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In this thesis, we study three problems related to Complex Monge-Ampère equations.

After the introduction and preliminary, In chapter 3, we study Kähler Ricci flow on Fano

bundle, with finite time singularity. we show that under the suitable assumption on

the initial and ending Kähler class, the evolving Kähler metrics along Kähler Ricci flow

have uniform diameter bound and moreover, if we assume the fiber of Fano bundle is Pn

or Mm,k, the evolving metric will converge to a Kähler metric on the base of the Fano

bundle in Gromov-Hausdorff sense, which generalizes the result of Song-Szekelyhidi-

Weinkove [103] who study the Kähler Ricci flow on projective bundle.

In chapter 4, based on Kolodziej’s fundamental result on C0 estimate of complex

Monge-Ampère equation, we study the geometric property of complex manifolds cou-

pled with a family of Kähler metrics which come from solutions of a family of complex

Monge-Ampère equations. As a application, on a minimal Kähler manifold with inter-

mediate Kodaira dimension, we obtain uniform diameter bound of a family of collapsing

Kähler metrics whose Kähler class is small perturbation of the canonical class. This is

our first attempt to understand canonical metric on complex manifold with nef canon-

ical class.

In chapter 5, we further study degeneration of Kähler-Einstein metrics with negative

curvature on canonical polarized complex manifold. For this purpose, we construct
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complete Kähler-Einstein metric near isolated log canonical singularity through two

different methods and for those log canonical singularity coupled with a model metric

satisfying bounded geometry property roughly, we prove a rigidity result concerning

complete Kähler-Einsteins near the singularity.
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Chapter 1

Introduction

1.1 Topic 1: Kähler Ricci flow with finite time singularity

1.1.1 Background

The Ricci flow, introduced by Hamilton, has become a powerful tool to study the

topology and geometric structures of Riemannian manifolds.

In [104, 105, 106], Song-Tian introduced the analytic minimal model program which

is parallel to Mori’s birational minimal model program. On one hand, Kähler-Ricci flow

with surgery can be viewed as the complex analogue of Thurston’s three dimensional

geometrization conjecture. On the other hand, the surgery is canonical and correspond

to the birational surgery in Mori’s program such as divisorial contraction or flip, see

[7, 60].

1.1.2 Kähler-Ricci flow on Fano bundle

Consider the Kähler-Ricci flow ω = ω(t) given by

∂

∂t
ω = −Ric(ω), ω(0) = ω0, (1.1.1)

It’s well-known that, from Tian-Zhang [130, 119], a maximal smooth solution to

(1.1.1) exists on [0, T ) where T > 0 is given by

T = sup{t > 0|[ω0]− 2πtc1(X) > 0}. (1.1.2)

Song-Székelyhidi-Weinkove [103] studied the behavior of the Kähler-Ricci flow on the

projective bundles. In our article [47], we generalize their result in the sense that we

could have more types of Fano fibers other than projective spaces. For example the
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fiber could be Pm blown-up at one point or Mm,k which is the weighted projective space

Ym,k(1 ≤ k < m) blown-up at the orbifold point.

Suppose we have a bundle X → Y with fiber F being a fano manifold. By (1.1.2), T

is finite and if we further assume that the limiting Kähler class [ω0]−2πTc1(X) satisfies

[ω0]− 2πTc1(X) = [π∗ωY ] (1.1.3)

for some Kähler metric ωY on Y . By lemma 3.2, we have a limiting form on ωT ,

ωT := π∗ωY +
√
−1∂∂ϕT ≥ 0. (1.1.4)

My first result of collaboration with Shijin Zhang is an estimate of ωT .

Theorem 1.1. ([47]) Assume (X,Y, π, F ) is a Fano bundle, ω0 is the Kähler metric

on X, ωY is a Kähler metric on Y satisfying (1.1.3) for some T > 0, ωT is defined by

(1.1.4). Then there exists a uniform constant C > 0 such that

C−1π∗ωY ≤ ωT ≤ Cπ∗ωY . (1.1.5)

We further show that diameter of manifold X with metric ω(t) is finite and there

exists a sequence of metrics along the Kähler-Ricci flow converge subsequentially to a

metric on Y in the Gromov-Hausdorff sense as t→ T .

Theorem 1.2. ([47]) Let (X,Y, π, F ) be a Fano bundle with F is Pm blown up at one

point (m ≥ 2) or F = Mm,k(1 ≤ k < m), ωY be a Kähler metric on Y and ω0 be a

Kähler metric on X. Assume ω(t) is a solution of the Kähler-Ricci flow (1.1.1) for

t ∈ [0, T ) with initial metric ω0 and [ω0]− 2πTc1(X) = [π∗ωY ], then we have

(1) diam(X,ω(t)) ≤ C for some uniform constant C > 0;

(2) There exists a sequence of times ti → T and a distance function dY on Y (which is

uniformly equivalent to the distance induced by ωY , such that (X,ω(ti)) converges

to (Y, dY ) in the Gromov-Hausdorff sense.
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1.2 Topic 2: Geometric estimate of Monge-Ampère equation

1.2.1 background

Complex Monge-Ampère equations are a fundamental tools to study Kähler geom-

etry. Consider the following complex Monge-Ampère equation

(θ +
√
−1∂∂ϕ)n = e−fθn, (1.2.1)

on a Kähler manifold (X, θ). By deriving a priori estimate of equation (1.2.1) in his

fundamental work ([136]), Yau solves the Calabi conjecture. After that, in Kolodziej’s

deep work [72], Yau’s C0-estimate for solutions of equation (1.2.1) is improved by

applying the pluripotential theory. More precisely, suppose the right hand side of

equation (1.2.1) satisfies the following Lp bound∫
X
e−pfθn ≤ K, for some p > 1,

then there exists C = C(X, θ, p,K) > 0 such that any solution ϕ of equation (1.2.1)

satisfies the the following L∞-estimate

‖ϕ− sup
X
ϕ‖L∞(X) ≤ C.

Building on Kolodziej’s work, a family of degenerating complex Monge-Ampère equa-

tions are intensively studied in [9, 72, 40, 37] and a notable application is the existence

of Kähler-Einstein metric on canonical model of general type variety.

1.2.2 Geometric estimate of Monge-Ampère equation and applica-

tion to generalized Kähler-Einstein metric on manifold with nef

canonical bundle

We study the following Monge-Ampère equation on a Kähler manifold (X, θ) where

θ is a fixed Kähler form:

(θ +
√
−1∂∂ϕ)n = eλϕΩ, (1.2.2)

where λ = 0 or 1, and Ω is a smooth volume form satisfying
∫
X Ω =

∫
X θ

n. Moreover,

we assume that ∫
X

(
Ω

θn

)p
θn ≤ K, Ric(Ω) = −

√
−1∂∂ log Ω ≥ −Aθ, (1.2.3)
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for some p > 1, K > 0 and A ≥ 0. By Kolodziej’s work, we know that the solutions

ϕ have uniform C0 bound for different volume form Ω under condition (1.2.3). We

further convert this analytic C0 estimate to uniform diameter estimate hence bridging

Monge-Ampère equation with geomtric compactness in Riemannian geometry. My first

result of collaboration with Bin Guo and Jian Song is:

Theorem 1.3. ([46]) Let (X, θ) be an Kähler manifold, then under assumption (1.2.3),

there exists C = C(X, θ, p,K,A) such that the solution ϕ of equations (1.2.2) and

theKähler metric g associated to the Kähler form ω = θ+
√
−1∂∂ϕ satisfy the following

estimates,

1. ‖ϕ− supX ϕ‖L∞(X) + ‖∇gϕ‖L∞(X,g) ≤ C.

2. Ric(g) ≥ −Cg.

3. Diam(X, g) ≤ C.

Let M(X, θ, p,K,A) be the space of all solutions of equation (1.2.2), where Ω sat-

isfies assumption (1.2.3). One consequence of Theorem 1.3 is a uniform noncollapsing

condition for M(X, θ, p,K,A).

C−1r2n ≤ V olg(Bg(x, r)) ≤ Cr2n, (1.2.4)

where Bg(x, r) is the geodesic ball centered at q with radius r in (X, g).

We also study the Monge-Ampère equation with degenerating reference from χ and

improve previous results in the sense that we derive estimates without assuming semi-

positivity of limiting reference form χ. Consider a family of degenerate Monge-Ampère

equation with limiting reference class χ being only nef and of numerical dimension κ.

(χ+ tθ +
√
−1∂∂ϕt)

n = tn−κeλϕt+ctΩ, for t ∈ (0, 1], (1.2.5)

where λ = 0, or 1, ct is a normalizing constant. Our second result is:

Theorem 1.4. ([46]) Suppose the volume measures Ω in equation (1.2.5) satisfy Lp

integrablility assumption (1.2.3). Then there exists a unique ϕt ∈ PSH(X,χ+tθ) solving
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equation (1.2.5) for all t ∈ (0, 1]. Furthermore, there exists C = C(X,χ, θ, p,K) > 0

such that for all t ∈ (0, 1],

‖(ϕt − sup
X
ϕt)− Vt‖L∞(X) ≤ C,

where Vt is the extremal function associated to χ+ tθ.

The refined C0 estimate of theorem 1.4 can be applied to generalize Theorem 1.3,

especially for minimal Kähler manifolds with nef canonical bundle in a geometric set-

ting.

Theorem 1.5. ([46]) Suppose X is a smooth minimal model equipped with a smooth

Kähler form θ. For any t > 0, there exists a unique smooth twisted Kähler-Einstein

metric gt on X satisfying

Ric(gt) = −gt + tθ. (1.2.6)

There exists C = C(X, θ) > 0 such that for all t ∈ (0, 1],

Diam(X, gt) ≤ C.

Furthermore, for any tj → 0, after passing to a subsequence, the twisted Kähler-Einstein

manifolds (X, gtj ) converge in Gromov-Hausdorff topology to a compact metric length

space (Z, dZ). The Kähler forms ωtj associated to gtj converge in distribution to a

nonnegative closed current ω̃ = χ +
√
−1∂∂ϕ̃ for some ϕ̃ ∈ PSH(X,χ) of minimal

singularities, where χ ∈ [KX ] is a fixed smooth closed (1, 1)-form.

The diameter bound or non-collapsing condition we get is crucial in geometric com-

pactness theory in particular in the Cheeger-Colding-Tian theory. Although so far we

don’t know too much about the limiting space especially in the case of theorem (1.5),

we plan to study the tangent cone of the limiting space in the future. Our utimate goal

in the future attempts to establish a geometric theory for canonical metric on minimal

models of algebraic variety without assuming abundance conjecture. However if we as-

sume the abundance conjecture, we can improve our understanding the limiting metric

space (Z, dZ) in our Theorem (1.5).
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Theorem 1.6. ([46]) Suppose X is a projective manifold of complex dimension n

equipped with a Kähler metric θ. If the canonical bundle KX is semi-ample and

ν(KX) = κ ∈ N, then the following hold for the twisted Kähler-Einstein metrics gt

satisfying

Ric(gt) = −gt + tθ, t ∈ (0, 1].

(1) There exists C > 0 such that for all t ∈ (0, 1],

Diam(X, gt) ≤ C.

(2) Let ωt be the Kähler form associated to gt. For any compact subset K ⊂⊂ X\S,

we have

‖gt − Φ∗gcan‖C0(K,θ) → 0, as t→ 0.

(3) The rescaled metrics t−1ωt|Xy converge uniformly to a Ricci-flat Kähler metric

ωCY,y on the fibre Xy = Φ−1(y) for any y ∈ Xcan \ Φ(S), as t→ 0.

(4) For any sequence tj → 0, after passing to a subsequence, (X, gtj ) converge in

Gromov-Hausdorff topology to a compact metric space (Z, dZ). Furthermore,

Xcan \ Scan is embedded as an open subset in the regular part R2κ of (Z, dZ)

and (Xcan \ Scan, ωcan) is locally isometric to its open image.

In particular, if κ = 1, (Z, dZ) is homeomorphic to Xcan, with the regular part being

open and dense, and each tangent cone being a metric cone on C with cone angle less

than or equal to 2π.

1.3 Topic 3: Kähler-Einstein geometry near log canonical singularity

1.3.1 Background

Kähler-Einstein metric has been the central topic in complex geometry for decades.

For complex manifolds with X with C1(X) < 0 and C1(X) = 0, the existence of Kähler-

Einstein metrics are confirmed by Aubin, Yau [4, 136] and Yau [136] separately. Also,

rescent results of Chen-Donaldson-Sun [16, 17, 18] confirm the Yau-Tian-Donaldson
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conjecture for smooth Fano manifold. On the other hand, it will be interesting to un-

derstand the geometry of Kähler-Einstein metric on singular variety. In their pioneering

work [59], Hein ans Sun study the asymptotic behaviour of diffenert Calabi-Yau met-

rics on singular varieties with special cone singularity by using the fundamental tool

developed in Donaldson-Sun [38, 39]. On the other hand, in the recent work of Song

[114], he proves that for a family of canonical polarized varieties, the negative Kähler-

Einstein metrics of nearby fibers converge to a singular Kähler-Einstein on the central

fiber which has complete end towards the locus of Non-Klt center. Hence it’s a nat-

ural question to study the metric behaviour of Kähler-Einstein metric with negative

curvature near log canonical singularity.

1.3.2 Complete Kähler-Einstein metrics near isolated log canonical

singularity and their geometric rigidity

We study the Kähler-Einstein metric locally near an isolated log canonical singu-

larity. We fix the geometric domains that will be discussed.

Setting: Let (X, p) be a germ of isolated normal log canonical Q-Cartier singularity

embedded in (CN , 0). Our main interest will be neighbourhood of the singular point p.

Using a bounded PSH function ρ on X, we cut a domain

Ω := {ρ < a}

contained in X such that ∂Ω is strongly pseudoconvex. We also fix reference metric

and volume form

χ =
√
−1∂∂ρ,ΩX = eρV ∧ V̄

on Ω, where V is local holomorphic volume form (up to taking root of multiple holo-

morphic volume form) on a neighbourhood of p in X. The complex Monge-Ampère

equation of our interest in relation to the Kähler-Einstein equation on Ω (More pre-

cisely on (Ω \ p)) is given by (χ+
√
−1∂∂ϕ)n = eϕΩX .

ϕ|∂Ω = f
(1.3.1)

where f is an arbitrary smooth function. Our first result is:
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Theorem 1.7. ([32]) Let (Ω, p) be a germ of isolated log canonical singularity as above.

There exists solution ϕ ∈ PSH(χ)
⋂
C∞(Ω \ p) of equation (1.3.1) satisfying the fol-

lowing conditions.

(1) For any ε > 0, there exists Cp,ε > 0 such that

ϕ ≥ ε log |σD|2hD − Cp,ε.

where σD is an effective divisor supporting on the exceptional locus when we blow

up the singularity.

(2) ϕ = −∞ on p.

We will also construct Kähler-Einstein metric on (Ω\p) by using bounded geometry

method. In order to use bounded geometry method, we need more assumptions for our

singularity (X, p)

Property A: Let (X, p) a germ of isolated log canonical singularity embedded in

(CN , 0). If there is a complete metric χ =
√
−1∂∂ρ defined on (X \ p) satisfying (1)

has a system of quasi coordinates. (2) Ric(χ) + χ =
√
−1∂∂M and ||∇kχM || < Ck

(Here the potential function M is not unique, we only require one of them satisfy the

boundedness property, and in this article, the most interesting case is M = 0). Then

we call (X, p) has property A and we define

Ω := {ρ < a}, ∂Ω := {ρ = a}

where a is a fixed constant (We can assume ∂Ω is smooth by adjusting constant a) .

Again we fix our geometric domain to be a triple (Ω, p, χ), and our second theorem

is concerning the existence of Kähler-Einstein metric by using bounded geometry in a

perturbation way.

Theorem 1.8. ([32]) Suppose (X, p) is a germ of log canonical admitting property A.

Then for any smooth function ψ on the boundary ∂Ω, the following Dirichlet problem
(χ+

√
−1∂∂ϕ)n = eϕ+Mχn on Ω

ϕ|∂Ω = ψ,

(1.3.2)
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admits a solution in function space defined in Cheng-Yau [26] with ||ϕ||k,α < C(k, ψ, ρ,M).

There are a large class of log- canonical singularities admitting Kähler-Einstein

uniformization which satisfies property (A). Especially, a complete picture of uni-

formization of isolated log canonical singularity in complex dimension 2 is obtained in

[69, 70].

We proceed to compare two Kähler-Einstein metrics on (Ω \ p) which are complete

towards p . First of all, we compare their volume forms. Suppose χ is a local complete

Kähler Einstein metric on (Ω \ p) and χ′ is another complete Kähler Einstein metric.

Let ϕ = log χ′n

χn be the ratio of volume forms. Also for any ε, define a punctured

neighbourhood Uε of p to be:

Uε := {x|distχ(x, ∂Ω) ≥ 2c(n)

ε
and distχ′(x, ∂Ω) ≥ 2c(n)

ε
}

Then our theorem in [32] concerning the comparison of volume ratio is:

Theorem 1.9. ([32]) For any ε > 0, we have −ε ≤ ϕ ≤ ε in Uε.

If both χ and χ′ are complete towards p, then the above theorem shows that f(x)→

0 when x → p. If we further assume χ has bounded geometry property, we can even

compare two different Kähler-Einstein metrics to higher order derivatives. If we write

χ′ = χ+
√
−1∂∂ϕ where ϕ = log ω′n

ωn , then our last theorem in [32] is:

Theorem 1.10. ([32])Suppose (Ω, p, χ) is a metric with property (A) and χ1 is another

Kähler-Einstein metric on Ω and complete towards p. then for any positive number ε

and any non negative integer k, we have
∑k

i=1 ‖∇iϕ‖χ(q) ≤ ε for q in Uε
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Chapter 2

Preliminaries

In this chapter, we will collect some basic facts and definitions of Kähler geometry

and Riemannian geometry. They are basically well-known from literature and will be

stated without proofs. I include these material to make my presentation more self

contained and part of them are taken from Bin Guo’s Ph.D thesis [54].

2.1 Kähler geometry

Let (X,ω, J) be a compact complex manifold. The metric form ω is called Kähler

if it is closed, i.e. dω = 0, or in local coordinates (z1, . . . , zn),

∂gij̄
∂zk

=
∂gkj̄
∂zi

,
∂gij̄
∂z̄k

=
∂gik̄
∂z̄j

, ∀i, j, k,

where gij̄ is the components of ω in these coordinates, i.e.,

ω =
√
−1gij̄dzi ∧ dz̄j .

The Kähler metric ω lies in a cohomology class [ω] ∈ H1,1(X,C) ∩H2(X,R). By the
√
−1∂∂-lemma ([48]) for any other (1, 1)-form ω′ in the same cohomology class as ω,

there exists a smooth real function ϕ such that

ω′ = ω +
√
−1∂∂ϕ.

Hence all the Kähler metrics in the Kähler class [ω] can be written as the form ω +
√
−1∂∂ϕ for some ϕ ∈ PSH(X,ω) where

PSH(X,ω) = {ϕ ∈ C∞(X,R)|ω +
√
−1∂∂ϕ > 0}.

The Riemannian curvature of ω is equal to (in locally coordinates (z1, . . . , zn))

Rij̄kl̄ = −
∂2gij̄
∂zk∂z̄l

+ gpq̄
∂giq̄
∂zk

∂gpj̄
∂z̄l

,
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and the Ricci curvature is

Rij̄ = gkl̄Rij̄kl̄ = − ∂2

∂zi∂z̄j
log det gkl̄, (2.1.1)

and the scalar curvature R = gij̄Rij̄ . Here and in the rest of the thesis, we denote gij̄

the inverse of gij̄ , i.e., gij̄gkj̄ = δik. The first and second Bianchi identities say that the

indices with or without bar are all symmetric in the local components: Rij̄kl̄, Rij̄kl̄,p

and Rij̄kl̄,p̄.

The Ricci form

Ric(ω) =

√
−1

2π
Rij̄dzi ∧ dz̄j =

1

2π

√
−1∂∂ log det gij̄

is a closed (1, 1)-form, and its cohomology class (denoted by C1(X)) is called the first

Chern class of X.

A holomorphic line bundle L over the Kähler manifold X is a vector bundle over X

with fiber C, and the transition functions hij over Ui ∩ Uj are never zero holomorphic

functions, where L|Ui ∼= Ui × C is a local trivialization of L, and X = ∪iUi. The

transition functions satisfy

hijhji = 1, on Ui ∩ Uj 6= ∅,

and

hijhjkhki = 1, on Ui ∩ Uj ∩ Uk 6= ∅.

These equations implies that {hij} defines a 1 co-cycle hence a cohomology class the

Cech group H1(X,O∗).

A holomorphic section s of L is defined locally by s = siei on each Ui, where ei is

a local frame of L over Ui and si is a holomorphic function on Ui. s is globally defined

iff si = hijsj over Ui ∩ Uj , since eihij = ej . A Hermitian metric h on L is given by

positive local functions {hi} over Ui such that hj = |hij |2hi on Ui ∩ Uj . Hence the

(1, 1)-form −(2π)−1
√
−1∂∂ log hi is globally defined, noting that

√
−1∂∂ log |hij |2 = 0.

Actually, this (1, 1)-form is called the curvature of the Hermitian metric h, and we will

denote it by Ric(h). It represents a cohomology class in the Dolbeault cohomology

group H1,1(X,O)∩H2(X,Z). It is not hard to see for all Hermtian metrics on L, their

curvatures lie in the same cohomology class, and we will denote this class by C1(L).
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The set of holomorphic sections of L is denoted by H0(X,L), and the norm of

s ∈ H0(X,L) with respect to a Hermtian metric h on L is defined by

|s|2h := sis̄ihi on Ui,

and it is each to check this norm is globally defined by the transition laws of si and hi.

The canonical line bundle KX of X is defined to the determinant line bundle of

T ∗(1,0)M , and dz1 ∧ · · · ∧ dzn is a local section of KX on any local coordinates chart

(z1, . . . , zn). The holomorphic sections of KX are holomorphic n-forms. For any Kähler

metric ω, 1
det gij̄

defines a Hermtian metric on KX . And its associated curvature is given

−(2π)−1
√
−1∂∂ log

1

det gij̄
= (2π)−1

√
−1∂∂ log det gij̄ = −Ric(ω).

Hence we see that −C1(X) = C1(KX), or C1(X) = C1(−KX), where −KX is dual line

bundle of KX .

We recall a few notions about the line bundles.

Definition 2.1. Given a holomorphic line bundle L over a compact Kähler manifold

X, then

(1) L is called ample, if the linear system |kL| for some k ∈ N gives an embedding

of X to some projective space CPN , i.e., kL = OCPN (1). In this case, X is

necessarily projective by definition. The Kodaira embedding theorem implies that

this is equivalent to the existence of a Hermtian metric h on L with curvature

Ric(h) > 0.

(2) L is called numerical effective (or nef) if for any irreducible curve C ⊂ X,∫
C C1(L) ≥ 0.

(3) L is big, if the Kodaira dimension κ(L) = n, or (in the nef case) equivalently∫
X
C1(L)n > 0.

(4) L is called base point free, if for any point x ∈ X, there exist a section s ∈

H0(X,L) such that s(x) 6= 0.
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Finally, we recall the notion the complex Monge-Ampëre equation and its relation

with Kähler-Einstein metric:

(1) When C1(X) < 0, if we fix a reference form ω in Kähler class [KX ], any other

Kähler metric g in class [KX ] can be written as ω +
√
−1∂∂ϕ. Then

Ric(g) = −g ⇐⇒ .(ω +
√
−1∂∂ϕ)n = eϕΩ

(2) When C1(X) = 0, if we fix a reference form ω on X, any Kähler metric g in class

[ω] can be written as ω +
√
−1∂∂ϕ. Then

Ric(g) = 0⇐⇒ (ω +
√
−1∂∂ϕ)n = Ω

where Ω is suitable smooth volume form on X.

2.2 Riemannian geometry and metric geometry

2.2.1 Riemannian geometry

Let (M, g) be a Riemannian manifold and p ∈ M be a point. The cut-locus of p is

defined to be the points q ∈M either q is a conjugate point of p or there exists at least

two distinct minimal geodesics from p to q. It is known that the cut-locus has measure

zero by an application of Sard’s theorem. The exponential map expp : TpM → M

is local diffeomorphism in the interior of cut-locus. Denote Ω = M\{the cut-locus of

p}, then exp−1
p (Ω) is a star-shaped domain in TpM ∼= Rn. It is also well-known that

the distance function d(x) = d(p, x) is smooth in Ω\{p}. The injectivity radius of p is

defined to be

ip = injg(p) := sup{r > 0| B(p, r) ⊂ Ω}

where B(p, r) is the geodesic ball centered at p. And it is clear that expp : B(0, ip) ⊂

TpM → B(p, ip) ⊂M is a diffeomorphism.

The space forms are simply connected manifolds with constant sectional curvature,

which by the uniformization theorem are Sn, Rn and Hn, with curvatures normalized

being 1, 0,−1, respectively. The metric with constant sectional curvature K is given by
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(see [13])

dr2 + snK(r)2gSn−1 ,

where gSn−1 is the standard metric on Sn−1 with curvature 1, and

snK(r) =



1√
K

sin(
√
Kr), if K > 0

r, if K = 0

1√
|K|

sinh(
√
|K|r), if K < 0.

Theorem 2.2 (Hessian comparison ([13])). Let (M, g) be a complete Riemannian man-

ifold with dimension n and p ∈ M be a fixed point. Suppose the sectional curvature of

g satisfies

κ ≤ sectg ≤ K

for some κ,K ∈ R, then the Hessian of r(x) = d(p, x) satisfies

HessrK (r(x)) ≤ Hessr(x) ≤ Hessrκ(r(x)),

at x where r(·) is smooth, and rκ and rK are the distance functions on the space forms

with constant curvature κ,K, respectively.

When we have only Ricci curvature lower bound, we have the Bonnet-Myers’ theo-

rem, Laplacian comparison theorem and Bishop-Gromov volume comparison theorem:

Theorem 2.3 (Bonnet-Myers’ theorem). Suppose (M, g) is a complete Riemannian

manifold with Ric(g) ≥ (n− 1)K > 0, then the diameter of (M, g) is bounded above by

π√
K

.

Theorem 2.4 (Laplacian comparison). Let (M, g) be a complete Riemannian manifold

with Ric ≥ (n− 1)K for some K ∈ R, r(x) = d(x, p) for some p ∈M , then

∆r(x) ≤ ∆KrK(r(x)),

smoothly when r(·) is smooth at x and globally in the sense of distributions, where rK

is the distance function in the space form SnK .
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Theorem 2.5 (Volume comparison). Let (M, g) be a complete Riemannian manifold

with Ric ≥ (n−1)K for some K ∈ R, r(x) = d(x, p) for some p ∈M , then the function

r 7→ V olg(B(p, r))

V olK(BK(r))

is non-increasing, where V olK(BK(r)) is the volume of geodesic ball of radius r in the

space form SnK .

2.2.2 Metric geometry

Definition 2.6. Given any two compact metrics spaces (X, dX) and (Y, dY ), the Gromov-

Hausdorff (GH) distance dGH(X,Y ) of X,Y is defined to be the infimum of all ε > 0

such that there is a map (continuous or not) f : X → Y which is called ε-Gromov-

Hausdorff approximation (ε-GHA) such that

(1) f is ε-onto, i.e., the image f(X) is ε-dense in (Y, dY ),

(2) f is ε-isometry, i.e., for any x1, x2 ∈ X,

|dY (f(x1), f(x2))− dX(x1, x2)| ≤ ε.

There are also other equivalent definitions of GH distance, for example, dGH(X,Y )

can also be defined as the infimum of ε > 0 over all compatible metrics on X t Y such

that both components are ε-dense. These two definitions may not be the same, but

they are equivalent and hence do not affect our applications.

We say sequence of compact metric spaces (Xi, di) converges to (X∞, d∞) in GH

topology, if dGH(Xi, X∞)→ 0 as i→∞.

One of the fundamental results in metric geometry is the Gromov pre-compactness

theorem:

Theorem 2.7 (Gromov pre-compactness). The set M(n,Λ, D) of n dimensional com-

pact Riemannian manifolds (M, g) such that

Ric(g) ≥ Λ, diam(M, g) ≤ D

is pre-compact in the GH topology.
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In the case manifolds not having finite diameter, we consider the pointed -GH con-

vergence. We say

(Xi, di, pi)
p−GH−−−−→ (X∞, d∞, p∞),

if for any R > 0, the metric balls Bi(pi, R)
GH−−→ B∞(p∞, R). Hence by Gromov pre-

compactness theorem, for any sequence of complete Riemannian manifolds (Mn
i , gi, pi)

with Ric(gi) ≥ Λ, there exists a subsequence which converges in pointed GH sense.

In general the GH limit space of a sequence of metric spaces does not have good

regularities. Under some geometric assumptions, Cheeger-Colding prove that the limit

space does have some regularities:

Theorem 2.8 ([10, 28]). Let (Mn
i , gi, pi) be a sequence of smooth Riemannian manifolds

with

Ric(gi) ≥ −(n− 1), V ol(B(pi, 1)) ≥ v0 > 0,

then any GH limit of (Mi, gi, pi), (M∞, d∞, p∞) satisfies

(1) Volume converges, limi→∞ V olgi(B(pi, R)) = Hn(B∞(p∞, R)) for any R > 0,

where Hn is a suitable n-dimensional Hausdorff measure on (M∞, d∞).

(2) M∞ has a regular-singular decomposition, M∞ = R∪S, where R is defined to be

the points whose tangent cones are Rn, and S = M∞\R.

(3) The Hausdorff dimension of S ≤ n− 2.

Recall a tangent cone at q ∈ M∞ is the GH limit of the spaces (M∞, r
−2
i d∞, q) for

a sequence ri → 0. The tangent cone at a point q ∈ M∞ may not be unique, and it

depends on the choice of sequence ri → 0. We remark that by definition no tangent

cone at q ∈ S can be Rn. And if a tangent cone at some point splits off a Euclidean

factor Rn−1, then it must be Rn, hence the point is regular.

If we assume Ricci curvature uniformly bounded, instead of lower bound, then

Cheeger-Colding-Tian theory says more about the regularity of the limit space.

Theorem 2.9 ([12]). Suppose a sequence of Riemannian manifolds (Mi, gi, pi) con-

verges in GH sense to (M∞, d∞, p∞). Suppose

|Ric(gi)| ≤ n− 1, V olgi(B(pi, 1)) ≥ v0 > 0,
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then we have

(1) In the regular-singular decomposition M∞ = R ∪ S, R is an open C2,α manifold

with a C1,α Riemannian metric compatible with the distance d∞ on M∞. S is

closed and of Hausdorff codimension ≥ 2.

(2) If (Mi, gi) are Kähler, then S is of Hausdorff codimension ≥ 4.
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Chapter 3

Kähler Ricci flow on Fano bundle

This chapter is from the joint work [47] with Shijin Zhang.

3.1 Introduction

The Ricci flow, introduced by Hamilton ([58]), has become a powerful tool to study

the topology and geometric structures of Riemannian manifolds. In general, the Ricci

flow develops finite time singularities. Hamilton’s program of Ricci flow with surgeries

was carried out by Perelman [87, 88, 89] to prove Thurston’s geometrization conjec-

ture. The minimal model theory in birational geometry can be viewed as the complex

analogue of Thurston’s geometrization conjecture. Later in [21] Cao introduced the

Kähler-Ricci flow and use it to prove the existence of Kähler-Einstein metrics on man-

ifolds with negative or vanishing first Chern class ([136, 4]).

In this chapter we study the behavior of the finite time singularity of the Kähler-

Ricci flow. Following Song-Tian’s analytic minimal model programm, we study Käherl

Ricci flow on Fano bundle. Before we prove our main result (1.1),(1.2) we introduce

the necessary concepts needed.

Definition 3.1 (Fano bundle). Let X,Y be compact Kähler manifolds with dimension

n,m, respectively, F be a Fano manifold with dimension n−m and a surjective holomor-

phic map π : X → Y . We say X is a Fano bundle over Y with fiber F , if for any y ∈ Y ,

there exists a Zariski open set y ∈ U ⊂ Y and a biholomorphism Φ : π−1(U)→ U × F

such that the diagram

π−1(U)
Φ //

π
##

U × F

Pr1||
U
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commutes, where Pr1 is the projection map onto the first factor. We denote it as

(X,Y, π, F ).

Since the fiber F is a Fano manifold, the solution ω(t) develops a singularity after

a finite time. By (1.1.2), T is finite since F · c1(X)n−m > 0 for every fiber F . Hence we

assume that the limiting Kähler class [ω0]− 2πTc1(X) satisfies

[ω0]− 2πTc1(X) = [π∗ωY ] (3.1.1)

for some Kähler metric ωY on Y .

3.2 Proof of Theorem 1.1

In this section, we recall some estimates for the Kähler-Ricci flow, establish a esti-

mate for ω(t) on the horizontal level set and prove the Theorem 1.1.

We define reference (1, 1)−forms ω̂t on X for t ∈ [0, T ] by

ω̂t =
1

T
((T − t)ω0 + tπ∗ωY ). (3.2.1)

Then ω̂t is a Kähler form in the cohomology class [ω(t)] for t ∈ [0, T ). Let Ω be the

unique smooth volume form on X with
√
−1∂∂ log Ω = ∂

∂t ω̂t =: χ ∈ −2πc1(X) and∫
X Ω = 1. We also can write ω̂t as ω̂t = ω0 + tχ.

It’s well-known that the Kähler-Ricci flow equation (1.1.1) is equivalent to the fol-

lowing complex Monge-Ampère equation
∂ϕ

∂t
= log

( 1
T ((T − t)ω0 + tπ∗ωY ) +

√
−1∂∂ϕ)n

Ω

ϕ(0) = 0,

(3.2.2)

where Ω is a smooth volume form, χ =
√
−1∂∂ log Ω ∈ −2πc1(X), and ω(t) = 1

T ((T −

t)ω0 + tπ∗ωY ) +
√
−1∂∂ϕ > 0.

Then the following estimates are well known, see the Lemma 2.1 and Lemma 2.2 in

[109]. In this paper we use C to denote a uniform constant, independent of time but

possibly depending on ω0, n, T , which may differ from line to line.

Lemma 3.2. For any Kähler manifold (X,ω0) and Kähler manifold (Y, ωY ). If there

exists a surjective holomorphic map π : X → Y , and the smooth solution ω(t) of the
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Kähler-Ricci flow (1.1.1) on X satisfying limt→T [ω(t)] = [π∗ωY ](T < +∞). Then we

have

1. There exists a uniform constant C > 0 such that ||ϕ||L∞ ≤ C;

2. There exists a uniform constant C > 0 such that ϕ̇ ≤ C;

3. As t→ T , ϕ(t) converges pointwise on X to a bounded function ϕT satisfying

ωT := π∗ωY +
√
−1∂∂ϕT ≥ 0. (3.2.3)

4. There exists a uniform constant c > 0 such that

ω(t) ≥ cπ∗ωY . (3.2.4)

By Lemma 3.2 above, we know there exists a bound function ϕT on X satisfying

limt→T ϕ(t) = ϕT . We define

ωT := π∗ωY +
√
−1∂∂ϕT ≥ 0. (3.2.5)

Next motivated by the argument of Song, see subsection 3.1 in [102], which Song esti-

mated the evolving metrics of the Kähler-Ricci flow in a well-chosen set of directions in

the tangent space of each point on X instead of all directions, we estimate the metric

ω(t) on the horizontal level set of the Fano bundle X.

Let (X,Y, π, F ) be the Fano bundle (see Definition 3.1). Since for any x ∈ X, let

y = π(x), there exists a Zariski open set (y ∈)U ⊂ Y , such that the diagram

π−1(U)
Φ //

π
##

U × F

Pr1||
U

commutes, where Pr1 is the projection map onto the first factor. Let f = Pr2 ◦ Φ(x),

H = Φ−1(U × {f}), where Pr2 is the projection map onto the second factor. Let D be

a some divisor such that Y \U ⊂ D and s be a holomorphic section on [D] and let h be

a Hermitian metric on [D]. Define |s|2 = hss. Then on the horizontal level set H, we

have the estimate for ω(t).
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Lemma 3.3. Assume ω(t) is the solution of the Kähler-Ricci flow (1.1.1) and limt→T [ω(t)] =

[π∗ωY ]. Fix any point x ∈ X, then there exists U ⊂ Y , let f(x) = Pr2 ◦ Φ(x) and

H = Φ−1(U ×{f(x)}). Then there exist uniform constants C > 0 and α > 0, such that

ω(t)|H ≤ C
π∗(|s|2α)

(π∗ωY )|H .

Proof. Since for any x ∈ π−1(U), π(x) = y ∈ U , and Φ is a biholomorphism from

π−1(U) to U × F , there exist constants α > 0 and C > 0 such that π∗ωY |H ≥

π∗|s|αωY |U . On the other hand, for each time t ∈ (0, T ), ω(t) is equivalent to met-

ric ω0. Hence if we let

u(t, x) = π∗(|s|2α)trπ∗ωY |H (ω(t)|H)(x),

we know u→ 0 along X\π−1(U) and hence a positive maximum must occur in π−1(U)

at each fixed time t ∈ (0, T ). We assume the maximum can be obtained at point

x0 ∈ X. Let y0 = π(x0) ∈ Y . We choose normal coordinate system (zi)i=1,··· ,n for

g(t) at x0 and (wα)α=1,··· ,m for gY at y0. For any holomorphic vector ∂
∂wα , there exist

holomorphic vector ∂
∂xα ∈ TxX such that dπx( ∂

∂xα ) = ∂
∂wα for any x in the local normal

coordinate chart of x0. The map π is given locally as (π1, · · · , πm) for holomorphic

functions πα = πα(z1, · · · , zn). We write ∂
∂xα as ∂

∂xα = aiα
∂
∂zi

for holomorphic functions

aiα. Then u can be expressed as u(t, x) = |s|2α(π(x))gαβY aiαa
j
βgij . For convenience, we

denote u1 = gαβY aiαa
j
βgij . Then at point x0

∆u1 = gkl∂k∂l(g
αβ
Y aiαa

j
βgij)

=
n∑

k,l=1

gkl∂k(∂δg
αβ
Y πδl a

i
αa

j
βgij + gαβY aiα∂la

j
βgij + gαβY aiαa

j
β∂lgij)

= −∂γ∂δ(gY )βαπ
γ
kπ

δ
ka
i
αa

i
β + |∂kaiα|2 − aiαa

j
αRij

= (Rm(gY ))γδβαπ
γ
kπ

δ
ka
i
αa

i
β + |∂kaiα|2 − aiαa

j
αRij

On the other hand,

∂u1

∂t
= gαβY aiαa

j
β

∂

∂t
gij = −aiαa

j
αRij .

Hence

(
∂

∂t
−∆) log u1 =

1

u1
(−(Rm(gY ))γδβαπ

γ
kπ

δ
ka
i
αa

i
β − |∂ka

i
α|2) +

|∇u1|2

u2
1

≤ cY trωπ
∗ωY +

1

u1
(
|∇u1|2

u1
− |∂kaiα|2),
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where −cY is a lower bound for the bisectional curvature of ωY on Y . It is easy to get

(see [104])

|∇u1|2
u1
− |∂kaiα|2 ≤ 0.

Hence we have

(
∂

∂t
−∆) log u1 ≤ cY trωπ

∗ωY . (3.2.6)

Since
√
−1∂∂(π∗|s|2)(x0) =

√
−1∂∂|s|2(y0), is bounded by some multiple of π∗ωY .

Combine Lemma 2.1, we have

(
∂

∂t
−∆) log u ≤ Ctrωπ

∗ωY ≤ C ′.

Hence by the maximum principle, we have u ≤ C.

Now we prove the Theorem 1.1.

Proof of Theorem 1.1. Lower bound follows from (4) in Lemma 3.2. For any point

y ∈ Y , each fiber π−1(y) = F is a closed Kähler manifold, and since π∗ωY |π−1(y) = 0,

we have
√
−1∂∂ϕT |π−1(y) = ωT |π−1(y) ≥ 0,

since ϕT is bounded, ϕT must be constant on the fiber π−1(y). Hence there exists a

bounded function ψT on Y satisfying

ϕT = π∗ψT .

Hence

ωT = π∗(ωY +
√
−1∂∂ψT ).

Now for any x ∈ X, we may assume that |s|2(π(x)) = 1, there exists an open set

π(x) ∈ U ⊂ Y , such that Lemma 3.3 holds. Now we consider the open set U1/2 := {y ∈

U ||s|2(y) > 1/2}. Then by Lemma 3.3, there exists a constant C > 0 such that

√
−1∂∂ψT |U1/2

≤ CωY .

Since Y is a compact manifold, there exist a finite open set {U i1/2(1 ≤ i ≤ N)} (N is a

positive integer number) satisfying

∪Ni=1U
i
1/2 = Y.
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Hence we obtain that there exists a uniform constant C > 0 such that

√
−1∂∂ψT ≤ CωY .

Hence we finish the proof of the theorem.

We also study the Kähler-Ricci flow on the Fano bundles with the fiber F is Pm blown

up at one point or Mm,k which is the weighted projective space Ym,k (the definition see

Section 4) blown up at the orbifold point.

And our Theorem 1.2 is a combination of Theorem 3.4 and Theorem 3.19 below.

Remark 1. When the dimension of X is 2, our method basically can cover most del

Pezzo surface. It will be more interesting when the complex structure of the fiber is

changing and when the fiber is general Fano variety in higher dimension.

3.3 F Is Pm Blown Up At One Point

In this section, we consider the case of F is Pm blown up at one point. One essential

point of Song-Székelyhidi-Weinkove’s proof [103] is that the projective space admits a

metric which has positive holomorphic bisectional curvature. Although Pm blown up at

one point doesn’t admit a metric with nonnegative holomorphic bisectional curvature,

but we have such metric with nonnegative bisectional curvature on outside of the divisor.

Then we need to estimate the locally holomorphic vector field near the divisor under

the evolving metrics, by using a idea of Song-Weinkove [109]. We also need Lemma 2.2,

estimate of the evolving metrics along the Kähler-Ricci flow which were restricted to a

horizontal set. We prove the following

Theorem 3.4. Let (X,Y, π, F ) be a Fano bundle with F is Pm blown up at one point

(m ≥ 2), ωY be a Kähler metric on Y and ω0 be a Kähler metric on X. Assume ω(t)

is a solution of the Kähler-Ricci flow (1.1.1) for t ∈ [0, T ) with initial metric ω0 and

[ω0]− 2πTc1(X) = [π∗ωY ], then we have

(1) diam(X,ω(t)) ≤ C for some uniform constant C > 0;
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(2) There exists a sequence of times ti → T and a distance function dY on Y (which is

uniformly equivalent to the distance induced by ωY , such that (X,ω(ti)) converges

to (Y, dY ) in the Gromov-Hausdorff sense.

3.3.1 Key Estimates

Write π1 : F → Pm for the blow-down map, which is an isomorphism from F\E

to Pm\{p}, where p ∈ Pm and E = π−1
1 (p), which is biholomorphic to Pm−1. For

convenient, once and for all, a coordinate chart V centered at p, which we identify via

coordinates z1, · · · , zm with the unit ball D1 in Cm,

D1 = {(z1, · · · , zm) ∈ Cm|
m∑
i=1

|zi|2 < 1}. (3.3.1)

Denote by ge the Euclidean metric on D1. Since ge and gFS are uniformly equivalent on

D1, it suffices to estimates for ge on D1. Write Dr ⊂ D1 for the ball of radius 0 < r < 1

with respect to ge.

We recall the definition of the blow-up construction, following the exposition in [48].

We identify π−1
1 (D1) with the submanifold D̃1 of D1 × Pm−1 given by

D̃1 = {(z, l) ∈ D1 × Pm−1|zilj = zjli}, (3.3.2)

where l = [l1, · · · , lm] are homogeneous coordinates on Pm−1. The map π1 restricted

to D̃1 is the projection π|D̃1
(z, l) = z ∈ D1, with the exceptional divisor E ∼= Pm−1

given by π−1
1 (0). The map π gives an isomorphism from D̃1\E onto the punctured ball

D1\{0}.

On D̃1 we have coordinate charts D̃1i = {li 6= 0} with local coordinates z̃(i)1, · · · , z̃(i)m

given by z̃(i)j = lj/li = zj/zi for j 6= i and z̃(i)i = zi. The divisor E is given in D̃1i by

{z̃(i)i = 0}. The line bundle [E] over D̃1 has transition functions zi/zj on D̃1i ∩ D̃1j .

We can define a global section s of [E] over F by setting s(z) = zi on D̃1i and s = 1 on

F\π−1
1 (D1/2). The section s1 vanishes along the exceptional divisor E. We also define

a Hermitian metric h1 on [E] as follows. First let h2 be the Hermitian metric on [E]

over D̃1 given in D̃1i by

h2 =

∑m
j=1 |lj |2

|li|2
, (3.3.3)
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and let h3 be the Hermitian metric on [E] over F\E determined by |s1|2h2
= 1. Now

define the Hermitian metric h1 by h1 = ρ1h2 + ρ2h3, where ρ1, ρ2 is a partition of unity

for the cover (π−1
1 (D1), F\π−1

1 (D1/2)) of F , so that h1 = h2 on π−1
1 (D1/2). The function

|s1|2h1
on F is given on π−1

1 (D1/2) by

|s1|2h1
(x) =

m∑
i=1

|zi|2 =: r2, (3.3.4)

for π1(x) = (z1, · · · , zm). On π−1
1 (D1/2\{0}), the curvature R(h1) of h1 is given by

R(h1) = −
√
−1∂∂ log(

m∑
i=1

|zi|2). (3.3.5)

We have the following lemma (see [48], p.187).

Lemma 3.5. For sufficiently small ε0 > 0,

ωF = π∗1ωFS − ε0R(h1) (3.3.6)

is a Kähler form on F .

From now on we fix ε0 > 0 as in the Lemma 3.5, with ωF defined in Lemma 3.5. In

π−1
1 (D1/2\{0}), which we can identify with D1/2\{0}, the metric ωF has the form:

ωF = π∗1ωFS +
√
−1

ε0
r2

m∑
i,j=1

(δij −
zizj

r2
)dzidzj , (3.3.7)

for r given by (3.3.4). It is easy to see that, in D1/2\{0}, R(h1) ≤ 0, and the following

lemma holds (see [109]).

Lemma 3.6. There exist positive constants C such

π∗1ωFS ≤ ωF ≤ C
π∗1ωFS
|s1|2h1

(3.3.8)

Since (X,Y, π, F ) is a Fano bundle, for any x ∈ X, let y = π(x), there exists a

Zariski open set (y ∈)U ⊂ Y , such that the diagram

π−1(U)
Φ //

π
##

U × F

Pr1||
U
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commutes, where Pr1 is the projection map onto the first factor. Let D be a some

divisor such that Y \U ⊂ D and s be a holomorphic section on [D] and let h be a

Hermitian metric on [D]. Define |s|2 = hss, for simplicity, we also write π∗|s|2h as |s|2h.

On π−1(U), we denote ω̃ = Φ∗(Pr∗2π
∗
1ωFS + Pr∗1ωY ), we also write |s1|2h1

to represent

Φ∗Pr∗2(|s1|2h1
), where Pr2 is the projection map onto the second factor. Then we have

the following

Lemma 3.7. There exist uniform constants C > 0 and α > 0 such that for ω = ω(t)

a solution of the Kähler-Ricci flow,

ω(t) ≤ C

|s|2αh |s1|2h1

ω̃. (3.3.9)

Proof. Fix 0 < ε ≤ 1. By Lemma 3.6, we know

ω̃ ≥ CΦ∗(|s1|2h1
(Pr∗2ωF + Pr∗1ωY )).

Since Pr∗2ωF + Pr∗1ωY is a fixed Kähler metric on U ×F and Φ is a biholomorphism

from π−1(U) to U × F , for any fixed time t, there exists a constant α > 0 such that

trω̃ω ≤
C

|s|αh |s1|2h1

.

Hence if we set

Qε = log(|s|2αh |s1|2+2ε
h1

trω̃ω). (3.3.10)

For each fixed time t ∈ (0, T ). We know the maximum of Qε must be obtained at some

point x0 ∈ Φ−1(U × F\E). Now we compute at point (x0, t)

(
∂

∂t
−∆)Qε = (

∂

∂t
−∆) log trω̃ω + αtrωR(h) + (1 + ε)trωR(h1)

≤ (
∂

∂t
−∆) log trω̃ω + αtrωR(h).

(3.3.11)

From the argument in the proof of Lemma 3.3, there exists a uniform constant C > 0

such that

αtrωR(h) ≤ Ctrωπ
∗ωY ≤ C ′.

By a well-known computation (see [136, 4, 21]):

(
∂

∂t
−∆) log trω̃ω =

1

trω̃ω
(−gij g̃kq g̃plgklR̃ijpq − g

ij g̃klgpq∇̃igkq∇̃jgpl +
|∇trω̃ω|2

trω̃ω
)

≤ − 1

trω̃ω
gij g̃kq g̃plgklR̃ijpq

(3.3.12)
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Denote ĝ as the product metric Pr∗2π
∗
1ωFS + Pr∗1ωY , then g̃ = Φ∗ĝ. We compute with

metric ĝ, since the bisectional curvature of ωFS is positive, we have

R̂ijpq = (Pr∗2π
∗
1R(ωFS))ijpq + (Pr∗1R(ωY ))ijpq ≥ (Pr∗1R(ωY ))ijpq. (3.3.13)

Since Φ∗Pr∗1 = π∗, pulling back via the map Φ, we have

gij g̃kq g̃plgklR̃ijpq ≥ −C(trω̃ω)(trωπ
∗ωY )

for some uniform constant. Hence we obtain that

(
∂

∂t
−∆) log trω̃ω ≤ CtrωPr∗1ωY ≤ C ′.

Hence

(
∂

∂t
−∆)Qε ≤ C. (3.3.14)

Then using the maximum principle and letting ε→ 0, we obtain the lemma.

We assume that |s|h(y) = 1 and denote U1/2 = {ỹ ∈ U ||s|2h(ỹ) > 1/2}.

Consider the holomorphic vector field

m∑
i

zi
∂

∂zi
,

defined on the unit ball D1. This defines via π1 a holomorphic vector field V on

π−1
1 (D1) ⊂ F which vanishes to order 1 along the exceptional divisor E. We can

extend V to be a smooth T 1,0 vector field on the whole of F , and Pr∗2(V ) to be a

smooth T 1,0 vector field on U1/2 × F , then pull back by Φ and then extend it to a

vector Ṽ on whole of X which vanish on X\π−1(U1/2). We then have the following

lemma.

Lemma 3.8. For ω = ω(t) a solution of the Kähler-Ricci flow, we have the estimate

|Ṽ |2ω ≤ C|s1|h1 , (3.3.15)

for a uniform constant C. Locally, in D1/2\{0} we have

|W |2g ≤
C

r
, (3.3.16)
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for

W =

m∑
i=1

(
xi

r

∂

∂xi
+
yi

r

∂

∂yi
)

the unit length radial vector field with respect to ge, where zi = xi +
√
−1yi.

In the statement and proof of the lemma, we are identifying π−1
1 (D1/2\{0}) with

D1/2\{0} via the map π1, writing g for the Kähler metric (π−1
1 )∗(ω|F ).

Proof. In this proof, we denote ωU for Φ∗(Pr∗1ωY + Pr∗2ωF ) on π−1(U) and a Her-

mitian metric ω̃ = ρ1ω0 + ρ2ωU , where ρ1, ρ2 is a partition of unity for the cover

(X\π−1(U1/2), π−1(U)), so that ω̃ = ωU on π−1(U1/2) and which is equivalent to metric

ω0.

From the Lemma 3.5 we have, in D1/2,

|Ṽ |2ω̃ = |V |2ωF = |V |2π∗ωFS . (3.3.17)

It follows that |Ṽ |2ω0
is uniformly equivalent to |s1|2h1

= r2 in D1/2.

For any fixed point (x, t). We compute in a normal coordinate system for g at (x, t),

we have

(
∂

∂t
−∆) log |Ṽ |2ω =

1

|Ṽ |2ω
(−gijgkl(∂iṼ

k)(∂j Ṽ l) +
|∇|Ṽ |2ω|2ω
|Ṽ |2ω

) ≤ 0. (3.3.18)

Where we use the Cauchy-Schwarz inequality to get the above inequality (the detail,

see the proof of Lemma 2.6 in [109]).

Then using the maximum principle, we obtain that there exists a positive constant

C such that

|Ṽ |2ω ≤ C|s1|2h1
. (3.3.19)

Now define a Hermitian metric ω̃F on Pm by

ω̃F = ωe on D1,

and extending in an arbitrary way to be a smooth Hermitian metric on F . For small

ε > 0, we consider the quantity

Qε = log(|Ṽ |2+2ε
ω |s|2α+2ε

h trΦ∗(Pr∗2π
∗
1 ω̃F+Pr∗1ωY )ω)−At (3.3.20)
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where α is the constant in Lemma 3.7 and A is a constant to be determined. Since ω̃F

is uniformly equivalent to ωFS , we see that for fixed t, using Lemma 3.7 and (3.3.19),

(|V |2+2ε
ω |s|2α+2ε

h trΦ∗(Pr∗2π
∗
1 ω̃F+Pr∗1ωY )ω)(x)

tends to zero as x tends to X\π−1(U1/2) ∪ Φ−1(U1/2 × E) and thus Qε(x) tends

to negative infinity. We now applying the maximum principle to Qε. Since Qε is

uniformly bounded from above on Φ−1(U1/2 × F )\Φ−1(U1/2 × D1/2\{0}), we only

need to rule out the case when Qε attains its maximum at a point in Φ−1(U1/2 ×

D1/2\{0}). Assume that at some point (x0, t0) ∈ Φ−1(U1/2 × D1/2\{0}) × (0, T ), we

have supΦ−1(U×F\E)×[0,t0]Qε = Qε(x0, t0).

As in the proof of Lemma 3.7, we have

(
∂

∂t
−∆) log |s|2α+2ε

h = (α+ ε)trωR(h) ≤ Ctrωπ
∗ωY . (3.3.21)

By (3.3.12), pulling back by the biholomorphic map Φ, we have in Φ−1(U1/2×D1/2\{0}),

(
∂

∂t
−∆) log(trΦ∗(Pr∗2π

∗
1 ω̃F+Pr∗1ωY )ω) ≤ CtrωΦ∗Pr∗1ωY . (3.3.22)

Hence

(
∂

∂t
−∆) log |s|2α+2ε

h (trΦ∗(Pr∗2π
∗
1 ω̃F+Pr∗1ωY )ω) ≤ Ctrωπ

∗ωY ≤ C ′. (3.3.23)

Take A = C ′ + 1. By (3.3.18), at (x0, t0), we obtain

0 ≤ (
∂

∂t
−∆)Qε ≤ −1, (3.3.24)

a contradiction. Thus Qε is uniformly bounded from above. Letting ε tend to zero,

since |s|2h > 1/2 on π−1(U1/2), we obtain

(trΦ∗(Pr∗2π
∗
1ωFS+Pr∗1ωY )ω)|Ṽ |2ω ≤ C, (3.3.25)

for some uniform constant C. By Lemma 3.6, we have

(trω0ω)|Ṽ |2ω ≤ C,

and since |Ṽ |2ω ≤ (trω0ω)|Ṽ |2ω0
this gives

|Ṽ |4ω ≤ C|Ṽ |2ω0
, (3.3.26)



30

then the lemma follows from the fact that |Ṽ |2ω0
is uniformly equivalent to |s1|2h1

in

D1/2.

Next we estimate on the lengths of spherical and radial paths in the punctured ball

D1/2\{0}, which again we identify with its preimage in each fiber under π1.

Lemma 3.9. We have

(1) For any y ∈ Y and for 0 < r < 1/2, the diameter of the 2m−1 sphere Sr of radius

r in D1 centered at the origin with the metric induced from ω|π−1(y) is uniformly

bounded from above, independent of r and y.

(2) For any z ∈ D1/2\{0}, the length of a radial path γ(λ) = λz for λ ∈ (0, 1] with

respect to ω|π−1(y) is uniformly bounded from above by a uniform constant multiple

of |z|1/2.

Hence the diameter of D1/2\{0} with respect to ω|π−1(y) is uniformly bounded from

above and

diam(π−1(y), ω|π−1(y)) ≤ C.

Proof. For any y ∈ Y , we can choose |s|2h(y) = 1. Then using Lemma 3.7, consider the

metric ω|π−1(y), we have

ω|π−1(y) ≤
C

|s1|2h1

π∗1ωFS . (3.3.27)

Then using the same argument in the proof of Lemma 2.7 in [109], we obtain the

lemma.

Now we can prove the (1) of Theorem 3.4.

Proof of (1) in Theorem 3.4. For any p, q ∈ X. Denote p1 = π(p), q1 = π(q). Then

there exist two open subset U1, U2 ⊂ Y , such that p1 ∈ U1, p2 ∈ U2 and there exist

holomorphic maps Φ1,Φ2 such that Φi : π−1(Ui)→ Ui×F (i = 1, 2) are the biholomor-

phic map. Denote p2 = Pr2Φ1(p), q2 = Pr2Φ2(q). Since Y is compact, we may assume

U1 ∩U2 6= ∅. We assume p̃1 ∈ U1 ∩U2, denote p̃ = Φ−1
1 ((p̃1, p2)) and q̃ = Φ−1

2 ((p̃1, q2)),

by Lemma 3.3 we know dω(t)(p, p̃) ≤ C and dω(t)(q, q̃) ≤ C .
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Since p̃, q̃ ∈ π−1(p̃1), then by Lemma 3.9, we have dω(t)(p̃, q̃) ≤ C. Using the triangle

inequality we finish the proof of (1) in Theorem 1.2.

3.3.2 Diameter of fiber tends to zero

In this subsection, we prove that the diameter of fiber with ω(t) tends to zero as

t→ T . Let dω = dω(t) be the distance function on X associated to the evolving Kähler

metric ω. Using the same argument in the proof of Lemma 3.2 and Lemma 3.3 in [109],

we prove the following lemmas.

Lemma 3.10. Fix a point y0 ∈ Y . There exists a uniform constant C (independent of

y0) such that for any p, q ∈ E, and any t ∈ [0, T ),

dω(Φ−1(y0, p),Φ
−1(y0, q)) ≤ C(T − t)1/3. (3.3.28)

Proof. We can assume that |s|2h(y0) = 1. We replace E by Φ−1({y0} × E) in the proof

of Lemma 3.2 in [109], using Lemma 3.7 and using Lemma 3.9. See the argument of

the proof of Lemma 3.2 in [109].

Combine Lemma 3.9 and Lemma 3.10, we have

Lemma 3.11. Fix a point y0 ∈ Y . There exists a uniform constant C (independent of

y0) such that for any 0 < δ0 < 1/2 and for anyt ∈ [0, T )

diamω(t)(Φ
−1({y0} × π−1

1 (Dδ0))) < C(|δ0|1/2 + (T − t)1/3). (3.3.29)

Proof. We also assume that |s|2h(y0) = 1. For any p, q ∈ π−1
1 (Dδ0)). Since Lemma

3.10, we only consider p ∈ π−1
1 (Dδ0\{0})) and q ∈ E. By Lemma 3.9 (2), we know

the length of a radial path γ(λ) = λp with respect to ω is uniformly bounded from

above by C|p|1/2 ≤ Cδ
1/2
0 . Since γ(λ) tends to a point p0 ∈ E as λ → 0+, we know

dω|π−1(y0)
(p, p0) ≤ Cδ1/2

0 . By Lemma 3.10, dω(Φ−1((y0, p0)),Φ−1((y0, q))) ≤ C(T−t)1/3.

Hence we have

dω(Φ−1((y0, p)),Φ
−1((y0, q))) ≤ C(δ

1/2
0 + (T − t)1/3).
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Lemma 3.12. Fix a point y0 ∈ Y . There exists a uniform constant C (independent of

y0) such that for any p, q ∈ π−1(y0), and any t ∈ [0, T ),

dω(p, q) ≤ C(T − t)1/15. (3.3.30)

Proof. We also assume that |s|2h(y0) = 1. For each fixed t satisfying T − t < 2−15, i.e.,

2(T − t)2/15 < 1/2. Take δ0 = (T − t)2/15, by Lemma 3.11, we have

diamω(t)(Φ
−1({y0} × π−1

1 (D2δ0))) < C((T − t)1/15 + (T − t)1/3) ≤ C ′(T − t)1/15.

We denote p′ = Pr2 ◦ Φ(p), q′ = Pr2 ◦ Φ(p). Hence we only consider the case of

p′, q′ ∈ F\π−1
1 (Dδ0).

Since π−1(y0) is biholomorphic to F , which is Pm blown up at one point, there

exists a curve γ ∼= P1, such that p, q ∈ γ ∩ (π−1(y0)\Φ−1({y0} × π−1
1 (Dδ0))). We may

assume that p, q lie in a fixed coordinate chart U whose image under the holomorphic

coordinate z = x+
√
−1y is a ball of radius 2 in C = R2 with respect to the Euclidean

metric ωe. In this coordinate, by Lemma 3.7, we know

ω(t)|π−1(y0) ≤
C

(δ0)2
(π1)∗ωFS ≤

C ′

(δ0)2
ωe.

Since closed curve γ ⊂ F ,∫
γ
ω(t) =

∫
γ
[
1

T
((T − t)ω0 + tπ∗ωY )] =

T − t
T

∫
γ
ω0 ≤ C(T − t). (3.3.31)

Write σ = (T − t)1/3 > 0, which we may assume is sufficiently small.

Moreover, we may assume that p is represented by the origin in C = R2, that q is

represented by the point (x0, 0) with 0 < x0 < 1, and that the rectangle

R = {(x, y) ∈ R2|0 ≤ x ≤ x0,−σ ≤ y ≤ σ} ⊂ R2 = C

is contained in the image of U . Now in R, the fixed metric ĝ0 induced from the metric

g0 on X is uniformly equivalent to the Euclidean metric. Thus from (3.3.31),∫ σ

−σ
(

∫ x0

0
(trĝ0g)dx)dy =

∫
R

(trĝ0g)dxdy ≤ C(T − t). (3.3.32)

Hence there exists y′ ∈ (−σ, σ) such that∫ x0

0
(trĝ0g)(x, y′)dx ≤ C

σ
(T − t) = C(T − t)2/3. (3.3.33)



33

Now let p′′ and q′′ be the points represented by coordinates (0, y′) and (x0, y
′). Then,

considering the horizontal path s 7→ (s, y′) between p′′ and q′′, we have

dω(p′′, q′′) ≤
∫ x0

0
(
√
g(∂x, ∂x))(x, y′)dx

=

∫ x0

0
(
√

trĝ0g
√
ĝ0(∂x, ∂x))(x, y′)dx

≤ (

∫ x0

0
(trĝ0g)(x, y′)dx)1/2(

∫ x0

0
(ĝ0(∂x, ∂x))(x, y′)dx)1/2

≤ C(T − t)1/3.

(3.3.34)

and

dω(p, p′′) ≤ dω|π−1(y0)
(p, p′′) ≤ C

(δ0)2
σ = C(T − t)1/15. (3.3.35)

Using the same argument we can prove

dω(q, q′′) ≤ C(T − t)1/15. (3.3.36)

Hence by triangle inequality

dω(t)(p, q) ≤ C(T − t)1/15. (3.3.37)

3.3.3 Gromov-Hausdorff Convergence

In this subsection, we prove that there exists a sequence of metrics along the Kähler-

Ricci flow converges sub-sequentially to a metric on Y in the Gromov-Hausdorff sense

as t→ T .

Lemma 3.13. Write dt : X ×X → R for the distance function induced by the metric

ω(t). There exists a sequence of times ti → T , such that the functions dti converge

uniformly to a function d∞ : X ×X → R.

Moreover, if, for p, q ∈ Y , we let dY,∞(p, q) = d∞(p̃, q̃), where p̃ ∈ π−1(p) and

q̃ ∈ π−1(q), then dY,∞ defines a distance function on Y , which is uniformly equivalent

to that induced by ωY .

Proof. First note that the functions dt : X × X → R are uniformly bounded. Indeed

by (1) in Theorem 1.2, we have a constant C > 0 such that dt(x, y) < C for any t < T
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and x, y ∈ X. Next, we prove that the functions dt : X ×X → R are equicontinuous

with respect to the metric on X ×X induced by d0.

For any x, x′, y, y′ ∈ X, we have

|dt(x, y)− dt(x′, y′)| ≤ |dt(x, y)− dt(x, y′)|+ |dt(x, y′)− dt(x′, y′)|

≤ dt(y, y′) + dt(x, x
′).

(3.3.38)

Define |s|2h = hss, and we assume |s|h(y) = 1.

Since Y is compact, there exist finite Zariski open sets U1, · · · , UN and biholomor-

phic map Φ1, · · · ,ΦN such that the diagram

π−1(U i)
Φi //

π
##

U i × F

Pr1{{
U i

commutes, where Di = Y \U i, and ∪Ni=1π
−1(U i1/3) = X. Let si be the holomorphic

sections on [Di] and let hi be the Hermitian metrics on [Di]. Here U ir = {ỹ ∈ U i||si|hi >

r} for 0 < r ≤ 1.

Claim 1. There exists a uniform constant δ > 0 such that if x ∈ π−1(U i01/3) for some

i0 ∈ {1, · · · , N} and d0(x, x′) < δ, then x′ ∈ π−1(U i02/3).

Proof of Claim. Denote Air be the boundary of π−1(U ir) and denote d0(Ai1/3, A
i
2/3) =

δi > 0. Let ρi1, ρ
i
2 be the partition of unity for the cover (X\π−1(U i2/3), π−1(U i). Then

ωi = ρi1ω0+ρi2Φ∗i (Pr∗1ωY +Pr∗2ωF ) are the Hermitian metrics on X, which are equivalent

to metric ω0, and ωi = Φ∗i (Pr∗1ωY + Pr∗2ωF ) on π−1(U i2/3). Hence there exists a uniform

constant C > 0 such that

C−1ω0 ≤ ωi ≤ Cω0. (3.3.39)

We take δ = C−2 min{δ1, · · · , δN}. Now we can prove x′ ∈ π−1(U i02/3). If not, we know

dωi0 (x, x′) ≥ dωi0 (Ai01/3, A
i0
2/3) ≥ C−1d0(Ai01/3, A

i0
2/3) = C−1δi0 . (3.3.40)

On the other hand,

dωi0 (x, x′) ≤ Cd0(x, x′) < Cδ. (3.3.41)

It is a contradiction. Hence x′ ∈ π−1(U i02/3). We finish the proof of the claim.
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Now if x, x′ ∈ X satisfying d0(x, x′) < δ, by the above claim we have x, x′ ∈ U i02/3

for some i0 ∈ {1, · · · , N}. Now we choose q0 ∈ F such that |s|2h(q0) = 1. Then by the

Lemma 3.7, we have

dt(Φ
−1
i0

(π(x), q0),Φ−1
i0

(π(x′), q0)) ≤ CdωY (π(x), π(x′)) ≤ C ′d0(x, x′). (3.3.42)

By Lemma 3.12

dt(x, x
′) ≤ dt(x,Φ−1

i0
(π(x), q0)) + dt(Φ

−1
i0

(π(x′), q0), x′) + dt(Φ
−1
i0

(π(x), q0),Φ−1
i0

(π(x′), q0))

≤ C[(T − t)1/15 + d0(x, x′)].

(3.3.43)

Now we prove the following lemma.

Lemma 3.14. With the assumption of (3.3.43), there exists a sequence of times ti → T ,

such that the functions dti converges uniformly to a continuous function d∞.

Proof of Lemma 3.14. We denote M = X ×X, is a compact manifold. The first thing

to recall is that any compact metric space has a countable dense subset. This follows

directly from the definition of compactness. Namely, given any k ∈ N, cover M by all

the balls of radius 1
k (centred at all the points of M .) By compactness of M this has a

finite subcover, let Qk ⊂M be the set of centers of such a finite subcover. Then every

point of M is in one of the balls, so it is distant at most 1
k from (at least) one of the

points in Qk. The union, Q = ∪kQk, of these finite sets is (at most) countable and is

clearly dense in M , i.e., any point in M is the limit of a sequence in Q.

Let {dtn} be a sequence of dt (tn → T as n → ∞). Take a point q1 ∈ Q, then

{dtn(q1)} is a bounded sequence in R. So, by Heine-Borel Theorem, we may extract

a subsequence of dtn so that {dtn1,j
(q1)} converges in R. Since Q is countable we

can construct successive subsequences, dtnk,j of the preceding subsequence dtnk−1,j
, so

that the kth subsequence converges at the first kth point {q1, · · · , qk} of Q. Now, the

diagonal sequence dtni = dtni,i is a subsequence of dtn . So along this subsequence dtni (q)

converges for each point in Q. It is a subsequence of the original sequence {dtn}, we

just denote it as {dtn} and we want to show that it converges uniformly; it suffices to

show that it is uniformly Cauchy.
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For any given ε > 0. By the assumption of (3.3.43), we can choose Tε ∈ [0, T ) such

that for any t ∈ [Tε, T ) we have C(T − t)1/15 ≤ ε/6 and choose δ = ε/6C > 0 so that

|dtn(x) − dtn(y)| < ε/3 whenever d0(x, y) < δ and tn ∈ [Tε, T ). Next choose k > 1/δ.

Since there are only finitely many points in Qk we may choose N so large that for any

n > N we have tn ∈ [Tε, T ), then |dtn(q)−dtm(q)| < ε/3 if q ∈ Qk and n,m > N . Then

for a general point x ∈M there exists q ∈ Qk with d0(x, q) < 1/k < δ, so

|dtn(x)−dtm(x)| ≤ |dtn(x)−dtn(q)|+ |dtn(q)−dtm(q)|+ |dtm(q)−dtm(x)| < ε (3.3.44)

whenever n,m > N . Thus the sequence is uniformly Cauchy, hence uniformly conver-

gent. Hence the function d∞ is continuous. We finish the proof of Lemma 3.14.

It follows that d∞ is nonnegative, symmetric and satisfies the triangle inequality.

Let dY : Y ×Y → R be the distance function on Y induced by the metric ωY . From

Lemma 3.2, we have a constant c > 0 such that dt(x, y) ≥
√
cdY (π(x), π(y)). It follows

that the limit d∞ satisfies

d∞ ≥
√
cdY (π(x), π(y)). (3.3.45)

Now we want to prove the upper bound. When π(x), π(y) ∈ U i01/3 for some i0 ∈

{1, · · · , N}, by the inequality (3.3.43) and Lemma 3.9, we have

dt(x, y) ≤ C(T − t)1/15 + CdY (π(x), π(y)). (3.3.46)

This implies that

d∞(x, y) ≤ CdY (π(x), π(y)). (3.3.47)

Now we consider the general case. Assume π(x) ∈ U1
1/3 and π(y) ∈ U i01/3 for some i0 6= 1.

Since ∪Ni=1U
i
1/3 = Y , we know for any minimal geodesic γ(t) connecting π(x) and π(y)

with metric ωY , there exist a finite points y0 = π(x), y1 = γ(t1), y2 = γ(t2), · · · , yL =

γ(tL), yL+1 = π(y) ∈ Y such that yi and yi+1 are in the same U j01/3 for some j0 ∈

{1, 2, · · · , N}. We choose x0 = x, xL+1 = y and any x1, · · · , xL ∈ X satisfying π(xi) =
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yi. Hence by

dY (π(x), π(y)) =

L∑
i=0

dY (yi, yi+1)

≥ C−1
L∑
i=0

d∞(xi, xi+1)

≥ C−1d∞(x, y).

(3.3.48)

For p, q ∈ Y , we now define dY,∞(p, q) = d∞(p̃, q̃), where p̃ ∈ π−1(p), q̃ ∈ π−1(q). This

is independent of the choice of lifts p̃ and q̃ since if say p̃′ is a different lift of p, then

by (3.3.48) and by the triangle inequality, we have

d∞(p̃′, q̃) ≤ d∞(p̃, q̃) + d∞(p̃′, p̃) = d∞(p̃, q̃) (3.3.49)

and by switching p̃ and p̃′ we get the reverse inequality. Moreover, it follows from

(3.3.47) and (3.3.48) that dY,∞ is uniformly equivalent to dY . Hence we finish the proof

of Lemma 3.13.

Theorem 3.15. In the notation of Lemma 3.13 we have (X, dti) → (Y, dY,∞) in the

Gromov-Hausdorff sense, where we recall that dti is the distance function induced by

the metric ω(ti).

Proof. Using the same argument in the proof of Theorem 3.1 in [103]. Hence finish the

proof of (2) in Theorem 3.4.

3.4 F Is Some Weighted Projective Space Blown Up At The Orbifold

Point

In this section, we will consider the case of the fiber F is the family of m-folds

Mm,k(1 ≤ k < m), was introduced by Calabi [20], which as generalization of the

Hirzebruch surfaces. Mn,k is a compactification of the blow up of a Zk-orbifold point

of the orbifold Ym,k, is a P1-bundle over Pm−1. The detail of the construction of Mm,k

and Ym,k, please see [110].
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3.4.1 Definitions of Mm,k and Ym,k

We define Mm,k to be the P1-bundle

Mm,k = P(O(−k)⊕O) (3.4.1)

over Pn−1. We will assume in this paper that m ≥ 2 and 1 ≤ k < m (the latter

implies that Mm,k is a Fano manifold). Denote by E0 and E∞ the divisors in Mm,k

corresponding to sections of O(−k)⊕O with zero O(−k) and O component, respectively

(the detail see Section 9 in [110]). E0 is an exceptional divisor with normal bundle

O(−k) of the type discussed above. The complex manifold Mm,k can be described as

Mm,k ={([Z1, · · · , Zm], (σ, µ) ∈ Pm−1 × ((Cm × C)\{(0, 0)})|σ is in

the line λ 7→ (λ(Z1)k, · · · , λ(Zm)k)}/ ∼,
(3.4.2)

where

([Z1, · · · , Zm], (σ, µ)) ∼ ([Z1, · · · , Zm], (σ′, µ′)) (3.4.3)

if there exists a ∈ C∗ such that (σ, µ) = (aσ′, aµ′). Then E0 and E∞ are the divisors

{σ = 0} and {µ = 0}, respectively.

The orbifold Ym,k is the weighted projective space

Ym,k = {(Z0, · · · , Zm) ∈ Cn+1}/ ∼ . (3.4.4)

where (Z ′0, · · · , Z ′m) ∼ (Z0, · · · , Zm) if there exists λ ∈ C∗ such that

(Z ′0, · · · , Z ′m) = (λkZ0, λZ1, · · · , λZm). (3.4.5)

We write elements of Ym,k as [Z0, · · · , Zm]. Then Ym,k has a single Zk-orbifold point at

[1, 0, · · · , 0].

We define the map π1 : Mm,k → Ym,k by

π1(([Z1, · · · , Zm], (σ, µ))) = [µ, b1/kZ1, · · · , b1/kZm], (3.4.6)

where b ∈ C is defined by

σ = b((Z1)k, · · · , (Zm)k). (3.4.7)

π1 is globally well-defined, surjective and injective on the complement of E0.
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If we identify the line bundle O(−k) with the open subset {µ 6= 0} of Mm,k and

Cm/Zk with the open subset {Z0 6= 0} of Ym,k via (z1, · · · , zm) 7→ [1, z1, · · · , zm], then

π1 restricted to Mm,k\E0 is a biholomorphism onto Ym,k\{[1, 0, · · · , 0]} and π1(E0) =

[1, 0, · · · , 0].

All of the manifolds Mm,k admit Kähler metrics. Indeed, the cohomology classes

of the line bundles [E0] and [E∞] span H1,1(Mm,k;R) and every Kähler class α can be

written uniquely as

α =
b

k
[E∞]− a

k
[E0] (3.4.8)

for constants a, b with 0 < a < b. The first chern class

c1(Mm,k) =
m+ k

k
[E∞]− n− k

k
[E0]. (3.4.9)

Hence if 1 ≤ k ≤ m − 1, then Mm,k is a Fano manifold. He and Sun proved that

any weighted projective space exists an orbifold Kähler (in fact is Kähler-Ricci soliton)

metric ωorb with positive bisectional curvature, see Theorem 1.2 in [62].

Let L be the (− k) line bundle over Pm−1, for k ≥ 1. We give a description of the

total space of L as follows. Writing [Z1, · · · , Zm] for the homogeneous coordinates on

Pm−1, we define

L = {([Z1, · · · , Zm], σ) ∈ Pm−1 × Cm|σ is in the line λ 7→ (λ(Z1)k, · · · , λ(Zm)k)},

(3.4.10)

and let P : L→ Pm−1 be the projection onto the first factor. Each fiber P−1([Z1, · · · , Zm])

is the line in C. L can be given m complex coordinate charts

Ui = {([Z1, · · · , Zm], σ) ∈ L|Zi 6= 0} for i = 1, · · · ,m.

On Ui, we have coordinates ωj(i) for j = 1, · · · ,m with j 6= i and y(i). The ωj(i) are

defined by

ωj(i) = Zj/Zi for j 6= i,

and y(i) by

σ =
y(i)

(Zi)k
((Z1)k, · · · , (Zm)k).

On Ui ∩ Ul with i 6= l, we have
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ωj(i) =
ωj

(l)

ωi
(l)

for j 6= i, l, ωl(i) = 1
ωi

(l)

and y(i) = y(l)(
Zi
Zl

)k = y(l)(ω
i
(l))

k.

Now let E be the submanifold of L defined by the zero section of L over Pm−1. Denote

by [E] the pull-back line bundle P ∗L over L, which corresponds to the hypersurface E.

Writing the transition functions of [E] in Ui ∩ Ul as til = (Zi/Zl)
k = y(i)/y(l), we have

a section s̃ over [E] given by

si : Ui → C, si = yi.

We can define a Hermitian metric h̃ on the fibers of [E] by

hi =
(Σmj=1|Zj |2)k

|Zi|2k
on Ui.

Namely, h̃ is the pull-back of h−kFS where hFS is the Fubini-Study metric on O(1). We

have

|s̃|2
h̃

= |y(i)|2
(Σm

j=1|Zj |2)k

|Zi|2k
on Ui. (3.4.11)

If we denote r2 =
∑m

i=1 |zi|2, then we have

π∗1r
2k = |s̃|2

h̃
(3.4.12)

on L.

Let ωe be the standard orbifold metric on Cm/Zk, which lifts to the Euclidean metric

on Cm, we write ωe as

ωe =

√
−1

2π
Σidz

i ∧ dzi. (3.4.13)

Denote ωF be the metric ωX in Lemma 2.3 in [110], it is a Kähler metric on Mm,k.

We will work in a local uniformizing chart around the orbifold point p ∈ Yn,k, which we

identify with the unit ball D1 in Cm. Then we know that ωorb is uniformly equivalent

to the Euclidean metric ωe on D1. We write DR for the ball in Cm of radius R > 0.

Then from the section 2 in [110], on π−1
1 (D1\{0}) we have

k|s̃|2(k−1)/k

h̃
π∗1ωe ≤ ωF ≤

C

|s̃|2/k
h̃

π∗1ωe (3.4.14)

for some uniform constant C > 0. Hence on π−1
1 (D1\{0}) there exists a uniform

constant C such that

C−1|s̃|2(k−1)/k

h̃
π∗1ωorb ≤ ωF ≤

C

|s̃|2/k
h̃

π∗1ωorb. (3.4.15)
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Now if we denote ω̃ = Φ∗(Pr∗2π
∗
1ωorb + Pr∗1ωY ), since the bisectional curvature of

ωorb is positive, using the same argument of Lemma 3.7, we obtain

Lemma 3.16. There exist uniform constants C > 0 and α > 0 such that for ω = ω(t)

a solution of the Kähler-Ricci flow,

ω(t) ≤ C

|s|2αh |s̃|
2/k

h̃

ω̃. (3.4.16)

Using the same notations as in Lemma 3.8, then we have

Lemma 3.17. For ω = ω(t) a solution of the Kähler-Ricci flow. Then there exist

uniform constants C > 0 and R0 = R0(m, k) ∈ (0, 1) such that on DR0\{0}:

|Ṽ |2ω ≤ Cr2k/k+1. (3.4.17)

Locally, in DR0\{0} we have

|W |2g ≤
C

r2/(k+1)
, (3.4.18)

for

W =

m∑
i=1

(
xi

r

∂

∂xi
+
yi

r

∂

∂yi
)

the unit length radial vector field with respect to ge, where zi = xi +
√
−1yi.

Proof. We using (3.4.14) and using the same argument in the proof of of Lemma 3.8,

we can obtain the Lemma.

Using the same argument in the proof of Lemma 3.9, we can estimate on the lengths

of spherical and radial paths in the punctured ball DR0\{0}.

Lemma 3.18. We have

(1) For any y ∈ Y and for 0 < r < R0, the diameter of the 2m−1 sphere Sr of radius

r in DR0 centered at the origin with the metric induced from ω|π−1(y) is uniformly

bounded from above, independent of r and y.

(2) For any z ∈ DR0\{0}, the length of a radial path γ(λ) = λz for λ ∈ (0, 1] with

respect to ω|π−1(y) is uniformly bounded from above by a uniform constant multiple

of |z|k/(k+1).
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Hence the diameter of DR0\{0} with respect to ω|π−1(y) is uniformly bounded from above

and

diam(π−1(y), ω|π−1(y)) ≤ C.

Then using the same argument in Section 3, we can prove the diameter of the fiber

along the metrics g(t) tend to zero, then we obtain

Theorem 3.19. Let (X,Y, π, F ) be a Fano bundle with F is Mm,k(1 ≤ k < m), ωY be

a Kähler metric on Y and ω0 be a Kähler metric on X. Assume ω(t) is a solution of

the Kähler-Ricci flow (1.1.1) for t ∈ [0, T ) with initial metric ω0 and [ω0]−2πTc1(X) =

[π∗ωY ], then we have

(1) diam(X,ω(t)) ≤ C for some uniform constant C > 0;

(2) There exists a sequence of times ti → T and a distance function dY on Y (which is

uniformly equivalent to the distance induced by ωY , such that (X,ω(ti)) converge

to (Y, dY ) in the Gromov-Hausdorff sense.
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Chapter 4

Geometric estimate of Monge-Ampère equation

The chapter is from joint work [46] with Bin Guo and Jian Song.

4.1 Introduction

As we mentioned in the introduction, complex Monge-Ampère equations are closely

related to geometric equations of Einstein type, and in many geometric settings, one

makes assumption on a uniform lower bound of the Ricci curvature. Therefore it is nat-

ural to consider the family of volume measures, whose curvature is uniformly bounded

below. More precisely, we let Ω = e−fθn be a smooth volume form on X such that

Ric(Ω) = −
√
−1∂∂ log Ω ≥ −Aθ (4.1.1)

for some fixed constant A ≥ 0. This is equivalent to say,

√
−1∂∂f ≥ −Ric(θ)−Aθ,

or

f ∈ PSH(X,Ric(θ) +Aθ).

Let’s explain one of the motivations for condition (4.1.1) by some examples. Let

{Ei}Ii=1 and {Fj}Jj=1 be two families of effective divisors of X. Let σEi , σFj be the

defining sections for Ei and Fj , respectively, and hEi and hFj smooth hermitian metrics

for the line bundles associated to Ei and Fj respectively. In [136], Yau considers the

following degenerate complex Monge-Ampère equations

(θ +
√
−1∂∂ϕ)n =

∑I
i=1 |σEi |

2βi
hEi∑J

j=1 |σFj |
2αj
hFj

 θn, (4.1.2)
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where αj , βi > 0, and various estimates are derived [136] assuming certain bounds on

the degenerate right hand side of equation (4.1.2).

If we consider the following case

(θ +
√
−1∂∂ϕ)n =

θn∑J
j=1 |σFj |

2αj
hFj

. (4.1.3)

the volume measure will blow up along common zeros of {Fj}Jj=1. If the volume measure

on the right hand side of the equation (4.1.3) is Lp-integrable for some p > 1, i.e.,

Ω =

 J∑
j=1

|σFj |
2αj
hFj

−1

θn

satisfies

Ω

θn
=

 J∑
j=1

|σFj |
2αj
hFj

−1

∈ Lp(X, θn), for some p > 1,

∫
X

Ω =

∫
X
θn,

then there exists a unique (up to a constant translation) continuous solution of (4.1.3).

Furthermore, Ω can be approximated by smooth volume forms Ωj (c.f. [31]) satisfying

Ric(Ωj) ≥ −(A+A′)θ,

∥∥∥∥Ωj

θn

∥∥∥∥
Lp(X,θn)

≤
∥∥∥∥ Ω

θn

∥∥∥∥
Lp(X,θn)

,

∫
X

Ωj =

∫
X
θn

for some fixed A′ ≥ 0. Therefore condition (4.1.1) is a natural generalization of the

above case. In the special case when {Fj}Jj=1 is a union of smooth divisors with simple

normal crossings and each αj ∈ (0, 1), the solution of equation (4.1.3) has conical

singularities of cone angle of 2π(1− αj) along Fj , j = 1, ..., J .

Before proving our Theorem 1.3, we first make some remarks on this theorem.

Remark 2. If we write Ω = e−fθn, assumption (1.2.3) in Theorem 1.3 on Ω is equiv-

alent to the following on f :

e−f ∈ Lp(X, θ),
∫
X
e−fθ = [θ]n, f ∈ PSH(X,Ric(θ) +Aθ). (4.1.4)

f is uniformly bounded above by the plurisubharmonicity and the Kähler metric g asso-

ciated to ω = θ +
√
−1∂∂ϕ is bounded below by a fixed multiple of θ (see Lemma 4.3).

However, one can not expect that g is bounded from above since f is not uniformly

bounded above as in the example of equation (4.1.3). Fortunately, we can bound the

diameter of (X, g) uniformly by Theorem 1.3.
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Remark 3. The gradient estimate in Theorem 1.3 is a generalization of the gradient

estimate in [113]. The new insight in our approach is that one should estimate gradient

and higher order estimates of the potential functions with respect to the new metric

instead of a fixed reference metric for geometric complex Monge-Ampère equations such

as those studied in Theorem 1.3. We refer interested readers to [6, 96] for gradient esti-

mates for complex Monge-Ampère equations with respect to various background metrics.

Remark 4. Combining the lower bound of Ricci curvature and the non-collapsing con-

dition (1.2.4), we can apply the theory of degeneration of Riemannian manifolds [10]

so that any sequence of Kähler manifolds (X, gj) ∈M(X, θ, p,K,A), after passing to a

subsequence, converges to a compact metric space (X∞, d∞) with well-defined tangent

cones of Hausdorff dimension 2n at each point in X∞. In the case of equation (4.1.3),

we believe the solution induces a unique Riemannian metric space homeomorphic to the

original manifold X and all tangent cones are unique and biholomorphic to Cn. If this

is true, one might even be able to establish higher order expansions for the solution.

The ultimate goal of our approach is to construct canonical domains and equations on

the blow-up of solutions for geometric degenerate complex Monge-Ampère equations, by

degeneration of Riemannian manifolds.

We will also use similar techniques in the proof of Theorem 1.3 to obtain diameter

estimates in more geometric settings. Before that, let us introduce a few necessary and

well-known notions in complex geometry.

Definition 4.1.1. Let X be a Kähler manifold of complex dimension n and α ∈

H2(X,R) ∩H1,1(X,R) be nef. The numerical dimension of the class α is given by

ν(α) = max{k = 0, 1, ..., n | αk 6= 0 in H2k(X,R)}. (4.1.5)

when ν(α) = n, the class α is said to be big.

The numerical dimension ν(α) is always no greater than dimC(X).

Definition 4.1.2. Let X be a Kähler manifold and α ∈ H2(X,R) ∩H1,1(X,R). Then

the class α is nef if α+A is a Kähler class for any Kähler class A.
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When the canonical bundle KX is nef, X is said to be a minimal model. The

abundance conjecture in birational geometry predicts that the canonical line bundle is

always semi-ample (i.e. a sufficiently large power of the canonical line bundle is globally

generated) if it is nef.

Definition 4.1.3. Let ϑ be a smooth real valued closed (1, 1)-form on a Kähler manifold

X. The extremal function V associated to the form ϑ is defined by

V (z) = sup{φ(z) | ϑ+
√
−1∂∂φ ≥ 0, sup

X
φ = 0},

for all z ∈ X.

Any ψ ∈ PSH(X,ϑ) is said to have minimal singularities defined by Demailly (c.f.

[5]) if ψ − V is bounded.

Let (X, θ) be a Kähler manifold of complex dimension n equipped with a Kähler

metric θ. Suppose χ is a real valued smooth closed (1, 1)-form and its class [χ] is nef and

of numerical dimension κ. We consider the following family of complex Monge-Ampère

equations

(χ+ tθ +
√
−1∂∂ϕt)

n = tn−κeλϕt+ctΩ, for t ∈ (0, 1], (4.1.6)

where λ = 0, or 1, and ct is a normalizing constant such that∫
X
tn−κectΩ =

∫
X

(χ+ tθ)n. (4.1.7)

Straightforward calculations show that ct is uniformly bounded for t ∈ (0, 1]. The

following proposition generalizes the result in [9, 72, 40, 139] by studying a family of

collapsing complex Monge-Ampère equations. It also generalizes the results in [37, 40,

75] for the case when the limiting reference form is semi-positive.

Proposition 4.1.1. We consider equation (1.2.5) with the normalization condition

(4.1.7). Suppose the volume measure Ω satisfies∫
X

(
Ω

θn

)p
θn ≤ K

for some p > 1 and K > 0. Then there exists a unique ϕt ∈ PSH(X,χ + tθ) up to a

constant translation solving equation (1.2.5) for all t ∈ (0, 1]. Furthermore, there exists
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C = C(X,χ, θ, p,K) > 0 such that for all t ∈ (0, 1],

‖(ϕt − sup
X
ϕt)− Vt‖L∞(X) ≤ C,

where Vt is the extremal function associated to χ+ tθ as in Definition 4.1.3.

We will use proposition 4.1.1 can be applied to generalize Theorem 1.3, especially

for minimal Kähler manifolds in a geometric setting. A Kähler manifold is called a

minimal model if its canonical bundle is nef.

Both Theorem 1.3 and Theorem 1.5 are generalization and improvement for the

techniques developed in [113] for diameter and distance estimates. With the additional

bounds on the volume measure, we transform Kolodziej’s analytic L∞-estimate to a

geometric diameter estimate. It is a natural question to ask how the metric space

(Z, dZ) is related to the current ω̃ on X. We conjecture ω̃ is smooth on an open dense

set of X and its metric completion coincides with (Z, dZ). However, at this moment,

we do not even know the Hausdorff dimension or uniqueness of (Z, dZ).

When X is a minimal model of general type, Theorem 1.5 is proved in [113] and

the result in [128] shows that the singular set is closed and of Hausdorff dimension no

greater than 2n− 4.

We can also replace the smooth Kähler form θ in Theorem 1.5 by Dirac measures

along effective divisors. For example, if {Ej}Jj=1 is a union of smooth divisors with

normal crossings and
J∑
j=1

ajEj

is an ample Q-divisor with some aj ∈ (0, 1) for j = 1, ..., J . Then Theorem 1.5 also

holds if we let θ =
∑J

j=1 aj [Ej ]. In this case, the metric gt is a conical Kähler-Einstein

metric with cone angles of 2π(1− aj) along each complex hypersurface Ej .

A special case of the abundance conjecture is proved by Kawamata [66] for minimal

models of general type. When X is a smooth minimal model of general type, it is re-

cently proved by the third named author [113] that the limiting metric space (Z, dZ) in

Theorem 1.5 is unique and is homeomorphic to the algebraic canonical model Xcan of X.

This gives an analytic proof of Kawamata’s result using complex Monge-Ampère equa-

tions, Riemannian geometry and geometric L2-estimates. Theorem 1.5 also provides a
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Riemannian geometric model for the non-general type case. This analytic approach will

shed light on the abundance conjecture if such a metric model is unique with reasonably

good understanding of its tangle cones.

Theorem 1.5 can also be easily generalized to a Calabi-Yau manifold X equipped

with a nef line bundle L over X of ν(L) = κ.

Our final result assumes semi-ampleness for the canonical line bundle and aims to

connect the algebraic canonical models to geometric canonical models. Let X be a

Kähler manifold of complex dimension n. If the canonical bundle KX is semi-ample,

the pluricanonical system induces a holomorphic surjective map

Φ : X → Xcan

from X to its unique canonical model Xcan. In particular, dimCXcan = ν(X). We let

S be the set of all singular fibers of Φ and Φ−1 (SXcan), where SXcan is the singular set

of Xcan. The general fibre of Φ is a smooth Calabi-Yau manifold of complex dimension

n−ν(X). It is proved in [113] that there exists a unique twisted Kähler-Einstein current

ωcan on Xcan satisfying

Ric(ωcan) = −ωcan + ωWP , (4.1.8)

where Φ∗ωcan ∈ −c1(X) and ωWP is the Weil-Petersson metric for the variation of the

Calabi-Yau fibres. In particular, ωcan has bounded local potentials and is smooth on

Xcan \Scan. We let gcan be the smooth Kähler metric associated to ωcan on Xcan \Scan.

We remark that a special case of Theorem 1.6 is proved in [142] with a different

approach for dimCX = 2. In general, the collapsing theory in Riemannian geometry has

not been fully developed except in lower dimensions. In the Kähler case, one hopes the

rigidity properties can help us understand the collapsing behavior for Kähler metrics

of Einstien type as well as long time solutions of the Kähler-Ricci flow on algebraic

minimal models. Key analytic and geometric estimates in the proof of (2) in Theorem

1.6 are established in [104, 105] for the collapsing long time solutions of the Kähler-Ricci

flow and its elliptic analogues. The proof for (3) and (4) is a technical modification

of various local results of [131, 50, 132, 51], where collapsing behavior for families of

Ricci-flat Calabi-Yau manifolds is comprehensively studied. Theorem 1.6 should also
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hold for Kähler manifolds with some additional arguments.

Finally, we will also apply our method to a continuity scheme proposed in [78] to

study singularities arising from contraction of projective manifolds. This is an alter-

native approach for the analytic minimal model program developed in [104, 105, 106]

to understand birational transformations via analytic and geometric methods (see also

[109, 110, 112, 102]). Compared to the Kähler-Ricci flow, such a scheme has the advan-

tage of prescribed Ricci lower bounds and so one can apply the Cheeger-Colding theory

for degeneration of Riemannian manifolds, on the other hand, it loses the canonical

soliton structure for the analytic transition of singularities corresponding to birational

surgeries such as flips.

Let X be a projective manifold of complex dimension n. We choose an ample line

bundle L on X and we can assume that L−KX is ample, otherwise we can replace L

by a sufficiently large power of L. We choose θ ∈ [L−KX ] to be a smooth Kähler form

and consider the following curvature equation

Ric(gt) = −gt + tθ, t ∈ [0, 1]. (4.1.9)

Let

tmin = inf{t ∈ [0, 1] | equation (4.1.9) is solvable at t}. (4.1.10)

It is straightforward to verify that tmin < 1 by the usual continuity method (c.f. [78]).

The goal is to solve equation (4.1.9) for all t ∈ (0, 1], however, one might have to stop

at t = tmin when KX is not nef.

Theorem 4.1. Let gt the solution of equation (4.1.9) for t ∈ (tmin, 1]. There exists

C = C(X, θ) > 0 such that for any t ∈ (tmin, 1],

Diam(X, gt) ≤ C. (4.1.11)

Theorem 1.5 is a special case of Theorem 4.1 when tmin = 0 (c.f. [113]). When

tmin > 0, Theorem 4.1 is also proved in [79] with the additional assumption that

tminL+ (1− tmin)KX

is semi-ample and big. The diameter estimate immediately allows one to take a geo-

metric limit as a compact metric length space. In particular, it is shown in [79] that the
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limiting space is homeomorphic to the projective variety from the contraction induced

by the Q-line bundle tminL+(1− tmin)KX when it is big and semi-ample. One can also

use Theorem 4.1 to obtain a weaker version of Kawamata’s base point free theorem in

the minimal model theory (c.f. [56]).

4.2 Proof of Theorem 1.3

In this section, we prove our theorem 1.3 after some preparation. Throughout this

section, we let ϕ ∈ PSH(X, θ) be the solution of the equation (1.2.2) satisfying the

condition (1.2.3) in Theorem 1.3. We let ω = χ +
√
−1∂∂ϕ and let g be the Kähler

metric associated to ω.

Lemma 4.2. There exists C = C(X, θ, p,K) > 0 such that

‖ϕ− sup
X
ϕ‖L∞(X) ≤ C.

Proof. The L∞ estimate immediately follows from Kolodziej’s theorem [72].

The following is a result similar to Schwarz lemma.

Lemma 4.3. There exists C = C(X, θ, p,K,A) > 0 such that

ω ≥ Cθ.

Proof. There exists C = C(X, θ,A) > 0 such that

∆ω log trω(θ) ≥ −C − Ctrω(θ),

where ∆ω is the Laplace operator associated with ω. Then let

H = log trω(θ)−B(ϕ− sup
X
ϕ)

for some B > 2C. Then

∆ωH ≥ Ctrω(θ)− C.

It follows from maximum principle and the L∞-estimate in Lemma 4.2 that supX trωθ ≤

C.
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Lemma 4.3 immediately gives the uniform Ricci lower bound.

Lemma 4.4. There exists C = (X, θ, p,K,A) > 0 such that

Ric(g) ≥ −Cg.

Proof. We calculate

Ric(g) = −λg +Ric(Ω) + λθ ≥ −λg − (A− λ)θ ≥ −Cg

for some fixed constant C > 0 by Lemma 4.3.

We will now prove the uniform diameter bound.

Lemma 4.5. There exists C = (X, θ, p,K,A) > 0 such that

Diam(X, g) ≤ C.

Proof. We first fix a sufficiently small ε = ε(p) > 0 so that p − ε > 1. Suppose

Diam(X, g) = D for some D ≥ 4. Let γ : [0, D] → X be a normal minimal geodesic

with respect to the metric g and choose the points {xi = γ(6i)}[D/6]
i=0 . It is clear that

the balls {Bg(xi, 3)}[D/6]
i=0 are disjoint, so

[D/6]∑
i=0

Volθ
(
Bg(xi, 3)

)
≤
∫
X
θn = V,

hence there exists a geodesic ball Bg(xi, 3) such that

Volθ
(
Bg(xi, 3)

)
≤ 6V D−1.

We fix such xi and construct a cut-off function η(x) = ρ(r(x)) ≥ 0 with

r(x) = dg(x, xi)

such that

η = 1 on Bg(xi, 1), η = 0 outside Bg(xi, 2),

and

ρ ∈ [0, 1], ρ−1(ρ′)2 ≤ C(n), |ρ′′| ≤ C(n).
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Define a function F > 0 on X such that F = 1 outside Bg(xi, 3), F = D
ε

p(p−ε) on

Bg(xi, 2), and∫
X
FΩ = [θ]n,

∫
X

(FΩ

θn

)p−ε
θn ≤

(∫
X
F
p(p−ε)
ε θn

) ε
p
(∫

X

( Ω

θn
)p
θn
) p−ε

p ≤ C

for some C = C(X, θ, p,K) > 0.

We now consider the equation

(θ +
√
−1∂∂φ)n = eλφFΩ.

By similar argument as before, ‖φ − supX φ‖L∞ ≤ C = C(X, θ, p,K). Let ĝ = θ +
√
−1∂∂φ. Then on Bg(xi, 2),

Ric(ĝ) = −λĝ +Ric(Ω) + λθ, Ric(g) = −λg +Ric(Ω) + λθ.

In particular,

∆g log
ω̂n

ωn
= −λn+ λtrg(ĝ),

where ∆g = ∆ω. Let

H = η
(

log
ω̂n

ωn
−
(
(ϕ− sup

X
ϕ)− (φ− sup

X
φ)
))
.

On Bg(xi, 2), we have

∆gH = −(λ+ 1)n+ (λ+ 1)trg(ĝ) ≥ −2n+ n

(
ω̂n

ωn

)1/n

.

In general, on the support of η, we have

∆gH ≥ η

(
−2n+ n

( ω̂n
ωn

)1/n
)

+ 2η−1Re (∇H · ∇η)− 2
H|∇η|2

η2
+ η−1H∆gη

≥ η−1
(
Cη2eH/(nη) + 2Re

(
∇H · ∇η

)
− 2

H|∇η|2

η
+H∆gη − 2nη2

)
.

We may assume supX H > 0, otherwise we already have upper bound of H. The

maximum of H must lie at Bg(xi, 2) and at this point

∆gH ≤ 0, |∇H|2 = 0.

By Laplacian comparison we have

∆gη = ρ′∆r + ρ′′ ≥ −C, |∇η|2

η
=

(ρ′)2

ρ
≤ C.
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So at the maximum of H, it holds that

0 ≥ Cη2eH/(nη) − CH − 2n ≥ CH2 − CH − 2n,

therefore supX H ≤ C. In particular on the ball Bg(xi, 1) where η ≡ 1, it follows that

ω̂n

ωn ≤ C. From the definition of ω̂ and ω,

C ≥ ω̂n

ωn
= D

ε
p(p−ε) eλ(φ−ϕ).

Combined with the L∞-estimate of φ and ϕ, we conclude that

D ≤ C = C(n, p, θ, A,K).

Lemma 4.6. There exists C = (X, θ, p,K,A) > 0 such that

sup
X
|∇gϕ|g ≤ C.

Proof. Straightforward calculations show that

∆gϕ = n− trg(θ),

∆g|∇ϕ|2g = |∇∇ϕ|2 + |∇∇̄ϕ|2 + gil̄gkj̄Rij̄ϕkϕl̄ − 2∇ϕ · ∇trg(θ)

≥ |∇∇ϕ|2 + |∇∇̄ϕ|2 − C|∇ϕ|2 − 2∇ϕ · ∇trg(θ),

and

∆gtrgθ = trgθ ·∆g log trgθ +
|∇trgθ|2

trgθ
≥ −C + c0|∇trgθ|2

for some uniform constant c0, C > 0. We choose constants α and B satisfying

α > 4c−1
0 > 4, B > sup

X
ϕ+ 1

and define

H =
|∇ϕ|2

B − ϕ
+ αtrgθ.

Then we have

∆H ≥ |∇∇ϕ|
2 + |∇∇̄ϕ|2

B − ϕ
− C |∇ϕ|

2

B − ϕ
− |∇ϕ|

2(trgθ − n)

(B − ϕ)2
− 2(1 + α)

〈∇ϕ,∇trgθ〉
B − ϕ

− αC + αc0|∇trgθ|2 + 2〈 ∇ϕ
B − ϕ

,∇H〉.

(4.2.1)
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We may assume at the maximum point zmax of H, |∇ϕ| > α and H > 0, otherwise we

are done. At zmax,

∇H = 0, ∆H ≤ 0

and so at zmax

∇|∇ϕ| = 1

2

(
−H ∇ϕ

|∇ϕ|
− α(B − ϕ)

∇trgθ

|∇ϕ|
+ α

trgθ∇ϕ
|∇ϕ|

)
.

By Kato’s inequality |∇|∇ϕ||2 ≤ |∇∇ϕ|
2+|∇∇̄ϕ|2

2 , it follows that

|∇∇ϕ|2 + |∇∇̄ϕ|2

B − ϕ
≥ 1

2(B − ϕ)

(
H2 + α2(B − ϕ)2(trgθ)

2 + α2 |∇trgθ|2

|∇ϕ|2

− 2αH(B − ϕ)trgθ − 2αH
|∇trgθ|
|∇ϕ|

− 2α2(B − ϕ)trgθ
|∇trgθ|
|∇ϕ|

)
≥ H2

4(B − ϕ)
− CH − |∇trgθ|2

B − ϕ
− C|∇trgθ|

(4.2.2)

for some uniform constant C > 0. After substituting (4.2.2) to (4.2.1) and applying

Cauchy-Schwarz inequality, we have at zmax

0 ≥ H2

4(B − ϕ)
− CH − C − 2|∇trgθ|2

B − ϕ
− C|∇trgθ|+ 4|∇trgθ|2

≥ H2

4(B − ϕ)
− CH − C,

for some uniform constant C > 0. Therefore maxX H ≤ C for some C = C(X, θ,Ω, A, p,K).

The lemma then immediately follows from Lemma 4.2 and Lemma 4.3.

4.3 Uniform C0 estimate in nef canonical class setting

In this section, we will prove Proposition 4.1.1 by applying the techniques in [9,

72, 40, 37]. We point out that our uniform C0 estimate is modulo extremal function

associated to a pseudoeffective class.

Let X be a Kähler manifold of dimension n. Suppose α is nef class on X of numerical

dimension κ ≥ 0. Let χ ∈ α be a smooth closed (1, 1)-form. We define the extremal

function Vχ by

Vχ = sup{φ | χ+
√
−1∂∂φ ≥ 0, φ ≤ 0}. (4.3.1)
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Let θ be a fixed smooth Kähler metric on X. Then we define the perturbed extremal

function Vt for t ∈ (0, 1] by

Vt = sup{φ | χ+ tθ +
√
−1∂∂φ ≥ 0, φ ≤ 0}. (4.3.2)

The above extremal functions were introduced in [9] when α is big.

We first rewrite the equation (1.2.5) for λ = 0 as follows

(χ+ tθ +
√
−1∂∂ϕt)

n = tn−κe−f+ctθn, sup
X
ϕt = 0, (4.3.3)

t ∈ (0, 1] by letting Ω = e−fθn, where ct is the normalizing constant satisfying

tn−κ
∫
X
e−f+ctθn =

∫
X

(χ+ tθ)n.

f satisfies the following uniform bound∫
X
e−pfθn ≤ K,

for some p > 1 and K > 0.

The following definition is an extension of the capacity introduced in [72, 40, 37, 9].

Definition 4.3.1. We define the capacity Capχt(K) for a subset K ⊂ X by

Capχt(K) = sup
{∫
K

(χt +
√
−1∂∂u)n | u ∈ PSH(X,χt), 0 ≤ u− Vt ≤ 1

}
, (4.3.4)

where χt = χ + tθ is the reference metric in (4.3.3). We also define the extremal

function Vt,K by

Vt,K = sup {u ∈ PSH(X,χt) | u ≤ 0, on K} . (4.3.5)

If K is open, then we have

1. Vt,K ∈ PSH(X,χt) ∩ L∞(X),

2. (χt +
√
−1∂∂Vt,K)n = 0 on X \ K.

Lemma 4.7. Let ϕt be the solution to (4.3.3). Then there exist δ = δ(X,χ, θ) > 0 and

C = C(X,χ, θ, p,K) > 0 such that for any open set K ⊂ X and t ∈ (0, 1],

1

[χnt ]

∫
K

(χt +
√
−1∂∂ϕt)

n ≤ Ce−δ
(

[χnt ]

Capχt (K)

) 1
n

. (4.3.6)
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Proof. Since [χm] = 0 for κ+ 1 ≤ m ≤ n

[χnt ] =

∫
X
χnt =

∫
X

n∑
k=0

(
n

k

)
χk ∧ tn−kθn−k =

∫
X

κ∑
k=0

(
n

k

)
χk ∧ tn−kθn−k = O(tn−κ).

It follows that the normalizing constant ct in (4.3.3) is uniform bounded. Let Mt,K =

supX Vt,K. Then we have

1

[χnt ]

∫
K

(χt +
√
−1∂∂ϕt)

n =
tn−κect

[χnt ]

∫
K
e−fθn

≤ tn−κect

[χnt ]

∫
K
e−fe−δVt,K/qθn, since Vt,K ≤ 0 on K

≤ tn−κect

[χnt ]
e−δMt,K/q

∫
X
e−fe−δ(Vt,K−Mt,K)/qθn

≤ tn−κect

[χnt ]
e−δMt,K/q

(∫
X
e−pfθn

)1/p(∫
X
e−δ(Vt,K−Mt,K)θn

)1/q

≤ Ce−δMt,K/q,

where 1
p + 1

q = 1. Obviously, there exists γ = γ(X,χ, θ) > 0 such that for all t ∈ (0, 1],

Vt,K ∈ PSH(X, γθ).

We apply the global Hörmander’s estimate ([125]) so that there exists δ = δ(X,χ, θ) > 0

such that ∫
X
e−δ(Vt,K−supX Vt,K)θn ≤ Cδ.

To complete the proof, it suffices to to show

Mt,K + 1 ≥
( [χnt ]

Capχt(K)

)1/n
. (4.3.7)

First we observe that by definition

sup
X

(
(Vt,K − sup

X
Vt,K)− Vt

)
≤ 0,

since Vt,K− supX Vt,K ∈ PSH(X,χt) is nonpositive. On the other hand, Vt,K ≥ Vt. This

immediately implies that

0 ≤ Vt,K − Vt ≤ sup
X
Vt,K = Mt,K. (4.3.8)

We break the rest of the proof into two cases.
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• The case when Mt,K > 1. We let

ψt,K = M−1
t,K(Vt,K − Vt) + Vt.

Then

Vt ≤ ψt,K ≤ Vt + 1

and by (4.3.8).

1

Mn
t,K

=
1

Mn
t,K

∫
X(χt +

√
−1∂∂Vt,K)n

[χnt ]
=

1

[χnt ]

∫
K

(
M−1
t,Kχt +

√
−1∂∂(M−1

t,KVt,K)
)n

≤ 1

[χnt ]

∫
K

(
M−1
t,Kχt +

√
−1∂∂(M−1

t,KVt,K) + (1−M−1
t,K)(χt +

√
−1∂∂Vt))

)n
=

1

[χnt ]

∫
K

(χt +
√
−1∂∂ψt,K)n

≤ Capχt(K)

[χnt ]
.

(4.3.9)

• The case when Mt,K ≤ 1. By (4.3.8)

0 ≤ Vt,K − Vt ≤ sup
X
Vt,K = Mt,K ≤ 1.

Now

[χnt ] =

∫
K

(χt +
√
−1∂∂Vt,K)n ≤ Capχt(K). (4.3.10)

So in this case
[χnt ]

Capχt (K) ≤ 1.

Combining (4.3.9) and (4.3.10), (4.3.7) holds and we complete the proof of Lemma

4.7.

The following is an immediate corollary of Lemma 4.7.

Corollary 4.3.1. There exists C = C(X,χ, θ, p,K) > 0 such that for all t ∈ (0, 1], we

have

1

[χnt ]

∫
K

(χt +
√
−1∂∂ϕt)

n ≤ C
(Capχt(K)

[χnt ]

)2
.

Proof. This follows from Lemma 4.7 and the elementary inequality that x2e−δx
1/n ≤ C

for some uniform C > 0 and all x ∈ (0,∞).
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Lemma 4.8. Let u ∈ PSH(X,χt) ∩ L∞(X). For any s > 0, 0 ≤ r ≤ 1 and t ∈ (0, 1],

we have

rnCapχt(u− Vt < −s− r) ≤
∫
{u−Vt<−s}

(χt +
√
−1∂∂u)n. (4.3.11)

Proof. For any φ ∈ PSH(X,χt) with 0 ≤ φ− Vt ≤ 1, we have

rn
∫
{u−Vt<−s−r}

(χt +
√
−1∂∂φ)n =

∫
{u−Vt<−s−r}

(rχt +
√
−1∂∂(rφ))n

≤
∫
{u−Vt<−s−r}

(χt +
√
−1∂∂(rφ) +

√
−1∂∂(1− r)Vt)n

≤
∫
{u−Vt<−s−r+r(φ−Vt)}

(χt +
√
−1∂∂(rφ+ (1− r)Vt − s− r))n

≤
∫
{u<rφ+(1−r)Vt−s−r}

(χt +
√
−1∂∂u)n

≤
∫
{u<Vt−s}

(χt +
√
−1∂∂u)n.

The third inequality follows from the comparison principle and the last inequality fol-

lows from the fact that rφ+ (1− r)Vt − s− r = r(φ− Vt − 1) + Vt − s < Vt − s.

Taking supremum of all φ ∈ PSH(X,χt) with 0 ≤ φ− Vt ≤ 1 we get (4.3.11).

Lemma 4.9. Let ϕt be the solution to (4.3.3). Then there exists a constant C =

C(X,χ, θ, p,K) > 0 such that for all s > 1

1

[χnt ]
Capχt

(
{ϕt − Vt < −s}

)
≤ C

(s− 1)1/q
,

where 1
p + 1

q = 1.

Proof. Applying Lemma 4.8 to u = ϕt and r = 1, we have

1

[χnt ]
Capχt

(
{ϕt − Vt < −s}

)
≤ 1

[χnt ]

∫
{ϕt−Vt<−(s−1)}

(χt +
√
−1∂∂ϕt)

n

=
1

[χnt ]

∫
{ϕt−Vt<−(s−1)}

tn−κe−f+ctθn

≤ C

(s− 1)1/q

∫
{ϕt−Vt<−(s−1)}

(−ϕt + Vt)
1/qe−fθn

≤ C

(s− 1)1/q

(∫
{ϕt−Vt<−(s−1)}

e−pfθn
)1/p(∫

{ϕt−Vt<−(s−1)}
(−ϕt + Vt)θ

n
)1/q
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≤ C

(s− 1)1/q

(∫
X

(−ϕt)θn
)1/q

,

where in the last inequality we use the assumption that e−f ∈ Lp(θn), Vt ≤ 0 and

ϕt ≤ 0. On the other hand, since ϕt ∈ PSH(X,χt) ⊂ PSH(X,Cθ) for some large C > 0

and supX ϕt = 0, it follows from Green’s formula that∫
X

(−ϕt)θn ≤ C

for some uniform constant C. The lemma follows by combining the inequalities above.

The following lemma is well-known and its proof can be found e.g. in [72, 40].

Lemma 4.10. Let F : [0,∞) → [0,∞) be a non-increasing right-continuous function

satisfying lims→∞ F (s) = 0. If there exist α,A > 0 such that for all s > 0 and 0 ≤ r ≤ 1,

rF (s+ r) ≤ A (F (s))1+α ,

then there exists S = S(s0, α,A) such that

F (s) = 0

for all s ≥ S, where s0 is the smallest s satisfying (F (s))α ≤ (2A)−1.

Proof of Proposition 4.1.1. Define for each fixed t ∈ (0, 1]

F (s) =
(Capχt({ϕt − Vt < −s})

[χt]n

)1/n
.

By Corollary 4.3.1 and Lemma 4.8 applied to the function ϕt, we have

rF (s+ r) ≤ AF (s)2, for all r ∈ [0, 1], s > 0,

for some uniform constant A > 0 independent of t ∈ (0, 1].

Lemma 4.9 implies that lims→∞ F (s) = 0 and the s0 in Lemma 4.10 can be taken

as less than (2AC)q, which is a uniform constant. It follows from Lemma 4.10 that

F (s) = 0 for all s > S, where S ≤ 2 + s0. On the other hand, if Capχt
(
{ϕt − Vt <

−s}
)

= 0, by Lemma 4.7 and the equation (4.3.3), we have∫
{ϕt−Vt<−s}

e−fθn = 0,
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hence the set {ϕt − Vt < −s} = ∅. Thus infX(ϕt − Vt) ≥ −S. Thus we finish the proof

of Proposition 4.1.1.

Therefore we have proved Proposition 4.1.1 when λ = 0. We finish this section

by proving the case when λ = 1. We consider the following complex Monge-Ampère

equations for t ∈ (0, 1],

(χ+ tθ +
√
−1∂∂ϕt)

n = tn−κeϕt−f+ctθn. (4.3.12)

where f ∈ C∞(X) and ct is the normalizing constant satisfying tn−κ
∫
X e
−f+ctθn =∫

X(χ+ tθ)n.

Corollary 4.3.2. If

‖e−f‖Lp(X,θn) ≤ K,

for p > 1 and K > 0, Then there exists C = C(X,χ, θ, p,K) > 0 such that

‖ϕt − Vt‖L∞ ≤ C.

Proof. Since for each t > 0, it is proved in [5] that Vt is C1,α(X, θ), we can always

find Wt ∈ C∞(X) such that supX |Vt−Wt| ≤ 1. Furthermore, Vt is uniformly bounded

above for all t ∈ (0, 1]. We let ψt be the solution of

(χt +
√
−1∂∂ψt)

n = tn−κe−f+ct+Wtθn, sup
X
ψt = 0.

and

ut = ϕt − ψt.

Then

(χt +
√
−1∂∂ψt +

√
−1∂∂ut)

n

(χt +
√
−1∂∂ψt)n

= eut+ψt−Wt .

Since supX |ψt −Wt| ≤ supX |ψt − Vt|+ 1, the maximum principle immediately implies

that

‖ut‖L∞(X) ≤ ‖ψt − Vt‖L∞(X) + 1
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and so

‖ϕt − Vt‖L∞(X) ≤ 2‖ψt − Vt‖L∞(X) + 1.

4.4 Uniform diameter estimate of twisted Kähler-Einstein metrics in

the nef canonical class setting

Let X be a Kähler manifold. X is said to be a minimal model if the canonical

bundle KX is nef. The numerical dimension of KX is given by

ν(KX) = max{m = 0, ..., n | [KX ]m 6= 0 in Hm,m(X,C)}.

Let θ be a smooth Kähler form on a minimal model X of complex dimension n. Let

κ = ν(X), the numerical dimension of KX . Let Ω be a smooth volume form on X. We

let χ be defined by

χ =
√
−1∂∂ log Ω ∈ KX .

We consider the following Monge-Ampère equation for t ∈ (0,∞)

(χ+ tθ +
√
−1∂∂ϕt)

n = tn−κeϕtΩ. (4.4.1)

Since KX is nef, [χ+ tθ] is a Kähler class for any t > 0. By Aubin and Yau’s theorem,

there exists a unique smooth solution ϕt solving (4.4.1) for all t > 0. Let ωt = χ+ tθ+
√
−1∂∂ϕ. Then ωt satisfies

Ric(ωt) = −ωt + tθ.

In particular, any Kähler metric satisfying the the above twisted Kähler-Einstein equa-

tion must coincide with ωt.

Lemma 4.11. There exists C > 0 such that for all t ∈ (0, 1],

C−1tn−κ ≤ [χ+ tθ]n ≤ Ctn−κ.

Proof. First we note that [χ]d · [θ]n−κ > 0 because [χ]d 6= 0 and [χ] is nef. Then

[χ+ tθ]n = tn−κ
(
n

d

)
[χ]d · [θ]n−κ + tn−κ+1

( n∑
j=d+1

(
n

j

)
tj−d−1[χ]j · [θ]n−j

)
.
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Lemma 4.12. Let Vt = sup{u | u ∈ PSH(X,χ+ tθ), u ≤ 0}. Then there exists C > 0

such that for all t ∈ (0, 1],

‖ϕt − Vt‖L∞(X) ≤ C. (4.4.2)

Proof. The lemma immediately follows by applying Proposition 4.1.1 to equation (4.4.1).

We now prove the main result in this section.

Lemma 4.13. There exists C > 0 such that for all t ∈ (0, 1],

Diam(X, gt) ≤ C.

Proof. The proof applies similar argument in the proof of Theorem 1.3. Suppose

Diam(X, gt) = D for some D ≥ 6. Let γ : [0, D] → X be a smoothing minimizing

geodesic with respect to the metric gt and choose the points {xi = γ(6i)}[D/6]
i=0 . It is

clear that the balls {Bgt(xi, 3)} are disjoint so

[D/6]∑
i=0

VolΩ
(
Bgt(xi, 3)

)
≤
∫
X

Ω = V,

where VolΩ
(
Bgt(xi, 3)

)
=
∫
Bgt

(xi, 3)Ω. Hence there exists a geodesic ball Bgt(xi, 3) such

that

VolΩ
(
Bgt(xi, 3)

)
≤ 6V D−1.

We fix such xi and construct a cut-off function η(x) = ρ(r(x)) ≥ 0 with r(x) = dgt(x, xi)

such that

η = 1 on Bgt(xi, 1), η = 0 outside Bgt(xi, 2)

and

ρ ∈ [0, 1], ρ−1(ρ′)2 ≤ C, |ρ′′| ≤ C.

Define a function Ft > 0 on X such that

Ft = 1 outside Bgt(xi, 3), Ft = D1/2 on Bgt(xi, 2)

and

C−1 ≤
∫
X
FtΩ ≤ C,

∫
X
F 2
t Ω ≤ C.
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We now consider the equation

(χ+ tθ + ψt)
n = tn−κeψtFt Ω, for all t ∈ (0, 1].

Applying Corollary 4.3.2, there exists a uniform constant C > 0 such that for all

t ∈ (0, 1],

‖ψt − Vt‖L∞(X) ≤ C,

and so by Lemma 4.12

‖ϕt − ψt‖L∞(X) ≤ C. (4.4.3)

Let ĝt = χ+ tθt +
√
−1∂∂ψt. Then on Bgt(xi, 2),

Ric(ĝt) = −ĝt + tθ, Ric(gt) = −gt + tθ,

and so

∆gt log
ω̂nt
ωnt

= −n+ trgt(ĝt) ≥ −n+ n
( ω̂nt
ωnt

)1/n
.

Let H = η log
ω̂nt
ωnt

. We may suppose supX H = H(zmax) > 0, otherwise we are done.

zmax must lies in the support of η, and at zmax we have

0 ≥ ∆gtH ≥
1

η

(
H∆gtη + 2〈∇η,∇H〉 − 2

H

η
|∇η|2 − nη2 + nη2e

H
nη

)
≥ 1

η

( 1

2n
H2 − CH

)
for some uniform constant C > 0 for all t ∈ (0, 1]. Maximum principle implies that

supX H ≤ C(n), in particular on Bgt(xi, 1) where η ≡ 1, there exists C > 0 such that

for all t ∈ (0, 1],

ω̂nt
ωnt

= D1/2eψt−ϕt ≤ C.

By the uniform L∞-estimate(4.4.3), there exists C = C(n, χ,Ω, θ) such that D ≤ C.

Now we can complete the proof of Theorem 1.5. Gromov’s pre-compactness theorem

and the diameter bound in Lemma 4.13 immediately imply that after passing to a

subsequence, (X, gtj ) converges to a compact metric space. Since ϕt − Vt is uniformly

bounded and Vt is uniformly bounded below by V0, ϕtj always converges weakly to some
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ϕ∞ ∈ PSH(X,χ), after passing to a subsequence. In particular, there exists C > 0 such

that

||ϕ∞ − V0||L∞(X) ≤ C,

where V0 is the extremal function on X with respect to χ.

4.5 Convergence of twisted Kähler-Einsteins to canonical metric by

assuming abundance conjecture

Our proof is based on the arguments of [104, 131, 132].

We fix some notations first. Recall Xcan has dimension κ and χ is the restriction

of Fubini-Study metric on Xcan from the embedding Xcan ↪→ CPNm , where Nm + 1 =

dimH0(X,mKX). Hence Φ∗χ is a smooth nonnegative (1, 1)-form on X, and in the

following we identify χ with Φ∗χ for simplicity. Let θ be a fixed Kähler metric on X.

Define a function H ∈ C∞(X) as

χκ ∧ θn−κ = Hθn

which is the modulus square of the Jacobian of the map Φ : (X, θ) → (Xcan, χ) and

vanishes on S, the indeterminacy set of Φ, hence H−γ ∈ L1(X, θn) for some small γ > 0.

We fix a smooth nonnegative function σ on Xcan as defined in [131], which satisfies

0 ≤ σ ≤ 1, 0 ≤
√
−1∂σ ∧ ∂̄σ ≤ Cχ, −Cχ ≤

√
−1∂∂σ ≤ Cχ, (4.5.1)

for some dimensional constant C = C(κ) > 0. From the construction, σ vanishes

exactly on S′ = Φ(S). There exist λ > 0, C > 1 such that for any y ∈ X◦can = Xcan\S′

(see [131])

σ(y)λ ≤ C inf
Xy
H, here Xy = Φ−1(y).

The twisted Kähler-Einstein metric gt in (1.2.6) satisfies the following complex

Monge-Ampère equation (with θ = θ)

(χ+ tθ +
√
−1∂∂ϕt)

n = tn−κeϕtΩ, for all t ∈ (0, 1]. (4.5.2)

In case KX is semi-ample, Vt = 0 hence Corollary 4.3.2 implies: (see also [37, 72, 40])
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Lemma 4.14. There is a uniform constant C > 0 such that ‖ϕt‖L∞(X) ≤ C.

We have the following Schwarz lemma whose proof is similar to that of Lemma 4.3,

so we omit it.

Lemma 4.15. There exists a constant C > 0 such that

trωtχ ≤ C, for all t ∈ (0, 1].

We denote θy = θ|Xy for y ∈ X◦can, the restriction of θ on the fiber Xy which is a

smooth (n− κ)-dimensional Calabi-Yau submanifold of X. We will omit the subscript

t in ϕt and simply write ϕ = ϕt, and define ϕy = −
∫
Xy
ϕθn−κy to be the average of ϕ over

the fiber Xy. Denote the reference metric ω̂t = χ+ tθ. We calculate

(ω̂t +
√
−1∂∂ϕ)|Xy =

(
tθy +

√
−1∂∂(ϕ− ϕy)

)
|Xy = ωt|Xy ,

hence (
θy + t−1

√
−1∂∂(ϕ− ϕy)|Xy

)n−κ
= t−n+κωn−κt,y . (4.5.3)

On the other hand,

t−n+κ
ωn−κt,y

θn−κy
= t−n+κω

n−κ
t ∧ χκ

θn−κ ∧ χκ
∣∣∣
Xy

≤ C
(
trωtχ

)κ Ω

θn−κ ∧ χκ
∣∣∣
Xy

≤ CH−1 ≤ Cσ−λ(y).

Since the Sobolev constant of (Xy, θy) is uniformly bounded and Poincaré constant of

(Xy, θy) is bounded by CeBσ
−λ(y) for some uniform constants B, C > 0 (see [131]),

combined with the fact that

−
∫
Xy

(ϕ− ϕy)θn−κy = 0,

Moser iteration implies ([136, 131])

Lemma 4.16. There exist constants B1, C1 > 0 such that for any y ∈ X◦can,

sup
Xy

t−1|ϕ− ϕy| ≤ C1e
B1σ−λ(y), for all t ∈ (0, 1].
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Proposition 4.5.1. On any compact subset K b X\S, there exists a constant C =

C(K) > 1 such that for all t ∈ (0, 1]

C−1ω̂t ≤ ωt ≤ Cω̂t, on K.

Given the C0-estimate in Lemma 4.16, Proposition 4.5.1 can be proved by the

C2-estimate ([136]) for Monge-Ampère equation together with a modification as in

[104, 131, 132], so we omit the proof.

Let us recall the construction of the canonical metric ωcan on X◦can (see [104]). Define

a function F = Φ∗Ω
χκ on X◦can, and F is in L1+ε for some small ε > 0 ([104]). The metric

ωcan is obtained by solving the following complex Monge-Ampère equation on Xcan

(χ+
√
−1∂∂ϕ∞)κ =

(
n

κ

)
Feϕ∞χκ,

for ϕ∞ ∈ PSH(Xcan, χ) ∩ C0(Xcan) ∩ C∞(X◦can). Then ωcan = χ+
√
−1∂∂ϕ∞, and in

the following we will write χ∞ = ωcan.

Any smooth fiber Xy with y ∈ X◦can is a Calabi-Yau manifold hence there exists a

unique Ricci flat metric ωSF,y ∈ [θy] such that ωSF,y = θy +
√
−1∂∂ρy for some ρy ∈

C∞(Xy) with normalization −
∫
Xy
ρyω

n−κ
X,y = 0. We write ρSF (x) = ρΦ(x) if Φ(x) ∈ X◦can.

ρSF is a smooth function on X\S and may blow up near the singular set S. Denote

ωSF = θ+
√
−1∂∂ρSF which is smooth on X\S, and by [104] we know that Ω

ωn−κSF ∧χκ
is

constant on the smooth fibers Xy and is equal to Φ∗F . For simplicity we will identify

F with Φ∗F . Our arguments below are motivated by [104, 132].

Denote F = e−e
Aσ−λ

for suitably large constants A, λ > 1. From the proof of

Proposition 4.5.1, we actually have that on X\S ([131])

C−1F ω̂t ≤ ωt ≤ CF−1ω̂t, for all t ∈ (0, 1].

Next we are going to show ϕt → ϕ∞ = Φ∗ϕ∞ as t → 0. Proposition 4.5.2 below can

proved by following similar argument as in [132], but we present a slightly different

argument in establishing Claim 2 below.

Proposition 4.5.2. There exists a positive function h(t) with h(t)→ 0 as t→ 0 such

that

sup
X\S
F|ϕt − ϕ∞| ≤ h(t). (4.5.4)
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Proof. Let D ⊂ Xcan be an ample divisor such that Xcan\X◦can ⊂ D, D ∈ µKXcan for

some µ ∈ N. Choose a continuous hermitian metric on [D], hD = h
µ/m
FS e−µϕ∞ and a

smooth defining section sD of [D], where hFS is the Fubini-Study metric induced from

OCPNm (1). Clearly
√
−1∂∂ log hD = µ(χ+

√
−1∂∂ϕ∞) = µχ∞. For small r > 0, let

Br(D) = {x ∈ Xcan | dχ(x,D) ≤ r}

be the tubular neighborhood of D under the metric dχ, and denote Br = Φ−1
(
Br(D)

)
⊂

X.

Since both ϕt and ϕ∞ are bounded in L∞-norm, there exists rε with limε→0 rε = 0

such that for all t ∈ (0, 1]

sup
Brε\S

(ϕt − ϕ∞ + ε log |sD|2hD) < −1, inf
Brε\S

(ϕt − ϕ∞ − ε log |sD|2hD) > 1.

Let ηε be a smooth cut-off function on Xcan such that ηε = 1 on Xcan\Brε(D) and

ηε = 0 on Brε/2(D). Write ρε = (Φ∗ηε)ρSF , and ωSF,ε = ωSF +
√
−1∂∂ρε. Define the

twisted differences of ϕt and ϕ∞ by

ψ±ε = ϕt − ϕ∞ − tρε ∓ ε log |sD|2hD .

By similar argument in [104] we have

Claim 1: there exists an ε0 > 0 such that for any ε ∈ (0, ε0), there exists a τε such

that for all t ≤ τε, we have

sup
X\S

ψ−ε (t, ·) ≤ 3µε, inf
X\S

ψ+
ε (t, ·) ≥ −3µε.

Claim 2: We have ∫
X
|ϕt − ϕ∞|θn → 0, as t→ 0,

where ϕt is the Kähler potential of ωt in (4.5.2).

Proof of Claim 2. For any η > 0, we may take BRη ⊂ X small enough so that
∫
BRη

θn <

η
10 . Take ε < η/10µ small enough so that rε < Rη. From Claim 1 when t < τε∫

X
|ϕt − ϕ∞|θn =

∫
BRη
|ϕt − ϕ∞|θn +

∫
X\BRη

|ϕt − ϕ∞|θn
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≤ Cη +

∫
X\BRη

(
t|ρSF |+ ε| log |sD|2hD |

)
θn

≤ Cη.

Given Claim 2, Proposition 4.5.2 follows similarly as in [132], so we skip it.

We will apply an argument in [132] with a slight modification to show the lemma

below:

Lemma 4.17.

lim
t→0
Ftϕ̇t = 0.

Proof. Denote s = log t for t ∈ (0, 1]. We have tϕ̇ = ∂ϕ
∂s . Taking derivatives on both

sides of the equation (4.5.2) and by maximum principle arguments we then get (see also

[132])

∂2ϕ

∂s2
= tϕ̇+ t2ϕ̈ ≤ C, here ϕ̈ =

∂2ϕ

∂t2
. (4.5.5)

By the uniform convergence (4.5.4) of Fϕ(s)→ Fϕ∞ as s→ −∞, for any ε > 0, there

is an Sε such that for all s1, s2 ≤ −Sε, we have supX |Fϕ(s1) − Fϕ(s2)| ≤ ε. For any

s < −Sε − 1 and x ∈ X\S, by mean value theorem

F∂sϕ(sx, x) =
1√
ε

∫ s+
√
ε

s
∂s(Fϕ)ds ≥ −

√
ε, for some sx ∈ [s, s+

√
ε].

By the upper bound (4.5.5), it follows that F∂sϕ(s, x) ≥ −C
√
ε−
√
ε. Similarly

F∂sϕ(ŝx, x) =
1√
ε

∫ s

s−
√
ε
∂s(Fϕ(·, x))ds ≤

√
ε, for some ŝx ∈ [s−

√
ε, s],

from (4.5.5) we get F∂sϕ(s, x) ≤ C
√
ε+
√
ε. Hence we show that for any s ≤ −Sε − 1

or t = es ≤ e−Sε−1, it holds that

sup
x∈X\S

|F∂sϕ(s, x)| = sup
x∈X\S

|Ft∂tϕ(t, x)| ≤ C
√
ε,

so the lemma follows.
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Corollary 4.5.1. There exists a positive decreasing function h(t) with h(t) → 0 as

t→ 0 such that

sup
X
F
(
|ϕt − tϕ̇t − ϕ∞|+ t|ϕ̇t|

)
≤ h(t).

From Corollary 4.5.1 a straightforward adaption of the arguments of [132], we have

an improvement of local C2-estimate:

Lemma 4.18. On any compact subset K ⊂⊂ X\S, we have

lim sup
t→0

(
sup
K

(
trωtχ∞ − κ

))
≤ 0.

With the local C2 estimate (see Proposition 4.5.1), following standard local C3-

estimates ([136, 91, 100]), we have

Lemma 4.19. For any compact K b X\S, there exists a C = C(K) > 0 such that

sup
K
|∇θωt|2 ≤ Ct−1.

We have built up all the necessary ingredients to prove Theorem 1.6, whose proof is

almost identical to that of Theorem 1.3 in [132]. For completeness, we sketch the proof

below.

Proof of Theorem 1.6. Fix a compact subset K ′ ⊂ X◦can and let K = Φ−1(K ′). By the

Calabi C3 estimate in Lemma 4.19, it follows that

‖t−1ωt|Xy‖C1(Xy ,θy) ≤ C, t−1ωt|Xy ≥ c θy,

for all y ∈ K ′ and θy = θ|Xy .

Step 1: Define a function f on Xy by

f =
(t−1ωt|Xy)n−κ

ωn−κSF,y

=

(
n

κ

)
(ωt|Xy)n−κ ∧ χκ∞

ωnt
eϕt−ϕ∞ ≤ eh(t)

(trωtχ∞
κ

)κ
≤ 1 + h̃(t),

for some h̃(t)→ 0 as t→ 0 (here h̃(t) depends on K), where in the first inequality

we use the Newton-Maclaurin inequality. f also satisfies that∫
Xy

(f − 1)ωn−κSF,y = 0, lim
t→∞

∫
Xy

|f − 1|ωn−κSF,y = 0. (4.5.6)
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The Calabi estimate implies that supXy |∇f |θy ≤ C for all y ∈ K ′, and (Xy, θy)

have uniformly bounded diameter and volume for y ∈ K ′. So it follows that f

converges to 1 uniformly on K as t→ 0. That is

‖
(
t−1ωt|Xy

)n−κ − ωn−κSF,y‖C0(Xy ,θy) → 0, as t→ 0,

uniformly on K ′. Since t−1ωt|Xy converges in Cα(Xy, θy) topology to some limit

metric ω∞,y which satisfies the Monge-Ampère equation (weakly) on Xy, ω
n−κ
∞,y =

ωn−κSF,y, by the uniqueness of complex Monge-Ampère equations, it follows that

ω∞,y = ωSF,y and t−1ωt|Xy converge in Cα to ωSF,y, for any y ∈ K ′. Next we

show the convergence is uniform in K ′.

Step 2: Define a new f on X\S which takes the form

f |Xy =
t−1ωt|Xy ∧ (ωSF,y)

n−κ−1

ωn−κSF,y

≥
((t−1ωt|Xy)n−κ

ωn−κSF,y

)1/(n−κ)
,

and the RHS tends to 1 uniformly on K as t→∞. Then we have similar equations

as in (4.5.6) for this new f . This implies∥∥∥ 1

n− κ
trωSF,y(t

−1ωt)|Xy − 1
∥∥∥
L∞(K)

→ 0, as t→ 0.

So t−1ωt|Xy → ωSF,y uniformly for any y ∈ K ′.

Step 3: Define

ω̃ = tωSF + χ∞.

From a result of [132] (see the proof of Theorem 1.1 of [132]), we have |trωt
(
ωSF −

ωSF,y
)
| ≤ Ct−1/2, then

trωtω̃ ≤ trωt

(
tωSF,y + χ∞

)
+ C
√
t = n+ h̃(t),

for some h̃(t)→ 0 when t→ 0. Moreover it can be checked that

lim
t→0

ω̃n

ωnt
= 1, on K.

Hence we see that ωt
C0(K)−−−−→ χ∞ as t→ 0.

We finish the proof of (1), (2) and (3) of Theorem 1.6.
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Remark 5. From Steps 1, 2 and 3, we see that for any compact subset K ⊂ X\S,

there exists an ε(t) = εK(t)→ 0 as t→ 0 such that when t is small

Φ∗χ∞ − ε(t)θ ≤ ωt ≤ Φ∗χ∞ + ε(t)θ, on K, (4.5.7)

and

Φ∗χ∞ ≤ (1 + ε(t))ωt, on K. (4.5.8)

From the uniform convergence of t−1ωt|Xy to ωSF,y for any y ∈ Φ(K), we see that there

is a uniform constant C0 = C0(K) > 0 such that

ωt|Xy ≤ C0tωSF,y, for all y ∈ Φ(K). (4.5.9)

Choose a sequence tk → 0. The metric spaces (X,ωtk) have Ric(ωtk) ≥ −1 and

diam(X,ωtk) ≤ D for some constant D < ∞. By Gromov’s pre-compactness theorem

up to a subsequence we have

(X,ωtk)
dGH−−−→ (Z, dZ),

for some compact metric length space Z with diameter bounded by D. The idea of

the proof of (4) in Theorem 1.6 is motivated by [50], and we present below a slightly

different argument from theirs.

Step 4: We will show Claim 3: There exists an open subset Z0 ⊂ Z and a homeo-

morphism f : X◦can → Z0 which is a local isometry.

Proof of Claim 3. By Lemma 4.15, the maps Φ = Φk : (X,ωtk) → (Xcan, χ) are

uniformly Lipschitz with respect to the given metrics, and the target space is compact,

so up to a subsequence Φk → Φ∞ : (Z, dZ) → (Xcan, χ) along the GH convergence

(X,ωtk) → (Z, dZ) which is also Lipschitz and the convergence is in the sense that for

any xk → (X,ωtk) which converges to z ∈ Z, then Φ∞(z) = limk→∞Φk(xk), and there

is a constant C > 0 such that dχ
(
Φ∞(z1),Φ∞(z2)

)
≤ CdZ(z1, z2) for all zi ∈ Z.

We denote Z0 = Φ−1
∞ (X◦can) which is an open subset of Z since Φ∞ is continuous.

We will show that Φ∞|Z0 : Z0 → X◦can is a bijection and a local isometry. Hence

f = (Φ∞|Z0)−1 : X◦can → Z0 is the desired map.
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• Φ∞|Z0 is injective: Suppose Φ∞(z1) = Φ∞(z2) for z1, z2 ∈ Z0 = Φ−1
∞ (X◦can).

Denote y = Φ∞(z1) = Φ∞(z2) ∈ X◦can. Since (X◦can, χ∞) is an (incomplete) smooth

Riemannian manifold there exists a small r = ry > 0 such that
(
Bχ∞(y, 2r), χ∞

)
is geodesic convex. Choose sequences z1,k and z2,k ∈ (X,ωtk) converging z1, z2 re-

spectively along the GH convergence. By definition of Φk = Φ → Φ∞ it follows that

dχ(Φ(z1,k),Φ∞(z1))→ 0 and dχ(Φ(z2,k),Φ∞(z2))→ 0. Since dχ and dχ∞ are equivalent

on Bχ∞(y, 2r), it follows that dχ∞(Φ(z1,k),Φ(z2,k))→ 0 and hence we can find minimal

χ∞-geodesics γk connecting Φ(z1,k) and Φ(z2,k) with γk ⊂ Bχ∞(y, r) and Lχ∞(γk)→ 0.

By the locally uniform convergence (4.5.7) on Φ−1
(
Bχ∞(y, 2r)

)
there exists a lift of γk,

γ̃k in Φ−1
(
Bχ∞(y, 2r)

)
, such that Lωtk (γ̃k) ≤ Lχ∞(γk) + ε(tk)Lω(γ̃k) → 0 as tk → 0.

γ̃k connects z1,k and z2,k hence dωtk (z1,k, z2,k) ≤ Lωtk (γ̃k) → 0, which implies by the

convergence of zi,k → zi that dZ(z1, z2) = 0 and z1 = z2.

• Φ∞|Z0 is a local isometry: let z ∈ Z0 and y = Φ∞(z) ∈ X◦can. There is a small r =

ry > 0 such that (Bχ∞(y, 3r), χ∞) is geodesic convex. Take U = (Φ∞|Z0)−1
(
Bχ∞(y, r)

)
to be an open neighborhood of z ∈ Z. We will show that Φ∞|Z0 : (U, dZ)→ (Bχ∞(y, r), χ∞)

is an isometry. Fix any two points z1, z2 ∈ U and yi = Φ∞(zi) ∈ Bχ∞(y, r) for i = 1, 2.

As before we choose zi,k ∈ (X,ωtk) such that zi,k → zi along the GH convergence for

i = 1, 2. It follows then from Φk = Φ → Φ∞ that dχ∞
(
Φ(zi,k), yi

)
→ 0, and when k is

large, Φ(zi,k) lie in Bχ∞(y, 1.1r). Choose ωtk -minimal geodesics γk connecting z1,k and

z2,k such that dωtk (z1,k, z2,k) = Lωtk (γk) → dZ(z1, z2). The curve γ̄k = Φ(γk) connects

Φ(z1,k) with Φ(z2,k). If γ̄k ⊂ Bχ∞(y, 3r), from (4.5.8) it follows that

dχ∞(Φ(z1,k),Φ(z2,k)) ≤ Lχ∞(γ̄k) ≤ (1 + ε(tk))Lωtk (γk)→ dZ(z1, z2).

In case γ̄k 6⊂ Bχ∞(y, 3r), we have

dχ∞(Φ(z1,k),Φ(z2,k)) ≤ 3.8r ≤ Lχ∞(γ̄k∩Bχ∞(y, 3r)) ≤ (1+ε(tk))Lωtk (γk)→ dZ(z1, z2).

Letting k → ∞ we conclude that dχ∞(y1, y2) ≤ dZ(z1, z2). To see the reverse in-

equality, we take χ∞-minimal geodesics σk connecting Φ(z1,k) and Φ(z2,k). Clearly

γk ⊂ Bχ∞(y, 3r). Take a lift of σk, σ̃k in Φ−1
(
Bχ∞(y, 3r)

)
it follows from (4.5.7) that

dωtk (z1,k, z2,k) ≤ Lωtk (σ̃k) ≤ Lχ∞(σk) + ε(tk)Lω(σ̃k) → dχ∞(y1, y2). Letting k → ∞
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we get dZ(z1, z2) ≤ dχ∞(y1, y2). Hence dZ(z1, z2) = dχ∞(y1, y2) and Φ∞|Z0 : U →

Bχ∞(y, r) is an isometry.

• Φ∞|Z0 is surjective: this is almost obvious from the definition. Take any y ∈ X◦can

and any fixed point x ∈ Φ−1(y) ⊂ (X,ωtk). Up to a subsequence x
dGH−−−→ z ∈ (Z, dZ).

It then follows from Φk → Φ∞ that dχ(y,Φ∞(z)) = dχ
(
Φk(x),Φ∞(z)

)
→ 0 as k →∞.

Hence Φ∞(z) = y and z ∈ Φ−1
∞ (X◦can) = Z0.

Step 5: In this step we will show Z0 ⊂ Z is dense. Fix a base point x̄ ∈ Z0, upon

rescaling if necessary we may assume the metric ball Bχ∞
(
f−1(x̄), 2

)
⊂ (X◦can, χ∞) is

geodesic convex. Choose a sequence of points p̄k ∈ (X,ωtk) such that p̄k → x̄ along

the GH convergence (X,ωtk) → (Z, dZ). We define a function on X × [0,∞) as the

normalized volume ([10])

V k(x, r) =
Volωtk

(
Bωtk (x, r)

)
Volωtk

(
Bωtk (p̄k, 1)

) ,
by standard volume comparison it is shown in [10] that V k(·, ·) is equi-continuous and

uniformly bounded hence they converges (up to a subsequence) to a function V∞ :

Z × [0,∞) → [0,∞) in the sense that for any xk → x along the GH convergence and

r ≥ 0,

V k(xk, r)→ V∞(x, r), as k →∞.

And V∞ satisfies similar estimates as in volume comparison, i.e. for r1 ≤ r2,
V∞(x,r1)
V∞(x,r2) ≥

µ(r1, r2) > 0 where µ(·, ·) is the quotient of volumes of balls in a space form. The

function V∞ induces a Radon ν on (Z, dZ). More precisely for any K ⊂ Z, define

ν̂(K) = lim
δ→0

ν̂δ(K) = lim
δ→0

inf
∑
i

V∞(xi, ri)

where the infimum is taken over all metric balls BdZ(xi, ri) with ri ≤ δ whose union

covers K.

Claim 4: For any x ∈ Z0 and r = rx > 0 such that Bχ∞
(
f−1(x), 2r

)
⊂ X◦can is geodesic

convex, we have

V∞(x, r) = v0

∫
Φ−1
(
Bχ∞ (f−1(x),r)

) e−ϕ∞θn
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for a fixed constant v0 =
( ∫

Φ−1
(
Bχ∞ (f−1(x̄),1)

) eϕ∞θn)−1
.

Proof of Claim 4. The proof is parallel to that in [50], so we only provide a sketch. For

the given x ∈ Z0, we choose a sequence of points pk ∈ (X,ωtk) such that pk → x. As in

[50], due to (4.5.7) and that the metrics ωtk and θ are equivalent in Φ−1
(
Bχ∞(f−1(x), 2r)

)
,

it can be shown that

Φ−1
(
Bχ∞(f−1(x), r − εk)

)
⊂ Bωtk

(
pk, r

)
⊂ Φ−1

(
Bχ∞(f−1(x), r + εk)

)
(4.5.10)

when k >> 1 and here εk → 0 as k →∞. It follows then that

lim
k→∞

∫
Bωtk

(pk,r)
eϕtk θn =

∫
Φ−1
(
Bχ∞ (f−1(x),r)

) eϕ∞θn.
From the equation ωnt = tn−κeϕtθn, we have

V k(pk, r) =

∫
Bωtk

(pk,r)
tn−κeϕtk θn∫

Bωtk
(p̄k,1) t

n−κ
k eϕtk θn

→

∫
Φ−1
(
Bχ∞ (f−1(x),r)

) eϕ∞θn∫
Φ−1
(
Bχ∞ (f−1(x̄),1)

) eϕ∞θn ,
where for the convergence of the denominators we use a similar relation as in (4.5.10)

for p̄k, x̄. From the definition that V k(pk, r)→ V∞(x, r), we finish the proof of Claim

4.

Since along the Gromov-Hausdorff convergence the diameters are uniformly bounded

by D <∞, Volωtk (Bωtk (pk, D)) = Vol(X,ωntk). So

V∞(x,D) = lim
k→∞

Volωtk (Bωtk (pk, D))

Volωtk (Bωtk (p̄k, 1))
= lim

k→∞

∫
X e

ϕtk θn∫
Bωtk

(p̄k,1) e
ϕtk θn

= v0

∫
X
eϕ∞θn.

Therefore from Z = BdZ(x,D), we have

ν̂(Z) ≤ v0

∫
X
eϕ∞θn.

Assume Z0 ⊂ Z were not dense, then there exists a metric ball BdZ(z, ρ) ⊂ Z\Z0,

by volume comparison estimate for V∞

ν̂
(
BdZ(z, ρ)

)
≥ V∞(z,D)µ(ρ,D) =: η0 > 0.
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Then for any compact subset K ⊂ Z0, ν̂(K) ≤ ν̂(Z)− η0. On the other hand, for any

open covering BdZ(xi, ri) of K with Bχ∞(f−1(xi), 2ri) geodesic convex in (X◦can, χ∞)

and ri < δ, we have∑
i

V∞(xi, ri) =
∑
i

v0

∫
Φ−1
(
Bχ∞ (f−1(xi),ri)

) eϕ∞θn ≥ v0

∫
Φ−1
(
f−1(K)

) eϕ∞θn
taking infimum over all such coverings and letting δ → 0, we get ν̂(K) ≥ v0

∫
Φ−1
(
f−1(K)

) eϕ∞θn.

If we take K large enough so that f−1(K) ⊂ X◦can is large, we can achieve that

ν̂(K) ≥ v0

∫
Φ−1(X◦can)

eϕ∞θn − η0

10
= v0

∫
X
eϕ∞θn − η0

10
≥ ν̂(Z)− η0

10
.

Hence we get a contradiction, and Z0 ⊂ Z is dense since ν̂(Z\Z0) = 0.

4.5.1 Proof of Theorem 4.1

The proof of Theorem 4.1 is almost identical with that of Theorem 1.6. We give the

sketch here. The solution gt lies in the Kähler class tL+ (1− t)KX for all t ∈ (tmin, 1].

By definition and straightforward calculations from estimates of Yau [136] and Aubin

[4], for any t ∈ (tmin, 1], the class tL+(1− t)KX is Kähler and so tminL+(1− tmin)KX

is nef. We let Ω be a smooth volume form on X and χ ∈ [tminL+ (1− tmin)KX ] be a

smooth closed (1, 1)-form defined by

χ =
√
−1∂∂ log Ω + θ.

Then the twisted Kähler-Einstein equation (4.1.9) is equivalent to the following complex

Monge-Ampère equation for t ∈ (tmin, 1]

(χ+ (t− tmin)θ +
√
−1∂∂ϕt)

n = (t− tmin)n−κeϕtΩ, (4.5.11)

where κ = ν(tminL+(1−tmin)KX), the numerical dimension of the line bundle tminL+

(1 − tmin)KX . By Proposition 4.1.1, there exists C = C(X,χ, θ) > 0 such that for all

t ∈ (tmin, 1],

‖ϕt − Vt‖L∞(X) ≤ C,

where Vt is the extremal function associated to χ+(t− tmin)θ. The rest of the proof for

Theorem 4.1 is exactly the same as that of Theorem 1.5 and we leave it as an exercise

for interested readers.
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Chapter 5

Kähler-Einstein metric near isolated log canonical

singularity

This chapter is from joint work [32] with Ved Datar and Jian Song.

5.1 Introduction

Existence of Kähler-Einstein metric on complex manifold has been the central topic

in complex geometry for decades. Aubin and Yau [4, 136] establish the existence of

Kähler-Einstein metric independently on canonically polarized compact manifold. And

Yau [136] establishes the existence of Ricci flat metric on complex manifold with zero

Chern class by solving the so called Calabi conjecture in [136]. Also, recent results

of Chen-Donaldson-Sun [16, 17, 18] also Tian [127] confirm the Yau-Tian-Donaldson

conjecture for smooth Fano manifolds. Also, there are intensive study of degenerate

Monge-Ampère equations and construction of singular Kähler-Einstein metrics on sin-

gular varieties with Klt singularities, for example in [40, 139], based on Kolodziej’s

fundamental result in [72]. For canonical polarized variety with log canonical sin-

gularity, there are analytic difficulty to solve the Monge-Ampère equation. Berman

and Guenancia [6] construct Kähler-Einstein metric on these varieties by a variational

approach. However, little is known about the geometric property of these singular

Kähler-Einstein metrics. Hence in our paper, we attempt to describe the geometry

of the Kähler-Einstein metric with negative curvature on singular canonical polarized

variety, especially its behaviour towards the log canonical locus.

On the other hand, understanding singular Kähler-Einstein metrics is crucial in

terms of the compactness of complex manifolds coupled with Kähler-Einstein metrics.

In their fundamental work [38, 39], Donaldson-Sun showed that the Gromov-Hausdorff
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limit of a sequence of none collapsed polarized Kähler-Einstein manifold is a Q -variety

with Klt singularities and the tangent cone at any point of the limit metric space

is unique. Motivated by uniqueness of tangent cone result, Li-Wang-Xu [83] further

prove that on a Klt singularity with Kähler-Einstein metric, the Ricci flat tangent

cone is independent of the metric structure based on a series of deep work in [81,

82]. And from a global scale, recent deep result of Hein-Sun [59] proved that for each

Calabi-Yau variety with isolated cone singularity, for example, cone over a smooth Fano

Einstein variety, the global Kähler-Einstein metric is asymptotically the same as the

local Ricci flat metric constructed by Calabi Ansatz. Note that all the results mentioned

above are concerned with non collapsed Kälher-Einstein metrics or more intrinsically

Klt singularity, therefore it is natural to consider the Kähler-Einstein metric on log

canonical singularity, which serves as the collapsed limit of complex manifold coupled

with Kähler-Einstein metrics with negative curvature. In this paper, we prove a rigidity

result concerning the Einstein metrics towards certain types of isolated log canonical

singularities, which is an analogue of the result of Hein and Sun. They push the

analysis of metrics to the tangent cone by blowing up the metrics at the singularity and

we analyze the metrics by push them to infinite end.

Now we outline our results. In paper [114] of the second author, not only Kähler-

Einstein metric is constructed on the canonical polarized variety with log canonical

singularity, it is also shown that in a KSBA family of canonical polarized varieties,

the Kähler-Einstein metric of nearby fiber will converge to the singular Kähler-Einstein

metric on the central fiber in Gromov-Hausdorff sense and the singular metric on central

fiber form complete end towards the log canonical locus. In this article we want to move

one step further, aiming to have a more concrete description of the degeneration of

Kähler-Einstein metrics towards the log canonical locus on the central fiber. We attack

this problem by reducing it to a local question near the singularity. Roughly, we first

construct infinite many local Kähler-Einstein metrics by solving related Monge-Ampère

equation with Dirichlet boundary, which seems to be interesting itself. Then for certain

type of log canonical singularity, we combine geometric argument and estimate from

the Monge-Ampère equation to compare these different local Kähler-Einstein metrics.
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It turns out that these different local Kähler-Einstein share the same metric behaviour

towards the complete end. In particular, in complex dimension 2, we have a complete

picture of the metric degeneration of canonical polarized surface based on the good

local model metric constructed by Kobayashi and Nakamura in [69, 70].

We first introduce standard definition of log canonical singularity.

Definition 5.1. Let X be a normal projective variety such that KX is a Q-Cartier

divisor. Let π : Y → X be a log resolution and {Ei}pi=1 the irreducible components of

the exceptional locus Exc(π) of π. There there exists a unique collection ai ∈ Q such

that

KY = π∗KX +

p∑
i=1

aiEi.

Then X is said to have

• terminal singularities if ai > 0, for all i.

• canonical singularities if ai ≥ 0, for all i.

• log terminal singularities if ai > −1, for all i.

• log canonical singularities if ai ≥ −1, for all i.

We also want to fix the geometric domains that will be discussed throughout this

paper. Recall our setting in the introduction.

Setting: Let (X, p) be a germ of isolated normal log canonical Q-Cartier singularity

embedded in (CN , 0). Our main interest in this paper will be neighbourhood of the

singular point p. Using a bounded PSH function ρ on X, we cut domains

Ω := {ρ < a} (5.1.1)

contained in X such that ∂Ω are strongly pseudoconvex. We also fix a Kähler metric

χ and volume form ΩX on X

χ =
√
−1∂∂ρ,ΩX = eρV ∧ V̄
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where V is local holomorphic volume form (up to taking root of multiple holomorphic

volume form) on a neighbourhood of p in X. The complex Monge-Ampère equation of

our interest in relation to the Kähler-Einstein equation on Ω is given by (χ+
√
−1∂∂ϕ)n = eϕΩX .

ϕ|∂Ω = f
(5.1.2)

where f is an arbitrary smooth function.

We have to prescribe singularities of the solution ϕ to obtain a canonical and unique

Kähler-Einstein current on X. To do so, we lift all the data to a log resolution π : Y →

X. By definition of semi-log canonical singularities,

KY = π∗KX +
∑
i

aiEi −
∑
j

bjFj , ai ≥ 0, 0 < bj ≤ 1.

We approximate equation (1.3.1) in the following way. We pull back all the data

from X to Y . Let σE be the defining section for E =
∑I

i=1 aiEi and σF be the defining

section for F =
∑J

j=1 bjFj (possibly multivalued). We equip the line bundles associated

to E and F with smooth hermitian metric hE , hF on Y . Let ΩY be a smooth strictly

positive volume form on π−1(Ω), defined by

ΩY = (|σE |2hE )−1|σF |2hFΩX .

Let θ be a fixed smooth Kähler form on Y and we consider the following family of

complex Monge-Ampère equations on Ω for s ∈ (0, 1), (χ+ sθ +
√
−1∂∂ψs)

n = eψs(|σE |2hE + s)(|σF |2hF + s)−1ΩY .

ψs|∂Ω
= f

(5.1.3)

Abusing notation, we still denote the domain π−1(Ω) by Ω. By the same argument as

step 1 of theorem (1.8), we can assume f = 0 and there exists a unique smooth solution

ψs solving equation (5.1.3) for s > 0. When s = 0, equation (5.1.3) coincides with

equation (1.3.1). Next we want to use pluripotential theory to get uniform C0 estimate

with barrier of ψs. Similar C0 estimate of degenerate Monge-Ampère equations are

have been obtained in different settings such as on unit ball in [72] and singular variety

with Klt singularity in [40, 37, 139]. The main differences of our geometric domain with
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previous setting are twofold: Firstly, we consider the log canonical singularity, which

means we only have L1 integrability instead of Lp(p > 1) integrability of right hand side

of equations (5.1.3), hence we don’t have uniform C0 control of solutions of a family of

degenerate Monge-Ampère equations. Secondly, our geometric domain Ω is not globally

strongly pseudoconvex after we blow up the isolated log canonical singularity.

Our theorems 1.7, 1.8 are concerning the construction of Kähler-Einstein metrics near

isolated log canonical singularity.

We point out that a large class of log- canonical singularities admits uniformiza-

tion with property (A) which is the key assumption in Theorem 1.8. Especially, a

complete picture of uniformization of isolated log canonical singularity in complex di-

mension 2 is obtained in [69, 70]. Also, another interesting family of uniformization of

high-dimension log canonical singularity (cone over abelian variety) is constructed in

[41]. Concerning the existence of Kähler-Einstein metric, our first construction is more

general than the second one. But our second construction will be more useful when we

are comparing the model metric χ in property (A) with an arbitrary complete metric

near the singular point p.

After we get the existence of many different local Kähler-Einstein metrics on (Ω\p),

we focus on investigating the geometry of these complete local metrics. It turns out that

these different local Kähler-Einstein metrics are asymptotic close to each other at the

infinity end. To achieve this, we first show that any complete Kähler-Einstein metric on

(Ω \ p) comes from the solution of equation (1.3.2) by a geometric argument. Suppose

we have two complete Kähler-Einstein metric χ and χ′ on (Ω \ p), by Kähler-Einstein

condition, we have

χ =
√
−1∂∂ logχn, χ′ =

√
−1∂∂ logχ′n, χ′ = χ+

√
−1∂∂ϕ

where ϕ := log χ′n

χn . The crucial thing is that we show that ϕ(x) → 0 when x → p .

This seems to be none trivial even if we assume χ′ comes from one solution of equation

(1.3.2) corresponding to a choice of boundary function f , since we can have very huge

perturbation of boundary condition f , from which we can only conclude boundedness

of ϕ globally on (Ω \ p). Now we state our estimate of ϕ . For any ε, we define a
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neighbourhood Uε of p to be Uε := {x|distχ(x, ∂Ω) ≥ 2c(n)
ε and distχ′(x, ∂Ω) ≥ 2c(n)

ε }.

Geometrically, this is a region consisting of points which are far away from the bound-

ary ∂Ω measured in both metrics χ and χ′, then

Theorem 5.2. (Theorem 1.9) For any ε > 0, −ε ≤ ϕ ≤ ε in Uε.

Remark 6. The above theorem is true as long as χ and χ′ are complete. No other

metric properties are required.

With the above theorem proved, especially the boundedness of ϕ, if we further as-

sume χ has bounded geometric property (A), we are able to show that any complete

metric χ′ on (Ω \ p) is one solution of equations (1.3.2) by showing the uniqueness

in proposition (5.30) of smooth solution of equation (1.3.2) with the fixed boundary

condition. Note that in theorem (1.8), for fixed f , we only find one solution in certain

function space, but apriori we don’t know whether the smooth solution is unique or

not. Then use theorem (1.8) to control high-order derivatives of ϕ. Remember that we

already prove the decay of ϕ towards the complete end in theorem (1.9), we are able

to conclude that:

Theorem 5.3. (Theorem 1.10) Suppose (Ω, χ) is a metric with property (A) and χ′

is another complete Kähler-Einstein metric on Ω. Then for any positive number ε and

any non negative integer k, we have
∑k

i=1 ‖∇iϕ‖χ(q) ≤ εC(k, χ, f) for q ∈ Uε where C

is a constant depends on the geometry of χ, k and f .

As an important application of the above theorem (1.10), we have a detailed de-

scription of degeneration of Kähler-Einstein metrics on canonical polarized varieties

with certain type log canonical singularity. In [114], the second author proves that

Theorem 5.4. Let π : X → B be a stable degeneration of smooth canonical models

of complex dimension n over a disc B ⊂ C. Suppose the central fibre π−1(0) is given

by X0 =
⋃A
α=1Xα, where {Xα}α are the irreducible components of X0. Let gt be the
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unique Kähler-Einstein metric on Xt for t ∈ B∗ with

Ric(gt) = −gt.

Then the following conclusions hold as t→ 0.

1. There exist points (p1
t , p

2
t , ..., p

A
t ) ∈ Xt × Xt × ... × Xt such that (Xt, gt, p1

t , ..., p
A
t )

converge in pointed Gromov-Hausdoff topology to a finite disjoint union of com-

plete Kähler-Einstein metric spaces

Y =

A∐
α=1

(Yα, dα, yα).

2. Let RYα be the regular part of the metric space (Yα, dα) for each α. Then (RYα , dα)

is a smooth Kähler-Einstein manifold of complex dimension n and the singular

set Sα = Yα \RYα is closed and has Hausdorff dimension no greater than 2n− 4.

3.
∐A
α=1 Yα is homeomophic to X0\LCS(X0), where LCS(X0) is the non-log terminal

locus of X0.
∐A
α=1RYα is biholomorphic to the nonsingular part of X0.

4.
∑A

α=1 Vol(Yα, dα) = Vol(Xt, gt) for all t ∈ B∗, where Vol(Yα, dα) is the Hausdorff

measure of (Yα, dα).

Finally, theorem (1.10) and theorem (5.4) together give our last theorem:

Theorem 5.5. In the same setting as theorem (5.4). Then towards the isolated log

canonical singularities on the central fiber with property (A), the Kähler-Einstein metric

on center fiber is asymptotic the same as the model metric χ defined in property (A).

Proof. Item (3) in Theorem (5.4) gives the completeness of the unique Kähler-Einstein

ω constructed in [114] towards the log canonical locus. Then theorem (5.5) gives the

asymptotic closeness of local model metric χ and the global metric ω.
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5.2 Pluripotential theory and construction of Kähler-Einstein met-

rics: First Approach

The perturbed complex Monge-Ampère equation of our interest in relation to the

Kähler-Einstein equation on Ω is given by (5.1.1) (χ+ sθ +
√
−1∂∂ψs)

n = eψs(|σE |2hE + s)(|σF |2hF + s)−1ΩY .

ψs|∂Ω
= f

(5.2.1)

We first generalize the deep results of [72] to our geometric domain.

Theorem 5.6. Let ψs be the smooth solution of equation on Ω: (χ+ sθ +
√
−1∂∂ψs)

n = eψsgΩY

ψs|∂Ω
= 0

(5.2.2)

where ΩY is smooth positive volume on Ω and g ∈ C∞(Ω) satifying
∫

Ω g
1+ηΩY ≤ Q,

then we have |ψs| ≤ C, where C = C(Ω, χ, η,Q).

We do some preparations for the proof.

Lemma 5.7. Let Ω be as above and ω be a Kähler metric on Ω, then for u, v ∈

PSH(ω) ∩ L∞(Ω) satisfying limη→z(u− v) ≥ 0 for any z ∈ ∂Ω we have∫
u<v

(ω +
√
−1∂∂v)n ≤

∫
(u<v)

(ω +
√
−1∂∂u)n.

We also introduce some standard concepts in pluripotential theory. For a compact

set K in a domain Ω, here Ω is not necessary in CN . Define

Cap(K,Ω) := sup{
∫
K

(
√
−1∂∂u)n, u ∈ PSH(Ω),−1 < u < 0},

Capω(K,Ω) := sup{
∫
K

(ω +
√
−1∂∂u)n, u ∈ ω − PSH(Ω),−1 < u < 0}

UK,Ω(x) := sup{u(x)|u ∈ PSH(Ω), u|K = −1,−1 ≤ u ≤ 0},

Uω,K,Ω(x) := sup{u(x)|u ∈ ω − PSH(Ω), u|K = −1,−1 ≤ u ≤ 0}

The following lemma says that the capacity Capω(K,Ω) can be computed by extremal

function Uω,K,Ω. Similar results are proved on strongly pseudoconvex domain in Cn

and compact complex manifold and a simple modification will give a version for our

purpose.
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Lemma 5.8. For a compact set K in Ω, we have capω(K,Ω) =
∫
K(ω+

√
−1∂∂u∗ω,K)n,

where U∗ω,K is the upper semi regularization of function Uω,K .

Proof. We sketch the proof here. First of all, by Proposition 4.1 of [53], (ω+
√
−1∂∂U∗ω,K)n

is supported on K ∪ {U∗ω,K=0} (In our setting, set {U∗ω,K = 0} is larger than the

set ∂Ω). And since U∗ω,K itself is ω- PSH with value between −1 and 0. Hence∫
K(ω +

√
−1∂∂U∗ω,K)n ≤ Capω(K,Ω). On the other hand, fixing a ω- PSH function u

with −1 < u < 0, we have∫
K

(ω+
√
−1∂∂u)n ≤

∫
{U∗ω,K<u}

(ω+
√
−1∂∂u)n ≤

∫
{U∗ω,K<u}

(ω+
√
−1∂∂U∗ω,K)n =

∫
K

(ω+
√
−1∂∂U∗ω,K)n

The first inequality is due to the facts that (ω +
√
−1∂∂u)n doesn’t charge mass on

{Uω,K 6= U∗ω,K} and K ⊂ {Uω,K < u}. The second inequality is due to comparison

principle and the third inequality is due to the facts that {U∗ω,K < u}∩{U∗ω,K = 0} = ∅

and (ω+
√
−1∂∂U∗ω,K)n is supported on K∪{U∗ω,K = 0} . This will finish the proof.

For fixed s, we are interested in the set where ψs is small. We define:

U(l) := {ψ < −l}, a(l) := Capω(U(l),Ω), b(l) :=

∫
U(l)

(ω +
√
−1∂∂ψ)n

The following lemma roughly says that in our geometric settting, the Capω(U(l),Ω)

can be controlled by b(l + t) in some sense.

Lemma 5.9. Fix ω := ωs = χ+sθ and let ψ := ψs be the solution of equation of (5.2.2).

Then for any 0 < t < 1, l > 2, we have tnCapω(U(l + t),Ω) ≤
∫
U(l)(ω +

√
−1∂∂ψ)n.

Proof. Consider any compact regular set K ⊂ U(l + t), the ω − PSH function W :=

1
t (ψ + l), and the set V := {W < U∗ω,K}. We can verify the inclusions K ⊂ V ⊂ U(l).

Once we have the inclusions, we can apply lemmas (5.7) and (5.8) to conclude:

Capω(K,Ω) =

∫
K

(ω +
√
−1∂∂U∗ω,K)n ≤

∫
V

(ω +
√
−1∂∂U∗ω,K)n ≤

∫
V

(ω +
√
−1∂∂W )n

≤ t−n
∫
V

(ω +
√
−1∂∂ψ)n ≤ t−n

∫
U(l)

(ω +
√
−1∂∂ψ)n = t−nb(l).
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We also want to show the Monge-Ampère measure λ(K) :=
∫
K(ω+

√
−1∂∂ψ)n can

by controlled by capacity.

Lemma 5.10. For any compact set K ⊂ Ω, we have λ(K) ≤ ClCapωs(K,Ω)l for

constant l large.

Proof. For simplicity, we assume that our domain Ω is part of compact complex mani-

fold M without boundary and the metric ω := χ+sθ is the restriction of a Kähler metric

ω̃ on M . Using equation, we know λ(K) is Lp, p > 1 integrable with respect to a fixed

measure. And it is standard that λ(K) < ClCapω̃(K,M)l, where Cl is independent of

s, see [37]. And it is easy to see from the definition that Capω̃(K,M) ≤ Capω(K,Ω).

This will finish the proof.

At last we need to show that the capacities have uniform decay.

Proposition 5.11. Let ψs be the solution of equation (5.2.2), then Capωs(U(l+1),Ω) <

C 1
ln for some constant C independent of l and ωs.

Proof. The key observation of us is on Ω, χ can be represented by
√
−1∂∂ρ, so Capχ(K,Ω) ≤

ACap(K,Ω) whese A only depends on the norm of |ρ|L∞(Ω) which is bounded. This

enables us to compare Capωs(K,Ω) with Cap(K,Ω) uniformly. Now we conclude that:

Capωs(U(l + 1),Ω) ≤
∫
Ū(l)

(ωs +
√
−1∂∂ψ)n = λ(Ū(l)) ≤ Capχ(Ū(l),Ω)

≤ ACap(Ū(l),Ω) ≤ ACap ωs
l−η

(Ū(l),Ω) = A

∫
Ū(l)

(
ωs
l − η

+
√
−1∂∂U∗Ū(l))

where l >> η > 0. Note ψ = 0 on ∂Ω and ψ
l−η < −1 on Ū(l), by comparison principle

we get∫
Ū(l)

(
ωs
l − η

+
√
−1∂∂U∗Ū(l))

n ≤
∫
Ū(l)

(
ωs
l − η

+
√
−1∂∂

ψ

l − η
)n ≤ 1

(l − η)n

∫
Ω

(ωs+
√
−1∂∂ψ)n ≤ C 1

(l − η)n

Now let η → 0, then we finish the proof.
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Remark 7. Although in lemma (5.9) and Proposition (5.11), the estimtes are concerned

with fix ψs, all the constants are independent of s.

The following lemma is well-known and its proof can be found e.g. in [40].

Lemma 5.12. Let F : [0,∞) → [0,∞) be a non-increasing right-continuous function

satisfying liml→∞ F (l) = 0. If there exist α,A > 0 such that for all s > 0 and 0 ≤ r ≤ 1,

rF (l + r) ≤ A (F (l))1+α ,

then there exists S = S(l0, α,A) such that

F (l) = 0

for all l ≥ S, where l0 is the smallest l satisfying (F (l))α ≤ (2A)−1.

Proof of Theorem (5.6). Define for each fixed l large,

F (l) := Capχ(U(l),Ω)1/n.

By lemma (5.9) and lemma (5.10) applied to the function ψs, we have

rF (l + r) ≤ AF (l)2, for all r ∈ [0, 1], l > 2,

for some uniform constant A > 0 independent of r ∈ (0, 1]. Proposition (5.11) implies

that liml→∞ F (l) = 0 and the l0 in Lemma (5.12) can be taken as less than (2AC)q,

which is a uniform constant. It follows from Lemma (5.12) that F (l) = 0 for all l > S,

where S ≤ 2 + l0. On the other hand, if Capχ{ψs < −l} = 0, by Lemma (5.9) , we

have the integral b(l) = 0. Hence the set {ψs < −l} = ∅. Thus infΩ(ψs) ≥ −S. Thus

we finish the proof of Theorem (5.6).

We introduce two more parameter δ and ε in order to apply the maximum principle

and consider the following family of complex Monge-Ampère equations


(
(1 + δ)χ+ sθ +

√
−1∂∂ψs,δ,ε

)n
=

e
ψs,δ,ε (|σD|2εhD+s)(|σE |2hE+s)

(|σF |2hF +s)
ΩY .

ψs,δ,ε|∂Ω
= 0

(5.2.3)
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Here both δ and ε are sufficiently small and we require ε > 0.

By standard lemma, if (X, p) is Q factorial singularity

χ− sD (5.2.4)

is ample for s > 0 smaller than a fixed constant s0, where the support of D coincides

with the support of the exceptional divisors of a log resolution defined in (5.1). We can

assume s0 = 1 by adjusting the coefficients of D. Let σD be the defining section of D

and choose a smooth hermitian metric hD on the line bundle associated to D such that

for any sufficiently small s > 0, and denote χ′ = Ric(hD)

χ− sχ′ > 0. (5.2.5)

Lemma 5.13. For any ε0 > 0, there exist δ0 > 0, C > 0 and C ′ = C ′(ε0) > 0 such

that for any −δ0 ≤ δ ≤ δ0, 0 < s < 1, and 0 < ε < ε0/2, the solution ψs,δ,ε of equation

satisfies the following estimate on Y ,

ε0 log |σD|2hD − C
′ ≤ ψs,δ,ε ≤ C. (5.2.6)

Proof. We first obtain the upper bound of ψs,δ,ε. Since all ψs,δ,ε are Aθ- PSH for some

fixed large constant A and ψs,δ,ε = 0 on ∂Ω, we can get the upper bound of ψs,δ,ε by

comparing ψs,δ,ε with solution to ∆ϕ = −A,ϕ|∂Ω = 0 on Ω. Next we fix a sufficiently

small δ0 ≥ 3ε0 > 0 and consider the following family of equations on Y

(
(1 + δ)χ+ sθ +

√
−1∂∂ψs,δ,ε0

)n
=
eψs,δ,ε0 (|σD|2ε0hD

+ s)(|σE |2hE + s)

|σF |2hF + s
ΩY , (5.2.7)

where −δ0 ≤ δ ≤ δ0.

Since σD vanishes along F , there exist η = η(ε0) > 0 and K = K(ε0, δ0) > 0 such

that for all 0 < s < 1, we have∣∣∣∣∣
∣∣∣∣∣(|σGD |

2ε0
hD

+ s)(|σE |2hE + s)

|σF |2hF + s

∣∣∣∣∣
∣∣∣∣∣
L1+η(Y,ΩY )

≤ K.

Theorem (5.6) implies that there exists C1 = C1(δ0, ε0) > 0 such that for all 3|δ| ≤ δ0,

0 < s < 1,

||ψs,δ,ε0 ||L∞(Y ) ≤ C1.
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Now we will compare ψs,δ,ε to ψs,δ′,ε0 by applying the maximum principle. Let

φ = ψs,δ,ε − ψs,δ′,ε0 − ε0 log |σD|2hD .

Then φ satisfies the

(
(1 + δ′)χ+ sθ +

√
−1∂∂ψs,δ′,ε0 + (δ − δ′ − ε0)χ+ ε0(χ− χ′) +

√
−1∂∂φ

)n(
(1 + δ′)χ+ sθ +

√
−1∂∂ψs,δ′,ε0

)n = eφ

(
|σD|2εhD + s

1 + s|σD|−2ε0
hD

)
.

(5.2.8)

We choose δ′ = −δ0 and require 0 < ε < ε0. Since φ is smooth away from the zeros

of D and φ tends to ∞ near zeros of D, we are able to apply the maximum principle

to the minimum of φ and there exists C2 > 0 such that

inf
Ω
φ ≥ −C2,

Since ψs,δ′,ε0 is bounded, there exists C3 > 0 such that for all 3δ ∈ (−δ0, δ0), 0 < s < 1

and ε ∈ (0, ε0/2),

ψs,δ,ε ≥ −C3 + ε0 log |σD|2hD .

Next we prove the boundary C1 estimate,

Lemma 5.14. Let ψs,δ,ε be the solution of equation (5.2.3), then |∇gψs,δ,ε|∂Ω ≤ C

Proof. Noticing that ψs,δ,ε and
e
ψs,δ,ε (|σD|2εhD+s)(|σE |2hE+s)

(|σF |2hF +s)
ΩY

((1+δ)χ+sθ)n are uniformlly bounded

in the neighboughood of the boundary ∂Ω, we use the same argument as Step 4 in the-

orem (1.8) to get the estimate we want.

We also prove the global C1 estimate with suitable barrier function.

Proposition 5.15. Let ψs,δ,ε be the solution of equation (5.2.3), then |∇gψs,δ,ε|2|σD|NhD ≤

C where N is a fixed constant, g is a fixed metric and C is independent of parameters

δ, s, ε
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Proof. We first fix a constant η such that χ− η
√
−1∂∂ log |σD|2hD > 0 and rewrite the

equation (5.2.3) as

(
(1 + δ)χ− ηRic(hD) + sθ +

√
−1∂∂φs,δ,ε

)n
=
eφs,δ,ε(|σD|2ηhD)(|σD|2εhD + s)(|σE |2hE + s)

(|σF |2hF + s)
ΩY .

where

φs,δ,ε = ψs,δ,ε − η log |σ|2hD .

Using the fact that ψ > −η
2 log |σD|2hD in theorem (5.13), we know that φ > −C ′

where −C ′ is uniform with respcet to all parameters δ, s, ε. Now our reference metrics

(1+δ)χ−ηRic(hD)+sθ in the above equation are uniformlly non degenerate as δ, s→ 0,

so can safely regard them as a fix metric g. Define

F :=
eφs,δ,ε(|σD|2ηhD)(|σD|2εhD + s)(|σE |2hE + s)

(|σF |2hF + s)

ΩY

((1 + δ)χ− ηRic(hD) + sθ)n

Now we define H = log |∇φ|2g + log |σD|NhD − γ(φ) where N is a constant, γ is a

one variable monotone increase function to be determined. Here we also omit the

parameters s, δ, ε for simplicity. We remark here that since the leading term of our

function γ(x) will be Ax and φ blows up in the rate of −η log |σD|2hD , we can conclude

that log |∇φ|2g + log |σD|NhD ≤ γ(φ) when Aη > N + 2 and z → D. So it’s safe to assume

H has a maximum in Ω. Direct computation shows that, see also [95] page 21,

∆′ log |∇φ|2g ≥
2Re∇m logF∇mφ

|∇φ|2g
−Λ trg′g+

|∇∇φ|2gg′ + |∇̄∇φ|2gg′
|∇φ|2g

−
|∇|∇φ|2g|2g′
|∇φ|4g

(5.2.9)

where ∆′ is taken with respect to metric g′ = (1 + δ)χ− ηRic(hD) + sθ+
√
−1∂∂φ and

Λ is the bound of bisectional curvature of metric g. We estimate

|2Re∇m logF∇mφ
|∇φ|2g

| ≤ C + C|σE |−2
hE

+ |σF |−2
hF

+ |σD|−2
hD
≤ C|σD|−2

hD
(5.2.10)

According to a lemma in [95], we have

|∇∇φ|2gg′ + |∇∇̄φ|2gg′
|∇φ|2g

−
|∇|∇φ|2g|2g′
|∇φ|4g

≥ 2<〈
∇|∇φ|2g
|∇φ|2g

,
∇φ
|∇φ|2g

〉g′ − 2<〈
∇|∇φ|2g
|∇φ|2g

,
∇φ
|∇φ|2g

〉g

(5.2.11)

At the maximum of H, we have

∇ log |∇φ|2 +∇ log |σD|2hD − γ
′∇φ = 0
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Hence we have

2<〈
∇|∇φ|2g
|∇φ|2g

,
∇φ
|∇φ|2g

〉g′ − 2<〈
∇|∇φ|2g
|∇φ|2g

,
∇φ
|∇φ|2g

〉g

= 2<〈−∇ log |σD|2hD + γ′∇φ, ∇φ
|∇φ|2g

〉g′ − 2<〈−∇ log |σD|2hD + γ′∇φ, ∇φ
|∇φ|2g

〉g

≥ 2<〈−
∇|σD|2hD
|σD|2hD

,
∇φ
|∇φ|2g

〉g′ + 2<〈
∇|σD|2hD
|σD|2hD

,
∇φ
|∇φ|2g

〉g − 2γ′ (5.2.12)

At the maximum of H, we can assume |σD|NhD |∇φ|
2
g ≥ 1 otherwise we are done. Since

N ≥ 4, we have

|2<〈−
∇|σD|2hD
|σD|2hD

,
∇φ
|∇φ|2g

〉g′ | ≤ 2|<〈∇|σD|2hD ,
∇φ
|∇φ|g

〉g′ | ≤ |∇|σD|2hD |
2
g′ +

|σD|2hD |∇φ|
2
g′

|σD|2hD |∇φ|
2
g

≤ C|∇|σD|2hD |
2
g trg′g + |σD|2hD |∇φ|

2
g′

|2<〈−
∇|σD|2hD
|σD|2hD

,
∇φ
|∇φ|2g

〉g| ≤ 2|<〈∇|σD|2hD ,
∇φ
|∇φ|g

〉g| ≤ C (5.2.13)

On the other hand,

−∆′γ(φ) = −γ′∆′φ− γ′′|∇φ|2g′ = γ′trg′g − nγ′ − γ′′|∇φ|2g′ ,∆′ log |σD|NhD ≤ C trg′g.

Combine this equality with preceding estimates (5.2.10, 5.2.11, 5.2.12, 5.2.13), we have

∆′H ≥ (γ′ − Λ− C)trg′g − (n+ 2)γ′ − (γ′′ + |σD|2hD)|∇φ|2g′ − C|σD|−2
hD

(5.2.14)

Recall that φ > −C ′, now we construct our function γ as

γ(x) = (Λ + C + 1)x− 1

x+ C ′ + 1

Then by (5.2.14) we have

∆′H ≥ trg′g − (n+ 2)(C + 1 + Λ)− C|σD|−2
hD

+ (
1

(φ+ C ′ + 1)3
− |σD|2hD)|∇φ|2g′

Noticing that φ ≤ C − 2η log |σD|2hD , so we can safely assume that

(
1

(φ+ C ′ + 1)3
− |σD|2hD) ≥ |σD|2hD

Finally we conclude that at the maximum of H, we have

trg′g ≤ (|σD|hD)−2
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Hence

|∇φ|2g′ ≤ C(|σD|hD)−4, |∇φ|2g ≤ C(|σD|hD)−6

Choosing N = 6, we have Hmax ≤ C, and clearly we have |∇φ|2g|σD|7 ≤ C since γ is

blowing up as | log |σD|hD |.

Lemma 5.16. Let ψs,δ,ε be the solution of equation (5.2.3), then |∇2
gψs,δ,ε|∂Ω ≤ C where

g is a fixed metric and C is independent of parameters δ, s, ε.

Proof. Notice that our boundary is strictly pseudoconvex, and all data in the equation

(5.2.3) is unifomrlly bounded near the boundary, we can use the local argument of

CKNS [19] to conclude.

Next, we will prove second order estimates with bounds from suitable barrier func-

tions. There exists an effective Cartier divisor D on Y such that for any sufficiently

small s > 0,

Lemma 5.17. There exist A, δ1, ε1 > 0 and C = C(δ1, ε1) > 0 such that for all

−δ1 < δ < δ1, 0 < ε < ε1 and 0 < s < 1,

sup
Ω

(
|σ|AhD

)
(∆θψs,δ,ε) ≤ C, (5.2.15)

where ∆θ is the Laplace operator with respect to the Kähler metric θ.

Proof. Let ω = (1 + δ)χ+ sθ +
√
−1∂∂ψs,δ,ε. Then we consider the quantity

H = log trθ(ω)−A3ψs,δ,ε + 2A2 log |σ|2hD

for some sufficiently large A > 0 to be determined. Straightforward calculations show

that there exists C > 0 such that for all δ ∈ (−δ1, δ1), ε ∈ (0, ε1) and 0 < s < 1,

∆ωH ≥ ∆ω log trθ(ω) + 2A2trω(χ− s0Ric(D))−A3

≥ Atrωθ − C
trθRic(ω)

trθ(ω)
−A3

≥ A(trθ(ω))
1

n−1 (
θn

ωn
)

1
n−1 − C 1

trθω|σD|2αhD
−A3

≥ A(trθ(ω))
1

n−1 |σD|2βD − C
1

trθω|σD|2αhD
−A3
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where α, β are fixed constants only depending on the coefficient of exceptional divisor

in the log resolution of singularity. For the third and fourth inequality, we use the

equation. Noticing that

H < log(trθ(ω)|σD|A
2

hD
)

We may assume H obtains maximum in the interior of Ω. Also, since our goal is to

bound H, WLOG we assume

(trθ(ω)|σD|A
2

hD
) > 1

otherwise we are done. Applying the maximum principle, at the maximal point xmax

of H,

H(xmax) < trθ(ω)|σD|A
2

hD
≤ nA2.

On the other hand, since ψq,s,δ,ε ≤ C, we have

trθω ≤
1

|σD|2A
2

hD

This proves the lemma.

The following lemma on local high regularity of ψs,δ,ε is established by the standard

linear elliptic theory after applying Lemma (5.17) and linearizing the complex Monge-

Ampère equation (5.2.7).

Lemma 5.18. For any compact K ⊂⊂ (Ω \ p) , there exist δ2 > 0, ε2 > 0 and

C = C(k,K, δ2, ε2) > 0 such that for any −δ2 ≤ δ ≤ δ2, 0 < ε ≤ ε2 and 0 < s < 1

||ψs,δ,ε||Ck(K) ≤ C.

Before we take δ, ε, s → 0, we derive a uniform estimate with respect to variations

by the parameters δ, ε, and t.

Lemma 5.19. For any compact K ⊂⊂ (Ω \ p) , there exist δ3 > 0, ε3 > 0 and

C = C(K, δ3, ε3) > 0 such that for any −δ3 ≤ δ ≤ δ3, 0 < ε ≤ ε3 and 0 < s < 1, we

have ∣∣∣∣∂ψs,δ,ε∂δ

∣∣∣∣
L∞(K)

+

∣∣∣∣∂ψs,δ,ε∂ε

∣∣∣∣
L∞(K)

+

∣∣∣∣∂ψs,δ,ε∂s

∣∣∣∣
L∞(K)

≤ C. (5.2.16)
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Proof. By the implicit function theorem, the solutions of (5.2.7) must be smooth with

respect to the parameters δ, ε and s. Let f =
∂ψs,δ,ε
∂δ . Then f ∈ C∞(Y ) and

∆s,δ,εf = −trωs,δ,ε(χ) + f,

where ∆s,δ,ε is the Laplace operator associated to the metric

ω = (1 + δ)χ+ sθ +
√
−1∂∂ϕs,δ,ε.

The function H = f − 10ψs,δ,ε + log |σD|2hD satisfies the following equation

∆s,δ,εH ≥ f − 10n = H + 10ψs,δ,ε − log |σD|2hD − 10n.

Then for all sufficiently small δ and ε > 0, H is uniformly bounded above and so f is

uniformly bounded above on any compact subset in Ω \ p. Estimates for
∣∣∣∂ψs,δ,ε∂ε

∣∣∣ and∣∣∣∂ψs,δ,ε∂s

∣∣∣ can be achieved similarly.

Now we are able to prove our Theorem (1.7).

Proof. we have uniform estimates for ψs,δ,ε away from σD, for any sequence sj , δj , εj →

0, we can assume ψsj ,δj ,εj converges, after passing to a subsequence, to some

ϕ ∈ PSH(χ) ∩ C∞(Ω \ p).

In particular, there exists C > 0 and for any ε > 0, there exists Cε > 0 such that

ε log |σD|2hD − Cε ≤ ϕ ≤ C.

(1), (2) and (3) can be proved from the above conclusion by passing the estimates

of ψs,δ,ε to the limit ϕ. Furthermore, ϕ solves equation (1.3.1) on (Ω \ p).

(4) can be reduced to the following statement: Suppose φ is a plurisubharmonic

function on the unit ball B ⊂ Cn such that∫
B
|z1|−2eφ(

√
−1)ndz1 ∧ dz1 ∧ ... ∧ dzn ∧ dzn <∞,

then φ tends to −∞ near B ∩{z1 = 0}. Such a statement is proved by Berndtsson (c.f.

Lemma 2.7 in [6]). From the left hand side of equation (5.2.3) and Stokes formula, we
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know that, ϕ → −∞ near the exceptional divisor with discrepancy −1. On the other

hand, ϕ tends to −∞ near π−1(p) in Y , otherwise there exists a curve C in exceptional

divisor and C intersects at least one exceptional divisor with discrepancy −1, and so ϕ

must be constant on C since it is pluriharmonic with singularities better than any log

poles. This leads to contradiction and so ϕ must tend to −∞ near π−1(p). Therefore

the function ϕ can uniquely descend to (Ω \ p).

(6) can be proved as follows. Suppose ϕ′ ∈ PSH(Y, χ)∩C∞(Y \σD) is a sequential

limit of another sequence ψsj ,δj ,εj . Then by the estimates in Lemma (5.19), on any

compact set K ⊂⊂ Y \ σD, there exists C > 0 such that for sufficiently large j > 0,

sup
K
|ψsj ,δj ,εj − ψs′j ,δ′j ,ε′j | ≤ C

(
|δj − δ′j |+ |εj − ε′j |+ |sj − s′j |

)
.

This implies that

ϕ|K = ϕ′|K

and so ϕ = ϕ′ on Y after unique extensions over σD since both lie in PSH(Y, χ). The

above argument implies that as s, δ, ε → 0, the solution ψs,δ,ε converges to the unique

limit ϕ.

We will also prove a uniqueness result, which is different from the uniqueness theo-

rem in [6].

Lemma 5.20. There exists a unique solution ϕ ∈ L∞loc(Ω \ p) ∩ C∞(Ω \ p) satisfying

1. (χ+
√
−1∂∂ϕ)n = eϕΩ on (Ω \ p),

2. For any ε > 0, there exist C > 0 and Cp,ε > 0 with the following estimate

ε log |σD|2hD − Cε ≤ ϕ ≤ C,

where σD is an effective divisor supported on the locus of exceptional divisor.

In particular, ϕ ∈ PSH(X,χ) satisfies all the conditions in Lemma 1.7.

Proof. We first prove the uniqueness. Let ϕ be the Kähler-Einstein potential con-

structed in Lemma 1.7 as the limit of ψs,δ,ε (s, δ, ε→ 0). Suppose there exists another
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ϕ′ satisfying the conditions in the lemma and for any ε > 0, there exist C1 > 0 and

C2 = C2(ε) > 0 such that

ε log |σD|2hD − C2 ≤ ϕ′ ≤ C1

We consider the quantity

φ = ψs,−δ,ε − ϕ′ + δ3 log |σD|2hD ,

where σD and hD are defined in (5.2.4) and (5.2.5). Then φ satisfies the following

equation on the log resolution Y ,

(χ+
√
−1∂∂ϕ′ + sθ − δχ+ δ3Ric(hD) +

√
−1∂∂φ)n

(χ+
√
−1∂∂ϕ′)n

= eφ
(|σD|2εhD + s)(|σE |2hE + s)|σF |2hF
|σD|2δ

3

hD
|σE |2hE (|σF |2hF + s)

.

We pick s << δ << 1, ε << δ2 and apply the maximum principle to φ. There exists

C > 0 such that for all s << δ << 1, ε << δ2,

sup
X
φ ≤ C.

Let s, δ, ε→ 0. We have

ϕ ≤ ϕ′.

Similarly, we can prove ϕ ≥ ϕ′ by applying the maximum principle to

φ′ = ψs,δ,ε − ϕ′ − δ log |σD|2hD .

5.3 Bounded geometry and construction of Kähler-Einstein metrics:

Second Approach

In this section, we want to use bounded geometry methods of [69, 26, 129] to con-

struct complete Kähler-Einstein metric on Ω\{p}. So our geometric domain of interest

will be Ω with boundary ∂Ω and also one non compact end, which topologically is

punctured neighbourhood of p. We also make the following convention:

Convention: In this section, when we talk about Kähler-Einstein metric on (Ω, ω), we

assume its Ricci curvature is −1 and when we talk about complete metric, we assume
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the distance goes to ∞ when point in Ω goes to p in the Euclidean topology.

Before proving our theorem 1.8, we recall definitions of quasi-coordinate which are used

by [25, 69, 129] to deal with complete Riemannian manifolds with bounded curvature

but with shrinking injectivity radius.

Definition 5.21. Let V be an open set in Cn with coordinates (v1, v2, · · · , vn). Let

X be an n−dimensional complex manifold and φ a holomorphic map of V into X. φ

is called a quasi-coordinate map if it is of maximal rank everywhere. In this case,

(V, φ, (v1, v2, · · · , vn)) is called a quasi-coordinate of X.

Definition 5.22. Let Û be a neighbourhood of p in Ω, being away from ∂Ω and ω

is a complete Kähler metric towards p on (Ω \ p). A system of quasi-coordinates on

(U := Û\{p}, χ) is a set of quasi-coordinates Γ = {(Vα, φα, (v1
α, v

2
α · · · , vnα))} of U with

the following properties:

(a) U ⊂
⋃
α(Image of Vα) ⊂ (Ω \ p);

(b) The complement of certain open neighborhood U ⊂ U of the infinity point o is

covered by a finite number of quasi coordinates which are coordinate charts in the

usual sense;

(c) For each point x ∈ U , there is a quasi-coordinate Vβ and x̃ ∈ Vβ, such that

φβ(x̃) = x and dist(x̃, ∂Vβ) ≥ ε1 in the euclidean sense, where ε1 is constant

independent of β;

(d) There are positive constant c and Ak, k = 1, 2, · · · , independent of α, such that

for each quasi coordinate (Vα, φα, (v
1
α, v

2
α · · · , vnα)), the following inequalities hold:

c−1(δij̄) ≤ (gαij̄) ≤ c(δij̄)

| ∂
p+q

∂vpαv̄
q
α
gαij̄ | < Ap+q,∀p, q,

where (gαij̄) denote the metric tensor with respect to (Vα, φα, (v
1
α, v

2
α · · · , vnα)).

Roughly speaking, a set of quasi coordinates of metric domain (Ω \ p, χ) is a set

of coverings of (Ω \ p) coupled with the pull back metric satisfying uniform bounded
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metric properties. Before proceeding, we need introduce some standard definitions

Cheng-Yau’s function space, generalized maximum principle etc.

Definition 5.23. We define the Hölder space of Ck,α function on U = Û\p by exploiting

the quasi-coordinate system. For any nonnegative integer k, α ∈ (0, 1), we define

‖u‖k,α(U) = sup
Vβ∈Γ

( sup
z∈Vβ

∑
p+q≤k

| ∂
p+q

∂vpβ∂v̄
q
β

u(z)|+ sup
z,z′∈Vβ

∑
p+q=k

|z−z′|−α| ∂
p+q

∂vpβ∂v̄
q
β

u(z)− ∂p+q

∂vpβ∂v̄
q
β

u(z′)|)

Let’s introduce one more compact set V with Ω \ U ⊂ V ⊂ Ω to cover whole Ω. Now

define:

‖u‖k,α(Ω) = ‖u‖k,α(U) + ‖u‖k,α(V )

The function space Ck,α(Ω) is the completion of {u ∈ Ck(Ω)|‖u‖k,α(Ω) <∞}.

Remark 8. The existence of quasi coordinate is crucially used in our proof. The

classical interior Schauder estimate for a linear elliptic operator L, is as follows,

‖u‖Ck,α(V1) ≤ C(sup |u|V2 + ‖Lu‖Ck−2,α(V2)), where V1 ⊂⊂ V2 ⊂ Rm.

Notice that the constant C depends on the ellipticity of L, the Ck−2,α norms of the

coefficients of L and the distance between V1 and ∂V2. If we have a quasi coordinate

system defined above, the Schauder estimate on U is reduced to that on a fixed bounded

domain in Euclidean space.

Before we proceed, we state and prove the following modified version of Yau’s gen-

eralized maximal principle on noncompact manifold.

Lemma 5.24. Suppose (U , ω) is defined as above. f is a smooth function on U , which

is bounded from above, and sup f > sup∂U f. Then there is a sequence {yi} in U such

that limi→∞ f(yi) = sup f, limi→∞ |∇gf |(yi) = 0 and limi→∞ sup |∇2
gf |(yi) = 0, where

the derivatives are taken with respect to metric ω.

Proof. : Let sup f = L. If sup f is obtained, the lemma is obvious. Otherwise we choose

a sequence xi with lim f(xi) = sup f. It is easy to see {xi} must go to infinity. Now

at each point we take a quasi coordinate chart Vi covering xi. On each Vi, define a

non-negative function ρi : Vi → R such that
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ρi(xi) = 1, ρi = 0 on ∂Vi, ρ
i ≤ C, |∇ρi| ≤ C, and (ρipq̄) ≥ −C(δpq̄),

where C is positive number independent of i, and all norms are taken with respect to

the Euclidean norm.

Now consider

L− f
ρi

as a function on Vi. Notice that L−f
ρi

blows up on the boundary of Vi, so it admits

minimum at point yi which is in the interior of Vi. Now

L− f
ρi

(yi) = inf
Vi

L− f
ρi

.

Then

L−f
ρi

(yi) ≤ L−f
ρi

(xi) = L− f(xi),

d(L−f)
L−f (yi) = dρi

ρi
(yi),

(L−f)pq̄
L−f (yi) ≥

ρipq̄
ρi

(yi).

Using these inequalities and the property of ρi, we have

0 < L− f(yi) ≤ C(L− f(xi)),

|df(yi)| ≤ C(L− f(xi)),

(fpq̄)(yi) ≤ C(L− f(xi))(δpq̄).

By the bounded geometry of quasi coordinates, the above norms can also be take with

respect to the metric ω. Hence sequence {yi} satisfies all the properties required in the

lemma.

5.3.1 Model metrics with property (A)

We provide some explicit examples of (X, p) with property (A).

Uniformizatoin of 2 dimensional isolated log canonical singularity by Kähler-Einstein

metric.

Lemma 5.25. [70, 86, 138]

For any isolated normal surface singularity, they can be uniformaized by bounded sym-

metric domains with invariant Kähler-Einstein metric χ =
√
−1∂∂ρ and classified as:
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• C2/Γ,Γ a finite subgroup of U(2) possibly containing reflections. Invariant metric

is defined by
√
−1∂∂ρ, ρ = log( 1

(1−‖Z‖2)2 )

• One point compactification of H×H/Γ,Γ a parabolic discrete subgroup of Aut(H×

H) corresponding to a boundary point. Invariant metric is defined by
√
−1∂∂ρ, ρ =

log( 1
y1y2

)

• One point partial compactification of B2/Γ,Γ a parabolic discrete subgroup of

Aut(B2). Invariant metric is defined by
√
−1∂∂ρ, ρ = log 1

Imu−|v|2

Remark 9. In the Lemma above, the first item is actually Klt singularity. So in this

section, we are mainly dealing with singularites of items 2 and 3. In other words, there

are divisors with discrepancy −1 in the resolution. We include the nice construction in

the appendix for reader’s convenience.

Another interesting example of isolated log canonical singularity unifomized by

Bergman metric is proved in [41].

Lemma 5.26. Let A be an abeliean variety with complex dimension n and N a negative

line bundle on A. By contracting the zero section of N, one obtains a singular variety

X̂. Let (X̂, o) denote the germ of the isolated singularity of X̂. Then there is an open

neighborhood (in Euclidean topology) Û of o in X̂ such that U := Û\{o} is a smooth

quotient space of a unit complex ball Bn+1 by a discrete subgroup of Aut(Bn+1). As

a consequence, U has a negative Kähler- Einstein metric induced from the Bergman

metric of the ball which is complete towards o.

Remark 10. The invariant Kähler-Einstein metrics in Lemma (5.25), [41] have a

system of quasi coordinates in a punctured neighborhood of the isolated log canonical

singularities. This is the main property we will use in the following theorem 1.8.

5.3.2 Second approach of construction of local Kähler-Einstein metric

We first take the function space U to be an open set of Ck+α(Ω), which is defined

in (5.23), as follows:

U = {φ ∈ Ck+α(Ω) :
1

c
(gαij̄) ≤ (gαij̄ + φij̄) ≤ c(gαij̄), in each quasi coordinateVα},
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for some constant c, which however is not fixed.

We divide the proof into several steps.

5.3.3 Proof of Theorem 1.8

Step 1: Find an χ-PSH extension of function ψ to the domain Ω.

Choose an arbitrary smooth extension ψ1 of ψ, which is supported on a neighborhood

of ∂Ω. Choose a convex increasing function g : [−∞, a] → R which is zero on [−∞, b]

for some constant b < a. Now define

P = Ag(ρ)−Ag(a).

Notice that when A is large enough such that
√
−1∂∂P kills the negativity of χ +

√
−1∂∂ψ1. Choose such P + ψ1 as our new extension of ψ. By the construction we

know that
√
−1∂∂(P + ψ1) is supported on a neighborhood of ∂Ω. This is crucial for

our proof, since we need the new metric χ+
√
−1∂∂(ψ1 +P ) to keep the behavior of χ

in a neighborhood of the infinity.

In sum, we have
(χ+

√
−1∂∂(ψ1 + P ))n = e−Fχn on Ω

ψ1 + P |∂Ω = ψ.

(5.3.1)

where the function F is in Cheng-Yau’s function space. Hence if we define χ̃ by

χ̃ = χ+
√
−1∂∂(ψ1 + P ), ϕ̃ = ϕ− (ψ1 + P ) and F̃ = F + ψ1 + P.

Simple calculation shows the Equation (1.3.2) is equivalent to
(χ̃+

√
−1∂∂ϕ̃)n = eϕ̃+F̃ χ̃n on Ω

ϕ̃|∂Ω = 0.

(5.3.2)

So from now on, we will focus on zero boundary value problem.

The rest of the proof is by continuity method, which is a combination of [19, 8, 25,
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69]. We set up the continuity method as follows:
(χ+

√
−1∂∂ϕt)

n = eϕt+tMχn

ϕt|∂Ω = 0.

(5.3.3)

where M belongs to Cheng-Yau function space defined in (5.23).

Step 2: Prove the openess part in the continuity method. It will follow from the inverse

mapping theorem. We need to show the linearized equation at χt
∆χth− h = v on Ω

h|∂Ω = 0,

(5.3.4)

has a unique solution in Ck,α(Ω) with the estimate

‖h‖k,α(Ω) ≤ c‖v‖k−2,α(Ω)

for some constant c independent of the function v.

We first remark here that χt := χ+
√
−1∂∂ϕt is a complete metric of bounded geometry

up to k − 2 covariant derivatives by the function choice of function space U at the

beginning of the proof. Next take an exhaustion {Ωi} of the domain Ω towards the

infinity. (Here the boundary of our compact domain Ωi has two components and one

of them coincide with ∂Ω). Following equation
∆χthi − hi = v on Ωi

h|∂Ωi = 0,

(5.3.5)

has a unique solution hi for each i. Maximum principle implies that supΩi |hi| ≤ sup |v|.

Interior Schauder estimate of our function space implies that

‖hi‖k,α(V ) ≤ c‖v‖k−2,α(Ω).

for any compact set V strict away from ∂Ω. This inequality, combined with standard

global Schauder estimate for a fixed compact set containing ∂Ω imply that hi → h

pointwise with

∆χth− h = v, h|∂Ω = 0
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Moreover, we have

‖h‖k,α(Ω) ≤ c‖v‖k−2,α(Ω).

Hence we establish the openness part.

Step 3: C0estimate in closeness part.

We have the following equality:

ϕ+M = log det(gij̄ + ϕij̄)−log det gij̄ =

∫ 1

0

∂

∂t
log det(gij̄ + tϕij̄)dt =

∫ 1

0
(g+tϕ)ij̄ϕij̄dt

Since at a point x ∈ Ω we may asume gij̄ = δij̄ and ϕij̄ = δij̄ϕīi, we have two inequalities

as follows:

ϕ+M ≤ ∆χϕ,

ϕ+M ≥ ∆χ1ϕ.

where χ1 = χ+
√
−1∂∂ϕ1. By Lemma (5.24), we get the C0 estimate.

Step 4: C1 boundary estimate. On the one hand since ϕ+M ≤ ∆χϕ, we construct

a barrier function h from above as follows. Take a neighborhood B of the boundary

∂Ω, where ∂B = ∂Ω + C and C is the other side of the boundary ∂B. Then derive h

by solving the following Dirichlet problem in B:
∆χh = c,

h|∂Ω = 0 and h|C = d.

(5.3.6)

where d is a positive constant greater than sup |ϕ| and c is a constant smaller than

inf(ϕ+M). Then maximal principle implies that h ≥ ϕ in B.

On the other hand, we construct a barrier function h1 from below as follows. Take

the global χ strictly PSH function P we constructed above and choose a constant b

large enough such that
(χ+

√
−1∂∂bP )n ≥ esupϕ+Mχn on B,

bP ≤ ϕ on C and bP = 0 on ∂Ω.

(5.3.7)
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Then maximal principle of Monge-Ampère equation implies h1 := bP ≤ ϕ on B. Notic-

ing that h and h1 coincide with ϕ on ∂Ω, we get the boundary gradient estimate of

ϕ.

Step 5: Global C1 estimate. Since on noncompact manifold, we don’t necessary

have maximum point with gradient vanish etc. We will follow [8] to obtain the C1

estimate.

Define φ = log |∇ϕ|2 − γ(ϕ) where γ is monotone increase function to be determined.

Assume that supΩ φ is not obtained on ∂Ω, then by the generalized maximum principle,

we can find a point q ∈ Ω with

φ(q) + ε > sup
Ω
φ, |V |χ(q) < ε,∆χφ(q) < ε

where V := ∇χφ. By (5.2.9), at q, we have

∆′ log |∇ϕ|2g ≥
2Re∇m logF∇mϕ

|∇ϕ|2g
−Λ trg′g+2<〈

∇|∇ϕ|2g
|∇ϕ|2g

,
∇ϕ
|∇ϕ|2g

〉g′−2<〈
∇|∇ϕ|2g
|∇ϕ|2g

,
∇ϕ
|∇ϕ|2g

〉g

Now using V = ∇ log |∇ϕ|2 − γ′∇ϕ, we get

2<〈
∇|∇ϕ|2g
|∇ϕ|2g

,
∇ϕ
|∇ϕ|2g

〉g′ − 2<〈
∇|∇ϕ|2g
|∇ϕ|2g

,
∇ϕ
|∇ϕ|2g

〉g

= 2<〈V + γ′∇ϕ, ∇ϕ
|∇ϕ|2g

〉g′ − 2<〈V + γ′∇ϕ, ∇ϕ
|∇ϕ|2g

〉g > −εtrg′g − ε− γ′

The inequality above with

∆′γ(ϕ) = γ′∆′ϕ+ (γ′′)|∇ϕ|2

imply that

εtrg′g > ∆′φ > (γ′ − ε− Λ)trg′g + (γ′′)|∇ϕ|2 − γ′ − ε− n− C

where C is the bound of gradient of function logF . Now we construct our function γ

as

γ(x) = (Λ + 2)x− 1

x+ C ′ + 1

where C ′ is the lower bound of ϕ. Then by standard argument we get global C1

estimate.
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Step 6: Boundary C2 estimate. We notice the argument of [19] of boundary C2

estimate is purely local around the boundary and our equation can be written as


detϕij̄ = eϕ+f on Ω

ϕ|∂Ω = ψ,

(5.3.8)

locally, this is exactly one of the equation considered in [19], hence the estimate follows

by the fact that
√
−1∂∂ρ is strictly positive in a neighbourhood of ∂Ω.

Step 7: Standard C2 estimate of Yau. We have the well-known inequality as follows:

∆′ log trgg
′ ≥ −Btrg′g − C

where B,C depends on the geometry of good background metric g and Ricci curvature

of the volume form on the right hand side of the equation. Notice that

∆′ϕ = n− trg′g.

By setting A=B+C+1,we have the differential inequality

∆′(log trgg
′ −Aϕ) = trg′g −An.

This inequality and the boundary C2 estimate imply the global C2 estimate. Then

by Evans-Krylov Theorem, we derive higher order regularity. At last the metric upper

bound we get now combined with C0 bound of ϕ implies a lower bound of the metric,

namely ϕ is in the function space U we introduced at the beginning of the proof.

5.4 Asymptotic analysis of different Kähler-Einstein metrics

In the following paragraph, we are concerned with the asymptotic behaviour of KE

metrics we constructed above.

We first compare the volume forms of two different Kähler-Einstein metrics on Ω
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5.4.1 Compare volume ratio of different Kähler-Einstein metrics

Fix a point q such that distχ(q, ∂Ω) ≥ 2R. We construct a cut-off function φ(x) =

ρ( r(x)
R ) ≥ 0 with

r(x) = dχ(x, q)

such that

φ = 1 on Bχ(q,R), φ = 0 outside Bχ(q, 2R),

and

ρ ∈ [0, 1], ρ−1(ρ′)2 ≤ C(n), |ρ′′| ≤ C(n).

Let H = φϕ. Since both χ and χ′ are KE metrics, we have

trχ
√
−1∂∂ϕ = −n+ trχχ

′ ≥ n(e
f
n − 1).

Assume H attain a positive maximum at point Q (otherwise f(q) ≤ 0). Then at point

Q, we have

∆H ≥ ∆χφ(
H

φ
) + φ∆χϕ+ 2<〈∇φ,∇H

φ
〉

≥ −H
φ

(R−2(1 +R)) + φn(e
ϕ
n − 1) + 2<〈∇φ, 1

φ
∇H〉 − 2H<〈∇φ, 1

φ2
∇φ〉

≥ −H
φ

(R−2(1 +R)) + nφ
ϕ2

n2
+ 2<〈∇φ, 1

φ
∇H〉 − 2< H

φR2

≥ −H
φ

(R−2(1 +R)− H

n
) + 2<〈∇φ, 1

φ
∇H〉 − 2< H

φR2

≥ H

φ
(−R−1 − 2R−2 +

H

n
) + 2<〈∇φ, 1

φ
∇H〉

By maximal principle on the ball of radius R, noticing that ∇H(Q) = 0, we get

H ≤ c(n)(
1

R
+

1

R2
). (5.4.1)

Hence ϕ(q) = H(q) ≤ 2c(n) 1
R when R is large. Therefore we have ϕ(q) ≤ ε when

distχ(q, ∂Ω) ≥ 2c(n)
ε . Switch the role of χ and χ′, by the same argument, we get

−ε ≤ ϕ ≤ +ε for x ∈ Uε := {x|distχ(x, ∂Ω) ≥ 2c(n)
ε and distχ′(x, ∂Ω) ≥ 2c(n)

ε }. As a

conclusion, we prove the theorem.

We prove some corollaries of Theorem (1.9)
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Corollary 5.27. Suppose we are in the setting of theorem (1.9) i.e, Ω admits a complete

Kähler-Einstein metric χ with negative scalar curvature and V olχ(Ω) <∞, then for any

other complete Kähler-Einstein metric χ′ with negative scalar curvature, V olχ′(Ω) <∞.

Proof. It’s obvious, since ϕ = log χ′n

χn is bounded by theorem (1.9).

Another simple application is a quick proof of uniqueness of complete Kähler-

Einstein metric on a complex manifold without boundary.

Corollary 5.28. Let X be complex manifold without boundary. Suppose χ, χ′ are two

complete Kähler-Einstein metric with negative curvature on X, then χ = χ′

Proof. From the Kähler-Einstein conditon, we know that

χ =
√
−1∂∂ log(χ)n, χ′ =

√
−1∂∂ log(χ′)n

Hence if we let ϕ = log χ′n

χn , then χ′ = χ +
√
−1∂∂ log χ′n

χn and ϕ satisfies the following

equation:

(χ+
√
−1∂∂ϕ)n = eϕχn

From the proof theorem (1.9), at a fixed point p ∈ X, as long as we can get a large

scale cut off function, which is always true on complete manifold, we have ϕ(p) < 1.

Once we have bounded ness of ϕ, maximal principle will conclude the proof.

By applying Yau’s Schwarz Lemma, we have the following theorem concerning the

comparison of two different Kähler-Einstein metrics.

Proposition 5.29. Let χ, χ′ be two complete Kähler Einstein metrics with negative

scalar curvature. If moreover the bisectional curvature of χ is ≤ −K2. where K2 is a

positive constant. Then there is a constant c such that

1

c
g1 ≤ g ≤ cg1.

where g, g1 are the Riemannian metrics corresponding to the Kähler forms χ, χ′.

Proof. Let u = trg1g, by Chern-Lu’s inequality we have

∆g1u ≥ −K1u+K2u
2.
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where K1 is the Ricci curvature of ω1. We still use the cut-off function φ as in theorem

(1.9). Let G = φu, combine the Chern-Lu inequality and the same argument as as in

theorem (1.9), we get the following inequality

G ≤ K1

K2
+ c(K1,K2)R−

1
2

When R is larger, the estimate is better, hence we have g ≤ cg1 for some constant

which depend on the metric g1. Since we also prove the pointwise volume ratio estimate

in theorem (1.9), hence we have

1

c
g1 ≤ g ≤ cg1

Now we make use of property (A) of metric χ. We first prove bounded smooth

solutions of Dirichlet problem in (1.3.2) is unique and any complete Kähler-Einstein

metric on (Ω \ p) comes from the solution of equation (1.3.2).

Proposition 5.30. Suppose Ω admits a complete metric χ =
√
−1∂∂ρ with ρ bounded

from above and goes to −∞ towards p, then bounded smooth solution ϕ of
(χ+

√
−1∂∂ϕ)n = eϕχn on Ω \ p

ϕ|∂Ω = 0,

(5.4.2)

is unique i.e ϕ = 0. In particular, if χ is a complete metric towards p with property (A),

then for any other complete Kähler-Einstein metric χ′ with negative scalar curvature,

χ′ is one of the solutions from Theorem (1.3.2).

Proof. Let ϕε = ϕ− ερ and χε = (1 + ε)χ then ϕε safisfies the equation
(χε +

√
−1∂∂ϕε)

n = eϕ

(1+ε)nχ
n
ε on Ω

ϕε|∂Ω = −ερ,

(5.4.3)

Since ρ goes to −∞, ϕε admits minimum in Ω. If minimum is on the boundary,

ϕε ≥ −ε inf∂Ωρ. If the minimum is in the interior point Q, ϕε(Q) = ϕ(Q) − ερ(Q) ≥
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log(1 + ε)− εmaxρ. In both cases, let ε → 0, we get ϕ ≥ 0. Similar argument showes

that ϕ ≤ 0. Hence 0 is the unique solution. For the second part of the theorem,

on one hand, from the fact that χ′ is complete and Theorem (1.9), we know that

χ′ = χ +
√
−1∂∂ϕ and ϕ is bounded, on the other hand, from Theorem (1.3.2) we

can find χ̃′ = χ +
√
−1∂∂ϕ̃ with ϕ̃|∂Ω = ϕ|∂Ω. By the first part of this theorem, we

conclude that ϕ = ϕ̃, χ′ = χ̃′.

At last, with the help of estimates of high order derivatives of ϕ, we prove the

rigidity of local complete Kähler-Einstein metrics with negative scalar curvature near

isoloated log canonical singularity. This is stronger than proposition (5.29).

5.4.2 Compare different Kähler Einstein Metrics

First of all, χ′ is one of the solutions in theorem (1.7) by the completeness of χ′,

theorem (1.9) and theorem (5.4.2). For any point q ∈ (Ω \ p), we can choose a quasi

coordinate (V̂ , φ) covering q such that there is a point q̂ ∈ V ⊂ V̂ , φ(q̂) = q and

dist(q̂, ∂V̂ ) ≥ dist(V, ∂V̂ ) ≥ ε1. Let ρ be the cut-off function we constructed in the

proof of Lemma (5.24). Then we have the following inequalities:

∑k
i=1 |ρ(k)|Euc ≤ Bk,

where B′ks are universal constants independent of p and V . This is true because under

the construction of the system of quasi coordinates, we have dist(V, ∂V̂ ) ≥ ε1 > 0, hence

controlling the derivatives of cut-off function unifomly. Actually, we can even assume

the covering domains we choose are B 1
4
ε1
, B 1

2
ε1

by subdividing the original coverings.

By our previous proof of the A priori estimates of ϕ from equation (1.3.2), we also have

the following inequalities, for any point q ∈ (Ω \ p) and any nonnegative integer k:

∑k
i=1 ‖∇(k)ϕ‖χ(q) ≤ Ck.

When k = 0, the theorem is proved by Theorem (1.9). for k ≥ 1, we do computations

in the quasi coordinate as follows:∫
V̂
ρϕ∆ϕ =

∫
V̂
ρ|∇ϕ|2 +

∫
V̂
ϕ〈∇ϕ,∇ρ〉,
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∫
V
|∇ϕ|2 ≤

∫
V̂
ρ|∇ϕ|2 ≤ C · (C2 +B1) · sup

V̂

|ϕ|.

Similarly, we have ∫
V
|∇kϕ|2 ≤ C · (Bk + C2k−1) · sup

V̂

|ϕ|.

where C is the euclidean volume of V . Suppose distω(p, ∂Ω) ≥ R and distω1(p, ∂Ω) ≥ R,

by the triangle inequality, we have

dist(∂(φ(V̂ )), ∂Ω) ≥ dist(p, ∂Ω)− dist(p, ∂(φ(V̂ ))) ≥ R− C ′ε1 ≥
R

2
.

where C ′ is a metric equivalence constant in quasi coordinates, where depends on the

geometry of χ but independent of q. Hence by the C0 estimate of ϕ in Theorem (1.9),∫
V
|∇kϕ|2 ≤ C · (C2k−1 +Bk) ·

c(n)

R
.

Now that we have L2 norm control of all higher order derivatives, by Sobolev embed-

ding on Euclidean space and property (d) of quasi-coordinate, we can conclude that∑k
i=1 ‖∇iϕ‖χ(q) ≤ εC(k, χ, f) for q ∈ Uε where C(k, f, χ) is a constant depends on the

geometry of χ, k and f .

To end section 3, we give an example of a family of canonical polarized varieties

with central fiber equipped with log canonical singularity satisfying property (A).

5.4.3 Example: Degeneration of Godeaux surfaces

A surface X is called a Godeaux surface if π1(X) = Z5 and universal cover is

quintic hypersurface. A explicit construction could be as follows: Define Z5 on P3 in

the following way:

ρ • (X0, X1, X2, X3) = (X0, ρX1, ρ
2X2.ρ

3X3)

Then there exists quintics (in P3) invariant and fixed point free under the Z5 action

with 5 non degenerate triple points and no other singularities by a dimension count

argument. (See [135] page 135). Then the Z5 quotient will give a family of Godeaux

with central fiber a canonical polarized variety coupled with a single simple elliptic

singularity (cone over elliptic curve).
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Appendix A

Uniformization of lc singularity of complex dimension 2

We include the uniformization of 2 dimensional log canonical singularity for reader’s

convenience. This is basically taken from [69, 70]. Firstly let’s us recall the classification

of 2 dimensional isolated log canonical singularity in terms of the the configuration of

exceptional curves. The first proof I know is due to Kawamata [65], page 141. See also

[1].

Let (X, p) be a log-canonical surface singularity and let µ : Y → X be the minimal

resolution. Let G be the dual graph of the union of exceptional locus. Then of the

following holds;

1. (x, p) is a quotient singularity (Klt singularity);

2. (x, p) is a simple elliptic singularity or a 2 dimensional cusp;

3. G = (2, 2, 2, 2), (2, 4, 4), (2, 3, 6), (3, 3, 3);

4. G =

We will have a more detailed description of the terminology we used above in the dis-

cussion below. Here we just point out that simple elliptic singularity is a covering of

case (3) and 2 dimensional cusp is covering of case (4).

Every cusp singularity is log canonical. The exceptional set in the minimal resolution

is a cycle of CP1 or a double rational curve. It’s is uniformized by by H×H with covering
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transformation group G(M,V ) which is a reflection-free discrete subgroup of Aut(H×H)

fixing the point (∞,∞) in the boundary.

More precisely, suppose we have a cycle of rational curves CP1
i with self intersection

qi, 0 ≤ i ≤ r − 1. For a integer k, let C2
k be the k-th copy of C2 with the coordinate

function (uk, vk). We put the identification defined by

uk = u
qk−1

k−1 vk−1, vk = u−1
k−1

on the disjoint union qk∈ZC2
k. Let the resulting manifold be Y ′. In Y ′, the curve

defined by vk = 0 in C2
k and uk = 0 in C2

k+1 is a nonsingular curve with self-intersection

−qk. We denote these curves by Sk, hencee S′ks is a chain of rational curves. The

identification can also be written in the form as

(log uk, log vk) = (log uk−1, log vk−1)
(
qk−1 −1

1 0

)
= (log u0, log v0)

(
q0 −1
1 0

)(
q1 −1
1 0

)
· · ·
(
qk−1 −1

1 0

)
Set ( Pk −Pk−1

Qk −Qk−1

)
=
(
q0 −1
1 0

)(
q1 −1
1 0

)
· · ·
(
qk−1 −1

1 0

)
Then qkPk = Pk−1 + Pk+1, P0 = 1, P1 = q0 and qkQk = Qk−1 + Qk+1, Q0 = 0, Q1 = 1,

{Pk}k≥1 and {Qk}k≥1 are determined by the continued fractions [[q0, q1, q2, · · · , qk]] =

q0− (q1− (q2− · · ·− (qk−2− q−1
k−1)−1 · · · )−1)−1 = Pk

Qk
where Pk, Qk are coprime positive

integer. Also the infinite periodic continued fraction [[q0, q1, · · · , qs, · · · ]] > 1 represents

a real quadtatic irrational number ω0. For example if all qk = 4, then ω0 = 2 +
√

3.

Let ωs := [[qs, qs+1, · · · ]] > 1 and Rk = Pk − Qkω0. Then R′ks satisfy qkRk = Rk−1 +

Rk+1. From the definition, we get R0 = 1, R1 = ω−1
1 , · · · , Rk = ω−1

1 ω−1
2 · · ·ω

−1
k , M =

Z + Zω0 is a free Z- module of rank 2 and Rk, Rk+1 for any k, is a basis of M. Since

ωk = ωk+r for any k,RkRr = Rk+r holds. So RrM = M . By the Hamilton-Cayley

theorem, Rr and R−r = R−1
r are both algebraic integers. In particular, R−1

r = R′r where

′ means to take the conjugate over Q. Let V = {Rnr }n∈Z ∼= Z under the correspondence

Rnr ↔ n. Then G(M,V ) =
{( ε µ

0 1

)
, ε ∈ V, µ ∈ M

}
acts on C2 properly discontinuous

and without fixed points as follows:

( ε µ
0 1

)
• (z1, z2) := (εz1 + µ, ε′z2 + µ′) (A.0.1)
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The action of G(M,V ) can be restricted onto H2 where H is the upper half plane.

Since εε′ = 1, Imz1Imz2 is invariant under the action of G(M,V ). We show there is a

neighborhood Y + of
⋃
k∈Z Sk in Y ′ such that Y + \

⋃
k∈Z Sk is biholomorphic to H2/M .

Actually let

Y + = {(uk, vk) ∈ C2
k,∞ ≥ R′k−1 log |uk|−1+R′k log |vk|−1 > 0,∞ ≥ Rk−1 log |uk|−1+Rk log |vk|−1 > 0}

And the correspondence is given by

2πi(z1, z2) = (log uk, log vk)
(Rk−1 R

′
k−1

Rk R′k

)
(A.0.2)

It’s easy to see that the above correspondence is well defined and that

H2/M ∼= Y + \
⋃
k∈Z

Sk

Then we still need to put a periodic identification on Y +. We consider the following

Z action on Y +. For n ∈ Z and (α, β) the coordinate of C2
k, n • (α, β) is defined

by (α, β) in terms of the (k + nr)−th coordinate. This Z restricts to the action on

Y + \
⋃
k∈Z Sk and is compatible with the V action on H2/M via (A.0.2). Indeed, the

point of Y + \
⋃
k∈Z Sk expressed as (α, β) in the (k + nr)−th coordinate is written as

(αaβb, α−cβ−d) in the k− coordinate, where

(
a −c
b d

)
=
{(

qk−r −1
1 0

)(
qk−r+1 −1

1 0

)
· · ·
(
qk−1 −1

1 0

)}n
So

(logαaβb, logα−cβ−d)
(Rk−1 R

′
k−1

Rk R′k

)
= (logα, log β)

(Rk−nr−1 R
′
k−nr−1

Rk−nr R′k−nr

)
= (logα, log β)

(Rk−1 R
′
k−1

Rk R′k

)(Rn−r 0

0 Rn−r

)
This Z action on Y + is properly and discontinuous and without fixed points. Define

Y = Y +/Z, then the image of S′ks forms a cycle B =
∑r−1

k=0Bk of CP1 such that

Bk.Bk = −qk. Now we can conclude that

H2/G(M,V ) ∼= Y \B

and the correspondence is given by (A.0.2) in the k−th coordinate of Y + and the Eu-

clidean one of H2. The open set WL of H2 defined by {(z1, z2) ∈ H2, Imz1Imz2 > L} is
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invariant under the action of G(M,V ) and its image in Y \B is a deleted neighborhood

of B. Now we conclude that
√
−1∂∂ log Imz1Imz2 is invariant under the action of Γ

and hence can descend to a Kähler metric on a punctured neighbourhood of singular

point p.

(According to Kobayashi, under a further Z2 action, we can get case (4).

Remark 11. A Z2 action on case (3) will give the case (4), but it seems unclear to us

that how the metric χ =
√
−1∂∂ log Imz1Imz2 can be invariant under the Z2 action. A

naive action which keeps the metric invariant will be swapping z1 and z2, but this action

has singularity along the line z1 = z2. We give an alternative argument to deal with

case (4). By case (3), we already get a local Kähler-Einstein metric satisfying property

A. The Z2 action will induce a automorphism of π of (Ω\p), then by our theorem (5.5),

‖∇jχ(χ − π∗χ)‖ < Cj where Cj can be choosen as small as we want by shrinking the

domain. Then χ+ π∗χ will be a model metric invariant under the Z2 action satisfying

property A.

Next we discuss simple elliptic singularity.

First let us recall the standard Bergman metric model on the unit ball B2 in C2,

(B2,−
√
−1∂∂ log(1 − |z|2)). Through the transformation z1 = u−i

u+i , z2 = 2v
u+i , the

Bergman metric model correspond to the Heisenberg model defined on the Siegel do-

main: ∆ =
{

(u, v) ∈ C2|Imu− |v|2 > 0,−
√
−1∂∂ log(Imu− |v|2)

}
. Let L be a lattice

in the v plane, then the parabolic group P fixing the boundary point p = (1, 0) ∈ ∂B2 is

written in the Siegel domain expression as follows: (or you can at least verify Imu−|v|2

is invariant under the action below through simple calculation)

P =
{

(µ, γ, r)|µ ∈ U(1), γ ∈ L, r ∈ R
}

where (µ, γ, r) stands for the automorphism of ∆ given by

(1 2iµγ̄ r + i|γ|2

0 µ γ

0 0 1

)
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It’s easy to see that the composition law is (µ, γ, r)(µ′, γ′, r′) = (µµ′, µγ′ + γ, r + r′ −

2Im(µγ̄γ′)).

Now we can start to talk about simple elliptic surface singularity. Let A = C/L,L =

{Z + Zω, Imω > 0} and denote the projection C → A by π. Let a be the area of the

fundamental domain of L measured by the usual flat metric |dz|2 of C. There is a real

closed form η on A such that π∗η = i(2a)−1dz ∧ dz̄.

Let ρ be the metric of Hermitian line bundle N → A whose curvature form is given

by −ibπ(a)−1dz ∧ dz̄. Since H1(C,O∗) = 1, there is an isomorphism C2 ∼= π∗N be-

tween holomorphic line bundles over C where C2 is the trivial line bundle over C. On

the pull back bundle π∗N , we may regard π∗ρ as a positive function on C. There is

an entire holomorphic function θ(z) such that π∗ρ = {exp(−|z|2)|exp(θ)|2}
bπ
a . The

biholomomorphic map of C2 into itself defined by (w, z) → (exp(−bπθa )w, z) is an

isomorphism of trivial line bundle over C and the Hermitian metric exp(−|z|2)
bπ
a is

pulled back to the Hermitian metric {exp(−|z|2)|exp(θ)|2}
bπ
a . So we may assume that

π∗N = C2, π∗ρ = (exp(−|z|2))
bπ
a through an automorphism of C2. Next we compute

the transition function, let U be an open subset of C such that Ū is contained in a fun-

damental domain of L. Let γ be an arbitrary element in L. Since C×U and C×(U+γ)

are local trivilization of N |π(U), there exists a non-vanishing holomorphic g(z) defined

in U such that (w, z) ∈ C × U and (w′, z′) ∈ C × (Uγ) represent the same point of

N |π(U) if and only if z′ = z + γ and w′ = g(z)w. Hence g(z) must satisfy the following

equality: |w|2(exp(−|z|2))
−bπ
a = |w′|2(exp(−|z′|2))

−bπ
a = |g(z)|2|w|2(−exp(|z + γ|2))

−bπ
a

for all z ∈ U and w ∈ C. Therefore g(z) must be written in as

g(z) = exp{−bπ
a

(zγ̄ +
|γ|2

2
|+ iθ(γ))}

where θ(γ) is a real number determined by γ ∈ L modulo (2a
b )Z. If z′ = z + γ and

z′′ = z′+γ′, then (w, z), (w′, z′) and (w′′, z′′) represent the same point if and only if the

following three equalities hold:

w′′ = exp{−bπ
a

(z ¯(γ + γ′) +
|γ + γ′|2

2
+ iθ(γ + γ′))}w

w′′ = exp{−bπ
a

(z′γ̄′ +
|γ′|2

2
+ iθ(γ′))}w′
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w′ = exp{−bπ
a

(zγ̄ +
|γ|2

2
+ iθ(γ))}w

Hence θ(γ+γ′) = θ(γ)+θ(γ′)−Im(γ̄γ′) modulo 2a
b Z. Recall that L = {Z+Zω, Imω =

a > 0}. It follows that θ(m+ nω) = mα+ nβ −mna modulo 2a
b Z where α, β are fixed

representativs of θ(1) and θ(ω) respectively. Using this θ(γ), we define a group of 3× 3

matrics as follows:

Γ =
{(1 2iγ̄ i|γ|2 − 2θ(γ)

0 1 γ

0 0 1

)
; θ(m+ nω) = mα+ nβ −mna modulo

2a

b
Z
}

Let B be the unit ball in C2 and ∆ the domain in C2 defined by {(u, v) ∈ C2; Im(u)−

|v|2 > 0}. Then z1 = (u − i)(u + i)−1 and z2 = (2v)(u + i)−1 give a biholomorphic

map of B to ∆. For a positive integer k, we consider the subdomain ∆k of ∆ defined

by {(u, v) ∈ C2; Im(u) − |v|2 > k}. Actually ∆k corresponds to the horoball at (1, 0)

of B with the Bergman metric. Γ is a discrete subgroup of the group of analytic

automorphism of ∆, which also keep ∆k invariant. This action is described as follows:

(1 2iγ̄ i|γ|2 − 2θ(γ)

0 1 γ

0 0 1

)(u
v

1

)
=
(u+ 2iγ̄v + i|γ|2 − 2θ(γ)

v + γ

1

)

The map F : ∆ → C2 defined by (u, v) → (exp( bπiu2a ), v) maps ∆ onto the set V ′ =

F (∆) = {(w, z) ∈ C2; 0 < |w|2(exp(−|z|2))
−bπ
a ) < exp(−−bπka }. If we define V = {w ∈

N : 0 < ρ(w,w) < exp(−bπkaa )}, then V ′ = π−1(V ). V is a deleted neighborhood of the

zero-section of N and a punctured disk bundle over the elliptic curve A. It’s easy to see

that ∆/Γ is biholomorphic to V . And the Kähler form of the Bergman metric of unit

ball B can be written in terms of the coordinate (u, v) of ∆ as

−
√
−1∂∂ log(Imu− |v|2) =

dv ∧ dv̄
Imu− |v|2

+
(−idu− 2v̄dv) ∧ (idū− 2vdv̄)

4(Imu− |v|2)2
(A.0.3)

This metric is invariant under the action of Γ, hence this projects down to a Kähler

metric of V , whose Kähler form is given by

dz ∧ dz̄
( abπ ) log |w|−2 − |z|2

+
(( abπ (dww ) + z̄dz) ∧ (( abπ ) ¯(dww ) + zdz̄)

(( abπ ) log |w|−2 − |v|2)2
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where (w, z) = F (u, v) = (exp( bπiu2a ), v).

Case (c) is uniformized by simple elliptic singularity. We use the same notation as

the case of simple elliptic singularity. The elliptic curve A has a nontrivial point group

G, i.e., the corresponding lattice is invariant under the action of non-trivial finite sub-

group of U(1). The central curve, namely A quotient, is an orbifold defined over CP1

described by (b1, b2, · · · ) where b1, · · · are branch indices. The only possible triads

(A,G, (b1, · · · )) are

1. L = Z + Zω (general lattice),G = (−1), (2, 2, 2, 2)

2. L = Z + Zi, G = (i), (2, 4, 4)

3. L = Z + Ze
2πi
6 , G = (e

2πi
6 ), (2, 3, 6)

4. L = Z + Ze
2πi
6 , G = (e

2πi
3 ), (3, 3, 3)

We can construct a discrete parabolic groups Γ corresponding to these triads, which fit

into the exact sequence

1→ Z→ Γ→ E → 1

where Z consists of automorphism ((µ, γ, r)) with (µ = 0, γ = 0, r ∼= 2a
b Z), Γ consists of

automorphism ((µ, γ, r)) with µ ∈ G (a finite subgroup of U(1)), γ ∈ L (a lattice with

a non-trivial point group G) and r = r(µ, γ) ∈ R modulo 4a
b Z obeying

r(µµ′, µγ′ + γ) = r(µ, γ) + r(µ′, γ′)− 2Im(µγ̄γ′)mod
4a

b
Z. (A.0.4)

E is a discrete Euclidean motion group generatd by L and G. The map Γ → E is

defined by forgetting R. For example, in the case L is general and G = (−1) Define

r(−1, 0) = 2a
b mod 4a

b Z and r(1, n+mω) = −2mna mod 4a
b Z. Actually, by (A.0.4), to

construct such a group Γ, we only need to define r(1, γ) and r(e, γ) where e is a generator

of the cyclic group G. And in this situation, the minimal resolution of the singularity

is a central rational curve with 4 rational curves which don’t intersection each other,

sitting on it. If the branch index is 3, then in the resolution, there are two possibilities:
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the first one is the Du Val singularity whose resolution is two rational curves with self-

intersection −2, or it’s a (3,1) singularity whose resolution is one rational curve with

self-intersection −3. Similarly we can analyze the cases of branch index 4 and 6. An

explicit resolution of the cyclic singularity can be found in [71].
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