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Geometry of Complex Monge-Ampeéere equation
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In this thesis, we study three problems related to Complex Monge-Ampeére equations.
After the introduction and preliminary, In chapter 3, we study Kéahler Ricci flow on Fano
bundle, with finite time singularity. we show that under the suitable assumption on
the initial and ending Kéhler class, the evolving Kéahler metrics along Kéhler Ricci flow
have uniform diameter bound and moreover, if we assume the fiber of Fano bundle is P™
or My, i, the evolving metric will converge to a Kahler metric on the base of the Fano
bundle in Gromov-Hausdorff sense, which generalizes the result of Song-Szekelyhidi-
Weinkove [103] who study the Kéhler Ricci flow on projective bundle.

In chapter 4, based on Kolodziej’s fundamental result on C° estimate of complex
Monge-Ampere equation, we study the geometric property of complex manifolds cou-
pled with a family of Kahler metrics which come from solutions of a family of complex
Monge-Ampere equations. As a application, on a minimal K&hler manifold with inter-
mediate Kodaira dimension, we obtain uniform diameter bound of a family of collapsing
Kaéahler metrics whose Kéahler class is small perturbation of the canonical class. This is
our first attempt to understand canonical metric on complex manifold with nef canon-
ical class.

In chapter 5, we further study degeneration of Kahler-Einstein metrics with negative

curvature on canonical polarized complex manifold. For this purpose, we construct
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complete Kéhler-Einstein metric near isolated log canonical singularity through two
different methods and for those log canonical singularity coupled with a model metric
satisfying bounded geometry property roughly, we prove a rigidity result concerning

complete Kahler-Einsteins near the singularity.
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Chapter 1

Introduction

1.1 Topic 1: Kahler Ricci flow with finite time singularity

1.1.1 Background

The Ricci flow, introduced by Hamilton, has become a powerful tool to study the
topology and geometric structures of Riemannian manifolds.

In [104] [105], [106], Song-Tian introduced the analytic minimal model program which
is parallel to Mori’s birational minimal model program. On one hand, Kéhler-Ricci flow
with surgery can be viewed as the complex analogue of Thurston’s three dimensional
geometrization conjecture. On the other hand, the surgery is canonical and correspond
to the birational surgery in Mori’s program such as divisorial contraction or flip, see

7., 60

1.1.2 Kahler-Ricci flow on Fano bundle

Consider the Kéahler-Ricci flow w = w(t) given by

0 .
Y= —Ric(w), w(0) = wy, (1.1.1)

It’s well-known that, from Tian-Zhang [130, 119], a maximal smooth solution to
(1.1.1)) exists on [0,7") where T' > 0 is given by

T = sup{t > 0|[wo] — 27tc1(X) > 0}. (1.1.2)

Song-Székelyhidi-Weinkove [103] studied the behavior of the Kéhler-Ricci flow on the
projective bundles. In our article [47], we generalize their result in the sense that we

could have more types of Fano fibers other than projective spaces. For example the



fiber could be P™ blown-up at one point or M,, ;, which is the weighted projective space
Y k(1 < k < m) blown-up at the orbifold point.
Suppose we have a bundle X — Y with fiber F' being a fano manifold. By (1.1.2), T’

is finite and if we further assume that the limiting Kéhler class [wo] —27Tc; (X) satisfies
[wo] — 27 Tc1(X) = [ wy] (1.1.3)
for some Kahler metric wy on Y. By lemma |3.2] we have a limiting form on wr,
wr = Trwy +V—100p7 > 0. (1.1.4)
My first result of collaboration with Shijin Zhang is an estimate of wrp.

Theorem 1.1. ([47]) Assume (X,Y,n, F) is a Fano bundle, wy is the Kdhler metric
on X, wy is a Kdhler metric on'Y satisfying for some T > 0, wr is defined by

1.1.4]). Then there exists a uniform constant C > 0 such that
Cir*wy <wr < Crtwy. (1.1.5)

We further show that diameter of manifold X with metric w(¢) is finite and there
exists a sequence of metrics along the Kéhler-Ricci flow converge subsequentially to a

metric on Y in the Gromov-Hausdorff sense as ¢t — 7.

Theorem 1.2. ([{7]) Let (X,Y,n,F) be a Fano bundle with F' is P™ blown up at one
point (m > 2) or F' = My, (1 < k < m), wy be a Kdhler metric on Y and wy be a
Kihler metric on X. Assume w(t) is a solution of the Kdhler-Ricci flow for

t € [0,T) with initial metric wy and [wo] — 20T c1(X) = [7*wy], then we have
(1) diam(X,w(t)) < C for some uniform constant C' > 0;

(2) There exists a sequence of times t; — T and a distance function dy on'Y (which is
uniformly equivalent to the distance induced by wy, such that (X,w(t;)) converges

to (Y,dy) in the Gromov-Hausdorff sense.



1.2 Topic 2: Geometric estimate of Monge-Ampeére equation

1.2.1 background

Complex Monge-Ampere equations are a fundamental tools to study Kéahler geom-

etry. Consider the following complex Monge-Ampere equation
(0 +vV—=100p)" = e 10", (1.2.1)

on a Kéhler manifold (X,#). By deriving a priori estimate of equation in his
fundamental work ([136]), Yau solves the Calabi conjecture. After that, in Kolodziej’s
deep work [72], Yau’s C%estimate for solutions of equation is improved by
applying the pluripotential theory. More precisely, suppose the right hand side of
equation (1.2.1)) satisfies the following L? bound

/ e Pfo" < K, for some p > 1,
X

then there exists C' = C(X,0,p, K) > 0 such that any solution ¢ of equation ((1.2.1)

satisfies the the following L*°-estimate

lle — SUp PllLee(xy < C.

Building on Kolodziej’s work, a family of degenerating complex Monge-Ampere equa-
tions are intensively studied in [9} [72], 40, [37] and a notable application is the existence

of Kéhler-Einstein metric on canonical model of general type variety.

1.2.2 Geometric estimate of Monge-Ampere equation and applica-
tion to generalized Kahler-Einstein metric on manifold with nef

canonical bundle

We study the following Monge-Ampere equation on a Kéhler manifold (X, ) where
0 is a fixed Kéahler form:
(0 + V—=109p)" = 0, (1.2.2)

where A =0 or 1, and § is a smooth volume form satisfying [ = S  0". Moreover,

we assume that

P
/ (0%) 0" < K, Ric(Q) = —v/—1991log Q) > — A0, (1.2.3)
X



for some p > 1, K > 0 and A > 0. By Kolodziej’s work, we know that the solutions
¢ have uniform C° bound for different volume form  under condition . We
further convert this analytic C° estimate to uniform diameter estimate hence bridging
Monge-Ampere equation with geomtric compactness in Riemannian geometry. My first

result of collaboration with Bin Guo and Jian Song is:

Theorem 1.3. ([{6]) Let (X, 0) be an Kihler manifold, then under assumption (1.2.5),
there exists C = C(X,0,p, K, A) such that the solution ¢ of equations and
theKihler metric g associated to the Kdhler form w = 0++/—100¢ satisfy the following

estimates,
1. |l = supx @l oo (x) + Vgl Lo (x,9) < C-
2. Ric(g) = —Cyg.
3. Diam(X,g) < C.

Let M(X,0,p, K, A) be the space of all solutions of equation ((1.2.2)), where ) sat-
isfies assumption ([1.2.3)). One consequence of Theorem is a uniform noncollapsing
condition for M(X,0,p, K, A).

O~ < Voly(B,(z,r)) < Or*", (1.2.4)

where By(z,r) is the geodesic ball centered at ¢ with radius = in (X, g).

We also study the Monge-Ampere equation with degenerating reference from x and
improve previous results in the sense that we derive estimates without assuming semi-
positivity of limiting reference form y. Consider a family of degenerate Monge-Ampere

equation with limiting reference class x being only nef and of numerical dimension x.

(X + 10 + V=190 = t" " etteq) for t € (0,1], (1.2.5)
where A = 0, or 1, ¢ is a normalizing constant. Our second result is:

Theorem 1.4. ([f6]) Suppose the volume measures Q in equation satisfy LP

integrablility assumption . Then there exists a unique ¢y € PSH(X, x+t60) solving



equation for all t € (0,1]. Furthermore, there exists C = C(X, x,0,p, K) > 0
such that for all t € (0,1],

(1 — Sup ¢t) = Vill Lo (x) < C,
where V; is the extremal function associated to x + t6.

The refined C? estimate of theorem can be applied to generalize Theorem (1.3
especially for minimal Kéhler manifolds with nef canonical bundle in a geometric set-

ting.

Theorem 1.5. ([/6/) Suppose X is a smooth minimal model equipped with a smooth
Kahler form 6. For any t > 0, there exists a unique smooth twisted Kdahler-Finstein
metric g on X satisfying

Ric(gy) = —gi + t0. (1.2.6)

There exists C = C(X,60) > 0 such that for all t € (0,1],
Diam(X,g:) < C.

Furthermore, for anyt; — 0, after passing to a subsequence, the twisted Kdhler-Einstein
manifolds (X, gt,) converge in Gromov-Hausdorff topology to a compact metric length
space (Z,dz). The Kdihler forms wy, associated to gi; converge in distribution to a
nonnegative closed current @ = x + /—100¢ for some ¢ € PSH(X,x) of minimal

singularities, where x € [Kx] is a fized smooth closed (1,1)-form.

The diameter bound or non-collapsing condition we get is crucial in geometric com-
pactness theory in particular in the Cheeger-Colding-Tian theory. Although so far we
don’t know too much about the limiting space especially in the case of theorem ,
we plan to study the tangent cone of the limiting space in the future. Our utimate goal
in the future attempts to establish a geometric theory for canonical metric on minimal
models of algebraic variety without assuming abundance conjecture. However if we as-

sume the abundance conjecture, we can improve our understanding the limiting metric

space (Z,dz) in our Theorem (|1.5)).



Theorem 1.6. ([46]) Suppose X is a projective manifold of complex dimension n
equipped with a Kahler metric 0. If the canonical bundle Kx 1is semi-ample and
v(Kx) = k € N, then the following hold for the twisted Kdhler-Einstein metrics g
satisfying

Ric(gy) = —gi + 16, t € (0,1].

(1) There exists C > 0 such that for all t € (0,1],

Diam(X,¢:) < C.

(2) Let wy be the Kdhler form associated to g,. For any compact subset K CC X\S,
we have

Hgt - (I)*gcanHCO(Kﬂ) — 0, ast — 0.

(8) The rescaled metrics t_lwt|xy converge uniformly to a Ricci-flat Kdhler metric

wey,y on the fibre X, = ®71(y) for any y € Xean \ ®(S), as t — 0.

(4) For any sequence t; — 0, after passing to a subsequence, (X, gi;) converge in
Gromov-Hausdorff topology to a compact metric space (Z,dz). Furthermore,
Xean \ Scan is embedded as an open subset in the reqular part Rowx of (Z,dz)

and (Xean \ ScansWean) s locally isometric to its open image.

In particular, if K = 1, (Z,dg) is homeomorphic to Xcqn, with the regular part being
open and dense, and each tangent cone being a metric cone on C with cone angle less

than or equal to 2m.

1.3 Topic 3: Kahler-Einstein geometry near log canonical singularity

1.3.1 Background

Kaéhler-Einstein metric has been the central topic in complex geometry for decades.
For complex manifolds with X with C;(X) < 0 and C1(X) = 0, the existence of Kéhler-
Einstein metrics are confirmed by Aubin, Yau [4, 136] and Yau [I36] separately. Also,

rescent results of Chen-Donaldson-Sun [16], 17, 18] confirm the Yau-Tian-Donaldson



conjecture for smooth Fano manifold. On the other hand, it will be interesting to un-
derstand the geometry of Kahler-Einstein metric on singular variety. In their pioneering
work [59], Hein ans Sun study the asymptotic behaviour of diffenert Calabi-Yau met-
rics on singular varieties with special cone singularity by using the fundamental tool
developed in Donaldson-Sun [38, 89]. On the other hand, in the recent work of Song
[114], he proves that for a family of canonical polarized varieties, the negative Kahler-
Einstein metrics of nearby fibers converge to a singular Kéhler-Einstein on the central
fiber which has complete end towards the locus of Non-KIt center. Hence it’s a nat-
ural question to study the metric behaviour of Kéhler-Einstein metric with negative

curvature near log canonical singularity.

1.3.2 Complete Kihler-Einstein metrics near isolated log canonical

singularity and their geometric rigidity

We study the Kahler-Einstein metric locally near an isolated log canonical singu-
larity. We fix the geometric domains that will be discussed.
Setting: Let (X,p) be a germ of isolated normal log canonical Q-Cartier singularity
embedded in (CV,0). Our main interest will be neighbourhood of the singular point p.

Using a bounded PSH function p on X, we cut a domain
Q:={p<a}

contained in X such that 0 is strongly pseudoconvex. We also fix reference metric

and volume form

X =V—100p,Qx = e’V AV
on 2, where V is local holomorphic volume form (up to taking root of multiple holo-
morphic volume form) on a neighbourhood of p in X. The complex Monge-Ampere
equation of our interest in relation to the Ké&hler-Einstein equation on © (More pre-

cisely on (2 \ p)) is given by

(x +V—100p)" = e?Qx.

o0 =f

(1.3.1)

where f is an arbitrary smooth function. Our first result is:



Theorem 1.7. ([32]) Let (2, p) be a germ of isolated log canonical singularity as above.
There ezists solution ¢ € PSH(x)[(C>(Q\ p) of equation satisfying the fol-

lowing conditions.
1) For any € > 0, there exists C, ¢ > 0 such that
Y D,

where op is an effective divisor supporting on the exceptional locus when we blow

up the singularity.

(2) ¢ = —00 on p.
We will also construct Kéhler-Einstein metric on (€\ p) by using bounded geometry

method. In order to use bounded geometry method, we need more assumptions for our

singularity (X, p)

Property A: Let (X,p) a germ of isolated log canonical singularity embedded in
(CN,0). If there is a complete metric y = v/—199p defined on (X \ p) satisfying (1)
has a system of quasi coordinates. (2) Ric(x) + x = v—100M and ]|V§MH < Ck
(Here the potential function M is not unique, we only require one of them satisfy the
boundedness property, and in this article, the most interesting case is M = 0). Then

we call (X, p) has property A and we define
Q:={p<a},00:={p=a}

where a is a fixed constant (We can assume 0f2 is smooth by adjusting constant a) .
Again we fix our geometric domain to be a triple (£2, p, x), and our second theorem
is concerning the existence of Kéhler-Einstein metric by using bounded geometry in a

perturbation way.

Theorem 1.8. ([32]) Suppose (X,p) is a germ of log canonical admitting property A.

Then for any smooth function i on the boundary 0X), the following Dirichlet problem

(x + V—100p)" = e?TMy™ on
(1.3.2)

vlaa = 1,



admits a solution in function space defined in Cheng-Yau [26] with ||¢||k.a < C(k, ¢, p, M).

There are a large class of log- canonical singularities admitting Kéahler-Einstein
uniformization which satisfies property (A). Especially, a complete picture of uni-
formization of isolated log canonical singularity in complex dimension 2 is obtained in
[69, [70].

We proceed to compare two Kahler-Einstein metrics on (€2 \ p) which are complete
towards p . First of all, we compare their volume forms. Suppose x is a local complete
Kéhler Einstein metric on (Q\ p) and x’ is another complete Kéahler Einstein metric.
Let ¢ = log’)‘%: be the ratio of volume forms. Also for any €, define a punctured
neighbourhood U, of p to be:

2600 d disty (2, 00) > 20

Ue = {x|disty (z, 0Q) > . c

}

Then our theorem in [32] concerning the comparison of volume ratio is:
Theorem 1.9. ([32]) For any € > 0, we have —e < ¢ < € in U.

If both x and ' are complete towards p, then the above theorem shows that f(z) —
0 when x — p. If we further assume x has bounded geometry property, we can even
compare two different Kahler-Einstein metrics to higher order derivatives. If we write

X' = x +v/—1900p where ¢ = log ":%:, then our last theorem in [32] is:

Theorem 1.10. ([32])Suppose (2, p, x) is a metric with property (A) and x1 is another
Kahler-Einstein metric on Q and complete towards p. then for any positive number €

and any non negative integer k, we have Zle Viplly(q) < € for q in Ue
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Chapter 2

Preliminaries

In this chapter, we will collect some basic facts and definitions of Kahler geometry
and Riemannian geometry. They are basically well-known from literature and will be
stated without proofs. I include these material to make my presentation more self

contained and part of them are taken from Bin Guo’s Ph.D thesis [54].

2.1 Kahler geometry

Let (X,w,J) be a compact complex manifold. The metric form w is called Kahler
if it is closed, i.e. dw = 0, or in local coordinates (z1, ..., z,),

3gi3 . 8.%; 39¢j . 99k
0z, N 0z; ’ 0z, N 82]',

Vi, j7 k’
where g;5 is the components of w in these coordinates, i.e.,
w=V—1g;dz; N dz;.

The Kihler metric w lies in a cohomology class [w] € HM(X,C) N H?(X,R). By the
v/ —190-lemma ([48]) for any other (1,1)-form w’ in the same cohomology class as w,

there exists a smooth real function ¢ such that
W= w4+ V—190¢.

Hence all the Kéhler metrics in the Kéahler class [w] can be written as the form w +

v/ —190¢ for some p € PSH(X,w) where
PSH(X,w) = {p € C®°(X,R)|w + V—190¢ > 0}.

The Riemannian curvature of w is equal to (in locally coordinates (z1, ..., 2y))

_ %5 pq09ia 09
02,07 0z, 07 ’

Rijkl‘
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and the Ricci curvature is

_ 82
R =g" Rz = ———logdet g 2.1.1
ij ijkl 02,07 g 9kl ( )
and the scalar curvature R = gii R;;. Here and in the rest of the thesis, we denote gﬁ
the inverse of g3, i.e., gij 9ij = 5};. The first and second Bianchi identities say that the
indices with or without bar are all symmetric in the local components: R, R,
and R 5.
The Ricci form

1 1 _
Ric(w) = \/2:Ri3dz,~ Ndzj = %\/—188 log det g;;

is a closed (1, 1)-form, and its cohomology class (denoted by C7(X)) is called the first
Chern class of X.

A holomorphic line bundle L over the Kéhler manifold X is a vector bundle over X
with fiber C, and the transition functions h;; over U; N U; are never zero holomorphic
functions, where L|y, = U; x C is a local trivialization of L, and X = U;U;. The

transition functions satisfy
hijhjizl, on UiﬁUj 75@,

and

hijhjkhki: 1, omn UiﬁUjﬂUk%@.

These equations implies that {h;;} defines a 1 co-cycle hence a cohomology class the
Cech group H'(X,0*).

A holomorphic section s of L is defined locally by s = s;e; on each U;, where e; is
a local frame of L over U; and s; is a holomorphic function on Uj;. s is globally defined
iff s; = hy;s; over U; N Uj, since e;h;; = e;. A Hermitian metric h on L is given by
positive local functions {h;} over U; such that h; = |h¢j|2hi on U; N U;. Hence the
(1,1)-form —(27)~1y/=100log h; is globally defined, noting that v/—1901og |h;;|* = 0.
Actually, this (1, 1)-form is called the curvature of the Hermitian metric h, and we will
denote it by Ric(h). It represents a cohomology class in the Dolbeault cohomology
group HYY(X,0)N H?(X,Z). Tt is not hard to see for all Hermtian metrics on L, their

curvatures lie in the same cohomology class, and we will denote this class by C(L).
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The set of holomorphic sections of L is denoted by HY(X, L), and the norm of

s € H%(X, L) with respect to a Hermtian metric h on L is defined by
[ == si5ihi on Uy,

and it is each to check this norm is globally defined by the transition laws of s; and h;.
The canonical line bundle Kx of X is defined to the determinant line bundle of
T (*1 O)M ,and dzy A -+ A dz, is a local section of Kx on any local coordinates chart

(21, .., 2n). The holomorphic sections of Kx are holomorphic n-forms. For any Kéhler

1

metric w, W
ij

defines a Hermtian metric on Kx. And its associated curvature is given

—(2m) "1/ =100 log = (2m)~1/=190 log det 9;; = —Ric(w).

det g;;
Hence we see that —C1(X) = C1(Kx), or C1(X) = C1(—Kx), where —Kx is dual line
bundle of K.

We recall a few notions about the line bundles.

Definition 2.1. Given a holomorphic line bundle L over a compact Kdhler manifold

X, then

(1) L is called ample, if the linear system |kL| for some k € N gives an embedding
of X to some projective space CPN, i.e., kL = Ocpn(1). In this case, X is
necessarily projective by definition. The Kodaira embedding theorem implies that

this is equivalent to the existence of a Hermtian metric h on L with curvature

Ric(h) > 0.

(2) L is called numerical effective (or nef) if for any irreducible curve C C X,

JoCi(L) > 0.

(3) L is big, if the Kodaira dimension k(L) = n, or (in the nef case) equivalently

/X Ci(L)" > 0.

(4) L is called base point free, if for any point © € X, there exist a section s €

HY(X, L) such that s(x) # 0.
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Finally, we recall the notion the complex Monge-Ampére equation and its relation

with Kahler-Einstein metric:

(1) When C;(X) < 0, if we fix a reference form w in Kéhler class [Kx]|, any other

Kihler metric g in class [Kx] can be written as w + v/—199¢. Then

Ric(g) = —g <= .(w+ V—=100p)" = e#Q

(2) When C;(X) = 0, if we fix a reference form w on X, any Kéhler metric ¢ in class

[w] can be written as w + /—199p. Then

Ric(g) =0 <= (w + V—190p)" = Q
where 2 is suitable smooth volume form on X.

2.2 Riemannian geometry and metric geometry

2.2.1 Riemannian geometry

Let (M, g) be a Riemannian manifold and p € M be a point. The cut-locus of p is
defined to be the points ¢ € M either ¢ is a conjugate point of p or there exists at least
two distinct minimal geodesics from p to ¢. It is known that the cut-locus has measure
zero by an application of Sard’s theorem. The exponential map exp, : T,M — M
is local diffeomorphism in the interior of cut-locus. Denote 2 = M\{the cut-locus of
p}, then exp, 1(Q) is a star-shaped domain in T,M = R™. It is also well-known that
the distance function d(x) = d(p, z) is smooth in Q\{p}. The injectivity radius of p is
defined to be

ip = injy(p) := sup{r > 0| B(p,r) C Q}

where B(p,r) is the geodesic ball centered at p. And it is clear that exp, : B(0,i,) C
T,M — B(p,i,) C M is a diffeomorphism.

The space forms are simply connected manifolds with constant sectional curvature,
which by the uniformization theorem are S™, R™ and H", with curvatures normalized

being 1,0, —1, respectively. The metric with constant sectional curvature K is given by
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(see [13])

dr® + snK(T)2gSn_1,

where ggn-1 is the standard metric on S"~! with curvature 1, and

1
—— sin(VKr), if K>0

fK=0

sinh(v/|K|r), if K <O0.

sng(r) =

TR

VIE]
Theorem 2.2 (Hessian comparison ([13])). Let (M, g) be a complete Riemannian man-
ifold with dimension n and p € M be a fixed point. Suppose the sectional curvature of
g satisfies

Kk <secty < K

for some k, K € R, then the Hessian of r(x) = d(p,x) satisfies
Hess,, (r(z)) < Hess,(z) < Hess,, (r(z)),

at x where r(-) is smooth, and v, and ri are the distance functions on the space forms

with constant curvature k, K, respectively.

When we have only Ricci curvature lower bound, we have the Bonnet-Myers’ theo-

rem, Laplacian comparison theorem and Bishop-Gromov volume comparison theorem:

Theorem 2.3 (Bonnet-Myers’ theorem). Suppose (M, g) is a complete Riemannian

manifold with Ric(g) > (n — 1)K > 0, then the diameter of (M, g) is bounded above by

™

VK’
Theorem 2.4 (Laplacian comparison). Let (M, g) be a complete Riemannian manifold

with Ric > (n — 1)K for some K € R, r(x) = d(z,p) for some p € M, then
Ar(z) < Agrg(r(z)),

smoothly when r(-) is smooth at x and globally in the sense of distributions, where r

is the distance function in the space form St .
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Theorem 2.5 (Volume comparison). Let (M, g) be a complete Riemannian manifold

with Ric > (n—1)K for some K € R, r(x) = d(x,p) for some p € M, then the function

Volg(B(p,r))
Volg (Bg(r))

is non-increasing, where Vol (Bg(r)) is the volume of geodesic ball of radius r in the

space form St .

2.2.2 Metric geometry

Definition 2.6. Given any two compact metrics spaces (X, dx) and (Y, dy), the Gromov-
Hausdorff (GH) distance dgp(X,Y) of X,Y is defined to be the infimum of all € > 0
such that there is a map (continuous or not) f : X — Y which is called e-Gromov-

Hausdorff approzimation (e-GHA) such that
(1) f is e-onto, i.e., the image f(X) is e-dense in (Y,dy),
(2) f is e-isometry, i.e., for any x1,x2 € X,

|dy (f(z1), f(z2)) — dx (21, 22)] <€

There are also other equivalent definitions of GH distance, for example, dgp(X,Y)
can also be defined as the infimum of € > 0 over all compatible metrics on X 1Y such
that both components are e-dense. These two definitions may not be the same, but
they are equivalent and hence do not affect our applications.

We say sequence of compact metric spaces (X;,d;) converges to (Xoo,ds) in GH
topology, if dgr(Xi, Xoo) — 0 as i — oo.

One of the fundamental results in metric geometry is the Gromov pre-compactness

theorem:

Theorem 2.7 (Gromov pre-compactness). The set M(n, A, D) of n dimensional com-

pact Riemannian manifolds (M, g) such that
Ric(g) > A, diam(M,g) <D

is pre-compact in the GH topology.
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In the case manifolds not having finite diameter, we consider the pointed -GH con-
vergence. We say

—GH
(X’ia diapi) p_) (Xom dooypoo)v

if for any R > 0, the metric balls B;(p;, R) LN Boo(pso, R). Hence by Gromov pre-
compactness theorem, for any sequence of complete Riemannian manifolds (M, g;, p;)
with Ric(g;) > A, there exists a subsequence which converges in pointed GH sense.

In general the GH limit space of a sequence of metric spaces does not have good
regularities. Under some geometric assumptions, Cheeger-Colding prove that the limit

space does have some regularities:

Theorem 2.8 ([10,28]). Let (M, g;, pi) be a sequence of smooth Riemannian manifolds
with

Ric(gi) 2 —=(n—1), Vol(B(pi, 1)) = vo > 0,
then any GH limit of (M;, gi,pi), (Mo, doo, Do) Satisfies

(1) Volume converges, lim; oo Volg, (B(pi, R)) = H"(Boo(Pos; R)) for any R > 0,

where H™ is a suitable n-dimensional Hausdorff measure on (Mso, dxo).

(2) My has a regular-singular decomposition, My = RUS, where R is defined to be

the points whose tangent cones are R™, and S = My \R.

(8) The Hausdorff dimension of S < n — 2.

Recall a tangent cone at ¢ € My, is the GH limit of the spaces (Moo,ri_Qdoo, q) for
a sequence 1; — 0. The tangent cone at a point ¢ € My, may not be unique, and it
depends on the choice of sequence r; — 0. We remark that by definition no tangent
cone at ¢ € S can be R™. And if a tangent cone at some point splits off a Euclidean
factor R"~!, then it must be R™, hence the point is regular.

If we assume Ricci curvature uniformly bounded, instead of lower bound, then

Cheeger-Colding-Tian theory says more about the regularity of the limit space.

Theorem 2.9 ([12]). Suppose a sequence of Riemannian manifolds (M;, gi,p;) con-

verges in GH sense to (Mso, doo, Poo). Suppose

|Ric(g;)] <n—1, Vol (B(pi,1)) > wvg >0,
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then we have

(1) In the regular-singular decomposition My, = RUS, R is an open C* manifold

with a CY* Riemannian metric compatible with the distance dsg on Mss. S is

closed and of Hausdorff codimension > 2.

(2) If (M;,g;) are Kdhler, then S is of Hausdorff codimension > 4.
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Chapter 3

Kahler Ricci flow on Fano bundle

This chapter is from the joint work [47] with Shijin Zhang.

3.1 Introduction

The Ricci flow, introduced by Hamilton ([58]), has become a powerful tool to study
the topology and geometric structures of Riemannian manifolds. In general, the Ricci
flow develops finite time singularities. Hamilton’s program of Ricci flow with surgeries
was carried out by Perelman [87, 88| [89] to prove Thurston’s geometrization conjec-
ture. The minimal model theory in birational geometry can be viewed as the complex
analogue of Thurston’s geometrization conjecture. Later in [2I] Cao introduced the
Kahler-Ricci flow and use it to prove the existence of Kahler-Einstein metrics on man-
ifolds with negative or vanishing first Chern class ([1306] 4]).

In this chapter we study the behavior of the finite time singularity of the Kéahler-
Ricci flow. Following Song-Tian’s analytic minimal model programm, we study K&aherl
Ricci flow on Fano bundle. Before we prove our main result , we introduce

the necessary concepts needed.

Definition 3.1 (Fano bundle). Let X,Y be compact Kdihler manifolds with dimension
n, m, respectively, F' be a Fano manifold with dimension n—m and a surjective holomor-
phicmapm: X =Y. We say X is a Fano bundle over Y with fiber F', if for anyy € Y,
there exists a Zariski open sety € U CY and a biholomorphism ® : 7= Y(U) — U x F

such that the diagram
o

= U) UxF

\ Pry
U
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commutes, where Pry is the projection map onto the first factor. We denote it as

(XY, F).

Since the fiber F' is a Fano manifold, the solution w(t) develops a singularity after
a finite time. By (1.1.2), T is finite since F' - ¢1(X)"™™ > 0 for every fiber F'. Hence we

assume that the limiting Kéhler class [wo] — 2771 (X) satisfies
[wo] — 27T c1(X) = [T wy] (3.1.1)

for some Kéhler metric wy on Y.

3.2 Proof of Theorem [1.1]

In this section, we recall some estimates for the Kéhler-Ricci flow, establish a esti-
mate for w(t) on the horizontal level set and prove the Theorem

We define reference (1,1)—forms @; on X for ¢ € [0,7T] by

Wy = f((T — t)wo + tTwy ). (3.2.1)

Then & is a Kahler form in the cohomology class [w(t)] for ¢t € [0,7). Let  be the
unique smooth volume form on X with /—~1991ogQ = %d}t =: x € —2mc1(X) and
Jx @ =1. We also can write @; as & = wo + tx.
It’s well-known that the Kéhler-Ricci flow equation is equivalent to the fol-

lowing complex Monge-Ampeére equation

¢ _ log (F((T = t)wo + tr*wy ) + /—19dp)"

ot Q (3.2.2)

(0) =0,

where € is a smooth volume form, y = v/—1991ogQ € —2mc;(X), and w(t) = +((T —

two + tmr*wy ) + v/ —189p > 0.

Then the following estimates are well known, see the Lemma 2.1 and Lemma 2.2 in
[109]. In this paper we use C' to denote a uniform constant, independent of time but

possibly depending on wg, n, T, which may differ from line to line.

Lemma 3.2. For any Kdahler manifold (X,wg) and Kdhler manifold (Y,wy). If there

exists a surjective holomorphic map m : X — Y, and the smooth solution w(t) of the
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Kabhler-Ricci flow on X satisfying limy_,7[w(t)] = [r*wy|(T < +00). Then we
have
1. There exists a uniform constant C' > 0 such that ||¢||p~ < C;
2. There exists a uniform constant C' > 0 such that ¢ < C

3. Ast — T, ¢(t) converges pointwise on X to a bounded function pr satisfying
wr = mrwy +V/—100¢r > 0. (3.2.3)
4. There exists a uniform constant ¢ > 0 such that

w(t) > em*wy. (3.2.4)

By Lemma above, we know there exists a bound function 7 on X satisfying

lim; 7 p(t) = pr. We define
wr = mwy +v—1900¢r > 0. (3.2.5)

Next motivated by the argument of Song, see subsection 3.1 in [102], which Song esti-
mated the evolving metrics of the Kahler-Ricci flow in a well-chosen set of directions in
the tangent space of each point on X instead of all directions, we estimate the metric
w(t) on the horizontal level set of the Fano bundle X.

Let (X,Y,n, F) be the Fano bundle (see Definition [3.1)). Since for any z € X, let

y = 7(x), there exists a Zariski open set (y €)U C Y, such that the diagram
Y (U) e UxF

x Pr1
U

commutes, where Pr; is the projection map onto the first factor. Let f = Pry o ®(z),

H =& 1(U x {f}), where Pry is the projection map onto the second factor. Let D be
a some divisor such that Y\U C D and s be a holomorphic section on [D] and let h be
a Hermitian metric on [D]. Define |s|> = hs3. Then on the horizontal level set H, we

have the estimate for w(t).
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Lemma 3.3. Assume w(t) is the solution of the Kdhler-Ricci flow and limy_,7w(t)] =
[m*wy]. Fiz any point x € X, then there exists U C Y, let f(x) = Pryo ®(x) and
YU x {f(z)}). Then there exist uniform constants C > 0 and o > 0, such that

( )|H < (s |2o¢)(7r*wY)‘H'

Proof. Since for any » € 7~ }(U), w(x) = y € U, and ® is a biholomorphism from
7 Y(U) to U x F, there exist constants o > 0 and C' > 0 such that m*wy|g >
7|s|*wy|y. On the other hand, for each time ¢ € (0,T), w(t) is equivalent to met-

ric wg. Hence if we let

u(t, @) = 7 (|s*) ey |, (w(O)]1) (@),

we know u — 0 along X \7~!(U) and hence a positive maximum must occur in 71 (U)
at each fixed time ¢ € (0,7). We assume the maximum can be obtained at point
xg € X. Let yo = m(zg) € Y. We choose normal coordinate system (zi)izl,...,n for

g(t) at xp and (W*)a=1,...m for gy at yo. For any holomorphic vector ga, there exist

holomorphic vector 8% € T, X such that dm,( aga) for any « in the local normal

Bwo‘
coordinate chart of zg. The map  is given locally as (7!,---,7™) for holomorphic
functions 7% = 7%(2%,--- | 2"). We write a—a as aga = al, 6 - for holomorphic functions
a,. Then u can be expressed as u(t,z) = |s|>*(n( ))gf}ﬁ al aﬁg” For convenience, we

denote u; = gyﬁ al aﬂgw Then at point xg

Auy = gkiak&(ggﬂal aﬂgw)
Z o055 mial adg - + 98P al Bl g + g3 alaldig)
k=1
= —0,05(gv )pam)mlabal; + [Opal | - ol Ry
= (Rm(gy)),5pamimhabal + |Oak|* — alab Rz

On the other hand,

ouq — 0
E :g ﬁ ‘Zga gZ] —a aaRf.
Hence
0 1 s ;T ; ’VU1’2
(5; = A)logur = ufl(—(Rm(gy))vggaWZWiaé% — |0kal,?) + 2
1

|Vuy|?

< cyt Opa’ |2
cytr,m wY—i—u1( o — |Okai,|?),
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where —cy is a lower bound for the bisectional curvature of wy on Y. It is easy to get

(see [104])

2 .
Pl 8ai)? < 0.

u1

Hence we have

(gt —A)logu; < cytr,m wy. (3.2.6)

Since +/—199(7*|s|?)(z0) = +—109|s|?(yo), is bounded by some multiple of 7*wy-.

Combine Lemma 2.1, we have

0
(a —A)logu < Ctr,mwy < C'.
Hence by the maximum principle, we have u < C. ]

Now we prove the Theorem

Proof of Theorem [1.1. Lower bound follows from (4) in Lemma For any point
y € Y, each fiber 771(y) = F is a closed Kihler manifold, and since Wy |r-1(y) = 0,
we have

\/—185@71“71@) = wT‘ﬂA(y) >0,
since @7 is bounded, @7 must be constant on the fiber 7=!(y). Hence there exists a
bounded function ¢ on Y satisfying
pr = TP

Hence
wr = 7 (wy +V—1900¢r).

Now for any x € X, we may assume that |s|?>(m(x)) = 1, there exists an open set
m(z) € U C Y, such that Lemma holds. Now we consider the open set U /5 := {y €
Ul|s|*(y) > 1/2}. Then by Lemma there exists a constant C' > 0 such that

V—=180¢Yr|y,,, < Cwy.

Since Y is a compact manifold, there exist a finite open set {Uf/Q(l <i<N)} (Nisa

positive integer number) satisfying

UL Ui )y =Y.



23

Hence we obtain that there exists a uniform constant C' > 0 such that
vV —185¢T S Cwy.
Hence we finish the proof of the theorem. O

We also study the Kahler-Ricci flow on the Fano bundles with the fiber F' is P™ blown
up at one point or M,, j, which is the weighted projective space Y,  (the definition see
Section 4) blown up at the orbifold point.

And our Theorem [[.2]is a combination of Theorem 3.4l and Theorem [3.19] below.

Remark 1. When the dimension of X is 2, our method basically can cover most del
Pezzo surface. It will be more interesting when the complex structure of the fiber is

changing and when the fiber is general Fano variety in higher dimension.

3.3 F Is P™ Blown Up At One Point

In this section, we consider the case of F' is P™ blown up at one point. One essential
point of Song-Székelyhidi-Weinkove’s proof [103] is that the projective space admits a
metric which has positive holomorphic bisectional curvature. Although P™ blown up at
one point doesn’t admit a metric with nonnegative holomorphic bisectional curvature,
but we have such metric with nonnegative bisectional curvature on outside of the divisor.
Then we need to estimate the locally holomorphic vector field near the divisor under
the evolving metrics, by using a idea of Song-Weinkove [109]. We also need Lemma 2.2,
estimate of the evolving metrics along the Kéahler-Ricci flow which were restricted to a

horizontal set. We prove the following

Theorem 3.4. Let (X,Y, 7, F) be a Fano bundle with F is P™ blown up at one point
(m > 2), wy be a Kdhler metric on'Y and wg be a Kdihler metric on X. Assume w(t)
is a solution of the Kdhler-Ricci flow for t € [0,T) with initial metric wy and

[wo] — 27 Tc1(X) = [m*wy], then we have

(1) diam(X,w(t)) < C for some uniform constant C' > 0;
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(2) There exists a sequence of timest; — T and a distance function dy on'Y (which is
uniformly equivalent to the distance induced by wy, such that (X,w(t;)) converges

to (Y,dy) in the Gromov-Hausdorff sense.

3.3.1 Key Estimates

Write 7 : F — P™ for the blow-down map, which is an isomorphism from F\E
to P™\{p}, where p € P™ and E = 7y '(p), which is biholomorphic to P™~!. For

convenient, once and for all, a coordinate chart V' centered at p, which we identify via

coordinates z!,--- , 2™ with the unit ball D; in C™,
m .
Dy :{(zlv... ,Zm) Ecm|2|zz’2 < 1} (331)
i=1

Denote by g, the Euclidean metric on D;. Since g. and gpg are uniformly equivalent on
Dy, it suffices to estimates for g, on Dy. Write D, C D1 for the ball of radius 0 < r < 1
with respect to ge.

We recall the definition of the blow-up construction, following the exposition in [48].

We identify 1(Dy) with the submanifold Dy of Dy x P™~! given by
Dy = {(z,1) € Dy x P20 = 291}, (3.3.2)

where [ = [I1,--- I™] are homogeneous coordinates on P™~!. The map m; restricted

to D; is the projection W\ﬁl(z,l) = 2 € D, with the exceptional divisor £ = P!
given by 77 1(0). The map 7 gives an isomorphism from D\ E onto the punctured ball
D,\{0}.

On D; we have coordinate charts Dy; = {I° # 0} with local coordinates (i)', - - - , (i)™
given by (i) = 10 /I' = 27 /2 for j # i and %(i)" = 2*. The divisor F is given in Dy; by
{2(i)" = 0}. The line bundle [E] over D; has transition functions z’/z/ on Dy; N ﬁlj.
We can define a global section s of [E] over F by setting s(z) = z* on Dy; and s = 1 on
F\my YDy /2). The section s; vanishes along the exceptional divisor £. We also define
a Hermitian metric h; on [E] as follows. First let ho be the Hermitian metric on [F]
over D given in D1; by

il

hy = - 3.3.3
2 |l7‘|2 ) ( )
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and let k3 be the Hermitian metric on [E] over F\E determined by |s1|;, = 1. Now
define the Hermitian metric hy by hy = p1ha + pahs, where py, p2 is a partition of unity
for the cover (7 (D), F\Wfl(Dl/g)) of F', so that hy = hy on ﬂfl(Dl/Q). The function

|s1]7, on F is given on 7r1_1(D1/2) by
|s1[7, (z) = Em: |2 =12, (3.3.4)
i=1
for m(x) = (21,---,2™). On 771_1(D1/2\{0}), the curvature R(h1) of hy is given by
R(hy) = —\/—Taélog(i 12°]%). (3.3.5)
i=1

We have the following lemma (see [4§], p.187).

Lemma 3.5. For sufficiently small g > 0,
Wp = TrT(A)FS — GoR(hl) (336)
is a Kdhler form on F.

From now on we fix ¢y > 0 as in the Lemma [3.5] with wr defined in Lemma In

Wfl(Dl/Q\{O}), which we can identify with D, 5\{0}, the metric wr has the form:

€0 P A —
wp = Tiwrs + \/—172 > (03— — g )datde, (3.3.7)
ij=1

for  given by (3.3.4). It is easy to see that, in D;/5\{0}, R(h1) <0, and the following
lemma holds (see [109]).

Lemma 3.6. There exist positive constants C such

WTWFS
2
|51|h1

mwps <wp < C (3.3.8)

Since (X,Y,m, F) is a Fano bundle, for any x € X, let y = m(z), there exists a

Zariski open set (y €)U C Y, such that the diagram

1 (U) e UxF

x Pry
U
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commutes, where Pry is the projection map onto the first factor. Let D be a some
divisor such that Y\U C D and s be a holomorphic section on [D] and let h be a
Hermitian metric on [D]. Define |s|* = hss, for simplicity, we also write 7*|s|? as |s|?.
On 77 1(U), we denote @ = ®*(Prymiwrs + Priwy), we also write |s1[; to represent
@*Pr§(|51]%1), where Pry is the projection map onto the second factor. Then we have

the following

Lemma 3.7. There exist uniform constants C > 0 and o > 0 such that for w = w(t)
a solution of the Kdhler-Ricci flow,

C
[shefsily,

Proof. Fix 0 < ¢ < 1. By Lemma we know

w(t) < (3.3.9)

& > CP*(|s1[2, (Prjwr + Priwy)).

Since Priwp + Priwy is a fixed Kéhler metric on U x F' and ® is a biholomorphism

from 7=1(U) to U x F, for any fixed time ¢, there exists a constant o > 0 such that

trow < L
[sl51s1l7,
Hence if we set
Q. = log(|s|3*|s1 |2+26tr@w). (3.3.10)

For each fixed time ¢ € (0,7"). We know the maximum of (). must be obtained at some

point xp € ®~1(U x F\E). Now we compute at point (g, t)

(g —A)Qe = (g — A)logtrgw + atry,R(h) + (1 + €)try, R(h1)
ot ot
) (3.3.11)
< (a — A)log trgw + atry,R(h).

From the argument in the proof of Lemma [3.3] there exists a uniform constant C' > 0
such that
atr,R(h) < Ctr,mrwy < C.
By a well-known computation (see [136], 4 21]):
|Vitrgwl|?

ol (33.19)

0 1 R ~
(a — A)logtryw = m( g”gkq plgklRZ]pq g”gklgpqvigkqngpi +

]‘ ~ kG ~pl
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Denote g as the product metric Prjmjwps + Priwy, then § = ®*§. We compute with

metric g, since the bisectional curvature of wgg is positive, we have

R0 = (Prsmi R(wrs))g,q + (PriR(wy )7 > (PriR(wy)) 5,7 (3.3.13)
Since ®*Pr] = 7*, pulling back via the map ®, we have
gijgkqulgkiéﬁpa > —C(trgw) (trym wy)
for some uniform constant. Hence we obtain that
3 * !
(E — A)logtrgw < Ctr,Priwy < C'.
Hence
0
(5, —A)Qe < C. (3.3.14)
ot
Then using the maximum principle and letting ¢ — 0, we obtain the lemma. O

We assume that |s[,(y) = 1 and denote Uy ;o = {g € U|s[3(7) > 1/2}.

Consider the holomorphic vector field

ZL,:Z({)ZW

defined on the unit ball D;. This defines via m; a holomorphic vector field V' on

771 (D1) C F which vanishes to order 1 along the exceptional divisor E. We can
extend V to be a smooth 710 vector field on the whole of F, and Pr(V) to be a
smooth 70 vector field on Ui/ x F, then pull back by ® and then extend it to a
vector V on whole of X which vanish on X\7 (U, /2).- We then have the following

lemma.

Lemma 3.8. For w = w(t) a solution of the Kdhler-Ricci flow, we have the estimate
V2 < Clsiln,, (3.3.15)

for a uniform constant C. Locally, in Dy;5\{0} we have

C
Wi <, (3.3.16)
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B SN yt 0
W_;(raxi—i_rf)yi)

the unit length radial vector field with respect to ge, where z* = x* + /—1y".

In the statement and proof of the lemma, we are identifying 7, (D, ,2\{0}) with

Dy /5\{0} via the map 1, writing g for the Kéhler metric (r ) * (wlF).

Proof. In this proof, we denote wy for ®*(Priwy + Priwr) on 77 1(U) and a Her-
mitian metric ©® = pjwy + pewy, where pi1, p2 is a partition of unity for the cover
(X\7~ YUy 2), 7 1(U)), so that @ = wy on 7! (Uy 2) and which is equivalent to metric
wp.

From the Lemma [3.5 we have, in D/,
VIE=IVE, = Vs (3.3.17)

It follows that |‘~/]L%O is uniformly equivalent to |51]}2L1 =72 in Dy .
For any fixed point (z,t). We compute in a normal coordinate system for g at (z,1),

we have

9 A log [V = 2 (—glg, (0:7*) (0,71 IVIVER <0 3.3.18
( Jog [V, = —==(=9"9q(0:V")(9; V") + e ) < 0. (3.3.18)

Where we use the Cauchy-Schwarz inequality to get the above inequality (the detail,
see the proof of Lemma 2.6 in [109]).

Then using the maximum principle, we obtain that there exists a positive constant
C such that
V2 < Clsil3,. (3.3.19)

Now define a Hermitian metric wp on P by
Wrp =we on D1,

and extending in an arbitrary way to be a smooth Hermitian metric on F'. For small

€ > 0, we consider the quantity

Qe = log(|V 27|53 trom (prymiap+ Priwy)w) — At (3.3.20)
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where « is the constant in Lemma and A is a constant to be determined. Since O

is uniformly equivalent to wrg, we see that for fixed t, using Lemma and (3.3.19)),

(VIZ 2 sl  trae (Prymiop + Priwy @) (2)

tends to zero as z tends to X\m ' (Ujsn) U @ 1(Uy)p x E) and thus Qc(x) tends
to negative infinity. We now applying the maximum principle to Q.. Since Q. is
uniformly bounded from above on ® (U x F)\® 1(Uy5 x Dy3\{0}), we only
need to rule out the case when Q. attains its maximum at a point in ®~1(U; /2 X
D15\{0}). Assume that at some point (zo,t) € ®~1(Uy2 x D1,2\{0}) x (0,T), we
have Supg—1(17x 1\ B)x[0,t9] @e = Qe(T0s t0)-

As in the proof of Lemma [3.7] we have

(5~ A)log s = (o + truR(h) < Otrur*y. (3:3.21)

By (3.3.12), pulling back by the biholomorphic map ®, we have in <I>_1(U1/2 x Dy /5\{0}),

8 * *
(a — A) log(trq,*(prEWI@FerrTwY)w) S CterI) PI‘ch)y. (3322)
Hence
9 2a4-2¢ * /
(5; — A)log 8]} (trax (Prymtapt Priwy)w) < Ctromiwy < O (3.3.23)

ot

Take A = C’" + 1. By (3.3.18), at (xg,t9), we obtain

0< (gt —A)Q. < -1, (3.3.24)

a contradiction. Thus @, is uniformly bounded from above. Letting e tend to zero,

since |s; > 1/2 on w1 (Uy 5), we obtain
(trx (Prgriwps + Priwy ) ) VI2 < C, (3.3.25)
for some uniform constant C'. By Lemma [3.6] we have
(trww)| V12 < C,
and since V|2 < (trwow)|f/|30 this gives

(7|4 (712
Vs < CIVIS,, (3.3.26)
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then the lemma follows from the fact that \f/\io is uniformly equivalent to [s1[} in

Next we estimate on the lengths of spherical and radial paths in the punctured ball

Dy 5\{0}, which again we identify with its preimage in each fiber under 7.
Lemma 3.9. We have

(1) For anyy €Y and for 0 < r < 1/2, the diameter of the 2m—1 sphere S, of radius
r in Dy centered at the origin with the metric induced from w[w_1(y) s uniformly

bounded from above, independent of r and y.

(2) For any z € Dy;5\{0}, the length of a radial path v(\) = Az for A € (0,1] with
respect to w|7r71(y) s uniformly bounded from above by a uniform constant multiple

of |2|M/2.

Hence the diameter of Dy;\{0} with respect to w| —1(y) is uniformly bounded from
above and

diam(w_l(y),w|,r_1(y)) <C.

Proof. For any y € Y, we can choose |s|?(y) = 1. Then using Lemma consider the

metric w|-1(,), we have

c .
w‘ﬂ&(y) S WW]_WFS. (3327)
h1
Then using the same argument in the proof of Lemma 2.7 in [I09], we obtain the

lemma. O
Now we can prove the (1) of Theorem

Proof of (1) in Theorem . For any p,q € X. Denote p; = 7(p),q1 = 7(q). Then
there exist two open subset U;,Us C Y, such that p; € Uy,pe € Us and there exist
holomorphic maps ®1, ®3 such that ®; : 7= 1(U;) — U; x F(i = 1,2) are the biholomor-
phic map. Denote py = Pro®;(p), g2 = Pro®2(g). Since Y is compact, we may assume
Ui NU; # @. We assume py € U; NUs, denote p = @fl((ﬁl,pg)) and ¢ = @51((]51,@)),
by Lemma we know d,)(p,p) < C and dy,)(q,9) < C .
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Since p, G € 7 (p1), then by Lemma we have d,,) (P, ) < C. Using the triangle

inequality we finish the proof of (1) in Theorem |1.2 O

3.3.2 Diameter of fiber tends to zero

In this subsection, we prove that the diameter of fiber with w(t) tends to zero as
t —T. Let d, = d, ;) be the distance function on X associated to the evolving Kéhler
metric w. Using the same argument in the proof of Lemma 3.2 and Lemma 3.3 in [109],

we prove the following lemmas.

Lemma 3.10. Fiz a point yo € Y. There exists a uniform constant C (independent of

yo) such that for any p,q € E, and any t € [0,T),
d(® " (y0,p), @ (0, q)) < C(T — 1)'/7. (3.3.28)

Proof. We can assume that [s|3(yo) = 1. We replace E by ®~!({yo} x E) in the proof
of Lemma 3.2 in [109], using Lemma and using Lemma See the argument of
the proof of Lemma 3.2 in [109]. O

Combine Lemma [3.9 and Lemma [3.10, we have

Lemma 3.11. Fiz a point yo € Y. There ezists a uniform constant C' (independent of

Yo) such that for any 0 < 09 < 1/2 and for anyt € [0,T)
diam,, ) (2" ({yo} x 71 (Ds,))) < C (|80 + (T — 1)*/%). (3.3.29)

Proof. We also assume that |s|?(yo) = 1. For any p,q € m; '(Ds,)). Since Lemma

we only consider p € 77 *(Dg,\{0})) and ¢ € E. By Lemma (2), we know

the length of a radial path v(\) = Ap with respect to w is uniformly bounded from

above by C|p|'/? < 058/2. Since () tends to a point py € E as A — 0T, we know

(p,po) < C8y/*. By Lemma3.10, du(® " ((y0,20)), 2 (40, 9))) < C(T—)V/3.

dw'rl(yo)

Hence we have

duo(® (50, )), @ (40, 9))) < C(8)% + (T — 1)'/3).
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Lemma 3.12. Fiz a point yo € Y. There exists a uniform constant C' (independent of

o) such that for any p,q € = (yo), and any t € [0,T),
du(p,q) < C(T — )/, (3.3.30)

Proof. We also assume that |s|?(yo) = 1. For each fixed ¢ satisfying T'— ¢t < 271, i.e.,
2(T — )2/ < 1/2. Take 6 = (T — t)*/1°, by Lemma we have

diamy,() (7" ({yo} x 71 ! (Dasy))) < CU(T =)/ + (T = 1)/%) < (T — )/'°.

We denote p’ = Pry o ®(p),q’ = Pry o ®(p). Hence we only consider the case of
V.d € F\ri " (Ds,)-

Since m!(yo) is biholomorphic to F, which is P™ blown up at one point, there
exists a curve v 2 P!, such that p,q € v N (77 (yo)\® ' ({»o} x 77 (Ds,))). We may
assume that p, ¢ lie in a fixed coordinate chart U whose image under the holomorphic
coordinate z = x + v/—1y is a ball of radius 2 in C = R? with respect to the Euclidean

metric we. In this coordinate, by Lemma [3.7, we know

!

Ol < +—s (1) s < o
w W*l(yo) ~ (5())2 T) WES > (60)2(4)6.

Since closed curve v C F,

1 T—1
wt)= [ [=(T —t)w Trwy)] = —— | wo < C(T —1t). 3.3.31
o= [l -t iwon) = 5 [wsow—n. ea

Write 0 = (T — t)l/ 3 > 0, which we may assume is sufficiently small.
Moreover, we may assume that p is represented by the origin in C = R?, that ¢ is

represented by the point (zg,0) with 0 < z¢g < 1, and that the rectangle
R={(z,y) ER}0<z<zp,-0<y<o}CR*=C

is contained in the image of U. Now in R, the fixed metric §g induced from the metric
go on X is uniformly equivalent to the Euclidean metric. Thus from (3.3.31)),
o x0
/ (/ (trgog)dz)dy = / (trgog)daxdy < C(T —t). (3.3.32)
—o JO R

Hence there exists y’ € (—o,0) such that

Q

/ " (trgo9)(x,y)dz < —(T —t) = O(T — t)*/3. (3.3.33)
0

Q
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Now let p” and ¢” be the points represented by coordinates (0,y’) and (zg,y’). Then,

considering the horizontal path s +— (s,y’) between p” and ¢”, we have

du(,q") < /0 " (V900 00)) e
- /O  (Sirmg V500, 80)) .y )

20 - (3.3.34)
< R " 1/2 G0 O Nd 1/2
<( ; (trg09) (z,y")dz) ™/ *( ; (90(0z, 02))(x,y')dx)
< (T —t)Y3.
and
C
1 1/ _ _ 1\1/15
do(p,p") <dyy _,, (p:0") < R O(T — )M, (3.3.35)
Using the same argument we can prove
du(q.q") < C(T —t)"/". (3.3.36)
Hence by triangle inequality
doo) (p.q) < C(T — )12, (3.3.37)
O

3.3.3 Gromov-Hausdorff Convergence

In this subsection, we prove that there exists a sequence of metrics along the Kéhler-
Ricci flow converges sub-sequentially to a metric on Y in the Gromov-Hausdorff sense

ast — T.

Lemma 3.13. Write d; : X x X — R for the distance function induced by the metric
w(t). There exists a sequence of times t; — T, such that the functions d;, converge
uniformly to a function do : X x X — R.

Moreover, if, for p,q € Y, we let dyoo(p,q) = deo(D,G), where p € 7 (p) and
g € mY(q), then dy, defines a distance function on'Y, which is uniformly equivalent

to that induced by wy .

Proof. First note that the functions d; : X x X — R are uniformly bounded. Indeed

by (1) in Theorem [1.2] we have a constant C' > 0 such that dy(z,y) < C for any ¢t < T
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and z,y € X. Next, we prove that the functions d; : X x X — R are equicontinuous
with respect to the metric on X x X induced by djy.

For any z,2’,y,1’ € X, we have

|de (2, y) — de(a’, )| < |de(,y) — di(z, y)| + |de(, ') — de(a’, y))]

(3.3.38)
< di(y.y') + di(, 2").
Define |s|? = hss, and we assume |s|,(y) = 1.
Since Y is compact, there exist finite Zariski open sets U',--- , U and biholomor-

phic map ®,,---, Py such that the diagram

d;

Ui x F

commutes, where D; = Y\U?, and Ui]\ilﬂ'_l(Uf/g) = X. Let s; be the holomorphic
sections on [D;] and let h; be the Hermitian metrics on [D;]. Here U! = {g§ € U*||si|p, >

r} for 0 <r <1.

Claim 1. There exists a uniform constant 6 > 0 such that if v € 7T_1(Ui0

1/3) for some

io € {1,---, N} and do(z,2") < 0, then 2’ € fl(U;‘t}g),

Proof of Claim. Denote A be the boundary of 7~ 1(U!) and denote do(Aé/S, A;/B) =
8; > 0. Let pt, pb be the partition of unity for the cover (X \7}( 5/3),7r_1(Ui). Then
w' = plwo+ph @} (Priwy +Prijwr) are the Hermitian metrics on X, which are equivalent

to metric wp, and w® = &} (Prijwy + Priwp) on 77 1(U ). Hence there exists a uniform

2/3

constant C' > 0 such that

Clwy < w® < Cuwy. (3.3.39)
We take § = C~2min{dy,--- ,dx}. Now we can prove z’ € W_l(U;(}?)). If not, we know
Ao (€,2') 2 dyyio (A5, AG)g) > O o(AY)y, AY)g) = C 105 (3.3.40)

On the other hand,
d iy (z,2") < Cdy(z,2") < C6. (3.3.41)
It is a contradiction. Hence 2’ € W_I(U;(}g). We finish the proof of the claim. O
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Now if 2,2’ € X satisfying do(x,2’) < d, by the above claim we have x, 2’ € U;%
for some ip € {1,---,N}. Now we choose gy € F such that |s|2(go) = 1. Then by the

Lemma we have
dt(<I>71(7r(:U),q0),@;}1@(3}'),(]@)) < Cdyy (m(x),m(2") < C'do(z, 7). (3.3.42)
By Lemma (3.12

dt(x’ ‘T/) < dt(x7 (I);()l(ﬂ(x)a QO)) + dt(q);ol (W(J:/)v qO)’ xl) + dt(q);ol(ﬂ(x)a QO)a (I);Ol (7T(ZIJ/), q(%)

< CUT =)V + do(x,2)].
Now we prove the following lemma.

Lemma 3.14. With the assumption of (3.3.43)), there exists a sequence of timest; — T,

such that the functions d;; converges uniformly to a continuous function ds.

Proof of Lemmal3.14 We denote M = X x X, is a compact manifold. The first thing
to recall is that any compact metric space has a countable dense subset. This follows
directly from the definition of compactness. Namely, given any k € N, cover M by all
the balls of radius % (centred at all the points of M.) By compactness of M this has a
finite subcover, let @ C M be the set of centers of such a finite subcover. Then every
point of M is in one of the balls, so it is distant at most % from (at least) one of the
points in Q. The union, @ = Ui Qy, of these finite sets is (at most) countable and is
clearly dense in M, i.e., any point in M is the limit of a sequence in Q).

Let {d;,} be a sequence of d; (t, — T as n — o0). Take a point ¢ € @, then
{dt, (q1)} is a bounded sequence in R. So, by Heine-Borel Theorem, we may extract
a subsequence of d;, so that {dtnl,j (q1)} converges in R. Since @ is countable we
can construct successive subsequences, dtnk,j of the preceding subsequence dtnk—l,j , SO
that the kth subsequence converges at the first kth point {q1,---,qx} of Q. Now, the
diagonal sequence dy,, = dtni,i is a subsequence of dy,,. So along this subsequence d,, (q)
converges for each point in (). It is a subsequence of the original sequence {d;,}, we
just denote it as {d;, } and we want to show that it converges uniformly; it suffices to

show that it is uniformly Cauchy.
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For any given € > 0. By the assumption of , we can choose T, € [0,T) such
that for any ¢ € [T.,T) we have C(T — t)'/1° < €/6 and choose § = €/6C > 0 so that
|ds, (x) — di, (y)| < €/3 whenever do(z,y) < § and t,, € [T, T). Next choose k > 1/4.
Since there are only finitely many points in (Q; we may choose N so large that for any
n > N we have t,, € [T,,T), then |d;, (q) —dy,, (q)| < €/3 if ¢ € Qk and n,m > N. Then

for a general point x € M there exists ¢ € Qy with dy(z,q) < 1/k < 6, so

|, (x) = d,,, (2)] < |dy,, (x) = di,, (@) +|de, (@) = dt,,, (@) + |, (@) — dp,,, (2)] < € (3.3.44)

whenever n,m > N. Thus the sequence is uniformly Cauchy, hence uniformly conver-

gent. Hence the function d, is continuous. We finish the proof of Lemma [3.14 O

It follows that d, is nonnegative, symmetric and satisfies the triangle inequality.
Let dy : Y xY — R be the distance function on Y induced by the metric wy. From
Lemma we have a constant ¢ > 0 such that di(z,y) > /edy (m(z), 7(y)). It follows
that the limit d., satisfies
doo = edy (m(z), 7(y))- (3.3.45)

Now we want to prove the upper bound. When 7(z),7(y) € Uf% for some iy €

{1,---, N}, by the inequality (3.3.43) and Lemma we have
di(z,y) < C(T — )Y + Cdy (n(z), 7(y)). (3.3.46)

This implies that
doo(z,y) < Cdy (m(z), 7(y))- (3.3.47)

Now we consider the general case. Assume 7(z) € U] /3 and m(y) € Uf(/’g for some ig # 1.

Since UN ,U?

1/3 =Y, we know for any minimal geodesic v(t) connecting m(x) and 7(y)

with metric wy, there exist a finite points yo = m(x),y1 = Y(t1),y2 = Y(t2), - ,yr =
v(tr),yr+1 = w(y) € Y such that y; and y;11 are in the same U{% for some jo €

{1,2,---,N}. We choose g = z,z1+1 =y and any z1,--- ,zr € X satisfying 7(z;) =
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y;. Hence by

L

dy (m(z),7(y)) = > dy (Yi, yi+1)

i=0
& (3.3.48)
>0 doolwi, win1) -
i=0
> C oo (, ).
For p,q € Y, we now define dy, oo (p, q) = doo(p,q), where p € 7 1(p),q € 7~ *(g). This
is independent of the choice of lifts p and ¢ since if say p’ is a different lift of p, then

by (3.3.48]) and by the triangle inequality, we have
doo (', @) < doo (P, §) + doo (P, D) = doo (P, G) (3.3.49)

and by switching p and p’ we get the reverse inequality. Moreover, it follows from

(3.3.47) and (3.3.48)) that dy,  is uniformly equivalent to dy. Hence we finish the proof
of Lemma 0

Theorem 3.15. In the notation of Lemma we have (X,d,) = (Y,dy.o) in the
Gromov-Hausdorff sense, where we recall that d;; is the distance function induced by

the metric w(t;).

Proof. Using the same argument in the proof of Theorem 3.1 in [103]. Hence finish the
proof of (2) in Theorem O

3.4 F Is Some Weighted Projective Space Blown Up At The Orbifold
Point

In this section, we will consider the case of the fiber F' is the family of m-folds
My, k(1 < k < m), was introduced by Calabi [20], which as generalization of the
Hirzebruch surfaces. M, ;, is a compactification of the blow up of a Zj-orbifold point
of the orbifold Yy, 1, is a P!'-bundle over P™~1. The detail of the construction of M, 1

and Y}, , please see [110].
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3.4.1 Definitions of M, and Y,,

We define M,, ;. to be the Pl-bundle

My = P(O(~k) @ O) (3.4.1)

)

over P"~1. We will assume in this paper that m > 2 and 1 < k < m (the latter
implies that M, is a Fano manifold). Denote by Ey and E. the divisors in My,
corresponding to sections of O(—k)®O with zero O(—k) and O component, respectively
(the detail see Section 9 in [110]). Ej is an exceptional divisor with normal bundle

O(—k) of the type discussed above. The complex manifold M,, ; can be described as

Vs =21 T oo) € P (C7 X VOO sl
the line A — (A(Z1)%, -+, A(Zm)F)}/ ~,

where

([Zlv T ’Zm]’ (Ua M)) ~ ([Zlv T aZm]7 (U/,M/)) (343)

if there exists a € C* such that (o, ) = (ao’,an’). Then Ey and E4 are the divisors
{o =0} and {u = 0}, respectively.

The orbifold Y, 1 is the weighted projective space
Yook = {(Zoy- -+, Zm) €C"Y/ ~ (3.4.4)
where (Z(),---,Z.,) ~ (Zo,- - , Zp,) if there exists A € C* such that
(Zy,--, Z0) = (N*Zo, AZ1, -+ A Zm). (3.4.5)

We write elements of Yy, as [Zo, - - , Zy,]. Then Y, ;, has a single Zj-orbifold point at
[1707' t 70]

We define the map mq : My, — Yy, 1 by
m(([ 21, Zm), (0, 0)) = [, 05 20, 0VF 2], (3.4.6)

where b € C is defined by
o =b((Z1)", -, (Zm)"). (3.4.7)

w1 is globally well-defined, surjective and injective on the complement of Ey.
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If we identify the line bundle O(—k) with the open subset {u # 0} of M, ; and
C™ /Zy, with the open subset {Zy # 0} of Yy, 1, via (21, ,2m) — [1,21,- -+, zm], then
w1 restricted to M, ;\Ep is a biholomorphism onto Y, x\{[1,0,---,0]} and m(Ey) =
[1,0,---,0].

All of the manifolds M, ; admit Kéhler metrics. Indeed, the cohomology classes
of the line bundles [Ey] and [Ew] span HY! (M, ; R) and every Kahler class a can be
written uniquely as

_b _¢

Eo] . [Eo] (3.4.8)

for constants a,b with 0 < a < b. The first chern class

m—+k n—=k
(M) = " [Ba) =

[E). (3.4.9)

Hence if 1 < k < m — 1, then M, is a Fano manifold. He and Sun proved that
any weighted projective space exists an orbifold Kéhler (in fact is Kéhler-Ricci soliton)
metric wyp, with positive bisectional curvature, see Theorem 1.2 in [62].

Let L be the ( — k) line bundle over P~  for k > 1. We give a description of the
total space of L as follows. Writing [Z1,-- - , Zy,] for the homogeneous coordinates on

P! we define

L={([2Z, -, Zm],0) € P"1 x C™|o is in the line X — (A(Z1)*,--- , M(Zn)5)},
(3.4.10)
and let P : L — P™~! be the projection onto the first factor. Each fiber P~1([Z1, -+ , Z,])

is the line in C. L can be given m complex coordinate charts

Ui = {([217 7Zm]70) €L|Zz7é0} fori=1,---,m.

On U;, we have coordinates wgi) for j = 1,--- ,m with j # i and y(;. The wgi) are

defined by

wgi) = 7;/Z; for j #1,

and y(;) by

On U; NU; with i # [, we have
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Wiy = :3; for j # 4,0, iy = w%l) and y) = yu)(F)* = yay (i)™
Now let E be the submanifold of L defined by the zero section of L over P!, Denote
by [E] the pull-back line bundle P*L over L, which corresponds to the hypersurface E.
Writing the transition functions of [E] in U; N U; as ty = (Zi/Z1)* = yg)/yq), we have

a section § over [E] given by
S; - UZ—>C, S; = Y;.
We can define a Hermitian metric A on the fibers of [E] by

e,z

hi = [Z;]2F on Uz

Namely, & is the pull-back of h;’é where hpg is the Fubini-Study metric on O(1). We

have
. (27, 1Z51)"
132 = ‘y(i),zw on Uj. (3.4.11)
If we denote r? = >°1" | |2¢|?, then we have
mir?t =32 (3.4.12)

on L.
Let we be the standard orbifold metric on C™ /Zy,, which lifts to the Euclidean metric
on C™, we write w, as

\V *]. ; —
We = 27Eidzl Adzt. (3.4.13)
s

Denote wp be the metric wy in Lemma 2.3 in [110], it is a K&hler metric on M, 4.
We will work in a local uniformizing chart around the orbifold point p € Y}, 1, which we
identify with the unit ball Dy in C™. Then we know that wqp is uniformly equivalent
to the Euclidean metric w, on D;. We write Dg for the ball in C™ of radius R > 0.

Then from the section 2 in [I10], on 7, *(D1\{0}) we have

— C
S|-
h

for some uniform constant C' > 0. Hence on 7, '(D1\{0}) there exists a uniform

constant C' such that

¢ .
T Worb S W < Wﬂ'lworb- (3.4.15)
S|~
h

C_1|'§|}%L(k_1)/k *
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Now if we denote @ = ®*(Primiwor, + Priwy ), since the bisectional curvature of

Worb 18 positive, using the same argument of Lemma [3.7], we obtain

Lemma 3.16. There exist uniform constants C > 0 and o > 0 such that for w = w(t)

a solution of the Kahler-Ricci flow,

C -
— T w.
201 ~12/k

\s\ha\shb

w(t) < (3.4.16)

Using the same notations as in Lemma then we have

Lemma 3.17. For w = w(t) a solution of the Kdhler-Ricci flow. Then there exist

uniform constants C > 0 and Ry = Ro(m, k) € (0,1) such that on Dg,\{0}:

V|2 < Or2k/k+L, (3.4.17)
Locally, in Dp,\{0} we have
C
2

for

B UL yt 0
W_;(raxi—i_rayi)

the unit length radial vector field with respect to ge, where z* = x* + /=1y’

Proof. We using (3.4.14) and using the same argument in the proof of of Lemma

we can obtain the Lemma. O

Using the same argument in the proof of Lemma [3.9 we can estimate on the lengths

of spherical and radial paths in the punctured ball Dy, \{0}.
Lemma 3.18. We have

(1) Foranyy €Y and for 0 < r < Ry, the diameter of the 2m —1 sphere S, of radius
r in Dg, centered at the origin with the metric induced from w|ﬂ_1(y) s uniformly

bounded from above, independent of r and y.

(2) For any z € Dgp,\{0}, the length of a radial path v(\) = Az for A € (0,1] with
respect to w]ﬂfl(y) is uniformly bounded from above by a uniform constant multiple

of ‘z|k/(k+1).
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Hence the diameter of Dr,\{0} with respect to w| —1(,y is uniformly bounded from above

and

diam(ﬂ_l(y),w|,r_1(y)) <C.

Then using the same argument in Section 3, we can prove the diameter of the fiber

along the metrics g(t) tend to zero, then we obtain

Theorem 3.19. Let (X,Y,n, F) be a Fano bundle with F is My, (1 < k <m), wy be
a Kaihler metric on'Y and wy be a Kdhler metric on X. Assume w(t) is a solution of
the Kdhler-Ricci flow fort € [0,T) with initial metric wy and [wo] —27Tc1(X) =

[m*wy |, then we have
(1) diam(X,w(t)) < C for some uniform constant C' > 0;

(2) There exists a sequence of timest; — T and a distance function dy on'Y (which is
uniformly equivalent to the distance induced by wy, such that (X,w(t;)) converge

to (Y,dy) in the Gromov-Hausdorff sense.
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Chapter 4

Geometric estimate of Monge-Ampeére equation

The chapter is from joint work [46] with Bin Guo and Jian Song.

4.1 Introduction

As we mentioned in the introduction, complex Monge-Ampére equations are closely
related to geometric equations of Einstein type, and in many geometric settings, one
makes assumption on a uniform lower bound of the Ricci curvature. Therefore it is nat-
ural to consider the family of volume measures, whose curvature is uniformly bounded

below. More precisely, we let Q = e~70" be a smooth volume form on X such that
Ric(Q) = —/—1901og Q > — A0 (4.1.1)
for some fixed constant A > 0. This is equivalent to say,
V—100f > —Ric(6) — A6,

or

f € PSH(X, Ric(6) + Af).

Let’s explain one of the motivations for condition by some examples. Let
{E;}L_, and {Fj}j:1 be two families of effective divisors of X. Let og,, o, be the
defining sections for E; and Fj, respectively, and hg, and hp; smooth hermitian metrics
for the line bundles associated to E; and F} respectively. In [136], Yau considers the

following degenerate complex Monge-Ampere equations

I 203;
>z |0Ei|h%i

J 20,
Zj:l |<7F]-’h(;;

(0 +/—190p)™ = 0", (4.1.2)
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where «j, 8; > 0, and various estimates are derived [136] assuming certain bounds on
the degenerate right hand side of equation (4.1.2)).

If we consider the following case
971

J 205 °
Z]’:1 ’a-Fj|h(:~j

(0 +/—190p)™ = (4.1.3)

the volume measure will blow up along common zeros of {Fj}j:1 If the volume measure

on the right hand side of the equation (4.1.3) is LP-integrable for some p > 1, i.e.,

J ) =
Q= E ’O'Fj|h(;7_ 0"
- J
]:1

satisfies
-1

J
Q ,
= Z|O-Fj|}2laj € LP(X,0™), for some p > 1,/ Q:/ 0",
0 = F; . i

then there exists a unique (up to a constant translation) continuous solution of (4.1.3)).

Furthermore, Q can be approximated by smooth volume forms Q; (c.f. [31]) satisfying

“f2l,. Lot
LP(X,0m) 0l rxomy Jx X

for some fixed A" > 0. Therefore condition (4.1.1)) is a natural generalization of the

Qy

Ric(Q;) > —(A+ A, HG”

above case. In the special case when {F) }]le is a union of smooth divisors with simple
normal crossings and each «; € (0,1), the solution of equation (4.1.3) has conical
singularities of cone angle of 27(1 — «;) along Fj, j =1,..., J.

Before proving our Theorem [I.3] we first make some remarks on this theorem.

Remark 2. If we write Q = e~ 10", assumption (m m Theorem on ) is equiv-
alent to the following on f:

el e LP(X,0), / e 10 =[0]", f e PSH(X,Ric(0) + Af). (4.1.4)
X

f is uniformly bounded above by the plurisubharmonicity and the Kdhler metric g asso-
ciated to w = 0 + /=100y is bounded below by a fized multiple of 6 (see Lemma .
However, one can not expect that g is bounded from above since f is not uniformly
bounded above as in the example of equation . Fortunately, we can bound the
diameter of (X, g) uniformly by Theorem .
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Remark 3. The gradient estimate in Theorem[1.3 is a generalization of the gradient
estimate in [113]. The new insight in our approach is that one should estimate gradient
and higher order estimates of the potential functions with respect to the new metric
instead of a fized reference metric for geometric complex Monge-Ampére equations such
as those studied in Theorem . We refer interested readers to [0, [96] for gradient esti-

mates for complexr Monge-Ampére equations with respect to various background metrics.

Remark 4. Combining the lower bound of Ricci curvature and the non-collapsing con-
dition , we can apply the theory of degeneration of Riemannian manifolds [10]
so0 that any sequence of Kdhler manifolds (X, g;) € M(X,0,p, K, A), after passing to a
subsequence, converges to a compact metric space (Xoo,dso) with well-defined tangent
cones of Hausdorff dimension 2n at each point in Xoo. In the case of equation ,
we believe the solution induces a unique Riemannian metric space homeomorphic to the
ortginal manifold X and all tangent cones are unique and biholomorphic to C™. If this
is true, one might even be able to establish higher order expansions for the solution.
The ultimate goal of our approach is to construct canonical domains and equations on
the blow-up of solutions for geometric degenerate complex Monge-Ampére equations, by

degeneration of Riemannian manifolds.

We will also use similar techniques in the proof of Theorem to obtain diameter
estimates in more geometric settings. Before that, let us introduce a few necessary and

well-known notions in complex geometry.

Definition 4.1.1. Let X be a Kahler manifold of complex dimension n and o €

H?(X,R)N HY(X,R) be nef. The numerical dimension of the class o is given by
v(a) =max{k=0,1,..,n | o® #0in H*(X,R)}. (4.1.5)
when v(a) = n, the class « is said to be big.

The numerical dimension v(«) is always no greater than dimg(X).

Definition 4.1.2. Let X be a Kdihler manifold and o € H*(X,R) N HY (X, R). Then

the class a is nef if o+ A is a Kdhler class for any Kdhler class A.
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When the canonical bundle Kx is nef, X is said to be a minimal model. The
abundance conjecture in birational geometry predicts that the canonical line bundle is
always semi-ample (i.e. a sufficiently large power of the canonical line bundle is globally

generated) if it is nef.

Definition 4.1.3. Let ¥ be a smooth real valued closed (1,1)-form on a Kdihler manifold

X. The extremal function V associated to the form 9 is defined by
V(2) = sup{#(z) | ¥+ V—1909¢ > 0, sup¢ = 0},
X
forall z € X.

Any ¢ € PSH(X, ) is said to have minimal singularities defined by Demailly (c.f.
[0]) if » — V is bounded.

Let (X,0) be a Kdhler manifold of complex dimension n equipped with a Kéhler
metric . Suppose Y is a real valued smooth closed (1, 1)-form and its class [x] is nef and
of numerical dimension x. We consider the following family of complex Monge-Ampere

equations

(X + 10 + V=190 = t" R eeteq) for t € (0,1], (4.1.6)

where A = 0, or 1, and ¢; is a normalizing constant such that

/Xt"—ﬁeCtQ:/X(XHe)”. (4.1.7)

Straightforward calculations show that ¢; is uniformly bounded for ¢ € (0,1]. The
following proposition generalizes the result in [9] [72], 40, [139] by studying a family of
collapsing complex Monge-Ampere equations. It also generalizes the results in [37, [40)],

75] for the case when the limiting reference form is semi-positive.

Proposition 4.1.1. We consider equation with the normalization condition

. Suppose the volume measure ) satisfies

() p
— ) " <K
(&)

for some p > 1 and K > 0. Then there exists a unique ¢, € PSH(X, x + t0) up to a

constant translation solving equation for allt € (0,1]. Furthermore, there exists
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C=C(X,x,0,p,K) > 0 such that for all t € (0,1],

(1 — SUup ¢t) — Vill o (x) < C,
where V; is the extremal function associated to x + t0 as in Definition [{.1.5

We will use proposition 4.1.1] can be applied to generalize Theorem 1.3} especially
for minimal Ké&hler manifolds in a geometric setting. A Ké&hler manifold is called a
minimal model if its canonical bundle is nef.

Both Theorem and Theorem are generalization and improvement for the
techniques developed in [113] for diameter and distance estimates. With the additional
bounds on the volume measure, we transform Kolodziej’s analytic L*°-estimate to a
geometric diameter estimate. It is a natural question to ask how the metric space
(Z,dz) is related to the current w on X. We conjecture w is smooth on an open dense
set of X and its metric completion coincides with (Z,dz). However, at this moment,
we do not even know the Hausdorff dimension or uniqueness of (Z, dz).

When X is a minimal model of general type, Theorem is proved in [I13] and
the result in [128] shows that the singular set is closed and of Hausdorff dimension no
greater than 2n — 4.

We can also replace the smooth Kéhler form 6 in Theorem by Dirac measures
along effective divisors. For example, if {Ej}}']:1 is a union of smooth divisors with

normal crossings and
J
> ok
j=1
is an ample Q-divisor with some a; € (0,1) for j = 1,...,J. Then Theorem also
holds if we let 0 = Z}-le a;[E;]. In this case, the metric g; is a conical Kéhler-Einstein
metric with cone angles of 2(1 — a;) along each complex hypersurface Ej.

A special case of the abundance conjecture is proved by Kawamata [66] for minimal
models of general type. When X is a smooth minimal model of general type, it is re-
cently proved by the third named author [I13] that the limiting metric space (Z, dz) in
Theorem [I.5]is unique and is homeomorphic to the algebraic canonical model Xy, of X.
This gives an analytic proof of Kawamata’s result using complex Monge-Ampere equa-

tions, Riemannian geometry and geometric L2-estimates. Theorem also provides a
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Riemannian geometric model for the non-general type case. This analytic approach will
shed light on the abundance conjecture if such a metric model is unique with reasonably
good understanding of its tangle cones.

Theorem [1.5] can also be easily generalized to a Calabi-Yau manifold X equipped
with a nef line bundle L over X of v(L) = k.

Our final result assumes semi-ampleness for the canonical line bundle and aims to
connect the algebraic canonical models to geometric canonical models. Let X be a
Kahler manifold of complex dimension n. If the canonical bundle Kx is semi-ample,

the pluricanonical system induces a holomorphic surjective map
DX = Xean

from X to its unique canonical model X4,. In particular, dimc Xcen = v(X). We let
S be the set of all singular fibers of ® and ®~! (Sx,, ), where Sx_, is the singular set
of Xcqn. The general fibre of @ is a smooth Calabi-Yau manifold of complex dimension
n—v(X). It is proved in [I13] that there exists a unique twisted K&hler-Einstein current
Wean 0N Xcqn satisfying

Ric(wean) = —Wean + wwp, (4.1.8)

where ®*weqn € —c1(X) and wyyp is the Weil-Petersson metric for the variation of the
Calabi-Yau fibres. In particular, w.., has bounded local potentials and is smooth on
Xean \ Scan- We let gean, be the smooth Kéhler metric associated to wean on Xean \ Scan-

We remark that a special case of Theorem is proved in [142] with a different
approach for dimc X = 2. In general, the collapsing theory in Riemannian geometry has
not been fully developed except in lower dimensions. In the Kéhler case, one hopes the
rigidity properties can help us understand the collapsing behavior for Kéhler metrics
of Einstien type as well as long time solutions of the Kéahler-Ricci flow on algebraic
minimal models. Key analytic and geometric estimates in the proof of (2) in Theorem
are established in [104] [105] for the collapsing long time solutions of the K&hler-Ricci
flow and its elliptic analogues. The proof for (3) and (4) is a technical modification
of various local results of [131 50, 132, 51], where collapsing behavior for families of

Ricci-flat Calabi-Yau manifolds is comprehensively studied. Theorem [I.6] should also
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hold for Kéahler manifolds with some additional arguments.

Finally, we will also apply our method to a continuity scheme proposed in [78] to
study singularities arising from contraction of projective manifolds. This is an alter-
native approach for the analytic minimal model program developed in [104, 105} [106]
to understand birational transformations via analytic and geometric methods (see also
[109, 110, 112}, 102]). Compared to the Kahler-Ricci flow, such a scheme has the advan-
tage of prescribed Ricci lower bounds and so one can apply the Cheeger-Colding theory
for degeneration of Riemannian manifolds, on the other hand, it loses the canonical
soliton structure for the analytic transition of singularities corresponding to birational
surgeries such as flips.

Let X be a projective manifold of complex dimension n. We choose an ample line
bundle L on X and we can assume that [ — Kx is ample, otherwise we can replace L
by a sufficiently large power of L. We choose 6 € [L — Kx] to be a smooth Kéhler form

and consider the following curvature equation

Ric(gt) =—qg+10, te [0, 1] (419)
Let
tmin = Inf{t € [0,1] | equation (4.1.9) is solvable at t¢}. (4.1.10)

It is straightforward to verify that ¢, < 1 by the usual continuity method (c.f. [78]).
The goal is to solve equation (4.1.9) for all ¢ € (0, 1], however, one might have to stop

at t = tyun when Kx is not nef.

Theorem 4.1. Let g; the solution of equation for t € (tmin,1]. There exists

C = C(X,0) > 0 such that for any t € (tmin, 1],
Diam(X,¢:) < C. (4.1.11)

Theorem is a special case of Theorem when ¢, = 0 (c.f. [II13]). When

tmin > 0, Theorem is also proved in [79] with the additional assumption that
75minL + (1 - tmin)KX

is semi-ample and big. The diameter estimate immediately allows one to take a geo-

metric limit as a compact metric length space. In particular, it is shown in [79] that the
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limiting space is homeomorphic to the projective variety from the contraction induced
by the Q-line bundle t,,;, L+ (1 — tymin ) Kx when it is big and semi-ample. One can also
use Theorem to obtain a weaker version of Kawamata’s base point free theorem in

the minimal model theory (c.f. [56]).

4.2 Proof of Theorem [1.3]

In this section, we prove our theorem after some preparation. Throughout this
section, we let ¢ € PSH(X,0) be the solution of the equation (1.2.2)) satisfying the
condition ([1.2.3) in Theorem We let w = x + vV—100¢ and let g be the Kihler

metric associated to w.
Lemma 4.2. There exists C = C(X,0,p, K) > 0 such that
lle — Sup @llLeo(xy < C.

Proof. The L™ estimate immediately follows from Kolodziej’s theorem [72].

The following is a result similar to Schwarz lemma.

Lemma 4.3. There exists C = C(X,0,p, K, A) > 0 such that
w > C0.
Proof. There exists C = C(X,6,A) > 0 such that
Ay logtr,(0) > —C — Ctr,(0),
where A, is the Laplace operator associated with w. Then let
H = logtr,(0) — B(p — Sup ®)

for some B > 2C. Then
AL H > Ctry,(0) — C.

It follows from maximum principle and the L>-estimate in Lemma[£.2]that sup x tr,0 <

C.
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Lemma [4.3] immediately gives the uniform Ricci lower bound.

Lemma 4.4. There exists C = (X,0,p, K, A) > 0 such that
Ric(g) > —Cyg.
Proof. We calculate
Ric(g) = —Ag+ Ric(Q2) + X0 > = g— (A— N > —Cy

for some fixed constant C' > 0 by Lemma

We will now prove the uniform diameter bound.

Lemma 4.5. There exists C = (X,0,p, K, A) > 0 such that
Diam(X,g) < C.

Proof. We first fix a sufficiently small ¢ = €(p) > 0 so that p — e > 1. Suppose

Diam(X,g) = D for some D > 4. Let v : [0, D] — X be a normal minimal geodesic
(D

with respect to the metric g and choose the points {z; = 7(62’)}2-:(/)6}. It is clear that

the balls {Bg(x;, 3)}2[-12)(/)6] are disjoint, so

[D/6

]
Z Voly (By(zi,3)) < / 0" =V,
i=0 X
hence there exists a geodesic ball By(z;,3) such that
Vol (By(zi,3)) < 6VD™ 1.
We fix such z; and construct a cut-off function n(z) = p(r(x)) > 0 with
r(z) = dy(, zi)

such that

n=1on By(x;,1), n =0 outside By(z;,2),

and

pelll, p (P2 <Cn), |0 <Cn).
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Define a function ¥ > 0 on X such that F' = 1 outside By(x;,3), F' = D=9 on
By(x;,2), and

/XFQ: 0", /X (%?)p_ee" < (/)(FWGN);(/)((;)IDG”) ErYe

for some C' = C(X,0,p,K) > 0.

We now consider the equation
(0 +V—=100¢)" = e FQ.

By similar argument as before, ||[¢ — supy ¢||~ < C = C(X,0,p,K). Let g = 6 +
v/—199¢. Then on B,(x;,2),

Ric(g) = —Ag + Ric(2) + N0, Ric(g) = —Ag + Ric(2) + \0.

In particular,
Aglog % — —Xn+ Atry(§),
where Ay = A,,. Let
H =n(1og =~ ((p — supy) — (& — sup0)) ).
w X X
On By(z;,2), we have
An\ 1/n
AgH =—-A+1)n+ A+ 1)trg(g) > —2n+n (w") .
In general, on the support of 1, we have

"\ 1/n H|Vn|?
n <—2n + n(%) > +2n"'Re (VH - V1) — 2 |772m + nleAgn

A H

v

H|Vn?

> (CnQeH/(’”’) +2Re(VH - Vi) —2 +HAgn — 2”"2)'

We may assume supy H > 0, otherwise we already have upper bound of H. The

maximum of H must lie at By(x;,2) and at this point
AGH <0, |VH?>=0.

By Laplacian comparison we have

V> _ (0')?

Agn=p'Ar+p" > -C,
" p

IA
Q
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So at the maximum of H, it holds that
0> Cn?eft/(") — CH —2n > CH? — CH — 2n,

therefore supy H < C. In particular on the ball By(z;, 1) where n = 1, it follows that
% < C. From the definition of @ and w,

w™ _e
C > — = Doplp—e €>\(¢_<P) .
= on

Combined with the L*°-estimate of ¢ and ¢, we conclude that

D S C= C(n7p797A7K)‘

Lemma 4.6. There exists C = (X,0,p, K, A) > 0 such that
sup [Vyply < C.
X

Proof. Straightforward calculations show that

Agp =n —try(0),

ANg|Ve2 = [V +|VVe? + ¢  Riprpr — 2V - Virg(0)

> |VVe +|VV¢|? = CV¢|* — 2V - Vir,(6),

and
|Vtr,6|?

Agtryf = try6 - Aglogtryd + tr,0

> —C + co|Vir,0)?

for some uniform constant cg, C' > 0. We choose constants « and B satisfying
oc>4cal >4, B>51)1(p<p—|—1

and define

_ Vel
B—¢

H

+ atryf.

Then we have
IVVel* +|VVp|* . Vel?  [Vel*(trgd —n)
B—y B—¢ (B —¢)?
—aC + acy|Vtry0|? + 2<& VH)
0 g B_ SO, .

(Vo, Vtryd)

AH >
> B— o

21+ «)

(4.2.1)
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We may assume at the maximum point z,., of H, |Ve| > a and H > 0, otherwise we

are done. At 2z,

VH =0, AH <0
and so at Zmaz

1 Ve
VIVl —§<—HW—O¢(B—SO)

Vtr,0 n atrﬁVg&) ‘
Vel Vel

2 V. 2
< w, it follows that

By Kato’s inequality |V|V||?

IVV@|? + |[VVp|? 1 2 2 2 2 o [Vitrgd|?

> H* +o*(B — tr,0)” + o —=—

By S (1 0B = ) () + 0
|Vitrgd| 9 |Vitrgd|
—2aH (B — o)tr,0 — 2aH —2a%(B — @)tr,0
(B - ¢)tr, T 2B et
H? tr 0>
> m - CH — |2r_9| — C|Vtry0|
(4.2.2)

for some uniform constant C' > 0. After substituting (4.2.2]) to (4.2.1) and applying

Cauchy-Schwarz inequality, we have at 24z

H? 2|Vtr, 0%
>__ - _Oo 29t 2
0 “1B =) CH-C o C|Vtrgb| + 4|Vtry0|
H2
>~ __CH-C,
4B -9)

for some uniform constant C' > 0. Therefore maxx H < C for some C' = C(X,0,Q, A, p, K).

The lemma then immediately follows from Lemma [4.2] and Lemma

4.3 Uniform C° estimate in nef canonical class setting

In this section, we will prove Proposition by applying the techniques in [9]
72, 140, 37]. We point out that our uniform C° estimate is modulo extremal function
associated to a pseudoeffective class.

Let X be a Kahler manifold of dimension n. Suppose « is nef class on X of numerical
dimension k£ > 0. Let x € a be a smooth closed (1,1)-form. We define the extremal

function V, by
Vy =sup{¢ | x + V—199¢ > 0, ¢ < 0}. (4.3.1)
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Let 0 be a fixed smooth Kéhler metric on X. Then we define the perturbed extremal

function V; for t € (0,1] by
Vi =sup{¢ | x +t0 + vV—199¢ > 0, ¢ < 0}. (4.3.2)

The above extremal functions were introduced in [9] when « is big.

We first rewrite the equation ((1.2.5)) for A = 0 as follows
(X + 10 + V=100, = t"Fe THegm  sup py = 0, (4.3.3)
X
t € (0,1] by letting Q = e~/6™, where ¢; is the normalizing constant satisfying

t"”/ ef+ct0”—/(x+t6)".
X X

f satisfies the following uniform bound

/ e PTgn < K,
X

for some p > 1 and K > 0.

The following definition is an extension of the capacity introduced in [72], 40, 37, [9].

Definition 4.3.1. We define the capacity Cap,,(KC) for a subset K C X by
Capy, (K) = sup { / (xt +v/—180u)" | u € PSH(X, x¢), 0 <u—V; < 1}, (4.3.4)
K

where x¢ = x + t0 is the reference metric in (4.3.3). We also define the extremal
function Vi i by
Vix =sup{u € PSH(X,x¢) | © <0, on K}. (4.3.5)

If K is open, then we have

1. Vix € PSH(X, ;) N L®(X),

2. (xt +v—1900Vi )" =0 on X \ K.

Lemma 4.7. Let ¢; be the solution to (4.3.3]). Then there exist 6 = §(X, x,0) > 0 and
C=C(X,x,0,p,K) > 0 such that for any open set K C X and t € (0,1],

1 o (gl )%
% (Xt + V=180¢,)" < Ce "\ ) (4.3.6)
t K
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Proof. Since [x™] =0fork +1<m <n
" /n " /n
[X?] :/ X? :/ Z Xk: /\tn—ken—k: :/ Z Xk /\tn—ken—k _ O(tn—n).
X X k b's k
k=0 k=0
It follows that the normalizing constant ¢; in (4.3.3)) is uniform bounded. Let M, =

supx Vi x. Then we have

1 - " F—FeCt .
] S V1009 = e
$—FeCt
< e~ Te OVix/agn  since Vi < 0 on K
xrl Jx ’
I S YAy —f —5(Vije—M,
< ¢ 1/ e~fe (Vi.x t)/agn
[X?] X

< e e—(SMtJC/Q(/ e—pf9n>1/p</ 6—5(W,K—Mt,zc)9n>1/q
[X?] X X

< C€—5Mt,lc/q’
where % + % = 1. Obviously, there exists v = (X, x, #) > 0 such that for all ¢t € (0, 1],
Vix € PSH(X, 70).

We apply the global Héormander’s estimate ([125]) so that there exists 6 = §(X, x,0) > 0
such that

/ e~ (Vi x—supx Vi k) gn < Cj.
X

To complete the proof, it suffices to to show

Mg +1> (%)U". (4.3.7)
Xt

First we observe that by definition

sup ((Vt,IC —sup Vi) — Vt) <0,
X X

since V; x —supx Vi x € PSH(X, x;) is nonpositive. On the other hand, V; x > V;. This

immediately implies that
0<Vix—V; <supVix = M. (4.3.8)
X

We break the rest of the proof into two cases.
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e The case when M; i > 1. We let

Yex = M (Vik = Vi) + Vi

Then
Vi< <Vi+1
and by (4.3.8).
1 1 [y (e + V=100V, )" 1 / o _ n
n = - n ’ = n M Xt + vV —188(M VJC)
Mt,/c Mt,lc [X7] [X7] E( b AT )
1 _ - _\n
< oo [ (M + VIO ) + (1= M G+ V=1001:) )
t K
1 _
=T /(Xt + V=100 )"
Xt Jx
< CapXt (IC)
X7
(4.3.9)
e The case when M, g < 1. By (4.3.8)
0<Vixk—Vi<supVix =M <1
X
Now
[X¢] = /(Xt + V=193V, o)™ < Capy, (K). (4.3.10)
K
So in this case Cagf](,c) <1.
t

Combining (4.3.9)) and (4.3.10)), (4.3.7)) holds and we complete the proof of Lemma
47

The following is an immediate corollary of Lemma |4.7]

Corollary 4.3.1. There exists C = C(X,x,0,p, K) > 0 such that for all t € (0,1], we

have

L /’C(Xt + V=100 < C(M)Z.

[Xt] [X7']
Proof. This follows from Lemma and the elementary inequality that z2e02" <C

for some uniform C' > 0 and all x € (0, 00). O
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Lemma 4.8. Let u € PSH(X, x;) N L>®(X). For any s >0,0<r <1 andt € (0,1],
we have
r"Capy,(u—V; < —s —1) < / (xt + V—100u)". (4.3.11)
{u—Vi<—s}

Proof. For any ¢ € PSH(X, x;) with 0 < ¢ — V; < 1, we have
o [ (v = [ (rxe +V=100(r6))"
{u—Vi<—s—r} {u—Vi<—s—r}
< [ (xi + V=100(r) + v/=190(1 — r)V})"
{u—Vi<—s—r}

< (xt + V—=190(r¢ + (1 —1)V; — s — )"

/{“_%<_5_T+7’(¢_Vt)}
(xt +V—100u)"

<)
{u<r¢+(1—r)Vi—s—r}

< / (Xt + V—190u)".
{u<Vi—s}

The third inequality follows from the comparison principle and the last inequality fol-
lows from the fact that r¢ + (1 —m)Vi—s—r=r(¢ -V, — 1)+ V; —s <V, —s.
Taking supremum of all ¢ € PSH(X, x;) with 0 < ¢ —V; <1 we get (4.3.11)).

O

Lemma 4.9. Let ¢; be the solution to (4.3.3). Then there erists a constant C =
C(X,x,0,p, K) > 0 such that for all s > 1

) C
@Capm ({pr Vi< —s}) < m’

1,1 _
where;+a—1.

Proof. Applying Lemma [£.8 to v = ¢; and r = 1, we have

[X}]Capxt ({01~ Vi < —s))

1 _
<7 / (xt +V—100p:)"
[Xt] {pt—Ve<—(s—1)}
_1n/ tn*fﬂe*erCt@n
XE] Jiovic—(s—1))

C / 1/ _
L —pp + V) YaeFgn
(S - 1)1/(1 {<Pt—Vt<—(3—1)}( : t)

C / -~ 1/p 1/q
<7 e Plon / (¢ + Vp)o"
(5—1)”q( {pi—Vi<—(s-1)} ) ( {pi—Vi<—(s—1)} )
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S(S_Ci)l/q ( /X(—%)en) 1/q7

where in the last inequality we use the assumption that e~/ € LP(8"), V; < 0 and
¢t < 0. On the other hand, since ¢, € PSH(X, x;) C PSH(X, C9) for some large C' > 0

and supy ¢; = 0, it follows from Green’s formula that

[ (e <c

for some uniform constant C. The lemma follows by combining the inequalities above.

O

The following lemma is well-known and its proof can be found e.g. in [72] 40)].

Lemma 4.10. Let F : [0,00) — [0,00) be a non-increasing right-continuous function

satisfying lims_,o0 F'(s) = 0. If there exist o, A > 0 such that for alls > 0 and0 < r <1,
rF(s+71) < A(F(s))',
then there exists S = S(so, o, A) such that
F(s)=0
for all s > S, where sq is the smallest s satisfying (F(s))* < (24)71.

Proof of Proposition[{.1.1l Define for each fixed ¢ € (0, 1]

Capxt({% -V < —S})>1/n
[xe|™ ’

F(s) = (
By Corollary and Lemma applied to the function ¢y, we have
rF(s+7r) < AF(s)?, for allr€[0,1], s> 0,

for some uniform constant A > 0 independent of ¢ € (0, 1].

Lemma implies that lims_, F'(s) = 0 and the sy in Lemma can be taken
as less than (2AC)4, which is a uniform constant. It follows from Lemma that
F(s) =0 for all s > S, where S < 2+ sg. On the other hand, if C’apXt({cpt -V <

—s}) =0, by Lemma and the equation (4.3.3)), we have

/ e Tom =0,
{pt—Vi<—s}
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hence the set {¢; — V; < —s} = 0. Thus infx(¢; — V;) > —S. Thus we finish the proof

of Proposition 1.1}
O

Therefore we have proved Proposition when A = 0. We finish this section
by proving the case when A = 1. We consider the following complex Monge-Ampere

equations for ¢ € (0, 1],
(X + t0 + /—10Dp)" = " et Hergn, (4.3.12)

where f € C*°(X) and ¢ is the normalizing constant satisfying t"~" [, e~ /Tegn =
Jx(x +to)".
Corollary 4.3.2. If

”e_f”LP(X,G”) <K,

forp>1 and K >0, Then there exists C = C(X, x,0,p, K) > 0 such that

It = Vil < C.

Proof. Since for each t > 0, it is proved in [5] that V; is C1%(X,0), we can always
find W; € C*°(X) such that supy |V; — Wy| < 1. Furthermore, V; is uniformly bounded

above for all ¢ € (0,1]. We let 1/, be the solution of
(Xt + V=100yy)" = "~ e Tt Wign sup gy = 0.
X

and
ug = pp — Yy

Then
(x¢ + V=100, + \/jlaaut)n — putte—W;
(vt + v/—100)"

Since supy |10y — Wy| < supy [¢r — Vi| + 1, the maximum principle immediately implies

that

el poo(x) < It = Villpoo(x) + 1
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and so

ot — Vill oo (x) < 2019t — Villoo (x) + 1.

4.4 Uniform diameter estimate of twisted Kahler-Einstein metrics in

the nef canonical class setting

Let X be a Kahler manifold. X is said to be a minimal model if the canonical

bundle Kx is nef. The numerical dimension of Kx is given by
v(Kx) =max{m =0,..,n | [Kx]"™ #0in H™™(X,C)}.

Let 6 be a smooth Kéhler form on a minimal model X of complex dimension n. Let
k = v(X), the numerical dimension of Kx. Let Q be a smooth volume form on X. We
let x be defined by

x =vV—1901ogQ € Ky.

We consider the following Monge-Ampere equation for ¢ € (0, 00)
(X + 0 4+ V—1900p)™ = t" "e?1 Q. (4.4.1)

Since Kx is nef, [x + t0] is a Kéahler class for any ¢ > 0. By Aubin and Yau’s theorem,
there exists a unique smooth solution ¢; solving (4.4.1) for all ¢ > 0. Let w; = x +t0+
vV —100p. Then w; satisfies

Ric(wy) = —wy + t6.

In particular, any Kéhler metric satisfying the the above twisted Kéahler-Einstein equa-

tion must coincide with wy.

Lemma 4.11. There exists C > 0 such that for all t € (0, 1],
C™H"F <[y +t0]" < Ct"".

Proof. First we note that [x]? - [#]"™" > 0 because [x]? # 0 and [x] is nef. Then

n

[ + 0" =" (Z) e - 101" + t”_*’”“( 3 <”> J=d=11i . [W‘j).

j=dr1 N
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Lemma 4.12. Let V; = sup{u | v € PSH(X, x + t0), u < 0}. Then there exists C > 0
such that for all t € (0,1],
[t — Villpoo (x) < C. (4.4.2)

Proof. The lemma immediately follows by applying Proposition to equation (|4.4.1]).
O

We now prove the main result in this section.

Lemma 4.13. There exists C > 0 such that for all t € (0, 1],
Diam(X,g:) < C.

Proof. The proof applies similar argument in the proof of Theorem Suppose
Diam(X,g;) = D for some D > 6. Let v : [0,D] — X be a smoothing minimizing
geodesic with respect to the metric g; and choose the points {z; = 7(6i)}££é6]. It is
clear that the balls { By, (z;,3)} are disjoint so

[D/6]

> Volg (B, (2:,3)) < / Q=V,
i=0 X

where Vol (B, (zi,3)) = fBg (x;,3)Q. Hence there exists a geodesic ball B, (z;, 3) such
t

that
Volg (By,(2;,3)) <6VD™

We fix such z; and construct a cut-off function n(z) = p(r(x)) > 0 with r(z) = dg, (z, ;)
such that

n=1on By, (x;,1), 1 =0 outside By, (z;,2)

and

peloa, p () <0 <

Define a function F; > 0 on X such that
F, =1 outside By, (z;,3), F;=DY? on By,(z;,2)

and

C_lg/FtQSC, /F,?Qgc.
X X



63

We now consider the equation
(X +10+ )" =t" eV F, Q,  for allt e (0,1].

Applying Corollary there exists a uniform constant C > 0 such that for all
t € (0,1],
[t = Vil poo () < C,

and so by Lemma

et — Yl ooy < C. (4.4.3)

Let g; = x + t0; + /—109¢;. Then on By, (z;,2),
Ric(gt) = —g1 +t0, Ric(gr) = —g¢ + 10,

and so
on . Wy 1/n
Ay, log w—zn =—n+trg,(g:) > —n+ n(&) :
Let H = nlog “ . We may suppose supy H = H(2mae) > 0, otherwise we are done.
t

w

Zmae Must lies in the support of 7, and at zp,4, we have

1 H 2 2 2
0> Ay H > E(HAMJF 2V, VH) =2 [V = enn)
1/1
> —(—Hz . CH)
n\2n

for some uniform constant C' > 0 for all ¢ € (0,1]. Maximum principle implies that
supx H < C(n), in particular on By, (x;,1) where n = 1, there exists C' > 0 such that
for all ¢t € (0,1],
w;' 1/2 -
“n =D et wt S C
Wy

By the uniform L>-estimate(4.4.3)), there exists C' = C(n, x, 2, 6) such that D < C.
L]

Now we can complete the proof of Theorem|[I.5] Gromov’s pre-compactness theorem
and the diameter bound in Lemma immediately imply that after passing to a
subsequence, (X, gtj) converges to a compact metric space. Since ¢z — V; is uniformly

bounded and V} is uniformly bounded below by Vo, ¢, always converges weakly to some
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Yo € PSH(X, x), after passing to a subsequence. In particular, there exists C' > 0 such
that

0o = VollL=(x) < C;

where Vj is the extremal function on X with respect to . O

4.5 Convergence of twisted Kéahler-Einsteins to canonical metric by

assuming abundance conjecture

Our proof is based on the arguments of [104} 13T, 132].

We fix some notations first. Recall X.,, has dimension x and x is the restriction
of Fubini-Study metric on X4y, from the embedding X q, — CPNm, where N, + 1 =
dimH®(X,mKy). Hence ®*y is a smooth nonnegative (1,1)-form on X, and in the
following we identify x with ®*y for simplicity. Let 6 be a fixed Kéahler metric on X.

Define a function H € C*°(X) as

which is the modulus square of the Jacobian of the map ® : (X,0) — (Xcan, x) and
vanishes on S, the indeterminacy set of ®, hence H~7 € L'(X,6") for some small y > 0.

We fix a smooth nonnegative function o on X4, as defined in [I131], which satisfies
0<o<1, 0<+vV=10cAN0dc<Cy, —Cx<+v—19000 < Cy, (4.5.1)

for some dimensional constant C' = C(k) > 0. From the construction, o vanishes

exactly on S” = ®(S). There exist A > 0, C' > 1 such that for any y € X2, = Xcan\S’

can

(see [131])
o(y)* < Ci)I(lf H, here X, = ®'(y).
Yy

The twisted Kéhler-Einstein metric ¢; in ((1.2.6]) satisfies the following complex

Monge-Ampere equation (with 6 = 0)
(X + 10+ —100¢,)" = t"""e¥Q, for allt e (0,1]. (4.5.2)

In case Kx is semi-ample, V; = 0 hence Corollary implies: (see also [37, [72], [40])



65

Lemma 4.14. There is a uniform constant C' > 0 such that ||t/ p~(x) < C.

We have the following Schwarz lemma whose proof is similar to that of Lemma [4.3

so we omit it.

Lemma 4.15. There exists a constant C > 0 such that
try,x < C, for all te (0,1].

We denote 0, = 0|x, for y € Xg,,, the restriction of 6 on the fiber X, which is a
smooth (n — k)-dimensional Calabi-Yau submanifold of X. We will omit the subscript
t in ¢ and simply write ¢ = ¢4, and define @, = ny @8y, ~" to be the average of ¢ over

the fiber X,. Denote the reference metric &; = x + t0. We calculate

(@ + V—=1009)|x, = (t0, +V—100(¢ — B,))|x, = wilx,,

hence
(Hy +t7 1/ =100(p — Gy)|Xy)n_H = t*”+”wZ;”. (4.5.3)
On the other hand,
t—”+'€£ - t—ﬂ-f—f-iM
0y " On=r A XF X,
< C'(trwt)()”HTL_,_CQ/\X’_i X,

<CH '<Coy).

Since the Sobolev constant of (X, 6,) is uniformly bounded and Poincaré constant of
(Xy,0y) is bounded by CeB7 ) for some uniform constants B, C' > 0 (see [131]),

combined with the fact that
][ (QO - @y)agiﬁ = 07
Xy
Moser iteration implies ([136], [131])

Lemma 4.16. There exist constants By, C1 > 0 such that for any y € X,

can’

s)l(lpt_1|g0 —p,l < CleBl"ﬂ(y), for all t e (0,1].
Y
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Proposition 4.5.1. On any compact subset K € X\S, there exists a constant C' =
C(K) > 1 such that for all t € (0,1]

C ' <wy <C&, onK.

Given the C%-estimate in Lemma [4.16, Proposition can be proved by the
C?-estimate ([I36]) for Monge-Ampere equation together with a modification as in
[104, 131, 132], so we omit the proof.

Let us recall the construction of the canonical metric weq, on X3, (see [104]). Define

: _ 9.0 )
a function F' = === on X¢,,,,

and F is in L1 for some small ¢ > 0 ([104]). The metric

Wean 18 obtained by solving the following complex Monge-Ampere equation on X4,
(X + V=100 )" = <n> Fefex"
K

for oo € PSH(Xcan, X) N CY(Xean) N C®(XS,,). Then wean = X + vV—190¢s, and in

can

the following we will write Yoo = Wean-

Any smooth fiber X, with y € X, is a Calabi-Yau manifold hence there exists a

can

unique Ricci flat metric wgpy, € [6,] such that wgp, = 0, + /—19dp, for some p, €

C*°(X,) with normalization ny pyw = 0. We write psp(x) = pa(s) if P(z) € X

can-*

psr is a smooth function on X\S and may blow up near the singular set S. Denote

wsr = 0 ++/—1900psr which is smooth on X\S, and by [104] we know that is

wop" AX"
constant on the smooth fibers X, and is equal to ®*F'. For simplicity we will identify
F with ®*F. Our arguments below are motivated by [104] [132].
-
Denote F = ¢ for suitably large constants A, A > 1. From the proof of

Proposition we actually have that on X\S ([I31])
ClFo <wy <CF Yy, for allte(0,1].

Next we are going to show ¢; — oo = ¥, as t — 0. Proposition below can
proved by following similar argument as in [132], but we present a slightly different

argument in establishing Claim 2 below.

Proposition 4.5.2. There exists a positive function h(t) with h(t) = 0 ast — 0 such
that

sup Flor — @oo| < h(t). (4.5.4)
X\
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Proof. Let D C X4y, be an ample divisor such that X ., \XS,, € D, D € uKx,,, for
some p € N. Choose a continuous hermitian metric on [D], hp = h’;ﬂ/gme_““’Oo and a
smooth defining section sp of [D], where hpg is the Fubini-Study metric induced from

Ocprm (1). Clearly /—190loghp = p(x + vV —100¢s0) = H)Xoo- For small r > 0, let
B, (D) ={x € Xcan | dy(z,D) < r}

be the tubular neighborhood of D under the metric d,,, and denote B, = &1 (BT (D)) C
X.

Since both ¢; and ¢ are bounded in L*-norm, there exists r. with lim._,q7re =0

such that for all ¢ € (0, 1]

sup (¢t — Yoo + €log |sD|%D) < =1, inf (o1 — oo — €log |8D|%D) > 1.
Br\S Br\S

Let 1. be a smooth cut-off function on X4, such that n. = 1 on X\ By, (D) and
ne = 0 on B, _s5(D). Write p. = (®*n¢)psr, and wsr,e = wsk + \/=100p.. Define the

twisted differences of ¢; and ., by

VE = o1 — poo — tpe F elog|spli, -

By similar argument in [104] we have
Claim 1: there exists an ¢y > 0 such that for any € € (0,¢g), there exists a 7. such

that for all ¢ < 7., we have

sup Y. (t,-) < 3ue, inf ¥F(t,-) > —3pue.
sup v (1) inf 7 (0.)

Claim 2: We have
/ lor — Yool — 0, ast—0,
X
where ¢y is the Kéhler potential of wy in (4.5.2]).

Proof of Claim 2. For any n > 0, we may take Br, C X small enough so that ! Br " <
m

15- Take € < 7/10p small enough so that r. < R,. From Claim 1 when ¢ < 7,

/Wrﬂﬂm:/ wvwam+/ 01— Pocl”
X BRT? X\BR»,]
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<On+ / (tlpsr] + ellog |spl2, )6
X\Bgr

n

< Cn.
O
Given Claim 2, Proposition follows similarly as in [I32], so we skip it. O

We will apply an argument in [132] with a slight modification to show the lemma

below:

Lemma 4.17.

%g% Ftoy = 0.

Proof. Denote s = logt for t € (0,1]. We have tp = ?)—f. Taking derivatives on both

sides of the equation (4 and by maximum principle arguments we then get (see also

[132])

8290 . 2 .. - 8290
@ =to+tp < C’7 here p = w (455)

By the uniform convergence (4.5.4) of Fo(s) — Fyso as s — —o0, for any € > 0, there
is an S, such that for all s1, so < —S,, we have supy |[Fp(s1) — Fo(s2)| < e. For any

s < =8¢ —1and z € X\S, by mean value theorem
FOso(sq,x \[/ Os(Fp)ds > —+/e, for some s, € [s,5 + V€.
By the upper bound , it follows that FOsp(s,z) > —C4/e — y/e. Similarly
FOsp(8z, \[/ ,7))ds < /e, for some 8, € [s — V€, s],

from (4.5.5) we get FOsp(s,z) < Cy/e + y/e. Hence we show that for any s < —S, — 1

ort =e® < e %1 it holds that

sup |Fdsp(s,x)| = sup |Ftoyp(t,x)| < Cv/e,
zeX\S zeX\S

so the lemma follows.
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Corollary 4.5.1. There exists a positive decreasing function h(t) with h(t) — 0 as

t — 0 such that

sipfﬂwt—t¢r—¢ml+ﬂ¢ﬂ)Sfdﬂ-

From Corollary a straightforward adaption of the arguments of [I32], we have

an improvement of local C?-estimate:

Lemma 4.18. On any compact subset K CC X\S, we have

lim sup (sup (trthoo — /1)) <0.
t—0 K

With the local C? estimate (see Proposition , following standard local C3-

estimates ([136], 9], 100]), we have

Lemma 4.19. For any compact K € X\S, there exists a C = C(K) > 0 such that
sup |Vowy|? < Ot
K

We have built up all the necessary ingredients to prove Theorem [I.6] whose proof is
almost identical to that of Theorem 1.3 in [132]. For completeness, we sketch the proof

below.

Proof of Theorem|[1.6, Fix a compact subset K’ C X

can

and let K = ®~1(K’). By the
Calabi C? estimate in Lemma it follows that

1t wilx, llerx, 0,0 < Ot wilx, = 6y,
for all y € K’ and 6, = 0]x, .

Step 1: Define a function f on X, by

>R§1+B@L

K v K

1 _ _
f _ (t wt|Xy)n " _ <n> (wt|Xy>n " A Xgo ePtvoo < eh(t) (LMXOO
Wy

WsFy
for some h(t) — 0 as t — 0 (here h(t) depends on K), where in the first inequality

we use the Newton-Maclaurin inequality. f also satisfies that

/ (f ~ D=0, lim [ |f— 1wz =0. (4.5.6)
X Xy

t—o00
y
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Step 3:
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The Calabi estimate implies that supy |V flp, < C for all y € K', and (Xy,0y)
have uniformly bounded diameter and volume for y € K’. So it follows that f

converges to 1 uniformly on K as ¢ — 0. That is
-1 n—k —
H(t wt‘Xy) — ngZHCO(Xyﬁy) — 0, ast — 0,

uniformly on K’. Since t~'w|x, converges in C*(X,,6,) topology to some limit

metric weo, Which satisfies the Monge-Ampere equation (weakly) on Xy, wis» =
wg;’;, by the uniqueness of complex Monge-Ampere equations, it follows that
Wooy = WsFy and tilwtlxy converge in C% to wgp,y, for any y € K’. Next we

show the convergence is uniform in K.

Define a new f on X'\S which takes the form

t_lwt|Xy AN (WSF’y)n—n—l (t_lwt‘xy)n_n 1/(n—x)
f‘Xy = Wik z ( Wk ) ’
SEy SEy

and the RHS tends to 1 uniformly on K ast — co. Then we have similar equations

as in (4.5.6]) for this new f. This implies

1 -1
Hmtrwsp,y(t we)|x, — IHLOO(K) —0, ast—0.

So t‘lwt|Xy — wgF,y uniformly for any y € K'.
Define
W = twsF + Xoo-

From a result of [132] (see the proof of Theorem 1.1 of [I32]), we have |try, (wgp —

wSF,y)| < Ct~Y2, then
try, @ < try, (thF,y + Xoo) +CVt=n+ il(t),

for some h(t) — 0 when t — 0. Moreover it can be checked that

~n
)
lim— =1, on K.
t—=0 wy’

CoUK
Hence we see that wy M Xoo as t — 0.

We finish the proof of (1), (2) and (3) of Theorem [1.6
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Remark 5. From Steps 1, 2 and 3, we see that for any compact subset K C X\S,

there exists an e(t) = ex(t) — 0 as t — 0 such that when t is small
D Xoo — (1)l <wi < PFxoo +e(t)0, on K, (4.5.7)

and

D" Yoo < (L +e(t))wr, on K. (4.5.8)

From the uniform convergence oftflwt\xy to wspy for any y € ®(K), we see that there

is a uniform constant Co = Co(K) > 0 such that
wt\Xy < COtWSF,ya for ally € (ID(K) (459)

Choose a sequence t; — 0. The metric spaces (X,w, ) have Ric(wy,) > —1 and
diam(X,wy, ) < D for some constant D < co. By Gromov’s pre-compactness theorem

up to a subsequence we have
d
(X‘)wtk) “ (Z,dz),

for some compact metric length space Z with diameter bounded by D. The idea of
the proof of (4) in Theorem is motivated by [50], and we present below a slightly

different argument from theirs.

Step 4: We will show Claim 3: There exists an open subset Zg C Z and a homeo-

morphism f: XZ,, — Zo which is a local isometry.

Proof of Claim 3. By Lemma the maps ® = &5 : (X,wy,) — (Xean, x) are
uniformly Lipschitz with respect to the given metrics, and the target space is compact,
so up to a subsequence ®; — P : (Z,dz) — (Xcan, x) along the GH convergence
(X,wt,) = (Z,dz) which is also Lipschitz and the convergence is in the sense that for
any z — (X, wy, ) which converges to z € Z, then @ (2) = limg_,00 Pi (), and there

is a constant C' > 0 such that d, (CIJOO(zl), @00(22)) < Cdg(z1, 2z9) for all z; € Z.

We denote Zg = (X

o.m) which is an open subset of Z since @, is continuous.

We will show that ®uo|z, : Zo — X, is a bijection and a local isometry. Hence

n

f=(Plzy) ™t X2, — Zo is the desired map.

can
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o Ooo|z, is injective: Suppose Poo(21) = Poo(22) for 21,20 € Zop = P H(XZ,,)-
Denote y = ®oo(21) = Poo(22) € Xy,,- Since (X, Xoo) is an (incomplete) smooth
Riemannian manifold there exists a small 7 = 7, > 0 such that (B, (y,2r), Xs0)
is geodesic convex. Choose sequences z1; and z3; € (X, wy, ) converging zi,zp re-
spectively along the GH convergence. By definition of ®;, = & — &, it follows that
dy(P(211), Poo(21)) = 0 and d (P(22,%), Poo(22)) — 0. Since dy, and d, are equivalent
on By (y,2r), it follows that dy_ (®(z1 %), P(22,1)) — 0 and hence we can find minimal
Xoo-geodesics 7y, connecting ®(z i) and ®(z9 ) with v, C By (y,r) and Ly (%) — 0.
By the locally uniform convergence on &1 (W) there exists a lift of g,
Y in @~ 1(By.(y,2r)), such that Loy, (k) < Lyoo () + €(tr) L (Y6) — 0 as t; — 0.
A connects z;, and 2o hence dwtk (21,1 22,k) < Loy, (%) — 0, which implies by the

convergence of z; , — z; that dz(z1,22) = 0 and 2z; = 2.

o O |z, is a local isometry: let z € Zg and y = P (2) € Xgy,,- There is a small r =

can*
ry > 0 such that (By (y,3r), Xo) is geodesic convex. Take U = (®og|z,)  (By (, 7))
to be an open neighborhood of z € Z. We will show that ®|z, : (U,dz) — (By. (¥,7); Xoo)
is an isometry. Fix any two points 21,22 € U and y; = ®oo(2i) € By (y,7) for i =1,2.
As before we choose z;, € (X,wy,) such that z;, — 2; along the GH convergence for
i = 1,2. It follows then from ®; = ® — ®, that d,__ (@(zi,k),yi) — 0, and when £k is
large, ®(z; 1) lie in By (y,1.1r). Choose wy,-minimal geodesics 7j, connecting z; j and

zok such that do, (21k, 22k) = Lu, (V6) — dz(21,22). The curve 4, = ®(v;) connects

P(z1 ) with ®(224). If 4% C By (y,3r), from it follows that
oo (P(21,0), P(22,k)) < Lo (k) < (1 + €(t)) Ly, (W) = dz(21, 22).
In case y, ¢ By (y,3r), we have
dyoe (P(21,), B(22,)) < 3.87 < Ly (N Byoo (y,3r)) < (14€(tr)) Ly, (k) = dz(21, 22).

Letting k& — oo we conclude that d,_(y1,42) < dz(21,22). To see the reverse in-
equality, we take Yoo-minimal geodesics o connecting ®(z; ;) and ®(z24). Clearly
Yk C By (y,3r). Take a lift of oy, &) in @ (B, (y,3r)) it follows from (4.5.7) that

dwtk (ZLk,ZQJC) < Lwtk (&k) < LXoo(Uk) + E(tk)Lw((}k) — dXOO(yl,yg). Letting k — oo
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we get dz(z1,22) < dy.(y1,y2). Hence dz(z1,22) = dy. (y1,y2) and ®glz, : U —
By, (y,r) is an isometry.

o

o O |z, is surjective: this is almost obvious from the definition. Take any y € X2,

and any fixed point z € ®~1(y) C (X,wt, ). Up to a subsequence x don, . e (Z,dz).
It then follows from @) — ®u that dy(y, Poo(2)) = dy(Pr(z), Poc(2)) — 0 as k — oo.
Hence @ (2) =y and z € & 1(XS,,) = Zo.

O

Step 5: In this step we will show Zy C Z is dense. Fix a base point T € Zy, upon
rescaling if necessary we may assume the metric ball By (f71(Z),2) C (X2, Xoo) I8
geodesic convex. Choose a sequence of points pr € (X, wy,) such that p, — = along
the GH convergence (X,wy,) — (Z,dz). We define a function on X x [0,00) as the
normalized volume ([10])

Voly,, (Bwtk (J;,r))
VOlwtk (Bwtk, (pk) 1)) ’

Kk(-%"") =

by standard volume comparison it is shown in [I0] that V() is equi-continuous and
uniformly bounded hence they converges (up to a subsequence) to a function V  :
Z x [0,00) — [0,00) in the sense that for any x; — = along the GH convergence and
r >0,

Vi(xg,r) =V (x,r), ask— oco.

. .. . . . . V_(z,r
And V  satisfies similar estimates as in volume comparison, i.e. for ry < 7, = Em T;; >
V. (z,

wu(ri,ra) > 0 where p(-,-) is the quotient of volumes of balls in a space form. The

function V  induces a Radon v on (Z, dz). More precisely for any K C Z, define

V(K) = %1_1}1(1) vs(K) = %1_1}%) mfzi:‘/oo(xi, i)
where the infimum is taken over all metric balls Bg, (x;,r;) with r; < § whose union

covers K.

Claim 4: For any z € Zg and r = 1, > 0 such that By (f~!(2),2r) C Xg,, is geodesic

convex, we have

V (z,7r)= vo/ e Yo
@ (Broo (/1 @):1))
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~1
for a fixed constant vy = <f®71(B (F-1@) 690000") )
Xoo ’

Proof of Claim 4. The proof is parallel to that in [50], so we only provide a sketch. For
the given « € Zy, we choose a sequence of points py € (X, wy, ) such that p, — . Asin
[50], due to (4.5.7) and that the metrics wy, and 6 are equivalent in ®~*(B,__ (f~*(z),2r)),

it can be shown that

OBy, (f ' (2), 7 —€&)) C Buy, (pr,7) C @7 (B (fH(@), 7+ &) (4.5.10)
when k£ >> 1 and here ¢, — 0 as k — oco. It follows then that

lim er=gn.

ertrg" :/
k=00 JB,,, (pr.r) ®-1(Byoo (f~1(x)r)

From the equation w}’ = t" "e¥*0", we have

n—FK Pt N
watk (pkzr) t ¢ 9

Kk; (pk: ’I”) = n—re
JBuy sy & "EEOT
Jam (Byoo (F~1(2).1) er=o"

%

) ePoo YN ’

Jorr (B 1@
where for the convergence of the denominators we use a similar relation as in (4.5.10)

for py, . From the definition that V (px,r) — V. (x,r), we finish the proof of Claim
4. ]

Since along the Gromov-Hausdorff convergence the diameters are uniformly bounded

by D < 0o, Voly,, (Bu,, (Pk, D)) = Vol(X,wy, ). So

v

Vol,, (B, , D Pt @1
(z,D) = lim A ’“(pf ) = lim Jxe i = vo/ ef=f".
k—ro0 VOlwtk (Bwtk (pk, 1)) k—o0 fB eflegn X

o0
Uth (ﬁkal)

Therefore from Z = By, (x, D), we have
v(Z) < Uo/ erfn.
X

Assume Zj C Z were not dense, then there exists a metric ball By, (2, p) C Z\Zy,

by volume comparison estimate for V

0(Bay (2, p)) > Voo(z, D)u(p, D) =: 19 > 0.
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Then for any compact subset K C Zg, 7(K) < ©(Z) — n9. On the other hand, for any
open covering By, (z;,7;) of K with By (f~!(x;),2r;) geodesic convex in (X2, Xoo)

and r; < 4, we have

V (ziyr) = vo/ efoe ™ > UO/ e gm
ZZ: Z 01 (Byoo (1 (i) 1)) e-1(f-1(K))

taking infimum over all such coverings and letting 6 — 0, we get U(K) > vy fqu (f*l(K)) ePocgn .,
If we take K large enough so that f~1(K) C X2, is large, we can achieve that
- "o o o - Mo
K)> Pooflt — — = Poot — — >D(Z) — —.
oK) 2 vo Ll(xcom)e 10 UO/XE 10 = "2~ 3
Hence we get a contradiction, and Zy C Z is dense since 7(Z\Zg) = 0.
O

4.5.1 Proof of Theorem [4.1]

The proof of Theorem [4.1]is almost identical with that of Theorem We give the
sketch here. The solution g; lies in the Ké&hler class tL + (1 — t)Kx for all t € (tmin, 1].
By definition and straightforward calculations from estimates of Yau [I36] and Aubin
[4], for any t € (tmin, 1], the class tL + (1 —t) Kx is Kéhler and so0 tyin L+ (1 — tmin) Kx
is nef. We let Q be a smooth volume form on X and x € [tminL + (1 — timin)Kx] be a

smooth closed (1, 1)-form defined by
x = V—10910g Q) + 6.
Then the twisted Kahler-Einstein equation is equivalent to the following complex
Monge-Ampere equation for t € (¢in, 1]
(X 4 (t = tmin)0 +V—=1000)™ = (t — tyin)" "e?tQ, (4.5.11)

where £ = V(tminL+ (1 —tmin) Kx ), the numerical dimension of the line bundle ¢,,;, L+
(1 — timin)Kx. By Proposition there exists C' = C'(X, x,0) > 0 such that for all
t € (tmin, 1],

[t = Vill Lo (x) < C,
where V; is the extremal function associated to x + (£ — t;nin )0. The rest of the proof for
Theorem is exactly the same as that of Theorem and we leave it as an exercise

for interested readers.
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Chapter 5

Kahler-Einstein metric near isolated log canonical

singularity

This chapter is from joint work [32] with Ved Datar and Jian Song.

5.1 Introduction

Existence of Kahler-Einstein metric on complex manifold has been the central topic
in complex geometry for decades. Aubin and Yau [4, 136] establish the existence of
Kahler-Einstein metric independently on canonically polarized compact manifold. And
Yau [130] establishes the existence of Ricci flat metric on complex manifold with zero
Chern class by solving the so called Calabi conjecture in [136]. Also, recent results
of Chen-Donaldson-Sun [16] 17, 18] also Tian [I127] confirm the Yau-Tian-Donaldson
conjecture for smooth Fano manifolds. Also, there are intensive study of degenerate
Monge-Ampere equations and construction of singular Kéhler-Einstein metrics on sin-
gular varieties with Klt singularities, for example in [40l [139], based on Kolodziej’s
fundamental result in [72]. For canonical polarized variety with log canonical sin-
gularity, there are analytic difficulty to solve the Monge-Ampere equation. Berman
and Guenancia [6] construct Kahler-Einstein metric on these varieties by a variational
approach. However, little is known about the geometric property of these singular
Kahler-Einstein metrics. Hence in our paper, we attempt to describe the geometry
of the Kahler-Einstein metric with negative curvature on singular canonical polarized
variety, especially its behaviour towards the log canonical locus.

On the other hand, understanding singular Kéahler-Einstein metrics is crucial in
terms of the compactness of complex manifolds coupled with Kéhler-Einstein metrics.

In their fundamental work [38] 9], Donaldson-Sun showed that the Gromov-Hausdorff
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limit of a sequence of none collapsed polarized Kéahler-Einstein manifold is a Q -variety
with Klt singularities and the tangent cone at any point of the limit metric space
is unique. Motivated by uniqueness of tangent cone result, Li-Wang-Xu [83] further
prove that on a Klt singularity with Ké&hler-Einstein metric, the Ricci flat tangent
cone is independent of the metric structure based on a series of deep work in [81]
82]. And from a global scale, recent deep result of Hein-Sun [59] proved that for each
Calabi-Yau variety with isolated cone singularity, for example, cone over a smooth Fano
Einstein variety, the global Kéhler-Einstein metric is asymptotically the same as the
local Ricci flat metric constructed by Calabi Ansatz. Note that all the results mentioned
above are concerned with non collapsed Kalher-Einstein metrics or more intrinsically
Klt singularity, therefore it is natural to consider the Ké&hler-Einstein metric on log
canonical singularity, which serves as the collapsed limit of complex manifold coupled
with Kahler-Einstein metrics with negative curvature. In this paper, we prove a rigidity
result concerning the Einstein metrics towards certain types of isolated log canonical
singularities, which is an analogue of the result of Hein and Sun. They push the
analysis of metrics to the tangent cone by blowing up the metrics at the singularity and
we analyze the metrics by push them to infinite end.

Now we outline our results. In paper [I114] of the second author, not only Kéahler-
Einstein metric is constructed on the canonical polarized variety with log canonical
singularity, it is also shown that in a KSBA family of canonical polarized varieties,
the Kéhler-Einstein metric of nearby fiber will converge to the singular Kahler-Einstein
metric on the central fiber in Gromov-Hausdorff sense and the singular metric on central
fiber form complete end towards the log canonical locus. In this article we want to move
one step further, aiming to have a more concrete description of the degeneration of
Kahler-Einstein metrics towards the log canonical locus on the central fiber. We attack
this problem by reducing it to a local question near the singularity. Roughly, we first
construct infinite many local K&hler-Einstein metrics by solving related Monge-Ampere
equation with Dirichlet boundary, which seems to be interesting itself. Then for certain
type of log canonical singularity, we combine geometric argument and estimate from

the Monge-Ampere equation to compare these different local Kéhler-Einstein metrics.
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It turns out that these different local Kahler-Einstein share the same metric behaviour
towards the complete end. In particular, in complex dimension 2, we have a complete
picture of the metric degeneration of canonical polarized surface based on the good
local model metric constructed by Kobayashi and Nakamura in [69, [70].

We first introduce standard definition of log canonical singularity.

Definition 5.1. Let X be a normal projective variety such that Kx is a Q-Cartier
divisor. Let m : Y — X be a log resolution and {E;}!_, the irreducible components of

the exceptional locus Exc(m) of w. There there exists a unique collection a; € Q such

that

P
Ky =7"Kx + ZaiEi.
i=1
Then X 1is said to have

o terminal singularities if a; > 0, for all 1.
e canonical singularities if a; > 0, for all 1.
e log terminal singularities if a; > —1, for all i.
e log canonical singularities if a; > —1, for all i.

We also want to fix the geometric domains that will be discussed throughout this
paper. Recall our setting in the introduction.
Setting: Let (X,p) be a germ of isolated normal log canonical Q-Cartier singularity
embedded in (CV,0). Our main interest in this paper will be neighbourhood of the

singular point p. Using a bounded PSH function p on X, we cut domains
Q:={p<a} (5.1.1)

contained in X such that 00 are strongly pseudoconvex. We also fix a Kéhler metric

x and volume form Qx on X

X =vV—190p,Qx = e’V AV
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where V' is local holomorphic volume form (up to taking root of multiple holomorphic
volume form) on a neighbourhood of p in X. The complex Monge-Ampere equation of

our interest in relation to the Kéhler-Einstein equation on 2 is given by

(X +V—100p)" = e¥Qx.

o0 =f

(5.1.2)

where f is an arbitrary smooth function.
We have to prescribe singularities of the solution ¢ to obtain a canonical and unique
Kaéhler-Einstein current on X. To do so, we lift all the data to a log resolution 7 : ¥ —

X. By definition of semi-log canonical singularities,
Ky =71"Kx +ZaiEi — ijFj, a; >0, 0< bj <1.
i J

We approximate equation ([1.3.1]) in the following way. We pull back all the data
from X to Y. Let o be the defining section for £ = Ele a;F; and o be the defining
section for F' = ijl b; F; (possibly multivalued). We equip the line bundles associated
to F and F with smooth hermitian metric hg, hr on Y. Let 2y be a smooth strictly

positive volume form on 7~1(€2), defined by
Qy = (loplh,) orlh,Qx.

Let 0 be a fixed smooth Kéahler form on Y and we consider the following family of

complex Monge-Ampere equations on {2 for s € (0, 1),

(X + 80 + V=190y5)" = e¥* (logl;_ + s)(lorl; . +5) ' Qy.
1/}5‘39 = f

(5.1.3)

Abusing notation, we still denote the domain 7=1(2) by Q. By the same argument as
step 1 of theorem , we can assume f = 0 and there exists a unique smooth solution
15 solving equation for s > 0. When s = 0, equation (5.1.3)) coincides with
equation . Next we want to use pluripotential theory to get uniform C° estimate
with barrier of ;. Similar C? estimate of degenerate Monge-Ampere equations are
have been obtained in different settings such as on unit ball in [72] and singular variety

with Klt singularity in [40} 37, [139]. The main differences of our geometric domain with
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previous setting are twofold: Firstly, we consider the log canonical singularity, which
means we only have L' integrability instead of LP(p > 1) integrability of right hand side
of equations , hence we don’t have uniform C° control of solutions of a family of
degenerate Monge-Ampere equations. Secondly, our geometric domain €2 is not globally
strongly pseudoconvex after we blow up the isolated log canonical singularity.

Our theorems are concerning the construction of Kéhler-Einstein metrics near
isolated log canonical singularity.

We point out that a large class of log- canonical singularities admits uniformiza-
tion with property (A) which is the key assumption in Theorem Especially, a
complete picture of uniformization of isolated log canonical singularity in complex di-
mension 2 is obtained in [69, [70]. Also, another interesting family of uniformization of
high-dimension log canonical singularity (cone over abelian variety) is constructed in
[41]. Concerning the existence of Kéhler-Einstein metric, our first construction is more
general than the second one. But our second construction will be more useful when we
are comparing the model metric y in property (A) with an arbitrary complete metric
near the singular point p.

After we get the existence of many different local Kéahler-Einstein metrics on (Q\ p),
we focus on investigating the geometry of these complete local metrics. It turns out that
these different local Kéhler-Einstein metrics are asymptotic close to each other at the
infinity end. To achieve this, we first show that any complete Kéhler-Einstein metric on
(€ \ p) comes from the solution of equation by a geometric argument. Suppose
we have two complete Kéahler-Einstein metric y and x’ on (2 p), by Kéhler-Einstein

condition, we have

x = V—1001og X", X' = V—1001log X", X' = x + V—100¢

where ¢ := log 2‘%: The crucial thing is that we show that ¢(z) — 0 when =z — p .
This seems to be none trivial even if we assume Y’ comes from one solution of equation
(1.3.2)) corresponding to a choice of boundary function f, since we can have very huge

perturbation of boundary condition f, from which we can only conclude boundedness

of ¢ globally on (€2 \ p). Now we state our estimate of ¢ . For any €, we define a
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neighbourhood Ue of p to be U, := {z|dist, (z,00Q) > 20&") and dist/(x,08) > @}

Geometrically, this is a region consisting of points which are far away from the bound-

ary 09 measured in both metrics x and x’, then

Theorem 5.2. (Theorem For anye >0, —e < p <einU..

Remark 6. The above theorem is true as long as x and X' are complete. No other

metric properties are required.

With the above theorem proved, especially the boundedness of ¢, if we further as-
sume X has bounded geometric property (A), we are able to show that any complete
metric X’ on (Q \ p) is one solution of equations by showing the uniqueness
in proposition of smooth solution of equation with the fixed boundary
condition. Note that in theorem , for fixed f, we only find one solution in certain
function space, but apriori we don’t know whether the smooth solution is unique or
not. Then use theorem to control high-order derivatives of ¢. Remember that we
already prove the decay of ¢ towards the complete end in theorem , we are able

to conclude that:

Theorem 5.3. (Theorem Suppose (2, x) is a metric with property (A) and X'
18 another complete Kdahler-Einstein metric on §2. Then for any positive number € and
any non negative integer k, we have Zle Violly(q) < eC(k, X, f) for q € U. where C

1 a constant depends on the geometry of x, k and f.

As an important application of the above theorem ((1.10]), we have a detailed de-
scription of degeneration of Kéhler-Einstein metrics on canonical polarized varieties

with certain type log canonical singularity. In [I14], the second author proves that

Theorem 5.4. Let w : X — B be a stable degeneration of smooth canonical models
of complex dimension n over a disc B C C. Suppose the central fibre 7=1(0) is given

by Xy = U:j:l X, where {Xy}a are the irreducible components of Xy. Let g be the
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unique Kdhler-Finstein metric on X; for t € B* with

Ric(ge) = —gt-

Then the following conclusions hold as t — 0.

1. There exist points (p},p7,...,p{Y) € X x Xy x ... x Xy such that (Xy, gi, pr, ..., D7)
converge in pointed Gromov-Hausdoff topology to a finite disjoint union of com-

plete Kdahler-Einstein metric spaces
A
H YCK’ daa ya

2. Let Ry, be the regular part of the metric space (Yq, dy) for each a. Then (Ry, ,dq)
is a smooth Kdahler-Einstein manifold of complex dimension n and the singular

set Sq = Yo \ Ry, is closed and has Hausdorff dimension no greater than 2n — 4.

3. Hél:l Y, is homeomophic to Xy \LCS(Xy), where LCS(Xy) is the non-log terminal

locus of Xy. Hézl Ry, is biholomorphic to the nonsingular part of Xj.

4. EA Vol(Yy, do) = Vol(Xy, g¢) for all t € B*, where Vol(Yy, dy,) is the Hausdorff

measure of (Yo, dq).

Finally, theorem ([1.10)) and theorem ([5.4]) together give our last theorem:

Theorem 5.5. In the same setting as theorem . Then towards the isolated log
canonical singularities on the central fiber with property (A), the Kdhler-Einstein metric

on center fiber is asymptotic the same as the model metric x defined in property (A).

Proof. Ttem (3) in Theorem ([5.4]) gives the completeness of the unique Kéahler-Einstein
w constructed in [IT14] towards the log canonical locus. Then theorem ([5.5) gives the

asymptotic closeness of local model metric xy and the global metric w. O
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5.2 Pluripotential theory and construction of Kahler-Einstein met-

rics: First Approach

The perturbed complex Monge-Ampere equation of our interest in relation to the

Kéhler-Einstein equation on € is given by (5.1.1)

(x + 50 +V/=1000,)" = e (logl;,, + s)(lorl;, +5) 7 Q.

(5.2.1)
1/]8‘39 = f
We first generalize the deep results of [72] to our geometric domain.
Theorem 5.6. Let s be the smooth solution of equation on §2:
+ 50 4+ /—1901,)" = €Y g
(X ¢s) gity (5'2.2)

wslan = 0
where Qy is smooth positive volume on Q and g € C*(Q) satifying fQ gty < Q,

then we have |¢s| < C, where C = C(Q,x,n,Q).
We do some preparations for the proof.

Lemma 5.7. Let Q) be as above and w be a Kdhler metric on €, then for u,v €

PSH(w) N L>®(Q) satisfying lim,_.(u —v) >0 for any z € 0 we have

/Kv(w +V/=109v)" < / (w + V—100u)"™.

(u<w)

We also introduce some standard concepts in pluripotential theory. For a compact

set K in a domain €, here § is not necessary in CV. Define

Cap(K,Q) := sup{/}{(ﬁ@@u)”,u € PSH(Q),—1 <u <0},

Cap,(K,Q) = sup{/ (w++vV—=100u)",u € w — PSH(Q), -1 < u < 0}
K
Uk.o(z) == sup{u(z)lu € PSH(Q),u|lgx = —1,—1 < u <0},
Up k.0(z) == sup{u(z)|lu € w— PSH(Q),ulx = —1,—1 < u < 0}

The following lemma says that the capacity Cap, (K, 2) can be computed by extremal
function U, g . Similar results are proved on strongly pseudoconvex domain in C"
and compact complex manifold and a simple modification will give a version for our

purpose.
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Lemma 5.8. For a compact set K in Q, we have cap,,(K, ) fK wH— 88uw K) ,

where U, i is the upper semi regularization of function Uy, k.

Proof. We sketch the proof here. First of all, by Proposition 4.1 of [53], (w—H/—ilagU;’j’ )"
is supported on K U {U; jc_o} (In our setting, set {U] , = 0} is larger than the
set 02). And since U} x itself is w- PSH with value between —1 and 0. Hence
Jre(w+ \/—7185UZ7K)” < Capy, (K, ). On the other hand, fixing a w- PSH function u
with —1 < u < 0, we have

/I((w+¢j188u)”§/

{U::’K<u}

(W V/=T00u)" < / (W V/=TOTU )" = / (/=10 )"
{U} g <u} ’ K ’

The first inequality is due to the facts that (w + /—190u)" doesn’t charge mass on
{Uuvx # Uj i} and K C {Uy,k < u}. The second inequality is due to comparison
principle and the third inequality is due to the facts that {U} r < u}N{U} x =0} =0

and (w+\/—185U;§’K)” is supported on K U{U}, ;- = 0} . This will finish the proof. [
For fixed s, we are interested in the set where 1, is small. We define:
U(l) :=={y < —=l},a(l) := Cap,(U(1),),b(l) := / (w+ V—=199¢9)"
U(l)

The following lemma roughly says that in our geometric settting, the Cap,(U(l), <)

can be controlled by b(l + ¢) in some sense.

Lemma 5.9. Fizw := ws = x+s0 and let ¢ := s be the solution of equation of .
Then for any 0 < t < 1,1 > 2, we have t"Cap,(U(l +1),Q) < fU W+ /—100y)™.

Proof. Consider any compact regular set K C U(l + t), the w — PSH function W :=
1(¢ +1), and the set V := {W < Uj i} We can verify the inclusions K C V' C U(I).

Once we have the inclusions, we can apply lemmas (5.7) and (5.8]) to conclude:
Cap,(K,Q) = / (w+V=180U} )" < / (w+ V=190U} )" < / (w+ V—100W)"
K 1% 1%

< t”/v(w—i— V=190y)r <t /U(l)(wr V=199y)" = t~"b(1).
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We also want to show the Monge-Ampere measure A(K) := [, (w++/—190¢)" can

by controlled by capacity.

Lemma 5.10. For any compact set K C Q, we have MN(K) < C;Cap,,,(K,Q)! for

constant | large.

Proof. For simplicity, we assume that our domain €2 is part of compact complex mani-
fold M without boundary and the metric w := x+s6 is the restriction of a Kahler metric
@ on M. Using equation, we know A\(K) is LP,p > 1 integrable with respect to a fixed
measure. And it is standard that A\(K) < C;Capg (K, M)!, where C; is independent of
s, see [37]. And it is easy to see from the definition that Capy (K, M) < Cap,(K,Q).
This will finish the proof.

At last we need to show that the capacities have uniform decay.

Proposition 5.11. Let 15 be the solution of equation (5.2.9), then Cap,,, (U(l1+1),Q) <

C’lin for some constant C' independent of | and ws.

Proof. The key observation of us is on {2, x can be represented by v/—199p, so Cap, (K, Q) <

ACap(K,?) whese A only depends on the norm of |p[ze ) which is bounded. This

enables us to compare Cap,, (K, Q) with Cap(K, Q) uniformly. Now we conclude that:

Capa, (U(1+1),9) < /U s+ VIIBN = XOW) < Cap(U(D),9)

< ACap(U(1),) < ACap o v (U(1) A/ + V- 88U* n)
HON.

where [ >> n > 0. Note ¢ = 0 on 92 and m < —1 on U(l), by comparison principle

we get

ne 1 S
/Ua)(l 7 Wi))" —/U(l)(z n+Faa S (T /S](WS—F\/T@@w) <C

Now let 7 — 0, then we finish the proof.

—n)"
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Remark 7. Although in lemma @ and Proposition , the estimtes are concerned

with fix vs, all the constants are independent of s.
The following lemma is well-known and its proof can be found e.g. in [40].

Lemma 5.12. Let F' : [0,00) — [0,00) be a non-increasing right-continuous function

satisfying limy_,o F'(I) = 0. If there exist o, A > 0 such that for all s > 0 and 0 <r <1,

rE(l+7) < A(F(1)",
then there exists S = S(ly, o, A) such that

Fl)=0

for all 1 > S, where ly is the smallest | satisfying (F(1))* < (24)71.
Proof of Theorem @ Define for each fixed [ large,

F(l) := Cap, (U(1), )Y/
By lemma and lemma applied to the function 5, we have

rF(l+7r) < AF(1)?, for allre|0,1],1>2,

for some uniform constant A > 0 independent of r € (0, 1]. Proposition implies
that lim;_, ., F'(I) = 0 and the [y in Lemma can be taken as less than (2AC)Y,
which is a uniform constant. It follows from Lemma that F'(I) =0 for all I > S,
where S < 2+ lp. On the other hand, if Cap,{¢s < —l} = 0, by Lemma (5.9)) , we
have the integral b(l) = 0. Hence the set {1y < —l} = (. Thus info(¢)s) > —S. Thus
we finish the proof of Theorem .

]

We introduce two more parameter § and € in order to apply the maximum principle

and consider the following family of complex Monge-Ampére equations

g 2 2
eVsde(loplic +5)(lopl}  +5)

(14 8)x + 80 + V=100¢s5¢)" =

¢37576|BQ = 0

Qy.
(or 2+ NG
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Here both § and e are sufficiently small and we require € > 0.

By standard lemma, if (X, p) is Q factorial singularity
X —sD (5.2.4)

is ample for s > 0 smaller than a fixed constant sg, where the support of D coincides
with the support of the exceptional divisors of a log resolution defined in . We can
assume sg = 1 by adjusting the coefficients of D. Let op be the defining section of D
and choose a smooth hermitian metric hp on the line bundle associated to D such that

for any sufficiently small s > 0, and denote X’ = Ric(hp)
x —sx' > 0. (5.2.5)

Lemma 5.13. For any ¢y > 0, there exist 6o > 0, C > 0 and C' = C’(eg) > 0 such
that for any —dp < 6 < dp, 0 < s <1, and 0 < € < €/2, the solution s 5. of equation

satisfies the following estimate on'Y,
2 l
€ologlopl,, —C" < tsse < C. (5.2.6)

Proof. We first obtain the upper bound of ;5. Since all 95 5. are Af- PSH for some
fixed large constant A and v, 5. = 0 on J€), we can get the upper bound of ;5. by
comparing 15 5. with solution to Agp = —A, p|aq = 0 on Q. Next we fix a sufficiently
small g > 3¢y > 0 and consider the following family of equations on Y

ev5:a (Jopl3 +5)(lR, +3)

’UF‘iF +s

(14 8)x + 50+ V—1000s5¢,)" = Qy, (5.2.7)

where —50 < ) < (50.
Since op vanishes along F, there exist n = n(ey) > 0 and K = K(€p,d9) > 0 such

that for all 0 < s < 1, we have

< K.

2
H (loplhy +8)(onli, + )

|0’F|}QLF + s

Theorem (j5.6]) implies that there exists C; = C1(dg, €g) > 0 such that for all 3|6| < dp,
0<s<1,

V5,660l Lo (v) < C1-
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Now we will compare 15 5. to 15 5 ¢ by applying the maximum principle. Let

¢ - ws,é,e - ws,(;/,eo — € log ‘O—D’%LD'

Then ¢ satisfies the

(40X + 50+ V1005500 + (5 = ' — co)x + colx = X) + V=1099)" _ ( lonl, +5 )

((L+0")x + 50 + V/=100%s ¢, )" L+ slopl;
(5.2.8)

We choose &' = —dy and require 0 < € < ¢y. Since ¢ is smooth away from the zeros
of D and ¢ tends to oo near zeros of D, we are able to apply the maximum principle

to the minimum of ¢ and there exists Cy > 0 such that
lgf ¢ > _027

Since 15 57 ¢, is bounded, there exists C3 > 0 such that for all 36 € (—dp,dp), 0 < s <1
and € € (0,€/2),

Vsse > —Cs + egloglopli .-

Next we prove the boundary C! estimate,

Lemma 5.14. Let ;5. be the solution of equation , then [Vt 5clon < C

ews"s’e(‘O—Dli},"_s)('aElIQLEJ’_S) Qy
(lorli, +9) (A+0)x+sO)"

in the neighboughood of the boundary 9f2, we use the same argument as Step 4 in the-

Proof. Noticing that 1, 5 and are uniformlly bounded

orem (|1.8) to get the estimate we want. O
We also prove the global C'! estimate with suitable barrier function.

Proposition 5.15. Let 1) 5 be the solution of equation , then ]Vg¢57575|2|ap|hND <
C where N is a fixed constant, g is a fived metric and C is independent of parameters

4,8, €
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Proof. We first fix a constant 7 such that y — nv/—100 log ‘O'D‘}QLD > 0 and rewrite the
equation ([5.2.3) as

_ n ePss.c(|lop 2n opl?¢ +s)(logl?  +s
((1 +0)x —nRic(hp) + s + \/—7185@57576) = ( ‘hD)(’ 2|hD Mozl )Qy.
(lorly, + )

where

Gsde = Vssc — nloglali,,.
Using the fact that 1 > —glog]aD\%D in theorem , we know that ¢ > —C’
where —C” is uniform with respcet to all parameters ¢, s,e. Now our reference metrics
(1+6)x—nRic(hp)+sb in the above equation are uniformlly non degenerate as 9, s — 0,
so can safely regard them as a fix metric g. Define

e?s<(loplar )onlis, +)(loglh, + ) Qy
(lorli, +5) (L +6)x — nRic(hp) + s0)"

F =

Now we define H = log|V¢\§ + log|0D\éVD — v(¢) where N is a constant, v is a
one variable monotone increase function to be determined. Here we also omit the
parameters s, d, e for simplicity. We remark here that since the leading term of our
function y(x) will be Az and ¢ blows up in the rate of —nlog |UD’}21D’ we can conclude
that log |V¢|§ +log |0D|hND < 7(¢) when An > N+2 and z — D. So it’s safe to assume
H has a maximum in 2. Direct computation shows that, see also [95] page 21,

2ReV,, log FV™¢ IVVoloy + VYL, VIV
Vo2 Vo2 IVolg

where A’ is taken with respect to metric ¢’ = (14 6)x — nRic(hp) + s0 + /—109¢ and

Alog [Vo[2 >

(5.2.9)

—A tTg/g+

A is the bound of bisectional curvature of metric g. We estimate

2ReV,, log FV™¢
Vo3

According to a lemma in [95], we have

| <C+Cloglyy +lorly? +loply) < Clopl,,  (5:2.10)

Vol + V90, VIVORE . VIVOR o, . VIVel Vo
VoI2 Vol = VoR [V VR " [VoR°
(5.2.11)

At the maximum of H, we have

Viog|Ve|* + Vlioglopli, —7'Ve =0
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Hence we have

VIVel; Vo VIVelZ Vo
2R( L o) — 2R L =5)e
IVolg " [Vols IVolg " [Vols
Vo Vo
=2R(—Vioglopl? +~ Ve, ——=)y —2R(=Vliog|opl? ++'Vd, ——
\V4 2 \V/ 2
s op(- 7Pl VO, o VPl VO, (5.2.12)

oo, VR ook, 'V
At the maximum of H, we can assume \0D|hND |V¢\3 > 1 otherwise we are done. Since

N > 4, we have

Vieol?, Ve Vo lopl;, Vo2
2R(— D | < 2R(V|op|? , =)g| < |V]ep? |2 + —L—ZL
‘ < ‘O—D’%LD ’V(ﬁ‘g)g < ’hD ’V¢|g>g ’ ’ ‘ ‘hD’g ’UD %D\Vdg

< C|Vlopli,latrgg +lopli, Vol
Viep|? v v
2R e YO | AR(VIon . o) <O (5.213)

lopls, "IVl Vély "™

On the other hand,

—A'y(¢) = =7 A'¢—+"|Vo[2 =trgg —ny' —+"|Vol2, Allogloply, < Ctrgg.

Combine this equality with preceding estimates ((5.2.10}, [5.2.11} [5.2.12] [5.2.13)), we have

NH> (7 = A= Ctrygg— (n+2)7 = (" + lopf2,) IVl — Clopl;2  (5.2.14)

Recall that ¢ > —C’, now we construct our function v as

1
= (A e — ——
W@) =@+ Ot D= Tm
Then by (5.2.14)) we have
_ 1
AN H Zt?“grg— (n+2)(C+1—|—A) —C‘UD’hg +(m - ’UD‘?lD)’V¢‘Z’

Noticing that ¢ < C — 2nlog ’JD‘}QZD, so we can safely assume that

1

Gro+1p

2 2
—loplh,) = loblh,
Finally we conclude that at the maximum of H, we have

trgg < (loplhy) >
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Hence

IVoly < Cllopln,) ™ IVel; < Cllopla,) ™

Choosing N = 6, we have H,,,, < C, and clearly we have |V¢’Z|O‘D|7 < C since 7 is

blowing up as |log|op|n, |- O

Lemma 5.16. Let 1), 5 be the solution of equation M’ then |V§¢57576|39 < C where

g is a fixed metric and C is independent of parameters d, s, €.

Proof. Notice that our boundary is strictly pseudoconvex, and all data in the equation
(5.2.3)) is unifomrlly bounded near the boundary, we can use the local argument of

CKNS [19] to conclude. O

Next, we will prove second order estimates with bounds from suitable barrier func-
tions. There exists an effective Cartier divisor D on Y such that for any sufficiently

small s > 0,

Lemma 5.17. There exist A, 01, ¢ > 0 and C = C(d1,€1) > 0 such that for all

01 <0<d0,0<e<er and0<s<1,
sup (loli,) (Agwsse) < C, (5.2.15)
where Ay is the Laplace operator with respect to the Kahler metric 6.
Proof. Let w = (1+468)x + s0 +/—100t5 5. Then we consider the quantity
H =logtry(w) — A?’zﬁ&&6 +2A?log |0"}2LD

for some sufficiently large A > 0 to be determined. Straightforward calculations show

that there exists C' > 0 such that for all 6 € (—d1,61), € € (0,€1) and 0 < s < 1,

A H > Aylogtre(w) + 24%tr,(x — soRic(D)) — A3
> Atr,0 — CM —_ A3
tro(w)
1 9" 1 1
> At (=) - ———— — A3
- ( T@(W)) l(wn) ! tT@W|O'D’%%
1 1
> Altrg(w) " |oply — A7

trgw|0D|}2f[“)
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where «, 8 are fixed constants only depending on the coefficient of exceptional divisor
in the log resolution of singularity. For the third and fourth inequality, we use the
equation. Noticing that

H < log(trg(w)|opli)
We may assume H obtains maximum in the interior of €2. Also, since our goal is to
bound H, WLOG we assume

(tro(@)lopliiy) > 1

otherwise we are done. Applying the maximum principle, at the maximal point Z.,qz
of H,

2
H(xmaz) < tT@(UJ)|O‘D|;.?D < nA2

On the other hand, since 1, 5. < C, we have

This proves the lemma.

O]

The following lemma on local high regularity of v, s is established by the standard
linear elliptic theory after applying Lemma ([5.17)) and linearizing the complex Monge-

Ampere equation (5.2.7]).

Lemma 5.18. For any compact K CC (2\ p) , there exist 53 > 0, ea > 0 and

C =C(k,K,b2,€2) > 0 such that for any —02 < <dy, 0<e<ey and 0 < s< 1

[Wsellove < C

Before we take §,¢,s — 0, we derive a uniform estimate with respect to variations

by the parameters 9, €, and .

Lemma 5.19. For any compact K CC (Q\ p) , there exist 63 > 0, e3 > 0 and
C = C(K,J3,€3) > 0 such that for any —d3 < 6 < d3, 0 < e <e3 and 0 < s < 1, we
have

8ws,5,e

' 61/}3,6,6
L= (K) e

0s

<C. (5.2.16)

3%,5,5
04

.

Lo (K) Lo (K)
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Proof. By the implicit function theorem, the solutions of (5.2.7)) must be smooth with

respect to the parameters §, € and s. Let f = 8%5‘5‘6. Then f € C*°(Y) and

As,&,ef = —tru, ;. (x)+ f,
where Ay 5 is the Laplace operator associated to the metric
w=(1468)x + 0+ V—100ps ..
The function H = f — 10, 5 + log |0D|%LD satisfies the following equation
AgscH > f—10n = H 4+ 10t 5, — log ]aD\,QLD — 10n.

Then for all sufficiently small 6 and € > 0, H is uniformly bounded above and so f is

ad}s,é,e
’T and

uniformly bounded above on any compact subset in Q \ p. Estimates for

‘% can be achieved similarly.

Now we are able to prove our Theorem (/1.7)).

Proof. we have uniform estimates for v, 5. away from op, for any sequence s;,d;,€; —

0, we can assume Vs, 5. ., converges, after passing to a subsequence, to some

5€j
p € PSH(x)NC>®(2\ p).
In particular, there exists C' > 0 and for any € > 0, there exists C. > 0 such that

elog]UD\;le —C.<p<C.

(1), (2) and (3) can be proved from the above conclusion by passing the estimates
of 1, 5 to the limit . Furthermore, ¢ solves equation (1.3.1]) on (2\ p).
(4) can be reduced to the following statement: Suppose ¢ is a plurisubharmonic

function on the unit ball B ¢ C" such that
/ |21 72e?(V/=1)"dz1 AdZT A ... ANdzn A dZy; < 00,
B

then ¢ tends to —oo near BN {z; = 0}. Such a statement is proved by Berndtsson (c.f.
Lemma 2.7 in [6]). From the left hand side of equation ([5.2.3|) and Stokes formula, we
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know that, o — —oo near the exceptional divisor with discrepancy —1. On the other
hand, ¢ tends to —oc near 7~ 1(p) in Y, otherwise there exists a curve C' in exceptional
divisor and C' intersects at least one exceptional divisor with discrepancy —1, and so ¢
must be constant on C since it is pluriharmonic with singularities better than any log
poles. This leads to contradiction and so ¢ must tend to —oo near 7—!(p). Therefore
the function ¢ can uniquely descend to (2 \ p).

(6) can be proved as follows. Suppose ¢’ € PSH(Y,x)NC>(Y \ op) is a sequential

limit of another sequence s, s Then by the estimates in Lemma ([5.19)), on any

s€5°

compact set K CC Y \ op, there exists C' > 0 such that for sufficiently large j > 0,

Sup Vs8¢, = Vg0 | < C (107 — 051 + lej — €5 + |sj — s51) -
This implies that
/
olk = ¢k

and so ¢ = ¢’ on Y after unique extensions over op since both lie in PSH(Y, x). The
above argument implies that as s,d,e — 0, the solution ), 5. converges to the unique
limit .

O

We will also prove a uniqueness result, which is different from the uniqueness theo-

rem in [6].

Lemma 5.20. There exists a unique solution ¢ € LS (2\ p) NC®(2\ p) satisfying

loc
1. (x +vV=100¢p)" = e#Q on (Q\ p),

2. For any € > 0, there exist C > 0 and C, > 0 with the following estimate

where op s an effective divisor supported on the locus of exceptional divisor.
In particular, ¢ € PSH (X, x) satisfies all the conditions in Lemma .

Proof. We first prove the uniqueness. Let ¢ be the Kahler-Einstein potential con-

structed in Lemma as the limit of 955, (5,6, € = 0). Suppose there exists another
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¢’ satisfying the conditions in the lemma and for any € > 0, there exist C; > 0 and

Cy = Cs(€e) > 0 such that
eloglopl2, — Cr < ¢ <O
We consider the quantity

¢ = 1/13,—5,5 - 90/ + 5 log ’UD|}21D7

where op and hp are defined in (5.2.4) and (5.2.5). Then ¢ satisfies the following

equation on the log resolution Y,

(X + V=100 + 50 — dx + 8*Ric(hp) + V=100¢)" _ ,(lopli, +5)(|ol}i, + s)lol},

— e 3
(X +V—190¢)" lonlilloel;, (o), + )
We pick s << § << 1, € << 6% and apply the maximum principle to ¢. There exists

C > 0 such that for all s << § << 1, € << 62,
supop < C.
X

Let 5,9, — 0. We have
<@

Similarly, we can prove ¢ > ¢’ by applying the maximum principle to

¢/ = ws,é,e - 30, - 510g |UD‘%D-

5.3 Bounded geometry and construction of Kahler-Einstein metrics:

Second Approach

In this section, we want to use bounded geometry methods of [69, 20, 129] to con-
struct complete Kéhler-Einstein metric on 2\ {p}. So our geometric domain of interest
will be © with boundary 02 and also one non compact end, which topologically is
punctured neighbourhood of p. We also make the following convention:

Convention: In this section, when we talk about Kéhler-Einstein metric on (Q,w), we

assume its Ricci curvature is —1 and when we talk about complete metric, we assume
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the distance goes to oo when point in 2 goes to p in the Euclidean topology.
Before proving our theorem [I.8] we recall definitions of quasi-coordinate which are used
by [25] 69, 129] to deal with complete Riemannian manifolds with bounded curvature

but with shrinking injectivity radius.

Definition 5.21. Let V be an open set in C™ with coordinates (v',v?,--- v™). Let
X be an n—dimensional complex manifold and ¢ a holomorphic map of V into X. ¢

1s called a quasi-coordinate map if it is of maximal rank everywhere. In this case,

(V, ¢, (v1, 0%, .-+ [ u™)) is called a quasi-coordinate of X .

Definition 5.22. Let U be a neighbourhood of p in Q, being away from 0 and w
is a complete Kdhler metric towards p on (2\ p). A system of quasi-coordinates on
U = U\{p} X) is a set of quasi-coordinates T' = {(Vy, ¢, (01,02 -+ ,0))} of U with

the following properties:

(a) U C |J,(Image of V) C (2\ p);

(b) The complement of certain open neighborhood U C U of the infinity point o is
covered by a finite number of quasi coordinates which are coordinate charts in the

usual sense;

(¢) For each point x € U, there is a quasi-coordinate Vg and & € Vg, such that
¢p(T) = x and dist(Z,0Vp) > € in the euclidean sense, where € is constant

independent of B;

(d) There are positive constant ¢ and Ag,k = 1,2,--- | independent of o, such that

for each quasi coordinate (Vy, ¢o, (vE, 02 -+ v)), the following inequalities hold:

0_1(5,3) < (Goiz) < (653

orta
‘av q gaz]’ < Ap+qavp7 q,

where (g,;;) denote the metric tensor with respect to (Vi, ¢pa, (V5,05 -+, 00)).

Roughly speaking, a set of quasi coordinates of metric domain (2 \ p,x) is a set

of coverings of (2 \ p) coupled with the pull back metric satisfying uniform bounded
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metric properties. Before proceeding, we need introduce some standard definitions

Cheng-Yau’s function space, generalized maximum principle etc.

Definition 5.23. We define the Hélder space of C** function onU = Z:l\\p by exploiting
the quasi-coordinate system. For any nonnegative integer k, v € (0,1), we define

opta

) = sup (sup " |apa O+ swp 3 a2
Vgel ZEVﬂerqgk ’U zzEV5p+q &

Let’s introduce one more compact set V. with Q\U C V C Q to cover whole 2. Now
define:

[l (2) = [[ullia @) + lullr.a(V)
The function space C*<(() is the completion of {u € C*(Q)|||ullx. () < oc}.

Remark 8. The existence of quasi coordinate is crucially used in our proof. The

classical interior Schauder estimate for a linear elliptic operator L, is as follows,
[ullekeqvyy < Csup ulv, + | Lul| gr—2.0(vy)), where Vi CC Vo C R™.

Notice that the constant C' depends on the ellipticity of L, the C*=2% norms of the
coefficients of L and the distance between Vi and OVs. If we have a quasi coordinate
system defined above, the Schauder estimate on U is reduced to that on a fized bounded

domain in Euclidean space.

Before we proceed, we state and prove the following modified version of Yau’s gen-

eralized maximal principle on noncompact manifold.

Lemma 5.24. Suppose (U,w) is defined as above. f is a smooth function on U, which
is bounded from above, and sup f > supgy f. Then there is a sequence {y;} in U such
that lim; o0 f(yi) = sup f,lim;oo [V f|(y:) = 0 and lim;_,o sup |V§f](yi) = 0, where

the derivatives are taken with respect to metric w.

Proof. : Let sup f = L. If sup f is obtained, the lemma is obvious. Otherwise we choose
a sequence z; with lim f(z;) = sup f. It is easy to see {x;} must go to infinity. Now
at each point we take a quasi coordinate chart V; covering x;. On each V;, define a

non-negative function p’ : V; — R such that

7 Z) T 5 pay-q UWZ
(% 81}6 81}68115
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p(x;) =1,p" =0 on dVi, p' < C,|Vp'| < C, and (phy) > —C(bpq),

where C' is positive number independent of ¢, and all norms are taken with respect to
the Euclidean norm.

Now consider
L-f
o

as a function on V;. Notice that Lp—jf blows up on the boundary of V;, so it admits

minimum at point y; which is in the interior of V;. Now

=g <o
Then
EL(y) < Bd(@i) = L= f(w),
WD () = 22 (),
(Doa () > Poa ()

Using these inequalities and the property of p’, we have

0<L— f(y:)) <C(L— f(x)),
|df (yi)| < C(L — f(x:)),
(foa) (i) < C(L — f(2:))(Spq)-

By the bounded geometry of quasi coordinates, the above norms can also be take with
respect to the metric w. Hence sequence {y;} satisfies all the properties required in the

lemma. O O

5.3.1 Model metrics with property (A)

We provide some explicit examples of (X, p) with property (A).
Uniformizatoin of 2 dimensional isolated log canonical singularity by Kahler-Einstein

metric.

Lemma 5.25. [70, [86, [138]
For any isolated normal surface singularity, they can be uniformaized by bounded sym-

metric domains with invariant Kihler-Einstein metric x = /—190p and classified as:
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e C%/T,T a finite subgroup of U(2) possibly containing reflections. Invariant metric

is defined by \/—100p, p = log(m)

e One point compactification of HxH/T',T" a parabolic discrete subgroup of Aut(H x

H) corresponding to a boundary point. Invariant metric is defined by /—190p, p =

1Og( y11y2 )

e One point partial compactification of B2/T,T a parabolic discrete subgroup of

Aut(B?). Invariant metric is defined by /—190p, p = log m

Remark 9. In the Lemma above, the first item is actually Klt singularity. So in this
section, we are mainly dealing with singularites of items 2 and 3. In other words, there
are divisors with discrepancy —1 in the resolution. We include the nice construction in

the appendix for reader’s convenience.

Another interesting example of isolated log canonical singularity unifomized by

Bergman metric is proved in [41].

Lemma 5.26. Let A be an abeliean variety with complex dimensionn and N a negative
line bundle on A. By contracting the zero section of N, one obtains a singular variety
X. Let ()?, o) denote the germ of the isolated singularity of X. Then there is an open
neighborhood (in Euclidean topology) u of 0 in X such that U = Z:{\\{o} is a smooth
quotient space of a unit complex ball B"* by a discrete subgroup of Aut(B"t1). As
a consequence, U has a negative Kahler- Einstein metric induced from the Bergman

metric of the ball which is complete towards o.

Remark 10. The invariant Kdhler-Einstein metrics in Lemma , [41)] have a
system of quasi coordinates in a punctured neighborhood of the isolated log canonical

singularities. This is the main property we will use in the following theorem 1.8

5.3.2 Second approach of construction of local Kahler-Einstein metric

We first take the function space U to be an open set of C’k+a(Q), which is defined

in (5.23)), as follows:

1
U={¢pecCQ): E(go‘ﬁ) < (Goij + ?i7) < ¢(9aij),in each quasi coordinate V,, },
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for some constant ¢, which however is not fixed.

We divide the proof into several steps.

5.3.3 Proof of Theorem 1.8

Step 1: Find an x-PSH extension of function ¢ to the domain €.
Choose an arbitrary smooth extension ¥ of ¢, which is supported on a neighborhood
of 9. Choose a convex increasing function g : [—00,a] — R which is zero on [—o0, D]

for some constant b < a. Now define

P = Ag(p) — Ag(a).

Notice that when A is large enough such that /—109P kills the negativity of x +
v/=100v1. Choose such P + ¢; as our new extension of . By the construction we
know that /—109(P + 1) is supported on a neighborhood of Q. This is crucial for
our proof, since we need the new metric x + /—199(1/1 + P) to keep the behavior of
in a neighborhood of the infinity.

In sum, we have
(x +vV—100(¢1 + P))" = e I'x™ on Q
(5.3.1)
VY1 + Plag = 1.
where the function F' is in Cheng-Yau’s function space. Hence if we define y by
X=X+ V=100(¢1 + P),¢ = ¢ — (1 + P) and F = F + 1 + P.
Simple calculation shows the Equation is equivalent to

(X +V—100p)" = e¢+p)~(” on
(5.3.2)
Ploa = 0.
So from now on, we will focus on zero boundary value problem.

The rest of the proof is by continuity method, which is a combination of [19, [8 25
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69]. We set up the continuity method as follows:

(X + V=100py)" = efrHtMyn
(5.3.3)
¢tloa = 0.
where M belongs to Cheng-Yau function space defined in (5.23)).
Step 2: Prove the openess part in the continuity method. It will follow from the inverse
mapping theorem. We need to show the linearized equation at y;
Ay,h —h=wv on Q
(5.3.4)
hlaq =0,

has a unique solution in C*%() with the estimate

12]lk,0(2) < cllvllr—2,a(82)

for some constant ¢ independent of the function v.

We first remark here that y; := x++/—190y; is a complete metric of bounded geometry
up to k — 2 covariant derivatives by the function choice of function space U at the
beginning of the proof. Next take an exhaustion {;} of the domain 2 towards the
infinity. (Here the boundary of our compact domain 2; has two components and one

of them coincide with 992). Following equation
Ay, hi —h; =v on
(5.3.5)
hlog, =0,
has a unique solution h; for each i. Maximum principle implies that supg, |h;| < sup |v].

Interior Schauder estimate of our function space implies that

12illk.a(V) < cllvllk—2.a(2).

for any compact set V strict away from 0€). This inequality, combined with standard
global Schauder estimate for a fixed compact set containing 90 imply that h; — h
pointwise with

Ayh—h=v,hlogg =0
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Moreover, we have

12]lka(2) < cllvllk—2.a(2).

Hence we establish the openness part.
Step 3: Clestimate in closeness part.

We have the following equality:

1 1
o -
p+M = logdet(g;; + ¢;;) —log det g;; = /0 ¢ 108 det(g;5 + tij)dt = /0 (g+tp) p;dt

Since at a point z € 2 we may asume g;; = ;5 and ¢;; = d;5¢;;, we have two inequalities
as follows:

e+ M <Ay,
o+ M=>Ayp.

where y; = x + vV—100p1. By Lemma (5.24)), we get the C? estimate.

Step 4: C! boundary estimate. On the one hand since ¢+ M < A, ¢, we construct
a barrier function h from above as follows. Take a neighborhood B of the boundary

01}, where 0B = ) + C and C' is the other side of the boundary 0B. Then derive h

by solving the following Dirichlet problem in B:
Ayh =,
(5.3.6)

hloa = 0 and hlc = d.

where d is a positive constant greater than sup |p| and ¢ is a constant smaller than
inf(¢ + M). Then maximal principle implies that h > ¢ in B.

On the other hand, we construct a barrier function h; from below as follows. Take
the global x strictly PSH function P we constructed above and choose a constant b

large enough such that

(x + V—100bP)" > eswetMyn on B,
(5.3.7)

bP < ¢ on C and bP = 0 on 0f).
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Then maximal principle of Monge-Ampeére equation implies hy := bP < ¢ on B. Notic-
ing that h and hj coincide with ¢ on 0f), we get the boundary gradient estimate of
©.

Step 5: Global C! estimate. Since on noncompact manifold, we don’t necessary
have maximum point with gradient vanish etc. We will follow [§] to obtain the C*
estimate.

Define ¢ = log|Vp|? — v(¢) where v is monotone increase function to be determined.
Assume that supg ¢ is not obtained on 0f2, then by the generalized maximum principle,

we can find a point g € 2 with
¢(q) +e> SUp 0, Vix(a) <€ Axglq) <e

where V := V,¢. By (5.2.9), at ¢, we have

g

9ReV,, log FV™p VIVel, Vo VIVel? vy
A'log |Ve|? > - —Atryg+2R( g ) g —2%( g
Vel2 ! Vel3 7 [Vel3 ™ IVolg " IVel3
Now using V = Vlog |[Vy|? — 'V, we get
[Vel2 7 [Vel2™ [Vel2 7 [Vel2™
Vo Vo /
=2R(V + 1V, Vg — 2R(V ++'Vo, Vg > —€tryg —e—7
[Vel2™? [Vel2"? !

The inequality above with
Ay(p) =+ Ao+ (") Vel?
imply that
etrgg>AN¢ > (' —e—A)trgg+ YVl =~ —e—=n—-C

where C' is the bound of gradient of function log F. Now we construct our function -~y

as
1

W) =W e

where C’ is the lower bound of . Then by standard argument we get global C*

estimate.
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Step 6: Boundary C? estimate. We notice the argument of [19] of boundary C?

estimate is purely local around the boundary and our equation can be written as

det ;5 = e*™/ on Q
(5.3.8)

eloa =,
locally, this is exactly one of the equation considered in [19], hence the estimate follows

by the fact that v/—100p is strictly positive in a neighbourhood of ).

Step 7: Standard C? estimate of Yau. We have the well-known inequality as follows:
A'logtrgg’ > —Btryg — C

where B,C depends on the geometry of good background metric g and Ricci curvature

of the volume form on the right hand side of the equation. Notice that
Ao =n—tryyg.
By setting A=B+C+1,we have the differential inequality
A'(logtrgg’ — Ap) = tryg — An.

This inequality and the boundary C? estimate imply the global C? estimate. Then
by Evans-Krylov Theorem, we derive higher order regularity. At last the metric upper
bound we get now combined with CY bound of ¢ implies a lower bound of the metric,

namely ¢ is in the function space U we introduced at the beginning of the proof.

5.4 Asymptotic analysis of different Kahler-Einstein metrics

In the following paragraph, we are concerned with the asymptotic behaviour of KE
metrics we constructed above.

We first compare the volume forms of two different Kahler-Einstein metrics on €2
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5.4.1 Compare volume ratio of different Kahler-Einstein metrics

Fix a point ¢ such that dist, (g, 9Q) > 2R. We construct a cut-off function ¢(x) =

p(1) > 0 with

such that
¢ =1on By(q,R), ¢ =0 outside By (q,2R),

and

pelo1], () <Cn), [0 <Cln).

Let H = ¢y. Since both x and x’ are KE metrics, we have
tryV—1900p = —n + tryx' > n(en —1).

Assume H attain a positive maximum at point @) (otherwise f(¢q) < 0). Then at point

Q, we have
H H

(R2(1 + R)) + én(e5 — 1) + 2R(Vo, ;vm _2HR(V,

AH > Ao

1
¢?

>

—H
- Vo)

-H, __, 902 1 H

H 1 H
=) IRV, SVH) 2R,

~1 o H 1
(~R™' = 2R™* 4 —) + 2R(V9, gvm

By maximal principle on the ball of radius R, noticing that VH(Q) = 0, we get

> "2 (R2(1+R)

v @\'m
o |

H < e(n)(= + ~

< =+ 2 (5.4.1)

Hence ¢(q) = H(q) < 2c(n)% when R is large. Therefore we have ¢(q) < € when

dist, (q,00) > 2n) " Switch the role of x and Y/, by the same argument, we get

€

—e < ¢ < +e for x € Ue := {x|disty(z,00) > 26&") and dist,/(z, 0Q) > @} As a
conclusion, we prove the theorem.

We prove some corollaries of Theorem ([1.9)
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Corollary 5.27. Suppose we are in the setting of theorem (@ i.e,  admits a complete
Kidhler-Einstein metric x with negative scalar curvature and Vol, () < oo, then for any

other complete Kdahler-Einstein metric X' with negative scalar curvature, Vol qy < oo.
Proof. 1t’s obvious, since ¢ = log ’;%: is bounded by theorem 1) O

Another simple application is a quick proof of uniqueness of complete Kéhler-

Einstein metric on a complex manifold without boundary.

Corollary 5.28. Let X be complex manifold without boundary. Suppose x,x are two

complete Kahler-Einstein metric with negative curvature on X, then x = X’

Proof. From the Kéhler-Einstein conditon, we know that
X = V—19dlog(x)", x' = V=190 log(x')"

Hence if we let ¢ = log i‘%:, then x’ = x + v/—190log % and ¢ satisfies the following

equation:
(X + V—=100¢)" = e?X"

From the proof theorem ([1.9)), at a fixed point p € X, as long as we can get a large
scale cut off function, which is always true on complete manifold, we have p(p) < 1.

Once we have bounded ness of ¢, maximal principle will conclude the proof. O

By applying Yau’s Schwarz Lemma, we have the following theorem concerning the

comparison of two different Kéhler-Einstein metrics.

Proposition 5.29. Let x,x be two complete Kdihler Einstein metrics with negative
scalar curvature. If moreover the bisectional curvature of x is < —Kso. where Ko is a

positive constant. Then there is a constant ¢ such that

1

g1 < g < cg1.

c
where g, g, are the Riemannian metrics corresponding to the Kdhler forms x, X’ .
Proof. Let u = try, g, by Chern-Lu’s inequality we have

Aglu > —Kiu+ K2u2.
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where K7 is the Ricci curvature of wy. We still use the cut-off function ¢ as in theorem
(1.9). Let G = ¢u, combine the Chern-Lu inequality and the same argument as as in

theorem (|1.9)), we get the following inequality

(NI

K
G < =L 4 ¢(Ky, K2)R™
Ko

When R is larger, the estimate is better, hence we have g < cg; for some constant

which depend on the metric g;. Since we also prove the pointwise volume ratio estimate

in theorem ([1.9)), hence we have
1
sy < g
O

Now we make use of property (A) of metric x. We first prove bounded smooth
solutions of Dirichlet problem in ((1.3.2)) is unique and any complete Kéahler-Einstein
metric on (2 \ p) comes from the solution of equation (|1.3.2)).

Proposition 5.30. Suppose Q0 admits a complete metric x = \/—1900p with p bounded

from above and goes to —oo towards p, then bounded smooth solution ¢ of
(x + V=100p)" = e*x™ on Q\p
(5.4.2)
¢laa =0,

is unique i.e o = 0. In particular, if x is a complete metric towards p with property (A),

then for any other complete Kdihler-Einstein metric X' with negative scalar curvature,

X' is one of the solutions from Theorem .
Proof. Let o = ¢ — ep and xe = (1 + €)x then ¢, safisfies the equation
(Xe + V=100¢p.)" = %X? on
(5.4.3)
Peloa = —ep,

Since p goes to —oo, ¢, admits minimum in 2. If minimum is on the boundary,

Ye > —€infaqp. If the minimum is in the interior point Q, ¢ (Q) = ¢(Q) — ep(Q) >
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log(1 + €) — emaxp. In both cases, let € — 0, we get ¢ > 0. Similar argument showes
that ¢ < 0. Hence 0 is the unique solution. For the second part of the theorem,
on one hand, from the fact that x’ is complete and Theorem , we know that
X' = x + vV—1909p and ¢ is bounded, on the other hand, from Theorem we
can find ¥ = x + v/—109¢ with $|0Q = ¢|0€). By the first part of this theorem, we

conclude that ¢ = @, x' = X' O

At last, with the help of estimates of high order derivatives of ¢, we prove the
rigidity of local complete Kahler-Einstein metrics with negative scalar curvature near

isoloated log canonical singularity. This is stronger than proposition (|5.29)).

5.4.2 Compare different Kahler Einstein Metrics

First of all, x’ is one of the solutions in theorem by the completeness of Y/,
theorem and theorem (5.4.2)). For any point ¢ € (2 \ p), we can choose a quasi
coordinate (V,d)) covering ¢ such that there is a point ¢ € V C 17, ¢(q) = q and
dist(q, 8‘7) > dist(V, 8‘7) > €1. Let p be the cut-off function we constructed in the

proof of Lemma ([5.24)). Then we have the following inequalities:

Zf:l |p(k)|Euc < Bka

where By s are universal constants independent of p and V. This is true because under
the construction of the system of quasi coordinates, we have dist(V, 5‘?) > €1 > 0, hence
controlling the derivatives of cut-off function unifomly. Actually, we can even assume
the covering domains we choose are B 1 o B e by subdividing the original coverings.
By our previous proof of the A priori estimates of ¢ from equation , we also have

the following inequalities, for any point ¢ € (2 \ p) and any nonnegative integer k:

i IV® el (9) < .

When k& = 0, the theorem is proved by Theorem (1.9)). for & > 1, we do computations

in the quasi coordinate as follows:

/A poAp = [ p|Veol? + /A ©(Vp, Vp),
1% Vv Vv
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/ Vep|? < /Ap!VsOIZ < C-(Cy+ By)-suplgl.
Vv |4 \a
Similarly, we have

/ [VFo[? < C' - (Bg + Cap—1) - sup o).

1% v

where C is the euclidean volume of V. Suppose dist,, (p, 9§?) > R and dist,,, (p, 9Q) > R,

by the triangle inequality, we have

dist(d($(V)), 00) > dist(p, dQ) — dist(p,d(p(V))) > R — C'e; >

2o | 2

where C is a metric equivalence constant in quasi coordinates, where depends on the

geometry of y but independent of ¢q. Hence by the C? estimate of ¢ in Theorem (1.9)),

/ VE2 < O (Copy + By) - L.
. R

Now that we have L? norm control of all higher order derivatives, by Sobolev embed-
ding on Euclidean space and property (d) of quasi-coordinate, we can conclude that
Zle Viplly(q) < eC(k, x, f) for q € U, where C(k, f,X) is a constant depends on the
geometry of y, k and f.

To end section 3, we give an example of a family of canonical polarized varieties

with central fiber equipped with log canonical singularity satisfying property (A).

5.4.3 Example: Degeneration of Godeaux surfaces

A surface X is called a Godeaux surface if m(X) = Zs and universal cover is
quintic hypersurface. A explicit construction could be as follows: Define Z5 on P2 in

the following way:
pe(Xo, X1, Xo, X3) = (Xo, pX1, p° X2.0° X3)

Then there exists quintics (in P3) invariant and fixed point free under the Zj action
with 5 non degenerate triple points and no other singularities by a dimension count
argument. (See [I35] page 135). Then the Zs quotient will give a family of Godeaux
with central fiber a canonical polarized variety coupled with a single simple elliptic

singularity (cone over elliptic curve).
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Appendix A

Uniformization of lc singularity of complex dimension 2

We include the uniformization of 2 dimensional log canonical singularity for reader’s
convenience. This is basically taken from [69, [70]. Firstly let’s us recall the classification
of 2 dimensional isolated log canonical singularity in terms of the the configuration of
exceptional curves. The first proof I know is due to Kawamata [65], page 141. See also
.

Let (X,p) be a log-canonical surface singularity and let g : ¥ — X be the minimal
resolution. Let G be the dual graph of the union of exceptional locus. Then of the

following holds;
1. (x,p) is a quotient singularity (Klt singularity);
2. (z,p) is a simple elliptic singularity or a 2 dimensional cusp;
3. G=1(2,2,2,2),(2,4,4),(2,3,6),(3,3,3);

4. G =
(-2)

-2)
20

We will have a more detailed description of the terminology we used above in the dis-

(
B
O (

cussion below. Here we just point out that simple elliptic singularity is a covering of

case (3) and 2 dimensional cusp is covering of case (4).

Every cusp singularity is log canonical. The exceptional set in the minimal resolution

is a cycle of CP! or a double rational curve. It’s is uniformized by by HxH with covering
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transformation group G(M, V') which is a reflection-free discrete subgroup of Awt(H xH)
fixing the point (0o, 00) in the boundary.

More precisely, suppose we have a cycle of rational curves (CIP’Z1 with self intersection
¢,0 < i <r—1. For a integer k, let (Ci be the k-th copy of C? with the coordinate

function (uk,vk). We put the identification defined by
— -1
Up = U]Zk_llkalv Vg = Up_4

on the disjoint union Ilx¢ Z(Cz. Let the resulting manifold be Y’. In Y’, the curve
defined by v = 0 in (Ci and uy = 0 in (Ci 41 1s a nonsingular curve with self-intersection
—qi. We denote these curves by Sj, hencee S;s is a chain of rational curves. The

identification can also be written in the form as
(log uy,, log vy,) = (log up,—1,log v—1) (%" 701 )

= (logug,logvo) (9 ') (4 ') -+ ("7 ')

Set
(g o) = (P ) ()

Then Py = Py—1+ Pry1, Po = 1, P = qo and q1Qp = Qg1 + Qk41,Q0 = 0,Q1 = 1,
{Pi}i>1 and {Qp}r>1 are determined by the continued fractions [[qo,q1, 42, - . qx]] =
g — (1 —(g2—+— (qr—2— q,;_ll)_l S e % where Py, Q}, are coprime positive
integer. Also the infinite periodic continued fraction [[qo, q1,- - ,¢s, - -]] > 1 represents
a real quadtatic irrational number wg. For example if all g, = 4, then wy = 2 + v/3.
Let ws == [[¢s, @s+1,---]] > 1 and Ry = Py — Qpwo. Then R} s satisfy ¢z Rr = Rp—1 +
Ryy1. From the definition, we get Ry = 1, R; = wfl,-~- , R = wflwgl .- -w;l, M =
Z 4 Zuwy is a free Z- module of rank 2 and Ry, Rx11 for any k, is a basis of M. Since
wg = Wiy, for any k, Ry R, = Ry, holds. So R,M = M. By the Hamilton-Cayley
theorem, R, and R_, = R, ! are both algebraic integers. In particular, R, ' = R/ where
" means to take the conjugate over Q. Let V = {R!'},cz = Z under the correspondence

R! <3 n. Then G(M,V) = {({%),e € V,u € M} acts on C* properly discontinuous

and without fixed points as follows:

(0%) ®(21,22) == (ez1 + p, €20 + 1) (A.0.1)
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The action of G(M, V) can be restricted onto H? where H is the upper half plane.
Since ee’ = 1, Imz1I'mzy is invariant under the action of G(M, V). We show there is a
neighborhood Y'* of [,z Sk in Y such that Y\ U,z Sk is biholomorphic to H? /M.

Actually let
Y = {(ug, vp) € CF, 00 > Rj_y log |ug| ™'+ Rjlog |vg| ™' > 0,00 > Ry_1 log [ug| '+ Ry, log [o| ' > 0}
And the correspondence is given by

. Ry_1 R,
2mi(21, 22) = (log ug, log vg) ( ;kl I’il) (A.0.2)

It’s easy to see that the above correspondence is well defined and that
H?/M =Y\ | ] Sk
keZ
Then we still need to put a periodic identification on Y*. We consider the following
Z action on Y'. For n € Z and («, ) the coordinate of C3, n e (a,f3) is defined
by (a, ) in terms of the (k + nr)—th coordinate. This Z restricts to the action on
Y+ \ Ukez Sk and is compatible with the V action on H?/M via . Indeed, the
point of Y+ \ U,z Sk expressed as («, 3) in the (k + nr)—th coordinate is written as

(@B, a=¢B~%) in the k— coordinate, where
(5) =4 () ()Y
So

—cn—d\/ Brk-1 R] Ry —nr—1 Ry
(log g’ loga™6™) (", " ") = (loganlog ) (g " )

Rk*”"" k—nr
Ry_1 R}, R™. 0
= (loga710g5)( Ry E;ﬁl)( 0 Rg,)
This Z action on Y is properly and discontinuous and without fixed points. Define

Y = YT /Z, then the image of S;s forms a cycle B = 7,;;(1) By, of CP! such that

Bj..Bi. = —q. Now we can conclude that
H?/G(M,V) =Y \ B

and the correspondence is given by (A.0.2)) in the k—th coordinate of Y+ and the Eu-

clidean one of H2. The open set Wy, of H? defined by {(z1,22) € H?, ImzImzy > L} is
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invariant under the action of G(M, V') and its image in Y\ B is a deleted neighborhood
of B. Now we conclude that /=190 log Imz;Imz, is invariant under the action of I’
and hence can descend to a Kéhler metric on a punctured neighbourhood of singular
point p.

(According to Kobayashi, under a further Zy action, we can get case (4).

Remark 11. A Zs action on case (3) will give the case (4), but it seems unclear to us
that how the metric x = /—1001og Imzi1Imzo can be invariant under the Zo action. A
naive action which keeps the metric invariant will be swapping z1 and za, but this action
has singularity along the line z1 = zo. We give an alternative argument to deal with
case (4). By case (3), we already get a local Kdhler-Einstein metric satisfying property
A. The Zy action will induce a automorphism of © of (2\p), then by our theorem ,
V2 (x — 7*X)| < C; where C; can be choosen as small as we want by shrinking the
domain. Then x + 7*x will be a model metric invariant under the Zo action satisfying

property A.

Next we discuss simple elliptic singularity.
First let us recall the standard Bergman metric model on the unit ball B? in C?2,
(B2, —/—1901log(1 — |z|?)). Through the transformation z; = Z—_T_E,ZQ = UQ—L, the
Bergman metric model correspond to the Heisenberg model defined on the Siegel do-
main: A = {(u,v) € C?[Imu — |v]? > 0, —/—190log(Imu — |v|*)}. Let L be a lattice
in the v plane, then the parabolic group P fixing the boundary point p = (1,0) € 9B? is
written in the Siegel domain expression as follows: (or you can at least verify Imu — |v|?

is invariant under the action below through simple calculation)
P={(p,y.r)lpeU),y€L,reR}
where (u,y,7) stands for the automorphism of A given by
1 2ipy r+ily|?

0 u v o)
0 0 1
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It’s easy to see that the composition law is (u,v,7)(i/,7', ") = (up', py" + v, 7 + 1" —
2Im(pyv'))-

Now we can start to talk about simple elliptic surface singularity. Let A = C/L,L =
{Z + Zw, Imw > 0} and denote the projection C — A by m. Let a be the area of the
fundamental domain of L measured by the usual flat metric |dz|? of C. There is a real
closed form 7 on A such that 7*n = i(2a) " 'dz A dz.

Let p be the metric of Hermitian line bundle N — A whose curvature form is given
by —ibm(a)~tdz A dz. Since H'(C,0*) = 1, there is an isomorphism C? = 7*N be-
tween holomorphic line bundles over C where C? is the trivial line bundle over C. On
the pull back bundle 7* N, we may regard n*p as a positive function on C. There is

bw

an entire holomorphic function #(z) such that 7*p = {exp(—|z|?)lexp(#)|?} «. The

—br
a

biholomomorphic map of C? into itself defined by (w,z) — (exp( Jw, z) is an

isomorphism of trivial line bundle over C and the Hermitian metric e:vp(—]z[Z)b?W is
pulled back to the Hermitian metric {ea:p(—|z|2)|exp(9)]2}b7ﬂ. So we may assume that
T*N = C?,7*p = ((3:L"p(—|z|2))b77r through an automorphism of C2. Next we compute
the transition function, let U be an open subset of C such that U is contained in a fun-
damental domain of L. Let v be an arbitrary element in L. Since C x U and C x (U ++)
are local trivilization of N| ), there exists a non-vanishing holomorphic g(z) defined
in U such that (w,z) € C x U and (v',2) € C x (U,) represent the same point of
Nl @y if and only if 2’ = 2z 4+ and w’ = g(z)w. Hence g(z) must satisfy the following
= P (eap(—12 %) " = lg(@) Pl (—exp(|z + 1) "

for all z € U and w € C. Therefore g(z) must be written in as

equality: [w[2(ezp(—|2?))

T 2
o(2) = eap{~" (25 + 20+ o)

where 6() is a real number determined by v € L modulo (%“)Z. If 2/ = 2+~ and
2" =2'+4/, then (w, 2), (w', 2") and (w”, 2”") represent the same point if and only if the

following three equalities hold:
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T 2
! = eap{~" (5 + O i)

Hence 0(y+7") = 0(7) +0(y') — Im(37') modulo 22Z. Recall that L = {Z+ Zw, Imw =
a > 0}. It follows that 6(m + nw) = ma + nB — mna modulo 227 where «, 3 are fixed
representativs of #(1) and #(w) respectively. Using this 6(~), we define a group of 3 x 3
matrics as follows:
1 20y ilyf* - 20(v)
r={(o 1 ~ );0(m + nw) = ma + nf —mna  modulo 2?CLZ}

Let B be the unit ball in C? and A the domain in C? defined by {(u,v) € C?; Im(u) —
|v]2 > 0}. Then 21 = (u —i)(u+4)~! and 2o = (2v)(u + i)~! give a biholomorphic
map of B to A. For a positive integer k, we consider the subdomain A, of A defined
by {(u,v) € C% Im(u) — |v|* > k}. Actually A, corresponds to the horoball at (1,0)
of B with the Bergman metric. I' is a discrete subgroup of the group of analytic

automorphism of A, which also keep Ay, invariant. This action is described as follows:

1 20y iy]?—20(y) wu u + 2iyv + i|y|? — 20(y)

(0 1 v )= ( vty )
0 0 1 1 1

The map F : A — C? defined by (u,v) — (exp(bm“),v) maps A onto the set V' =
F(A) = {(w,2) € C%0 < |w|]*(exp(—|z|?)) =" ) < exp(—=E} . If we define V = {w €
N :0 < p(w,w) < exp(=2£2)}, then V' = 7~ 1(V). V is a deleted neighborhood of the
zero-section of NV and a punctured disk bundle over the elliptic curve A. It’s easy to see
that A/T" is biholomorphic to V. And the Kéhler form of the Bergman metric of unit

ball B can be written in terms of the coordinate (u,v) of A as

dv A dv (—idu — 2vdv) A (idu — 2vdv)
" Tmu— |[v]? 4(Imu — |v|?)?

— /=100 log(Imu — |v|?)

(A.0.3)

This metric is invariant under the action of I', hence this projects down to a Ké&hler

metric of V', whose Kahler form is given by

dz A dz (2 (42) + 2d2) A ((£2)(22) + 2dz)
(35) log |w[~2 — [2]? ((52) log [w] =2 — [v]?)?
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where (w,2) = F(u,v) = (exp(2Z), v).

Case (c) is uniformized by simple elliptic singularity. We use the same notation as
the case of simple elliptic singularity. The elliptic curve A has a nontrivial point group
G, i.e., the corresponding lattice is invariant under the action of non-trivial finite sub-
group of U(1). The central curve, namely A quotient, is an orbifold defined over CP*
described by (by,bg,---) where by,--- are branch indices. The only possible triads
(A,G,(by,---)) are

1. L =Z + Zw (general lattice),G = (—1),(2,2,2,2)

2. L=7+7iG = (i),(2,4,4)

2mi

3. L=Z+2Ze% ,G=(c%),(23,6)

27

4. L=7+7e% ,G=(e%),(3,3,3)

We can construct a discrete parabolic groups I' corresponding to these triads, which fit
into the exact sequence

1-72Z—-1T—-FE—1

where Z consists of automorphism ((u,y,7)) with (u =0,y =0,r = 2?“Z), I’ consists of
automorphism ((u,7,r)) with 4 € G (a finite subgroup of U(1)), v € L (a lattice with

a non-trivial point group G) and r = r(u, ) € R modulo %Z obeying

B 4a
r(pds ey ) = (i) + (') = 20m(pyy ymod - 2. (A.0.4)

FE is a discrete Euclidean motion group generatd by L and G. The map I' — F is
defined by forgetting R. For example, in the case L is general and G = (—1) Define
r(—1,0) = 2% mod %“Z and r(1,n + mw) = —2mna mod %Z. Actually, by , to
construct such a group I', we only need to define (1, ) and r(e, ) where e is a generator
of the cyclic group G. And in this situation, the minimal resolution of the singularity
is a central rational curve with 4 rational curves which don’t intersection each other,

sitting on it. If the branch index is 3, then in the resolution, there are two possibilities:
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the first one is the Du Val singularity whose resolution is two rational curves with self-
intersection —2, or it’s a (3,1) singularity whose resolution is one rational curve with
self-intersection —3. Similarly we can analyze the cases of branch index 4 and 6. An

explicit resolution of the cyclic singularity can be found in [71].
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