is the free stream wind speed before it encounters turbines. 𝑢" is the wind 

speed captured by turbine 𝑖 in account of wake loss.  

Given a layout X̀⃑̀=[X*, X', X,, …, X-,…,X.], u- = u! if turbine 𝑖 is located at a place 

without any upwind turbines under wind direction θ!; otherwise, u- < u! can be quantified 

by considering the wake loss from related upwind turbines:  

 
(15) 

The objective function of optimization is to minimize the annual turbine installation 

cost per expected power production (CEPP). It can be formulated as follows.  

 argmin(.,0GG⃑ )		CEPP =
Annual	Installation	Cost

Expected	Power	Production 

								=
C	(N)
EI#,J)

=
N�23 +

1
3 e

6!.!!*89."�

∑ ∫ ∫ P-(u-; u!, θ!)fK(u!)fE(θ!)du!
J)*+
J,-

,F!
!

.
-)* dθ!

			 

 

Subject to:                                 u! ≥ u- 

	minTX- − X2T ≥ 200, i ≠ j ∈ {1,2…N} 
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There is no closed form solution to solve for problem with such complexity. In order 

to approximate numerical solutions, Monte Carlo method can be utilized to sample wind 

data, from there one will be able to estimate CEPP based on sample mean.  

Capturing the uncertainty of wind speed and direction, due to their significant 

variations, four scenarios are considered: warm season daytime, warm season nighttime, 

cold season daytime and cold season nighttime. Specifically, one year of wind uncertainty 

data is studied. To approximate model (16), 10 data points are randomly sampled from 

each scenario, resulting in 40 wind data points for (𝑢!, 𝜃!). During optimization process, 

the sampled wind speed and direction data is used in function evaluation. In this case, 

comprehending equations (1)(2)(6)(7), CEPP in model (16) can be extended as: 

CEPP� =
N(23 +

1
3 e

6!.!!*89.")

∑ (0.25∑ (0.1∑ 0.3(u-(X̀⃑̀; u!, θ!|T(s), s)),*!
L(M))* )9

M)* ).
-)*

=
N(23 +

1
3 e

6!.!!*89.")

0.0075∑ ∑ ∑ u-(X⃑̀̀; u!, θ!|T(s), s),*!
L(M))*

9
M)*

.
-)*

 

(17) 

The wind speed and direction are determined by season-time index T(s): 1 ≤ 𝑇(𝑠) ≤

10 with assigned season-time scenario s (𝑠 ∈ {	1, 2, 3, 4	}). 𝑑"%  is the distance between 

turbine 𝑖 and its upwind turbine 𝑗. 𝑁" is total number of upwind turbines for turbine 𝑖, based 

on live wind direction. 

4.1.4  Computational Results 

To demonstrate the proposed two-stage optimization framework, the numerical studies 

with three cases of wind profiles are evaluated: 

• constant wind speed in fixed wind direction: speed= 12𝑚/𝑠, direction=0; 

• constant wind speed in random wind directions: speed= 12𝑚/𝑠, direction= 𝑓E(𝜃!); 



 

 

37 

• stochastic wind speeds in random wind directions: speed = 𝑓D(𝑢!) , 

direction=𝑓E(𝜃!). 

Turbines are considered with following parameters: hub height Z is 60 m, thrust 

coefficient CT is 0.88, and surface roughness length Z0 is 0.3 m. The rectangular wind field 

has 2x2 km2 dimensions. The rotor radius of turbines R is 20 m. For the first stage 

optimization, each cell width is 200 m, which equals to 10R. There is a minimum distance 

of 200m in between rotor center of adjacent turbines, this constraint further applied to both 

optimization stages to avoid speed plummet. Simple calculation by equation (3) (4) leads 

to the values of entrainment constant ĸ and the axial induction factor α: ĸ=0.0944, 

α=0.3268.  

4.1.4.1  Constant Wind Speed in Fixed Wind Direction  

In the first case, to demonstrate the effectiveness and accuracy of the proposed two-

stage method, optimization results are compared with previous studies by Grady [11] and 

Marmidis [20]. A similar model is applied as in previous studies - 0 degree fixed horizontal 

wind direction with constant speed 12 m/s.  

  

(a) Grady et al.’s (b) Marmidis et al.’s 
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(c) Stage 1  

(discrete cell-based search) 

(d) Stage 2 

 (continuous coordinates-based search) 

Figure 4-3 Turbine placement schemes from three studies 

In Figure 4-3, the result generated by Grady’s (4-3(a)) shows a symmetrical layout 

because their optimization was applied to a single row and then duplicated for 10 rows. 

The layout in 4-3(b) obtained by Marmidis using Monte Carlo simulation was quite 

scattered with no clear pattern. Our algorithm’s first stage results in 4-3(c) show the layout 

with more turbines and lower CEPP value. Under the horizontal wind direction, there is 

little turbine interactions between adjacent rows and small wake effects between two 

horizontal rows. Mostly the turbines uniformly align at border columns of the field. This 

makes intuitive sense since with 1.8 km apart - the maximum horizontal distance in 

between turbines, the wake deficit ratio in equation (6) is reduced to approximately 

0.7248%. In the result of second stage (4-3(d)), interior turbines are quite scattered along 

the wind direction to reduce the wake interactions. This maximizes the usage of wind farm 

terrain to diminish the wake loss. In our study, the number of turbines is 36, increases by 

6 compared to Grady’s 30, but the overall cost per production is significantly decreased 

with the results obtained in the second stage, as shown in Table 4-2.  
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Efficiency of energy production is defined as the ratio of energy production under 

current layout over the production with no wake loss where all turbines capture the same 

wind speed. In Table 4-2, it shows efficiency in Grady’s is slightly better than the cell-

based optimization results in this study, because fewer turbines installed help to avoid the 

wake interactions, thus improve the efficiency. However, allowing turbines to freely adjust 

in the second stage of optimization helps further reducing the overall wake interactions. By 

the end of second stage, coordinates-based solution shows optimized layout with improved 

efficiency. For the purpose of maintaining accuracy during comparison, the objective 

values CEPP from both previous studies are reevaluated. Additional cell-based studies are 

conducted in the second stage without removing the field discretization constraint, as 

shown in column 5. The difference from Marmidis’ published result is surprisingly 

significant: the CEPP generated after rerun is 0.0018637, comparing to 0.0014107 in the 

published result. According to turbine placement in Figure 4-3(b), lower expected power 

production makes intuitive sense since turbines frequently align along the wind direction, 

causing unavoidable wake interactions.  

The objective function, CEPP, trades off the cost and energy production. The results 

shown in Table 4-2 indicate that the optimized layout from the two-stage algorithm has 

more turbines, thus produces more power relative to higher installation costs, as a result a 

lower CEPP value. By implementing cell-based local search in stage 2, it slightly improves 

the objective function and efficiency around 1.4%  and 1.3% . Further with proposed 

coordinates-based continuous search method, the objective function and efficiency are 

significantly improved by 8.26% and 5.85%. 
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 Grady et 
al. 

Marmidis 
et al. 

Present 
study 

stage 1 

Present 
study stage 2 
(cell-based) 

Present 
study stage 2 
(coordinates-

based) 

Number of turbines 30 32 36 36 36 

Total power 
(kW/year) 14,801 12,410 17,103 17,125 18,514 

Objective value 
CEPP 

(k$/kW.year)x10-3 
1.492 1.864 1.477 1.475 1.364 

Efficiency (%) 95.17 74.81 91.64 91.76 97 

Table 4-2 Optimization results compare to previous studies 

4.1.4.2  Constant Wind Speed in Random Wind Directions  

In this section, the case with constant wind speed 𝑢!=12 m/s and stochastic wind 

directions 𝑓E(𝜃!)  is considered. The random wind directions 𝜃!  is modeled with 

Lognormal distribution, i.e. log	(𝜃!)~𝑁(5.1677, 0.3247'), such that CEPP becomes the 

expected value of a random function in wind uncertainty. To study turbine performance in 

the farm, the expected energy production is estimated by computer sampling thought one 

year. Accounting for uncertainty wind direction, four scenarios: warm season daytime, 

warm season nighttime, cold season daytime, and cold season nighttime are modeled. 

The randomly sampled four day-time intervals totals up to 40 days and forms a subset 

of wind data. The wind frequency rosemap in Figure 4-4(a) illustrates that wind blows 

mostly in the range of (110, 270) degree, the optimized wind farm layout at stage 1, shown 

in Figure 4-4(b), indicates most of turbines are located near the boundary of wind farm to 

eliminate the wake effect. If not avoidable, the distance between turbines increases to 

reduce wake loss. The result is improved by applying continuous coordinates-based search 

in second stage (Figure 4-4(c)). From the rosemap, due to the frequent shift of wind 

directions, turbine layout tends to intensively lay along horizontal and vertical directions 
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where the magnitude of wind is weakening. In addition, because of higher wind frequency 

in (180, 270) degree range, turbines tend to be scattered in the diagonal direction. Similar 

results are obtained in the case of (100, 180) degree range. 

 
(a) 40 days Wind rosemap 

  

(b) Stage 1 

 (discrete cell-based search) 

(c) Stage 2  

(continuous coordinates-based search) 

Figure 4-4 Wind rosemap and optimal layout in scenario 2 

5%

10%

15%

WEST EAST

SOUTH

NORTH

11 - 11.2
11.2 - 11.4
11.4 - 11.6
11.6 - 11.8
11.8 - 12
12 - 12.2
12.2 - 12.4
12.4 - 12.6
12.6 - 12.8
12.8 - 13
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Table 4-3 illustrates the results of wind farm layout design in scenario 2, which 

indicates by continuously refining the turbine layout with local search in second stage, the 

annual expected power production potentially increases by 5.11%. Improved farm layout 

mitigates turbine interactions by extending turbine distance or cross installation along high 

probabilistic wind direction. This strategy reduces the speed loss caused by wake 

interactions, whereas obtaining the optimal layout design with minimized CEPP value.  

 
Stage 1 
Genetic 

Algorithm 

Stage 2 
(discrete 

cell-based) 

Stage 2 
(continuous 

coordinates-based) 

Number of turbines 45 45 45 

Expected power 
(kW/year) 21,545 21,571 22,646 

Objective value 
CEPP (k$/kW.year) 

x10-3 
1.413 1.411 1.390 

Efficiency (%) 96.71 96.98 97.08 

Table 4-3 Optimization results in scenario 2 

4.1.4.3  Stochastic Wind Speeds in Random Wind Directions  

The third case is more realistic in wind modeling. The wind direction model follows a 

lognormal distribution (log	(𝜃!)~𝑁(5.1677, 0.3247')), same as the previous case, and 

stochastic wind speed follows a Weibull distribution with parameters shown in Table 4-1. 

In this extensive study, to demonstrate the effectiveness of turbine dynamic interaction 

model and proposed two-stage optimization framework, the wind farm dimension is scaled 

up from previously introduced 10x10 to 12x12 equal size cells, with 44 more candidate 

locations. Figure 4-5(b)(c) shows the optimized turbine placement scheme obtained by the 

two-stage optimization approach.  
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(a) 40 days Wind rosemap 

 

(b) Stage 1 

(discrete cell-based search) 

 

(c) Stage 2 

(continuous coordinates-based search) 

Figure 4-5 Wind rosemap and optimal layout in scenario 3 

Corresponding to the wind rosemap shown in Figure 4-5(a), the wind directions lie 

mostly in the ranges of (140, 170) and (190, 215) degrees and the major wind speed are 

between 8m/s and 12m/s. The optimized layouts in 4-5(b) and 4-5(c) maintain extensive 

space in the high probabilistic diagonal direction, in the meantime closely aligning along 

low frequency wind direction (in current case, with lower wind speed as well). Since 
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turbines are allowed to freely move in the field, the pattern from stage 2, in Figure 4-5(c), 

shows optimized adjustment in prevailing wind directions.  

From Table 4-4, the objective value CEPP in current scenario is higher than ones 

reached from previous cases, because wake interactions are dynamic and potentially 

increased due to wind variation. The optimal results demonstrate the improvement by local 

search algorithms. In terms of efficiency, the result obtained by coordinates-based search 

in stage 2 is 3.8% higher than the one obtained from stage 1, while 2.3% higher than the 

cell-based local search one.  

 

 Stage 1 
Genetic Algorithm 

Stage 2 
(discrete 

cell-based) 

Stage 2 
(continuous 

coordinates-based) 

Number of turbines 44 44 44 

Expected power 
(kW/year) 14,677 14,721 14,809 

Objective value CEPP 
(k$/kW.year) x10-3 2.033 2.027 2.015 

Efficiency (%) 91.15 92.69 94.96 

Table 4-4 Optimization results in scenario 3 

4.2  Optimal Development of Arbitrary-shaped Onshore Wind Farm 

4.2.1  Arbitrary-shaped Wind Farm Field 

In reality, wind farms are designated either on the mountain ridge or surrounded by 

existed structures, such as community, airport, main roads, forests, reservoirs, restriction 

zones and so on. Terrains can be complicated, with various topology and different 

obstruction. In this section of study, flat terrain is considered as shown in Figure 4-6(a), 

surrounded by trees, restriction zone (i.e., wild birds protection area) and water reservoir. 
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Because of this particular structure, the designated wind farm has an irregular-shaped 

boundary.  

 

  

(a) Wind farm model in complex terrain (b) Wind farm with candidate turbine locations 

Figure 4-6 Arbitrary shaped wind farm model in complex terrain 

At the first stage, the wind farm is divided into 123 blocks that are 150m apart. The 

wind direction is assumed from west toward east as 0 degree, counterclockwise covering 

all directions. Identical turbines and uniform terrain condition are considered in this case, 

therefore the same power curve function is applied to all turbines. Figure 4-6(b) shows the 

discretized field in the wind direction of 0°. 

The same wind uncertainty model and optimization model from regular-shaped wind 

field are applied in the arbitrary-shaped wind farm, with distant constraint (150m) as 

mentioned above. To demonstrate the proposed two-stage optimization framework, the 

computational study with dynamic wind profile is evaluated using both the GA-based two-

stage optimization algorithm and the heuristic-based two-stage optimization algorithm.  

4.2.2  Computational Results 

The GA-based optimized layouts design and heuristic-based optimized layout are 

shown in Figure 4-7 and Figure 4-8 respectively. According to results from first stage by 

both optimization approaches, large space between adjacent turbines helps to mitigate the 
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wake loss interaction. During the second stage without predefined location constraint, 

pattern search algorithm allows the turbine locations to change in the field, therefore the 

pattern tends to scatter in the major wind direction. It helps to capture greater wind speeds 

by reducing the wake loss interactions between turbines, thus improves energy production.  

 

 

(a) Stage 1 Layout 
     (discrete location-based search) 

(b) Stage 1 Convergence 
       (discrete location-based search) 

  

(c) Stage 2 Layout 
       (continuous coordinates-based search) 

(d) Stage 2 Convergence 
    (continuous coordinates-based search) 

Figure 4-7 GA-based two-stage optimal layouts and convergence diagrams 

Comparing to GA-based first stage layout (Figure 4-7(a)), layout from heuristic-based 

first stage (Figure 4-8(a)) is less dominant because of its close alignment in the major wind 

direction. In this case GA is expected with better fitness value, which can be confirmed in 
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column 2 and 4 of Table 4-5. However, by extending the number of iterations in continuous 

search during stage 2 of heuristic-based optimization, the fitness value is improving 

iteratively and the difference between both algorithms is narrowed down. The objective 

value CEPP solved by heuristic-based shows slightly better than the one obtained by GA-

based method.  

  

(a) Stage 1 Layout 

      (discrete location-based search) 

(b) Stage 1 Convergence 

       (discrete location-based search) 

  

(c) Stage 2 Layout 
    (continuous coordinates-based search) 

(d) Stage 2 Convergence 
      (continuous coordinates-based search) 

Figure 4-8 Heuristic-based two-stage optimal layouts and convergence diagrams 
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One thing worth mentioning is that the statement - ‘heuristic-based optimization 

method’s result is better’ is not always guaranteed. On one side, straightforward heuristic-

based method is less computationally intensive in terms of running cycle and computing 

time. Because of its simplicity and step-dependent searching path, heuristic-based method 

improves the efficiency by saving almost 80% of computing time, which is a promising 

feature in solving large scale optimization problems within limited timespan. On the other 

side, due to its constructive nature in approximating solution algorithm by making 

deterministic moves, proposed heuristic-based search method only searches the adjacent 

hyperplane, therefore it can only guarantee local optimality. On the contrast, GA-based 

approach avoids falling into local optima by stepwise evolving and mutating, from this 

point of view it is highly possible to locate a global solution. Therefore, heuristic method 

is frequently used when either there is no known solution algorithm or solving 

straightforward problem within narrow timeframe; in cases of refining solutions while 

encountering multiple local optima, global optimality may not be satisfied. In order to 

overcome such limitation, additional algorithm is suggested for continuous improvement.  

 GA based 
Two-stage Optimization 

       Heuristic based 
Two-stage Optimization 

 
Stage 1 
Genetic 

algorithm 

Stage 2 
Positive basis 
Pattern Search 

Stage 1 
Heuristic 
algorithm 

Stage 2 
Positive basis 
Pattern Search 

Number of turbines 44 44 45 45 
Expected power 

(kW/year) 14,485 14,663 14,496 15,131 

CEPP (k$/kW.year) x10-3 2.060 2.035 2.100 2.012 

Table 4-5 Optimization results for arbitrary-shaped wind farm 
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4.3  Optimal Development of Offshore Wind Farms 

4.3.1  An Offshore Wind Farm at New Jersey Coast 

The wind farm case studied in this work is based on an on-going offshore wind power 

project in New Jersey. The considered region off the coast of New Jersey is shown in Figure 

4-9(a). During the first stage, 132 candidate locations are pre-determined for possible 

turbines as shown in Figure 4-9(b). The farm is about 7km x 3km and adjacent turbine 

locations are about 400m apart. Different from onshore wind farm, offshore wind field 

(particular for wind speed) is heterogeneous; wind decreases significantly towards 

coastline due to change of tide and terrain conditions. To take this into account, a linear 

reduction term is added to the wind speed model. A 20% reduction is assumed as wind 

flows through the farm from its east side (ocean) to west side (coastline).  

  
(a) Offshore wind farm in New Jersey (b) Wind farm with 132 candidate 

turbine locations 

Figure 4-9 an NJ coast offshore wind farm 

4.3.2  Modeling Wind Uncertainty 

The wind uncertainty along the NJ coast is studied and historical wind speed and 

direction data in this area is collected once every 10 minutes at the measuring location. The 

one-year wind data of 2014 is used to fit the wind probabilistic models.  
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Figure 4-10 Rosemap for stochastic wind modeling 

Based on the wind rosemap shown in Figure 4-10, historical data indicates wind mainly 

blows in the direction from 162° to 267°, with higher probabilities falling in the range of 

(181°, 267°). With some distribution analysis, the wind direction 𝜃! at measuring location 

can be estimated by a lognormal distribution log	(𝜃!)~𝑁(5.3566, 0.1184')). Wind speed 

varies significantly at different times of a day. 

In this section of study, different wind speeds are modeled considering two dayparts 

scenarios: (12pm,22pm], (22pm,12pm]. Figure 4-10 indicates the wind speed is mostly in 

the range of 9 m/s - 11 m/s. With some statistical fitting analysis, two Weibull distributions 

are determined for the two scenarios respectively with parameters shown in Table 4-6. 

  T(1) (22:10pm~12pm) T(2) (12:10pm~22pm) 
Shape Parameter 3.0523 2.5042 
Scale Parameter  10.5787 9.6388 

Table 4-6 Weibull models for stochastic wind speed considering two dayparts scenarios 

4.3.3  Optimization of Offshore Wind Farm Design 

4.3.3.1  Costs of Wind Turbines 

The costs for offshore wind farm development include the capital investment of 

equipment, cable and devices installation, as well as the labor costs. In this research, it aims 
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to minimize unit development cost. The average installation cost for each turbine can be 

reduced by installing more turbines in the field. Same as the installation cost in the previous 

two applications, the total cost of a wind farm project (K$) can be estimated by N, the total 

number of turbines installed in the wind farm. 

 

 
(18) 

The farther a turbine installed from the coast, the more it will cost due to increasing 

consumption of cables materials and associated installation costs. Such cable costs can be 

estimated by a linear cost function: 

 𝐶NO?P@(𝐷") = 𝑐! + 𝑐$ ∗ 𝐷" (19) 

Where 𝐷" is the distance of a turbine away from the coast, 𝑐! is fixed cost for major 

cable structure installation and 𝑐$ is the cable installation cost per unit distance from the 

shoreline. The total wind farm cost is modeled as: 

 𝐶(𝑁, 𝐷") = 𝐶";Q(𝑁) +>	
(

")*

𝐶NO?P@𝐶(𝐷") (20) 

4.3.3.2  Expected Annual Energy Production 

The same energy production equation (12) as in the previous two applications is applied 

in this case study. 𝑢"; = 3	𝑚/𝑠, 𝑢C=< = 22𝑚/𝑠. For any speed 	𝑢  in between 	𝑢";  and 

𝑢C=<, a turbine generates energy 𝐸"!,$" estimated by (12). 

4.3.3.3  Objective Model 

A slight modification from previous applications will provide objective model as 

follows:  

( ) 20.001742 1
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argmin(.,0)		CEPP =
Annual	Total	Cost

Expected	Power	Production 

=
C	(N, D-)
EI#,J)

=
N�23 +

1
3 e

6!.!!*89."� + (c! + cR ∗ D-)

∑ ∫ ∫ P-(u-; u!, θ!)fK(u!)fE(θ!)du!
J)*+
J,-

,F!
!

.
-)* dθ!

 

(21) 

Subject to:                                   u! ≥ u- 

TX- − X2T ≥ 200, ∀	i ≠ j ∈ {1,2…N} 
 

To account for significant variations of wind during a day, two daypart scenarios s (𝑠 ∈

{	1, 2	}) are considered: (22pm,12pm], (12pm,22pm]: s=1 when wind energy is produced 

during (22pm,12pm]; s=2 otherwise. To approximate (21), twenty data points from each 

scenario s are randomly sampled, resulting in 40 wind data points for (𝑢!, 𝜃!). CEPP in 

model (21) can be approximated by the following sampling technique: 

CEPP� =
N�23 +

1
3 e

6!.!!*89."� + (c! + cR ∗ ∑ 	.
-)* D-)

∑ (0.25∑ (0.1∑ 0.3(u-(X; u!, θ!|T(s), s)),'!
L(M))* )'

M)* ).
-)*

=
N(23 +

1
3 e

6!.!!*89.") + ($10,000 + $500 ∗ D-)

0.0075∑ ∑ ∑ u-(X; u!, θ!|T(s), s),'!
L(M))*

'
M)*

.
-)*

 

        (22) 

Where building the cable structure has a fixed cost 𝑐! = $10k and installation cost is 

about $500/m.  

4.3.4  Computational Results 

Based on the one-year wind data at the measurement location, the wind direction is 

modeled with a lognormal distribution log	(𝜃!)~𝑁(5.3566, 0.1184'), and the wind speed 

is modeled as a Weibull distribution with parameters shown in Table 4-6. Figure 4-10 

shows that the wind directions lie mostly in the range of (181°, 267°) and the wind speeds 

are mainly between 9m/s and 11m/s. The offshore wind often blows from the ocean 
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towards the coast and the speed reduces when it approaches the coastline. A 20% linear 

speed reduction is used when wind hits the coastline.  

The two-stage simulation optimization is applied to this case. The optimized layouts in 

Figure 4-11 show that turbines tend to locate at the farthest places from the coast where the 

wind is strongest, even though the cable costs will be higher. Figure 4-11(a) presents the 

optimized layout by the first stage of optimization, where the 98 turbines are located at the 

predetermined cells. 

  

(a) Stage 1 Layout (b) Stage 1 Convergence 

  

(c) Stage 2 Layout (d) Stage 2 Convergence 

Figure 4-11 Optimal layouts and optimization progresses 
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The optimization results of this case are summarized in Table 4-7. The first stage 

optimization determines that 98 turbines to be built in the farm with objective value 

0.007822. The second stage further reduces CEPP by changing the locations of those 98 

turbines; the CEPP value is decreased to 0.007667. With the same amount of turbin 

installations, the power production at the end of second stage has increased almost 5,000 

kW/year.  

 
Stage 1 

(discrete 
location-based search) 

Stage 2 
(continuous 

coordinates-based search) 
Number of turbines 98 98 

Expected power 
(kW/year) 18,550 20,319 

Objective value CEPP 
(k$/kW.year) x10-3 7.822 7.667 

Table 4-7 Optimization results for developing the NJ offshore wind farm 

4.4  Optimal Layout Design of Wind Farm with Energy Storage system in 
Micro-grid 

4.4.1  Energy Storage Integrated Wind Energy System (ESIWES) in Micro-grid 

Wind power has been widely used in micro-grids for community energy consumptions. 

While it is clean, sustainable and low operational cost, in reality wind power is highly 

fluctuating. A practical solution to maintain reliable supply is using energy storage. In this 

application an Energy Storage Integrated Wind Energy System (ESIWES) is proposed as 

wind farms equipped with electrochemical battery energy storage. To best meet the 

electricity demand of an interconnected micro-grid community, the CEPP is minimized for 

optimal turbine layout. To demonstrate the idea, the ESIWES is applied to a typical micro-

grid community including residential households; the optimal design of wind farm layout 

in ESIWES is illustrated to maintain 100% service level and meet the fluctuating demand. 
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Electrochemical battery is a type of energy storage technology using chemical reactions 

within battery cells, which converts electrical energy into chemical energy while charging, 

and facilitates the flow of electrons to generate electric current when discharging [86]. 

Lithium-ion battery, for example, has important features such as high energy density thus 

portable, fast charge / discharge capability, relatively high efficiency with low standby 

losses, etc. Lithium-ion battery is commonly used for wind energy systems where the 

service time and weight are important [57]. There have been applications using Lithium-

ion battery to demonstrate voltage support as well as reserve capacity and renewable 

integration. Figure 4-12 shows the map of planned and existing Lithium-ion battery usage 

by the year of 2009 [87]. The size of star indicates the size of project; yellow stars indicate 

auto major contracts while red stars mean no auto contract.  

 

Figure 4-12 Map of planned and existing lithium ion battery demonstrations (2009) 

In this case study, as shown in Figure 4-13, the problem of energy system is boiled 

down to planning the generation assets – wind farm and energy storage. A model of daily 

micro-grid operation is under implementation and its function form is defined. The 
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proposed ESIWES in micro-grid is designed to sufficiently respond to local community’s 

daily demands, and the optimal layout of wind farm to sustainably support such demand is 

developed.  

 

Figure 4-13 Development of ESIWES in micro-grid community 

The technique in the ESIWES model is shown in Figure 4-14. The wind farm is 

considered as the primary energy supplier for the micro-grid community’s electricity 

demand, the power generated from turbines is directly transmitted to the consumer end for 

daily consumption. At night times when wind reaches its maximum while demand is low, 

the excess energy can be stored in energy storage as the secondary energy supplier. If 

demand exceeds supply, the electricity will be discharged from the energy storage to satisfy 

the excess usage and maintain power quality. 

 
Figure 4-14 Sustainable energy system feedback loop 
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4.4.2  Demand from Local Community 

In the current scenario, the demand side includes 10 residential buildings. The hourly 

energy consumption data (1/1/2000 to 12/10/2019) from Pacific Gas & Electric (PG&E) 

are used [88]. The boxplots for daily loads in Residential building is shown in Figure 4-15, 

which demonstrates median and corresponding 25th/75th percentiles of daily loads for 

demands.  

 
Figure 4-15 Historical data of Residential hourly energy consumption (2000-2019) 

The historical data on demand of 10 residential units is added and fitted to a lognormal 

distribution, which is used to generate random daily demands in a sampled year as indicated 

in Figure 4-16.  

  
 

Figure 4-16 Annual electricity consumption in micro-grid community 

Lognormal (6.1423, 0.2118) 
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4.4.3  Optimal Development of Wind Farm in ESIWES 

4.4.3.1  Investment costs of ESIWES 

The investment costs of ESIWES proposed in this case study including two parts: 

installation cost of wind turbine and investment cost for Lithium-ion battery. The same 

turbine installation cost model from previous case studies is used in this section: 

 𝐶ST(𝑁) = 𝑁(
2
3 +

1
3 𝑒

6!.!!*89(") (23) 

The investment cost model for Lithium-ion battery is: 

 𝐶UV|V. = 𝑐UV ∗ 𝐸UV|V. (24) 

Where 𝑐UV is the cost per energy usage. In this case, the charge cycle of battery at night 

is assumed to be short enough for it to fully function by the next morning. 

Based on [87], the Levelized Cost (LCOE) for the 1 MW Lithium-ion battery ranges 

approximately from $400/KW-year to $1,700/KW-year. This study used 1 MW Lithium-

ion battery, 𝑐UV = $600/kW year. 

𝑆$ is a variable associated with energy supplied from the wind farm, which represents 

the status of discharge in energy storage on day d. It will be further introduced in equation 

(28). 

Given 𝑆%, the total energy system cost is modeled as: 

 𝐶(𝑁) = 𝐶ST(𝑁) + 𝐶UV|V.  (25) 

4.4.3.2  Expected Annual Energy Production 

The same wind farm energy production model is applied in this session. Averaged to 

daily electricity generation, equation (12) is transformed into: 

𝐸",$|(=#,5#) = 0.000822𝑢",							3 ≤ 𝑢" ≤ 20 (26) 
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𝐸ST|(=#,5#) = >𝐸ST,$|(=#,5#) = >>𝐸",$|(=#,5#)
(

")*

,FX

$)*

,FX

$)*

    (27) 

Again 𝑆$ is the energy supplied from energy storage on daily basis. Specifically, in day 

d: 

𝑆$ = min�𝐶𝑎𝑝UV, max�0, 𝐷𝑒𝑚𝑎𝑛𝑑$ − 𝐸ST,$|(=#,5#)��  (28) 

Where 𝐶𝑎𝑝UV is the capacity of energy storage and in this application with Lithium-ion 

battery, 𝐶𝑎𝑝UV = 1	𝑀𝑊. The power function of energy storage and overall energy power 

function are respectively as: 

𝐸UV|V. = >𝑆$

,FX

$)*

    (29) 

𝐸(=#,5#)=𝐸ST|(=#,5#) + 𝐸UV|V.    (30) 

4.4.3.3  Objective Function 

Same as in the previous applications, the objective function for minimizing CEPP can 

be transformed as: 

 argmin(.,0)		CEPP =
Annual	Total	Cost

Expected	Power	Production =
C	(N)
E(J#,I#)

 (31)  

=
N#23 +

1
3 e

/0.002345!) + ∑ min+Cap67, max+0, Demand8 − E9:,8|(>",?")88
365
d=1 ∗ c67

∑ [∑ ∫ fΘ ∫ EA,8|(>",?")fB(u0)du0
C3
D

DE0
2

5
AF2 dθ0 +min+Cap67, max+0, Demand8 − E9:,8|(>",?")88]

DEG
8F2

			 

Subject to:                             E`a,R|(J#,I#) + SR 	≥ 	DemandR             

u! ≥ u- 

                                     TX- − X2T ≥ 200, ∀	i ≠ j ∈ {1,2…N} 
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4.4.4  Computational Results 

The objective model (31) is optimized by GA-based and heuristic-based two-stage 

algorithms. Optimized layouts are shown below in Figure 4-17.  In this case the layouts 

from both stages of GA-based results are better than the ones obtained by heuristic-based 

methods. According to the layout from first stage of heuristic-based model in Figure 4-

17(c), most of turbines are distributed uniformly in the wind farm, which does not make 

much progress in reducing turbine interactions. In stage two (Figure 4-17(d)), the result is 

improved by local search algorithm, however it still contains clusters of turbines in the 

same area which does not gain much advantage in captured maximum wind speed, thus the 

objective solution by this model is expected to be suboptimal. This finding is confirmed by 

the CEPP value, as listed in Table 4-8. 

On the other side, the GA-based model shows its advantages in continuous improving 

objective values. Figure 4-17(a) represents the first stage layout by GA optimization 

method, with turbines divergently align facing major wind directions, and it becomes even 

more so after the local search optimization (Figure 4-17(b)). In this way, turbines are able 

to effectively reduce wake loss effect and further maximize power generation.  

  

(a) Layout from GA-based first stage (b) Layout from GA-based second stage 
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(c) Layout from Heuristic-based first stage (d) Layout from Heuristic-based second stage 

Figure 4-17 Two-stage optimal layouts for wind farm in ESIWES 

Results shown in Table 4-8 indicate that ESIWES with fewer turbines can actually 

provide better power supply to the micro-grid community with more energy support at 

lower costs. The wind farm is able to optimize energy generation and maintain energy 

efficiency. Furthermore, the optimization solution successfully integrates the usage of 

energy storage with wind farm operation, thus increases the service availability. The 

capacity of the 1 MW Lithium-ion battery can meet a fair amount of daily electricity 

demand when needed, which gives ESIWES leverage to maintain power sustainability for 

the micro-grid community without overspending on turbine installations. 

 GA based 
Two-stage Optimization 

Heuristic based 
Two-stage Optimization 

 
Stage 1 
Genetic 

algorithm 

Stage 2 
Positive basis 
Pattern Search 

Stage 1 
Heuristic 
algorithm 

Stage 2 
Positive basis 
Pattern Search 

Number of 
turbines 105 105 96 96 

Expected power 
(kW year) 173,280 174,780 132,729 153,983 

CEPP (k$/kW 
year) 0.498 0.493 0.623 0.529 

Table 4-8 Optimization results in ESIWES 
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4.5  Optimize Wind Farm Layout in Hybrid Wind/Biorefinery/Energy-Storage 
Energy System  

The project in Section 4.4 presents the studies of a wind farm based renewable energy 

system (ESIWES) to meet small micro-grid community’s electricity demand. In reality, 

renewable energy generation has greatly expanded so that it is able to meet demand from 

both locally owned sustainable community and larger-scale grid-wise energy consumption. 

In order to do so, high capacity power generators such as gas turbine, hydro-electricity 

generator and bio-generation system, are better sources in energy compensation providing 

baseload in energy system. In this section, stepping up from the ESIWES model, the wind 

farm model will be integrated into Hybrid wind / biorefinery / energy-storage based 

renewable energy system (HWBRES) to support energy consumption in the micro-grid 

community. Such hybrid energy systems can be easily expanded to large-scale city-wise 

energy generation.  

The work is inspired by the increase of public awareness towards environmental 

sustainability such as waste decomposition and renewable production. Global municipality, 

especially in densely populated regions, generates thousands of tons of municipal solid 

waste (MSW) – food waste plays a major role, which raises multiple environmental risks, 

such as greenhouse gas leakage and underground waste contamination. Now the question 

of concern is: instead of targeting them separately, what is the most efficient method to 

tackle both those issues together? Among all the possibilities, the most effective answer to 

the question is “biorefinery”.  

The development of biorefineries represents the key for access to an integrated 

production of food, feed, chemicals, goods, and fuels of the future. A wide variety of 

biomass is available depending on local geographic conditions – traditional agricultural 
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crops, forestry waste, food waste, etc. During the process of biorefineries, biomass is 

converted into value-added products such as biogas, specialty chemicals, and 

pharmaceuticals. Therefore, to explicitly respond to the aforementioned question: by the 

access and treatment to MSW, particularly food waste (sugar, starch, vegetable oils and 

animal fats, etc.), MSW can be effectively synthesized to various renewable end products, 

including biogas and further converted electricity. The new addition of this research will 

concentrate on the conversion of biogas and then further to electricity, by the function of 

the biorefinery system, specifically with the feedstock from micro-grid residence’s food 

waste.  

4.5.1  Waste-To-Energy Recovery System 

Food waste, including pre- and post-consumption leftovers from both residence and 

commercial establishments, contains great amount of rapid degradable components such 

as protein, carbohydrates and short chain fat etc. Hall et al. [89] estimated the energy 

content of food waste by comparing the U.S. food supply data to the estimated food 

consumption, finding that approximately 1400 kcal were wasted by one person per day, 

which adds up to 150 trillion kcal per year. To produce 1 kcal of food it requires 3 kcal of 

fossil fuel on average, therefore the annual food waste accounts for approximately 300 

million barrels of oil or about 4% of U.S. oil consumption.   

To generate eco-friendly energy by utilizing the most common solid waste, there are 

four waste-to-energy recovery scenarios: direct combustion, landfill-to-gas, composting 

and anaerobic digestion.  

4.5.1.1  Direct Combustion 

Direct combustion is the most conventional thermochemical conversion technology to 

generate electricity on a large scale. The feedstock is not required to be processed before 
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incineration, which makes it popular on countries where land is a scarce resource. The 

energy efficiency of the process is not overly high, per Bosmans et.al. in waste-to-energy 

technology review, the net electrical efficiency of the current advanced combustion plants 

ranges between 22-26% [90].  

The main stages of the combustion process include drying, degassing, pyrolysis, 

gasification and oxidation [90]. Waste is combusted at a temperature of 850° C and 

transformed to carbon dioxide, vapor and non-combustible incinerator bottom ash. Since 

combustion is normally applied to mechanically dewatered wastes, the high moisture 

content in food waste makes it less promising in net electricity generation. During the 

pretreatment, a significant amount of energy is consumed to dry or dewater the combined 

waste stream. Additionally, combustion with energy recovery may also raise potential 

environmental problems, especially the abundance of dust and ash (25-30% by weight of 

the solid waste input) and the toxicity of the flue gases [91]. In order to meet strict emission 

standards, waste gas treatment equipment needs to be installed to eliminate those harmful 

substances, but the associated cost will drive up the price of final products such as heat or 

electricity.  

Although the low generating efficiency along with costly treatment facility make direct 

combustion limited in practice, there are also possible options that can maximize its 

economic benefits. For example, the bottom ash in an incinerator can be collected and sold 

as the raw content on the production of building materials, such as cement and bricks, for 

their application in construction.  

4.5.1.2  Landfill-to-gas 

Traditional landfills have a long history to be the extensively used technologies for 

solid waste management. There has been growing interest in upgrading traditional landfills 
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with gas recovery facilities. At this point the modern managed landfills become the most 

commonly used method to dispose solid waste globally.  

Wastes in the landfill sites can be converted into bioenergy through phases including 

initial adjustment, pyrolysis, liquefaction and gasification. The initial steps are aerobic, but 

later turn into anaerobic when oxygen is running out. While the organic fractions, such as 

food and garden waste, paper, wastewater, etc., slowly decompose, the landfills gas is 

formed containing a mixture of methane (45-60%), carbon dioxide (40-55%) and a trace 

amount of other components [91]. In practice, the moisture content of waste compound, 

the temperature inside the reactor, the size of disposed waste, the air flows can affect the 

degradation process in landfills. Every kWh energy generated from biogas would avoid 

1.1000952 kg CO2 emission as oppose to the power generation at a landfill. Biogas in this 

scenario can be collected for a variety of end uses including electricity generation, bio-

diesel fuels of transportation, or upgrading to biomethane gas. A common treatment is to 

burn biogas which can give out a significant amount of energy (50.2 GJ/ton waste). When 

it is directly converted to electricity, over 50% of energy would be lost as heat, which is 

assumed to be partly used in maintaining digesters at optimal temperature level and partly 

transported to the local heating system [91].  

While landfilling is an economic method of waste disposal, the environmental 

contribution of landfills with gas recovery facility may be minimized if it is not managed 

property [92]. The major problems include the surface and ground waste contamination, 

methane leakage and odor emission. Therefore, landfill leachates need proper post-

treatments before being released to the environment. After 1996 federal regulations, the 
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amount of methane recovered grows and is expected to continue increasing in the next 

decades.  

4.5.1.3  Composting 

Composting, or aerobic digestion, is a bio-oxidative process. During the process, a 

large portion of the degradable organic carbon is converted into carbon dioxide and water 

[93]. Comparing to other processes, composting produces less odor and a considerable 

amount of heat, which brings the temperature of the pile to more than 60 ° C and helps to 

reduce the concentration of pathogens inside the composter [94]. Being able to supply 

stable pathogen free source of organic nutrients makes composting a feasible option for 

waste management.  

Organic solid wastes, such as food waste, yard waste and sludge, are commonly treated 

in a composter. After the process, compost can be used as fertilizer or disposed of in 

landfills, which contains approximately 8.3 kilograms of nitrogen per dry ton waste and 

2.0 kilograms of phosphorus per dry ton waste [95, 96]. For farmlands that are depleted 

through agricultural practice over multiple years, compost with a large amount of organic 

matter is an ideal soil amendment.  

Furthermore, the two common methods to utilize the energy from the composter are 

self-circulating warm water for heating and converting biogas for electricity generation. 

The generated electricity can be used on-site or sold to the local grid as income. The energy 

consumption during the composting process, to some extent, diminish the advantage of 

composting. A study found that the composting process requires about 0.5-0.75 KWh of 

aeration energy per kg of chemical removed, and about 54.4 megajoules electricity are 

needed for digestion per dry ton of food waste [97]. In addition, the other drawback of 

using composts/digestates as fertilizer is that large amount of nitrogen being in the form of 
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ammonia/ammonium, which is prone to be released to the atmosphere after surface land 

application [94]. More expensive land application methods, such as shallow injection, are 

therefore recommended to reduce ammonia loss to air. Overall, the economic benefit to 

operate a composting plant with full-scale energy recovery facility is unfortunately 

insignificant.  

4.5.1.4  Anaerobic Digestion 

Anaerobic digestion is a fermentation process that breaks down organic matter in the 

absence of oxygen to produce biogas and a digestate. Because of its high energy recovery 

ability and less negative environment impact, anaerobic digestion is considered as the most 

cost-effective green technology among all the biological waste-to-energy treatments, 

which results in less energy consumption, fewer greenhouse gas emissions and few 

pollutants released.  

The process of anaerobic digestion is composed of three phases: hydrolysis, 

fermentation and methanogensis. Zhang’s study calculated the methane yield from 

different mixtures of food waste and manure based on a first-order kinetic model [98]. Two 

prediction models have been developed, indicating a positive linear relationship between 

the food waste and final methane yield in 20 - 30 days, further proved food waste can make 

positive contribution on methane production using an anaerobic batch digester. The content 

of methane can reach 60 - 70% while the content of carbon dioxide reached 30 - 40%, and 

a trace of other gases including hydrogen sulfide. The digestate byproduct can be used as 

an organic fertilizer after certain post-treatment process or as the raw material for further 

composting. 

Comparing to other waste management methods, anaerobic digestion has several merits 

[91]: First, anaerobic digestion is better in treating waste with high wet content than direct 
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combustion and landfilling, and cooking oil is better treated in an anaerobic digestion 

process than through composting process. Second, the emission of CO2 from anaerobic 

digestion tends to be 25 - 67% less than that from composting [99]. Because of all these 

advantages, the anaerobic digestion is employed as the main waste-to-energy biorefinery 

process in HWBRES to simulate the food waste to biogas converted electricity process.  

4.5.2  Biorefinery 

4.5.2.1  Biorefinery and Energy Generation 

By producing multiple products, a biorefinery takes advantage of the various 

components in biomass and their intermediates therefore maximizing the value derived 

from the biomass feedstock – food waste in particular. A biorefinery could, for example, 

produce one or several low-volume, but high-value, chemical or nutraceutical products and 

a low-value, but high-volume liquid transportation fuel such as biogas, at the same time, 

generating electricity and process heat, through combined heat and power (CHP) 

technology, for its own use and perhaps enough for sale of electricity to the local utility. 

The power production helps to lower energy costs and reduce greenhouse gas emissions 

from traditional power plant facilities. Figure 4-18 presents a list of integrated biorefinery 

project locations by the end of 2016, while it was in pilot / demonstration / pioneer scale 

or under design [100].  
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Figure 4-18 Integrated biorefinery project locations 

4.5.2.2  Food Waste to Biogas Generation 

Biogas is a methane rich gas produced by the degradation of organic materials. The 

two main sources for biogas production are organic wastes and harvested biomass. The 

biogas, which is roughly about half methane, and half carbon dioxide, with small 

contributions from other gases such as H2S and NH3, can be used in a number of ways. 

Post-digestion treatment depends upon the selected end use. With minimal post treatment, 

namely some drying and desulphurization, the biogas can be combusted to provide local 

heat or, with more extensive desulphurization, heat and power for use on-site. For use away 

from the generating facility, the gas must be more thoroughly treated to remove corrosives 

and other contaminants. The overall energy balances and economics that dictate which use 

will be most efficient are strongly dependent upon the complete process parameters, 

including feedstock production and usage. 

In this study, food waste generated from household becomes the major feedstock. Since 

the food waste contains 70% moisture, anaerobic digestion is more preferred. Among all 



 

 

70 

biological treatments to convert waste to energy, anaerobic digestion is frequently the most 

cost-effective green technology due to its high energy recovery ability and less negative 

impact on the environment. It is a fermentation process that breaks down organic matter in 

the absence of oxygen to produce biogas and digestate. Based on a lifecycle analysis, 

anaerobic digestion results in less energy consumption, fewer greenhouse gas emissions, 

and fewer pollutants released. Moreover, the process also results in sterilization, as certain 

pathogenic bacteria present in the feedstock are eliminated [101]. By reducing existing 

waste, the process results in a by-product that can be used as an organic fertilizer. 

The simplest use of biogas is for heat and power at the conversion site, domestic supply 

or collocated industry; facilities can provide municipal heat and electricity. Conversion of 

biogas to electricity and heat by internal combustion engines is usually accomplished at 

about 60% efficiency but can range from 45 - 90%. Typically, losses are less for integrated 

biorefinery system. The general anaerobic digestion based food waste to electricity 

generate process is shown in Figure 5-2, and conceptual framework is explained in [94, 

101].   

 

Figure 4-19 Anaerobic digestion for electricity generation from food waste 
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4.5.2.3  Electricity Generation by Anaerobic Digestion 

The key focus of this section is to combine simple and computationally efficient 

anaerobic digestion model into integrated energy system (ESIWES) to estimate the green 

electricity generation from food waste disposal. In the process to determine the technical 

feasibility of biorefinery with food waste as input material, it is assumed the combined 

waste stream is constant across the micro-grid community.  

Biogas is consumed on-site for power generation with the residual electricity sold to 

the grid. Gross energy generated (𝑃bc, measured in kJ/yr.) can be calculated based on the 

volume of methane generated (VdeH,IJ) using the following equation:  

𝑃bc = 𝑉fgH,KL ∗ 35,846 ∗ 𝜃A (32) 

where 𝑉fgH,KL is the volume of methane generated from combined waste in a whole year. 

The net heating energy of methane (35,846 KJ/m3) was obtained from an EIA report [102]. 

With 50 - 60% methane content in biogas, the net heating energy of biogas is approximate 

23 MJ per cubic meters. The total efficiency of power generation (𝜃A) - the sum of electrical 

and thermal efficiencies – ranges from 70% to 80% [10], in this study 𝜃A = 75% with 50% 

methane concentration are used. 

The efficiency of the internal combustion engine (θh) is 35% [10]. Thus, the final 

electricity generation (KWh) can be expressed as following: 

𝐸bc = 𝑃bc ∗ 0.35 ∗ (1/3,600) (33) 

Greenhouse gas emission from transportation to the processing facilities is neglected. 

For simplicity and brevity, the location of the community and power generation facilities 

is assumed as the same.  
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Anaerobic digester is a great source to treat various waste stream with different solid 

composition. Except partial released as heat, most of degraded energy is stored as a form 

as methane molecule, which is one of major advantages in energy recovery. Then the 

biogas can be used to drive the turbine engine to generate electricity. This way, with 

methane as the intermediate product, it is convenient to control the schedule and amount 

of electricity generation.  

As mentioned previously, there are three stages during the anaerobic digestion process, 

including hydrolysis, fermentation and methanogensis, as shown in the chemical equation 

[91]. During the first stage, the degradable organic solids are broken down into 

monosaccharides, amino acids and fatty acids, then the product is converted into short 

chain fatty acids in the fermentation phase. By the activity of methanogens, methane and 

carbon dioxide are produced in the final stage. 
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(34) 

There have been decades of work in mathematical models to describe anaerobic 

digestion of organic waste. Due to its simplicity and compatibility with other energy 

models, Zhang’s first-order kinetics model [98] and its synchronized equations are applied 

to simulate the food waste anaerobic digestion process. The total solids (TS) and volatile 

solids (VS) of the food waste is measured according to standard methods [103]. The TS 

total for food is 25%; and the volatile solids content, especially the degradable VS, is 21%, 

considered as the main source for methane emission from inflow feedstocks [91]. Therefore, 

the estimation of methane is derived from the VS consumption. The chemical composition 

in the current biorefinery model is the same as the one in Li’s thesis. From Table 5-1 [91], 
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VS/TS ratio for food waste is 93%, biodegradable COD concentration is approximately 

291 kg/m, when food waste density is chosen to be 496.57	kg/m,. 

 
Food Waste 

Value Reference Current 

TS (%) 30.90±0.1 Zhang et al.(2007) 25 

VS (%) 26.35 Zhang et al.(2007) 21 

VS/TS ratio 0.853 Zhang et al.(2007) 0.93 

C:N 14.8 Zhang et al.(2007) 21.53 

COD (kg/m3) 238.5±3.8 Zhang et al.(2010) 291 

Density (kg/m3) 496.57 Parry (2013) 496.57 

Moisture content (w/w %) 50-80 Tchbanoglous (1993) 75 

Biogas yields (m&/kg	𝑉𝑆) 0.5 Gebrezgabher (2009) 0.353-0.5 

Heat Content (MJ/kg) 21-25 EIA (2005) 22.36 

Table 4-9 Chemical properties of food waste 

The degradation rate of the feedstock is calculated by Equation (35) and the methane 

yield is assumed to be proportional to the predicted VS decomposition as Equation (36). 

Then the volumetric methane production rate can be derived from kinetic model in 

Equation (39) [104]. The first two differentiation equations are solved to get VSt. The 

maximum specific growth rate of microorganisms 	𝜇n (day-1) is linearly dependent on 

temperature (T) between 20 and 60 oC [104]. Parlom and Speeces also claim that solids 

retention time (SRT) or microbial generation time is inversely related to growth rate and 

substrate utilization rate. The kinetic parameter 𝐾$Q  in Equation (39) is exponentially 

related with influent VS concentration TS (%) [91, 105].  

𝑑𝑉𝑆<
𝑑𝑡 =

−𝑘TS ∗ 𝑉𝑆<
𝐾 + 𝑉𝑆<

	 (35) 

𝑀@;$ = (𝑉𝑆C − 𝑉𝑆<) ∗ 𝛽TS (36) 
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𝜇n = 0.013 ∙ 𝑇 − 0.129				(20 < 𝑇 < 60	℃) (37) 

𝐾$Q = 0.8 + 0.0016 ∙ 𝑒!.!F∙#V&$&MN (38) 

𝑀q =
𝑀@;$ ∙ 𝑉𝑆<C<OP

𝑆𝑅𝑇 [1 −
𝐾$Q

𝑆𝑅𝑇 ∙ 𝜇n − 1 + 𝐾$Q
] 

(39) 

where: 

t = digestion	time	(days) 

VSr = volatile	food	waste	at	digestion	time	t 

K = saturation	constant	(kg/m,) 

ka` = first	order	biodegradation	kinetics	constant	for	food	waste 

βa` = substrate	utilization	rate	for	food	waste 

KRM = kinetic	paramter, dimensionless	 

MhsR = ultimate	methane	yield	(m,) 

Mt = volumetric	methane	production	rate	per	day	(m,/day) 

SRT = solids	retention	time	(days) 

µu = 	The	maximum	specific	growth	rate	of	microorganisms 

The biodegradation kinetics constants for food waste remains the same as the one in 

Zhang’s model, 𝑘TS =	0.118 kg/𝑚, ∙ 𝑑𝑎𝑦. For anaerobic bio-refinery, 𝛽TSis assumed to 

be in the range of 0.353 to 0.5 m,/kg	VS consumed.  

There are also a few limitations that can affect the accuracy of the designed biorefinery 

system. First, the actual waste composition of food waste in the proposed micro-grid 

community is unavailable. The strict assumption about constant waste generation, 

production efficiency and non-transportation method could potentially cause the 

overestimation of the overall economic benefit. Additionally, electricity is taken as the 

primary energy product from the food waste-to-energy process. The heat generation and 
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recycling during the process, on the other side, is not specified in the current simulation 

process.  

4.5.3  Hybrid Wind / Biorefinery / Energy-Storage Based Renewable Energy 
System (HWBRES) 

There have been research studies about the process of bioenergy generation [94, 101, 

106-113], it is mainly fed from agricultural residues, algae, woods, energy crops, MSW, 

vegetative and yard waste, as well as primary product includes bioproducts, renewable 

hydrocarbons and biogas upgraded fuels. To integrate biorefinery into the current study, 

the anaerobic digestion process is simulated from municipal food waste to biogas 

generation and then convert it into electricity.  

The scheme of hybrid wind / biorefinery / energy-storage based renewable energy 

system (HWBRES) is presented below in Figure 4-20. Generally speaking, wind farm and 

biorefinery are both primary power suppliers for community-wise power usage, while 

energy storage plays as secondary resource to maintain power quality. Biorefinery is fed 

from food waste collected from the community, in turns producing and transmitting 

electricity back. Overall it functions as base load and works with wind farm to provide 

power in order to meet general demand.  

 

Figure 4-20 Development of wind farm in HWBRES 
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Under an assumption the food waste is collected from local and fed into biorefinery as 

raw materials. The same two-stage optimization will be applied to minimize CEPP and the 

optimized wind farm layout in HWBRES will be presented. 

4.5.4  Optimal Development of Wind Farm in HWBRES 

4.5.4.1  Investment Costs of HWBRES 

In this proposed HWBRES application, the total costs will include investment costs for 

all three parts: wind farm, energy storage and biorefinery. The cost model for the first two 

parts is presented in section 4.4.3.1. The general cost for the biorefinery system is 

comprised of plant capital cost, operations and maintenance cost, and tipping fee saving 

from MSW recycle, which is shown as:  

 𝐶v"C(𝑊) = (𝑐? + 𝑐n − 𝑠<"A) ∗ 𝑊   (40) 

The first two segment costs relate to the combined MSW disposal in community level, 

where 𝑐?  is the unit capital cost ($/ton) for waste-to-energy recovery, 𝑐n  is the unit 

operations and maintenance cost ($/ton) for recovery, 𝑊  (tons) is the total food waste 

collected from residential community. The last term is tipping fee saving, where in the 

equation (40), 𝑠<"A is the unit tipping fee earned ($/tons).  

The information of candidate biorefinery is summarized from a variety of databases, 

the primary source of data comes from EPA’s database. Population and land area are 

captured based in New Jersey, and the data is collected from US Census Bureau’s 

FactFinder. Generally speaking, the bio waste-to-energy recovery technology is more 

capital intensive then traditional non-renewable electricity generation technology, in this 

analysis Wang’s economic analysis model [91] is used to compute the total cost of 

biorefinery process.  
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The first cost term, total annual capital cost, is calculated as the product of average 

capital cost per ton and the amount of combined waste disposed in the recovery system. 

Based on the micro-grid community with residential buildings, it is assumed the 

biorefinery’s capacity is sufficient and the unit capital cost 𝑐? = $50/ton [114].  

The second cost term, fixed operations and maintenance cost, includes labor salary, 

equipment maintenance and materials, overhead, tax, etc. Using the traditional definition, 

transportation makes up one of the important cost factors; fuel consumption and 

transportation distance are considered key inputs in determining overall operations cost. 

Due to lack of real cost parameters, transportation cost will be combined as a component 

of operations and maintenance cost. According to EIA’s annual report [114], operations 

and maintenance cost of full scale biorefinery ranges from $60 - 100/ton, here in equation 

(40), 𝑐n = $80 is used. 

The tipping fee is the charge levied on waste disposal to offset the cost of landfill site 

maintenance, nowadays the shortage of landfill space is contributing to the escalation in 

tipping fee. For waste-to-energy recovery plants, tipping fee is one of their primary income 

sources, especially when energy sales revenue is not overly high [91]. In the current study, 

tipping fee is considered as cost savings, because the waste-to-energy recovery process 

recycles MSW at the same time, which brings off waste disposal site usage. Under this 

assumption, the total tipping fee saving is positively related to the amount of total waste 

collected from the community. Based on data collected in New Jersey (Dec 2019),  𝑠<"A =

$97.85/ton. 

Extend from equation (25), the total energy system cost is modeled as: 

 𝐶(𝑁,𝑊) = 𝐶ST(𝑁) + 𝐶UV|V. + 𝐶v"C(𝑊)   (41) 
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4.5.4.2  Expected Annual Energy Production 

The expected annual energy production in HWBRES includes three parts: expected 

wind farm energy production and energy storage power function, which were introduced 

in 4.4.3.2, as well as annual biorefinery energy production 𝐸v"C. 

In this application, anaerobic digestion is used as a waste recovery method under 

proposed biorefinery, Zhang’s first kinetics model [98] is applied to predict methane yield 

based on the micro-grid community’s food waste inputs. Specifically, in equations (35) - 

(36): biodegradation kinetics constant 𝑘TS = 0.118 , saturation constant 𝐾 = 0.63,VS 

concentration in food waste 𝑉𝑆! = 21%,  SRT=30,  utilization rate 𝛽TS is in the range of 

0.353 to 0.5, and efficiency of methane to electricity generation 𝛽@ is 35%.  

Extended from equation (30), the updated expected annual energy production equation 

in HWBRES is: 

𝐸(=#,5#,S)=𝐸ST|(=#,5#) + 𝐸UV|V. + 𝐸v"C(𝑊)            (42) 

Where 𝐸v"C(𝑊) = ∑ 𝐸?"C,$(𝑊$),FX
$)* = ∑ MhsR,	$(𝑊$) ∗ 𝛽@,FX

$)* .  

4.5.4.3  Objective Function 

Similar to the one in ESIWES, objective function for minimizing CEPP in HWBRES 

model can be shown as: 

 argmin(.,0)		CEPP =
Annual	Total	Cost

Expected	Power	Production =
C	(N,W)
E(J#,I#,`)

 (43)  

=
N�23 +

1
3 e

6!.!!*89."� + 𝑆$∗ cwx + (cy + cu − sr-z) ∗ W

∑ [∑ ∫ fE ∫ E-,R|(J#,I#)fK(u!)du!
'8
,

,F!
*

.
-)* dθ! + 𝑆$ +MhsR,	R(𝑊$) ∗ βh],FX

R)*

			 

Subject to:                             E`a,R|(J#,I#) + Ey-{,R+ SR 	≥ 	DemandR             

u! ≥ u- 

                                             TX- − X2T ≥ 200, ∀	i ≠ j ∈ {1,2…N} 
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Where 𝑆$ = min�𝐶𝑎𝑝UV, max�0, DemandR − E`a,R|(J#,I#) − E|-{��. 

4.5.5  Computational Study Results 

Extended based on the ESIWES model, the cost and energy function of biorefinery 

have been added into HWBRES’ optimization model, as indicated in equation (43), to 

evaluate the economic benefit of the waste-to-energy recovery process. Generally, the cost 

of electricity generation from food waste in the biorefinery can be impacted by various 

factors such as bio-generator investment and maintenance cost, feedstock quality and 

quantity, technology and location, etc. Concentrating on the renewable energy system and 

optimization model development, total investment costs are simplified as a combination of 

initial capital cost of waste-to-energy recovery process and operations and maintenance 

cost minus tipping fee revenue. Furthermore, all cost and benefits are scaled on an one-

year basis, without considering account inflation and money value across the plant’s life 

span. The unit cost and sale price are drawn from actual markets and prior studies [91].  

Table 4-10(a) shows the total cost and overall electricity recovered from residentials’ 

food waste in the micro-grid community. Based on the data from EPA, total annual food 

waste collected from community containing 10 residential buildings is about 4.32 tons. 

This amount of waste is transferred and inputted into the biorefinery for energy recovery, 

resulting in capital and operations and maintenance related costs $56.16 and electricity 

generation 2,414 kW per year. On the other side with tipping fee $97.85/ton in selected 

counties, the total tipping saving of $42.27 offsets major portion of prementioned cost, 

reducing the overall investment cost to $13.89/ton. Although in reality, the development 

of energy recovery system in particular area also relies on regulatory environment, market 

specification and its waste steam, the trade-off between costs and benefits in proposed 
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waste-to-energy recovery model indicates that the biorefinery is a great option for localized 

communities who are seeking sustainable source for green electricity supply. 

 Capital, O&M costs 
($/ton) 

Tipping saving  
($/ton) 

Total investment 
cost ($/ton) 

power generation  
(kW year) 

WTE recovery 130 97.85 32.15 2,414 

(a) Economic benefit of biorefinery 

 GA based 
Two-stage Optimization 

 Stage 1 
Genetic algorithm 

Stage 2 
Positive basis pattern search 

Number of turbines 100 100 
Expected power (kW year) 171,213 173,610 

CEPP (k$/kW year) 0.494 0.487 

(b) Optimization results  

Table 4-10 Computational results in HWBRES 

With biorefinery and energy storage serving as baseline suppliers for electricity 

consumption, the GA-based two stage optimization algorithm is implemented to locate the 

best wind farm layout scenario for the objective of minimizing CEPP. According to the 

layout in Figure 4-22, during the GA-based first stage, turbines are spread quite uniformly 

among the wind farm except in couple central zones. The scatter around those spots were 

likely due to the aggravated wake interaction among turbines caused by frequent wind 

direction (162° - 267° as shown in Figure 4-10). During the second stage, turbines are 

allowed to continuously move around, in this case the line-up of turbines scatters to 

alleviate the wake interactions, by doing so power generation is maximally improved.  

The optimization results are listed in Table 4-10(b). Comparing to the results from 

ESIWES in Table 4-8, with the support of energy recovered from biorefinery, the total 

number of turbines proposed decreased from 105 to 100. By the end of stage two, even 

with 5 turbines less the expected total power production is fairly maintained, at the same 
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time, the objective value CEPP is improved from ESIWES’ 0.493 to 0.487. It proves 

adding a biorefinery to the renewable energy system provides better support to the micro-

grid community with less unit cost per production. 

  
(a) Layout from GA-based first stage (b) Layout from PSO-based second stage 

Figure 4-21 Two-stage optimal layouts for wind farm in HWBRES 

In the current technology, the development of biorefinery is rapidly expanding in the 

states, which consists the sustainable exploitation of biomass and transfers them into a wide 

range of value-added products, bio-energy is only one of them. Taking advantages of its 

additional capacity and high efficiency in use of energy and materials, it is wise to extend 

single stream biorefinery into multi-product processes, to synthesize intermediates 

(carbohydrates, proteins) into platform bio-chemicals such as Polylactic Acid or ethanol, 

at the same time maintain bio-energy production. As a part of revenue to alleviate the cost 

of biorefinery investment, these bio-chemicals are ready to be commercialized and the 

digestate to be sold as fertilizer, both productions are expected to increase substantially in 

the coming years with an expanding market share. On the other side, due to its large 

capacity, significant capital investment and utility expense, a biorefinery is commonly 

suggested to work with high volume of raw inputs, therefore based on the MSW collection, 

the energy support it provides can easily go beyond city level. With the stimulation from 
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the increasing production of organic wastes and reduced landfill capacity, the future 

research can scale up the development of wind farm and integrated it into HWBRES for 

city-wise energy generation.     
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Chapter 5   ADVANCED OPERATION SCHEDULING AND 
MAINTENANCE POLICY IN WIND FARM 

With the development of wind energy generation system, wind farm monitor and 

system control technology have also been advanced. The old traditional manual-

inspection-based management stays in the past, many current wind farms establish the 

control center, real-time monitoring turbine operation and status through sensor, and 

developing plan to dispatch manual inspection when necessary.  

Nowadays, the well-operating turbines are not always on. There are several reasons for 

turning off operating turbines, such as curtailment, maintenance, power requirement, 

complain from nearby neighborhoods (very rare), etc. The curtailment happens when 

excess energy exists in the power system, wind speed at the turbines is not strong enough, 

or a much larger swath of wake effect due to wind direction change that causes speed 

disruption and rotor harm by turbulence. In such cases, the control room sends out the 

signal to turbine sensors and turn offs the turbine in the short-term. Additionally, when a 

fault or degradation related to the major components is detected, or there is an on-going 

maintenance scheduled, the system is shutting down for further inspection. The shutting 

down due to maintenance is much more common than the others.  

5.1  Advanced Scheduling and Maintenance Policy for HWBRES 

Inspired by current technology behind the wind farm control center, scheduling models 

are further explored to evaluate wind farm performance and advanced maintenance policy 

on daily turbine operation. There have been some researches in the area of wind farm 

production and maintenance scheduling, as reviewed in section 2.7. The optimal 

maintenance policy and optimal wind farm development plan are inter-dependent. 

Therefore, to optimize the maintenance schedule in this particular HWBRES energy 



 

 

84 

system, first, the wind farm has to be optimized at its most productive layout, and at the 

same time, satisfy the electricity demand of the local residential-based micro-grid 

community. The optimization in section 4.5 suggests the layout design of a wind farm with 

100 turbines, for the purpose of assignment maintenance schedules each turbine is labeled 

with a numeric index, as shown in Figure 5.1. 

 
Figure 5-1 Wind turbine placement with labels 

Next with enough power to meet the average daily demand, an advanced ON/OFF 

operation schedule is designed to save energy from excess production while maintaining 

the reliability of each turbine. Two simplified maintenance policies are considered in this 

case: age-based preventive maintenance and opportunistic maintenance. It is decided the 

wind farm is under inspection and maintenance periodically. Meanwhile under an 

advanced operation schedule, if there are enough switched-off turbines, a same day 

opportunistic maintenance is assigned by control center, and crews will be dispatched to 
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perform inspection and maintenance to those down turbines that have not been recently 

inspected.  

 

Figure 5-2 Operation and maintenance scheduling 

Figure 5-2 represents the flow chart for proposed operations and maintenance 

scheduling. Given wind speed and directional data, information such as the wake effect 

and captured speed (thus energy generation) at every single turbine is evaluated. It is 

designated to be switched off if the wake deficit ratio at the turbine point is greater than 

40% (comparing to original wind speed), or speed captured is less than 4 m/s. The periodic 

maintenance cycle for a single turbine is defined as 36 days, with 10 turbines maintained 

during each scheduled day. There is a 15-turbine daily maintenance capacity per crew team. 

If more than 15 turbines are switched off on particular non-periodic maintenance day, a 

same-day inspection will be scheduled to the ones that have not been inspected in 30 days. 

Compute Wake Deficit Ratio 
Vel_def (%) / turbine i

Vel_def > 40%
 or

U < 4m/s

Select turbine under 
evaluation

YES

Turn off turbine i

YES

Tally S +1
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maintenance for s turbines 
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Previous 
Inspection date 
interval T <30
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Previous 
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END

NO
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With the possibility of more than 15 down turbines in the candidate pool, the top 15 

turbines will be selected based on distances and captured wind speed (lowest). If there are 

less than 15 down turbines during a particular day but the farm is scheduled to perform 

periodic maintenance, the inspection and maintenance will be proceeded to the assigned 

turbines as scheduled, as well as the down turbines that have not been inspected in 30 days, 

within daily capacity.  

The completed periodic maintenance schedules for the wind farm is addressed in 

Appendix 7.1. As previous mentioned, the maintenance cycle is defined as 36 days with 

10 turbines scheduled during each inspection day. Additionally, based on wind speed and 

direction conditions, there are 35 days having turbine switched off due to significant wake 

effect, as shown in Table 5-1, 15 of which are non-periodic days with more than 15 down 

turbines, thus the opportunity maintenance is scheduled. With all decision criteria taken 

into consideration, the updated maintenance schedules are analyzed with daily capacity 15 

turbines, the complete list is addressed in Appendix 7.2.   

Days 4 18 85 86 88 91 98 106 110 

Total TB Off 15 15 15 15 15 1 15 15 3 
 

Days 120 121 128 131 139 148 151 156 167 

Total TB Off 15 8 15 15 10 15 13 3 15 
 

Days 181 190 206 214 222 228 229 247 252 

Total TB Off 15 15 5 9 15 3 15 15 6 
 

Days 270 273 278 287 291 306 330 331  

Total TB Off 10 15 2 15 4 15 1 4  

Table 5-1 Wind farm opportunistic maintenance dates 
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5.2  Updated Levelized Costs Model to Minimize Levelized Cost per Expected 
Power Production (LCEPP) 

Based on advanced scheduling and maintenance policy mentioned in section 5.1, a new 

optimization model will be developed including wind farm maintenance management costs 

to minimize Levelized Cost per Expected Power Production (LCEPP). Generally speaking, 

all individual parts in LCEPP are considered based upon daily operation, summing up 

through the year to get annual objective values. The updated optimization model is shown 

below in equation (44).  

argmin(.O,0)		LCEPP =
Annual	Total	Cost

Expected	Power	Production =
∑ C	(NR,W),FX
R)*

∑ E(.O,J#,I#,`)
,FX
R)*

 (44) 
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Subject to:                             E`a,R|(J#,I#) + Ey-{,R+ SR 	≥ 	DemandR             

100 ≥ 𝑁$ ≥ 85 

𝑢! ≥ 𝑢" 

                                     T𝑋" − 𝑋%T ≥ 200, ∀	𝑖 ≠ 𝑗 ∈ {1,2…𝑁} 

Where 𝑆$ = min�𝐶𝑎𝑝UV, max�0, 𝐷𝑒𝑚𝑎𝑛𝑑$ − 𝐸ST,$|(=#,5#) − E|-{��. 

The wind farm maintenance cost 𝑐:n = $1,037 per turbine [74]. In regards to the wind 

farm cost, the main difference between the newly developed LCOE model and previous 

cost model is the use of variable 𝑁$ - the number of turbine in operation at given day d, 

instead of a general variable – total number of turbines N. Due to wind uncertainty, 𝑁$ 

varies by day and ranges from 100 to 85 with 15 turbines maintained maximally.  

On the other side, the expected energy production shifts on daily basis as well. It is not 

only because of wind fluctuantions, but also from the switched-off turbines under newly 
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developed operations schedule. The bottom line is, the daily power production shall always 

satisfy the demand of the community. With energy storage and biorefinery provided 

baseline power support, the occasion of turbine switching off should not have significant 

impact on the overall power generation.   

Wind Farm Storage & Bio Total 

Invest. Cost 
(k$) 

Maint. Cost 
(k$) 

Supply Cost  
(k$) 

LCOE 
(k$) 

EPP 
(kW year) 

LCEPP 
(k$/kW year) 

64.711 1,110.60 85,447.59 86,622.90 173,593 0.499 

Table 5-2 Updated objective values 

Based on the advanced scheduling and maintenance policy developed in section 5.1, a 

wind farm maintenance cost model can be developed. Formulated into LCEPP, objective 

model is updated according to equation (44), and the results are exhibited above in Table 

5-2. Comparing to the original HWBRES wind farm cost model with 100 turbines in 

section 4.5, the updated investment cost reduces slightly from $66,667 to $64,711 due to 

occasional turbine switch-offs. At the meantime, the expected power production (EPP) is 

maintained well, only 17 kW less than the production with no down turbines. The annual 

maintenance cost is $1,110,600 for 115 days, with slightly elevated energy storage cost 

due to extra power support. The levelized HWBRES system cost LCEPP reaches $499 per 

kW year, which is approximately 5.7 cents per kWh after breaking down. This price is 

significantly lower than the current national average electricity price - 15.72 cents per kWh. 

Combined with other factors such as clean and renewable energy sources, grid stabilization, 

waste reduction, self-sustainable, one can draw the conclusion that based on the current 

economy, it is more advantageous to implement proposed integrated renewable energy 

system than purchasing from the grid as the energy support to small community.  
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Chapter 6   CONCLUSIONS 

In conclusion, this research presents stochastic models and optimization methods for 

optimal development of wind farms in various applications. A new two-stage optimization 

framework is developed to optimize wind farm layout, and at the same time, satisfy the 

cost per expected energy production. In the first stage of optimization, a wind farm is 

predefined with a number of candidate locations. A binary variable is associated with each 

location to determine whether a turbine is installed at given point. The first stage of global 

search optimization process finds the optimal number of turbines needed and their 

corresponding locations. In the second stage of optimization, binary solutions from 

previous stage are converted into continuous decision variables before being introduced in 

a local search algorithm to further improve the turbine placement. By opting out of the 

assumption such as predefined turbine total or locations as did in previous literature, it 

thoroughly evaluates possible scenarios until the best layout design is located. As a general 

framework, this model can be implemented on logistic, transportation and facility 

planning-based combinatorial problems, where a large number of decision variables 

included. In addition, the heuristic algorithm is developed and applied in the first stage of 

the proposed optimization framework. It simplifies the searching process by branching out 

using current existing objective information at each iteration; this way it bypasses the 

complex function evaluations in solving combinatorial problems. 

Secondly, stochastic wind speed and direction are considered in this study. With real 

data captured in the U.S., wind uncertainty is modeled by probabilistic models: lognormal 

distributions for wind direction and Weibull distributions for wind speed. Based on speed 

variation, day-parting scenarios are introduced to divide each day into subgroups before 
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fitting into distributions. By implementing ‘real data’ based wind model, it reflects the real 

time pattern shifts by scenarios, which is more practical in evaluating the intermittency of 

wind energy generation. 

Third, the optimization model is highly application related. In this research, the wind 

farm project broadly covers five major topics. Specifically, regular shaped wind farm 

design can be placed where flat plain or ranch is used for site. Arbitrarily shaped wind farm 

design is suitable for more realistic cases, such as located on the ridgeline of mountain, or 

surrounded by existed structure and restriction zones. The offshore wind farm layout 

development considers ocean / shoreline conditions into wind farm model, at the same time, 

adding cable cost into investment cost model. This innovated research helps planning the 

site selection for the wind farm, assessing the viability of arbitrary-shaped offshore wind 

farm layout design and demonstrating the advantages in offshore wind energy generation. 

 The fourth application is the hybrid wind / energy storage renewable energy system in 

the micro-grid community. By the backup of Lithium-ion battery-based energy storage, the 

wind farm is designed as primary electricity supplier to meet the demand of residential 

building-based community, in such a way that the CEPP is minimized. The optimal design 

of wind farm layout in ESIWES is illustrated to maintain 100% service level and satisfy 

the fluctuated demand. In addition to using energy storage as a secondary energy support 

to the local community, the fifth application expands the renewable energy system 

HWBRES to include biorefinery – the waste-to-energy recovery pipeline. This work is 

inspired by the increase of public awareness towards environmental sustainability. With 

biorefineries, the HWBRES system is developed to generate more sustainable energy, and 

at the same time, tackle environmental risk problems caused by waste. By adding 
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biorefinery to convert local food waste to energy as the baseline electricity support to the 

community, the results from HWBRES indicate alleviated unit cost per production with 

less turbine installations.   

Last but not the least, a computational tool for advanced scheduling and maintenance 

policy is developed on top of the HWBRES system, in which the turbine operation 

scheduling and periodic inspection are both taken into consideration to save energy from 

excess production while maintaining the reliability of each turbine. In addition, 

opportunistic maintenance is scheduled occasionally for the cluster of switched-off 

turbines, by implementing this model it ensures the reliable energy production with limited 

maintenance costs.  

In the future research, it is of great interest to expand the HWBRES system to support 

larger populations. Generally, because of its capacity and significant capital investment, 

biorefinery is suggested to work with heavy volume of raw materials, thus the energy 

support it provides can easily go beyond city level. With the stimulation from the increasing 

production of organic wastes and reduced landfill capacity, the future research can scale 

up the size of biorefinery as well as wind farm, and integrated it into HWBRES for city-

wise energy generation.     
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Chapter 7   APPENDIX  

7.1  Periodic Inspection and Maintenance Dates of Turbines 

Turbine 
number Periodic Inspection and Maintenance days 

1 1 37 73 109 145 181 217 253 289 325 
2 1 37 73 109 145 181 217 253 289 325 
3 1 37 73 109 145 181 217 253 289 325 
4 1 37 73 109 145 181 217 253 289 325 
5 1 37 73 109 145 181 217 253 289 325 
6 1 37 73 109 145 181 217 253 289 325 
7 1 37 73 109 145 181 217 253 289 325 
8 1 37 73 109 145 181 217 253 289 325 
9 1 37 73 109 145 181 217 253 289 325 
10 1 37 73 109 145 181 217 253 289 325 
11 2 38 74 110 146 182 218 254 290 326 
12 2 38 74 110 146 182 218 254 290 326 
13 2 38 74 110 146 182 218 254 290 326 
14 2 38 74 110 146 182 218 254 290 326 
15 2 38 74 110 146 182 218 254 290 326 
16 2 38 74 110 146 182 218 254 290 326 
17 2 38 74 110 146 182 218 254 290 326 
18 2 38 74 110 146 182 218 254 290 326 
19 2 38 74 110 146 182 218 254 290 326 
20 2 38 74 110 146 182 218 254 290 326 
21 3 39 75 111 147 183 219 255 291 327 
22 3 39 75 111 147 183 219 255 291 327 
23 3 39 75 111 147 183 219 255 291 327 
24 3 39 75 111 147 183 219 255 291 327 
25 3 39 75 111 147 183 219 255 291 327 
26 3 39 75 111 147 183 219 255 291 327 
27 3 39 75 111 147 183 219 255 291 327 
28 3 39 75 111 147 183 219 255 291 327 
29 3 39 75 111 147 183 219 255 291 327 
30 3 39 75 111 147 183 219 255 291 327 
31 4 40 76 112 148 184 220 256 292 328 
32 4 40 76 112 148 184 220 256 292 328 
33 4 40 76 112 148 184 220 256 292 328 
34 4 40 76 112 148 184 220 256 292 328 
35 4 40 76 112 148 184 220 256 292 328 
36 4 40 76 112 148 184 220 256 292 328 
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37 4 40 76 112 148 184 220 256 292 328 
38 4 40 76 112 148 184 220 256 292 328 
39 4 40 76 112 148 184 220 256 292 328 
40 4 40 76 112 148 184 220 256 292 328 
41 5 41 77 113 149 185 221 257 293 329 
42 5 41 77 113 149 185 221 257 293 329 
43 5 41 77 113 149 185 221 257 293 329 
44 5 41 77 113 149 185 221 257 293 329 
45 5 41 77 113 149 185 221 257 293 329 
46 5 41 77 113 149 185 221 257 293 329 
47 5 41 77 113 149 185 221 257 293 329 
48 5 41 77 113 149 185 221 257 293 329 
49 5 41 77 113 149 185 221 257 293 329 
50 5 41 77 113 149 185 221 257 293 329 
51 6 42 78 114 150 186 222 258 294 330 
52 6 42 78 114 150 186 222 258 294 330 
53 6 42 78 114 150 186 222 258 294 330 
54 6 42 78 114 150 186 222 258 294 330 
55 6 42 78 114 150 186 222 258 294 330 
56 6 42 78 114 150 186 222 258 294 330 
57 6 42 78 114 150 186 222 258 294 330 
58 6 42 78 114 150 186 222 258 294 330 
59 6 42 78 114 150 186 222 258 294 330 
60 6 42 78 114 150 186 222 258 294 330 
61 7 43 79 115 151 187 223 259 295 331 
62 7 43 79 115 151 187 223 259 295 331 
63 7 43 79 115 151 187 223 259 295 331 
64 7 43 79 115 151 187 223 259 295 331 
65 7 43 79 115 151 187 223 259 295 331 
66 7 43 79 115 151 187 223 259 295 331 
67 7 43 79 115 151 187 223 259 295 331 
68 7 43 79 115 151 187 223 259 295 331 
69 7 43 79 115 151 187 223 259 295 331 
70 7 43 79 115 151 187 223 259 295 331 
71 8 44 80 116 152 188 224 260 296 332 
72 8 44 80 116 152 188 224 260 296 332 
73 8 44 80 116 152 188 224 260 296 332 
74 8 44 80 116 152 188 224 260 296 332 
75 8 44 80 116 152 188 224 260 296 332 
76 8 44 80 116 152 188 224 260 296 332 
77 8 44 80 116 152 188 224 260 296 332 
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78 8 44 80 116 152 188 224 260 296 332 
79 8 44 80 116 152 188 224 260 296 332 
80 8 44 80 116 152 188 224 260 296 332 
81 9 45 81 117 153 189 225 261 297 333 
82 9 45 81 117 153 189 225 261 297 333 
83 9 45 81 117 153 189 225 261 297 333 
84 9 45 81 117 153 189 225 261 297 333 
85 9 45 81 117 153 189 225 261 297 333 
86 9 45 81 117 153 189 225 261 297 333 
87 9 45 81 117 153 189 225 261 297 333 
88 9 45 81 117 153 189 225 261 297 333 
89 9 45 81 117 153 189 225 261 297 333 
90 9 45 81 117 153 189 225 261 297 333 
91 10 46 82 118 154 190 226 262 298 334 
92 10 46 82 118 154 190 226 262 298 334 
93 10 46 82 118 154 190 226 262 298 334 
94 10 46 82 118 154 190 226 262 298 334 
95 10 46 82 118 154 190 226 262 298 334 
96 10 46 82 118 154 190 226 262 298 334 
97 10 46 82 118 154 190 226 262 298 334 
98 10 46 82 118 154 190 226 262 298 334 
99 10 46 82 118 154 190 226 262 298 334 
100 10 46 82 118 154 190 226 262 298 334 
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7.2   Advanced Inspection and Maintenance Scheduled of Turbines 

Turbine 
number Inspection and maintenance days 

1 1 37 73 109 145 181 217 253 287 325 

2 1 37 73 106 145 181 217 253 289 325 

3 1 37 73 109 145 181 217 253 289 325 

4 1 37 73 109 145 181 217 253 289 325 

5 1 37 73 106 145 181 217 253 289 325 

6 1 37 73 106 145 181 217 253 289 325 

7 1 37 73 109 145 181 217 253 289 325 

8 1 37 73 109 145 181 217 253 287 325 

9 1 37 73 109 145 181 217 253 289 325 

10 1 37 73 106 145 181 217 253 289 325 

11 2 38 74 106 146 182 218 254 287 326 

12 2 38 74 110 146 182 218 254 290 326 

13 2 38 74 110 146 182 218 254 290 326 

14 2 38 74 110 146 182 218 254 290 326 

15 2 38 74 106 146 182 218 254 290 326 

16 2 38 74 110 146 182 218 254 290 326 

17 2 38 74 106 146 182 218 254 290 326 

18 2 38 74 106 146 182 218 254 287 326 

19 2 38 74 110 146 181 218 254 290 326 

20 2 38 74 110 146 182 218 254 290 326 

21 3 39 75 106 147 183 219 255 291 327 

22 3 39 75 106 147 183 219 255 287 327 

23 3 39 75 106 147 183 219 255 291 327 

24 3 39 75 106 147 181 219 255 291 327 

25 3 39 75 106 147 183 219 255 291 327 

26 3 39 75 106 147 183 219 255 287 327 

27 3 39 75 106 147 183 219 255 287 327 

28 3 39 75 111 147 183 219 255 287 327 

29 3 39 75 111 147 183 219 255 287 327 
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30 3 39 75 111 147 183 219 255 287 327 

31 4 40 76 112 148 184 220 256 287 328 

32 4 40 76 112 148 184 220 256 287 328 

33 4 40 76 112 148 184 220 256 287 328 

34 4 40 76 112 148 181 220 256 287 328 

35 4 40 76 112 148 184 220 256 287 328 

36 4 40 76 112 148 184 220 256 292 328 

37 4 40 76 112 148 184 220 256 292 328 

38 4 40 76 112 148 184 220 256 292 328 

39 4 40 76 112 148 184 220 256 292 328 

40 4 40 76 112 148 184 220 256 292 328 

41 5 41 77 113 149 185 221 257 293 329 

42 5 41 77 113 149 185 221 257 293 329 

43 5 41 77 113 149 185 221 257 293 329 

44 5 41 77 113 149 185 221 257 293 329 

45 4 41 77 113 148 185 221 257 293 329 

46 5 41 77 113 149 185 221 257 293 329 

47 5 41 77 113 149 181 221 257 291 329 

48 5 41 77 113 149 185 221 257 293 329 

49 5 41 77 113 149 185 221 257 293 329 

50 5 41 77 113 149 185 221 257 293 329 

51 6 42 78 114 150 186 222 258 294 330 

52 6 42 78 114 150 181 222 258 294 330 

53 6 42 78 114 150 186 222 258 294 330 

54 6 42 78 114 148 186 222 258 294 330 

55 6 42 78 114 150 186 222 258 294 330 

56 6 42 78 114 150 186 222 258 294 330 

57 6 42 78 114 150 186 222 258 294 330 

58 6 42 78 114 150 186 222 258 294 330 

59 6 42 78 114 150 186 222 258 294 330 

60 4 42 78 114 150 186 222 258 291 330 

61 7 43 79 115 151 187 223 259 295 331 
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62 7 43 79 115 151 187 223 259 295 331 

63 7 43 79 115 148 187 223 259 295 331 

64 7 43 79 110 151 187 223 259 295 331 

65 7 43 79 115 151 187 223 259 295 331 

66 4 43 79 115 151 187 223 259 295 331 

67 7 43 79 115 148 187 223 259 291 331 

68 4 43 79 115 151 187 222 259 295 331 

69 7 43 79 115 151 187 223 259 295 331 

70 4 43 79 115 151 187 223 259 295 331 

71 8 44 80 116 152 188 224 260 296 332 

72 8 44 80 116 152 188 224 260 296 332 

73 8 44 80 116 152 188 224 260 296 332 

74 8 44 80 116 152 188 224 260 296 332 

75 8 44 80 116 152 188 224 260 296 332 

76 8 44 80 116 152 188 222 260 296 332 

77 8 44 80 116 152 188 224 260 296 332 

78 8 44 80 116 152 188 224 260 296 332 

79 8 44 80 116 152 188 224 260 296 332 

80 8 44 80 116 152 188 222 260 296 332 

81 9 45 81 117 148 189 225 261 297 333 

82 9 45 81 117 153 189 222 261 297 331 

83 9 45 81 117 153 189 225 261 297 333 

84 9 45 81 117 153 189 225 261 297 333 

85 9 45 81 117 153 189 222 261 297 333 

86 9 45 81 117 153 189 225 261 297 333 

87 9 45 81 117 153 189 225 261 297 333 

88 9 45 81 117 153 189 225 261 297 333 

89 9 45 81 117 153 189 225 261 297 333 

90 9 45 81 117 151 189 225 261 297 333 

91 10 46 82 118 154 190 226 262 298 334 

92 10 46 82 118 154 190 226 262 298 334 

93 10 46 82 118 154 190 226 262 298 334 
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94 10 46 82 118 154 190 226 262 298 334 

95 10 46 82 118 154 190 226 262 298 334 

96 10 46 82 118 154 190 226 262 298 334 

97 10 46 82 118 154 190 226 262 298 334 

98 10 46 82 118 154 190 226 262 298 334 

99 10 46 82 118 154 190 226 262 298 334 

100 10 46 82 118 154 190 226 262 298 334 
  



 

 

99 

Chapter 8   BIBLIOGRAPHY 

[1] "Renewable 2016 - Global Status Report," Renewable Energy Policy Network, 
2016.  

[2] Fossil fuel energy consumption [Online] Available: 
http://data.worldbank.org/indicator/EG.USE.COMM.FO.ZS 

[3] Benefits of Renewable Energy Use [Online] Available: 
http://www.ucsusa.org/clean-energy/renewable-energy/public-benefits-of-
renewable-power 

[4] "New Record in Worldwide Wind Installations," World Wind Energy Association, 
2015.  

[5] "Annual Wind Industry Report, Year Ending 2013," American Wind Energy 
Association, 2014.  

[6] "Renewable Energy Technologies - Wind Power," International Renewable Energy 
Agency, 2012.  

[7] S. P. Breton and G. Moe, "Status, plans and technologies for offshore wind turbines 
in Europe and North America," Renewable Energy, vol. 34, no. 3, pp. 646-654, 
2009. 

[8] "A Framework for Offshore Wind Energy Development in the United States," 
Massachusetts Technology Collaborative, US Department of Energy, GE, 2005.  

[9] "Technology White Paper On Wind Energy Potential On The U.S.. United States," 
Department of Interior, 2006.  

[10] G. Mosetti, C. Poloni, and B. Diviacco, "Optimization of wind turbine positioning 
in large windfarms by means of a genetic algorithm," Journal of Wind Engineering 
and Industrial Aerodynamics, Article vol. 51, no. 1, pp. 105-116, 1994. 

[11] S. A. Grady, M. Y. Hussaini, and M. M. Abdullah, "Placement of wind turbines 
using genetic algorithms," Renewable Energy, Article vol. 30, no. 2, pp. 259-270, 
2005. 

[12] O. Aytun, U. and B. A. Norman, "Heuristic methods for wind energy conversion 
system positioning," Electric Power Systems Research, Article vol. 70, no. 3, pp. 
179-185, 2004. 

[13] X. Chen and R. Agarwal, "Optimal placement of horizontal - and vertical - axis 
wind turbines in a wind farm for maximum power generation using a genetic 
algorithm," International Journal of Energy & Environment, Article vol. 3, no. 6, 
pp. 927-938, 2012. 

[14] Y. Chen, H. Li, K. Jin, and Q. Song, "Wind farm layout optimization using genetic 
algorithm with different hub height wind turbines," Energy Conversion and 
Management, vol. 70, pp. 56-65, 2013. 

[15]  T. G. do Couto, B. Farias, A. C. G. Diniz, and M. V. G. de Morais, "Optimization 
of Wind Farm Layout Using Genetic Algorithm," in 10th World Congress on 
Structural and Multidisciplinary Optimization, 2013.  

[16] A. Emami and P. Noghreh, "New approach on optimization in placement of wind 
turbines within wind farm by genetic algorithms," Renewable Energy, Article vol. 
35, no. 7, pp. 1559-1564, 2010. 



 

 

100 

[17]  C. M. Ituarte-Villarreal and J. F. Espiritu, "Optimization of wind turbine placement 
using a viral based optimization algorithm," in Procedia Computer Science, 2011, 
vol. 6, pp. 469-474.  

[18] A. Kusiak and Z. Song, "Design of wind farm layout for maximum wind energy 
capture," Renewable Energy, vol. 35, no. 3, pp. 685-694, 2010. 

[19]  X. Li, J. Wang, and X. Zhang, "Equilateral-triangle mesh for optimal micrositing 
of wind farms," in 14th WSEAS international conference on computers, 2010, pp. 
187-95.  

[20] G. Marmidis, S. Lazarou, and E. Pyrgioti, "Optimal placement of wind turbines in 
a wind park using Monte Carlo simulation," Renewable Energy, Article vol. 33, no. 
7, pp. 1455-1460, 2008. 

[21] A. Mittal, "Optimization of the layout of large wind farms using a genetic 
algorithm," Case Western Reserve University, 2010.  

[22]  C. Wan, J. Wang, G. Yang, X. Li, and X. Zhang, "Optimal micro-siting of wind 
turbines by genetic algorithms based on improved wind and turbine models," in 
Proceedings of the IEEE Conference on Decision and Control, 2009, pp. 5092-
5096.  

[23]  C. Wan, J. Wang, G. Yang, and X. Zhang, "Optimal siting of wind turbines using 
real-coded genetic algorithms," in Proceedings of European wind energy 
association conference and exhibition, 2009.  

[24] C. Wan, J. Wang, G. Yang, H. J. Gu, and X. Zhang, "Wind farm micro-siting by 
Gaussian particle swarm optimization with local search strategy," Renewable 
Energy, vol. 48, pp. 276-286, 2012. 

[25] T. Ishihara, A. Yamaguchi, and Y. Fujino, "Development of a new wake model 
based on a wind tunnel experiment," Global Wind Power, 2004. 

[26] S. Frandsen, "On the wind speed reduction in the center of large clusters of wind 
turbines," Journal of Wind Engineering and Industrial Aerodynamics, Article vol. 
39, no. 1-3, pp. 251-265, 1992. 

[27] J. S. González, J. R. Santos, M. B. Payan, A. G. Gonzalez Rodriguez, and J. C. 
Mora, "Optimization of wind farm turbines layout using an evolutive algorithm," 
Renewable Energy, Article vol. 35, no. 8, pp. 1671-1681, 2010. 

[28] M. Abbes and J. Belhadj, "Wind resource estimation and wind park design in El-
Kef region, Tunisia," Energy, Article vol. 40, no. 1, pp. 348-357, 2012. 

[29] N. J. Choi, S. Hyun Nam, J. Hyun Jeong, and K. Chun Kim, "Numerical study on 
the horizontal axis turbines arrangement in a wind farm: Effect of separation 
distance on the turbine aerodynamic power output," Journal of Wind Engineering 
and Industrial Aerodynamics, Article vol. 117, pp. 11-17, 2013. 

[30] A. Crespo, J. Hernandez, and S. Frandsen, "Survey of modelling methods for wind 
turbine wakes and wind farms," Wind Energy, vol. 2, no. 1, pp. 1-24, 1999. 

[31] A. Makridis and J. Chick, "Validation of a CFD model of wind turbine wakes with 
terrain effects," Journal of Wind Engineering and Industrial Aerodynamics, Article 
vol. 123, pp. 12-29, 2013. 

[32] M. Rezaei Mirghaed and R. Roshandel, "Site specific optimization of wind turbines 
energy cost: Iterative approach," Energy Conversion and Management, Article vol. 
73, pp. 167-175, 2013. 



 

 

101 

[33] B. Sanderse, S. Pijl, and B. Koren, "Review of computational fluid dynamics for 
wind turbine wake aerodynamics," Wind Energy, vol. 14, no. 7, pp. 799-819, 2011. 

[34] M. X. Song, K. Chen, Z. Y. He, and X. Zhang, "Bionic optimization for micro-
siting of wind farm on complex terrain," Renewable Energy, Article vol. 50, pp. 
551-557, 2013. 

[35] M. X. Song, K. Chen, Z. Y. He, and X. Zhang, "Optimization of wind farm micro-
siting for complex terrain using greedy algorithm," Energy, Article vol. 67, pp. 454-
459, 2014. 

[36] N. O. Jensen, "A note on wind generator interaction," 1983. 
[37] B. Pérez, R. Mínguez, and R. Guanche, "Offshore wind farm layout optimization 

using mathematical programming techniques," Renewable Energy, vol. 53, pp. 
389-399, 2013. 

[38] Y.-K. Wu, C.-Y. Lee, C.-R. Chen, K.-W. Hsu, and T. Huang-Tien, "Optimization 
of the Wind Turbine Layout and transimission system planning for a large-scale 
offshore wind farm by AI technology," IEEE Transactions On Industry 
Applications, vol. 50, no. 3, pp. 2071-2080, 2014. 

[39] P. Hou, W. Hu, M. Soltani, and Z. Chen, "Optimized Placement of Wind Turbines 
in Large-Scale Offshore Wind Farm Using Particle Swarm Optimization 
Algorithm," IEEE Transactions On Sustainable Energy, vol. 6, no. 4, pp. 1272-
1282, 2015. 

[40] S. F. Rodrigues, R. Teixeira Pinto, M. Soleimanzadeh, P. A. N. Bosman, and P. 
Bauer, "Wake losses optimization of offshore wind farms with moveable floating 
wind turbines," Energy Conversion and Management, vol. 89, pp. 933-941, 2015. 

[41] X. Gao, H. Yang, L. Lin, and P. Koo, "Wind turbine layout optimization using 
multi-population genetic algorithm and a case study in Hong Kong offshore," 
Journal of Wind Engineering and Industrial Aerodynamics, vol. 139, pp. 89-99, 
2015. 

[42] L. Amaral and R. Castro, "Offshore wind farm layout optimization regarding wake 
effects and electrical losses," Engineering Applications of Artificial Intelligence, 
vol. 60, pp. 26-34, 2017. 

[43] P. Fuglsang and K. Thomsen, Cost optimization of wind turbines for large-scale 
offshore wind farms. 1998. 

[44]  J. Serrano González, M. Burgos Payán, and J. M. Riquelme Santos, "An improved 
evolutive algorithm for large offshore wind farm optimum turbines layout," in 2011 
IEEE Trondheim PowerTech, 2011, pp. 1-6.  

[45]  P. D. Hopewell, F. Castro, and D. I. Bailey, "Optimising the Design of Offshore 
Wind Farm Collection Networks," in Proceedings of the 41st International 
Universities Power Engineering Conference, 2006, vol. 1, pp. 84-88.  

[46] M. A. Lackner and C. N. Elkinton, "An analytical framework for offshore wind 
farm layout optimization," Wind Engineering, Article vol. 31, no. 1, pp. 17-31, 
2007. 

[47]  M. Nandigam and S. K. Dhali, "Optimal design of an offshore wind farm layout," 
in 2008 International Symposium on Power Electronics, Electrical Drives, 
Automation and Motion, 2008, pp. 1470-1474.  



 

 

102 

[48]  Q. Li and H. Wang, "Two-stage simulation optimization for optimal development 
of offshore wind farm under wind uncertainty," in 2016 Winter Simulation 
Conference (WSC), 2016, pp. 2891-2902.  

[49] S. Salcedo-Sanz, D. Gallo-Marazuela, A. Pastor-Sánchez, L. Carro-Calvo, A. 
Portilla-Figueras, and L. Prieto, "Evolutionary computation approaches for real 
offshore wind farm layout: A case study in northern Europe," Expert Systems with 
Applications, vol. 40, no. 16, pp. 6292-6297, 2013. 

[50] G. Van Bussel and M. Zaaijer, Reliability, availability and maintenance aspects of 
large-scale offshore wind farms, a concepts study. Institute of marine engineers, 
2003. 

[51] F. Liu and Z. Wang, "Offshore Wind Farm Layout Optimization Using Adapted 
Genetic Algorithm: A different perspective," arXiv preprint arXiv:1403.7178, 2014. 

[52] S. Chowdhury, J. Zhang, A. Messac, and L. Castillo, "Optimizing the arrangement 
and the selection of turbines for wind farms subject to varying wind conditions," 
Renewable Energy, vol. 52, pp. 273-282, 2013. 

[53] M. Beaudin, H. Zareipour, A. Schellenberglabe, and W. Rosehart, "Energy storage 
for mitigating the variability of renewable electricity sources: An updated review," 
Energy for Sustainable Development, vol. 14, no. 4, pp. 302-314, 2010. 

[54] C. Abbey and G. Joos, "Supercapacitor Energy Storage for Wind Energy 
Applications," IEEE Transactions on Industry Applications, vol. 43, no. 3, pp. 769-
776, 2007. 

[55] S. Aissou, D. Rekioua, N. Mezzai, T. Rekioua, and S. Bacha, "Modeling and 
control of hybrid photovoltaic wind power system with battery storage," Energy 
Conversion and Management, vol. 89, pp. 615-625, 2015. 

[56] N. Bigdeli, "Optimal management of hybrid PV/fuel cell/battery power system: A 
comparison of optimal hybrid approaches," Renewable and Sustainable Energy 
Reviews, vol. 42, pp. 377-393, Modeling and control of hybrid photovoltaic wind 
po 2015. 

[57] F. Díaz-González, A. Sumper, O. Gomis-Bellmunt, and R. Villafáfila-Robles, "A 
review of energy storage technologies for wind power applications," Renewable 
and Sustainable Energy Reviews, vol. 16, no. 4, pp. 2154-2171, 2012. 

[58] A. Evans, V. Strezov, and T. J. Evans, "Assessment of utility energy storage options 
for increased renewable energy penetration," Renewable and Sustainable Energy 
Reviews, vol. 16, no. 6, pp. 4141-4147, 2012. 

[59] M. Fazeli, G. M. Asher, C. Klumpner, L. Yao, and M. Bazargan, "Novel Integration 
of Wind Generator-Energy Storage Systems Within Microgrids," IEEE 
Transactions on Smart Grid, vol. 3, no. 2, pp. 728-737, 2012. 

[60] N. S. Hasan, M. Y. Hassan, M. S. Majid, and H. A. Rahman, "Review of storage 
schemes for wind energy systems," Renewable and Sustainable Energy Reviews, 
vol. 21, pp. 237-247, 2013. 

[61] S. Koohi-Kamali, V. V. Tyagi, N. A. Rahim, N. L. Panwar, and H. Mokhlis, 
"Emergence of energy storage technologies as the solution for reliable operation of 
smart power systems: A review," Renewable and Sustainable Energy Reviews, vol. 
25, pp. 135-165, 2013. 



 

 

103 

[62] T. Kousksou, P. Bruel, A. Jamil, T. El Rhafiki, and Y. Zeraouli, "Energy storage: 
Applications and challenges," Solar Energy Materials and Solar Cells, vol. 120, 
Part A, pp. 59-80, 2014. 

[63] Y. Levron, J. M. Guerrero, and Y. Beck, "Optimal Power Flow in Microgrids With 
Energy Storage," IEEE Transactions on Power Systems, vol. 28, no. 3, pp. 3226-
3234, 2013. 

[64] A. Rabiee, H. Khorramdel, and J. Aghaei, "A review of energy storage systems in 
microgrids with wind turbines," Renewable and Sustainable Energy Reviews, vol. 
18, pp. 316-326, 2013. 

[65] S. Sundararagavan and E. Baker, "Evaluating energy storage technologies for wind 
power integration," Solar Energy, vol. 86, no. 9, pp. 2707-2717, 2012. 

[66] X. Xiao, H. Yi, Q. Kang, and J. Nie, "A Two-level Energy Storage System for Wind 
Energy Systems," Procedia Environmental Sciences, vol. 12, pp. 130-136, 2012. 

[67] P. Mathema, "Optimization Of Integrated Renewable Energy System - Micro 
Grid," Bachelor of Engineering in Electrical Engineering, Tribhuvan University, 
2011.  

[68]  T. Shinji, "Operation of dispersed power systems including wind farm in micro 
grid," in 2009 CIGRE/IEEE PES Joint Symposium Integration of Wide-Scale 
Renewable Resources Into the Power Delivery System, 2009, pp. 1-6.  

[69]  J. Zhang, M. Ma, J. Zhan, and Y. Zhao, "Research on Renewable Energy Power 
Based Microgrid Technology," in 2012 Asia-Pacific Power and Energy 
Engineering Conference, 2012, pp. 1-4.  

[70] Z. Zhang, J. Wang, and X. Wang, "An improved charging/discharging strategy of 
lithium batteries considering depreciation cost in day-ahead microgrid scheduling," 
Energy Conversion and Management, vol. 105, pp. 675-684, 2015. 

[71] H. Borhanazad, S. Mekhilef, V. Gounder Ganapathy, M. Modiri-Delshad, and A. 
Mirtaheri, "Optimization of micro-grid system using MOPSO," Renewable Energy, 
vol. 71, pp. 295-306, 2014. 

[72] A. Niinisto, "Simulation of the Management of a Micro Grid  with Wind, Solar and 
Gas Generators," Master of Science in Engineering, Aalto University School Of 
Science And Technology, 2009.  

[73] N. Carlisle, J. Elling, and T. R. Penney, A Renewable Energy Community: Key 
Elements: a Reinvented Community to Meet Untapped Customer Needs for Shelter 
and Transportation with Minimal Environmental Impacts, Stable Energy Costs, 
and a Sense of Belonging. National Renewable Energy Laboratory, 2008. 

[74] S. Song, Q. Li, F. A. Felder, H. Wang, and D. W. Coit, "Integrated optimization of 
offshore wind farm layout design and turbine opportunistic condition-based 
maintenance," Computers & Industrial Engineering, vol. 120, pp. 288-297, 2018. 

[75] Z. Jiang, X. Han, Z. Li, W. Li, M. Wang, and M. Wang, "Two-Stage Multi-
Objective Collaborative Scheduling for Wind Farm and Battery Switch Station," 
Energies, vol. 9, no. 11, p. 886, 2016. 

[76] Z. Zhang, A. Kusiak, and Z. Song, "Scheduling electric power production at a wind 
farm," European Journal of Operational Research, vol. 224, no. 1, pp. 227-238, 
2013. 



 

 

104 

[77] Z. Tian, T. Jin, B. Wu, and F. Ding, "Condition based maintenance optimization 
for wind power generation systems under continuous monitoring," Renewable 
Energy, vol. 36, no. 5, pp. 1502-1509, 2011. 

[78] Y. Sinha and J. Steel, "A progressive study into offshore wind farm maintenance 
optimisation using risk based failure analysis," Renewable and Sustainable Energy 
Reviews, vol. 42, pp. 735-742, 2015. 

[79] A. Kovács, G. Erdős, Z. J. Viharos, and L. Monostori, "A system for the detailed 
scheduling of wind farm maintenance," CIRP Annals - Manufacturing Technology, 
vol. 60, no. 1, pp. 497-501, 2011. 

[80] X. Lei and P. A. Sandborn, "Maintenance scheduling based on remaining useful 
life predictions for wind farms managed using power purchase agreements," 
Renewable Energy, vol. 116, no. PB, p. 188, 2018. 

[81] H. Seyr and M. Muskulus, "Decision Support Models for Operations and 
Maintenance for Offshore Wind Farms: A Review," Applied Sciences, vol. 9, no. 2, 
2019. 

[82]  F. Besnard, M. Patriksson, A.-B. Strömberg, A. Wojciechowski, and L. Bertling, 
"An optimization framework for opportunistic maintenance of offshore wind power 
system," in PowerTech, 2009 IEEE Bucharest, 2009: IEEE, pp. 1-7.  

[83]  E. S. Asensio, J. P. Pérez, and F. G. Márquez, "Economic Viability Study for 
Offshore Wind Turbines Maintenance Management," in Proceedings of the Ninth 
International Conference on Management Science and Engineering Management, 
2015: Springer, pp. 235-244.  

[84] J. Nilsson and L. Bertling, "Maintenance management of wind power systems using 
condition monitoring systems—life cycle cost analysis for two case studies," 
Energy Conversion, IEEE Transactions on, vol. 22, no. 1, pp. 223-229, 2007. 

[85] C. Mone, A. Smith, B. Maples, and M. Hand, ""2013 Cost of Wind Energy 
Review"," National Renewable Energy Laboratory, 2014.  

[86] R. Carnegie, D. Gotham, D. Nderitu, and P. V. Preckel, "Utility Scale Energy 
Storage Systems, Benefits, Application, and Technologies," Purdue University, 
2013.  

[87] D. Raslter, A. Akhil, D. Gauntlett, and E. Cutter, "Energy Storage System Costs 
2011 Update Executive Summary," EPRI, 2012. 

[88] P. G. E. (PG&E). Energy Uses and Prices [Online] Available: 
https://www.pge.com/tariffs/energy_use_prices.shtml 

[89] K. D. Hall, J. Guo, M. Dore, and C. C. Chow, "The progressive increase of food 
waste in America and its environmental impact," PLoS One, vol. 4, no. 11, p. e7940, 
2009. 

[90] A. Bosmans, I. Vanderreydt, D. Geysen, and L. Helsen, "The crucial role of Waste-
to-Energy technologies in enhanced landfill mining: a technology review," Journal 
of Cleaner Production, Article vol. 55, pp. 10-23, 2013. 

[91] S. Wang, "Modeling and analysis of utilizing food waste and manure in New 
Jersey," Rutgers University, 2014.  

[92] N. S. Bolan et al., "Landfills as a biorefinery to produce biomass and capture 
biogas," Bioresource technology, 2012. 



 

 

105 

[93] J. Berger, L. V. Fornés, C. Ott, J. Jager, B. Wawra, and U. Zanke, "Methane 
oxidation in a landfill cover with capillary barrier," Waste management, vol. 25, no. 
4, pp. 369-373, 2005. 

[94] G. Hochman, S. Wang, Q. Li, P. D. Gottlieb, F. Xu, and Y. Li, "Cost of organic 
waste technologies: A case study for New Jersey," AIMS Energy, vol. 3, no. 3, pp. 
450-462, 2015. 

[95] G. Finnveden, J. Johansson, P. Lind, and Å. Moberg, "Life cycle assessment of 
energy from solid waste—part 1: general methodology and results," Journal of 
Cleaner Production, vol. 13, no. 3, pp. 213-229, 2005. 

[96] G. Finnveden, Å. Moberg, J. Johansson, and P. Lind, "Life cycle assessment of 
energy from solid waste—part 2: landfilling compared to other treatment methods," 
Journal of Cleaner Production, vol. 13, no. 3, pp. 231-240, 2005. 

[97] A. v. Haandel and G. Lettinga, Anaerobic sewage treatment: a practical guide for 
regions with a hot climate. John Wiley & Sons, 1994. 

[98] R. Zhang and H. M. El-Mashad, "Biogas production from co-digestion of dairy 
manure and food waste," Bioresource technology, vol. 101, no. 11, pp. 4021-4028, 
2010. 

[99] J. Mata-Alvarez, S. Mace, and P. Llabres, "Anaerobic digestion of organic solid 
wastes. An overview of research achievements and perspectives," Bioresource 
technology, vol. 74, no. 1, pp. 3-16, 2000. 

[100] "Integrated Biorefineries: Reducing Investment Risk in Novel Technology," in 
"Energy Efficiency & Renewable Energy," 2014.  

[101]  S. Wang, Q. Li, P. Gotlieb, H. Gal, F. Xu, and Y. Li, "A sustainable waste to energy 
path: The benefits from organice waste and manure in New Jersey," in Proceedings 
of Dairy Environmental Systems and Climate Adaptation Conference and Tours, 
Cornell University, 2015.  

[102] EIA, "State Profile and Energy Estimates, New Jersey," 
www.eia.gov/state/data.cfm?sid=NJ, 2010.  

[103] A. Awwa, "Standard methods for the examination of water and wastewater," 
Washington, DC Standard Methods for the Examination of Water and Wastewater, 
vol. 20, 1998. 

[104] A. G. Hashimoto, Y. R. Chen, and V. H. Varel, "Theoretical aspect of anaerobic 
fermentation: State-of-Art," Livestock Wastes: A Renewable Resource, pp. pp.86-
91, 1981. 

[105] A. G. Hashimoto, "Conversion of straw–manure mixtures to methane at mesophilic 
and thermophilic temperatures," Biotechnology and Bioengineering, vol. 25, no. 1, 
pp. 185-200, 1983. 

[106] C. Taylor and H. Youngs, "Biogas-Potential for Deployment inTransportaion," 
University of California, Berkley, Energy Biosciences Institute, 2009.  

[107] T. Scheper, Biofuels (Advances in Biochemical Engineering/Biotechnology). 
Springer, 2007. 

[108] D. K. S. Ng, "Automated targeting for the synthesis of an integrated biorefinery," 
Chemical Engineering Journal, no. 162, pp. 67-74, 2010. 

[109] R. Ulber and D. Sell, White biotechnology. Springer, 2007. 



 

 

106 

[110] A. M. MARGINEAN, V. TRIFA, and C. MARGINEAN, "Simulation of 
Fermentation Bioreactor Control for Ethanol Production," Development and 
Application Systems, p. 3. 

[111] Z. K. Nagy, "Model based control of a yeast fermentation bioreactor using 
optimally designed artificial neural networks," Chemical Engineering Journal, vol. 
127, pp. 95-109, 2007. 

[112]  T. De Mes, A. Stams, J. Reith, and G. Zeeman, "Methane production by anaerobic 
digestion of wastewater and solid wastes," in Environmental Science, 2003, pp. 58-
102.  

[113] C. Valkenburg, M. Gerber, C. Walton, S. Jones, B. Thompson, and D. Stevens, 
"Municipal Solid Waste (MSW) to liquid fuels synthesis," 2008.  

[114] EIA, "Annual energy outlook 2010," 2010.  
 
 


